#### **VOLUME II - APPENDICES**

RCRA FACILITY INVESTIGATION REPORT FOR THE OLIN **BUFFALO AVENUE PLANT** RCRA-89-3013-0208

Prepared for: Olin Chemicals 1186 Lower River Road Charleston, Tennessee 37310 August 1994

Woodward-Clyde 4



Woodward-Clyde Consultants, Inc. 15 Hazelwood Drive, Suite 110 Amherst, New York 14228-2229 Project Number 4E02704

# RECEIVED

MAY 25 2004

NYSDEC REG 9 FOIL \_\_REL\_\_UNREL

#### **VOLUME II - APPENDICES**

REVIEW DRAFT RCRA FACILITY INVESTIGATION REPORT FOR THE OLIN BUFFALO AVENUE PLANT RCRA-89-3013-0208

Prepared for: Olin Chemicals 1186 Lower River Road Charleston, Tennessee 37310 August 1994

# **Woodward-Clyde Consultants**

#### TABLE OF CONTENTS - VOLUME II

#### **LIST OF APPENDICES**

| APPENDIX A | MONITORING WELL COMPLETION DIAGRAMS          |
|------------|----------------------------------------------|
| APPENDIX B | SOIL BORING AND ROCK CORING DESCRIPTIVE LOGS |
| APPENDIX C | ANALYTICAL DATA SUMMARY TABLES               |
| APPENDIX D | PRELIMINARY ANALYTICAL RESULTS               |
|            | MAY AND JULY 1994 SAMPLING ROUNDS            |

Appendix A

Monitoring Well
Completion Diagrams



WOODWARD-CLYDE CONSULTANTS
Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-1A

COMPLETION DATE: 6/22/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-1B

COMPLETION DATE: 6/23/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM

PROJECT NUMBER: 88C2346-2

DATE: 4/23/90

FIGURE NO:



# WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-1C/CD

COMPLETION DATE: 6/27/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM

PROJECT NUMBER:

88C2346-2

DATE: 4/23/90

FIGURE NO:





## REPORT OF MONITORING WELL OBA-2A

COMPLETION DATE: 8/22/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-2B

COMPLETION DATE: 8/24/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-2C/CD

| CC   | COMPLETION DATE: 8/30/89 |         |         | INSPECTED BY: Paul F. Mazierski |           |               |            |
|------|--------------------------|---------|---------|---------------------------------|-----------|---------------|------------|
| DRAW | N BY: PFM                | CHECKED | BY: KRM | PROJECT NUMBER:                 | 88C2346-2 | DATE: 4/23/90 | FIGURE NO: |

DRAWN BY: PFM





## REPORT OF MONITORING WELL OBA-3A

INSPECTED BY: Paul F. Mazierski COMPLETION DATE: 6/30/89 FIGURE NO: 88C2346-2 DATE: 4/23/90 CHECKED BY: KRM PROJECT NUMBER:



WOODWARD-CLYDE CONSULTANTS
Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-3B

COMPLETION DATE: 7/7/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



#### WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-3C/CD

INSPECTED BY: Paul F. Mazierski COMPLETION DATE: 7/11/89

DRAWN BY: PFM

CHECKED BY: KRM

PROJECT NUMBER:

88C2346-2

DATE: 4/23/90

FIGURE NO:



WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-4A

COMPLETION DATE: 7/14/89 INSPECTED BY: Paul F. Mazierski CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DRAWN BY: PFM DATE: 4/23/90 FIGURE 'NO:





## REPORT OF MONITORING WELL OBA-4B

COMPLETION DATE: 7/20/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



# WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-4C/CD

COMPLETION DATE: 7/24/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



### REPORT OF MONITORING WELL OBA-5A

COMPLETION DATE: 8/7/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:





## REPORT OF MONITORING WELL OBA-5B

COMPLETION DATE: 8/8/89

INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2

DATE: 4/23/90 FIGURE NO:



# WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-5C/CD

COMPLETION DATE: 8/10/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



WOODWARD-CLYDE CONSULTANTS
Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-6A

COMPLETION DATE: 8/15/89

INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2

DATE: 4/23/90 FIGURE NO:



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



### REPORT OF MONITORING WELL OBA-6B

COMPLETION DATE: 8/15/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-6C/CD

COMPLETION DATE: 8/18/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



#### WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-7A

INSPECTED BY: Paul F. Mazierski COMPLETION DATE: 6/7/89 DATE: 4/23/90 FIGURE NO: 88C2346-2

PROJECT NUMBER:

DRAWN BY: PFM

CHECKED BY: KRM



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-7B

| COMPLETION DATE: 6/13/89      | INSPECTED BY:   | Paul F. Mazierski |               |            |
|-------------------------------|-----------------|-------------------|---------------|------------|
| DRAWN BY: PFM CHECKED BY: KRM | PROJECT NUMBER: | 88C2346-2         | DATE: 4/23/90 | FIGURE NO: |



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-7C/CD

COMPLETION DATE: 6/20/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:





## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-8A

COMPLETION DATE: 7/26/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:



## WOODWARD-CLYDE CONSULTANTS Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-8B

COMPLETION DATE: 7/28/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2348-2 DATE: 4/23/90 FIGURE NO:



WOODWARD-CLYDE CONSULTANTS
Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-8C/CD

COMPLETION DATE: 8/4/89 INSPECTED BY: Paul F. Mazierski

DRAWN BY: PFM CHECKED BY: KRM PROJECT NUMBER: 88C2346-2 DATE: 4/23/90 FIGURE NO:

#### TYPICAL WELL CONSTRUCTION SPECIFICATIONS - HARZA ENGINEERING CO.





Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-9A

COMPLETION DATE: 11-02-92

- INSPECTED BY: F. GARBE

DRAWN BY FRC CHECKED BY DRE DROJECT NO. 9202030-6 DATE 6/20/04 EQUIDE N



Consulting Engineers, Geologists and Environmental Scientists



REPORT OF NAPL RECOVERY WELL OBA-9AR

COMPLETION DATE: 11-30-92

INSPECTED BY: F. GARBE

DRAWN BY FRG CHECKED BY DPF

PROJECT NO: 92C2030-6



Consulting Engineers, Geologists and Environmental Scientists



REPORT OF MONITORING WELL OBA-10A

COMPLETION DATE: 11-04-92

INSPECTED BY: F. GARBE

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 92C2O3O-6



Consulting Engineers, Geologists and Environmental Scientists



### REPORT OF MONITORING WELL OBA-11A

COMPLETION DATE: 11-30-93

INSPECTED BY: F. GARBE

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 4E02704



PROJECT NO: 4E02704

DRAWN BY: FRG | CHECKED BY: DPF



Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-11C/CD

COMPLETION DATE: 12-06-93

INSPECTED BY: F. GARBE

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-12A

COMPLETION DATE: 12-07-93

INSPECTED BY: F. GARBE

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists

6" stainless steel protective casing with locking cap
Elevation of top of riser: 574.04'

Elevation of ground surface: 571.5'

– 4" I.D. carbon steel casing

Cement/bentonite grout

Diameter of borehole: 12"

Depth to bedrock: 4.0'

Elevation of bedrock interface: 567.5'

Diameter of borehole: 5 7/8"

Depth to bottom of well casing: 9.0'

- Diameter of borehole 3 7/8"

B-zone fracture at 14.0', 100% water loss

- Depth to bottom of well: 19.6'

## REPORT OF MONITORING WELL OBA-12B

COMPLETION DATE: 12-20-93 INSPECTED BY: F. GARBE

DRAWN BY: FRG | CHECKED BY: DPF | PROJECT NO: 4E02704

 $\nabla \nabla \nabla$ 

∇ {

 $\nabla$ 

 $\nabla \nabla \nabla$ 

 $\nabla$ 

 $\nabla$ 

ママ

**P D** <u>C</u>



Consulting Engineers, Geologists and Environmental Scientists



No major water bearing fractures encountered.

Depth to bottom of well: 44.5'

# REPORT OF MONITORING WELL OBA-12C/CD

COMPLETION DATE: 12-20-93

INSPECTED BY: F. GARBE

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-13AOB

COMPLETION DATE: 4-18-94

INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-13A

COMPLETION DATE: 4-18-94

INSPECTED BY:

D. FRIEDMAN

DRAWN BY: FRG CHECKED BY: DPF PROJECT NO: 4E02704 DATE: 6/20/94 FIGURE NO:



Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-13B

COMPLETION DATE: 4-19-94

INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-13C/CD

COMPLETION DATE: 4-26-94 INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG | CHECKED BY: DPF | PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists



## REPORT OF MONITORING WELL OBA-14A

COMPLETION DATE: 4-25-94 INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG CHECKED BY: DPF

PROJECT NO: 4E02704



# REPORT OF MONITORING WELL OBA-14B

COMPLETION DATE: 4-25-94 INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG CHECKED BY: DPF PROJECT NO: 4E02704 DATE: 6/20/94 FIGURE NO:



COMPLETION DATE: 4-27-94 INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 4E02704 ·



Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-15A

COMPLETION DATE: 4-13-94

INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG | CHECKED BY: DPF

ED BY: DPF PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-15B

COMPLETION DATE: 4-20-94

INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG | CHECKED BY: DPF

PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists



# REPORT OF MONITORING WELL OBA-16A

COMPLETION DATE: 4-5-94 INSPECTED BY: D. FRIEDMAN

DRAWN BY: FRG | CHECKED BY: DPF

DPF PROJECT

PROJECT NO: 4E02704



Consulting Engineers, Geologists and Environmental Scientists

6" stainless steel protective casing with locking cap
Elevation of top of riser: 573.47'

Elevation of ground surface: 571.1'

- 4" I.D. carbon steel casing

Cement/bentonite grout

Diameter of borehole: 12"

Depth to bedrock: 7.2 (weathered) Elevation of bedrock interface: 563.9'

- Diameter of borehole: 5 7/8"

Depth to bottom of well casing: 11.6'

Diameter of borehole 3 7/8"

B-zone fractures at 14.7' and 15.7'. 100% water loss.

- Depth to bottom of well: 21.8'

# REPORT OF MONITORING WELL OBA-16B

COMPLETION DATE: 4-20-94 . INSPECTED BY: D. FRIEDMAN

**77** 

⊽∫

 $\nabla$ 

▽ 7 ∇ ▽

7 4

DRAWN BY: FRG CHECKED BY: DPF PROJECT NO: 4E02704 DATE: 6/20/94 FIGURE NO:

Appendix B

Phase I Soil Borings

|              |                        |             | LOG of BORING No. OSB-1                                                                                                                  |                      | •                      | S                | neet               | 1 0                 | f 1              |
|--------------|------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|------------------|--------------------|---------------------|------------------|
| DATE _       | 10/                    | 14/9        | SURFACE ELEVATION LOCATIO                                                                                                                | ис                   |                        | -                |                    |                     |                  |
| O DEPTH, ft. | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                              | STRATUM<br>ELEVATION | POCKET<br>PENETROMETER | MATER CONTENT, % | "LIGUID"<br>LIMIT, | PLASTIC<br>LIMIT, % | OTHER TESTS      |
| -            | 8                      | SS          | Bituminous asphalt with gray shot rock subbase material  Dark brown silt/clay fill with small rock clasts                                |                      |                        |                  |                    |                     | 0.40/<br>ND      |
| -            | 2                      | SS          | Light brown-tan lime sludge, very soft, very wet to saturated                                                                            |                      |                        |                  |                    |                     | 458/<br>1.6      |
| 5-           | WOR                    | SS          |                                                                                                                                          |                      |                        |                  |                    |                     | 167/<br>0.6      |
| -            | 5                      | SS          | (FILL)                                                                                                                                   |                      |                        |                  |                    |                     | 624/<br>8.6      |
|              | 100/4"                 | SS          | Black-brown coarse sand and gravel, wet, elemental mercury beads noted in sample at about 8 feet, little brick fragments  (FILL)         |                      |                        |                  |                    |                     | 1210/<br>3       |
| 15-          |                        |             | NOTES: (1) Top of bedrock @ 9.1'. (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |                      |                        |                  |                    |                     |                  |
| _            | ion Depth<br>No.:      |             | 9.1 Ft. Water De C2346-8                                                                                                                 |                      |                        |                  |                    |                     | _ hrs.<br>_ hrs. |
| Project 1    | Name:                  |             | OLIN RFI                                                                                                                                 |                      |                        | ft., A1          |                    |                     |                  |
| Drilling     | Method: _              |             | Hollow-Stem Auger                                                                                                                        |                      |                        | ft., Ai          | ter                |                     | _ hrs.           |

| LOG of BORING No. OSB-2  Sheet 1 of 1 |                        |             |                                                                                                                                                     |         |                        |                     |          |                     |             |  |
|---------------------------------------|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|-------------|--|
| DATE _                                | 10/                    | 15/9        | 91 SURFACE ELEVATION LOCATION                                                                                                                       | ои      |                        |                     |          |                     |             |  |
| DEPTH, ft.                            | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                         | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |  |
| 0                                     | 37                     | SS          | Bituminous asphalt with gray shot rock subbase material  Black-brown clay, little silt, trace sand, damp, some interbedded black sand/gravel layers |         |                        |                     |          |                     | 6.5/<br>ND  |  |
|                                       | 26                     | .SS.        | (FILL)                                                                                                                                              |         |                        |                     |          |                     | 0.41/<br>.2 |  |
| 5-                                    | 100/<br>0.3"           | SS          | Brown-tan clay with gray dolomite rock clasts, wet                                                                                                  |         |                        |                     |          |                     |             |  |
| 10-                                   |                        |             | NOTES: (1) Top of bedrock @ 4.6'. (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L.            |         |                        |                     |          |                     |             |  |
| -                                     |                        |             |                                                                                                                                                     |         |                        |                     |          |                     |             |  |
|                                       | on Depth:              |             |                                                                                                                                                     | pth:    |                        |                     |          |                     |             |  |
| Project N                             |                        |             | C2346-8 OLIN RFI                                                                                                                                    | -       |                        | ft., Af             |          |                     |             |  |
|                                       | dame:<br>Method: _     |             |                                                                                                                                                     |         |                        | ft., Af             |          |                     |             |  |

| LOG of BORING No. OSB-3  Sheet 1 of 1 |                        |             |                                                                                                                                          |         |                        |            |          |                     |              |  |
|---------------------------------------|------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|------------|----------|---------------------|--------------|--|
| DATE _                                | 10/                    | 15/9        | 91 SURFACE ELEVATION LOCATION LOCATION                                                                                                   | ом      |                        |            |          |                     |              |  |
| DEPTH, ft.                            | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                              | STRATUM | POCKET<br>PENETROMETER | CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS  |  |
| 0-                                    | 19                     | SS          | Bituminous asphalt with gray shot rock subbase material  Miscellaneous black-brown fill materials, dry                                   |         |                        |            |          |                     | 2.3/<br>0.2  |  |
| -                                     | 9                      | ss          | - same, damp, softer                                                                                                                     |         |                        |            |          |                     | 0.77/<br>ND  |  |
| 5                                     | 4                      | ss          | (FILL)  Tan-light brown clay, little silt and sand,                                                                                      |         |                        |            |          |                     | 0.44/<br>ND  |  |
| -<br>-                                | 100/5"                 | SS          | becoming more brown near bottom of spoon  - same, brown-tan clay, little sand with rock clasts, wet, very firm  (CL)                     |         |                        |            |          |                     | ND/<br>ND    |  |
| 10-                                   |                        |             | NOTES: (1) Top of bedrock @ 6.9'. (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        |            |          |                     |              |  |
| 15                                    |                        |             | -                                                                                                                                        |         |                        |            |          |                     |              |  |
| _                                     | ion Depth              |             | 6.9 Ft. Water De                                                                                                                         | pth:    |                        |            |          |                     |              |  |
|                                       |                        |             | 3C2346-8                                                                                                                                 |         |                        | ft., Af    |          |                     |              |  |
|                                       | Name:<br>Method: _     |             | OLIN RFI Hollow-Stem Auger                                                                                                               |         |                        | ft., Af    |          |                     | hrs.<br>hrs. |  |

|                | LOG of BORING No. OSB-4  Sheet 1 of 1 |             |                                                                                                                                                                        |         |                        |            |          |                     |             |  |
|----------------|---------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|------------|----------|---------------------|-------------|--|
| DATE           | 10/                                   | 15/9        | SURFACE ELEVATION LOCATI                                                                                                                                               | ои      |                        | •          | _        |                     |             |  |
| DEPTH, ft.     | SAMPLING<br>RESISTANCE                | SAMPLE TYPE | DESCRIPTION                                                                                                                                                            | STRATUM | POCKET<br>PENETROMETER | CONTENT, % | LIMIT, x | PLASTIC<br>LIMIT, % | OTHER TESTS |  |
| 0              | 126/0.9"                              | SS          | Bituminous asphalt for first 3", miscellaneous gray-brown fill, shot rock, brick fragments, etc. to refusal (FILL)                                                     | _       | i                      |            |          |                     | 57/<br>0.4  |  |
| - <del>-</del> | 100/2"                                | SS          |                                                                                                                                                                        |         |                        |            |          |                     | 2.9/<br>2.4 |  |
| 5              |                                       |             | NOTES:  (1) Auger refusal on old cell room foundation at 2.5°.  (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        |            |          |                     | 2.4         |  |
| -              |                                       |             |                                                                                                                                                                        |         |                        |            |          |                     |             |  |
| Comple         | tion Depth                            | <u> </u>    | 2.5 Ft. Water De                                                                                                                                                       | pth:    |                        | ft., Af    | ter      |                     | _ hrs.      |  |
|                |                                       |             | C2346-8                                                                                                                                                                |         |                        | ft., Af    |          |                     |             |  |
|                |                                       |             | OLIN RFI                                                                                                                                                               |         |                        | ft., Af    | ter      |                     | _ hrs.      |  |
| Drilling       | Method: _                             |             | Hollow-Stem Auger                                                                                                                                                      |         |                        | ft., Af    | ter      |                     | _ hrs.      |  |

| LOG of BORING No. OSB-5 Sheet 1 of 1 |                        |             |                                                                                 |         |                        |                     |          |                     |             |
|--------------------------------------|------------------------|-------------|---------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|-------------|
| DATE _                               | 10/                    | 15/9        | SURFACE ELEVATIONLOCATION                                                       | ои      |                        | _                   |          |                     |             |
| DEPTH, ft.                           | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                     | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0-                                   | 18                     | ss          | Bituminous asphalt with gray shot rock subbase material  Coarse shot rock fill  |         |                        |                     |          |                     | 11.4/<br>.2 |
|                                      |                        |             | (FILL)                                                                          |         |                        |                     |          |                     | ے.          |
| _                                    | 10                     | SS          | Brown-tan mottled clay, little(-) silt, thin sand lense at 3', damp  (FILL)     |         |                        |                     |          |                     | 35.4/<br>.9 |
| _                                    | ,,,                    | 00          | Brown clay, little(-) sand                                                      |         |                        |                     |          |                     | 1.27        |
| 5-                                   | 13                     | SS          | - brown-orange-tan clay, trace sand, little sand in some sections, dry, hard    |         |                        |                     |          |                     | 1.3/<br>ND  |
| _                                    | 100/                   | 00          | (CL)                                                                            |         |                        |                     |          |                     |             |
|                                      | 100/<br>0. <b>9</b> "  | SS          |                                                                                 | _       |                        |                     |          |                     |             |
|                                      |                        |             |                                                                                 |         |                        |                     |          |                     |             |
| -                                    |                        |             | NOTES                                                                           |         |                        |                     |          |                     |             |
| -                                    |                        |             | NOTES: (1) Top of bedrock @ 6.5'.                                               |         |                        |                     |          |                     |             |
| 10-                                  |                        |             | (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg |         |                        |                     |          |                     |             |
|                                      |                        |             | concentration in ug/L.                                                          |         |                        |                     |          |                     |             |
|                                      |                        |             |                                                                                 |         |                        |                     |          |                     |             |
|                                      |                        |             |                                                                                 |         |                        |                     |          |                     |             |
|                                      |                        |             |                                                                                 |         |                        |                     |          |                     |             |
| -                                    |                        |             |                                                                                 |         |                        |                     |          |                     |             |
| 15                                   |                        |             |                                                                                 |         |                        |                     |          |                     |             |
|                                      |                        |             |                                                                                 |         |                        |                     |          | ļ                   |             |
|                                      |                        |             |                                                                                 |         |                        |                     |          | ļ                   |             |
|                                      |                        |             |                                                                                 |         |                        |                     |          | ļ                   |             |
| -                                    |                        |             |                                                                                 |         |                        |                     |          |                     |             |
|                                      |                        |             |                                                                                 |         |                        |                     |          |                     |             |
| Complet                              | ion Depth              | :           | 6.5 Ft. Water De                                                                | pth:    |                        | ft., Af             | ter      |                     | hrs.        |
|                                      |                        |             | C2346-8                                                                         |         |                        |                     |          |                     | hrs.        |
|                                      | Name:<br>Method: _     |             | OLIN RFI Hollow-Stem Auger                                                      |         |                        | ft., Af             |          |                     |             |
| THIIII T                             | TATEPHOOF: -           |             |                                                                                 |         |                        | ,                   |          |                     | p.          |

| LOG of BORING No. OSB-6  Sheet 1 of 1 |                                                                                                                                                     |             |                                                                                                                                                        |         |                        |                     |          |                     |             |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|-------------|--|
| DATE                                  | 10/                                                                                                                                                 | 15/9        | 91 SURFACE ELEVATION LOCATION                                                                                                                          | ом      | _                      |                     | _        |                     |             |  |
| O DEPTH, ft.                          | SAMPLING<br>RESISTANCE                                                                                                                              | SAMPLE TYPE | DESCRIPTION                                                                                                                                            | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |  |
| -                                     | 119/2"                                                                                                                                              | ss          | Bituminous asphalt with black shot rock \subbase Black-orange-red miscellaneous fill, cinder, brick, shot rock, difficult drilling from 1.5'-2' (FILL) |         |                        |                     |          |                     | 79/<br>3.7  |  |
| -                                     | 18                                                                                                                                                  | ss          | DIFFICULT DRILLING AT 2', AUGER                                                                                                                        |         |                        |                     |          |                     | 55/<br>6.6  |  |
| 5-                                    | 2                                                                                                                                                   | SS          | - same, black sand/fine gravel, some silt, saturated, very soft (FILL)                                                                                 |         |                        |                     |          |                     | 6.5/<br>ND  |  |
| -                                     | 100/6"                                                                                                                                              | SS          | Brown-tan clay, very firm, moist, slight organic odor noted at bottom of spoon                                                                         |         |                        |                     |          |                     | 1.7/        |  |
| 10-                                   |                                                                                                                                                     |             | NOTES: (1) Top of bedrock @ 8.2'. (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L.               |         |                        |                     |          |                     |             |  |
|                                       | ion Depth                                                                                                                                           |             |                                                                                                                                                        | pth:    |                        | ft., Aft            | er       |                     | _ hrs.      |  |
|                                       |                                                                                                                                                     |             | C2346-8                                                                                                                                                |         |                        | ft., Af             |          |                     |             |  |
|                                       | Project Name:         OLIN RFI         ft., After         hrs.           Prilling Method:         Hollow-Stem Auger         ft., After         hrs. |             |                                                                                                                                                        |         |                        |                     |          |                     |             |  |

| LOG of BORING No. OSB-7  Sheet 1 of 1 |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
|---------------------------------------|------------------------|-------------|---------------------------------------------------------------------------------------------------------|----------------------|------------------------|---------------------|----------|---------------------|-------------|--|
| DATE _                                | 10/                    | 16/9        | SURFACE ELEVATION LOCATIO                                                                               | ои                   |                        |                     |          | •                   |             |  |
| DEPTH, ft.                            | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                             | STRATUM<br>ELEVATION | POCKET<br>PENETROMETER | WATER<br>CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |  |
| 0-                                    | 29                     | SS          | Bituminous asphalt with gray shot rock subbase material                                                 |                      |                        |                     |          |                     | 21/         |  |
| -                                     |                        |             | Gray shot rock fill (FILL)                                                                              |                      |                        |                     |          |                     | 1.3         |  |
| _                                     | 200/<br>6.06"          | SS          | Brown-red-tan clay with abundant rock clasts (FILL)                                                     |                      |                        |                     |          |                     | 7.8/<br>ND  |  |
| -                                     | 0.00                   |             | Gray shot rock fill - very difficult augering through hard rock fill from 3' to bedrock refusal at 5.3' |                      |                        |                     |          |                     | •           |  |
| 5-                                    |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
|                                       |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
| -                                     |                        |             | NOTES:                                                                                                  |                      |                        |                     |          |                     |             |  |
| -                                     |                        |             | (1) Top of bedrock @ 5.3'. (2) Values under "OTHER TESTS" are total Hg                                  |                      |                        |                     |          |                     |             |  |
| -                                     |                        |             | concentration in mg/kg over TCLP Hg concentration in ug/L.                                              |                      |                        |                     |          |                     |             |  |
| 10                                    |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
| -                                     |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
| -                                     |                        |             |                                                                                                         |                      |                        |                     |          | -                   |             |  |
|                                       |                        |             | -                                                                                                       |                      |                        |                     |          |                     |             |  |
|                                       |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
| 15                                    |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
| -                                     |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
| -                                     |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
|                                       |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
| _                                     |                        |             |                                                                                                         |                      |                        |                     |          |                     |             |  |
| _                                     | ion Depth              |             | 5.3 Ft. Water De                                                                                        |                      |                        |                     |          |                     |             |  |
|                                       |                        |             | 3C2346-8                                                                                                |                      |                        |                     |          |                     |             |  |
| _                                     |                        |             | OLIN RFI Hollow-Stem Auger                                                                              |                      |                        | ft., Ai             |          |                     |             |  |
| numing !                              | TATEPUOG: "            |             | LIVIANI CANCAL                                                                                          |                      |                        | , 74                |          |                     |             |  |

| LOG of BORING No. OSB-8  Sheet 1 of 1 |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
|---------------------------------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|-------------|--|
| DATE .                                | 10/                    | 16/9        | 21 SURFACE ELEVATION LOCATI                                                                            | ON      |                        | _                   |          |                     |             |  |
| DEPTH, ft.                            | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                            | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |  |
| -                                     | 20                     | SS          | Bituminous asphalt for first 3", coarse gray shot rock fill                                            |         |                        |                     |          |                     | 30/<br>1.3  |  |
|                                       | 100/4"                 | SS          | - same, thin black-brown clay layer observed (FILL)                                                    | _       |                        |                     |          |                     | 18.5/<br>.3 |  |
| 5-                                    |                        |             | NOTES:                                                                                                 |         |                        |                     |          |                     |             |  |
|                                       |                        |             | (1) Auger refusal on old cell room foundation at 3.2'.                                                 |         |                        |                     |          |                     |             |  |
|                                       |                        |             | (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        |                     |          |                     |             |  |
| -                                     |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
| 10-                                   |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
|                                       |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
|                                       |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
|                                       |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
| 15-                                   |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
|                                       |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
| -                                     |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
| -                                     |                        |             |                                                                                                        |         |                        |                     |          |                     |             |  |
| Complet                               | tion Depth             | :           | 3.2 Ft. Water D                                                                                        | epth:   | •                      | ft., Af             | ter _    |                     | hrs.        |  |
| _                                     |                        |             | C2346-8                                                                                                | _       |                        | ft., Af             |          |                     |             |  |
|                                       |                        |             | OLIN RFI Hollow-Stem Auger                                                                             |         |                        | ft., Af             |          |                     |             |  |

|            |                        |             | LOG of BORING No. OSB-9                                                                                                                                                |         |                        | S                   | heet    | 1 0                 | of 1        |
|------------|------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|---------|---------------------|-------------|
| DATE _     | 10/                    | 16/9        | SURFACE ELEVATION LOCAT                                                                                                                                                | ION     |                        |                     |         |                     |             |
| DEPTH, ft. | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                            | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LHOUID, | PLASTIC<br>LIMIT, % | OTHER TESTS |
| -          | 19                     | ss          | Bituminous asphalt for first 3" Gray shot rock fill                                                                                                                    |         |                        |                     |         |                     | 23.7/<br>ND |
| - <b>-</b> | 100/<br>0.5"           | SS          | - miscellaneous fill, some brown-black clay (FILL)                                                                                                                     |         |                        |                     |         |                     | 112/<br>4.6 |
| 5          |                        |             | NOTES:  (1) Auger refusal on old cell room foundation at 3.2'.  (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        |                     |         |                     |             |
| Completi   |                        |             | 3.2 Ft. Water D                                                                                                                                                        | epth:   |                        | ft., Af             |         |                     |             |
|            |                        |             | OLIN RFI                                                                                                                                                               |         |                        | ft., Ai             |         |                     |             |
| Drilling N |                        |             |                                                                                                                                                                        |         |                        | ft., Af             |         |                     |             |

| LOG of BORING No. OSB-10 Sheet 1 of 1 |                        |             |                                                                                                                                                                      |         |                        |                     |         |                     |             |
|---------------------------------------|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|---------|---------------------|-------------|
| DATE _                                | 10/                    | 16/9        | 21 SURFACE ELEVATION LOCATION LOCATION                                                                                                                               | ом      |                        |                     |         |                     |             |
| , DEPTH, ft.<br>SAMPLES               | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                          | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIGUID. | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0-                                    | 22                     | SS          | Bituminous asphalt for first 3" Miscellaneous fill, compact clay and shot rock, slag, dry                                                                            |         |                        | _                   |         |                     | 250/<br>13  |
| - <b>T</b>                            | 20                     | SS          | - same, wet above auger refusal at 4' (FILL)                                                                                                                         | _       |                        |                     |         |                     | 626/<br>14  |
| 5                                     |                        |             | NOTES:  (1) Auger refusal on old cell room foundation at 4'.  (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        |                     |         |                     |             |
| 10-                                   |                        |             |                                                                                                                                                                      |         |                        |                     |         |                     |             |
| 15-                                   |                        |             | ·                                                                                                                                                                    |         |                        |                     |         |                     |             |
| Completic                             | on Depth               | :           | 4.0 Ft. Water De                                                                                                                                                     | pth:    |                        | ft., Af             | ter _   |                     | _ hrs.      |
| Project N                             |                        |             | C2346-8                                                                                                                                                              |         |                        | ft., Af             | ter _   |                     | _ hrs.      |
| Project N                             |                        |             |                                                                                                                                                                      |         |                        | ft., Af             |         |                     |             |
| Drilling M                            | /lethod: _             |             | Hollow-Stem Auger                                                                                                                                                    |         |                        | ft., Ai             | ter _   |                     | _ hrs.      |

| LOG of BORING No. OSB-11 Sheet 1 of 1 |                        |             |                                                                                                                                                                      |                       |                                              |                     |          |                     |             |  |
|---------------------------------------|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|---------------------|----------|---------------------|-------------|--|
| DATE _                                | 10/                    | 16/9        | 21 SURFACE ELEVATION LOCATION                                                                                                                                        | ои                    | <u>.                                    </u> |                     |          |                     |             |  |
| , DEPTH, ft.                          | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                          | STRATUM<br>ELEVATION  | POCKET<br>PENETROMETER                       | MATER<br>CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |  |
| 0-7                                   | 39                     | SS          | Bituminous asphalt for first 3" Miscellanceous shot rock/brick fill                                                                                                  |                       |                                              |                     |          |                     | 588/<br>32  |  |
|                                       | 100/<br>0.1"           | ss          | (FILL)                                                                                                                                                               |                       |                                              |                     |          |                     | 165/<br>2.5 |  |
| 5                                     | 0.1"                   |             | NOTES: (1) Auger refusal on old cell room foundation at 2.5'. (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |                       |                                              |                     |          |                     | 2.5         |  |
|                                       |                        |             |                                                                                                                                                                      |                       |                                              |                     |          |                     |             |  |
| Completi                              | on Depth               | :           | 2.5 Ft. Water De                                                                                                                                                     | pth:                  |                                              | ft., Af             | ter _    |                     | hrs.        |  |
| _                                     |                        |             | C2346-8                                                                                                                                                              |                       |                                              |                     |          |                     |             |  |
| Project N                             |                        |             |                                                                                                                                                                      | ft., After ft., After |                                              |                     |          |                     |             |  |
| Drilling N                            | Method: _              |             | Hollow-Stem Auger                                                                                                                                                    |                       |                                              | ft., Af             | ter      |                     | hrs.        |  |

| LOG of BORING No. OSB-12 Sheet 1 of 1 |                        |             |                                                                                                                                                                      |         |                        |                     |          |                     |             |  |
|---------------------------------------|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|-------------|--|
| DATE _                                | 10/                    | 16/9        | SURFACE ELEVATION LOCATI                                                                                                                                             | on      |                        |                     |          |                     |             |  |
| O DEPTH, ft.                          | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                          | STRATUM | POCKET<br>PENETROMETER | WATER<br>CONTENT, % | LEAGYID; | PLASTIC<br>LIMIT, % | OTHER TESTS |  |
| -                                     | 56                     | ss          | Gray shot rock fill                                                                                                                                                  |         |                        |                     |          |                     | 50/<br>3.2  |  |
| -                                     | 100/<br>0.6"           | SS          | (FILL)                                                                                                                                                               |         |                        |                     |          |                     | 63/<br>16.3 |  |
| 5— 10— 15—                            | an Danth               |             | NOTES:  (1) Auger refusal on old cell room foundation at 3'.  (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        | fr. A4              |          |                     | h           |  |
|                                       | on Depth<br>No.:       |             |                                                                                                                                                                      | epth:   |                        |                     |          |                     |             |  |
| _                                     |                        |             | OLIN RFI                                                                                                                                                             |         |                        | ft., Ai             |          |                     |             |  |
|                                       |                        |             | Hollow-Stem Auger                                                                                                                                                    |         |                        | ft., Af             | ter      |                     | hrs.        |  |

|                                     |           |      |             | LOG of BORING No. OSB-13                                                                                                                                             |         |                        | S          | heet     | 1 0                 | of 1        |
|-------------------------------------|-----------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|------------|----------|---------------------|-------------|
| DATE                                | :         | 10/  | 17/9        | SURFACE ELEVATION LOCATI                                                                                                                                             | ои      | _                      |            |          |                     |             |
| DEPTH, ft.                          | SAMPLES   |      | SAMPLE TYPE | DESCRIPTION                                                                                                                                                          | STRATUM | POCKET<br>PENETROMETER | CONTENT, 2 | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0-                                  | 27        | 7    | SS          | Bituminous asphalt for first 3" Miscellaneous shot rock fill                                                                                                         |         |                        |            |          |                     | 418/<br>8.6 |
| 5-<br>10-                           | 106/      | /11" | SS          | NOTES: (1) Auger refusal on old cell room foundation at 3.4'. (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        |            |          |                     | 95/<br>1.5  |
|                                     | letion De |      |             |                                                                                                                                                                      | epth:   |                        |            |          |                     |             |
|                                     |           |      |             | C2346-8 OLIN RFI                                                                                                                                                     | _       |                        |            |          |                     |             |
| Project Name:<br>Drilling Method: _ |           |      |             |                                                                                                                                                                      |         | ft., Af                |            |          | hrs.<br>hrs.        |             |

|              |            |             | LOG of BORING No. OSB-14                                                                                                                                                                   |         |                        | Si                  | neet     | 1 o                 | of 1        |
|--------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|-------------|
| DATE _       | 10/        | 17/9        | 91 SURFACE ELEVATION LOCATIO                                                                                                                                                               | ON      |                        |                     |          |                     |             |
| O DEPTH, ft. | SAMPLING   | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                                | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LINIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |
| -            | 30         | SS          | Bituminous asphalt for first 3" Miscellaneous shot rock fill, some compacted clay, very firm                                                                                               |         |                        |                     |          |                     | 113/        |
|              | 100/4"     | SS          | - same, wet (FILL)                                                                                                                                                                         |         |                        |                     |          |                     | 95/<br>1.4  |
| 5—           |            |             | NOTES:                                                                                                                                                                                     |         |                        |                     |          |                     |             |
| _            |            |             | <ol> <li>(1) Auger refusal on old cell room foundation at 2.8'.</li> <li>(2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L.</li> </ol> |         |                        |                     |          |                     |             |
| -            |            |             |                                                                                                                                                                                            |         |                        |                     |          |                     |             |
| 10-          |            |             |                                                                                                                                                                                            |         |                        |                     |          |                     |             |
| -            |            |             |                                                                                                                                                                                            |         |                        |                     |          |                     |             |
| 15           |            |             |                                                                                                                                                                                            |         |                        |                     |          |                     |             |
| -            |            |             | ·                                                                                                                                                                                          |         |                        |                     |          |                     |             |
| -            |            |             |                                                                                                                                                                                            |         |                        |                     |          |                     |             |
| Complet      | ion Depth: | :           | 2.8 Ft. Water De                                                                                                                                                                           | pth:    |                        | ft., Af             | ter      |                     | _ hrs.      |
|              |            |             | 3C2346-8                                                                                                                                                                                   |         |                        | ft., Aft            |          |                     |             |
|              |            |             | OLIN RFI                                                                                                                                                                                   |         |                        | ft., Aft            |          |                     |             |
| Drilling I   | Method: _  |             | Hollow-Stem Auger                                                                                                                                                                          |         |                        | ft., Aft            | ter      |                     | _ hrs.      |

|                               |      |             | LOG of BORING No. OSB-15                                                                                                                                             |         | ,                      | S                   | heet     | 1 0                 | f 1                |
|-------------------------------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|--------------------|
| DATE                          | 10/1 | 7/9         | SURFACE ELEVATION LOCATI                                                                                                                                             | on      |                        | _                   |          |                     |                    |
| I 카I로 등                       |      | SAMPLE TYPE | DESCRIPTION                                                                                                                                                          | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LEMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS        |
|                               | 99 8 | ss          | Gray shot rock fill                                                                                                                                                  |         |                        |                     |          |                     | 28/                |
| ~                             |      | SS          | (FILL)                                                                                                                                                               |         |                        |                     |          |                     | 1.2<br>104/<br>0.3 |
| 5                             |      |             | NOTES: (1) Auger refusal on old cell room foundation at 2.6'. (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        |                     |          |                     |                    |
|                               |      |             |                                                                                                                                                                      |         |                        |                     |          |                     |                    |
| Completion D                  |      |             | 2.6 Ft. Water De                                                                                                                                                     | epth:   |                        |                     |          |                     |                    |
| Project No.:                  |      |             |                                                                                                                                                                      |         |                        | ft., Aft            |          |                     |                    |
| Project Name<br>Drilling Meth |      |             | Hollow-Stem Auger                                                                                                                                                    |         |                        | ft., Af             |          |                     |                    |

| 1            |                        |             | LOG of BORING No. OSB-16                                                                                                                                                          |         |                        | S                   | heet    | 1 0                 | of 1        |
|--------------|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|---------|---------------------|-------------|
| DATE _       | 10/                    | 18/9        | 91 SURFACE ELEVATION LOCATION                                                                                                                                                     | on      |                        |                     |         |                     |             |
| O DEPTH, ft. | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                       | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIGUIO, | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0-           |                        |             | Concrete pad                                                                                                                                                                      |         |                        |                     |         |                     |             |
| -            | 25                     | SS          | Shot rock fill                                                                                                                                                                    |         |                        |                     |         | '                   | 8.3/        |
|              |                        |             | Black fine sand/cinder fill                                                                                                                                                       |         |                        |                     |         | '                   | ND          |
| -            | 9                      | SS          | - same, some tan mottling, damp at 2', wet at 4'                                                                                                                                  |         |                        |                     |         |                     | 5.2/<br>0.2 |
| _<br>5—      | 7                      | SS          | - same, black fine sand fill, saturated, sheen on water, slight organic odor                                                                                                      |         |                        |                     |         |                     | 15.7/<br>ND |
|              | 100/3"                 | SS          | (FILL)                                                                                                                                                                            |         |                        |                     |         |                     | NR/         |
| 10 —         | on Depth:              |             | NOTES:  (1) Top of bedrock @ 6.7'.  (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L.  (3) NR: no analytic result.  Water De | epth:   |                        | ft., Afi            | ter     |                     | ND hrs.     |
|              |                        |             | C2346-8                                                                                                                                                                           |         |                        | ft., Aft            |         |                     |             |
|              |                        |             | OLIN RFI                                                                                                                                                                          |         |                        | ft., Aft            |         |                     |             |
|              |                        |             | Hollow-Stem Auger                                                                                                                                                                 |         |                        | ft., Aft            |         |                     |             |

|          |                                                    |             | LOG of BORING No. OSB-17                                                                |         |                        | S          | heet     | 1 0                 | f 1         |  |
|----------|----------------------------------------------------|-------------|-----------------------------------------------------------------------------------------|---------|------------------------|------------|----------|---------------------|-------------|--|
| DATE .   | 10/                                                | 18/9        | 91 SURFACE ELEVATION LOCATION                                                           | on      |                        |            |          |                     |             |  |
| SAMPLES  | SAMPLING<br>RESISTANCE                             | SAMPLE TYPE | DESCRIPTION                                                                             | STRATUM | POCKET<br>PENETROMETER | CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |  |
| 0-       |                                                    |             | Concrete pad                                                                            |         |                        |            |          |                     |             |  |
| _        | 21                                                 | SS          | Shot rock fill                                                                          |         |                        | l          |          |                     |             |  |
| -        | 15                                                 | ss          | Tan-red-brown fine brick and sand fill, large clasts of tan-red porous brick throughout |         |                        | N.         |          |                     |             |  |
| 5-       | 10                                                 | SS          | - same, spoon wet upon retrieval                                                        |         |                        |            |          |                     |             |  |
| -        | 100/3"                                             | SS          | - fill becoming black above refusal and sheen noted on water (FILL)                     |         |                        |            |          |                     |             |  |
| 10-      |                                                    |             | NOTE: (1) Top of bedrock @ 7'.                                                          |         |                        |            |          |                     |             |  |
| _        |                                                    |             |                                                                                         |         |                        |            |          |                     |             |  |
| 15       |                                                    |             |                                                                                         |         |                        |            | •        |                     |             |  |
| _        |                                                    |             |                                                                                         |         |                        |            |          |                     |             |  |
| -        |                                                    |             |                                                                                         |         |                        |            |          |                     |             |  |
| Complet  | ion Depth                                          | =           | 7.0 Ft. Water De                                                                        | pth:    |                        | ft., Af    | ter      |                     | _ hrs.      |  |
| Project  | No.:                                               | 88          | C2346-8                                                                                 |         |                        | ſt., Af    | ter      |                     | _ hrs.      |  |
| _        |                                                    |             | OLIN RFI                                                                                |         |                        | ft., Af    |          |                     |             |  |
| Drilling | Drilling Method: Hollow-Stem Auger ft., After hrs. |             |                                                                                         |         |                        |            |          |                     |             |  |

|                  |         |                        |                   | LOG of BORING No. OSB-18                                                                                                                   |         |                        | S                   | heet     | 1 0                 | of 1        |
|------------------|---------|------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|-------------|
| DAT              | E _     | 10/                    | 18/9              | 91 SURFACE ELEVATION LOCATION                                                                                                              | on      |                        |                     |          |                     |             |
| , DEPTH, ft.     | SHMPLES | SAMPLING<br>RESISTANCE | SAMPLE TYPE       | DESCRIPTION                                                                                                                                | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0-               | 7       |                        |                   | Bituminous asphalt for first 2", concrete for next 6", augered to 1' to begin sampling again                                               |         |                        |                     |          |                     |             |
|                  | 1       | 13/6"                  | ss                | Mottled black-brown fill, damp, organic odor noted                                                                                         |         |                        |                     |          |                     | 404/<br>4.0 |
|                  |         | 13                     | SS                | - same, mottled brown-black-tan fill                                                                                                       |         |                        |                     |          |                     | 161/<br>5.1 |
| 5-               |         | 8                      | SS                | - same, more massive and clay/silt dominated  (FILL)  Mottled brown-gray clay, firm, damp, slight organic odor noted                       |         |                        |                     |          |                     | 1.7/        |
|                  |         | 100/0.6"               | SS                | - same, with rock clasts above bedrock                                                                                                     |         |                        |                     |          |                     | 12/         |
| 15-              |         |                        |                   | NOTES:  (1) Top of bedrock @ 6.7'.  (2) Values under "OTHER TESTS" are total Hg concentration in mg/kg over TCLP Hg concentration in ug/L. |         |                        |                     |          |                     |             |
|                  |         | ion Depth:<br>No.:     |                   |                                                                                                                                            | pth:    |                        | ft., Af             |          |                     |             |
|                  |         |                        |                   | OLIN RFI                                                                                                                                   |         |                        | ft., Af             |          |                     |             |
| Drilling Method: |         |                        | Hollow-Stem Auger |                                                                                                                                            |         | ft., Af                | ter                 |          | hrs.                |             |

Phase II Soil Borings

| LOG of Boring No. NSB-1 Sheet 1 of 1 |                        |                |                                                                                                                                                                                                                                      |                      |                       |                         |  |  |  |  |
|--------------------------------------|------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------|--|--|--|--|
| DATE _                               | 12                     | / <b>7</b> /9: | 3 SURFACE ELEVATION 0.0 LOCATION Olin B                                                                                                                                                                                              | uffalo Av            | enue P                | lant_                   |  |  |  |  |
| SAMPLES                              | SAMPLING<br>RESISTANCE | SAMPLE TYPE    | DESCRIPTION                                                                                                                                                                                                                          | STRATUM              | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |  |  |
| 0-                                   | 9                      | SS             | Topsoil (0.4')                                                                                                                                                                                                                       | -0.4                 | 0.0                   | .004                    |  |  |  |  |
| -                                    | 3                      | ss             | Loose, predominantly brown, coarse gravel and red brick in a silty medium to fine sand matrix, moist                                                                                                                                 | -4.0                 | 0.0                   | .013                    |  |  |  |  |
| <br>5                                | 24                     | SS             | Stiff, brown, silty clay with trace rootlets, moist                                                                                                                                                                                  | -4.8                 | 0.0                   | .004                    |  |  |  |  |
| -                                    | 9                      | SS             | Firm, brown, coarse to fine gravelly silty clay, moist becoming wet                                                                                                                                                                  | 0.0                  | 0.0                   | .001                    |  |  |  |  |
| 10-                                  | 50/<br>4"              | SS             | Stiff, brown, gravelly silty clay  Dolostone Bedrock                                                                                                                                                                                 | -8.2<br>-8.4<br>-8.6 | 0.0                   | 0 .                     |  |  |  |  |
| 15-                                  |                        |                |                                                                                                                                                                                                                                      |                      |                       |                         |  |  |  |  |
| 20-                                  |                        |                |                                                                                                                                                                                                                                      |                      |                       |                         |  |  |  |  |
| 25-                                  |                        |                |                                                                                                                                                                                                                                      |                      |                       |                         |  |  |  |  |
| 30-                                  |                        |                | Notes: 1) Surface elevation assigned arbitrary datum 0.0.                                                                                                                                                                            |                      |                       |                         |  |  |  |  |
| 35-                                  |                        |                | <ul> <li>2) Readings under "Other Readings" are Mercury Vapor Analyzer readings over the split-spoon sampler.</li> <li>3) Readings under "OVA Readings" are Organic Vapor Analyzer readings over the split-spoon sampler.</li> </ul> |                      |                       |                         |  |  |  |  |
| 40-                                  |                        |                |                                                                                                                                                                                                                                      |                      |                       |                         |  |  |  |  |
| -                                    |                        |                |                                                                                                                                                                                                                                      |                      |                       |                         |  |  |  |  |
| _                                    | etion Dej              |                | •                                                                                                                                                                                                                                    | _ft.,Afte            | r                     | hrs.                    |  |  |  |  |
|                                      |                        |                |                                                                                                                                                                                                                                      | _ft.,Afte            |                       |                         |  |  |  |  |
|                                      |                        |                | Olin Plant RFI 4.25" H.S.A.                                                                                                                                                                                                          | _ft.,Afte<br>_ftAfte |                       |                         |  |  |  |  |

|            |                        |               | LOG of Boring No. NSB-2                                                                                                                     | 5                       | Sheet 1               | of 1                    |
|------------|------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------|
| DATE       | 12                     | <u>2/7/9:</u> | SURFACE ELEVATION 0.0 LOCATION Olin                                                                                                         | Buffalo Av              | enue P                | <u>lant</u>             |
| DEPTH, ft. | SAMPLING<br>RESISTANCE | SAMPLE TYPE   | DESCRIPTION                                                                                                                                 | STRATUM                 | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| -          | 9                      | SS            | Topsoil (0.4')                                                                                                                              | <del>-0.4</del><br>-1.0 |                       | 0                       |
| _          | 9                      | SS            | Medium dense, black, medium to fine sandy silt, some coal and slag fragments, moist                                                         | -1.0                    | 0.0                   | 0                       |
| 5-         | 28                     | ss            | Firm, red-brown, silty clay to clay with some yellow and gray mottling  Dense, brown to red-brown, fine gravelly coarse to fine sandy silt, | -4.8<br>-5.9            | 0.0                   | 0                       |
| -          |                        |               | moist                                                                                                                                       | ] -0.1                  |                       |                         |
| -          |                        |               | Dolostone Bedrock                                                                                                                           | ]                       |                       |                         |
| 10-        |                        |               |                                                                                                                                             |                         |                       |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
| 15—        |                        |               |                                                                                                                                             |                         |                       |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
| 20-        |                        |               |                                                                                                                                             |                         |                       |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
| 25—        |                        |               |                                                                                                                                             |                         | -                     |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
| _          |                        |               |                                                                                                                                             |                         |                       |                         |
| 30—        |                        |               | Notes:                                                                                                                                      |                         |                       |                         |
| -          |                        |               | <ol> <li>Surface elevation assigned arbitrary datum 0.0.</li> <li>Readings under "Other Readings" are Mercury Vapor</li> </ol>              |                         |                       |                         |
|            |                        |               | Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor                                         |                         |                       |                         |
| 35-        |                        |               | Analyzer readings over the split-spoon sampler.                                                                                             |                         |                       |                         |
| -          |                        | 1             |                                                                                                                                             |                         |                       |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
| 40-        |                        |               |                                                                                                                                             |                         |                       |                         |
| -          |                        |               |                                                                                                                                             |                         |                       |                         |
|            |                        |               |                                                                                                                                             |                         |                       |                         |
| Comp       | letion De              | pth:_         | 6.1 Ft. Water Depth:                                                                                                                        | ft.,Afte                | r                     | _hrs.                   |
| Projec     | t No.:                 | 92            | C2030-6                                                                                                                                     | ft.,Afte                | r                     | 1                       |
| -          |                        |               | Olin Plant RFI 4.25 H.S.A.                                                                                                                  | ft.,Afte                |                       |                         |

|            |             |                        |             | LOG of Boring No. NSB-3                                                                                                           | S          | heet 1                | of 1                    |
|------------|-------------|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------------------------|
| DAT        | E _         | 12                     | /8/9:       | 3 SURFACE ELEVATION 0.0 LOCATION Olin B                                                                                           | uffalo Av  | enue P                | lant_                   |
| DEPTH, ft. | SAMPLES     | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                       | STRATUM    | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0          | 1           | 11                     | SS          |                                                                                                                                   | -0.2       | 0.0                   | 0                       |
|            | 1           | 7                      | SS          | Medium dense, black to brown with little yellow mottling, silty coasre to fine sand and fine gravel, trace wood fragments         | -2.5       | 0.0                   | 0                       |
| 5          | -           | 7                      | SS          | Firm to stiff, red-brown to brown, coarse to fine gravelly clay, little silt and coarse to fine sand, some brick fragments, moist | -6.0       | 0.0                   | 0                       |
|            | -           | 67/                    | SS          | Stiff, red-brown, sandy gravelly clay                                                                                             | -7.2       | 0.0                   | .001                    |
|            | $\Pi$       | 7"                     |             | \Dolostone Bedrock                                                                                                                | -7.4       |                       |                         |
| 10         | _           |                        |             |                                                                                                                                   |            |                       |                         |
|            | +           |                        |             |                                                                                                                                   |            |                       |                         |
|            | 1           |                        |             |                                                                                                                                   |            |                       |                         |
| 15         | $\parallel$ |                        |             |                                                                                                                                   |            |                       |                         |
| 15         | 71          |                        |             |                                                                                                                                   |            |                       |                         |
|            | 4           |                        |             |                                                                                                                                   |            |                       |                         |
|            | ]           |                        |             |                                                                                                                                   |            |                       |                         |
| 20         | $\dashv$    |                        |             |                                                                                                                                   |            |                       |                         |
|            | ]           |                        |             |                                                                                                                                   |            |                       |                         |
|            | 41          |                        |             |                                                                                                                                   |            |                       |                         |
| 25         | 4           |                        |             |                                                                                                                                   |            |                       |                         |
|            | +           |                        |             |                                                                                                                                   |            |                       |                         |
|            | ]           |                        |             |                                                                                                                                   |            |                       |                         |
| 30         | $\exists$   |                        |             |                                                                                                                                   |            |                       |                         |
| 30         | 71          |                        | <br>        | Notes: 1) Surface elevation assigned arbitrary datum 0.0.                                                                         |            |                       |                         |
|            | +           |                        |             | 2) Readings under "Other Readings" are Mercury Vapor                                                                              |            |                       |                         |
|            | ]           |                        |             | Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor                               |            |                       |                         |
| 35         | $\exists 1$ |                        |             | Analyzer readings over the split-spoon sampler.                                                                                   |            |                       |                         |
|            | ]           |                        |             |                                                                                                                                   |            |                       |                         |
|            | 1           |                        |             |                                                                                                                                   | }          |                       |                         |
| 40         | -11         |                        |             |                                                                                                                                   |            |                       |                         |
|            | ]           |                        |             |                                                                                                                                   |            |                       |                         |
|            | 41          |                        |             |                                                                                                                                   |            |                       |                         |
|            | 1           |                        |             |                                                                                                                                   |            |                       |                         |
|            | -           | tion De                |             | <u>-</u>                                                                                                                          | -          |                       |                         |
|            |             | No.:                   |             |                                                                                                                                   | _ft.,After |                       |                         |
|            |             |                        |             | Olin Plant RFI 4.25" H.S.A.                                                                                                       | _ft.,After |                       |                         |

|            |                       |             | LOG of Boring No. NSB-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                            | Sheet 1               | of 1                    |
|------------|-----------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------|-------------------------|
| DATE _     | 12                    | <u>/8/9</u> | 3 SURFACE ELEVATION 0.0 LOCATION Olin B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Buffalo Av                                                   | enue P                | <u>lant</u>             |
| DEPTH, ft. | SAMPLING              | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STRATION                                                     | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0-         |                       |             | Asphalt pavement overlying concrete (2')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                          |                       |                         |
| 10-        | 5<br>WOH<br>57/<br>7" |             | Medium dense, light brown to tan, silty coarse to fine sand and gravel (primarily concrete fragments), trace wood, dry  Firm, brown, medium to fine sandy clay, trace coarse to fine gravel, moist  Medium dense, orange and black, silty coarse to fine sandy silt, trace coarse to fine gravel, moist  Soft, gray, clay, moist  Firm, brown-red, coarse to fine sandy clay, trace coarse to fine gravel, moist  Soft to firm, black, clay, moist  Firm to stiff, red-brown, coarse to fine gravelly clay  Dolostone Bedrock | -2.0<br>-2.3<br>-2.6<br>-3.5<br>-4.5<br>-6.4<br>-7.2<br>-7.4 | 0.0<br>0.0<br>0.0     | .004                    |
| 20-        |                       |             | Notes:  1) Surface elevation assigned arbitrary datum 0.0.  2) Readings under "Other Readings" are Mercury Vapor Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor Analyzer readings over the split-spoon sampler.                                                                                                                                                                                                                                                          |                                                              |                       |                         |
| _          | tion Dep              |             | 7,4 Ft. Water Depth: 2C2030-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                            |                       |                         |
|            |                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ft.,Afte<br>_ft.,Afte                                       |                       |                         |
|            |                       |             | 4.25" H.S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft.,Afte                                                     |                       | _hrs.                   |

| _                                                                                                                          |                          |                        |               | LOG of Boring No. NSB-5                                                                                                        | S            | heet 1                | of 1                    |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-------------------------|
| DATI                                                                                                                       | É _                      | 12.                    | /8 <u>/93</u> | SURFACE ELEVATION 0.0 LOCATION Olin B                                                                                          | uffalo Av    | enue P                | lant_                   |
|                                                                                                                            | SAMPLES                  | SAMPLING<br>RESISTANCE | SAMPLE TYPE   | DESCRIPTION                                                                                                                    | STRATION     | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0                                                                                                                          | ]                        |                        | 0)            | Asphalt pavement overlying concrete (2')                                                                                       | 2.0          |                       |                         |
|                                                                                                                            |                          | 44                     | SS            | Very dense, white, coarse to fine sand and fine gravel (concrete fragments), dry                                               | -2.0<br>-2.4 | 0.0                   | 0                       |
| 5                                                                                                                          |                          | 34                     | SS            | Very dense, red, silty coarse to fine sand and fine gravel (brick                                                              |              | 0.0                   | .003                    |
|                                                                                                                            |                          | 88                     | SS            | fragments), occasional seam of white sand, dry becoming wet at 6'                                                              | -7.5         | 0.0                   | .002                    |
|                                                                                                                            | -                        |                        |               | \Dolostone Bedrock                                                                                                             | -7.7         |                       |                         |
| 10                                                                                                                         | 1                        |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | +                        |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | $\exists$                |                        |               |                                                                                                                                |              |                       |                         |
| 15                                                                                                                         | 川                        |                        |               |                                                                                                                                |              |                       |                         |
| 15                                                                                                                         |                          |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | 1                        |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | +                        |                        |               |                                                                                                                                | 1            |                       |                         |
| 20                                                                                                                         | ]                        |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | 31                       |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | $\exists$                |                        |               |                                                                                                                                |              |                       |                         |
| 25                                                                                                                         | ]                        |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | +                        |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | 1                        |                        |               |                                                                                                                                |              |                       |                         |
| 30                                                                                                                         |                          |                        |               | Notes:                                                                                                                         |              |                       |                         |
|                                                                                                                            | $\left\  \cdot \right\ $ |                        |               | <ol> <li>Surface elevation assigned arbitrary datum 0.0.</li> <li>Readings under "Other Readings" are Mercury Vapor</li> </ol> |              |                       |                         |
|                                                                                                                            |                          |                        | <br>          | Analyzer readings over the split-spoon sampler.                                                                                |              |                       |                         |
| 35                                                                                                                         | $\dashv$                 |                        |               | <ol> <li>Readings under "OVA Readings" are Organic Vapor<br/>Analyzer readings over the split-spoon sampler.</li> </ol>        |              |                       |                         |
|                                                                                                                            |                          |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            |                          |                        |               |                                                                                                                                |              |                       |                         |
| 40                                                                                                                         | $\dashv$                 |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | 1                        |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | +                        |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            | 1                        |                        | 4.            | 76.54                                                                                                                          | <u> </u>     |                       | P                       |
| Completion Depth:         7.6 Ft.         Water Depth:         ft.,A           Project No.:         92C2030-6        ft.,A |                          |                        |               |                                                                                                                                |              |                       |                         |
|                                                                                                                            |                          |                        |               |                                                                                                                                | _ft.,Afte    |                       |                         |
|                                                                                                                            |                          | Metho                  |               | 4.25" H.S.A.                                                                                                                   | ft Afte      |                       |                         |

|             |                        |             | LOG of Boring No. NSB-6                                                                                                                             | S                    | Sheet 1               | of 1                    |
|-------------|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------|
| DATE _      | 12                     | /8/9        | 3 SURFACE ELEVATION 0.0 LOCATION Olin B                                                                                                             | uffalo Av            | enue P                | lant_                   |
| DEPTH, ft.  | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                         | STRATION             | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
|             | 29                     | SS          | Concrete Pad (1')                                                                                                                                   | -1.0                 |                       |                         |
| _           | WOR 2                  | .SS.<br>SS  | Loose, brown, silty sand and gravel overlying soft to firm,                                                                                         | -4.0                 | 0.0                   | .008                    |
|             | 46                     | SS          | Dense, brown, coarse to fine sandy coarse to fine gravel and silt,                                                                                  | -7.0<br>-7.9<br>-8.1 | 0.0                   | .003                    |
| 10-         |                        |             | Dolostone Bedrock                                                                                                                                   | 0.1                  |                       |                         |
| 15—         |                        |             |                                                                                                                                                     |                      |                       |                         |
| -           |                        |             |                                                                                                                                                     |                      |                       |                         |
| 20          |                        |             |                                                                                                                                                     |                      |                       |                         |
| 25-         |                        |             |                                                                                                                                                     |                      |                       |                         |
| -<br>-<br>- |                        |             |                                                                                                                                                     |                      |                       |                         |
| 30-         |                        |             | Notes: 1) Surface elevation assigned arbitrary datum 0.0. 2) Readings under "Other Readings" are Mercury Vapor                                      |                      |                       |                         |
| 35—         |                        |             | Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor Analyzer readings over the split-spoon sampler. |                      |                       |                         |
| -           |                        |             |                                                                                                                                                     |                      |                       |                         |
| 40-         |                        |             |                                                                                                                                                     |                      |                       |                         |
|             |                        |             |                                                                                                                                                     |                      |                       |                         |
| Comple      | tion De                | oth:        | 8.1 Ft. Water Depth:                                                                                                                                | _ft.,Afte            | r                     | hrs.                    |
| Project     | No.:                   | 92          | <u>2C2030-6</u>                                                                                                                                     | _ft.,Afte            | r                     |                         |
|             |                        |             | Olin Plant RFI                                                                                                                                      | _ft.,Afte            |                       |                         |
| Drilling    | Metho                  | 1:          | 4.25" H.S.A                                                                                                                                         | _ft.,Afte            | Г                     | hrs.                    |

|                                 |                        |             | LOG of Boring No. NSB-7                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | S                                                            | heet 1                   | of 1                    |
|---------------------------------|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------|--------------------------|-------------------------|
| DATE _                          | 12                     | /9/93       | SURFACE ELEVATION O.O LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Olin Bu | ffalo Av                                                     | <u>enue P</u>            | lant_                   |
| , DEPTH, ft.<br>SAMPLES         | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | STRATUM<br>ELEVATION                                         | OVA<br>Readings (ppm)    | Other<br>Readings (ppm) |
| 10—<br>15—<br>20—<br>35—<br>40— | 2<br>4<br>3/<br>18"    | SS SS SS SS | Concrete Pad (1')  Void (1')  Concrete Fragments  Soft, red-brown, silty clay to clay, moist  Moderately decomposed wood  Soft, brown, gravelly clay, wet  Coarse to fine angular gravel  Dolostone Bedrock  Notes:  1) Surface elevation assigned arbitrary datum 0.0.  2) Readings under "Other Readings" are Mercury Vapor Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor Analyzer readings over the split-spoon sampler. |         | -1.0<br>-2.0<br>-2.5<br>-4.0<br>-6.9<br>-7.8<br>-9.0<br>-9.2 | 0.0<br>0.0<br>0.0<br>0.0 | 0 0 0 0                 |
|                                 |                        |             | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                              |                          |                         |
|                                 | etion De               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | -                                                            |                          |                         |
|                                 | t No.:<br>t Name:_     |             | 2C2030-6<br>Olin Plant RFI                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | _ft.,Afte<br>_ft.,Afte                                       |                          |                         |
|                                 |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | ft.,Afte                                                     |                          |                         |

|              | _                        |          |               | LOG of Boring No. NSB-8                                                                                                        | S                        | Sheet 1               | of 1                    |
|--------------|--------------------------|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------|
| DATI         | E _                      | 12       | /9/9 <u>3</u> | _                                                                                                                              | <u>uffalo Av</u>         | <u>enue P</u>         | <u>lant</u>             |
| o DEPTH, ft. | SAMPLES                  | SAMPLING | SAMPLE TYPE   | DESCRIPTION                                                                                                                    | STRATION                 | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0            | 1                        | 7        | SS            | Asphalt Pavement (0.8')                                                                                                        | -0.8                     | 0.0                   | .002                    |
|              | -                        | 3        | SS            | Medium dense, green-gray to black, silty coarse to fine sand and coarse to fine gravel                                         | -4.1                     | 0.0                   | .002                    |
| 5-           | _                        | 10       | ss            | Stiff, brown-red, silty coarse to fine gravelly clay                                                                           | -4.1                     |                       | .001                    |
|              | 1                        | 11       | SS            |                                                                                                                                |                          | 0.0                   | .001                    |
|              |                          | 20       | ss            | Medium dense to dense, yellow-brown, silty coarse to fine sand                                                                 | -8.4<br>-8.7             | 0.0                   | .001                    |
| 10-          |                          | 50/1"    | ss            | and coarse to fine gravel, some red brick fragments  Soft, clay, trace sand and gravel, wet                                    | -9.0<br><del>-10.6</del> | 0.0                   | .001                    |
|              | +                        |          |               | Dense, gray, angular coarse to fine sand and coarse to fine gravel                                                             | -10.8                    |                       |                         |
|              | $\exists$                |          |               | Dolostone Bedrock                                                                                                              |                          |                       |                         |
| 15-          | 7                        |          |               |                                                                                                                                |                          |                       |                         |
|              | 4                        |          |               |                                                                                                                                |                          |                       |                         |
| 20-          | 1                        |          |               |                                                                                                                                |                          |                       |                         |
| 20           |                          |          |               |                                                                                                                                |                          |                       |                         |
|              | 1                        |          |               |                                                                                                                                |                          |                       |                         |
| 25-          | 4                        |          |               |                                                                                                                                |                          |                       |                         |
|              |                          |          |               |                                                                                                                                |                          |                       |                         |
|              | 1                        |          |               |                                                                                                                                |                          |                       |                         |
| 30-          | -                        |          |               | Notes:                                                                                                                         |                          |                       |                         |
|              | ]                        |          |               | <ol> <li>Surface elevation assigned arbitrary datum 0.0.</li> <li>Readings under "Other Readings" are Mercury Vapor</li> </ol> |                          |                       |                         |
|              | 7                        |          |               | Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor                            |                          |                       |                         |
| 35           |                          |          |               | Analyzer readings over the split-spoon sampler.                                                                                |                          |                       |                         |
|              | 1                        |          |               |                                                                                                                                |                          |                       |                         |
| 40-          | ]                        |          |               |                                                                                                                                |                          |                       |                         |
| .0           | $\left\  \cdot \right\ $ |          |               |                                                                                                                                |                          |                       |                         |
|              | -                        |          |               |                                                                                                                                |                          |                       |                         |
| Com          | ple                      | tion Der | oth:_         | 10.7 Ft. Water Depth:                                                                                                          | _ft. , After             | r                     | _hrs.                   |
| Proj         | ect                      | No.:     | 92            | 2C2030-6                                                                                                                       | _ft.,After               | r                     | _hrs.                   |
| •            |                          |          |               |                                                                                                                                | _ft.,After               |                       |                         |

| LOG of Boring No. NSB-9 Sheet 1 of 1                                                    |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------|-------------|-----------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------|--|--|--|
| DATE                                                                                    | 12                     | /9/9        | 3 SURFACE ELEVATION 0.0 LOCATION Olin B                                                             | <u>uffalo Av</u>     | enue P                | <u>lant</u>             |  |  |  |
| DEPTH, ft.                                                                              | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                         | STRATUM              | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |  |
| 0-                                                                                      | 8                      | SS          | Asphalt Pavement (0.5')                                                                             | -0.5<br>-0.9         | 0.0                   | .002                    |  |  |  |
|                                                                                         |                        |             | Dense, gray, crushed stone, dry                                                                     | -0.9                 |                       |                         |  |  |  |
| -                                                                                       | 6                      | SS          | Medium stiff to stiff, predominantly red-brown, gravelly silty                                      | -3.8                 | 0.0                   | .002                    |  |  |  |
| 5                                                                                       | 14                     | SS          | clay, gravel includes brick fragments, some sand and gravel layers, moist                           |                      | 0.0                   | 0                       |  |  |  |
| 3—<br>-<br>-                                                                            | 30                     | SS          | Stiff, red-brown, gravelly clay to silty gravelly clay, moist becoming wet at 5.7'                  |                      | 0.0                   | .001                    |  |  |  |
| -                                                                                       | 65/10"                 | SS          |                                                                                                     | 0.2                  | 0.0                   | 0                       |  |  |  |
| 10-                                                                                     | 90720                  | -           | \Dolostone Bedrock                                                                                  | -9.3<br>-9.5         |                       | Ů                       |  |  |  |
| -                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| -                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
|                                                                                         |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| 15                                                                                      |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| _                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| _                                                                                       | ļ                      |             |                                                                                                     |                      |                       |                         |  |  |  |
| -                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| 20-                                                                                     |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| _                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| -                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| 25—                                                                                     |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| 25—                                                                                     | -                      |             |                                                                                                     |                      | -                     |                         |  |  |  |
| -                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| _                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| 30-                                                                                     |                        |             | Notes:                                                                                              |                      |                       |                         |  |  |  |
|                                                                                         |                        |             | 1) Surface elevation assigned arbitrary datum 0.0.                                                  |                      |                       |                         |  |  |  |
|                                                                                         |                        |             | 2) Readings under "Other Readings" are Mercury Vapor                                                |                      |                       |                         |  |  |  |
| _                                                                                       |                        |             | Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor |                      |                       |                         |  |  |  |
| 35—                                                                                     |                        |             | Analyzer readings over the split-spoon sampler.                                                     |                      |                       |                         |  |  |  |
|                                                                                         |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| -                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| 40—                                                                                     |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| 40-                                                                                     |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| -                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| _                                                                                       |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
|                                                                                         |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
| Completion Depth: 9.4 Ft. Water Depth: ft.,After hr Project No.: 92C2030-6 ft.,After hr |                        |             |                                                                                                     |                      |                       |                         |  |  |  |
|                                                                                         |                        |             |                                                                                                     | _ft.,Afte            |                       |                         |  |  |  |
|                                                                                         |                        |             | Olin Plant RFI 4,25" H.S.A.                                                                         | _ft.,Afte<br>_ftAfte |                       |                         |  |  |  |

|            |           |                        |                | LOG of Boring No. NSB-10                                                                                                                            | S               | Sheet 1               | of 1                    |
|------------|-----------|------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-------------------------|
| DATI       | E         | 12                     | /9/ <u>9</u> : | 3 SURFACE ELEVATION 0.0 LOCATION Olin B                                                                                                             | uffalo Av       | <u>enue P</u>         | <u>lant</u>             |
| OEPTH, ft. | SAMPLES   | SAMPLING<br>RESISTANCE | SAMPLE TYPE    | DESCRIPTION                                                                                                                                         | STRATION        | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0          | ╌╢╸       | 4                      | .SS.           | Concrete Pad (0.5')                                                                                                                                 | <del>-0.5</del> |                       |                         |
|            | -         | 2                      | SS             | No Recovery                                                                                                                                         | -2.0            | 0.0                   | .002                    |
| 5.         |           | 12                     | SS             | Loose, light gray-brown, silty coarse to fine sand and coarse to fine gravel  Stiff, red-brown, clay, little to trace gravel, dry becoming moist at | -4.0            | 0.0                   | .002                    |
|            |           | 30                     | SS             | 8'                                                                                                                                                  |                 | 0.0                   | 0                       |
| 10         | 1         | 50/<br>3"              | SS             | \Dolostone Bedrock                                                                                                                                  | -8.7<br>-8.9    | 0.0                   | 0                       |
| 10-        |           |                        |                |                                                                                                                                                     |                 |                       |                         |
|            | +         |                        |                |                                                                                                                                                     |                 |                       |                         |
| 15         | _         |                        |                |                                                                                                                                                     | Ì               |                       |                         |
|            | +         |                        |                |                                                                                                                                                     |                 |                       |                         |
|            | 1         |                        |                |                                                                                                                                                     |                 |                       |                         |
| 20-        | -         |                        |                |                                                                                                                                                     | 1               |                       |                         |
| 20.        | 7         |                        |                |                                                                                                                                                     |                 |                       |                         |
|            | +         |                        |                |                                                                                                                                                     |                 |                       |                         |
|            | $\exists$ |                        |                |                                                                                                                                                     |                 |                       |                         |
| 25         | -         |                        |                | *                                                                                                                                                   |                 |                       |                         |
|            | $\exists$ |                        |                |                                                                                                                                                     |                 |                       |                         |
|            | 1         |                        |                |                                                                                                                                                     |                 |                       |                         |
| 30-        |           |                        |                | Notes:                                                                                                                                              |                 |                       |                         |
|            | 1         |                        |                | 1) Surface elevation assigned arbitrary datum 0.0.                                                                                                  |                 |                       |                         |
|            | +         |                        |                | Readings under "Other Readings" are Mercury Vapor     Analyzer readings over the split-spoon sampler.                                               |                 |                       |                         |
| 35-        | _         |                        |                | 3) Readings under "OVA Readings" are Organic Vapor                                                                                                  |                 |                       |                         |
|            | -         |                        |                | Analyzer readings over the split-spoon sampler.                                                                                                     |                 |                       |                         |
|            |           |                        |                |                                                                                                                                                     |                 |                       |                         |
|            | -         |                        | <br>           |                                                                                                                                                     |                 |                       |                         |
| 40-        | -         |                        |                |                                                                                                                                                     |                 |                       |                         |
|            | +         |                        |                |                                                                                                                                                     |                 |                       |                         |
|            |           |                        |                |                                                                                                                                                     |                 |                       |                         |
| Com        | nlet      | or Do                  | ofh.           | 8.8 Ft. Water Depth:                                                                                                                                | 64 A 64         |                       | hrs.                    |
| 00.50000 ( |           |                        |                |                                                                                                                                                     |                 |                       |                         |
|            |           |                        |                | * · · · · · · · · · · · · · · · · · · ·                                                                                                             | _ft.,Afte       |                       |                         |
|            |           | Method                 | ft After       |                                                                                                                                                     |                 |                       |                         |

|                                         |                        |             | LOG of Boring No. NSB-11                                                                                                                                                                                                                                           | S                      | heet 1                | of 1                    |  |  |
|-----------------------------------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|-------------------------|--|--|
| DATE _                                  | 12/                    | 13/9        | 3 SURFACE ELEVATION0.0 LOCATION Olin Bu                                                                                                                                                                                                                            | uffalo Av              | enue P                | lant_                   |  |  |
| DEPTH, ft.                              | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                                                                                                        | STRATUM<br>ELEVATION   | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |
| 0-                                      | 4                      | SS          | Asphalt Pavement (0.5')                                                                                                                                                                                                                                            | 0.5                    | 0.0                   | 0                       |  |  |
|                                         | 10                     | SS          | Loose, light gray, sand and gravel  Firm to stiff, red-brown silty clay to clay, some gravelly layers,                                                                                                                                                             | -0.8<br>-4.0           | 0.0                   | 0                       |  |  |
| 5                                       | 30                     | SS          | woist to dry Very stiff, red-brown, silty clay to clay, some gravelly layers,                                                                                                                                                                                      | 1.0                    | 0.0                   | 0                       |  |  |
| -                                       | 11                     | SS          | moist to dry - becoming coarse to medium sandy fine gravelly clay, coarse                                                                                                                                                                                          |                        | 0.0                   | 0                       |  |  |
| 10-                                     | 50/<br>6"              | SS          | fraction includes dolostone fragments -increasing dolostone fragments in a red-brown clay matrix Dolostone Bedrock                                                                                                                                                 | -8.5<br>-8.7           | 0.0                   | 0                       |  |  |
| 15—                                     |                        |             | Dolostone Bedrock                                                                                                                                                                                                                                                  |                        |                       |                         |  |  |
| 25—<br>30—<br>35—                       | etion De               | othe        | Notes:  1) Surface elevation assigned arbitrary datum 0.0. 2) Readings under "Other Readings" are Mercury Vapor Analyzer readings over the split-spoon sampler. 3) Readings under "OVA Readings" are Organic Vapor Analyzer readings over the split-spoon sampler. | Et Asto                |                       |                         |  |  |
| _                                       | etion Dej<br>t No.:    | •           |                                                                                                                                                                                                                                                                    | _ft.,Afte<br>_ft.,Afte |                       |                         |  |  |
| _                                       |                        |             |                                                                                                                                                                                                                                                                    | •                      |                       |                         |  |  |
| Project Name: Olin Plant RFIft., Afterh |                        |             |                                                                                                                                                                                                                                                                    |                        |                       |                         |  |  |

| _                               |                        |             | LOG of Boring No. NSB-12                                                                                                                                                                                                                                           | S                                   | Sheet 1               | of 1                    |
|---------------------------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|-------------------------|
| DATE _                          | 12/                    | 13/9        |                                                                                                                                                                                                                                                                    | uffalo Av                           | enue P                | <u>lant</u>             |
| DEPTH, ft.                      | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                                                                                                        | STRATION                            | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
|                                 |                        | 00          | Asphalt Pavement (0.5')                                                                                                                                                                                                                                            | <del>-0.5</del>                     | 0.0                   | _                       |
| -<br><b>-</b>                   | 3<br>8                 | SS<br>SS    | Loose to medium dense, brown coarse to fine sand and coarse to fine gravel interstratified with soft to stiff, dark brown clayey silt to silty clay, moist to wet                                                                                                  | -4.0                                | 0.0                   | 0                       |
| 5 <del></del>                   | 20                     | ss          | Stiff to very stiff, red-brown silty clay to clay with little fine gravel, but occassional layers are coarse sandy to fine gravelly                                                                                                                                |                                     |                       |                         |
|                                 | 27                     | SS          |                                                                                                                                                                                                                                                                    | -8.9<br>-9.1                        | 0.0                   | 0                       |
| 10-                             |                        |             | Dolostone Bedrock                                                                                                                                                                                                                                                  | -9.1                                |                       |                         |
| 10—<br>15—<br>20—<br>25—<br>30— |                        |             | Notes:  1) Surface elevation assigned arbitrary datum 0.0. 2) Readings under "Other Readings" are Mercury Vapor Analyzer readings over the split-spoon sampler. 3) Readings under "OVA Readings" are Organic Vapor Analyzer readings over the split-spoon sampler. | <u>-9.1</u>                         |                       |                         |
|                                 | No.:<br>Name:_         | 92          | 2C2030-6                                                                                                                                                                                                                                                           | _ft.,Afte<br>_ft.,Afte<br>_ft.,Afte | r                     | _hrs.                   |

| -             |                        |                        | -           | LOG of Boring No. NSB-13                                                                                                       | S          | heet 1                | of 1                    |
|---------------|------------------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------------------------|
| DATI          | E                      | 12/                    | 14/9        |                                                                                                                                | Buffalo Av | enue P                | <u>lant</u>             |
| OEPTH, ft.    | SAMPLES                | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                    | STRATUM    | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| U-            |                        | 8                      | ss          | Asphalt Pavement (0.8')                                                                                                        | -0.8       | 0.0                   |                         |
|               | -                      | 20                     | SS          | Medium dense to dense, silty coarse to fine sand and coarse to fine gravel, gravel includes brick fragments                    |            | 0.0                   |                         |
| 5-            | -<br>                  | 26                     | SS          | Very stiff becoming soft, red-brown silty clay to clayey silt, dry                                                             | -4.5       | 0.0                   | 0                       |
|               |                        | 50/                    | SS          | -becoming wet                                                                                                                  | -7.7       | 0.0                   |                         |
|               | 1                      | 2"                     | JJ          | Dolostone Bedrock                                                                                                              | -7.9       | 0.0                   |                         |
| 10-           |                        |                        |             |                                                                                                                                |            |                       |                         |
|               | -                      |                        |             |                                                                                                                                |            |                       |                         |
|               | 1                      |                        |             |                                                                                                                                |            |                       |                         |
| 15-           | -                      |                        |             |                                                                                                                                |            |                       |                         |
|               | ]                      |                        |             |                                                                                                                                |            |                       |                         |
|               | 1                      |                        |             |                                                                                                                                |            |                       |                         |
| 20            | 1                      |                        |             |                                                                                                                                |            |                       |                         |
|               | +                      |                        |             |                                                                                                                                |            |                       |                         |
|               | 1                      |                        |             |                                                                                                                                | r          |                       |                         |
| 25            | 1                      |                        |             |                                                                                                                                |            |                       | •                       |
|               | +                      |                        |             |                                                                                                                                |            |                       |                         |
|               | 1                      |                        |             |                                                                                                                                |            |                       |                         |
| 30-           |                        |                        |             | Notes:                                                                                                                         |            |                       |                         |
|               | ]                      |                        |             | <ol> <li>Surface elevation assigned arbitrary datum 0.0.</li> <li>Readings under "Other Readings" are Mercury Vapor</li> </ol> |            |                       |                         |
| ~-            | $\left  \cdot \right $ |                        |             | Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor                            |            |                       |                         |
| 35-           | 7                      |                        |             | Analyzer readings over the split-spoon sampler.                                                                                |            |                       |                         |
|               | 1                      |                        |             |                                                                                                                                |            |                       |                         |
| 40            | +                      |                        |             |                                                                                                                                |            |                       |                         |
| 40-           | $\exists  $            |                        |             |                                                                                                                                |            |                       |                         |
|               |                        |                        |             |                                                                                                                                |            |                       |                         |
|               | -                      |                        |             |                                                                                                                                |            |                       |                         |
|               | -                      | ion Dep                |             |                                                                                                                                |            |                       |                         |
|               |                        |                        |             | C2030-6 Olin Plant RFI                                                                                                         |            |                       |                         |
| Project Name: |                        |                        |             | 1 25" H S A                                                                                                                    | _ft.,After | Γ                     | nrs.                    |

|              |                 |                        |             | LOG of Boring No. NSB-14                                                                                                       | S            | Sheet 1               | of 1                    |
|--------------|-----------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-------------------------|
| DATE         | Ξ_              | 12/                    | 14/9        | 3 SURFACE ELEVATION 0.0 LOCATION Olin                                                                                          | Buffalo Av   | enue P                | lant_                   |
| ρ DEPTH, ft. | SAMPLES         | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                    | STRATUM      | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0-           | Ш               | -11                    |             | Asphalt Pavement (0.7')                                                                                                        |              |                       |                         |
|              | -               | 11                     | SS          | Medium dense, brown gravelly silt, some brick fragments, moist                                                                 | -3.2         |                       | 0                       |
|              | 1               | 28                     | SS          | Very stiff becoming soft, red-brown silty clay to clay, some                                                                   | 3.2          |                       | 0                       |
| 5-           | _               | 34                     | ss          | gravelly layers, dry                                                                                                           |              |                       | 0                       |
|              | ▋               | 50/                    | SS          | -becoming moist                                                                                                                | -7.7<br>-7.9 |                       | 0                       |
|              | 1               | 2"                     |             | Dolostone Bedrock                                                                                                              | -7.9         |                       |                         |
| 10-          | $\dashv \vdash$ |                        |             |                                                                                                                                | _            |                       |                         |
|              | 1               |                        |             |                                                                                                                                |              |                       |                         |
|              | 1               |                        |             |                                                                                                                                |              |                       |                         |
| 15-          | 1               |                        |             |                                                                                                                                |              |                       |                         |
|              | +1              |                        |             |                                                                                                                                |              |                       |                         |
|              | 11              |                        |             |                                                                                                                                |              | '                     |                         |
|              | 11              |                        |             |                                                                                                                                |              |                       |                         |
| 20-          | $\dashv$        |                        |             |                                                                                                                                |              |                       |                         |
|              | -               |                        |             |                                                                                                                                |              |                       |                         |
|              | ]               |                        |             |                                                                                                                                |              |                       |                         |
|              | -11             |                        |             |                                                                                                                                |              |                       |                         |
| 25-          | 11              |                        |             |                                                                                                                                |              |                       |                         |
|              | ]               |                        |             |                                                                                                                                |              |                       |                         |
|              | -               |                        |             |                                                                                                                                |              |                       |                         |
| 20           | 11              |                        |             |                                                                                                                                |              |                       |                         |
| 30-          | ]               |                        |             | Notes:                                                                                                                         |              |                       |                         |
|              | -               |                        |             | <ol> <li>Surface elevation assigned arbitrary datum 0.0.</li> <li>Readings under "Other Readings" are Mercury Vapor</li> </ol> |              |                       |                         |
|              | 11              |                        |             | Analyzer readings over the split-spoon sampler.                                                                                |              |                       |                         |
| 35-          |                 |                        |             | 3) Readings under "OVA Readings" are Organic Vapor                                                                             |              |                       |                         |
|              | -[]             |                        |             | Analyzer readings over the split-spoon sampler.                                                                                |              |                       |                         |
|              | 11              |                        |             |                                                                                                                                |              |                       |                         |
|              | ]               |                        |             |                                                                                                                                |              |                       |                         |
| 40-          | -{              |                        |             |                                                                                                                                |              |                       |                         |
|              | -               |                        |             |                                                                                                                                |              |                       |                         |
|              | 1               |                        |             |                                                                                                                                |              |                       |                         |
|              | 4               |                        |             |                                                                                                                                |              |                       |                         |
| Com          | nlet            | ion Dep                | ıth•        | 7.8 Ft. Water Depth:                                                                                                           | ft After     | r                     | hrs.                    |
|              | _               | _                      |             |                                                                                                                                | ft.,Afte     |                       |                         |
|              |                 |                        |             | Olin Plant RFI                                                                                                                 |              |                       |                         |
|              |                 |                        |             | 4 25" H S A                                                                                                                    |              |                       |                         |

|                                              |                           |                       | LOG of Boring No. NSB-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 5                                   | Sheet 1               | of 1                    |
|----------------------------------------------|---------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------|-----------------------|-------------------------|
| DATE _                                       | 12/                       | 14/9                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n B | uffalo Av                           | <u>enue P</u>         | <u>lant</u>             |
| DEPTH, ft.<br>SAMPLES                        | SAMPLING                  | SAMPLE TYPE           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | STRATUM                             | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0—)                                          |                           | 0)                    | Asphalt Pavement (0.8')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | -0.8                                |                       | _                       |
| 5—<br>10—<br>15—<br>20—<br>25—<br>30—<br>40— | 7<br>8<br>19<br>50/<br>4" | \$\$ \$\$ \$\$ \$\$\$ | Asphalt Pavement (0.8')  Firm, brown to red-brown, silty coarse to fine gravelly clay, occassional yellow sand lens, some gravel as brick fragments  Medium dense, white, coarse to fine sand and fine gravel -becoming intermixed with soft to firm, red-brown clay -becoming stiff then soft, red-brown coarse to fine gravelly silty clay  Very dense, dolostone fragments  Dolostone Bedrock  Notes:  1) Surface elevation assigned arbitrary datum 0.0.  2) Readings under "Other Readings" are Mercury Vapor Analyzer readings over the split-spoon sampler.  3) Readings under "OVA Readings" are Organic Vapor Analyzer readings over the split-spoon sampler. |     | -7.4<br>-7.8<br>-8.0                |                       | 0 0 0 0                 |
| Project                                      | No.:                      | 92                    | A-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | _ft.,Afte<br>_ft.,Afte<br>_ft.,Afte | r                     | _hrs.                   |
| Drilling                                     |                           |                       | 4.25" H.S. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | C4 A C4.                            |                       |                         |

|                                         |                |                        |             | LOG of Boring No. NSB-16                                                                                                | S            | heet 1                | of 1                    |
|-----------------------------------------|----------------|------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-------------------------|
| DATE                                    | ·              | 12/                    | <u>14/9</u> | 3 SURFACE ELEVATION 0.0 LOCATION Olin B                                                                                 | uffalo Av    | enue P                | <u>lant</u>             |
| — \                                     | SAMPLES        | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                             | STRATUM      | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0-                                      | ╧              |                        |             | Asphalt Pavement (0.8')                                                                                                 | -0.8         |                       |                         |
|                                         | 4              | 11                     | SS          | Medium dense to dense, black coarse to fine sand and coarse to                                                          |              | 0.0                   |                         |
|                                         | -              | 12                     | SS          | fine gravel, traces of brick, concrete, and wood fragments                                                              |              | 0.0                   |                         |
| 5-                                      | 1              |                        |             |                                                                                                                         | -5.2         |                       |                         |
|                                         | -              | 11                     | SS          | Stiff, red-brown, clay                                                                                                  | -5.8         | 0.0                   |                         |
|                                         | ┨              | 19                     | SS          | Medium dense, red-brown, clayey coarse to fine sand and coarse                                                          |              | 0.0                   |                         |
|                                         | 1              |                        |             | to fine gravel                                                                                                          | -8.8<br>-9.0 |                       |                         |
| 10-                                     | 41             |                        |             | Dolostone Bedrock                                                                                                       | -9.0         |                       |                         |
|                                         |                |                        |             |                                                                                                                         |              |                       |                         |
|                                         | 1              |                        |             |                                                                                                                         |              |                       |                         |
|                                         | 41             |                        |             |                                                                                                                         |              |                       |                         |
| 15-                                     | +              |                        |             |                                                                                                                         |              |                       |                         |
|                                         | 11             |                        |             |                                                                                                                         |              |                       |                         |
|                                         | ]]             |                        |             |                                                                                                                         |              |                       |                         |
|                                         | +              |                        |             |                                                                                                                         |              |                       |                         |
| 20-                                     | $\exists \bot$ |                        |             |                                                                                                                         |              |                       |                         |
|                                         | 1              |                        |             |                                                                                                                         |              |                       |                         |
|                                         | 41             |                        |             |                                                                                                                         |              |                       |                         |
|                                         | +              |                        |             |                                                                                                                         |              |                       |                         |
| 25-                                     |                |                        |             |                                                                                                                         |              | -                     |                         |
|                                         | 41             |                        |             |                                                                                                                         |              |                       |                         |
|                                         | +              |                        |             |                                                                                                                         |              |                       |                         |
| 30-                                     | ]              |                        |             |                                                                                                                         |              |                       |                         |
| 30                                      | -              |                        |             | Notes: 1) Surface elevation assigned arbitrary datum 0.0.                                                               |              |                       |                         |
|                                         |                |                        |             | 2) Readings under "Other Readings" are Mercury Vapor                                                                    |              |                       |                         |
|                                         |                |                        |             | Analyzer readings over the split-spoon sampler.                                                                         |              |                       |                         |
| 35-                                     | ][             |                        |             | <ol> <li>Readings under "OVA Readings" are Organic Vapor<br/>Analyzer readings over the split-spoon sampler.</li> </ol> |              |                       |                         |
|                                         | +              |                        |             | Anatyzet teadings over the spin-spoon sampler.                                                                          |              |                       |                         |
|                                         |                |                        |             |                                                                                                                         |              |                       |                         |
|                                         |                |                        |             |                                                                                                                         |              |                       |                         |
| 40-                                     | +              |                        |             |                                                                                                                         |              |                       |                         |
|                                         | -              |                        |             |                                                                                                                         |              |                       |                         |
|                                         |                |                        |             |                                                                                                                         |              |                       |                         |
|                                         | +              |                        |             |                                                                                                                         |              |                       |                         |
| Com                                     | pleti          | on De                  | oth:        | 8.9 Ft. Water Depth:                                                                                                    | ft. After    | r_                    | hrs.                    |
|                                         | -              | lo.:                   | •           |                                                                                                                         | _ft.,Afte    |                       |                         |
| Project Name: Olin Plant RFIft.,Afterhr |                |                        |             |                                                                                                                         |              |                       |                         |
|                                         |                |                        |             | 4.25" H.S.A.                                                                                                            | ft After     |                       |                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |             | LOG of Boring No. NSB-17                                                                                                        | S                       | Sheet 1               | of 1                    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------|--|--|
| DATE 12/14/93 SURFACE ELEVATION 0.0 LOCATION Olin Buffalo Avenue Plant Delia D |          |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLES  | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                     | STRATUM                 | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |
| 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 丁        |                        |             | Asphalt Pavement (0.8')                                                                                                         | -0.8<br>-1.1            |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | 10                     | SS          | Medium dense, white coarse to fine sand and fine to coarse gravel                                                               | -1.1<br>-3.0            | 0.0                   |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 15                     | SS          | Medium dense, brown to black-brown, coarse to fine sand and coarse to fine gravel interstratified with occassional clay layers, |                         | 0.0                   |                         |  |  |
| 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 18                     | SS          | trace coal pieces  Medium dense to stiff, yellow-brown, brown, and black-brown,                                                 | -5.4<br>-7.0            | 0.0                   |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 12                     | SS          | clayey coarse to fine sand and coarse to fine gravel to coarse interstratified with fine sandy and coarse to fine gravelly clay | -8.1                    | 0.0                   |                         |  |  |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _        |                        |             | Medium dense to dense, coarse gravel, trace clay, gravels include brick fragments, occassional yellow sand lens                 | <del>-8.7</del><br>-8.9 |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        |                        |             | Stiff to firm, black silty clay, occassional brick fragment                                                                     |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |                        |             | Medium dense, yellow to white, well-rounded coarse sand and                                                                     |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        |                        |             | fine gravel                                                                                                                     |                         |                       |                         |  |  |
| 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |                        |             | Dolostone Bedrock                                                                                                               |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ][       |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
| 20-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
| 25-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
| 30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11       |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
| 30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                        |             | Notes: 1) Surface elevation assigned arbitrary datum 0.0.                                                                       |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        |                        |             | 2) Readings under "Other Readings" are Mercury Vapor                                                                            |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |                        |             | Analyzer readings over the split-spoon sampler.                                                                                 |                         |                       |                         |  |  |
| 35-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +        |                        |             | <ol> <li>Readings under "OVA Readings" are Organic Vapor<br/>Analyzer readings over the split-spoon sampler.</li> </ol>         |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |                        |             | - == spect routings over the special samples.                                                                                   |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
| 40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41       |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |                        |             |                                                                                                                                 |                         |                       |                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | ion Dep                |             |                                                                                                                                 | ,                       |                       | _hrs.                   |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | No.:                   |             | C2030-6 Olin Plant RFI                                                                                                          | _ft.,Afte               |                       |                         |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Name:_<br>Method       | _ft.,Afte   |                                                                                                                                 |                         |                       |                         |  |  |

**Monitoring Well Soil Borings** 

### HARZA ENGINEERING COMPANY

Form: SE5

Page: 1

Sheet 1 of 1

### DESCRIPTIVE LOG

Site: Olin Corporation, Niagara Falls, N.Y.

Logged by: WRC

Drill Hole No.: BH-1

Date: 11/30/78

| De   | oth  | Symbol | Classification, Description and Remarks                                                                                                                                                                                                                                                                                                     | SPT Blows per     |
|------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| From | To   | No.    | Aleganicaniani and itelianika                                                                                                                                                                                                                                                                                                               | - henerrari       |
| 0    | 10.1 | GW     | Sandy gravel fill, gravel less than 1/2 sub - angular, high permeability, poorly 56.5 ft. Split Spoon Sample #1 Same as above but some red brick colored fill.                                                                                                                                                                              | graded 2/.5'      |
|      |      |        | Split Spoon #2 9.5-10.1 ft. Hit rock at 10.1 ft. Same as above but with 1 inch diameter pieces of angular red brick.                                                                                                                                                                                                                        | 16/.5'<br>100/.1' |
| 10.1 | 11.0 |        | Rock coring Dolomite: Rubble, broken up by corer, gr crystalline. Largest piece 2" diameter.                                                                                                                                                                                                                                                | rey,              |
| 11.0 | 16.1 |        | Dolomite: Dark grey, crystalline, thick! bedded, irregular stylolitic partings parallel to bedding; bedding horizontal, breaks along partings with medium hammer blow. Fine vuggy porosity throughout, diameter .5 mm to 2.0 mm. Vugs partially filled with calcite, also gypsum.  13.0 ft Lost drilling water, cored .5 ft. in 30 seconds. |                   |
|      | ·    |        | 14.2' Calcite filled vug 1.0" diameter 15.3' Calcite filled vug, .5" diameter 16.1 Finished coring, Recovery 100%. Bottom of well point set at 16.1 ft.                                                                                                                                                                                     |                   |

Form: SE5

Orill Hole Na : RH-3

Page: 1

Sheet 1 o

## DESCRIPTIVE LOG

Site: Olin Corporation, Niagara Falls, N.Y.

Logged by: WRC

Dats: 12/3/78

| De   | pth  | Symbol | SPT Blows F Classification, Description and Remarks .5' penetra                                                                                                                                                      |
|------|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From | То   | No.    | · ·                                                                                                                                                                                                                  |
| 0    | 1    | GP     | Gravel fill, subangular, .5" to 1.0" diameter no fines, poorly graded, very high permeability.                                                                                                                       |
| 1    | 5    | ML     | Split Spoon Sample #1 3.5 to 5 ft. 6/.5' Clayey silt, grey-brown with some sand and 6/.5' gravel. Very low permeability, very low 7/.5' plasticity. Water hit at 5.0 ft.                                             |
| 5    | 8.5  | GA     | Split Spoon Sample #2 8.0 to 8.5 ft. 6/.5' Sandy gravel, with silt and clay, 100/0.0' grey gravel sub-angular to rounded gravel poorly graded, low-moderate permeability.                                            |
| 8.5  | 18.0 |        | Dolomite: Grey, thickly bedded, irregular stylolitic partings parallel to horizontal bedding. Breaks along partings with medium hammer blow. Fine vuggy porosity, some vugs partially filled with gypsum or calcite. |
|      |      |        | Fracturing: 8-9.5' Fractures averaging every 3" 9.5-11.0 Fractures averaging every 8" 11.0-13.0 Largest piece 3" long 15.0-18.1 Pieces averaging 1.0 ft. 12.0-12.6 Very porous, caused by fine vugs                  |

Bottom of well point set at 18.0 ft.

## · HARZA ENGINEERING COMPANY

Form: SE5

Page: 1 of 1

# DESCRIPTIVE LOG

Site: Olin Corporation, Niagara Falls, N.Y.

Logged by: WRC

Date: 12/13/78

Orill Hole No.: BH-9

| De   | oth | Symbol | Classification, Description and Remarks                                                                                         | SPT Blows per .5' penetrati          |
|------|-----|--------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| From | To  | No.    |                                                                                                                                 |                                      |
| 0    | 1   | ML     | Sandy <u>silt</u> , some fine gravel, dark brow permeability, very low plasticity.                                              | n, low                               |
| 1    | 5   | GW     | Split Spoon Sample #1 3-5ft. Sandy Gravel, fine to medium black, angular-subangular, coated with substance, organic smell, high | 10/.5'<br>22/.5'<br>10/.5'<br>11/.5' |
| 5    | 7   |        | Split Spoon Sample #2 5-7 ft. Same as above but with some plastic fines. Moderate permeability                                  | 11/.5'<br>13/.5'<br>7/.5'<br>6/.5'   |
| 7    | 8.4 | CL     | Soil Sample #3 7-8.4 ft.  Clay, some silt, organic smell brown-black, very low permeability                                     | 5/.5'<br>11/.5'<br>100/.4'           |
|      |     |        | Bottom of well point set at 8.4 ft.                                                                                             | ent of the second                    |
|      |     |        |                                                                                                                                 |                                      |

|              |                    |             | LOG of BORING No. OBA-1                                                                                                                   |         |                        | SI         | neet               | 1 o                 | f 1         |
|--------------|--------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|------------|--------------------|---------------------|-------------|
| DATE .       | _                  |             | SURFACE ELEVATION LOCATIO                                                                                                                 | ис      |                        |            |                    |                     |             |
| O DEPTH, ft. | SAMPLING           | SAMPLE TYPE | DESCRIPTION                                                                                                                               | STRATUM | POCKET<br>PENETROMETER | CONTENT, x | LIGUID<br>LIMIT, % | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0-           |                    |             | Black asphalt overlying concrete foundation                                                                                               |         |                        |            |                    |                     |             |
| -            | 34                 | SS          | Gray shot rock fill, some brown silt, trace clay, saturated just above clay. organic smell noted in fill above clay  (FILL)               |         |                        |            |                    |                     |             |
| -            | 113                | SS          | Brown-tan clay, some (+) silt, cohesive low plasticity, some angular to subangular bedrock fragments close to bedrock contact             |         |                        |            |                    |                     |             |
| 5—           | 100/4"             | SS          | (CL)                                                                                                                                      |         |                        |            |                    |                     |             |
|              |                    |             | Bedrock encountered @ 5.5', gray dolomite                                                                                                 |         |                        |            |                    |                     |             |
| 10-          |                    |             | NOTES:  (1) Top of bedrock @ 5.5'.  (2) Perched water table at about 2.5'.  (3) Solvent smell noted in fill material directly above clay. |         |                        |            |                    |                     |             |
| 15           |                    |             |                                                                                                                                           |         |                        |            |                    |                     |             |
| _            |                    |             |                                                                                                                                           |         |                        |            |                    |                     |             |
| _            |                    |             |                                                                                                                                           |         |                        |            |                    |                     |             |
| -            | tion Depth         |             |                                                                                                                                           |         |                        |            |                    |                     |             |
| -            |                    |             | C2346-2                                                                                                                                   | _N      | otes                   |            |                    |                     |             |
|              | Name:<br>Method: _ |             |                                                                                                                                           |         |                        | ft., Af    |                    |                     |             |

|            |         |                        |             | LOG of BORING No. OBA-                                                                                                                                                                    | 2       |         |                        | SI                   | heet     | 1 0                 | f 1         |
|------------|---------|------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------------|----------------------|----------|---------------------|-------------|
| DAT        | E _     |                        |             | SURFACE ELEVATION LOC.                                                                                                                                                                    | ATION   |         |                        |                      |          |                     |             |
| OEPTH, ft. | SAMPLES | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                               |         | SIKATUM | POCKET<br>PENETROMETER | WATER CONTENT, %     | LIMIT, " | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0          | -       | 51                     | SS          | Gray shot rock fill, some brown-tan silt and clay as matrix, thin black coarse sand layer at bottom of fill materials  (FILL                                                              | )       |         |                        |                      |          |                     |             |
|            | ~       | 21                     | SS          | Brown-tan to brown-gray mottled glaciolacustrine clay, little (-) silt                                                                                                                    |         |         |                        |                      |          |                     |             |
| 5          | T.      | 12                     | SS<br>.SS.  | - same, several gray-brown dolomite pieces lodged in spoon tip, increase in abundance of rock fragments in clay toward bedrock interface  (CL)  Bedrock encountered @ 5.8', gray dolomite | )/-     |         |                        |                      |          |                     |             |
| 10-        |         |                        |             | NOTES: (1) Top of bedrock @ 5.8' (2) No water table at overburden/bedrock interface noted.                                                                                                |         |         |                        |                      |          | -                   |             |
| 15         |         |                        |             |                                                                                                                                                                                           |         |         |                        |                      |          |                     |             |
| -          |         | on Depth:              |             |                                                                                                                                                                                           | r Depth |         |                        |                      |          |                     |             |
|            |         |                        |             | OLIN RFI                                                                                                                                                                                  |         | _11(    | otes_                  | ft., Afi<br>ft., Afi |          |                     |             |
|            |         | Method: _              |             |                                                                                                                                                                                           |         |         |                        | ft., Aft             |          |                     |             |

|              |                                                            |                        |             | LOG of BORING No. OBA-3                                                                                                                                         |                      | •                      | SI                  | heet    | 1 o                 | f 1              |
|--------------|------------------------------------------------------------|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|---------------------|---------|---------------------|------------------|
| DAT          | Е _                                                        |                        |             | SURFACE ELEVATION LOCATION                                                                                                                                      | <u> </u>             |                        |                     |         |                     |                  |
| , DEPTH, ft. | SAMPLES                                                    | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                     | STRATUM<br>ELEVATION | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIMIT," | PLASTIC<br>LIMIT, % | OTHER TESTS      |
| 0-           | -                                                          | 16                     | SS          | Gray shot rock fill, some (-) clay and silt, poorly graded for first 2 feet, miscellaneous layered fill to lower clay contact                                   |                      |                        |                     |         |                     |                  |
|              |                                                            | 8                      | SS          |                                                                                                                                                                 |                      |                        |                     |         |                     |                  |
| 5-           |                                                            | 7                      | ss          | Tan-brown glaciolacustrine clay, moderate to high plasticity, coherent                                                                                          |                      |                        |                     |         |                     |                  |
|              |                                                            | 16                     | SS          | - same, trace silt, high plasticity, damp, becoming more orange-brown toward bottom of sample                                                                   |                      |                        |                     |         |                     |                  |
|              | -                                                          | 20                     | SS          | - orange-brown clay with tan mottling, dry at top, very wet 1.2' into spoon, some subrounded black crystalline rock fragments within clay                       |                      |                        |                     |         |                     |                  |
| 10-          | -                                                          | 128/7"                 | SS          | - same, increase in abundance of rock fragments down through sample, rock shard lodged in spoon tip. rock fragments do not resemble gray dolomite country rock. |                      |                        |                     |         |                     |                  |
|              | -                                                          | 104                    | SS          | - same, abundant rock fragments throughout recovered sample (CH)                                                                                                |                      |                        | J                   |         |                     |                  |
| 15-          |                                                            |                        |             | Bedrock encountered @14.3', gray dolomite                                                                                                                       |                      |                        |                     |         |                     |                  |
|              | -                                                          |                        |             | NOTES: (1) Top of bedrock @14.3'. (2) No significant water table observed at overburden/rock contact.                                                           |                      |                        |                     |         |                     |                  |
|              |                                                            |                        |             | 14.3 Ft. Water Dep                                                                                                                                              |                      |                        |                     |         |                     |                  |
| _            |                                                            |                        |             | C2346-2 OLIN PEL                                                                                                                                                |                      | otes                   |                     |         |                     |                  |
|              | Project Name: OLIN RFI  Drilling Method: Hollow-Stem Auger |                        |             |                                                                                                                                                                 |                      |                        |                     |         |                     | _ hrs.<br>_ hrs. |

|                             |             | LOG of BORING No. OBA-4                                                                                                          |         |                        | SI         | neet   | 1 o                 | f 1         |
|-----------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|------------|--------|---------------------|-------------|
| DATE                        |             | SURFACE ELEVATION LOCATIO                                                                                                        | ом      |                        |            |        |                     |             |
| SAMPLES SAMPLING RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                      | STRATUM | POCKET<br>PENETROMETER | CONTENT, % | LIGUID | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 10                          | SS          | Black asphalt with black granular subbase   material     Miscellaneous layered fill deposits to bedrock                          |         |                        |            |        |                     |             |
| - <b>-</b> 5                | SS          | interface, shot rock and black sandy slag  - black-brown-tan fill with shot rock, slag, glass shards, etc., little sand and silt |         |                        |            |        |                     |             |
|                             | SS          | - same, menthol-like odor noted                                                                                                  |         |                        |            |        |                     |             |
| -<br>14<br>-                | SS          | - same, black-gray fill for first 0.3', then red-brown fill material, little (+) clay and silt  (FILL)                           |         |                        |            |        |                     |             |
| 100/0"                      | .SS.        | (1 ILL)                                                                                                                          |         |                        |            |        |                     |             |
| 100/0                       | .33.        | Bedrock encountered @8.4', gray dolomite                                                                                         |         |                        |            |        |                     |             |
| 15-                         |             | NOTES: (1) Top of bedrock @8.4'. (2) No significant water table at overburden/rock interface.                                    |         |                        |            |        |                     |             |
|                             |             |                                                                                                                                  |         |                        |            |        |                     |             |
| -                           |             |                                                                                                                                  |         |                        |            |        |                     |             |
| Completion Depth:           |             | -                                                                                                                                | pth: _S | ee                     | ft., Aft   | er     |                     | _ hrs.      |
| Project No.:                |             |                                                                                                                                  |         |                        | ft., Aft   |        |                     |             |
| Project Name:               |             | OLIN RFI Hollow-Stem Auger                                                                                                       |         |                        | ft., Aft   |        |                     |             |

|              |         |          |             | LOG of BORING No. OBA-5                                                                                                             |         |                        | S                   | heet    | 1 0                 | f 1         |
|--------------|---------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|---------|---------------------|-------------|
| DAT          | Έ_      |          |             | SURFACE ELEVATION LOCATION                                                                                                          | ои      |                        |                     |         |                     |             |
| , DEPTH, ft. | SAMPLES | SAMPLING | SAMPLE TYPE | DESCRIPTION                                                                                                                         | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIRIT," | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0            |         | 21       | SS          | Gray shot rock fill, some brown sandy silt                                                                                          |         | _                      |                     |         |                     |             |
|              | -       | 22       | SS          | Coarse miscellaneous fill, coarse gravel sized shot rock with mottled brown-tan-red matrix, brick fragments                         |         |                        |                     |         |                     |             |
|              | -       |          |             | (FILL)                                                                                                                              |         |                        |                     |         |                     |             |
| 5            | _       | 35       | SS          | Miscellaneous brown-tan fill, some (+) clay, very wet, white powdery material noted in spoon tip, strong napthalene-like odor noted |         |                        |                     |         |                     |             |
|              |         | 10       | SS          | (FILL)                                                                                                                              |         |                        |                     |         |                     |             |
|              |         | 100/1"   | SS          | Black peat with roots, saturated, strong organic odor noted  Bedrock encountered @8.4', gray dolomite                               |         | -                      |                     |         |                     |             |
| ·15          |         |          |             | NOTES: (1) Top of bedrock @8.4'. (2) Water table at about 4'.                                                                       |         |                        |                     |         |                     |             |
|              |         |          |             | 8.4 Ft. Water De                                                                                                                    |         |                        |                     |         |                     |             |
|              |         |          |             | C2346-2<br>OLIN RFI                                                                                                                 |         | Notes                  |                     |         |                     |             |
|              |         |          |             | Hollow-Stem Auger                                                                                                                   |         |                        |                     |         |                     |             |

|              |           |             | LOG of BORING No. OF                                                                       | 3A-6     |         |                        | SI               | heet    | 1 o                 | f 1         |
|--------------|-----------|-------------|--------------------------------------------------------------------------------------------|----------|---------|------------------------|------------------|---------|---------------------|-------------|
| DATE _       |           |             | SURFACE ELEVATION                                                                          | LOCATIO  | ои      |                        |                  |         |                     |             |
| O DEPTH, ft. | SAMPLING  | SAMPLE TYPE | DESCRIPTION                                                                                |          | STRATUM | POCKET<br>PENETROMETER | MATER CONTENT, % | LERYTD: | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0-           |           |             | Black asphalt with granular subbase material                                               | l        |         |                        |                  |         |                     |             |
| -<br>-       | 15        | SS          | Brown-black miscellaneous fill, rock fragments, dry - black fill with some oil staining (I | FILL)    |         |                        |                  |         |                     |             |
| -            |           | 33          | Brown-red-tan glaciolacustrine clay                                                        | (CL)     |         |                        |                  |         |                     |             |
| 5            | 100/1"    | SS          | - same, very wet                                                                           | (CH)     |         |                        |                  |         |                     |             |
|              |           |             | Bedrock encountered @5.1, gray dolomite                                                    |          |         |                        |                  |         |                     |             |
| -            |           |             | NOTES: (1) Top of bedrock @5.1'. (2) Water table at about 4.5'.                            |          |         |                        |                  |         |                     |             |
| 10-          |           |             |                                                                                            |          |         |                        |                  |         |                     |             |
|              |           |             |                                                                                            |          |         |                        |                  |         |                     |             |
| -            |           |             |                                                                                            |          |         |                        |                  |         |                     |             |
| 15-          |           |             |                                                                                            |          |         |                        |                  |         |                     |             |
|              |           |             |                                                                                            |          |         |                        |                  |         |                     |             |
| _            |           |             |                                                                                            |          |         |                        |                  |         |                     |             |
| Complet      | ion Depth | :           | 5.1 Ft.                                                                                    | Water De | pth:    | See_                   | ft., Af          | ter _   |                     | _ hrs.      |
| Project !    | No.:      | 8.8         | C2346-2                                                                                    |          | _N      | otes                   | ft., Af          | ter _   |                     | _ hrs.      |
|              | Name:     |             |                                                                                            |          |         |                        | ft., Af          |         |                     |             |
| Drilling     | Method: _ |             | Hollow-Stem Auger                                                                          |          | _       |                        | ft., Af          | ter     |                     | _ hrs.      |

|            |                        |                        |             | LOG of BORING No. OBA-7                                               |          |                        | S                   | heet    | 1 0                 | of 1        |
|------------|------------------------|------------------------|-------------|-----------------------------------------------------------------------|----------|------------------------|---------------------|---------|---------------------|-------------|
| DAT        | E _                    |                        |             | SURFACE ELEVATION LOCAT                                               | NON _    |                        |                     |         |                     |             |
| DEPTH, ft. | SAMPLES                | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                           | STRATUM  | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LIGUID, | PLASTIC<br>LIMIT, % | OTHER TESTS |
| 0          | Ì                      | 31                     | SS          | Gray shot rock fill, some brown sandy silt, trace clay                |          |                        |                     |         |                     |             |
|            |                        |                        |             | - orange-red brick from 1.1' to 1.6' - gray shot rock fill to bedrock |          |                        |                     |         |                     |             |
|            | ı                      | 23                     | SS          |                                                                       |          |                        |                     |         |                     |             |
|            | 1                      |                        |             |                                                                       |          |                        |                     |         |                     |             |
| 5-         |                        | 105/8"                 | SS          | (FILL)                                                                |          |                        |                     |         |                     |             |
|            |                        |                        |             | Bedrock encountered @5.5', gray dolomite                              |          |                        |                     |         |                     |             |
|            |                        |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            | -<br>-<br>-<br>-       |                        |             | NOTES: (1) Top of bedrock @5.5'. (2) Water table at about 5'.         |          |                        |                     |         |                     |             |
| 10         | -                      |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            | -                      |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            | 4                      |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            | $\left  \cdot \right $ |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            |                        |                        |             |                                                                       |          |                        |                     |         |                     |             |
| 15         | $\left  \cdot \right $ |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            | $\left  \cdot \right $ |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            | $\left  \cdot \right $ |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            | $\left  \cdot \right $ |                        |             |                                                                       |          |                        |                     |         |                     |             |
|            | $\frac{1}{1}$          |                        |             |                                                                       |          |                        |                     |         |                     |             |
| Com        | oletic                 | on Depth:              |             | 5.5 Ft. Water I                                                       | Depth: _ | See                    | ft Af               | ter     |                     | _ hrs.      |
|            |                        |                        |             | C2346-2                                                               |          | Notes                  |                     |         |                     |             |
| Proje      | ct N                   | ame:                   |             |                                                                       | -        |                        | ft., Af             | ter     |                     | hrs.        |
| Drilli     | ng M                   | lethod: _              |             | Hollow-Stem Auger                                                     | -        |                        | ft., Af             | ter     |                     | _ hrs.      |

|              |         |                        |             | LOG of BORING No. OBA-8                                                                            |         |                        | SI                  | heet     | 1 0                 | f 1         |
|--------------|---------|------------------------|-------------|----------------------------------------------------------------------------------------------------|---------|------------------------|---------------------|----------|---------------------|-------------|
| DAT          | E       |                        |             | SURFACE ELEVATION LOCATION                                                                         | ON      |                        |                     |          |                     |             |
| , ОЕРТН, ft. | SAMPLES | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                        | STRATUM | POCKET<br>PENETROMETER | MATER<br>CONTENT, % | LEMIT, " | PLASTIC<br>LIMIT, X | OTHER TESTS |
| 0-           |         | _                      |             | Black asphalt with granular subbase material                                                       |         |                        |                     |          |                     |             |
|              |         | 20                     | SS          | Dark gray to black shot rock fill, little (+) silt and clay, dark near bottom of spoon  (FILL)     |         |                        |                     |          |                     |             |
|              | -       | 20                     | SS          | Tan-brown sand, trace silt, homogenous,damp  from 2.3' to 2.8' (SW)                                |         | -<br>-<br>             |                     |          |                     |             |
| _            |         | 22                     | SS          | Red-brown glaciolacustrine clay, some mottling, dry, cohesive, occasional gray veinlets            |         |                        |                     |          |                     |             |
| 5.           |         | 126/O#                 | SS          |                                                                                                    |         |                        |                     |          |                     |             |
|              | -   '   | 136/9"                 | .55.        | (CL)                                                                                               |         |                        |                     |          |                     |             |
|              | -       |                        |             | Bedrock encountered @7.5', gray dolomite                                                           |         |                        |                     |          |                     |             |
| 10-          |         |                        |             | NOTES: (1) Top of bedrock @7.5. (2) No significant water table noted at overburden/rock interface. |         |                        |                     |          |                     |             |
|              | -       |                        |             |                                                                                                    |         |                        |                     |          |                     |             |
| 15-          |         |                        |             |                                                                                                    |         |                        |                     |          |                     |             |
|              |         |                        |             |                                                                                                    |         |                        |                     |          |                     |             |
|              | -       |                        |             |                                                                                                    |         |                        |                     |          |                     |             |
| Come         | -lation | n Depth:               |             | 7.5 Ft. Water De                                                                                   | +h.     | See                    | Δ A f               |          |                     | h-m         |
|              |         | _                      |             | CC2346-2 Water Do                                                                                  | -       | lotes_                 |                     |          |                     |             |
|              |         |                        |             | OLIN RFI                                                                                           |         |                        |                     |          |                     |             |
|              |         |                        |             | Hollow-Stem Auger                                                                                  |         |                        | ft., Af             | ter _    |                     | _ hrs.      |

|              |         |                        |              | LOG of Boring No. OBA-9AR                                                                                                     | S          | Sheet 1               | of 1                    |
|--------------|---------|------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------------------------|
| DATE10/      |         |                        | <u> 29/9</u> | 22 SURFACE ELEVATION 568.2 LOCATION Olin B                                                                                    | uffalo Av  | enue P                | lant                    |
| o DEPTH, ft. | SAMPLES | SAMPLING<br>RESISTANCE | SAMPLE TYPE  | DESCRIPTION                                                                                                                   | STRATUM    | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| U            | -       | 6                      | SS           | Medium dense to dense, black-brown, silty coarse to fine sand and coarse gravel, gravel includes crushed stone fill and brick |            |                       |                         |
|              | _       | 7                      | ss           | fragments, dry becoming moist at 2 feet                                                                                       |            |                       |                         |
| _            | -       | 2                      | ss           | -becoming wet                                                                                                                 | 563.7      |                       |                         |
| 3-           |         |                        |              | Soft, black, silty clay, trace organics, moist                                                                                | 561.7      |                       |                         |
|              | -       | 124/<br>9"             | SS           | Dense to very dense, black silty clay and gravel, gravel is angular \rock fragments                                           | 560.6      |                       |                         |
|              | ]       |                        |              | NOCK Hagments                                                                                                                 |            |                       |                         |
| 10-          | ]       |                        |              |                                                                                                                               |            |                       |                         |
|              | -       |                        |              |                                                                                                                               |            |                       |                         |
|              | 1       |                        |              |                                                                                                                               |            |                       |                         |
| 15-          | -       |                        |              |                                                                                                                               |            |                       |                         |
|              | 1       |                        |              |                                                                                                                               |            |                       |                         |
|              | 1       |                        |              |                                                                                                                               |            |                       |                         |
| 20-          | -       |                        |              |                                                                                                                               |            |                       |                         |
|              | 1       |                        |              |                                                                                                                               |            |                       |                         |
|              | ]       |                        |              |                                                                                                                               |            |                       |                         |
| 25           | -       |                        |              |                                                                                                                               |            |                       |                         |
| 25-          | ]       |                        |              |                                                                                                                               |            | -                     |                         |
|              | -       |                        |              |                                                                                                                               |            |                       |                         |
|              | -       |                        |              |                                                                                                                               |            |                       |                         |
| 30-          | -       |                        |              | Notes:                                                                                                                        |            |                       |                         |
|              | ]       |                        |              | 1) Auger refusal at 7.6 feet on bedrock. Complete boring with 7.875-inch roller bit to 10.8 feet.                             |            |                       |                         |
|              |         |                        |              | 7.073 Hadi Foliof Oli de 19.0 1900.                                                                                           |            |                       |                         |
| 35-          | -       |                        |              |                                                                                                                               |            |                       |                         |
|              | 1       |                        |              |                                                                                                                               |            |                       |                         |
|              | -       |                        | .            |                                                                                                                               |            |                       |                         |
| 40-          |         |                        |              |                                                                                                                               |            |                       |                         |
| . •          | -       |                        |              |                                                                                                                               |            |                       |                         |
|              | 1       |                        |              | ·                                                                                                                             |            |                       |                         |
|              | -       |                        |              |                                                                                                                               |            |                       |                         |
|              | _       | ion Dep                | •            | •                                                                                                                             | ft.,Afte   | r                     | hrs.                    |
|              |         |                        |              | 2C2030-6                                                                                                                      | _ft.,After |                       |                         |
| -            |         | Name:_<br>Method       |              | Olin Plant RFI 4.25" H.S.A.                                                                                                   | _ft.,After |                       |                         |

|                          |         |                        |             | LOG of Boring No. OBA-10A                                                                                       | S                    | Sheet 1               | of 1                    |
|--------------------------|---------|------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------|
| DAT                      | E       | 11,                    | /3/92       | 2 SURFACE ELEVATION 569.2 LOCATION Olin                                                                         | Buffalo Av           | enue P                | <u>lant</u>             |
| OEPTH, ft.               | SAMPLES | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                     | STRATUM              | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
| 0                        | -       | 16                     | SS          | Dense, black-brown, silty coarse to fine sand and coarse to fine gravel becoming clayey in the last .3', moist. | 567.2                |                       |                         |
|                          | -       | 8                      | SS          | Firm to stiff, red-brown becoming yellow, clay, trace silt, dry                                                 | 565.2                |                       |                         |
| 5-                       | 1       | 53                     | SS          | Dense to very dense, silty medium to sand and coarse to fine gravel, dry                                        |                      |                       |                         |
|                          | 1       | 42                     | SS          | - with angular rock fragments.                                                                                  | 561.2                |                       |                         |
|                          | 1       | 5                      | SS          | Soft, black, clay with organic debris (roots, plant material, etc),                                             | 301.2                |                       |                         |
| 10-                      |         | 18                     | SS          | soft                                                                                                            |                      |                       |                         |
|                          | -       | 116/                   | SS          | - with trace fine, rounded gravel.  \( \)- increasing gravel content                                            | 556.9<br>556.0       |                       |                         |
|                          | -       | 8"                     |             | Firm to dense, black silty clay and coarse gravel, very wet                                                     | / 330.0              |                       |                         |
| 20·<br>25·<br>30·<br>35· |         |                        |             | Note:  1) Auger refusal at 13.7 feet in bedrock. Complete hole with 7.875-inch roller bit to depth 16.7 feet.   |                      |                       |                         |
|                          | _       | ion Dep<br>No.:        |             | 13.7 Ft. Water Depth:                                                                                           | ft.,Afte<br>ft.,Afte |                       | _hrs.<br>_hrs.          |
|                          |         |                        |             | Olin Plant RFI                                                                                                  | ft.,Afte             |                       |                         |
| Drill                    | ıng     | Method                 | l <b>:</b>  | 4 1/4" H.S.A.                                                                                                   | ftAfte               | r                     | hrs.                    |

|            |                                                        |                        |             | LOG of Boring No. OBA-11A                                                                                                                                                        | S                           | Sheet 1               | of 1                    |  |  |  |
|------------|--------------------------------------------------------|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|-------------------------|--|--|--|
| DAT        | E                                                      | 11/                    | 30/9        | 3 SURFACE ELEVATION 571.0 LOCATION Olin Be                                                                                                                                       | uffalo Av                   | enue P                | lant_                   |  |  |  |
| DEPTH, ft. | SAMPLES                                                | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                      | STRATUM                     | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |  |
| 0          | 1                                                      | 16                     | SS          | Topsoil (0.4')                                                                                                                                                                   | 570.6                       |                       |                         |  |  |  |
|            |                                                        | 6                      | ss          | Medium dense, white with little black, coarse to fine sand  Loose to medium dense, black to dark green, silty medium to fine sand with fine gravel to coarse sand slag fragments | 570.1<br>569.0<br>568.3     |                       |                         |  |  |  |
| 5.         | _                                                      | 14                     | SS          | Firm, dark brown coarse to fine gravelly clayey silt, rootlets and                                                                                                               |                             |                       |                         |  |  |  |
|            | 1                                                      | 34                     | SS          | organic debris, moist  Firm to stiff, tan, red-brown, and dark brown with occassional                                                                                            | 563.0                       |                       |                         |  |  |  |
|            | -                                                      | 50/<br>5"              | SS          | yellow mottling, silty clay to clay, moist Stiff, red-brown to dark brown, coarse to fine sandy clay,                                                                            | <del>- 562.6</del><br>562.4 |                       |                         |  |  |  |
| 10         |                                                        | 3                      |             | becoming coarse to fine gravelly                                                                                                                                                 | 502.4                       |                       |                         |  |  |  |
|            | -                                                      |                        |             | Dolostone Bedrock                                                                                                                                                                |                             |                       |                         |  |  |  |
|            |                                                        |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
| 15         | -                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            |                                                        |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | -                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
| 20         | _                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | -                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | ]                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
| 25         | -                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
| 25         |                                                        |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | -                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | ]                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
| 30         | -                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | +                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            |                                                        |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
| 35         |                                                        |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            |                                                        |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | +                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
| 40         | 4                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | -                                                      |                        |             | ·                                                                                                                                                                                |                             |                       |                         |  |  |  |
|            | -                                                      |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | <u> </u>                                               |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
|            | Completion Depth: 8.4 Ft. Water Depth: ft., After hrs. |                        |             |                                                                                                                                                                                  |                             |                       |                         |  |  |  |
| _          |                                                        | No.:                   |             | Olin Plant RFI                                                                                                                                                                   | _ft.,Afte                   |                       | _hrs.                   |  |  |  |
|            |                                                        | Name:_<br>Method       |             | 8.25" H.S.A.                                                                                                                                                                     | _ft.,Afte<br>ft_Afte        |                       | _hrs.                   |  |  |  |

|            |                                                                                          |                        |             | LOG of Boring No. OBA-12C                                                                                                                                                                                                                                                                                                                                            | S                                | heet 1                | of 1                    |  |  |  |  |
|------------|------------------------------------------------------------------------------------------|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|-------------------------|--|--|--|--|
| DATI       | € _                                                                                      | 12/                    | 15/9        | 3 SURFACE ELEVATION 571.5 LOCATION Olin B                                                                                                                                                                                                                                                                                                                            | uffalo Av                        | enue P                | lant_                   |  |  |  |  |
| _          | SAMPLES                                                                                  | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                          | STRATUM<br>ELEVATION             | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |  |  |
| 5-         |                                                                                          | 7<br>34<br>50/<br>2"   | SS<br>SS    | Medium dense to dense, black to brown with white sand grains, coarse to fine gravelly coarse to fine sand, dry to moist  Firm, brown to red-brown, medium to fine sandy silty clay, moist to very moist  Dense to very dense, yellow-brown to brown, silty coarse to fine gravelly coarse to fine sand, gravel includes shaly dolostone fragments  Dolostone Bedrock | 570.3<br>568.9<br>567.3<br>567.1 |                       |                         |  |  |  |  |
| 15-        |                                                                                          |                        |             |                                                                                                                                                                                                                                                                                                                                                                      |                                  |                       |                         |  |  |  |  |
| 25-        |                                                                                          |                        |             |                                                                                                                                                                                                                                                                                                                                                                      |                                  |                       |                         |  |  |  |  |
| 30·<br>35· | -<br>-<br>-<br>-<br>-                                                                    |                        |             |                                                                                                                                                                                                                                                                                                                                                                      |                                  |                       |                         |  |  |  |  |
| 40-        | -<br>-<br>-<br>-<br>-                                                                    | tor D                  | 41.         | A 2 Wt                                                                                                                                                                                                                                                                                                                                                               | C4 AS                            |                       | Ī                       |  |  |  |  |
|            | Completion Depth: 4.2 Ft. Water Depth:ft.,Afterhrs.  Project No.: 92C2030-6ft.,Afterhrs. |                        |             |                                                                                                                                                                                                                                                                                                                                                                      |                                  |                       |                         |  |  |  |  |
|            |                                                                                          | Name:_                 |             |                                                                                                                                                                                                                                                                                                                                                                      | _ft.,Afte                        |                       | hrs.  <br>hrs.          |  |  |  |  |
| _          |                                                                                          | Mothod                 |             | 8.25" H.S.A.                                                                                                                                                                                                                                                                                                                                                         | ft After                         |                       | hre                     |  |  |  |  |

|            |             |                        |             | LOG of Boring No. OBA-13A                                                                                                                                                              | S              | Sheet 1               | of 1                    |
|------------|-------------|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-------------------------|
| DAT        | E _         | 4/                     | <u>6/94</u> | SURFACE ELEVATION 572.0 LOCATION Olin B                                                                                                                                                | uffalo Av      | <u>enue P</u>         | <u>lant</u>             |
| OEPTH, ft. | SAMPLES     | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                                                            | STRATUM        | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |
|            | -<br>-<br>- | 6                      | SS<br>SS    | Dense to medium dense, brown to dark gray, coarse to fine sandy coarse to fine angular gravel, some clayey and silty layers, moist                                                     |                |                       |                         |
| 5.         | 1           | 5                      | SS          |                                                                                                                                                                                        | 567.1          |                       |                         |
| 10-        |             | 9                      | SS          | Firm to stiff, light brown to light gray with occassional orange<br>mottling, silty clay becoming fine sandy clay, some well-rounded<br>coarse sand and fine gravel and trace organics |                |                       |                         |
| 10         | 1           | 3                      | SS          |                                                                                                                                                                                        | 561.8          |                       |                         |
| 10-        | -           | 8<br>38                | SS<br>SS    | Medium dense becoming very dense, red-brown coarse sandy and coarse to fine gravelly clay, trace amounts of silt and medium to fine sand                                               | 301.0          |                       |                         |
| 15-        | -           | 110/<br>3"             | ss          | \Dolostone Bedrock                                                                                                                                                                     | 556.7<br>556.5 |                       |                         |
|            |             |                        |             |                                                                                                                                                                                        |                |                       |                         |
| 20-        |             |                        |             |                                                                                                                                                                                        |                |                       |                         |
| 25-        |             |                        |             |                                                                                                                                                                                        |                |                       |                         |
|            |             |                        |             |                                                                                                                                                                                        |                |                       |                         |
| 30-        |             |                        |             |                                                                                                                                                                                        |                |                       |                         |
| 35-        | <u>-</u>    |                        |             |                                                                                                                                                                                        |                |                       |                         |
|            | -           |                        |             |                                                                                                                                                                                        |                |                       |                         |
| 40-        | -           |                        |             |                                                                                                                                                                                        |                |                       |                         |
|            |             |                        |             |                                                                                                                                                                                        |                |                       |                         |
| Com        | pleti       | on Dep                 | th:_        | 15.3 Ft. Water Depth:                                                                                                                                                                  | _ft.,After     |                       | _hrs.                   |
| _          |             | ₹o.:                   |             | C2030-6                                                                                                                                                                                | _ft.,After     | ·                     | _hrs.                   |
| _          |             | Name:_<br>Method       |             | Olin Plant RFI  8.25" H.S.A.                                                                                                                                                           | _ft.,After     |                       | _hrs.                   |

| LOG of Boring No. OBA-14B Sheet 1 of 1 |                |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|----------------------------------------|----------------|------------------------|-------------|------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------|--|--|--|--|
| DATI                                   | E _            | 4/2                    | 1/94        | SURFACE ELEVATION 568.9 LOCATION Olin Bu                                                                               | uffalo Av            | enue P                | lant_                   |  |  |  |  |
| OEPTH, ft.                             | SAMPLES        | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                            | STRATUM              | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |  |  |
| U.                                     | -              | 10                     | SS          | Medium dense, light brown, dark brown, and gray coarse to medium sand and fine gravel, trace fine sand and silt, moist |                      |                       |                         |  |  |  |  |
|                                        | -              | 10                     | SS          | ,,                                                                                                                     |                      |                       |                         |  |  |  |  |
| 5                                      | ╣              | 4                      | .ss.        | -becoming loose                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        | -#             | 6                      | ss          | Loose, dark gray, fine sandy silty coarse to medium sand and                                                           | 562.3<br>561.6       |                       |                         |  |  |  |  |
|                                        | 1              | 24                     | ss          | coarse to fine gravel consisting primarily of coal ash and crushed stone, wet                                          | 559.4                |                       |                         |  |  |  |  |
| 10                                     | -              | 56                     | ss          | Stiff, brown-red silty clay, moist                                                                                     |                      |                       |                         |  |  |  |  |
|                                        | -              | 82                     | ss          | Dense to very dense, clayey coarse to fine sand and coarse to fine gravel, little silt                                 | 555 2                |                       |                         |  |  |  |  |
| 1.5                                    | $\blacksquare$ |                        |             | \Dolostone Bedrock                                                                                                     | 555.3<br>555.1       |                       |                         |  |  |  |  |
| 15                                     | 7              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        | 1              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
| 20                                     | الـ            |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        | 4              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        |                |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
| 25                                     | -              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        | $\exists$      |                        |             |                                                                                                                        |                      |                       | -                       |  |  |  |  |
|                                        | 1              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
| 30                                     | 1              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        | 1              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
| 35                                     | ᅦ              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
| 33                                     | $\parallel$    |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        | +              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
| 40                                     | -              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        |                |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
|                                        | 1              |                        |             |                                                                                                                        |                      |                       |                         |  |  |  |  |
| Con                                    | nple           | tion Dep               | oth:        | 13.6 Ft. Water Depth:                                                                                                  | _ft.,Afte            | r                     | hrs.                    |  |  |  |  |
| Proj                                   | ject           | No.:                   |             | C2030-6 Olin Plant RFI                                                                                                 | _ft.,Afte            |                       | _hrs.                   |  |  |  |  |
| _                                      |                | Name:_<br>Method       | ŀ           | 4.25" H.S.A.                                                                                                           | _ft.,Afte<br>_ftAfte |                       | hrs.<br>hrs.            |  |  |  |  |

| LOG of Boring No. OBA-15A  Sheet 1 of 1 |                                 |                        |             |                                                                                                                                             |                      |                       |                         |  |  |  |  |
|-----------------------------------------|---------------------------------|------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------|--|--|--|--|
| DATE                                    | E                               | 4/1                    | 3/94        | SURFACE ELEVATION 570.9 LOCATION Olin Bu                                                                                                    | <u>ıffalo Av</u>     | enue P                | lant_                   |  |  |  |  |
| _ ,                                     | SAMPLES                         | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                 | STRATUM<br>ELEVATION | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |  |  |
| 0-                                      | Ì                               | 45                     | ŠŠ          | Crushed stone fill (0.5')                                                                                                                   | 570.4                |                       |                         |  |  |  |  |
|                                         |                                 | 12                     | SS          | Medium dense, black, silty coarse to medium sand and fine gravel, predominantly coal, moist                                                 | 568.9                |                       |                         |  |  |  |  |
| 5-                                      |                                 | 6                      | SS          | Firm to stiff, brown with orange mottling, clayey silt to silty clay<br>becoming coarse sandy to fine gravelly clayey silt, coarse fraction |                      |                       |                         |  |  |  |  |
|                                         | 1                               | 12                     | SS          | sub-angular to sub-round - increasing clay content to silty clay and decreasing coarse fraction                                             |                      |                       |                         |  |  |  |  |
| 10                                      |                                 | 9                      | SS          |                                                                                                                                             | 561.1                |                       |                         |  |  |  |  |
| 10-                                     |                                 | 13                     | SS          | Stiff, red-brown, fine gravelly coarse to medium sandy clay                                                                                 | 558.9                |                       |                         |  |  |  |  |
|                                         |                                 | 100/<br>5"             | SS          | Very dense, gray silty angular gravel consisting of dolostone fragments                                                                     | 556.8                |                       |                         |  |  |  |  |
| 15-                                     | -                               | 50/<br>2"              | SS          | Dolostone Bedrock                                                                                                                           | 554.0                |                       |                         |  |  |  |  |
|                                         | -                               |                        |             |                                                                                                                                             | 334.0                |                       |                         |  |  |  |  |
| 20-                                     |                                 |                        |             |                                                                                                                                             |                      |                       |                         |  |  |  |  |
| 25-                                     | -<br>-<br>-<br>-<br>-<br>-<br>- |                        |             |                                                                                                                                             |                      |                       |                         |  |  |  |  |
| 30-                                     | -<br>-<br>-<br>-                |                        |             |                                                                                                                                             |                      |                       |                         |  |  |  |  |
| 35-                                     | -<br>-<br>-<br>-                |                        |             |                                                                                                                                             |                      |                       |                         |  |  |  |  |
| 40-                                     | -<br>-<br>-<br>-                |                        |             | •                                                                                                                                           |                      |                       | V                       |  |  |  |  |
|                                         | -<br>-<br>-                     |                        |             |                                                                                                                                             |                      |                       |                         |  |  |  |  |
| Com                                     | pleti                           | ion Dep                |             | •                                                                                                                                           | ft.,Afte             | -                     | _hrs.                   |  |  |  |  |
| Proje                                   |                                 |                        | 92          | <u></u>                                                                                                                                     | _ft.,Afteı           |                       | _hrs.                   |  |  |  |  |
| •                                       |                                 | Name:_                 |             | Olin Plant RFI                                                                                                                              | _ft.,Afteı           |                       | _hrs.                   |  |  |  |  |
| Drilli                                  | ing l                           | Method                 | :           | 8,25" H.S.A.                                                                                                                                | ftAfter              | r                     | _hrs.                   |  |  |  |  |

| LOG of Boring No. OBA-16A Sheet 1 of 1 |             |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|----------------------------------------|-------------|------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------|--|--|--|--|
| DAT                                    | E _         | 4/                     | <u>5/94</u> | SURFACE ELEVATION 571.1 LOCATION Olin Bu                                                                                                          | uffalo Av                | enue P                | lant_                   |  |  |  |  |
| DEPTH, ft.                             | SAMPLES     | SAMPLING<br>RESISTANCE | SAMPLE TYPE | DESCRIPTION                                                                                                                                       | STRATION                 | OVA<br>Readings (ppm) | Other<br>Readings (ppm) |  |  |  |  |
| 0                                      | ┧           | 1.0                    |             | Asphalt Pavement (0.5')                                                                                                                           | <del>- 570.6</del>       |                       |                         |  |  |  |  |
|                                        | -           | 16                     | SS          | Medium dense, brown to black, silty corse to fine sand and fine gravel, frequent coal pieces, moist                                               |                          |                       |                         |  |  |  |  |
|                                        | -           | 7                      | SS          |                                                                                                                                                   | 567.1                    |                       |                         |  |  |  |  |
| 5                                      | -           | 5                      | SS          | Stiff, brown, gray, and orange-brown with orange mottling, coarse sandy and fine gravelly clay, sub-rounded coarse fraction, trace organic matter | 564.1                    |                       |                         |  |  |  |  |
|                                        |             | 75/                    | ss          | Dense, brown-gray, silty angular coarse to medium sand and                                                                                        |                          |                       |                         |  |  |  |  |
|                                        | +           | 3"<br>50/              | SS          | Coarse to fine gravel  Dolostone Bedrock                                                                                                          | 561.8<br>561.6           |                       |                         |  |  |  |  |
| 10                                     | -           | 4"                     |             | Dolostone Bedrock                                                                                                                                 | 301.0                    |                       |                         |  |  |  |  |
|                                        | $\exists$   |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
| 15                                     | 1           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
| 1.5                                    | +           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | 1           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | $\parallel$ |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
| 20                                     | ᅦ           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | $\exists$   |                        |             |                                                                                                                                                   |                          | l                     |                         |  |  |  |  |
|                                        |             |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
| 25                                     | $\dashv$    |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        |             |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | +           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
| 30-                                    | 1           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | +           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | _           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
| 25                                     | +           |                        |             | •                                                                                                                                                 |                          |                       |                         |  |  |  |  |
| 35                                     | _           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | +           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | 1           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
| 40-                                    | $\dashv$    |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | $\exists$   |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
|                                        | ]           |                        |             |                                                                                                                                                   |                          |                       |                         |  |  |  |  |
| C                                      |             | tion De                | 41          | 9.3 Ft. Water Depth:                                                                                                                              | C4 4.0°                  |                       | ,                       |  |  |  |  |
|                                        | _           | tion Dep<br>No.:       |             | 9.3 Ft. Water Depth:                                                                                                                              | _ft.,After<br>_ft.,After |                       | _hrs.<br>_hrs.          |  |  |  |  |
| -                                      |             | Name:_                 |             | Olin Plant RFI                                                                                                                                    | _ft.,Aftei               |                       | nrs.  <br>hrs.          |  |  |  |  |
| _                                      |             | Method                 | •           | 8.25" H.S.A.                                                                                                                                      | ft After                 |                       | hrc.                    |  |  |  |  |



|   | _                     |   |
|---|-----------------------|---|
|   | $\boldsymbol{\Gamma}$ | ĸ |
|   | 4                     |   |
| • |                       | 7 |

| 1      | Ground Wat                                                                                                                                                                          | er Observatio | on -             | Job C               | LIN - R                   | FI No. 88C2346-2                                                                                                                 | Boring Number     | OBA-1A      |          |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|---------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|----------|
| ı,     | At Ft.                                                                                                                                                                              | at Comple     | tion             |                     |                           | CKER AD II                                                                                                                       | Boring Offset     |             |          |
|        | At Ft.                                                                                                                                                                              |               |                  |                     |                           | Schroder (Emp)                                                                                                                   | _                 |             |          |
| 1      | At Ft.                                                                                                                                                                              |               | hrs.             | -                   |                           |                                                                                                                                  | Surface Elevation |             |          |
|        |                                                                                                                                                                                     | after         | hrs.             | _                   | or <u>Paul</u>            | Mazierski (WCC)                                                                                                                  | Date Start 6/21/  | 789 Finish  | 6/21/89  |
| DEPTH  | CORE                                                                                                                                                                                | RQD           | RECOVERY         | CORE TYPE & RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                                                       | E AND COLOR       | FRACTU      | RES BED  |
| -<br>- |                                                                                                                                                                                     | INCH %        | INCH %           | ORE 2               | STS 등                     | WEATHERING, SEAMS IN ROCK                                                                                                        | , etc.            | No./Ft.     | DIP* DIP |
|        | 6/21/89<br>FRUN 1<br>5.5'-8.5'                                                                                                                                                      | 0,43,         | 3'/3'<br>(100%)  | NX                  | 565.8                     | Medium to fine grained, medium to light gray, thinly bedded dolomite, abundant thin stylolite; thin brown beds, highly fractured | medium to         | 3 11 8      |          |
|        | 6/21/89 0'/3' 3'/3' NX 5.5 Medium to fine grained, medium to light gray, medium to 1 thinly bedded dolomite, abundant thin stylolites, occasional thin brown beds, highly fractured |               |                  |                     |                           |                                                                                                                                  |                   |             |          |
| [<br>  | - 100% wa                                                                                                                                                                           | ater loss fro | om onset of      | coring a            | and ream                  | ing operations                                                                                                                   |                   | Total Depth | 8.5'     |
|        | oportions used: t                                                                                                                                                                   | race 0-10%,   | little 10-20%, s | ome 20-3            | 35%, and 3                | 15-50%                                                                                                                           |                   | Hole No.    | OBA-1A   |



|                                                                                     | Ground Water Observation      |                   |                                        |                        | LIN - R                   | FI No. 88C2346-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Boring Number                                                                                                         | OBA-1B        | 3    |              |
|-------------------------------------------------------------------------------------|-------------------------------|-------------------|----------------------------------------|------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------|------|--------------|
| A                                                                                   | Ft.                           | at Comple         | tion                                   | Drilling               | Die A                     | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boring Offset                                                                                                         |               |      |              |
| At                                                                                  | Ft.                           | after             | hrs.                                   |                        | · -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                     |               |      |              |
| At                                                                                  |                               |                   |                                        | Operato                | -                         | y Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surface Elevation                                                                                                     | 571.3         |      |              |
| At                                                                                  | Ft.                           | after             | hrs.                                   | Inspect                | or <u>Paul</u>            | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Start 6/22/                                                                                                      | /89 Finish    | 6/2  | 3/89         |
| DEPTH                                                                               | CORE<br>RUN                   | RQD               | RECOVERY                               | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       | FRACTU        | RES  | BED          |
|                                                                                     | FROM TO                       | INCH %            | INCH %                                 |                        | ្ត្រ<br>ប្រក្នុ           | MENIMERING, SENIS IN ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , e.c.                                                                                                                | No./Ft.       | DIP* | DIP          |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 6/22/89<br>RUN 1<br>4.7'-9.7' | 0.8'/3.6'<br>(0%) | 5'/5'<br>(100%)<br>3.6'/3.6'<br>(100%) | NX NX                  | 566.6                     | Medium to fine grained, medium to light gray, bedded dolomite, abundant stylolites, occasion layers where majority of fractures are observed.  - same, predominantly dark gray, increase in a large vugs with sphalerite crystal lining at 9.0 - same, dark gray, dark brown, some vugs, occasional, fine vugs throughout  Medium to fine grained, medium brown to me massive dolomite, occasional vuggy intervals, stylolites, highly vuggy from 13.6 to 14.2 - predominantly massive beyond 15, thick sty becoming medium to finely bedded beyond 1 seams/veins at 20.1, 20.5, 21.2, becoming from 21.4 to 23.2 CONTINUED ON THE NEXT SHEET | mal brownish d, no vugs mount of vugs, casional stylolites m massive dium/dark gray, occasional lolite at 17.9', 7.9' | 8 11 6 6 3 3+ |      |              |
| Gene                                                                                |                               | racture bet       | tween 19.5'                            | and 21'                | , 100%                    | water loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       | Total Depth   | ·    | <u>25.2'</u> |
|                                                                                     |                               |                   |                                        |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       | Rock Drillin  | ng   | <u>20.5'</u> |
| %Pro                                                                                | portions used:                | trace 0-10%,      | little 10-20%,                         | some 20-               | 35%, and                  | 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       | Hole No.      | OBA  | -1B          |



| -         | Ground Wate           | er Observation | 200            | Job O               | LIN - R                   | FI No. 88C2346-2                                                         | Boring Number     | OBA-1E         | 3           |               |
|-----------|-----------------------|----------------|----------------|---------------------|---------------------------|--------------------------------------------------------------------------|-------------------|----------------|-------------|---------------|
| i         | Ft.                   | _              |                | Drilling            | Rig A                     | CKER AD II                                                               | Boring Offset     |                |             |               |
|           | Ft.                   |                |                |                     |                           | Schroder (Emp)                                                           | Surface Elevation | 571 2          |             |               |
| At        | Ft.                   |                |                | -                   |                           | Mazierski (WCC)                                                          | Date Start 6/22/3 |                |             | 3/89          |
| , ,,,,    |                       |                |                | •                   |                           | Mazierski (WCC)                                                          | Date Start 0/22/  | FILLEN         |             | 5,02          |
| Ŧ         | CORE<br>RUN           | RQD            | RECOVERY       | CORE TYPE & RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                               | E AND COLOR       | FRACTU         | RES         | BED           |
| DEPTH     |                       | <b>7101</b>    | T1011 4        | 띪                   | STR                       | WEATHERING, SEAMS IN ROCK                                                | , etc.            | N- (51         | DTD+        | DTD           |
| _         | FROM TO               | INCH %         | INCH %         | <u> </u>            |                           | SAME AS ABOVE                                                            |                   | No./Ft.        | DIP         | DIP           |
|           |                       |                |                |                     |                           |                                                                          |                   | <b>E</b>       |             |               |
| 21        |                       |                |                |                     | -                         |                                                                          |                   | E 2            |             |               |
| 22        |                       |                |                |                     | -                         |                                                                          |                   | E4             |             |               |
| <u> </u>  | •                     |                |                |                     |                           |                                                                          |                   | ŧ I            |             |               |
| - 23<br>- | RUN 4                 | 1.15'/2'       | 2'/2'          | 1                   |                           | -same, gypsum seam at 23.6', rugose corals at gypsum filled void at 24.8 | ter 24.8', large  | $\mathbb{F}^3$ |             |               |
| 24        | 23.3'-25.2'           | (58%)          | (100%)         |                     | -                         | gypsum mice void at 24.0                                                 |                   | -3             |             |               |
| 25        |                       |                |                |                     |                           |                                                                          |                   | E              |             |               |
| - 25      |                       |                |                | 1                   | - 546.1<br>25.2           |                                                                          |                   | †              |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                | ĺ           |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                | ,           |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
|           |                       |                |                |                     |                           |                                                                          |                   |                |             |               |
| Gener     | ai Notes: - B-zone fi | racture bet    | ween 19.5' a   | ınd 21',            | , 100% v                  | vater loss                                                               |                   | Total Depth    |             | 2 <u>5.2'</u> |
|           |                       |                |                |                     |                           |                                                                          |                   | Rock Drillin   | g <u>_2</u> | 20.5'         |
| %Prop     | portions used: t      | race 0-10%,    | little 10-20%, | ome 20-3            | 35%, and                  | 35-50%                                                                   |                   | Hole No.       | OBA         | -1B           |



|                                             | Ground Wate              | er Observatio | n ·              | Job O                  | LIN - R                   | FI No. 88C2346-2            | Boring Number     | OBA-1C                                       | C/CD     |
|---------------------------------------------|--------------------------|---------------|------------------|------------------------|---------------------------|-----------------------------|-------------------|----------------------------------------------|----------|
| At                                          |                          | _             |                  | Drilling               | Rio AC                    | CKER AD II                  | Boring Offset     |                                              |          |
| At                                          | Ft.                      |               |                  |                        |                           | Schroder (Emp)              | _                 |                                              |          |
| At                                          |                          |               |                  | _                      |                           |                             | Surface Elevation |                                              |          |
| Aı                                          | Ft.                      | after         | hrs.             |                        | r <u>Paul</u>             | Mazierski (WCC)             | Date Start 6/27/  | 89 Finish                                    | 6/27/89  |
| ОЕРТН                                       | CORE<br>RUN              | RQD           | RECOVERY         | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE  |                   | FRACTU                                       | RES BED  |
|                                             | FROM TO                  | INCH %        | INCH %           | S. 5                   | ທີ່ວັດ                    | PETTIENTION SERIO EN NOON   | , =10.            | No./Ft.                                      | DIP* DIF |
| 1 2 3 4 5 5 6 7 7 8 8 7 9 10 11 12 12 13 14 |                          |               |                  |                        |                           |                             |                   | endandendendendendendendendendendendendenden |          |
| 15                                          |                          |               |                  |                        |                           |                             |                   |                                              |          |
| 19                                          |                          |               |                  |                        |                           | CONTINUED ON THE NEXT SHEET |                   | -                                            |          |
| Genera                                      | al Notes:<br>- C-zone fi | racture at 3  | 33.5', 100%      | water l                | oss                       |                             |                   | Total Depth                                  | _38.5'   |
|                                             |                          |               |                  |                        |                           |                             |                   | Rock Drillin                                 | ig 13.5' |
| % Prop                                      | ortions used: to         | race 0-10%,   | little 10-20%, s | ome 20-3               | 35%, and 3                |                             |                   | Hole No. O                                   | BA-1C/CI |



|                 | Ground Wat       | er Observatio       | םכ                 | Job C                                                        | LIN - R                   | FI No. 88C2346-2                                                                       | Boring Number     | OBA-10         | C/C I | )            |
|-----------------|------------------|---------------------|--------------------|--------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------|-------------------|----------------|-------|--------------|
| A               | t Ft.            | at Comple           | tion               | Deilling                                                     | . pia A                   | CKER AD II                                                                             | Boring Offset     |                |       | _            |
| i A             | t Ft.            | after               | hrs.               |                                                              |                           |                                                                                        |                   |                |       |              |
| A               | t Ft.            | after               | hrs.               | Operato                                                      | r <u>Larr</u>             | y Schroder (Emp)                                                                       | Surface Elevation | 571.3          |       |              |
| A               | tFt.             | after               | hrs.               |                                                              | or <u>Paul</u>            | Mazierski (WCC)                                                                        | Date Start 6/27/  | 789 Finish     | 6/2   | 7/89         |
| Ĺ               | CORE             | RQD                 | RECOVERY           | TYPE<br>SIST.                                                | €₩±                       |                                                                                        |                   | FRACTU         | DEC   | BED          |
| DEPTH           | RUN              | KGD                 | RECOVER            | ESI                                                          | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                             |                   | PRACTO         | KES   | DED          |
| ] =             | FROM TO          | INCH %              | INCH %             | - 25<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25 | [윤주교                      | WEATHERING, SEAMS IN ROCK                                                              | , етс.            | No./Ft.        | DIP*  | DIP          |
| E               |                  |                     |                    |                                                              | :                         |                                                                                        | _                 |                |       |              |
| £ 21            |                  |                     |                    |                                                              | <u> </u>                  |                                                                                        |                   | E              |       |              |
| Ē               |                  |                     |                    |                                                              | -                         |                                                                                        |                   | Ė              |       |              |
| - 22            |                  |                     |                    |                                                              | -                         |                                                                                        |                   | F              | ļ     |              |
| <u> </u>        |                  |                     |                    |                                                              | _                         |                                                                                        |                   | E              |       |              |
| E 23            |                  |                     |                    |                                                              | [                         |                                                                                        |                   | E              |       |              |
| E 24            |                  |                     |                    |                                                              | - <u>547.1</u><br>- 24.2  |                                                                                        |                   | <u>F</u>       |       |              |
| Ė               | 6/27/89<br>RUN 1 | 2.45'/4.5'<br>(54%) | 4.4'/4.5'<br>(98%) | NX                                                           | 24.2<br>546.3             | GROUT PLUG                                                                             |                   | Ė I            |       |              |
| F 25            | 24.2'-28.7'      |                     |                    |                                                              | 25.0                      | Medium grained, medium/dark brown to mediumassive dolomite, frequent gypsum seams, gyr | um gray,          | <u> </u>       |       |              |
| <u> </u>        |                  |                     |                    |                                                              | _                         | and corals from 25' to 26.5'                                                           | sum filled voids  | E.             |       |              |
| Ē .             |                  |                     |                    |                                                              | -                         | - gypsum seams becoming occasional and cora                                            | ls dissapper      | 3              |       |              |
| - 27            |                  |                     |                    |                                                              | 543.8                     | beyond 26.5'                                                                           |                   | -4             |       |              |
| È.              |                  |                     |                    |                                                              | 27.5                      | Medium grained, light to medium brown, mass                                            |                   | ‡              |       |              |
| E 28            |                  |                     |                    |                                                              | [                         | light brown zones are massive (no gypsum or o                                          | corais)           | <b>E</b> 2     |       |              |
| Ē 29            | RUN 2            | 3.5'/4.7'           | 4.5'/4.7'          | NX                                                           |                           | -same, moderaterly fractured                                                           |                   | E.             |       |              |
| E               | 28.7'-33.4'      | (74%)               | (96%)              | 1                                                            |                           |                                                                                        |                   | E              |       |              |
| F 30            |                  |                     |                    |                                                              | -                         | - same, now with occasional gypsum seams an prominent stylolite at 30.5'               | d stylolites      | E1             |       |              |
| <u>-</u> 31     |                  |                     |                    |                                                              | _                         | promise syone 2:50.5                                                                   |                   | E. I           |       |              |
| E               |                  |                     |                    |                                                              |                           |                                                                                        |                   | <u> </u>       |       |              |
| <del>-</del> 32 |                  |                     |                    |                                                              | -                         | - cluster of gypsum filled circular voids at 32'                                       |                   | - 5            |       |              |
| £ 33            |                  |                     |                    |                                                              | E                         |                                                                                        |                   | E              |       |              |
| 33              | RUN 3            | 3.85'/5.1'          | 4.9'/5.1'          | NX                                                           |                           | - same, gypsum seam/stylolite at 35.6'                                                 |                   | E 1            | 1     |              |
| L 34            |                  | (75 %)              | (96%)              |                                                              | -                         |                                                                                        |                   | ₽.             |       |              |
| Ė               |                  |                     |                    |                                                              | <u> </u>                  |                                                                                        |                   | <b>E</b>       |       |              |
| F 35            |                  |                     |                    |                                                              | -                         |                                                                                        |                   | F 2            |       |              |
| E 36            |                  |                     |                    |                                                              | -                         | - same, massive                                                                        |                   | E,             |       |              |
| Ę               |                  |                     |                    |                                                              |                           |                                                                                        |                   | E'             |       |              |
| E 37            |                  |                     |                    |                                                              | -                         |                                                                                        |                   | <b>E</b> 3     |       |              |
| E 38            |                  |                     |                    |                                                              | _                         |                                                                                        |                   | -<br>3+        |       |              |
| F               |                  |                     |                    | -                                                            | 38.5                      |                                                                                        |                   | _ <del>-</del> |       |              |
| 1               |                  |                     |                    |                                                              | 33.3                      |                                                                                        |                   |                |       |              |
|                 |                  |                     |                    |                                                              |                           |                                                                                        |                   |                |       |              |
| Gener           | rai Notes:       |                     |                    |                                                              |                           |                                                                                        |                   |                |       |              |
|                 | - C-zone f       | racture at 3        | 33.5', 100%        | water l                                                      | loss                      |                                                                                        |                   | Total Depth    | _3    | 8.5          |
|                 |                  |                     |                    |                                                              |                           |                                                                                        |                   | Dock Dain's    |       |              |
| 1               |                  |                     |                    |                                                              |                           |                                                                                        |                   | Rock Drillin   | R     | <u>13.5'</u> |
| %Pro            | portions used: t | race 0-10%,         | little 10-20%, s   | ome 20-3                                                     | 35%, and                  | 35-50%                                                                                 |                   | Hole No. O     | BA-1C | CD.          |



|                                                                        | Ground V              | ater Obse | ervatio | מכ    |        | Јов О               | LIN - R                   | FI No. 88C2346-2                                                                                  | Boring Number                        | OBA-2A      |      |      |
|------------------------------------------------------------------------|-----------------------|-----------|---------|-------|--------|---------------------|---------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|-------------|------|------|
| At Ft. at Completion Drilling Rig ACKER                                |                       |           |         |       |        |                     |                           |                                                                                                   | Boring Offset                        |             |      |      |
| At                                                                     |                       |           |         |       |        |                     |                           | Schroder (Emp)                                                                                    | _                                    | 530.4       |      |      |
| At<br>At                                                               |                       |           | _       |       | - 1    | _                   |                           | Mazierski (WCC)                                                                                   | Surface Elevation  Date Start 8/21/8 |             | 8/2  | 1/80 |
| 7.                                                                     |                       |           |         |       |        | -                   |                           | WCC)                                                                                              | Date Start 6/21/6                    | Pinish      |      | 1/07 |
| ОЕРТН                                                                  | CORE<br>RUN           | RC        | O       | RECOV | ERY    | CORE TYPE & RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                        |                                      | FRACTU      | RES  | BED  |
| DE                                                                     | FROM TO               | INCH      | 1 %     | INCH  | *      | 88                  | に発出                       | WEATHERING, SEAMS IN ROCK                                                                         | , etc.                               | No./Ft.     | DIP* | DIP  |
|                                                                        |                       |           |         |       |        | J.20                |                           |                                                                                                   |                                      | -           |      |      |
| 1 2 3                                                                  |                       |           |         | 1     |        |                     | -                         |                                                                                                   |                                      | E           |      |      |
| _ 2                                                                    |                       |           |         |       |        |                     |                           |                                                                                                   |                                      | E           |      |      |
| - 4                                                                    |                       |           |         |       |        |                     |                           |                                                                                                   |                                      | E           |      |      |
| - 3                                                                    |                       |           |         |       |        |                     | -                         |                                                                                                   |                                      | E           |      |      |
| - 4                                                                    |                       |           |         |       |        |                     |                           |                                                                                                   |                                      | E           |      |      |
| - <b>"</b>                                                             |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
| _ 5                                                                    |                       |           | ,       |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
| 8/21/89 0'/3' 0'/3'<br>RUN 1 (0%) (0%)                                 |                       |           |         |       |        | NX                  | - 564.6<br>- 5.8          | Predominantly fine grained, dark to light gray                                                    |                                      | 8           |      |      |
| _                                                                      | RUN 1<br>5.8'-8.8'    | (0%)      |         | (0%)  |        |                     |                           | occasional stylolites in massive fine grained poin finely vuggy interval at about 7.3', rapid dri | rtions, very soft                    | <b>E</b>    |      |      |
| 8                                                                      |                       |           |         |       |        |                     |                           | advancement in this interval, highly fractured                                                    |                                      | 7           |      |      |
| - 8                                                                    |                       |           |         |       |        |                     |                           |                                                                                                   |                                      | F ,         |      |      |
|                                                                        |                       |           |         |       |        | ↓ .                 | 561.6<br>8.8              |                                                                                                   |                                      | <u> </u>    |      |      |
|                                                                        |                       |           |         |       |        |                     | 8.8                       |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       | -         |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       | ļ         |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
|                                                                        |                       |           |         |       |        |                     |                           |                                                                                                   |                                      |             |      |      |
| Gener                                                                  | al Notes:<br>- Void n | oted at   | 7.3',   | 75% v | ater l | oss                 |                           |                                                                                                   |                                      | Total Depth | _    | 8.8° |
|                                                                        |                       |           |         |       |        |                     | Rock Drillin              | ng                                                                                                | _3'                                  |             |      |      |
| %Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50% |                       |           |         |       |        |                     |                           | Hole No.                                                                                          | OBA-                                 | 2A          |      |      |



| 1                                            | Ground                         | Water Observa                 | tion                                           | Job∵ €      | DLIN - R                   | OBA-2I                                                                                                                                                                                                                                                                                                                                                                                                 | В                                                                                                          |                                                  |          |
|----------------------------------------------|--------------------------------|-------------------------------|------------------------------------------------|-------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|
|                                              |                                | Ft. at Comp                   |                                                | Drillin     | Rig A                      | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                             | Boring Offset                                                                                              |                                                  |          |
| 1                                            | ·                              | _                             |                                                | Operato     |                            | y Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                          |                                                  |          |
|                                              |                                | Ft. after _                   |                                                | '           |                            |                                                                                                                                                                                                                                                                                                                                                                                                        | Surface Elevation                                                                                          |                                                  | 9/03/00  |
| At                                           |                                |                               |                                                |             | or <u>Paui</u>             | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                        | Date Start 8/22/                                                                                           | 89 Finish                                        | 8/23/89  |
| DEPTH                                        | CORE                           | ROD                           | RECOVER                                        | 100         | STRATA<br>CHANGE<br>DEPTH  | FIELD IDENTIFICATION, TYPH<br>WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | FRACTU                                           | IRES BED |
|                                              | FROM T                         | O INCH %                      | INCH %                                         | CORE<br>REG | [SD 다ロ                     | MENITERING, SERIES IN ROCK                                                                                                                                                                                                                                                                                                                                                                             | , erc.                                                                                                     | No./Ft.                                          | DIP* DIP |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 8/22/89<br>RUN 1<br>5.9'-10.9' | 0.75'/4' (19%)  1.3'/5' (26%) | 4.05'/5' (100%)  3.75'/4' (94%)  4.5'/5' (90%) | NX NX       | 559.6<br>- 559.6<br>- 10.9 | Medium to fine grained, dark to light gray to be highly fractured for first 0.5', mottled appears a highly vuggy, brown, soft interval. Dark to dolomite with occasional vugs to the end of the vuggy just before major fracture at 14.4', mastrun  Medium to fine grained, light gray to light gray medium bedded dolomite, occasional stylolites before fracture at 18'  CONTINUED ON THE NEXT SHEET | nce at 6.9' before medium gray e run  , few stylolites, sive throughout  y-brown mottled, y vuggy for 0.5' | Soft Interval  3 1 4 3 1 1 4 5 1 2 3 Total Denth | 25.0°    |
| - B-z                                        | one fracti                     | ire (large vo                 | oid) noted bet                                 | tween 19    | ).1' and 1                 | 19.7'                                                                                                                                                                                                                                                                                                                                                                                                  | , Hans Loss                                                                                                | Total Depth  Rock Drillin                        |          |
| % Pro                                        | portions use                   | d: trace 0-109                | 6, little 10-20%,                              | , some 20-  | 35%, and :                 | 35-50%                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            | Hole No.                                         | OBA-2B   |



| Г                       |                            | Ground Wat                        | er Observatio              | a                          | Job C                  | LIN - R                   | FI No. 88C2346-2                                                                                                                                                | Boring Number     | OBA-2I                                  | 3    |                |
|-------------------------|----------------------------|-----------------------------------|----------------------------|----------------------------|------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|------|----------------|
| }                       | At                         | Ft.                               | at Comple                  | tion                       | Drillins               | Rig A                     | CKER AD II                                                                                                                                                      | Boring Offset     |                                         |      |                |
|                         | At                         |                                   |                            | hrs.                       |                        | _                         | Schroder (Emp)                                                                                                                                                  | _                 | 570.5                                   |      |                |
| 1                       | At                         |                                   |                            | hrs.                       | _                      |                           |                                                                                                                                                                 | Surface Elevation | 570.5                                   | 0 12 | 3/89           |
| -                       | At                         |                                   |                            |                            | Inspect                |                           | Mazierski (WCC)                                                                                                                                                 | Date Start 8/22/  | 89 Finish                               |      | 3/69           |
|                         | חבר וח                     | CORE<br>RUN                       | RQD                        | RECOVERY                   | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                                                                                      |                   | FRACTU                                  | RES  | BED            |
| Ľ                       | נ                          | FROM TO                           | INCH %                     | INCH %                     | SO-9                   |                           | ALIMENTALY CENT IN NOON                                                                                                                                         |                   | No./Ft.                                 | DIP* | DIP            |
| فيدابلينين فالمسترافيين | 21<br>22<br>23<br>24<br>25 | RUN 3                             | 2.2'/5.2' (42%)            | 5.15'/5.2' (99%)           | NX NX                  | 545.5<br>25.0             | Medium to fine grained, light gray to brown doccasional stylolites, large calcite filled cavities pieces, medium to massive bedding, more mas and for last 0.3' | s and coral       | 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |                |
| 1                       |                            | al Notes: - Void not one fracture | ed at 7.7',<br>(large void | 75% water<br>d) noted bety | loss (se<br>veen 19    | etting 4"                 | casing) - Fracture noted at 14.5', 100%                                                                                                                         | water loss        | Total Depth                             |      | 25.0°<br>19.1° |
| <u>%</u>                | Prop                       | portions used: t                  | race 0-10%,                | little 10-20%, s           | ome 20-                | 35%, and 3                | 35-50%                                                                                                                                                          |                   | Hole No.                                | OBA  |                |



|            | Groun               | d Wat   | ter Observation | on         |        | Job C                  | LIN - R                   | FI No. 88C2346-2            | Boring Number     | OBA-20       | Z/CI   | <u> </u>     |
|------------|---------------------|---------|-----------------|------------|--------|------------------------|---------------------------|-----------------------------|-------------------|--------------|--------|--------------|
| At         |                     |         | at Comple       |            |        |                        |                           | CKER AD II                  |                   |              |        |              |
| At         |                     | _       | after           |            |        |                        |                           | Schroder (Emp)              | _                 |              |        |              |
| At         |                     |         |                 |            |        | 1                      |                           |                             | Surface Elevation |              |        |              |
| AI         |                     | _       | after           | <u>n.</u>  | 3.     |                        | or <u>Paul</u>            | Mazierski (WCC)             | Date Start 8/29   | /89 Finish   | 8/2    | 29/89        |
| ОЕРТН      | COR<br>RUI          |         | RQD             | RECO       | VERY   | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE  |                   | FRACTU       | RES    | BED          |
|            | FROM                | TO      | INCH %          | INCH       | ×      | 00 %<br>80 %           | ្ត្រប                     | WEATHERING, SEAMS IN ROCK   | , етс.            | No./Ft.      | DIP*   | DIP          |
| <u> </u>   | <u></u>             |         |                 |            |        |                        |                           |                             |                   | E            |        |              |
| 1          |                     |         |                 |            |        |                        | -                         |                             |                   | Ε_           |        |              |
|            |                     |         |                 |            |        |                        |                           |                             |                   | Ē            |        |              |
| 2          |                     |         |                 |            |        |                        |                           |                             |                   | Ē            |        |              |
| _ 3        |                     |         |                 |            |        |                        | _                         |                             |                   | Ē            |        |              |
| -          |                     |         |                 |            |        |                        |                           |                             |                   | Ē,           |        |              |
| F 4        |                     |         |                 |            |        |                        | [                         |                             |                   | E            |        |              |
| 5          |                     |         |                 |            |        |                        | _                         |                             |                   | Ė            |        |              |
| =          |                     |         |                 |            |        |                        |                           |                             |                   | Ė            |        |              |
| Ē 6        |                     |         |                 |            |        |                        | -                         |                             |                   | E            |        |              |
| E 7        |                     |         |                 |            |        |                        |                           |                             |                   | E            |        |              |
| <b>E</b> [ |                     |         |                 |            |        |                        | -                         |                             |                   | Ė            |        |              |
| - 8        |                     |         |                 |            |        |                        | -                         |                             |                   | F            |        |              |
| ا و        |                     |         |                 |            |        |                        | _                         |                             |                   | E            |        |              |
| E          |                     |         |                 |            |        |                        |                           |                             |                   | E            |        |              |
| - 10       |                     |         |                 |            |        |                        | -                         |                             |                   | F            |        |              |
| Ē.,        |                     |         |                 |            |        |                        | -                         |                             |                   | Ē            |        |              |
| 11         |                     |         |                 |            |        |                        |                           |                             |                   | E            |        |              |
| - 12       |                     |         |                 |            |        |                        | -                         |                             |                   | -            |        |              |
| Ē ,,       |                     |         |                 |            |        |                        |                           |                             | ,                 | Ė            |        |              |
| - 13       |                     |         |                 |            |        |                        |                           |                             |                   | Ē            |        |              |
| 14         |                     |         |                 |            |        |                        | -                         |                             |                   | <u> </u>     |        |              |
| ŧ .,       |                     |         |                 |            |        |                        |                           |                             |                   | Ė            |        |              |
| - 15       |                     |         |                 |            |        |                        |                           |                             |                   | E            |        |              |
| - 16       |                     |         |                 |            |        |                        | -                         |                             |                   | E            |        |              |
| F          |                     |         |                 |            |        |                        |                           |                             |                   | Ė            |        |              |
| - 17       |                     |         |                 |            |        |                        | [                         |                             |                   | E            |        |              |
| 18         |                     |         |                 |            |        |                        | -                         |                             |                   | <u>-</u>     |        |              |
| F          |                     |         |                 |            |        |                        |                           |                             |                   | E            |        |              |
| - 19<br>E  |                     |         |                 |            |        |                        |                           | CONTINUED ON THE NEXT SHEET |                   | F            |        |              |
| 2:22       | 1 37-10-1           |         |                 |            |        |                        | -                         |                             |                   | <u></u>      |        |              |
| Genera     | al Notes:<br>- No 1 |         | r water bea     | uring fr   | acture | s encor                | untered                   |                             |                   | Total Depth  | ·      | 50.3'        |
|            |                     |         |                 |            |        |                        |                           |                             |                   | Rock Drillin | 1g     | <u>25.3°</u> |
| %Prov      | nortions 1          | sed: ti | race 0-10%,     | little 10- | 20%    | ome 20-                | 35% and 3                 | S-50%                       |                   | Hole No. O   | D A 20 | CD           |



|                                                                               | Groun                          | d Wate | er Observatio                                  | )II                          |       | Job C                  | LIN - R                                                                        | FI No. 88C2346-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Boring Number            | OBA-20                                  | C/CI | )     |
|-------------------------------------------------------------------------------|--------------------------------|--------|------------------------------------------------|------------------------------|-------|------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|------|-------|
| A                                                                             | ·                              | _ Ft.  | at Comple                                      | tion                         |       | Drilling               | Rio A                                                                          | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Boring Offset            |                                         |      |       |
| A                                                                             | ·                              | _ Ft.  |                                                | hrs                          | i.    |                        |                                                                                | y Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                        |                                         |      |       |
| A                                                                             |                                | _ Ft.  | after                                          | hrs                          |       | -                      |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Surface Elevation        | 570.3                                   |      |       |
| ^                                                                             |                                | _ Ft.  | after                                          | hrs                          |       | Inspect                | or Paul                                                                        | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date Start 8/29/         | /89 Finish                              | 8/2  | 29/89 |
| DEPTH                                                                         | COR<br>RUI                     |        | RQD                                            | RECOV                        | ERY   | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                                                      | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | FRACTU                                  | RES  | BED   |
|                                                                               | FROM                           | TO     | INCH %                                         | INCH                         | %     | SC &                   | ದರ≎                                                                            | WEATHERING, SERIS IN ROOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , e.c.                   | No./Ft.                                 | DIP* | DIP   |
| 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 35 36 37 36 37 38 39 39 39 39 39 | RUN 2 29.7'-34  RUN 3 34.2'-39 | 0.2'   | 2.4'/5.1' (47%)  1.45'/4.5' (32%)  2'/5' (40%) | 5'/5.1' (98%)  4'/4.5' (89%) |       | NX NX                  | 545.7<br>- 24.6<br>- 545.3<br>- 25.0<br>- 542.5<br>- 27.8<br>- 538.5<br>- 31.8 | GROUT PLUG  Fine grained, light brown, massive dolomite, refractured, rare stylolites  Medium to fine grained, light gray to brown demottled appearance, occasional stylolites and is pods  - same, interbedded mottled fossiliferous dolomite, mottled dolomite dominates he zone from 30.4' to 31.4'  Medium to fine grained, light brown to gray, resignify fractured  - same, increase in occurence of coral fragment of the same, increase in occurence of coral fragments, he sphalerite microcrystals in tabulae of coral fragments, he sphalerite microcrystals in tabulae of coral fragments. | nottled ighly fractured, | - 3 - 4 - 3 - 4 - 7 - 1 - 6 - 7 - 3 - 4 |      |       |
|                                                                               | - No                           | majo   | r water bea                                    | aring tra                    | actur | es enco                | untered                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Total Depth                             |      | 50.3° |
| αDm                                                                           | annetions :                    | and: t | race 0-10%.                                    | little 10-2                  | 20%   | 10me 20                | 35% and                                                                        | 25.50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | Hole No. O                              |      |       |



|           | Ground Wat        | er Observatio | on.              | Job OLIN - RFI No. 88C2346-2 Boring Number |                                      |                                                                                                                  |                   |                          | OBA-2C/CD |              |
|-----------|-------------------|---------------|------------------|--------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|-----------|--------------|
| At        | Ft.               | at Comple     | tion             | Drilling                                   | Rig A                                | Boring Offset                                                                                                    |                   |                          |           |              |
|           | Ft.               |               |                  | _                                          | _                                    | CKER AD II                                                                                                       | _                 | _                        |           |              |
| l         | Ft.               |               | _                |                                            |                                      | y Schroder (Emp)                                                                                                 | Surface Elevation |                          |           |              |
| At        | Ft.               | after         | hrs.             |                                            | or <u>Paul</u>                       | Mazierski (WCC)                                                                                                  | Date Start 8/29/  | 89 Finish                | 8/2       | 9/89         |
| ОЕРТН     | CORE              | RQD           | RECOVERY         | CORE TYPE<br>& RESIST.                     | STRATA<br>CHANGE<br>DEPTH            | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK                                                             |                   | FRACTU                   | RES       | BED          |
| ــــــــا | FROM TO           | INCH %        | INCH %           | Ö≥                                         | ຜວ                                   |                                                                                                                  |                   | No./Ft.                  | DIP*      | DIP          |
|           | - 43  - 44  RUN 5 |               |                  |                                            | 528.5<br>- 41.8<br>- 520.0<br>- 50.3 | SAME AS ABOVE  Medium to fine grained, light brown to light gradolomite, occasional stylolites, rare small coral | ray massive       | No. /Ft.                 | DIP*      | DIP          |
|           |                   |               |                  |                                            |                                      |                                                                                                                  |                   |                          |           |              |
| Gener     |                   | r water bes   | aring fracture   | es enco                                    | untered                              |                                                                                                                  |                   | Total Depth Rock Drillin |           | 0.3'<br>5.3' |
| %Pro      | portions used: t  | race 0-10%,   | little 10-20%, s | ome 20-:                                   | 35%, and 3                           | 35-50%                                                                                                           |                   | Hole No. O               | BA-2C     | /CD          |



|                                                                               | Ground                       | Wat    | er Observatio       | on              |      | Job C                  | LIN - R                   | FI No. 88C2346-2                                                                                                                                                                | Boring Number     | OBA-3A                    |      |               |
|-------------------------------------------------------------------------------|------------------------------|--------|---------------------|-----------------|------|------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------|---------------|
| At                                                                            |                              |        | at Comple           |                 |      | Drilling               | Rig A                     | CKER AD II                                                                                                                                                                      | Boring Offset     |                           |      |               |
| At                                                                            |                              |        | after               |                 | - 1  |                        |                           | y Schroder (Emp)                                                                                                                                                                |                   | 560.0                     |      |               |
| At                                                                            |                              |        | after               |                 | - 1  |                        |                           |                                                                                                                                                                                 | Surface Elevation |                           |      | 0/90          |
| A                                                                             |                              |        | arret               | ms.             | _    |                        |                           | Mazierski (WCC)                                                                                                                                                                 | Date Start 6/30/  | Finish                    |      | 0/89          |
| ОЕРТН                                                                         | COR<br>RUN                   |        | RQD                 | RECOVE          | ₹Y   | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                                                                                                      |                   | FRACTU                    | RES  | BED           |
|                                                                               | FROM                         | TO     | INCH %              | INCH :          | •    | 20.5                   | [<br>다하고                  | WEATHERING, SEAMS IN ROCK                                                                                                                                                       | , erc.            | No./Ft.                   | DIP* | DIP           |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17 | 6/30/89<br>RUN 1<br>14.3'-17 | .47    | 0.45°/3.1°<br>(15%) | 2.6'/3.1' (84%) |      | NX                     | 555.6                     | Medium grained, medium gray-brown massive dolomite, heavily fractured from 14.3' to 15.8 fractured from 15.5' to 15.8', irregular vugs we calcite infilling from 16.2' to 16.7' | ', completely     | Highly Fractured          |      |               |
| Gener                                                                         |                              | % w    | ater loss fr        | om onset        | of c | coring                 | operatio                  | ns - Large void noted at 15.7'                                                                                                                                                  |                   | Total Depth  Rock Drillin |      | 17.4°<br>3.1° |
|                                                                               |                              |        |                     |                 |      |                        |                           |                                                                                                                                                                                 |                   |                           |      |               |
| %Pro                                                                          | portions u                   | sed: t | race 0-10%,         | little 10-209   | 6, s | ome 20-                | 35%, and                  | 35-50%                                                                                                                                                                          |                   | Hole No.                  | OBA  | -3A           |



|                                                                         | Ground Water Observation          |       |                   |                           | Job C                  | LIN - R                   | FI                                                                          | No. 88C2346-2          | Boring Number       | OBA-3I              | 3    |                |
|-------------------------------------------------------------------------|-----------------------------------|-------|-------------------|---------------------------|------------------------|---------------------------|-----------------------------------------------------------------------------|------------------------|---------------------|---------------------|------|----------------|
| At                                                                      |                                   |       |                   |                           | Drilling               | Rig A                     | CKER AD II                                                                  |                        | Boring Offset       |                     |      |                |
| At                                                                      |                                   |       | after             |                           |                        |                           | Schroder (Emp)                                                              |                        |                     | 560.0               |      |                |
| , At                                                                    |                                   |       | after             |                           | _                      |                           |                                                                             |                        | Surface Elevation   |                     |      |                |
| At                                                                      |                                   | _     | aner              | hrs.                      | -                      | or <u>Paul</u>            | Mazierski (WCC)                                                             |                        | Date Start 7/5/8    | 9 Finish            |      | 5/89           |
| I ᡓ │                                                                   | CORE                              |       | RQD               | RECOVERY                  | CORE TYPE<br>& RESIST. | FRE                       | FIELD IDENTIF                                                               | ICATION. TYPE          | E AND COLOR         | FRACTU              | RES  | BED            |
| ОЕРТН                                                                   | RUN                               |       |                   |                           | L WE                   | STRATA<br>CHANGE<br>DEPTH | WEATHERING, SI                                                              |                        |                     |                     |      |                |
| لنا                                                                     | FROM 1                            | ro    | INCH %            | INCH %                    | 0.2                    | ဖပ                        | ,                                                                           |                        |                     | No./Ft.             | DIP* | DIP            |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 7/5/89<br>RUN 1<br>14.05'-19      |       | 1.15'/5.25' (22%) | 4.65°/5.25°<br>(89%)      | NX                     | 555.8                     | Medium to fine grained, pitting observed from 14' 16.5', especially between | to 14.9', highly fract | tured from 15.2' to | 2+                  |      |                |
| 16                                                                      |                                   |       |                   |                           |                        |                           | abundant in heavily fracturun                                               |                        |                     | Highly Fractured 3+ |      |                |
| F 19                                                                    |                                   |       |                   |                           | , NO.                  | 550.6                     | CONTRILLED ON THE                                                           | HE NEVT STEET          |                     | 2                   |      |                |
| -                                                                       |                                   |       |                   |                           | NX                     | 19.3                      | CONTINUED ON T                                                              | HE NEXT SHEET          |                     | Ē                   |      |                |
| 1                                                                       | al Notes:<br>- 100 %<br>ng fractu | 6 wa  | ater loss fro     | om onset of ed through co | coring,<br>omplet      | void not<br>on of we      | ted at 16' (setting 4" c                                                    | asing) - No majo       | r water             | Total Depth         |      | 33,3'<br>9.25' |
| g D                                                                     | nortions ne                       | ed: t | nace 0-10%        | little 10-20%, s          | ome 20                 | 35%, and 3                | 35-50%                                                                      |                        |                     | Hole No.            | OBA  | -3B            |



|            | Ground Wate                        | er Observatio     | on .             | Job O                  | LIN - R                   | FI No. 88C2346-2                                                                                   | Boring Number                     | OBA-3B          |          |
|------------|------------------------------------|-------------------|------------------|------------------------|---------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|----------|
| At         | Ft.                                | at Complet        | tion             | Drilling               | Rio AC                    | CKER AD II                                                                                         | Boring Offset                     |                 | _        |
| At         |                                    |                   |                  |                        |                           | Schroder (Emp)                                                                                     | _                                 |                 |          |
| At         |                                    | after             | hrs.             | Operato                |                           |                                                                                                    | Surface Elevation                 | 569.9           | 7/5/90   |
| At         |                                    | after             | hrs.             | •                      | r Paul                    | Mazierski (WCC)                                                                                    | Date Start 7/5/89                 | Finish _        | 7/5/89   |
| 표          | CORE                               | RQD               | RECOVERY         | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                         | E AND COLOR                       | FRACTUR         | ES BED   |
| ОЕРТН      | RUN                                |                   |                  |                        | EP STEP                   | WEATHERING, SEAMS IN ROCK,                                                                         | , etc.                            |                 |          |
|            | FROM TO                            | INCH %            | INCH %           | ပြႌ                    | 0,0                       |                                                                                                    |                                   | No./Ft.         | DIP* DIP |
|            | 7/7/89                             | 3.45'/4.1'        | 3.9'/4.1'        |                        |                           | Medium grained, medium gray to brown-gray,<br>massive bedded dolomite, slightly fractured, or      | casional                          | E' (            |          |
| 21         | RUN 1<br>19.3'-23.1'               | (84%)             | (95%)            |                        | :                         | stylolites, increase in vug and coral content bet 21.8', more massive at end of run                | tween 21' and                     | <b>E</b> 2      |          |
| 22         |                                    |                   |                  |                        | -                         |                                                                                                    |                                   | <u> </u>        |          |
| E          |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 |          |
| - 23<br>:  | RUN 2                              | 4.4'/5.2'         | 4.9'/5.2'        | 7                      | -                         | - same, massive bedding, fractured interval fro<br>transition to an abundant coral zone after a pr |                                   | 2+              |          |
| 24         | 23.1'-28.3'                        | (85%)             | (94%)            |                        |                           | stylolite at 25.85°                                                                                |                                   | E <sub>2+</sub> |          |
| •          |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 |          |
| 25         |                                    |                   |                  |                        |                           |                                                                                                    |                                   | E 3             |          |
| 26         |                                    |                   |                  |                        | -                         | - same, isolated coral fragments to end of run                                                     |                                   | F 1             |          |
| Ē          |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 |          |
| - 27       |                                    |                   |                  |                        |                           |                                                                                                    |                                   | E 1             |          |
| 28         |                                    |                   |                  | J                      | 541.6                     |                                                                                                    |                                   | ₽•              |          |
| 29         | RUN 3<br>28.3'-33.3'               | 4.75'/5'<br>(95%) | 4.9'/5'<br>(98%) | NX                     | 28.3                      | Medium grained, medium to light gray dolomic<br>concentration of vuga/coral, becoming more m       | te, occasional assive after 29.7' | Ē.              |          |
| [ 29       |                                    |                   | ·                |                        |                           |                                                                                                    |                                   | E 2             |          |
| - 30       |                                    |                   |                  |                        |                           |                                                                                                    |                                   | E 3             |          |
| F<br>- 31  |                                    |                   |                  |                        |                           |                                                                                                    |                                   | E               |          |
| <b>E</b> " |                                    |                   |                  |                        |                           |                                                                                                    |                                   | 6               |          |
| - 32<br>-  |                                    |                   |                  |                        |                           |                                                                                                    |                                   | E 0             |          |
| 33         |                                    |                   |                  |                        | 536.6                     |                                                                                                    |                                   | E.              |          |
| <b>r</b>   |                                    |                   |                  |                        | 33.3                      |                                                                                                    |                                   | <b>f</b> "      |          |
|            |                                    |                   | ]                |                        |                           |                                                                                                    |                                   |                 |          |
|            |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 | 1 1      |
|            |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 |          |
|            |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 |          |
|            |                                    |                   |                  |                        |                           |                                                                                                    | •                                 |                 |          |
|            |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 |          |
|            |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 |          |
|            |                                    |                   |                  |                        |                           |                                                                                                    |                                   |                 |          |
|            |                                    |                   |                  |                        |                           |                                                                                                    | _                                 |                 |          |
|            | al Notes:<br>- 100% wang fractures | ater loss fro     | om onset of      | coring,                | void not                  | ted at 16' (setting 4" casing) - No majo                                                           | r water                           | Total Depth     | _33,3'   |
|            |                                    |                   |                  | <del></del>            |                           |                                                                                                    |                                   | Rock Drilling   |          |
| % Pm       | portions used: t                   | race 0-10%.       | little 10-20%, s | some 20-1              | 35%, and 1                | 35-50%                                                                                             |                                   | Hole No.        | OBA-3B   |



|                                                                            | Ground W             | ater Observati | on             | Job <u>С</u>        | LIN - R                                                                  | FI . No. 88C2346-2          | Boring Number         | omber OBA-3C/CD |            |               |
|----------------------------------------------------------------------------|----------------------|----------------|----------------|---------------------|--------------------------------------------------------------------------|-----------------------------|-----------------------|-----------------|------------|---------------|
|                                                                            |                      | t. at Compl    |                | Drilling            | Rig AC                                                                   | CKER AD II                  | Boring Offset         |                 |            |               |
|                                                                            |                      | t. after       |                |                     |                                                                          | Schroder (Emp)              | Surface Elevation     | 560 8           |            | _             |
| At<br>At                                                                   | F                    |                | hrs.           | _                   |                                                                          | Mazierski (WCC)             | Date Start 7/11/      |                 |            | —<br> <br> 89 |
|                                                                            |                      |                |                | -                   |                                                                          | (                           | 300 300, <u>77117</u> | 1 44001         |            | <u> </u>      |
| DEPTH                                                                      | CORE<br>RUN          | RQD            | RECOVERY       | CORE TYPE & RESIST. | STRATA<br>CHANGE<br>DEPTH                                                | FIELD IDENTIFICATION, TYPE  | E AND COLOR           | FRACTUR         | ES B       | ED            |
| DEF                                                                        |                      | INCH %         | INCH %         |                     | STS<br>ERS<br>ERS<br>ERS<br>ERS<br>ERS<br>ERS<br>ERS<br>ERS<br>ERS<br>ER | WEATHERING, SEAMS IN ROCK   | , etc.                | No./Ft.         | TP* D      | тр            |
|                                                                            | PROM TO              | INCH 2         | INCH 2         |                     | -                                                                        | ·                           |                       | -               | J21 + D    | -             |
|                                                                            |                      |                |                |                     |                                                                          |                             |                       | E               |            |               |
| - 1                                                                        |                      |                |                |                     |                                                                          |                             |                       |                 |            |               |
| - 2                                                                        |                      |                |                |                     | -                                                                        |                             |                       | F               |            |               |
| إ                                                                          |                      |                |                |                     | _                                                                        |                             |                       | E               |            |               |
| 3                                                                          |                      |                |                |                     |                                                                          |                             |                       | <u> </u>        | }          |               |
| - 4                                                                        |                      |                |                |                     | -                                                                        |                             |                       | F               |            |               |
| _ 5                                                                        |                      |                |                |                     | _                                                                        |                             |                       | E               |            | •             |
| E                                                                          |                      |                |                |                     |                                                                          |                             |                       | <b>E</b>        |            |               |
| 7<br>8<br>9                                                                |                      |                |                |                     |                                                                          |                             |                       |                 |            |               |
| E 7                                                                        |                      |                |                |                     | -                                                                        |                             |                       |                 |            |               |
| -                                                                          |                      |                |                |                     |                                                                          |                             |                       |                 |            |               |
| E 8                                                                        |                      |                |                |                     | -                                                                        |                             |                       | E               |            |               |
| Ē 9                                                                        |                      |                |                |                     |                                                                          |                             |                       |                 |            |               |
| [ ]                                                                        |                      |                |                |                     |                                                                          |                             |                       |                 |            |               |
| 10                                                                         |                      |                |                |                     | -                                                                        |                             |                       | E               |            |               |
| 11                                                                         |                      |                |                |                     |                                                                          |                             |                       | E               |            |               |
|                                                                            |                      |                |                |                     |                                                                          |                             |                       |                 |            |               |
| 12                                                                         |                      |                |                |                     | -                                                                        |                             |                       | F               |            |               |
| - 13                                                                       |                      |                | 1              |                     | -                                                                        |                             |                       | E               |            |               |
| 13                                                                         |                      |                |                |                     |                                                                          |                             |                       |                 |            |               |
| F 14                                                                       |                      | 1              |                |                     | -                                                                        |                             |                       |                 |            |               |
| 15                                                                         |                      |                |                |                     | -                                                                        |                             |                       |                 |            |               |
|                                                                            |                      |                |                |                     | -                                                                        |                             |                       | E               |            |               |
| 16                                                                         |                      |                |                |                     | E                                                                        |                             |                       | E               |            |               |
| 17                                                                         |                      |                |                |                     | -                                                                        |                             |                       | -               |            |               |
| Ē,,                                                                        |                      |                |                |                     | _                                                                        |                             |                       | E               |            |               |
| 18                                                                         |                      |                |                |                     |                                                                          |                             |                       | E               |            |               |
| 19                                                                         |                      |                |                |                     | Ē                                                                        | CONTINUED ON THE NEXT SHEET |                       | E               |            |               |
|                                                                            |                      |                |                |                     | :                                                                        |                             |                       | E               |            |               |
| Gener                                                                      | al Notes:<br>- No ma | jor water be   | earing fractur | es enco             | untered                                                                  |                             |                       | Total Depth     | _ 58       | .0.           |
|                                                                            |                      |                |                |                     |                                                                          |                             |                       | Rock Drilling   | g <u> </u> | <u>25'</u>    |
| %Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50%  Ho |                      |                |                |                     |                                                                          |                             |                       |                 |            | CD            |



|                                                                                                          | Ground                      | Water Observa     | tion             |           |                           |                                                                                                                                                                                                                                                                                 |                                                  | Number OBA-3C/CD |       |       |
|----------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|------------------|-----------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|-------|-------|
| At                                                                                                       | ·                           | Ft. at Comp       |                  | I -       |                           | CKER AD II                                                                                                                                                                                                                                                                      | Boring Offset                                    |                  |       |       |
| A                                                                                                        |                             | _                 |                  |           |                           | Schroder (Emp)                                                                                                                                                                                                                                                                  |                                                  |                  |       |       |
| At                                                                                                       |                             | Ft. after _       |                  | -         |                           |                                                                                                                                                                                                                                                                                 | Surface Elevation                                |                  |       |       |
| Aı                                                                                                       |                             | Ft. after _       | hrs.             | _         | or <u>Paul</u>            | Mazierski (WCC)                                                                                                                                                                                                                                                                 | Date Start <u>7/11/</u>                          | 89 Finish        |       | 1/89  |
| ОЕРТН                                                                                                    | CORE                        | ROD               | RECOVERY         | CORE TYPE | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPH<br>WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                         |                                                  | FRACTU           | RES   | BED   |
|                                                                                                          | FROM T                      | O INCH %          | INCH %           | SS.       | งถื                       | ACHITICATION SERVO IN ROOK                                                                                                                                                                                                                                                      |                                                  | No./Ft.          | DIP*  | DIP   |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | 7/11/89<br>RUN 1<br>33'-38' | 4.35°/5°<br>(87%) | 4.6'/5' (92%)    | NX        | 536.8                     | Medium grained, medium brown, massive dol stylolites, rare small vugs, no coral fragments, medium gray areas, very few calcite filled larg fractured  - same, prominent stylolites at 39.5' and 39.8' bedded before character change at 40', slight CONTINUED ON THE NEXT SHEET | some limited er vugs, slightly , becoming finely |                  |       |       |
| Gene                                                                                                     | ral Notes:                  | io- writer b      | essing foretre   |           | 529.8                     |                                                                                                                                                                                                                                                                                 |                                                  | <u>-</u>         |       |       |
|                                                                                                          | - 140 101                   | gor water b       | earing fractur   | es enco   | uniered                   |                                                                                                                                                                                                                                                                                 |                                                  | Total Depth      |       | 58.0' |
|                                                                                                          |                             |                   |                  |           |                           |                                                                                                                                                                                                                                                                                 |                                                  | Rock Drillir     | 1g    | 25'   |
| %Pro                                                                                                     | portions use                | d: trace 0-10%    | , little 10-20%, | some 20-  | 35%, and                  | 35-50%                                                                                                                                                                                                                                                                          |                                                  | Hole No. O       | BA-3C | :/CD  |



|                                  | Ground Wat                           | er Observatio    | D <b>a</b>      | Job C    | LIN - R                                         | FI No. 88C2346-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Boring Number                                                                                                                            | OBA-3C/C                  | D      |
|----------------------------------|--------------------------------------|------------------|-----------------|----------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|
| At                               | Ft.                                  | at Comple        | tion            | _        |                                                 | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boring Offset                                                                                                                            |                           |        |
| Aı                               | Ft.                                  | after            | hrs.            |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                           |        |
| Aı                               |                                      | after            | hrs.            | Operato  |                                                 | Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface Elevation                                                                                                                        | 569.8                     |        |
| At                               | Ft.                                  | after            | hrs.            | Inspect  | or <u>Paul</u>                                  | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Start 7/11/8                                                                                                                        | 39 Finish                 | /11/89 |
| DEPTH                            | CORE<br>RUN                          | RQD.             | RECOVERY        | E TYPE   | STRATA<br>CHANGE<br>DEPTH                       | FIELD IDENTIFICATION, TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          | FRACTURES                 | BED    |
| ] 🛎                              | FROM TO                              | INCH %           | INCH %          | *CORE    | 당공의                                             | WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , etc.                                                                                                                                   | No./Ft. DIP               | * DIP  |
| 43 44 45 47 48 50 51 52          | RUN 3<br>43'-48'<br>RUN 4<br>48'-53' | 5°/5°<br>(100%)  | 5'/5'<br>(100%) | NX NX    | 528.7<br>41.1<br>527.7<br>42.1<br>521.8<br>48.0 | Medium grained, medium to dark brown dolor occasional light gray limy seams and light bro irregular splotches, sandy adjacent to limy seam Medium to coarse grained, medium to dark broabundant limy seams, very sandy from 41.6' to Medium grained, medium brown to medium grained, occasional stylolites and isolated gyp prominent stylolites at 43.75', 45.1', 46.35' are more mottled appearance starting at 47.4', sma splotches, limited vuggy intervals, occasional sprominent stylolites at 48.55', 49.4', and 51.1' | wn-tan small ms  own dolomite, o 41.9', ostracods  ray, massive sum filled vugs ad 47.5'  sive dolomite, all isolated pitted stylolites, |                           |        |
| 53<br>54<br>55<br>56<br>57<br>58 | RUN 5 53'-58'  al Notea: - No major  | 4.9'/5'<br>(98%) | 5'/5'<br>(100%) | es enco  | 511.8<br>58.0                                   | - same, prominent stylolites at 53.2', 55.95', a change to more mottled dolomite after 57.2'                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd 57.2' marked                                                                                                                          | Total Depth Rock Drilling | _58.0' |
| % Pro                            | portions used: t                     | race 0-10%.      | little 10-20%,  | some 20- | 35%, and                                        | 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                          | Hole No. OBA-             | 3C/CD  |



|       | Ground                                              | Wate   | r Observatio | n           |        | Job O               | LIN - R                   | FI No. 88C2346-2                                                                                                                 | Boring Number     | OBA-4A       | 1    |      |
|-------|-----------------------------------------------------|--------|--------------|-------------|--------|---------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|------|------|
| At    |                                                     | Ft.    | at Complet   | tion        | - 1    |                     |                           | CKER AD II                                                                                                                       | Boring Offset     |              |      |      |
| At    |                                                     |        | after        | hrs.        | .      |                     |                           |                                                                                                                                  | _                 |              |      |      |
| At    |                                                     | Ft.    | after        |             |        | -                   |                           | Schroder (Emp)                                                                                                                   | Surface Elevation |              |      |      |
| At    |                                                     | Ft.    | after        | pres        | •      | _                   | r <u>Paul</u>             | Mazierski (WCC)                                                                                                                  | Date Start 7/13   | /89 Finish   | 7/1  | 3/89 |
| ОЕРТН | CORE                                                |        | RQD          | RECOV       | ERY    | CORE TYPE & RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK                                                                             |                   | FRACTU       | RES  | BED  |
|       | FROM                                                | TO :   | INCH %       | INCH        | %      | SO.*                | ທີ່ວັດ                    | HEITHERENGY SERVE IN ROOK                                                                                                        | , 410.            | No./Ft.      | DIP* | DIP  |
| 10    | 7/13/89<br>RUN 1<br>8.4'-9.2'<br>RUN 2<br>9.2'-11.4 | ,      | -*           | -*          |        | NX<br>NX            | 558.7                     | Fine to medium grained, medium gray to brow medium bedded dolomite  SEE FIELD ROCK LOG FOR OBA-4B FOR RECOVERED CORE DESCRIPTION |                   |              |      |      |
| CORP  |                                                     | lems   | during co    | oring op    | eratio | ons - 10            | 00% wat                   | er loss from onset of coring operations                                                                                          |                   | Total Depth  |      | 11.4 |
|       | Roc                                                 |        |              |             |        |                     |                           |                                                                                                                                  |                   | Rock Drillin | ng   | 3'   |
| %Pro  | ortions us                                          | ed: tr | ace 0-10%,   | little 10-2 | 0%, s  | ome 20-3            | 35%, and 3                | 35-50%                                                                                                                           |                   | Hole No.     | OBA  | -4A  |



|       | Ground Wat                       | er Observatio      | on.                                       | Job C                  | LIN - R                   | FI No. 88C2346-2                                                                           | Boring Number     | OBA-4E       | 3    |      |
|-------|----------------------------------|--------------------|-------------------------------------------|------------------------|---------------------------|--------------------------------------------------------------------------------------------|-------------------|--------------|------|------|
| At    | Ft.                              | at Comple          | tion                                      | Drilling               | Rio A                     | CKER AD II                                                                                 | Boring Offset     |              |      |      |
| At    | Ft.                              |                    |                                           |                        |                           | Schroder (Emp)                                                                             | _                 |              |      | _    |
| At    | Ft.                              | after              | hrs.                                      | l <sup>-</sup>         |                           | •                                                                                          | Surface Elevation | <u>570.3</u> |      |      |
| At    | Ft.                              | after              | hrs.                                      |                        | or <u>Paul</u>            | Mazierski (WCC)                                                                            | Date Start 7/17/  | 89 Finish    |      | 7/89 |
| DEPTH | CORE<br>RUN                      | RQD                | RECOVERY                                  | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                 |                   | FRACTU       | RES  | BED  |
|       | FROM TO                          | INCH %             | INCH %                                    |                        | 동공                        | WEATHERING, SEAMS IN ROCK                                                                  | etc.              | No./Ft.      | DIP* | DIP  |
| -     |                                  |                    |                                           | 0-6                    | -                         |                                                                                            |                   | -            |      |      |
| Ξ.    |                                  |                    |                                           |                        | ļ.                        |                                                                                            |                   | E            |      |      |
| 1     |                                  |                    |                                           |                        | F                         |                                                                                            |                   | F            |      |      |
| 2     |                                  |                    | }                                         |                        | -                         |                                                                                            |                   | E            |      |      |
|       |                                  |                    |                                           |                        | F                         |                                                                                            |                   | F            |      |      |
| - 3   |                                  |                    |                                           |                        | -                         |                                                                                            |                   | F            |      |      |
|       |                                  |                    |                                           |                        | Ę                         |                                                                                            |                   | F            |      |      |
| - 4   | •                                |                    |                                           |                        | F                         |                                                                                            |                   | F            |      |      |
| E 5   |                                  |                    | ľ                                         |                        | <u>E</u>                  |                                                                                            |                   |              |      |      |
| [ ]   |                                  |                    |                                           |                        |                           |                                                                                            |                   | <b>E</b>     |      |      |
| - 6   |                                  |                    |                                           |                        | -                         |                                                                                            |                   | -            |      |      |
|       |                                  |                    |                                           |                        | E                         |                                                                                            |                   | E            | 1    |      |
| - 7   |                                  |                    |                                           |                        | F                         |                                                                                            |                   | E            |      |      |
| - 8   |                                  |                    |                                           |                        | Ł                         |                                                                                            |                   | E            |      |      |
| E °   |                                  |                    |                                           |                        | E                         |                                                                                            |                   |              |      |      |
| - 9   | 7/17/89                          | 3.15'/5'           | 4.85'/5'                                  | NX                     | - 561.3<br>- 9.0          | Fine grained, medium brown to gray dolomite,                                               | ninhole vugs      | - 6          |      |      |
| [     | RUN 1                            | (63%)              | (95%)                                     | 1112                   | [ ].0                     | throughout                                                                                 | , pilatoto vaga   | E I          |      |      |
| 10    | 9'-14'                           |                    |                                           |                        | 559.9                     |                                                                                            |                   | -4           | 1    |      |
| Ε     |                                  |                    |                                           |                        | 10.4                      | Fine to medium grained, medium brown to gra<br>massive bedded dolomite, predominantly medi |                   | ₹            |      |      |
| - 11  |                                  |                    |                                           |                        | -                         | massive, some isolated vuggy zones from 11.5                                               | ' to 12.5',       | - 2          |      |      |
| 12    |                                  |                    | 1                                         |                        | -                         | occasional irregular stylolites, rare coral fragm                                          | ents              | E.           |      |      |
|       |                                  |                    |                                           |                        |                           |                                                                                            |                   | <b>E</b> 1   |      |      |
| - 13  |                                  |                    |                                           |                        | ŀ                         |                                                                                            |                   | F1           |      |      |
|       |                                  |                    |                                           |                        | Ė                         |                                                                                            |                   |              |      |      |
| 14    | 1117107                          | 3.4'/5'            | 4.25'/5'                                  | NX                     |                           | - same, moderaterly fractured, occasional stylo<br>no coral                                | lites, rare vugs, | E 0          |      |      |
| - 15  | RUN 1<br>13.1'-18.1'             | (68%)              | (85%)                                     | 1                      | Ė                         | <b>10</b> 00.11                                                                            |                   | E.           |      |      |
| =     |                                  |                    |                                           |                        | Ē                         |                                                                                            |                   | F 5          |      |      |
| 16    |                                  |                    |                                           |                        | -                         |                                                                                            |                   | F-3          |      |      |
|       |                                  |                    |                                           |                        |                           |                                                                                            |                   | Ę            |      |      |
| 17    |                                  |                    |                                           |                        | -                         |                                                                                            |                   | <b>E</b> 3   |      |      |
| - 18  |                                  |                    |                                           |                        |                           | - same, some corai fragments and vugs betwee                                               | n 18 7' and 20'   | E.           |      |      |
| - '°  | RUN 2<br>18.1'-21'               | 1.9'/2.9'<br>(66%) | 2.85 <sup>2</sup> /2.9 <sup>2</sup> (98%) | NX                     | -                         | - same, some corat tragments and vugs betwee                                               | 4 10.7 MINI 20    | <u></u> 2    |      |      |
| 19    |                                  | ,                  |                                           |                        | -                         |                                                                                            |                   | F.           |      |      |
|       |                                  |                    |                                           |                        | ţ                         | CONTINUED ON THE NEXT SHEET                                                                |                   | <b>E</b>     |      |      |
|       | al Notes: - 100% wane fracture n | ater loss fro      | om onset of                               | coring                 | operation                 | ns, fracture noted at 12.7'(setting 4" car                                                 | sing) -           | Total Depth  |      | 21.0 |
| J-201 | io nacione II                    | owa at 10          | , 100 A Wal                               | ~1 103S                |                           |                                                                                            |                   |              |      |      |
|       |                                  |                    |                                           |                        |                           |                                                                                            |                   | Rock Drillin | ıg   | 12'  |
|       |                                  |                    |                                           |                        | 06.00                     | 25.50%                                                                                     |                   |              | -    |      |
| % Pro | ortions used: t                  | race 0-10%,        | inule 10-20%,                             | some 20-               | シン>₀, and 〔               | 33-3U70                                                                                    |                   | Hole No.     | OBA  | -4B  |



|          | Ground Wate                             | er Observatio               | מפ                         |                        |                           |                                            |                         | OBA-4B      | 3            |            |
|----------|-----------------------------------------|-----------------------------|----------------------------|------------------------|---------------------------|--------------------------------------------|-------------------------|-------------|--------------|------------|
| At       | Ft.                                     | at Complet                  | tion                       | Drilling               | Rio AC                    | CKER AD II                                 | Boring Offset           |             |              |            |
| At       |                                         |                             |                            | _                      |                           | Schroder (Emp)                             | _                       |             |              |            |
| At       |                                         | _                           |                            | _                      |                           |                                            | Surface Elevation       |             |              |            |
| At       | Ft.                                     | after                       | hrs.                       |                        | r Paul                    | Mazierski (WCC)                            | Date Start <u>7/17/</u> | 89 Finish   | <u> 7/1'</u> | //89       |
| ОЕРТН    | CORE<br>RUN                             | RQD                         | RECOVERY                   | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                 |                         | FRACTU      | RES          | BED        |
| <b>-</b> | FROM TD                                 | INCH %                      | INCH %                     | COR<br>R R             | ທີ່ຕ                      | Agiiii anay ozino zi noch                  |                         | No./Ft.     | DIP*         | DIP        |
| -        | ·                                       |                             |                            |                        | -                         | SAME AS ABOVE                              |                         | = 6         |              |            |
| 21       |                                         |                             |                            | -                      | 549.3<br>21.0             |                                            |                         | <u> </u>    |              |            |
|          |                                         |                             |                            |                        | 21.0                      |                                            |                         |             |              |            |
|          |                                         |                             | ,                          |                        |                           |                                            |                         |             | - 1          |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              | - 1        |
|          |                                         |                             |                            |                        |                           |                                            |                         | 1 1         | ĺ            |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              | ı          |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          | •                                       |                             |                            |                        |                           |                                            |                         |             |              |            |
| 1        |                                         |                             |                            |                        |                           |                                            |                         |             | - 1          |            |
|          |                                         |                             | }                          |                        |                           |                                            |                         |             | .            |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          |                                         |                             |                            |                        |                           |                                            |                         |             |              |            |
|          | al Notes:<br>- 100% wa<br>ne fracture n | ater loss fro<br>ted at 16' | om onset of<br>, 100% wate | coring o               | operation                 | as, fracture noted at 12.7' (setting 4" ca | sing) -                 | Total Depth | _2           | 1.0'       |
| Roc      |                                         |                             |                            |                        |                           |                                            |                         |             | g            | <u>12'</u> |
| %Pror    | ortions used: t                         | race 0-10%,                 | little 10-20%,             | ome 20-3               | 35%, and 3                | 35-50%                                     | _                       | Hole No.    | OBA-         | 4B         |

| l                | Ground Wate       | er Observation | o <b>n</b>       | Јоъ <u>С</u>           | LIN - R                   | FI No. 88C2346-2            | Boring Number           | <b>OBA-40</b> | C/CD  | <u>.</u>    |
|------------------|-------------------|----------------|------------------|------------------------|---------------------------|-----------------------------|-------------------------|---------------|-------|-------------|
| At               |                   | -              |                  | Drilling               | Rig AC                    | CKER AD II                  | Boring Offset           |               |       |             |
| At               |                   |                |                  |                        |                           |                             | _                       |               |       |             |
| At               |                   |                |                  | _                      |                           | Schroder (Emp)              | Surface Elevation       |               |       |             |
| At               | Ft.               | after          | hrs.             | -                      | or <u>Paul</u>            | Mazierski (WCC)             | Date Start <u>7/24/</u> | 89 Finish     | 7/24  | 4/89        |
| l <sub>≖</sub> ∣ | CORE              | RQD            | RECOVERY         | CORE TYPE<br>& RESIST. | EW포                       |                             |                         | EDACTU        | DEC   | BED         |
| ОЕРТН            | RUN               | KUD            | RECOVER          | ISI                    | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE  |                         | FRACTU        | KES   | DED         |
| 🛱                | FROM TO           | INCH %         | INCH %           |                        | 당                         | WEATHERING, SEAMS IN ROCK   | , etc.                  | No./Ft.       | DIP*  | DIP         |
| _                |                   |                |                  | 1000                   |                           |                             | · ·                     | -             |       |             |
| E 1              |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| Ė 1              |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| E 2              |                   |                |                  |                        | -                         |                             |                         |               |       |             |
|                  |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| 3                |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| E 4              |                   |                |                  |                        |                           |                             |                         | E             |       |             |
|                  |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| E 5              |                   |                |                  | ĺ                      | -                         |                             |                         |               |       |             |
| Ė                |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| F 6              |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| E 7              |                   |                |                  |                        |                           |                             |                         | E 1           |       |             |
| E '              |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| - 8              |                   |                |                  |                        | -                         |                             |                         | E             |       |             |
|                  |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| F 9              |                   |                |                  |                        | -                         |                             |                         | E             |       |             |
| -<br>- 10        |                   |                |                  |                        |                           |                             |                         | E             |       |             |
|                  |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| - 11             |                   |                |                  |                        | -                         |                             |                         | E             |       |             |
| - 11<br>- 12     |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| - 12             |                   |                |                  |                        |                           |                             |                         | E             |       |             |
|                  |                   |                |                  |                        | -                         |                             |                         | Ē I           |       |             |
| 13               |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| 14               |                   |                |                  |                        |                           |                             |                         | E             |       |             |
|                  |                   |                |                  |                        |                           |                             |                         | Ė I           |       |             |
| - 15             |                   |                |                  |                        |                           |                             |                         | <u>-</u>      |       |             |
| 16               |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| ŧ "              |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| - 17             |                   |                |                  |                        | -                         |                             |                         | -             |       |             |
| E                |                   |                |                  |                        |                           |                             |                         | E             |       |             |
| - 18             |                   |                |                  |                        |                           |                             |                         | F             |       |             |
| 19               |                   |                |                  |                        |                           | CONTINUED ON THE NEXT SHEET |                         | E             |       |             |
|                  |                   |                |                  |                        |                           | John Maria Maria Shadi      |                         | E             |       |             |
| Gener            | al Notes:         |                |                  |                        | -                         |                             |                         |               |       |             |
|                  |                   | acture not     | ted at 25.2',    | 100% \                 | vater loss                | s                           |                         | Total Depth   | 30    | 0.2'        |
|                  |                   |                |                  |                        |                           |                             |                         | Rock Drillin  | eg    | <u>8.7'</u> |
| % Pror           | portions used: to | race 0-10%,    | little 10-20%, s | ome 20-3               | 35%, and 3                | 35-50%                      | _                       | Hole No. O    | BA-4C | /CD         |



| I |             | Ground Wat            | er Observatio                                                                         |                     | Job OLIN - RFI No. 88C2346-2 Boring Number |                           |                                                                                             |                   | OBA-4C/CD    |      |              |  |  |
|---|-------------|-----------------------|---------------------------------------------------------------------------------------|---------------------|--------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------|-------------------|--------------|------|--------------|--|--|
| 1 | At          | Ft.                   | at Comple                                                                             | tion '              |                                            |                           | CKER AD II                                                                                  | Boring Offset     |              |      |              |  |  |
| ı |             | Ft.                   |                                                                                       | hrs.                | _                                          |                           | Schroder (Emp)                                                                              | _                 |              |      |              |  |  |
| ١ |             | Ft.                   |                                                                                       | hrs.                |                                            |                           | •                                                                                           | Surface Elevation |              | 7.10 |              |  |  |
| 4 | At          |                       | aner                                                                                  | hrs.                | -                                          | r Paul                    | Mazierski (WCC)                                                                             | Date Start 7/24/  | 89 Finish    | 7/2  | 4/89         |  |  |
| l | 표           | CORE                  | ROD                                                                                   | RECOVERY            | CORE TYPE<br>& RESIST.                     | TH<br>TH<br>TH            | FIELD IDENTIFICATION, TYPE                                                                  | E AND COLOR       | FRACTU       | RES  | BED          |  |  |
|   | DEPTH       | RUN                   |                                                                                       |                     | 문문                                         | STRATA<br>CHANGE<br>DEPTH | WEATHERING, SEAMS IN ROCK                                                                   |                   |              |      |              |  |  |
|   |             | FROM TO               | INCH %                                                                                | INCH %              | ပြႌ                                        |                           |                                                                                             |                   | No./Ft.      | DIP* | DIP          |  |  |
| ŀ |             |                       |                                                                                       |                     |                                            | 549.5                     |                                                                                             |                   | Ē            |      |              |  |  |
| ŀ | 21          | 7/24/89<br>RUN 1      | 2.55°/4.3°<br>(59%)                                                                   | 4.15'/4.3'<br>(97%) | NX                                         | - 20.9<br>- 548.9         | GROUT PLUG                                                                                  |                   | ] 1          |      |              |  |  |
|   | - 22        | 20.9'-25.2'           |                                                                                       |                     |                                            | 21.5                      | Fine to medium grained, medium brown to day<br>to massive bedded dolomite, some small coral | colonies, vugs    | E 3          |      |              |  |  |
| 1 | -           |                       |                                                                                       |                     |                                            |                           | and stylolites throughout, large gypsum dike fi                                             | rom 23.8' to 24'  | =            |      |              |  |  |
| İ | - 23        |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   | E 4          |      |              |  |  |
| ŀ | _ 24        |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   | E 2          |      |              |  |  |
|   |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   | Ė į          |      |              |  |  |
|   | - 25<br>-   | RUN 2                 | 4.8'/5'                                                                               | 4.95'/5'            | NX                                         |                           | - same, dominantly massive from 25.2' to 26.4 small vugs), becoming more irregular at 26.4  | ' (no coral, few  | E1           |      |              |  |  |
|   | - 26        | 25.2'-30.2'           | (96%)                                                                                 | (99%)               |                                            | -                         | common, occasional coral fragments                                                          | , vugs more       | [ 1<br>[ 2   |      |              |  |  |
| İ | 27          |                       |                                                                                       |                     |                                            |                           | ·                                                                                           |                   | E            |      | ٠            |  |  |
| Ì | <b>- 27</b> |                       |                                                                                       |                     |                                            |                           |                                                                                             | ,                 | 1            |      |              |  |  |
| l | 28          |                       |                                                                                       |                     |                                            | -                         |                                                                                             |                   | - 1          |      |              |  |  |
| Ì | - 29        |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   | E            |      |              |  |  |
| I |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   | F 1          |      |              |  |  |
| ŀ | 30          |                       |                                                                                       |                     | 4                                          | - 540.2<br>30.2           |                                                                                             |                   | <u> </u>     |      |              |  |  |
| Ì |             |                       |                                                                                       |                     |                                            | 30.2                      |                                                                                             |                   |              |      |              |  |  |
| l |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
| l |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
| I |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
| Ì |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
| 1 |             |                       |                                                                                       | 1                   |                                            |                           |                                                                                             |                   |              |      |              |  |  |
| Ì |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
| I |             |                       | e                                                                                     |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
|   |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
|   |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
|   |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
|   |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
|   |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |
| Ì |             |                       |                                                                                       |                     |                                            |                           |                                                                                             | _                 |              |      |              |  |  |
| · | Gener       | al Notes: - C-zone fi | racture not                                                                           | ted at 25.2',       | 100%                                       | water los                 | s ·                                                                                         |                   | Total Depth  | ·    | <u>30.2'</u> |  |  |
|   |             |                       |                                                                                       |                     |                                            |                           |                                                                                             |                   | Rock Drillin | ng   | 8.7'         |  |  |
| Ì | %Pro        | portions used: t      | ortions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50%  Hole No. OBA-4C/CD |                     |                                            |                           |                                                                                             |                   |              |      |              |  |  |



|                                 | At Et at Completion                                  |                 |                                      |                    |       | Јоb <u>С</u>        | LIN - R                   | FI No. 88C2346-2                                                                              | Boring Number     | OBA-5A       |      |       |
|---------------------------------|------------------------------------------------------|-----------------|--------------------------------------|--------------------|-------|---------------------|---------------------------|-----------------------------------------------------------------------------------------------|-------------------|--------------|------|-------|
| At                              |                                                      | Ft.             | at Complet                           | ion                | - 1   | Drilling            | Rio A(                    | CKER AD II                                                                                    | Boring Offset     |              |      |       |
| At                              |                                                      | Ft.             | after                                | hrs.               | ۱ ٠   | _                   |                           |                                                                                               | _                 |              |      |       |
| At                              |                                                      |                 | after                                |                    | - 1   | •                   |                           | Schroder (Emp)                                                                                | Surface Elevation | <u>569.6</u> |      |       |
| At                              |                                                      | Ft.             | after                                | bra.               |       | Inspecto            | r <u>Paul</u>             | Mazierski (WCC)                                                                               | Date Start 8/7/89 | 9 Finish     | 8/   | 7/89  |
| DEPTH                           | CORE                                                 |                 | RQD                                  | RECOV              | ERY   | CORE TYPE & RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYP<br>WEATHERING, SEAMS IN ROCK                                        |                   | FRACTU       | RES  | BED   |
| ^                               | FROM T                                               | o I             | NCH %                                | INCH               | %     | SS.                 | ωτ <u>α</u>               | RESTRICTION SETUIO IN NOON                                                                    |                   | No.∕Ft.      | DIP* | DIP   |
| 1 2 3 4 5 6 7 8 8 9 10 11 11 11 | 8/7/89<br>RUN 1<br>8.2'-10.3'<br>RUN 2<br>10.3'-11.4 | . (4            | 0.45'/2.1'<br>21%)<br>0'/1.1'<br>0%) | 1.95°/2.<br>(93%)  |       | NX<br>NX            | 558.2                     | Fine to medium grained, medium gray to light highly fractured, occasional stylolites, massive | throughout        | Highly       |      |       |
|                                 |                                                      | water<br>oss di | r loss from                          | m onset<br>ming op | of co | oring o             | perations                 | , upwards of 80% loss by completion                                                           | of coring,        | Total Depth  |      | 11.4' |
| σn                              | nortions 1184                                        | .d. sa          | 0.10%                                | limba 10 2         | 00% - | ome 20 :            | 35 oc                     | 25 50%                                                                                        |                   | Rock Drillin |      | 3.2'  |



| I | Ground Water Observation  At Ft. at Completion  At Ft. after hrs. |                                                       |                   |                    | Job O                  | LIN - R                                                                                  | FI No. 88C2346-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring Number                                                                                      | OBA-5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>3</b> |                |
|---|-------------------------------------------------------------------|-------------------------------------------------------|-------------------|--------------------|------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
|   | At                                                                | Ft.                                                   | at Comple         | tion               | Deilling               | pia A(                                                                                   | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Boring Offset                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                |
| ı | At                                                                | Ft.                                                   | after             | hrs.               |                        |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                |
| Į | At                                                                | Ft.                                                   | after             | hrs.               | Operato                | r <u>Larry</u>                                                                           | Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Surface Elevation                                                                                  | 569.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |
| Ì | At                                                                | Ft.                                                   | after             | hrs.               | Inspecto               | r <u>Paul</u>                                                                            | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date Start <u>8/7/89</u>                                                                           | 9 Finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/       | 7/89           |
|   | DEPTH                                                             | CORE<br>RUN                                           | RQD               | RECOVERY           | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                                                                | FIELD IDENTIFICATION, TYPHEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    | FRACTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RES      | BED            |
| 1 |                                                                   | FROM TO                                               | INCH %            | INCH %             | 20 <del>*</del>        | o<br>S                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    | No./Ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DIP*     | DIP            |
|   | 17                                                                | 8/8/89<br>RUN 1<br>8.3'-13.3'<br>RUN 1<br>12.5'-15.9' | 0.8°/3.4°<br>(0%) | 2.8'/3.4'<br>(82%) | NX NX                  | 558.9<br>- 10.8<br>- 558.3<br>- 11.4<br>- 556.4<br>- 13.3<br>- 17.9<br>- 551.4<br>- 18.3 | Fine to medium grained, medium gray to brow occasional isolated vuggy sections, medium to highly fractured, few stylolites  Fine to medium grained, dark gray, finely bed with tan-brown irregular vuggy pods Fine to medium grained, light to medium brow occasional thin stylolites  Meidum grained, medium brown to medium g stylolites, predominantly brown at beginning of dominantly gray at end of run  - same, large vug and fine contorted bedding possible slump structures  B-zone SECTION MISSING Fine to medium grained, medium brown to gramedium bedded dolomite, bedding absent after dominantly massive after this CONTINUED ON THE NEXT SHEET | massive bedding,  ded dolomite  on dolomite,  ray dolomite, few  f run, becoming  orior to B-zone, | 5+ 5 6 1 3 1 3 4 3 1 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 3 4 3 4 3 3 4 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 3 4 4 3 4 3 4 4 3 4 3 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |          |                |
|   |                                                                   |                                                       | noted at 1        | 0.2', 100%         | water lo               | oss (setti                                                                               | ng 4* casing) - B-zone fracture noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at 17.9',                                                                                          | Total Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 23.5°<br>15.2° |
|   |                                                                   |                                                       | 0.00              | rut. 10 207        | 20 /                   | 2500                                                                                     | 25 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _        |                |
| ı | %Pro                                                              | portions used: t                                      | race 0-10%,       | little 10-20%,     | ome 20-                | າວ%າ, and :                                                                              | \$ <b>3-3</b> ∪%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    | Hole No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OBA      | -2R            |



| Г                                                                                           | Ground Water Observation At Ft. at Completion                           |                        |       |                 |                                |                     | Job C                  | Boring Number                        | OBA-5B                                                                                                                                 |                         |                           |      |                |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|-------|-----------------|--------------------------------|---------------------|------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|------|----------------|
| l                                                                                           | At                                                                      |                        | _ Ft. | at Comp         | letion .                       |                     | _                      |                                      | FI No. 88C2346-2<br>CKER AD II                                                                                                         | Boring Offset           | <u> </u>                  |      |                |
|                                                                                             | At                                                                      |                        | _ Ft. | after _         | hr                             | <b>3</b> .          |                        |                                      |                                                                                                                                        | Boring Oliset _         |                           |      |                |
|                                                                                             |                                                                         |                        |       |                 |                                | 1.                  | Operato                | r <u>Larry</u>                       | Schroder (Emp)                                                                                                                         | Surface Elevation       | <u>569.7</u>              |      |                |
| L                                                                                           | Αı                                                                      |                        | - Ft. | after _         | hr                             | 1.                  |                        | or <u>Paul</u>                       | Mazierski (WCC)                                                                                                                        | Date Start <u>8/7/8</u> | 9 Finish                  | 8/   | 7/89           |
| DEGREE                                                                                      | ביוח                                                                    | COR                    |       | RQD             | RECO                           | VERY                | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH            | FIELD IDENTIFICATION, TYP                                                                                                              |                         | FRACTUR                   | RES  | BED            |
| 1 2                                                                                         | 5                                                                       | FROM                   | TO    | INCH %          | INCH                           | %                   |                        | 유관리                                  | WEATHERING, SEAMS IN ROCK                                                                                                              | , etc.                  | No./Ft.                   | DIP* | DIP            |
| F                                                                                           |                                                                         |                        |       | _               |                                |                     |                        |                                      | SAME AS ABOVE                                                                                                                          |                         | _ 2                       |      |                |
|                                                                                             | 21<br>22<br>23                                                          | RUN 3<br>20.9°-22      | 3.5'  | 1.8'/2.6' (70%) | 2.6 <sup>7</sup> /2.<br>(100%) |                     | NX                     | 548.8<br>- 20.9<br>- 546.2<br>- 23.5 | Medium grained, medium gray to brown dolor mottled appearance than before, some isolated isolated vuggy zones and irregular stylolites |                         | 3<br>- 4<br>- 1           |      |                |
|                                                                                             |                                                                         |                        |       | ·               |                                |                     |                        |                                      |                                                                                                                                        |                         |                           |      |                |
|                                                                                             |                                                                         |                        |       |                 |                                |                     |                        |                                      |                                                                                                                                        |                         |                           |      |                |
| ĺ                                                                                           |                                                                         | al Notes: - Frac Water | ture  | noted at        | 10.2', 1                       | — <u>—</u><br>00% · | water le               | oss (settin                          | ng 4" casing) - B-zone fracture noted                                                                                                  | at 17.9',               | Total Depth Rock Drilling |      | 23.5'<br>15.2' |
| \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | % Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50% |                        |       |                 |                                |                     |                        |                                      |                                                                                                                                        |                         |                           | OBA  | -5R            |



|                         | Groun      | d Wate  | er Observatio | MD.          | - 1          | Job O               | LIN - R                   | FI No. 88C2346-2           | Boring Number           | <b>OBA-50</b> | C/CI     | )            |
|-------------------------|------------|---------|---------------|--------------|--------------|---------------------|---------------------------|----------------------------|-------------------------|---------------|----------|--------------|
| At                      |            | Ft.     | at Comple     | tion         | - 1          |                     |                           | CKER AD II                 | Boring Offset           |               |          |              |
| At                      |            |         | after         |              |              |                     |                           |                            | _                       |               |          |              |
| •                       |            |         | after         |              |              | Operato             | r <u>Larry</u>            | Schroder (Emp)             | Surface Elevation       | <u>569.7</u>  |          | —            |
| At                      |            | - Ft.   | after         | hrs.         |              |                     |                           | Mazierski (WCC)            | Date Start <u>8/10/</u> | 89 Finish     | 8/1      | .0/89        |
| <b>-</b>                | COR        | E       | 202           | DE001 #      | -51/         | CORE TYPE & RESIST. | £ÄΤ                       |                            |                         |               |          |              |
| DEPTH                   | RUI        | V       | RQD           | RECOVE       | -RY          | SI                  | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE |                         | FRACTU        | RES      | BED          |
|                         | FROM       | ΤΩ      | INCH %        | TNCH         | %            | 88                  | SSH                       | WEATHERING, SEAMS IN ROCK  | , etc.                  | No./Ft.       | nT₽±     | птр          |
| -                       | 1 1011     | -       | 2.001.        | 11011        | <del>"</del> | ೧-೪                 |                           |                            |                         | -             | <u> </u> | 021          |
| Ē.                      |            |         |               | ]            |              |                     |                           |                            |                         |               |          |              |
| F 1                     |            |         |               |              |              |                     | -                         |                            |                         | F             |          |              |
| F 2                     |            |         |               |              |              |                     | -                         |                            |                         | E             |          |              |
| E                       |            |         |               |              |              |                     |                           |                            |                         |               |          |              |
| E 3                     |            |         |               |              |              |                     | -                         |                            |                         | E             |          |              |
| Ė ₄                     |            |         |               |              |              |                     |                           |                            |                         | E             |          |              |
| • 1                     |            |         |               | <u> </u><br> |              |                     |                           |                            |                         | E             |          |              |
| <u> </u>                |            |         |               |              |              |                     | <u>.</u>                  |                            |                         | <u> </u>      |          |              |
|                         |            |         |               |              |              |                     |                           |                            |                         | Ė             |          |              |
| F 6                     |            |         |               |              |              |                     | :                         |                            |                         | F             |          |              |
| E 7                     |            |         |               |              |              |                     | -                         |                            |                         | E             |          |              |
| E                       |            |         |               | ļ            |              |                     |                           |                            |                         | F             |          |              |
| F 8                     |            |         |               |              |              |                     | -                         |                            |                         | F             |          |              |
| Ę,                      |            |         |               |              |              |                     |                           |                            |                         | E             |          |              |
| 1 2 3 4 5 6 7 8 9 10 11 |            |         |               |              |              |                     |                           |                            |                         | E             |          |              |
| - 10                    |            |         |               |              |              |                     | <u>-</u>                  |                            |                         | F             |          |              |
| Ė                       |            |         |               |              |              |                     |                           |                            |                         | E             |          |              |
| - 11<br>-               |            |         |               | ĺ            |              |                     | -<br>-                    |                            |                         | F             |          |              |
| E 12                    |            |         |               |              |              |                     | _                         |                            |                         | E             |          |              |
|                         |            |         |               |              |              |                     |                           |                            |                         | F             |          |              |
| 13                      |            |         |               |              |              |                     |                           |                            |                         | F             |          |              |
| El                      |            |         |               |              |              |                     | -                         |                            |                         | E             |          |              |
| 14                      |            |         |               |              |              |                     |                           |                            |                         | . <b>E</b>    |          |              |
| E 15                    |            |         |               |              |              |                     | <u>-</u>                  |                            |                         | F             |          |              |
|                         |            |         |               |              |              |                     | _                         |                            |                         | Ē             |          |              |
| 16                      |            |         |               |              |              |                     |                           |                            |                         | E             |          |              |
| 17                      |            |         |               |              |              |                     | -                         |                            |                         | F             |          |              |
| E                       |            |         |               |              |              |                     |                           |                            |                         | <b>E</b>      |          |              |
| F 18                    |            |         |               |              |              |                     | :                         |                            |                         | F             |          |              |
| 19                      |            |         |               |              |              |                     | _                         | CONTINED ON THE NEXT SHEET |                         | <u> </u>      |          |              |
| Ę                       |            |         |               |              |              |                     |                           | TOTAL TOTAL OTTES          |                         | =             |          |              |
| Gener                   | al Notes:  |         |               | _            |              |                     |                           |                            |                         |               |          |              |
|                         |            | zone    | fracture n    | oted at 4    | 7.4'         | , 100%              | water lo                  | oss                        |                         | Total Depth   | _ :      | 52.2'        |
|                         |            |         |               |              |              |                     |                           |                            |                         |               |          |              |
|                         |            |         |               |              |              |                     |                           |                            |                         | Rock Drillin  | ¥        | <u>29.2'</u> |
| %Prov                   | nortions u | sed: tr | ace 0-10%,    | little 10-20 | %. 30        | ome 20-3            | 15%, and 3                | 35-50%                     |                         | Hole No. O    | RA-50    | YCD          |



|                                                   | Ground Water Observation  At Ft. at Completion |                                                       |                                                   |                               | Job <u>С</u>           | LIN - R                   | Boring Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number OBA-5C/CD                                                                                             |             |          |
|---------------------------------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------------------|------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|----------|
|                                                   |                                                | _                                                     | -                                                 |                               | Drilling               | Rig A                     | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring Offset                                                                                                |             |          |
| 1                                                 |                                                | Ft.                                                   |                                                   |                               | _                      |                           | Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                            |             |          |
| ļ                                                 | At                                             |                                                       |                                                   |                               | _                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surface Elevation                                                                                            |             |          |
| R25                                               | At                                             |                                                       | atter                                             | hrs.                          | -                      | or Paul                   | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date Start 8/10                                                                                              | /89 Finish  | 8/10/89  |
|                                                   | ОЕРТН                                          | CORE<br>RUN                                           | RQD                                               | RECOVERY                      | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              | FRACTU      | RES BEI  |
| -                                                 | ä                                              | FROM TO                                               | INCH %                                            | INCH %                        | 00 20 E                | 당공                        | WEATHERING, SEAMS IN ROCK,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , etc.                                                                                                       | No./Ft.     | DIP* OI  |
|                                                   | 21 22 23 24 25 26 27 28 29 30 31 32            | 8/10/89<br>RUN 1<br>23'-27.8'<br>RUN 2<br>27.8'-32.8' | 3.15°/4.8° (66%)  3.6°/5° (72%)  3.05°/5.2° (58%) | 3.1'/5.2' (98%)  5'/5' (100%) | NX NX                  | 546.7<br>23.0             | Fine to medium grained, medium to dark gray occasional stylolites and isolated vuggy areas, coral fragments, large undulating stylolite at 2  - same, more massive, vugs and coral fragments stylolites, gypsum dike at 30.2'  Medium grained, medium gray to brown dolon coral colonies, stylolites and vuggy intervals, by predominantly light brown after 31.7' with increasing abundance of coral, vugs  - same, becoming predominantly gray at 33.3', colonies from 35.2' to 35.8', where coral fragments is more dominantly brown colored  - same, becoming a more mottled gray-brown of same, mottled appearance with abundant light medium grained dolomite associated with semi- | dolomite, few tabulate 5.4'  ts rare, few  nite, some small secoming rease in  large coral gments are found, | No./Ft.     | DIP* OI  |
|                                                   | - 39                                           |                                                       |                                                   |                               |                        |                           | colonies, gypsum and sphalerite crystals com-<br>tabulae of coral<br>CONTINUED ON THE NEXT SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m vogo dini                                                                                                  | 2           |          |
| General Notes: - CD-zone fracture noted at 47.4', |                                                |                                                       |                                                   |                               |                        | water lo                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | Total Depth |          |
| ļ                                                 | 0′ D                                           |                                                       |                                                   | little 10-20%, s              | ome 20-                | 35% and 3                 | 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                              | Hole No. O  | BA-5C/CI |



| ſ                                                                            |                                                                                      | Ground Wate         | er Observatio                  | m                   | Job <u>О</u>           | LIN - R                                                  | FI No. 88C2346-2                                                                                                                                                                                                                                                                                                                                                                          | Boring Number                    | OBA-50                          | C/CI | <u> </u>     |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------|--------------------------------|---------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|------|--------------|
| •                                                                            | At                                                                                   | Ft.                 | at Comple                      | tion                | Drilling               | Rio AC                                                   | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                | Boring Offset                    |                                 |      |              |
| 1                                                                            |                                                                                      | Ft.                 |                                |                     |                        | _                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | _                                |                                 |      |              |
| I                                                                            |                                                                                      | Ft.                 |                                |                     | Operato                |                                                          |                                                                                                                                                                                                                                                                                                                                                                                           | Surface Elevation                | <u>569.7</u>                    |      |              |
|                                                                              | At                                                                                   | Ft.                 | after                          | hrs.                | Inspecto               | or <u>Paul</u>                                           | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                           | Date Start 8/10/                 | /89 Finish                      | 8/1  | .0/89        |
| ļ                                                                            | DEPTH                                                                                | CORE<br>RUN         | RQD                            | RECOVERY            | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                                | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                      |                                  | FRACTU                          | RES  | BED          |
| ĺ                                                                            |                                                                                      | FROM TO             | INCH %                         | INCH %              | SO →                   | លប្បា                                                    |                                                                                                                                                                                                                                                                                                                                                                                           |                                  | No./Ft.                         | DIP* | DIP          |
|                                                                              | - 41<br>- 42<br>- 43<br>- 44<br>- 45<br>- 46<br>- 47<br>- 48<br>- 50<br>- 51<br>- 52 | RUN 5<br>43'-48'    | 4.3°/5° (86%)  3.6°/4.2° (86%) | 3.85°/4.2°<br>(92%) | NX NX                  | 523.2<br>46.5<br>521.7<br>48.0<br>517.8<br>517.5<br>52.2 | Medium grained, mottled brown-gray dolomits small coral poda and other fosail fragments, popredominantly stylolites at 46.5'  Fine to medium grained, gray, massive dolom fosail fragments, becoming more brown-gray to Medium grained, predominantly brown, massi areas have dendritic crystal pattern, no vugs of stylolites, large calcite crystals at 51.8'  BROKEN UP IN CORE BARREL | ite, no vugs or oward end of run | 3 3 3 + 4 2 2 2 4 4 1 1 1 2 2 2 |      |              |
|                                                                              | Gener                                                                                | al Notes: - CD-zone | fracture n                     | oted at 47.4        | ', 1009                | 6 water l                                                | oss                                                                                                                                                                                                                                                                                                                                                                                       |                                  | Total Depth                     | _    | 52.2         |
|                                                                              |                                                                                      |                     |                                |                     |                        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                           |                                  | Rock Drillin                    | ng   | <u>29.2'</u> |
| %Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50%  Hole |                                                                                      |                     |                                |                     |                        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                                 |      | C/CD         |



|       | Ground Wate                   |            |                  | Job C               | LIN - R                   | FI No. 88C2346-2                                         | Boring Number           | OBA-6A                   |            |
|-------|-------------------------------|------------|------------------|---------------------|---------------------------|----------------------------------------------------------|-------------------------|--------------------------|------------|
| At    |                               | •          |                  | Drilling            | Rig                       |                                                          | Boring Offset           | _                        |            |
| At    |                               |            |                  | Operato             | r <u>Larry</u>            | Schroder (Emp)                                           | Surface Elevation       | 569.5                    |            |
| At    | Ft.                           | after      | hrs.             | -                   |                           | Mazierski (WCC)                                          | Date Start <u>8/14/</u> | 89 Finish                | 8/14/89    |
| ОЕРТН | CORE                          | RQD        | RECOVERY         | CORE TYPE & RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPH<br>WEATHERING, SEAMS IN ROCK  |                         | FRACTU                   | RES BED    |
|       | FROM TO                       | INCH %     | INCH %           | 8-2                 | ဖပ                        |                                                          |                         | No./Ft.                  | DIP* DIP   |
| 8.    | 8/14/89<br>RUN 1<br>5.1'-8.1' | 0°/3' (0%) | 2.35'/3' (78%)   | NX                  | 564.4                     | Fine grained, light gray to light brown dolomi fractured | e, highly               | Highly                   |            |
| Gener | M Notes:                      |            |                  |                     |                           |                                                          |                         | Total Design             | 0 11       |
|       |                               |            |                  |                     |                           |                                                          |                         | Total Depth Rock Drillin | 8.1'<br>3' |
| %Proc | nortions used: to             | race 0-10% | little 10-20%, s | ome 20-3            | 35%, and 3                |                                                          |                         | Hole No.                 | OBA-6A     |



|                                                                                     |                                                       | er Observatio                          |                                                                | Job <u>С</u>                                                         | LIN - R                                                               | FI No. 88C2346-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Boring Number                                                                                        | <u>OBA-6B</u>                            |          |
|-------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|----------|
| At                                                                                  |                                                       | at Comple                              |                                                                | Drilling                                                             | Rig A                                                                 | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring Offset                                                                                        |                                          |          |
| At                                                                                  |                                                       |                                        |                                                                | Operato                                                              | r Tarr                                                                | y Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | 5(0.0                                    |          |
| At                                                                                  |                                                       |                                        | hrs.                                                           | •                                                                    |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surface Elevation                                                                                    | 569.9                                    | 0/16/00  |
| At                                                                                  | Pt.                                                   | after                                  | hrs.                                                           | Inspect                                                              | or Paul                                                               | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date Start 8/15/8                                                                                    | Finish                                   | 8/16/89  |
| ОЕРТН                                                                               | CORE<br>RUN                                           | RQD                                    | RECOVERY                                                       | 1, 50                                                                | STRATA<br>CHANGE<br>DEPTH                                             | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      | FRACTUR                                  | ES BED   |
|                                                                                     | FROM TO                                               | INCH %                                 | INCH %                                                         | - 20<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25 | ្ខ្ល                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      | No./Ft.                                  | DIP* DIP |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | 8/15/89<br>RUN 1<br>4.9'-7.4'<br>RUN 2<br>13.2'-18.2' | 0.4°/3.5°<br>(0%)<br>2.25°/5°<br>(45%) | 2.05'/2.5'<br>(82%)<br>3.5'/3.5'<br>(100%)<br>4.9'/5'<br>(98%) | NX<br>NX                                                             | 565.0<br>-4.9<br>-562.5<br>-7.4<br>-558.2<br>-11.7<br>-551.7<br>-18.2 | Fine grained, light brown to light gray dolomit fractured, some stylolites and bedding observed segments  UNABLE TO CORE, BROKEN COLLIFTER, SEE OBA-6C/CD LOG  LIFTER, SEE OBA-6C/CD LOG  Fine grained, light brown dolomite, pinhole very uniform in site (< 1 mm)  Fine grained, light brown to light gray dolomit variable size, vug content decreasing to zero at a same, gradual transition from light gray, fine dolomite to light brown, medium grained doloccasional stylolites, moderaterly fractured  Fine to medium grained, light brown to light gray dolomite, differential weathering in bedding plastylolites  Fine to medium grained, light gray to light brown sasive dolomite, occasional isolated vugs, rancoral colonies  CONTINUED ON THE NEXT SHEET | gs throughout,  e, some vugs of tend of run  grained omite across run,  ray finely bedded anes, some | Highly Fractured  10  1 5  1 4  1 5  1 4 | DIP* DIP |
|                                                                                     | - B-zone fi                                           | racture at 1                           | 17.3', 100%                                                    | water l                                                              | oss                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | Total Depth                              | _22.5'   |
|                                                                                     |                                                       |                                        |                                                                |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                          |          |
|                                                                                     |                                                       |                                        |                                                                |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | Rock Drilling                            | 15.3'    |
| %Pro                                                                                | portions used: t                                      | race 0-10%,                            | little 10-20%,                                                 | some 20-                                                             | 35%, and                                                              | 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | Hole No.                                 | OBA-6B   |



|       | Groupe              | Wate    | r Observatio | · ·            | Job OLIN - RFI No. 88C2346-2 Borin |                           |                                                    |                         | OBA-6B      |        |           |
|-------|---------------------|---------|--------------|----------------|------------------------------------|---------------------------|----------------------------------------------------|-------------------------|-------------|--------|-----------|
| At    |                     | Ft.     | at Complet   | ion            |                                    |                           |                                                    |                         | ODAT OD     |        | -1        |
| At    |                     | Ft.     | after        | hrs.           |                                    |                           | CKER AD II                                         | Boring Offset _         |             |        | -         |
| At    |                     | Ft.     | after        | hrs.           | Operato                            | r Larry                   | Schroder (Emp)                                     | Surface Elevation       | 569.9       |        | _ l       |
| At    |                     | Ft.     | after        | hrs.           |                                    |                           | Mazierski (WCC)                                    | Date Start <u>8/15/</u> | 89 Finish   | 8/16/  | <u>89</u> |
| ОЕРТН | COR                 | 1       | RQD          | RECOVER        | CORE TYPE<br>& RESIST.             | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPHEATHERING, SEAMS IN ROCK |                         | FRACTUR     |        | ED        |
|       | FROM                | TO :    | INCH %       | INCH %         | S~                                 | 00 D =                    |                                                    |                         | No./Ft.     | DIP* D | IP        |
| 21 22 |                     |         |              |                |                                    | 547.4 22.5                | SAME AS ABOVE                                      |                         |             |        |           |
| Gener | al Notes:<br>- B-zo | one fr  | acture at 1  | 17.3', 100%    | water                              | loss                      |                                                    |                         | Total Depth |        | ı         |
| %Pro  | portions u          | sed: tr | ace 0-10%,   | little 10-20%, | some 20-                           | 35%, and 1                | 35-50%                                             |                         | Hole No.    | OBA-6  | В         |



| -                                               | Ground Water Observation  At Ft. at Completion      |                                    |                                   | Јов О                  | LIN - R                   | FI No. 88C2346-2                                                                                                                                                             | Boring Number                       | OBA-6C             | C/CD     |
|-------------------------------------------------|-----------------------------------------------------|------------------------------------|-----------------------------------|------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|----------|
|                                                 | _                                                   |                                    |                                   |                        |                           | CKER AD II                                                                                                                                                                   | Boring Offset                       |                    |          |
|                                                 | Ft.                                                 |                                    |                                   |                        |                           | Schroder (Emp)                                                                                                                                                               | _                                   | 560 F              |          |
| !                                               | Ft.                                                 |                                    |                                   | _                      |                           | Mazierski (WCC)                                                                                                                                                              | Surface Elevation  Date Start 8/16/ |                    | 8/18/89  |
| Д                                               |                                                     | 4101                               | mz.                               | -                      |                           | Maderski (WCC)                                                                                                                                                               | Date Start 8/10/                    | Pinien             | 8/18/83  |
| DEPTH                                           | CORE<br>RUN                                         | RQD                                | RECOVERY                          | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK                                                                                                                         |                                     | FRACTU             | RES BED  |
|                                                 | FROM TO                                             | INCH %                             | INCH %                            | COR<br>& R             | 2<br>5                    | WENTHERING, SENIS IN ROCK                                                                                                                                                    | <u> </u>                            | No./Ft.            | DIP* DIP |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 8/16/89<br>RUN 1<br>4.5'-6.1'<br>RUN 2<br>6.1'-9.5' | 0'/1.6'<br>(0%)<br>0'/3.4'<br>(0%) | 1.4'/1.6' (88%)  3.4'/3.4' (100%) | NX NX                  | 565.0                     | Fine grained, light gray dolomite, highly fractionated in small fragments  - same, medium grained, finely bedded in short occasional stylolites  CONTINUED ON THE NEXT SHEET |                                     | Highly Fractured 6 |          |
| Gener                                           | al Notes:                                           | r water he                         | aring fracture                    | es enco                | untered                   |                                                                                                                                                                              |                                     |                    |          |
|                                                 | 140 шајо:                                           | water be                           | aing nactur                       | es enco                | шкка                      | •                                                                                                                                                                            |                                     | Total Depth        | 48.1     |
|                                                 |                                                     |                                    |                                   |                        |                           |                                                                                                                                                                              |                                     | Rock Drillin       | g _31.3  |
| %Pro                                            | portions used: t                                    | race 0-10%,                        | little 10-20%,                    | some 20-               | 35%, and                  | 35-50%                                                                                                                                                                       |                                     | Hole No. O         | BA-6C/CI |



|             |                               | er Observatio                                |                    |                        |                                 |                                                                                                                                                                               |                   | OBA-60                                  | /CD   | <u>,                                    </u> |
|-------------|-------------------------------|----------------------------------------------|--------------------|------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|-------|----------------------------------------------|
|             | Ft.                           | -                                            |                    | Drilling               | Rig A                           | CKER AD II                                                                                                                                                                    | Boring Offset     |                                         |       |                                              |
| At<br>At    |                               |                                              |                    | Operato                | r <u>Larry</u>                  | Schroder (Emp)                                                                                                                                                                | Surface Elevation | 569.5                                   |       |                                              |
|             | Ft.                           |                                              |                    | Inspecto               | r Paul                          | Mazierski (WCC)                                                                                                                                                               | Date Start 8/16/8 |                                         | 8/1   | 8/89                                         |
| ОЕРТН       | CORE                          | RQD                                          | RECOVERY           | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH       | FIELD IDENTIFICATION, TYPE                                                                                                                                                    |                   | FRACTU                                  |       | BED                                          |
|             | FROM TO                       | INCH %                                       | INCH %             | ပ္တဆ                   |                                 |                                                                                                                                                                               |                   | No./Ft.                                 | DTb*  | DIP                                          |
| 21 22 23    | 8/18/89<br>RUN 1<br>21.8'-27' | 2.65 <sup>1</sup> /5.2 <sup>1</sup><br>(51%) | 4.9°/5.2°<br>(94%) | NX                     | 547.7<br>-21.8<br>547.0<br>22.5 | GROUT PLUG  Fine to medium grained, medium gray to light bedded dolomite, occasional irregular stylolite filled vugs, large stylolite with organic staining                   | s, some gypsum    | 111111111111111111111111111111111111111 |       |                                              |
| 24          |                               |                                              |                    |                        |                                 | inied voga, large styronie wan organie sammig                                                                                                                                 | , at 27.7         | 2                                       |       |                                              |
| 28          | RUN 2<br>27'-32'              | 3.65 <sup>3</sup> /5 <sup>3</sup><br>(73%)   | 5'/5'              | NX                     | 540.3                           | - same, becoming a mottled brown-gray dolon prominent stylolite at 29.2'                                                                                                      |                   | 2                                       |       |                                              |
| 30          |                               |                                              |                    |                        | 29.2                            | Fine to medium grained, mottled medium gray with isolated patches of gypsum/sphalerite fille irregular stylolites  - breccia/slump structures with large calcite cry to 31.6' | ed vugs and       | 1 3                                     |       |                                              |
| 33 34 35 36 | RUN 3<br>32'-37'              | 2.65'/5' (53%)                               | 5'/5' (100%)       | NX                     |                                 | - same, more massive from 32° to 33°, after 33° appearance with increase in vug content, occoral pods after 34°, abundant coral between                                       | asional isolated  | 3                                       |       |                                              |
| 38          | RUN 4<br>37'-42'              | 2.6'/5' (52%)                                | 5'/5'              | NX                     |                                 | - same, very variable in structure/composition, isolated tabulate coral masses, large gypsum irregular stylolites, very mottled appearance 41.4'  CONTINUED ON THE NEXT SHEET | veins at 39.2',   | 6                                       |       |                                              |
| Gener       | al Notes: - No majo:          | r water bea                                  | aring fracture     | es enco                | untered                         |                                                                                                                                                                               |                   | Total Depth                             |       | 18.1'<br>31.3'                               |
| %Pro        | portions used: t              | race 0-10%.                                  | little 10-20%.     | some 20-:              | 35%, and                        | 35-50%                                                                                                                                                                        |                   | Hole No. O                              | BA-6C | /CD                                          |



|                 | Group             | d Wate | er Observatio       | <u></u>        |       | Job OLIN - RFI No. 88C2346-2 Boring Number |                           |                                                                                                  |                   |                | OBA-6C/CD |              |  |
|-----------------|-------------------|--------|---------------------|----------------|-------|--------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------|-------------------|----------------|-----------|--------------|--|
| At              | ·                 | _ Ft.  | at Comple           | tion           |       |                                            |                           | CKER AD II                                                                                       | Boring Offset     |                |           |              |  |
| ſ <sup>At</sup> |                   | Ft.    | after               | hrs            | .     | _                                          |                           |                                                                                                  | _                 |                |           | — I          |  |
| At              |                   | _      |                     |                |       | •                                          |                           | Schroder (Emp)                                                                                   | Surface Elevation |                |           | —            |  |
| At              |                   | - Ft.  | after               | hrs            | -     | -                                          | r <u>Paul</u>             | Mazierski (WCC)                                                                                  | Date Start 8/16/  | 89 Finish      | 8/1       | 8/89         |  |
| DEPTH           | COR<br>RUI        |        | RQD                 | RECOV          | ERY   | CORE TYPE<br>& RESIST.                     | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK,                                            |                   | FRACTU         | RES       | BED          |  |
| ĺ               | FROM              | TD     | INCH %              | INCH           | %     | 20.2<br>20.20                              | 윤<br>교                    | WENTHERING, SENTS IN ROCK,                                                                       | , eic.            | No./Ft.        | DIP*      | DIP          |  |
| -               | · · · · · ·       |        | •                   |                |       |                                            | •                         | SAME AS ABOVE                                                                                    |                   | - 4            |           |              |  |
| - 41            |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   | E,             |           |              |  |
| Ē               |                   |        |                     |                |       |                                            | 577 5                     |                                                                                                  |                   | E '            |           |              |  |
| - 42            | RUN 5             |        | 2'/5'               | 5'/5'          |       | NX                                         | 527.5<br>42.0             | Fine to medium grained, light brown to light g                                                   |                   | <u> </u>       |           | l            |  |
| F 43            | 42'-47'           |        | (40%)               | (100%)         |       |                                            |                           | fossiliferous dolomite, abundant coral colonies fragments from 42.3' to 43', large calcite cryst | and other fossii  | E.             |           |              |  |
| <u> </u>        |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   | 3              |           | ł            |  |
| - 44            |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   | F 5            |           |              |  |
| E 45            |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   | E              |           |              |  |
| : 45            |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   | E 4            |           |              |  |
| F 46            |                   |        |                     |                |       |                                            | -                         |                                                                                                  |                   | F <sub>3</sub> |           | - 1          |  |
| £ 46            |                   |        |                     |                |       | 1                                          |                           |                                                                                                  |                   | <b>E</b>       |           |              |  |
| - 47            | RUN 6<br>47'-48.1 | ,      | 1.1'/1.1'<br>(100%) | 1.171.1 (100%) | •     | ΝХ                                         |                           |                                                                                                  |                   | F1             |           | l            |  |
| E 48            | 47 40.1           |        | (100%)              | (100%)         |       |                                            | 521.4<br>48.1             | ·                                                                                                |                   | ₽              |           |              |  |
| `               |                   |        |                     |                |       |                                            | 48.1                      |                                                                                                  |                   |                |           |              |  |
| ſ               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
| '               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
| .               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
| l l             |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                | -         | - 1          |  |
| •               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
|                 |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
| ١               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           | ŀ            |  |
|                 |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
|                 |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           | l            |  |
| _               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                | - 1       |              |  |
| ı               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           | I            |  |
| !               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
|                 |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                | Ì         |              |  |
| 1               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
|                 |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
| ,               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
| í               |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   |                |           |              |  |
| Gener           | al Notes:         |        |                     | I              |       | 1                                          |                           |                                                                                                  |                   |                |           |              |  |
|                 |                   | majo   | water bea           | ering fra      | cture | es enco                                    | untered                   |                                                                                                  |                   | Total Depth    | _4        | 8.1'         |  |
|                 |                   |        |                     |                |       |                                            |                           |                                                                                                  |                   | Rock Drillin   | ng _3     | <u>31.3'</u> |  |
| %Pro            | portions u        | sed: t | race 0-10%,         | little 10-2    | 0%, s | ome 20-3                                   | 35%, and 3                | 35-50%                                                                                           |                   | Hole No. O     | BA-6C     | /CD          |  |



|                                                         | Ground Wate                            | er Observatio                      | on.                                        | Јов О                  | LIN - R                   | FI No. 88C2346-2                                                                                    | Boring Number            | <u>OBA-7A</u>       |          |  |
|---------------------------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------|------------------------|---------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|---------------------|----------|--|
|                                                         | Ft.                                    |                                    |                                            | Drilling               | Rig AC                    | CKER AD II                                                                                          | Boring Offset            |                     |          |  |
|                                                         | Ft.                                    |                                    |                                            |                        |                           | 0.1 - 1 - 00 - )                                                                                    |                          | 50. 5               |          |  |
|                                                         | Ft.                                    |                                    |                                            |                        |                           |                                                                                                     | Surface Elevation        |                     | C (C 190 |  |
| At                                                      | Ft.                                    | after                              | hrs.                                       | -                      | r <u>Paul</u>             | Mazierski (WCC)                                                                                     | Date Start 6/6/8         | 9Finish_            | 6/6/89   |  |
| рертн                                                   | CORE<br>RUN                            | RQD                                | RECOVERY                                   | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPH<br>WEATHERING, SEAMS IN ROCK                                             |                          | FRACTUR             |          |  |
| 7                                                       | FROM TO                                | INCH %                             | INCH %                                     | <u>0</u> -2            | ഗഠ–                       |                                                                                                     |                          | No./Ft.             | IP* DIP  |  |
| 1 2 3 4 5 6 7 8 Gener                                   | 6/6/89 RUN 1 5.5'-7.2' RUN 2 7.2'-8.5' | 0'/1.7'<br>(0%)<br>0'/1.3'<br>(0%) | 0.95°/1.7°<br>(56%)<br>1.3°/1.3°<br>(100%) | NX<br>NX               | 566.0                     | Fine to medium grained, light to medium brow medium bedded dolomite, abundant thin stylol fractured | n, fine to ites, heavily | Highly Fractured 11 |          |  |
| - 100% water loss at 6.5' while reaming  Total Depth 8. |                                        |                                    |                                            |                        |                           |                                                                                                     |                          |                     |          |  |
| Rock                                                    |                                        |                                    |                                            |                        |                           |                                                                                                     |                          |                     |          |  |
| %Pm                                                     | portions used: t                       | race 0-10%                         | little 10-20%.                             | some 20-               | 35%, and                  | 35-50%                                                                                              |                          | Hole No.            | OBA-7A   |  |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ground Wat                                                     | er Observatio                                                     | on a                                                        | Job C                  | LIN - R                          | FI No. 88C2346-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Boring Number                                                                                                                | OBA-7E                       | 3    |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|--------------|
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t Ft.                                                          | at Comple                                                         | tion                                                        | Drilling               | Rio AC                           | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Boring Offset                                                                                                                |                              |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ft.                                                            |                                                                   |                                                             |                        | _                                | / Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                            |                              |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ft.                                                            |                                                                   |                                                             | ١.                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surface Elevation                                                                                                            |                              | 6/1  | 2/90         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | alter                                                             |                                                             | Inspect                |                                  | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date Start 6/12/                                                                                                             | 7 Finish                     |      | 3/09         |
| DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CORE<br>RUN                                                    | RQD                                                               | RECOVERY                                                    | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH        | FIELD IDENTIFICATION, TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | FRACTU                       | RES  | BED          |
| ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FROM TO                                                        | INCH %                                                            | INCH %                                                      | 20.₩<br>R.R.           | က်ပ                              | HERITICATION SERIO IN NOON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | No./Ft.                      | DIP* | DIP          |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 General Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | 6/12/89 RUN 1 5.5'-10.7'  RUN 2 13.3'-18.2'  RUN 3 18.2'-23.2' | 3.45°/5.2°<br>(66%)<br>0.95°/2.8°<br>(34%)<br>2.55°/4.9°<br>(52%) | 5.1°/5.2°<br>(98%)  2.45°/2.8°<br>(88%)  4.8°/4.9°<br>(98%) | NX NX                  | 566.0<br>5.5<br>- 562.4<br>- 9.1 | CONCRETE FOUNDATION (OLD DRUM STORAGE AREA: CSA-3)  Fine to medium grained, medium to dark brown massive bedded dolomite, finely bedded from interval from 10.4' to 10.7', occasional stylolic same, becoming predominantly light brown vugs from 12.2' to 13.3'  Fine to medium grained, medium to dark brown massive dolomite, occasional stylolites and limintervals, becoming finely bedded after a prom 18.7', moderately fractured  - same, highly fractured from 20.8' to 21', occ filled vugs with sphalerite crystals after 21', of interval from 22.5' to 23'  CONTINUED ON THE NEXT SHEET | on to gray, fine to 9.1' to 10', vuggy tes  with fine pinhole  on to gray, sited vuggy tinent stylolite at  casional calcite | 2 2 1 2 2 4+ 8 3 7 3 3 5 3 2 |      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - B-zone fi                                                    | racture not                                                       | ted at 19.8',                                               | 100%                   | water los                        | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              | Total Depth                  |      | 24.8'        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                   |                                                             |                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              | Rock Drillin                 |      | <u>19.3'</u> |
| %Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | portions used: t                                               | race 0-10%.                                                       | little 10-20%,                                              | some 20-               | 35%, and                         | 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              | Hole No.                     | OBA  | -7B          |



|             | Groun               | d Wate  | er Observatio   | n               |        | Job O                  | LIN - R                   | OBA-7B                     |                   |               |            |             |
|-------------|---------------------|---------|-----------------|-----------------|--------|------------------------|---------------------------|----------------------------|-------------------|---------------|------------|-------------|
| At          |                     | Ft.     | at Complet      | tion            | J      |                        |                           | CKER AD II                 | Boring Offset     |               |            | ·           |
| At          |                     | _       | after           |                 | - 1    |                        |                           | Schroder (Emp)             | _                 |               |            | _           |
| At          |                     | _       | after           |                 |        | _                      |                           |                            | Surface Elevation |               |            |             |
| At          |                     | _       | after           | hrs             | •      |                        | r <u>Paul</u>             | Mazierski (WCC)            | Date Start 6/12/  | 89 Finish     | 6/1        | 3/89        |
| DEPTH       | COF<br>RU           |         | RQD             | RECOV           | ERY    | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE |                   | FRACTU        | RES        | BED         |
| ^           | FROM                | TO      | INCH %          | INCH            | %      | SO.                    | 0<br>5                    | MENTICALITY, SENIO IN ROCK |                   | No./Ft.       | DIP*       | DIP         |
| 21 22 23 24 | RUN 4 23.2'-24      |         | 0.5'/1.6' (31%) | 1.57/1.6° (94%) |        | NX NX                  | 546.7                     | SAME AS ABOVE              |                   | NO./FT.       | DIP*       |             |
|             |                     |         |                 |                 |        |                        |                           |                            |                   |               |            |             |
|             |                     |         |                 |                 |        |                        |                           |                            |                   |               |            |             |
| Gener       | al Notes:<br>- B-ze | one fr  | acture not      | ed at 19        | .8', 1 | 100% v                 | vater loss                | 3                          |                   | Total Depth   |            | 4.8'        |
|             |                     |         |                 |                 |        |                        |                           |                            |                   | Rock Drilling | g <u>1</u> | <u>9.3'</u> |
| % Рто       | portions t          | sed: tr | ace 0-10%,      | little 10-20    | 0%, so | ome 20-3               | 35%, and 3                | 5-50%                      |                   | Hole No.      | OBA-       | -7B         |



|          | Ground Wate      | er Observatio | on a           | Job C                  | LIN - R                   | FI No. 88C2346-2                                     | Boring Number           | OBA-70       | C/CD         |            |
|----------|------------------|---------------|----------------|------------------------|---------------------------|------------------------------------------------------|-------------------------|--------------|--------------|------------|
| At       | Ft.              | at Comple     | tion           |                        |                           | CKER AD II                                           | Boring Offset           |              |              | _          |
| At       |                  |               |                |                        |                           | Schroder (Emp)                                       | _                       |              |              |            |
| At       |                  | after         |                | _                      |                           |                                                      | Surface Elevation       |              |              |            |
| At       |                  | after         | pts.           | _                      | or <u>Paul</u>            | Mazierski (WCC)                                      | Date Start <u>6/20/</u> | 89 Finish    | 6/20/        | /89        |
| ОЕРТН    | CORE<br>RUN      | RQD           | RECOVERY       | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK |                         | FRACTU       | RES B        | BED        |
|          | FROM TO          | INCH %        | INCH %         | 20.3                   | 연수<br>교                   | WENTHERING, SENIS IN RUCK                            | , erc.                  | No./Ft.      | DIP* D       | ΙP         |
| -        |                  |               |                |                        | :                         |                                                      |                         | -            |              |            |
| <u> </u> |                  |               | ľ              | 1                      |                           |                                                      |                         | E            |              |            |
| [        |                  |               |                |                        |                           |                                                      |                         | Ę            |              |            |
| 2        |                  |               |                |                        | -                         |                                                      |                         | E            |              |            |
| _ 3      |                  |               |                |                        | _                         |                                                      |                         | Ē.           |              |            |
|          |                  |               | ł              |                        |                           |                                                      |                         | Ė I          |              |            |
| - 4      |                  |               |                |                        | -                         |                                                      |                         | <u> </u>     |              |            |
| [ ]      |                  |               |                |                        |                           |                                                      |                         | Ē [          |              |            |
| 5        |                  |               |                |                        | -                         |                                                      |                         | F            |              |            |
| _ 6      |                  |               |                |                        | -                         |                                                      |                         | E            |              |            |
|          |                  |               |                |                        |                           |                                                      |                         | E            |              |            |
| 7        |                  |               |                |                        | -                         |                                                      |                         | E            |              |            |
| - 8      |                  |               |                |                        | -                         |                                                      |                         | E            |              |            |
|          |                  |               |                |                        | -                         |                                                      |                         | E            |              |            |
| F 9      |                  | ı             |                |                        | <u>-</u>                  |                                                      |                         | E            |              |            |
| - 10     |                  |               |                |                        | <u>E</u>                  |                                                      |                         | E            |              |            |
| ŧ "      |                  |               |                |                        |                           |                                                      |                         |              |              |            |
| - 11     |                  |               |                |                        | <u>-</u>                  | •                                                    |                         | F            |              |            |
| F        |                  |               |                |                        |                           |                                                      |                         | F            |              |            |
| 12       |                  |               |                |                        |                           |                                                      |                         | E            |              |            |
| 13       |                  |               |                |                        | -                         |                                                      |                         | F            |              |            |
|          |                  |               |                |                        |                           |                                                      |                         | ŧ l          |              |            |
| F 14     |                  |               |                |                        | -                         |                                                      |                         | E            |              |            |
| 15       | •                |               |                |                        | -                         |                                                      |                         | E            |              |            |
|          |                  |               |                |                        |                           |                                                      |                         | Ę            |              |            |
| - 16     |                  |               |                |                        | -                         |                                                      |                         | F            |              |            |
| 17       |                  |               |                |                        | -                         |                                                      |                         | Ę            |              |            |
| Ė        |                  |               |                |                        |                           |                                                      |                         | E            |              |            |
| 18       |                  |               |                |                        | -                         |                                                      |                         | F            |              |            |
| 19       |                  |               |                |                        | -                         | CONTINUED ON THE NEXT SHEET                          |                         | E ·          |              |            |
|          |                  |               |                |                        | [                         | TTITE OF THE HAVE SHEET                              |                         | E            |              |            |
| Gener    | ai Notes:        |               |                |                        |                           |                                                      |                         |              |              |            |
|          |                  | fracture n    | oted in core   | at 27',                | no obser                  | ved water loss - C-zone fracture noted               | at 34.8',               | Total Depth  | 40           | <u>.0'</u> |
| 1        |                  |               |                |                        |                           |                                                      |                         | Rock Drillin | ng <u>15</u> | 5.5'       |
| % Prov   | portions used: t | eace 0-10%.   | little 10-20%. | ome 20-                | 35%, and 1                | 35-50%                                               |                         | Hole No. O   | BA-7C/0      | CD         |



|                | Ground Wa                         | ter Observation                           | on             | Јов С                  | LIN - R                   | FI No. 88C2346-2                                                                                                                 | Boring Number                 | OBA-70         | C/CI        | )            |
|----------------|-----------------------------------|-------------------------------------------|----------------|------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|-------------|--------------|
| At             | Ft.                               | at Comple                                 | tion           | Drilling               | Rio A                     | CKER AD II                                                                                                                       | Boring Offset                 |                |             |              |
|                | Ft.                               |                                           |                | •                      |                           | Schroder (Emp)                                                                                                                   | _                             |                |             |              |
|                | Ft.                               |                                           |                | _                      |                           |                                                                                                                                  | Surface Elevation             | <u>571.7</u>   | - 10        |              |
| A <sup>1</sup> | Ft.                               | atter                                     | hrs.           | -                      | or <u>Paul</u>            | Mazierski (WCC)                                                                                                                  | Date Start <u>6/20/</u>       | Finish         | 6/2         | 0/89         |
| DEPTH          | CORE<br>RUN                       | RQD                                       | RECOVERY       | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                                                       |                               | FRACTU         | RES         | BED          |
|                | FROM TO                           | INCH %                                    | INCH %         | 20.4<br>20.5           | 유하고                       | WEATHERING, SEAMS IN ROCK                                                                                                        | , erc.                        | No./Ft.        | DIP*        | DIP          |
|                |                                   |                                           |                |                        |                           |                                                                                                                                  |                               |                |             |              |
| - 21<br>-      |                                   |                                           |                |                        | -                         |                                                                                                                                  |                               | E              |             |              |
| <u> </u>       |                                   |                                           |                |                        | <u>-</u>                  |                                                                                                                                  |                               | -              |             |              |
| Ė              |                                   |                                           |                |                        |                           |                                                                                                                                  |                               | F              |             |              |
| - 23<br>-      |                                   |                                           |                |                        | E                         |                                                                                                                                  |                               | E              |             |              |
| - 24           |                                   |                                           |                |                        | 547.2                     | ·                                                                                                                                |                               | -              |             |              |
| Ė              | 6/20/89                           | 2.5'/3.5'                                 | 3.4'/3.5'      | NX                     | 24.5                      | GROUT PLUG                                                                                                                       |                               | ᅷ │            |             |              |
| - 25<br>-      | RUN 1<br>24.5'-28'                | (71%)                                     | (97%)          |                        | - 546.7<br>- 25.0         | Medium grained, medium to dark brown to gradolomite, occasional stylolites and calcite seam                                      |                               | <b>下¹</b>      |             |              |
| 26             |                                   |                                           |                |                        |                           | fragments ranging from large colonies with we<br>tabulae to irregular mineralized coral lenses, fro<br>where corals are abundant | ll developed                  | 6              |             |              |
| 27             |                                   |                                           |                |                        |                           | where corats are available                                                                                                       |                               | E o            |             |              |
| 28             | RUN 2                             | 4.7'/5'                                   | 5'/5'          | - NX                   | <u> </u>                  | - same, occasional small calcite filled voids, o                                                                                 | ccasional                     | F <sub>3</sub> |             |              |
| <b>E</b>       | 28'-33'                           | (94%)                                     | (100%)         |                        | Ė                         | stylolitea, massive throughout run                                                                                               |                               | <b>E</b>       |             |              |
| - 29<br>-      |                                   |                                           |                | 1                      | E                         |                                                                                                                                  |                               | E1             |             |              |
| 30             |                                   |                                           |                |                        | -                         |                                                                                                                                  |                               | E.             | İ           |              |
| <u> </u>       |                                   |                                           |                |                        | ŧ                         |                                                                                                                                  |                               | <b>E</b>       |             |              |
| ⊢ 31<br>E      |                                   |                                           |                | 1                      | -                         |                                                                                                                                  |                               | F 1            |             |              |
| - 32           |                                   |                                           |                |                        | -                         |                                                                                                                                  |                               | E,             | l           |              |
|                |                                   |                                           |                |                        |                           |                                                                                                                                  |                               |                |             |              |
| - 33           | RUN 3<br>33'-38'                  | 3.8 <sup>7</sup> /5 <sup>7</sup><br>(76%) | 4.8'/5' (96%)  | NX                     |                           | - same, large calcite seams at 33.8' and 36.8', from 34' to 34.5', highly fractured around 34                                    | finely bedded<br>I' and 34.8' | F 2            |             |              |
| - 34           | 33 -36                            | (10 %)                                    | (90%)          |                        | -                         |                                                                                                                                  |                               | 7+             |             |              |
|                |                                   |                                           |                |                        | <u> </u>                  |                                                                                                                                  |                               | E              | ł           |              |
| 35             |                                   |                                           |                |                        | Ē                         |                                                                                                                                  |                               | 1              |             |              |
| 36             |                                   |                                           |                |                        | -                         |                                                                                                                                  |                               | E <sub>3</sub> | 1           |              |
| E              |                                   |                                           |                |                        |                           |                                                                                                                                  |                               |                |             |              |
| - 37<br>-      |                                   |                                           |                |                        | -                         |                                                                                                                                  |                               | <u> </u>       | - 1         |              |
| 38             | RUN 4                             | 2'/2'                                     | 2'/2'          | NX                     | <u> </u>                  | - same, some small corst pods                                                                                                    |                               | <b>E</b> 。     |             |              |
| Ē              | 38'-40'                           | (100%)                                    | (100%)         | 1,7                    | ļ.                        | ·                                                                                                                                |                               |                |             |              |
| - 39<br>E      |                                   |                                           |                |                        | Ė                         | CONTINUED ON THE NEXT SHEET                                                                                                      |                               | F 0            |             |              |
|                |                                   |                                           |                |                        | 531.7                     | CONTENDED ON THE NEXT SHEET                                                                                                      |                               | <u> </u>       |             |              |
|                | al Notes: - Potentia 6 water loss |                                           | oted in core   | at 27',                | no obsei                  | eved water loss - C-zone fracture noted                                                                                          | at 34.8',                     | Total Depth    | _4          | 10.0'        |
|                |                                   |                                           |                |                        |                           |                                                                                                                                  |                               | Rock Drillin   | ng <u>1</u> | <u>15.5'</u> |
| % Dec          | nortions used:                    | trace 0-10%                               | little 10-20%, | some 20-               | 35%, and                  |                                                                                                                                  |                               | Hole No. O     | BA-70       | Z/C D        |



| 1        | Ground V      | Vater Observati        | on               | Job C                  | DLIN - R                  | FI No. 88C2346-2                       | Boring Number           | OBA-7C/C           | $\overline{\mathbf{D}}$ |
|----------|---------------|------------------------|------------------|------------------------|---------------------------|----------------------------------------|-------------------------|--------------------|-------------------------|
|          |               | Ft. at Comple          |                  | Drilling               | Rig A                     | CKER AD II                             | Boring Offset           |                    |                         |
| 1        |               | Ft. after              |                  |                        |                           | Schroder (Emp)                         | _                       |                    |                         |
| At       |               | 71. after<br>71. after |                  | -                      |                           |                                        | Surface Elevation       |                    | 20/90                   |
| At       |               |                        | ms.              |                        |                           | Mazierski (WCC)                        | Date Start <u>6/20/</u> | 89 <u>Finish</u> 6 | 20/89                   |
| DEPTH    | CORE<br>RUN   | RQD                    | RECOVERY         | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE             |                         | FRACTURES          | BED                     |
| <u> </u> | FROM TO       | INCH %                 | INCH %           | 28.28<br>28.28         | [양학교                      | WEATHERING, SEAMS IN ROCK              | , erc.                  | No./Ft. DIP        | DIP                     |
| Gener    | al Notes:     |                        |                  |                        | 40.0                      |                                        |                         |                    |                         |
|          |               | al fracture n          | oted in core     | at 27',                | no obser                  | ved water loss - C-zone fracture noted | at 34.8',               |                    | 40.0'                   |
|          |               |                        |                  |                        |                           |                                        |                         |                    | <u>15.5'</u>            |
| %Pro     | portions used | : trace 0-10%,         | little 10-20%, s | ome 20-3               | 35%, and 3                | I5-50%<br>                             |                         | Hole No. OBA-7     | C/CD                    |



|                                                                        | Ground Wa                                            | ter Observation                       | oa.                                | Job C                  | LIN - R                   | FI No. 88C2346-2                                                                                                         | Boring Number                     | OBA-8A        |         |
|------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------|------------------------------------|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|---------|
| At                                                                     | Ft                                                   | . at Comple                           | tion                               | Drilling               | Rig A                     | CKER AD II                                                                                                               | Boring Offset                     |               |         |
| At                                                                     |                                                      |                                       |                                    |                        |                           | Schroder (Emp)                                                                                                           |                                   | 520.2         |         |
| l                                                                      | Ft                                                   | _                                     |                                    |                        |                           |                                                                                                                          | Surface Elevation                 | 570.7         | 125 120 |
| At                                                                     |                                                      | after                                 | hrs.                               |                        | or Paul                   | Mazierski (WCC)                                                                                                          | Date Start <u>7/25/</u>           | /89 Finish 7  | 25/89   |
| ОЕРТН                                                                  | CORE.<br>RUN                                         | RGD                                   | RECOVERY                           | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYP                                                                                                |                                   | FRACTURES     | BED     |
| 🗖                                                                      | FROM TO                                              | INCH %                                | INCH %                             | CO ₹                   | ြၽ္                       | WENTHERING, SERIES IN ROCK                                                                                               | , εις.                            | No./Ft. DIP   | • DIP   |
| 1 2 3 4 5 6 7 8 9 10 Gener                                             | 7/25/89<br>RUN 1<br>7.4'-9.7'<br>RUN 2<br>9.7'-10.5' | 0.4'/2.3'<br>(17%)<br>0'/0.8'<br>(0%) | 1.9'/23' (83 %)  0.65'/0.8' (81 %) | NX<br>NX               | 563.3                     | Fine to medium grained, light to medium gray bedded dolomite, abundant gently undulating t stylolites, heavily fractured | , thin to medium o finely serated | Highly        |         |
|                                                                        |                                                      | ater loss fr                          | om onset of                        | coring                 | operation                 | ns                                                                                                                       |                                   | Total Depth   | 10.5'   |
|                                                                        |                                                      |                                       |                                    |                        |                           |                                                                                                                          |                                   | Rock Drilling | 3.1'    |
| %Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50% |                                                      |                                       |                                    |                        |                           |                                                                                                                          |                                   |               | A-8A    |



|                                       | Ground Wat           | er Observatio       | On.                           | Job C                  | LIN - R                   | FI No. 88C2346-2                                                                              | Boring Number              | OBA-8B       | 3        |
|---------------------------------------|----------------------|---------------------|-------------------------------|------------------------|---------------------------|-----------------------------------------------------------------------------------------------|----------------------------|--------------|----------|
| At                                    | Ft.                  | at Comple           | tion                          | Drilling               | Rig A                     | CKER AD II                                                                                    | Boring Offset              |              |          |
| At                                    |                      |                     |                               | _                      |                           | Schroder (Emp)                                                                                | _                          | 530.6        |          |
| Yr<br>Yr                              |                      |                     |                               | _                      |                           |                                                                                               | Surface Elevation          | 570.6        | 7/26/90  |
| At                                    |                      | alter               | hrs.                          |                        | or Paul                   | Mazierski (WCC)                                                                               | Date Start 7/26/8          | Finish       | 7/26/89  |
| DEPTH                                 | CORE<br>RUN          | ROD                 | RECOVERY                      | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                    | E AND COLOR                | FRACTU       | RES BED  |
|                                       | FROM TO              | INCH %              | INCH %                        | - Ki                   | R S 등                     | WEATHERING, SEAMS IN ROCK                                                                     | etc.                       | No./Ft.      | DIP* DIP |
|                                       | 7.1.0.1.             |                     |                               | <u>⊖</u>               | :                         |                                                                                               |                            | _            |          |
| 2                                     |                      |                     |                               |                        | -                         |                                                                                               |                            | E (          |          |
| <b>E</b>                              |                      |                     |                               |                        |                           |                                                                                               |                            | Ē            |          |
| F 2                                   |                      |                     |                               |                        | -                         |                                                                                               |                            | E            |          |
| - 3                                   |                      |                     |                               |                        | _                         |                                                                                               |                            |              |          |
|                                       |                      |                     |                               |                        |                           |                                                                                               |                            | Ē            |          |
| <b>├</b> ⁴                            |                      |                     |                               |                        | Ē                         |                                                                                               |                            | E            |          |
| -<br>- 5                              |                      |                     |                               |                        | -                         |                                                                                               |                            | E            |          |
| ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |                      |                     |                               |                        | ŧ                         |                                                                                               |                            | E            |          |
| F 6                                   |                      |                     |                               |                        | Ē                         |                                                                                               |                            | E            |          |
| - ,                                   |                      |                     |                               |                        | -                         |                                                                                               |                            | E            |          |
| E                                     | 7/26/89              |                     |                               | NX                     | 7.5                       | Fine to medium grained, medium gray to brow                                                   |                            | -            |          |
| F 8                                   | RUN 1<br>7.5'-12.5'  |                     |                               |                        | -                         | medium bedded dolomite, abundant stylolites,<br>throughout majority of recovered core, highly | finely bedded<br>fractured | F            |          |
| و ا                                   |                      | ?◆                  | ?*                            |                        | -                         |                                                                                               |                            | E 1          |          |
|                                       |                      | .                   | '                             |                        | -                         |                                                                                               |                            | <b>E</b>     |          |
| F 10                                  |                      |                     |                               |                        | Ē                         |                                                                                               |                            | Highly       |          |
| E 11                                  |                      |                     |                               |                        | [-                        |                                                                                               |                            | Fractured    |          |
|                                       | 709/90               | 0.7110 11           | 1.6'/2.1'                     | NX                     |                           | - same, occasional vugs from 12.5' to 13.4'                                                   |                            |              |          |
| - 12                                  | 7/28/89<br>RUN 1     | 0.71'/2.1'<br>(33%) | (76%)                         | ^^                     | F                         |                                                                                               |                            |              |          |
| 13                                    | 11.7'-13.8'          |                     |                               |                        | -                         |                                                                                               |                            | E 6          |          |
|                                       |                      |                     |                               | ╛                      | 556.8                     |                                                                                               |                            | <u></u>      |          |
| 14                                    | RUN 2<br>13.8'-18.6' | (61%)               | 4.8'/4.8'<br>(100%)           | NX                     | 13.8                      | Fine to medium grained, medium gray to brow<br>bedded to massive dolomite, pinhole vugs fro   | m 13.8' to 15.3',          | 2            |          |
| E 15                                  |                      |                     |                               |                        | <u> </u>                  | predominantly brown in vuggy sections, more after 15.3', moderately fractured                 | gray and massive           | - 5          |          |
| Ė.,                                   |                      |                     |                               |                        | Ę                         |                                                                                               |                            |              |          |
| F 16                                  |                      |                     |                               |                        |                           |                                                                                               |                            | 2            |          |
| - 17                                  |                      |                     |                               |                        | -                         |                                                                                               | •                          | 4            |          |
| Ė ,,                                  |                      |                     |                               |                        | E                         |                                                                                               |                            | E            |          |
| - 18<br>-                             |                      | _                   |                               |                        | 552.0                     |                                                                                               |                            | 0            |          |
| 19                                    | RUN 3<br>18.6'-21.7' | 2.1'/3.1<br>(68%)   | 2.9'/3.1'<br>(93%)            | NX                     | - 18.6<br>-               | Medium grained, medium to dark gray to brow<br>massive bedded dolomite, massive to 20.1', th  | en finely bedded           | - o          |          |
| Ē                                     |                      |                     |                               |                        | -                         | to fractured interval at 20.9', gently undulating                                             | g beds with                | E            |          |
| loss                                  | from onset o         | rrel lifter b       | oroke during<br>and reaming o | coring<br>peratio      | operation                 | ns, lost some of core down hole - 10 g 4" casing) - B-zone fracture noted                     | 0% water<br>at 20.1',      | Total Depth  | _25.0'   |
| 1009                                  | 6 water loss         |                     |                               |                        |                           |                                                                                               |                            | Rock Drillin | 17.5°    |
| %Pro                                  | portions used: 1     | trace 0-10%.        | little 10-20%,                | some 20-               | 35%, and                  |                                                                                               |                            | Hole No.     | OBA-8B   |



| $\Box$                                                                                                                                                                                                               | Ground Wat         | er Observatio                                | a                                            | Job C             | LIN - R                   | OBA-8B                                                                                      |                   |                       |        |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|----------------------------------------------|-------------------|---------------------------|---------------------------------------------------------------------------------------------|-------------------|-----------------------|--------|-----|
| At                                                                                                                                                                                                                   | Ft.                | at Comple                                    | tion                                         | Drilling          | Rig A                     | CKER AD II                                                                                  | Boring Offset     |                       |        |     |
| A A                                                                                                                                                                                                                  | Ft.                |                                              |                                              |                   |                           | Schroder (Emp)                                                                              | _                 |                       |        | _   |
| A                                                                                                                                                                                                                    |                    |                                              | hrs.                                         | -                 |                           |                                                                                             | Surface Elevation |                       |        | _   |
| At                                                                                                                                                                                                                   | Ft.                | after                                        | hrs.                                         | _                 | r Paul                    | Mazierski (WCC)                                                                             | Date Start 7/26/3 | Finish                | 7/26   | /89 |
| DEPTH                                                                                                                                                                                                                | CORE               | RQD                                          | RECOVERY                                     | CORE TYPE RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE                                                                  |                   | FRACTUR               | RES E  | BED |
|                                                                                                                                                                                                                      | FROM TO            | INCH %                                       | INCH %                                       |                   | FS                        | WEATHERING, SEAMS IN ROCK                                                                   | , etc.            | No./Ft.               | DIP* C | DIP |
| E                                                                                                                                                                                                                    |                    |                                              |                                              | 0,20              |                           | stylolites, gradual change to massive bedding i                                             | rom fractured     | - 3+                  |        |     |
| F 21                                                                                                                                                                                                                 |                    |                                              |                                              |                   | -                         | merval to end of run                                                                        |                   | E                     |        |     |
| Ē                                                                                                                                                                                                                    |                    |                                              |                                              |                   | 548.9                     |                                                                                             |                   |                       |        |     |
| 22                                                                                                                                                                                                                   | RUN 4<br>21.7'-25' | 3.25 <sup>1</sup> /3.3 <sup>1</sup><br>(98%) | 3.25 <sup>1</sup> /3.3 <sup>1</sup><br>(98%) | NX                | 21.7                      | Fine to medium grained, dark to medium gray<br>massive dolomite, becoming more irregular in | structure beyond  | <u> </u>              |        |     |
| E 23                                                                                                                                                                                                                 |                    |                                              |                                              |                   | -                         | 24', several coral pods at 24', occasional stylo vuggy zones                                | lites, isolated   | E .                   |        |     |
| ŧ ¯                                                                                                                                                                                                                  |                    |                                              |                                              |                   | -                         |                                                                                             |                   | <b>E</b> <sup>2</sup> |        |     |
| - 24                                                                                                                                                                                                                 |                    |                                              |                                              |                   | <u></u>                   |                                                                                             |                   | E 0                   |        |     |
| E 25                                                                                                                                                                                                                 |                    |                                              |                                              |                   | - <b>545.6</b>            |                                                                                             |                   | <u>E</u>              |        |     |
| 2                                                                                                                                                                                                                    |                    |                                              |                                              |                   | 25.0                      |                                                                                             |                   |                       |        |     |
| i                                                                                                                                                                                                                    | ]                  |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
|                                                                                                                                                                                                                      |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
|                                                                                                                                                                                                                      |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
| 1                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             | 1 1               |                       |        |     |
| 1                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             | Ì                 |                       |        |     |
| 1                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
| ļ                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
|                                                                                                                                                                                                                      |                    |                                              | }                                            |                   |                           |                                                                                             |                   |                       |        |     |
| Ì                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       | ĺ      |     |
| 1                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
|                                                                                                                                                                                                                      |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
| ļ                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             | •                 |                       |        |     |
|                                                                                                                                                                                                                      |                    |                                              | ]                                            | }                 |                           |                                                                                             |                   |                       |        |     |
| 1                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
|                                                                                                                                                                                                                      |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
| 1                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
|                                                                                                                                                                                                                      |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
| Ì                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
| 1                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
|                                                                                                                                                                                                                      |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
| }                                                                                                                                                                                                                    |                    |                                              |                                              |                   |                           |                                                                                             |                   | ] [                   |        |     |
|                                                                                                                                                                                                                      |                    |                                              |                                              |                   |                           |                                                                                             |                   |                       |        |     |
| General Notes:  * Core barrel lifter broke during coring operations, lost some of core down hole - 100% water loss from onset of coring and reaming operations (setting 4" casing) - B-zone fracture noted at 20.1', |                    |                                              |                                              |                   |                           | Total Depth                                                                                 | _25               | 2.0,                  |        |     |
| 100% water loss                                                                                                                                                                                                      |                    |                                              |                                              |                   |                           |                                                                                             | Rock Drillin      | g <u>17</u>           | 7.5°   |     |
| %Pro                                                                                                                                                                                                                 | portions used: 1   | race 0-10%,                                  | little 10-20%, s                             | ome 20-           | 35%, and 3                | 35-50%                                                                                      |                   | Hole No.              | OBA-8  | 8B  |



|                                                       | Ground Wa                                   | ter Observation     | )a                 | Јов <u>С</u>           | LIN - R                   | FI No. 88C2346-2                                                                                                                                                                                                                                  | Boring Number           | OBA-8C           | /CD      |
|-------------------------------------------------------|---------------------------------------------|---------------------|--------------------|------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|----------|
| At                                                    |                                             | at Comple           |                    | Drilling               | Rig A                     | CKER AD II                                                                                                                                                                                                                                        | Boring Offset           |                  |          |
| At                                                    |                                             |                     |                    | Operato                |                           | Schroder (Emp)                                                                                                                                                                                                                                    | _                       | 570 (            |          |
| At                                                    |                                             |                     | hrs.               | _                      | -                         |                                                                                                                                                                                                                                                   | Surface Elevation       |                  | 8/2/89   |
| At                                                    |                                             | alter               |                    | Inspecto               | or <u>Paul</u>            | Mazierski (WCC)                                                                                                                                                                                                                                   | Date Start <u>7/27/</u> | 789 Finish       | 8/2/89   |
| E                                                     | CORE                                        | RQD                 | RECOVERY           | CORE TYPE<br>& RESIST. | ERE                       | FIELD IDENTIFICATION, TYPE                                                                                                                                                                                                                        | E AND COLOR             | FRACTUR          | ES BED   |
| DEPTH                                                 | RUN                                         | ļ                   |                    | L Sign                 | STRATA<br>CHANGE<br>DEPTH | WEATHERING, SEAMS IN ROCK,                                                                                                                                                                                                                        |                         |                  |          |
|                                                       | FROM TO                                     | INCH %              | INCH %             | 0~                     | 800                       |                                                                                                                                                                                                                                                   |                         | No./Ft.          | DIP* DIP |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Gener | 7/27/89 RUN 1 7.5'-10.8'  RUN 2 10.8'-12.6' | 0.35'/1.8'<br>(19%) | 2.5'/3.3'<br>(76%) | NX<br>NX               | 559.8                     | Fine to medium grained, medium to dark gray, bedded dolomite, highly fractured abundant sty bedded throughout  Medium grained, medium to dark gray, medius bedded dolomite, some isolated vugs after 11.5 than run 1  CONTINUED ON THE NEXT SHEET | m to massive            | Highly Fractured |          |
|                                                       | - 100% w                                    | ater loss at        | 10' during o       | oring a                | ınd reami                 | ing operations (setting 6" casing) - C                                                                                                                                                                                                            | CD-zone                 | Total Depth      | _50.0'   |
| Iracti                                                | ire noted at                                | 40.5′, 100          | % water loss       | •                      |                           |                                                                                                                                                                                                                                                   |                         | Total Deput      |          |
|                                                       |                                             |                     |                    |                        |                           |                                                                                                                                                                                                                                                   | _                       | Rock Drilling    | 31.1     |
| % Prop                                                | ortions used:                               | race 0-10%,         | little 10-20%, s   | ome 20-3               | 35%, and 3                | 35-50%                                                                                                                                                                                                                                            |                         | Hole No. OB      | A-8C/CD  |



|                                                          | Ground V                                     | ater Observati                                 | On                                    | Job C                  | LIN - R                                         | FI No. 88C2346-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Boring Number                                                                           | OBA-8C/       | CD_     |
|----------------------------------------------------------|----------------------------------------------|------------------------------------------------|---------------------------------------|------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------|---------|
| At                                                       | 1                                            | t. at Comple                                   | tion                                  | Drilling               | Rig A                                           | CKER AD II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Boring Offset                                                                           |               |         |
| At                                                       |                                              | t. after                                       |                                       |                        | · •                                             | Schroder (Emp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                       |               |         |
| At                                                       |                                              |                                                |                                       | -                      |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surface Elevation                                                                       | 570.6         | 0/2/00  |
| At                                                       |                                              | t. alter                                       | hrs.                                  | Inspect                | or <u>Paul</u>                                  | Mazierski (WCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date Start 7/27/8                                                                       | Finish _      | 8/2/89  |
| ОЕРТН                                                    | CORE<br>RUN                                  | RQD                                            | RECOVERY                              | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                       | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         | FRACTURE      | BED     |
| =                                                        | FROM TO                                      | INCH %                                         | INCH %                                | 20%<br>R. R.           | ್ದರ_                                            | WENTHERING, SERIES IN ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , eic.                                                                                  | No./Ft. D     | IP* DIP |
| 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | RUN 2<br>28.2'-33.2'<br>RUN 3<br>33.2'-38.2' | 1.8'/4.2' (43%)  1.5'/5' (30%)  3.95'/5' (79%) | 3.9°/4.2°<br>(93%)<br>5°/5°<br>(100%) | NX NX                  | 546.6<br>24.0<br>545.6<br>25.0<br>540.9<br>29.7 | GROUT PLUG  Fine to medium grained, medium to dark gray massive bedded dolomite, finely bedded with a in highly fractured area centered around 26°, leads to brown dolomite, brown coral pods abundant, a isolated vugs and calcite filled voids - same, decrease in coral abundance from 28.5  Fine to medium grained, medium gray to brown dolomite, occasional limited thinly bedded zon fracturing is observed, occasional calcite filled stylolites, small isolated coral colonies, modern - same, large calcite filled void at 33.3°, slight - same, thinly bedded fractured zones not as exmottled zones with small brown coral pods, so CONTINUED ON THE NEXT SHEET | ark gray and ome stylolites, ' to 29.7'  In, massive es where voids and ately fractured | 7             |         |
|                                                          | al Notes:<br>- 100 %<br>ure noted            | water loss a<br>at 46.5', 100                  | t 10' during<br>0% water los          | coring a               | and ream                                        | ing operations (setting 6" casing) - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CD-zone                                                                                 | Total Depth   | _50.0'  |
|                                                          | •                                            |                                                |                                       |                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | Rock Drilling | 31.1    |
| % Pro                                                    | portions use                                 | i: trace 0-10%                                 | , little 10-20%,                      | some 20-               | 35%, and                                        | 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         | Hole No. OB.  | A-8C/CD |



|             | Ground Wa                | ter Observation         | on.                      | Job . C                | LIN - R                   | FI No. 88C2346-2                                                                   | Boring Number                         | OBA-8C                | /CD      |
|-------------|--------------------------|-------------------------|--------------------------|------------------------|---------------------------|------------------------------------------------------------------------------------|---------------------------------------|-----------------------|----------|
| l A         | t Ft.                    | at Comple               | tion                     | Drilling               | Rie A                     | CKER AD II                                                                         | Boring Offset                         |                       |          |
| 1           | .t Ft.                   |                         |                          |                        |                           | Schroder (Emp)                                                                     | _                                     |                       |          |
| 1           | t Ft.                    | _                       |                          | •                      |                           |                                                                                    | Surface Elevation                     |                       | 0/0/00   |
| <u> </u>    | t Ft.                    | aner                    | hrs.                     | _                      | or <u>Paul</u>            | Mazierski (WCC)                                                                    | Date Start 7/27                       | /89 Finish            | 8/2/89   |
| ĺΞ          | CORE                     | RQD                     | RECOVERY                 | CORE TYPE<br>& RESIST. | 뜨명포                       | FIELD IDENTIFICATION, TYPE                                                         | E AND COLOR                           | FRACTUR               | ES BED   |
| L L         | RUN                      |                         |                          | L WE                   | STRATA<br>CHANGE<br>DEPTH | WEATHERING, SEAMS IN ROCK                                                          |                                       |                       |          |
|             | FROM TO                  | INCH %                  | INCH %                   | 0~                     | တပ                        |                                                                                    |                                       | No./Ft.               | DIP* DIP |
| £           |                          |                         |                          |                        |                           | SAME AS ABOVE                                                                      |                                       | = 3                   |          |
| <u>-</u> 41 |                          | 1                       |                          | ļ                      | -                         |                                                                                    |                                       | F <sub>2</sub>        |          |
| E 41        |                          |                         |                          |                        |                           |                                                                                    |                                       | E                     |          |
| - 42<br>-   |                          |                         |                          |                        |                           |                                                                                    |                                       | <b>E</b> <sup>2</sup> |          |
| Ē 43        |                          |                         | 1 01/1 01                | \. <u></u>             |                           | - same, several large calcite filled voids betwee                                  | on 43 2' and 43 5'                    | F 1                   |          |
| -           | RUN 5<br>43.2'-45'       | 1'/1.8'<br>(56%)        | 1.8'/1.8'<br>(100%)      | NX                     |                           | moderately fractured                                                               | , , , , , , , , , , , , , , , , , , , |                       |          |
| - 44<br>E   |                          |                         |                          |                        | -                         |                                                                                    |                                       | E 3                   |          |
| £ 45        | 8/3/89                   | 0.7'/5'                 | 4.45'/5'                 | NX                     | - 525.6<br>- 45.0         | Fine to medium grained, medium to dark gray                                        | , medium to                           | - 8                   |          |
| -<br>- 46   | RUN 1<br>45'-50'         | (14%)                   | (89%)                    | 1                      |                           | massive bedded dolomite, some brown mottlin<br>stylolites and calcite filled voids | g, occasional                         | E                     |          |
| E 46        |                          |                         |                          |                        | -                         |                                                                                    |                                       | E <sup>7</sup>        |          |
| _ 47        |                          |                         |                          |                        | -                         |                                                                                    |                                       | F <sub>6</sub>        |          |
| Ė"          |                          |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
| Ė 48        |                          |                         |                          |                        |                           |                                                                                    |                                       | E 7+                  |          |
| _ 49        |                          |                         |                          |                        | -                         |                                                                                    |                                       | <u></u>               |          |
| È 50        |                          |                         |                          |                        | 520.6                     |                                                                                    |                                       | F                     |          |
| L 50        |                          |                         |                          |                        | 50.0                      |                                                                                    |                                       | T i                   |          |
| Ι.          |                          |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
| ι           |                          | }                       |                          |                        |                           |                                                                                    |                                       |                       |          |
| 1           |                          |                         |                          |                        |                           | •                                                                                  |                                       | 1 {                   |          |
|             |                          |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
|             |                          |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
| 1           |                          | l                       | }                        |                        |                           |                                                                                    |                                       |                       |          |
| •           |                          |                         |                          |                        |                           |                                                                                    |                                       |                       | ·   ]    |
| 1           |                          |                         |                          |                        |                           |                                                                                    |                                       | 1                     |          |
| ı           | ļ                        | ļ                       | ŀ                        | }                      |                           |                                                                                    |                                       |                       |          |
|             |                          |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
|             |                          |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
| •           | ĺ                        |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
| 1           |                          |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
| [           |                          |                         |                          |                        |                           |                                                                                    |                                       |                       |          |
| Gene        | rsl Notes:               |                         |                          |                        |                           |                                                                                    |                                       | •                     | '        |
| fract       | - 100% w<br>ure noted at | ater loss at 46.5'. 100 | 10' during of water loss | oring a                | nd ream                   | ing operations (setting 6" casing) - (                                             | CD-zone                               | Total Depth           | _50.0    |
|             |                          |                         |                          |                        |                           |                                                                                    |                                       | Dark Primi            | 21 1     |
| 1           |                          |                         |                          |                        |                           |                                                                                    |                                       | Rock Drilling         | 31.1     |
| %Pm         | portions used:           | mce 0-10%               | little 10-20%, a         | ome 20.                | 25% and                   | 35-50%                                                                             |                                       | Hole No. OB           | A-8C/CD  |



|           |                      | ter Observat |                 | Jop C                  | lin Plan                  | t RFI No. 4E02704                                                                               | Boring Number                        | <u> DBA-11</u> | <u>IB</u>  |              |
|-----------|----------------------|--------------|-----------------|------------------------|---------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------|----------------|------------|--------------|
| At        |                      | at Comple    |                 | Drilling               | Rig Cl                    | ME-550                                                                                          | Boring Offset                        |                |            |              |
| At        |                      |              |                 |                        |                           | winnitch (SJB)                                                                                  | Surface Elevation                    | 571.0          |            |              |
|           | Ft.                  |              |                 | •                      |                           | ık Garbe                                                                                        | Surface Elevation  Date Start 12/2/9 |                | 12         | /2/02        |
|           |                      |              |                 |                        |                           |                                                                                                 | Date Start 12/2/3                    | rinish         |            | . 23         |
| ĬΤ        | CORE<br>RUN          | RQD          | RECOVERY        | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE A                                                                    | ND COLOR                             | FRACTU         | RES        | BED          |
| рертн     |                      | IN CO.       | FFE-            | -<br>FR원               | STR<br>HA<br>DEP          | WEATHERING, SEAMS IN ROCK,                                                                      |                                      | \$1 - 1 - 1    | D          | <u> </u>     |
|           | FROM TO              | INCH %       | FEET %          | రళ                     |                           | 0. 1                                                                                            |                                      | No./Ft.        | DIP*       | DIP          |
|           |                      |              |                 |                        |                           | See log of soil boring OBA-11A for descript soil                                                | tion of overlying                    | E              |            |              |
| - 1       |                      |              |                 |                        | -                         |                                                                                                 |                                      | -              |            |              |
| 1         |                      |              |                 |                        | <b>-</b>                  |                                                                                                 |                                      | <b> </b>       |            |              |
| [         |                      |              |                 |                        |                           |                                                                                                 |                                      | E Ì            |            |              |
| - 2<br>-  |                      |              |                 |                        | <u> </u>                  |                                                                                                 |                                      | ⊧ l            |            |              |
|           |                      |              |                 |                        | -<br>-                    |                                                                                                 |                                      | <b> </b>       |            |              |
| - 3<br>-  |                      |              |                 |                        | -                         |                                                                                                 |                                      | E              |            |              |
| [         |                      |              |                 |                        |                           |                                                                                                 |                                      | E              |            |              |
| - 4       |                      |              |                 |                        | -                         |                                                                                                 |                                      | <u> </u>       |            |              |
| -         |                      |              |                 |                        | <u> </u>                  |                                                                                                 |                                      | F              |            |              |
| - 5       |                      |              |                 |                        |                           |                                                                                                 |                                      | <u>-</u>       |            |              |
|           |                      |              |                 |                        | ŀ                         |                                                                                                 |                                      | Ļ l            |            |              |
| - 6       |                      |              |                 |                        | _                         |                                                                                                 |                                      | ļ l            |            |              |
|           |                      |              |                 |                        | -                         |                                                                                                 |                                      | -              |            |              |
| ا ا       |                      |              |                 |                        | _                         |                                                                                                 |                                      | E              |            |              |
| - 7<br>-  |                      |              |                 |                        | Ł                         |                                                                                                 |                                      | <u> </u>       |            |              |
| <b>:</b>  |                      |              |                 |                        | -                         |                                                                                                 |                                      | -              |            |              |
| - 8       |                      |              |                 |                        | 562.5                     |                                                                                                 |                                      | E              |            |              |
|           | 12/02/93             | 36.5*/60*    |                 | HQ                     | 8.5                       | Brown-gray to gray, slightly weathered to h                                                     |                                      | <b>E</b> 2     |            |              |
| - 9       | Run #1<br>8.5'-13.5' | = 61%        | = 90%           |                        | -                         | fracture faces and in voids, thick bedded, fit<br>grained, fossiliferous calcitic Dolostone. O  | ccassional                           | 3              |            |              |
|           |                      |              |                 |                        | <del> </del><br> -        | stylolites and carbonaceous partings, signifi-<br>porosity due to dissolution of calcite. Predo | cant secondary<br>minant fossil is   | -              |            |              |
| -<br>- 10 |                      |              |                 |                        |                           | Favosites.                                                                                      |                                      | - 3            |            |              |
|           |                      |              |                 |                        | ŀ                         |                                                                                                 |                                      | <u> </u>       |            |              |
| - 11      |                      |              |                 |                        | <u>-</u>                  |                                                                                                 |                                      | 5              |            |              |
|           |                      |              |                 |                        | 559.5<br>- 11.5           | Becoming highly porous, dolomitic limestor                                                      | ie hioberm                           | £              |            |              |
| -<br>- 12 |                      |              |                 |                        | -                         | (Favosites)                                                                                     | Jones III                            | ١,             |            |              |
| ţ         |                      |              |                 |                        | 558.6<br>12.4             | Becoming less fossiliferous and less porous                                                     |                                      | [ 2            |            |              |
|           |                      |              |                 |                        | 12.4                      | reso resonaterous and ress perous                                                               |                                      | E I            |            |              |
| - 13<br>- |                      |              |                 |                        | _                         | Continue to City                                                                                |                                      | 2              |            |              |
|           | Run #2               |              |                 | HQ                     |                           | Continued on Sheet 2                                                                            |                                      | <u> </u>       |            |              |
| Gener     | ral Notes:           |              |                 | ,                      |                           |                                                                                                 |                                      |                |            |              |
|           |                      |              |                 |                        |                           |                                                                                                 |                                      | Total Depth    | ı <u>2</u> | <u>25.0'</u> |
|           |                      |              |                 |                        |                           |                                                                                                 |                                      | Rock Drilli    | ng         |              |
|           |                      |              |                 |                        |                           |                                                                                                 |                                      |                |            |              |
| %Pro      | portions used:       | trace 0-10%  | , little 10-20% | , some                 | 20-35%, ε                 | and 35-50%                                                                                      |                                      | Hole No.       | OBA        | -11B         |



|                                                                                    | Ground Wa                              | ter Observat                                       | tion                                                       | Job C                  | lin Plan                               | t RFI No. 4E02704                                                                                                                                                                                                                                                                                                                                                                                                                               | Boring Number                     | OBA-11                                                                                                                                                                                  | 1 B  |       |
|------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|------------------------------------------------------------|------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| At                                                                                 | Ft.                                    | at Comple                                          | tion                                                       |                        |                                        | ME-550                                                                                                                                                                                                                                                                                                                                                                                                                                          | Boring Offset                     |                                                                                                                                                                                         |      |       |
| At                                                                                 | Ft.                                    | after                                              | hrs.                                                       |                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                 |                                                                                                                                                                                         |      |       |
| At                                                                                 | Ft.                                    | after                                              | hrs.                                                       | Operate                | or <u>K. S</u>                         | winnitch (SJB)                                                                                                                                                                                                                                                                                                                                                                                                                                  | Surface Elevation                 | <u>571.0</u>                                                                                                                                                                            |      |       |
| At                                                                                 | Ft.                                    | after                                              | hrs.                                                       | Inspect                | or Fran                                | ık Garbe                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date Start 12/2/9                 | Finish                                                                                                                                                                                  | 12   | /2/93 |
| ОЕРТН                                                                              | CORE                                   | RQD                                                | RECOVERY                                                   | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH              | FIELD IDENTIFICATION, TYPE AT<br>WEATHERING, SEAMS IN ROCK,                                                                                                                                                                                                                                                                                                                                                                                     |                                   | FRACTU                                                                                                                                                                                  | RES  | BED   |
|                                                                                    | FROM TO                                | INCH %                                             | FEET %                                                     | ပ္ပြဲဆ                 | တပ                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | No./Ft.                                                                                                                                                                                 | DIP* | DIP   |
| 15<br>- 16<br>- 17<br>- 18<br>- 19<br>- 20<br>- 21<br>- 22<br>- 23<br>- 24<br>- 25 | Run #2 13.5'-15.0'  Run #3 15.0'-20.0' | INCH   %<br>16.5*/18"<br>= 92%<br>28*/60"<br>= 47% | FEET %  1.5'/1.5' = 100%  4.5'/5.0' = 90%  4.6'/5.0' = 92% | HQ                     | - 552.9<br>- 18.1<br>- 550.7<br>- 20.3 | Becoming thin bedded, stromatolitic calcitic noted approximately 18.0' to 18.2'.  - Highly fractured 18.5' to 18.8'  - Highly fractured 19.5 to 20.0'  Becoming massive, with large solutional portweathering of calcitic fossils  - Highly fractured 20.8' to 21.1'  - Highly fractured 21.4' to 21.7' with void 2  - Highly fractured 22.8' to 23.0'  - Highly fractured 23.4' to 23.7'  Becoming thickly bedded, sacchroidal calcitic LOCKPO | es (1" to 3") from 1.5' to 21.65' | No./Ft.  I  I  I  O  Highly Fractured Highly Fractured Highly Fractured Highly Fractured Highly Fractured  Highly Fractured  Highly Fractured  Z  Highly Fractured  Z  Highly Fractured |      | DIP   |
| Cano                                                                               | ral Notes:                             |                                                    |                                                            |                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                                                                                                                                                                         |      |       |
| Gene                                                                               | at lagges;                             |                                                    |                                                            |                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | Total Depth                                                                                                                                                                             |      | 25.0' |
| %Pro                                                                               | nortions used:                         | trace 0-10%                                        | . little 10-20%                                            | h. some                | 20-35% #                               | and 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | Hole No.                                                                                                                                                                                | ŌΒA  | -11R  |



|             |                       | ter Observat     |                     | Job C                  | lin Plan                  | t RFI No. 4E02704                                                                               | Boring Number                               | <u>OBA-1</u>   | <u>1C</u>  |       |
|-------------|-----------------------|------------------|---------------------|------------------------|---------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|----------------|------------|-------|
| At          |                       | at Comple        |                     | Drilling               | Rig Cl                    | ME-550                                                                                          | Boring Offset                               |                |            |       |
|             | Ft.                   |                  |                     |                        |                           | Swinnitch                                                                                       | Surface Elevation                           | 571.0          |            |       |
| At<br>At    | Ft.                   |                  |                     | _                      |                           | k Garbe                                                                                         | Date Start 12/6/                            |                | 12         | 16103 |
| <u></u>     |                       |                  |                     | _                      |                           |                                                                                                 | Date Start 12/0/                            | rinish         |            | 10193 |
| 푸           | CORE                  | RQD              | RECOVERY            | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE A                                                                    | ND COLOR                                    | FRACTU         | RES        | BED   |
| DEPTH       | RUN                   |                  |                     | HESE.                  | TRA<br>HAN                | WEATHERING, SEAMS IN ROCK                                                                       |                                             |                |            |       |
|             | FROM TO               | INCH %           | FEET %              | රින                    | ν <sub>Ω</sub> -          |                                                                                                 |                                             | No./Ft.        | DIP*       | DIP   |
|             |                       |                  |                     |                        | -                         | See logs of soil boring OBA-11A and rock of<br>for descriptions of overlying soils and rock     | coring OBA-11B                              | -              |            |       |
| -           |                       |                  |                     |                        | -                         |                                                                                                 |                                             | -              |            |       |
| - 15        |                       |                  |                     | 1                      | -                         |                                                                                                 |                                             | F              |            |       |
| E Ì         |                       |                  |                     |                        |                           |                                                                                                 |                                             | Ē              |            | }     |
| <b>–</b> 16 |                       |                  |                     |                        |                           |                                                                                                 |                                             | _              |            |       |
| -           |                       |                  |                     |                        | -                         |                                                                                                 |                                             | _              |            |       |
| - 17        |                       |                  |                     |                        | -                         |                                                                                                 |                                             | -              |            | '     |
| -           |                       |                  |                     | 1                      | -                         |                                                                                                 |                                             | -              |            |       |
| -<br>- 18   |                       |                  |                     |                        | •                         |                                                                                                 |                                             | E              |            |       |
| - 1°        |                       |                  |                     |                        |                           |                                                                                                 |                                             | E              |            |       |
|             |                       |                  |                     |                        |                           |                                                                                                 |                                             | -              |            |       |
| − 19<br>-   |                       |                  |                     |                        | -                         |                                                                                                 |                                             | -              |            |       |
| <b> </b>    |                       |                  |                     |                        |                           |                                                                                                 |                                             | -              | '          |       |
| - 20        |                       |                  |                     |                        | -                         |                                                                                                 |                                             | _              |            |       |
| [ ]         |                       |                  |                     |                        |                           |                                                                                                 |                                             | Ē              |            |       |
| -<br>- 21   |                       |                  |                     |                        |                           |                                                                                                 |                                             | _              |            |       |
|             |                       |                  |                     |                        |                           |                                                                                                 |                                             | _              |            |       |
|             |                       |                  |                     |                        | -                         |                                                                                                 |                                             | -              |            |       |
| - 22        |                       |                  |                     |                        | 548.5                     |                                                                                                 |                                             | F              |            |       |
|             | Run #1                | 11"/30"          | 2.2'/2.5'           | HQ                     | - 22.5                    | Dark gray, weathered, medium bedded, foss                                                       | siliferous                                  | - 2            |            |       |
| 23          | 22.5'-25.0'           | = 37%            | = 88%               |                        | - 647.6                   | Limestone. Predominant fossil is Favosites.                                                     |                                             | F <sub>4</sub> |            |       |
|             |                       |                  |                     |                        | 547.6<br>23.4             | Medium to dark gray, medium to massive be                                                       | edded, weathered                            | ŧ              |            |       |
| 24          |                       |                  |                     |                        | -                         | to fresh, medium grained, calcitic Dolostone<br>pin-hole solution pits, trace fossiliferous, oc | e, little vuggy and<br>cassional stylolites | - 2            |            |       |
| -           |                       |                  |                     |                        | -                         | and carbonaceous partings                                                                       | •                                           | F *            |            |       |
| _ 25        |                       |                  |                     |                        | -                         |                                                                                                 |                                             | E              |            |       |
| ~           | Run #2<br>25.0'-30.0' | 57"/60"<br>= 95% | 4.95'/5.0'<br>= 99% | HQ                     | -                         |                                                                                                 |                                             | _0             |            |       |
| -           |                       |                  |                     |                        |                           |                                                                                                 |                                             | ļ-             |            |       |
| 26<br>-     |                       |                  |                     |                        | -                         |                                                                                                 |                                             | 1              | ļ          |       |
|             |                       |                  |                     |                        | -                         |                                                                                                 |                                             | F              |            |       |
| _ 27        |                       |                  |                     |                        | -                         |                                                                                                 |                                             | - 1            |            |       |
|             |                       |                  |                     |                        | · '                       | Continued on Next Page                                                                          |                                             | E              |            |       |
| -           |                       |                  |                     |                        |                           |                                                                                                 |                                             | _              |            |       |
| Gener       | al Notes:             |                  |                     |                        |                           |                                                                                                 |                                             | Total Depti    | n <u>4</u> | 18.0' |
|             |                       |                  |                     |                        |                           |                                                                                                 |                                             | Rock Drilli    | ng _       |       |
| %Pro        | portions used:        | trace 0-10%      | , little 10-20 %    | , some :               | 20-35%, a                 | nd 35-50%                                                                                       |                                             | Hole No.       | OBA-       | -11C  |



|             | Ground Wa             | ter Observat       | tion                |                        |                           | AT00004                                                                                  |                   | OD 4 44        |        |       |
|-------------|-----------------------|--------------------|---------------------|------------------------|---------------------------|------------------------------------------------------------------------------------------|-------------------|----------------|--------|-------|
|             | Ft.                   |                    |                     | Job C                  | lin Plan                  | t RFI No. 4E02704                                                                        | Boring Number     | OBA-1          | IC     |       |
|             |                       | -                  |                     | Drilling               | Rig C                     | ME-550                                                                                   | Boring Offset     |                |        |       |
|             | Ft.                   |                    |                     |                        |                           | Swinnitch                                                                                |                   | 571.0          |        |       |
|             | Ft.                   |                    |                     | _                      |                           |                                                                                          | Surface Elevation |                |        |       |
| A           | Ft.                   | arter              | hrs.                | •                      | or Fran                   | ık Garbe                                                                                 | Date Start 12/6/  | 93 Finish      | 12     | /6/93 |
| рертн       | CORE<br>RUN           | RQD                | RECOVERY            | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE AI<br>WEATHERING, SEAMS IN ROCK,                              |                   | FRACTUI        |        | BED   |
| 1           | FROM TO               | INCH %             | FEET %              | ర్దిత                  | 80                        |                                                                                          |                   | No./Ft.        | DIP*   | DIP   |
| _           |                       |                    |                     |                        |                           | As Above                                                                                 |                   |                |        |       |
| -           |                       |                    |                     |                        | [                         |                                                                                          |                   | E              |        |       |
| <b>– 29</b> |                       |                    |                     |                        | - 541.9<br>- 29.1         | Becoming colitic calcitic Dolostone                                                      |                   | -2             |        |       |
| -           |                       |                    |                     |                        | -                         | Documing control and the Dolostone                                                       |                   | <u> </u>       |        |       |
| -<br>30     | D #2                  | (01/(01            | 5 01/5 01           |                        |                           |                                                                                          |                   | <u> </u>       |        |       |
| -           | Run #3<br>30.0'-35.0' | 60"/60"<br>= 100%  | 5.0'/5.0'<br>= 100% | HQ                     | ţ                         |                                                                                          |                   | F 0            |        |       |
|             |                       |                    |                     |                        | ţ                         |                                                                                          |                   | <u> </u>       |        |       |
| - 31<br>-   |                       |                    |                     |                        | -                         |                                                                                          |                   | F 0            |        |       |
| -           |                       |                    |                     |                        | -                         |                                                                                          |                   | <u> </u>       |        |       |
| -<br>- 32   |                       |                    |                     |                        | -                         |                                                                                          |                   | <b>L</b> .     |        |       |
| - '         |                       |                    |                     |                        | -                         |                                                                                          |                   | <u> </u>       |        |       |
| -           |                       |                    |                     |                        | ļ                         |                                                                                          |                   | -              |        |       |
| - 33<br>-   |                       |                    |                     |                        | -                         |                                                                                          |                   | F 0            |        |       |
| -           |                       |                    |                     |                        | -                         |                                                                                          |                   | ‡              |        |       |
| -<br>- 34   |                       |                    |                     |                        | -                         |                                                                                          |                   | F.             |        |       |
| -           |                       |                    |                     |                        | 536.5                     |                                                                                          |                   | ļ '            |        |       |
|             |                       |                    |                     |                        | 34.5                      | Becoming brownish-gray, medium to fine gr<br>thick bedded, calcitic Dolostone. Medium gr | ained, medium to  | -              |        |       |
| - 35<br>-   | Run #4<br>35.0'-40.0' | 59"/60"<br>= 98%   | 4.9'/5.0'<br>= 98%  | HQ                     | -                         | increased porosity.                                                                      |                   | F 0            |        |       |
| -           | 33.0 -40.0            | 70%                | - 36 %              |                        | -                         |                                                                                          |                   | -              |        |       |
| _ 36        |                       |                    |                     |                        | -                         |                                                                                          |                   | E.             |        |       |
| _           |                       | l                  |                     |                        |                           |                                                                                          |                   | E              |        |       |
| -<br>- 37   |                       |                    |                     |                        | _                         |                                                                                          |                   | E              |        |       |
|             |                       |                    |                     |                        | 533.4                     |                                                                                          |                   |                |        | )     |
| -           |                       |                    |                     |                        | 37.6                      | Becoming gray, fine grained, argillaceous D                                              | olostone          | -              |        |       |
| _ 38        |                       |                    |                     |                        | _ 533.0<br>- 38.0         | Becoming brownish-gray, medium grained,                                                  | medium to thick   | <u> </u>       |        |       |
| -           |                       |                    |                     |                        | -                         | bedded, vuggy, fossiliferous calcitic Dolosto<br>stylolitic and oolitic beds             | one, occassional  | ļ l            |        |       |
| - 39        |                       |                    |                     |                        | -                         |                                                                                          |                   | F.             |        |       |
| -           |                       |                    |                     |                        | -                         |                                                                                          |                   | - 0            |        | )     |
| - ,         |                       |                    |                     |                        |                           |                                                                                          |                   | F \            |        |       |
| - 40<br>-   | Run #5<br>40.0'-45.0' | 50.0"/60"<br>= 84% | 4.65'/5.0'<br>= 93% | HQ                     | -                         |                                                                                          |                   | F 0            |        |       |
| -           | 40.0 -45.0            | - 64 <i>7</i> 0    | - <del>93</del> %   |                        | -                         |                                                                                          |                   | -              |        |       |
| _ 41        |                       |                    |                     |                        | -                         |                                                                                          |                   | F <sub>0</sub> |        |       |
|             |                       |                    |                     |                        |                           | Continued on Next Page                                                                   |                   | F              |        |       |
|             |                       |                    |                     |                        |                           |                                                                                          |                   | <u> </u>       |        |       |
| Gener       | ral Notes:            |                    |                     |                        |                           |                                                                                          |                   |                |        |       |
|             |                       |                    |                     |                        |                           |                                                                                          |                   | Total Depth    |        | 8.0'  |
|             |                       |                    |                     |                        |                           |                                                                                          |                   |                |        |       |
|             |                       |                    |                     |                        |                           |                                                                                          |                   | Rock Drilling  | ng _   |       |
| % Dea       | portions used:        | trace 0.10%        | little 10 200       | some '                 | 20.35% -                  | nd 25 50%                                                                                | ,                 | Hole No.       | OD 4   | 110   |
| WITO        | COLLEGIUS HSCAL       | LIBERTURE IV W     |                     | . MIDE                 |                           | UNA 1.1=.R170                                                                            |                   | - HOLE NA      | r. A . |       |



|                             |                       | iter Observat    |                  | Job C   | Olin Plan                                                                                               | t RFI No. 4E02704                                                                            | Boring Number     | <u> DBA-1</u> | <u>1C</u> |            |
|-----------------------------|-----------------------|------------------|------------------|---------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|---------------|-----------|------------|
|                             | Ft.                   | _                |                  | Drillin | g Rig Cl                                                                                                | ME-550                                                                                       | Boring Offset     |               |           |            |
|                             | Ft.                   |                  |                  |         |                                                                                                         | Swinnitch                                                                                    | Surface Elevation |               |           |            |
|                             | Ft.                   |                  |                  | _       |                                                                                                         | ak Garbe                                                                                     | Date Start 12/6/9 |               | 12        | <br>2/6/93 |
| DЕРТН                       | CORE                  | RQD              | RECOVERY         | # F-    | STRATA<br>CHANGE<br>DEPTH                                                                               | FIELD IDENTIFICATION, TYPE A WEATHERING, SEAMS IN ROCK                                       | AND COLOR         | FRACTU        |           | BED        |
|                             | FROM TO               | INCH %           | FEET %           | S<br>S  |                                                                                                         | WEATHER MAY SEAME IN NOON                                                                    | , 010.            | No./Ft.       | DIP*      | DIP        |
| 43 - 44 - 45 - 46 - 47 - 48 | Run #6<br>45.0'-48.0' | 35"/36"<br>= 97% | 3.0'/3.0' = 100% | HQ      | 528.8<br>42.2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Becoming medium to thin bedded, collitic at Dolostone, trace to little fossiliferous  LOCKPO | ORT FORMATION     |               |           |            |
|                             | ral Notes:            |                  |                  |         |                                                                                                         |                                                                                              |                   | Total Dept    | ing _     | 48.0'      |
| 0/ D                        |                       | 0 100            | 1:41- 10 200     | _       | 00 05 0                                                                                                 | 105 504                                                                                      |                   | TT-1- NI-     | ODA       | 110        |



| l          | Ground Wa                           | ter Observat     | tion               | лор <u>С</u>                    | Olin Plan                                                          | t RFI No. 4E02704                                                                                                                                                                                                                                                                                                                                                        | Boring Number                                           | <u> OBA-12</u>                               | 2B       |       |
|------------|-------------------------------------|------------------|--------------------|---------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|----------|-------|
|            | Ft.                                 | -                |                    | Drillin                         | Rio C                                                              | ME-550                                                                                                                                                                                                                                                                                                                                                                   | Boring Offset                                           |                                              |          |       |
|            | Ft.                                 |                  |                    |                                 |                                                                    | Clinia (CID)                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                              | _        |       |
|            | Ft.                                 |                  |                    |                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                          | Surface Elevation                                       |                                              |          |       |
| At         | Ft.                                 | after            | hrs.               | _                               | or Fran                                                            | ık Garbe                                                                                                                                                                                                                                                                                                                                                                 | Date Start 12/20                                        | /93 Finish                                   | 12/2     | 20/93 |
| рертн      | CORE<br>RUN                         | RQD              | RECOVERY           | CORE TYPE<br>& RESIST.          | STRATA<br>CHANGE<br>DEPTH                                          | FIELD IDENTIFICATION, TYPE A                                                                                                                                                                                                                                                                                                                                             |                                                         | FRACTU                                       | RES      | BED   |
| 👸          | FROM TO                             | INCH %           | FEET %             | _<br>_<br>_<br>_<br>_<br>_<br>_ | 유민                                                                 | WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                                | , etc.                                                  | No./Ft.                                      | DIP*     | DIP   |
| 11 12 - 13 | Run #1 5.3'-9.6'  Run #2 9.6'-14.6' | 32"/60"<br>= 53% | 4.9'/5.0'<br>= 98% | HQ                              | 566.2<br>- 562.4<br>- 9.1<br>- 561.8<br>- 9.7<br>- 560.9<br>- 10.6 | See soil boring log and rock coring log of C description of overlying soil and rock.  Grout  Medium gray, fine grained, slightly weather thin bedded, calcitic Dolostone, little fossilistylolites  Medium gray, weathered, fossiliferous calcifrequent solution pitting.  Becoming medium to fine grained, less fossibles fossiliferous calcifred the solution pitting. | red, medium to<br>ferous, occasional<br>itic Dolostone, | - 4<br>- 6<br>- 2<br>- Highly<br>- Fractured |          |       |
|            |                                     |                  |                    |                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                         | Total Depti                                  | . 1      | 19.6' |
|            |                                     |                  |                    |                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                         | Tom nebu                                     | <u> </u> | 17.0  |
|            |                                     |                  | _                  |                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                         | Rock Drilli                                  | ing      |       |
| %Pro       | portions used:                      | trace 0-10%      | , little 10-20%    | , some                          | 20-35%, a                                                          | nd 35-50%                                                                                                                                                                                                                                                                                                                                                                |                                                         | Hole No.                                     | OBA-     | -12B  |



|       | Ground Wa             | ter Observat        | ion                    | Јоь С                  | lin Plan                  | t RFI No. 4E02704                                                                                                                                                                                      | Boring Number                       | OBA-12                                                                               | ?B   |        |
|-------|-----------------------|---------------------|------------------------|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------|------|--------|
|       | Ft.                   | _                   |                        | Drilling               | Rig CN                    | ME-550                                                                                                                                                                                                 | Boring Offset                       |                                                                                      |      |        |
|       | Ft.                   |                     |                        |                        |                           | Grigsby (SJB)                                                                                                                                                                                          |                                     | 571 5                                                                                |      |        |
|       | Ft.                   |                     |                        | _                      |                           | ık Garbe                                                                                                                                                                                               | Surface Elevation  Date Start 12/20 |                                                                                      | 12/2 | )()/Q2 |
| At    |                       |                     | mrs.                   | •                      |                           | LA COLLUC                                                                                                                                                                                              | Date Start 12/20                    | rinish                                                                               | 12/2 | -0173  |
| DEPTH | CORE<br>RUN           | RQD                 | RECOVERY               | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE A                                                                                                                                                                           |                                     | FRACTUE                                                                              | RES  | BED    |
| DE    | FROM TO               | INCH %              | FEET %                 | CO &                   | SA                        | WEATHERING, SEAMS IN ROCK,                                                                                                                                                                             |                                     |                                                                                      | DIP* | DIP    |
| 15    | Run #3<br>14.6'-19.6' | Appx. 36*/60* = 60% | Appx. 5.0'/5.0' = 100% | HQ                     | 556.2                     | Becoming brown-gray, thin bedded, fine gracalcitic Dolostone, slightly colitic. Highly 15.3'.  Becoming medium to fine grained, medium fossiliferous dolomitic Limestone, occassion stylolites  LOCKPO | fractured 13.4' to                  | Highly Highly Fractured  I Highly I Fractured  I I I I I I I I I I I I I I I I I I I |      |        |
| Gene  | ral Notes:            |                     |                        |                        |                           | Notes:  1) Recovery and RQD for Run #1 not c was cored in the bottom 0.5 feet of the 2) Recovery and RQD for Run #3 are a Rock was too highly fractured to accura parameters.                          | run.<br>pproximations.              | Total Depth                                                                          |      | 19.6'  |
| %Pro  | portions used:        | trace 0-10%         | , little 10-20         | 6, some                | 20-35%. e                 | <br>and 35-50%                                                                                                                                                                                         |                                     | Hole No.                                                                             | OBA- | -12B   |



| Δ                                     | t Ft.               | at Comple       |                  | I -                    | Olin Plar                                    |                                                                                                                                                                                                                                                                                                                                                                     | Boring Number                                  | <u> </u>         | <u> 2C</u> |               |
|---------------------------------------|---------------------|-----------------|------------------|------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|------------|---------------|
|                                       | t Ft.<br>t Ft.      | -               |                  | Drillin                | g Rig C                                      | ME-550                                                                                                                                                                                                                                                                                                                                                              | Boring Offset                                  |                  |            |               |
|                                       | t Ft.               |                 |                  | Operat                 | or <u>Dan</u>                                | Grigsby (SJB)                                                                                                                                                                                                                                                                                                                                                       | Surface Elevation                              | 571.5            |            |               |
| A                                     | t Ft.               | after           | hrs.             |                        |                                              | nk Garbe                                                                                                                                                                                                                                                                                                                                                            | Date Start 12/15/                              | 93 Finish        | _12/       | 20/93         |
| рертн                                 | CORE<br>RUN         | RQD             | RECOVERY         | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                    | FIELD IDENTIFICATION, TYPE A                                                                                                                                                                                                                                                                                                                                        |                                                | FRACTU           | RES        | BED           |
| ۵                                     | FROM TO             | INCH %          | FEET %           |                        | P 유 규                                        | WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                           | ., etc.                                        | No./Ft.          | DIP*       | DIP           |
| 1 2 3 4 5 6 6 7 7 10 11 12 12 13 Gene | Run #1<br>4.2'-9.2' | 21.5"/60" = 36% | 4.6'/5.0' = 92%  | HQ                     | 566.1<br>5.4<br>564.7<br>6.8<br>563.9<br>7.6 | Gray, fine grained, medium bedded, calcitistightly fossiliferous, occassional stylolites  Becoming medium to fine grained, more fosolution pits, moderately vuggy  Becoming highly fossiliferous and frequent pits  Becoming fine grained, less fossiliferous and large solution void  See Log of Rock Coring OBA-12B for described to 18.4  Continued on Next Page | c Dolostone, ssiliferous and pin-hole solution | Highly Fractured |            |               |
| Gene                                  | ISSTOPPI TRA        |                 |                  |                        |                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                |                  |            |               |
|                                       |                     |                 |                  |                        |                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                | Total Depth      | 1 _4       | <u> 45.0'</u> |
|                                       |                     |                 |                  |                        |                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                | Rock Drilli      | ng         |               |
|                                       |                     |                 |                  |                        |                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                |                  |            |               |
| %Pro                                  | portions used:      | trace 0-10%     | 6. little 10-209 | Some                   | 20_35%                                       | and 35-50%                                                                                                                                                                                                                                                                                                                                                          |                                                | Hole No          | OPA.       | -12C          |



|                                              |                                        |                    |                     | 300 =                  | lin Plan                                                                                                     | t RFI No. 4E02704                                                                                                                                                                                                                                                                            | Boring Number                      | ODA-14      |      |       |
|----------------------------------------------|----------------------------------------|--------------------|---------------------|------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|------|-------|
|                                              | Ft.                                    | =                  |                     | Drilling               | Rig Cl                                                                                                       | ME-550                                                                                                                                                                                                                                                                                       | Boring Offset                      |             |      |       |
|                                              | Ft.                                    |                    |                     |                        |                                                                                                              | Grigsby (SJB)                                                                                                                                                                                                                                                                                |                                    | E71 E       |      |       |
|                                              | Ft.                                    |                    |                     | 1 .                    |                                                                                                              |                                                                                                                                                                                                                                                                                              | Surface Elevation                  |             | 10 " | 10/02 |
| At                                           | Ft.                                    | after              | hrs.                | _                      | or Fran                                                                                                      | ık Garbe                                                                                                                                                                                                                                                                                     | Date Start 12/15                   | /93 Finish  | 12/2 | 20/93 |
| DEPTH                                        | CORE<br>RUN                            | RQD                | RECOVERY            | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                                                                                    | FIELD IDENTIFICATION, TYPE A                                                                                                                                                                                                                                                                 |                                    | FRACTU      | RES  | BED   |
|                                              | FROM TO                                | INCH %             | FEET %              | <br>                   | S S S                                                                                                        | WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                    | , etc.                             | No./Ft.     | DIP* | DIP   |
| - 15<br>- 16<br>- 17<br>- 18<br>- 19<br>- 20 | Run #2 18.4'-20.0'  Run #3 20.0'-25.0' | 15.5*/19*<br>= 82% | 1.6'/1.6'<br>= 100% | HQ                     | 553.1<br>18.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Dark gray to brown-gray, medium to fine gray thick bedded, dolomitic Limestone, little for solutional voids, trace oolites  Becoming fossiliferous, occassional vug  Medium to dark gray, thick bedded, slightly Dolostone, some pin-hole solution pits, style occassional oolitic and vuggy | rained, medium to siliferous, some | No./Ft.     | DIP* | DIP   |
| 26                                           | Run #4<br>25.0'-30.0'                  | 59*/60*<br>= 98%   | 5.0°/5.0°<br>= 100% | но                     | 546.3                                                                                                        | Becoming predominantly collitic  Continued on Next Page                                                                                                                                                                                                                                      |                                    | Total Depti |      | 15.0  |
| %Pron                                        | ortions used:                          | <br>trace 0-10%    | . little 10-20      | %. some                | 20-35%. s                                                                                                    | and 35-50%                                                                                                                                                                                                                                                                                   |                                    | Hole No.    | OBA. | -12C  |



|                      | Ground Wa             | ter Observal      | tion                | Job C                  | lin Plan                                                                                    | nt RFI No. 4E02704_                                                                                                          | Boring Number     | <b>OBA-12</b>                        | 2C    |       |
|----------------------|-----------------------|-------------------|---------------------|------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------|-------|-------|
| At                   | Ft.                   | at Comple         | tion                | Drilling               | Rio Cl                                                                                      | ME-5 <u>5</u> 0                                                                                                              | Boring Offset     |                                      |       |       |
| Αı                   | Ft.                   | after             | hrs.                |                        |                                                                                             |                                                                                                                              |                   |                                      |       |       |
| Aı                   | Ft.                   | after             | hrs.                | l .                    |                                                                                             | Grigsby (SJB)                                                                                                                | Surface Elevation |                                      |       |       |
| Aı                   | Ft.                   | after             | hrs.                | _                      | or Fran                                                                                     | ık Garbe                                                                                                                     | Date Start 12/15/ | / <u>93</u> Finish                   | 12/   | 20/93 |
| рертн                | CORE                  | RQD               | RECOVERY            | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                                                                   | FIELD IDENTIFICATION, TYPE A<br>WEATHERING, SEAMS IN ROCK                                                                    |                   | FRACTU                               |       | BED   |
|                      | FROM TO               | INCH %            | FEET %              | පින                    | ဖပ                                                                                          |                                                                                                                              |                   | No./Ft.                              | DIP*  | DIP   |
| - 29<br>- 30<br>- 31 | Run #5<br>30.0'-35.0' | 57"/60"<br>= 95%  | 4.75'/5.0'<br>= 95% | но                     | 542.5                                                                                       | As Above  Becoming fossiliferous and sacchroidal, inc vugs, occassional oolitic  - with carbonaceous partings and stylolites | reasing gypsum    | 0                                    |       |       |
| 32                   |                       |                   |                     |                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                              |                   | -<br>-<br>-<br>0<br>-<br>-<br>-<br>1 |       |       |
| 34                   | Run #6<br>35.0'-40.0' | 60"/60"<br>= 100% | 5.0'/5.0' = 100%    | HQ                     |                                                                                             |                                                                                                                              |                   |                                      |       |       |
| 38                   | Run #7<br>40.0'-45.0' | 54*/60*<br>= 90%  | 5.0'/5.0' = 100%    | НQ                     | 530.1                                                                                       | -Large gypsum vug<br>Becoming coarse to medium grained and ve                                                                | ery fossiliferous |                                      |       |       |
|                      | ral Notes:            |                   |                     |                        | 00.05~                                                                                      | 125 50%                                                                                                                      |                   | Total Depti                          | ing _ | 45.0' |
| %Pro                 | portions used:        | trace 0-10%       | 6, little 10-20!    | %, some                | 20-35%, a                                                                                   | and 35-50%                                                                                                                   |                   | Hole No.                             | ORV   | -12C  |



|                |                | ter Observat |                                       | Job C    | lin Plan                  | t RFI No. 4E02704            | Boring Number     | <u> </u>              | 2C_   |       |
|----------------|----------------|--------------|---------------------------------------|----------|---------------------------|------------------------------|-------------------|-----------------------|-------|-------|
| ,              | Ft.            |              |                                       | Drilling | g Rig Cl                  | ME-550                       | Boring Offset     |                       |       |       |
|                | Ft.            |              |                                       |          |                           | Grigsby (SJB)                | Surface Elevation |                       |       |       |
|                | Ft.            |              |                                       | _        |                           | ak Garbe                     | Date Start 12/15  |                       |       |       |
| рертн          | CORE           | RQD          | RECOVERY                              | # ·      | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE A |                   | FRACTU                |       | BED   |
| DE!            |                | INCH %       | FEET %                                | 808      | STR                       | WEATHERING, SEAMS IN ROCK    | , etc.            | No./Ft.               | DIP*  | DIP   |
| _              | PROWI TO       | IIII 70      | / / / / / / / / / / / / / / / / / / / | 3~       |                           | As Above                     |                   | L 0                   |       |       |
| - 43           |                |              |                                       |          | -                         |                              |                   | -<br>-<br>-<br>-<br>- |       |       |
| -<br>-<br>- 44 |                |              |                                       |          | -                         | LOCKPO                       | ORT FORMATION     | -<br>-<br>-<br>3      |       |       |
| Ė              |                |              |                                       |          | -                         |                              |                   |                       |       |       |
| -<br>- 45      |                |              |                                       | _        | 526.5<br>45.0             | -Becoming fine grained       |                   | -                     |       |       |
|                |                |              |                                       |          | 45.0                      |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   | ĺ                     |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
|                |                |              |                                       |          |                           |                              |                   |                       |       |       |
| Gene           | ral Notes:     |              |                                       |          |                           |                              |                   | Total Dept            | h _4  | 45.0' |
|                |                |              |                                       |          |                           |                              |                   | Rock Drill            | ing _ |       |
| %Pro           | portions used: | trace 0-10%  | 6, little 10-20                       | %, some  | 20-35%,                   | and 35-50%                   |                   | Hole No.              | OBA   | -12C  |



|                                                                              | Ground Wat                        |                                       |                                           | Job C                  | lin Plan                                                             | t RFI No. 4E02704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Boring Number                                                                                                                                                                                   | <u> </u>                                                                                                  | 3B   |               |
|------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------|------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------|---------------|
|                                                                              | Ft.                               | -                                     |                                           | Drilling               | g Rig Cl                                                             | ME-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boring Offset                                                                                                                                                                                   |                                                                                                           |      |               |
|                                                                              | Ft.                               |                                       |                                           |                        |                                                                      | Lamm (SJB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surface Elevation                                                                                                                                                                               | 572.0                                                                                                     |      |               |
|                                                                              | Ft.<br>Ft.                        |                                       |                                           | · •                    | '                                                                    | e Friedman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date Start 4/8/94                                                                                                                                                                               |                                                                                                           | 4/1  | <br>19/94     |
|                                                                              |                                   |                                       |                                           | •                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dan 3441 -110134                                                                                                                                                                                | rinish                                                                                                    |      |               |
| DEРТН                                                                        | RUN                               | RQD                                   | RECOVERY                                  | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                                            | FIELD IDENTIFICATION, TYPE A WEATHERING, SEAMS IN ROCK,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                 | FRACTUF                                                                                                   | RES  | BED           |
| ۵                                                                            | FROM TO                           | INCH %                                | FEET %                                    | 08                     | 연하고                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 | No./Ft.                                                                                                   | DIP* | DIP           |
| - 18<br>- 19<br>- 20<br>- 21<br>- 22<br>- 23<br>- 24<br>- 25<br>- 26<br>- 27 | 04/08/94<br>Run #1<br>16.9'-20.9' | 37*/48*<br>= 77%<br>86*/105*<br>= 82% | 3.6'/4.0'<br>= 90%<br>8.8'/8.8'<br>= 100% | HQ                     | 555.1<br>- 555.0<br>- 19.0<br>- 550.1<br>- 21.9<br>- 547.3<br>- 24.7 | Gray, thick to medium bedded, fresh to modinterstratified argillaceous and fine sandy ca Dolostone, numerous pinhole pores, occassistylolites, and carbonaceous partings, native staining  Gray, thick bedded, slightly weathered, fost calcareous Dolostone, predominant fossil is gyptiferous, occassional stylolites and carbo Moderate secondary porosity associated with Bituminous stain 19.15 to 19.25 feet, 19.6 to 20.9 feet.  Medium to dark gray, medium bedded, carb Dolostone  Medium to light gray, thick to massively be slightly weathered, medium to fine sandy carbonatory processionally bituminous.  Medium to light gray, massive, slightly weathered, medium to fine sandy carbonatory processionally bituminous. | derately weathered, alcareous ional gypsum vugs, e bituminous  silliferous Favosites, onaceous partings. to 19.9 feet, and conaceous  added, fresh to alcareous ous pinhole pores, inant fossil | Highly Fractured Highly Fractured Thighly Fractured Thighly Fractured Thighly Fractured Thighly Fractured |      |               |
| Gener                                                                        | ral Notes:                        |                                       |                                           |                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                           |      | NO =          |
|                                                                              |                                   |                                       |                                           |                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 | Total Depth                                                                                               | 1 _2 | <u> 29.7'</u> |
|                                                                              |                                   |                                       |                                           |                        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 | Rock Drilli                                                                                               | ng _ |               |
| %Pro                                                                         | portions used:                    | trace 0-10%                           | 6, little 10-20%                          | 5, some                | 20-35%. s                                                            | and 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                 | Hole No.                                                                                                  | OBA  | -13B          |



|              | Ground V     | Vater Observa       | tion            | П   | Job C                                 | lin Plan                              | t RFI No. 4E02704                                      | Boring Number     | OBA-1       | 3B   |               |
|--------------|--------------|---------------------|-----------------|-----|---------------------------------------|---------------------------------------|--------------------------------------------------------|-------------------|-------------|------|---------------|
| At           | F            | t. at Comple        | etion           | _   | _                                     | g Rig Cl                              |                                                        | Boring Offset     |             |      |               |
| At           | F            | t. after            | hrs.            | - 1 |                                       |                                       |                                                        | _                 |             |      |               |
|              |              | it. after           |                 |     | _                                     | · · · · · · · · · · · · · · · · · · · | Lamm (SJB)                                             | Surface Elevation |             |      |               |
| At           | F            | t. after            | hrs.            |     | -                                     | or <u>Dave</u>                        | Friedman                                               | Date Start 4/8/94 | Finish      | 4/   | <u> 19/94</u> |
| <b>DEPTH</b> | CORE         | RQD                 | RECOVE          | ERY | CORE TYPE<br>& RESIST.                | STRATA<br>CHANGE<br>DEPTH             | FIELD IDENTIFICATION, TYPE A WEATHERING, SEAMS IN ROCK |                   | FRACTU      | RES  | BED           |
|              | FROM TO      | INCH %              | FEET            | %   | S S                                   | 윤승교                                   | WEATTERING, SEAMS IN NOCK                              | , etc.            | No./Ft.     | DIP* | DIP           |
| 29           | FROM TO      | INCH   %   86"/105" | 8.878.8° = 100% |     | S S S S S S S S S S S S S S S S S S S | 542.3                                 | As Above  LOCKPO                                       | DRT FORMATION     | No./Ft.     | DIP* | DIP           |
|              | al Notes:    |                     |                 |     |                                       |                                       |                                                        |                   | Total Depti | ng _ | 2 <u>9.7'</u> |
| %Pro         | portions use | d: trace 0-10%      | , little 10-    | 20% | , some 2                              | 20-35%, a                             | nd 35-50%                                              |                   | Hole No.    | OBA  | -13B          |



|                                                                                                      | Ground Wat                        |                    |                                                  | Job C                  | lin Plan                  | nt RFI No. 4E02704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Boring Number (                                                  | <u> </u>                                                    |      |       |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------|--------------------------------------------------|------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|------|-------|--|--|
|                                                                                                      | Ft.                               | _                  |                                                  | Drilling               | Rig CN                    | ME-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Boring Offset                                                    |                                                             |      |       |  |  |
|                                                                                                      | Ft.                               |                    |                                                  |                        |                           | Lamm (SJB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surface Elevation                                                | 572.0                                                       |      |       |  |  |
|                                                                                                      | Ft.                               |                    |                                                  | _                      |                           | e Friedman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date Start 4/26/9                                                |                                                             | 4/2  | 26/94 |  |  |
| ЭЕРТН                                                                                                | CORE                              | RQD                | RECOVERY                                         | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE AI<br>WEATHERING, SEAMS IN ROCK,                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND COLOR                                                         | FRACTU                                                      |      | BED   |  |  |
|                                                                                                      | FROM TO                           | чСп   %            | FEE! %                                           | ű∞                     |                           | See log of rock core for OBA-13B for descri                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iption of overlying                                              | 14U./FT.                                                    | 21P2 | אוט   |  |  |
| - 29<br>- 30<br>- 31<br>- 32<br>- 33<br>- 34<br>- 35<br>- 36<br>- 37<br>- 38<br>- 39<br>- 40<br>- 41 | O4/26/94<br>Run #1<br>28.4'-38.4' | 104*/120*<br>= 87% | <del>                                     </del> | HQ                     | 538.1                     | See log of rock core for OBA-13B for descriptock  Medium to light gray, thickly to massively by fossiliferous calcareous Dolostone, predomic Favosites, high secondary porosity associate occassional gypsum vug  Medium gray, fresh to slightly weathered, figrained sacchroidal Dolostone, occassional stossiliferous beds, trace bituminous  Medium to light gray, medium to massively fossiliferous calcareous Dolostone, predomic Favosites, high secondary porosity associate occassional carbonaceous partings. | nedded, nant fossil ed with fossils, ine to medium stylolite and | - 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |      |       |  |  |
| Gener                                                                                                | ral Notes:                        |                    |                                                  | 1                      | 1                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                                                             |      |       |  |  |
|                                                                                                      |                                   |                    |                                                  |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  | Total Depth                                                 |      | 18.4' |  |  |
| %Pro                                                                                                 | portions used:                    | trace 0-10%        | , little 10-20 %                                 | , some                 | 20-35%. 8                 | and 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  | Hole No.                                                    | OBA- | -13C  |  |  |



|                                              | Ground Wa              | ter Observat | ion             | Job C                  | lin Plan                          | t RFI No. 4E02704                         | Boring Number     | <u>OBA-13</u>               | 3C_  |               |  |  |  |
|----------------------------------------------|------------------------|--------------|-----------------|------------------------|-----------------------------------|-------------------------------------------|-------------------|-----------------------------|------|---------------|--|--|--|
|                                              | Ft.                    |              |                 | Drillin                | orilling Rig CME-75 Boring Offset |                                           |                   |                             |      |               |  |  |  |
|                                              | Ft.                    |              |                 |                        |                                   |                                           |                   |                             |      |               |  |  |  |
|                                              | Ft.                    |              |                 | _                      |                                   | Lamm (SJB)                                | Surface Elevation |                             |      | —             |  |  |  |
| At                                           | Ft.                    | after        | brs.            |                        |                                   | e Friedman                                | Date Start 4/26/9 | 94 Finish                   | 4/2  | 26/ <u>94</u> |  |  |  |
| DEРТН                                        | CORE<br>RUN<br>FROM TO | RQD          | RECOVERY        | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH         | FIELD IDENTIFICATION, TYPE A              |                   | FRACTUI                     | RES  | BED           |  |  |  |
| -                                            | Run #2                 | 120"/120"    | 10.0'/10.0'     | 5~                     | 529.9                             | Gray-brown, massive, fresh, medium graine |                   | No./Ft.                     | OIP" | DIP           |  |  |  |
| - 43<br>- 44<br>- 45<br>- 46<br>- 47<br>- 48 | 38.4'-48.4'            | = 100%       | = 100%          |                        | 523.6                             | coccassional stylolite and gypsum vug.    | ORT FORMATION     |                             |      |               |  |  |  |
|                                              | al Notes:              | trace 0-10%  | . little 10-20% | , some 2               | 20-35%. a                         | and 35-50%                                |                   | Total Depth<br>Rock Drillin | ng _ | 13C           |  |  |  |



|                                                                              | Ground Wat                        |               |                     | Job C                  | lin Plan                           | t RFI No. 4E02704                                                                                                                                                                                                                                        | Boring Number                              | <u> </u>         | )BA-14B         |           |  |  |  |
|------------------------------------------------------------------------------|-----------------------------------|---------------|---------------------|------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|-----------------|-----------|--|--|--|
|                                                                              | Ft.                               | -             |                     | Drilling               | Drilling Rig CME-75 Boring Offset  |                                                                                                                                                                                                                                                          |                                            |                  |                 |           |  |  |  |
|                                                                              | Ft.                               |               |                     |                        |                                    | Lamm (SJB)                                                                                                                                                                                                                                               | Surface Elevation                          | 568 9            |                 |           |  |  |  |
|                                                                              | Ft.                               |               |                     | _                      |                                    | e Friedman                                                                                                                                                                                                                                               | Date Start 4/25/9                          |                  | 4/2             | <br>25/94 |  |  |  |
| At                                                                           |                                   |               | шэ.                 | _                      |                                    |                                                                                                                                                                                                                                                          | Daw Start TIESTS                           | Finish           |                 |           |  |  |  |
| рертн                                                                        | CORE<br>RUN                       | RQD           | RECOVERY            | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH          | FIELD IDENTIFICATION, TYPE A WEATHERING, SEAMS IN ROCK,                                                                                                                                                                                                  |                                            | FRACTU           | FRACTURES       |           |  |  |  |
| ۵                                                                            | FROM TO                           | INCH %        | FEET %              | S<br>S                 | ωçα                                |                                                                                                                                                                                                                                                          |                                            | No./Ft.          | DIP*            | DIP       |  |  |  |
| - 15<br>- 16<br>- 17<br>- 18<br>- 19<br>- 20<br>- 21<br>- 22<br>- 23         | 04/25/94<br>Run #1<br>17.2'-24.2' | 51*/84* = 61% | 7.0'/7.0'<br>= 100% | HQ                     | 551.5<br>17.4<br>- 549.8<br>- 19.1 | Medium gray, slightly weathered, fine sandy Dolostone, occassional fossil  Dark to medium gray, slightly weathered, fine sandy calcareous Dolostone, sacchroidal, m fossiliferous with moderate secondary poros fossils, occassional stylolites.  LOCKPO | y calcareous<br>ine to medium<br>oderately | Highly Fractured |                 |           |  |  |  |
| General Notes:                                                               |                                   |               |                     |                        |                                    |                                                                                                                                                                                                                                                          |                                            |                  |                 |           |  |  |  |
|                                                                              |                                   |               |                     |                        |                                    |                                                                                                                                                                                                                                                          |                                            | Total Depti      | th <u>24.2'</u> |           |  |  |  |
|                                                                              |                                   |               |                     |                        |                                    |                                                                                                                                                                                                                                                          |                                            | Rock Drill       | ing _           |           |  |  |  |
| %Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50%  Hole |                                   |               |                     |                        |                                    |                                                                                                                                                                                                                                                          |                                            |                  | OBA             | -14B      |  |  |  |



|           | Ground Wa      | ter Observat    | tion             | Job C                  | lin Plan                                 | t RFI No. 4E02704                                 | Boring Number     | <b>OBA-14</b> | )BA-14C |                   |  |  |  |
|-----------|----------------|-----------------|------------------|------------------------|------------------------------------------|---------------------------------------------------|-------------------|---------------|---------|-------------------|--|--|--|
|           | Ft.            |                 |                  | Drillin                | Drilling Rig CME-75 Boring Offset        |                                                   |                   |               |         |                   |  |  |  |
|           | Ft.            |                 |                  |                        |                                          | Lamm (SJB)                                        | Surface Elevation | 568.0         |         |                   |  |  |  |
|           | Ft.            |                 |                  |                        | Inspector Dave Friedman Date Start 4/22/ |                                                   |                   |               |         | <br>27/94         |  |  |  |
| At        | Ft.            | ancer           | ms.              | _                      |                                          | ТПОШЦАП                                           | Date Start 4/22/  | - rinish      |         | 511 <del>34</del> |  |  |  |
| ОЕРТН     | CORE<br>RUN    | RQD             | RECOVERY         | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                | FIELD IDENTIFICATION, TYPE A                      |                   | FRACTU        | RES     | BED               |  |  |  |
| 3         | FROM TO        | INCH %          | FEET %           |                        | WEATHERING, SEAMS IN ROCK, etc.          |                                                   | No./Ft.           | DIP*          | DIP     |                   |  |  |  |
| -         |                | <del>- '-</del> |                  | <del> </del>           | _                                        | See log of soil boring OBA-14A for descrip soils. | tion of overlying | E             |         |                   |  |  |  |
|           |                |                 |                  |                        | -                                        | Solls.                                            |                   | E             |         |                   |  |  |  |
| _ I       |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| -         |                | ]               |                  |                        | -                                        |                                                   |                   | F             |         |                   |  |  |  |
| - 2       |                |                 |                  |                        | -                                        |                                                   |                   | E             |         |                   |  |  |  |
| E         |                |                 |                  |                        | [                                        |                                                   |                   | E             |         |                   |  |  |  |
| - 3       |                |                 |                  |                        | -                                        |                                                   |                   | <u> </u>      |         |                   |  |  |  |
|           |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| -         |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| - 4       |                |                 |                  |                        | [                                        |                                                   |                   |               |         |                   |  |  |  |
| -         |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| 5         |                |                 |                  |                        | -                                        |                                                   |                   | F             |         |                   |  |  |  |
|           |                |                 |                  |                        | -                                        |                                                   |                   | E             |         |                   |  |  |  |
| - 6       |                |                 |                  |                        | -                                        |                                                   |                   |               |         |                   |  |  |  |
| -         |                |                 |                  |                        |                                          |                                                   |                   | -             |         |                   |  |  |  |
| - 7       |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| - 1       |                | ĺ               |                  |                        | <u> </u>                                 |                                                   |                   | F             |         |                   |  |  |  |
|           |                |                 |                  |                        | Ē                                        |                                                   |                   | E             |         |                   |  |  |  |
| - 8       |                |                 |                  |                        |                                          |                                                   |                   | -             |         |                   |  |  |  |
|           |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| - 9       |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
|           |                |                 |                  |                        |                                          |                                                   |                   | E             |         |                   |  |  |  |
| - 10<br>- |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| -         |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| 11        |                |                 |                  |                        | Ė                                        |                                                   |                   | E             |         |                   |  |  |  |
|           |                |                 |                  |                        |                                          |                                                   |                   | E             |         |                   |  |  |  |
| -<br>- 12 |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| -         |                |                 |                  |                        | -                                        |                                                   |                   | -             |         |                   |  |  |  |
| - 13      |                |                 |                  |                        | -                                        |                                                   |                   | E             |         |                   |  |  |  |
| - 13      |                |                 |                  |                        |                                          |                                                   | •                 | _             |         |                   |  |  |  |
| -         | Run #1         |                 |                  | HQ                     | - 555.2<br>- 13.7                        | See Page 2 for rock description                   |                   | 丰。            |         |                   |  |  |  |
| Gene      | ral Notes:     |                 |                  |                        |                                          |                                                   |                   | Total Dept    | h _4    | 41.7'             |  |  |  |
|           |                |                 |                  |                        |                                          |                                                   |                   | Rock Drill    |         |                   |  |  |  |
|           |                |                 |                  |                        |                                          |                                                   |                   |               |         |                   |  |  |  |
| %Pro      | portions used: | trace 0-10%     | 6, little 10-209 | 6, some                | 20-35%, 8                                | and 35-50%                                        |                   | Hole No.      | OBA-    | -14C              |  |  |  |



|                                                      | Ground Wa                         |                       |                     | Job C                  | lin P <u>lan</u>          | t RFI No. 4E02704                                                                                                                                                                                                                                                                                             | Boring Number                                                                           | DBA-14      | 4C           |               |  |  |  |
|------------------------------------------------------|-----------------------------------|-----------------------|---------------------|------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|--------------|---------------|--|--|--|
|                                                      | t Ft.                             | -                     |                     | Drilling               | g Rig Cl                  | ME-75                                                                                                                                                                                                                                                                                                         | Boring Offset                                                                           |             |              |               |  |  |  |
|                                                      | t Ft.                             |                       |                     |                        |                           | Lamm (SJB)                                                                                                                                                                                                                                                                                                    | Surface Elevation                                                                       | 568.9       |              |               |  |  |  |
|                                                      | Ft.                               |                       |                     | Inspect                | or Dave                   | e Friedman                                                                                                                                                                                                                                                                                                    | Date Start 4/22/9                                                                       |             | 4/2          | 27/94         |  |  |  |
| ОЕРТН                                                | CORE                              | RQD                   | RECOVERY            | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE A WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                        |                                                                                         | FRACTU      | RES          | BED           |  |  |  |
| ۵                                                    | FROM TO                           | INCH %                | FEET %              | S<br>S                 | 200                       |                                                                                                                                                                                                                                                                                                               |                                                                                         | No./Ft.     | DIP*         | DIP           |  |  |  |
| 15   16   17   18   19   19   19   19   19   19   19 | 04/22/94<br>Run #1<br>13.7'-19.7' | INCH %  40*/72* = 56% | 9.9'/10.0'<br>= 99% | НО                     | 549.2                     | Medium gray, moderately to slightly weather thick bedded, fine sandy calcareous dolostor pinhole pores, moderately fossiliferous with fossiliferous bed and argillaceous bed, predifferous bed and argillaceous bed, predifferous calcareous gratings, moderate to high sea associated with fossils and vugs. | ne, numerous occassional ominant fossil  otion of rock from  occassional ominant fossil | No./Ft.     | DIP*         | DIP           |  |  |  |
| Gene                                                 | rai Notes:                        |                       |                     |                        |                           |                                                                                                                                                                                                                                                                                                               | _                                                                                       | -           |              |               |  |  |  |
|                                                      |                                   |                       |                     |                        |                           |                                                                                                                                                                                                                                                                                                               |                                                                                         | Total Depti | h <u>-</u> 4 | <b>1</b> 1.7' |  |  |  |
|                                                      |                                   |                       |                     |                        |                           |                                                                                                                                                                                                                                                                                                               |                                                                                         | Rock Drilli | ing _        |               |  |  |  |
| %Pro                                                 | oportions used:                   | trace 0-10%           | , little 10-20      | %, some                | 20-35%, ε                 | and 35-50%                                                                                                                                                                                                                                                                                                    |                                                                                         | Hole No.    | OBA          | -14C          |  |  |  |



|                                                                        | Ground Wa          | ter Observat           | ion      | Job C                  | lin Plan                  | nt RFI No. 4E02704                                                                         | Boring Number                                | <b>OBA-14</b> | BA-14C |       |  |  |  |  |
|------------------------------------------------------------------------|--------------------|------------------------|----------|------------------------|---------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|---------------|--------|-------|--|--|--|--|
|                                                                        | Ft.                | _                      |          |                        | g Rig Cl                  |                                                                                            | Boring Offset                                |               |        |       |  |  |  |  |
|                                                                        | Ft.                |                        |          |                        |                           | Lamm (SJB)                                                                                 |                                              | 560.0         |        |       |  |  |  |  |
|                                                                        | Ft.                |                        |          | _                      |                           |                                                                                            | Surface Elevation                            |               |        | 20.00 |  |  |  |  |
| At                                                                     | Ft.                | after                  | hrs.     | -                      | or <u>Dave</u>            | e Friedman                                                                                 | Date Start 4/22/9                            | Finish        | 4/2    | 27/94 |  |  |  |  |
| DЕРТН                                                                  | CORE<br>RUN        | RQD                    | RECOVERY | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE A WEATHERING, SEAMS IN ROCK                                     |                                              | FRACTU        | RES    | BED   |  |  |  |  |
| ▯◬▮                                                                    | FROM TO            | INCH %                 | FEET %   | ြင္ပ်ိန္မ              | 유유                        | WEATHERING, SEAWIS IN ROCK                                                                 | , etc.                                       | No./Ft.       | DIP*   | DIP   |  |  |  |  |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38               | Run #2 24.7'-34.7' | INCH % II1*/120* = 93% |          | HQ                     |                           | As above  - Void 35.8 to 35.95 feet                                                        | , 610.                                       | No./Ft.       | DIP*   | DIP   |  |  |  |  |
| - 40<br>-<br>-<br>- 41                                                 |                    |                        |          |                        | 528.2<br>40.7<br>527.2    | Gray, thin to medium bedded, slightly weat sacchroidal Dolostone, some carbonaceous LOCKPO | hered to fresh,<br>partings<br>ORT FORMATION | 3             |        |       |  |  |  |  |
| Gene                                                                   | ral Notes:         |                        |          |                        |                           |                                                                                            |                                              | Total Depti   |        | ¥1.7' |  |  |  |  |
|                                                                        |                    |                        |          |                        |                           |                                                                                            |                                              |               |        |       |  |  |  |  |
| %Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50% |                    |                        |          |                        |                           |                                                                                            |                                              |               |        | -14C  |  |  |  |  |



| Ground Water Observation |               |                  |                                           | Job C                  | Olin Plan                                       | nt RF1 No. 4E02704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Boring Number                                                                                                                               | 7BA-15B                                                                                             |      |       |  |  |  |
|--------------------------|---------------|------------------|-------------------------------------------|------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|-------|--|--|--|
| At .                     |               | at Comple        |                                           | Drillin                | g Rig C                                         | ME-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Boring Offset                                                                                                                               | Boring Offset                                                                                       |      |       |  |  |  |
| At .                     | Ft.<br>Ft.    | after            |                                           |                        |                                                 | Lamm (SJB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface Elevation                                                                                                                           | 570.9                                                                                               |      |       |  |  |  |
|                          | Ft.           |                  |                                           | Inspect                | tor Dave                                        | e Friedman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date Start 4/12/9                                                                                                                           |                                                                                                     | 4/2  | 20/94 |  |  |  |
| ОЕРТН                    | CORE          | RQD              | RECOVERY                                  | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH                       | FIELD IDENTIFICATION, TYPE A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             | FRACTU                                                                                              | RES  | BED   |  |  |  |
|                          | ком то        | INCH %           | FEET %                                    |                        | 유민                                              | WEATHERING, SEAMS IN ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , etc.                                                                                                                                      | No./Ft.                                                                                             | DIP* | DIP   |  |  |  |
| 15                       |               | 29"/60"<br>= 48% | FEET %  4.75'/5.0' = 95%  9.5'/9.6' = 99% | HQ                     | 553.4<br>17.5<br>552.5<br>18.4<br>549.9<br>21.0 | Dark gray, thickly bedded, moderately weat fossiliferous calcareous Dolostone, vuggy, structure due to weathered fossils and vugs, ranging from 0.5 to 3 inches, predominant Light gray, thinly to medium bedded, slight sandy calcareous Dolostone, frequent stylol carbonaceous partings, occassional gypsum weathered to fresh, fossiliferous calcareous predominant fossil Favosites, frequent vugs carbonaceous partings, high secondary pore with fossils and vugs.  Void 22.5 to 22.7 feet  As above, but becoming sacchroidal with on stylolites, and carbonaceous partings, small and lesser degree of secondary porosity | thered, very porous numerous voids fossil Favosites. ly weathered, fine ites and vug.  bedded, Dolostone, stylolites, and posity associated | No./Ft.  Highly Fractured Highly Fractured  Highly Fractured  1  1  1  1  1  1  1  1  1  1  1  1  1 |      | DIP   |  |  |  |
| - 26<br>- 27             |               |                  |                                           |                        |                                                 | Continued on Next Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             | 0                                                                                                   |      |       |  |  |  |
| Genera                   | Notes:        |                  |                                           |                        | I                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             | Total Depti                                                                                         |      | 32.1' |  |  |  |
| %Prop                    | ortions used: | trace 0-10%      | 6, little 10-20%                          | 6, some                | 20-35%,                                         | and 35-50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             | Hole No.                                                                                            | OBA  | -15B  |  |  |  |



|                                                                                                 | Ground Wa          |                   |                    | Job <u>С</u>           | lin Plan                  | t RFI No. 4E02704                                   | Boring Number     | UBA-1   | )R          |       |
|-------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------------|------------------------|---------------------------|-----------------------------------------------------|-------------------|---------|-------------|-------|
|                                                                                                 | Ft.                | _                 |                    | Drilling               | Rig Ch                    | ME-75                                               | Boring Offset     |         |             |       |
|                                                                                                 | Ft.                |                   |                    | Operato                | or <u>Jim I</u>           | amm (SJB)                                           | Surface Elevation | 570.9   |             |       |
|                                                                                                 | Ft.                |                   |                    |                        |                           | e Friedman                                          | Date Start 4/12/9 |         | 4/2         | 20/94 |
| рертн                                                                                           | CORE               | RQD               | RECOVERY           | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE WEATHERING, SEAMS IN ROC |                   | FRACTU  | FRACTURES E |       |
| D                                                                                               | FROM TO            | INCH %            | FEET %             | 00                     | S<br>C                    |                                                     | κ, στο.           | No./Ft. | DIP*        | DIP   |
| 30 31 32                                                                                        | Run #2 22.5'-32.1' | 98*/115*<br>= 85% | 9.5'/9.6'<br>= 99% | 8                      | - 538.8<br>- 32.1         | As above                                            | PORT FORMATION    | No./Ft. | DIP*        | DIP   |
| General Notes:  To R  %Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50%  H |                    |                   |                    |                        |                           |                                                     |                   |         |             |       |



|                     | Ground Wa             | ter Observat      | ion                 | Job C                  | lin Plan                  | t RFI No. 4E02704                                                                                        | Boring Number OBA-16B |                      |      |       |  |  |
|---------------------|-----------------------|-------------------|---------------------|------------------------|---------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------|-------|--|--|
| At                  | Ft.                   | at Comple         | tion                | I -                    | g Rig C                   |                                                                                                          | Boring Offset         |                      |      |       |  |  |
| At                  | Ft.                   |                   |                     |                        |                           |                                                                                                          |                       |                      |      |       |  |  |
| At                  |                       | after             |                     | _                      |                           | Lamm (SJB)                                                                                               | Surface Elevation     |                      |      |       |  |  |
| At                  | Ft.                   | after             | hrs.                | _ •                    | or Dave                   | e Friedman                                                                                               | Date Start 4/5/93     | Finish               | 4/   | 20/93 |  |  |
| рертн               | CORE<br>RUN           | RQD               | RECOVER             | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE A                                                                             |                       | FRACTU               | RES  | BED   |  |  |
| ۵                   | FROM TO               | INCH %            | FEET %              |                        | 유유                        | WEATHERING, SEAMS IN ROCK                                                                                | , etc.                | No./Ft.              | DIP* | DIP   |  |  |
| -<br>-<br>-<br>- 15 | Run #2<br>11.8'-21.8' | 59"/120"<br>= 49% | 9.6'/10.0'<br>= 96% |                        |                           | - becoming less fossiliferous and more stylo                                                             | litic                 | Highly Fractured     |      |       |  |  |
| -<br>-<br>- 16      |                       |                   |                     |                        |                           |                                                                                                          |                       | 3                    |      |       |  |  |
| - 17<br>-<br>-<br>- |                       |                   |                     |                        | -<br>- 553.6<br>- 17.5    | As above, fossiliferous and vuggy bed                                                                    |                       | 3                    |      |       |  |  |
| - 18<br>-<br>-<br>- |                       |                   |                     |                        | 552.4                     | As above, occassional fossils, vugs, and sty                                                             | [olites               | 2                    |      |       |  |  |
| - 19<br>-<br>-      |                       |                   |                     |                        | - 10.7                    | The decree, vectorium rooms, rugs, and sty                                                               | ionas                 | 1<br>-               |      |       |  |  |
| - 20<br>-           |                       |                   |                     |                        |                           |                                                                                                          |                       | 0                    |      |       |  |  |
| - 21<br>-           |                       |                   |                     |                        | 550.1<br>21.0<br>549.3    | Gray, slightly weathered, fossiliferous calce<br>vuggy and frequent carbonaceous partings,<br>Favosites. | predominant fossil    | 2                    |      |       |  |  |
|                     |                       |                   |                     |                        | 21.8                      | LOCKP                                                                                                    | ORT FORMATION         |                      |      |       |  |  |
|                     |                       |                   |                     |                        |                           |                                                                                                          |                       |                      |      |       |  |  |
| General Notes:      |                       |                   |                     |                        |                           |                                                                                                          |                       | Total Depth          | n _2 | 21.8' |  |  |
| % Dec               | portions used:        | trace () 10.00    | little 10 20        | % some                 | 20.35%                    | and 35-50%                                                                                               |                       | Rock Drilli Hole No. |      | 16D   |  |  |



|                                                                        |                       | ter Observat   |                     | Job C                  | lin Plan                  | t RFI No. 4E02704                                                                         | Boring Number     | OBA-161                                          | B       |
|------------------------------------------------------------------------|-----------------------|----------------|---------------------|------------------------|---------------------------|-------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------|---------|
| At                                                                     |                       | -              |                     | Drilling               | Rig Cl                    | ME-7 <u>5</u>                                                                             | Boring Offset     |                                                  |         |
| At<br>At                                                               |                       |                |                     |                        |                           | amm (SJB)                                                                                 | Surface Elevation | 571.1                                            |         |
| At                                                                     |                       | after          | hrs.                |                        |                           | Friedman                                                                                  | Date Start 4/5/93 |                                                  | 4/20/93 |
|                                                                        | CORE                  |                |                     | -                      |                           |                                                                                           |                   |                                                  |         |
| DEРТН                                                                  | RUN                   | RQD            | RECOVERY            | CORE TYPE<br>& RESIST. | STRATA<br>CHANGE<br>DEPTH | FIELD IDENTIFICATION, TYPE A                                                              | ND COLOR          | FRACTURE                                         | S BED   |
|                                                                        | FROM TO               | INCH %         | FEET %              | - 88.4<br>- 88.4       | STR<br>CHA<br>DEF         | WEATHERING, SEAMS IN ROCK                                                                 | , etc.            | No./Ft. D                                        | IP* DIP |
| _                                                                      | THOW TO               | III Z          | 1221 /              | 0~                     |                           | See log of soil boring OBA-16A for descrip                                                | tion of overlying | -                                                | 5       |
| :                                                                      |                       |                |                     |                        | •                         | soils                                                                                     |                   | <b> </b>                                         | 1 1     |
| - 1                                                                    |                       |                |                     |                        | -                         |                                                                                           |                   | E \                                              |         |
| -                                                                      |                       |                |                     |                        | -                         |                                                                                           |                   | <u> </u>                                         |         |
| - 2                                                                    |                       |                |                     |                        | -                         |                                                                                           |                   | <u> </u>                                         |         |
| -                                                                      |                       |                |                     |                        |                           |                                                                                           |                   |                                                  |         |
| - 3                                                                    |                       |                |                     |                        | -                         |                                                                                           |                   | -                                                |         |
| - 3<br>-                                                               |                       |                |                     |                        |                           |                                                                                           |                   | E                                                |         |
| - 4                                                                    |                       |                |                     |                        | -                         |                                                                                           |                   | <u> </u>                                         |         |
| -                                                                      |                       |                |                     |                        |                           |                                                                                           |                   |                                                  |         |
| _ 5                                                                    |                       |                |                     |                        | -                         |                                                                                           |                   | -                                                |         |
| - [                                                                    |                       |                |                     |                        | -                         |                                                                                           |                   | -                                                |         |
| -<br>- 6                                                               |                       |                |                     |                        |                           |                                                                                           |                   | E                                                |         |
| -                                                                      |                       |                |                     |                        | -                         |                                                                                           |                   | -                                                | 1       |
| - 7                                                                    |                       |                |                     |                        | -<br>-                    |                                                                                           |                   |                                                  |         |
| -                                                                      |                       |                |                     |                        | 563.5                     |                                                                                           |                   | -                                                |         |
| -<br>- 8                                                               | 04/05/94<br>Run #1    | 4"/48"<br>= 8% | 4.0'/4.0'<br>= 100% | HQ                     | 7.6                       | Light gray, thinly to medium bedded, weath<br>weathered, fossiliferous calcareous Dolosto | nered to slightly | Highly -<br>Fractured                            |         |
| -                                                                      | 7.6'-11.6'            |                |                     |                        | -                         | fossil Favosites, numerous pinhole pores, o stylolites                                    |                   | Highly Fractured                                 |         |
|                                                                        |                       |                |                     |                        | -                         | stylonics                                                                                 |                   | E ì                                              |         |
| - 9<br>-                                                               |                       |                |                     |                        | _                         |                                                                                           |                   | Highly Fractured                                 |         |
| -                                                                      |                       |                |                     |                        | <del>-</del><br>-         |                                                                                           |                   | -                                                |         |
| - 10                                                                   |                       |                |                     |                        | -                         |                                                                                           |                   | 5                                                |         |
| -                                                                      |                       |                |                     |                        | -                         |                                                                                           |                   | <b> </b>                                         |         |
| - 11<br>-                                                              |                       |                |                     |                        |                           |                                                                                           |                   | F7                                               |         |
| -                                                                      | 04/20/94              | 59"/120"       | 9.6'/10.0'          | HQ                     |                           |                                                                                           |                   | <u> </u>                                         |         |
| - 12<br>-                                                              | Run #2<br>11.8'-21.8' | = 49%          | = 96%               |                        | <u>-</u><br>[             |                                                                                           |                   | 4                                                |         |
| -                                                                      | 11.0 -21.0            |                | <u> </u>            |                        | <u> </u><br> -            |                                                                                           |                   | -                                                | ļ       |
| - 13<br>-                                                              |                       |                |                     |                        | <del>-</del>              |                                                                                           |                   | 4                                                |         |
| _                                                                      |                       |                |                     |                        | [                         | Continued on Next Page                                                                    |                   |                                                  |         |
| Gene                                                                   | ral Notes:            |                | I                   |                        |                           |                                                                                           |                   | <del>                                     </del> | ı       |
|                                                                        |                       |                |                     |                        |                           |                                                                                           |                   | Total Depth                                      | 21.8'   |
|                                                                        |                       |                |                     |                        |                           |                                                                                           |                   | Rock Drilling                                    |         |
|                                                                        |                       |                |                     |                        |                           |                                                                                           |                   | TOOK DI HIME                                     | · —     |
| %Proportions used: trace 0-10%, little 10-20%, some 20-35%, and 35-50% |                       |                |                     |                        |                           |                                                                                           |                   |                                                  |         |

Appendix C

Phase I Soil Borings
Summary of Mercury Analyses
October 1991

# OLIN NIAGARA PLANT RFI SUBSURFACE SOIL INVESTIGATION MERCURY RESULTS

| BORING        | ID                                        | TOTAL Eq(mq/kq)                    | TCLP Hq (uq/L)                    |
|---------------|-------------------------------------------|------------------------------------|-----------------------------------|
| OSB-1         | 0'-2'                                     | 0.40                               | NDO.2                             |
|               | 2'-4'                                     | 458                                | 1.6                               |
|               | 4'-6'                                     | 167                                | 0.6                               |
|               | 6'-8'                                     | 624                                | 8.6                               |
|               | 8'-10'                                    | 1210                               | 2.9                               |
| OSB-2         | 0'-2'                                     | 6.5                                | NDO.2                             |
|               | 4'-6'                                     | 0.41                               | 0.2                               |
| OSB-3         | 0'-2'                                     | 2.3                                | 0.2                               |
|               | 2'-4'                                     | 0.77                               | ND0.2                             |
|               | 4'-6'                                     | 0.44                               | ND0.2                             |
| Dup           | 4'-6'<br>6'-8'                            | 0.98<br>NDO.10                     | NDO.2<br>NDO.2<br>NDO.2           |
| OSB-4         | 0'-2'                                     | 56.9                               | 0.4                               |
|               | 2'-4'                                     | 2.9                                | 2.4                               |
| OSB-5         | 0'-2'                                     | 11.4                               | 0.2                               |
|               | 2'-4'                                     | 35.4                               | 0.9                               |
|               | 4'-6'                                     | 1.3                                | ND0.2                             |
| OSB-6<br>Dup  | 0'-2'<br>0'-2'<br>3'-5'<br>5'-7'<br>7'-9' | 78.6<br>65.6<br>55.0<br>6.5<br>1.7 | 3.7<br>3.2<br>6.6<br>NDO.2<br>0.8 |
| OSB-7         | 0'-2' 2'-4'                               | 21.1J<br>7.8J                      | 1.3J<br>ND0.2                     |
| OSB-8         | 0'-2'                                     | 29.8J                              | 1.3J                              |
|               | 2'-4'                                     | 18.5J                              | 0.3J                              |
| OSB-9         | 0'-2'                                     | 23.7J                              | ND0.2                             |
|               | 2'-4'                                     | 112J                               | 4.6J                              |
| OSB-10<br>Dup | 0'-2'<br>2'-4'<br>2'-4'                   | 250J<br>626J<br>1920J              | 13.2J<br>14.2J<br>10.7J           |
| OSB-11        | 0'-2'                                     | 588J                               | 31.7J                             |
|               | 2'-4'                                     | 165J                               | 2.5J                              |
| OSB-12        | 0'-2'                                     | 50                                 | 3.2                               |
|               | 2'-4'                                     | 63                                 | 16.3                              |
| OSB-13        | 0'-2'                                     | <b>4</b> 18                        | 8.6                               |
|               | 2'-4'                                     | 95.4                               | 1.5                               |
| OSB-14        | 0'-2' 2'-4'                               | 113<br>95.2                        | 1.1                               |

#### OLIN NIAGARA PLANT RFI (continued) SUBSURFACE SOIL INVESTIGATION MERCURY RESULTS

| BORING        | ID                                        | TOTAL Hq(mq/kq)                                                  | TCLP Hq (uq/L)                                      |
|---------------|-------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|
| OSB-15        | 0'-2'                                     | 27.5<br>104                                                      | 1.2<br>0.3                                          |
| OSB-16        | 0'-2'                                     | 8.3<br>5.2                                                       | NDO.2                                               |
| Dup           | 2'-4'                                     | 4.0<br>15.7                                                      | NDO.2<br>NDO.2                                      |
|               | 6'-8'                                     | No Result <sup>1</sup>                                           | NDO.2                                               |
| OSB-17        | 0'-2'<br>2'-4'<br>4'-6'<br>6'-8'          | Not Analyzed <sup>2</sup> Not Analyzed Not Analyzed Not Analyzed | Not Analyzed Not Analyzed Not Analyzed Not Analyzed |
| OSB-18<br>Dup | 0'-2'<br>0'-2'<br>2'-4'<br>4'-6'<br>6'-8' | 404<br>464<br>161<br>1.7<br>11.9                                 | 4.0<br>6.5<br>5.1<br>0.5<br>1.3                     |
|               |                                           | m-1-2 m-1 fm                                                     | •                                                   |

# Rinsate Blanks Total Hg(ug/L)

| RB-1 | 0.2   |
|------|-------|
| RB-2 | 57.7  |
| RB-3 | NDO.2 |
| RB-4 | 0.7   |
| RB-5 | NDO.2 |

- NS Not sampled
- ND Not detected, applicable detection limit listed
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument but was diluted below the instrument detection limit on subsequent dilution runs.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit

#### Notes:

- (1) Total mercury analysis not performed due to laboratory error
- (2) Total and TCLP mercury analysis not performed as per RFI Work Plan

Phase I Soil Borings
Summary of Detected Compounds
October 1991

| Sample ID               | OSB-17<br>0'-2'   | OSB-17<br>2'-4'   | OSB-17<br>4'-6'   | OSB-17<br>6'-8'   | OSB-18<br>0'-2'   | Dup<br>OSB-18<br>O'-2' | OSB-18<br>2'-4'   | OSB-18<br>4'-6'   |
|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-------------------|
| Sample Date<br>Units    | 10/18/91<br>mg/kg | 10/18/91<br>mg/kg | 10/18/91<br>mg/kg | 10/18/91<br>mg/kg | 10/18/91<br>mg/kg | 10/18/91<br>mg/kg      | 10/18/91<br>mg/kg | 10/18/91<br>mg/kg |
|                         | mg/ ng            | mg/ ng            | mg/ ng            | mg/ ng            | mg/ kg            | mg/ kg                 | mg/ kg            | mg/ kg            |
| Compounds<br>TCL - VOAS |                   |                   |                   |                   |                   |                        |                   |                   |
| Methylene chloride      | 0.002J            | 0.0005J           | 0.001J            | 0.001J            | ND0.006           | ND0.006                | ND0.006           | ND0.006           |
| Acetone                 | NDO.011           | NDO.010           | 0.008J            | 0.012J            | 0.016J            | 0.034J                 | 0.034J            | 0.045J            |
| Chloroform              | 0.006             | 0.007             | 0.004J            | 0.009             | 0.016             | 0.017                  | 0.008             | 0.001             |
| 1,2-dichloropropane     | ND0.006           | ND0.005           | ND0.006           | ND0.006           | ND0.006           | ND0.006                | ND0.006           | ND0.006           |
| Trichloroethene         | 0.002J            | 0.002J            | 0.0007J           | 0.002J            | 0.0009J           | 0.001J                 | 0.0009J           | ND0.006           |
| Benzene                 | 0.003J            | 0.002J            | ND0.006           | 0.003J            | 0.003             | 0.003J                 | 0.003J            | 0.002J            |
| Tetrachloroethene       | 0.002J            | 0.002J            | 0.002J            | 0.003J            | 0.008             | 0.007                  | 0.015             | 0.009             |
| Toluene                 | 0.0005J           | ND0.005           | ND0.006           | 0.0006J           | 0.001J            | ND0.006                | ND0.006           | ND0.006           |
| Chlorobenzene           | 0.003J            | 0.002J            | 0.002J            | 0.003J            | 0.002J            | ND0.006                | 0.020             | 22                |
| Total xylenes           | NDO.006           | NDO.005           | ND0.006           | ND0.006           | ND0.006           | ND0.006                | ND0.006           | ND0.006           |

| Sample ID            | OSB-18<br>6'-8'   | RB-5<br>Rinsate  |
|----------------------|-------------------|------------------|
| Sample Date<br>Units | 10/18/91<br>mg/kg | 10/18/91<br>ug/L |
| Compounds TCL - VOAS |                   |                  |
| Methylene chloride   | ND0.006           | ND5              |
| Acetone              | NDO.012           | ND10             |
| Chloroform           | 0.003J            | ND5              |
| 1,2-dichloropropane  | ND0.006           | <b>3</b> J       |
| Trichloroethene      | ND0.006           | ND5              |
| Benzene              | 0.002J            | ND5              |
| Tetrachloroethene    | 0.009             | ND5              |
| Toluene              | 0.001J            | ND5              |
| Chlorobenzene        | 0.015J            | <b>4</b> J       |
| Total xylenes        | 0.003J            | ND5              |

- Not detected, applicable detection limit listed ND -
- Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- Compound whose concentration exceeds the calibration range of the GC/MS instrument but was diluted below the instrument detection limit on subsequent dilution runs.
- Data found to be unusable as a result of outlying QC criteria.

- The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- Estimated quantitation limit UJ -

| Sample ID                                                                                 | OSB-17   | OSB-17   | OSB-17   | OSB-17   | OSB-18   | Dup<br>OSB-18 | OSB-18   | OSB-18   |
|-------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------|----------|----------|
|                                                                                           | 0'-2'    | 2'-4'    | 4'-6'    | 6'-8'    | 0'-2'    | 0'-2'         | 2'-4'    | 4'-6'    |
| Sample Date                                                                               | 10/18/91 | 10/18/91 | 10/18/91 | 10/18/91 | 10/18/91 | 10/18/91      | 10/18/91 | 10/18/91 |
| Units                                                                                     | mg/kg    | mg/kg    | mg/kg    | mg/kg    | mg/kg    | mg/kg         | mg/kg    | mg/kg    |
| Compounds<br>Semi-Volatiles                                                               |          |          |          |          |          |               |          |          |
| 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2-dichlorobenzene 2-methylphenol 4-methylphenol | 0.36J    | 0.52J    | 0.077J   | ND24     | 1.7      | 2.3           | 1.1      | 17E      |
|                                                                                           | 1.0      | 1.7      | ND0.75   | ND24     | NDO.80   | NDO.79        | 0.69J    | 2.0      |
|                                                                                           | 0.57J    | 0.85     | 0.15J    | ND24     | 0.89     | 1.3           | 3.4      | 24       |
|                                                                                           | NDO.71   | ND0.73   | ND0.75   | 7.5J     | NDO.80   | NDO.79        | NDO.80   | NDO.82   |
|                                                                                           | NDO.71   | 0.13J    | ND0.75   | 25       | NDO.80   | NDO.79        | NDO.80   | NDO.82   |
| 2,4-dimethylphenol 2,4-dichlorophenol 1,2,4-trichlorobenzene                              | NDO.71   | NDO.73   | NDO.75   | 5.9J     | NDO.80   | NDO.79        | NDO.80   | NDO.82   |
|                                                                                           | NDO.71   | NDO.73   | NDO.75   | ND24     | NDO.80   | NDO.79        | 0.15J    | NDO.82   |
|                                                                                           | 4.4      | 6.4      | 1.1      | ND24     | 330      | 270           | 210      | 1,900    |
| Naphthalene 2-methylnaphthalene 2,4,6-trichlorophenol                                     | 2.0      | 2.4      | 1.4      | 1,400    | NDO.80   | NDO.79        | NDO.80   | NDO.82   |
|                                                                                           | 0.38J    | 0.57J    | 0.46J    | 140J     | 0.46J    | 0.44J         | 0.19J    | NDO.82UJ |
|                                                                                           | 0.085J   | 0.15J    | ND0.75   | ND24     | NDO.80   | NDO.79        | NDO.80   | NDO.82   |
| 2,4,5-trichlorophenol                                                                     | 0.42J    | 0.43J    | ND3.6    | ND110    | 1.7J     | 2.2J          | ND3.9    | 6.5      |
| Acenaphthylene                                                                            | 0.93     | 0.82     | NDO.75   | ND24     | NDO.80   | ND0.79        | 0.17J    | NDO.82   |
| Acenaphthene                                                                              | NDO.71   | 2.4      | 2.7      | 1,000    | NDO.80   | NDO.79        | 0.14J    | NDO.82   |
| Dibenzofuran                                                                              | 2.0      | 1.7      | 2.1      | 650      | 0.31J    | 0.36J         | 0.14J    | NDO.82   |
| Fluorene                                                                                  | 2.4      | 3.1      | 3.8      | 920      | NDO.80   | NDO.79        | 0.13J    | NDO.82   |
| Hexachlorobenzene                                                                         | 0.14J    | 0.15J    | NDO.75   | ND24     | 25       | 29J           | 5.8      | NDO.82   |
| Phenanthrene                                                                              | 26       | 47       | 59       | 4,600    | 1.6      | 1.8           | 1.8      | 0.28J    |
| Anthracene                                                                                | 3.8      | 6.5      | 5.7      | 1,300    | NDO.80   | NDO.79        | 0.29J    | NDO.82   |
| Fluoranthene Pyrene Benzo(a)anthracene                                                    | 43       | 50       | 51       | 3,500    | 2.5      | 2.9           | 3.9      | 0.39J    |
|                                                                                           | 25       | 33       | 31       | 2,800    | 1.7      | 1.9           | 4.7      | 0.30     |
|                                                                                           | 18       | 24       | 20       | 1,600    | 0.83     | 0.97          | 1.4      | 0.17J    |
| Chrysene                                                                                  | 18       | 25       | 23       | 1,400    | 1.6      | 1.8           | 1.8      | 0.20J    |
| Bis(2-ethylhexyl)phthalate                                                                | 0.91     | 0.91     | 0.85     | ND24     | 1.4      | 1.7           | 1.5      | 0.35J    |
| Benzo(b)fluoranthene                                                                      | 18       | 29       | 25       | 1.4      | 2.1      | 2.6           | 3.1      | 0.21J    |
| Benzo(k)fluoranthene                                                                      | 6.1      | 7.6      | 6.0      | 260      | 0.76J    | 0.98          | 1.4      | 0.11J    |
| Benzo(a)pyrene                                                                            | 12E      | 23       | 10       | 1,200    | 0.18J    | 0.21J         | 1.8      | 0.13J    |
| Indeno(1,2,3-cd)pyrene                                                                    | 0.063J   | 5.8      | NDO.75   | 310      | 0.83     | 0.87          | 1.3      | 0.12J    |

| Sample ID Sample Date Units                                                                                                                                    | OSB-17<br>0'-2'<br>10/18/91<br>mg/kg                               | OSB-17<br>2'-4'<br>10/18/91<br>mg/kg                            | OSB-17<br>4'-6'<br>10/18/91<br>mg/kg                              | OSB-17<br>6'-8'<br>10/18/91<br>mg/kg                | OSB-18<br>0'-2'<br>10/18/91<br>mg/kg                            | Dup<br>OSB-18<br>O'-2'<br>10/18/91<br>mg/kg                      | OSB-18<br>2'-4'<br>10/18/91<br>mg/kg                         | OSB-18<br>4'-6'<br>10/18/91<br>mg/kg                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|
| Compounds<br>Semi-Volatiles                                                                                                                                    |                                                                    |                                                                 |                                                                   |                                                     |                                                                 |                                                                  |                                                              |                                                                  |
| Dibenzo(a,h)anthracene Benzo(g,h,i)perylene 3,4-dichlorophenol 2,3,6-trichlorophenol 3,4,5-trichlorophenol 2,3,4,5-tetrachlorophenol 2,3,4,6-tetrachlorophenol | 1.3<br>0.062J<br>NDO.71<br>NDO.71<br>NDO.71<br>NDO.71UJ<br>NDO.71R | 1.2<br>1.1<br>NDO.73<br>NDO.73<br>NDO.73<br>NDO.73UJ<br>NDO.73R | 0.33J<br>2.3<br>ND0.75<br>ND0.75<br>ND0.75<br>ND0.75UJ<br>ND0.75R | 65<br>82<br>ND24<br>ND24<br>ND24<br>ND24UJ<br>ND24R | NDO.80<br>0.59J<br>NDO.80<br>NDO.80<br>0.31J<br>0.16J<br>0.096J | NDO.79<br>0.59J<br>NDO.79<br>NDO.79<br>0.57J<br>0.45J<br>NDO.79R | NDO.80<br>0.87<br>0.13J<br>2.6<br>NDO.80<br>0.46J<br>NDO.80R | NDO.82<br>0.10J<br>NDO.82<br>NDO.82<br>NDO.82<br>NDO.82<br>0.31J |

| Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                                                                          | 6'-8'<br>10/18/91<br>mg/kg                                                                                                                                                                                                                                                                                                   | Rinsate<br>10/18/91<br>ug/L             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Compounds<br>Semi-Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                              |                                         |
| 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2-dichlorobenzene 2-methylphenol 4-methylphenol 2,4-dimethylphenol 2,4-dichlorophenol 1,2,4-trichlorobenzene Naphthalene 2-methylnaphthalene 2,4,6-trichlorophenol 2,4,5-trichlorophenol Acenaphthylene Acenaphthene Dibenzofuran Fluorene Hexachlorobenzene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Bis(2-ethylhexyl)phthalate Benzo(k)fluoranthene Benzo(a)pyrene | 2.3<br>0.42J<br>4.3<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>340<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>ND0.73<br>O.18J<br>ND0.73<br>O.18J<br>ND0.73<br>O.18J<br>O.22J<br>O.12J<br>O.17J<br>3.7<br>O.21J<br>O.079J<br>O.072J | ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.11J                                                                                                                                                                                                                                                                                                                        | ND10                                    |

osB-18

RB-5

Sample ID

| Sample ID                 | OSB-18<br>6'-8' | RB-5<br>Rinsate |
|---------------------------|-----------------|-----------------|
| Sample Date               | 10/18/91        | 10/18/91        |
| Units                     | mg/kg           | ug/L            |
| Compounds                 |                 |                 |
| <u>Semi-Volatiles</u>     |                 |                 |
| Dibenzo(a,h)anthracene    | 0.036J          | ND10            |
| Benzo(g,h,i)perylene      | 0.11J           | ND10            |
| 3,4-dichlorophenol        | NDO.73          | ND10            |
| 2,3,6-trichlorophenol     | NDO.73          | ND10            |
| 3,4,5-trichlorophenol     | NDO.73          | ND10            |
| 2;3,4,5-tetrachlorophenol | NDO.73          | ND10            |
| 2,3,4,6-tetrachlorophenol | NDO.73R         | ND10R           |

|  | NS - | Not | samp. | led |
|--|------|-----|-------|-----|
|--|------|-----|-------|-----|

- ND Not detected, applicable detection limit listed
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument but was diluted below the instrument detection limit on subsequent dilution runs.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit

| Sample ID                      | OSB-17                     | OSB-17                     | OSB-17                     | OSB-17                     | OSB-18                     | Dup<br>OSB-18              | osB-18                     | OSB-18                     |
|--------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Sample Date<br>Units           | 0'-2'<br>10/18/91<br>mg/kg | 2'-4'<br>10/18/91<br>mg/kg | 4'-6'<br>10/18/91<br>mg/kg | 6'-8'<br>10/18/91<br>mg/kg | 0'-2'<br>10/18/91<br>mg/kg | 0'-2'<br>10/18/91<br>mg/kg | 2'-4'<br>10/18/91<br>mg/kg | 4'-6'<br>10/18/91<br>mg/kg |
| Compounds<br><u>Pesticides</u> |                            |                            |                            |                            |                            |                            |                            |                            |
| alpha-BHC                      | 10                         | 18                         | 2.6                        | 1.6                        | 1.0J                       | 1.6                        | 18                         | 23                         |
| beta-BHC                       | 27                         | 44                         | 3.5                        | 0.56                       | 19                         | 30                         | 9.5                        | 0.94                       |
| delta-BHC                      | 5.5                        | 9.8                        | 0.94                       | 0.58                       | NDO.19                     | ND0.19                     | 0.16J                      | 0.19J                      |
| gamma-BHC                      | 8.3                        | 13                         | 1.0                        | 0.46                       | NDO.19                     | ND0.19                     | 0.35J                      | 0.39J                      |
| Heptachlor                     | NDO.34                     | NDO.70                     | 0.051                      | 0.0057                     | ND0.19                     | ND0.19                     | NDO.39                     | ND0.40                     |
| Aldrin                         | NDO.34                     | NDO.70                     | ND0.036                    | 0.096                      | ND0.19                     | ND0.19                     | NDO.39                     | NDO.40                     |
| Heptachlor epoxide             | NDO.34                     | NDO.70                     | ND0.036                    | ND0.037                    | ND0.19                     | 0.03J                      | NDO.39                     | NDO.40                     |
| Dieldrin                       | NDO.69                     | ND1.4                      | 0.083                      | 1.1                        | ND0.39                     | ND0.38                     | NDO.78                     | ND0.81                     |
| Endrin                         | ND0.69                     | ND1.4                      | ND0.072                    | 1.3                        | NDO.39                     | ND0.38                     | NDO.78                     | ND0.81                     |
| Endosulfan II                  | ND0.69                     | ND1.4                      | 0.015J                     | 0.01J                      | ND0.39                     | 0.05J                      | NDO.78                     | ND0.81                     |
| 4,4'-DDD                       | ND0.69                     | ND1.4                      | ND0.072                    | 0.029J                     | ND0.39                     | ND0.38                     | NDO.78                     | ND0.81                     |
| 4,4'-DDT                       | ND0.69                     | ND1.4                      | 0.085                      | 0.0087J                    | ND0.39                     | ND0.38                     | NDO.78                     | ND0.81                     |
| Methoxychlor                   | ND3.4                      | ND7.0                      | ND0.36                     | 0.17J                      | ND1.9                      | ND1.9                      | ND3.9                      | ND4.0                      |
| Alpha-chlordane                | ND3.4                      | ND7.0                      | 0.36U                      | 0.37U                      | ND1.9                      | ND1.9                      | ND3.9                      | ND4.0                      |
| Gamma-chlordane                | ND3.4                      | ND7.0                      | NDO.36                     | ND0.37                     | ND1.9                      | 0.065J                     | ND3.9                      | ND4.0                      |

| Sample ID Sample Date Units                                                                                                              | OSB-18<br>6'-8'<br>10/18/91<br>mg/kg                                                                   | RB-5<br>Rinsate<br>10/18/91<br>ug/L                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Compounds<br>Pesticides                                                                                                                  |                                                                                                        |                                                                                                                  |
| alpha-BHC beta-BHC delta-BHC gamma-BHC Heptachlor Aldrin Heptachlor epoxide Dieldrin Endrin Endosulfan II 4,4'-DDD 4,4'-DDT Methoxychlor | 5.0<br>1.6<br>NDO.088<br>0.091<br>NDO.088<br>NDO.088<br>NDO.18<br>NDO.18<br>NDO.18<br>NDO.18<br>NDO.18 | 0.14<br>0.063<br>0.12<br>0.041<br>ND0.062<br>ND0.062<br>ND0.12<br>ND0.12<br>ND0.12<br>ND0.12<br>ND0.12<br>ND0.12 |
| Alpha-chlordane<br>Gamma-chlordane                                                                                                       | NDO.88<br>NDO.88                                                                                       | NDO.62<br>NDO.62                                                                                                 |

| NS - No | ot samp | led |
|---------|---------|-----|
|---------|---------|-----|

ND - Not detected, applicable detection limit listed

J - Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).

Compound whose concentration exceeds the calibration range of the GC/MS instrument but was diluted below the instrument detection limit on subsequent dilution runs.

Data found to be unusable as a result of outlying QC criteria.

U - The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

Estimated quantitation limit

Olinsoil.tab

Phase I Groundwater Samples
Summary of Detected Compounds
September/October 1991

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                                   | Olin<br>Production<br>Well<br>9/23/91<br>ug/L                                                                                                          | OBA-1A<br>9/17/91<br>ug/L                             | OBA-1B<br>9/17/91<br>ug/L                                                                                                                          | OBA-1C<br>9/17/91<br>ug/L                                                                                                                                                                | OBA-2B<br>9/23/91<br>ug/L                                                 | OBA-2C<br>10/4/91<br>ug/L                                                                                                                                                                             | OBA-3A<br>9/23/91<br>ug/L                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                       |                                                                                                                                                    |                                                                                                                                                                                          |                                                                           |                                                                                                                                                                                                       |                                                                                                                                                                                                                            |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethane 1,2-dichloroethene (total) chloroform 1,2-dichloroethane 1,1,1-trichloroethane carbon tetrachloride bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropene trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethyl benzene total xylenes | 150<br>97J<br>ND10UJ<br>ND5<br>2J<br>ND5<br>340<br>390<br>ND5<br>2J<br>10<br>ND5<br>ND5<br>ND5<br>ND5<br>2J<br>210<br>84J<br>ND5<br>0.9J<br>ND5<br>ND5 | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | 51<br>330J<br>21<br>ND5<br>9<br>1J<br>340<br>19<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>2700<br>ND5<br>18<br>3000<br>ND5<br>18<br>3000<br>ND5 | 840EJ<br>39,000J<br>ND10UJ<br>6J<br>360J<br>24J<br>16,000<br>98,000<br>68J<br>320EJ<br>37J<br>ND5UJ<br>ND5UJ<br>2J<br>150,000<br>1700J<br>920J<br>20,000<br>ND5UJ<br>5J<br>190J<br>ND5UJ | 69 ND5R ND10UJ ND5 ND5 ND5 170 33 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | 2800<br>300J<br>ND1000<br>490J<br>120J<br>ND500<br>16,000<br>6400<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>380,000<br>580<br>140J<br>82,000<br>74,000<br>66J<br>57J<br>ND500<br>ND500<br>ND500 | 1300 ND500R ND1000UJ ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                      | Dup<br>OBA-3A<br>9/23/91<br>ug/L                                                                                             | OBA-3B<br>9/23/91<br>ug/L                                                                                                                                                                                                | OBA-3C<br>10/4/91<br>ug/L                                                                                                                                                                  | OBA-4A<br>9/20/91<br>ug/L                             | OBA-4B<br>9/18/91<br>ug/L                                            | OBA-4C<br>9/18/91<br>ug/L                                                                                                                                 | OBA-5A<br>9/20/91<br>ug/L                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                                                                                                                                          |                                                                                                                                                                                            |                                                       |                                                                      |                                                                                                                                                           |                                                                                       |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 1,2-dichloroethane 1,1,1-trichloroethane carbon tetrachloride bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropene trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene | 1500 ND500 | 1700 ND500R ND1000 ND500 | 2900 ND1000 ND2000 ND1000 | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | 35 ND5 ND10 ND5 0.8J ND5 150 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | 110J<br>160J<br>ND250<br>ND120<br>ND120<br>ND120<br>1300<br>850<br>ND120<br>ND120<br>ND120<br>ND120<br>ND120<br>ND120<br>ND120<br>ND120<br>ND120<br>ND120 | 11J 6J 99 ND25 ND25 ND25 270 530J ND25 11J 5J ND25 ND25 ND25 ND25 ND25 ND25 ND25 ND25 |
| chlorobenzene<br>ethyl benzene<br>total xylenes                                                                                                                                                                                                                                                                                                      | 17,000<br>ND500<br>ND500                                                                                                     | 13,000<br>ND500<br>ND500                                                                                                                                                                                                 | 22,000<br>ND1000<br>ND1000                                                                                                                                                                 | ND5<br>ND5<br>ND5                                     | 22<br>ND5<br>ND5                                                     | 47J<br>ND120<br>ND120                                                                                                                                     | 160<br>ND25<br>ND25                                                                   |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                       | Dup<br>OBA-5A<br>9/20/91<br>ug/L                                                    | OBA-5B<br>9/20/91<br>ug/L                                                                                                                                                   | OBA-5C<br>10/7/91<br>ug/L                                                                                                                                          | OBA-6A<br>9/20/91<br>ug/L                                                             | OBA-6B<br>9/19/91<br>ug/L                                                                                                                                              | OBA-6C<br>9/19/91<br>ug/L                                                                                                                                     | OBA-7A<br>9/19/91<br>ug/L                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |                                                                                                                                                                             |                                                                                                                                                                    | •                                                                                     |                                                                                                                                                                        |                                                                                                                                                               |                                                                                           |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 1,2-dichloroethane 1,1,1-trichloroethane carbon tetrachloride bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropene trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene | 10J 9J 130 ND50 ND50 ND50 270 540J ND50 10J ND50 ND50 ND50 ND50 ND50 ND50 ND50 ND50 | 1300<br>30,000<br>ND1000<br>290J<br>1200<br>ND500<br>17,000<br>74,000J<br>ND500<br>240J<br>ND500<br>ND500<br>ND500<br>310,000J<br>ND500<br>6300<br>30,000<br>ND500<br>ND500 | 100J<br>ND100<br>ND200<br>ND100<br>18J<br>ND100<br>34J<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>1800<br>120<br>420<br>110<br>47J<br>ND100<br>ND100 | 12<br>ND5<br>33<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | 83J<br>1100<br>ND400<br>ND200<br>21J<br>ND200<br>1400<br>83J<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>S100J<br>ND200<br>1100<br>3100<br>ND200<br>ND200 | 250J<br>ND500<br>ND500<br>ND500<br>ND500<br>5800<br>190J<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>39,000J<br>ND500<br>230J<br>56,000<br>ND500<br>ND500 | ND10<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 |
| ethyl benzene<br>total xylenes                                                                                                                                                                                                                                                                                                                                                        | ND50<br>ND50                                                                        | ND500<br>ND500                                                                                                                                                              | ND100<br>ND100                                                                                                                                                     | 0.6J<br>4J                                                                            | ND200<br>ND200                                                                                                                                                         | ND500<br>ND500                                                                                                                                                | ND5<br>2J                                                                                 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                 | OBA-7B<br>9/19/91<br>ug/L                              | OBA-7C<br>10/7/91<br>ug/L                                                                       | Dup<br>OBA-7C<br>10/7/91<br>ug/L                                                                                                          | OBA-8A<br>9/19/91<br>ug/L                                               | OBA-8B<br>9/18/91<br>ug/L                                                                                                                                              | Dup<br>OBA-8B<br>9/18/91<br>ug/L                                                                                                                                   | OBA-8C<br>9/18/91<br>ug/L                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                 |                                                                                                                                           |                                                                         |                                                                                                                                                                        |                                                                                                                                                                    |                                                                                                                          |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 1,2-dichloroethane 1,1,1-trichloroethane carbon tetrachloride bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropene trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane | ND100 1000 ND100 ND50 ND50 ND50 ND50 ND50 ND50 ND50 ND | 290 130 ND200 ND100 18J ND100 1600 340 ND100 ND100 ND100 ND100 ND100 ND100 ND100 S53 1200 ND100 | 380<br>160<br>ND200<br>ND100<br>24J<br>ND100<br>2100<br>340<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>T7J<br>1300<br>ND100 | ND10 6 ND10 ND5 ND5 ND5 1J 780J ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | 1600J<br>30,000J<br>ND100UJ<br>250J<br>190J<br>20J<br>15,000<br>93,000<br>71J<br>460J<br>8J<br>ND50UJ<br>ND50UJ<br>ND50UJ<br>ND50UJ<br>200J<br>200J<br>13,000<br>9500J | 1300<br>24,000J<br>ND1000<br>ND500<br>120J<br>ND500<br>14,000<br>76,000<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>190J<br>180J<br>12,000<br>11,000J | ND50<br>ND25<br>ND50<br>ND25<br>ND25<br>ND25<br>S8<br>6J<br>ND25<br>ND25<br>ND25<br>ND25<br>ND25<br>ND25<br>ND25<br>ND25 |
| toluene chlorobenzene ethyl benzene total xylenes                                                                                                                                                                                                                                                                                                               | ND50<br>ND50<br>ND50<br>ND50                           | ND100<br>ND100<br>ND100<br>ND100                                                                | ND100<br>100U<br>ND100<br>ND100                                                                                                           | ND5<br>ND5<br>ND5<br>ND5                                                | ND50UJ<br>56U<br>ND50UJ<br>ND50UJ                                                                                                                                      | ND500<br>ND500<br>ND500<br>ND500                                                                                                                                   | ND25<br>3J<br>ND25<br>ND25                                                                                               |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                      | BH-1<br>9/18/91<br>ug/L                             | BH-3<br>9/18/91<br>ug/L                                                                                                  | NAPL<br>OBA-2C<br>9/20/91<br>mg/kg                                                                                                                                           | Rinsate 1<br>9/18/91<br>ug/L                          | Rinsate 2<br>9/20/91<br>ug/L                                                               | Rinsate 3<br>10/7/91<br>ug/L                          | Trip<br>Blank 1<br>9/18/91<br>ug/L                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                              |                                                     |                                                                                                                          | •                                                                                                                                                                            |                                                       |                                                                                            |                                                       |                                                       |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 1,2-dichloroethane 1,1,1-trichloroethane carbon tetrachloride bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropene trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene | 3J ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND1000 76J 610J ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 ND500 1600 ND500 250J 390J ND500 | ND6200<br>ND3100<br>ND6200<br>ND3100<br>ND3100<br>ND3100<br>380J<br>600J<br>ND3100<br>ND3100<br>ND3100<br>ND3100<br>ND3100<br>ND3100<br>ND3100<br>ND3100<br>ND3100<br>ND3100 | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10<br>0.6J<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 |
| chlorobenzene<br>ethyl benzene<br>total xylenes                                                                                                                                                                                                                                                                                                      | 5U<br>ND5<br>ND5                                    | 9800<br>ND500<br>ND500                                                                                                   | ND3100<br>ND3100<br>ND3100                                                                                                                                                   | 2J<br>ND5<br>ND5                                      | 2J<br>ND5<br>ND5                                                                           | ND5<br>ND5<br>ND5                                     | ND5<br>ND5<br>ND5                                     |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                         | Trip<br>Blank 2<br>9/20/91<br>ug/L                    | Field<br>Blank 1<br>9/18/91<br>ug/L                   | Field<br>Blank 2<br>10/7/91<br>ug/L                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Compounds TCL - VOCS                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                       |                                                                                           |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,2-dichloroethene 1,2-dichloroethene (total) chloroform 1,2-dichloroethane 1,1,1-trichloroethane carbon tetrachloride bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropene trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 |
| chlorobenzene ethyl benzene total xylenes                                                                                                                                                                                                                                                                                                                               | ND5<br>ND5<br>ND5<br>ND5                              | NDS<br>2J<br>NDS<br>NDS                               | 1J<br>ND5<br>ND5                                                                          |

- NS Not sampled
- ND Not detected, applicable detection limit listed
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument but was diluted below the instrument detection limit on subsequent dilution runs.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                                                                      | Olin<br>Production<br>Well<br>9/23/91<br>ug/L | OBA-1A<br>9/19/91<br>ug/L                                    | OBA-1B<br>9/17/91<br>ug/L                                                                  | OBA-1C<br>9/17/91<br>ug/L                                                                                            | OBA-2B<br>9/23/91<br>ug/L                                       | OBA-2C<br>10/4/91<br>ug/L                                                                                                                                                                                                  | OBA-3A<br>9/23/91<br>ug/L                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL-BNAs                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                                              |                                                                                            |                                                                                                                      |                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                                                              |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane 2,4-dimethylphenol benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene napthalene 4-chloroanaline hexachlorobutadiene 2,4,5-trichlorophenol 2,4,5-trichlorophenol hexachlorobenzene pentachlorophenol phenanthrene anthracene fluoranthene pyrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene | ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10       | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | 10J ND12 ND12 ND12 ND12 SJ ND12 SJ ND12 SJ ND12 SJ ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | ND12<br>ND12<br>18<br>19<br>ND12<br>44<br>ND12<br>SJ<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND10 ND10 48 9J ND10 16 ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 | 11J<br>ND12<br>26<br>84<br>13<br>450<br>ND12<br>ND12<br>440<br>ND12<br>2200J<br>ND12<br>56<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND10 16 730 2700 ND10 3600 ND10 ND10 ND10 ND10 ND10 ND10 ND52 ND10 4J ND10 ND52 ND10 ND52 ND10 ND10 ND52 ND10 ND10 ND52 ND10 ND10 ND52 ND10 ND10 ND52 ND10 ND10 ND52 ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 |
| 2,3-dichlorophenol 2,5-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                | ND10<br>ND10<br>ND10                          | ND12<br>ND12<br>ND12                                         | ND12<br>ND12<br>ND12                                                                       | ND12<br>ND12<br>ND12                                                                                                 | ND10<br>ND10<br>ND10                                            | ND12<br>ND12<br>ND12                                                                                                                                                                                                       | 3J<br>5J                                                                                                                                                                                                     |

| Well ID<br>Sample Date<br>Units                                                                  | Olin<br>Production<br>Well<br>9/23/91<br>ug/L | OBA-1A<br>9/19/91<br>ug/L            | OBA-1B<br>9/17/91<br>mg/L            | OBA-1C<br>9/17/91<br>ug/L           | OBA-2B<br>9/23/91<br>ug/L        | OBA-2C<br>10/4/91<br>ug/L            | OBA-3A<br>9/23/91<br>ug/L        |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|----------------------------------|--------------------------------------|----------------------------------|
| Compounds<br>TCL-BNAs                                                                            |                                               |                                      |                                      |                                     |                                  |                                      |                                  |
| 3,4-dichlorophenol 2,3,6-trichlorophenol 2,3,4,5-tetrachlorophenol 3-chlorophenol 4-chlorophenol | ND10<br>ND10<br>ND10UJ<br>ND10<br>ND10        | ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>ND12<br>ND12<br>ND12 | 11J<br>ND12<br>ND12<br>ND12<br>ND12 | 26<br>ND10<br>ND10UJ<br>7J<br>7J | ND12<br>ND12<br>ND12<br>ND12<br>ND12 | 4J<br>ND10<br>ND10UJ<br>20<br>20 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                                                 | Dup<br>OBA-3A<br>9/23/91<br>ug/L                                                                       | OBA-3B<br>9/23/91<br>ug/L                                                                                                                             | OBA-3C<br>10/4/91<br>ug/L                                                                                  | OBA-4A<br>9/23/91<br>ug/L                                    | OBA-4B<br>9/18/91<br>ug/L                                    | OBA-4C<br>9/18/91<br>ug/L                                                                                                                                  | OBA-5A<br>9/20/91<br>ug/L                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br><u>TCL-BNAs</u>                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        |                                                                                                                                                       |                                                                                                            |                                                              |                                                              |                                                                                                                                                            |                                                                                                                                                                  |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane 2,4-dimethylphenol benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene napthalene 4-chloroanaline hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol hexachlorobenzene pentachlorophenol phenanthrene anthracene fluoranthene pyrene bis(2-ethylhexyl)phthalate | ND12 20 370J 1400J ND12 1700J ND12 ND12 ND12 ND12 ND59 7J 320J ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | ND11<br>8J<br>540<br>1700<br>40<br>2300<br>ND11<br>ND11<br>ND11<br>ND56<br>ND11<br>190<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND1 | ND12<br>15<br>1000<br>4400<br>ND12<br>5900<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>12<br>43<br>ND12<br>58<br>ND12<br>ND12<br>24<br>ND12<br>170<br>ND12<br>170<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12R<br>ND12R<br>280J<br>110<br>ND12R<br>370J<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>4600<br>6J<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 |
| benzo(b)fluoranthene<br>2,3-dichlorophenol<br>2,5-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                | ND12<br>ND12<br>ND12                                                                                   | ND11<br>ND11<br>ND11                                                                                                                                  | ND12<br>ND12<br>6J                                                                                         | ND12<br>ND12<br>ND12                                         | ND12<br>ND12<br>ND12                                         | ND12<br>ND12<br>ND12                                                                                                                                       | 7J<br>ND12R<br>ND12R                                                                                                                                             |

| Well ID<br>Sample Date<br>Units                                                                  | Dup<br>OBA-3A<br>9/23/91<br>ug/L   | OBA-3B<br>9/23/91<br>ug/L        | OBA-3C<br>10/4/91<br>ug/L        | OBA-4A<br>9/23/91<br>ug/L            | OBA-4B<br>9/18/91<br>ug/L              | OBA-4C<br>9/18/91<br>ug/L                    | OBA-5A<br>9/20/91<br>ug/L                 |
|--------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------|-------------------------------------------|
| Compounds<br>TCL-BNAs                                                                            |                                    |                                  |                                  |                                      |                                        |                                              |                                           |
| 3,4-dichlorophenol 2,3,6-trichlorophenol 2,3,4,5-tetrachlorophenol 3-chlorophenol 4-chlorophenol | 5J<br>ND12<br>ND12UJ<br>25<br>ND12 | 5J<br>ND11<br>ND11UJ<br>9J<br>9J | 5J<br>ND12<br>ND12<br>24<br>ND12 | ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>ND12UJ<br>ND12<br>ND12 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                                                                      | Dup<br>OBA-5A<br>9/20/91<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OBA-5B<br>9/20/91<br>ug/L                                                                           | OBA-5C<br>10/7/91<br>ug/L                                    | OBA-6A<br>9/20/91<br>ug/L                                                         | OBA-6B<br>9/19/91<br>ug/L                                                                        | OBA-6C<br>9/19/91<br>ug/L                                                                                                   | OBA-7A<br>9/19/91<br>ug/L                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Compounds<br>TCL-BNAs                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                              |                                                                                   |                                                                                                  |                                                                                                                             |                                                                                          |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane 2,4-dimethylphenol benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene napthalene 4-chloroanaline hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol hexachlorobenzene pentachlorophenol phenanthrene anthracene fluoranthene pyrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene | 30J<br>ND12R<br>220<br>62<br>ND12R<br>250<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND60R<br>ND12R<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND | 11J ND11 260 190 ND11 450 ND11 ND11 27 ND11 42J ND11 4100 2J ND11 ND11 ND11 ND11 ND11 ND11 ND11 ND1 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | 85 ND11 ND11 ND11 ND11 AJ 24 ND11 ND11 19J ND11 ND11 ND11 ND11 ND11 ND11 ND11 ND1 | 15 ND11 200 57 ND11 150 3J 11J ND11 ND11 47J ND11 5700 4J ND11 ND11 ND11 ND11 ND11 ND11 ND11 ND1 | ND12 ND12 13 9J ND12 32 ND12 220 ND12 220 ND12 ND62UJ ND12 360 ND12 ND12 35 130 ND62 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND1 | ND12<br>ND12<br>4J<br>3J<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 |
| 2,3-dichlorophenol<br>2,5-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                             | ND12R<br>ND12R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND11<br>ND11                                                                                        | ND12<br>ND12                                                 | ND11<br>ND11                                                                      | ND11<br>ND11                                                                                     | ND12<br>ND12                                                                                                                | ND12<br>ND12                                                                             |

| Well ID<br>Sample Date<br>Units                                                                  | Dup<br>OBA-5A<br>9/20/91<br>ug/L                   | OBA-5B<br>9/20/91<br>ug/L     | OBA-5C<br>10/7/91<br>ug/L            | OBA-6A<br>9/20/91<br>ug/L              | OBA-6B<br>9/19/91<br>ug/L          | OBA-6C<br>9/19/91<br>ug/L              | OBA-7A<br>9/19/91<br>ug/L              |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|--------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|
| Compounds<br>TCL-BNAs                                                                            |                                                    |                               |                                      |                                        |                                    |                                        |                                        |
| 3,4-dichlorophenol 2,3,6-trichlorophenol 2,3,4,5-tetrachlorophenol 3-chlorophenol 4-chlorophenol | ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R | 8J<br>260<br>3J<br>3J<br>ND11 | ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND11<br>ND11<br>ND11UJ<br>ND11<br>ND11 | 13<br>13<br>ND11UJ<br>ND11<br>ND11 | ND12<br>ND12<br>ND12UJ<br>ND12<br>ND12 | ND12<br>ND12<br>ND12UJ<br>ND12<br>ND12 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                      | OBA-7B<br>9/19/91<br>ug/L                                             | OBA-7C<br>10/7/91<br>ug/L                                                                          | Dup<br>OBA-7C<br>10/7/91<br>ug/L                                                           | OBA-8A<br>9/19/91<br>ug/L                                    | OBA-8B<br>9/18/91<br>ug/L                                                                 | Dup<br>OBA-8B<br>9/18/91<br>ug/L                                                        | OBA-8C<br>9/18/91<br>ug/L                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Compounds<br><u>TCL-BNAs</u>                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                    |                                                                                            |                                                              |                                                                                           |                                                                                         |                                                              |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane 2,4-dimethylphenol benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene napthalene 4-chloroanaline hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol hexachlorobenzene pentachlorophenol phenanthrene anthracene fluoranthene pyrene | 12 ND12 11J ND12 9J 11J 2J 5J ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | 7J ND12 3J ND12 12U ND12 3J ND12 ND12 ND12 ND12 ND62 14 8J ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | 4J ND11 2J 2J ND11 11U ND11 2J ND11 ND11 ND56 13 9J ND11 ND11 ND11 ND11 ND11 ND11 ND11 ND1 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>95<br>10J<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND11<br>ND11<br>91<br>9J<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND1 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 |
| bis(2-ethylhexyl)phthalate<br>benzo(b)fluoranthene<br>2,3-dichlorophenol<br>2,5-dichlorophenol                                                                                                                                                                                                                                                                                                       | ND12<br>ND12<br>ND12<br>ND12<br>ND12                                  | ND12<br>ND12<br>ND12<br>ND12<br>ND12                                                               | 10J<br>ND11<br>ND11<br>ND11                                                                | ND12<br>ND12<br>ND12<br>ND12<br>ND12                         | ND12<br>ND12<br>ND12<br>ND12<br>ND12                                                      | ND11<br>ND11<br>ND11<br>ND11                                                            | 4J<br>ND12<br>ND12<br>ND12                                   |

| Well ID<br>Sample Date<br>Units                                                                  | OBA-7B<br>9/19/91<br>ug/L              | OBA-7C<br>10/7/91<br>ug/L        | Dup<br>OBA-7C<br>10/7/91<br>ug/L | OBA-8A<br>9/19/91<br>ug/L              | OBA-8B<br>9/18/91<br>ug/L            | Dup<br>OBA-8B<br>9/18/91<br>ug/L     | OBA-8C<br>9/18/91<br>ug/L            |
|--------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Compounds<br>TCL-BNAs                                                                            |                                        |                                  |                                  |                                        | •                                    |                                      |                                      |
| 3,4-dichlorophenol 2,3,6-trichlorophenol 2,3,4,5-tetrachlorophenol 3-chlorophenol 4-chlorophenol | ND12<br>ND12<br>ND12UJ<br>ND12<br>ND12 | 330<br>ND12<br>22J<br>5J<br>ND12 | 390<br>ND11<br>20J<br>4J<br>ND11 | ND12<br>ND12<br>ND12UJ<br>ND12<br>ND12 | ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND11<br>ND11<br>ND11<br>ND11<br>ND11 | ND12<br>ND12<br>ND12<br>ND12<br>ND12 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BH-1<br>9/19/91<br>ug/L                 | BH-3<br>9/18/91<br>ug/L                                                                   | NAPL<br>OBA-2C<br>9/20/91<br>mg/kg                                                                        | Rinsate<br>Blank 1<br>9/18/91<br>ug/L                        | Rinsate<br>Blank 2<br>9/20/91<br>ug/L                        | Rinsate<br>Blank 3<br>10/7/91<br>ug/L                        | Trip<br>Blank 1<br><br>ug/L |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|
| Compounds<br>TCL-BNAs                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                           |                                                                                                           |                                                              |                                                              |                                                              |                             |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane 2,4-dimethylphenol benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene napthalene 4-chloroanaline hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol hexachlorobenzene pentachlorobenzene pentachlorophenol phenanthrene anthracene fluoranthene pyrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene 2,3-dichlorophenol | ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | 44 20 700 390J ND12 1600 ND12 ND12 ND12 ND12 4900 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | ND90<br>ND90<br>410<br>1200<br>ND90<br>6,000<br>ND90<br>ND90<br>ND90<br>ND90<br>ND90<br>ND90<br>ND90<br>N | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11<br>ND11 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | NS                          |
| 2,5-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND12                                    | <b>4</b> J                                                                                | ND90                                                                                                      | ND12                                                         | ND11                                                         | ND12                                                         |                             |

| Well ID<br>Sample Date<br>Units                                                                  | BH-1<br>9/19/91<br>ug/L              | BH-3<br>9/18/91<br>ug/L           | NAPL<br>OBA-2C<br>9/20/91<br>mg/kg     | Rinsate<br>Blank 1<br>9/18/91<br>ug/L | Rinsate<br>Blank 2<br>9/20/91<br>ug/L | Rinsate<br>Blank 3<br>10/7/91<br>ug/L | Trip<br>Blank 1<br><br>ug/L |
|--------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|
| Compounds<br>TCL-BNAs                                                                            |                                      |                                   |                                        |                                       |                                       |                                       |                             |
| 3,4-dichlorophenol 2,3,6-trichlorophenol 2,3,4,5-tetrachlorophenol 3-chlorophenol 4-chlorophenol | ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>4J<br>10J<br>ND12 | ND90<br>ND90<br>ND90UJ<br>ND90<br>ND90 | ND12<br>ND12<br>ND12<br>ND12<br>ND12  | ND11<br>ND11<br>ND11<br>ND11<br>ND11  | ND12<br>ND12<br>ND12<br>ND12<br>ND12  | ns                          |

| Compounds TCL-BNAs  phenol NS NS NS 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane 2,4-dimethylphenol benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene napthalene 4-chloroanaline hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol hexachlorobenzene pentachlorobenzene pentachlorophenol phenanthrene anthracene fluoranthene pyrene bis(2-ethylhexyl)phthalate | Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                         |                                                                                                                                            | Trip<br>Blank 2<br><br>ug/L | Field<br>Blank 1<br><br>ug/L | Field<br>Blank 2<br><br>ug/L |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|------------------------------|
| 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane 2,4-dimethylphenol benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene napthalene 4-chloroanaline hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol hexachlorobenzene pentachlorophenol phenanthrene anthracene fluoranthene pyrene bis(2-ethylhexyl)phthalate                                                        |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                            |                             |                              |                              |
| benzo(b)fluoranthene 2,3-dichlorophenol 2.5-dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-chlorophen 1,3-dichloro 1,4-dichloro benzyl alcoh 1,2-dichloro 2-methylphen 4-methylphen hexachloroet 2,4-dimethyl benzoic acid 2,4-dichloro 1,2,4-trichl napthalene 4-chloroanal hexachlorobu 2,4,6-trichl 2,4,5-trichl hexachlorobe pentachlorop phenanthrene anthracene fluoranthene pyrene bis(2-ethylh benzo(b)fluo 2,3-dichloro | benzene benzene ol benzene ol ol hane phenol phenol orobenzene ine tadiene orophenol orophenol nzene henol  exyl)phthalate ranthene phenol | NS                          | NS                           | NS                           |

| Well ID Sample Date Units Compounds TCL-BNAs                                                     | Trip    | Field   | Field   |
|--------------------------------------------------------------------------------------------------|---------|---------|---------|
|                                                                                                  | Blank 2 | Blank 1 | Blank 2 |
|                                                                                                  |         |         |         |
|                                                                                                  | ug/L    | ug/L    | ug/L    |
| 3,4-dichlorophenol 2,3,6-trichlorophenol 2,3,4,5-tetrachlorophenol 3-chlorophenol 4-chlorophenol | NS      | ns      | ns      |

NS - Not sampled

ND - Not detected, applicable detection limit listed

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument but was diluted below the instrument detection limit on subsequent dilution runs.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit

| Well ID<br>Sample Date<br>Units   | Olin<br>Production<br>Well<br>9/23/91<br>ug/L | OBA-1A<br>9/20/91<br>ug/L | OBA-1B<br>9/17/91<br>ug/L | OBA-1C<br>9/17/91<br>ug/L | OBA-2B<br>9/23/91<br>ug/L | OBA-2C<br>10/4/91<br>ug/L | OBA-3A<br>9/23/91<br>ug/L |
|-----------------------------------|-----------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds<br>TCL - Pesticide/PCBs |                                               |                           |                           |                           |                           |                           |                           |
| alpha-BHC                         | 0.65                                          | 8.5                       | ND0.062                   | ND0.062                   | 20                        | 2.8                       | 5.4                       |
| beta-BHC                          | ND0.056                                       | 21                        | 0.32                      | ND0.062                   | 0.66                      | 1.1                       | 0.95                      |
| delta-BHC                         | NDO.056                                       | NDO.28                    | ND0.062                   | ND0.062                   | NDO.25                    | 0.89                      | 1.6                       |
| gamma-BHC                         | 0.27                                          | ND0.28                    | ND0.062                   | 0.14                      | 3.7                       | 2.0                       | 0.92                      |
| Heptachlor                        | NDO.056                                       | ND0.28                    | NDO.062                   | ND0.062                   | NDO.25                    | 0.47                      | ND0.23                    |
| Aldrin                            | NDO.056                                       | ND0.28                    | ND0.062                   | ND0.062                   | NDO.25                    | 0.094J                    | NDO.23                    |
| Heptachlor epoxide                | NDO.056                                       | ND0.28                    | ND0.062                   | ND0.062                   | NDO.25                    | NDO.12                    | NDO.23                    |
| 4,4'-DDE                          | NDO.11                                        | NDO.57                    | NDO.12                    | NDO.12                    | ND0.50                    | NDO.25                    | NDO.46                    |
| Endrin                            | NDO.11                                        | NDO.57                    | NDO.12UJ                  | NDO.12                    | ND0.50                    | NDO.25                    | NDO.46                    |
| Endosulfan sulfate                | 0.51                                          | NDO.57                    | NDO.12                    | NDO.12                    | ND0.50                    | 0.062J                    | NDO.46                    |
| 4,4'-DDT                          | NDO.11                                        | NDO.57                    | NDO.12                    | ND0.12                    | NDO.50                    | NDO.25                    | NDO.46                    |
| alpha-Chlordane                   | ND0.56                                        | ND2.8                     | ND0.62                    | ND0.62                    | ND2.5                     | ND1.2                     | ND2.3                     |
| gamma-Chlordane                   | NDO.56                                        | ND2.8                     | NDO.62                    | ND0.62                    | ND2.5                     | ND1.2                     | ND2.3                     |

| Well ID<br>Sample Date<br>Units   | Dup<br>OBA-3A<br>9/23/91<br>ug/L | OBA-3B<br>9/23/91<br>ug/L | OBA-3C<br>10/4/91<br>ug/L | OBA-4A<br>9/20/91<br>ug/L | OBA-4B<br>9/18/91<br>ug/L | OBA-4C<br>9/18/91<br>ug/L | OBA-5A<br>9/20/91<br>ug/L |
|-----------------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds<br>TCL - Pesticide/PCBs |                                  |                           |                           |                           |                           |                           |                           |
| alpha-BHC                         | 5.2                              | 2.6                       | 1.5                       | ND0.062                   | 0.56                      | 21                        | 190                       |
| beta-BHC                          | 0.93                             | 0.70                      | 1.2                       | 0.22                      | 0.84                      | 1.8                       | 130                       |
| delta-BHC                         | 1.6                              | 0.41                      | 0.28                      | ND0.062                   | 0.036J                    | 4.5                       | 4.9                       |
| gamma-BHC                         | 0.64                             | ND0.056                   | 0.18                      | ND0.062                   | ND0.055                   | 12                        | 98                        |
| Heptachlor                        | ND0.22                           | ND0.056                   | ND0.062                   | ND0.062                   | ND0.055                   | ND0.29                    | NDO.62                    |
| Aldrin                            | ND0.22                           | ND0.056                   | ND0.062                   | ND0.062                   | NDO.055                   | ND0.29                    | NDO.62                    |
| Heptachlor epoxide                | ND0.22                           | ND0.056                   | ND0.062                   | ND0.062                   | ND0.055                   | NDO.29                    | NDO.62                    |
| 4,4'-DDE                          | ND0.44                           | NDO.11                    | ND0.12                    | NDO.12                    | ND0.11                    | NDO.58                    | ND1.2                     |
| Endrin                            | ND0.44                           | NDO.11                    | ND0.12                    | ND0.12                    | ND0.11                    | NDO.58                    | ND1.2                     |
| Endosulfan sulfate                | ND0.44                           | NDO.11                    | ND0.12                    | ND0.12                    | NDO.11                    | 1.3                       | ND1.2                     |
| 4,4'-DDT                          | ND0.44                           | ND0.11                    | ND0.12                    | NDO.12                    | ND0.11                    | NDO.58                    | ND1.2                     |
| alpha-Chlordane                   | ND2.2                            | NDO.56                    | ND0.62                    | ND0.62                    | NDO.55                    | ND2.9                     | ND6.2                     |
| gamma-Chlordane                   | ND2.2                            | ND0.56                    | ND0.62                    | NDO.62                    | NDO.55                    | ND2.9                     | ND6.2                     |

| Well ID<br>Sample Date<br>Units          | Dup<br>OBA-5A<br>9/20/91<br>ug/L | OBA-5B<br>9/20/91<br>ug/L | OBA-5C<br>10/7/91<br>ug/L | OBA-6A<br>9/20/91<br>ug/L | OBA-6B<br>9/19/91<br>ug/L | OBA-6C<br>9/19/91<br>ug/L | OBA-7A<br>9/19/91<br>ug/L |
|------------------------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds<br><u>TCL - Pesticide/PCBs</u> |                                  |                           |                           |                           |                           |                           |                           |
| alpha-BHC                                | 180                              | 120                       | ND0.062                   | ND0.062                   | 3.7                       | 39                        | 0.066                     |
| beta-BHC                                 | 98                               | 42                        | NDO.062                   | 0.10                      | 7.7                       | 2.1                       | 5.8                       |
| delta-BHC                                | 4.3                              | 3.0                       | NDO.062                   | NDO.062                   | NDO.12                    | 0.22J                     | NDO.062                   |
| gamma-BHC                                | 93                               | 110                       | ND0.062                   | NDO.062                   | NDO.12                    | 1.0                       | NDO.062                   |
| Heptachlor                               | ND0.62                           | NDO.62                    | ND0.062                   | NDO.062                   | NDO.12                    | NDO.62                    | NDO.062                   |
| Aldrin                                   | ND0.62                           | NDO.62                    | ND0.062                   | NDO.062                   | NDO.12                    | NDO.62                    | 0.028J                    |
| Heptachlor epoxide                       | ND0.62                           | NDO.62                    | ND0.062                   | ND0.062                   | NDO.12                    | NDO.62                    | 0.071                     |
| 4,4'-DDE                                 | ND1.2                            | ND1.2                     | NDO.12                    | NDO.12                    | NDO.25                    | ND1.2                     | NDO.12                    |
| Endrin                                   | ND1.2                            | ND1.2                     | NDO.12                    | NDO.12                    | NDO.25                    | ND1.2                     | NDO.12                    |
| Endosulfan sulfate                       | ND1.2                            | ND1.2                     | 0.15                      | NDO.12                    | ND0.25                    | ND1.2                     | NDO.12                    |
| 4,4'-DDT                                 | ND1.2                            | ND1.2                     | NDO.12                    | NDO.12                    | 1.0                       | ND1.2                     | NDO.12                    |
| alpha-Chlordane                          | ND6.2                            | ND6.2                     | ND0.62                    | ND0.62                    | ND1.2                     | ND6.2                     | NDO.62                    |
| gamma-Chlordane                          | ND6.2                            | ND6.2                     | NDO.62                    | NDO.62                    | ND1.2                     | ND6.2                     | NDO. 62                   |

| Well ID<br>Sample Date<br>Units | OBA-7B<br>9/19/91<br>ug/L | OBA-7C<br>10/7/91<br>ug/L | Dup<br>OBA-7C<br>10/7/91<br>ug/L | OBA-8A<br>9/19/91<br>ug/L | OBA-8B<br>9/18/91<br>ug/L | Dup<br>OBA-8B<br>9/18/91<br>ug/L | OBA-8C<br>9/18/91<br>ug/L |
|---------------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|
| Compounds TCL - Pesticide/PCBs  |                           |                           |                                  |                           |                           |                                  |                           |
| alpha-BHC                       | ND0.062                   | ND0.062                   | ND0.056                          | 0.10                      | 8.4                       | 6.9                              | 1.2                       |
| beta-BHC                        | 0.43                      | 0.31                      | 0.26                             | 0.93                      | 0.80                      | 0.70                             | 0.021J                    |
| delta-BHC                       | ND0.062                   | NDO.062                   | NDO.056                          | ND0.062                   | ND0.28                    | ND0.28                           | ND0.058                   |
| gamma-BHC                       | ND0.062                   | ND0.062                   | NDO.056                          | ND0.062                   | 0.56                      | 0.53                             | ND0.058                   |
| Heptachlor                      | ND0.062                   | 0.90                      | 1.0                              | ND0.062                   | ND0.28                    | ND0.28                           | ND0.058                   |
| Aldrin                          | ND0.062                   | ND0.062                   | NDO.056                          | 0.065                     | ND0.28                    | ND0.28                           | ND0.058                   |
| Heptachlor epoxide              | ND0.062                   | ND0.062                   | ND0.056                          | ND0.062                   | ND0.28                    | ND0.28                           | ND0.058                   |
| 4,4'-DDE                        | ND0.12                    | ND0.12                    | NDO.11                           | NDO.12                    | ND0.56                    | NDO.55                           | NDO.12                    |
| Endrin                          | ND0.12                    | NDO.12                    | NDO.11                           | NDO.12                    | ND0.56                    | NDO.55                           | NDO.12                    |
| Endosulfan sulfate              | NDO.12                    | NDO.12                    | ND0.11                           | NDO.12                    | NDO.56                    | ND0.55                           | NDO.12                    |
| 4,4'-DDT                        | ND0.12                    | 0.21                      | NDO.11                           | NDO.12                    | NDO.56                    | ND0.55                           | NDO.12                    |
| alpha-Chlordane                 | ND0.62                    | ND0.62                    | ND0.56                           | NDO.62                    | ND2.8                     | ND2.8                            | ND0.58                    |
| gamma-Chlordane                 | ND0.62                    | ND0.62                    | ND0.56                           | ND0.62                    | ND2.8                     | ND2.8                            | NDO.58                    |

| Well ID<br>Sample Date<br>Units                                                      | BH-1<br>9/18/91<br>ug/L                                                         | BH-3<br>9/18/91<br>ug/L                                     | NAPL<br>OBA-2C<br>9/20/91<br>mg/kg                   | Rinsate 1<br>9/18/91<br>ug/L                                              | Rinsate 2<br>9/20/91<br>ug/L                                                        | Rinsate 3<br>10/7/91<br>ug/L                                              | Trip<br>Blank 1<br><br>ug/L |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|
| Compounds<br>TCL - Pesticide/PCBs                                                    |                                                                                 |                                                             |                                                      |                                                                           |                                                                                     |                                                                           |                             |
| alpha-BHC beta-BHC delta-BHC gamma-BHC Heptachlor Aldrin Heptachlor epoxide 4,4'-DDE | NDO.062<br>0.38<br>0.027J<br>NDO.062<br>NDO.062<br>NDO.062<br>NDO.062<br>NDO.12 | 610<br>64<br>170<br>430<br>ND2.5<br>ND2.5<br>ND2.5<br>ND5.0 | 70<br>71<br>170<br>50<br>7.6<br>ND4.9<br>5.2<br>9.0J | NDO.058<br>NDO.058<br>NDO.058<br>NDO.058<br>NDO.058<br>NDO.058<br>NDO.058 | NDO.062<br>NDO.062<br>NDO.062<br>NDO.062<br>NDO.062<br>NDO.062<br>NDO.062<br>NDO.12 | NDO.058<br>NDO.058<br>NDO.058<br>NDO.058<br>NDO.058<br>NDO.058<br>NDO.058 | NS                          |
| Endrin Endosulfan sulfate 4,4'-DDT alpha-Chlordane gamma-Chlordane                   | NDO.12<br>NDO.12<br>NDO.12<br>NDO.62<br>NDO.62                                  | ND5.0<br>ND5.0<br>ND5.0<br>ND25<br>ND25                     | 130<br>200<br>ND9.8<br>1.8J<br>3.9J                  | NDO.12<br>NDO.12<br>NDO.12<br>NDO.58<br>NDO.58                            | NDO.12<br>NDO.12<br>NDO.12<br>NDO.62<br>NDO.62                                      | NDO.12<br>NDO.12<br>NDO.12<br>NDO.58<br>NDO.58                            |                             |

| Well ID<br>Sample Date<br>Units                                                                                | Trip<br>Blank 2<br><br>ug/L | Field<br>Blank 1<br><br>ug/L | Field<br>Blank 2<br><br>ug/L |
|----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|------------------------------|
| Compounds<br>TCL - Pesticide/PCBs                                                                              |                             |                              |                              |
| alpha-BHC beta-BHC delta-BHC gamma-BHC Heptachlor Aldrin Heptachlor epoxide 4,4'-DDE Endrin Endosulfan sulfate | NS                          | NS                           | NS                           |

NS - Not sampled

alpha-Chlordane gamma-Chlordane

4,4'-DDT

ND - Not detected, applicable detection limit listed

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument but was diluted below the instrument detection limit on subsequent dilution runs.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit

| Well ID<br>Sample Date<br>Units | Olin<br>Production<br>Well<br>9/23/91<br>ug/L | OBA-1A<br>9/17/91<br>ug/L | OBA-1B<br>9/17/91<br>ug/L | OBA-1C<br>9/17/91<br>ug/L | OBA-2B<br>9/23/91<br>ug/L | OBA-2C<br>10/4/91<br>ug/L | OBA-3A<br>9/23/91<br>ug/L |
|---------------------------------|-----------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compound                        |                                               |                           |                           |                           |                           |                           |                           |
| Methanol                        | ND1000                                        | ND1000                    | 2100                      | 1800                      | ND1000                    | ND1000                    | ND1000                    |
|                                 |                                               |                           |                           |                           |                           |                           |                           |
| Sample Date<br>Units            | 9/23/91<br>ug/L                               | 9/20/91<br>ug/L           | 9/17/91<br>ug/L           | 9/17/91<br>ug/L           | 9/23/91<br>ug/L           | 10/4/91<br>ug/L           | 9/23/91<br>ug/L           |
| Mercury                         | 0.3                                           | 1.8                       | 166                       | 0.2                       | 30.6                      | 0.9                       | 6.3J                      |

| Well ID<br>Sample Date<br>Units | Dup<br>OBA-3A<br>9/23/91<br>ug/L | OBA-3B<br>9/23/91<br>ug/L | OBA-3C<br>10/4/91<br>ug/L | OBA-4A<br>9/20/92<br>ug/L | OBA-4B<br>9/18/91<br>ug/L | OBA-4C<br>9/18/91<br>ug/L | OBA-5A<br>9/20/91<br>ug/L |
|---------------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compound                        |                                  |                           |                           |                           |                           |                           |                           |
| Methanol                        | ND1000                           | ND1000                    | ND1000                    | ND1000                    | ND1000                    | ND1000                    | 1400                      |
|                                 |                                  |                           |                           |                           |                           |                           |                           |
| Sample Date<br>Units            | 9/23/91<br>ug/L                  | 9/23/91<br>ug/L           | 10/4/91<br>ug/L           | 9/23/91<br>ug/L           | 9/18/91<br>ug/L           | 9/18/91<br>ug/L           | 9/20/91<br>ug/L           |
| Mercury                         | 0.3J                             | 0.2                       | 0.5                       | NDO.2                     | NDO.2                     | NDO.2                     | 202                       |

| Well ID<br>Sample Date<br>Units | Dup<br>OBA-5A<br>9/20/91<br>ug/L | OBA-5B<br>9/20/91<br>ug/L | OBA-5C<br>10/7/91<br>ug/L | OBA-6A<br>9/20/91<br>ug/L | OBA-6B<br>9/19/91<br>ug/L | OBA-6C<br>9/19/91<br>ug/L | OBA-7A<br>9/19/91<br>ug/L |
|---------------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compound                        |                                  |                           |                           |                           |                           |                           |                           |
| Methano1                        | 1500                             | 68,000                    | ND1000                    | 1,570,000                 | 161,000                   | 1500                      | ND1000                    |
|                                 |                                  |                           |                           |                           |                           |                           |                           |
| Sample Date<br>Units            | 9/20/91<br>ug/L                  | 9/20/91<br>ug/L           | 10/7/91<br>ug/L           | 9/20/91<br>ug/L           | 9/19/91<br>ug/L           | 9/19/91<br>ug/L           | 9/19/91<br>ug/L           |
| Mercury                         | 194                              | 7.0                       | ND0.2                     | 10.6                      | 47.7                      | 0.7                       | 2.8                       |

| Well ID<br>Sample Date<br>Units | OBA-7B<br>9/19/91<br>ug/L | OBA-7C<br>10/7/91<br>ug/L | Dup<br>OBA-7C<br>10/7/91<br>ug/L | OBA-8A<br>9/19/91<br>ug/L | OBA-8B<br>9/18/91<br>ug/L | Dup<br>OBA-8B<br>9/18/91<br>ug/L | OBA-8C<br>9/18/91<br>ug/L |
|---------------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|
| Compound                        |                           |                           |                                  |                           |                           |                                  |                           |
| Methanol                        | 2300                      | ND1000                    | ND1000                           | ND1000                    | 75,000J                   | 6300J                            | ND1000                    |
|                                 |                           |                           |                                  |                           |                           |                                  |                           |
| Sample Date<br>Units            | 9/19/91<br>ug/L           | 10/7/91<br>ug/L           | 10/7/91<br>ug/L                  | 9/19/91<br>ug/L           | 9/18/91<br>ug/L           | 9/18/91<br>ug/L                  | 9/18/91<br>ug/L           |
| Mercury                         | 108                       | 7.9                       | 6.2                              | 13.1                      | 1.3                       | 2.0                              | 0.3                       |

| Well ID<br>Sample Date<br>Units | BH-1<br>9/18/91<br>ug/L | BH-3<br>9/18/91<br>ug/L | OBA-2C<br>NAPL<br>9/20/91<br>ug/L | Rinsate 1<br>9/18/91<br>ug/L | Rinsate 2<br>9/20/91<br>ug/L | Rinsate 3<br>10/7/91<br>ug/L | Trip<br>Blank 1<br>9/18/91<br>ug/L |
|---------------------------------|-------------------------|-------------------------|-----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------|
| Compound                        |                         |                         |                                   |                              |                              |                              |                                    |
| Methano1                        | ND1000                  | 3000                    | ND100,000<br>UJ                   | ND1000                       | ND1000                       | ND1000                       | ND1000                             |
| Sample Date<br>Units            | 9/20/91<br>ug/L         | 9/18/91<br>ug/L         | 9/20/91<br>mg/kg                  | 9/18/91<br>ug/L              | 9/20/91<br>ug/L              | 10/7/91<br>ug/L              | <br>ug/L                           |
| Mercury                         | NDO.2                   | 223                     | NDO.14                            | NDO.2                        | NDO.2                        | NDO.2                        | NS                                 |

| Well ID<br>Sample Date<br>Units | Trip<br>Blank 2<br>9/20/91<br>ug/L | Field<br>Blank 1<br>9/18/91<br>ug/L | Field<br>Blank 2<br>10/7/91<br>ug/L |
|---------------------------------|------------------------------------|-------------------------------------|-------------------------------------|
| Compound                        |                                    |                                     |                                     |
| Methanol                        | ND1000                             | ND1000                              | ND1000                              |
|                                 |                                    |                                     |                                     |
| Sample Date                     |                                    |                                     |                                     |
| Units                           | ug/L                               | ug/L                                | ug/L                                |
| Mercury                         | NS                                 | NS                                  | NS                                  |

- NS Not sampled
- ND Not detected, applicable detection limit listed
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument but was diluted below the instrument detection limit on subsequent dilution runs.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit

Phase I Groundwater Samples
Summary of Detected Compounds
March 1992

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                | Olin<br>Production<br>Well<br>3/06/92<br>ug/L                                                                     | OBA-1A<br>3/10/92<br>ug/L                                                                  | OBA-1B<br>3/09/92<br>ug/L                                                                   | OBA-1C<br>3/09/92<br>ug/L                                                                                                                  | OBA-2B<br>3/11/92<br>ug/L                                                             | OBA-2C<br>3/13/92<br>ug/L                                                                                                                                   | OBA-3A<br>3/12/92<br>ug/L                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                            | •                                                                                           |                                                                                                                                            |                                                                                       |                                                                                                                                                             |                                                                                                                       |
| vinyl chloride methylene chloride acetone 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene | 61<br>150<br>ND50<br>ND25<br>420<br>560<br>ND50<br>ND25<br>4J<br>ND25<br>680<br>ND25<br>ND25<br>230<br>83<br>ND25 | ND10<br>ND5<br>ND10<br>ND5<br>ND5<br>.4J<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>.6J<br>ND5 | 33<br>ND5<br>ND10<br>ND5<br>52<br>8<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>38<br>ND5 | ND10,000<br>22,000<br>ND10,000<br>ND5,000<br>9,300<br>60,000<br>ND10,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000 | 30<br>ND5<br>ND10<br>ND5<br>120<br>22<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>2J<br>68 | 2,200J<br>ND10,000<br>ND20,000<br>ND10,000<br>14,000<br>5,200J<br>ND20,000<br>ND10,000<br>1,400J<br>ND10,000<br>390,000<br>ND10,000<br>ND10,000<br>ND10,000 | 330J<br>ND500<br>ND1,000<br>ND500<br>790<br>ND500<br>ND500<br>ND500<br>ND500<br>110J<br>ND500<br>2,900<br>500U<br>85J |
| chlorobenzene ethylbenzene total xylenes                                                                                                                                                                                                                                       | ND25<br>ND25<br>ND25<br>ND25                                                                                      | ND5<br>ND5<br>ND5<br>ND5                                                                   | ND5<br>ND5<br>ND5<br>ND5                                                                    | ND5,000<br>ND5,000<br>ND5,000<br>ND5,000                                                                                                   | ND5<br>5U<br>ND5<br>ND5                                                               | ND10,000<br>ND10,000<br>ND10,000<br>ND10,000                                                                                                                | ND500<br>7,000<br>ND500<br>ND500                                                                                      |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                             | Dup<br>OBA-3A<br>3/12/92<br>ug/L                                                                                                  | OBA-3B<br>3/13/92<br>ug/L                                                                                                   | OBA-3C<br>3/13/92<br>ug/L                                                                                                             | OBA-4A<br>3/11/92<br>ug/L                                                                | OBA-4B<br>3/10/92<br>ug/L                                                                    | OBA-4C<br>3/10/92<br>ug/L                                                                                            | OBA-5A<br>3/12/92<br>ug/L                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                             | •                                                                                                                                     |                                                                                          |                                                                                              |                                                                                                                      |                                                                                                                           |
| vinyl chloride methylene chloride acetone 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chloroethene | 340J<br>ND500<br>ND1,000<br>ND500<br>950<br>ND500<br>ND500<br>ND500<br>ND500<br>SOOU<br>ND500<br>3,700<br>ND500<br>ND500<br>ND500 | 660J<br>ND500<br>ND1,000<br>ND500<br>1,900<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500 | 3,200<br>ND500<br>ND1,000<br>ND500<br>13,000<br>63J<br>ND1,000<br>ND500<br>ND500<br>ND500<br>ND500<br>7,900<br>500U<br>1,300<br>ND500 | ND10<br>ND5<br>ND10<br>ND5<br>2J<br>2J<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | 10<br>ND5<br>ND10<br>ND5<br>74<br>.8J<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>14<br>ND5<br>14 | 79J<br>46J<br>ND500<br>ND250<br>1,200<br>550<br>ND500<br>ND250<br>ND250<br>ND250<br>7,200<br>ND250<br>ND250<br>ND250 | 51J<br>ND100<br>ND200<br>ND100<br>720<br>490<br>ND200<br>16J<br>ND100<br>ND100<br>1,800<br>ND100<br>620<br>1,600<br>ND100 |
| chlorobenzene<br>ethylbenzene<br>total xylenes                                                                                                                                                                                                                                              | 9,100<br>ND500<br>ND500                                                                                                           | 11,000<br>ND500<br>ND500                                                                                                    | 19,000<br>ND500<br>ND500                                                                                                              | ND5<br>ND5<br>ND5                                                                        | 10U<br>ND5<br>ND5                                                                            | ND250<br>ND250<br>ND250                                                                                              | 600<br>ND100<br>ND100                                                                                                     |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                         | OBA-5B<br>3/12/92<br>ug/L                                                                                                                                                                                      | OBA-5C<br>3/12/92<br>ug/L                                                                                                                           | OBA-5CDL<br>3/12/92<br>ug/L                                                                                                                                  | OBA-6A<br>3/11/92<br>ug/L                                                                                   | OBA-6B<br>3/11/92<br>ug/L                                                                                                              | Dup<br>OBA-6B<br>3/11/92<br>ug/L                                                                                                       | OBA-6C<br>3/12/92<br>ug/L                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                |                                                                                                                                                     | •                                                                                                                                                            |                                                                                                             |                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                            |
| vinyl chloride methylene chloride acetone 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene total xylenes | ND20,000<br>15,000<br>ND20,000<br>ND10,000<br>4,100J<br>19,000<br>ND20,000<br>ND10,000<br>ND10,000<br>210,000<br>2400J<br>32,000<br>29,000<br>8,800J<br>ND10,000<br>2,000J<br>ND10,000<br>ND10,000<br>ND10,000 | 180J<br>140<br>ND200<br>330<br>2,000<br>280<br>ND200<br>ND100<br>ND100<br>10,000E<br>680<br>1,100<br>1,500<br>430<br>ND100<br>36J<br>ND100<br>ND100 | 190J<br>130J<br>ND1,000<br>300J<br>1,900<br>260J<br>ND1,000<br>ND500<br>ND500<br>11,000<br>700<br>1,100<br>1,500<br>360J<br>ND500<br>ND500<br>ND500<br>ND500 | 9J<br>.7J<br>34<br>ND5<br>50<br>ND5<br>ND5<br>ND5<br>ND5<br>23<br>ND5<br>3J<br>61<br>ND5<br>4J<br>1J<br>.7J | 27J<br>12J<br>200<br>ND25<br>400<br>ND25<br>61<br>ND25<br>ND25<br>ND25<br>SO0<br>ND25<br>8J<br>610<br>ND25<br>5J<br>ND25<br>8J<br>ND25 | 25J<br>12J<br>180<br>ND25<br>380<br>ND25<br>54<br>ND25<br>ND25<br>ND25<br>460<br>ND25<br>8J<br>530<br>ND25<br>5J<br>ND25<br>7J<br>ND25 | 300J<br>ND500<br>ND1,000<br>ND500<br>7,400<br>200J<br>ND1,000<br>ND500<br>380J<br>ND500<br>85,000E<br>ND500<br>250J<br>100,000E<br>8,000<br>ND500<br>70J<br>ND500<br>ND500 |

| Well ID                                          | OBA-6CDL                     | OBA-7A            | OBA-7B             | OBA-7C                | OBA-7CDL                | OBA-8A                 | OBA-8B               |
|--------------------------------------------------|------------------------------|-------------------|--------------------|-----------------------|-------------------------|------------------------|----------------------|
| Sample Date                                      | 3/12/92                      | 3/10/92           | 3/10/92            | 3/10/92               | 3/10/92                 | 3/06/92                | 3/06/92              |
| Units                                            | ug/L                         | ug/L              | ug/L               | ug/L                  | ug/L                    | ug/L                   | ug/L                 |
| Compounds<br>TCL - VOCS                          |                              |                   | •                  |                       |                         |                        |                      |
| vinyl chloride                                   | ND10,000                     | ND10              | ND50               | 170J                  | 160J                    | ND100                  | 2J                   |
| methylene chloride                               | ND5,000                      | ND5               | 780                | 220                   | 210                     | 23J                    | 15                   |
| acetone 1,1-dichloroethene                       | ND10,000                     | ND10              | ND50               | ND200                 | ND400                   | ND100                  | ND20                 |
|                                                  | ND5,000                      | ND5               | ND25               | 41J                   | 38J                     | ND50                   | ND10                 |
| 1,2-dichloroethene (total) chloroform 2-butanone | 6,200<br>ND5,000<br>ND10,000 | .6J<br>4J<br>ND10 | 3J<br>ND25<br>ND50 | 1,400<br>820<br>ND200 | 1,400<br>800<br>ND400   | ND50<br>1,500<br>ND100 | 11<br>300            |
| 1,1,1-trichloroethane carbon tetrachloride       | ND5,000<br>ND5,000           | ND5<br>ND5        | ND25<br>ND25       | ND100<br>ND100        | ND200<br>ND200<br>ND200 | ND50<br>ND50           | ND20<br>ND10<br>ND10 |
| 1,2-dichloropropane<br>trichloroethene           | ND5,000<br>72,000            | ND5<br>5U         | ND25<br>25U        | ND100<br>6300E        | ND200<br>ND200<br>6,200 | ND50<br>ND50<br>50U    | ND10<br>ND10<br>51   |
| 1,1,2-trichloroethane                            | ND5,000                      | ND5               | ND25               | 31J                   | ND200                   | ND50                   | ND10                 |
| benzene                                          | ND5,000                      | ND5               | 5J                 | 64J                   | 60J                     | ND50                   | 1J                   |
| tetrachloroethene                                | 88,000                       | 2J                | ND25               | 3,100                 | 3,300                   | 10J                    | 15                   |
| 1,1,2,2-tetrachloroethane                        | 7,400                        | ND5               | ND25               | ND100                 | ND200                   | ND50                   | 4J                   |
| toluene                                          | ND5,000                      | ND5               | ND25               | ND100                 | ND200                   | ND50                   | ND10                 |
| chlorobenzene                                    | ND5,000                      | ND5               | ND25               | 22J                   | 200U                    | ND50                   | 6J                   |
| ethylbenzene                                     | ND5,000                      | ND5               | ND25               | ND100                 | ND200                   | ND50                   | ND10                 |
| total xylenes                                    | ND5,000                      | ND5               | ND25               | ND100                 | ND200                   | ND50                   | ND10                 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                         | Dup<br>OBA-8B<br>3/06/92<br>ug/L                                                                                       | OBA-8C<br>3/06/92<br>ug/L                                                       | BH-1<br>3/06/92<br>ug/L                                                                                                      | BH-3<br>3/06/92<br>ug/L                                                                                                                                                                                                             | Rinsate-1<br>3/09/92<br>ug/L                                                                                           | Rinsate-2<br>3/11/92<br>ug/L                                                                                    | Rinsate-3<br>3/13/92<br>ug/L                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                 |                                                                                                                        |                                                                                 | •                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                 |                                                                                                        |
| vinyl chloride methylene chloride acetone 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene total xylenes | 2J<br>20<br>ND20<br>ND10<br>14<br>280<br>ND20<br>ND10<br>ND10<br>ND10<br>1J<br>18<br>7J<br>ND10<br>1OU<br>ND10<br>ND10 | .9J ND5 ND10 ND5 14 1J ND10 ND5 ND5 ND5 ND5 ND5 .7J 130 ND5 ND5 ND5 ND5 ND5 ND5 | 11<br>ND5<br>ND10<br>ND5<br>22<br>.3J<br>ND10<br>ND5<br>ND5<br>ND5<br>17<br>ND5<br>2J<br>3J<br>1J<br>.5J<br>2J<br>ND5<br>ND5 | ND4,000<br>ND2,000<br>ND4,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000<br>ND2,000 | ND10<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | ND10<br>ND5<br>ND10<br>ND5<br>ND5<br>.7J<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | ND10<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>18<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                           | FB-1<br>3/10/92<br>ug/L                                                    | FB-2<br>3/13/92<br>ug/L                                                                           | TB-1<br>3/10/92<br>ug/L                                                                                  | TB-2<br>3/13/92<br>ug/L                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                   |                                                                            |                                                                                                   |                                                                                                          |                                                                       |
| vinyl chloride methylene chloride acetone 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | ND10<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | ND10 1J ND10 ND5 ND5 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 |
| total xylenes                                                                                                                                                                                                                                                                                             | ND5                                                                        | ND5                                                                                               | ND5                                                                                                      | ND5                                                                   |

#### Notes:

- NS Not sampled.
- ND Not detected, applicable detection limit listed.
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument and required dilution.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

|                            | Olin       |         |         |            |             |             |         |
|----------------------------|------------|---------|---------|------------|-------------|-------------|---------|
|                            | Production |         |         |            |             |             |         |
| Well ID                    | Well       | OBA-1A  | OBA-1B  | OBA-1C     | OBA-2B      | OBA-2BDL    | OBA-2C  |
| Sample Date                | 3/06/92    | 3/10/92 | 3/09/92 | 3/09/92    | 3/11/92     | 3/11/92     | 3/13/92 |
| Units                      | ug/L       | ug/L    | ug/L    | ug/L       | ug/L        | ug/L        | ug/L    |
| Compounds                  |            |         |         |            |             |             |         |
| TCL - BNAS                 |            |         |         |            |             |             |         |
| phenol                     | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | 16      |
| 2-chlorophenol             | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| 1,3-dichlorobenzene        | ND12       | ND12    | ND12    | 9J         | <b>44</b> J | <b>42</b> J | 34      |
| 1,4-dichlorobenzene        | ND12       | ND12    | ND12    | 9J         | 2J          | ND120UJ     | 88      |
| benzyl alcohol             | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | 21      |
| 1,2-dichlorobenzene        | ND12       | ND12    | ND12    | 19         | <b>45</b> J | 46J         | 460E    |
| 2-methylphenol             | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| 4-methylphenol             | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| hexachloroethane           | .9J        | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | 540E    |
| benzoic acid               | ND62       | ND62    | ND62    | ND62       | ND62UJ      | ND620UJ     | 2,100E  |
| 2,4-dichlorophenol         | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| 1,2,4-trichlorobenzene     | ND12       | ND12    | 14      | 6 <b>J</b> | 670E        | 660J        | 70      |
| naphthalene                | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| hexachlorobutadiene        | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | 50      |
| 2-methylnaphthalene        | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| 2,4,6-trichlorophenol      | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| 2,4,5-trichlorophenol      | ND62       | ND62    | ND62    | 35J        | 14J         | ND620UJ     | ND62    |
| acenaphthene               | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| dibenzofuran               | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| fluorene                   | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| hexachlorobenzene          | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| phenanthrene               | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| anthracene                 | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| fluoranthene               | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| pyrene                     | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| benzo(a)anthracene         | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| chrysene                   | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | ND12    |
| bis(2-ethylhexyl)phthalate | ND12       | ND12    | ND12    | ND12       | ND12UJ      | ND120UJ     | 5J      |

| Well ID<br>Sample Date<br>Units  | Olin<br>Production<br>Well<br>3/06/92<br>ug/L | OBA-1A<br>3/10/92<br>ug/L | OBA-1B<br>3/09/92<br>ug/L | OBA-1C<br>3/09/92<br>ug/L | OBA-2B<br>3/11/92<br>ug/L | OBA-2BDL<br>3/11/92<br>ug/L | OBA-2C<br>3/13/92<br>ug/L |
|----------------------------------|-----------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|
| Compounds TCL - BNAS (continued) |                                               |                           |                           |                           |                           |                             |                           |
| benzo(b)fluoranthene             | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| benzo(k)fluoranthene             | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| benzo(a)pyrene                   | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| indeno(1,2,3-cd)pyrene           | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| benzo(g,h,i)perylene             | ND12UJ                                        | ND12UJ                    | ND12UJ                    | ND12UJ                    | ND12UJ                    | ND120UJ                     | ND12UJ                    |
| 2,3-dichlorophenol               | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| 2,5-dichlorophenol               | ND12                                          | ND12                      | ND12                      | ND12                      | 1J                        | ND120UJ                     | ND12                      |
| 3,4-dichlorophenol               | ND12                                          | ND12                      | ND12                      | 14                        | 3J                        | ND120UJ                     | ND12                      |
| 3,5-dichlorophenol               | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| 2,3,5-trichlorophenol            | ND12                                          | ND12                      | ND12                      | ND12                      | <b>2</b> J                | ND120UJ                     | ND12                      |
| 2,3,6-trichlorophenol            | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| 3,4,5-trichlorophenol            | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| 3-chlorophenol                   | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |
| 2,3,4,6-tetrachlorophenol        | ND12                                          | ND12                      | ND12                      | ND12                      | ND12UJ                    | ND120UJ                     | ND12                      |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                                            | OBA-2CDL<br>3/13/92<br>ug/L                                                                                                                                                                                                                                                                           | OBA-3A<br>3/12/92<br>ug/L                                                                                    | OBA-3ADL<br>3/12/92<br>ug/L                                                                                                                                                                                                                                                                                            | Dup<br>OBA-3A<br>3/12/92<br>ug/L                                        | Dup<br>OBA-3ADL<br>3/12/92<br>ug/L                                                                                                                                                                                                                                                                                                | OBA-3B<br>3/13/92<br>ug/L                                               | OBA-3BDL<br>3/13/92<br>ug/L                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |                                                                                                              | •                                                                                                                                                                                                                                                                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                   |                                                                         |                                                                                                                                                                                                                                                                                                                                 |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2-methylnaphthalene 2,4,6-trichlorophenol 2,4,5-trichlorophenol acenaphthene dibenzofuran fluorene hexachlorobenzene phenanthrene anthracene fluoranthene pyrene benzo(a)anthracene | ND120 ND120 34J 96J ND120 520 ND120 650 2,800 ND120 78J ND120 53J ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 ND120 | 9J<br>13<br>390J<br>1,300E<br>ND12<br>1,600E<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND1,200<br>ND1,200<br>480J<br>1,800J<br>ND1,200<br>2,500J<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200 | ND12 13 620E 1,800E ND12 2,700E ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | ND1,200<br>ND1,200<br>750J<br>2,800J<br>ND1,200<br>3,800J<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200 | ND12 7J 460E 1,200E ND12 1,500E ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | ND1,200<br>ND1,200<br>580J<br>1,500<br>ND1,200<br>2,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200 |
| chrysene<br>bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                     | ND120<br>ND120                                                                                                                                                                                                                                                                                        | ND12<br>ND12                                                                                                 | ND1,200<br>ND1,200                                                                                                                                                                                                                                                                                                     | ND12<br>ND12                                                            | ND1,200<br>ND1,200<br>ND1,200                                                                                                                                                                                                                                                                                                     | ND12<br>ND12<br>ND12                                                    | ND1,200<br>ND1,200<br>ND1,200                                                                                                                                                                                                                                                                                                   |

| Well ID<br>Sample Date<br>Units            | OBA-2CDL<br>3/13/92<br>ug/L | OBA-3A<br>3/12/92<br>ug/L | OBA-3ADL<br>3/12/92<br>ug/L | Dup<br>OBA-3A<br>3/12/92<br>ug/L | Dup<br>OBA-3ADL<br>3/12/92<br>ug/L | OBA-3B<br>3/13/92<br>ug/L | OBA-3BDL<br>3/13/92<br>ug/L |
|--------------------------------------------|-----------------------------|---------------------------|-----------------------------|----------------------------------|------------------------------------|---------------------------|-----------------------------|
| Compounds<br><u>TCL - BNAS (continued)</u> |                             |                           | •                           |                                  |                                    |                           |                             |
| benzo(b)fluoranthene                       | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | ND12                      | ND1,200                     |
| benzo(k)fluoranthene                       | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | ND12                      | ND1,200                     |
| benzo(a)pyrene                             | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | ND12                      | ND1,200                     |
| indeno(1,2,3-cd)pyrene                     | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | ND12                      | ND1,200                     |
| benzo(g,h,i)perylene                       | ND120UJ                     | ND12UJ                    | ND1,200UJ                   | ND12UJ                           | ND1,200UJ                          | ND12UJ                    | ND1,200UJ                   |
| 2,3-dichlorophenol                         | ND120                       | 6J                        | ND1,200                     | <b>4</b> J                       | ND1,200                            | 2Ј                        | ND1,200                     |
| 2,5-dichlorophenol                         | ND120                       | 2Ј                        | ND1,200                     | 5J                               | ND1,200                            | .7J                       | ND1,200                     |
| 3,4-dichlorophenol                         | ND120                       | <b>4</b> J                | ND1,200                     | 5J                               | ND1,200                            | 5J                        | ND1,200                     |
| 3,5-dichlorophenol                         | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | 2Ј                        | ND1,200                     |
| 2,3,5-trichlorophenol                      | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | ND12                      | ND1,200                     |
| 2,3,6-trichlorophenol                      | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | ND12                      | ND1,200                     |
| 3,4,5-trichlorophenol                      | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | ND12                      | ND1,200                     |
| 3-chlorophenol                             | ND120                       | 22                        | ND1,200                     | 23                               | ND1,200                            | 12J                       | ND1,200                     |
| 2,3,4,6-tetrachlorophenol                  | ND120                       | ND12                      | ND1,200                     | ND12                             | ND1,200                            | ND12                      | ND1,200                     |

| Well ID                                                                                                                                                                                                                                                                                                                                                                                          | OBA-3C                                                                                                     | OBA-3CDL                                                                                                                                                                                                                                                                                                    | OBA-4A                                                       | OBA-4B                                                       | OBA-4C                                                                                                                                                           | OBA-5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OBA-5ADL                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                      | 3/13/92                                                                                                    | 3/13/92                                                                                                                                                                                                                                                                                                     | 3/11/92                                                      | 3/10/92                                                      | 3/10/92                                                                                                                                                          | 3/12/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/12/92                                                                                                                                                                                                                                                                                                              |
| Units                                                                                                                                                                                                                                                                                                                                                                                            | ug/L                                                                                                       | ug/L                                                                                                                                                                                                                                                                                                        | ug/L                                                         | ug/L                                                         | ug/L                                                                                                                                                             | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/L                                                                                                                                                                                                                                                                                                                 |
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |                                                                                                                                                                                                                                                                                                             | •                                                            |                                                              |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2-methylnaphthalene 2,4,6-trichlorophenol 2,4,5-trichlorophenol acenaphthene dibenzofuran fluorene hexachlorobenzene phenanthrene anthracene fluoranthene | ND12<br>1,000E<br>3,200E<br>ND12<br>4,200E<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND2,500<br>ND2,500<br>1,100J<br>4,300<br>ND2,500<br>6,300<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12<br>ND12<br>15<br>44<br>ND12<br>54<br>ND12<br>ND12<br>44<br>ND62<br>ND12<br>180<br>ND12<br>41<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND1 | ND12R<br>ND12R<br>950E<br>500E<br>ND12R<br>1,400E<br>ND12R<br>ND12R<br>ND12<br>ND62R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND12R<br>ND | ND1,200<br>ND1,200<br>960J<br>450J<br>ND1,200<br>1,200J<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200 |
| pyrene                                                                                                                                                                                                                                                                                                                                                                                           | ND12                                                                                                       | ND2,500                                                                                                                                                                                                                                                                                                     | ND12                                                         | ND12                                                         | ND12                                                                                                                                                             | 12J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND1,200                                                                                                                                                                                                                                                                                                              |
| benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                               | ND12                                                                                                       | ND2,500                                                                                                                                                                                                                                                                                                     | ND12                                                         | ND12                                                         | ND12                                                                                                                                                             | 4J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND1,200                                                                                                                                                                                                                                                                                                              |
| chrysene                                                                                                                                                                                                                                                                                                                                                                                         | ND12                                                                                                       | ND2,500                                                                                                                                                                                                                                                                                                     | ND12                                                         | ND12                                                         | ND12                                                                                                                                                             | 8J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND1,200                                                                                                                                                                                                                                                                                                              |
| bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                       | ND12                                                                                                       | ND2,500                                                                                                                                                                                                                                                                                                     | ND12                                                         | ND12                                                         | ND12                                                                                                                                                             | 1J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND1,200                                                                                                                                                                                                                                                                                                              |

| Well ID<br>Sample Date<br>Units  | OBA-3C<br>3/13/92<br>ug/L | OBA-3CDL<br>3/13/92<br>ug/L | OBA-4A<br>3/11/92<br>ug/L | OBA-4B<br>3/10/92<br>ug/L | OBA-4C<br>3/10/92<br>ug/L | OBA-5A<br>3/12/92<br>ug/L | OBA-5ADL<br>3/12/92<br>ug/L |
|----------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|
| Compounds TCL - BNAS (continued) |                           |                             | •                         |                           |                           |                           |                             |
| benzo(b)fluoranthene             | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | 8J                        | ND1,200                     |
| benzo(k) fluoranthene            | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | 4J                        | ND1,200                     |
| benzo(a)pyrene                   | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | 1J                        | ND1,200                     |
| indeno(1,2,3-cd)pyrene           | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | 3J                        | ND1,200                     |
| benzo(g,h,i)perylene             | ND12UJ                    | ND2,500UJ                   | ND12UJ                    | ND12UJ                    | ND12UJ                    | 2J                        | ND1,200                     |
| 2,3-dichlorophenol               | 8J                        | ND2,500                     | ND12                      | ND12                      | ND12                      | ND12R                     | ND1,200                     |
| 2,5-dichlorophenol               | 2Ј                        | ND2,500                     | ND12                      | ND12                      | ND12                      | ND12R                     | ND1,200                     |
| 3,4-dichlorophenol               | <b>4</b> J                | ND2,500                     | ND12                      | ND12                      | ND12                      | <b>4</b> J                | ND1,200                     |
| 3,5-dichlorophenol               | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | ND12R                     | ND1,200                     |
| 2,3,5-trichlorophenol            | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | ND12R                     | ND1,200                     |
| 2,3,6-trichlorophenol            | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | ND12R                     | ND1,200                     |
| 3,4,5-trichlorophenol            | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | ND12R                     | ND1,200                     |
| 3-chlorophenol                   | 18                        | ND2,500                     | ND12                      | ND12                      | ND12                      | 2Ј                        | ND1,200                     |
| 2,3,4,6-tetrachlorophenol        | ND12                      | ND2,500                     | ND12                      | ND12                      | ND12                      | ND12R                     | ND1,200                     |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                                                     | OBA-5ARe<br>3/12/92<br>ug/L                                                                                                                                                                                  | OBA-5ARe-<br>DL<br>3/12/92<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                        | OBA-5B<br>3/12/92<br>ug/L                                                                                        | OBA-5BDL<br>3/12/92<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                       | OBA-5C<br>3/12/92<br>ug/L                                         | OBA-6A<br>3/11/92<br>ug/L                                                                                                                                                                                                                                | OBA-6B<br>3/11/92<br>ug/L                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                          |                                                                                            |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2-methylnaphthalene 2,4,6-trichlorophenol 2,4,5-trichlorophenol acenaphthene dibenzofuran fluorene hexachlorobenzene phenanthrene anthracene fluoranthene pyrene benzo(a)anthracene chrysene | ND12UJ<br>ND12UJ<br>690E<br>360J<br>ND12UJ<br>1,000E<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>6,300E<br>9J<br>ND12R<br>3J<br>17J<br>2J<br>3J<br>2J<br>3J<br>2J<br>5J<br>13J<br>2J<br>16J<br>11J<br>4J<br>8J<br>ND12R | ND1,200UJ<br>ND1,200UJ<br>980J<br>500J<br>ND1,200UJ<br>1,400J<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ<br>ND1,200UJ | 94J<br>6J<br>1,600E<br>ND12<br>ND12<br>7J<br>130<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND1,200<br>ND1,200<br>250J<br>170J<br>ND1,200<br>350J<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200<br>ND1,200 | 30 ND12 ND12 ND12 ND12 13 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | 39J ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ 3J 17J ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ ND12UJ | 54 ND12 21J 6J 12J 13J 6J 28 ND12 97J ND12 360J 4J ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 |
| bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                          | MUIZN                                                                                                                                                                                                        | ND1,200UJ                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND12                                                                                                             | ND1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND12                                                              | ND12UJ                                                                                                                                                                                                                                                   | <b>4</b> J                                                                                 |

| Well ID<br>Sample Date<br>Units  | OBA-5ARe<br>3/12/92<br>ug/L | OBA-5AReDL<br>3/12/92<br>ug/L | OBA-5B<br>3/12/92<br>ug/L | OBA-5BDL<br>3/12/92<br>ug/L | OBA-5C<br>3/12/92<br>ug/L | OBA-6A<br>3/11/92<br>ug/L | OBA-6B<br>3/11/92<br>ug/L |
|----------------------------------|-----------------------------|-------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
| Compounds TCL - BNAS (continued) |                             |                               | •                         |                             |                           |                           |                           |
| 202 2000 (00002000)              |                             |                               |                           |                             |                           |                           |                           |
| benzo(b)fluoranthene             | 8J                          | ND1,200UJ                     | ND12                      | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| benzo(k)fluoranthene             | 4J                          | ND1,200UJ                     | ND12                      | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| benzo(a)pyrene                   | 2J                          | ND1,200UJ                     | ND12                      | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| indeno(1,2,3-cd)pyrene           | ND12R                       | ND1,200UJ                     | ND12                      | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| benzo(g,h,i)perylene             | 2J                          | ND1,200UJ                     | ND12UJ                    | ND1,200UJ                   | ND12UJ                    | ND12UJ                    | ND12UJ                    |
| 2,3-dichlorophenol               | ND12UJ                      | ND1,200UJ                     | <b>2</b> J                | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| 2,5-dichlorophenol               | ND12UJ                      | ND1,200UJ                     | <b>4</b> J                | ND1,200                     | ND12                      | ND12UJ                    | 3J                        |
| 3,4-dichlorophenol               | 5J                          | ND1,200UJ                     | 10Ј                       | ND1,200                     | ND12                      | ND12UJ                    | 2Ј                        |
| 3,5-dichlorophenol               | ND12UJ                      | ND1,200UJ                     | ND12                      | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| 2,3,5-trichlorophenol            | 2 <b>J</b>                  | ND1,200UJ                     | ND12                      | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| 2,3,6-trichlorophenol            | ND12UJ                      | ND1,200UJ                     | 8J                        | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| 3,4,5-trichlorophenol            | 1 <b>J</b>                  | ND1,200UJ                     | ND12                      | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| 3-chlorophenol                   | ND12UJ                      | ND1,200UJ                     | <b>8</b> J                | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |
| 2,3,4,6-tetrachlorophenol        | 4J                          | ND1,200UJ                     | ND12                      | ND1,200                     | ND12                      | ND12UJ                    | ND12                      |

| Well ID                    | Dup<br>OBA-6B | Dup<br>OBA-6BDL | OBA-6C  | OBA-6CDL | OBA-7A  | OBA-7B     | OBA-7C     |
|----------------------------|---------------|-----------------|---------|----------|---------|------------|------------|
| Sample Date                | 3/11/92       | 3/11/92         | 3/12/92 | 3/12/92  | 3/10/92 | 3/10/92    | 3/10/92    |
| Units                      | ug/L          | ug/L            | ug/L    | ug/L     | ug/L    | ug/L       | ug/L       |
| Compounds                  |               |                 | •       |          |         |            |            |
| <u>TCL - BNAS</u>          |               |                 |         |          |         |            |            |
| phenol                     | 45            | ND120           | ND12    | ND120    | ND12    | 16         | 6J         |
| 2-chlorophenol             | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| 1,3-dichlorobenzene        | 110J          | 96J             | 44      | 38J      | ND12    | 9J         | 6J         |
| 1,4-dichlorobenzene        | 30J           | 28J             | 25      | 24J      | ND12    | <b>2</b> J | <b>4</b> J |
| benzyl alcohol             | 17            | ND120           | ND12    | ND120    | ND12    | 8J         | ND12       |
| 1,2-dichlorobenzene        | 72J           | 62J             | 90      | 72J      | ND12    | 10J        | 9J         |
| 2-methylphenol             | <b>6</b> J    | ND120           | ND12    | ND120    | ND12    | <b>4</b> J | ND12       |
| 4-methylphenol             | 22            | ND120           | ND12    | ND120    | ND12    | 10J        | ND12       |
| hexachloroethane           | ND12          | ND120           | 910E    | 940      | ND12    | ND12       | ND12       |
| benzoic acid               | 54J           | ND620           | ND62    | ND620    | ND62    | ND62       | 6J         |
| 2,4-dichlorophenol         | ND12          | ND120           | 8J      | ND120    | ND12    | ND12       | 11J        |
| 1,2,4-trichlorobenzene     | 1,700E        | 1,800J          | 620E    | 580      | ND12    | 91         | 14         |
| naphthalene                | 5 <b>J</b>    | ND120           | ND12    | ND120    | ND12    | <b>2</b> J | ND12       |
| hexachlorobutadiene        | ND12          | ND120           | 140     | 130      | ND12    | ND12       | ND12       |
| 2-methylnaphthalene        | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| 2,4,6-trichlorophenol      | 8J            | ND120           | ND12    | ND120    | ND12    | ND12       | 5J         |
| 2,4,5-trichlorophenol      | 66J           | 5 <b>4</b> J    | 580E    | 520J     | ND62    | ND62       | 140        |
| acenaphthene               | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| dibenzofuran               | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| fluorene                   | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| hexachlorobenzene          | ND12          | ND120           | 8J      | ND120    | ND12    | ND12       | ND12       |
| phenanthrene               | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| anthracene                 | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| fluoranthene               | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| pyrene                     | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| benzo(a)anthracene         | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| chrysene                   | ND12          | ND120           | ND12    | ND120    | ND12    | ND12       | ND12       |
| bis(2-ethylhexyl)phthalate | 2Ј            | ND120           | 8J      | ND120    | ND12    | ND12       | ND12       |

| Well ID<br>Sample Date<br>Units  | Dup<br>OBA-6B<br>3/11/92<br>ug/L | OBA-6BDL<br>3/11/92<br>ug/L | OBA-6C<br>3/12/92<br>ug/L | OBA-6CDL<br>3/12/92<br>ug/L | OBA-7A<br>3/10/92<br>ug/L | OBA-7B<br>3/10/92<br>ug/L | OBA-7C<br>3/10/92<br>ug/L |
|----------------------------------|----------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|
| Compounds TCL - BNAS (continued) |                                  |                             | •                         |                             |                           |                           |                           |
| benzo(b)fluoranthene             | ND12                             | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| benzo(k)fluoranthene             | ND12                             | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| benzo(a)pyrene                   | ND12                             | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| indeno(1,2,3-cd)pyrene           | ND12                             | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| benzo(g,h,i)perylene             | ND12UJ                           | ND120UJ                     | ND12UJ                    | ND120UJ                     | ND12UJ                    | ND12UJ                    | ND12                      |
| 2,3-dichlorophenol               | 2Ј                               | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| 2,5-dichlorophenol               | 2Ј                               | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| 3,4-dichlorophenol               | 7 <b>J</b>                       | ND120                       | <b>4</b> J                | ND120                       | ND12                      | ND12                      | 280                       |
| 3,5-dichlorophenol               | ND12                             | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| 2,3,5-trichlorophenol            | ND12                             | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| 2,3,6-trichlorophenol            | ND12                             | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| 3,4,5-trichlorophenol            | ND12                             | ND120                       | ND12                      | ND120                       | ND12                      | ND12                      | ND12                      |
| 3-chlorophenol                   | 2J                               | ND120                       | 2Ј                        | ND120                       | ND12                      | ND12                      | 4J                        |
| 2,3,4,6-tetrachlorophenol        | ND12                             | ND120                       | 45                        | ND120                       | ND12                      | ND12                      | 7J                        |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                                                  | OBA-8A<br>3/06/92<br>ug/L               | OBA-8B<br>3/06/92<br>ug/L                               | Dup<br>OBA-8B<br>3/06/92<br>ug/L                       | OBA-8C<br>3/06/92<br>ug/L                                    | BH-1<br>3/06/92<br>ug/L                                                                                                                                                                                                                                | BH-3<br>3/06/92<br>ug/L                                                                              | BH-3DL<br>3/06/92<br>ug/L                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                         | •                                                      |                                                              |                                                                                                                                                                                                                                                        |                                                                                                      |                                                                                                                                                                                                                                                  |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 2-methylphenol 4-methylphenol hexachloroethane benzoic acid 2,4-dichlorophenol 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2-methylnaphthalene 2,4,6-trichlorophenol 2,4,5-trichlorophenol acenaphthene dibenzofuran fluorene hexachlorobenzene phenanthrene anthracene fluoranthene | ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | ND12 ND12 66 7J ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | ND11 ND11 53 7J ND11 ND11 ND11 ND11 ND11 ND11 ND11 ND1 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ | 62 ND12 550E 330 23 1000E ND12 ND12 ND12 ND12 S40 ND12 S500E ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | 84J<br>ND240<br>860<br>480<br>ND240<br>1600<br>ND240<br>ND240<br>ND240<br>ATOO<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240<br>ND240 |
| pyrene benzo(a)anthracene chrysene bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                    | ND12<br>ND12<br>ND12<br>ND12<br>ND12    | ND12<br>ND12<br>ND12<br>ND12<br>ND12                    | ND11<br>ND11<br>ND11<br>SJ                             | ND12<br>ND12<br>ND12<br>ND12<br>ND12                         | ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ<br>ND12UJ                                                                                                                                                                                                         | ND12<br>ND12<br>ND12<br>ND12<br>ND12                                                                 | ND240<br>ND240<br>ND240<br>ND240<br>26J                                                                                                                                                                                                          |

| Well ID<br>Sample Date<br>Units  | OBA-8A<br>3/06/92<br>ug/L | OBA-8B<br>3/06/92<br>ug/L | Dup<br>OBA-8B<br>3/06/92<br>ug/L | OBA-8C<br>3/06/92<br>ug/L | BH-1<br>3/06/92<br>ug/L | BH-3<br>3/06/92<br>ug/L | BH-3DL<br>3/06/92<br>ug/L |
|----------------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|-------------------------|-------------------------|---------------------------|
| Compounds TCL - BNAS (continued) |                           |                           | •                                |                           |                         |                         |                           |
| ICH - BNAS (CONTINUED)           |                           |                           |                                  |                           |                         |                         |                           |
| benzo(b)fluoranthene             | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | ND12                    | ND240                     |
| benzo(k)fluoranthene             | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | ND12                    | ND240                     |
| benzo(a)pyrene                   | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | ND12                    | ND240                     |
| indeno(1,2,3-cd)pyrene           | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | ND12                    | ND240                     |
| benzo(g,h,i)perylene             | ND12                      | ND12                      | ND11UJ                           | ND12                      | ND12UJ                  | ND12                    | ND240                     |
| 2,3-dichlorophenol               | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | 12                      | ND240                     |
| 2,5-dichlorophenol               | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | .8J                     | ND240                     |
| 3,4-dichlorophenol               | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | 3J                      | ND240                     |
| 3,5-dichlorophenol               | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | ND12                    | ND240                     |
| 2,3,5-trichlorophenol            | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | ND12                    | ND240                     |
| 2,3,6-trichlorophenol            | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | 3J                      | ND240                     |
| 3,4,5-trichlorophenol            | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | ND12                    | ND240                     |
| 3-chlorophenol                   | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | 19                      | ND240                     |
| 2,3,4,6-tetrachlorophenol        | ND12                      | ND12                      | ND11                             | ND12                      | ND12UJ                  | 20                      | ND240                     |

| Rinsate-1<br>3/09/92<br>ug/L            | Rinsate-2<br>3/11/92<br>ug/L                                        | Rinsate-3<br>3/13/92<br>ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 | ND62<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND1 | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND12                                    | ND12                                                                | ND12<br>ND12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 3/09/92 ug/L  ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND1                | 3/09/92 3/11/92 ug/L ug/L  ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 ND12 |

| Well ID<br>Sample Date<br>Units  | Rinsate-1<br>3/09/92<br>ug/L | Rinsate-2<br>3/11/92<br>ug/L | Rinsate-3<br>3/13/92<br>ug/L |
|----------------------------------|------------------------------|------------------------------|------------------------------|
| Compounds TCL - BNAS (continued) |                              |                              | •                            |
| benzo(b)fluoranthene             | ND12                         | ND12                         | ND12                         |
| benzo(k)fluoranthene             | ND12                         | ND12                         | ND12                         |
| benzo(a) pyrene                  | ND12                         | ND12                         | ND12                         |
| indeno(1,2,3-cd)pyrene           | ND12                         | ND12                         | ND12                         |
| benzo(g,h,i)perylene             | ND12UJ                       | ND12UJ                       | ND12UJ                       |
| 2,3-dichlorophenol               | ND12                         | ND12                         | ND12                         |
| 2,5-dichlorophenol               | ND12                         | ND12                         | ND12                         |
| 3,4-dichlorophenol               | ND12                         | ND12                         | ND12                         |
| 3,5-dichlorophenol               | ND12                         | ND12                         | ND12                         |
| 2,3,5-trichlorophenol            | ND12                         | ND12                         | ND12                         |
| 2,3,6-trichlorophenol            | ND12                         | ND12                         | ND12                         |
| 3,4,5-trichlorophenol            | ND12                         | ND12                         | ND12                         |
| 3-chlorophenol                   | ND12                         | ND12                         | ND12                         |
| 2,3,4,6-tetrachlorophenol        | ND12                         | ND12                         | ND12                         |

#### Notes:

- NS Not sampled.
- ND Not detected, applicable detection limit listed.
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument and required dilution.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

| Well ID<br>Sample Date<br>Units                                                                                                                | Olin<br>Production<br>Well<br>3/06/92<br>ug/L                                                         | OBA-1A<br>3/11/92<br>ug/L                                                                             | OBA-1B<br>3/09/92<br>ug/L                                                                                             | OBA-1C<br>3/09/92<br>ug/L                                                                                      | OBA-2B<br>3/11/92<br>ug/L                                                                  | OBA-2BDL<br>3/11/92<br>ug/L                                                                                   | OBA-2C<br>3/13/92<br>ug/L                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Compounds<br>Pesticide/PCBs                                                                                                                    |                                                                                                       |                                                                                                       | •                                                                                                                     |                                                                                                                |                                                                                            |                                                                                                               |                                                                                           |
| alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide dieldrin 4,4'-DDE endrin 4,4'-DDD 4,4'-DDT endrin ketone | .48<br>.055J<br>.025J<br>.21<br>ND .056<br>ND .056<br>ND .056<br>ND .11<br>ND .11<br>ND .11<br>ND .11 | .18J<br>8.0<br>ND .62<br>ND .62<br>ND .62<br>ND .62<br>ND .62<br>ND 1.2<br>ND 1.2<br>ND 1.2<br>ND 1.2 | .022J<br>.061J<br>ND .062<br>.035J<br>ND .062<br>ND .062<br>ND .062<br>ND .12<br>ND .12<br>ND .12<br>ND .12<br>ND .12 | .24<br>.040J<br>.011J<br>.039J<br>ND .062<br>.0089J<br>.024J<br>ND .12<br>ND .12<br>ND .12<br>ND .12<br>ND .12 | 22<br>1.8<br>.18J<br>3.3<br>ND .62<br>ND .62<br>.8<br>ND 1.2<br>ND 1.2<br>ND 1.2<br>ND 1.2 | 33<br>1.9J<br>ND 6.2<br>3J<br>ND 6.2<br>ND 6.2<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12 | 2.3<br>1.3<br>.96<br>1.6<br>1.2<br>ND .62<br>ND .62<br>.14J<br>ND 1.2<br>ND 1.2<br>ND 1.2 |

| Well ID<br>Sample Date<br>Units                                                                                                                | OBA-3A<br>3/12/92<br>ug/L                                                                                 | Dup<br>OBA-3A<br>3/12/92<br>ug/L                                                                          | OBA-3B<br>3/13/92<br>ug/L                                                                                             | OBA-3C<br>3/13/92<br>ug/L                                                                                 | OBA-4A<br>3/11/92<br>ug/L                                                                                              | OBA-4B<br>3/10/92<br>ug/L                                                                      | OBA-4C<br>3/10/92<br>ug/L                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br><u>Pesticide/PCBs</u>                                                                                                             |                                                                                                           |                                                                                                           | •                                                                                                                     |                                                                                                           |                                                                                                                        |                                                                                                |                                                                                                                                        |
| alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide dieldrin 4,4'-DDE endrin 4,4'-DDD 4,4'-DDT endrin ketone | 3.1<br>.93<br>.90<br>5.0J<br>ND .62<br>ND .62<br>ND .62<br>ND 1.2<br>ND 1.2<br>ND 1.2<br>ND 1.2<br>ND 1.2 | 2.8<br>.85<br>.81<br>.61J<br>ND .62<br>ND .62<br>ND .62<br>ND 1.2<br>ND 1.2<br>ND 1.2<br>ND 1.2<br>ND 1.2 | 1.4<br>.66<br>.33<br>ND .31<br>ND .31<br>ND .31<br>ND .31<br>ND .62<br>ND .62<br>ND .62<br>ND .62<br>ND .62<br>ND .62 | 1.2<br>1.0<br>.22J<br>.34<br>ND .31<br>ND .31<br>ND .62<br>ND .62<br>ND .62<br>ND .62<br>ND .62<br>ND .62 | ND .062<br>.23<br>ND .062<br>ND .062<br>ND .062<br>ND .062<br>ND .12<br>ND .12<br>ND .12<br>ND .12<br>ND .12<br>ND .12 | .079 1.0 .019J .0090J ND .062 ND .062 ND .062 ND .12 ND .12 ND .12 ND .12 ND .12 ND .12 ND .12 | 11J<br>2.3J<br>3.6J<br>11J<br>ND .31UJ<br>ND .31UJ<br>ND .62UJ<br>ND .62UJ<br>ND .62UJ<br>ND .62UJ<br>ND .62UJ<br>ND .62UJ<br>ND .62UJ |

| Well ID<br>Sample Date<br>Units                                                                                                                | OBA-4CDL<br>3/10/92<br>ug/L                                                                                                | OBA-5A<br>3/12/92<br>ug/L                                                                            | OBA-5ADL<br>3/12/92<br>ug/L                                                                                                     | OBA-5B<br>3/12/92<br>ug/L                                                          | OBA-5BDL<br>3/12/92<br>ug/L                                                                                                    | OBA-5C<br>3/12/92<br>ug/L                                                                                      | OBA-6A<br>3/11/92<br>ug/L                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>Pesticide/PCBs                                                                                                                    |                                                                                                                            |                                                                                                      | •                                                                                                                               |                                                                                    |                                                                                                                                |                                                                                                                |                                                                                                                               |
| alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide dieldrin 4,4'-DDE endrin 4,4'-DDD 4,4'-DDT endrin ketone | 26J<br>2.6J<br>3.1J<br>16J<br>ND 3.1UJ<br>ND 3.1UJ<br>ND 6.2UJ<br>ND 6.2UJ<br>ND 6.2UJ<br>ND 6.2UJ<br>ND 6.2UJ<br>ND 6.2UJ | 31<br>49<br>2.5<br>34<br>.29J<br>ND .62<br>ND .62<br>2.3<br>.13J<br>.44J<br>.25J<br>ND 1.2<br>ND 1.2 | 150<br>120<br>2.3J<br>130<br>ND 6.2<br>ND 6.2<br>ND 6.2<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12 | 29 34 6.6 34 ND .62 ND .62 ND .62 ND 1.2 ND 1.2 ND 1.2 ND 1.2 ND 1.2 ND 1.2 ND 1.2 | 120<br>47<br>5.6J<br>140<br>ND 6.2<br>ND 6.2<br>ND 6.2<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12<br>ND 12 | .57<br>.091<br>.025J<br>.023J<br>ND .062<br>.051J<br>ND .062<br>ND .12<br>ND .12<br>ND .12<br>ND .12<br>ND .12 | ND.062<br>.072<br>ND .062<br>.036J<br>ND .062<br>ND .062<br>ND .12<br>ND .12<br>ND .12<br>.062J<br>ND .12<br>ND .12<br>ND .12 |

| Well ID<br>Sample Date<br>Units                                                                                | OBA-6B<br>3/11/92<br>ug/L                                                                | Dup<br>OBA-6B<br>3/11/92<br>ug/L                                                               | OBA-6C<br>3/12/92<br>ug/L                                                     | OBA-6CDL<br>3/12/92<br>ug/L                                                           | OBA-7A<br>3/10/92<br>ug/L                                                               | OBA-7B<br>3/10/92<br>ug/L                                                                 | OBA-7C<br>3/10/92<br>ug/L                                                          |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Compounds<br>Pesticide/PCBs                                                                                    |                                                                                          |                                                                                                | •                                                                             |                                                                                       |                                                                                         |                                                                                           |                                                                                    |
| alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide dieldrin 4,4'-DDE endrin | ND .062<br>.14J<br>ND .062<br>.059J<br>ND .062<br>ND .062<br>ND .062<br>ND .12<br>ND .12 | ND .31<br>2.4J<br>ND .31<br>ND .31<br>ND .31<br>ND .31<br>ND .31<br>ND .62<br>ND .62<br>ND .62 | 12<br>3.3<br>.67<br>2.7<br>.57<br>.43<br>ND .31<br>ND .62<br>ND .62<br>ND .62 | 35<br>3.2<br>.56J<br>2.5J<br>ND 3.1<br>ND 3.1<br>ND 3.1<br>ND 6.2<br>ND 6.2<br>ND 6.2 | .011J<br>1.3<br>ND .062<br>ND .062<br>ND .062<br>ND .062<br>ND .062<br>ND .12<br>ND .12 | ND .062<br>.19<br>ND .062<br>ND .062<br>ND .062<br>ND .062<br>ND .062<br>ND .12<br>ND .12 | .017J<br>.32<br>ND .12<br>.049J<br>.060J<br>ND .12<br>ND .12<br>ND .025<br>ND .025 |
| 4,4'-DDD<br>4,4'-DDT<br>endrin ketone                                                                          | ND .12<br>ND .12<br>ND .12                                                               | ND .62<br>ND .62<br>ND .62                                                                     | ND .62<br>ND .62<br>.11J                                                      | ND 6.2<br>ND 6.2<br>ND 6.2                                                            | ND .12<br>ND .12<br>ND .12<br>ND .12                                                    | ND .12<br>ND .12<br>ND .12<br>ND .12                                                      | ND .025<br>ND .025<br>ND .025                                                      |

| Well ID<br>Sample Date<br>Units | OBA-8A<br>3/06/92<br>ug/L | OBA-8B<br>3/06/92<br>ug/L | Dup<br>OBA-8B<br>3/06/92<br>ug/L | OBA-8C<br>3/06/92<br>ug/L | BH-1<br>3/09/92<br>ug/L | BH-3<br>3/09/92<br>ug/L | BH-3DL<br>3/09/92<br>ug/L |
|---------------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|-------------------------|-------------------------|---------------------------|
| Compounds<br>Pesticide/PCBs     |                           |                           | •                                |                           |                         |                         |                           |
| alpha-BHC                       | .12                       | 6.3                       | 6.8                              | .16                       | .18                     | 260                     | 980                       |
| beta-BHC                        | .51                       | .95                       | .84                              | .032J                     | .46                     | 130                     | 180                       |
| delta-BHC                       | ND .062                   | ND .59                    | ND .62                           | ND .062                   | ND .062                 | 240                     | 380                       |
| gamma-BHC (lindane)             | ND .062                   | ND .59                    | ND .62                           | ND .062                   | ND .062                 | 280                     | 890                       |
| heptachlor                      | ND .062                   | ND .59                    | ND .62                           | ND .062                   | .056J                   | ND 6.2                  | ND 62                     |
| aldrin                          | .022J                     | ND .59                    | ND .62                           | ND .062                   | ND .062                 | ND 6.2                  | ND 62                     |
| heptachlor epoxide              | .053J                     | ND .59                    | ND .62                           | ND .062                   | ND .062                 | ND 6.2                  | ND 62                     |
| dieldrin                        | ND .12                    | ND 1.2                    | ND 1.2                           | ND .12                    | ND .12                  | ND 12                   | ND 120                    |
| 4,4'-DDE                        | .023J                     | ND 1.2                    | ND 1.2                           | ND .12                    | ND .12                  | ND 12                   | ND 120                    |
| endrin                          | ND .12                    | ND 1.2                    | ND 1.2                           | ND .12                    | ND .12                  | ND 12                   | ND 120                    |
| 4,4'-DDD                        | ND .12                    | ND 1.2                    | ND 1.2                           | ND .12                    | ND .12                  | ND 12                   | ND 120                    |
| 4,4'-DDT                        | .025J                     | ND 1.2                    | ND 1.2                           | ND .12                    | ND .12                  | ND 12                   | ND 120                    |
| endrin ketone                   | ND .12                    | .26J                      | .22J                             | ND .12                    | ND .12                  | ND 12                   | ND 120                    |

| Well ID<br>Sample Date<br>Units | Rinsate-1<br>3/09/92<br>ug/L | Rinsate-2<br>3/11/92<br>ug/L | Rinsate-3<br>3/13/92<br>ug/L |  |  |
|---------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| Compounds<br>Pesticide/PCBs     |                              |                              | •                            |  |  |
| alpha-BHC                       | ND .062                      | ND .056                      | ND .062                      |  |  |
| beta-BHC                        | ND .062                      | ND .056                      | ND .062                      |  |  |
| delta-BHC                       | ND .062                      | ND .056                      | ND .062                      |  |  |
| gamma-BHC (lindane)             | ND .062                      | ND .056                      | ND .062                      |  |  |
| heptachlor                      | ND .062                      | ND .056                      | ND .062                      |  |  |
| aldrin                          |                              |                              |                              |  |  |
|                                 |                              | ND .056                      | ND .062                      |  |  |
| heptachlor epoxide              | ND .062                      | ND .056                      | ND .062                      |  |  |
| dieldrin                        | ND .12                       | ND .11                       | ND .12                       |  |  |
| 4,4'-DDE                        | ND .12                       | ND .11                       | ND .12                       |  |  |
| endrin                          | ND .12                       | ND .11                       | ND .12                       |  |  |
| 4,4'-DDD                        | ND .12                       | ND .11                       | ND .12                       |  |  |
| 4,4'-DDT                        | ND .12                       | ND .11                       | ND .12                       |  |  |
| endrin ketone                   | ND .12                       | ND .11                       | ND .12                       |  |  |

#### Notes:

- NS Not sampled.
- ND Not detected, applicable detection limit listed.
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

| Well ID<br>Sample Date<br>Units | Olin<br>Production<br>Well<br>3/06/92<br>mg/L | OBA-1A<br>3/10/92<br>mg/L | OBA-1B<br>3/09/92<br>mg/L | OBA-1C<br>3/09/92<br>mg/L | OBA-2B<br>3/11/92<br>mg/L | OBA-2C<br>3/13/92<br>mg/L | OBA-3A<br>3/12/92<br>mg/L |
|---------------------------------|-----------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds                       |                                               |                           | •                         |                           |                           |                           |                           |
| methanol                        | ND .55                                        | ND .55                    | ND .55                    | ND .55                    | ND .55                    | ND .55                    | ND .55                    |
|                                 |                                               |                           |                           |                           |                           |                           |                           |
| Sample Date<br>Units            | 3/06/92<br>ug/L                               | 3/11/92<br>ug/L           | 3/09/92<br>ug/L           | 3/09/92<br>ug/L           | 3/11/92<br>ug/L           | 3/13/92<br>ug/L           | 3/12/92<br>ug/L           |
| mercury                         | ND .20                                        | .20                       | 134                       | .20                       | 36                        | ND .20                    | ND .20                    |

| Well ID<br>Sample Date<br>Units | Dup<br>OBA-3A<br>3/12/92<br>mg/L | OBA-3B<br>3/13/92<br>mg/L | OBA-3C<br>3/13/92<br>mg/L | OBA-4A<br>3/11/92<br>mg/L | OBA-4B<br>3/10/92<br>mg/L | OBA-4C<br>3/10/92<br>mg/L | OBA-5A<br>3/12/92<br>mg/L |
|---------------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds                       |                                  |                           | •                         |                           |                           |                           |                           |
| methanol                        | ND .55                           | ND .55                    | ND .55                    | ND .55                    | ND .55                    | ND .55                    | ND .55                    |
|                                 |                                  |                           |                           |                           |                           |                           |                           |
| Sample Date<br>Units            | 3/12/92<br>ug/L                  | 3/13/92<br>ug/L           | 3/13/92<br>ug/L           | 3/13/92<br>ug/L           | 3/10/92<br>ug/L           | 3/10/92<br>ug/L           | 3/12/92<br>ug/L           |
| mercury                         | .30                              | ND .20                    | 120                       |

| Well ID<br>Sample Date<br>Units | OBA-5B<br>3/12/92<br>mg/L | OBA-5C<br>3/12/92<br>mg/L | OBA-6A<br>3/11/92<br>mg/L | OBA-6B<br>3/11/92<br>mg/L | Dup<br>OBA-6B<br>3/11/92<br>mg/L | OBA-6C<br>3/12/92<br>mg/L | OBA-7A<br>3/10/92<br>mg/L |
|---------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|---------------------------|
| <u>Compounds</u>                |                           |                           | •                         |                           |                                  |                           |                           |
| methanol                        | 6 <b>4</b> J              | 1.4J                      | 560J                      | 2500J                     | 1700Ј                            | .50J                      | ND .55                    |
|                                 |                           |                           |                           |                           |                                  |                           |                           |
| Sample Date<br>Units            | 3/12/92<br>ug/L           | 3/12/92<br>ug/L           | 3/11/92<br>ug/L           | 3/11/92<br>ug/L           | 3/11/92<br>ug/L                  | 3/12/92<br>ug/L           | 3/10/92<br>ug/L           |
| mercury                         | 2.5                       | ND .20                    | 22.0                      | 193Ј                      | 107J                             | ND .20                    | .56                       |

| Well ID<br>Sample Date<br>Units | OBA-7B<br>3/10/92<br>mg/L | OBA-7C<br>3/10/92<br>mg/L | OBA-8A<br>3/06/92<br>mg/L | OBA-8B<br>3/06/92<br>mg/L | Dup<br>OBA-8B<br>3/06/92<br>mg/L | OBA-8C<br>3/06/92<br>mg/L | BH-1<br>3/09/92<br>mg/L |
|---------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|-------------------------|
| Compounds                       |                           |                           | •                         |                           |                                  |                           |                         |
| methanol                        | 1.2                       | ND .55                    | ND .55                    | ND .55                    | .60                              | .59                       | ND .55                  |
|                                 |                           |                           |                           |                           |                                  |                           |                         |
| Sample Date<br>Units            | 3/10/92<br>ug/L           | 3/10/92<br>ug/L           | 3/06/92<br>ug/L           | 3/06/92<br>ug/L           | 3/06/92<br>ug/L                  | 3/06/92<br>ug/L           | 3/10/92<br>ug/L         |
| mercury                         | 81.2                      | 2.3                       | .55                       | ND .20                    | .31                              | ND .20                    | .29                     |

| Well ID<br>Sample Date<br>Units | BH-3<br>3/09/92<br>mg/L | Rinsate-1<br>3/09/92<br>mg/L | Rinsate-2<br>3/11/92<br>mg/L | Rinsate-3<br>3/13/92<br>mg/L | FB-1<br>3/10/92<br>mg/L | FB-2<br>3/13/92<br>mg/L | TB-1<br>3/10/92<br>mg/L |
|---------------------------------|-------------------------|------------------------------|------------------------------|------------------------------|-------------------------|-------------------------|-------------------------|
| Compounds                       |                         |                              | •                            |                              |                         |                         |                         |
| methanol                        | 1.2                     | ND .55                       | ND .55                       | ND .55                       | ND .55                  | ND .55                  | ND .55                  |
| Well ID                         |                         |                              |                              |                              |                         |                         |                         |
| Sample Date<br>Units            | 3/09/92<br>ug/L         | 3/09/92<br>ug/L              | 3/11/92<br>ug/L              | 3/13/92<br>ug/L              | ug/L                    | ug/L                    | <br>ug/L                |
| mercury                         | 146                     | ND .20                       | .90                          | ND .20                       | NS                      | NS                      | NS                      |

Well ID **TB-2** Sample Date 3/13/92 Units mg/L

Compounds

methanol ND .55

Sample Date Units ug/L

NS mercury

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).

R -

Data found to be unusable as a result of outlying QC criteria.

The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

UJ - Estimated quantitation limit.

Phase I Groundwater Samples
Summary of Detected Compounds
June 1992

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                          | Olin<br>Production<br>Well<br>6/23/92<br>µg/L                                          | Olin<br>Production<br>Well DL<br>6/23/92<br>µg/L                                                                                                                                    | OBA-1A<br>6/24/92<br>μg/L                            | OBA-1B<br>6/23/92<br>μg/L                                                                                                                       | OBA-1C<br>6/23/92<br>μg/L                                                                                                                                                                                                       | OBA-2B<br>6/26/92<br>μg/L                                                             | OBA-2BDL<br>6/26/92<br>μg/L                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                  |                                                                                        |                                                                                                                                                                                     |                                                      |                                                                                                                                                 |                                                                                                                                                                                                                                 |                                                                                       |                                                                             |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene total xylenes | 110 75 ND10 ND5 2J ND5 410E 310E ND10 2J 8J ND5 1,200E ND5 2J 480E 80 ND5 0.9J ND5 ND5 | 160J<br>170U<br>ND200<br>ND100<br>ND100<br>ND100<br>610<br>510<br>ND200<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100 | ND10 5U ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | 31<br>8<br>ND10<br>ND5<br>0.9J<br>ND5<br>49<br>13<br>ND10<br>ND5<br>ND5UJ<br>ND5<br>190<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | ND5,000<br>22,000<br>ND5,000<br>ND2,500<br>380J<br>ND2,500<br>8,200<br>51,000<br>ND5,000<br>ND2,500<br>ND2,500<br>ND2,500<br>84,000<br>730J<br>420J<br>12,000<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500<br>ND2,500 | 64 ND5 ND10 ND5 2J ND5 390E 29 ND10 ND5 0.8J ND5 410E ND5 3J 360E ND5 0.5J 11 ND5 ND5 | 66 ND25 ND50 ND25 ND25 380 28 ND50R ND25 ND25 ND25 ND25 ND25 ND25 ND25 ND25 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                             | OBA-2C<br>6/26/92<br>μg/L                                                                                                                                                                                                                              | Dup.<br>OBA-2C<br>6/26/92<br>μg/L                                                                                                                                                                        | Dup. DL<br>OBA-2C<br>6/26/92<br>μg/L                                                                                                                                            | OBA-3A<br>6/26/92<br>μg/L                                                                                                                                                      | Dup.<br>OBA-3A<br>6/26/92<br>µg/L                                                                                                                                 | OBA-3B<br>6/26/92<br>μg/L                                                                                                                                                                         | OBA-3C<br>6/26/92<br>μg/L                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                          |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene total xylenes | 2,600J<br>ND10,000<br>ND20,000<br>ND10,000<br>ND10,000<br>15,000<br>5,500J<br>ND20,000<br>ND10,000<br>1,400J<br>ND10,000<br>ND10,000<br>ND10,000<br>ND10,000<br>ND10,000<br>91,000<br>220,000J<br>ND10,000<br>S60J<br>ND10,000<br>ND10,000<br>ND10,000 | 2,600<br>430J<br>ND1,000<br>570<br>140J<br>ND500<br>16,000<br>5,700<br>ND1,000<br>ND500<br>1,400<br>ND500<br>140,000E<br>ND500<br>160J<br>50,000E<br>70,000E<br>70,000E<br>79J<br>120J<br>ND500<br>ND500 | 1,900J ND10,000 ND20,000 ND10,000 ND10,000 13,000 5,000J ND20,000R ND10,000 1,200J ND10,000 ND10,000 ND10,000 ND10,000 1,900J ND10,000 1,900J ND10,000 1,900J ND10,000 ND10,000 | 120J<br>ND250<br>ND500<br>ND250<br>ND250<br>420<br>ND250<br>ND500R<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250 | 120J<br>ND250<br>ND500<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>ND250<br>100J<br>ND250<br>2,600<br>45J<br>250<br>ND250<br>ND250<br>ND250 | 400J<br>ND500<br>ND1,000<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>87J<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500 | 2,000<br>ND500<br>ND1,000<br>ND500<br>ND500<br>15,000<br>90J<br>ND1,000R<br>ND500<br>ND500<br>ND500<br>150J<br>ND500<br>6,700<br>150J<br>410J<br>ND500<br>150J<br>410J<br>ND500<br>ND500 |

| Well ID                                                                                                                                                                                                                                                                                                            | OBA-4A                                                                                            | OBA-4B                                                                       | OBA-4C                                                                                                                                                                      | OBA-5A                                                                                                                                    | OBA-5B                                                                                                                                                                      | OBA-5BDL                                                                                                                                                                                  | OBA-5C                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Date                                                                                                                                                                                                                                                                                                        | 6/25/92                                                                                           | 6/24/92                                                                      | 6/24/92                                                                                                                                                                     | 6/25/92                                                                                                                                   | 6/25/92                                                                                                                                                                     | 6/25/92                                                                                                                                                                                   | 6/25/92                                                                                                                                                  |
| Units                                                                                                                                                                                                                                                                                                              | μg/L                                                                                              | μg/L                                                                         | μg/L                                                                                                                                                                        | μg/L                                                                                                                                      | μg/L                                                                                                                                                                        | μg/L                                                                                                                                                                                      | μg/L                                                                                                                                                     |
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                            |                                                                                                   |                                                                              |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                          |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene | ND10<br>ND5<br>ND10R<br>ND5<br>ND5<br>ND5<br>3J<br>2J<br>ND10R<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | 13 ND5 ND10 ND5 ND5 ND5 90 0.9J ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | 88J<br>200U<br>ND400<br>ND200<br>ND200<br>1,000<br>460<br>ND400<br>ND200<br>ND200<br>ND200<br>6,300<br>ND200<br>ND200<br>ND200<br>SOCOO<br>ND200<br>ND200<br>ND200<br>ND200 | ND100<br>50U<br>ND100<br>ND50<br>ND50<br>ND50<br>290<br>560<br>ND100<br>6J<br>5J<br>ND50<br>1,500<br>ND50<br>100<br>1,100<br>ND50<br>ND50 | ND4,000<br>4,200U<br>ND4,000<br>ND2,000<br>260J<br>ND1,000<br>1,900J<br>4,600<br>ND2,000<br>ND2,000<br>ND2,000<br>100,000E<br>1,500J<br>19,000<br>9,500<br>5,600<br>ND2,000 | ND20,000<br>10,000U<br>ND20,000<br>ND10,000<br>ND10,000<br>1,400J<br>4,700J<br>ND20,000<br>ND10,000<br>ND10,000<br>ND10,000<br>96,000<br>1,300J<br>18,000<br>9,100J<br>4,800J<br>ND10,000 | 160J<br>500U<br>ND1,000<br>ND500<br>300J<br>ND500<br>3,100<br>300J<br>ND1,000<br>ND500<br>ND500<br>ND500<br>12,000<br>670<br>820<br>880<br>130J<br>ND500 |
| <pre>chlorobenzene ethylbenzene total xylenes</pre>                                                                                                                                                                                                                                                                | ND5                                                                                               | 11                                                                           | 18J                                                                                                                                                                         | 140                                                                                                                                       | 1,200J                                                                                                                                                                      | 1,200J                                                                                                                                                                                    | ND500                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                    | ND5                                                                                               | ND5                                                                          | ND200                                                                                                                                                                       | ND50                                                                                                                                      | ND2,000                                                                                                                                                                     | ND10,000                                                                                                                                                                                  | ND500                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                    | ND5                                                                                               | ND5                                                                          | ND200                                                                                                                                                                       | ND50                                                                                                                                      | ND2,000                                                                                                                                                                     | ND10,000                                                                                                                                                                                  | ND500                                                                                                                                                    |

| Well ID                                                                                                                                                                                                                                                                                                                         | OBA-6A                                                                                | OBA-6B                                                                                                                            | OBA-6C                                                                                                                                                 | OBA-7A                                                                                                           | OBA-7B                                                                              | OBA-7C                                                                                                                                    | OBA-7CDL                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Date                                                                                                                                                                                                                                                                                                                     | 6/25/92                                                                               | 6/25/92                                                                                                                           | 6/25/92                                                                                                                                                | 6/25/92                                                                                                          | 6/25/92                                                                             | 6/25/92                                                                                                                                   | 6/25/92                                                                                                                                                               |
| Units                                                                                                                                                                                                                                                                                                                           | μg/L                                                                                  | μg/L                                                                                                                              | μg/L                                                                                                                                                   | μg/L                                                                                                             | μg/L                                                                                | μg/L                                                                                                                                      | μg/L                                                                                                                                                                  |
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                   |                                                                                                                                                        |                                                                                                                  |                                                                                     |                                                                                                                                           |                                                                                                                                                                       |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,-tetrachloroethane toluene chlorobenzene | 9J<br>ND5<br>9J<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | 22J<br>12J<br>150J<br>ND25<br>ND25<br>ND25<br>300<br>ND25<br>64<br>ND25<br>ND25<br>ND25<br>480<br>ND25<br>7J<br>530<br>ND25<br>5J | 330J<br>200U<br>ND400<br>ND200<br>ND200<br>S,900<br>100J<br>ND400<br>ND200<br>ND200<br>ND200<br>T,500<br>ND200<br>180J<br>2,400<br>71J<br>ND200<br>62J | ND10<br>ND5<br>ND10R<br>ND5<br>ND5<br>ND5<br>AJ<br>ND10R<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 | ND50<br>910<br>ND50<br>ND25<br>ND25<br>ND25<br>ND25<br>ND25<br>ND25<br>ND25<br>ND25 | 230<br>190U<br>ND100<br>ND50<br>17J<br>ND50<br>1,800<br>220<br>ND100<br>ND50<br>ND50<br>ND50<br>2,400E<br>7J<br>51<br>960<br>ND50<br>ND50 | 240J<br>240<br>ND400<br>ND200<br>ND200<br>ND200<br>1,700<br>220<br>ND400<br>ND200<br>ND200<br>ND200<br>2,200<br>ND200<br>49J<br>880<br>ND200<br>ND200<br>200<br>ND200 |
| ethylbenzene                                                                                                                                                                                                                                                                                                                    | 0.6J                                                                                  | 8J                                                                                                                                | ND200                                                                                                                                                  | ND5                                                                                                              | ND25                                                                                | ND50                                                                                                                                      | ND200                                                                                                                                                                 |
| total xylenes                                                                                                                                                                                                                                                                                                                   | 3J                                                                                    | ND25                                                                                                                              | ND200                                                                                                                                                  | ND5                                                                                                              | 2J                                                                                  | ND50                                                                                                                                      | ND200                                                                                                                                                                 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                               | Dup<br>OBA-7C<br>6/25/92<br>μg/L                                                                                        | Dup DL<br>OBA-7C<br>6/25/92<br>μg/L                                                                                                                                          | OBA-8A<br>6/24/92<br>μg/L                                                           | OBA-8A DL<br>6/24/92<br>μg/L                                                                                                                                                                   | OBA-8B<br>6/24/92<br>μg/L                                                                                                            | OBA-8C<br>6/24/92<br>μg/L                            | Dup<br>OBA-8C<br>6/24/92<br>μg/L                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                |                                                                                                                                      |                                                      |                                                      |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene | 190 150 ND50 ND25 17J ND25 1,800E 190 ND50 ND25 ND25 ND25 ND25 ND25 2,200E 5J 45 890 ND25 ND25 ND25 ND25 ND25 ND25 ND25 | 220<br>180U<br>ND200<br>ND100<br>12J<br>ND100<br>1,700<br>180<br>ND200<br>ND100<br>ND100<br>ND100<br>2,200<br>ND100<br>52J<br>840<br>ND100<br>ND100<br>ND100<br>21J<br>ND100 | ND100<br>50U<br>ND100<br>ND50<br>ND50<br>ND50<br>ND50<br>ND50<br>ND50<br>ND50<br>ND | ND200 1000 ND200 ND100 | ND20<br>15U<br>ND20<br>ND10<br>0.4J<br>2J<br>8J<br>240<br>ND20<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>16<br>ND10<br>ND10<br>ND10 | ND10 5U ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10 5U ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 |
| total xylenes                                                                                                                                                                                                                                                                                                                                 | ND25                                                                                                                    | ND100                                                                                                                                                                        | ND50                                                                                | ND100                                                                                                                                                                                          | ND10                                                                                                                                 | ND5                                                  | ND5                                                  |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                               | BH-1<br>6/24/92<br>μg/L                                                                                           | BH-3<br>6/24/92<br>μg/L                                                                                                                                                                         | BH-3 DL<br>6/24/92<br>μg/L                                                                                                                                                                                               | Rinsate-1<br>6/24/92<br>µg/L                         | Rinsate-2<br>6/25/92<br>µg/L                         | Rinsate-3<br>6/26/92<br>µg/L                          | FB-1<br>6/25/92<br>μg/L                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - VOCS                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                      |                                                      |                                                       |                                                                                                                |
| vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethene 1,2-dichloroethene (total) chloroform 2-butanone 1,1,1-trichloroethane carbon tetrachloride 1,2-dichloropropane trichloroethene 1,1,2-trichloroethane benzene tetrachloroethene 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene | 8J<br>5U<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>17<br>ND5<br>13<br>ND5 | ND2,000<br>1,000U<br>ND2,000<br>ND1,000<br>ND1,000<br>220J<br>3,600<br>ND2,000<br>ND1,000<br>ND1,000<br>ND1,000<br>1,200<br>ND1,000<br>42,000E<br>200J<br>270J<br>ND1,000<br>ND1,000<br>ND1,000 | ND10,000<br>5,000U<br>ND10,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>1,200J<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000<br>ND5,000 | ND10 5U ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10 5U ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10 ND5 ND10 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 ND5 | ND10<br>5U<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND10<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5<br>ND5 |
| total xylenes                                                                                                                                                                                                                                                                                                                                 | ND5                                                                                                               | ND1,000                                                                                                                                                                                         | ND5,000                                                                                                                                                                                                                  | ND5                                                  | ND5                                                  | ND5                                                   | ND5                                                                                                            |

| Well ID                    | FB-2           | TB-1                | TB-2                        |
|----------------------------|----------------|---------------------|-----------------------------|
| Sample Date                | 6/26/92        | 6/25/92             | 6/26/92                     |
| Units                      | $\mu_{ m g/L}$ | $\mu_{ m g}/{ m L}$ | $\mu_{	extsf{g}}/	extbf{L}$ |
| Compounds TCL - VOCS       |                |                     |                             |
| 100 1000                   |                |                     |                             |
| vinyl chloride             | ND10           | ND10                | ND10                        |
| methylene chloride         | ND5            | 5 <b>U</b>          | ND5                         |
| acetone                    | ND10           | ND10                | ND10                        |
| carbon disulfide           | ND5            | ND5                 | ND5                         |
| 1,1-dichloroethene         | ND5            | ND5                 | ND5                         |
| 1,1-dichloroethane         | ND5            | ND5                 | ND5                         |
| 1,2-dichloroethene (total) | ND5            | ND5                 | ND5                         |
| chloroform                 | ND5            | ND5                 | ND5                         |
| 2-butanone                 | ND10           | ND10                | ND10                        |
| 1,1,1-trichloroethane      | ND5            | ND5                 | ND5                         |
| carbon tetrachloride       | ND5            | ND5                 | ND5                         |
| 1,2-dichloropropane        | 0.9J           | ND5                 | ND5                         |
| trichloroethene            | ND5            | ND5                 | ND5                         |
| 1,1,2-trichloroethane      | ND5            | ND5                 | ND5                         |
| benzene                    | ND5            | ND5                 | ND5                         |
| tetrachloroethene          | ND5            | ND5                 | ND5                         |
| 1,1,2,2-tetrachloroethane  | ND5            | ND5                 | ND5                         |
| toluene                    | ND5            | ND5                 | ND5                         |
| chlorobenzene              | 2Ј             | ND5                 | ND5                         |
| ethy1benzene               | ND5            | ND5                 | ND5                         |
| total xylenes              | ND5            | ND5                 | ND5                         |
|                            |                |                     |                             |

#### Notes:

- NS Not sampled.
- ND Not detected, applicable detection limit listed.
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument and required dilution.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                           | Olin<br>Production<br>Well<br>6/23/92<br>µg/L                | OBA-1A<br>6/24/92<br>μg/L               | OBA-1B<br>6/23/92<br>μg/L                                    | OBA-1C<br>6/23/92<br>μg/L                                    | OBA-2B<br>6/26/92<br>μg/L                                                                                                                    | OBA-2B DL<br>6/26/92<br>μg/L                                                                                                                                              | OBA-2C<br>6/26/92<br>μg/L                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                                                                                   |                                                              |                                         |                                                              |                                                              |                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                    |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 4-methylphenol hexachloroethane benzoic acid 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol phenanthrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene 3,4-dichlorophenol 3-chlorophenol 2,3,4,6-tetrachlorophenol | ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12<br>ND12 | ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 | ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10<br>ND10<br>94<br>46<br>ND10<br>240<br>ND10<br>4J<br>ND50<br>2,900E<br>ND10<br>8J<br>ND10<br>16J<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND1,000<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200 | 10<br>ND10<br>25<br>72<br>8J<br>470E<br>ND10<br>650E<br>3,900E<br>58<br>ND10<br>42<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                               | OBA-2C DL<br>6/26/92<br>μg/L                                                                                                                      | Dup<br>OBA-2C<br>6/26/92<br>μg/L                                                                                              | Dup<br>OBA-2C DL<br>6/26/92<br>μg/L                                                                                                                         | OBA-3A<br>6/26/92<br>μg/L                                                                                                | OBA-3A DL<br>6/26/92<br>μg/L                                                                                                                                   | Dup<br>OBA-3A<br>6/26/92<br>μg/L                                                                                         | Dup<br>OBA-3A DL<br>6/26/92<br>μg/L                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                       |                                                                                                                                                   |                                                                                                                               |                                                                                                                                                             |                                                                                                                          |                                                                                                                                                                |                                                                                                                          |                                                                                                                                                              |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 4-methylphenol hexachloroethane benzoic acid 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol phenanthrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene | ND200<br>ND200<br>ND200<br>ND200<br>A00<br>ND200<br>470<br>3,000<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200 | ND10<br>ND10<br>58<br>190<br>7J<br>680E<br>ND10<br>730E<br>2,500E<br>89<br>ND10<br>43<br>ND10<br>ND50<br>ND10<br>ND10<br>ND10 | ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>570<br>ND500<br>410J<br>3,600<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500 | ND10<br>ND10<br>640E<br>2,300E<br>ND10<br>3,100E<br>ND10<br>ND50<br>530E<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND200<br>ND200<br>530<br>2,000<br>ND200<br>2,700<br>ND200<br>ND200<br>ND1,000<br>420<br>ND200<br>ND200<br>ND200<br>ND1,000<br>ND200<br>ND200<br>ND200<br>ND200 | ND10<br>ND10<br>810E<br>2,800E<br>ND10<br>4,000E<br>ND10<br>ND10<br>ND50<br>660E<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND200<br>ND200<br>740<br>2,800<br>ND200<br>3,800<br>ND200<br>ND200<br>ND1,000<br>610<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200 |
| 3,4-dichlorophenol 3-chlorophenol 2,3,4,6-tetrachlorophenol                                                                                                                                                                                                                                                   | ND200<br>ND200<br>ND200<br>ND200                                                                                                                  | ND10<br>ND10<br>ND10<br>ND10                                                                                                  | ND500<br>ND500<br>ND500                                                                                                                                     | ND10<br>ND10<br>16<br>ND10                                                                                               | ND200<br>ND200<br>ND200<br>ND200                                                                                                                               | ND10<br>ND10<br>ND10<br>ND10                                                                                             | ND200<br>ND200<br>ND200<br>ND200                                                                                                                             |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                           | OBA-3B<br>6/26/92<br>μg/L                                                                                        | OBA-3BDL<br>6/26/92<br>μg/L                                                                                                                                                                                                 | OBA-3C<br>6/26/92<br>μg/L                                                                                                                | OBA-3C DL<br>6/26/92<br>μg/L                                                                                                                                                   | OBA-4A<br>6/25/92<br>μg/L                                    | OBA-4B<br>6/24/92<br>μg/L                                    | OBA-4C<br>6/24/92<br>μg/L                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                             |                                                                                                                                          |                                                                                                                                                                                |                                                              |                                                              |                                                                                                                                    |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 4-methylphenol hexachloroethane benzoic acid 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol phenanthrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene 3,4-dichlorophenol 3-chlorophenol 2,3,4,6-tetrachlorophenol | ND10<br>ND10<br>710E<br>1,800E<br>ND10<br>2,400E<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND200<br>ND200<br>590<br>1,600<br>ND200<br>2,100<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200 | ND10<br>ND10<br>920E<br>3,600E<br>ND10<br>5,500E<br>ND10<br>ND50<br>660E<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND500<br>ND500<br>850<br>3,800<br>ND500<br>5,400<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500 | ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10<br>ND10<br>9J<br>36<br>ND10<br>47<br>ND10<br>28<br>ND50<br>160<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND1 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                           | OBA-5A<br>6/25/92<br>μg/L                                                                                      | OBA-5A DL<br>6/25/92<br>μg/L                                                                                                                                    | OBA-5A RE<br>6/25/92<br>μg/L                                                                                                                             | OBA-5A RE<br>DL<br>6/25/92<br>μg/L                                                                                                                                                                                                                                  | OBA-5B<br>6/25/92<br>μg/L                                                               | OBA-5BDL<br>6/25/92<br>μg/L                                                                                                                                                       | OBA-5C<br>6/25/92<br>μg/L                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                   |                                            |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 4-methylphenol hexachloroethane benzoic acid 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol phenanthrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene 3,4-dichlorophenol 3-chlorophenol 2,3,4,6-tetrachlorophenol | ND10R ND10R 250 74 ND10R 280 ND10R ND10 ND50R 3,700E 4J 6J ND10R ND50R ND10R ND50R ND10R ND50R ND10 ND50R ND10 | ND200<br>ND200<br>190J<br>ND200<br>ND200<br>ND200<br>ND200<br>ND1,000<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200 | ND1OR ND1OR 270J 79J ND1OR 310J ND1OR ND1OUJ ND5OR 5,200E 5J 14J ND1OR ND5OR 4J ND1OR ND5OR 4J ND1OUJ 2J ND1OR ND1OR ND1OR ND1OR ND1OR ND1OR ND1OR ND1OR | ND200UJ<br>ND200UJ<br>230J<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND1,000UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ<br>ND200UJ | 73 ND10 150 95 ND10UJ 240 ND10 ND10 ND50 1,500E ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 | 56J<br>ND100<br>140<br>85J<br>ND100<br>240<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100 | 28 ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 |

| Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                                                           | OBA-6A<br>6/25/92<br>μg/L               | OBA-6B<br>6/25/92<br>μg/L                                                        | OBA-6B DL<br>6/25/92<br>μg/L                                                                                                                                                                          | OBA-6C<br>6/25/92<br>μg/L                                                                                                               | OBA-6C DL<br>6/25/92<br>μg/L                                                                                                                                 | OBA-7A<br>6/25/92<br>μg/L               | OBA-7B<br>6/25/92<br>μg/L                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                  |                                                                                                                                                                                                       |                                                                                                                                         |                                                                                                                                                              |                                         |                                                                                                                              |
| phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 4-methylphenol hexachloroethane benzoic acid 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol phenanthrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene 3,4-dichlorophenol 3-chlorophenol 2,3,4,6-tetrachlorophenol | ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 | 43 ND10 30 7J ND10UJ 18 19 ND10 74J 650E ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 | ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 ND100 | ND10<br>ND10<br>35<br>20<br>ND10UJ<br>72<br>ND10<br>ND10<br>22J<br>820E<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND500<br>990<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100<br>ND100 | ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 | ND10<br>ND10<br>ND10<br>ND10<br>ND10UJ<br>ND10<br>ND10<br>ND10<br>ND50<br>93<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 |

| Compounds   TCL - BNAS   Delta   Del | Well ID<br>Sample Date<br>Units                                                                                                                                                                                                                                                                                                          | OBA-7C<br>6/25/92<br>μg/L                                                                                                 | Dup<br>OBA-7C<br>6/25/92<br>μg/L                                                                                           | OBA-8A<br>6/24/92<br>μg/L                                                          | OBA-8B<br>6/24/92<br>μg/L                                                                       | OBA-8B DL<br>6/24/92<br>μg/L                   | OBA-8C<br>6/24/92<br>μg/L               | Dup<br>OBA-8C<br>6/24/92<br>µg/L        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|
| 2-chlorophenol         ND10         ND50         ND50         ND50         ND50         ND50         ND50         ND50         ND10         ND10         ND10         ND10         ND10           1,2,4-trichlorobenzene         12         11         28         510E         570         ND10         ND10 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                                                                            |                                                                                    |                                                                                                 | •                                              |                                         |                                         |
| hexachlorobutadiene ND10 ND10 ND10 ND11 ND21 ND10 ND10 2,4,6-trichlorophenol ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 4-methylphenol hexachloroethane benzoic acid 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol phenanthrene bis(2-ethylhexyl)phthalate benzo(b)fluoranthene 3,4-dichlorophenol 3-chlorophenol | ND10<br>ND10<br>ND10<br>ND10UJ<br>8J<br>ND10<br>ND10<br>11J<br>12<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10<br>ND10<br>ND10<br>ND10UJ<br>7J<br>ND10<br>ND10<br>ND50<br>11<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND50 28 ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 | ND11 70 6J ND11 ND11 ND11 ND11 ND53 510E ND11 ND11 ND11 ND11 ND11 ND11 ND53 ND11 ND11 ND11 ND11 | ND21 71 ND21 ND21 ND21 ND21 ND21 ND21 ND21 ND2 | ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 | ND10 ND10 ND10 ND10 ND10 ND10 ND10 ND10 |

| Well ID                                                                                                                                                                                                                                                                                  | BH-1                                                         | BH-3                                                                                                            | BH-3DL                                                                                                                             | Rinsate-1                                                    | Rinsate-2                                                    | Rinsate-3                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Sample Date                                                                                                                                                                                                                                                                              | 6/24/92                                                      | 6/24/92                                                                                                         | 6/24/92                                                                                                                            | 6/24/92                                                      | 6/25/92                                                      | 6/26/92                                                      |
| Units                                                                                                                                                                                                                                                                                    | μg/L                                                         | μg/L                                                                                                            | μg/L                                                                                                                               | µg/L                                                         | μg/L                                                         | µg/L                                                         |
| Compounds<br>TCL - BNAS                                                                                                                                                                                                                                                                  |                                                              |                                                                                                                 |                                                                                                                                    |                                                              |                                                              |                                                              |
| Phenol 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene benzyl alcohol 1,2-dichlorobenzene 4-methylphenol hexachloroethane benzoic acid 1,2,4-trichlorobenzene naphthalene hexachlorobutadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol phenanthrene bis(2-ethylhexyl)phthalate | ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10<br>120<br>820E<br>450E<br>ND10<br>1,600E<br>ND10<br>ND50<br>5,000E<br>ND10<br>ND10<br>ND10<br>ND50<br>ND10 | ND500<br>ND500<br>760<br>410J<br>ND500UJ<br>1,600<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500<br>ND500 | ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 | ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10<br>ND10 |
| benzo(b)fluoranthene 3,4-dichlorophenol 3-chlorophenol 2,3,4,6-tetrachlorophenol                                                                                                                                                                                                         | ND10                                                         | ND10                                                                                                            | ND500                                                                                                                              | ND10                                                         | ND10                                                         | ND10                                                         |
|                                                                                                                                                                                                                                                                                          | ND10                                                         | ND10                                                                                                            | ND500                                                                                                                              | ND10                                                         | ND10                                                         | ND10                                                         |
|                                                                                                                                                                                                                                                                                          | ND10                                                         | ND10                                                                                                            | ND500                                                                                                                              | ND10                                                         | ND10                                                         | ND10                                                         |
|                                                                                                                                                                                                                                                                                          | ND10                                                         | ND10                                                                                                            | ND500                                                                                                                              | ND10                                                         | ND10                                                         | ND10                                                         |

#### Notes:

- NS Not sampled.
- ND Not detected, applicable detection limit listed.
- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument and required dilution.
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

| Well ID<br>Sample Date<br>Units | Olin<br>Production<br>Well<br>6/23/92<br>µg/L | OBA-1A<br>6/25/92<br>μg/L | OBA-1B<br>6/23/92<br>μg/L | OBA-1C<br>6/23/92<br>μg/L | OBA-2B<br>6/26/92<br>μg/L | OBA-2BDL<br>6/26/92<br>μg/L | OBA-2C<br>6/26/92<br>μg/L |
|---------------------------------|-----------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|
| Compounds                       |                                               |                           |                           |                           |                           |                             |                           |
| <u>Pesticide/PCBs</u>           |                                               |                           |                           |                           |                           |                             |                           |
| alpha-BHC                       | 0.41                                          | 0.95                      | NDO.050                   | NDO.052                   | 18J                       | 1 <b>4</b> J                | 1.9J                      |
| beta-BHC                        | ND0.062                                       | 15                        | 0.24                      | 0.080                     | 0.91J                     | ND2.OUJ                     | 0.98J                     |
| delta-BHC                       | ND0.062                                       | NDO.50                    | NDO.050                   | 0.035J                    | 0.15J                     | ND2.OUJ                     | 1.1J                      |
| gamma-BHC (lindane)             | 0.25J                                         | ND0.50                    | NDO.050                   | NDO.052                   | 2.2J                      | 2.0J                        | 1.6J                      |
| heptachlor                      | ND0.062                                       | ND0.50                    | NDO.050                   | ND0.052                   | NDO.20UJ                  | ND2.OUJ                     | NDO.20UJ                  |
| aldrin                          | ND0.062                                       | NDO.50                    | NDO.50                    | NDO.052                   | NDO.20UJ                  | ND2.OUJ                     | 1.2J                      |
| heptachlor epoxide              | ND0.062                                       | ND0.50                    | NDO.050                   | NDO.052                   | 0.13J                     | ND2.OUJ                     | 0.21J                     |
| endosulfan I                    | ND0.062                                       | ND0.50                    | 0.060                     | NDO.052                   | NDO.20UJ                  | ND2.OUJ                     | NDO.20UJ                  |
| dieldrin                        | ND0.12                                        | ND1.0                     | ND0.10                    | 0.060J                    | NDO.40UJ                  | ND4.OUJ                     | NDO.40UJ                  |
| 4,4'-DDE                        | ND0.12                                        | ND1.0                     | NDO.10                    | 0.10J                     | NDO.40UJ                  | ND4.OUJ                     | NDO.40UJ                  |
| endrin                          | ND0.12                                        | ND1.0                     | ND0.10                    | NDO.10                    | NDO.40UJ                  | ND4.OUJ                     | 1.7J                      |
| 4,4'-DDD                        | ND0.12                                        | ND1.0                     | ND0.10                    | NDO.10                    | NDO.40UJ                  | ND4.OUJ                     | NDO.40UJ                  |
| gamma-chlordane                 | ND0.62                                        | ND5.0                     | NDO.50                    | NDO.52                    | ND2.OUJ                   | ND2OUJ                      | 0.13Л                     |

| Well ID<br>Sample Date<br>Units                                                                             | Dup<br>OBA-2C<br>6/26/92<br>μg/L                                               | OBA-3A<br>6/26/92<br>μg/L                                                       | Dup<br>OBA-3A<br>6/26/92<br>μg/L                                                           | OBA-3B<br>6/26/92<br>μg/L                                                                      | OBA-3C<br>6/26/92<br>μg/L                                                                   | OBA-4A<br>6/25/92<br>μg/L                                                                    | OBA-4B<br>6/24/92<br>μg/L                                                               |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Compounds<br>Pesticide/PCBs                                                                                 |                                                                                |                                                                                 |                                                                                            |                                                                                                |                                                                                             |                                                                                              |                                                                                         |
| alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide endosulfan I dieldrin | 2.0J<br>0.93J<br>0.83J<br>1.6J<br>0.90J<br>0.10J<br>0.20J<br>0.13J<br>ND0.20UJ | 1.5J<br>0.45J<br>0.44J<br>0.22J<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ | 3.2J<br>0.81J<br>0.81J<br>1.6J<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ<br>NDO.20UJ | 1.1J<br>0.61J<br>0.34J<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ<br>NDO.20UJ | 1.2J<br>0.82J<br>0.19J<br>0.31J<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ<br>NDO.10UJ<br>NDO.21UJ | NDO.050<br>0.13<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050 | 0.12<br>1.3<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.10 |
| 4,4'-DDE endrin 4,4'-DDD gamma-chlordane                                                                    | NDO.20UJ<br>1.7J<br>NDO.20UJ<br>0.084J                                         | NDO.20UJ<br>NDO.20UJ<br>NDO.20UJ<br>ND1.0UJ                                     | NDO.20UJ<br>NDO.20UJ<br>NDO.20UJ<br>ND1.0UJ                                                | NDO.20UJ<br>NDO.20UJ<br>NDO.20UJ<br>ND1.0UJ                                                    | NDO.21UJ<br>NDO.21UJ<br>NDO.21UJ<br>ND1.OUJ                                                 | NDO.10<br>NDO.10<br>NDO.10<br>NDO.50                                                         | NDO.10<br>NDO.10<br>NDO.10<br>NDO.50                                                    |

| Well ID<br>Sample Date<br>Units                                                                                                      | OBA-4C<br>6/24/92<br>μg/L                                                                 | OBA-5A<br>6/25/92<br>μg/L                                         | OBA-5A DL<br>6/25/92<br>μg/L                                                 | OBA-5B<br>6/25/92<br>μg/L                                                        | OBA-5B DL<br>6/25/92<br>μg/L                                                 | OBA-5C<br>6/25/92<br>μg/L                                                                             | OBA-6A<br>6/25/92<br>μg/L                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Compounds<br>Pesticide/PCBs                                                                                                          |                                                                                           |                                                                   |                                                                              |                                                                                  |                                                                              |                                                                                                       |                                                                                                                |
| alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide endosulfan I dieldrin 4,4'-DDE endrin 4,4'-DDD | 25<br>1.1<br>2.4<br>12<br>NDO.50<br>NDO.50<br>NDO.50<br>NDO.50<br>NDI.0<br>NDI.0<br>NDI.0 | 77 91 0.45J 77 ND0.50 ND0.50 ND0.50 ND0.50 ND0.50 1.2 ND1.0 ND1.0 | 70<br>100<br>ND5.0<br>71<br>ND5.0<br>ND5.0<br>ND5.0<br>ND5.0<br>ND10<br>ND10 | 94<br>40<br>7.1<br>120<br>ND0.50<br>ND0.50<br>ND0.50<br>ND0.50<br>ND1.0<br>ND1.0 | 110<br>39<br>4.6J<br>160<br>ND5.0<br>ND5.0<br>ND5.0<br>ND5.0<br>ND10<br>ND10 | 0.075<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.10<br>ND0.10<br>ND0.10 | NDO.050<br>0.11<br>NDO.050<br>0.038J<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.10<br>NDO.10<br>NDO.10 |

| Well ID<br>Sample Date<br>Units                                                                             | OBA-6B<br>6/25/92<br>μg/L                                                        | OBA-6C<br>6/25/92<br>μg/L                                                    | OBA-6C DL<br>6/25/92<br>μg/L                                      | OBA-7A<br>6/25/92<br>μg/L                                                                   | OBA-7B<br>6/25/92<br>μg/L                                                                  | OBA-7C<br>6/25/92<br>μg/L                                                                   | Dup<br>OBA-7C<br>6/25/92<br>μg/L                                                             |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Compounds<br><u>Pesticide/PCBs</u>                                                                          |                                                                                  |                                                                              |                                                                   |                                                                                             |                                                                                            |                                                                                             |                                                                                              |
| alpha-BHC beta-BHC delta-BHC gamma-BHC (lindane) heptachlor aldrin heptachlor epoxide endosulfan I dieldrin | ND0.050<br>1.2<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050 | 47<br>2.5<br>0.63<br>ND0.50<br>ND0.50<br>ND0.50<br>ND0.50<br>ND0.50<br>ND1.0 | 35<br>ND5.0<br>ND5.0<br>ND5.0<br>ND5.0<br>ND5.0<br>ND5.0<br>ND5.0 | NDO.050<br>2.5<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050 | ND0.050<br>0.18<br>ND0.050<br>0.074<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050 | 0.038J<br>0.20<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050<br>ND0.050 | NDO.050<br>0.16<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050<br>NDO.050 |
| 4,4'-DDE endrin 4,4'-DDD gamma-chlordane                                                                    | 0.070J<br>0.051J<br>0.64<br>ND0.50                                               | ND1.0<br>ND1.0<br>ND1.0<br>ND5.0                                             | ND10<br>ND10<br>ND10<br>ND50                                      | NDO.10<br>NDO.10<br>NDO.10<br>NDO.50                                                        | NDO.10<br>NDO.10<br>NDO.10<br>NDO.50                                                       | NDO.10<br>NDO.10<br>NDO.10<br>NDO.50                                                        | NDO.10<br>NDO.10<br>NDO.10<br>0.033J                                                         |

| Well ID<br>Sample Date<br>Units    | OBA-8A<br>6/24/92<br>μg/L | OBA-8B<br>6/24/92<br>μg/L | OBA-8C<br>6/24/92<br>μg/L | Dup<br>OBA-8C<br>6/24/92<br>μg/L | BH-1<br>6/25/92<br>μg/L | BH-3<br>6/24/92<br>μg/L | BH-3 DL<br>6/24/92<br>μg/L |
|------------------------------------|---------------------------|---------------------------|---------------------------|----------------------------------|-------------------------|-------------------------|----------------------------|
| Compounds<br><u>Pesticide/PCBs</u> |                           |                           |                           |                                  |                         |                         |                            |
| alpha-BHC                          | NDO.052                   | 11                        | ND0.050                   | NDO.050                          | 0.071                   | 530                     | 930                        |
| beta-BHC                           | NDO.052                   | 0.74                      | NDO.050                   | NDO.050                          | 0.60                    | 110                     | 110                        |
| delta-BHC                          | ND0.052                   | NDO.20                    | ND0.050                   | NDO.050                          | ND0.050                 | 340                     | 290                        |
| gamma-BHC (lindane)                | NDO.052                   | NDO.20                    | ND0.050                   | ND0.050                          | 0.13                    | 610                     | 920                        |
| heptachlor                         | ND0.052                   | ND0.20                    | ND0.050                   | ND0.050                          | ND0.050                 | ND2.5                   | ND25                       |
| aldrin                             | ND0.052                   | NDO.20                    | ND0.050                   | ND0.050                          | ND0.050                 | ND2.5                   | ND25                       |
| heptachlor epoxide                 | ND0.052                   | ND0.20                    | ND0.050                   | ND0.050                          | ND0.050                 | ND2.5                   | ND25                       |
| endosulfan I                       | ND0.052                   | NDO.20                    | ND0.050                   | NDO.050                          | NDO.050                 | ND2.5                   | ND25                       |
| dieldrin                           | ND0.10                    | NDO.40                    | ND0.10                    | NDO.10                           | NDO.10                  | ND5.0                   | ND50                       |
| 4,4'-DDE                           | ND0.10                    | NDO.40                    | ND0.10                    | NDO.10                           | NDO.10                  | ND5.0                   | ND50                       |
| endrin                             | ND0.10                    | NDO.40                    | ND0.10                    | NDO.10                           | NDO.10                  | ND5.0                   | ND50                       |
| 4,4'-DDD                           | ND0.10                    | NDO.40                    | ND0.10                    | NDO.10                           | NDO.10                  | ND5.0                   | ND50                       |
| gamma-chlordane                    | ND0.52                    | ND2.0                     | NDO.50                    | ND0.50                           | NDO.50                  | ND25                    | ND250                      |

| Well ID<br>Sample Date<br>Units | Rinsate-1<br>6/24/92<br>µg/L | Rinsate-2<br>6/25/92<br>μg/L | Rinsate-3<br>6/26/92<br>μg/L |
|---------------------------------|------------------------------|------------------------------|------------------------------|
| Compounds<br>Pesticide/PCBs     |                              |                              |                              |
| alpha-BHC                       | ND0.050                      | NDO.051                      | NDO.050UJ                    |
| beta-BHC                        | ND0.050                      | NDO.051                      | NDO.050UJ                    |
| delta-BHC                       | ND0.050                      | NDO.051                      | NDO.050UJ                    |
| gamma-BHC (lindane)             | ND0.050                      | ND0.051                      | NDO.050UJ                    |
| heptachlor                      | ND0.050                      | ND0.051                      | NDO.050UJ                    |
| aldrin                          | ND0.050                      | NDO.051                      | NDO.050UJ                    |
| heptachlor epoxide              | ND0.050                      | NDO.051                      | NDO.050UJ                    |
| endosulfan I                    | ND0.050                      | NDO.051                      | NDO.050UJ                    |
| dieldrin                        | ND0.10                       | NDO.10                       | NDO.10UJ                     |
| 4,4'-DDE                        | ND0.10                       | NDO.10                       | NDO.10UJ                     |
| endrin                          | ND0.10                       | NDO.10                       | NDO.10UJ                     |
| 4,4'-DDD                        | ND0.10                       | NDO.10                       | NDO.10UJ                     |
| gamma-chlordane                 | ND0.50                       | NDO.51                       | NDO.50UJ                     |

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

| Well ID<br>Sample Date<br>Units | Olin<br>Production<br>Well<br>6/23/92<br>mg/l | OBA-1A<br>6/24/92<br>mg/1 | OBA-1B<br>6/23/92<br>mg/1 | OBA-1C<br>6/23/92<br>mg/1 | OBA-2B<br>6/26/92<br>mg/l | OBA-2C<br>6/26/92<br>mg/1 | Dup<br>OBA-2C<br>6/26/92<br>mg/1 |
|---------------------------------|-----------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------------|
| Compounds                       |                                               |                           |                           |                           |                           |                           |                                  |
| methano1                        | ND0.55                                        | ND0.55                    | NDO.55                    | 0.61                      | ND0.55                    | ND0.55                    | NDO.55                           |
|                                 |                                               |                           |                           |                           |                           |                           |                                  |
| Sample Date<br>Units            | 6/23/92                                       | 6/25/92                   | 6/23/92                   | 6/23/92                   | 6/26/92                   | 6/26/92                   | 6/26/92                          |
| ULLUS                           | $\mu$ g/1                                     | μg/1                      | μg/1                      | μg/1                      | μg/1                      | $\mu$ g/1                 | $\mu$ g/l                        |
| mercury                         | 0.30                                          | 0.21                      | 72.0                      | ND0.20                    | 4.3                       | ND0.20                    | 0.26                             |

| Well ID<br>Sample Date<br>Units | OBA-3A<br>6/26/92<br>mg/l | Dup<br>OBA-3A<br>6/26/92<br>mg/1 | OBA-3B<br>6/26/92<br>mg/1 | OBA-3C<br>6/26/92<br>mg/1 | OBA-4A<br>6/25/92<br>mg/1 | OBA-4B<br>6/24/92<br>mg/1 | OBA-4C<br>6/24/92<br>mg/l |
|---------------------------------|---------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds                       |                           |                                  |                           |                           |                           |                           |                           |
| methanol                        | ND0.55                    | ND0.55                           | ND0.55                    | ND0.55                    | NDO.55                    | ND0.55                    | ND0.55                    |
|                                 |                           |                                  |                           |                           |                           |                           |                           |
| Sample Date<br>Units            | 6/26/92<br>μg/l           | 6/26/92<br>μg/l                  | 6/26/92<br>μg/l           | 6/26/92<br>μg/l           | 6/25/92<br>μg/l           | 6/24/92<br>μg/l           | 6/24/92<br>μg/l           |
| mercury                         | ND0.20                    | ND0.20                           | 0.47                      | ND0.20                    | ND0.20                    | ND0.20                    | 0.35                      |

| Well ID<br>Sample Date<br>Units | OBA-5A<br>6/25/92<br>mg/1 | OBA-5B<br>6/25/92<br>mg/1 | OBA-5C<br>6/25/92<br>mg/1 | OBA-6A<br>6/25/92<br>mg/1 | OBA-6B<br>6/25/92<br>mg/1 | OBA-6C<br>6/25/92<br>mg/1 | OBA-7A<br>6/25/92<br>mg/1 |
|---------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds                       |                           |                           |                           |                           |                           |                           |                           |
| methanol                        | ND0.55                    | 52                        | 1.40                      | 240                       | 1,500                     | 0.93                      | ND0.55                    |
|                                 |                           |                           |                           |                           |                           |                           |                           |
| Sample Date<br>Units            | 6/25/92<br>μg/1           | 6/25/92<br>μg/l           | 6/25/92<br>μg/l           | 6/25/92<br>μg/l           | 6/25/92<br>μg/l           | 6/25/92<br>μg/l           | 6/25/92<br>μg/l           |
| mercury                         | 133                       | 9.7                       | 0.26U                     | 28.2                      | 128                       | 0.56U                     | 0.47                      |

| Well ID<br>Sample Date<br>Units | OBA-7B<br>6/25/92<br>mg/1 | OBA-7C<br>6/25/92<br>mg/1 | Dup<br>OBA-7C<br>6/25/92<br>mg/1 | OBA-8A<br>6/24/92<br>mg/1 | OBA-8B<br>6/24/92<br>mg/l | OBA-8C<br>6/24/92<br>mg/1 | Dup<br>OBA-8C<br>6/24/92<br>mg/1 |
|---------------------------------|---------------------------|---------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|----------------------------------|
| Compounds                       |                           |                           |                                  |                           |                           |                           |                                  |
| methanol                        | 1.5                       | ND0.55                    | ND0.55                           | ND0.55                    | ND0.55                    | NDO.55                    | ND0.55                           |
|                                 |                           |                           |                                  |                           |                           |                           |                                  |
| Sample Date<br>Units            | 6/25/92<br>μg/l           | 6/25/92<br>μg/l           | 6/25/92<br>μg/l                  | 6/24/92<br>μg/l           | 6/24/92<br>μg/l           | 6/24/92<br>μg/l           | 6/24/92<br>μg/l                  |
| mercury                         | 78.3                      | 16.7                      | 20.2                             | 0.79                      | 0.24                      | 0.26                      | ND0.20                           |

| Well ID<br>Sample Date<br>Units | BH-1<br>6/24/92<br>mg/1 | BH-3<br>6/24/92<br>mg/1 | Rinsate-1<br>6/24/92<br>mg/1 | Rinsate-2<br>6/25/92<br>mg/l | Rinsate-3<br>6/26/92<br>mg/1 | FB-1<br>6/25/92<br>mg/1 | FB-2<br>6/26/92<br>mg/l |
|---------------------------------|-------------------------|-------------------------|------------------------------|------------------------------|------------------------------|-------------------------|-------------------------|
| Compounds                       |                         |                         |                              |                              |                              |                         |                         |
| methanol                        | ND0.55                  | NDO.55                  | NDO.55                       | ND0.55                       | ND0.55                       | NDO.55                  | NDO.55                  |
| Well ID<br>Sample Date<br>Units | 6/25/92<br>μg/1         | 6/24/92<br>μg/1         | 6/24/92<br>μg/1              | 6/25/92<br>μg/l              | 6/26<br>μg/1                 |                         |                         |
| mercury                         | ND0.20                  | 48.3                    | ND0.20                       | 0.21                         | ND0.20                       |                         |                         |

| Well ID     | TB-1    | TB-2    |
|-------------|---------|---------|
| Sample Date | 6/25/92 | 6/26/92 |
| Units       | mg/l    | mg/l    |

#### Compounds

methanol NDO.55 NDO.55

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL) but less than the practical quantitation limit (PQL).
- R Data found to be unusable as a result of outlying QC criteria.
- U The material was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

By: TMV Checked By: WSM Date: 9/17/92

Phase I Groundwater Samples
Summary of Detected Compounds
September/November 1992

|                            | Olin Production |         |             |           |              |           |         |
|----------------------------|-----------------|---------|-------------|-----------|--------------|-----------|---------|
| Well I.D                   | Well            | OBA-1A  | OBA-1B      | OBA-1B DL | OBA-1C       | OBA-1C DL | OBA-2B  |
| Sample Date                | 9/15/92         | 9/15/92 | 9/15/92     | 9/15/92   | 9/15/92      | 9/15/92   | 9/18/92 |
| Units                      | ug/l            | ug/l    | ug/l        | ug/l      | ug/l         | ug/l      | ug/l    |
| Compounds                  |                 |         |             |           |              |           |         |
| TCL-VOCs                   |                 |         |             |           |              |           |         |
| vinyl chloride             | 60              | ND10    | 11          | ND20      | ND500        | ND10,000  | 48      |
| methylene chloride         | <i>77</i> U     | 9U      | 20U         | 33U       | 24,000E      | 36,000    | 39U     |
| acetone                    | 30J             | ND10    | 10 <b>U</b> | ND20UJ    | ND500        | 19,000    | 36J     |
| 1,1-dichloroethene         | ND20            | ND5     | ND5         | ND10      | 370          | ND5,000   | ND10    |
| 1,1-dichloroethane         | ND20            | ND5     | ND5         | ND10      | ND250        | ND5,000   | ND10    |
| 1,2-dichloroethene (total) | 340             | ND5     | 62          | 58        | 10,000E      | 9,400     | 240     |
| chloroform                 | 170             | 3J      | <i>1</i> U  | 10U       | 72,000E      | 70,000    | 22      |
| 1,2-dichloroethane         | ND20            | ND5     | ND5         | ND10      | 110 <b>J</b> | ND5,000   | ND10    |
| 2-butanone                 | ND40            | ND10    | ND10        | ND20      | 500U         | 10,000U   | ND20    |
| 1,1,1-trichloroethane      | ND20            | ND5     | ND5         | ND10      | 100J         | ND5,000   | ND10    |
| carbon tetrachloride       | ND20            | ND5     | ND5         | ND10      | ND250        | ND5,000   | ND10    |
| trichloroethene            | 560 <b>J</b>    | 4J      | 250E        | 200       | 120,000E     | 110,000   | 240     |
| 1,1,2-trichloroethane      | ND20            | ND5     | ND5         | ND10      | 1,400        | 1,200J    | ND10    |
| benzene                    | ND20            | ND5     | ND5         | ND10      | 620          | ND5,000   | ND10    |
| tetrachloroethene          | 300             | 5       | 230E        | 210       | 17,000E      | 16,000    | 180     |
| 1,1,2,2-tetrachloroethane  | 54              | ND5     | ND5         | ND10      | 900          | ND5,000   | 14      |
| toluene                    | ND20            | ND5     | ND5         | ND10      | ND250        | ND5,000   | ND10    |
| chlorobenzene              | ND20            | ND5     | ND5         | ND10      | 150J         | ND5,000   | 3J      |
| ethylbenzene               | ND20            | ND5     | ND5         | ND10      | ND250        | ND5,000   | ND10    |
| •                          |                 |         |             |           |              |           |         |

|                            |          |             |         |         | Dup.    |            |            |
|----------------------------|----------|-------------|---------|---------|---------|------------|------------|
| Well I.D                   | OBA-2C   | OBA-3A      | OBA-3B  | OBA-3C  | OBA-3C  | OBA-4A     | OBA-4B     |
| Sample Date                | 9/18/92  | 9/18/92     | 9/18/92 | 9/18/92 | 9/18/92 | 9/17/92    | 9/16/92    |
| Units                      | ug/l     | ug/l        | ug/l    | ug/l    | ug/l    | ug/l       | ug/l       |
| Compounds                  |          |             |         |         |         |            |            |
| TCL-VOCs                   |          |             |         |         |         |            |            |
| vinyl chloride             | ND20,000 | 190J        | 1,300   | 2,000   | 2,100   | ND10       | 8J         |
| methylene chloride         | 23,000U  | ND100       | 890U    | 2,600U  | 800U    | 6U         | 5U         |
| acetone                    | ND20,000 | ND200R      | ND1,000 | 1,100J  | ND1,000 | ND10       | ND10       |
| 1,1-dichloroethene         | ND10,000 | ND100       | ND500   | ND500   | ND500   | ND5        | ND5        |
| 1,1-dichloroethane         | ND10,000 | ND100       | ND500   | ND500   | ND500   | ND5        | ND5        |
| 1,2-dichloroethene (total) | 11,000   | 640         | 4200    | 12,000  | 12,000  | <b>4</b> J | 75         |
| chloroform                 | 5,100J   | ND100       | 140J    | ND500   | ND500   | 3J         | 5U         |
| 1,2-dichloroethane         | ND10,000 | ND100UJ     | ND500   | ND500   | ND500   | ND5        | ND5        |
| 2-butanone                 | ND20,000 | ND200       | ND1,000 | 180J    | 230J    | ND10       | ND10       |
| 1,1,1-trichloroethane      | ND10,000 | ND100       | ND500   | ND500   | ND500   | ND5        | ND5        |
| carbon tetrachloride       | ND10,000 | ND100       | ND500   | ND500   | ND500   | ND5        | ND5        |
| trichloroethene            | 400,000  | 91 <b>J</b> | 480J    | ND500   | ND500   | 41         | 48         |
| 1,1,2-trichloroethane      | ND10,000 | ND100       | ND500   | ND500   | ND500   | ND5        | ND5        |
| benzene                    | ND10,000 | 1,300       | 5,200   | 7,400   | 7,100   | ND5        | 2J         |
| tetrachloroethene          | 110,000  | 16J         | 190J    | ND500   | ND500   | 18         | 16         |
| 1,1,2,2-tetrachloroethane  | 38,000   | 200J        | 1,300   | ND500   | ND500   | ND5        | <b>1</b> J |
| toluene                    | ND10,000 | ND100       | ND500   | ND500   | ND500   | ND5        | ND5        |
| chlorobenzene              | 2,600J   | 2,600       | 13,000  | 17,000  | 16,000  | ND5        | 10         |
| ethylbenzene               | ND10,000 | ND100       | ND500   | ND500   | ND500   | ND5        | ND5        |
| -                          |          |             |         |         |         |            |            |

| Well I.D<br>Sample Date<br>Units | OBA-4C<br>9/16/92<br>ug/l | OBA-4C DL<br>9/16/92<br>ug/l | OBA-5A<br>9/17/92<br>ug/l | OBA-5B<br>9/17/92<br>ug/l | OBA-5C<br>9/17/92<br>ug/l | OBA-6A<br>9/16/92<br>ug/l | OBA-6B<br>9/16/92<br>ug/l |
|----------------------------------|---------------------------|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds<br>TCL-VOCs            |                           |                              |                           |                           |                           |                           |                           |
| vinyl chloride                   | 130J                      | ND2,000                      | ND100                     | ND20,000                  | ND800                     | <b>7</b> J                | 20J                       |
| methylene chloride               | 200U                      | 2,800U                       | 450                       | 65,000U                   | 1,200U                    | 5U                        | 54U                       |
| acetone                          | ND400                     | ND2,000                      | 360                       | ND20,000                  | ND800                     | ND10                      | ND50                      |
| 1,1-dichloroethene               | ND200                     | ND1,000                      | ND50                      | ND10,000                  | 300J                      | ND5                       | ND25                      |
| 1,1-dichloroethane               | ND200                     | ND1,000                      | ND50                      | ND10,000                  | ND400                     | ND5                       | ND25                      |
| 1,2-dichloroethene (total)       | 2,600                     | 2,500                        | 230                       | 13,000                    | 3,600                     | 58                        | 320                       |
| chloroform                       | 1,200                     | 1,200                        | 520                       | 87,000                    | 320J                      | ND5                       | ND25                      |
| 1,2-dichloroethane               | ND200                     | ND1,000                      | ND50                      | ND10,000                  | ND400                     | ND5                       | ND25                      |
| 2-butanone                       | ND400                     | ND2,000                      | 160U                      | ND20,000                  | ND800                     | ND10                      | ND50                      |
| 1,1,1-trichloroethane            | 55J                       | ND1,000                      | ND50                      | ND10,000                  | ND400                     | ND5                       | ND25                      |
| carbon tetrachloride             | 430                       | ND1,000                      | ND50                      | ND10,000                  | ND400                     | ND5                       | ND25                      |
| trichloroethene                  | 21,000E                   | 26,000                       | 1,400                     | 280,000                   | 12,000                    | 15                        | 730J                      |
| 1,1,2-trichloroethane            | ND200                     | ND1,000                      | ND50                      | ND10,000                  | 650                       | ND5                       | ND25                      |
| benzene                          | ND200                     | ND1,000                      | 79                        | 23,000                    | 870                       | 2J                        | 38                        |
| tetrachloroethene                | 17,000E                   | 16,000                       | 980                       | 23,000                    | 1,000                     | 10                        | 690                       |
| 1,1,2,2-tetrachloroethane        | 2,500                     | 870J                         | ND50                      | ND10,000                  | 100J                      | ND5                       | ND25                      |
| toluene                          | ND200                     | ND1,000                      | ND50                      | ND10,000                  | ND400                     | 2Ј                        | ND25                      |
| chlorobenzene                    | 48 <b>J</b>               | ND1,000                      | 220                       | 3,100Ј                    | ND400                     | 2Ј                        | 18                        |
| ethylbenzene                     | ND200                     | ND1,000                      | ND50                      | ND10,000                  | ND400                     | ND5                       | ND25                      |

|                            | Dup.        |              |            |            |         |         |            |
|----------------------------|-------------|--------------|------------|------------|---------|---------|------------|
| Well I.D                   | OBA-6B      | OBA-6C       | OBA-7A     | OBA-7B     | OBA-7C  | OBA-8A  | OBA-8B     |
| Sample Date                | 9/16/92     | 9/16/92      | 9/17/92    | 9/17/92    | 9/17/92 | 9/16/92 | 9/15/92    |
| Units                      | ug/l        | ug/l         | ug/l       | ug/l       | ug/l    | ug/l    | ug/l       |
| Compounds                  |             |              |            |            |         |         |            |
| TCL-VOCs                   |             |              |            |            |         |         |            |
| vinyl chloride             | 10 <b>J</b> | 200J         | ND10       | ND80       | 260     | ND200   | ND10       |
| methylene chloride         | 62U         | 570U         | 34U        | 1,100      | 640U    | 200U    | 7U         |
| acetone                    | 64U         | ND400        | ND10       | ND80       | 70J     | ND200   | ND10UJ     |
| 1,1-dichloroethene         | <b>7</b> J  | ND200        | ND5        | ND40       | ND100   | ND100   | ND5        |
| 1,1-dichloroethane         | ND20        | ND200        | ND5        | ND40       | ND100   | ND100   | ND5        |
| 1,2-dichloroethene (total) | 260         | 6,100        | 5          | 8J         | 2,800   | ND100   | 3J         |
| chloroform                 | ND20        | 110 <b>J</b> | 8          | ND40       | 230     | 2,000   | 5UJ        |
| 1,2-dichloroethane         | ND20        | ND200        | ND5        | ND40       | ND100   | ND100   | ND5        |
| 2-butanone                 | 35J         | ND400        | ND10       | 15J        | 50J     | ND200   | ND10       |
| 1,1,1-trichloroethane      | ND20        | ND200        | ND5        | ND40       | ND100   | ND100   | ND5        |
| carbon tetrachloride       | ND20        | ND200        | ND5        | ND40       | ND100   | ND100   | ND5        |
| trichloroethene            | 320J        | 6,000        | 22         | 40U        | 2,500   | 21J     | 10J        |
| 1,1,2-trichloroethane      | ND20        | ND200        | ND5        | ND40       | ND100   | ND100   | ND5        |
| benzene                    | 22          | 210          | ND5        | 9 <b>J</b> | 110     | ND100   | ND5        |
| tetrachloroethene          | 440         | 2,500        | <b>4</b> J | ND40       | 750     | ND100   | 4 <b>J</b> |
| 1,1,2,2-tetrachloroethane  | <b>7</b> J  | 130J         | ND5        | ND40       | ND100   | ND100   | ND5        |
| toluene                    | 10J         | ND200        | ND5        | ND40       | ND100   | ND100   | ND5        |
| chlorobenzene              | 10J         | 75J          | ND5        | ND40       | 62J     | ND100   | ND5        |
| ethylbenzene               | 5J          | ND200        | ND5        | ND40       | ND100   | ND100   | ND5        |

|                            | Dup.    | Dup.       |            |            |             | Dup.        |           |
|----------------------------|---------|------------|------------|------------|-------------|-------------|-----------|
| Well I.D                   | OBA-8B  | OBA-8B DL  | OBA-8C     | OBA-9A     | OBA-10A     | OBA-10A     | BH-1      |
| Sample Date                | 9/15/92 | 9/15/92    | 9/15/92    | 11/16/92   | 11/16/92    | 11/16/92    | 9/15/92   |
| Units                      | ug/l    | ug/l       | ug/l       | ug/l       | ug/l        | ug/l        | ug/l      |
| Compounds<br>TCL-VOCs      |         |            |            |            |             |             |           |
| vinyl chloride             | ND10    | ND20       | ND10       | <b>3</b> J | ND500       | ND500       | 7J        |
| methylene chloride         | 47U     | 51U        | <b>5</b> U | 6J         | ND250       | ND250       | 8U        |
| acetone                    | ND10    | ND20       | ND10       | 110        | ND500       | ND500       | ND10      |
| 1,1-dichloroethene         | ND5     | ND10       | ND5        | ND10       | ND250       | ND250       | ND5       |
| 1,1-dichloroethane         | 3J      | <b>3</b> J | ND5        | ND10       | ND250       | ND250       | ND5       |
| 1,2-dichloroethene (total) | 33      | 20         | ND5        | 45         | 79 <b>J</b> | 82J         | 29        |
| chloroform                 | 240E    | 200J       | 5U         | 150        | 83J         | 83J         | ND5       |
| 1,2-dichloroethane         | ND5     | ND10       | ND5        | ND10       | ND250       | ND250       | ND5       |
| 2-butanone                 | ND10    | ND20       | ND10       | 7 <b>J</b> | ND500       | ND500       | ND10      |
| 1,1,1-trichloroethane      | 10      | ND10       | ND5        | ND10       | ND250       | ND250       | ND5       |
| carbon tetrachloride       | ND5     | ND10       | ND5        | ND10       | ND250       | ND250       | ND5       |
| trichloroethene            | 290E    | 170J       | 10         | 260        | 580         | 560         | 16        |
| 1,1,2-trichloroethane      | ND5     | ND10       | ND5        | ND10       | ND250       | ND250       | ND5       |
| benzene                    | 2J      | ND10       | ND5        | 320        | 250         | 240J        | 2J        |
| tetrachloroethene          | 59      | 35         | <b>3</b> J | 100        | 63J         | 61 <b>J</b> | <b>1J</b> |
| 1,1,2,2-tetrachloroethane  | 8       | 3J         | ND5        | ND10       | ND250       | ND250       | ND5       |
| toluene                    | ND5     | ND10       | ND5        | ND10       | ND250       | ND250       | ND5       |
| chlorobenzene              | 7       | ND10       | ND5        | 270        | 1,500       | 1,400       | 2J        |
| ethylbenzene               | ND5     | ND10       | ND5        | ND10       | ND250       | ND250       | ND5       |

| Well I.D<br>Sample Date<br>Units | BH-3<br>9/15/92<br>ug/l | Rinsate-1<br>9/15/92<br>ug/l | Rinsate-2<br>9/17/92<br>ug/l | Rinsate-3<br>9/18/92<br>ug/l | Rinsate-4<br>11/16/92<br>ug/l | FB-1<br>9/16/92<br>ug/l | FB-2<br>9/18/92<br>ug/l |
|----------------------------------|-------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------|-------------------------|
| Compounds <u>TCL-VOCs</u>        |                         |                              |                              |                              |                               |                         |                         |
| vinyl chloride                   | ND2,500                 | ND10                         | ND10                         | ND10                         | ND10                          | ND10                    | ND10                    |
| methylene chloride               | 2,000 <b>U</b>          | <i>7</i> U                   | 12 <b>U</b>                  | 5 <b>U</b>                   | ND5                           | 14U                     | 5U                      |
| acetone                          | ND2,500UJ               | ND10UJ                       | ND10                         | ND10                         | ND10                          | <b>7</b> J              | ND10                    |
| 1,1-dichloroethene               | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| 1,1-dichloroethane               | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| 1,2-dichloroethene (total)       | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| chloroform                       | 3,200                   | 2J                           | 3Ј                           | 2J                           | ND5                           | 2J                      | 2J                      |
| 1,2-dichloroethane               | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| 2-butanone                       | ND2,500                 | ND10                         | ND10                         | ND10                         | ND10                          | ND10                    | ND10                    |
| 1,1,1-trichloroethane            | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| carbon tetrachloride             | ND1,200                 | 62                           | 41                           | 47                           | 0.6J                          | 42                      | 54                      |
| trichloroethene                  | 980J                    | ND5                          | 6                            | <b>4</b> J                   | ND5                           | ND5                     | 3J                      |
| 1,1,2-trichloroethane            | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| benzene                          | 31,000                  | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| tetrachloroethene                | ND1,200                 | ND5                          | ND5                          | 2J                           | ND5                           | ND5                     | ND5                     |
| 1,1,2,2-tetrachloroethane        | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| toluene                          | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| chlorobenzene                    | 10,000                  | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |
| ethylbenzene                     | ND1,200                 | ND5                          | ND5                          | ND5                          | ND5                           | ND5                     | ND5                     |

| Well I.D Sample Date Units | TB-1<br>9/15/92<br>ug/l | TB-2<br>9/17/92<br>ug/l | TB-3<br>9/18/92<br>ug/l | TB-4<br>11/16/92<br>ug/l |
|----------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| Compounds<br>TCL-VOCs      |                         |                         |                         |                          |
| vinyl chloride             | ND10                    | ND10                    | ND10                    | ND10                     |
| methylene chloride         | 14U                     | 5U                      | 7U                      | ND5                      |
| acetone                    | ND10UJ                  | ND10                    | ND10                    | ND10                     |
| 1,1-dichloroethene         | ND5                     | ND5                     | ND5                     | ND5                      |
| 1,1-dichloroethane         | ND5                     | ND5                     | ND5                     | ND5                      |
| 1,2-dichloroethene (total) | ND5                     | ND5                     | ND5                     | ND5                      |
| chloroform                 | ND5                     | ND5                     | ND5                     | ND5                      |
| 1,2-dichloroethane         | ND5                     | ND5                     | ND5                     | ND5                      |
| 2-butanone                 | ND10                    | ND10                    | ND10                    | ND10                     |
| 1,1,1-trichloroethane      | ND5                     | ND5                     | ND5                     | ND5                      |
| carbon tetrachloride       | ND5                     | ND5                     | ND5                     | ND5                      |
| trichloroethene            | ND5                     | ND5                     | ND5                     | ND5                      |
| 1,1,2-trichloroethane      | ND5                     | ND5                     | ND5                     | ND5                      |
| benzene                    | ND5                     | ND5                     | ND5                     | ND5                      |
| tetrachloroethene          | ND5                     | ND5                     | ND5                     | ND5                      |
| 1,1,2,2-tetrachloroethane  | ND5                     | ND5                     | ND5                     | ND5                      |
| toluene                    | ND5                     | ND5                     | ND5                     | ND5                      |
| chlorobenzene              | ND5                     | ND5                     | ND5                     | ND5                      |
| ethylbenzene               | ND5                     | ND5                     | ND5                     | ND5                      |

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument and required dilution.
- R Data found to be unusable as a result of outlying QC criteria.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

|                            | Olin Production | on      |            |            |         | •        |
|----------------------------|-----------------|---------|------------|------------|---------|----------|
| Well I.D                   | Well            | OBA-1A  | OBA-1B     | OBA-1C     | OBA-2B  | OBA-2C   |
| Sample Date                | 9/15/92         | 9/15/92 | 9/15/92    | 9/15/92    | 9/18/92 | 9/18/92  |
| Units                      | ug/l            | ug/l    | ug/l       | ug/l       | ug/l    | ug/l     |
| Compounds                  |                 |         |            |            |         |          |
| TCL-BNAs                   |                 |         |            |            |         |          |
| phenol                     | 120J            | 130     | ND10       | <b>7</b> J | ND10    | 29       |
| 2-chlorophenol             | 130J            | 140     | ND10       | ND10       | ND10    | ND10     |
| 1,3-dichlorobenzene        | ND10            | ND10    | 3 <b>J</b> | 11         | ND10    | 26       |
| 1,4-dichlorobenzene        | ND10            | ND10    | ND10       | 9 <b>J</b> | ND10    | 67       |
| benzyl alcohol             | ND10            | ND10    | ND10       | ND10       | ND10    | 17       |
| 1,2-dichlorobenzene        | ND10            | ND10    | 5 <b>J</b> | 22         | ND10    | 310      |
| 2-methylphenol             | ND10            | ND10    | ND10       | ND10       | ND10    | 11       |
| 4-methylphenol             | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| hexachloroethane           | ND10            | ND10    | ND10       | ND10       | ND10    | 380E     |
| 2,4-dimethylphenol         | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| benzoic acid               | ND50            | ND50    | ND50       | 9 <b>J</b> | ND50    | 13,000EJ |
| bis(2-chloroethoxy)methane | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| 2,4-dichlorophenol         | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| 1,2,4-trichlorobenzene     | <b>3</b> J      | ND10    | 24         | 11         | 13      | 51       |
| naphthalene                | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| hexachlorobutadiene        | ND10            | ND10    | ND10       | ND10       | ND10    | 23       |
| 4-chloro-3-methylphenol    | 54              | 53      | ND10       | ND10       | ND10    | ND10     |
| 2,4,6-trichlorophenol      | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| 2,4,5-trichlorophenol      | ND50            | ND50    | ND50       | ND50       | 15J     | ND50     |
| 2-chloronaphthalene        | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| acenaphthene               | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| 4-nitrophenol              | 130 <b>J</b>    | 110     | ND50       | ND50       | ND50    | ND50     |
| dibenzofuran               | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| fluorene                   | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| pentachlorophenol          | 110J            | 100     | ND50       | ND50       | ND50    | ND50     |
| phenanthrene               | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |
| anthracene                 | ND10            | ND10    | ND10       | ND10       | ND10    | ND10     |

|                           | Olin Producti | on      |         |         |         |         |
|---------------------------|---------------|---------|---------|---------|---------|---------|
| Weli I.D                  | Well          | OBA-1A  | OBA-1B  | OBA-1C  | OBA-2B  | OBA-2C  |
| Sample Date               | 9/15/92       | 9/15/92 | 9/15/92 | 9/15/92 | 9/18/92 | 9/18/92 |
| Units                     | ug/l          | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    |
| Compounds                 |               |         |         |         |         |         |
| TCL-BNAs                  |               |         |         |         |         |         |
| fluoranthene              | ND10          | ND10    | ND10    | ND10    | ND10    | ND10    |
| pyrene                    | ND10          | ND10    | ND10    | ND10    | ND10    | ND10    |
| 2,3-dichlorophenol        | ND10          | ND10    | ND10    | ND10    | ND10    | ND10    |
| 2,5-dichlorophenol        | ND10          | ND10    | ND10    | ND10    | ND10    | ND10    |
| 3,4-dichlorophenol        | ND10          | ND10    | ND10    | ND10    | ND10    | ND10    |
| 2,3,4-trichlorophenol     | ND10          | ND10    | ND10    | ND10    | ND10    | ND10    |
| 2,3,4,5-tetrachlorophenol | ND10          | ND10    | ND10    | ND10    | ND10    | ND10    |
| 2,3,5,6-tetrachlorophenol | ND10          | ND10    | ND10    | ND10    | ND10    | ND10    |
|                           |               |         |         |         |         |         |

| Well I.D<br>Sample Date<br>Units | OBA-2C DL<br>9/18/92<br>ug/l | OBA-3A<br>9/18/92<br>ug/l | OBA-3A DL<br>9/18/92<br>ug/l | OBA-3B<br>9/18/92<br>ug/l | OBA-3B DL<br>9/18/92<br>ug/l | OBA-3C<br>9/18/92<br>ug/l |
|----------------------------------|------------------------------|---------------------------|------------------------------|---------------------------|------------------------------|---------------------------|
| Compounds<br>TCL-BNAs            |                              |                           |                              |                           |                              |                           |
| phenol                           | ND750                        | 12                        | ND100                        | ND10                      | ND100                        | 9 <b>J</b>                |
| 2-chlorophenol                   | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 1,3-dichlorobenzene              | ND750                        | 590E                      | 750                          | 480E                      | 670                          | 710E                      |
| 1,4-dichlorobenzene              | ND750                        | 1,100E                    | 2,300                        | 810E                      | 1,700                        | 1,400E                    |
| benzyl alcohol                   | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 1,2-dichlorobenzene              | 580J                         | 1,300E                    | 3,100                        | 1,000E                    | 2,300                        | 1,300E                    |
| 2-methylphenol                   | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 4-methylphenol                   | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| hexachloroethane                 | 670J                         | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,4-dimethylphenol               | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| benzoic acid                     | 11,000J                      | ND50                      | ND500                        | ND50                      | ND500                        | ND50                      |
| bis(2-chloroethoxy)methane       | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,4-dichlorophenol               | ND750                        | <b>7</b> J                | ND100                        | ND10                      | ND100                        | ND10                      |
| 1,2,4-trichlorobenzene           | ND750                        | 410E                      | 630                          | 160                       | 210                          | 400E                      |
| naphthalene                      | ND750                        | 8J                        | ND100                        | ND10                      | ND100                        | ND10                      |
| hexachlorobutadiene              | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 4-chloro-3-methylphenol          | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,4,6-trichlorophenol            | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,4,5-trichlorophenol            | ND3,800                      | ND50                      | ND500                        | ND50                      | ND500                        | ND50                      |
| 2-chloronaphthalene              | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| acenaphthene                     | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 4-nitrophenol                    | ND3,800                      | ND50                      | ND500                        | ND50                      | ND500                        | ND50                      |
| dibenzofuran                     | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| fluorene                         | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| pentachlorophenol                | ND3,800                      | ND50                      | ND500                        | ND50                      | ND500                        | ND50                      |
| phenanthrene                     | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| anthracene                       | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |

| Well I.D<br>Sample Date<br>Units | OBA-2C DL<br>9/18/92<br>ug/l | OBA-3A<br>9/18/92<br>ug/l | OBA-3A DL<br>9/18/92<br>ug/l | OBA-3B<br>9/18/92<br>ug/l | OBA-3B DL<br>9/18/92<br>ug/l | OBA-3C<br>9/18/92<br>ug/l |
|----------------------------------|------------------------------|---------------------------|------------------------------|---------------------------|------------------------------|---------------------------|
| Compounds<br><u>TCL-BNAs</u>     |                              |                           |                              |                           |                              |                           |
| fluoranthene                     | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| pyrene                           | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,3-dichlorophenol               | ND750                        | 7 <b>J</b>                | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,5-dichlorophenol               | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 3,4-dichlorophenol               | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,3,4-trichlorophenol            | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,3,4,5-tetrachlorophenol        | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |
| 2,3,5,6-tetrachlorophenol        | ND750                        | ND10                      | ND100                        | ND10                      | ND100                        | ND10                      |

|                            |           | Dup.       | Dup.      |         |         |         |
|----------------------------|-----------|------------|-----------|---------|---------|---------|
| Well I.D                   | OBA-3C DL | OBA-3C     | OBA-3C DL | OBA-4A  | OBA-4B  | OBA-4C  |
| Sample Date                | 9/18/92   | 9/18/92    | 9/18/92   | 9/17/92 | 9/16/92 | 9/16/92 |
| Units                      | ug/l      | ug/l       | ug/l      | ug/l    | ug/l    | ug/l    |
| Compounds                  |           |            |           |         |         |         |
| TCL-BNAs                   |           |            |           |         |         |         |
| phenol                     | ND200     | 9Ј         | ND200     | ND10    | ND10    | ND10    |
| 2-chlorophenol             | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| 1,3-dichlorobenzene        | 880       | 880E       | 830       | ND10    | ND10    | 35      |
| 1,4-dichlorobenzene        | 3,200     | 1,500E     | 3,000     | ND10    | ND10    | 96      |
| benzyl alcohol             | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| 1,2-dichlorobenzene        | 4,300     | 1,900E     | 4,200     | ND10    | ND10    | 97      |
| 2-methylphenol             | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| 4-methylphenol             | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| hexachloroethane           | ND200     | ND10       | ND200     | ND10    | ND10    | 180     |
| 2,4-dimethylphenol         | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| benzoic acid               | ND1,000   | 12J        | ND1,000   | ND50    | ND50    | ND50    |
| bis(2-chloroethoxy)methane | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| 2,4-dichlorophenol         | ND200     | 5 <b>J</b> | ND200     | ND10    | ND10    | ND10    |
| 1,2,4-trichlorobenzene     | 650       | 390E       | 660       | ND10    | ND10    | 380E    |
| naphthalene                | ND200     | <b>6J</b>  | ND200     | ND10    | ND10    | ND10    |
| hexachlorobutadiene        | ND200     | ND10       | ND200     | ND10    | ND10    | 120     |
| 4-chloro-3-methylphenol    | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| 2,4,6-trichlorophenol      | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| 2,4,5-trichlorophenol      | ND1,000   | ND50       | ND1,000   | ND50    | ND50    | ND50    |
| 2-chloronaphthalene        | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| acenaphthene               | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| 4-nitrophenol              | ND1,000   | ND50       | ND1,000   | ND50    | ND50    | ND50    |
| dibenzofuran               | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| fluorene                   | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| pentachlorophenol          | ND1,000   | ND50       | ND1,000   | ND50    | ND50    | ND50    |
| phenanthrene               | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
| anthracene                 | ND200     | ND10       | ND200     | ND10    | ND10    | ND10    |
|                            |           |            |           |         |         |         |

|           | Dup.                                                                                    | Dup.                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBA-3C DL | OBA-3C                                                                                  | OBA-3C DL                                                                                                                                                                                       | OBA-4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OBA-4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OBA-4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9/18/92   | 9/18/92                                                                                 | 9/18/92                                                                                                                                                                                         | 9/17/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9/16/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9/16/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ug/l      | ug/l                                                                                    | ug/l                                                                                                                                                                                            | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           |                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND200     | ND10                                                                                    | ND200                                                                                                                                                                                           | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND200     | ND10                                                                                    | ND200                                                                                                                                                                                           | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND200     | ND10                                                                                    | ND200                                                                                                                                                                                           | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND200     | ND10                                                                                    | ND200                                                                                                                                                                                           | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND200     | ND10                                                                                    | ND200                                                                                                                                                                                           | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND200     | ND10                                                                                    | ND200                                                                                                                                                                                           | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND200     | ND10                                                                                    | ND200                                                                                                                                                                                           | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND200     | ND10                                                                                    | ND200                                                                                                                                                                                           | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | 9/18/92<br>ug/l<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200<br>ND200 | OBA-3C DL OBA-3C 9/18/92 9/18/92 ug/l ug/l ug/l  ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 ND200 ND10 | OBA-3C DL         OBA-3C         OBA-3C DL           9/18/92         9/18/92         9/18/92           ug/l         ug/l         ug/l    ND200  ND200  ND200  ND200  ND10  ND200  ND200  ND200  ND10  ND200  ND2 | OBA-3C DL         OBA-3C         OBA-3C DL         OBA-4A           9/18/92         9/18/92         9/18/92         9/17/92           ug/l         ug/l         ug/l         ug/l           ND200         ND10         ND200         ND10           ND200         ND10         ND200         ND10 | OBA-3C DL         OBA-3C         OBA-3C DL         OBA-4A         OBA-4B           9/18/92         9/18/92         9/18/92         9/17/92         9/16/92           ug/l         ug/l         ug/l         ug/l         ug/l           ND200         ND10         ND200         ND10         ND10           ND200         ND10         ND10         ND10         ND10 |

| Well I.D                     | OBA-4C DL | OBA-5A  | OBA-5A DL | OBA-5B  | OBA-5B DL | OBA-5C     |
|------------------------------|-----------|---------|-----------|---------|-----------|------------|
| Sample Date                  | 9/16/92   | 9/17/92 | 9/17/92   | 9/17/92 | 9/17/92   | 9/17/92    |
| Units                        | ug/l      | ug/l    | ug/l      | ug/l    | ug/l      | ug/l       |
| Compounds<br><u>TCL-BNAs</u> |           |         |           |         |           |            |
| phenol                       | ND50      | ND100   | ND300     | 35      | 39J       | 31         |
| 2-chlorophenol               | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| 1,3-dichlorobenzene          | 37Ј       | 350     | 380       | 150     | 180       | <b>3</b> J |
| 1,4-dichlorobenzene          | 100       | 200     | 200J      | 98      | 120       | <b>3</b> J |
| benzyl alcohol               | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| 1,2-dichlorobenzene          | 110       | 450     | 470       | 230     | 320       | 5J         |
| 2-methylphenol               | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| 4-methylphenol               | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| hexachloroethane             | 190       | ND100   | ND300     | 34      | ND100     | ND10       |
| 2,4-dimethylphenol           | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| benzoic acid                 | ND250     | ND500   | ND1,500   | ND50    | ND500     | ND50       |
| bis(2-chloroethoxy)methane   | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| 2,4-dichlorophenol           | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| 1,2,4-trichlorobenzene       | 530       | 4,100E  | 5,200     | 610E    | 1,900     | <b>4</b> J |
| naphthalene                  | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| hexachlorobutadiene          | 160       | ND100   | ND300     | 10      | ND100     | ND10       |
| 4-chloro-3-methylphenol      | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| 2,4,6-trichlorophenol        | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| 2,4,5-trichlorophenol        | ND250     | ND500   | ND1,500   | 74      | ND500     | ND50       |
| 2-chloronaphthalene          | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| acenaphthene                 | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| 4-nitrophenol                | ND250     | ND500   | ND1,500   | ND50    | ND500     | ND50       |
| dibenzofuran                 | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| fluorene                     | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| pentachlorophenol            | ND250     | ND500   | ND1,500   | ND50    | ND500     | ND50       |
| phenanthrene                 | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
| anthracene                   | ND50      | ND100   | ND300     | ND10    | ND100     | ND10       |
|                              |           |         |           |         |           |            |

| Well I.D                  | OBA-4C DL | OBA-5A  | OBA-5A DL | OBA-5B  | OBA-5B DL | OBA-5C  |
|---------------------------|-----------|---------|-----------|---------|-----------|---------|
| Sample Date               | 9/16/92   | 9/17/92 | 9/17/92   | 9/17/92 | 9/17/92   | 9/17/92 |
| Units                     | ug/l      | ug/l    | ug/l      | ug/l    | ug/l      | ug/l    |
| Compounds                 |           |         |           |         |           |         |
| TCL-BNAs                  |           |         |           |         |           |         |
| fluoranthene              | ND50      | ND100   | ND300     | ND10    | ND100     | ND10    |
| pyrene                    | ND50      | ND100   | ND300     | ND10    | ND100     | ND10    |
| 2,3-dichlorophenol        | ND50      | ND100   | ND300     | ND10    | ND100     | ND10    |
| 2,5-dichlorophenol        | ND50      | ND100   | ND300     | ND10    | ND100     | ND10    |
| 3,4-dichlorophenol        | ND50      | ND100   | ND300     | ND10    | ND100     | ND10    |
| 2,3,4-trichlorophenol     | ND50      | ND100   | ND300     | ND10    | ND100     | ND10    |
| 2,3,4,5-tetrachlorophenol | ND50      | ND100   | ND300     | ND10    | ND100     | ND10    |
| 2,3,5,6-tetrachlorophenol | ND50      | ND100   | ND300     | ND10    | ND100     | ND10    |

|                            |           |            |             | Dup.       | Dup.        |             |
|----------------------------|-----------|------------|-------------|------------|-------------|-------------|
| Well I.D                   | OBA-6A    | OBA-6B     | OBA-6B DL   | OBA-6B     | OBA-6B DL   | OBA-6C      |
| Sample Date                | 9/16/92   | 9/16/92    | 9/16/92     | 9/16/92    | 9/16/92     | 9/16/92     |
| Units                      | ug/l      | ug/l       | ug/l        | ug/l       | ug/l        | ug/l        |
| Compounds                  |           |            |             |            |             |             |
| TCL-BNAs                   |           |            |             |            |             |             |
| phenol                     | 24        | 40         | 47Ј         | 36         | 32J         | 7Ј          |
| 2-chlorophenol             | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| 1,3-dichlorobenzene        | ND10      | 56         | 67          | 52         | 48J         | 52          |
| 1,4-dichlorobenzene        | ND10      | 15         | 18J         | 14         | 47J         | 30          |
| benzyl alcohol             | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| 1,2-dichlorobenzene        | ND10      | 35         | 41J         | 33         | 29 <b>J</b> | 96          |
| 2-methylphenol             | ND10      | 3J         | ND50        | <b>3</b> J | ND50        | ND10        |
| 4-methylphenol             | <b>6J</b> | 10         | ND50        | 10         | ND50        | ND10        |
| hexachloroethane           | ND10      | ND10       | ND50        | ND10       | ND50        | 15          |
| 2,4-dimethylphenol         | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| benzoic acid               | <b>6J</b> | 100J       | 84J         | 83J        | 50J         | 16 <b>J</b> |
| bis(2-chloroethoxy)methane | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| 2,4-dichlorophenol         | ND10      | ND10       | ND50        | ND10       | ND50        | 11          |
| 1,2,4-trichlorobenzene     | ND10      | 580E       | 1,200       | 550E       | 900         | 640E        |
| naphthalene                | ND10      | 3J         | ND50        | 3J         | ND50        | ND10        |
| hexachlorobutadiene        | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| 4-chloro-3-methylphenol    | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| 2,4,6-trichlorophenol      | ND10      | <b>4</b> J | ND50        | 3Ј         | ND50        | ND10        |
| 2,4,5-trichlorophenol      | ND50      | 38J        | <b>44</b> J | 31J        | 26J         | 620E        |
| 2-chloronaphthalene        | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| acenaphthene               | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| 4-nitrophenol              | ND50      | ND50       | ND250       | ND50       | ND250       | ND50        |
| dibenzofuran               | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| fluorene                   | ND10      | ND10       | ND250       | ND10       | ND50        | ND10        |
| pentachlorophenol          | ND50      | ND50       | ND250       | ND50       | ND250       | ND50        |
| phenanthrene               | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |
| anthracene                 | ND10      | ND10       | ND50        | ND10       | ND50        | ND10        |

| Well I.D<br>Sample Date<br>Units | OBA-6A<br>9/16/92 | OBA-6B<br>9/16/92 | OBA-6B DL<br>9/16/92 | Dup.<br>OBA-6B<br>9/16/92 | Dup.<br>OBA-6B DL<br>9/16/92 | OBA-6C<br>9/16/92 |
|----------------------------------|-------------------|-------------------|----------------------|---------------------------|------------------------------|-------------------|
|                                  | ug/l              | ug/l              | ug/l                 | ug/l                      | ug/l                         | ug/l              |
| Compounds                        |                   |                   |                      |                           | •                            |                   |
| <u>TCL-BNAs</u>                  |                   |                   |                      |                           |                              |                   |
| fluoranthene                     | ND10              | ND10              | ND50                 | ND10                      | ND50                         | ND10              |
| pyrene                           | ND10              | ND10              | ND50                 | ND10                      | ND50                         | ND10              |
| 2,3-dichlorophenol               | ND10              | ND10              | ND50                 | ND10                      | ND50                         | ND10              |
| 2,5-dichlorophenol               | ND10              | ND10              | ND50                 | ND10                      | ND50                         | 10                |
| 3,4-dichlorophenol               | ND10              | ND10              | ND50                 | ND10                      | ND50                         | ND10              |
| 2,3,4-trichlorophenol            | ND10              | ND10              | ND50                 | ND10                      | ND50                         | 17                |
| 2,3,4,5-tetrachlorophenol        | ND10              | ND10              | ND50                 | ND10                      | ND50                         | 100               |
| 2,3,5,6-tetrachlorophenol        | ND10              | ND10              | ND50                 | ND10                      | ND50                         | ND10              |
|                                  |                   |                   |                      |                           |                              |                   |

| Well I.D<br>Sample Date<br>Units | OBA-6C DL<br>9/16/92<br>ug/l | OBA-7A<br>9/17/92<br>ug/l | OBA-7B<br>9/17/92<br>ug/l | OBA-7C<br>9/17/92<br>ug/l | OBA-8A<br>9/16/92<br>ug/l | OBA-8B<br>9/15/92<br>ug/l |
|----------------------------------|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds<br><u>TCL-BNAs</u>     |                              |                           |                           |                           |                           |                           |
| phenol                           | ND50                         | ND10                      | 15                        | 18                        | ND10                      | ND10                      |
| 2-chlorophenol                   | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 1,3-dichlorobenzene              | 51                           | ND10                      | 10                        | 8J                        | ND10                      | 7J                        |
| 1,4-dichlorobenzene              | 29J                          | ND10                      | 2J                        | 4J                        | ND10                      | ND10                      |
| benzyl alcohol                   | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 1,2-dichlorobenzene              | 100                          | ND10                      | 11                        | 13                        | ND10                      | ND10                      |
| 2-methylphenol                   | ND50                         | ND10                      | 3J                        | 3J                        | ND10                      | ND10                      |
| 4-methylphenol                   | ND50                         | ND10                      | 8J                        | <b>7</b> J                | ND10                      | ND10                      |
| hexachloroethane                 | 13J                          | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 2,4-dimethylphenol               | ND50                         | ND10                      | 5J                        | ND10                      | ND10                      | ND10                      |
| benzoic acid                     | ND250                        | ND50                      | ND50                      | ND50                      | ND50                      | ND50                      |
| bis(2-chloroethoxy)methane       | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 2,4-dichlorophenol               | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 1,2,4-trichlorobenzene           | 1,100                        | ND10                      | 100                       | 15                        | 60                        | ND10                      |
| naphthalene                      | ND50                         | ND10                      | <b>2</b> J                | ND10                      | ND10                      | ND10                      |
| hexachlorobutadiene              | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 4-chloro-3-methylphenol          | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 2,4,6-trichlorophenol            | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 2,4,5-trichlorophenol            | 740                          | ND50                      | ND50                      | 73                        | ND50                      | 8J                        |
| 2-chloronaphthalene              | ND50                         | ND10                      | ND10                      | 58                        | ND10                      | ND10                      |
| acenaphthene                     | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 4-nitrophenol                    | ND250                        | ND50                      | ND50R                     | ND50                      | ND50                      | ND50                      |
| dibenzofuran                     | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| fluorene                         | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| pentachlorophenol                | ND250                        | ND50                      | ND50R                     | ND50                      | ND50                      | ND50                      |
| phenanthrene                     | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| anthracene                       | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |

| Well I.D<br>Sample Date<br>Units | OBA-6C DL<br>9/16/92<br>ug/l | OBA-7A<br>9/17/92<br>ug/l | OBA-7B<br>9/17/92<br>ug/l | OBA-7C<br>9/17/92<br>ug/l | OBA-8A<br>9/16/92<br>ug/l | OBA-8B<br>9/15/92<br>ug/l |
|----------------------------------|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds                        |                              |                           |                           |                           |                           |                           |
| <u>TCL-BNAs</u>                  |                              |                           |                           |                           |                           |                           |
| fluoranthene                     | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| pyrene                           | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 2,3-dichlorophenol               | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 2,5-dichlorophenol               | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 3,4-dichlorophenol               | ND50                         | ND10                      | ND10                      | 95                        | ND10                      | ND10                      |
| 2,3,4-trichlorophenol            | 920                          | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 2,3,4,5-tetrachlorophenol        | 83                           | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |
| 2,3,5,6-tetrachlorophenol        | ND50                         | ND10                      | ND10                      | ND10                      | ND10                      | ND10                      |

|                              | Dup.    |         |            |           |          |            |
|------------------------------|---------|---------|------------|-----------|----------|------------|
| Well I.D                     | OBA-8B  | OBA-8C  | OBA-9A     | OBA-9A DL | OBA-10A  | OBA-10A DL |
| Sample Date                  | 9/15/92 | 9/15/92 | 11/16/92   | 11/16/92  | 11/16/92 | 11/16/92   |
| Units                        | ug/l    | ug/l    | ug/l       | ug/l      | ug/l     | ug/l       |
| Compounds<br><u>TCL-BNAs</u> |         |         |            |           |          |            |
| phenol                       | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 2-chlorophenol               | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 1,3-dichlorobenzene          | 77J     | ND10    | 91         | 96        | 1,200E   | 1,200      |
| 1,4-dichlorobenzene          | 11      | ND10    | 29J        | 29J       | 5,000E   | 7,500      |
| benzyl alcohol               | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 1,2-dichlorobenzene          | ND10    | ND10    | 55         | 60        | 7,800E   | 9,400      |
| 2-methylphenol               | ND10    | ND10    | ND10UJ     | ND20UJ    | ND10UJ   | ND1,000UJ  |
| 4-methylphenol               | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| hexachloroethane             | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 2,4-dimethylphenol           | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| benzoic acid                 | ND50    | ND50    | ND50       | ND100R    | ND50     | ND5,000R   |
| bis(2-chloroethoxy)methane   | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 2,4-dichlorophenol           | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 1,2,4-trichlorobenzene       | ND10    | ND10    | 350E       | 410J      | 1,900E   | 4,200      |
| naphthalene                  | ND10    | ND10    | <b>1J</b>  | ND20      | 36       | ND1,000    |
| hexachlorobutadiene          | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 4-chloro-3-methylphenol      | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 2,4,6-trichlorophenol        | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| 2,4,5-trichlorophenol        | 7J      | ND50    | ND50       | ND100     | 2.J      | ND5,000    |
| 2-chloronaphthalene          | ND10    | ND10    | ND10       | ND20      | ND10     | ND1,000    |
| acenaphthene                 | ND10    | ND10    | 9 <b>J</b> | 8J        | 11       | ND1,000    |
| 4-nitrophenol                | ND50    | ND50    | ND50       | ND100     | ND50     | ND5,000    |
| dibenzofuran                 | ND10    | ND10    | ND10       | ND20      | 5J       | ND1,000    |
| fluorene                     | ND10    | ND10    | <b>4</b> J | ND20      | 5J       | ND1,000    |
| pentachlorophenol            | ND50    | ND50    | ND50       | ND100     | ND50     | ND5,000    |
| phenanthrene                 | ND10    | ND10    | <b>4</b> J | <b>3J</b> | 7Ј       | ND1,000    |
| anthracene                   | ND10    | ND10    | <b>2</b> J | ND20      | ND10     | ND1,000    |
| fluoranthene                 | ND10    | ND10    | <b>4</b> J | ND20      | ND10     | ND1,000    |
| OLINBNA.XLS pyrene           | ND10    | ND10    | 3Ј         | ND20      | ND10     | ND1,000    |

|                           | Dup.    |         |            |           |            |            |
|---------------------------|---------|---------|------------|-----------|------------|------------|
| Well I.D                  | OBA-8B  | OBA-8C  | OBA-9A     | OBA-9A DL | OBA-10A    | OBA-10A DL |
| Sample Date               | 9/15/92 | 9/15/92 | 11/16/92   | 11/16/92  | 11/16/92   | 11/16/92   |
| Units                     | ug/l    | ug/l    | ug/l       | ug/l      | ug/l       | ug/l       |
| Compounds                 |         |         |            |           |            |            |
| TCL-BNAs                  |         |         |            |           |            |            |
| fluoranthene              | ND10    | ND10    | <b>4</b> J | ND20      | ND10       | ND1,000    |
| pyrene                    | ND10    | ND10    | 3Ј         | ND20      | ND10       | ND1,000    |
| 2,3-dichlorophenol        | ND10    | ND10    | ND10       | ND20      | ND10       | ND1,000    |
| 2,5-dichlorophenol        | ND10    | ND10    | ND10       | ND20      | ND10       | ND1,000    |
| 3,4-dichlorophenol        | ND10    | ND10    | ND10       | ND20      | 6 <b>J</b> | ND1,000    |
| 2,3,4-trichlorophenol     | ND10    | ND10    | ND10       | ND20      | ND10       | ND1,000    |
| 2,3,4,5-tetrachlorophenol | ND10    | ND10    | ND10       | ND20      | ND10       | ND1,000    |
| 2,3,5,6-tetrachlorophenol | ND10    | ND10    | ND10       | ND20      | ND10       | ND1,000    |
|                           |         |         |            |           |            |            |

| Well I.D                   | Dup.<br>OBA-10A | Dup.<br>OBA-10A DL | BH-1    | BH-1 Re | BH-1 DL | BH-3    |
|----------------------------|-----------------|--------------------|---------|---------|---------|---------|
| Sample Date                | 11/16/92        | 11/16/92           | 9/15/92 | 9/15/92 | 9/15/92 | 9/15/92 |
| Units                      | ug/l            | ug/l               | ug/l    | ug/l    | ug/l    | ug/l    |
| Onts                       | ug/1            | ug/1               | ug/1    | ug/1    | ug/1    | ug/1    |
| Compounds                  |                 |                    |         |         |         |         |
| TCL-BNAs                   |                 |                    |         |         |         |         |
| phenol                     | ND10            | ND1,000            | ND10    | ND10    | ND200   | 25J     |
| 2-chlorophenol             | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 1,3-dichlorobenzene        | 1,300E          | 1,200              | 21      | 21      | ND200   | 560     |
| 1,4-dichlorobenzene        | 5,000E          | 7,000              | 10      | 11      | ND200   | 340     |
| benzyl alcohol             | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 1,2-dichlorobenzene        | 7,700E          | 8,700              | 38      | 39      | ND200   | 1,100   |
| 2-methylphenol             | ND10UJ          | ND1,000UJ          | ND10    | ND10    | ND200   | ND50    |
| 4-methylphenol             | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| hexachloroethane           | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 2,4-dimethylphenol         | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| benzoic acid               | ND50            | ND5,000R           | 1,600EJ | 1,600EJ | 2,700J  | ND250   |
| bis(2-chloroethoxy)methane | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 2,4-dichlorophenol         | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 1,2,4-trichlorobenzene     | 1,800E          | 3,800              | 170     | 170     | 310     | 2,500E  |
| naphthalene                | 34              | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| hexachlorobutadiene        | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 4-chloro-3-methylphenol    | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 2,4,6-trichlorophenol      | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 2,4,5-trichlorophenol      | 2J              | ND5,000            | ND50    | ND50    | ND1,000 | ND250   |
| 2-chloronaphthalene        | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| acenaphthene               | 9 <b>J</b>      | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| 4-nitrophenol              | ND50            | ND5,000            | ND50    | ND50    | ND1,000 | ND250   |
| dibenzofuran               | 4J              | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| fluorene                   | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| pentachlorophenol          | ND50            | ND1,000            | ND50    | ND50    | ND1,000 | ND250   |
| phenanthrene               | 5J              | ND1,000            | ND10    | ND10    | ND200   | ND50    |
| anthracene                 | ND10            | ND1,000            | ND10    | ND10    | ND200   | ND50    |

| Dup.                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBA-10A DL BH-1 BH-1 Re BH-                                                                                                                                                                                                                                                                                                                                                                   | BH-1 Re BH-1 DL BH-3                                                                                                                                                                                                                                                                                                                                              |
| 11/16/92 9/15/92 9/15/92 9/15                                                                                                                                                                                                                                                                                                                                                                 | /92 9/15/92 9/15/92 9/15/92                                                                                                                                                                                                                                                                                                                                       |
| ug/l ug/l ug/l ug/l                                                                                                                                                                                                                                                                                                                                                                           | ug/l ug/l ug/l                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |
| ND1,000 ND10 ND10 ND2                                                                                                                                                                                                                                                                                                                                                                         | 0 ND10 ND200 ND50                                                                                                                                                                                                                                                                                                                                                 |
| ND1,000 ND10 ND10 ND2                                                                                                                                                                                                                                                                                                                                                                         | 0 ND10 ND200 ND50                                                                                                                                                                                                                                                                                                                                                 |
| ND1,000 ND10 ND10 ND2                                                                                                                                                                                                                                                                                                                                                                         | 0 ND10 ND200 ND50                                                                                                                                                                                                                                                                                                                                                 |
| ND1,000 ND10 ND10 ND2                                                                                                                                                                                                                                                                                                                                                                         | 0 ND10 ND200 ND50                                                                                                                                                                                                                                                                                                                                                 |
| ND1,000 ND10 ND10 ND2                                                                                                                                                                                                                                                                                                                                                                         | 0 ND10 ND200 ND50                                                                                                                                                                                                                                                                                                                                                 |
| ND1,000 ND10 ND10 ND2                                                                                                                                                                                                                                                                                                                                                                         | 0 ND10 ND200 ND50                                                                                                                                                                                                                                                                                                                                                 |
| ND1,000 ND10 ND10 ND2                                                                                                                                                                                                                                                                                                                                                                         | 0 ND10 ND200 ND50                                                                                                                                                                                                                                                                                                                                                 |
| ND1,000 ND10 ND10 ND2                                                                                                                                                                                                                                                                                                                                                                         | 0 ND10 ND200 ND50                                                                                                                                                                                                                                                                                                                                                 |
| ND1,000         ND10         ND10         ND2           ND1,000         ND10         ND10         ND2           ND1,000         ND10         ND10         ND2           ND1,000         ND10         ND10         ND2           ND1,000         ND10         ND10         ND2           ND1,000         ND10         ND10         ND2           ND1,000         ND10         ND10         ND2 | 0         ND10         ND200         ND50           0         ND10         ND200         ND50           0         ND10         ND200         ND50           0         ND10         ND200         ND50           0         ND10         ND200         ND50           0         ND10         ND200         ND50           0         ND10         ND200         ND50 |

| Well I.D<br>Sample Date<br>Units | BH-3 DL<br>9/15/92<br>ug/l | Rinsate-1<br>9/15/92<br>ug/l | Rinsate-2<br>9/17/92<br>ug/l | Rinsate-3<br>9/18/92<br>ug/l | Rinsate-4<br>11/16/92<br>ug/l | FB-1<br>9/16/92<br>ug/l |
|----------------------------------|----------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------|
| Compounds<br><u>TCL-BNAs</u>     |                            |                              |                              |                              |                               |                         |
| phenol                           | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2-chlorophenol                   | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 1,3-dichlorobenzene              | 700                        | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 1,4-dichlorobenzene              | 390                        | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| benzyl alcohol                   | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 1,2-dichlorobenzene              | 1,500                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2-methylphenol                   | ND250                      | ND10                         | ND10                         | ND10                         | ND10UJ                        | NS                      |
| 4-methylphenol                   | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| hexachloroethane                 | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,4-dimethylphenol               | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| benzoic acid                     | ND1,200                    | ND50                         | ND50                         | ND50                         | ND50                          | NS                      |
| bis(2-chloroethoxy)methane       | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,4-dichlorophenol               | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 1,2,4-trichlorobenzene           | 4,700                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| naphthalene                      | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| hexachlorobutadiene              | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 4-chloro-3-methylphenol          | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,4,6-trichlorophenol            | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,4,5-trichlorophenol            | ND1,200                    | ND10                         | ND10                         | ND10                         | ND50                          | NS                      |
| 2-chloronaphthalene              | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| acenaphthene                     | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 4-nitrophenol                    | ND1,200                    | ND50                         | ND50                         | ND50                         | ND50                          | NS                      |
| dibenzofuran                     | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| fluorene                         | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| pentachlorophenol                | ND1,200                    | ND50                         | ND50                         | ND50                         | ND50                          | NS                      |
| phenanthrene                     | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| anthracene                       | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |

| Well I.D Sample Date Units Compounds | BH-3 DL<br>9/15/92<br>ug/l | Rinsate-1<br>9/15/92<br>ug/l | Rinsate-2<br>9/17/92<br>ug/l | Rinsate-3<br>9/18/92<br>ug/l | Rinsate-4<br>11/16/92<br>ug/l | FB-1<br>9/16/92<br>ug/l |
|--------------------------------------|----------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------|
| <u>TCL-BNAs</u>                      |                            |                              |                              |                              |                               |                         |
| fluoranthene                         | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| pyrene                               | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,3-dichlorophenol                   | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,5-dichlorophenol                   | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 3,4-dichlorophenol                   | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,3,4-trichlorophenol                | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,3,4,5-tetrachlorophenol            | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |
| 2,3,5,6-tetrachlorophenol            | ND250                      | ND10                         | ND10                         | ND10                         | ND10                          | NS                      |

| Well I.D                     | FB-2    | TB-1    | TB-2    | TB-3    | TB-4     |
|------------------------------|---------|---------|---------|---------|----------|
| Sample Date                  | 9/18/92 | 9/15/92 | 9/17/92 | 9/18/92 | 11/16/92 |
| Units                        | ug/l    | ug/l    | ug/l    | ug/l    | ug/l     |
| Compounds<br><u>TCL-BNAs</u> |         |         |         |         |          |
| phenol                       | NS      | NS      | NS      | NS      | NS       |
| 2-chlorophenol               | NS      | NS      | NS      | NS      | NS       |
| 1,3-dichlorobenzene          | NS      | NS      | NS      | NS      | NS       |
| 1,4-dichlorobenzene          | NS      | NS      | NS      | NS      | NS       |
| benzyl alcohol               | NS      | NS      | NS      | NS      | NS       |
| 1,2-dichlorobenzene          | NS      | NS      | NS      | NS      | NS       |
| 2-methylphenol               | NS      | NS      | NS      | NS      | NS       |
| 4-methylphenol               | NS      | NS      | NS      | NS      | NS       |
| hexachloroethane             | NS      | NS      | NS      | NS      | NS       |
| 2,4-dimethylphenol           | NS      | NS      | NS      | NS      | NS       |
| benzoic acid                 | NS      | NS      | NS      | NS      | NS       |
| bis(2-chloroethoxy)methane   | NS      | NS      | NS      | NS      | NS       |
| 2,4-dichlorophenol           | NS      | NS      | NS      | NS      | NS       |
| 1,2,4-trichlorobenzene       | NS      | NS      | NS      | NS      | NS       |
| naphthalene                  | NS      | NS      | NS      | NS      | NS       |
| hexachlorobutadiene          | NS      | NS      | NS      | NS      | NS       |
| 4-chloro-3-methylphenol      | NS      | NS      | NS      | NS      | NS       |
| 2,4,6-trichlorophenol        | NS      | NS      | NS      | NS      | NS       |
| 2,4,5-trichlorophenol        | NS      | NS      | NS      | NS      | NS       |
| 2-chloronaphthalene          | NS      | NS      | NS      | NS      | NS       |
| acenaphthene                 | NS      | NS      | NS      | NS      | NS       |
| 4-nitrophenol                | NS      | NS      | NS      | NS      | NS       |
| dibenzofuran                 | NS      | NS      | NS      | NS      | NS       |
| fluorene                     | NS      | NS      | NS      | NS      | NS       |
| pentachlorophenol            | NS      | NS      | NS      | NS      | NS       |
| phenanthrene                 | NS      | NS      | NS      | NS      | NS       |
| anthracene                   | NS      | NS      | NS      | NS      | NS       |

| Well I.D Sample Date Units Compounds TCL-BNAs | FB-2<br>9/18/92<br>ug/l | TB-1<br>9/15/92<br>ug/l | TB-2<br>9/17/92<br>ug/l | TB-3<br>9/18/92<br>ug/l | TB-4<br>11/16/92<br>ug/l |
|-----------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| fluoranthene                                  | NS                      | NS                      | NS                      | NS                      | NS                       |
| pyrene                                        | NS                      | NS                      | NS                      | NS                      | NS                       |
| 2,3-dichlorophenol                            | NS                      | NS                      | NS                      | NS                      | NS                       |
| 2,5-dichlorophenol                            | NS                      | NS                      | NS                      | NS                      | NS                       |
| 3,4-dichlorophenol                            | NS                      | NS                      | NS                      | NS                      | NS                       |
| 2,3,4-trichlorophenol                         | NS                      | NS                      | NS                      | NS                      | NS                       |
| 2,3,4,5-tetrachlorophenol                     | NS                      | NS                      | NS                      | NS                      | NS                       |
| 2,3,5,6-tetrachlorophenol                     | NS                      | NS                      | NS                      | NS                      | NS                       |

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- E Compound whose concentration exceeds the calibration range of the GC/MS instrument and required dilution.
- R Data found to be unusable as a result of outlying QC criteria.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

|                     | Olin Production |         |           |         |         |         |           |  |
|---------------------|-----------------|---------|-----------|---------|---------|---------|-----------|--|
| Weli ID             | Well            | OBA-1A  | OBA-1A DL | OBA-1B  | OBA-1C  | OBA-2B  | OBA-2B DL |  |
| Sample Date         | 9/15/92         | 9/15/92 | 9/15/92   | 9/15/92 | 9/15/92 | 9/18/92 | 9/18/92   |  |
| Units               | ug/l            | ug/l    | ug/l      | ug/l    | ug/l    | ug/l    | ug/l      |  |
| Compounds           |                 |         |           |         |         |         |           |  |
| TCL-Pest/PCBs       |                 |         |           |         |         |         |           |  |
| alpha-BHC           | 0.47            | 0.33    | ND 2.5    | ND .050 | ND .050 | 30      | 35        |  |
| beta-BHC            | ND .050         | 11      | 16        | 0.12    | 0.057   | 1.7     | ND 5.0    |  |
| delta-BHC           | 0.057           | ND .050 | ND 2.5    | ND .050 | ND .050 | ND .50  | ND 5.0    |  |
| gamma-BHC (lindane) | 0.27J           | ND .050 | ND 2.5    | ND .050 | ND .050 | 3.1     | ND 5.0    |  |
| heptachlor          | ND .050         | ND .050 | ND 2.5    | ND .050 | ND .050 | ND .50  | ND 5.0    |  |
| hepatachlor epoxide | ND .050         | ND .050 | ND 2.5    | ND .050 | ND .050 | ND .50  | ND 5.0    |  |
| endosulfan I        | ND .050         | ND .050 | ND 2.5    | ND .050 | ND .050 | ND .50  | ND 5.0    |  |
| Aroclor-1260        | ND 1.0          | ND 1.0  | ND 50     | ND 1.0  | ND 1.0  | ND 10   | ND 100    |  |

|                     |         |         |         |         | Dup.    |         |           |
|---------------------|---------|---------|---------|---------|---------|---------|-----------|
| Well ID             | OBA-2C  | OBA-3A  | OBA-3B  | OBA-3C  | OBA-3C  | OBA-4A  | OBA-4B    |
| Sample Date         | 9/18/92 | 9/18/92 | 9/18/92 | 9/18/92 | 9/18/92 | 9/17/92 | 9/16/92   |
| Units               | ug/l      |
| Compounds           |         |         |         |         |         |         |           |
| TCL-Pest/PCBs       |         |         |         |         |         |         |           |
| alpha-BHC           | 1.7     | 6.8     | 2.8     | 2.9     | 2.9     | ND .050 | 0.11U     |
| beta-BHC            | ND .50  | 13      | 0.98    | 0.93    | 1       | 0.27    | 0.94J     |
| delta-BHC           | ND .50  | 1.8     | 1.2     | ND .50  | ND .50  | ND .050 | 0.067J    |
| gamma-BHC (lindane) | 0.71    | 4.4     | ND .50  | 1.5     | 1.3     | ND .050 | ND .050UJ |
| heptachlor          | ND .50  | ND .50  | ND .50  | ND .50  | ND .50  | ND .050 | ND .050UJ |
| hepatachlor epoxide | ND .50  | ND .50  | ND .50  | ND .50  | ND .50  | ND .050 | ND .050UJ |
| endosulfan I        | ND .50  | ND .50  | ND .50  | ND .50  | ND .50  | ND .050 | ND .050UJ |
| Aroclor-1260        | ND 10   | ND 1.0  | ND 1.0UJ  |

| Well ID<br>Sample Date<br>Units | OBA-4C<br>9/16/92<br>ug/l | OBA-4C DL-1<br>9/16/92<br>ug/l | OBA-4C DL-2<br>9/16/92<br>ug/l | OBA-5A<br>9/17/92<br>ug/l | OBA-5A DL-1<br>9/17/92<br>ug/l | OBA-5A DL-2<br>9/17/92<br>ug/l | OBA-5B<br>9/17/92<br>ug/l |
|---------------------------------|---------------------------|--------------------------------|--------------------------------|---------------------------|--------------------------------|--------------------------------|---------------------------|
| Compounds<br>TCL-Pest/PCBs      |                           |                                |                                |                           |                                |                                |                           |
| alpha-BHC                       | 37J                       | 98J                            | 96 <b>J</b>                    | 32                        | 44                             | 57                             | 130                       |
| beta-BHC                        | 3.2J                      | 5.9J                           | ND 50UJ                        | 24                        | 32                             | 45                             | 42                        |
| delta-BHC                       | 20J                       | 27J                            | ND 50UJ                        | 1.4                       | 1.4                            | ND 5.0                         | 11                        |
| gamma-BHC (lindane)             | 34J                       | 62J                            | 60J                            | 28                        | 38                             | 49                             | 140                       |
| heptachlor                      | 0.13J                     | ND 5.0UJ                       | ND 50UJ                        | ND .050                   | ND .50                         | ND 5.0                         | ND 5.0                    |
| hepatachlor epoxide             | 0.17J                     | ND 5.0UJ                       | ND 50UJ                        | ND .050                   | ND .50                         | ND 5.0                         | ND 5.0                    |
| endosulfan I                    | 0.42J                     | ND 5.0UJ                       | ND 50UJ                        | ND .050                   | ND .50                         | ND 5.0                         | ND 5.0                    |
| Aroclor-1260                    | ND 1.0UJ                  | ND 100UJ                       | ND 1,000UJ                     | 1.4                       | ND 10                          | ND 100                         | ND 100                    |

|                     |           |         |           |           | Dup.      |          |           |
|---------------------|-----------|---------|-----------|-----------|-----------|----------|-----------|
| Well ID             | OBA-5B DL | OBA-5C  | OBA -6A   | OBA-6B    | OBA-6B    | OBA-6C   | OBA-6C DL |
| Sample Date         | 9/17/92   | 9/17/92 | 9/16/92   | 9/16/92   | 9/16/92   | 9/16/92  | 9/16/92   |
| Units               | ug/l      | ug/l    | ug/l      | ug/l      | ug/l      | ug/l     | ug/l      |
| Compounds           |           |         |           |           |           |          |           |
| TCL-Pest/PCBs       |           |         |           |           |           |          |           |
| alpha-BHC           | 140       | ND .050 | ND .050UJ | ND .050UJ | ND .050UJ | 42J      | 63J       |
| beta-BHC            | ND 50     | ND .050 | ND .050UJ | ND .050UJ | 2.6J      | ND .50UJ | ND 5.0UJ  |
| delta-BHC           | ND 50     | ND .050 | ND .050UJ | ND .050UJ | ND .050UJ | 2.2J     | ND 5.0UJ  |
| gamma-BHC (lindane) | 160       | ND .050 | ND .050UJ | ND .050UJ | ND .050UJ | 0.49J    | ND 5.0UJ  |
| heptachlor          | ND 50     | ND .050 | ND .050UJ | ND .050UJ | ND .050UJ | ND .50UJ | ND 5.0UJ  |
| hepatachlor epoxide | ND 50     | ND .050 | ND .050UJ | ND .050UJ | ND .050UJ | ND .50UJ | ND 5.0UJ  |
| endosulfan I        | ND 50     | ND .050 | ND .050UJ | ND .050UJ | ND .050UJ | ND .50UJ | ND 5.0UJ  |
| Aroclor-1260        | ND 1,000  | ND 1.0  | ND 1.0UJ  | ND 1.0UJ  | ND 1.0UJ  | ND 10UJ  | ND 100UJ  |
|                     |           |         |           |           |           |          |           |

| Well ID<br>Sample Date<br>Units                                                                | Dup.<br>OBA-8B DL<br>9/15/92<br>ug/l                  | OBA-8C<br>9/15/92<br>ug/l                                      | OBA-9A<br>11/16/92<br>ug/l                     | OBA-9A DL<br>11/16/92<br>ug/l                  | OBA-10A<br>11/16/92<br>ug/l                        | OBA-10A DL<br>11/16/92<br>ug/l                       | Dup.<br>OBA-10A<br>11/16/92<br>ug/l                |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| Compounds<br>TCL-Pest/PCBs                                                                     |                                                       |                                                                |                                                |                                                |                                                    |                                                      |                                                    |
| alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (lindane)<br>heptachlor<br>hepatachlor epoxide | 8.3<br>ND 1.0<br>ND 1.0<br>ND 1.0<br>ND 1.0<br>ND 1.0 | ND .050<br>ND .050<br>ND .050<br>ND .050<br>ND .050<br>ND .050 | 1.4<br>21<br>ND .10<br>5.3<br>ND .10<br>ND .10 | 1.4<br>31<br>ND 1.0<br>6.3<br>ND 1.0<br>ND 1.0 | 65<br>36<br>14<br>63<br>ND .50<br>ND .50<br>ND .50 | 290<br>48<br>13<br>120<br>ND 5.0<br>ND 5.0<br>ND 5.0 | 65<br>34<br>13<br>61<br>ND .50<br>ND .50<br>ND .50 |
| endosulfan I<br>Aroclor-1260                                                                   | ND 1.0<br>ND 20                                       | ND .050<br>ND 1.0                                              | 0.025J<br>ND 2.0                               | ND 1.0<br>ND 20                                | ND 10                                              | ND 100                                               | ND 10                                              |

|                     | Dup.       |         |         |          |           |           |           |
|---------------------|------------|---------|---------|----------|-----------|-----------|-----------|
| Well ID             | OBA-10A DL | BH-1    | BH-3    | BH-3 DL  | Rinsate-1 | Rinsate-2 | Rinsate-3 |
| Sample Date         | 11/16/92   | 9/17/92 | 9/15/92 | 9/15/92  | 9/15/92   | 9/17/92   | 9/18/92   |
| Units               | ug/l       | ug/l    | ug/l    | ug/l     | ug/l      | ug/l      | ug/l      |
| Compounds           |            |         |         |          |           |           |           |
| TCL-Pest/PCBs       |            |         |         |          |           |           |           |
| alpha-BHC           | 280        | 0.1     | 37      | 610      | ND .050   | 0.054     | ND .050   |
| beta-BHC            | 46         | 0.48    | 42      | 100      | ND .050   | ND .050   | ND .050   |
| delta-BHC           | 12         | ND .050 | 81      | 550      | ND .050   | ND .050   | ND .050   |
| gamma-BHC (lindane) | 120        | 0.096   | 37      | 560      | ND .050   | 0.06      | ND .050   |
| heptachlor          | ND 5.0     | ND .050 | ND .050 | ND 50    | ND .050   | ND .050   | ND .050   |
| hepatachlor epoxide | ND 5.0     | ND .050 | 0.092   | ND 50    | ND .050   | ND .050   | ND .050   |
| endosulfan I        | ND 5.0     | ND .050 | 0.53    | ND 50    | ND .050   | ND .050   | ND .050   |
| Aroclor-1260        | ND 100     | ND 1.0  | ND 1.0  | ND 1,000 | ND 1.0    | ND 1.0    | ND 1.0    |

| Well ID<br>Sample Date<br>Units | Rinsate-4<br>11/16/92<br>ug/l | FB-1<br>9/16/92<br>ug/l | FB-2<br>9/18/92<br>ug/l | TB-1<br>9/15/92<br>ug/l | TB-2<br>9/17/92<br>ug/l | TB-3<br>9/18/92<br>ug/l | TB-4<br>11/16/92<br>ug/l |
|---------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| Compounds<br>TCL-Pest/PCBs      |                               |                         |                         |                         |                         |                         |                          |
| alpha-BHC                       | 0.013J                        | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |
| beta-BHC                        | ND .050                       | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |
| delta-BHC                       | ND .050                       | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |
| gamma-BHC (lindane)             | ND .050                       | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |
| heptachlor                      | ND .050                       | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |
| hepatachlor epoxide             | ND .050                       | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |
| endosulfan I                    | ND .050                       | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |
| Aroclor-1260                    | ND 1.0                        | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

J - Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).

R - Data found to be unusable as a result of outlying QC criteria.

U - The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

UJ - Estimated quantitation limit.

|                      | Olin Production | ı               |                 |                 |                 |                 |                 |
|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Well ID              | Well            | OBA-1A          | OBA-1B          | OBA-1C          | OBA-2B          | OBA-2C          | OBA-3A          |
| Sample Date          | 9/15/92         | 9/15/92         | 9/15/92         | 9/15/92         | 9/18/92         | 9/18/92         | 9/18/92         |
| Units                | ug/l            |
| Compounds            |                 |                 |                 |                 |                 |                 |                 |
| methanol             | ND 550          |
|                      |                 |                 |                 |                 |                 |                 |                 |
|                      |                 |                 |                 |                 |                 |                 |                 |
|                      |                 |                 |                 |                 |                 |                 |                 |
| C1- D-4-             | 0./15/02        | 0./16./02       | 0 /45 /02       | 0./45./00       | 0.440.404       | 0.40.400        | 2 / 4 2 / 2 2   |
| Sample Date<br>Units | 9/15/92<br>ug/l | 9/16/92<br>ug/l | 9/15/92<br>ug/l | 9/15/92<br>ug/l | 9/18/92<br>ug/l | 9/18/92<br>ug/l | 9/18/92<br>ug/l |
| Metals               |                 |                 |                 |                 |                 |                 |                 |
| mercury              | ND .20          | ND .20          | 95.6            | ND .20          | 5.2             | ND .20          | ND .20          |

| Well ID<br>Sample Date<br>Units | OBA-3B<br>9/18/92<br>ug/l | OBA-3C<br>9/18/92<br>ug/l | Dup.<br>OBA-3C<br>9/18/92<br>ug/l | OBA-4A<br>9/17/92<br>ug/l | OBA-4B<br>9/16/92<br>ug/l | OBA-4C<br>9/16/92<br>ug/l | OBA-5A<br>9/17/92<br>ug/l |
|---------------------------------|---------------------------|---------------------------|-----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compounds                       |                           |                           |                                   |                           |                           |                           |                           |
| methanol                        | ND 550                    | ND 550                    | ND 550                            | ND 550                    | ND 550                    | ND 550                    | ND 550                    |
|                                 |                           |                           |                                   |                           |                           |                           |                           |
|                                 |                           |                           |                                   |                           |                           |                           |                           |
|                                 |                           |                           |                                   |                           |                           |                           |                           |
| Sample Date<br>Units            | 9/18/92<br>ug/l           | 9/18/92<br>ug/l           | 9/18/92<br>ug/l                   | 9/17/92<br>ug/l           | 9/16/92<br>ug/l           | 9/16/92<br>ug/l           | 9/17/92<br>ug/l           |
| Metals                          |                           |                           |                                   |                           |                           |                           |                           |
| mercury                         | 0.80                      | ND .20                    | ND .20                            | ND .20                    | ND .20                    | 0.78                      | 77.9                      |

| Well ID<br>Sample Date<br>Units | OBA-5B<br>9/17/92<br>ug/l | OBA-5C<br>9/17/92<br>ug/l | OBA -6A<br>9/16/92<br>ug/l | OBA-6B<br>9/16/92<br>ug/l | Dup.<br>OBA-6B<br>9/16/92<br>ug/l | OBA-6C<br>9/16/92<br>ug/l | OBA-7A<br>9/17/82<br>ug/l |
|---------------------------------|---------------------------|---------------------------|----------------------------|---------------------------|-----------------------------------|---------------------------|---------------------------|
| Compounds                       |                           |                           |                            |                           |                                   |                           |                           |
| methanol                        | 62,000                    | 1,100                     | 52,000                     | 410,000                   | 510,000                           | 650                       | ND 550                    |
| Sample Date<br>Units            | 9/17/92<br>ug/l           | 9/17/92<br>ug/l           | 9/16/92<br>ug/l            | 9/16/92<br>ug/l           | 9/16/92<br>ug/l                   | 9/16/92<br>ug/l           | 9/17/82<br>ug/l           |
| <u>Metals</u>                   |                           |                           |                            |                           |                                   |                           |                           |
| mercury                         | 7.8                       | ND .20                    | 14.2                       | 36.9                      | 49.5                              | 0.87                      | ND .20                    |

| Well ID<br>Sample Date<br>Units | OBA-7B<br>9/17/82<br>ug/l | OBA-7C<br>9/17/82<br>ug/l | OBA-8A<br>9/16/92<br>ug/l | OBA-8B<br>9/15/92<br>ug/l | Dup.<br>OBA-8B<br>9/15/92<br>ug/l | OBA-8C<br>9/15/92<br>ug/l | OBA-9A<br>11/16/92<br>ug/l |
|---------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------------------|---------------------------|----------------------------|
| Compounds                       |                           |                           |                           |                           |                                   |                           |                            |
| methanol                        | 900                       | 1,200                     | ND 550                    | ND 550                    | ND 550                            | 1,200                     | ND 550                     |
| Sample Date<br>Units            | 9/17/82<br>ug/l           | 9/17/82<br>ug/l           | 9/16/92<br>ug/l           | 9/15/92<br>ug/l           | 9/15/92<br>ug/l                   | 9/15/92<br>ug/l           | 11/16/92<br>ug/l           |
| <u>Metals</u>                   |                           |                           |                           |                           |                                   |                           |                            |
| mercury                         | 52.4J                     | 9.4                       | 0.61                      | 0.61                      | 1                                 | ND .20                    | 0.38                       |

| Well ID<br>Sample Date<br>Units | OBA-10A<br>11/16/92<br>ug/l | Dup.<br>OBA-10A<br>11/16/92<br>ug/l | BH-1<br>9/15/92<br>ug/l | BH-3<br>9/15/92<br>ug/l | Rinsate-1<br>9/15/92<br>ug/l | Rinsate-2<br>9/17/92<br>ug/l | Rinsate-3<br>9/18/92<br>ug/l |
|---------------------------------|-----------------------------|-------------------------------------|-------------------------|-------------------------|------------------------------|------------------------------|------------------------------|
| Compounds                       |                             |                                     |                         |                         |                              |                              |                              |
| methanol                        | ND 550                      | ND 550                              | ND 550                  | 2,200                   | ND 550                       | ND 550                       | ND 550                       |
| Sample Date<br>Units            | 11/16/92<br>ug/l            | 11/16/92<br>ug/l                    | 9/16/92<br>ug/i         | 9/15/92<br>ug/l         | 9/15/92<br>ug/l              | 9/17/92<br>ug/l              | 9/18/92<br>ug/l              |
| Metals                          |                             |                                     |                         |                         |                              |                              |                              |
| mercury                         | ND .20                      | ND .20                              | 0.53                    | 133                     | ND .20                       | ND .20                       | ND .20                       |

| Well ID<br>Sample Date<br>Units | Rinsate-4<br>11/16/92<br>ug/l | FB-1<br>9/16/92<br>ug/l | FB-2<br>9/18/92<br>ug/l | TB-1<br>9/15/92<br>ug/l | TB-2<br>9/17/92<br>ug/l | TB-3<br>9/18/92<br>ug/l | TB-4<br>11/16/92<br>ug/l |
|---------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| Compounds                       |                               |                         |                         |                         |                         |                         |                          |
| methanol                        | ND 550                        | ND 550                  | ND 550                  | ND 550                  | ND 550                  | ND 550                  | ND 550                   |
|                                 |                               |                         |                         |                         |                         |                         |                          |
| Sample Date<br>Units            | 11/16/92<br>ug/l              | 9/16/92<br>ug/l         | 9/18/92<br>ug/l         | 9/15/92<br>ug/l         | 9/17/92<br>ug/l         | 9/18/92<br>ug/l         | 11/16/92<br>ug/l         |
| Metals                          |                               |                         |                         |                         |                         |                         |                          |
| mercury                         | ND .20                        | NS                      | NS                      | NS                      | NS                      | NS                      | NS                       |

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

UJ - Estimated quantitation limit.

By:AJM Checked by:TMV 3/1/93

J - Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).

U - The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

Olin/Dupont Split Groundwater Samples Summary of Detected Compounds

October 1993

| Sample I.D.<br>Sample Date<br>Units | MW-15A<br>10/7/93<br>ug/l | MW-15CD<br>10/15/93<br>ug/l | MW-19A<br>10/15/93<br>ug/l | MW-19B<br>10/15/93<br>ug/l | MW-19B Dup.<br>10/15/93<br>ug/l | MW-19CD-1<br>10/15/93<br>ug/1 |
|-------------------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|---------------------------------|-------------------------------|
| Semi-Volatiles                      |                           |                             |                            |                            |                                 |                               |
| 1,3-dichlorobenzene                 | ND 10                     | 13                          | ND 10                      | ND 10                      | ND 10                           | 1 J                           |
| 1,4-dichlorobenzene                 | ND 10                     | 11                          | ND 10                      | ND 10                      | ND 10                           | 1 J                           |
| 1,2-dichlorobenzene                 | ND 10                     | 16                          | ND 10                      | ND 10                      | ND 10                           | 2 J                           |
| 4-methylphenol                      | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| hexachloroethane                    | ND 10                     | 4 J                         | ND 10                      | ND 10                      | ND 10                           | 1 J                           |
| 1,2,4-trichlorobenzene              | ND 10                     | 98 E                        | ND 10                      | ND 10                      | ND 10                           | 6 J                           |
| naphthalene                         | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| hexachlorobutadiene                 | ND 10                     | 5 J                         | ND 10                      | 1 J                        | ND 10                           | ND 10                         |
| 2-methylnaphthalene                 | ND 10UJ                   | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| 2,4,6-trichlorophenol               | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| acenaphthylene                      | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| acenaphthene                        | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| fluorene                            | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| n-nitrosodiphenylamine              | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| phenanthrene                        | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| anthracene                          | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| carbazole                           | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| di-n-butylphthalate                 | 0.6 J                     | ND 10                       | ND 10                      | 0.4 J                      | 0.5 J                           | 0.4 J                         |
| fluoranthene                        | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| pyrene                              | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| butylbenzylphthalate                | ND 10                     | 0.1 J                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| benzo(a)anthracene                  | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| chrysene                            | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| bis(2-ethylhexyl)phthalate          | 4 J                       | 15                          | 10 U                       | 10 U                       | 10 U                            | 10 U                          |
| benzo(b)fluoranthene                | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| benzo(k)fluoranthene                | ND 10                     | ND 10                       | ND 10                      | ND 10                      | .ND 10                          | ND 10                         |
| benzo(a)pyrene                      | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| indeno(1,2,3-cd)pyrene              | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| benzo(g,h,i)perylene                | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |
| 3,4-dichlorophenol                  | ND 10                     | ND 10                       | ND 10                      | ND 10                      | ND 10                           | ND 10                         |

OLINSPLT.XLS

| Sample I.D.                | MW-20B   | MW-22B   | MW-22C   | MW-22D   | MW-22F   | MW-26CD  |
|----------------------------|----------|----------|----------|----------|----------|----------|
| Sample Date                | 10/15/93 | 10/29/93 | 10/29/93 | 10/29/93 | 10/29/93 | 10/29/93 |
| Units                      | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     | ug/l     |
|                            |          |          |          |          |          |          |
| Semi-Volatiles             |          |          |          |          |          |          |
| 1,3-dichlorobenzene        | ND 10    | ND 10    | 7 Ј      | ND 10    | 3 J      | 0.8 J    |
| 1,4-dichlorobenzene        | ND 10    | ND 10    | 2 J      | ND 10    | 5 J      | 1 J      |
| 1,2-dichlorobenzene        | ND 10    | ND 10    | ND 10    | ND 10    | 12       | ND 10    |
| 4-methylphenol             | 1 J      | ND 10    |
| hexachloroethane           | ND 10    | 5 J      |
| 1,2,4-trichlorobenzene     | ND 10    | . ND 10  | 2 J      | 5 J      | 4 J      | 4 J      |
| naphthalene                | 5 J      | ND 10    |
| hexachlorobutadiene        | ND 10    | ND 10    | ND 10    | 1 J      | ND 10    | 7 J      |
| 2-methylnaphthalene        | 3 J      | ND 10    | ND 10    | ND 10    | ND 10    | 4 J      |
| 2,4,6-trichlorophenol      | 2 J      | ND 10    |
| acenaphthylene             | 2 J      | ND 10    |
| acenaphthene               | 0.7 J    | ND 10    |
| fluorene                   | 1 J      | ND 10    |
| n-nitrosodiphenylamine     | ND 10    | 0.5 J    |
| phenanthrene               | 2 J      | ND 10    | 0.4 J    | 0.9 J    | 0.4 J    | 0.4 J    |
| anthracene                 | 0.7 J    | ND 10    |
| carbazole                  | ND 10    | ND 10    | 0.8 J    | 0.9 J    | 0.6 J    | ND 10    |
| di-n-butylphthalate        | ND 10    |
| fluoranthene               | 1 J      | 0.8 J    | 1 J      | 1 J      | 1 J      | ND 10    |
| pyrene                     | 1 J      | ND 10    |
| butylbenzylphthalate       | ND 10    |
| benzo(a)anthracene         | 0.5 J    | 0.6 J    | ND 10    | ND 10    | ND 10    | ND 10    |
| chrysene                   | 0.4 J    | 3 J      | 0.6 J    | ND 10    | 0.6 J    | ND 10    |
| bis(2-ethylhexyl)phthalate | 10 U     | 10 U     | 10 U     | 11       | 10 U     | 10 U     |
| benzo(b)fluoranthene       | 0.4 J    | 2 J      | 0.5 J    | ND 10    | 0.4 J    | ND 10    |
| benzo(k)fluoranthene       | ND 10    | 0.7 J    | 0.2 J    | ND 10    | 0.2 J    | ND 10    |
| benzo(a)pyrene             | ND 10    | 0.4 J    | ND 10    | ND 10    | ND 10    | ND 10    |
| indeno(1,2,3-cd)pyrene     | ND 10    | 0,5 J    | ND 10    | ND 10    | ND 10    | ND 10    |
| benzo(g,h,i)perylene       | ND 10    | 0.4 J    | ND 10    | ND 10    | ND 10    | ND 10    |
| 3,4-dichlorophenol         | ND 10    | ND 10    | 1 J      | ND 10    | 0.7 J    | ND 10    |
| ,                          |          |          |          |          |          |          |

| Idiisate-1 |
|------------|
| 10/29/93   |
| ug/l       |
|            |
|            |
| ND 10      |
| 0.8 J      |
| ND 10      |
|            |

Sample I.D.

Rinsate-1

Notes:

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC results and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- U The compound was anlyzed for but not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Indicates an estimated PQL due to outlying QC results.
- E Sample result reported from a secondary dilution.

OLINSPLT.XLS

By: AJM Chk: MSJ 8/2/94

| Sample I.D.<br>Sample Date<br>Units | MW-15A<br>10/7/93<br>ug/l | MW-15CD<br>10/15/93<br>ug/l | MW-19A<br>10/15/93<br>ug/l | MW-19B<br>10/15/93<br>ug/l | MW-19B Dup.<br>10/15/93<br>ug/l | MW-19CD-1<br>10/15/93<br>ug/l |
|-------------------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|---------------------------------|-------------------------------|
| TCL-Pesticides                      |                           |                             |                            |                            |                                 |                               |
| alpha-BHC                           | 0.021 J                   | 5.1                         | 0.024 J                    | 0.025 J                    | 0.036 J                         | 2.2 J                         |
| beta-BHC                            | 0.18                      | 1.4                         | 0.14 J                     | 0.23 J                     | 0.24 J                          | 0.31 J                        |
| delta-BHC                           | ND 0.050                  | 0.19 J                      | ND 0.050UJ                 | ND 0.050UJ                 | ND 0.050UJ                      | 0.098 J                       |
| gamma-BHC (lindane)                 | ND 0.050                  | 2.0                         | ND 0.050UJ                 | ND 0.050UJ                 | 0.013 J                         | 0.80                          |
| Metals                              |                           |                             |                            |                            |                                 |                               |
| mercury                             | ND 0.20                   | ND 0.20                     | 1.0 J                      | 2.6 J                      | 2.7 J                           | ND 0.20                       |

| Sample I.D.         | MW-20B     | MW-22B   | MW-22C   | MW-22D   | MW-22F     | MW-26CD    |
|---------------------|------------|----------|----------|----------|------------|------------|
| Sample Date         | 10/15/93   | 10/29/93 | 10/29/93 | 10/29/93 | 10/29/93   | 10/29/93   |
| Units               | ug/l       | ug/l     | ug/l     | ug/l     | ug/l       | ug/l       |
| TCL-Pesticides      |            |          |          |          |            |            |
| alpha-BHC           | ND 0.050UJ | ND 0.062 | 0.020 J  | 0.089    | 0.23 J     | 0.23 J     |
| beta-BHC            | ND 0.050UJ | ND 0.062 | ND 0.050 | 0.017 J  | 0.027 J    | 0.11 J     |
| delta-BHC           | ND 0.050UJ | ND 0.062 | ND 0.050 | ND 0.050 | ND 0.052UJ | ND 0.050UJ |
| gamma-BHC (lindane) | ND 0.050UJ | ND 0.062 | 0.018 J  | 0.056 J  | 0.012 J    | 0.25 J     |
| Metals              |            |          |          |          |            |            |
| mercury             | ND 0.20    | 0.54 J   | ND 0.20  | ND 0.20  | ND 0.20    | ND 0.20    |

| Sample I.D. | Rinsate-1 |
|-------------|-----------|
| Sample Date | 10/29/93  |
| Units       | ug/l      |

#### **TCL-Pesticides**

| ND 0.050 |
|----------|
| ND 0.050 |
| ND 0.050 |
| ND 0.050 |
|          |

#### Metals

mercury ND 0.20

Notes:

ND - Not detected, applicable detection limit listed.

J - Indicates an estimated value due to outlying QC results and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).

UJ - Indicates an estimated PQL due to outlying QC results.

OLINSPLT.XLS

By. AJM Chb: MSJ 8/2/94

Phase II Soil Samples Summary of Detected Compounds

December 1993

# SUMMARY OF DETECTED COMPOUNDS OLIN SOIL BORINGS OLIN RFI NIAGARA FALLS, NEW YORK DECEMBER 1993

| Sample I.D. Depth (feet) Sample Date | NSB-16     | NSB-16   | NSB-16    | NSB-16   | NSB-17   | NSB-17   | NSB-17   |
|--------------------------------------|------------|----------|-----------|----------|----------|----------|----------|
|                                      | 1-3        | 3-5      | 5-7       | 7-9      | 1-3      | 3-5      | 5-7      |
|                                      | 12/14/93   | 12/14/93 | 12/14/93  | 12/14/93 | 12/14/93 | 12/14/93 | 12/14/93 |
| alpha-BHC                            | 110,000 CE | 1,800 CE | 54,000 CE | 4,800 CE | 290 J    | 190      | 2,100 E  |
| beta-BHC                             | 57,000 CE  | 5,400 CE | 50,000 CE | 9,400 CE | 1,300 E  | 450 E    | 3,100 E  |
| delta-BHC                            | 2,600 C    | 110 J    | 1,500 CJ  | 150      | 25       | 12 J     | 220      |
| gamma-BHC (lindane)                  | 4,000 C    | 71 J     | 1,500 CJ  | 1,500    | 140      | 52       | 1,000    |
| Sample I.D.                          | NSB-1      | NSB-1    | NSB-1     | NSB-1    | NSB-1    | NSB-4    | NSB-4    |
| Depth (feet)                         | 0-2        | 2-4      | 4-6       | 6-8      | 8-10     | 2-4      | 4-6      |
| Sample Date                          | 12/7/93    | 12/7/93  | 12/7/93   | 12/7/93  | 12/7/93  | 12/8/93  | 12/8/93  |
| Metals (mg/kg) mercury               | 13,000 J   | 15,600 J | 186 J     | 6.9 J    | 8.2 J    | 217      | 158      |
| TCLP Metals (ug/l) mercury           | 21.4       | 254      | 577       | 2.0      | 2.3      | 1.3      | 3.0      |

## SUMMARY OF DETECTED COMPOUNDS OLIN SOIL BORINGS OLIN RFI NIAGARA FALLS, NEW YORK DECEMBER 1993

| Sample I.D.            | NSB-17       |          |          |          |          |
|------------------------|--------------|----------|----------|----------|----------|
| Depth (feet)           | 7-9          |          |          |          |          |
| Sample Date            | 12/14/93     |          |          |          |          |
| TCL-Pesticides (ug/kg) |              |          |          |          |          |
| alpha-BHC              | 60           |          |          |          |          |
| beta-BHC               | 66           |          |          |          |          |
| delta-BHC              | 4.5 J        |          |          |          |          |
| gamma-BHC (lindane)    | 15 J         |          |          |          |          |
|                        |              |          |          |          |          |
|                        |              |          |          |          |          |
| Sample I.D.            | NSB-4        | NSB-14   | NSB-14   | NSB-14   | NSB-14   |
| Depth (feet)           | 6 <b>-</b> 8 | 1-3      | 3-5      | 5-7      | 7-9      |
| Sample Date            | 12/8/93      | 12/14/93 | 12/14/93 | 12/14/93 | 12/14/93 |
| Metals (mg/kg)         |              |          |          |          |          |
| mercury                | 0.38         | 20.1     | 0.13     | 0.53     | ND 0.10  |
| TCLP Metals (ug/l)     |              |          |          |          |          |
| mercury                | ND 0.20      | 1.7      | 0.56     | ND 0.20  | ND 0.20  |

ND - Not detected, applicable detection limit listed.

J - Indicates an estimated value due to outlying QC results and/or indicates detection above the m detection limit (MDL), but less than the practical quantitation limit (PQL)

C - Compound confirmed by GC/MS.

E - Sample result reported from a secondary dilution.

Phase II Groundwater Samples
Summary of Detected Compounds
January 1994

|                            |         |         |         | Dup.    |         |
|----------------------------|---------|---------|---------|---------|---------|
| Well I.D                   | OBA-11B | OBA-11C | OBA-12B | OBA-12B | OBA-12C |
| Sample Date                | 1/24/94 | 1/24/94 | 1/21/94 | 1/21/94 | 1/21/94 |
| Units                      | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    |
| Compounds                  |         |         |         |         |         |
| TCL-VOCs                   |         |         |         |         |         |
| vinyl chloride             | 55      | 1500    | ND 10   | ND 10   | 4300    |
| methylene chloride         | ND 10   | 500 J   | ND 10   | ND 10   | ND 1000 |
| 1,1-dichloroethene         | 2 J     | ND 1000 | ND 10   | ND 10   | ND 1000 |
| 1,2-dichloroethene (total) | 170 E   | 7100    | ND 10   | ND 10   | 14000   |
| chloroform                 | 93      | 3400    | ND 10   | ND 10   | ND 1000 |
| 1,1,1-trichloroethane      | 1 J     | ND 1000 | ND 10   | ND 10   | ND1000  |
| trichloroethene            | 460 E   | 21000 E | ND 10   | ND 10   | 3400    |
| carbon tetrachloride       | ND 10   | ND 1000 | ND 10   | ND 10   | ND 1000 |
| benzene                    | 0.8 J   | ND 1000 | ND 10   | ND 10   | 89 J    |
| tetrachloroethene          | 160     | 4700    | ND 10   | ND 10   | 200 J   |
| 1,1,2,2-tetrachloroethane  | 11      | 380 J   | ND 10   | ND 10   | ND 1000 |
| chlorobenzene              | 10 U    | 1000 U  | ND 10   | ND 10   | 40 J    |

| Well I.D<br>Sample Date<br>Units | Rinsate-1<br>1/24/94<br>ug/l | TB-1<br>1/21/94<br>ug/l | TB-2<br>1/24/94<br>ug/l |
|----------------------------------|------------------------------|-------------------------|-------------------------|
| Compounds<br><u>TCL-VOCs</u>     |                              |                         |                         |
| vinyl chloride                   | ND 10                        | ND 10                   | ND 10                   |
| methylene chloride               | ND 10                        | ND 10                   | ND 10                   |
| 1, l-dichloroethene              | ND 10                        | ND 10                   | ND 10                   |
| 1,2-dichloroethene (total)       | ND 10                        | ND 10                   | ND 10                   |
| chloroform                       | 2 J                          | ND 10                   | ND 10                   |
| 1,1,1-trichloroethane            | ND 10                        | ND 10                   | ND 10                   |
| trichloroethene                  | ND 10                        | ND 10                   | ND 10                   |
| carbon tetrachloride             | 7 J                          | ND 10                   | ND 10                   |
| benzene                          | ND 10                        | ND 10                   | ND 10                   |
| tetrachloroethene                | ND 10                        | ND 10                   | ND 10                   |
| 1,1,2,2-tetrachloroethane        | ND 10                        | ND 10                   | ND 10                   |
| chlorobenzene                    | ND 10                        | ND 10                   | ND 10                   |

#### Notes:

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- E Sample result reported from secondary dilution.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

OL194VOC.XLS

BY: KJS CHK: AJM 05/25/94

|                            |         |         |         | Dup.    |         |
|----------------------------|---------|---------|---------|---------|---------|
| Well I.D                   | OBA-11B | OBA-11C | OBA-12B | OBA-12B | OBA-12C |
| Sample Date                | 1/24/94 | 1/24/94 | 1/21/94 | 1/21/94 | 1/21/94 |
| Units                      | ug/l    | ug/l    | ug/l    | ug/l    | ug/1    |
| Compounds                  |         |         |         |         |         |
| Semi-Volatiles             |         |         |         |         |         |
| 1,3-dichlorobenzene        | 6 J     | 21      | ND 10   | ND 10   | 10      |
| 1,4-dichlorobenzene        | 6 J     | 16      | ND 10   | ND 10   | 5 J     |
| 1,2-dichlorobenzene        | 31      | 100 E   | ND 10   | ND 10   | 14      |
| 4-methylphenol             | ND 10   | 8 J     | ND 10   | ND 10   | ND 10   |
| 1,2,4-trichlorobenzene     | 10      | 34      | ND 10   | ND 10   | 2 J     |
| hexachlorobutadiene        | ND 10   | 1 J     | ND 10   | ND 10   | ND 10   |
| 2,4,6-trichlorophenol      | ND 10   | ND 10   | ND 10   | ND 10   | 2 J     |
| 2,4,5-trichlorophenol      | ND 25   | ND 25   | ND 25   | ND 25   | 40      |
| di-n-butyl phthalate       | ND 10   | 0.4 J   | 0.5 J   | 0.4 J   | 0.4 J   |
| bis(2-ethylhexyl)phthalate | 10 U    | 10 U    | 10 U    | 10 U    | 10 U    |
| 3-chlorophenol             | ND 10   | ND 10   | ND 10   | ND 10   | 4 J     |
| 3,4-dichlorophenol         | ND 10   | ND 10   | ND 10   | ND 10   | 74      |
| 2,3,6-trichlorophenol      | ND 10   | ND 10   | ND 10   | ND 10   | 1 J     |

| Rinsate-1<br>1/24/94<br>ug/l | TB-1<br>1/21/94<br>ug/l                                                                                 | TB-2<br>1/24/94<br>ug/l                                                                                                                                                                                                      |
|------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 25                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| 0.4 J                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
| ND 10                        | NS                                                                                                      | NS                                                                                                                                                                                                                           |
|                              | 1/24/94 ug/l  ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 25 ND 10 0.4 J ND 10 ND 10 ND 10 | 1/24/94 ug/l  ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS ND 10 NS |

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC results and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- E -Sample result reported from secondary dilution.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

OL194BNA.XLS

BY: KJS CHK: AJM 05/25/94

| Well ID<br>Sample Date<br>Units | OBA-11B<br>1/24/94<br>ug/l | OBA-11C<br>1/24/94<br>ug/l | OBA-12B<br>1/21/94<br>ug/l | Dup.<br>OBA-12B<br>1/21/94<br>ug/l | OBA-12C<br>1/21/94<br>ug/l | Rinsate-1<br>1/24/94<br>ug/I |
|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|----------------------------|------------------------------|
| Compounds<br>TCL-Pest/PCBs      |                            |                            |                            |                                    |                            |                              |
| alpha-BHC                       | 0.64 J                     | 0.73                       | 0.077                      | 0.061                              | 0.021 J                    | ND .050UJ                    |
| beta-BHC                        | 0.078 J                    | 0.092 J                    | 0.027 J                    | 0.029 J                            | ND .050                    | ND .050UJ                    |
| delta-BHC                       | 0.012 J                    | 0.016 J                    | ND .050                    | ND .050                            | ND .050                    | ND .050UJ                    |
| gamma-BHC (lindane)             | 0.12 J                     | 0.14                       | 0.023 J                    | 0.015 J                            | ND .050                    | ND .050UJ                    |

| TB-I    | TB-2                              |
|---------|-----------------------------------|
| 1/21/94 | 1/24/94                           |
| ug/l    | ug/l                              |
|         |                                   |
|         |                                   |
| NS      | NS                                |
|         | 1/21/94<br>ug/l<br>NS<br>NS<br>NS |

#### Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

J - Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).

UJ - Indicates an estimated PQL due to outlying QC results.

| Well ID<br>Sample Date<br>Units | OBA-11B<br>1/24/94<br>mg/1 | OBA-11C<br>1/24/94<br>mg/l | OBA-12B<br>1/21/94<br>mg/l | Dup.<br>OBA-12B<br>1/21/94<br>mg/l | OBA-12C<br>1/21/94<br>mg/I |
|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|----------------------------|
| <b>Compounds</b>                |                            |                            |                            |                                    |                            |
| methanol                        | ND 0.55                    | ND 0.55                    | ND 0.55                    | ND 0.55                            | ND 0.55                    |
| Sample Date                     | 1/24/94                    | 1/24/94                    | 1/21/94                    | 1/21/94                            | 1/21/94                    |
| Units                           | ug/l                       | ug/l                       | ug/l                       | ug/l                               | ug/l                       |
| <u>Metals</u>                   |                            |                            |                            |                                    |                            |
| mercury                         | 0.29                       | 0.39                       | 1.3                        | 1.6                                | ND 0.2                     |

| Well ID<br>Sample Date<br>Units | Rinsate Blank 1<br>1/24/94<br>mg/l | Trip Blank 1<br>1/21/94<br>mg/l | Trip Blank 2<br>1/24/94<br>mg/l |
|---------------------------------|------------------------------------|---------------------------------|---------------------------------|
| <b>Compounds</b>                |                                    |                                 |                                 |
| methanol                        | ND 0.55                            | ND 0.55                         | ND 0.55                         |
|                                 |                                    |                                 |                                 |
|                                 |                                    |                                 |                                 |
|                                 |                                    |                                 |                                 |
| Carrello Dodo                   | 1/04/04                            | 1/01/04                         | 1/04/04                         |
| Sample Date<br>Units            | 1/24/94<br>ug/l                    | 1/21/94<br>ug/l                 | 1/24/94<br>ug/l                 |
| <b>Metals</b>                   |                                    |                                 |                                 |
| mercury                         | ND 0.2                             | NS                              | NS                              |
|                                 | Notes:<br>NS - Not sampled.        |                                 |                                 |

ND - Not detected, applicable detection limit listed.

Appendix D

Phase II Groundwater Samples
Summary of Detected Compounds
May 1994

|                            |         |         |         | Dup.    |         |
|----------------------------|---------|---------|---------|---------|---------|
| Well I.D                   | OBA-4A  | OBA-4B  | OBA-4C  | OBA-4C  | OBA-9A  |
| Sample Date                | 5/13/94 | 5/13/94 | 5/12/94 | 5/12/94 | 5/18/94 |
| Units                      | ug/l    | ug/l    | ug/1    | ug/l    | ug/l    |
| Compounds                  |         |         |         |         |         |
| TCL-VOCs                   |         |         |         |         |         |
| 1,1,1-trichloroethane      | ND 10   | ND 10   | ND 400  | ND 400  | ND 10   |
| 1,1,2,2-tetrachloroethane  | ND 10   | 5 J     | 1900    | 2000    | ND 10   |
| 1,1-dichloroethene         | ND 10   | ND 10   | ND 400  | ND 400  | 0.8 J   |
| 1,2-dichloroethene (total) | ND 10   | ND 10   | 810     | 860     | 42      |
| acetone                    | ND 10   | ND 10   | ND 400  | ND 400  | 96      |
| benzene                    | ND 10   | 11      | ND 400  | ND 400  | 19      |
| bromodichloromethane       | ND 10   | ND 10   | ND 400  | ND 400  | ND 10   |
| carbon tetrachloride       | ND 10   | ND 10   | ND 400  | 16 J    | 0.4 J   |
| chlorobenzene              | ND 10   | 8 BJ    | ND 400  | ND 400  | 6 J     |
| chloroform                 | 1 J     | 0.5 J   | 1200    | 1200    | 280 E   |
| dibromochloromethane       | ND 10   | ND 10   | ND 400  | ND 400  | ND 10   |
| methylene chloride         | ND 10   | ND 10   | ND 400  | ND 400  | 6 J     |
| tetrachloroethene          | 11      | 12      | 3300 E  | 10000 E | 250 E   |
| trichloroethene            | 24      | 36      | 23000 E | 16000 E | 600 E   |
| vinyl chloride             | ND 10   | 15      | 34 J    | 42 J    | 1 J     |

| Well I.D Sample Date Units | OBA-10A<br>5/18/94<br>ug/l | OBA-10A NAPL<br>5/19/94<br>ug/l | OBA-11B<br>5/11/94<br>ug/l | OBA-11C<br>5/11/94<br>ug/I | OBA-12B<br>5/11/94<br>ug/l |
|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|
| Compounds<br>TCL-VOCs      |                            |                                 |                            |                            |                            |
| 1,1,1-trichloroethane      | ND 500                     | ND 2400000                      | ND 40                      | ND 1000                    | ND 10                      |
| 1,1,2,2-tetrachloroethane  | 58 J                       | ND 2400000                      | 20 J                       | 94 J                       | ND 10                      |
| 1,1-dichloroethene         | ND 500                     | ND 2400000                      | ND 40                      | 84 J                       | ND 10                      |
| 1,2-dichloroethene (total) | 43 J                       | ND 2400000                      | 140                        | 4500                       | ND 10                      |
| acetone                    | ND 500                     | ND 2400000                      | ND 40                      | ND 1000                    | ND 10                      |
| benzene                    | 5400                       | 21000000                        | ND 40                      | ND 1000                    | ND 10                      |
| bromodichloromethane       | ND 500                     | ND 2400000                      | ND 40                      | ND 1000                    | ND 10                      |
| carbon tetrachloride       | ND 500                     | ND 2400000                      | ND 40                      | ND 1000                    | 0.5 J                      |
| chlorobenzene              | 3800                       | 18000000                        | ND 40                      | ND 1000                    | ND 10                      |
| chloroform                 | 96 J                       | ND 2400000                      | 220                        | 2600                       | ND 10                      |
| dibromochloromethane       | ND 500                     | ND 2400000                      | ND 40                      | ND 1000                    | ND 10                      |
| methylene chloride         | ND 500                     | ND 2400000                      | 3 J                        | 1800                       | ND 10                      |
| tetrachloroethene          | 140 J                      | 590000 J                        | 500                        | 3200                       | ND 10                      |
| trichloroethene            | 840                        | 1000000 J                       | 810 E                      | 17000 E                    | ND 10                      |
| vinyl chloride             | ND 500                     | ND 2400000                      | 17 J                       | 600 J                      | ND 10                      |

|                            |         |         |         | Dup.          |         |
|----------------------------|---------|---------|---------|---------------|---------|
| Well I.D                   | OBA12C  | OBA-13A | OBA-13B | OBA-13B       | OBA-13C |
| Sample Date                | 5/11/94 | 5/16/94 | 5/16/94 | 5/16/94       | 5/16/94 |
| Units                      | ug/l    | ug/l    | ug/l    | u <b>g/</b> l | ug/l    |
| Compounds                  |         |         |         |               |         |
| TCL-VOCs                   |         |         |         |               |         |
| 1,1,1-trichloroethane      | ND 1000 | ND 20   | ND 2000 | ND 1000       | ND 100  |
| 1,1,2,2-tetrachloroethane  | ND 1000 | ND 20   | ND 2000 | 90 J          | ND 100  |
| 1,1-dichloroethene         | ND 1000 | ND 20   | ND 2000 | ND 1000       | ND 100  |
| 1,2-dichloroethene (total) | 11000   | 340     | 24000   | 23000 E       | 500     |
| acetone                    | ND 1000 | ND 20   | ND 2000 | ND 1000       | ND 100  |
| benzene                    | ND 1000 | 33      | 7200    | 8200          | 1700    |
| bromodichloromethane       | ND 1000 | ND 20   | ND 2000 | ND 1000       | ND 100  |
| carbon tetrachloride       | ND 1000 | ND 20   | ND 2000 | ND 1000       | ND 100  |
| chlorobenzene              | ND 1000 | 18 J    | 18000   | 20000         | 570     |
| chioroform                 | ND 1000 | ND 20   | 230 Ј   | 250 Ј         | ND 100  |
| dibromochloromethane       | ND 1000 | ND 20   | ND 2000 | ND 1000       | ND 100  |
| methylene chloride         | ND 1000 | ND 20   | ND 2000 | ND 1000       | ND 100  |
| tetrachloroethene          | 150 J   | ND 20   | 950 J   | 960 J         | ND 100  |
| trichloroethene            | 2000    | 3 J     | 2300    | 2500          | ND 100  |
| vinyl chloride             | 2600    | 190     | 1600 J  | 1700          | 1000    |
|                            |         |         |         |               |         |

| Well LD Sample Date Units  | OBA-14A<br>5/17/94<br>ug/I | OBA-14B<br>5/1 <b>7</b> /94<br>ug/I | OBA-14C<br>5/17/94<br>ug/1 | OBA-15A<br>5/17/94<br>ug/l | OBA-15B<br>5/17/94<br>ug/l |
|----------------------------|----------------------------|-------------------------------------|----------------------------|----------------------------|----------------------------|
| Compounds TCL-VOCs         |                            |                                     |                            |                            |                            |
| 1,1,1-trichloroethane      | ND 50                      | ND 100                              | ND 800                     | ND 1000                    | ND 500                     |
| 1,1,2,2-tetrachloroethane  | ND 50                      | ND 100                              | 200 J                      | 950 J                      | ND 500                     |
| 1,1-dichloroethene         | ND 50                      | ND 100                              | ND 800                     | ND 1000                    | ND 500                     |
| 1,2-dichloroethene (total) | ND 50                      | 120                                 | 5000                       | 7600                       | 7000                       |
| acetone                    | ND 50                      | ND 100                              | ND 800                     | ND 1000                    | ND 500                     |
| benzene                    | 48 J                       | 370                                 | 3100                       | <b>2</b> 900               | 2400                       |
| bromodichloromethane       | ND 50                      | ND 100                              | ND 800                     | ND 1000                    | ND 500                     |
| carbon tetrachloride       | ND 50                      | ND 100                              | ND 800                     | ND 1000                    | ND 500                     |
| chlorobenzene              | 160                        | 1600                                | 9000                       | 14000                      | 6000                       |
| chloroform                 | ND 50                      | 7 J                                 | 76 J                       | 120 J                      | 470 J                      |
| dibromochloromethane       | ND 50                      | ND 100                              | ND 800                     | ND 1000                    | ND 500                     |
| methylene chloride         | ND 50                      | ND 100                              | ND 800                     | ND 1000                    | ND 500                     |
| tetrachloroethene          | ND 50                      | ND 100                              | 290 J                      | 350 J                      | 1400                       |
| trichloroethene            | ND 50                      | ND 100                              | 2400                       | 2200                       | 8900                       |
| vinyl chloride             | ND 50                      | 71 J                                | 550 J                      | 1200                       | 490 J                      |

| Well I.D<br>Sample Date<br>Units | OBA-16A<br>5/13/94<br>ug/l | OBA-16B<br>5/13/94<br>ug/l | Rinsate-1<br>5/12/94<br>u <b>g/</b> l | Rinsate-2<br>5/16/94<br>ug/l | Rinsate-3<br>5/18/94<br>ug/l |
|----------------------------------|----------------------------|----------------------------|---------------------------------------|------------------------------|------------------------------|
| Compounds<br>TCL-VOCs            |                            |                            |                                       |                              |                              |
| 1,1,1-trichloroethane            | ND 10                      | 0.7 J                      | ND 10                                 | ND 10                        | ND 10                        |
| 1,1,2,2-tetrachloroethane        | ND 10                      | ND 10                      | ND 10                                 | ND 10                        | ND 10                        |
| 1,1-dichloroethene               | ND 10                      | ND 10                      | ND 10                                 | ND 10                        | ND 10                        |
| 1,2-dichloroethene (total)       | ND 10                      | ND 10                      | ND 10                                 | ND 10                        | ND 10                        |
| acetone                          | ND 10                      | ND 10                      | ND 10                                 | ND 10                        | 15                           |
| benzene                          | ND 10                      | 0.8 J                      | ND 10                                 | ND 10                        | ND 10                        |
| bromodichloromethane             | 1 J                        | 3 J                        | ND 10                                 | ND 10                        | ND 10                        |
| carbon tetrachloride             | 1 J                        | 12                         | 2 J                                   | ND 10                        | 1 J                          |
| chlorobenzene                    | ND 10                      | ND 10                      | ND 10                                 | ND 10                        | ND 10                        |
| chloroform                       | 60                         | 260 E                      | 1 J                                   | ND 10                        | 1 J                          |
| dibromochloromethane             | ND 10                      | 0.5 J                      | ND 10                                 | ND 10                        | ND 10                        |
| methylene chloride               | ND 10                      | 1 J                        | ND 10                                 | ND 10                        | 2 J                          |
| tetrachloroethene                | 3 J                        | 26                         | ND 10                                 | ND 10                        | ND 10                        |
| trichloroethene                  | 5 J                        | 25                         | ND 10                                 | ND 10                        | ND 10                        |
| vinyl chloride                   | ND 10                      | ND 10                      | ND 10                                 | ND 10                        | ND 10                        |

| Well I.D<br>Sample Date<br>Units | FB-1<br>5/11/94<br>ug/l | FB-2<br>5/13/94<br>ug/l | FB-3<br>5/16/94<br>ug/l | FB-4<br>5/18/94<br>ug/l | TB-1<br>5/11/94<br>ug/l |
|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Compounds <u>TCL-VOCs</u>        |                         |                         |                         |                         |                         |
| 1,1,1-trichloroethane            | ND 10                   |
| 1,1,2,2-tetrachloroethane        | ND 10                   |
| 1,1-dichloroethene               | ND 10                   |
| 1,2-dichloroethene (total)       | ND 10                   |
| acetone                          | ND 10                   |
| benzene                          | ND 10                   |
| bromodichloromethane             | ND 10                   |
| carbon tetrachloride             | ND 10                   |
| chlorobenzene                    | ND 10                   |
| chloroform                       | ND 10                   |
| dibromochloromethane             | ND 10                   |
| methylene chloride               | ND 10                   |
| tetrachloroethene                | ND 10                   |
| trichloroethene                  | ND 10                   |
| vinyl chloride                   | ND 10                   |

| Well I.D<br>Sample Date<br>Units | TB-2<br>5/13/94<br>ug/l | TB-3<br>5/17/94<br>ug/l | TB-4<br>5/18/94<br>ug/l |
|----------------------------------|-------------------------|-------------------------|-------------------------|
| Compounds<br>TCL-VOCs            |                         |                         |                         |
| 1,1,1-trichloroethane            | ND 10                   | ND 10                   | ND 10                   |
| 1,1,2,2-tetrachloroethane        | ND 10                   | ND 10                   | ND 10                   |
| 1,1-dichloroethene               | ND 10                   | ND 10                   | ND 10                   |
| 1,2-dichloroethene (total)       | ND 10                   | ND 10                   | ND 10                   |
| acetone                          | ND 10                   | ND 10                   | ND 10                   |
| benzene                          | ND 10                   | ND 10                   | ND 10                   |
| bromodichloromethane             | ND 10                   | ND 10                   | ND 10                   |
| carbon tetrachloride             | ND 10                   | ND 10                   | ND 10                   |
| chlorobenzene                    | ND 10                   | ND 10                   | ND 10                   |
| chloroform                       | ND 10                   | ND 10                   | ND 10                   |
| dibromochloromethane             | ND 10                   | ND 10                   | ND 10                   |
| methylene chloride               | ND 10                   | ND 10                   | ND 10                   |
| tetrachloroethene                | ND 10                   | ND 10                   | ND 10                   |
| trichloroethene                  | ND 10                   | ND 10                   | ND 10                   |
| vinyl chloride                   | ND 10                   | ND 10                   | ND 10                   |

## Preliminary Report Not Validated As of 08/02/94

#### Notes:

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC results and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- E Sample result reported from a secondary dilution.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

|                     |          |         |         | Dup.    |         |         |
|---------------------|----------|---------|---------|---------|---------|---------|
| Well ID             | OBA-4A   | OBA-4B  | OBA-4C  | OBA-4C  | OBA-9A  | OBA-10A |
| Sample Date         | 5/13/94  | 5/13/94 | 5/12/94 | 5/12/94 | 5/18/94 | 5/18/94 |
| Units               | ug/l     | ug/l    | ug/l    | ug/l    | ug/I    | ug/l    |
| Compounds           |          |         |         |         |         |         |
| TCL-Pest/PCBs       |          |         |         |         |         |         |
| alpha-BHC           | ND 0.050 | 0.074 J | 48 E    | 30 E    | ND 0.31 | 920 E   |
| beta-BHC            | 0.061    | 2.4     | 3.5     | 2.4     | 16 E    | 73 E    |
| delta-BHC           | ND 0.050 | ND 0.25 | 4.6 E   | 3.1 E   | ND 0.31 | 74 E    |
| gamma-BHC (Lindane) | ND 0.050 | ND 0.25 | 28 E    | 18 E    | ND 0.31 | 580 E   |
| Heptachlor          | ND 0.050 | ND 0.25 | 0.96    | 0.69    | ND 0.31 | ND 3.1  |
| Aldrin              | ND 0.050 | ND 0.25 | 0.64    | 0.58    | ND 0.31 | ND 3.1  |
| 4,4'-DDT            | ND 0.10  | ND 0.50 | ND 0.50 | ND 0.50 | ND 0.62 | ND 6.2  |

| Well ID<br>Sample Date<br>Units | OBA-11B<br>5/11/94<br>ug/l | OBA-11C<br>5/11/94<br>ug/l | OBA-12B<br>5/11/94<br>ug/I | OBA12C<br>5/11/94<br>ug/I | OBA-13A<br>5/16/94<br>ug/l | OBA-13B<br>5/16/94<br>ug/l |
|---------------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|
| Compounds<br>TCL-Pest/PCBs      |                            |                            |                            |                           |                            |                            |
| TCD-F CSUT CBS                  |                            |                            |                            |                           |                            |                            |
| alpha-BHC                       | 0.65                       | 0.69                       | 0.035 J                    | 0.022 J                   | 0.025 J                    | 22 E                       |
| beta-BHC                        | 0.086                      | 0.095                      | ND 0.050                   | ND 0.050                  | 0.23                       | 2.7                        |
| delta-BHC                       | 0.0097 J                   | 0.014 J                    | ND 0.050                   | ND 0.050                  | ND 0.050                   | 2.8                        |
| gamma-BHC (Lindane)             | 0.12                       | 0.13                       | 0.0088 J                   | ND 0.050                  | ND 0.050                   | 3.2                        |
| Heptachlor                      | ND 0.050                   | ND 0.050                   | ND 0.050                   | ND 0.050                  | ND 0.050                   | ND 0.25                    |
| Aldrin                          | ND 0.050                   | ND 0.050                   | ND 0.050                   | ND 0.050                  | ND 0.050                   | ND 0.25                    |
| 4,4' <b>-</b> DDT               | ND 0.10                    | ND 0.10                    | ND 0.10                    | ND 0.10                   | ND 0.10                    | ND 0.50                    |

|                            | Dup.    |          |          |          |         |         |
|----------------------------|---------|----------|----------|----------|---------|---------|
| Well ID                    | OBA-13B | OBA-13C  | OBA-14A  | OBA-14B  | OBA-14C | OBA-15A |
| Sample Date                | 5/16/94 | 5/16/94  | 5/17/94  | 5/17/94  | 5/17/94 | 5/17/94 |
| Units                      | ug/l    | ug/l     | ug/l     | ug/l     | ug/l    | ug/l    |
| Compounds<br>TCL-Pest/PCBs |         |          |          |          |         |         |
| alpha-BHC                  | 13 E    | ND 0.056 | ND 0.062 | 0.16     | 2.8     | 7.4 E   |
| beta-BHC                   | 1.8     | ND 0.056 | ND 0.062 | 0.14     | 0.55    | 1.2     |
| delta-BHC                  | 1.7     | ND 0.056 | ND 0.062 | 0.057    | 0.44 J  | 1.5     |
| gamma-BHC (Lindane)        | 2       | ND 0.056 | ND 0.062 | ND 0.050 | 1.4     | 3.5 E   |
| Heptachlor                 | ND 0.31 | ND 0.056 | ND 0.062 | ND 0.050 | ND 0.50 | ND 0.25 |
| Aldrin                     | ND 0.31 | ND 0.056 | ND 0.062 | ND 0.050 | ND 0.50 | ND 0.25 |
| 4,4'-DDT                   | ND 0.62 | ND 0.11  | ND 0.12  | ND 0.10  | ND 1.0  | ND 0.50 |

Preliminary Report Not Validated As of 08/02/94

BY: MSJ CHK: AJM 8/2/94

| Well ID<br>Sample Date<br>Units | OBA-15B<br>5/17/94<br>ug/l | OBA-16A<br>5/13/94<br>ug/l | OBA-16B<br>5/13/94<br>ug/l | Rinsate-1<br>5/12/94<br>ug/l | Rinsate-2<br>5/16/94<br>ug/l | Rinsate-3<br>5/18/94<br>ug/i |
|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------------|------------------------------|------------------------------|
| Compounds<br>TCL-Pest/PCBs      |                            |                            |                            |                              |                              |                              |
| alpha-BHC                       | 6.6 E                      | 0.3 Ј                      | 34 E                       | ND 0.050                     | ND 0.062                     | ND 0.062                     |
| beta-BHC                        | 1.8                        | 14 E                       | 12 E                       | ND 0.050                     | ND 0.062                     | ND 0.062                     |
| delta-BHC                       | 0.5                        | ND 0.51                    | 2.8                        | ND 0.050                     | ND 0.062                     | ND 0.062                     |
| gamma-BHC (Lindane)             | 3.8                        | ND 0.51                    | 40 E                       | ND 0.050                     | ND 0.062                     | ND 0.062                     |
| Heptachlor                      | ND 0.25                    | ND 0.51                    | ND 0.62                    | ND 0.050                     | ND 0.062                     | ND 0.062                     |
| Aldrin                          | ND 0.25                    | ND 0.51                    | ND 0.62                    | ND 0.050                     | ND 0.062                     | ND 0.062                     |
| 4,4'-DDT                        | ND 0.50                    | ND 1.0                     | ND 1.2                     | ND 0.10                      | ND 0.12                      | 0.023 J                      |

| Well ID             | FB-1    | FB-2    | FB-3    | FB-4    | TB-1    | TB-2    |
|---------------------|---------|---------|---------|---------|---------|---------|
| Sample Date         | 5/11/94 | 5/13/94 | 5/16/94 | 5/18/94 | 5/11/94 | 5/13/94 |
| Units               | ug/i    | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    |
| Compounds           |         |         |         |         | •       |         |
| TCL-Pest/PCBs       |         |         |         |         |         |         |
| alpha-BHC           | NS      | NS      | NS      | NS      | NS      | NS      |
| beta-BHC            | NS      | NS      | NS      | NS      | NS      | NS      |
| delta-BHC           | NS      | NS      | NS      | NS      | NS      | NS      |
| gamma-BHC (Lindane) | NS      | NS      | NS      | NS      | NS      | NS      |
| Heptachlor          | NS      | NS      | NS      | NS      | NS      | NS      |
| Aldrin              | NS      | NS      | NS      | NS      | NS      | NS      |
| 4,4'-DDT            | NS      | NS      | NS      | NS      | NS      | NS      |

| Well ID             | TB-3    | TB-4    |
|---------------------|---------|---------|
| Sample Date         | 5/17/94 | 5/18/94 |
| Unlts               | ug/l    | ug/l    |
| Compounds           |         |         |
| TCL-Pest/PCBs       |         |         |
| alpha-BHC           | NS      | NS      |
| beta-BHC            | NS      | NS      |
| delta-BHC           | NS      | NS      |
| gamma-BHC (Lindane) | NS      | NS      |
| Heptachlor          | NS      | NS      |
| Aldrin              | NS      | NS      |
| 4,4'-DDT            | NS      | NS      |
|                     |         |         |

Preliminary Report Not Validated As of 08/02/94

Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- R Data found to be unusable as a result of outlying QC criteria.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

| Well ID<br>Sample Date<br>Units | OBA-4A<br>5/13/94<br>mg/l | OBA-4B<br>5/13/94<br>mg/l | OBA-4C<br>5/12/94<br>mg/l | Dup.<br>OBA-4C<br>5/12/94<br>mg/I | OBA-9A<br>5/18/94<br>mg/l |
|---------------------------------|---------------------------|---------------------------|---------------------------|-----------------------------------|---------------------------|
| Compounds                       |                           |                           |                           |                                   |                           |
| methanol                        | ND 0.55                   | ND 0.55                   | ND 0.55                   | ND 0.55                           | ND 0.55                   |
| Sample Date                     | 5/13/94                   | 5/13/94                   | 5/12/94                   | 5/12/94                           | 5/18/94                   |
| Units                           | ug/l                      | ug/l                      | ug/l                      | ug/l                              | ug/l                      |
| <u>Metals</u>                   |                           |                           |                           |                                   |                           |
| mercury                         | 0.37                      | ND 0.20                   | 1.9                       | 1.8                               | 0.44                      |

| Well ID<br>Sample Date<br>Units | OBA-10A<br>5/18/94<br>mg/l | OBA-10A NAPL<br>5/19/94<br>mg/l | OBA-11B<br>5/11/94<br>mg/l | OBA-11C<br>5/11/94<br>mg/l | OBA-12B<br>5/11/94<br>mg/l |
|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|
| Compounds                       |                            |                                 |                            |                            | ·                          |
| methanol                        | ND 0.55                    | No Data                         | ND 0.55                    | ND 0.55                    | ND 0.55                    |
|                                 |                            |                                 |                            |                            |                            |
|                                 |                            |                                 |                            |                            |                            |
|                                 |                            |                                 |                            |                            |                            |
| Sample Date                     | 5/18/94                    | 5/19/94                         | 5/11/94                    | 5/11/94                    | 5/11/94                    |
| Units                           | ug/l                       | ug/l                            | ug/l                       | ug/l                       | ug/l                       |
| <u>Metals</u>                   |                            |                                 |                            |                            |                            |
| mercury                         | 0.52                       | ND 0.10                         | 1.4                        | 1.8                        | 1.2                        |

| Well ID<br>Sample Date<br>Units       | OBA12C<br>5/11/94<br>mg/l | OBA-13A<br>5/16/94<br>mg/l | OBA-13B<br>5/16/94<br>mg/I | Dup.<br>OBA-13B<br>5/16/94<br>mg/1 | OBA-13C<br>5/16/94<br>mg/l |
|---------------------------------------|---------------------------|----------------------------|----------------------------|------------------------------------|----------------------------|
| Compounds                             |                           |                            |                            |                                    |                            |
| methanol                              | ND 0.55                   | ND 0.55                    | ND 0.55                    | ND 0.55                            | ND 0.55                    |
| Sample Date<br>Units<br><u>Metals</u> | 5/11/94<br>ug/l           | 5/16/94<br>ug/l            | 5/16/94<br>ug/i            | 5/16/94<br>ug/l                    | 5/16/94<br>ug/l            |
| mercury                               | ND 0.20                   | ND 0.20                    | ND 0.20                    | ND 0.20                            | ND 0.20                    |

| Well ID<br>Sample Date<br>Units | OBA-14A<br>5/17/94<br>mg/1 | OBA-14B<br>5/17/94<br>mg/l | OBA-14C<br>5/17/94<br>mg/l | OBA-15A<br>5/17/94<br>mg/l | OBA-15B<br>5/17/94<br>mg/l |
|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Compounds                       |                            |                            |                            |                            |                            |
| methanol                        | ND 0.55                    |
|                                 |                            |                            |                            |                            |                            |
|                                 |                            |                            |                            |                            |                            |
|                                 |                            |                            |                            |                            |                            |
| Sample Date                     | 5/17/94                    | 5/17/94                    | 5/17/94                    | 5/17/94                    | 5/17/94                    |
| Unlts                           | u <b>g/l</b>               | ug/l                       | ug/l                       | u <b>g/</b> l              | u <b>g/l</b>               |
| <u>Metals</u>                   |                            |                            |                            |                            |                            |
| mercury                         | ND 0.20                    | ND 0.20                    | ND 0.20                    | 0.4                        | ND 0.20                    |

| Well ID<br>Sample Date<br>Units | OBA-16A<br>5/13/94<br>mg/I | OBA-16B<br>5/13/94<br>mg/l | Rinsate-1<br>5/12/94<br>mg/l | Rinsate-2<br>5/16/94<br>mg/l | Rinsate-3<br>5/18/94<br>mg/l |
|---------------------------------|----------------------------|----------------------------|------------------------------|------------------------------|------------------------------|
| Compounds                       |                            |                            |                              |                              |                              |
| methanol                        | ND 0.55                    | ND 0.55                    | ND 0.55                      | ND 0.55                      | ND 0.55                      |
|                                 |                            |                            |                              |                              |                              |
|                                 |                            |                            |                              |                              |                              |
|                                 |                            |                            |                              |                              |                              |
| Sample Date<br>Units            | 5/13/94<br>ug/l            | 5/13/94<br>ug/l            | 5/12/94<br>ug/l              | 5/16/94<br>ug/l              | 5/18/94<br>ug/l              |
| Metals                          |                            |                            | -6-                          | -8-                          |                              |
| mercury                         | 156                        | 225                        | ND 0.20                      | ND 0.20                      | ND 0.20                      |

| Well ID<br>Sample Date<br>Units | FB-1<br>5/11/94<br>mg/l | FB-2<br>5/13/94<br>mg/l | FB-3<br>5/16/94<br>mg/I | FB-4<br>5/18/94<br>mg/l | TB-1<br>5/11/94<br>mg/l |
|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Compounds                       |                         |                         |                         |                         |                         |
| methanol                        | ND 0.55                 |
|                                 |                         |                         |                         |                         |                         |
|                                 |                         |                         |                         |                         |                         |
|                                 |                         |                         |                         |                         |                         |
| Sample Date                     | 5/11/94                 | 5/13/94                 | 5/16/94                 | 5/18/94                 | 5/11/94                 |
| Units                           | ug/l                    | ug/l                    | ug/l                    | ug/l                    | ug/l                    |
| <u>Metals</u>                   |                         |                         |                         |                         |                         |
| mercury                         | NS                      | NS                      | NS                      | NS                      | NS                      |

| Well ID<br>Sample Date<br>Units | TB-2<br>5/13/94<br>mg/l | TB-3<br>5/17/94<br>mg/l | TB-4<br>5/18/94<br>mg/l |
|---------------------------------|-------------------------|-------------------------|-------------------------|
| Compounds                       |                         |                         |                         |
| methanol                        | ND 0.55                 | ND 0.55                 | ND 0.55                 |
|                                 |                         |                         |                         |
|                                 |                         |                         |                         |
|                                 |                         |                         |                         |
| Sample Date                     | 5/13/94                 | 5/17/94                 | 5/18/94                 |
| Units                           | ug/l                    | ug/l                    | ug/l                    |
| <u>Metals</u>                   |                         |                         |                         |
| mercury                         | NS                      | NS                      | NS                      |

Preliminary Report Not Validated As of 08/02/94

Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- R Data found to be unusable as a result of outlying QC criteria.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.
- UJ Estimated quantitation limit.

Phase II Groundwater Samples
Summary of Detected Compounds
July 1994

| Well I.D<br>Sample Date<br>Units | OBA-3A<br>7/15/94<br>ug/l | OBA-3B<br>7/15/94<br>ug/l | OBA-3C<br>7/14/94<br>ug/l | OBA-13A<br>7/14/94<br>ug/l | OBA-13B<br>7/14/94<br>ug/l |
|----------------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|
| Compounds<br>TCL-VOCs            |                           |                           |                           |                            |                            |
|                                  | NTN 1000                  | ND 1000                   | 500 J                     | ND 50                      | 810 J                      |
| acetone<br>vinyl chloride        | ND 1000<br>760 J          | ND 1000<br>1200           | 960 J                     | 270                        | 850 J                      |
| methylene chloride               | ND 1000                   | ND 1000                   | ND 1000                   | ND 50                      | ND 1000                    |
| 1,1-dichloroethene               | ND 1000                   | ND 1000                   | ND 1000                   | ND 50                      | ND 1000                    |
| cis-1,2-dichloroethene           | 1000                      | 2800                      | 12000                     | 610                        | 16000                      |
| trans-1,2-dichloroethene         | 300 J                     | 410 J                     | 880 J                     | 43 J                       | 950 J                      |
| chloroform                       | ND 1000                   | 160 J                     | 500 J                     | ND 50                      | 300 J                      |
| 1,1,1-trichloroethane            | ND 1000                   | ND 1000                   | ND 1000                   | ND 50                      | ND 1000                    |
| trichloroethene                  | 1000                      | 1500                      | 3800                      | ND 50                      | 2300                       |
| carbon tetrachloride             | ND 1000                   | ND 1000                   | ND 1000                   | ND 50                      | ND 1000                    |
| benzene                          | 2600                      | 4300                      | 4500                      | ND 50                      | 5700                       |
| tetrachloroethene                | 510 J                     | 380 J                     | 910 J                     | ND 50                      | 550 J                      |
| 1,1,2,2-tetrachloroethane        | 580 J                     | 580 J                     | 660 J                     | ND 50                      | ND 1000                    |
| chlorobenzene                    | 17000                     | 14000                     | 12000                     | 58                         | 13000                      |

| OD 4 100 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBA-13C  | OBA-14A                                                                                        | OBA-14B                                                                                                                                                                                                                                                                                                                                                     | OBA-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OBA-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/14/94  | 7/15/94                                                                                        | 7/15/94                                                                                                                                                                                                                                                                                                                                                     | 7/15/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7/15/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ug/l     | ug/l                                                                                           | ug/l                                                                                                                                                                                                                                                                                                                                                        | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 410 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 640      | ND 10                                                                                          | 110 J                                                                                                                                                                                                                                                                                                                                                       | 360 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | ND 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | ND 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 410      | ND 10                                                                                          | 180 J                                                                                                                                                                                                                                                                                                                                                       | 4100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 81       | ND 10                                                                                          | 51 J                                                                                                                                                                                                                                                                                                                                                        | 270 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 230 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | 110 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | ND 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | ND 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1400 E   | 1.7 J                                                                                          | 800                                                                                                                                                                                                                                                                                                                                                         | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | 360 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 340 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND 50    | ND 10                                                                                          | ND 250                                                                                                                                                                                                                                                                                                                                                      | 53 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 520      | 1.1 J                                                                                          | 3400                                                                                                                                                                                                                                                                                                                                                        | 6400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | ND 50 640 ND 50 ND 50 A10 81 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 ND 50 | 7/14/94 ug/l  ND 50 ND 10 640 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 ND 50 ND 10 | 7/14/94       7/15/94       7/15/94         ug/l       ug/l       ug/l         ND 50       ND 10       ND 250         640       ND 10       ND 250         ND 50       ND 10       ND 250         ND 50       ND 10       ND 250         410       ND 10       180 J         81       ND 10       51 J         ND 50       ND 10       ND 250         ND 50       ND 10       ND 250 | 7/14/94       7/15/94       7/15/94       7/15/94       7/15/94         ug/l       ug/l       ug/l       ug/l         ND 50       ND 10       110 J       360 J         ND 50       ND 10       ND 250       ND 550         ND 50       ND 10       ND 250       ND 500         410       ND 10       180 J       4100         81       ND 10       51 J       270 J         ND 50       ND 10       ND 250       110 J         ND 50       ND 10       ND 250       ND 500         1400 E       1.7 J       800       2500         ND 50       ND 10       ND 250       360 J         ND 50       ND 10       ND 250       53 J |

|                           |         | Dup.    |         |         |         |
|---------------------------|---------|---------|---------|---------|---------|
| Well I.D                  | OBA-15A | OBA-15A | OBA-15B | OBA-16A | OBA-16B |
| Sample Date               | 7/14/94 | 7/14/94 | 7/14/94 | 7/14/94 | 7/14/94 |
| Units                     | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    |
| Compounds                 |         |         |         |         |         |
| TCL-VOCs                  |         |         |         |         |         |
| acetone                   | ND 1000 | ND 1000 | ND 250  | ND 10   | ND 20   |
| vinyl chloride            | 610 J   | 620 J   | 160 J   | ND 10   | 4.2 J   |
| methylene chloride        | ND 1000 | ND 1000 | ND 250  | ND 10   | ND 20   |
| 1,1-dichloroethene        | ND 1000 | ND 1000 | ND 250  | ND 10   | ND 20   |
| cis-1,2-dichloroethene    | 4500    | 4600    | 3400    | ND 10   | 32      |
| trans-1,2-dichloroethene  | 310 J   | 370 J   | 120 J   | ND 10   | ND 20   |
| chloroform                | 190 J   | 200 J   | 310     | 60      | 250     |
| 1,1,1-trichloroethane     | ND 1000 | ND 1000 | ND 250  | ND 10   | ND 20   |
| trichloroethene           | 3500    | 3700    | 4100    | 7.3 J   | 86      |
| carbon tetrachloride      | ND 1000 | ND 1000 | ND 250  | ND 10   | 14 J    |
| benzene                   | 3500    | 3700    | 1100    | ND 10   | 2.8 J   |
| tetrachloroethene         | 1500    | 1500    | 660     | 3.7 J   | 93      |
| 1,1,2,2-tetrachloroethane | 1200    | 1200    | ND 250  | ND 10   | ND 20   |
| chlorobenzene             | 11000   | 11000   | 3500    | ND 10   | 5.3 J   |

| Sample Date         7/15/94         7/14/94         7/15/94         7/14/94           Units         ug/l         ug/l         ug/l         ug/l | ug/l  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Compounds                                                                                                                                       |       |
| TCL-VOCs                                                                                                                                        |       |
| acetone ND 10 ND 10 7.7 J ND 10                                                                                                                 | ND 10 |
| vinyl chloride ND 10 ND 10 ND 10 ND 10                                                                                                          | ND 10 |
| methylene chloride ND 10 ND 10 ND 10 ND 10                                                                                                      | ND 10 |
| 1,1-dichloroethene ND 10 ND 10 ND 10 ND 10                                                                                                      | ND 10 |
| cis-1,2-dichloroethene ND 10 ND 10 ND 10 ND 10                                                                                                  | ND 10 |
| trans-1,2-dichloroethene ND 10 ND 10 ND 10 ND 10                                                                                                | ND 10 |
| chloroform ND 10 ND 10 ND 10 ND 10                                                                                                              | 1.1 J |
| 1,1,1-trichloroethane ND 10 ND 10 ND 10 ND 10                                                                                                   | ND 10 |
| trichloroethene ND 10 ND 10 ND 10 ND 10                                                                                                         | ND 10 |
| carbon tetrachloride ND 10 ND 10 ND 10 ND 10                                                                                                    | ND 10 |
| benzene ND 10 ND 10 ND 10 ND 10                                                                                                                 | ND 10 |
| tetrachloroethene ND 10 ND 10 ND 10 ND 10                                                                                                       | ND 10 |
| 1,1,2,2-tetrachloroethane ND 10 ND 10 ND 10 ND 10                                                                                               | ND 10 |
| chlorobenzene ND 10 ND 10 ND 10 ND 10                                                                                                           | ND 10 |

# Preliminary Report Not Validated

Notes:

As of 08/02/94

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- E Sample result reported from secondary dilution.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

| Well I,D<br>Sample Date<br>Units   | OBA-3A<br>7/15/94<br>ug/l | OBA-3B<br>7/15/94<br>ug/l | OBA-3C<br>7/14/94<br>ug/l | OBA-13A<br>7/14/94<br>ug/l | OBA-13B<br>7/14/94<br>ug/l |
|------------------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|
| Compounds<br><u>Semi-Volatiles</u> |                           |                           |                           |                            |                            |
| phenol                             | ND 200                    | ND 200                    | 13 J                      | 3 J                        | ND 200                     |
| 2-chlorophenol                     | ND 200                    | ND 200                    | 19 J                      | ND 10                      | ND 200                     |
| 1,3-dichlorobenzene                | 1200 E                    | 640                       | 500                       | 2 J                        | 690                        |
| 1,4-dichlorobenzene                | 3100 E                    | 1500                      | 1900 E                    | 4 J                        | 2000 E                     |
| 1,2-dichlorobenzene                | 4000 E                    | 2600 E                    | 2800 E                    | 4 J                        | 2800 E                     |
| hexachloroethane                   | ND 200                    | ND 200                    | ND 100                    | ND 10                      | ND 200                     |
| 2,4-dichlorophenol                 | ND 200                    | ND 200                    | ND 100                    | ND 10                      | ND 200                     |
| 1,2,4-trichlorobenzene             | 1400 E                    | 440                       | 480                       | ND 10                      | 550                        |
| naphthalene                        | ND 200                    | ND 200                    | ND 100                    | ND 10                      | ND 200                     |
| hexachlorobutadiene                | ND 200                    | ND 200                    | ND 100                    | ND 10                      | ND 200                     |
| 2,4,6-trichlorophenol              | ND 200                    | ND 200                    | ND 100                    | ND 10                      | ND 200                     |
| 2,4,5-trichlorophenol              | ND 500                    | ND 500                    | ND 100                    | ND 25                      | ND 500                     |
| pentachlorophenol                  | ND 500                    | ND 500                    | ND 250                    | ND 25                      | ND 500                     |
| di-n-butyl phthalate               | ND 200                    | ND 200                    | ND 100                    | 3 JB                       | ND 200                     |
| butylbenzylphthalate               | ND 200                    | ND 200                    | ND 100                    | ND 10                      | ND 200                     |
| bis(2-ethylhexyl)phthalate         | ND 200                    | ND 200                    | ND 100                    | 2 JB                       | ND 200                     |

|                            |         |         |         |         | Dup.    |
|----------------------------|---------|---------|---------|---------|---------|
| Well I.D                   | OBA-13C | OBA-14A | OBA-14B | OBA-14C | OBA-14C |
| Sample Date                | 7/14/94 | 7/15/94 | 7/15/94 | 7/15/94 | 7/15/94 |
| Units                      | ug/l    | ug/l    | ug/l    | ug/l    | ug/l    |
| Compounds                  |         |         |         |         |         |
| Semi-Volatiles             |         |         |         |         |         |
| phenol                     | 23      | 6 J     | ND 100  | ND 200  | 12 J    |
| 2-chlorophenol             | ND 10   | 9 J     | 11 J    | ND 200  | 14 J    |
| 1,3-dichlorobenzene        | 3 J     | 84 E    | 330     | 260     | 270     |
| 1,4-dichlorobenzene        | 10      | 120 E   | 670     | 810     | 720     |
| 1,2-dichlorobenzene        | 20      | 150 E   | 790     | 1200    | 1200 E  |
| hexachloroethane           | ND 10   | ND 10   | ND 100  | ND 200  | ND 100  |
| 2,4-dichlorophenol         | ND 10   | 8 J     | ND 100  | ND 200  | ND 100  |
| 1,2,4-trichlorobenzene     | ND 10   | 50      | 150     | 340     | 290     |
| naphthalene                | 2 J     | ND 10   | ND 100  | ND 200  | ND 100  |
| hexachlorobutadiene        | ND 10   | ND 10   | ND 100  | ND 200  | ND 100  |
| 2,4,6-trichlorophenol      | ND 10   | ND 10   | ND 100  | ND 200  | ND 100  |
| 2,4,5-trichlorophenol      | ND 25   | ND 20   | ND 100  | ND 500  | ND 100  |
| pentachlorophenol          | ND 25   | ND 25   | ND 250  | ND 500  | ND 250  |
| di-n-butyl phthalate       | ND 10   | ND 10   | ND 100  | ND 200  | ND 100  |
| butylbenzylphthalate       | ND 10   | ND 10   | ND 100  | ND 200  | ND 100  |
| bis(2-ethylhexyl)phthalate | 2 JB    | 2 ЈВ    | 110     | ND 200  | ND 100  |
|                            |         |         |         |         |         |

| Well I.D<br>Sample Date<br>Units | OBA-15A<br>7/14/94<br>ug/l | Dup.<br>OBA-15A<br>7/14/94<br>ug/l | OBA-15B<br>7/14/94<br>ug/l | OBA-16A<br>7/14/94<br>ug/l | OBA-16B<br>7/14/94<br>ug/l |
|----------------------------------|----------------------------|------------------------------------|----------------------------|----------------------------|----------------------------|
| Compounds                        |                            |                                    |                            |                            | Ü                          |
| <u>Semi-Volatiles</u>            |                            |                                    |                            |                            |                            |
| phenol                           | ND 200                     | ND 200                             | 9 J                        | ND 10                      | ND 10                      |
| 2-chlorophenol                   | ND 200                     | ND 200                             | 17                         | ND 10                      | ND 10                      |
| 1,3-dichlorobenzene              | 700                        | 680                                | 370 E                      | ND 10                      | 54                         |
| 1,4-dichlorobenzene              | 1600                       | 1500                               | 960 E                      | · 1 J                      | 17                         |
| 1,2-dichlorobenzene              | 2500 E                     | 2600 E                             | 1300 E                     | ND 10                      | 14                         |
| hexachloroethane                 | ND 200                     | ND 200                             | 2 J                        | ND 10                      | ND 10                      |
| 2,4-dichlorophenol               | ND 200                     | ND 200                             | 4 J                        | ND 10                      | 5 J                        |
| 1,2,4-trichlorobenzene           | 580                        | 550                                | 400 E                      | 1 J                        | 350 E                      |
| naphthalene                      | ND 200                     | ND 200                             | 1 J                        | ND 10                      | 1 J                        |
| hexachlorobutadiene              | ND 200                     | ND 200                             | 16                         | ND 10                      | ND 10                      |
| 2,4,6-trichlorophenol            | ND 200                     | ND 200                             | ND 10                      | ND 10                      | ND 10                      |
| 2,4,5-trichlorophenol            | ND 500                     | ND 500                             | 2 J                        | ND 25                      | 390 E                      |
| pentachlorophenol                | ND 500                     | ND 500                             | ND 25                      | ND 25                      | 3 J                        |
| di-n-butyl phthalate             | ND 200                     | ND 200                             | 1 ЛВ                       | ND 10                      | 2 ЛВ                       |
| butylbenzylphthalate             | ND 200                     | ND 200                             | ND 10                      | ND 10                      | ND 10                      |
| bis(2-ethylhexyl)phthalate       | ND 200                     | ND 200                             | 4 ЛВ                       | 4 ЛВ                       | 3 ЛВ                       |

| Well I.D<br>Sample Date<br>Units | Rinsate-1<br>7/15/94<br>ug/l | FB-1<br>7/14/94<br>ug/l | FB-2<br>7/15/94<br>ug/l | TB-1<br>1/21/94<br>ug/l | TB-2<br>1/24/94<br>ug/l |
|----------------------------------|------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Compounds<br>Semi-Volatiles      |                              |                         |                         |                         |                         |
| phenol                           | NS                           | NS                      | NS                      | NS                      | NS                      |
| 2-chlorophenol                   | NS                           | NS                      | NS                      | NS                      | NS                      |
| 1,3-dichlorobenzene              | NS                           | NS                      | NS                      | NS                      | NS                      |
| 1,4-dichlorobenzene              | NS                           | NS                      | NS                      | NS                      | NS                      |
| 1,2-dichlorobenzene              | NS                           | NS                      | NS                      | NS                      | NS                      |
| hexachloroethane                 | NS                           | NS                      | NS                      | NS                      | NS                      |
| 2,4-dichlorophenol               | NS                           | NS                      | NS                      | NS                      | NS                      |
| 1,2,4-trichlorobenzene           | NS                           | NS                      | NS                      | NS                      | NS                      |
| naphthalene                      | NS                           | NS                      | NS                      | NS                      | NS                      |
| hexachlorobutadiene              | NS                           | NS                      | NS                      | NS                      | NS                      |
| 2,4,6-trichlorophenol            | NS                           | NS                      | NS                      | NS                      | NS                      |
| 2,4,5-trichlorophenol            | NS                           | NS                      | NS                      | NS                      | NS                      |
| pentachlorophenol                | NS                           | NS                      | NS                      | NS                      | NS                      |
| di-n-butyl phthalate             | NS                           | NS                      | NS                      | NS                      | NS                      |
| butylbenzylphthalate             | NS                           | NS                      | NS                      | NS                      | NS                      |
| bis(2-ethylhexyl)phthalate       | NS                           | NS                      | NS                      | NS                      | NS                      |

# **Preliminary Report** Not Validated As of 08/02/94

Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

- J Indicates an estimated value due to outlying QC results and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).
- E -Sample result reported from secondary dilution.
- U The compound was analyzed for but was not detected. The numerical value is the sample quantitation limit and has been adjusted to reflect contamination from laboratory or field activities.

| Well ID<br>Sample Date<br>Units | OBA-3A<br>7/15/94<br>ug/l | OBA-3B<br>7/15/94<br>ug/l | OBA-3C<br>7/15/94<br>ug/l | OBA-13A<br>7/14/94<br>ug/l | OBA-13B<br>7/14/94<br>ug/l | OBA-13C<br>7/14/94<br>ug/l |
|---------------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|
| Compounds<br>TCL-Pest/PCBs      |                           |                           |                           |                            |                            |                            |
| alpha-BHC                       | 4.5 E                     | 3.8 E                     | 3.9 E                     | .061 P                     | .94 E                      | ND .05                     |
| beta-BHC                        | 0.63                      | 2.6 E                     | 0.71                      | 0.22                       | 2.5 E                      | ND .05                     |
| delta-BHC                       | .33 P                     | 0. <b>7</b> 6 E           | 0.21                      | .01 <b>7</b> J             | ND .05                     | ND .05                     |
| gamma-BHC (lindane)             | 0.77                      | 0.094                     | 2.5 E                     | .022 ЈР                    | 0.2                        | ND .05                     |
| endrin aldehyde                 | ND 0.1                    | ND 0.1                    | ND 0.1                    | ND 0.1                     | ND 0.1                     | ND 0.1                     |

| Well ID<br>Sample Date<br>Units | OBA-14A<br>7/15/94<br>ug/l | OBA-14B<br>7/15/94<br>ug/l | OBA-14C<br>7/15/94<br>ug/l | Dup.<br>OBA-14C<br>7/15/94<br>ug/I | OBA-15A<br>7/14/94<br>ug/l |
|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|----------------------------|
| Compounds<br>TCL-Pest/PCBs      |                            |                            |                            |                                    |                            |
| alpha-BHC                       | .014 JP                    | 0.28                       | 3.1 E                      | 2.9 E                              | 16 E                       |
| beta-BHC                        | ND .05                     | 0.31                       | .81 E                      | 0.68                               | 1.8 E                      |
| delta-BHC                       | ND .05                     | 0.099                      | 0.41                       | 0.34                               | 3.0 E                      |
| gamma-BHC (lindane)             | ND .05                     | .011 JP                    | 0.46                       | .35 P                              | 6.1 E                      |
| endrin aldehyde                 | ND 0.1                     | ND 0.1                     | ND 0.1                     | ND 0.1                             | .14 P                      |

| Well ID<br>Sample Date<br>Units | Dup.<br>OBA-15A<br>7/14/94<br>ug/I | OBA-15B<br>7/14/94<br>ug/I | OBA-16A<br>7/14/94<br>ug/l | OBA-16B<br>7/14/94<br>ug/l | Rinsate-1<br>7/15/94<br>ug/l |
|---------------------------------|------------------------------------|----------------------------|----------------------------|----------------------------|------------------------------|
| Compounds<br>TCL-Pest/PCBs      |                                    |                            |                            |                            |                              |
| alpha-BHC                       | 17 E                               | 1.5 E                      | 1.4 EJ                     | 19 E                       | NS                           |
| beta-BHC                        | 1.8 EJ                             | 1.2 E                      | 31 E                       | 11 E                       | NS                           |
| delta-BHC                       | 3.2 E                              | 0.18                       | .064 P                     | .82 EJP                    | NS                           |
| gamma-BHC (lindane)             | 6.5 E                              | 0.77                       | .3 P                       | 25 E                       | NS                           |
| endrin aldehyde                 | ND .10                             | ND .10                     | ND .10                     | ND .10                     | NS                           |
|                                 |                                    |                            |                            |                            |                              |

| Well ID                    | FB-1    | FB-2    | TB-1    | TB-2    |
|----------------------------|---------|---------|---------|---------|
| Sample Date                | 7/14/94 | 7/15/94 | 7/14/94 | 7/15/94 |
| Units                      | ug/I    | ug/l    | ug/l    | ug/l    |
| Compounds<br>TCL-Pest/PCBs |         |         |         |         |
| alpha-BHC                  | NS      | NS      | NS      | NS      |
| beta-BHC                   | NS      | NS      | NS      | NS      |
| delta-BHC                  | NS      | NS      | NS      | NS      |
| gamma-BHC (lindane)        | NS      | NS      | NS      | NS      |
| endrin aldehyde            | NS      | NS      | NS      | NS      |

Preliminary Report Not Validated As of 08/02/94

Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.

J - Indicates an estimated value due to outlying QC criteria and/or indicates detection above the method detection limit (MDL), but less than the practical quantitation limit (PQL).

UJ - Indicates an estimated PQL due to outlying QC results.

| Well ID<br>Sample Date<br>Units | OBA-3A<br>7/15/94<br>ug/l | OBA-3B<br>7/15/94<br>ug/l | OBA-3C<br>7/14/94<br>ug/l | OBA-13A<br>7/14/94<br>ug/I | OBA-13B<br>7/14/94<br>ug/l |
|---------------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|
| Compounds                       |                           |                           |                           |                            |                            |
| methanol                        | ND 1000                   | ND 1000                   | ND 1000                   | ND 1000                    | ND 1000                    |
|                                 |                           |                           |                           |                            |                            |
|                                 |                           |                           |                           |                            |                            |
|                                 |                           |                           |                           |                            |                            |
| Sample Date                     | 7/15/94                   | 7/15/94                   | 7/14/94                   | 7/14/94                    | 7/14/94                    |
| Units                           | ug/l                      | ug/l                      | ug/l                      | ug/l                       | ug/l                       |
| <u>Metals</u>                   |                           |                           |                           |                            |                            |
| mercury                         | ND 0.00020                | 0.00021                   | ND 0.00020                | ND 0.00020                 | ND 0.00020                 |

| Well ID<br>Sample Date<br>Units | OBA-13C<br>7/14/94<br>ug/l | OBA-14A<br>7/15/94<br>ug/l | OBA-14B<br>7/15/94<br>ug/l | OBA-14C<br>7/15/94<br>ug/l | Dup.<br>OBA-14C<br>7/15/94<br>ug/l |
|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|
| Compounds                       |                            |                            |                            |                            |                                    |
| methanol                        | ND 1000                            |
|                                 |                            |                            |                            |                            |                                    |
| Sample Date<br>Units            | 7/14/94<br>ug/l            | 7/15/94<br>ug/l            | 7/15/94<br>ug/l            | 7/15/94<br>ug/l            | 7/15/94<br>ug/l                    |
| <u>Metals</u>                   |                            |                            |                            |                            |                                    |
| mercury                         | ND 0.00020                         |

| Well ID<br>Sample Date<br>Units       | OBA-15A<br>7/14/94<br>ug/l | Dup.<br>OBA-15A<br>7/14/94<br>ug/l | OBA-15B<br>7/14/94<br>ug/l | OBA-16A<br>7/14/94<br>ug/l | OBA-16B<br>7/14/94<br>ug/l |
|---------------------------------------|----------------------------|------------------------------------|----------------------------|----------------------------|----------------------------|
| <u>Compounds</u>                      |                            |                                    |                            |                            |                            |
| methanol                              | ND 1000                    | ND 1000                            | ND 1000                    | ND 1000                    | ND 1000                    |
| Sample Date<br>Units<br><u>Metals</u> | 7/14/94<br>ug/l            | 7/14/94<br>ug/l                    | 7/14/94<br>· ug/l          | 7/14/94<br>ug/l            | 7/14/94<br>ug/l            |
| mercury                               | 0.00056                    | 0.00103                            | ND 0.00020                 | 0.195                      | 0.116                      |

| Well ID<br>Sample Date<br>Units | Rinsate Blank 1<br>7/15/94<br>ug/l | FB-1<br>7/14/94<br>ug/l | FB-2<br>7/15/94<br>ug/l | Trip Blank 1<br>7/14/94<br>ug/l | Trip Blank 2<br>7/15/94<br>ug/l |
|---------------------------------|------------------------------------|-------------------------|-------------------------|---------------------------------|---------------------------------|
| Compounds                       |                                    |                         |                         |                                 |                                 |
| methanol                        | ND 1000                            | ND 1000                 | ND 1000                 | ND 1000                         | ND 1000                         |
|                                 |                                    |                         |                         |                                 |                                 |
|                                 |                                    |                         |                         |                                 |                                 |
|                                 |                                    |                         |                         |                                 |                                 |
| Sample Date                     | 7/15/94                            | 7/14/94                 | 7/15/94                 | 7/14/94                         | 7/15/94                         |
| Units                           | ug/l                               | ug/l                    | ug/l                    | ug/l                            | ug/l                            |
| <u>Metals</u>                   |                                    |                         |                         |                                 |                                 |
| mercury                         | NS                                 | NS                      | NS                      | NS                              | NS ·                            |

Preliminary Report Not Validated As of 08/02/94

Notes:

NS - Not sampled.

ND - Not detected, applicable detection limit listed.