2015 Annual Operations, Maintenance, and Monitoring Report

Olin Niagara Falls Plant Niagara Falls, New York

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 1075 Big Shanty Road NW, Suite 100 Kennesaw, Georgia 30144

> April 1, 2016 Project 6107-16-0002

2015 Annual Operations, Maintenance, and Monitoring Report (Index #: R9-4171-94-08)April 1, 2016Olin Niagara Falls Plant, Niagara Falls, New YorkAmec Foster Wheeler Project No. 6107160002

TABLE OF CONTENTS

<u>Page</u>

1.0	INTRO	DUCTION 1	-1
2.0	OPER/	ATIONS AND MAINTENANCE	<u>2-1</u>
3.0	GWTS	PERFORMANCE	3-1
4.0	HYDR/	AULIC ANALYSIS	1-1
	4.1	A-ZONE	
	4.2	B-ZONE	1-1
	4.3	C-ZONE	
	4.4	CD-ZONE	1-2
5.0	GROU	NDWATER QUALITY5	5-1
6.0	CONC	LUSIONS	5-1
TABLE	S		
FIGUR	ES		

APPENDICES

2015 Annual Operations, Maintenance, and Monitoring Report (Index #: R9-4171-94-08) April 1, 2016 Olin Niagara Falls Plant, Niagara Falls, New York Amec Foster Wheeler Project No. 6107160002

LIST OF TABLES

Table

- 2.1 2015 Monthly Runtime Summary
- 3.1 Summary of Total Flow and Average System Flow Rates for 2015
- 3.2 March 24, 2015 Recovery Well Header Concentrations and 1st Quarter 2015 Mass Removal
- 3.3 June 16, 2015 Recovery Well Header Concentrations and 2nd Quarter 2015 Mass Removal
- 3.4 October 6, 2015 Recovery Well Header Concentrations and 3rd Quarter 2015 Mass Removal
- 3.5 December 15, 2015 Recovery Well Header Concentrations and 4th Quarter 2015 Mass Removal
- 3.6 Contaminant Mass Removal and Groundwater Extraction Summary (December 1997 to Present)
- 3.7 March 24, 2015 GWTS Treatment Performance
- 3.8 June 16, 2015 GWTS Treatment Performance
- 3.9 October 6, 2015 GWTS Treatment Performance
- 3.10 December 15, 2015 GWTS Treatment Performance
- 4.1 April 8, 2015 Water Elevations
- 4.2 July 7, 2015 Water Elevations
- 4.3 October 6, 2015 Water Elevations
- 4.4 December 17, 2015 Water Elevations
- 5.1 2015 Site Groundwater Analytical Results

LIST OF FIGURES

Figure

- 3.1 RW-1 Flow Rate and Water Elevation
- 3.2 RW-2 Flow Rate and Water Elevation
- 3.3 RW-3 Flow Rate and Water Elevation
- 3.4 RW-4 Flow Rate and Water Elevation
- 3.5 RW-5 Flow Rate and Water Elevation
- 3.6 PR-4 Flow Rate and Water Elevation

2015 Annual Operations, Maintenance, and Monitoring Report (Index #: R9-4171-94-08) Olin Niagara Falls Plant, Niagara Falls, New York Amec Foster Wheeler Project No. 6107160002

LIST OF FIGURES - CONTINUED

- 3.7 PR-12 Flow Rate and Water Elevation
- 3.8 OBA-9AR Flow Rate and Water Elevation
- 3.9 Volatile Organic Compound Loading Rate
- 3.10 Pesticide Loading Rate
- 3.11 Mercury Loading Rate
- 3.12 Volatile Organic Compound Mass Removal
- 3.13 Pesticide Mass Removal
- 3.14 Mercury Mass Removal
- 4.1 A-Zone Potentiometric Contours April 8, 2015
- 4.2 A-Zone Potentiometric Contours July 7, 2015
- 4.3 A-Zone Potentiometric Contours October 6, 2015
- 4.4 A-Zone Potentiometric Contours December 17, 2015
- 4.5 B-Zone Potentiometric Contours April 8, 2015
- 4.6 B-Zone Potentiometric Contours July 7, 2015
- 4.7 B-Zone Potentiometric Contours October 6, 2015
- 4.8 B-Zone Potentiometric Contours December 17, 2015
- 4.9 C-Zone Potentiometric Contours April 8, 2015
- 4.10 C-Zone Potentiometric Contours July 7, 2015
- 4.11 C-Zone Potentiometric Contours October 6, 2015
- 4.12 C-Zone Potentiometric Contours December 17, 2015
- 4.13 CD-Zone Potentiometric Contours April 8, 2015
- 4.14 CD-Zone Potentiometric Contours July 7, 2015
- 4.15 CD-Zone Potentiometric Contours October 6, 2015
- 4.16 CD-Zone Potentiometric Contours December 17, 2015
- 5.1 A-Zone 1,2,4-Trichlorobenzene Concentrations June 2015
- 5.2 B-Zone 1,2,4-Trichlorobenzene Concentrations June 2015
- 5.3 A-Zone Trichloroethene Concentrations June 2015
- 5.4 B-Zone Trichloroethene Concentrations June 2015
- 5.5 A-Zone gamma-BHC Concentrations June 2015
- 5.6 B-Zone gamma-BHC Concentrations June 2015

2015 Annual Operations, Maintenance, and Monitoring Report (Index #: R9-4171-94-08) April 1, 2016 Olin Niagara Falls Plant, Niagara Falls, New York Amec Foster Wheeler Project No. 6107160002

- 5.7 A-Zone Total Mercury Concentrations June 2015
- 5.8 B-Zone Total Mercury Concentrations June 2015

LIST OF APPENDICES

Appendix

- A NYSDEC Correspondence
- B Weekly O&M Reports

2015 Annual Operations, Maintenance, and Monitoring Report (Index #: R9-4171-94-08) Olin Niagara Falls Plant, Niagara Falls, New York Amec Foster Wheeler Project No. 6107160002

ABBREVIATIONS AND ACRONYMS

Acronym Definition

ARGC BHC	Alundum Road – Gill Creek Benzene hexachloride
GWTS	Groundwater Treatment System
HG	mercury
NYSDEC	New York State Department of Environmental Conservation
Olin	Olin Corporation
Order	Administrative Order on Consent
PR	Passive Relief
RW	Recovery Well
VOC	volatile organic compounds

April 1, 2016

2015 Annual Operations, Maintenance, and Monitoring Report (Index #: R9-4171-94-08) April 1, 2016 Olin Niagara Falls Plant, Niagara Falls, New York Amec Foster Wheeler Project No. 6107160002

As required by the Administrative Order on Consent (Order) #R9-4171-94-08 between New York State Department of Environmental Conservation (NYSDEC) and Olin Corporation (Olin), Olin has implemented a Remedial Plan to address groundwater contamination at Plant 2, in Niagara Falls, New York. In accordance with the Remedial Plan, a Groundwater Treatment System (GWTS) was installed at the site in 1998 and has been operated since that time. The goals of the GWTS are to reduce the concentration of Olin-derived constituents in the site groundwater and restrict off-site migration of these constituents. The Olin-derived constituents are defined in the Remedial Plan and include aromatic compounds, benzene hexachlorides (BHCs), and mercury.

The Remedial Plan also requires periodic reporting of groundwater quality and groundwater elevation information collected during the operations of the GWTS. This Annual Operations, Maintenance, and Monitoring Report covers the period from January 1, 2015 through December 31, 2015. The 2014 Annual Operations, Maintenance, and Monitoring Report was approved by NYSDEC in their June 18, 2015 letter. This letter as well as other correspondence pertaining to the Order with NYSDEC in 2015 are included in Appendix A.

The GWTS was operated and maintained effectively in 2015. The GWTS operations resulted in effective hydraulic capture of A-zone and B-zone groundwater as well as continued mass removal of VOCs, pesticides, and mercury. Site constituent concentrations and distribution are consistent with historical monitoring data indicating effective hydraulic control. Additionally, continued operation of Olin's process water production well has provided hydraulic control of the C and CD-Zones. Overall, the GWTS system is achieving the objectives established in the Order and Remedial Plan.

1-1

2015 Annual Operations, Maintenance, and Monitoring Report (Index #: R9-4171-94-08) April 1, 2016 Olin Niagara Falls Plant, Niagara Falls, New York Amec Foster Wheeler Project No. 6107160002

2.0 OPERATIONS AND MAINTENANCE

The GWTS operated with an average run time of approximately 76% in 2015. Table 2.1 shows the run time and down time for each month in 2015. Downtimes throughout the year were caused by:

- Inclement weather
- General equipment maintenance and repairs
- Pitless adapter repair and replacement at recovery well (RW) 5 (February)
- Carbon change outs in February and December
- Well redevelopment
- Scheduled plant maintenance shutdown (March)

Details of the routine maintenance tasks and troubleshooting are included for this reporting period in the weekly reports from Olin's contractor, Sevenson Environmental Services (**Appendix B**). The weekly O&M reports document measurement of RW flow rates, RW water elevations, other system parameters, and maintenance conducted.

3.0 GWTS PERFORMANCE

Figures 3.1 through 3.8 show the RW flow rates and water elevations throughout 2015. Flow rates and water elevations were consistent with historic values. Total monthly flows for 2015 are presented on Table 3.1.

Tables 3.2 through 3.5 show RW header concentrations and mass removal for each quarter of 2015. Table 3.6 shows the mass removed over the operational life of the GWTS. The total volume of groundwater extracted since GWTS startup is approximately 426 million gallons. Approximately 7.7 million gallons were extracted in 2015. The GWTS has extracted over 102,000 pounds of volatile organic compounds (VOCs), 437 pounds of pesticides (BHCs), and approximately 7.6 pounds of mercury from operations starting December 1997 through 2015.

Figures 3.9 through 3.11 present graphs that show the treatment system loading rates for VOCs, BHCs, and mercury over the history of operation. The VOC and BHC loading rates have remained relatively steady over the GWTS operational period while the mercury loading rate has shown an overall decreasing trend.

Figures 3.12 through 3.14 show annual mass removal compared to annual groundwater removal throughout the operations. Mercury mass removal has generally decreased over the system operations. BHC and aromatic VOC mass removal has been steady regardless of groundwater extraction rate. Aliphatic VOC mass removal has generally increased over the system operations, but has decreased since 2012 and is a function of the total volume of groundwater extracted. The aliphatic mass removal appears to be influenced by the groundwater removal rate more than the other constituents and is more efficient at lower groundwater extraction rates (e.g., there is less dilution).

Historically, most of the VOCs removed by the Olin treatment system are aliphatic constituents (95% overall and 93% in 2015) that originate off-site from the Chemours facility.

Tables 3.7 through 3.10 show GWTS treatment performance results. These performance data are used to optimize system performance and schedule change out of activated carbon. Based on these data, the activated carbon was replaced on February 11, 2015 and December 11, 2015.

3-1

4.0 HYDRAULIC ANALYSIS

Groundwater level measurements were collected quarterly in 2015. Tables 4.1 through 4.4 present the quarterly water elevations for the monitored zones at the site. The water elevations were used to interpret the potentiometric surface at the site and evaluate groundwater capture.

4.1 A-ZONE

Figures 4.1 through 4.4 show the interpreted A-Zone potentiometric surface (April, June, September, and December) for each quarter of 2015. These figures show A-zone capture in the Alundum Road-Gill Creek (ARGC) area by Olin's recovery wells and passive relief wells. A-zone groundwater flow is toward the passive relief wells which drain the A-zone groundwater to the B-zone and since potentiometric heads in the B-zone are below Gill Creek, the passive relief wells are effective in preventing groundwater flow to Gill Creek.

The yellow highlighted areas represent areas that are estimated to be dewatered as defined by the bottom elevation of the A-zone. The dewatered areas also show that the A-zone is being effectively drained to the B-zone. The corresponding table shows which wells had water level elevations that were below the physical bottom of the A-zone. In cases where the A zone was dewatered, the physical bottom of the fracture system was used in the interpreted potentiometric surface.

4.2 B-ZONE

Figures 4.5 through 4.8 show B-Zone potentiometric surface maps for each quarter of 2015. The B-Zone potentiometric surface maps show hydraulic capture of the B-zone on Olin property by Olin pumping wells and Solvent pumping wells located on Olin property (PW-3B and PW-4B. The greater drawdown observed in Solvent pumping well PW-3B creates a gradient that dominates local B-zone flow on Olin property. Additionally, groundwater elevations at PN-24B consistently show an inward gradient from Buffalo Avenue towards the site.

Two wells, PN18B and PN-19B, showed unusually high water levels, compared to historical values, at different times during 2015. The measurements were included in the potentiometric interpretation, but result in interpreted groundwater mounds that are not likely accurate representations of the confined groundwater system and conditions at these locations. Similar high potentiometric levels have been noted historically in some PR wells as a result of fouling of

the water bearing fractures in the B-zone. Regardless of these data points, the interpreted potentiometric surface over all still demonstrates hydraulic capture of the impacted B-zone groundwater. Olin will continue to evaluate these data points in the future.

4.3 C-ZONE

Figures 4.9 through 4.12 show C-Zone potentiometric surface maps for each quarter of 2015. The C-Zone figures generally show flow to the west toward the Olin production well but also a low at OBA-7C. The elevations and contouring are consistent with historic C-zone pot maps.

4.4 CD-ZONE

Figures 4.13 through 4.16 show CD-Zone potentiometric surface maps for each quarter of 2015. CD-zone hydraulic gradients indicate southwestward flow toward the Olin production well and OBA-8C in Plant 1.

5.0 GROUNDWATER QUALITY

Site groundwater quality is monitored annually. Samples were collected from the site monitoring wells June 17 through June 30, 2015. Table 5.1 provides the analytical results. Figures 5.1 through 5.8 show the constituent distributions for the following indicator parameters in the A and B-Zones:

- 1,2,4-Trichlorobenzene Aromatic
- Trichloroethene Aliphatic
- Gamma-BHC Pesticide
- Total Mercury Mercury

The figures show that constituent concentrations and distribution are consistent with historical site monitoring data.

6.0 CONCLUSIONS

The GWTS was operated and maintained effectively in 2015. The system runtime averaged 76% for 2015. The GWTS operations resulted in effective hydraulic capture of A-zone and B-zone groundwater as well as continued mass removal of VOCs, pesticides, and mercury. Site constituent concentrations and distribution are consistent with historical monitoring data which suggests continuing effective hydraulic control. Additionally, continued operation of Olin's process water production well has provided hydraulic control of the C and CD-Zones. Overall, the GWTS system is achieving the objectives established in the Order and Remedial Plan.

TABLES

		RW-1			RW-2		RW-3				RW-4	
Month	Downtime (hours)	Runtime (hours)	Runtime %									
January 2015	228.6	515.4	69%	225.8	518.2	70%	228.8	515.2	69%	230.0	514.0	69%
February 2015	353.7	318.3	47%	187.6	484.4	72%	157.9	514.1	77%	145.1	526.9	78%
March 2015	342.3	401.8	54%	206.3	537.7	72%	182.5	561.5	75%	168.8	575.2	77%
April 2015	389.7	330.3	46%	268.1	451.9	63%	365.5	354.5	49%	228.6	491.4	68%
May 2015	109.3	634.7	85%	29.3	714.8	96%	66.3	677.7	91%	51.5	692.5	93%
June 2015	55.4	664.6	92%	46.5	673.5	94%	63.7	656.3	91%	59.7	660.3	92%
July 2015	32.7	711.3	96%	24.9	719.1	97%	25.3	718.8	97%	25.0	719.0	97%
August 2015	70.8	673.2	90%	64.3	679.8	91%	67.8	676.3	91%	188.8	555.3	75%
September 2015	92.1	627.9	87%	80.4	639.6	89%	42.8	677.2	94%	720.0	0.0	0%
October 2015	190.8	553.2	74%	175.7	568.3	76%	210.8	533.2	72%	744.0	0.0	0%
November 2015	287.3	432.8	60%	288.2	431.8	60%	292.6	427.4	59%	303.9	416.1	58%
December 2015	257.3	486.7	65%	291.2	452.8	61%	303.2	440.8	59%	301.5	442.5	59%
Total	2409.9	6350.1	72.5%	1888.2	6871.8	78.4%	2007.2	6752.8	77.1%	3166.8	5593.2	63.8%

Table 2.1: 2015 Monthly Runtime Summary

		RW-5			PR-4			PR-12			OBA-9AR	
Month	Downtime (hours)	Runtime (hours)	Runtime %									
January 2014	744.0	0.0	0%	36.3	707.7	95%	68.8	675.2	91%	127.3	616.7	83%
February 2014	543.4	128.6	19%	155.5	516.5	77%	150.5	521.5	78%	251.6	420.4	63%
March 2014	670.3	73.7	10%	165.8	578.3	78%	165.0	579.0	78%	165.3	578.8	78%
April 2014	404.0	316.0	44%	196.9	523.1	73%	86.3	633.8	88%	82.0	638.0	89%
May 2014	309.6	434.4	58%	32.0	712.0	96%	43.0	701.0	94%	40.1	703.9	95%
June 2014	90.6	629.4	87%	57.8	662.3	92%	69.5	650.5	90%	80.8	639.2	89%
July 2014	28.8	715.3	96%	3.8	740.3	99%	25.3	718.7	97%	2.1	741.9	100%
August 2014	53.8	690.3	93%	67.5	676.5	91%	67.4	676.6	91%	0.0	744.0	100%
September 2014	28.7	691.3	96%	66.1	653.9	91%	59.3	660.8	92%	0.0	720.0	100%
October 2014	191.3	552.7	74%	127.2	616.8	83%	154.3	589.8	79%	0.0	744.0	100%
November 2014	286.6	433.4	60%	307.8	412.2	57%	201.6	518.4	72%	0.0	720.0	100%
December 2014	304.8	439.2	59%	212.0	532.0	72%	57.4	686.6	92%	0.0	744.0	100%
Total	3655.8	5104.2	58.3%	1428.6	7331.4	83.7%	1148.3	7611.7	86.9%	749.2	8010.8	91.4%

Table 2.1: 2015 Monthly Runtime Summary

Prepared By: A. Nelson 02/29/2016 Checked By: S. Gallagher 03/02/2016

				Avera	ge Flow Rate	(gpm)			
Period	RW-1	RW-2	RW-3	RW-4	PR-4	RW-5	PR-12	OBA-9AR	Total
January-15		3.7	0.8	0.4	1.8	-	3.2	0.7	11.3
February-15	0.6	4.1	0.6	0.5	1.4	-	3.7	0.5	11.5
March-15	0.5	5.2	0.5	0.5	1.4	0.7	3.8	0.4	13.1
1st Qtr 15									
April-15	0.3	3.4	0.3	0.4	1.5	2.0	2.5	0.5	11.3
May-15	1.0	5.8	0.5	0.5	2.4	0.1	4.6	0.5	15.6
June-15	1.3	6.9	0.4	0.5	2.3	0.2	4.1	0.6	16.4
2ndQtr 15									
July-15	1.9	7.6	0.4	0.4	2.4	0.2	3.5	0.6	17.1
August-15	2.8	5.2	0.3	0.2	2.2	1.6	4.1	0.6	16.8
September-15	2.5	5.2	0.3	-	2.3	5.4	3.9	0.7	20.3
3rdQtr 15									
October-15	2.0	4.3	0.2	-	2.2	4.2	3.6	0.6	17.2
November-15	1.6	3.0	0.1	0.9	1.2	3.4	2.7	0.6	13.4
December-15	1.5	2.1	0.1	1.0	1.3	3.1	2.4	0.6	12.2
4thQtr 15									
Maximum	2.8	7.6	0.8	1.0	2.4	5.4	4.6	0.7	20.3
Average	1.4	4.7	0.4	0.5	1.9	2.1	3.5	0.6	14.7
2015 System Total									

Table 3.1: Summary of Total Flow and Average System Flow Rates for 2015

					Flow C	Contribution F	er Well (gal/r	nonth)		-
Period	Total Flow (gal/month)	Total Quarterly Flow (gal)	RW-1	RW-2	RW-3	RW-4	PR-4	RW-5	PR-12	OBA-9AR
January-15	502,829		34,892	163,748	33,489	18,835	80,632	-	140,753	30,479
February-15	463,517		24,947	167,052	25,563	21,274	57,853	-	147,962	18,866
March-15	586,523		24,066	232,648	23,412	23,708	62,952	33,127	168,853	17,757
1st Qtr 15		1,552,869								
April-15	486,754		24,758	146,407	13,573	17,423	66,856	86,292	107,998	23,448
May-15	695,291		45,449	258,915	24,097	22,793	108,577	6,488	206,167	22,806
June-15	708,613		56,446	302,962	19,336	19,626	97,884	7,623	180,137	24,599
2ndQtr 15		1,890,659								
July-15	789,002		86,481	340,829	15,937	18,048	107,328	8,633	184,460	27,288
August-15	750,862		123,341	230,135	12,092	9,194	96,032	71,798	181,159	27,110
September-15	876,980		106,909	225,013	13,683	-	98,948	234,117	169,042	29,269
3rdQtr 15		2,416,844								
October-15	766,039		91,353	193,576	8,942	-	96,697	188,476	158,999	27,995
November-15	576,818		67,071	127,453	6,182	38,693	50,922	145,434	116,777	24,286
December-15	546,159		68,060	93,226	4,582	45,863	58,704	137,350	109,367	29,008
4thQtr 15		1,889,016								
Maximum	876,980	2,416,844	123,341	340,829	33,489	45,863	108,577	234,117	206,167	30,479
Average	645,782	1,937,347	62,814	206,830	16,741	23,546	81,949	91,934	155,973	25,242
2015 System Total	7,749	9,387	753,773	2,481,964	200,888	235,456	983,384	919,338	1,871,674	302,910

Table 3.1: Summar	v of Total Flow and	Average System	Flow Rates for 2015
	y of 10tal 110th and	. Average bystem	

Prepared by: T. Donnell 01/12/2016 Checked by: A. Nelson 01/13/2016

Well ID: Sample Date:	Sample RW-1 3/24/207		Sample RW-2 3/24/2015	Samp RW-3 3/24/20	3	Sample RW-4 3/24/2015	Sample PR-4 3/24/2015		Sampl RW-5 3/24/20	5	Sample PR-12 3/24/201	:	Sample OBA-9AR 3/24/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L													
Aliphatic Compounds													
1,1,1-Trichloroethane	25	U	2.5 U	1.0	U	20 U	20	U	250	U	1000	U	220
1,1,2,2-Tetrachloroethane	25	U	17	2.0		20 U	20	U	5800		8100		2300
1,1,2-Trichloroethane	25	U	2.5 U	1.0	U	20 U	20	U	250	U	1000	U	150
1,1-Dichloroethene	25	U	2.5 U	1.0	U	20 U	20	U	250	U	1000	U	110
Carbon tetrachloride	25	U	2.5 U	1.0	U	20 U	20	U	250	U	1000	U	44
Chloromethane (Methyl chloride)	25	U	2.5 U	1.0	U	20 U	20	U	250	U	1000	U	20 U
cis-1,2-Dichloroethene	67		180	21		910	1500		7500		6600		2400
Methylene chloride (Dichloromethane)	25	U	2.5 U	1.0	U	20 U	20	U	610		1500		20 U
Tetrachloroethene (PCE)	130		210	29		370	470		29000		39000		8800
trans-1,2-Dichloroethene	25	U	2.5 U	1.0	U	20 U	20	U	250	U	1000	U	130
Trichloroethene (TCE)	230		380	38		600	750		36000		95000		57000
Vinyl Chloride	25	U	4.6	1.3		100	180		860		1000	U	240
Aromatic Compounds													
1,2,4-Trichlorobenzene	3100		14	41		2400	3900		1800		4900		8300
1,2-Dichlorobenzene	230		2.5 U	2.1		60	98		300		1100		7500
1,3-Dichlorobenzene	320		5.7	12		400	670		250	U	1000	U	1100
1,4-Dichlorobenzene	190		3.9	8.7		290	490		440		1100		6900
Benzene	25	U	2.5 U	1.0	U	82	150		250	U	1000	U	370
Chlorobenzene	110		2.5 U	2.0		140	230		250	U	1000	U	660
Pesticide Concentrations - SW846 8081 µg/L													
alpha-BHC	10		1	2.0		75	180		140		240		330
beta-BHC	6.6		0.26	1.1		4.7	14		12		29		30
delta-BHC	0.47	U	0.12	3.3		6.8	14		9		16		24
gamma-BHC (Lindane)	0.47	U	0.63	3.3		67	160		95		190		220
Total Metal Concentrations - SW846 7470 μg/L													
Mercury	82.5		0.48	0.23		2.46	0.47		0.46		0.20	U	0.20 U
Total Flow 1st Quarter 2015 - gallons													
Flow	83,90	6	563,448	82,46	64	63,817	201,437	_	33,12	7	457,56	38	67,101
Total Mass Removed 1st Quarter 2015 - pounds													
Aliphatic Compounds	0.	3	3.7	0	.1	1.1	4.9		22.	1	575	.8	40.1
Aromatic Compounds	2.	8	0.1	0	.0	1.8	9.3		0.	7	27	.2	14.0
Pesticides	0.0		0.01	0.0		0.08	0.62		0.0		1.8	-	0.34
Mercury	0.0579	9	0.00227	0.000	6	0.00132	0.00079		0.0001	3	0.0000)0	0.00000
Natao													

Table 3.2: March, 24 2015 Recovery Well Header Concentrations and 1st Quarter 2015 Mass Removal

Notes:

U - constituent not detected - reporting limit shown.

ug/L - micrograms per liter

mg/L - milligrams per liter

Prepared by: R. Yardley 06/10/2015 Checked by: A. Nelson 07/30/2015

Well ID: Sample Date:	Sample RW-1 6/16/201		Sample RW-2 6/16/2015	Sample RW-3 6/16/2015		Sample RW-4 6/16/2015	Sample PR-4 6/16/2015	Sample RW-5 6/16/2015	Sample PR-12 6/16/2015	Sample OBA-9AR 6/16/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L										
Aliphatic Compounds										
1,1,1-Trichloroethane	25	U	2.5 U		J	20 U	20 U	500 U		250 U
1,1,2,2-Tetrachloroethane	25	U	14	1.6		270	94	16000	2200	4500
1,1,2-Trichloroethane	25	U	2.5 U	1.0 L		20 U	20 U	500 U	250 U	250 U
1,1-Dichloroethene	25	U	2.5 U	1.0 L	-	20 U	20 U	500 U		250 U
Carbon tetrachloride	25	U	2.5 U	1.0 L	J	20 U	20 U	800	250 U	250 U
Chloromethane (Methyl chloride)	25	U	2.5 U	1.0 L	J	20 U	20 U	500 U	250 U	250 U
cis-1,2-Dichloroethene	760		170	3.7		590	3200	10000	2700	3700
Methylene chloride (Dichloromethane)	51		2.5 U	1.0 L	J	31	20 U	2300	250 U	310
Tetrachloroethene (PCE)	1800		160	20		1200	1100	52000	13000	17000
trans-1,2-Dichloroethene	25	U	2.8	1.0 L	J	20 U	27	500 U	250 U	250 U
Trichloroethene (TCE)	5600		390	26		3200	3100	190000	40000	45000
Vinyl Chloride	29		2.9	1.0 L	J	37	220	1300	380	380
Aromatic Compounds										
1.2.4-Trichlorobenzene	6500		37	5.8		700	3400	4200	3200	5000
1.2-Dichlorobenzene	180		2.5 U	1.0 L	J	27	120	560	330	1600
1,3-Dichlorobenzene	260		2.9	1.0 L	J	82	510	500 U	320	410
1.4-Dichlorobenzene	130		2.5 U	1.0 L	J	54	390	610	1000	1600
Benzene	54		2.5 U	1.0 L	J	20 U	110	630	250 U	250 U
Chlorobenzene	93		2.5 U	1.0 L	-	24	160	730	310	290
Pesticide Concentrations - SW846 8081 µg/L			2.0 0						010	200
alpha-BHC	36		0.13	0.21		51	170	220	140	190
beta-BHC	3.6		0.19	0.84	T	4.7 U	13	23	18	24 U
delta-BHC	2.4	U	0.0047 U	0.14		4.7 U	17	14	10 12 U	24 U
gamma-BHC (Lindane)	2.4	U	0.083	0.071	T	46	170	160	130	160
<u></u>		-								
Total Metal Concentrations - SW846 7470 μg/L										
Mercury	46.4		0.20 U	0.81	T	1.77	1.79	1.07	0.21	0.42
Total Flow 2nd Quarter 2015 - gallons										
Flow	126,653		708,284	57,005		59,841	273,316	100,403	494,302	70,853
Total Mass Removed 1st Quarter 2015 - pounds		_								
Aliphatic Compounds	8.7		4.4	0.02		2.7	17.7	229.1	241.3	42.1
Aromatic Compounds	7.7		0.2	0.003		0.4	10.7	5.7	21.4	5.3
Pesticides	0.04		0.002	0.001		0.05	0.8	0.4	1.2	0.2
Mercury	0.05		0.001	0.0004		0.0009	0.004	0.0009	0.0009	0.0002
Notes										

Table 3.3: June 16, 2015 Recovery Well Header Concentrations and 2nd Quarter 2015 Mass Removal

Notes:

U - constituent not detected - reporting limit shown.

ug/L - micrograms per liter

Prepared by: S. Gallagher 09/10/2015 Checked by: T. Englund 09/10/2015

April 1, 2016

Well ID Sample Date		Sample RW-2 10/6/2015	Sample RW-3 10/6/2015	Sample RW-4 10/6/2015	Sample PR-4 10/6/2015	Sample RW-5 10/6/2015	Sample PR-12 10/6/2015	Sample OBA-9AR 10/6/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L	-	-						
Aliphatic Compounds								
1,1,1-Trichloroethane	100 L		2.5 U	5.0 U	50 U	1000 U	100 U	200 U
1,1,2,2-Tetrachloroethane	100 L		12	5.0 U	100	11000	780	1100
1,1,2-Trichloroethane	100 L	2.0 0	2.5 U	5.0 U	50 U	1000 U	100 U	200 U
1,1-Dichloroethene	100 L	2.0 0	2.5 U		50 U	1000 U		200 U
Carbon tetrachloride	100 L		2.5 U		50 U	1000 U		200 U
Chloromethane (Methyl chloride)	100 L	2.0 U	2.5 U	5.0 U	50 U	1000 U	100 U	200 U
cis-1,2-Dichloroethene	2300	86	85	6.1	5200	8200	2100	2000
Methylene chloride (Dichloromethane)	700	2.0 U	6.9	5.0 U	50	1600	100 U	200 U
Tetrachloroethene (PCE)	4700	120	120	5.0 U	860	38000	5300	6400
trans-1,2-Dichloroethene	100 L	2.0 0	2.5 U	5.0 U	50 U	1000 U	100 U	200 U
Trichloroethene (TCE)	16000	230	280	5.0 U	1900	100000	15000	18000
Vinyl Chloride	160	2.0 U	2.5	5.0 U	300	1000	100	200 U
Aromatic Compounds								
1,2,4-Trichlorobenzene	6500	3.5	47	330	3700	3900	3100	3400
1,2-Dichlorobenzene	200	2.0 U	2.6	27	140	1000 U	1600	1800
1,3-Dichlorobenzene	310	2.0 U	4.8	810	690	1000 U	480	500
1,4-Dichlorobenzene	190	2.0 U	4.4	730	570	1000 U	1600	1800
Benzene	320	2.0 U	3.3	5.0 U	120	1000 U	180	200 U
Chlorobenzene	260	2.0 U	2.8	570	240	1000 U	250	250
Pesticide Concentrations - SW846 8081 µg/L								
alpha-BHC	32	0.1	0.85	91	150	180	120	140
beta-BHC	4.1	0.12	1.10	4.7 U	11	13	13	13
delta-BHC	0.96 L	0.048 U	3.1	4.8 U	15	12	9.6 U	9.6 U
gamma-BHC (Lindane)	1.2	0.078	1.4	12	130	140	100	97
Total Metal Concentrations - SW846 7470 μg/L								
Mercury	6.15	0.20 U	0.20 U	0.20 U	0.25	0.31	0.24	0.20 U
Total Flow 3rd Quarter 2015 - gallons								
Flow	316,731	795,977	41,712	27,242	302,308	314,548	534,661	83,667
Total Mass Removed 3rd Quarter 2015 - pounds								
Aliphatic Compounds	63.3	3.0	0.18	0.0	21.3	421.1	104.3	19.3
Aromatic Compounds	20.6	0.0	0.023	0.6	13.8	10.3	32.3	5.4
Pesticides	0.10	0.002	0.002	0.02	0.8	0.9	1.0	0.2
Mercury	0.02	0.001	0.0001	0.0000	0.001	0.0008	0.0011	0.0000

Table 3.4: October 6, 2015 Recovery Well Header Concentrations and 3rd Quarter 2015 Mass Removal

Notes:

U - constituent not detected - reporting limit shown.

ug/L - micrograms per liter

Prepared by: T. Donnell 12/02/2015 Checked by: T. Englund 12/02/2015

1,1,2-Trichloroethane 100 U 18 24 22.0 97 14000 7100 13 1,1,2-Trichloroethane 100 U 2.5 U 2.0 U 5.0 U 25 U 1000 U 250 U 1000 U 2500 U 130 Matheme (Methy choide (hchoroethane) 130 130 1700 4800 240 1300 46000 2400 6400 250 U 130 Inforiotice (hchoroethane) 120 2.5 U 130 1500 1400 1500 <t< th=""><th>Well ID Sample Date:</th><th></th><th>Sample RW-2 12/15/2015</th><th>Sample RW-3 12/15/2015</th><th>Sample RW-4 12/15/2015</th><th>Sample PR-4 12/15/2015</th><th>Sample RW-5 12/15/2015</th><th>Sample PR-12 12/15/2015</th><th>Sample OBA-9AR 12/15/2015</th></t<>	Well ID Sample Date:		Sample RW-2 12/15/2015	Sample RW-3 12/15/2015	Sample RW-4 12/15/2015	Sample PR-4 12/15/2015	Sample RW-5 12/15/2015	Sample PR-12 12/15/2015	Sample OBA-9AR 12/15/2015
Alighatic Compounds Image: Compounds <thimage: compound<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thimage:>									
1.1.Trinkhorsethane 100 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 2.5 U 1000 U 2.5 U 2.0 U 7.00 13 1.1.2.2-Trichtkonoethane 100 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 2.6 3.2 7.4 3.0 10000 U 2.5 U 1.0 1.0 1.0 1.0									
1,1,2Trichlorobenane 100 U 18 24 22.0 97 14000 7100 13 1,1.2Trichlorobenane 100 U 2.5 U 2.0 U 5.0 U 25 U 1000 U 225 U 1000 U 250 U 1000 U 225 U 1000 U 226 U 1000 U 225 U 1000 U 226 U 1000 U 226 U 1000 U 226 U 05.0 U 225 U 1000 U 226 U 05.0 U 226 U 1000 U 2300 14000 4800 240 1300 46000 2400 6400 130 14000 1500 U 24 116 1010 U 120 1100 1500									
11.2-Trichloroethane 100 U 2.5 U 2.0 U 5.0 U 25 U 1000 U 2.5 U 2.0 U 5.0 U 2.5 U 1000 U 500 U 2.5 U 1000 U 2.5 U 1000 U 2.5 U 1000 U 2.6 U 1.50 U 2.0 U 1000 U 2.6 U 100 U 2.6 U 1000 U 1000									250 U
11-Dichloroethene 100 U 2.5 U 2.5 U 1000 U 500 U 225 U 1000 U 255 U 1000 U 255 U 1000 U 255 U 1000 U 255 U 300 10000 U 260 120 125 U 100 U 260 1200 480 220 1000 1000 U 500 226 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10			-		-	-	14000		1300
Carbon tetrachloride 100 U 2.5 U 2.0 U 5.0 U 25 U 1000 U 500 U 2500 1000 U 500 U 2500 1000 U 500 U 2500 U 2000 260 130 770 3900 10000 4800 133 Methylene chloride (Dichloromethane) 350 2.5 U 2.0 U 5.0 U 2.5 U 1300 46000 2400 1300 46000 2400 64000 2400 14000 U 2.6 3.2 7.4 30 1000 U 500 2400 1300 46000 250 1200 4800 220 500 3660 120000 64000 250 120 120 2.5 120 3.7 65 270 1200 500 130 120 120 500 1300 1000 100 500 140 120									250 U
Chloromethane (Methyl chloride) 100 U 2.5 U 2.0 U 5.0 U 25.0 U cis-1,2-Dichloroothene 2000 260 130 770 3900 10000 4900 13 Methylene chloride (Dichloromethane) 350 2.5 U 2.0 U 5.0 U 25 U 1900 600 22 Tetrachloroethene (PCE) 4000 230 150 240 1300 46000 250 U 550 U 2.0 U 5.0 U 5.0 U 2.0 U 2.00 U 5.0 U 2.0 U 2.00 U 2.0 U 2.0 U	1,1-Dichloroethene				5.0 U				250 U
cis-1.2-bichloromethane 2000 260 130 770 3900 10000 4900 13 Methylene chloride (Dichloromethane) 350 2.5 U 2.0 U 5.0 U 25 U 1900 600 26 Tetrachloromethane (PCE) 4000 230 150 240 1300 46000 24000 64 Trichloromethane (PCE) 1200 480 220 500 3600 12000 640 00 255 Viny Chloride 120 2.5 U 3.7 65 270 1200 550 25 Aromatic Compounds 1 1 120 2.5 U 3.6 15 140 1000 U 500 U 41 1.2-Dichlorobenzene 210 2.5 27 82 440 1000 U 500 U 42 1.3-Dichlorobenzene 200 2.5 27 82 440 1000 U 50	Carbon tetrachloride	100 l					1000 U		250 U
Methylene chloride (Dichloromethane) 350 2.5 U 2.0 U 5.0 U 25 U 1900 600 225 Tetrachioroethene (PCE) 4000 2.30 1150 240 1300 46000 24000 64 Trichloroethene 100 U 2.6 3.2 7.4 30 1000 U 250 120000 64000 255 2500 3600 120000 64000 255 250 3600 120000 64000 255 250 3600 120000 64000 255 250 3600 120000 64000 255 250 3600 120000 64000 255 250 3600 7.7 48 96 2300 2400 1700 48 1.2-Dichlorobenzene 350 3.2 24 110 570 1000 0 500 U 77 148 96 2300 2.0 120 14 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1000 U 500 U 2.0 1.4 1000 U 500 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>250 U</td></td<>									250 U
Tetrachloroethene (PCE) 4000 230 150 240 1300 46000 24000 64 trans-1,2-Dichloroethene 100 U 2.6 3.2 7.4 30 1000 U 500 U 250 Viny Chloride 1200 2.5 U 3.7 65 270 1200 550 250 Aromatic Compounds 120 2.5 U 3.7 65 270 1200 550 250 Aromatic Compounds 12.4 7.7 48 96 2300 2400 1700 48 1.2.4 7.61 5.6 15 140 1000 U 500 U 41 1.3-Dichlorobenzene 350 3.2 24 110 570 1000 U 500 U 420 1.4-Dichlorobenzene 200 2.5 U 2.0 U 2.0 84 1000 U 500 U 420 Lehorobenz	cis-1,2-Dichloroethene	2000		130	770	3900	10000	4900	1300
trans-1,2-Dichloroethene 100 U 2.6 3.2 7.4 30 1000 U 500 U 22 Trichloroethene (TCE) 12000 4800 220 500 3600 12000 64000 250 Aromatic Compounds 120 2.5 U 3.7 65 270 1200 550 25 Aromatic Compounds 5800 7.7 48 96 2300 2400 1700 48 1,2-Dichlorobenzene 210 2.5 U 5.6 15 140 1000 U 500 U 41 1,3-Dichlorobenzene 180 2.5 2.7 82 440 1000 U 500 U 42 Benzene 200 2.5 U 2.0 U 20 84 1000 U 500 U 22 Chlorobenzene 200 2.5 U 7.0 58 240 1000 U 500 U 24 Benzene 200 2.5 U 7.0 58	Methylene chloride (Dichloromethane)	350		2.0 U	5.0 U	25 U	1900	600	250 U
Trichloroethene (TCE) 12000 480 220 500 3600 120000 64000 250 Vinyl Chloride 120 2.5 U 3.7 65 270 1200 550 25 Aromatic Compounds T 48 96 2300 2400 1700 48 1,2,4-Trichlorobenzene 5800 7.7 48 96 2300 2400 1700 48 1,2-Dichlorobenzene 350 3.2 2.4 110 570 1000 U 500 U 40 1,3-Dichlorobenzene 180 2.5 27 82 440 1000 U 500 U 420 Enzene 200 2.5 U 7.0 58 240 1000 U 500 U 220 Benzene 200 2.5 U 7.0 58 240 1000 U 500 22 Benzene 200 2.5 U 2.5 4.9 200 240 110 50 Beta-BHC 3.1<									6400
Vinyl Chloride 120 2.5 U 3.7 65 270 1200 550 225 Aromatic Compounds Image: Compounds Im	trans-1,2-Dichloroethene	100 l	J 2.6	3.2	7.4	30	1000 U	500 U	250 U
Aromatic Compounds m	Trichloroethene (TCE)	12000	480	220	500	3600	120000	64000	25000
1,2,4-Trichlorobenzene 5800 7.7 48 96 2300 2400 1700 48 1,2-bichlorobenzene 210 2.5 U 5.6 15 140 1000 U 500 U 41 1,3-bichlorobenzene 350 3.2 24 110 570 1000 U 500 U 42 1,4-bichlorobenzene 180 2.5 27 82 440 1000 U 500 U 42 Benzene 200 2.5 U 2.0 U 20 84 1000 U 500 U 22 Chlorobenzene 200 2.5 U 7.0 58 240 1000 U 500 U 22 Chlorobenzene 200 2.5 U 7.0 58 240 1100 U 50 U 240 110 50 48 56 484 56 484 56 484 56 48 56 48 56 10 57 3.3 22 4		120	2.5 U	3.7	65	270	1200	550	250 U
1.2-Dichlorobenzene 210 2.5 U 5.6 15 140 1000 U 500 U 41 1.3-Dichlorobenzene 350 3.2 24 110 570 1000 U 500 U 76 1.4-Dichlorobenzene 180 2.5 27 82 440 1000 U 500 U 72 Benzene 200 2.5 U 2.0 U 20 84 1000 U 500 U 22 Chlorobenzene 200 2.5 U 7.0 58 240 1000 U 500 U 22 Chlorobenzene 200 2.5 U 7.0 58 240 1000 U 500 U 24 Alpha-BHC 28 0.21 2.5 4.9 200 240 110 50 beta-BHC 3.1 0.29 0.71 1.2 21 32 18 55 delta-BHC 0.96 U 0.064 4.2 1.3 16	Aromatic Compounds								
1.3-Dichlorobenzene 350 3.2 24 110 570 1000 U 500 U 76 1.4-Dichlorobenzene 180 2.5 27 82 440 1000 U 520 42 Benzene 200 2.5 U 2.0 U 20 84 1000 U 500 U 22 Chlorobenzene 200 2.5 U 7.0 58 240 1000 U 500 U 22 Pesticide Concentrations - SW846 8081 µg/L 200 2.5 U 7.0 58 240 1000 U 500 U 20 alpha-BHC 28 0.21 2.5 4.9 200 240 110 50 delta-BHC 3.1 0.29 0.71 1.2 21 32 18 5 delta-BHC 0.96 0.064 4.2 1.3 16 15 7.3 2 gamma-BHC (Lindane) 0.94 0.20 4.4 3.1 170 180 89 37 </td <td></td> <td>5800</td> <td>7.7</td> <td>48</td> <td>96</td> <td>2300</td> <td>2400</td> <td>1700</td> <td>4800</td>		5800	7.7	48	96	2300	2400	1700	4800
1.4-Dichlorobenzene 180 2.5 27 82 440 1000 U 520 42 Benzene 200 2.5 U 2.0 U 20 84 1000 U 500 U 22 Chlorobenzene 200 2.5 U 7.0 58 240 1000 U 500 U 28 Pesticide Concentrations - SW846 8081 µg/L 28 0.21 2.5 4.9 200 240 110 500 U 40 alpha-BHC 28 0.21 2.5 4.9 200 240 110 500 500 U 500 300 500 300 500	1,2-Dichlorobenzene	210	2.5 U	5.6	15	140	1000 U	500 U	4100
Benzene 200 2.5 U 2.0 U 20 84 1000 U 500 U 25 Chlorobenzene 200 2.5 U 7.0 58 240 1000 U 500 U 44 Pesticide Concentrations - SW846 8081 µg/L	1,3-Dichlorobenzene	350	3.2	24	110	570	1000 U	500 U	760
Benzene 200 2.5 U 2.0 U 20 84 1000 U 500 U 25 Chlorobenzene 200 2.5 U 7.0 58 240 1000 U 500 U 46 Pesticide Concentrations - SW846 8081 µg/L	1.4-Dichlorobenzene	180	2.5	27	82	440	1000 U	520	4200
Pesticide Concentrations - SW846 8081 μg/L L <thl< th=""> <thl< th=""> L L</thl<></thl<>	Benzene	200		2.0 U	20	84	1000 U	500 U	250 U
Pesticide Concentrations - SW846 8081 μg/L L <thl< th=""> <thl< th=""> L L</thl<></thl<>	Chlorobenzene	200	2.5 U	7.0	58	240	1000 U	500 U	460
beta-BHC 3.1 0.29 0.71 1.2 21 32 18 5 delta-BHC 0.96 0.064 4.2 1.3 16 15 7.3 2 gamma-BHC (Lindane) 0.94 0.20 4.4 3.1 170 180 89 37 Total Metal Concentrations - SW846 7470 µg/L		1							
beta-BHC 3.1 0.29 0.71 1.2 21 32 18 5 delta-BHC 0.96 0.064 4.2 1.3 16 15 7.3 2 gamma-BHC (Lindane) 0.94 0.020 4.4 3.1 170 180 89 37 Total Metal Concentrations - SW846 7470 µg/L	alpha-BHC	28	0.21	2.5	4.9	200	240	110	500
delta-BHC 0.96 U 0.064 4.2 1.3 16 15 7.3 2 gamma-BHC (Lindane) 0.94 U 0.20 4.4 3.1 170 180 89 37 Total Metal Concentrations - SW846 7470 µg/L						21		18	59
gamma-BHC (Lindane) 0.94 0.20 4.4 3.1 170 180 89 37 Total Metal Concentrations - SW846 7470 µg/L	delta-BHC	0.96	J 0.064	4.2	1.3	16	15	7.3	24 U
Mercury 3.81 21.5 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0.20 0 0 0.20 0 0.20 0 0 0 0 0 0 0 0	gamma-BHC (Lindane)								370
Total Flow 4th Quarter 2015 - gallons Image: Constraint of the second seco	Total Metal Concentrations - SW846 7470 μg/L								
Flow 226,483 414,255 19,707 84,556 206,323 471,260 385,143 8* Total Mass Removed 3rd Quarter 2015 - pounds 35.0 3.4 0.09 1.1 15.9 762.4 326.4 Aliphatic Compounds 13.2 0.0 0.018 0.3 6.5 9.5 7.2	Mercury	3.81	21.5	0.20	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Total Mass Removed 3rd Quarter 2015 - pounds 35.0 3.4 0.09 1.1 15.9 762.4 326.4 Aromatic Compounds 13.2 0.0 0.018 0.3 6.5 9.5 7.2	Total Flow 4th Quarter 2015 - gallons								
Aliphatic Compounds 35.0 3.4 0.09 1.1 15.9 762.4 326.4 Aromatic Compounds 13.2 0.0 0.018 0.3 6.5 9.5 7.2	Flow	226,483	414,255	19,707	84,556	206,323	471,260	385,143	81,289
Aromatic Compounds 13.2 0.0 0.018 0.3 6.5 9.5 7.2									
			-				-	326.4	23.2
	Aromatic Compounds	13.2	0.0	0.018	0.3	6.5	9.5	7.2	9.8
resucides 0.00 0.003 0.002 0.01 0.7 1.8 0.7	Pesticides	0.06	0.003	0.002	0.01	0.7	1.8	0.7	0.6
Mercury 0.01 0.075 0.0000 0.0001 0.000 0.0008 0.0006 0.	Mercury	0.01	0.075	0.0000	0.0001	0.000	0.0008	0.0006	0.0000

Table 3.5: December 15, 2015 Recovery Well Header Concentrations and 4th Quarter 2015 Mass Removal

Notes:

U - constituent not detected - reporting limit shown.

ug/L - micrograms per liter

Prepared by: T. Donnell 01/25/2016 Checked by: T. Englund 01/25/2016

Table 3.6: Constituent Mass Removal and Groundwater Extraction Summary (Dec 1997 to Present)

Quarter	Total										
	Alipha	tic VOCs	Arom	atic VOCs	Pes	sticides	Me	ercury	Total Groundwa	ter Extracted	
	ро	ounds	р	ounds	р	ounds	po	ounds	gallons		
Q1-98	NA		NA		NA		NA		210,000		
Q2-98	354.7		34.9578		0.15		0.16608		1,175,800		
Q3-98	580.4		16.397		4.87		0.31233		2,575,531		
Q4-98	1193.7		82.1497		5.17		0.15449		4,052,996		
1998 Total		2,129		133.50		10		0.63289		8,014,327	
Q1-99	790.3		24.3354		8.47		3.51375		4,233,520		
Q2-99	1019.7		17.0826		7.10		0.15335		3,991,584		
Q3-99	1117.9		77.0616		8.74		0.10204		5,219,208		
Q4-99	1016.3		36.4233		6.83		0.02489		6,366,934		
1999 Total		3,944		154.90		31		3.79403		19,811,246	
Q1-00	1247.1		72.3109		24.15		0.06115		6,757,603		
Q2-00	1411.3		106.858		10.27		0.05932		6,663,345		
Q3-00	907.8		103.288		18.67		0.05645		6,007,755		
Q4-00	1168.9		90.3489		9.61		0.01237		6,803,495		
2000 Total		4,735		372.81		63		0.18929		26,232,198	
Q1-01	1316.5		90.8135		6.72		0.05640		7,379,548		
Q2-01	2596.9		113.195		11.86		0.03898		8,474,363		
Q3-01 [a]	2384.7	[a]	105.46	[a]	11.08	[a]	0.03094	[a]	7,607,539		
Q4-01	575.1		63.3279		8.37		0.05329		5,642,388		
2001 Total		6,873		372.80		38		0.17960		29,103,83	
Q1-02	1266.9		53.4303		6.92		0.06152		6,580,672		
Q2-02	472.1		59.6619		6.69		0.07870		8,693,727		
Q3-02	1189.9		72.3968		6.04		0.06637		5,950,649		
Q4-02	443.8		38.5437		3.50		0.07369		5,385,584		
2002 Total		3,373		224.03		23		0.28027		26,610,632	
Q1-03	879.8		44.8224		3.47		0.58368		5,151,629		
Q2-03	1726.1		162.614		5.24		0.06155		7,276,723		
Q3-03	1459.9		89.6481		0.00		0.12051		6,700,727		
Q4-03	1593.7		68.184		5.21		0.05788		6,483,046		
2003 Total		5,660		365.27		14		0.82363		25,612,125	
Q1-04	1414.7		86.4896		4.85		0.03647		5,846,144		
Q2-04	1839.9		99.5038		5.77		0.05817		6,826,643		
Q3-04 [a]	1961.3	[a]	113.335	[a]	8.08	[a]	0.04811	[a]	6,494,680		
Q4-04	3609.9		83.9802		6.08		0.18456		8,127,002		
2004 Total		8,826		383.31		25		0.32732		27,294,469	

Table 3.6: Constituent Mass Removal and Groundwater Extraction Summary (Dec 1997 to Present)

Quarter				Constitue	nt Mass Rem	noved			Total Groundwater Extracted	
	Alipha	tic VOCs	Arom	atic VOCs	Pes	sticides	Me	ercury	Total Groundwa	ter Extracted
	ро	ounds	р	ounds	р	ounds	рс	ounds	gallons	
Q1-05 [a]	2591.7	[a]	71.5544	[a]	4.64	[a]	0.13792	[a]	6,490,183	
Q2-05	1131.5		38.9625		3.46		0.03594		5,910,497	
Q3-05 [a]	828.9	[a]	33.114	[a]	2.81	[a]	0.04407	[a]	7,113,517	
Q4-05	833.0		50.4396		6.69		0.08576		5,271,114	
2005 Total		5,385		194.07		18		0.30369		24,785,311
Q1-06	991.4		52.2367		3.55		0.02144		5,139,061	
Q2-06	1118.8		36.7004		4.43		0.03623		8,872,651	
Q3-06	1118.9		52.538		4.22		0.01536		8,253,291	
Q4-06	1118.0		59.4582		4.88		0.04032		8,959,291	
2006 Total		4,347		200.93		17		0.11336		31,224,294
Q1-07	1347.8		61.4375		4.04		0.02170		7,250,389	
Q2-07	1658.2		36.9582		4.19		0.04413		8,203,421	
Q3-07	1307.5		82.328		5.31		0.03239		6,553,414	
Q4-07	1500.9		85.3163		7.78		0.02990		5,741,687	
2007 Total		5,815		266.04		21		0.12812		27,748,911
Q1-08	887.1		47.5786		3.33		0.05402		6,394,472	
Q2-08	1221.4		49.3187		4.23		0.00961		6,750,450	
Q3-08	1600.6		89.449		6.74		0.00833		8,159,637	
Q4-08	1928.0		110.694		7.59		0.01118		9,010,318	
2008 Total		5,637		297.04		22		0.08315		30,314,877
Q1-09	1600.7		69.9005		5.66		0.00585		7,487,247	
Q2-09	1615.2		74.4036		5.65		0.01025		6,960,098	
Q3-09	1762.8		127.808		8.18		0.00885		8,806,214	
Q4-09	1608.7		107.754		30.36		0.02216		9,730,305	
2009 Total		6,587		379.87		50		0.04711		32,983,864
Q1-10	2136.5		93.543		5.73		0.00146		8,157,833	
Q2-10	1969.3		79.81		4.28		0.00523		7,255,838	
Q3-10	1609.0		81.4295		3.76		0.04101		7,532,651	
Q4-10	1711.1		94.2708		4.85		0.02593		7,127,476	
2010 Total		7,426		349.05		19		0.07362		30,073,798
Q1-11	1560.2		53.8423		3.79		0.02017		6,732,218	
Q2-11	1729.4		111.407		4.10		0.01348		5,811,286	
Q3-11	1618.2		82.0094		5.30		0.02617		9,060,804	
Q4-11	1551.8		99.6175		5.18		0.00878		6,319,658	
2011 Total		6,460		346.88		18		0.06860		27,923,966

Table 3.6: Constituent Mass Removal and Groundwater Extraction Summary

Quarter				· · · · ·	C 1997 to P nt Mass Remo					
	Aliphati	c VOCs	Aroma	tic VOCs		icides	Mer	cury	Total Groundwater Extracted gallons	
	pou	nds	ро	ounds	ро	unds		nds		
Q1-12	1483.9		57.354		4.10		0.00569		8,474,213	
Q2-12	1561.5		106.072		4.92		0.00880		7,582,966	
Q3-12	3464.2		146.031		7.47		0.00535		6,043,496	
Q4-12	1398.7		119.249		4.98		0.00183		5,169,991	
2012 Total		7,908		428.71		21		0.02167		27,270,666
Q1-13	1632.4		100.649		3.33		0.00106		3,486,167	
Q2-13	316.9		48.8031		1.92		0.00129		2,581,033	
Q3-13	754.8		47.8548		2.31		0.00065		2,271,761	
Q4-13	1064.1		64.5173		6.00		0.00219		3,471,228	
2013 Total		3,768		261.82		14		0.00519		11,810,189
Q1-14	1115.9		51.6107		4.33		0.00024		2,438,406	
Q2-14	1024.1		65.0017		4.41		0.13581		3,182,334	
Q3-14	1230.4		80.2663		4.13		0.10278		3,414,832	
Q4-14	1581.5		66.8357		7.86		0.06162		2,804,511	
2014 Total		4,952		263.71		21		0.30046		11,840,083
Q1-15	648.09		55.9612		2.96		0.06265		1,552,869	
Q2-15	546.10		51.3919		2.69		0.05781		1,890,659	
Q3-15	632.42		83.0847		3.03		0.02029		2,416,844	
Q4-15	1167.5		46.4160		3.97		0.08380		1,889,016	
2015 Total		2,994		236.85		13		0.22455		7,749,387
SYSTEM TOTALS		96,818		5,232		437		7.6		426,404,182

[a] Estimated loading based on replication of previous quarter's constituent concentrations. Flow data are actual for each quarter

Prepared by: A. Nelson 02/29/2016 Checked by: S. Gallagher 03/02/2016

		Sample	Calculation	Sample	Calculation	Calculation
	POTW Permit	AIR	AIR STRIPPER	AIR	AIR STRIPPER	AIR STRIPPER
	Daily Maximum	STRIPPER	INFLUENT LOADING	STRIPPER	EFFLUENT LOADING	REMOVAL
Sample Location:		INFLUENT	(LB/DAY)	EFFLUENT	(LB/DAY)	EFFICIENCY (%)
Sample Date:	(lbs/day)	3/24/2015		3/24/2015		3/24/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L Aliphatic Compounds						
1.1.1-Trichloroethane	NA	250 U	NA	1.0 U	NA	NA
1.1.2.2-Tetrachloroethane	7.0	2900	0.57	46	0.01	98.4%
1,1,2-Trichloroethane	NA	250 U	NA	1.0 U	NA	98.4 % NA
1.1-Dichloroethene	NA	250 U	NA	1.0 U	NA	NA
Carbon tetrachloride	NA	250 U	NA	1.0 U	NA	NA
Chloromethane (Methyl chloride)	NA	250 U	NA	1.0 U	NA	NA
cis-1,2-Dichloroethene	NA	2100	NA	13	NA	99.4%
Methylene chloride (Dichloromethane)	NA	280	NA	2.0	NA	99.3%
Tetrachloroethene (PCE)	NA	10000	NA	23	NA	99.8%
trans-1.2-Dichloroethene	NA	250 U	NA	1.0 U	NA	NA
Trichloroethene (TCE)	0.25	25000	4.91	89	0.017	99.6%
Vinvl Chloride	NA	250 U	NA	1.0 U	NA	NA
Aromatic Compounds						
1.2.4-Trichlorobenzene	NA	790	NA	12	NA	98.5%
1,2-Dichlorobenzene	NA	250 U	NA	3.0	NA	NA
1,3-Dichlorobenzene	NA	250 U	NA	1.1	NA	NA
1,4-Dichlorobenzene	NA	280	NA	3.4	NA	98.8%
Benzene	NA	250 U	NA	1.0 U	NA	NA
Chlorobenzene	NA	250 U	NA	1.0 U	NA	NA
Pesticide Concentrations - SW846 8081 µg/L						
alpha-BHC	NA	78	0.02	60	0.01	23.1%
beta-BHC	NA	8.5	0.00	8.9	0.00	NA
delta-BHC	NA	5.9	0.00	5.9	0.00	0.0%
gamma-BHC (Lindane)	NA	58	0.01	46	0.01	20.7%
Total BHCs	0.07		0.03		0.02	
Total Metal Concentrations - SW846 7470 ug/L						
Mercury	0.183	0.5	0.00010	0.68	0.00013	NA
Daily Flow (gallons/day)						
Flow	NA	23,493	NA	23,493	NA	NA

Table 3.7: March 24, 2015 GWTS Monitoring Data and Performance Calculation

Notes:

U - constituent not detected - reporting limit shown.

ug/L - micrograms per liter

mg/L - milligrams per liter

NA - not applicable

Sample Location: Sample Date:	Sample BETWEE CARBON VESSEL 3/24/201	N N S	BETWEEN CARBON VESSELS LOADING (LB/DAY)	Calculation CARBON VESSEL 1 REMOVAL EFFICIENCY (%) 3/24/2015	Sample SYSTEM EFFLUENT 3/24/2015		EM EFFLUENT DING (LB/DAY)	Calculation CARBON VESSEL 2 REMOVAL EFFICIENCY (%) 3/24/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						_		
Aliphatic Compounds								
1,1,1-Trichloroethane	1.0	U	NA	NA	1.0 L	J	NA	NA
1.1.2.2-Tetrachloroethane	12	•	0.00	73.9%	2.2		0.00	81.7%
1.1.2-Trichloroethane	1.0	U	NA	NA		J	NA	NA
1.1-Dichloroethene	1.0	U	NA	NA		J	NA	NA
Carbon tetrachloride	1.0	U	NA	NA	1.0 L		NA	NA
Chloromethane (Methyl chloride)	1.0	U	NA	NA		J	NA	NA
cis-1,2-Dichloroethene	4.8		NA	63.1%	1.1		NA	77.1%
Methylene chloride (Dichloromethane)	1.2		NA	40.0%	1.3		NA	NA
Tetrachloroethene (PCE)	3.4		NA	85.2%	1.0 L	J	NA	70.6%
trans-1,2-Dichloroethene	1.0	U	NA	NA	1.0 L	J	NA	NA
Trichloroethene (TCE)	15		0.00	83.1%	1.4		0.00027	90.7%
Vinyl Chloride	1.0	U	NA	NA	1.0 L	J	NA	NA
Aromatic Compounds								
1,2,4-Trichlorobenzene	2.3		NA	80.8%	1.0 l	J	NA	56.5%
1,2-Dichlorobenzene	1.0	U	NA	66.7%	1.0 L	J	NA	NA
1,3-Dichlorobenzene	1.0	U	NA	9.1%	1.0 L	J	NA	NA
1,4-Dichlorobenzene	1.0	U	NA	70.6%	1.0 l	J	NA	NA
Benzene	1.0	U	NA	NA	1.0 L	J	NA	NA
Chlorobenzene	1.0	U	NA	NA	1.0 l	J	NA	NA
Pesticide Concentrations - SW846 8081 µg/L								
alpha-BHC	0.29		0.00	99.5%	0.076		0.000	NA
beta-BHC	0.76		0.00	NA	0.13		0.000	82.9%
delta-BHC	0.47		0.00	92.0%	0.047 L	J	0.000	90.0%
gamma-BHC (Lindane)	0.18		0.00	99.6%	0.047 L		0.000	73.9%
Total BHCs			0.00			1	0.000	
Total Metal Concentrations - SW846 7470 ug/L								
Mercury	0.31		0.00006	54.4%	0.25		0.00005	19.4%
	0.01		0.00000	0	0.20			
Daily Flow (gallons/day)								
Flow	23,493	3	NA	NA	23,493		NA	NA

Table 3.7: March 24, 2015 GWTS Monitoring Data and Performance Calculation

Notes:

U - constituent not detected - reporting limit shown.

ug/L - micrograms per liter mg/L - milligrams per liter

NA - not applicable

Prepared by: R. Yardley 06/10/2015 Checked by: A. Nelson 07/30/2015

		Sample	Calculation	Sample	Calculation	Calculation
	POTW Permit	AIR	AIR STRIPPER	AIR	AIR STRIPPER	AIR STRIPPER
	Daily Maximum	STRIPPER	INFLUENT LOADING	STRIPPER	EFFLUENT LOADING	REMOVAL
Sample Location:		INFLUENT	(LB/DAY)	EFFLUENT	(LB/DAY)	EFFICIENCY (%)
Sample Date:	(lbs/day)	6/16/2015	6/16/2015	6/16/2015	6/16/2015	6/16/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	NA	100 U	NA	1.0 U	NA	NA
1,1,2,2-Tetrachloroethane	7.0	3400	0.67	42	0.01	98.8%
1,1,2-Trichloroethane	NA	100 U	NA	1.0 U	NA	NA
1,1-Dichloroethene	NA	100 U	NA	1.0 U	NA	NA
Carbon tetrachloride	NA	100	NA	1.0 U	NA	99.0%
Chloromethane (Methyl chloride)	NA	100 U	NA	1.0 U	NA	NA
cis-1,2-Dichloroethene	NA	2400	NA	12	NA	99.5%
Methylene chloride (Dichloromethane)	NA	180	NA	1.2	NA	99.3%
Tetrachloroethene (PCE)	NA	9500	NA	14	NA	99.9%
trans-1,2-Dichloroethene	NA	100 U	NA	1.0 U	NA	NA
Trichloroethene (TCE)	0.25	27000 D	5.33	64	0.013	99.8%
Vinyl Chloride	NA	220	NA	1.0 U	NA	99.5%
Aromatic Compounds						
1,2,4-Trichlorobenzene	NA	1200	NA	1.7	NA	99.9%
1,2-Dichlorobenzene	NA	100 U	NA	1.0 U	NA	NA
1,3-Dichlorobenzene	NA	140	NA	1.0 U	NA	99.3%
1,4-Dichlorobenzene	NA	200	NA	1.0 U	NA	99.5%
Benzene	NA	100 U	NA	1.0 U	NA	NA
Chlorobenzene	NA	110	NA	1.0 U	NA	99.1%
Destiside Concentrations SW046 9091 us/						
Pesticide Concentrations - SW846 8081 μg/L alpha-BHC	NA	70	0.01	0.47 U	0.0001	99.3%
beta-BHC	NA	8.1	0.00	6.6	0.0001	99.3% NA
delta-BHC	NA	5.7	0.00	5.4	0.001	5.3%
gamma-BHC (Lindane)	NA	54	0.00	1.4	0.000	97.4%
Total BHCs	0.07	137.8	0.03	13.87	0.000	91.470
Total Metal Concentrations - SW846 7470 ug/L	0.07	137.0	0.03	13.07	0.003	
	0.183	1.01	0.00020	1 10	0.00024	NA
Mercury	0.183	1.01	0.00020	1.19	0.00024	NA
Daily Flow (gallons/day)						
Flow	NA	23.627	NA	23.627	NA	NA

Table 3.8: June 16, 2015 GWTS Monitoring Data and Performance Calculation

Notes:

U - constituent not detected - reporting limit shown.

D - concentration is the result of a dilution due to exceeding the calibration range.

ug/L - micrograms per liter

NA - not applicable

Sample Location:	Sample BETWEEN CARBON VESSELS	v	Calculation ETWEEN CARBON (ESSELS LOADING (LB/DAY)	Calculation CARBON VESSEL 1 REMOVAL EFFICIENCY (%)	Sample SYSTEM EFFLUENT	Calculation SYSTEM EFFLUENT LOADING (LB/DAY)	Calculation CARBON VESSEL 2 REMOVAL EFFICIENCY (%)
Sample Date:	6/16/2015		6/16/2015	6/16/2015	6/16/2015	6/16/2015	6/16/2015
		_					
Volatile Organic Compound Concentrations - SW846 8260C µg/L Aliphatic Compounds		-					
1,1,1-Trichloroethane	1.0	U	NA	NA	1.0 U	NA	NA
1.1.2.2-Tetrachloroethane	27	0	0.01	35.7%	1.0 0	0.003	40.7%
1,1,2-Trichloroethane		U	NA	NA	1.0 U	NA	NA
1.1-Dichloroethene		U	NA	NA	1.0 U	NA	NA
Carbon tetrachloride		U	NA	NA	1.0 U	NA	NA
Chloromethane (Methyl chloride)	-	U	NA	NA	1.0 U	NA	NA
cis-1.2-Dichloroethene	1.0	<u> </u>	NA	NA	11	NA	8.3%
Methylene chloride (Dichloromethane)		U	NA	16.7%	1.0 U	NA	NA
Tetrachloroethene (PCE)	6.7	<u> </u>	NA	52.1%	2.3	NA	65.7%
trans-1.2-Dichloroethene		U	NA	NA	1.0 U	NA	NA
Trichloroethene (TCE)	46	-	0.01	28.1%	20	0.004	56.5%
Vinyl Chloride	1.0	U	NA	NA	1.0 U	NA	NA
Aromatic Compounds							
1,2,4-Trichlorobenzene	1.0	U	NA	41.2%	1.0 U	NA	NA
1.2-Dichlorobenzene	1.0	U	NA	NA	1.0 U	NA	NA
1,3-Dichlorobenzene	1.0	U	NA	NA	1.0 U	NA	NA
1,4-Dichlorobenzene	1.0	U	NA	NA	1.0 U	NA	NA
Benzene	1.0	U	NA	NA	1.0 U	NA	NA
Chlorobenzene	1.0	U	NA	NA	1.0 U	NA	NA
Pesticide Concentrations - SW846 8081 µg/L							
alpha-BHC	9.3		0.002	NA	4.0	0.001	57.0%
beta-BHC	2.8		0.001	NA	0.84	0.0002	70.0%
delta-BHC	1.6		0.0003	70.4%	0.44	0.0001	72.5%
gamma-BHC (Lindane)	7.4		0.001	NA	2.7	0.001	63.5%
Total BHCs	21.1		0.004		7.98	0.002	
Total Metal Concentrations - SW846 7470 ug/L							
Mercury	0.82		0.00016	31.1%	0.59	0.00012	28.0%
Daily Flow (gallons/day)							
Flow	23,627		NA	NA	23,627	NA	NA

Table 3.8: June 16, 2015 GWTS Monitoring Data and Performance Calculation

Notes:

U - constituent not detected - reporting limit shown.

D - concentration is the result of a dilution due to exceeding the calibration range.

ug/L - micrograms per liter

NA - not applicable

Prepared by: S. Gallagher 09/10/2015 Checked by: T. Englund 09/10/2015

	POTW Permit	Sample AIR	Calculation AIR STRIPPER	Sample AIR	Calculation AIR STRIPPER	Calculation AIR STRIPPER
	Daily Maximum	STRIPPER	INFLUENT LOADING	STRIPPER	EFFLUENT LOADING	REMOVAL
Sample Location:	Limit	INFLUENT	(LB/DAY)	EFFLUENT	(LB/DAY)	EFFICIENCY (%)
Sample Date:	(lbs/day)	10/6/2015	10/6/2015	10/6/2015	10/6/2015	10/6/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	NA	100 U	NA	50 U	NA	NA
1,1,2,2-Tetrachloroethane	7.0	2100	0.53	1800	0.46	14.3%
1,1,2-Trichloroethane	NA	100 U	NA	50 U	NA	NA
1,1-Dichloroethene	NA	100 U	NA	50 U	NA	NA
Carbon tetrachloride	NA	100 U	NA	50 U	NA	50.0%
Chloromethane (Methyl chloride)	NA	100 U	NA	50 U	NA	NA
cis-1,2-Dichloroethene	NA	1400	NA	780	NA	44.3%
Methylene chloride (Dichloromethane)	NA	150	NA	73	NA	51.3%
Tetrachloroethene (PCE)	NA	4600	NA	1800	NA	60.9%
trans-1,2-Dichloroethene	NA	100 U	NA	50 U	NA	NA
Trichloroethene (TCE)	0.25	12000	3.05	5200	1.32	56.7%
Vinyl Chloride	NA	140	NA	50 U	NA	64.3%
Aromatic Compounds						
1,2,4-Trichlorobenzene	NA	500	NA	520	NA	NA
1,2-Dichlorobenzene	NA	100 U	NA	51	NA	NA
1,3-Dichlorobenzene	NA	130	NA	69	NA	46.9%
1,4-Dichlorobenzene	NA	220	NA	110	NA	50.0%
Benzene	NA	100 U	NA	50 U	NA	NA
Chlorobenzene	NA	100 U	NA	50 U	NA	NA
Pesticide Concentrations - SW846 8081 µg/L						
alpha-BHC	NA	79	0.02	2.9	0.0007	96.3%
beta-BHC	NA	7.8	0.00	7.4	0.002	5.1%
delta-BHC	NA	5.7	0.00	6.3	0.002	NA
gamma-BHC (Lindane)	NA	58	0.01	1.6	0.000	97.2%
Total BHCs	0.07	150.5	0.04	18.2	0.005	
Total Metal Concentrations - SW846 7470 ug/L						
Mercury	0.183	2.11	0.00054	2.24	0.00057	NA
Daily Flow (gallons/day)						
Flow	NA	30,358	NA	30,358	NA	NA

Table 3.9: October 6, 2015 GWTS Monitoring Data and Performance Calculation

Notes:

U - constituent not detected - reporting limit shown.

ug/L - micrograms per liter

NA - not applicable

	Sample BETWEE		Calculation BETWEEN CARBON	Calculation CARBON VESSEL	Sample	Calculation	Calculation CARBON VESSEL
	CARBO		VESSELS LOADING	1 REMOVAL	SYSTEM	SYSTEM EFFLUENT	2 REMOVAL
Sample Location:	VESSEL	-	(LB/DAY)	EFFICIENCY (%)	EFFLUENT	LOADING (LB/DAY)	EFFICIENCY (%)
Sample Date:	10/6/201	-	10/6/2015	10/6/2015	10/6/2015	10/6/2015	10/6/2015
		-					
Volatile Organic Compound Concentrations - SW846 8260C µg/L							
Aliphatic Compounds							
1,1,1-Trichloroethane	25	U	NA	NA	5.0 U	NA	NA
1,1,2,2-Tetrachloroethane	1500		0.38	16.7%	510	0.129	66.0%
1,1,2-Trichloroethane	25	U	NA	NA	7.4	NA	NA
1,1-Dichloroethene	25	U	NA	NA	5.0 U	NA	NA
Carbon tetrachloride	25	U	NA	NA	5.0 U	NA	NA
Chloromethane (Methyl chloride)	25	U	NA	NA	5.0 U	NA	NA
cis-1,2-Dichloroethene	460		NA	41.0%	130	NA	71.7%
Methylene chloride (Dichloromethane)	34		NA	53.4%	13	NA	61.8%
Tetrachloroethene (PCE)	1100		NA	38.9%	260	NA	76.4%
trans-1,2-Dichloroethene	25	U	NA	NA	5.0 U	NA	NA
Trichloroethene (TCE)	3300		0.84	36.5%	820	0.208	75.2%
Vinyl Chloride	27		NA	NA	6.2	NA	77.0%
Aromatic Compounds							
1,2,4-Trichlorobenzene	210		NA	59.6%	17	NA	91.9%
1,2-Dichlorobenzene	25	U	NA	NA	5.0 U	NA	NA
1,3-Dichlorobenzene	62		NA	10.1%	5.6	NA	91.0%
1,4-Dichlorobenzene	85		NA	22.7%	8.5	NA	90.0%
Benzene	25	U	NA	NA	6.4	NA	74.4%
Chlorobenzene	32		NA	NA	5.0 U	NA	NA
Pesticide Concentrations - SW846 8081 µg/L							
alpha-BHC	29		0.007	NA	31	0.008	NA
beta-BHC	6.7		0.002	9.5%	5.1	0.0013	23.9%
delta-BHC	4.4		0.0011	30.2%	2.7	0.0007	38.6%
gamma-BHC (Lindane)	21		0.005	NA	22	0.006	NA
Total BHCs	61.1		0.016		60.8	0.015	
Total Metal Concentrations - SW846 7470 ug/L							
Mercury	0.92		0.00023	58.9%	0.53	0.00013	42.4%
Daily Flow (gallons/day)							
Flow	30,358	3	NA	NA	30,358	NA	NA

Table 3.9: October 6, 2015 GWTS Monitoring Data and Performance Calculation

Notes:

U - constituent not detected - reporting limit shown. ug/L - micrograms per liter NA - not applicable

Prepared by: T. Donnell 12/02/2015 Checked by: T. Englund 12/02/2015

Sample Location: Sample Date:	POTW Permit Daily Maximum Limit (Ibs/day)	Sample AIR STRIPPER INFLUENT 12/15/2015	Calculation AIR STRIPPER INFLUENT LOADING (LB/DAY) 12/15/2015	Sample AIR STRIPPER EFFLUENT 12/15/2015	Calculation AIR STRIPPER EFFLUENT LOADING (LB/DAY) 12/15/2015	Calculation AIR STRIPPER REMOVAL EFFICIENCY (%) 12/15/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	NA	250 U	NA	1.0 U	NA	NA
1,1,2,2-Tetrachloroethane	7.0	4300	0.80	150	0.03	96.5%
1,1,2-Trichloroethane	NA	250 U	NA	1.8	NA	NA
1,1-Dichloroethene	NA	250 U	NA	1.0 U	NA	NA
Carbon tetrachloride	NA	250 U	NA	1.0 U	NA	NA
Chloromethane (Methyl chloride)	NA	250 U	NA	1.0 U	NA	NA
cis-1,2-Dichloroethene	NA	3300	NA	37	NA	98.9%
Methylene chloride (Dichloromethane)	NA	340	NA	5.8	NA	98.3%
Tetrachloroethene (PCE)	NA	12000	NA	37	NA	99.7%
trans-1,2-Dichloroethene	NA	250 U	NA	1.0 U	NA	NA
Trichloroethene (TCE)	0.25	33000	6.10	180	0.03	99.5%
Vinyl Chloride	NA	360	NA	1.0 U	NA	99.7%
Aromatic Compounds						
1,2,4-Trichlorobenzene	NA	1300	NA	17	NA	98.7%
1,2-Dichlorobenzene	NA	250	NA	3.6	NA	98.6%
1,3-Dichlorobenzene	NA	250 U	NA	2.9	NA	98.8%
1,4-Dichlorobenzene	NA	450	NA	6.2	NA	98.6%
Benzene	NA	250 U	NA	1.6	NA	NA
Chlorobenzene	NA	250 U	NA	2.5	NA	NA
Pesticide Concentrations - SW846 8081 µg/L						
alpha-BHC	NA	140	0.03	79	0.0146	43.6%
beta-BHC	NA	18	0.003	18	0.003	0.0%
delta-BHC	NA	8.8	0.002	9.2	0.002	NA
gamma-BHC (Lindane)	NA	110	0.02	67	0.012	39.1%
Total BHCs	0.07		0.05		0.032	
Total Metal Concentrations - SW846 7470 ug/L						
Mercury	0.183	0.65	0.00012	0.51	0.00009	21.5%
Daily Flow (gallons/day)						
Flow	NA	22,122	NA	22,122	NA	NA

Table 3.10: December 15, 2015 GWTS Monitoring Data and Performance Calculation

Notes:

U - constituent not detected - reporting limit shown.

ug/L - micrograms per liter

NA - not applicable

	Sample BETWEEN CARBON		Calculation BETWEEN CARBON	Calculation CARBON VESSEL 1 REMOVAL	Sample SYSTEM	Calculation SYSTEM EFFLUENT	Calculation CARBON VESSEL 2 REMOVAL
O-multi La satisma			VESSELS LOADING	-	EFFLUENT	LOADING (LB/DAY)	-
Sample Location:	VESSEL	-	(LB/DAY)	EFFICIENCY (%)	40/45/0045	12/15/2015	EFFICIENCY (%)
Sample Date:	12/15/201	5	12/15/2015	12/15/2015	12/15/2015	12/15/2015	12/15/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L							
Aliphatic Compounds		_					
1,1,1-Trichloroethane	1.0	U	NA	NA	1.0 U	NA	NA
1.1.2.2-Tetrachloroethane	11	0	0.002	92.7%	1.0 U	0.0002	90.9%
1.1.2-Trichloroethane	1.0	U	NA	44.4%	1.0 U		NA
1.1-Dichloroethene	1.0	U	NA	NA	1.0 U	NA	NA
Carbon tetrachloride	1.0	U	NA	NA	1.0 U	NA	NA
Chloromethane (Methyl chloride)	1.0	U	NA	NA	1.0 U		NA
cis-1.2-Dichloroethene	1.4		NA	96.2%	1.0 U	NA	28.6%
Methylene chloride (Dichloromethane)	1.0	U	NA	82.8%	1.0 U		NA
Tetrachloroethene (PCE)	1.7	-	NA	95.4%	1.0 U		41.2%
trans-1,2-Dichloroethene	1.0	U	NA	NA	1.0 U	NA	NA
Trichloroethene (TCE)	6.6		0.001	96.3%	1.0 U	0.0002	84.8%
Vinyl Chloride	1.0	U	NA	NA	1.0 U	NA	NA
Aromatic Compounds							
1,2,4-Trichlorobenzene	1.0	U	NA	94.1%	1.0 U	NA	NA
1,2-Dichlorobenzene	1.0	U	NA	72.2%	1.0 U	NA	NA
1,3-Dichlorobenzene	1.0	U	NA	65.5%	1.0 U	NA	NA
1,4-Dichlorobenzene	1.0	U	NA	83.9%	1.0 U	NA	NA
Benzene	1.0	U	NA	37.5%	1.0 U	NA	NA
Chlorobenzene	1.0	U	NA	60.0%	1.0 U	NA	NA
Pesticide Concentrations - SW846 8081 µg/L							
alpha-BHC	1.1		0.0002	98.6%	0.39	0.0001	64.5%
beta-BHC	0.39		0.0001	97.8%	0.070	0.00001	82.1%
delta-BHC	0.24	U	0.00004	97.4%	0.048 U	0.00001	NA
gamma-BHC (Lindane)	0.77		0.0001	98.9%	0.23	0.00004	70.1%
Total BHCs			0.0005			0.0001	
Total Metal Concentrations - SW846 7470 ug/L							
Mercury	0.20	U	0.00004	60.8%	0.20 U	0.00004	0.0%
Daily Flow (gallons/day)							
Flow	22,122	2	NA	NA	22,122	NA	NA

Table 3.10: December 15, 2015 GWTS Monitoring Data and Performance Calculation

Notes:

U - constituent not detected - reporting limit shown. ug/L - micrograms per liter NA - not applicable

Prepared by: T. Donnell 01/25/2016 Checked by: T. Englund 01/25/2016

	A-Zone Bottom	Reference Point		2015
Well	Elevation	Elevation	Depth to Water	Water Elevation ³
	(feet)	(feet)	(feet btoc)	(feet)
A-ZONE - OLIN			(
OBA-1A	562.33	570.67	3.91	566.76
OBA-2A	561.32	572.54	DRY	561.32
OBA-3A	552.36	572.07	15.19	556.88
OBA-4A	558.34	572.42	11.02	561.40
OBA-5A	557.72	571.72	7.35	564.37
OBA-6A	561.01	570.17	5.04	565.13
OBA-7A	562.71	573.39	7.05	566.34
OBA-8A	559.59	572.49	10.45	562.04
OBA-9A	558.01	569.24	7.01	562.23
OBA-9AR	557.28	570.22	12.98	557.24
OBA-10A	552.15	568.39	5.93	562.46
OBA-11A	558.76	572.83	13.12	559.71
OBA-14A	552.44	570.67	13.41	557.26
OBA-15A	551.06	572.59	15.16	557.43
OBA-16A	560.42	573.26	10.20	563.06
OBA-18A	559.18	573.47	13.15	560.32
OBA-19A	558.08	573.86	10.70	563.16
OBA-23A	560.94	570.19	7.69	562.50
OBA-24A	557.76	568.95	6.09	562.86
OBA-25A	558.07	569.02	5.01	564.01
OBA-26A	557.28	569.55	6.29	563.26
PN-1A	560.21	570.51	6.40	564.11
PN-2A	561.41	570.64	7.26	563.38
PN-3A	560.12	571.80	NM	NM
PN-4A	558.94	568.35	6.70	561.65
PN-5A	558.95	568.55	6.55	562.00
PN-6A	559.06	568.43	6.79	561.64
PN-7A	558.52	568.23	NM	NM
PN-8A	557.53	568.28	4.35	563.93
PN-9A	558.97	570.74	10.24	560.50
PN-10A	561.35	570.11	6.36	563.75
PN-11A	557.78	567.49	4.95	562.54
PN-12A	558.85	570.07	4.81	565.26
PN-13A	559.98	573.25	8.45	564.80
PN-14A	560.62	573.30	8.31	564.99
PN-15A	559.44	570.69	6.75	563.94
PN-16A	560.17	570.44	6.45	563.99
PN-17A	560.32	570.55	5.06	565.49
PN-18A	561.55	570.23	6.00	564.23
PN-19A	562.00	570.74	7.33	563.41
PN-20A	558.35	570.07	9.28	560.79
PN-21A	558.77	569.48	4.65	564.83
Gill Creek Stilling Well ¹	NA	571.48	NA	562.08

Well	A-Zone Bottom	Reference Point	4/8/2015	
	Elevation (feet)	Elevation (feet)	Depth to Water (feet btoc)	Water Elevation ³ (feet)
A-ZONE - SOLVENT ⁶			(
OW-5A	NA	573.05	11.90	561.15
OW-6A	NA	572.10	9.66	562.44
OW-20A	NA	572.62	11.95	560.67
OW-21A	NA	569.33	DRY	DRY
OW-22A	NA	570.68	5.72	564.96
A/B-ZONE ^{4,5}				
PR-1	561.70	572.29	7.81	564.48
PR-1-PZ	561.70	571.15	6.55	564.60
PR-2	561.17	572.21	13.75	558.46
PR-2-PZ	561.17	572.17	15.05	557.12
PR-3	557.65	572.39	15.45	556.94
PR-3-PZ	557.65	571.69	14.26	557.43
PR-4	556.58	569.66	14.05	555.61
PR-4-PZ	556.58	569.65	13.50	556.15
PR-5	558.47	570.18	13.08	557.10
PR-5-PZ	558.47	569.23	11.68	557.55
PR-6	559.35	568.28	8.34	559.94
PR-7	558.56	568.57	7.66	560.91
PR-8	558.91	567.97	8.70	559.27
PR-9	556.16	568.39	8.69	559.70
PR-10	558.38	568.16	NM	NM
PR-11	558.31	567.53	3.42	564.11
PR-12	558.37	569.28	12.27	557.01
PR-13	559.15	568.69	10.83	557.86
PR-14	558.59	568.60	7.23	561.37
RW-1	560.93	573.22	15.11	558.11
RW-1-PZ	560.93	572.33	14.19	558.14
RW-2	559.03	572.01	15.03	556.98
RW-2-PZ	559.03	571.76	14.84	556.92
RW-3	556.69	569.40	12.44	556.96
RW-3-PZ	556.69	569.37	12.39	556.98
RW-4	557.05	569.27	12.38	556.89
RW-4-PZ	557.05	569.33	12.47	556.86
RW-5	556.81	569.28	12.17	557.11
RW-5-PZ	556.81	569.24	12.20	557.04
B-ZONE ⁵				
OBA-1B	NA	570.35	14.96	555.39
OBA-2B	NA	572.63	15.45	557.18
OBA-4B	NA	573.03	14.41	558.62
OBA-5B	NA	572.29	12.11	560.18
OBA-6B	NA	570.31	5.05	565.26
OBA-7B	NA	573.97	9.55	564.42
OBA-8B	NA	572.64	14.01	558.63

Well	A-Zone Bottom	Reference Point	4/8/2015	
	Elevation	Elevation	Depth to Water	Water Elevation ³
	(feet)	(feet)	(feet btoc)	(feet)
B-ZONE CONTINUED ⁵				
OBA-11B	NA	572.87	15.65	557.22
OBA-14B	NA	570.76	13.69	557.07
OBA-16B	NA	572.99	15.31	557.68
OBA-23B	NA	570.04	11.74	558.30
OBA-24B	NA	568.76	11.21	557.55
OBA-25B	NA	568.93	11.15	557.78
OBA-26B	NA	569.65	11.80	557.85
PN-1B	NA	570.32	11.91	558.41
PN-2B	NA	570.44	13.25	557.19
PN-3B	NA	571.73	NM	NM
PN-4B	NA	568.46	11.24	557.22
PN-5B	NA	568.58	11.44	557.14
PN-6B	NA	568.56	11.42	557.14
PN-7B	NA	568.45	NM	NM
PN-8B	NA	567.85	10.81	557.04
PN-9B	NA	570.68	13.43	557.25
PN-10B	NA	571.15	12.99	558.16
PN-11B	NA	567.78	10.18	557.60
PN-12B	NA	570.00	12.15	557.85
PN-13B	NA	573.24	15.41	557.83
PN-14B	NA	573.30	9.20	564.10
PN-15B	NA	570.70	13.05	557.65
PN-16B	NA	570.36	9.35	561.01
PN-17B	NA	570.54	12.05	558.49
PN-18B	NA	570.50	11.73	558.77
PN-19B	NA	570.64	10.91	559.73
PN-20B	NA	569.70	12.64	557.06
PN-21B	NA	569.39	10.18	559.21
PN-22B	NA	569.08	NM	NM
PN-23B	NA	568.90	NM	NM
PN-24B	NA	570.87	13.50	557.37
B-ZONE - SOLVENT⁶				
PW-3B	NA	571.21	18.20	553.01
PW-4B	NA	569.72	13.29	556.43
OW-4B	NA	570.55	13.05	557.50
OW-14B	NA	570.87	13.82	557.05
OW-15B	NA	569.78	12.27	557.51
OW-22B	NA	570.90	13.72	557.18
OW-23B	NA	569.67	12.66	557.01
OW-24B	NA	570.36	13.05	557.31
OW-25B	NA	570.90	13.79	557.11
OW-31B	NA	570.14	12.89	557.25
OW-32B	NA	569.99	12.55	557.44
OW-33B	NA	569.55	12.32	557.23

	A-Zone Bottom Reference Point		4/8/2015	
Well	Elevation (feet)	Elevation (feet)	Depth to Water (feet btoc)	Water Elevation ³ (feet)
C-ZONE			(1000 1000)	()
OBA-1C	NA	570.41	9.13	561.28
OBA-4C	NA	573.05	16.03	557.02
OBA-7C	NA	574.30	20.05	554.25
OBA-14C	NA	570.15	15.40	554.75
OBA-15B	NA	573.13	16.05	557.08
CD-ZONE				
OBA-2C	NA	572.43	17.61	554.82
OBA-3C	NA	572.67	18.51	554.16
OBA-5C	NA	572.01	18.09	553.92
OBA-6C	NA	570.35	15.34	555.01
OBA-8C	NA	573.14	22.04	551.10
OBA-11C	NA	572.94	15.55	557.39
Olin Production Well ²	NA	NA	502	554.9

Notes:

1. The Gill Creek Stilling Well is monitored with a dedicated level transducer which collects hourly elevation measurements. The water elevation shown and used to prepare the A-Zone potentiometric surface map is the average hourly elevation for the date shown.

2. The Olin Production Well water elevation is calculated based on the production well flow rate using an empirical formula presented in the 1994 Remedial Facility Investigation. The flow rate is shown in place of the depth to water.

3. The orange highlighted water elevations are at or below the bottom of the A-Zone. A-Zone bottom elevations were used for these wells on the A-Zone potentiometric surface map.

4. Water elevations from the A/B-Zone wells with red text were used for the A-Zone potentiometric surface map. Pumping well piezometers (green text) were used for both A-Zone and B-Zone potentiometric surface maps.

5. The blue highlighted wells were not used when preparing the B-Zone potentiometric surface map. These appear to be poorly or not connected to the B-Zone based on their typical water elevations which are more than 2 feet higher than the average B-Zone elevation.

6. Water levels from A-Zone & B-Zone Solvent wells located on Olin property between Gill Creek and Dupont Road were measured and used for the A-Zone and B-Zone potentiometric surface maps.

	A-Zone Bottom Reference Point		7/7/2015	
Well	Elevation	Elevation	Depth to Water	Water Elevation ³
	(feet)	(feet)	(feet btoc)	(feet)
A-ZONE - OLIN			(,	(
OBA-1A	562.33	570.67	4.12	566.55
OBA-2A	561.32	572.54	DRY	561.32
OBA-3A	552.36	572.07	14.78	557.29
OBA-4A	558.34	572.42	12.11	560.31
OBA-5A	557.72	571.72	7.25	564.47
OBA-6A	561.01	570.17	4.29	565.88
OBA-7A	562.71	573.39	9.11	564.28
OBA-8A	559.59	572.49	14.52	557.97
OBA-9A	558.01	569.24	6.48	562.76
OBA-9AR	557.28	570.22	12.29	557.93
OBA-10A	552.15	568.39	5.98	562.41
OBA-11A	558.76	572.83	13.01	559.82
OBA-14A	552.44	570.67	13.35	557.32
OBA-15A	551.06	572.59	15.11	557.48
OBA-16A	560.42	573.26	10.06	563.20
OBA-18A	559.18	573.47	13.19	560.28
OBA-19A	558.08	573.86	11.94	561.92
OBA-23A	560.94	570.19	8.41	561.78
OBA-24A	557.76	568.95	6.41	562.54
OBA-25A	558.07	569.02	5.25	563.77
OBA-26A	557.28	569.55	6.21	563.34
PN-1A	560.21	570.51	DRY	DRY
PN-2A	561.41	570.64	5.98	564.66
PN-3A	560.12	571.80	5.71	566.09
PN-4A	558.94	568.35	6.20	562.15
PN-5A	558.95	568.55	6.40	562.15
PN-6A	559.06	568.43	6.80	561.63
PN-7A	558.52	568.23	5.97	562.26
PN-8A	557.53	568.28	4.53	563.75
PN-9A	558.97	570.74	9.28	561.46
PN-10A	561.35	570.11	DRY	DRY
PN-11A	557.78	567.49	4.15	563.34
PN-12A	558.85	570.07	5.11	564.96
PN-13A	559.98	573.25	7.91	565.34
PN-14A	560.62	573.30	7.96	565.34
PN-15A	559.44	570.69	7.18	563.51
PN-16A	560.17	570.44	5.78	564.66
PN-17A	560.32	570.55	6.01	564.54
PN-18A	561.55	570.23	6.07	564.16
PN-19A	562.00	570.74	7.35	563.39
PN-20A	558.35	570.07	8.11	561.96
PN-21A	558.77	569.48	4.89	564.59
Gill Creek Stilling Well ¹	NA	571.48	NA	562.08

	A-Zone Bottom	Reference Point	7/7/2015	
Well	Elevation (feet)	Elevation (feet)	Depth to Water (feet btoc)	Water Elevation ³ (feet)
A-ZONE - SOLVENT ⁶	()	(,		
OW-5A	NA	573.05	12.18	560.87
OW-5A OW-6A	NA	572.10	9.81	562.29
OW-20A	NA	572.62	12.12	560.50
OW-21A	NA	569.33	10.65	558.68
OW-22A	NA	570.68	9.28	561.40
A/B-ZONE ^{4,5}				
PR-1	561.70	572.29	7.30	564.99
PR-1-PZ	561.70	571.15	5.96	565.19
PR-2	561.17	572.21	14.70	557.51
PR-2-PZ	561.17	572.17	15.02	557.15
PR-3	557.65	572.39	15.39	557.00
PR-3-PZ	557.65	571.69	14.73	556.96
PR-4	556.58	569.66	14.18	555.48
PR-4-PZ	556.58	569.65	13.61	556.04
PR-5	558.47	570.18	12.38	557.80
PR-5-PZ	558.47	569.23	12.02	557.21
PR-6	559.35	568.28	10.51	557.77
PR-7	558.56	568.57	8.70	559.87
PR-8	558.91	567.97	8.80	559.17
PR-9	556.16	568.39	8.01	560.38
PR-10	558.38	568.16	7.61	560.55
PR-11	558.31	567.53	4.11	563.42
PR-12	558.37	569.28	11.62	557.66
PR-13	559.15	568.69	11.17	557.52
PR-14	558.59	568.60	9.01	559.59
RW-1	560.93	573.22	15.69	557.53
RW-1-PZ	560.93	572.33	14.73	557.60
RW-2	559.03	572.01	14.79	557.22
RW-2-PZ	559.03	571.76	14.60	557.16
RW-3	556.69	569.40	12.38	557.02
RW-3-PZ	556.69	569.37	12.32	557.05
RW-4	557.05	569.27	12.53	556.74
RW-4-PZ	557.05	569.33	12.58	556.75
RW-5	556.81	569.28	12.11	557.17
RW-5-PZ	556.81	569.24	12.16	557.08
B-ZONE ⁵				
OBA-1B	NA	570.35	11.41	558.94
OBA-2B	NA	572.63	15.51	557.12
OBA-4B	NA	573.03	15.09	557.94
OBA-5B	NA	572.29	12.41	559.88
OBA-6B	NA	570.31	5.89	564.42
OBA-7B	NA	573.97	9.76	564.21
OBA-8B	NA	572.64	15.81	556.83

Elevetien			7/7/2015		
Elevation (feet)	Elevation (feet)	Depth to Water (feet btoc)	Water Elevation ³ (feet)		
NA	572.87	16.07	556.80		
			557.12		
			558.61		
			557.72		
			557.57		
			557.45		
			557.68		
			558.21		
			558.83		
			559.67		
			557.48		
			557.08		
NA			557.58		
			557.31		
			556.86		
			556.69		
			557.65		
			557.99		
			557.45		
			558.12		
			564.85		
			557.79		
			561.39		
			558.76		
			560.47		
			559.58		
			549.54		
			559.53		
			NM		
NA	568.90	NM	NM		
NA	570.87	13.15	557.72		
ΝΔ	571 21	16.12	555.09		
			556.48		
			556.65		
			556.77		
			557.34		
			557.10		
			557.02		
			557.13		
			556.67		
			557.14		
			558.04		
			557.32		
	NA	NA 570.76 NA 572.99 NA 570.04 NA 568.76 NA 568.93 NA 569.65 NA 570.44 NA 570.32 NA 570.44 NA 570.44 NA 570.44 NA 568.46 NA 568.58 NA 568.56 NA 568.45 NA 568.45 NA 567.85 NA 567.78 NA 570.68 NA 570.70 NA 570.70 NA 570.50 NA 570.50 NA 570.64 NA 569.70 NA 569.71 NA	NA 570.76 13.64 NA 572.99 14.38 NA 570.04 12.32 NA 568.76 11.19 NA 568.93 11.48 NA 568.93 11.48 NA 569.65 11.97 NA 570.32 12.11 NA 570.74 11.61 NA 570.73 12.06 NA 568.46 10.98 NA 568.58 11.50 NA 568.56 10.98 NA 568.45 11.14 NA 567.85 10.99 NA 567.85 10.99 NA 570.68 13.99 NA 570.00 12.55 NA 570.70 12.91 NA 570.70 12.91 NA 570.70 12.91 NA 570.50 10.03 NA 570.50 10.03 NA 570.51 1		

Table 4.2: July 7, 20	15 Water Elevations
-----------------------	---------------------

	A-Zone Bottom	Reference Point	7/7/2015	
Well	Elevation (feet)	Elevation (feet)	Depth to Water (feet btoc)	Water Elevation ³ (feet)
C-ZONE				
OBA-1C	NA	570.41	15.07	555.34
OBA-4C	NA	573.05	16.01	557.04
OBA-7C	NA	574.30	21.16	553.14
OBA-14C	NA	570.15	15.89	554.26
OBA-15B	NA	573.13	16.49	556.64
CD-ZONE				
OBA-2C	NA	572.43	17.40	555.03
OBA-3C	NA	572.67	17.98	554.69
OBA-5C	NA	572.01	17.01	555.00
OBA-6C	NA	570.35	14.42	555.93
OBA-8C	NA	573.14	21.01	552.13
OBA-11C	NA	572.94	17.02	555.92
Olin Production Well ²	NA	NA	658	553.9

Notes:

1. The Gill Creek Stilling Well is monitored with a dedicated level transducer which collects hourly elevation measurements. The water elevation shown and used to prepare the A-Zone potentiometric surface map is the average hourly elevation for the date shown.

2. The Olin Production Well water elevation is calculated based on the production well flow rate using an empirical formula presented in the 1994 Remedial Facility Investigation. The flow rate is shown in place of the depth to water.

3. The orange highlighted water elevations are at or below the bottom of the A-Zone. A-Zone bottom elevations were used for these wells on the A-Zone potentiometric surface map.

4. Water elevations from the A/B-Zone wells with red text were used for the A-Zone potentiometric surface map. Pumping well piezometers (green text) were used for both A-Zone and B-Zone potentiometric surface maps.

5. The blue highlighted wells were not used when preparing the B-Zone potentiometric surface map. These appear to be poorly or not connected to the B-Zone based on their typical water elevations which are more than 2 feet higher than the average B-Zone elevation.

6. June 30, 2015 water levels for A-Zone & B-Zone Solvent wells located on Olin property between Gill Creek and Dupont Road were taken from Solvent's 2nd Quarter 2015 Report and used for the A-Zone and B-Zone potentiometric surface maps.

	A-Zone Bottom Reference Point		10/6/2015	
Well	Elevation (feet)	Elevation (feet)	Depth to Water (feet btoc)	Water Elevation ³ (feet)
A-ZONE - OLIN				
OBA-1A	562.33	570.67	4.08	566.59
OBA-2A	561.32	572.54	10.41	561.32
OBA-3A	552.36	572.07	14.98	557.09
OBA-4A	558.34	572.42	12.49	559.93
OBA-5A	557.72	571.72	7.70	564.02
OBA-6A	561.01	570.17	5.61	564.56
OBA-7A	562.71	573.39	8.15	565.24
OBA-8A	559.59	572.49	11.74	560.75
OBA-9A	558.01	569.24	6.78	562.46
OBA-9AR	557.28	570.22	12.96	557.26
OBA-10A	552.15	568.39	5.15	563.24
OBA-11A	558.76	572.83	13.04	559.79
OBA-14A	552.44	570.67	13.83	556.84
OBA-15A	551.06	572.59	15.40	557.19
OBA-16A	560.42	573.26	11.03	562.23
OBA-18A	559.18	573.47	13.23	560.24
OBA-19A	558.08	573.86	13.38	560.48
OBA-23A	560.94	570.19	7.15	563.04
OBA-24A	557.76	568.95	6.97	561.98
OBA-25A	558.07	569.02	5.52	563.50
OBA-26A	557.28	569.55	6.41	563.14
PN-1A	560.21	570.51	DRY	DRY
PN-2A	561.41	570.64	7.10	563.54
PN-3A	560.12	571.80	9.49	562.31
PN-4A	558.94	568.35	7.22	561.13
PN-5A	558.95	568.55	6.84	561.71
PN-6A	559.06	568.43	7.36	561.07
PN-7A	558.52	568.23	5.11	563.12
PN-8A	557.53	568.28	4.81	563.47
PN-9A	558.97	570.74	10.42	560.32
PN-10A	561.35	570.11	DRY	DRY
PN-11A	557.78	567.49	10.30	557.19
PN-12A	558.85	570.07	12.50	557.57
PN-13A	559.98	573.25	15.01	558.24
PN-14A	560.62	573.30	8.73	564.57
PN-15A	559.44	570.69	7.38	563.31
PN-16A	560.17	570.44	8.20	562.24
PN-17A	560.32	570.55	6.50	564.05
PN-18A	561.55	570.23	7.92	562.31
PN-19A	562.00	570.74	7.40	563.34
PN-20A	558.35	570.07	8.87	561.20
PN-21A	558.77	569.48	4.82	564.66
Gill Creek Stilling Well ¹	NA	571.48	NA	563.46

	A-Zone Bottom	Reference Point		10/6/2015		
Well	Elevation (feet)			Water Elevation ³ (feet)		
A-ZONE - SOLVENT ⁶						
OW-5A	NA	573.05	DRY	DRY		
OW-6A	NA	572.10	9.72	562.38		
OW-20A	NA	572.62	11.98	560.64		
OW-21A	NA	569.33	DRY	DRY		
OW-22A	NA	570.68 12.38		558.30		
A/B-ZONE ^{4,5}						
PR-1	561.70	572.29	9.15	563.14		
PR-1-PZ	561.70	571.15	7.61	563.54		
PR-2	561.17	572.21	15.01	557.20		
PR-2-PZ	561.17	572.17	15.10	557.07		
PR-3	557.65	572.39	14.97	557.42		
PR-3-PZ	557.65	571.69	14.50	557.19		
PR-4	556.58	569.66	13.05	556.61		
PR-4-PZ	556.58	569.65	12.96	556.69		
PR-5	558.47	570.18	12.70	557.48		
PR-5-PZ	558.47	569.23	11.68	557.55		
PR-6	559.35	568.28	10.59	557.69		
PR-7	558.56	568.57	6.97	561.60		
PR-8	558.91	567.97	9.39	558.58		
PR-9	556.16	568.39	8.45	559.94		
PR-10	558.38	568.16	7.23	560.93		
PR-11	558.31	567.53	4.70	562.83		
PR-12	558.37	569.28	12.31	556.97		
PR-13	559.15	568.69	9.83	558.86		
PR-14	558.59	568.60	7.01	561.59		
RW-1	560.93	573.22	16.39	556.83		
RW-1-PZ	560.93	572.33	15.45	556.88		
RW-2	559.03	572.01	14.81	557.20		
RW-2-PZ	559.03	571.76	14.67	557.09		
RW-3	556.69	569.40	12.46	556.94		
RW-3-PZ	556.69	569.37	12.39	556.98		
RW-4	557.05	569.27	12.37	556.90		
RW-4-PZ	557.05	569.33	12.40	556.93		
RW-5	556.81	569.28	12.58	556.70		
RW-5-PZ	556.81	569.24	12.47	556.77		
B-ZONE ⁵						
OBA-1B	NA	570.35	9.23	561.12		
OBA-2B	NA	572.63	15.51	557.12		
OBA-4B	NA	573.03	15.91	557.12		
OBA-5B	NA	572.29	12.65	559.64		
OBA-6B	NA	570.31	5.66	564.65		
OBA-7B	NA	573.97	10.63	563.34		
OBA-8B	NA	572.64	13.57	559.07		
004-00	IN/A	572.04	15.57	559.07		

	A-Zone Bottom Reference Point		10/6/2015			
Well	Elevation	Elevation	Depth to Water	Water Elevation ³		
	(feet)	(feet)	(feet btoc)	(feet)		
B-ZONE CONTINUED ⁵						
OBA-11B	NA	572.87	16.32	556.55		
OBA-14B	NA	570.76	13.71	557.05		
OBA-16B	NA	572.99	16.43	556.56		
OBA-23B	NA	570.04	11.50	558.54		
OBA-24B	NA	568.76	11.46	557.30		
OBA-25B	NA	568.93	11.13	557.80		
OBA-26B	NA	569.65	12.09	557.56		
PN-1B	NA	570.32	11.16	559.16		
PN-2B	NA	570.44	13.35	557.09		
PN-3B	NA	571.73	13.79	557.94		
PN-4B	NA	568.46	11.33	557.13		
PN-5B	NA	568.58	11.54	557.04		
PN-6B	NA	568.56	11.48	557.08		
PN-7B	NA	568.45	10.96	557.49		
PN-8B	NA	567.85	10.86	556.99		
PN-9B	NA	570.68	13.59	557.09		
PN-10B	NA	571.15	13.87	557.28		
PN-11B	NA	567.78	10.01	557.77		
PN-12B	NA	570.00	5.22	564.78		
PN-13B	NA	573.24	7.98	565.26		
PN-14B	NA	573.30	9.85	563.45		
PN-15B	NA	570.70	13.30	557.40		
PN-16B	NA	570.36	9.53	560.83		
PN-17B	NA	570.54	12.98	557.56		
PN-18B	NA	570.50	12.54	557.96		
PN-19B	NA	570.64	10.42	560.22		
PN-20B	NA	569.70	12.67	557.03		
PN-21B	NA	569.39	10.69	558.70		
PN-22B	NA	569.08	NM	NM		
PN-23B	NA	568.90	NM	NM		
PN-24B	NA	570.87	13.60	557.27		
B-ZONE - SOLVENT ⁶						
PW-3B	NA	571.21	14.11	557.10		
PW-4B	NA	569.72	12.49	557.23		
OW-4B	NA	570.55	12.92	557.63		
OW-14B	NA	570.87	13.35	557.52		
OW-15B	NA	569.78	12.12	557.66		
OW-22B	NA	570.90	13.43	557.47		
OW-23B	NA	569.67				
OW-24B	NA	570.36	12.95	556.56 557.41		
OW-25B	NA	570.90	13.18	557.72		
OW-31B	NA	570.14	13.14	557.00		
OW-32B	NA	569.99	12.55	557.44		
OW-33B	NA	569.55	12.18	557.37		

	A-Zone Bottom	Reference Point	10/6/2015			
Well	Elevation Elevation (feet) (feet)		Depth to Water (feet btoc)	Water Elevation ³ (feet)		
C-ZONE						
OBA-1C	NA	570.41	14.84	555.57		
OBA-4C	NA	573.05	16.01	557.04		
OBA-7C	NA	574.30	19.45	554.85		
OBA-14C	NA	570.15	14.11	556.04		
OBA-15B	NA	573.13	15.97	557.16		
CD-ZONE						
OBA-2C	NA	572.43	17.10	555.33		
OBA-3C	NA	572.67	18.93	553.74		
OBA-5C	NA	572.01	16.69	555.32		
OBA-6C	NA	570.35	14.28	556.07		
OBA-8C	NA	573.14	20.68	552.46		
OBA-11C	NA	572.94	17.22	555.72		
Olin Production Well ²	NA	NA	559	554.5		

Notes:

1. The Gill Creek Stilling Well is monitored with a dedicated level transducer which collects hourly elevation measurements. The water elevation shown and used to prepare the A-Zone potentiometric surface map is the average hourly elevation for the date shown.

2. The Olin Production Well water elevation is calculated based on the production well flow rate using an empirical formula presented in the 1994 Remedial Facility Investigation. The flow rate is shown in place of the depth to water.

3. The orange highlighted water elevations are at or below the bottom of the A-Zone. A-Zone bottom elevations were used for these wells on the A-Zone potentiometric surface map.

4. Water elevations from the A/B-Zone wells with red text were used for the A-Zone potentiometric surface map. Pumping well piezometers (green text) were used for both A-Zone and B-Zone potentiometric surface maps.

5. The blue highlighted wells were not used when preparing the B-Zone potentiometric surface map. These appear to be poorly or not connected to the B-Zone based on their typical water elevations which are more than 2 feet higher than the average B-Zone elevation.

6. Water levels from A-Zone & B-Zone Solvent wells located on Olin property between Gill Creek and Dupont Road were measured and used for the A-Zone and B-Zone potentiometric surface maps.

	A-Zone Bottom	one Bottom Reference Point		12/17/2015			
Well	Elevation	Elevation	Depth to Water	Water Elevation ³ (feet)			
	(feet)	(feet)	(feet btoc)				
A-ZONE - OLIN			(
OBA-1A	562.33	570.67	4.89	565.78			
OBA-2A	561.32	572.54	14.70	561.32			
OBA-3A	552.36	572.07	7.99	564.08			
OBA-4A	558.34	572.42	13.55	558.87			
OBA-5A	557.72	571.72	7.61	564.11			
OBA-6A	561.01	570.17	5.98	564.19			
OBA-7A	562.71	573.39	8.52	564.87			
OBA-8A	559.59	572.49	11.74	560.75			
OBA-9A	558.01	569.24	7.09	562.15			
OBA-9AR	557.28	570.22	10.06	560.16			
OBA-10A	552.15	568.39	5.77	562.62			
OBA-11A	558.76	572.83	13.03	559.80			
OBA-14A	552.44	570.67	13.39	557.28			
OBA-15A	551.06	572.59	15.02	557.57			
OBA-16A	560.42	573.26	11.01	562.25			
OBA-18A	559.18	573.47	13.25	560.22			
OBA-19A	558.08	573.86	13.29	560.57			
OBA-23A	560.94	570.19	8.28	561.91			
OBA-24A	557.76	568.95	5.68	563.27			
OBA-25A	558.07	569.02	5.65	563.37			
OBA-26A	557.28	569.55	6.70	562.85			
PN-1A	560.21	570.51	7.62	562.89			
PN-2A	561.41	570.64	13.47	557.17			
PN-3A	560.12	571.80	10.16	561.64			
PN-4A	558.94	568.35	7.97	560.38			
PN-5A	558.95	568.55	7.38	561.17			
PN-6A	559.06	568.43	7.80	560.63			
PN-7A	558.52	568.23	7.39	560.84			
PN-8A	557.53	568.28	4.87	563.41			
PN-9A	558.97	570.74	10.85	559.89			
PN-10A	561.35	570.11	DRY	DRY			
PN-11A	557.78	567.49	4.81	562.68			
PN-12A	558.85	570.07	12.45	557.62			
PN-13A	559.98	573.25	9.06	564.19			
PN-14A	560.62	573.30	8.95	564.35			
PN-15A	559.44	570.69	7.85	562.84			
PN-16A	560.17	570.44	8.01	562.43			
PN-17A	560.32	570.55	6.41	564.14			
PN-18A	561.55	570.23	8.53	561.70			
PN-19A	562.00	570.74	7.42	563.32			
PN-20A	558.35	570.07	10.50	559.57			
PN-21A	558.77	569.48	4.76	564.72			
Gill Creek Stilling Well ¹	NA	571.48	NA	562.05			

	A-Zone Bottom	Reference Point	12/17/2015			
Well	Elevation (feet)	Elevation (feet)	Depth to Water (feet btoc)	Water Elevation ³ (feet)		
A-ZONE - SOLVENT ⁶						
OW-5A	NA	573.05	DRY	DRY		
OW-6A	NA	572.10	9.75	562.35		
OW-20A	NA	572.62	12.05	560.57		
OW-21A	NA	569.33	DRY	DRY		
OW-22A	NA	570.68	12.72	557.96		
A/B-ZONE ^{4,5}						
PR-1	561.70	572.29	9.43	562.86		
PR-1-PZ	561.70	571.15	8.10	563.05		
PR-2	561.17	572.21	14.91	557.30		
PR-2-PZ	561.17	572.17	14.75	557.42		
PR-3	557.65	572.39	15.92	556.47		
PR-3-PZ	557.65	571.69	14.55	557.14		
PR-4	556.58	569.66	12.62	557.04		
PR-4-PZ	556.58	569.65	12.90	556.75		
PR-5	558.47	570.18	12.59	557.59		
PR-5-PZ	558.47	569.23	11.30	557.93		
PR-6	559.35	568.28	10.87	557.41		
PR-7	558.56	568.57	8.72	559.85		
PR-8	558.91	567.97	9.62	558.35		
PR-9	556.16	568.39	8.65	559.74		
PR-10	558.38	568.16	8.36	559.80		
PR-11	558.31	567.53	4.70	562.83		
PR-12	558.37	569.28	12.28	557.00		
PR-13	559.15	568.69	11.03	557.66		
PR-14	558.59	568.60	9.92	558.68		
RW-1	560.93	573.22	15.20	558.02		
RW-1-PZ	560.93	572.33	14.27	558.06		
RW-2	559.03	572.01	14.92	557.09		
RW-2-PZ	559.03	571.76	14.70	557.06		
RW-3	556.69	569.40	12.32	557.08		
RW-3-PZ	556.69	569.37	12.39	556.98		
RW-4	557.05	569.27	12.27	557.00		
RW-4-PZ	557.05	569.33	12.28	557.05		
RW-5	556.81	569.28	12.45	556.83		
RW-5-PZ	556.81	569.24	12.51	556.73		
B-ZONE ⁵						
OBA-1B	NA	570.35 15.37		554.98		
OBA-2B	NA	572.63	15.78	556.85		
OBA-4B	NA	573.03	15.70	557.33		
OBA-5B	NA	572.29	13.07	559.22		
OBA-6B	NA	570.31	5.81	564.50		
OBA-7B	NA	573.97	10.88	563.09		
OBA-8B	NA	572.64	15.03	557.61		

	A-Zone Bottom	-Zone Bottom Reference Point		12/17/2015			
Well	Elevation (feet)	Elevation (feet)	Depth to Water (feet btoc)	Water Elevation ³ (feet)			
B-ZONE CONTINUED⁵							
OBA-11B	NA	572.87	17.51	555.36			
OBA-14B	NA	570.76	13.92	556.84			
OBA-16B	NA	572.99	15.70	557.29			
OBA-23B	NA		570.04 11.97				
OBA-24B	NA	568.76	10.92	558.07 557.84			
OBA-25B	NA	568.93	11.69	557.24			
OBA-26B	NA	569.65	12.31	557.34			
PN-1B	NA	570.32	12.81	557.51			
PN-2B	NA	570.44	DRY	DRY			
PN-3B	NA	571.73	13.88	557.85			
PN-4B	NA	568.46	11.42	557.04			
PN-5B	NA	568.58	11.62	556.96			
PN-6B	NA	568.56	11.55	557.01			
PN-7B	NA	568.45	10.96	557.49			
PN-8B	NA	567.85	10.84	557.01			
PN-9B	NA	570.68	13.70	556.98			
PN-10B	NA	571.15	13.75	557.40			
PN-11B	NA	567.78	10.38	557.40			
PN-12B	NA	570.00	5.28	564.72			
PN-13B	NA	573.24	15.75	557.49			
PN-14B	NA	573.30	10.10	563.20			
PN-15B	NA	570.70	13.30	557.40			
PN-16B	NA	570.36	9.89	560.47			
PN-17B	NA	570.54	12.85	557.69			
PN-18B	NA	570.50	12.42	558.08			
PN-19B	NA	570.64	9.36	561.28			
PN-20B	NA	569.70	12.76	556.94			
PN-21B	NA	569.39	10.87	558.52			
PN-22B	NA	569.08	NM	NM			
PN-23B	NA	568.90	NM	NM			
PN-24B	NA	570.87	13.28	557.59			
B-ZONE - SOLVENT ⁶							
PW-3B	NA	571.21	17.80	553.41			
PW-4B	NA	569.72	14.01	555.71			
OW-4B	NA	570.55	13.30	557.25			
OW-14B	NA	570.87	14.31	556.56			
OW-15B	NA	569.78	12.50	557.28			
OW-22B	NA	570.90 13.86		557.04			
OW-23B	NA	569.67 12.71		556.96			
OW-24B	NA	570.36 13.29		557.07			
OW-25B	NA	570.90	13.67	557.23			
OW-31B	NA	570.14	570.14 12.70				
OW-32B NA		569.99	12.76	557.23			
OW-33B	NA	569.55	12.51	557.04			

	A-Zone Bottom	Reference Point	12/17/2015			
Well	Elevation Elevation (feet) (feet)		Depth to Water (feet btoc)	Water Elevation ³ (feet)		
C-ZONE						
OBA-1C	NA	570.41	16.07	554.34		
OBA-4C	NA	573.05	16.11	556.94		
OBA-7C	NA	574.30	20.15	554.15		
OBA-14C	NA	570.15	16.79	553.36		
OBA-15B	NA	573.13	16.20	556.93		
CD-ZONE						
OBA-2C	NA	572.43	17.62	554.81		
OBA-3C	NA	572.67	15.06	557.61		
OBA-5C	NA	572.01	17.74	554.27		
OBA-6C	NA	570.35	13.78	556.57		
OBA-8C	NA	573.14	21.96	551.18		
OBA-11C	NA	572.94	20.06	552.88		
Olin Production Well ²	NA	NA	693	553.7		

Notes:

1. The Gill Creek Stilling Well is monitored with a dedicated level transducer which collects hourly elevation measurements. The water elevation shown and used to prepare the A-Zone potentiometric surface map is the average hourly elevation for the date shown.

2. The Olin Production Well water elevation is calculated based on the production well flow rate using an empirical formula presented in the 1994 Remedial Facility Investigation. The flow rate is shown in place of the depth to water.

3. The orange highlighted water elevations are at or below the bottom of the A-Zone. A-Zone bottom elevations were used for these wells on the A-Zone potentiometric surface map.

4. Water elevations from the A/B-Zone wells with red text were used for the A-Zone potentiometric surface map. Pumping well piezometers (green text) were used for both A-Zone and B-Zone potentiometric surface maps.

5. The blue highlighted wells were not used when preparing the B-Zone potentiometric surface map. These appear to be poorly or not connected to the B-Zone based on their typical water elevations which are more than 2 feet higher than the average B-Zone elevation.

6. Water levels from A-Zone & B-Zone Solvent wells located on Olin property between Gill Creek and Dupont Road were measured and used for the A-Zone and B-Zone potentiometric surface maps.

Table 5.1: June 2015 Site Groundwater Anal	vtical Results
	y liour reoduito

Well ID: Sample Date:	Sample OBA-1A 6/29/2015	Sample OBA-1B 6/29/2015	Sample OBA-2B 6/17/2015	Sample OBA-3A 6/24/2015	Sample OBA-4A 6/29/2015	Sample OBA-4B 6/29/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	1.0 U					
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	2.1	3.1	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U					
1,1-Dichloroethene	1.0 U	3.0	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	1.0 U					
Chloromethane (Methyl chloride)	1.0 U					
cis-1,2-Dichloroethene	1.0 U	67	15	150	1.0 U	23
Methylene chloride (Dichloromethane)	1.0 U					
Tetrachloroethene (PCE)	1.0 U	78	22	26	5.1	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.9	1.0 U	2.8	1.0 U	1.0 U
Trichloroethene (TCE)	1.0 U	120	28	67	12	1.9
Vinyl Chloride	1.0 U	25	1.0 U	9.0	1.0 U	12
Aromatic Compounds						
1,2,4-Trichlorobenzene	1.0 U	1.0 U	170	3.1	1.0 U	1.0 U
1,2-Dichlorobenzene	1.0 U	1.0 U	2.0	11	1.0 U	1.0 U
1,3-Dichlorobenzene	1.0 U	1.0 U	3.9	30	1.0 U	1.1
1,4-Dichlorobenzene	1.0 U	1.0 U	1.4	38	1.0 U	1.0 U
Benzene	1.0 U	2.1	1.0 U	3.0	1.0 U	1.7
Chlorobenzene	1.0 U	1.0 U	1.0 U	26	1.0 U	5.8
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	0.47 U	0.047 U	0.39	0.58	0.047 U	0.047 U
beta-BHC	9.2	0.17	0.19	0.30	0.047 U	0.081
delta-BHC	0.48 U	0.048 U	0.047 UJ	0.14	0.048 U	0.048 U
gamma-BHC (Lindane)	0.47 U	0.054	0.047 U	0.27	0.047 U	0.047 U
Total Metal Concentrations - SW846 7470 ug/L						
Total Mercury	0.20 U	85	0.20 U	0.20 U	0.20 U	0.20 U

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

Table 5.1: June 2015 Site Groundwater Analy	vtical Results
	y liour rioounto

Well ID: Sample Date:	Sample OBA-5A 6/30/2015	Sample OBA-5B 6/30/2015	Duplicate OBA-5B 6/30/2015	Sample OBA-6A 6/18/2015	Sample OBA-6B 6/18/2015	Sample OBA-8A 6/24/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	50 U	200 U	200 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	50 U	400	380	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	50 U	200 U	200 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	50 U	200 U	200 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	50 U	200 U	200 U	1.0 U	1.0 U	1.0 U
Chloromethane (Methyl chloride)	50 U	200 U	200 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	290	2500	2400	1.0 U	11	1.0 U
Methylene chloride (Dichloromethane)	50 U	200 U	200 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene (PCE)	420	7000	7100	1.0 U	62	1.2
trans-1,2-Dichloroethene	50 U	200 U	200 U	1.0 U	1.0 U	1.0 U
Trichloroethene (TCE)	310	20000	20000	1.7	27	1.4
Vinyl Chloride	73	280	300	1.0 U	5.0	1.0 U
Aromatic Compounds						
1,2,4-Trichlorobenzene	6100	10000	10000	11	200	1.0 U
1,2-Dichlorobenzene	280	1200	1200	1.0 U	38	1.0 U
1,3-Dichlorobenzene	1200	1100	1200	1.0 U	18	1.0 U
1,4-Dichlorobenzene	910	2300	2300	1.0 U	36	1.0 U
Benzene	72	4400	4700	1.0 U	7.8	1.0 U
Chlorobenzene	200	4700	4800	1.0 U	5.2	1.0 U
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	190	660	490	0.047 U	0.047 U	
beta-BHC	48	92	56	0.072	0.19	0.25
delta-BHC	9.6 U	24 U	24 U	0.047 U		
gamma-BHC (Lindane)	110	460	390	0.047 U	0.047 U	0.047 U
Total Metal Concentrations - SW846 7470 ug/L						
	0.07	0.00 11	0.00.11	0.00.11	1.02	0.00 11
Total Mercury	0.37	0.20 U	0.20 U	0.20 U	1.92	0.20 U

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

Table 5.1: June 2015 Site Groundwater Analytical Results

Well ID: Sample Date:	Sample OBA-8B 6/24/2015	Sample OBA-10A 6/30/2015	Sample OBA-11B 6/24/2015	Sample OBA-14A 6/24/2015	Sample OBA-14B 6/24/2015	Sample OBA-15A 6/24/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	50 U	20 U	50 U	1.0 U	1.0 U	2.0 U
1,1,2,2-Tetrachloroethane	50 U	20 U	50 U	1.0 U	1.0 U	2.0 U
1,1,2-Trichloroethane	50 U	20 U	50 U	1.0 U	1.0 U	2.0 U
1,1-Dichloroethene	50 U	20 U	50 U	1.0 U	1.0 U	2.0 U
Carbon tetrachloride	50 U	20 U	50 U	1.0 U	1.0 U	2.0 U
Chloromethane (Methyl chloride)	50 U	20 U	50 U	1.0 U	1.0 U	2.0 U
cis-1,2-Dichloroethene	50 U	20 U	6500	1.0 U	1.0 U	2.0 U
Methylene chloride (Dichloromethane)	50 U	20 U	50 U	1.0 U	1.0 U	2.0 U
Tetrachloroethene (PCE)	50 U	20 U	50 U	1.0 U	1.0 U	2.0 U
trans-1,2-Dichloroethene	50 U	20 U	60	1.0 U	1.0 U	2.0 U
Trichloroethene (TCE)	50 U	20 U	150	1.0 U	1.0 U	2.0 U
Vinyl Chloride	50 U	20 U	1600	1.0 U	1.0 U	2.0 U
Aromatic Compounds						
1,2,4-Trichlorobenzene	6000	1800	500	1.0 U	1.0 U	2.0 U
1,2-Dichlorobenzene	180	2000	50 U	1.0 U	1.0 U	39
1,3-Dichlorobenzene	290	670	56	1.0 U	1.0 U	160
1,4-Dichlorobenzene	65	1900	50 U	1.0 U	1.0 U	270
Benzene	50 U	490	50 U	1.0 U	1.0 U	86
Chlorobenzene	50 U	430	50 U	1.0 U	1.0 U	530
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	2.0	110	6.9	0.047 U	0.047 U	0.047 U
beta-BHC	1.0	7.4	0.99	0.047 U		
delta-BHC	0.094 U	4.8 U	0.24 U	0.047 U	0.047 U	0.099
gamma-BHC (Lindane)	0.094 U	55	0.24 U	0.047 U	0.047 U	0.047 U
Total Metal Concentrations - SW846 7470 ug/L						
Total Mercury	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U

Notes:

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

Table 5.1: June 2015 Site Groundwater Analytical Results

Well ID: Sample Date:	Sample OBA-16A 6/17/2015	Sample OBA-16B 6/17/2015	Sample OBA-23A 6/30/2015	Sample OBA-23B 6/30/2015	Sample OBA-24A 6/29/2015	Sample OBA-24B 6/29/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	25 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	140
1,1,2-Trichloroethane	1.0 U	1.2	1.0 U	2.5 U	1.0 U	25 U
1,1-Dichloroethene	1.0 U	22	1.0 U	2.5 U	1.0 U	25 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	25 U
Chloromethane (Methyl chloride)	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	25 U
cis-1,2-Dichloroethene	1.0 U	1700	1.0 U	12	1.5	3400
Methylene chloride (Dichloromethane)	1.0 U	1.0 U	1.0 U	2.5 U	1.0 U	25 U
Tetrachloroethene (PCE)	3.0	180	5.4	2.5 U	4.3	2400
trans-1,2-Dichloroethene	1.0 U	22	1.0 U	3.9	1.0 U	44
Trichloroethene (TCE)	3.7	1600	10	4.6	20	7500
Vinyl Chloride	1.0 U	140	1.0 U	3.2	1.0 U	540
Aromatic Compounds						
1,2,4-Trichlorobenzene	1.0 U	1900	1.0 U	1200	1.0 U	840
1,2-Dichlorobenzene	1.0 U	140	1.0 U	35	2.3	560
1,3-Dichlorobenzene	1.0 U	240	1.0 U	1100	5.5	160
1,4-Dichlorobenzene	1.0 U	140	1.0 U	750	12	480
Benzene	1.0 U	190	1.0 U	2.5 U	1.0 U	3500
Chlorobenzene	1.0 U	100	1.0 U	120	10	580
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	0.47 U	1.1	0.047 U	1.3	0.047 U	57
beta-BHC	16	7.6	0.057	0.40	0.047 U	11
delta-BHC	0.47 UJ	0.47 UJ	0.048 U	0.096 U	0.048 U	28
gamma-BHC (Lindane)	0.47 U	3.0	0.047 U	0.094 U	0.047 U	78
Total Metal Concentrations - SW846 7470 ug/L						
Total Mercury	5.13	7.27	1.67	0.20 U	0.20 U	0.20 U

Notes:

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

Table 5.1: June 2015 Site Groundwater Analy	vtical Results

Well ID: Sample Date:	Sample OBA-25A 6/25/2015	Sample OBA-25B 6/25/2015	Duplicate OBA-25B 6/25/2015	Sample OBA-26A 6/25/2015	Sample OBA-26B 6/25/2015	Sample PN-3A 6/22/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane (Methyl chloride)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	8.2	4.3	3.7	2.3	6.5	1.0 U
Methylene chloride (Dichloromethane)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene (PCE)	4.5	1.0 U	1.0 U	1.0 U	1.0 U	1.2
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene (TCE)	20	1.0 U	1.0 U	1.0 U	1.0 U	2.6
Vinyl Chloride	1.0 U	8.5	8.5	1.0 U	10	1.0 U
Aromatic Compounds						
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	3.0	1.0 U
1,2-Dichlorobenzene	1.0 U	4.5	5.5	1.0 U	110	1.0 U
1,3-Dichlorobenzene	1.0 U	4.4	5.7	1.0 U	140	1.0 U
1,4-Dichlorobenzene	1.0 U	11	13	1.0 U	300	1.0 U
Benzene	1.0 U	1.0 U	1.0 U	1.0 U	20	1.0 U
Chlorobenzene	1.0 U	14	17	1.0 U	890	1.0 U
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U	0.47 U
beta-BHC	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U	5.0
delta-BHC	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U	0.47 U
gamma-BHC (Lindane)	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U	0.47 U
Total Metal Concentrations - SW846 7470 ug/L						
Total Mercury	5.01	0.20 U	0.20 U	0.20 U	0.20 U	8.32

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

Well ID: Sample Date:	Sample PN-4A 6/22/2015	Sample PN-4B 6/22/2015	Duplicate PN-4B 6/22/2015	Sample PN-5A 6/22/2015	Sample PN-5B 6/22/2015	Sample PN-6A 6/22/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	50.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	7.4	7.9	1.0 U	8500	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	50.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.6	1.8	1.0 U	50.0 U	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	50.0 U	1.0 U
Chloromethane (Methyl chloride)	1.0 U	1.0 U	1.0 U	1.0 U	50.0 U	1.0 U
cis-1,2-Dichloroethene	1.0 U	450	420	1.0 U	1500	1.2
Methylene chloride (Dichloromethane)	1.0 U	1.0 U	1.0 U	1.0 U	50.0 U	1.0 U
Tetrachloroethene (PCE)	1.0 U	47	45	1.0 U	6500	3.4
trans-1,2-Dichloroethene	1.0 U	6.9	6.8	1.0 U	95	1.0 U
Trichloroethene (TCE)	1.6	52	49	1.0 U	8300	3.2
Vinyl Chloride	1.0 U	37	39	1.0 U	55	1.0 U
Aromatic Compounds						
1,2,4-Trichlorobenzene	1.0 U	1400	1400	1.0 U	8000	9.8
1,2-Dichlorobenzene	1.0 U	29	26	1.0 U	730	12
1,3-Dichlorobenzene	1.0 U	210	220	1.0 U	690	140
1,4-Dichlorobenzene	1.0 U	190	180	1.0 U	470	130
Benzene	1.0 U	11	11	1.0 U	2200	2.4
Chlorobenzene	1.0 U	44	44	1.0 U	1100	77
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	0.047 U	100	74	0.094 U	550	0.047 U
beta-BHC	0.43	10 J	5.5 J	3.1	47 U	0.33
delta-BHC	0.047 U	13 J	9.2 J	0.094 U	360	0.047 U
gamma-BHC (Lindane)	0.047 U	140	110	0.094 U	1300	0.047 U
Total Metal Concentrations - SW846 7470 ug/L						
Total Mercury	0.20 U	1.63	1.87	0.20 U	1.62	7.32

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

Table 5.1: June 2015 Site Groundwater Analytical Results

Well ID: Sample Date:	Sample PN-6B 6/22/2015	Sample PN-7A 6/23/2015	Sample PN-7B 6/23/2015	Sample PN-11A 6/23/2015	Sample PN-11B 6/23/2015	Sample PN-12A 6/18/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	50 U	1.0 U	20 U	1.0 U	610	1.0 U
1,1,2,2-Tetrachloroethane	73	1.0 U	20 U	1.0 U	7000	1.0 U
1,1,2-Trichloroethane	50 U	1.0 U	20 U	1.0 U	580	1.0 U
1,1-Dichloroethene	50 U	1.0 U	20 U	1.0 U	420	1.0 U
Carbon tetrachloride	50 U	1.0 U	20 U	1.0 U	250 U	1.0 U
Chloromethane (Methyl chloride)	50 U	1.0 U	20 U	1.0 U	250 U	1.0 U
cis-1,2-Dichloroethene	240	1.0 U	230	3.5	6100	1.2
Methylene chloride (Dichloromethane)	50 U	1.0 U	20 U	1.0 U	250 U	1.6
Tetrachloroethene (PCE)	840	14	110	2.4	22000	2.4
trans-1,2-Dichloroethene	50 U	1.0 U	20 U	1.0 U	450	1.0 U
Trichloroethene (TCE)	850	17	550	4.7	160000	3.7
Vinyl Chloride	50 U	1.0 U	20 U	1.6	780	1.0 U
Aromatic Compounds						
1,2,4-Trichlorobenzene	9600	1.0 U	3300	1.0 U	7700	3.7
1,2-Dichlorobenzene	620	1.0 U	120	1.0 U	2700	1.0 U
1,3-Dichlorobenzene	3500	1.0 U	330	1.2	590	14
1,4-Dichlorobenzene	2500	1.0 U	170	2.5	2400	12
Benzene	750	1.0 U	1200	2.5	510	7.8
Chlorobenzene	1100	1.0 U	230	1.0 U	750	13
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	270	0.94 U	230	0.35	360	0.047 U
beta-BHC	24 U	14	42	0.64	24 U	1.3
delta-BHC	29	0.94 U	16	0.10	24 U	0.047 UJ
gamma-BHC (Lindane)	340	0.94 U	210	0.40	370	0.047 U
Total Metal Concentrations - SW846 7470 ug/L						
Total Mercury	1.53	0.27	0.51	0.96	0.62	0.20 U

Notes:

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

Table 5.1: June 2015 Site	Groundwater Anal	ytical Results
---------------------------	-------------------------	----------------

Well ID: Sample Date:	Sample PN-12B 6/18/2015	Sample PN-14A 6/18/2015	Sample PN-14B 6/18/2015	Sample PN-15A 6/17/2015	Sample PN-15B 6/17/2015	Duplicate PN-15B 6/18/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	100 U	10 U	50 U	2.5 U	100 U	25 U
1,1,2,2-Tetrachloroethane	220	10 U	50 U	2.5 U	100 U	25 U
1,1,2-Trichloroethane	100 U	10 U	50 U	2.5 U	100 U	25 U
1,1-Dichloroethene	100 U	10 U	50 U	2.5 U	100 U	25 U
Carbon tetrachloride	100 U	10 U	50 U	2.5 U	100 U	25 U
Chloromethane (Methyl chloride)	100 U	10 U	50 U	2.5 U	100 U	25 U
cis-1,2-Dichloroethene	1300	10 U	50 U	2.5 U	100 U	25 U
Methylene chloride (Dichloromethane)	100 U	10 U	50 U	2.5 U	100 U	25 U
Tetrachloroethene (PCE)	2400	10 U	50 U	2.5 U	110	25 U
trans-1,2-Dichloroethene	100 U	10 U	50 U	2.5 U	100 U	25 U
Trichloroethene (TCE)	4500	11	50 U	2.5 U	160	25 U
Vinyl Chloride	200	10 U	50 U	2.5 U	100 U	25 U
Aromatic Compounds						
1,2,4-Trichlorobenzene	17000	190	9400	8.2	17000	9000
1,2-Dichlorobenzene	990	10 U	390	6.6	480	400
1,3-Dichlorobenzene	1300	10 U	1800	170	2200	1900
1,4-Dichlorobenzene	410	10 U	3500	220	390	3800
Benzene	1500	10 U	50 U	7.1	100 U	25 U
Chlorobenzene	1300	10 U	360	410	100 U	400
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	270	0.42	62	0.047 U	150	63
beta-BHC	38	6.9	6.2	0.16	28	6.2
delta-BHC	9.4 U	0.24 UJ		0.047 UJ	4.7 UJ	4.7 U
gamma-BHC (Lindane)	55	0.24 U	4.7 U	0.047 U	4.7 U	4.7 U
Total Metal Concentrations - SW846 7470 ug/L						
Total Mercury	1.88	1.15	1.86	0.20 U	4.33	1.78

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

Table 5.1: June 2015 Site Groundwater Analytical Results

Well ID: Sample Date:	Sample PN-17A 6/23/2015	Sample PN-17B 6/23/2015	Sample PN-18A 6/23/2015	Sample PN-20A 6/22/2015	Sample PN-20B 6/22/2015	Duplicate PN-20B 6/22/2015
Volatile Organic Compound Concentrations - SW846 8260C µg/L						
Aliphatic Compounds						
1,1,1-Trichloroethane	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
1,1,2,2-Tetrachloroethane	1.0 U	100 U	1.0 U	1.0 U	350	350
1,1,2-Trichloroethane	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
1,1-Dichloroethene	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
Carbon tetrachloride	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
Chloromethane (Methyl chloride)	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
cis-1,2-Dichloroethene	1.0 U	100 U	1.0 U	1.1	230	230
Methylene chloride (Dichloromethane)	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
Tetrachloroethene (PCE)	1.0 U	100 U	6.8	9.9	4400	4300
rans-1,2-Dichloroethene	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
Trichloroethene (TCE)	1.0 U	100 U	14	16	1600	1600
Vinyl Chloride	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
Aromatic Compounds						
1,2,4-Trichlorobenzene	1.0 U	12000	1.0 U	1.0 U	55 J	220 J
1,2-Dichlorobenzene	1.8	1000	1.0 U	1.0 U	81	88
1,3-Dichlorobenzene	32	1600	1.0 U	1.0 U	50 UJ	87 J
1,4-Dichlorobenzene	8.2	1500	1.0 U	1.0 U	84 J	120 J
Benzene	1.0 U	100 U	1.0 U	1.0 U	50 U	50 U
Chlorobenzene	2.2	170	1.0 U	1.0 U	50 U	50 U
Pesticide Concentrations - SW846 8081 ug/L						
alpha-BHC	0.047 U	9.9	2.4 U	0.047 U	0.59	0.65
Deta-BHC	0.10	13	42	0.25	0.28	0.28
delta-BHC	0.047 U	0.47 U	2.4 U	0.047 U	0.13	0.14
gamma-BHC (Lindane)	0.047 U	0.47 U	2.4 U	0.047 U	0.23	0.27
Faial Motal Concentrations - SN(04C 7470 up/l						
Total Metal Concentrations - SW846 7470 ug/L	40.0	0.00	10.10	0.00	0.00	0.00
Total Mercury	40.2	8.99	1340	0.26	0.20 U	0.20 U

Notes:

U - constituent not detected - reporting limit shown.

J - consituent dectected below method reporting limit - concentration estimated.

UJ - constituent not detected - reporting limit is estimated.

FIGURES

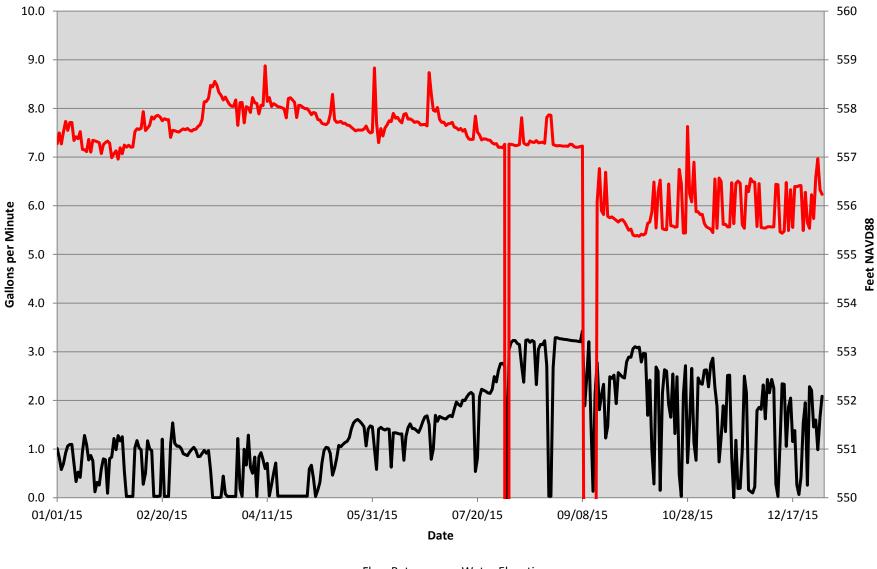


Figure 3.1: RW-1 Flow Rate and Water Elevation

Flow Rate — Water Elevation

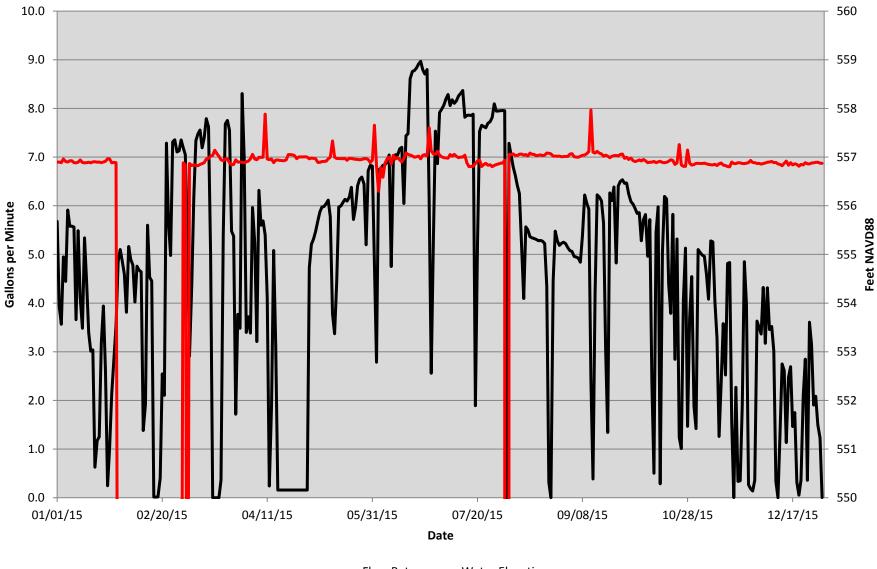


Figure 3.2: RW-2 Flow Rate and Water Elevation

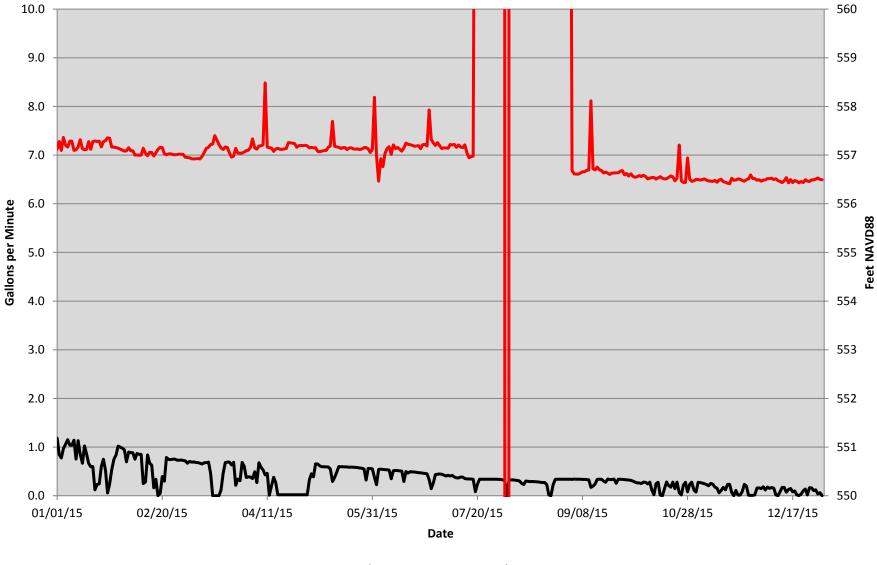
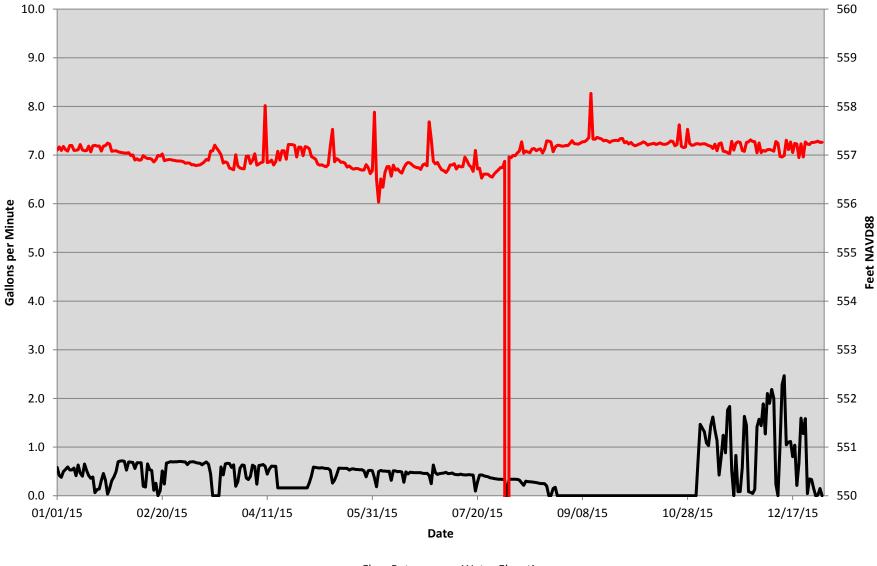



Figure 3.3: RW-3 Flow Rate and Water Elevation

Flow Rate Water Elevation

Flow Rate Water Elevation

April 1, 2016

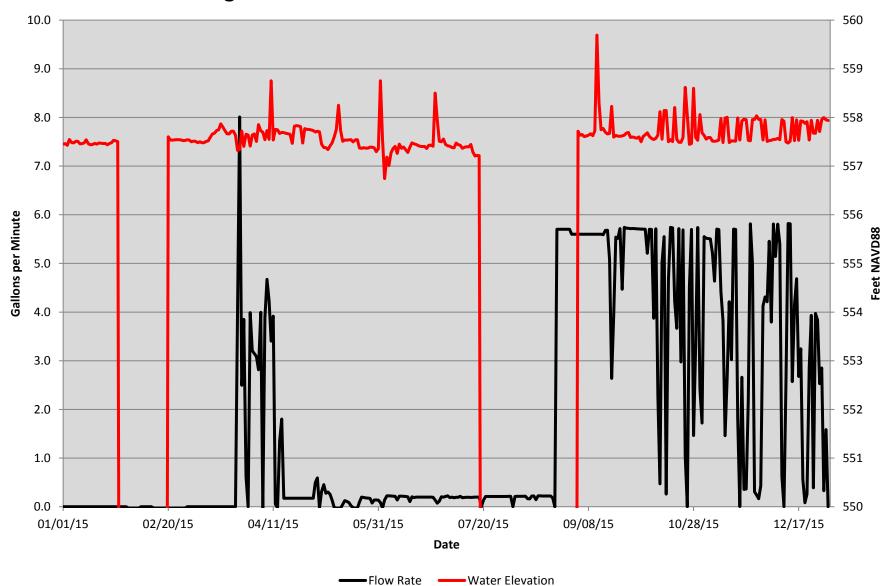
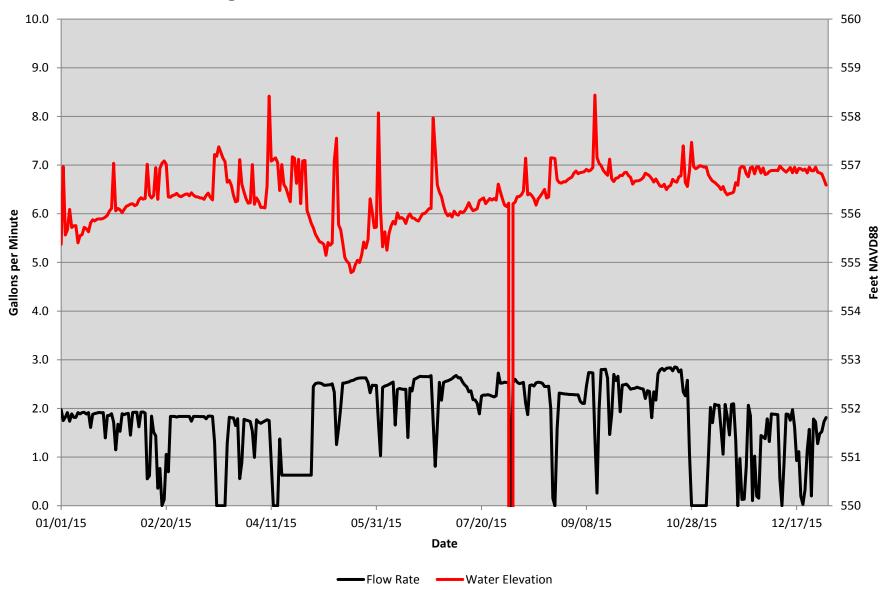
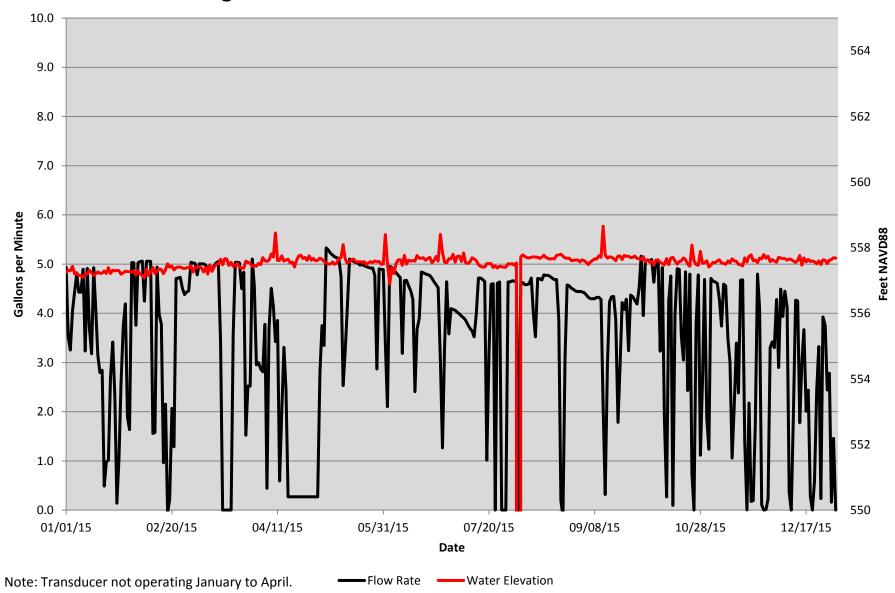




Figure 3.5: RW-5 Flow Rate and Water Elevation

Figure 3.7: PR-12 Flow Rate and Water Elevation

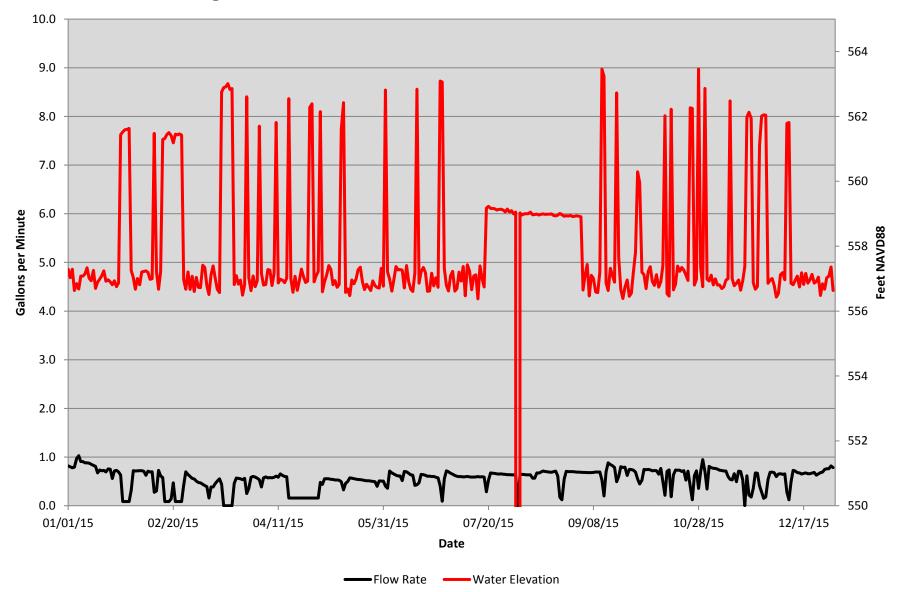
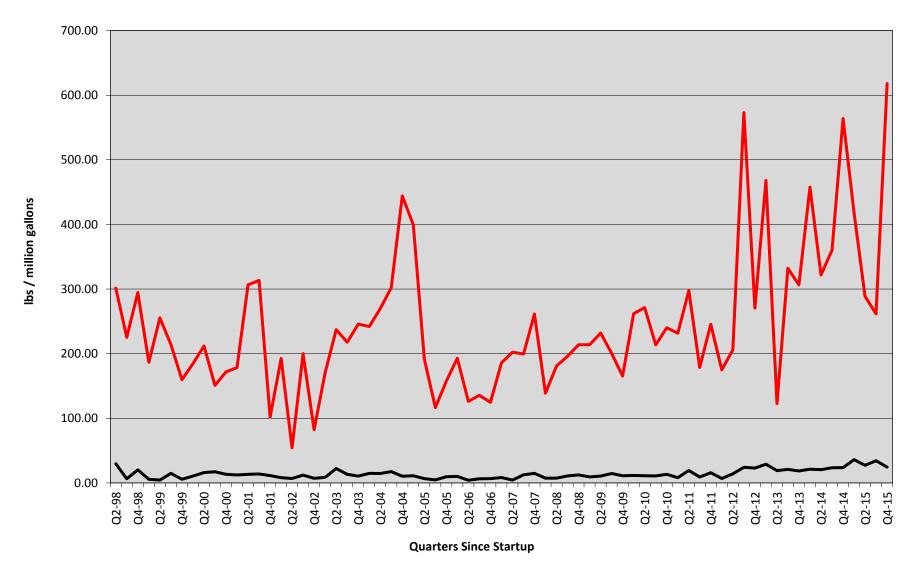
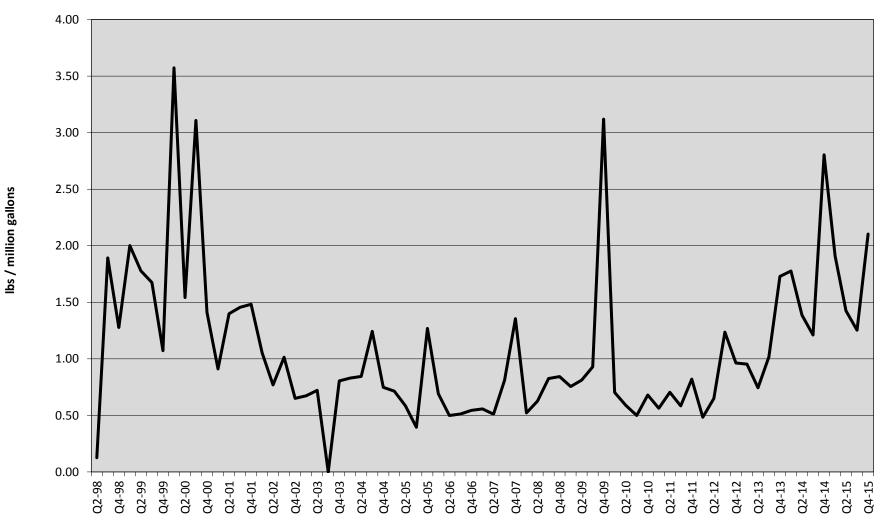




Figure 3.8: OBA-9AR Flow Rate and Water Elevation

Figure 3.9: Volatile Organic Compound Loading Rate

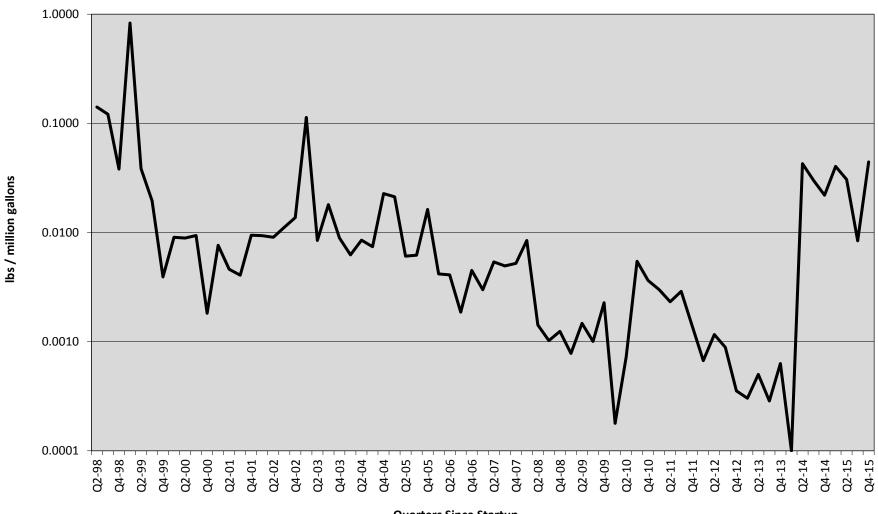

Aliphatic VOCs — Aromatic VOCs

Figure 3.10: Pesticide Loading Rate

Quarters Since Startup

Pesticides

Figure 3.11: Mercury Loading Rate

Quarters Since Startup

— Mercury

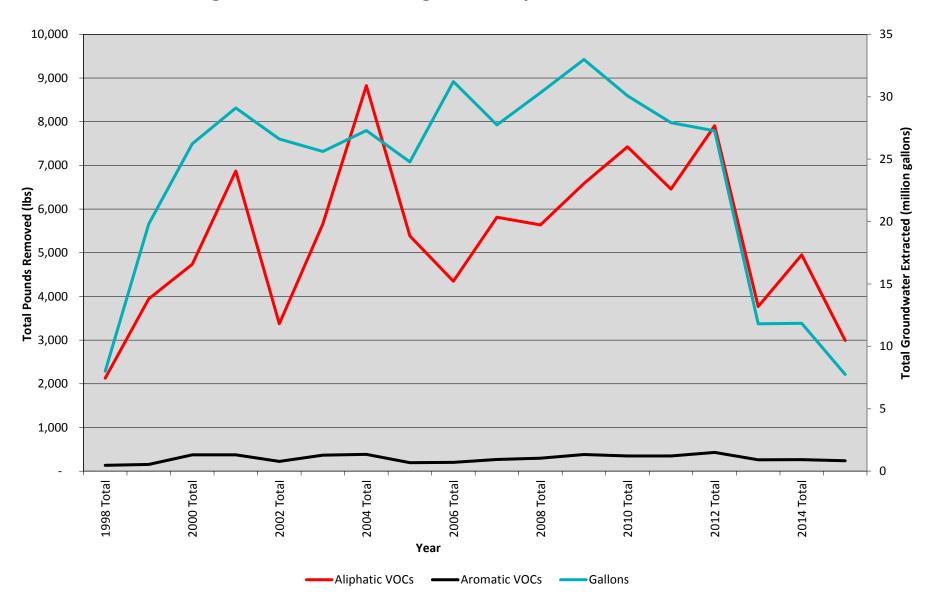


Figure 3.12: Volatile Organic Compound Mass Removal

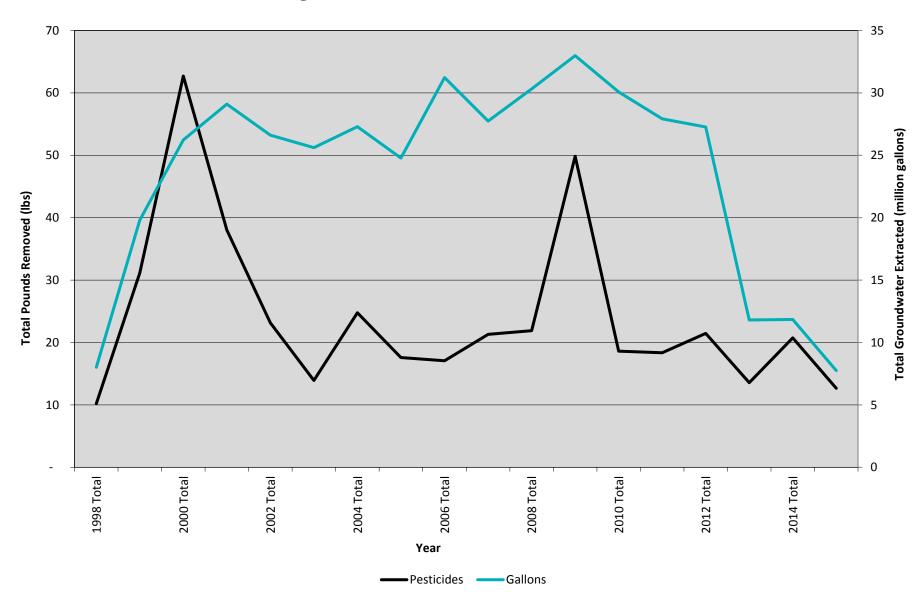


Figure 3.13: Pesticide Mass Removal

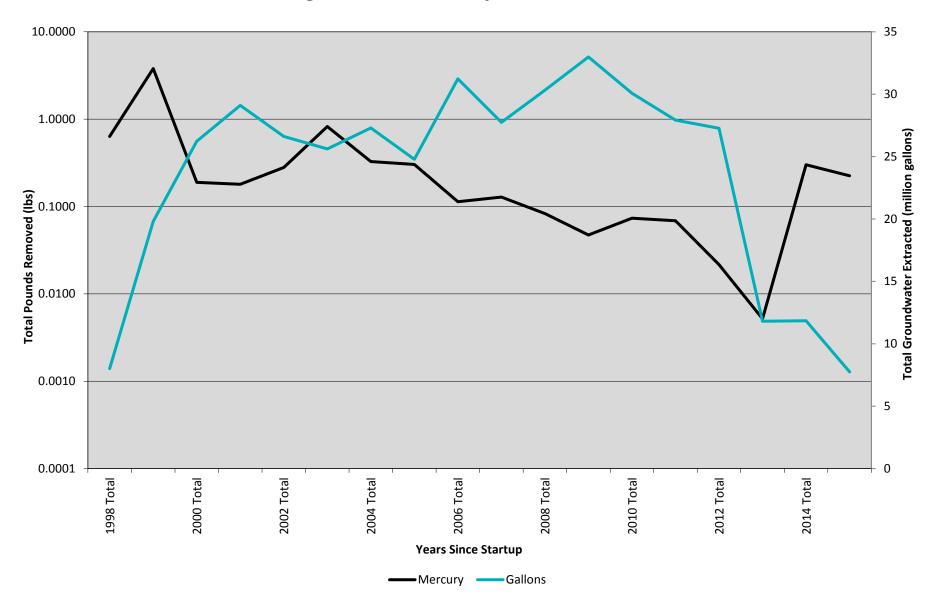
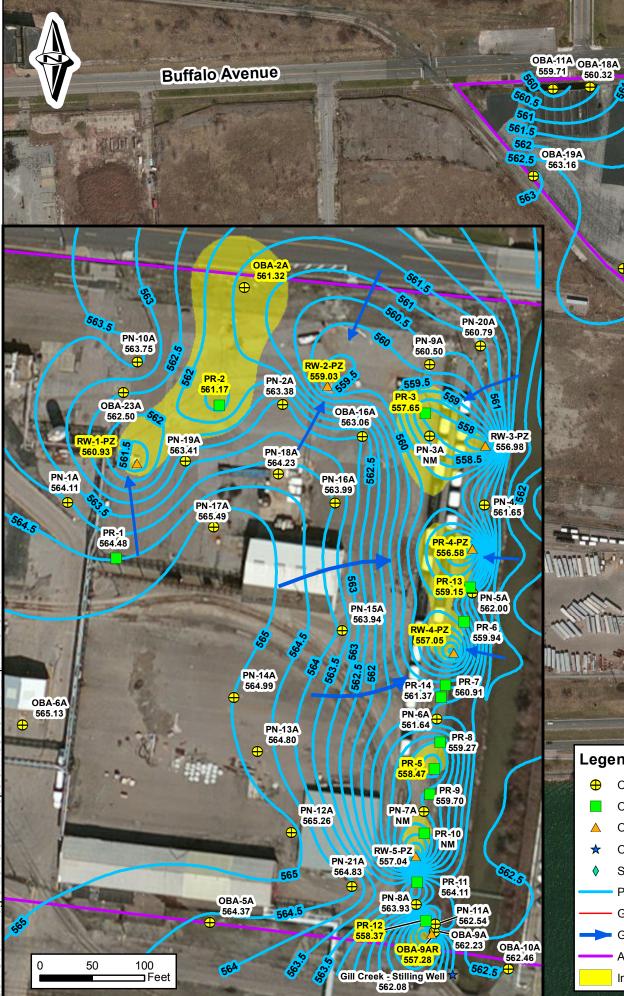



Figure 3.14: Mercury Mass Removal

Notes:

OBA-8A 562.04

63.2

1. The Gill Creek elevation is continuously monitored (1 hr intervals) using a data logging transducer installed in the Gill Creek Stilling well. The average daily elevation is used to extrapolate the levels along the creek and create a breakline in the contouring model.

48.88 8. 8815 8

F 5884

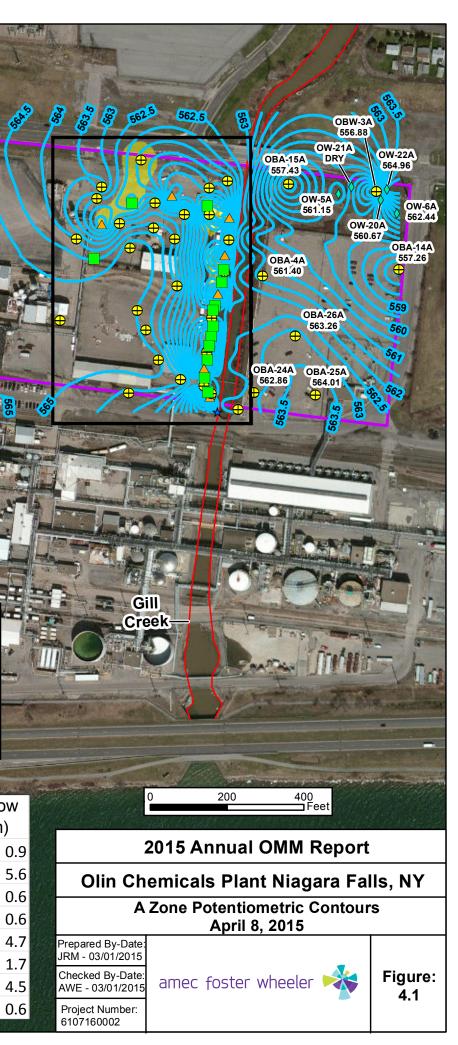
498 8

OR BR

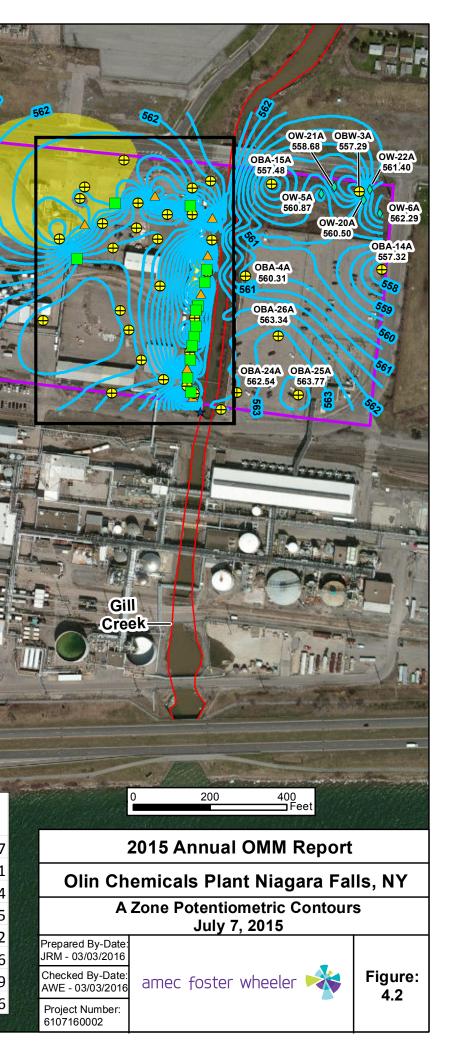
OBA-1A 566.76

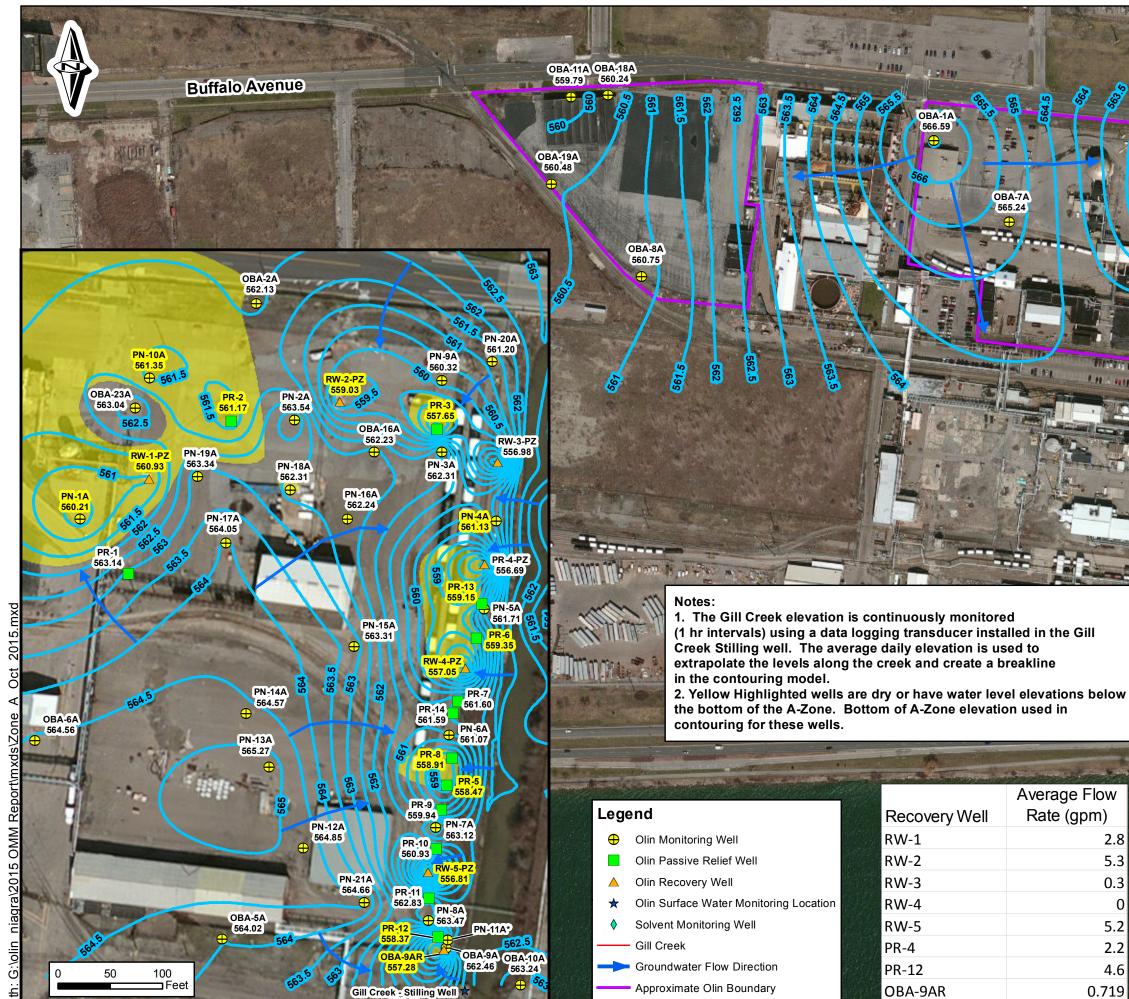
OBA-7A

566.34

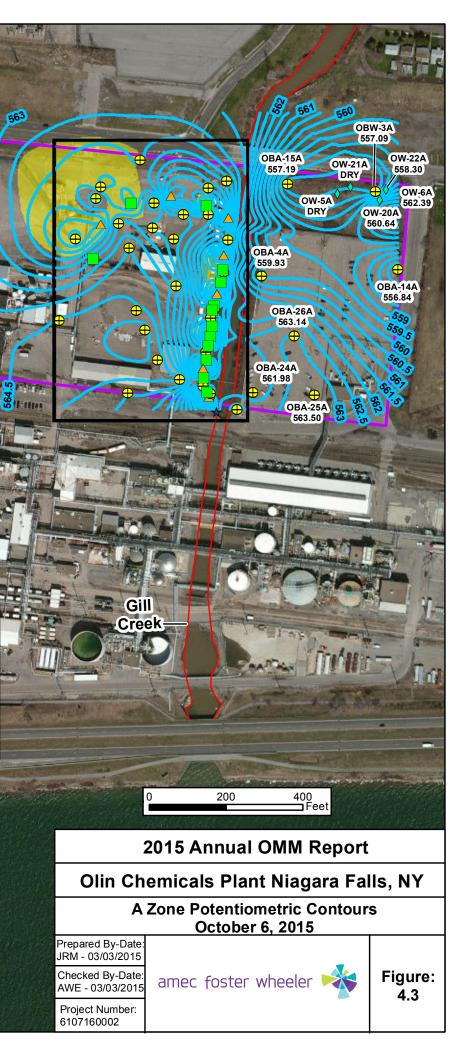

-


2. Yellow Highlighted wells are dry or have water level elevations below the bottom of the A-Zone. Bottom of A-Zone elevation used in contouring for these wells.


Legend



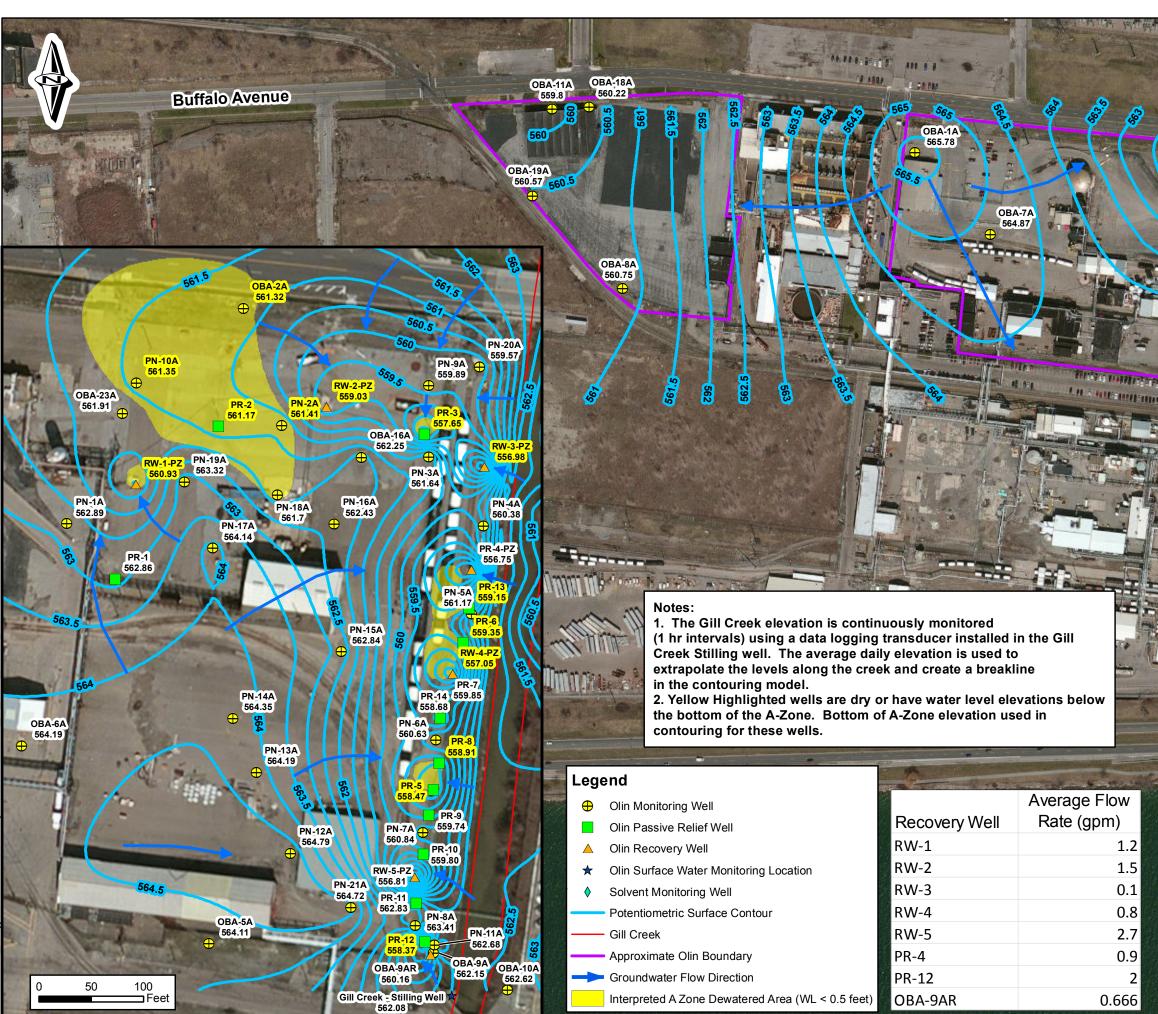
\oplus	Olin Monitoring Well		Average Flow
	Olin Passive Relief Well	Recovery Well	Rate (gpm)
	Olin Recovery Well	RW-1	0.9
★	Olin Surface Water Monitoring Location	RW-2	5.6
♦	Solvent Monitoring Well	RW-3	0.6
	Potentiometric Surface Contour	RW-4	0.6
	Gill Creek	RW-5	4.7
	Groundwater Flow Direction	PR-4	1.7
	Approximate Olin Boundary	PR-12	4.5
	Interpreted A Zone Dewatered Area (WL < 0.5 feet)	OBA-9AR	0.6



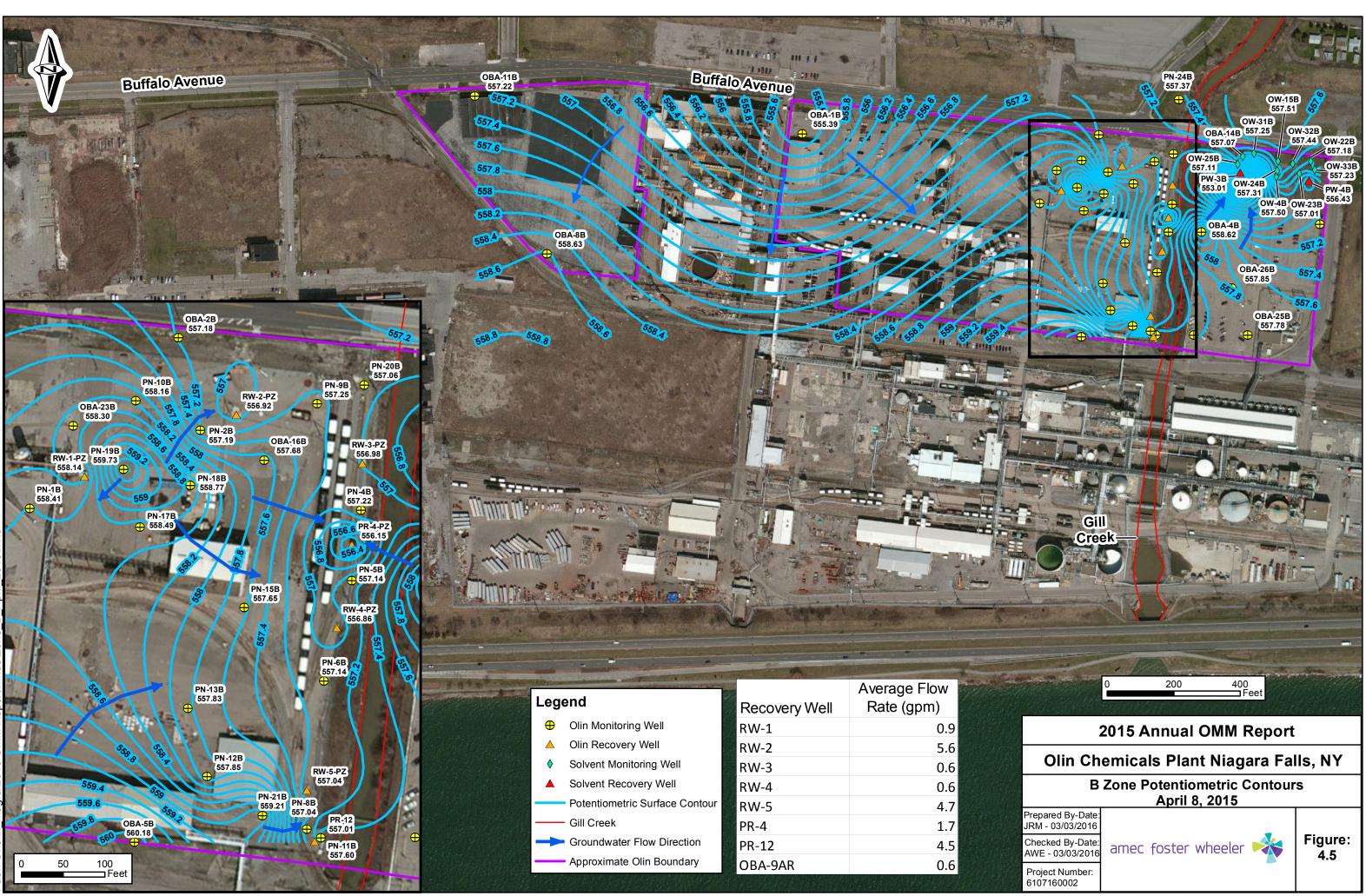
563.46

2.8

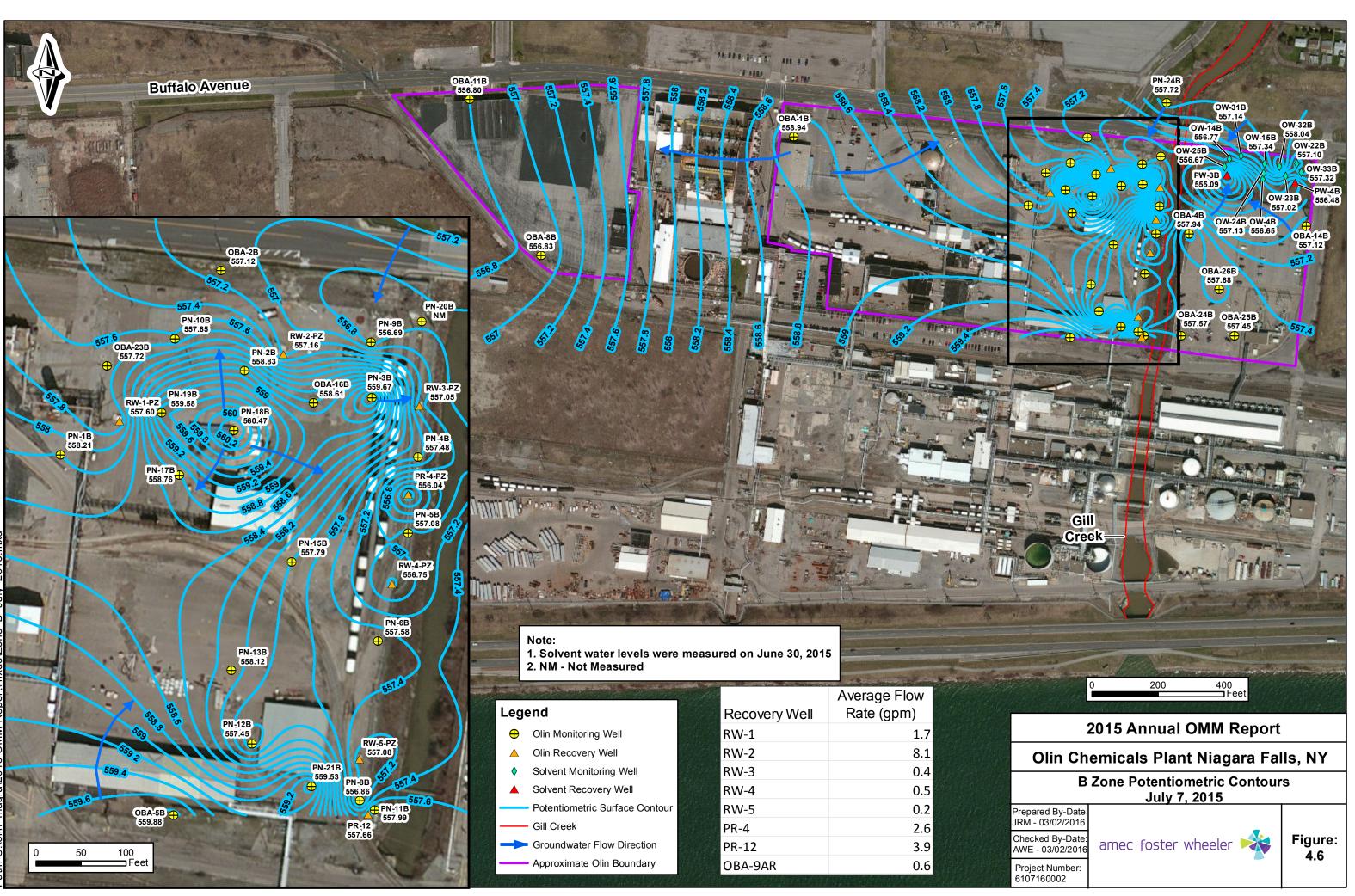
5.3

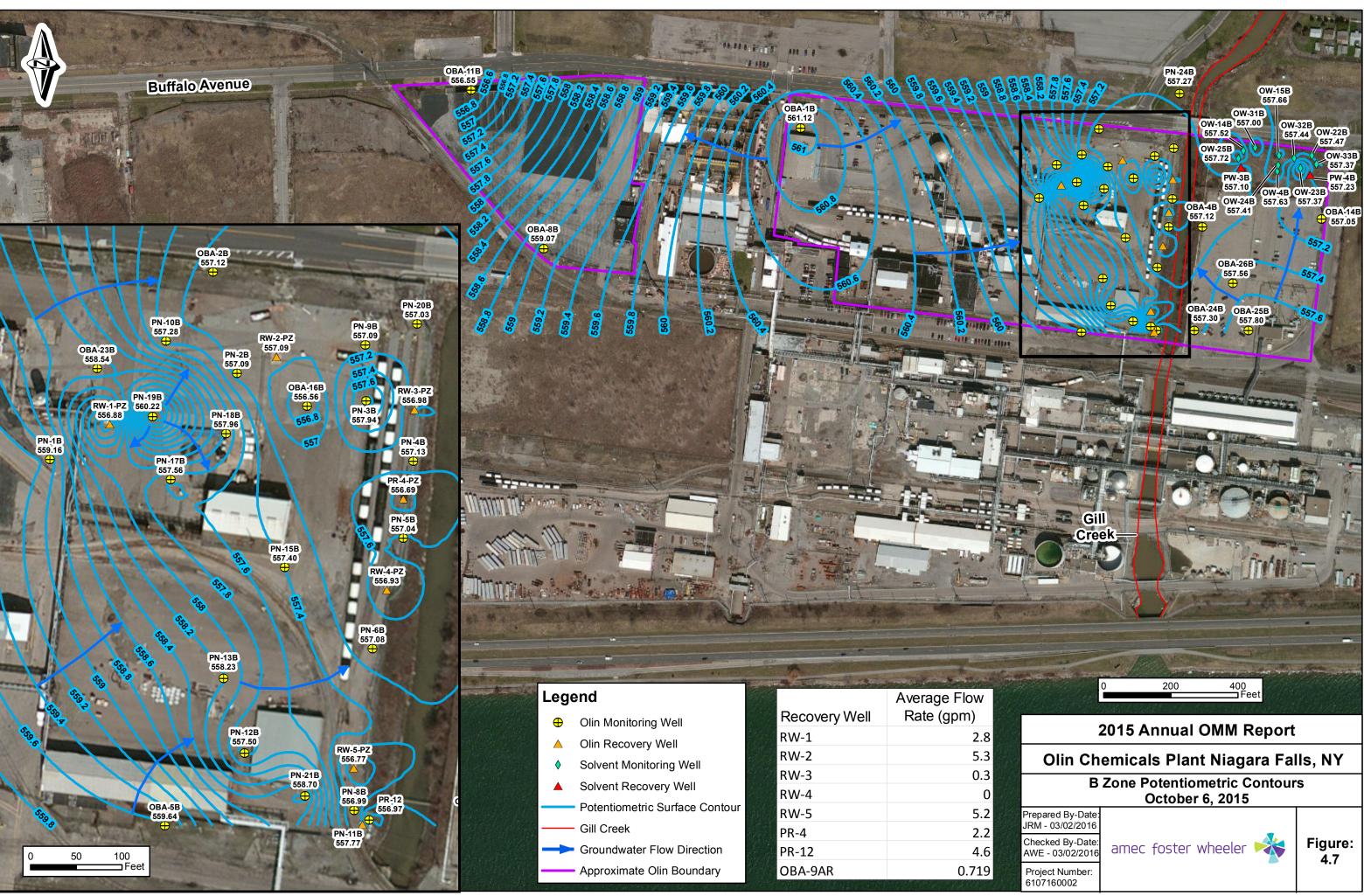

0.3

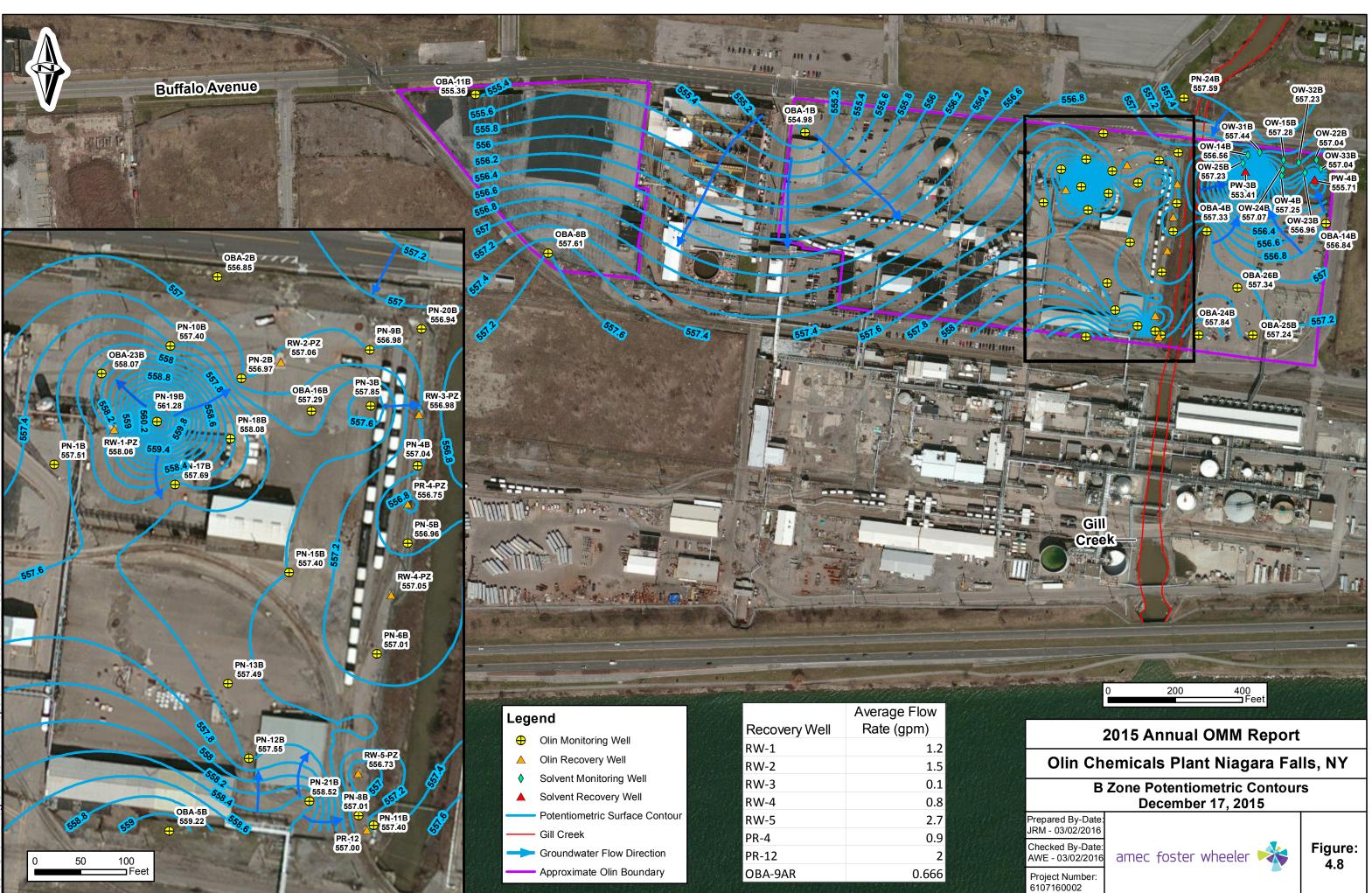
5.2

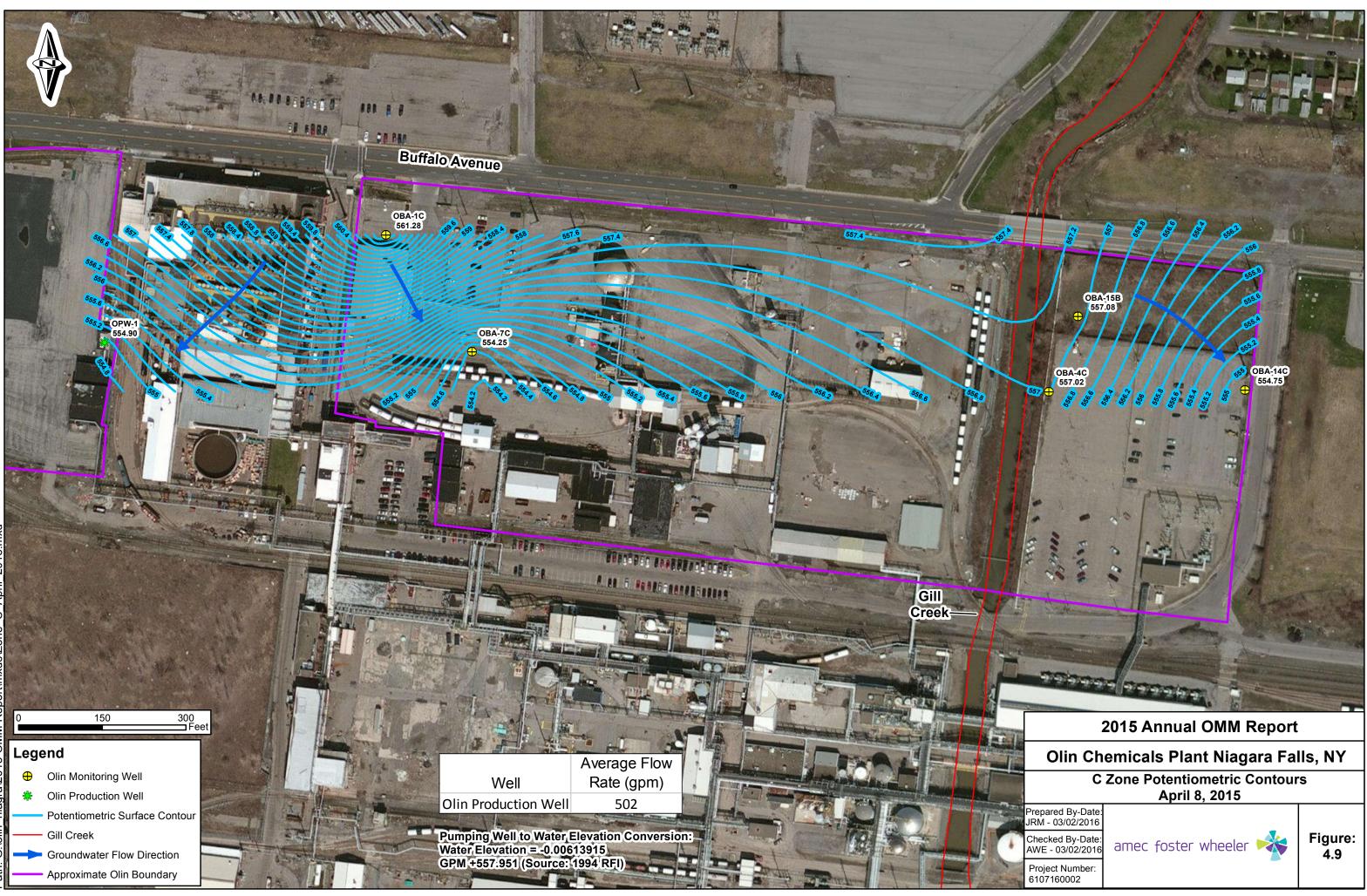

2.2

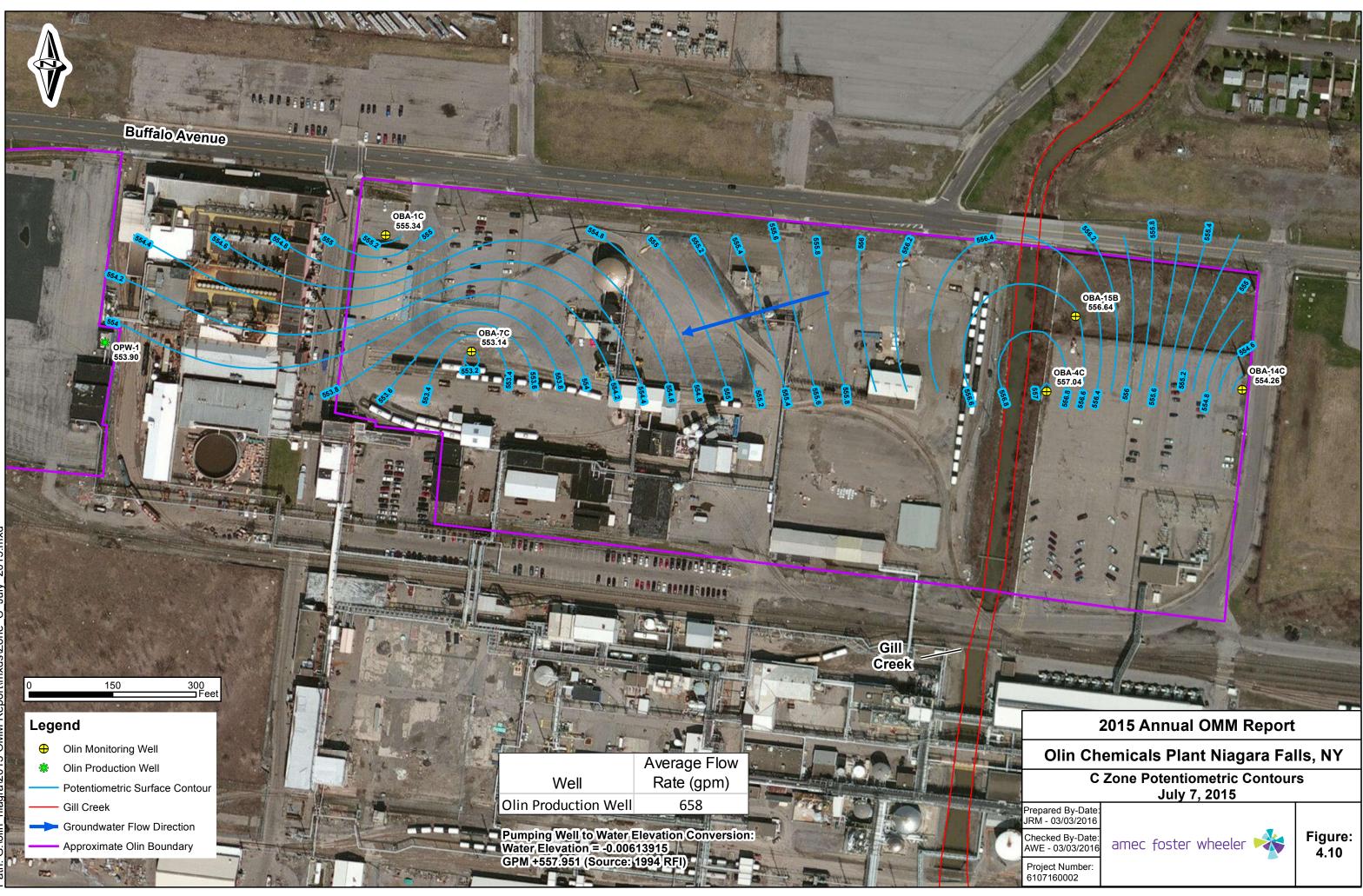
4.6

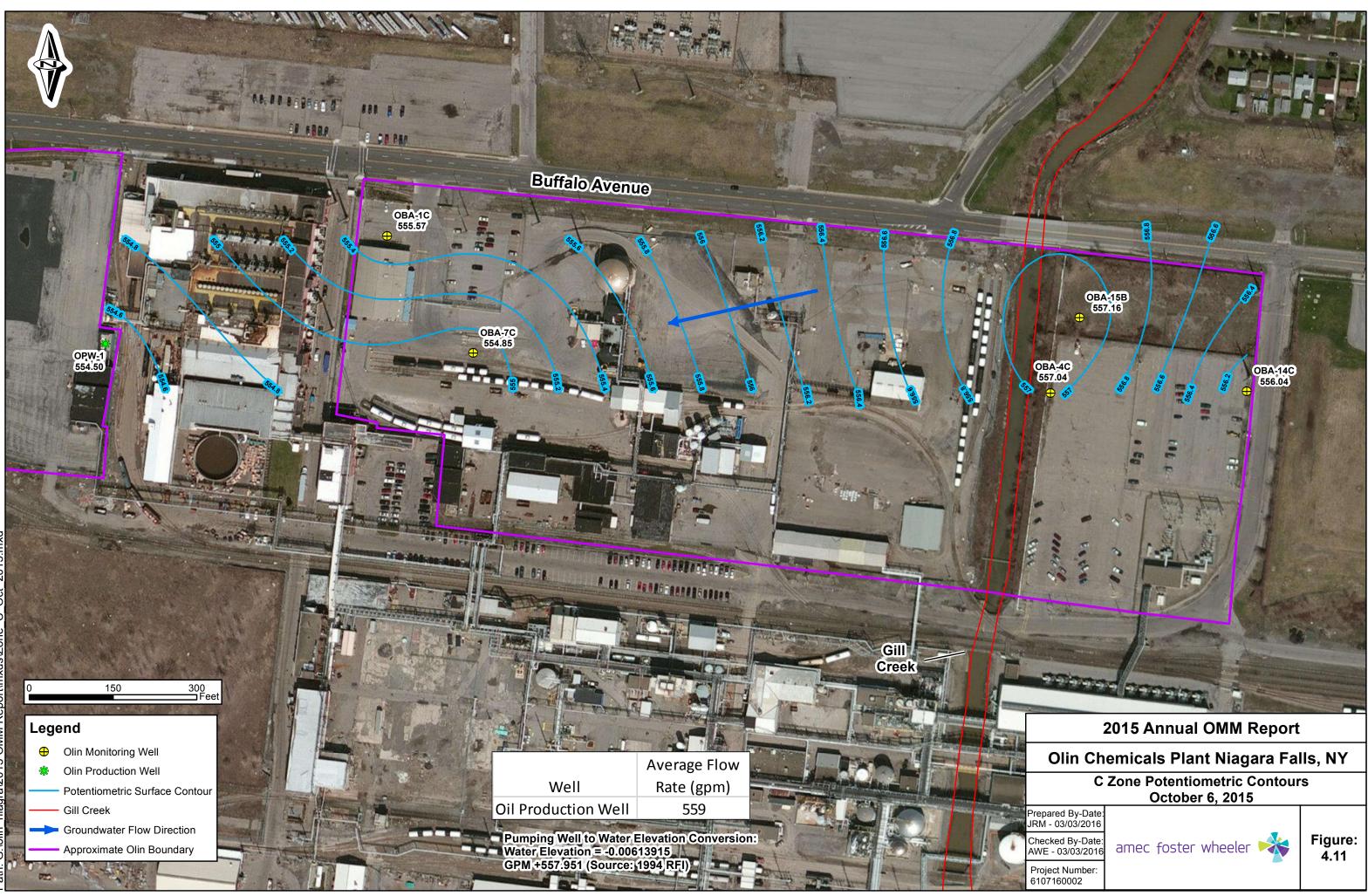

0

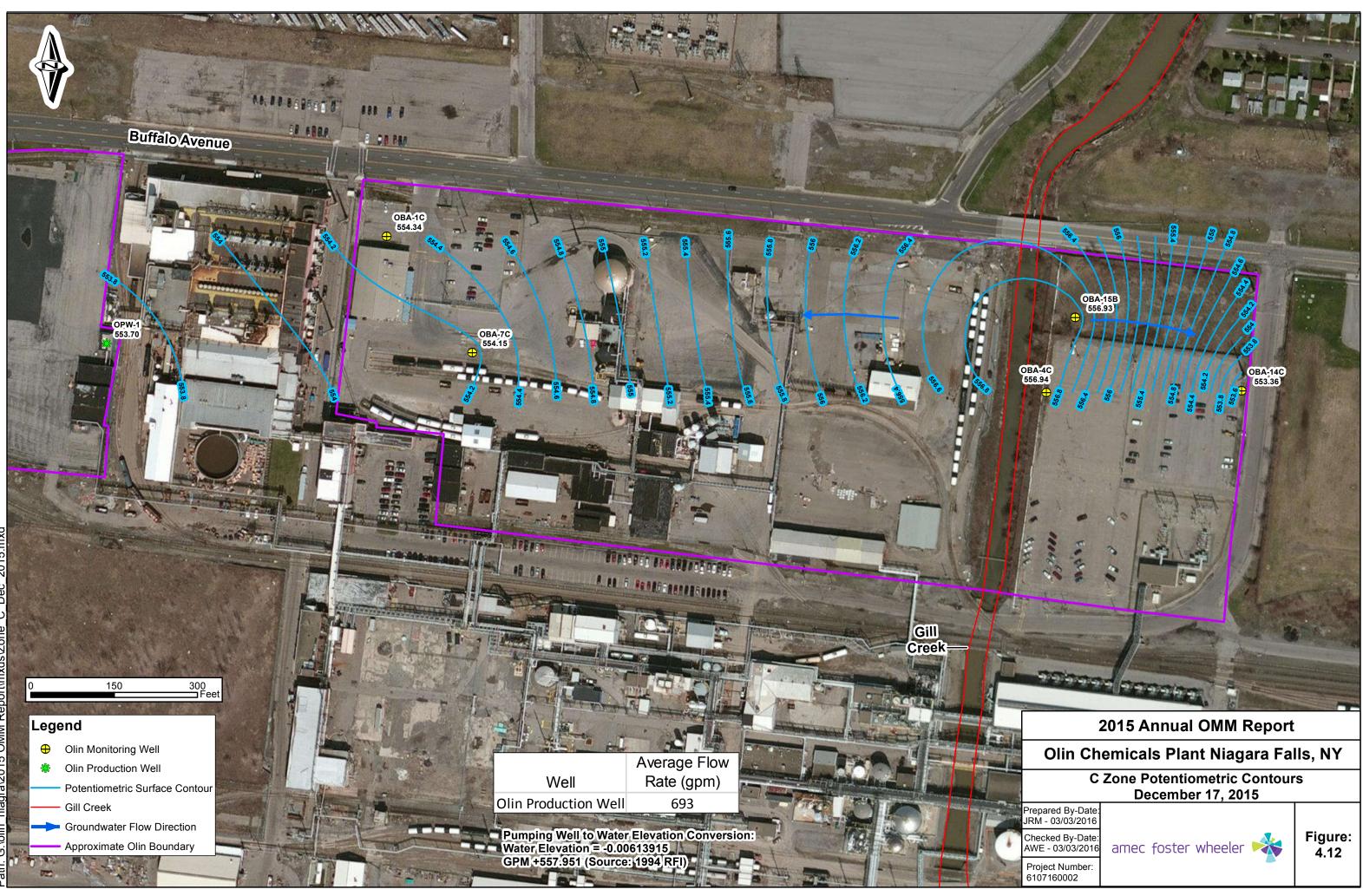


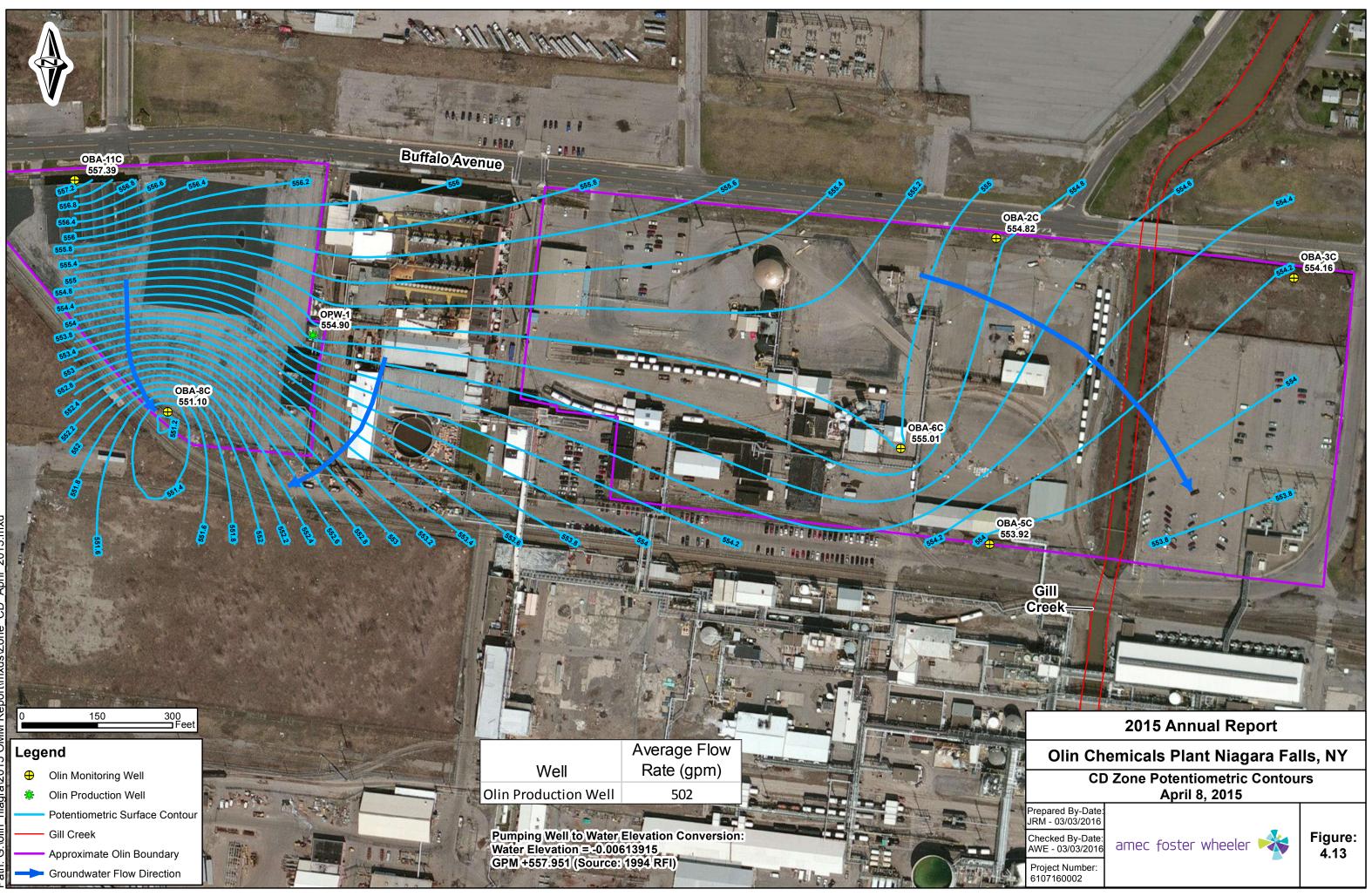


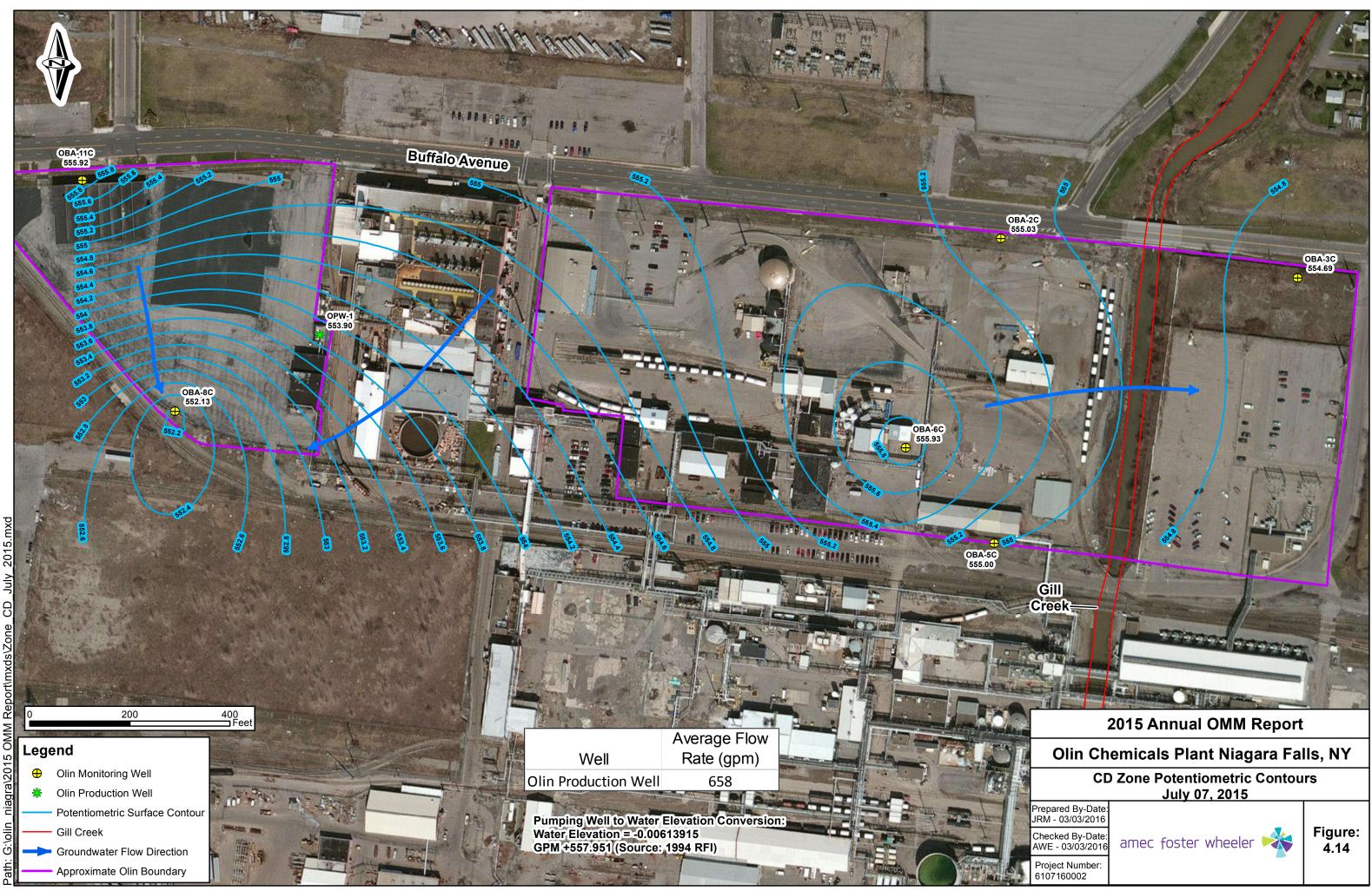


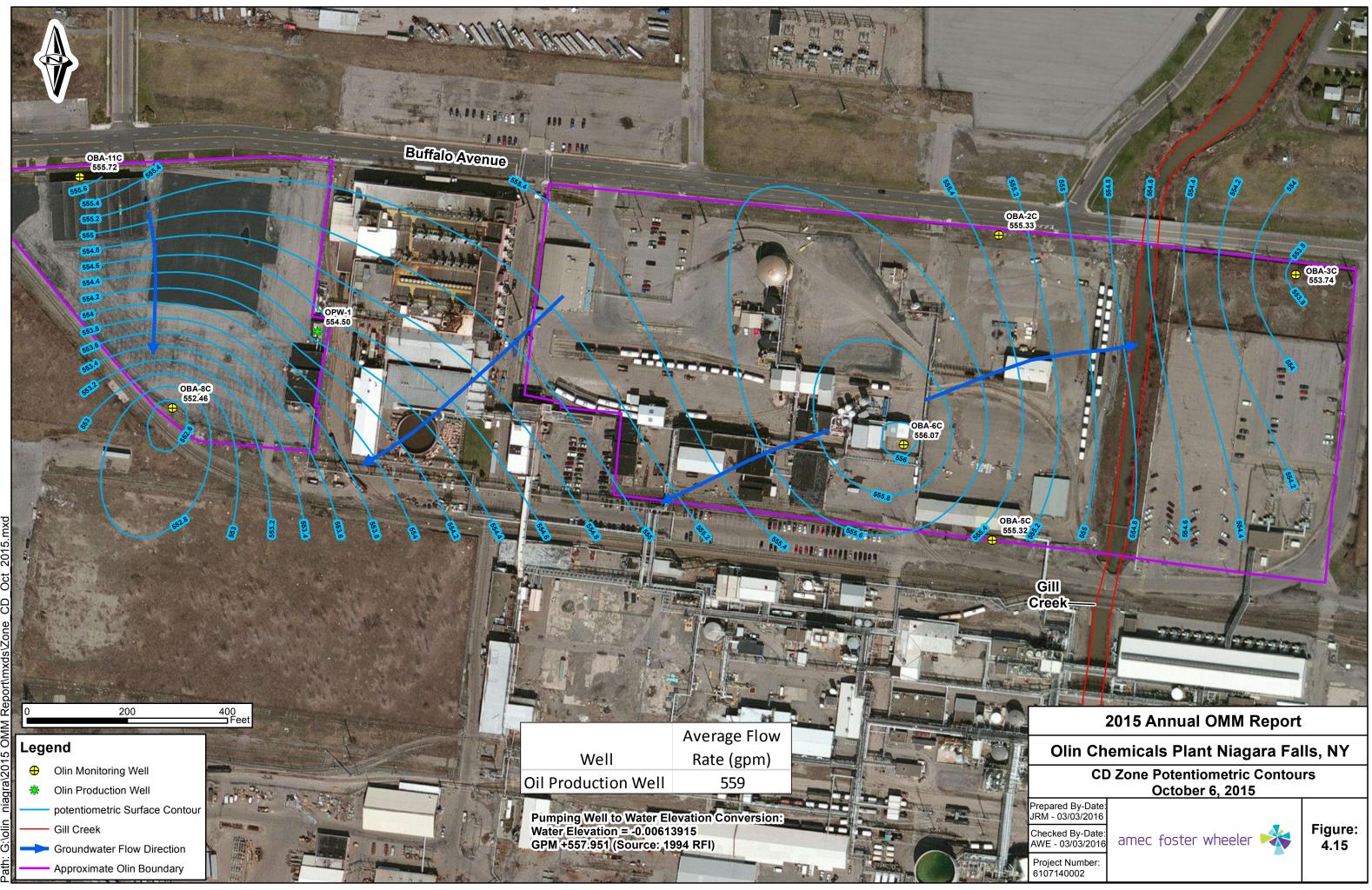

Path: G:\olin niagra\2015 OMM Report\mxds\Zone B April 2015.mxd

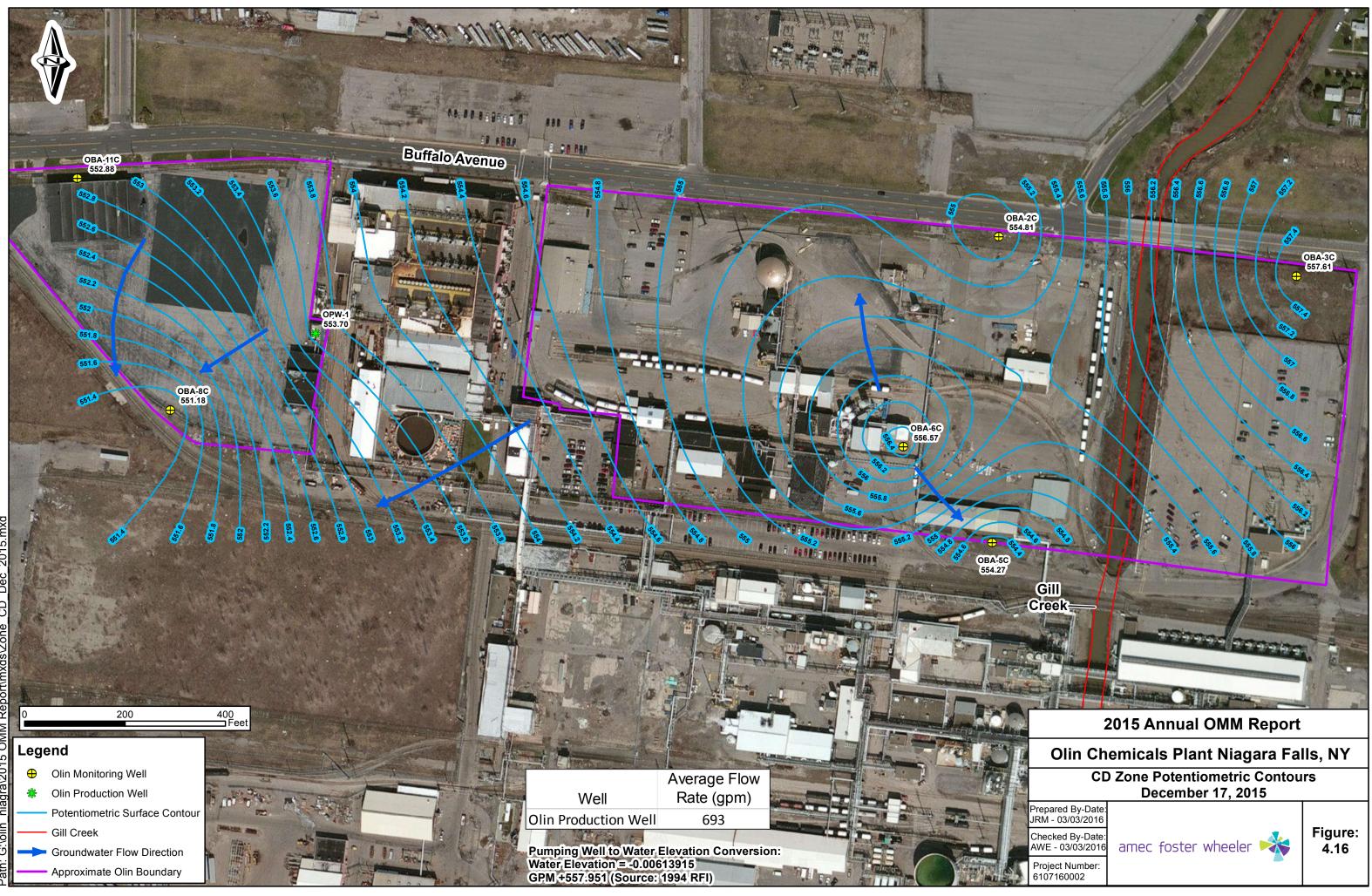


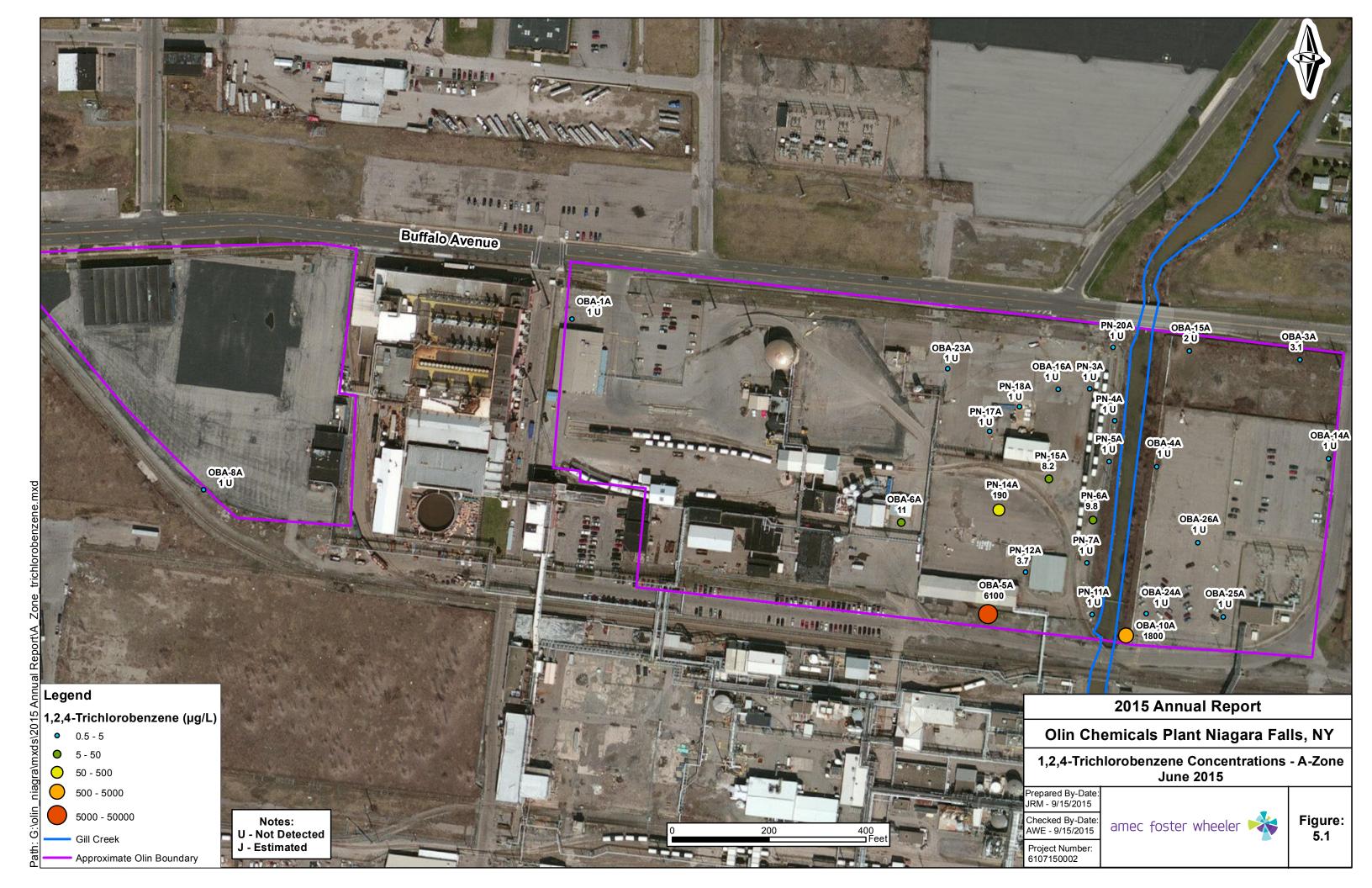


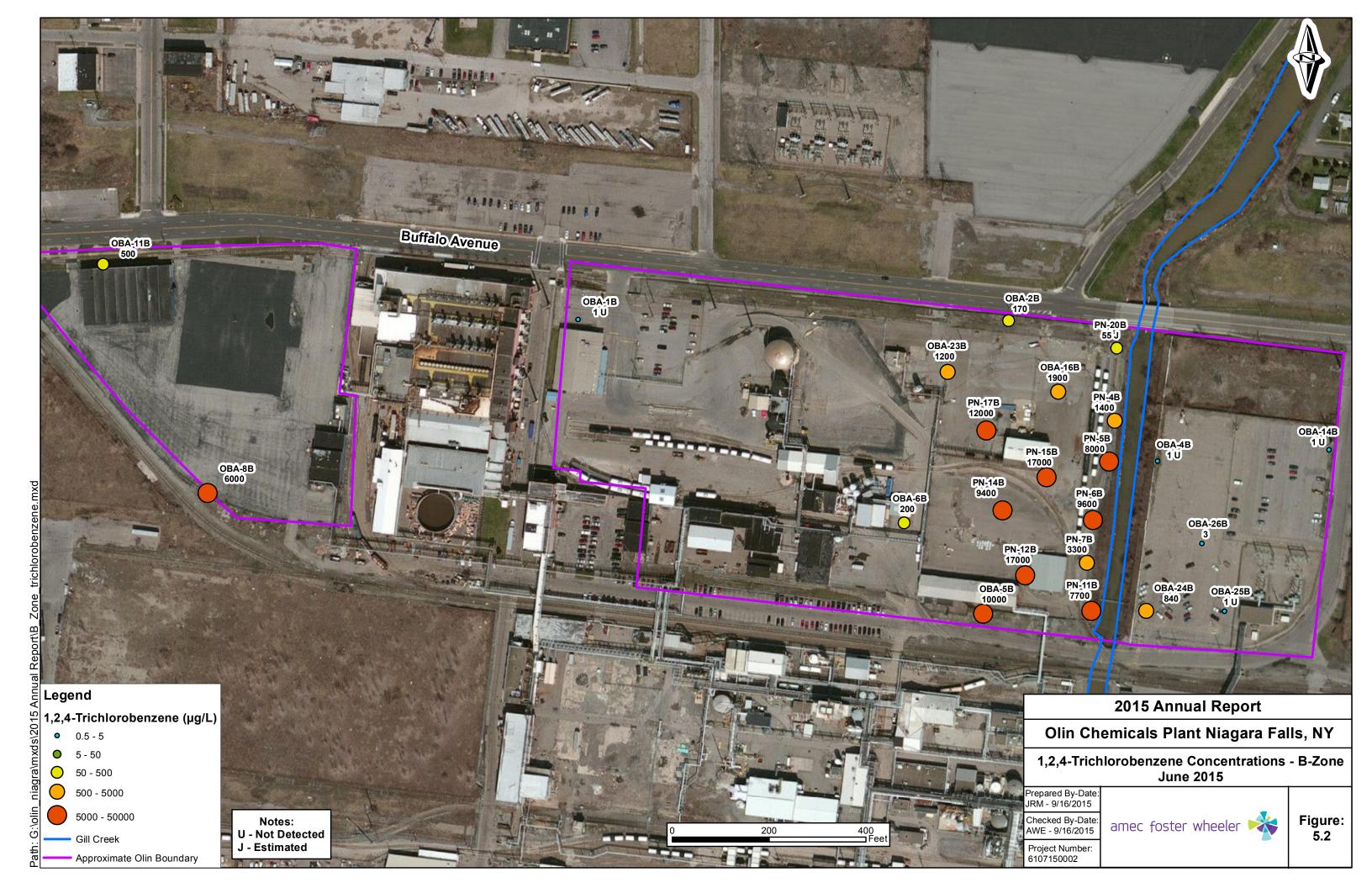


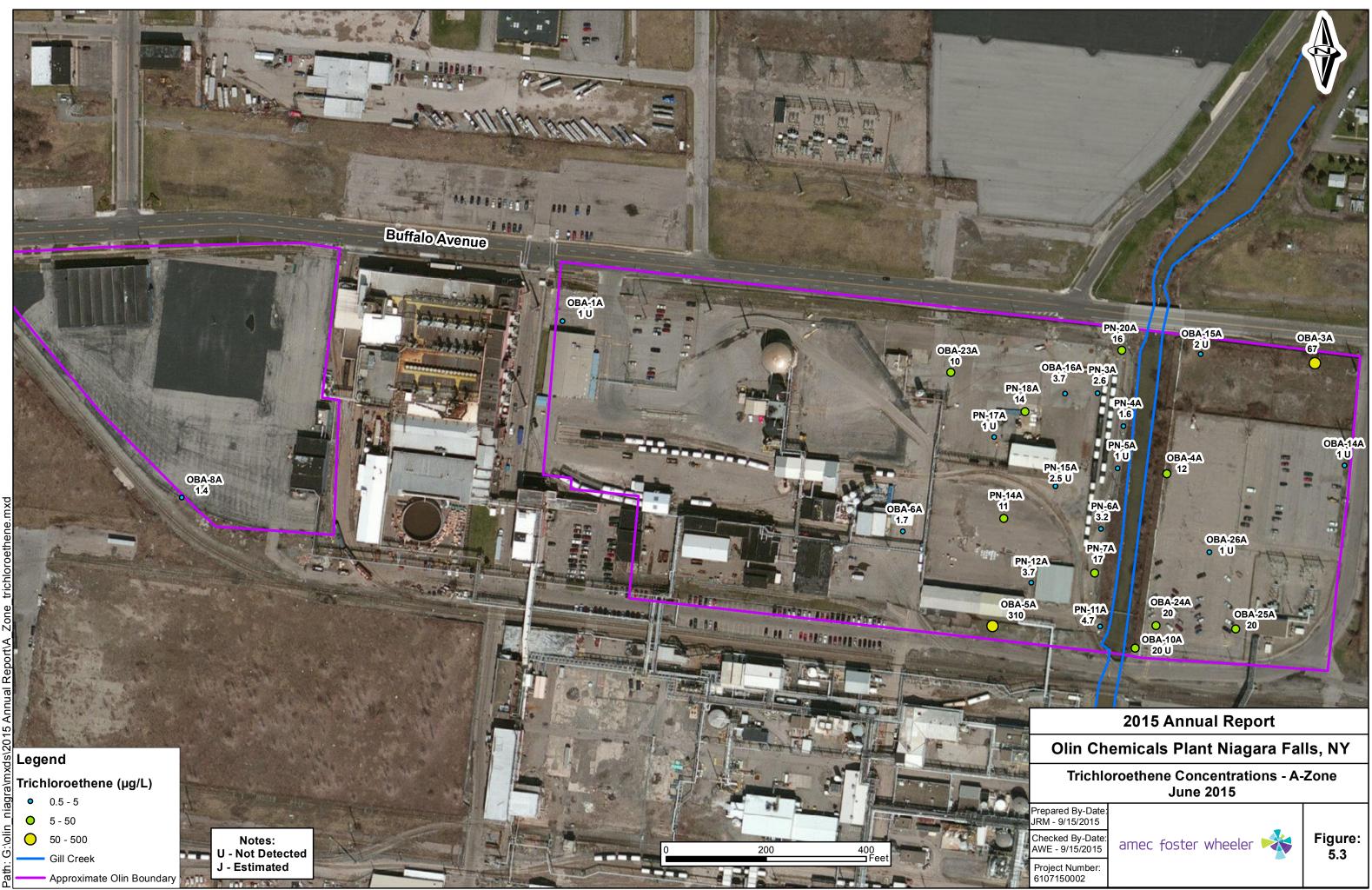


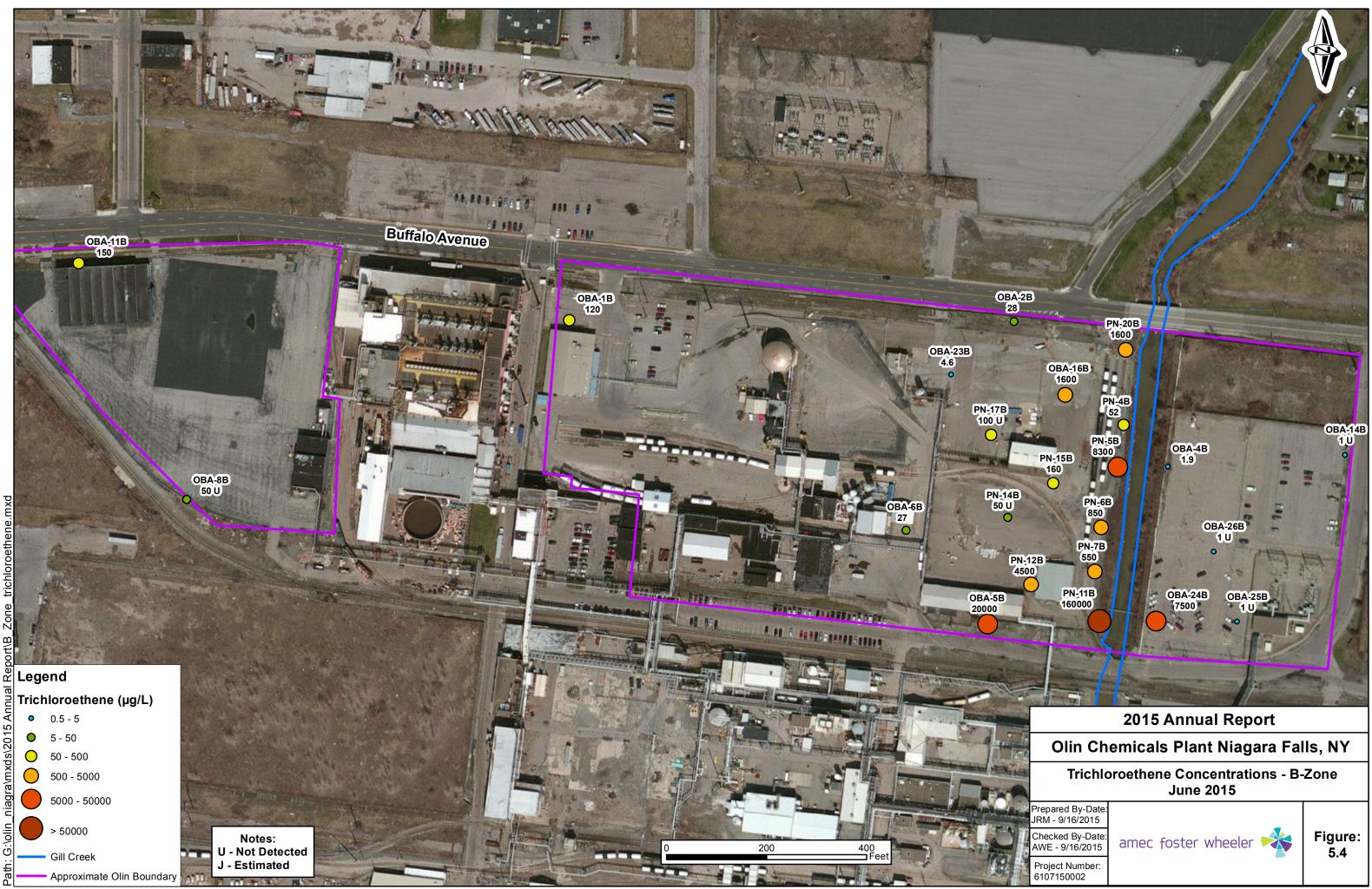


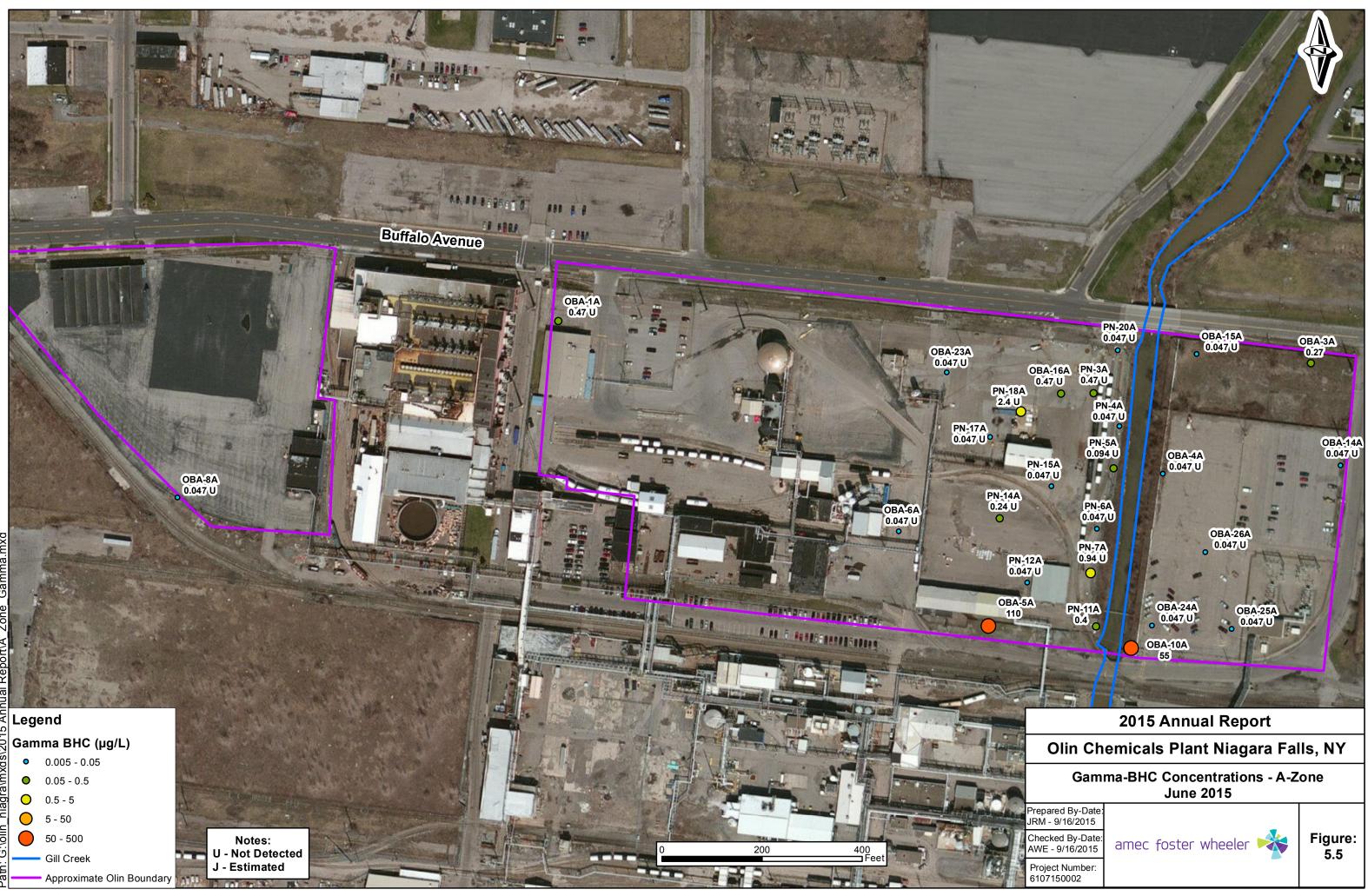


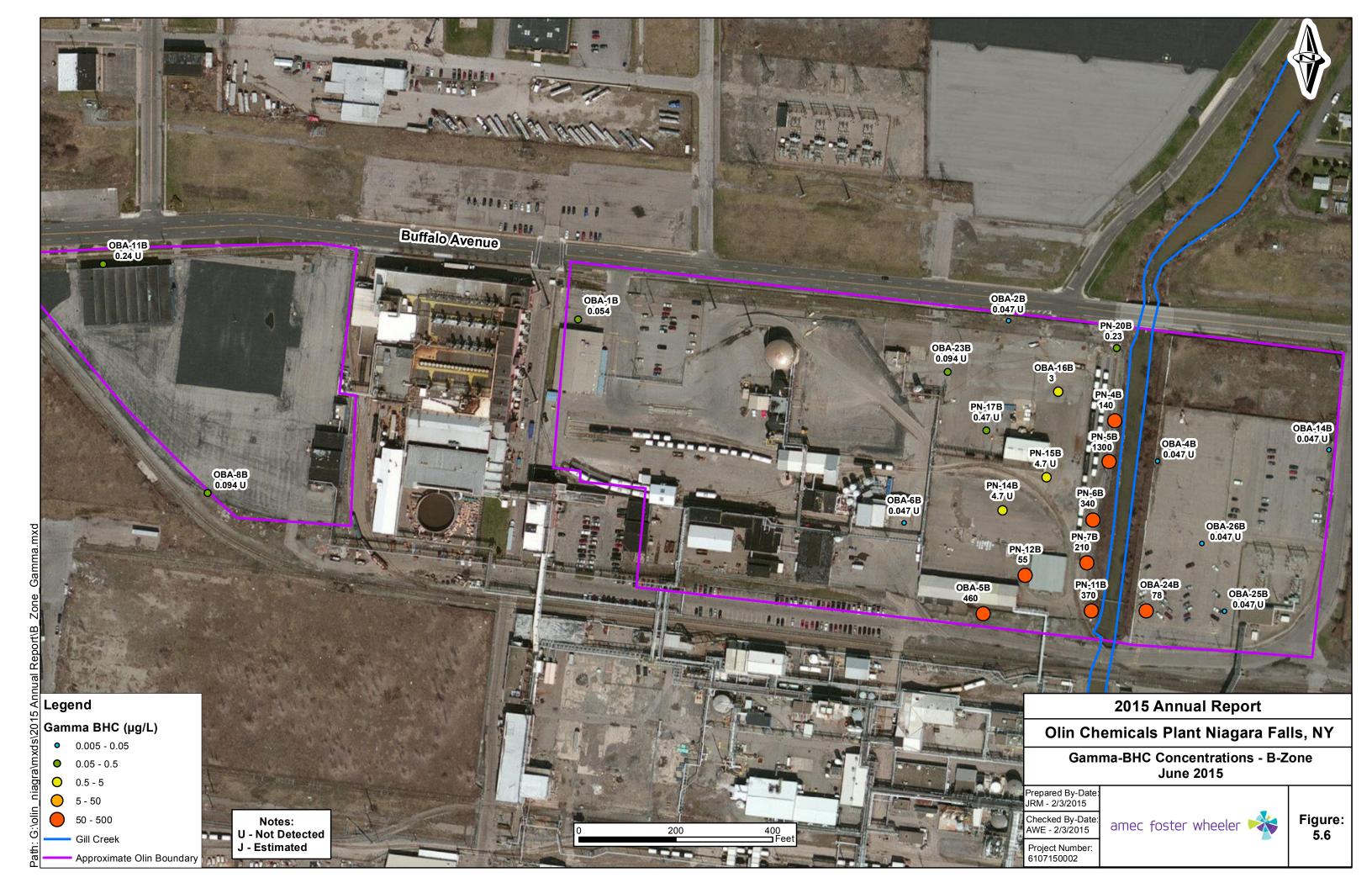


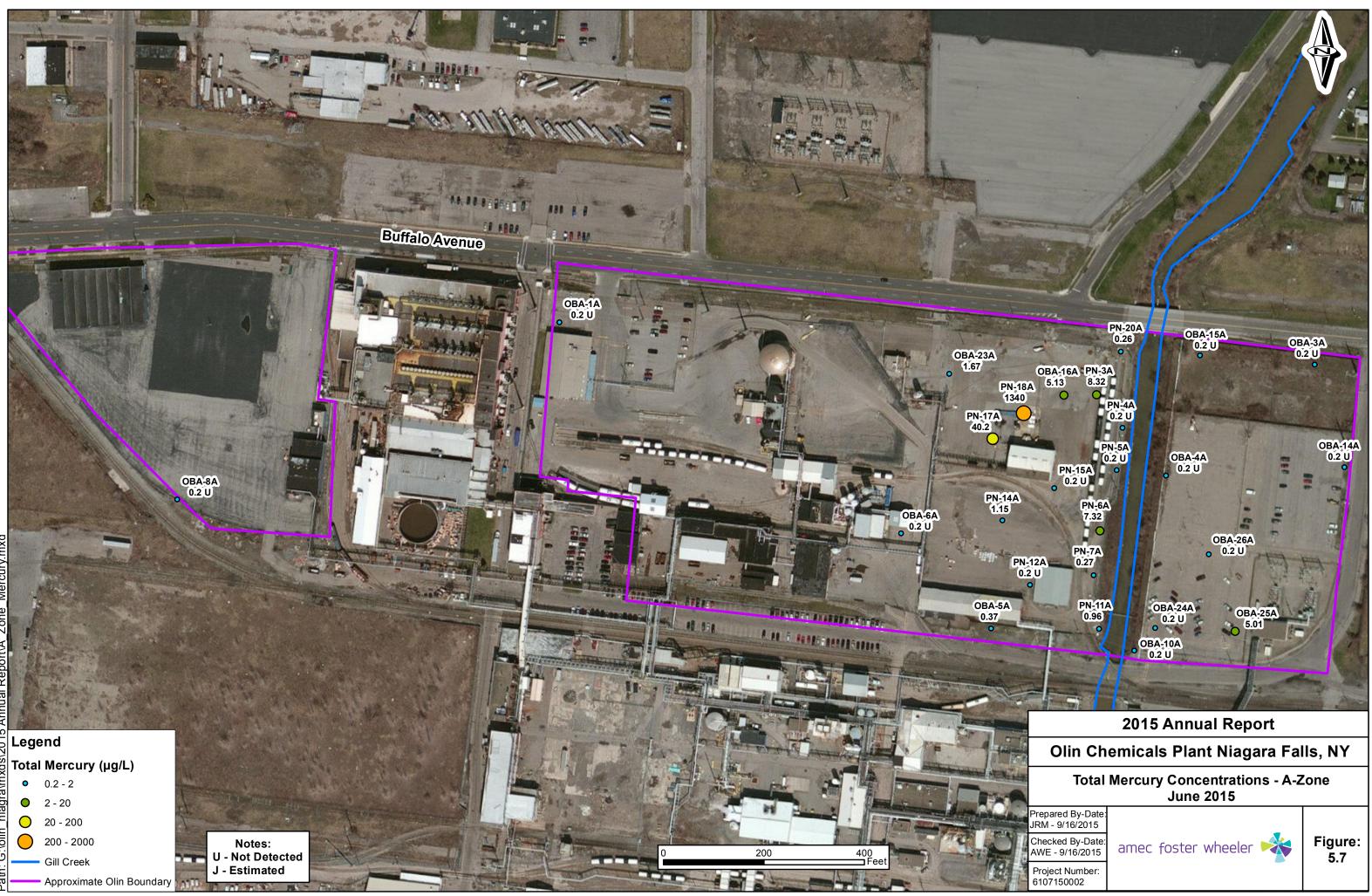


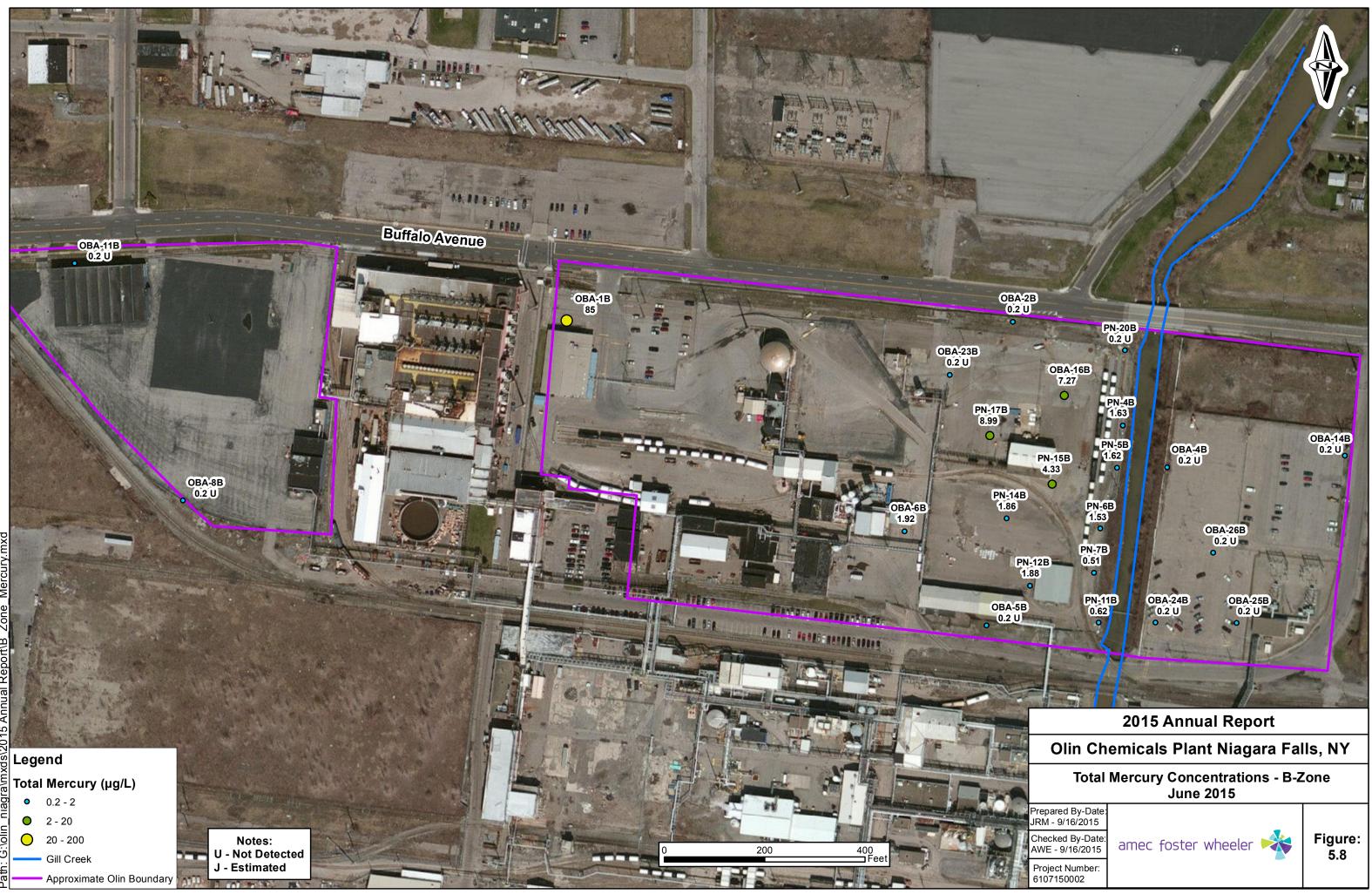












APPENDIX A

NYSDEC CORRESPONDENCE

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau E 625 Broadway, 12th Floor, Albany, NY 12233-7017 P: (518) 402-9813 I F: (518) 402-9819 www.dec.ny.gov

June 18, 2015

Mr. Richard W. McClure Olin Corp., Environmental Remediation Group 3855 N. Ocoee Street, Suite 200 Cleveland, Tennessee 37312

> RE: 2014 Annual Operations, Maintenance, and Monitoring Report Olin Chemicals, Buffalo Avenue Facility, Niagara Falls, New York AOC Index No. R9-4171-94-08, NYSDEC Site No. 932051A and B

Dear Mr. McClure:

The New York State Department of Environmental Conservation has reviewed the above-referenced report dated March 19, 2015. The report documents Olin's monitoring, remediation, and O&M activities at the Niagara Falls plant for the period January 1 to December 31, 2014.

Data in the report indicate that the remedial goals are being met for the ARGC area of Plant 2. For the reporting period, Olin's groundwater treatment system removed approximately 5,216 pounds of VOCs, 21 pounds of pesticides, and 0.3 pounds of mercury. The report documents that Olin has been responsive to repair and maintenance issues as they arise, and has made modifications and upgrades to improve the reliability of the system.

In the western portion of the site (historically known as Plant 1, which has generally been outside the area of groundwater remediation at the Olin facility), analytical data has shown that monitoring well OBA-8B has had elevated concentrations of 1,2,4-trichlorobenzene – between 2,000 and 11,000 μ g/L – for a number of years. In contrast, during quarterly sampling associated with the RCRA Facility Investigation (RFI) in the early 1990s, 1,2,4-trichlorobenzene was not detected in well OBA-8B, with the exception of one sample in 1992 with 570 μ g/L. Other Olin-derived constituents were likewise low or non-detect in B-zone groundwater in Plant 1 during the RFI. This suggests that the observed contamination migrated to this area after the RFI.

In this area of the site, 1,2,4-trichlorobenzene is assumed to be associated with the Olin facility. The adjacent DuPont facility did not use or produce chlorobenzenes and the former Solvent Chemical facility, which did, is likely too far east to account for the observed concentrations.

Mr. Richard W. McClure

Potentiometric surface maps indicate that this contamination may be migrating westward to off-site areas, though monitoring data are limited. Therefore, Olin should evaluate the source and fate of the contamination in OBA-8B and determine if additional measures are needed to prevent its off-site migration. Please advise the Department once an action plan is developed for such an evaluation.

The above-referenced report is approved. If you have any questions regarding this letter, please call me at (518) 402-9813.

Sincerely,

An c. cll

Alex G. Czuhanich Project Manager Remedial Section B, Remedial Bureau E Division of Environmental Remediation

ec: G. Sutton, NYSDEC, Region 9 A. Everett, USEPA, Region 2 M. Cruden, DER D. Radtke, DER

APPENDIX B

WEEKLY O&M REPORTS

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 04	CONTRACT NO. 1113 Div 4	DATE:	1/29/15	
PROJECT TITLE	OLIN CORPORATION, BU	JFFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	INT PLANT
WEATHER: partly cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 13	Max: 35

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Other notes and observations:

Sevenson started the RW-5 well piping repair on Monday, started digging, got down to the level of the pipe.

Tues. - Digging continued to create a "work area" with the vac truck and excavator, the safety shield was set in place.

Wed.- The damaged piping was cut away from the well (removed pitless adapter) and new force main piping and secondary containment piping was fused into place, clean stone was delivered for the pipe bedding backfill.

Thurs. - backfilling of the hole continued, done in lifts with compaction between them.

Friday. - Finished backfilling and compacting the excavation with the exception of a small area where the underground electrical conduit has to be installed. Reinstalled the level sensor and wiring to the hot box. Reconnected the transducer and display on the piezometer, had Gaines Electric come out to look at the conduit runs to re-establish power to the pump and hotbox.

Demobilized the equipment and the safety shield.

Other non RW-5 related work includes:

Removing the piping between PR-12 and OBA-9AR, and thawing it out as it had frozen at some time during the week. The heat trace around the pipe stopped working. We pulled everything apart, thawed it all out and reinstalled the pipe with new heat trace, and installed new insulation around the above ground secondary containment piping that carries it.

Chris also acid washed the trays in the air stripper this week. After the acid bath, The air flow in the stripper from the 680's up to 850 CFM.

Item 042214.01: The pressure gauges on the GAC feed pumps need to be replaced. Rob has notified us that a work order has been issued for this.

OLIN Building #73 WWTP Pumping Well Data Sheet

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>
RW-1	557.1	14.50	15.42	557.18	1.80
RW-2		14.91	15.11		5.19
RW-3	557.2	12.55	12.58	557.12	1.07
PR-4	555.6	13.43	13.70	555.72	1.9
<mark>RW-4</mark>	557.2	12.41	12.43	557.36	0.77
RW-5					
PR-12	557.4		12.35	557.25	5.59
OBA-9AR	557.0	12.99	13.23	556.97	1.9

DECCIDE DEADINCE			
RESSURE READINGS			
	SP#1	SP#2	dP
AC #1	20	15	5
	SP#3	SP#4	
AC #2	15	9	6
TOTAL GAC SYSTEM	9.4	Diff,Pr	
LOW RATE	41	GPM	
DBA-9AR TOTALIZER	1231123		

PH Readings:				Acid level: 20%				
RW-1	7.12							
PR-4	7.68							
PH Adj. Tanks	6.99	7.32	7.42					
Air Stripper level Sensor Cleaned? yes								
Chris Jone	es							

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 05	CONTRACT NO. 1113 Div 4	DATE:	2/03/15	
PROJECT TITLE	OLIN CORPORATION, BU	JFFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	ENT PLANT
WEATHER: partly cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 5	Max: 18

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Other notes and observations:

RW-2's Transducer readout was blank Rob Meyer has been notified and E&I has been contacted, for now, we will run the pump in manual mode.

RW-1 was down. Chris pulled, cleaned and inspected the pump. The shaft was spinning but not pumping water. Inspected the piping for freeze up. Heated with a heat gun. Replaced the pump, Olin electrician installed new leads. The pump is now operational.

Calibrations on the transducers have been completed, except for RW-2, which needs replacement.

Gaines electric was on site Friday to re-establish the wiring for RW-5. We ran into a problem with the buried conduit from the pole to the hot box at well RW-5. We will have to excavate and remove the existing conduits and replace them to pull new wires to the hot box. This will start Monday am. Gaines will be onsite Tuesday am to continue and complete the wiring. Anticipated time to restart RW-5 is Tuesday afternoon.

Item 042214.01: The pressure gauges on the GAC feed pumps need to be replaced. Rob has notified us that a work order has been issued for this.

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	READOUT	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	557.1	14.50	15.42	557.18	1.80	GAC #1	20	12	8	
RW-2		14.90	15.08		5.03		SP#3	SP#4		
RW-3	556.8	12.71	12.73	556.86	0.96	GAC #2	13	8	5	
PR-4	555.6	13.48	13.73	556.16	1.8					
<mark>RW-4</mark>	557.1	12.53	12.55	557.16	0.70	TOTAL GAC SYSTEM	13.4	Diff,Pr		

OLIN Building #73 WWTP Pumping Well Data Sheet

RW-5								
						FLOW RATE	44	GPN
PR-12	557.2		12.48	557.12	5.39	OBA-9AR TOTALIZER	1234503	
OBA-9AR	557.0	13.45	13.75	556.37	2.0]		
						-		
PH				Acid level: 5	50%			
Readings:						_		
RW-1	7.99							
PR-4	7.56					1		
PH Adj. Tanks	7.78	7.56	7.40					
Air Stripper	level Se	ensor Cle	eaned?	yes				
Chris Jon	es					-		

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 06	CONTRACT NO. 1113 Div 4	DATE:	2/12/15	
PROJECT TITLE	OLIN CORPORATION, BU	JFFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	К
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	ENT PLANT
WEATHER: partly cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 16	Max: 26

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Other notes and observations:

Monday: Sevenson was onsite Monday to excavate around and expose the electrical conduit at RW-5 to allow the electricians to replace the conduit and repair the wiring to RW-5.

Tues: Sevenson started the GAC change out in Bldg. 73 by vacuuming out the spent carbon from the GAC vessels. Gaines Electric was onsite at RW-5 to replace the conduit and re-establish the wiring.

Wed: Sevenson completed the GAC change out in Bldg. 73 and demobilized the vac truck. Sevenson backfilled the trench at RW-5 covering the new electrical conduits. A final grading of the area will take place after the ground thaws and surrounding snow melts. A new flow valve was installed for the RW-1 pump at the manifold in B-73.

Thurs: Sevenson was onsite to try and troubleshoot electrical issues with the leak detection, and the level indicator at RW-5. Olin E&I has been asked investigate and troubleshoot the instrumentation. Chris also did the weekly well level monitoring.

Friday: Chris Jones was onsite to troubleshoot a low air flow condition at the air stripper, due to sub zero temperatures.

Item 042214.01: The pressure gauges on the GAC feed pumps Have been replaced, thank you.

OLIN Building #73 WWTP Pumping Well Data Sheet

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>
RW-1	557.7	14.44	15.38	557.89	1.10
RW-2		14.93	15.10		5.12
RW-3	556.8	12.62	12.65	556.79	0.78
PR-4	555.6	13.20	13.44	556.36	1.9
<mark>RW-4</mark>	557.1	12.36	12.40	557.09	0.61
RW-5					
PR-12	557.2		12.35	557.25	5.15
OBA-9AR	556.1	13.22	13.40	556.70	2.0

CARBON VESSEL PRESSURE READINGS			
	SP#1	SP#2	dP
SAC #1	15	10	5
	SP#3	SP#4	
SAC #2	10	8	2
TOTAL GAC SYSTEM	4.2	Diff,Pr	
FLOW RATE	46	GPM	
OBA-9AR TOTALIZER	1240695		

PH Readings:				Acid level: 50%				
RW-1	8.23							
PR-4	7.76							
PH Adj. Tanks	8.45	8.67	8.59					
Air Stripper level Sensor Cleaned? yes								
Chris Jone	es							

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 07	CONTRACT NO. 1113 Div 4	DATE:	DATE: 2/18/15		
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP				
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK				
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT				
WEATHER: partly cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: -2	Max: 7	

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Other notes and observations: Temperatures consistently below 0 at night and only into the single digits during the day have become a problem this week in B-73. Here is the rundown:

Monday: Over the weekend low temperatures caused a disruption in the system operation causing a freeze up in the entire GWTS building. The heaters in the building could not keep up with the cold weather and the system piping began to freeze. We also had freezing conditions in several of the ground water wells. Torpedo type kerosene heaters were brought in to thaw out the building and system components. Progress is slow but steady.

Olin E&I repaired the leak detection switch at RW-5 today.

Tues.: The system showed more signs of thawing out. The transducer for RW-5 was put back on line properly and is now functional.

Wed: Today we discovered still more frozen lines in the carbon feed system, more heaters were brought in for overnight thawing

Thurs: The system was back on line but repeatedly shut down on an alarm for low air flow. RW-5 will not start. Troubleshooting reveals that there is no 480V power coming from the MCC to the well site. Rob Meyer is notified of the issue. The rest of the system runs sporadically. Ice and snow are forming in the stripper trays; we have heaters around the stripper and piping. Water levels are taken on this day for the GW wells.

Friday: another cold snap last night brings temps down to -10 F. We are notified that the 7S sump has frozen also eliminating our ability to discharge water even if we thaw and get running. Heaters were introduced at 7S also, by afternoon it is thawed and functional. B-73 is still thawing. All heaters will run during the weekend as temps are projected to climb into the mid 20's Sat and Sun. Monday looks promising to get the entire system back on line after favorable weather this weekend.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>
RW-1	557.5	14.42	15.35	557.87	2.03
RW-2		14.89	15.07		5.04
RW-3	556.8	12.60	12.65	556.81	0.68
PR-4	555.6	13.22	13.48	556.38	1.8
<mark>RW-4</mark>	557.1	12.35	12.40	557.11	0.72
RW-5					
PR-12	557.2		12.32	557.28	5.25
OBA-9AR	556.1	13.22	13.42	556.71	1.7

CARBON VESSEL PRESSURE READINGS			
	SP#1	SP#2	dP
GAC #1	20	10	10
	SP#3	SP#4	
GAC #2	10	5	5
TOTAL GAC SYSTEM	10.3	Diff,Pr	
FLOW RATE	52	GPM	
OBA-9AR TOTALIZER	1242805		

PH Readings:				Acid level: 50%
RW-1	7.54			
PR-4	7.80			
PH Adj. Tanks	7.11	7.86	7.77	
Air Stripper	level Se	nsor Cle	aned?	yes
Chris Jone	es			

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 08	CONTRACT NO. 1113 Div 4	DATE:	2/25/15	
PROJECT TITLE	OLIN CORPORATION, BU	JFFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	К
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	CNT PLANT
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 0	Max: 15

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Other notes and observations:

Monday: Rob Meyer noted that the system only tripped out 1 time over the weekend. About 7pm Sunday evening, restarted Monday am. Heaters were kept running over the weekend keeping the building at 38F, so not freezing problems inside. RW-1 needed adjustment on the pH levels but ran fine after that. OBA-9AR has frozen again, Chris Jones will be out Tuesday am to thaw. RW-5 still down with an electrical issue.

Tuesday: Chris Jones (SES) was onsite to thaw and restart OBA-9AR. Decant water from the spent GAC drums. Re-fuel the torpedo heaters in Blgd.-73. Walker was onsite to investigate the issue with RW-5. Determined that it was a lack of electricity coming from the MCC. Rob Meyer was asked to notify Olin E&I about a repair.

Wednesday: Chris Jones was onsite to measure GW levels in the wells and record data, and refuel the torpedo heaters again. Olin electricians looked into the RW-5 MCC and determined that there is a faulty electrical selector switch. A new one has been ordered.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	<u>READOUT</u>	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS			
							SP#1	SP#2	dP
RW-1	557.4	14.65	15.58	557.70	1.92	GAC #1	15	10	5
RW-2		14.87	15.05		7.12		SP#3	SP#4	1
RW-3	556.7	12.58	12.60	556.83	0.63	GAC #2	10	7	3
PR-4	555.6	13.20	13.42	556.40	1.9				
<mark>RW-4</mark>	557.0	12.34	12.42	557.10	0.70	TOTAL GAC SYSTEM	9.2	Diff,Pr	1
RW-5									1
						FLOW RATE	48	GPM	
PR-12	557.3		12.38	557.30	5.11	OBA-9AR TOTALIZER	1247234		
OBA-9AR	556.1	13.25	13.40	556.69	2.1				
	4					-			
PH				Acid level: 2	20%				
Readings:									

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 09	CONTRACT NO. 1113 Div 4	DATE:	3/03/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AV	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	ENT PLANT
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 15	Max: 26

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Other notes and observations:

Adjustments were made to the newly installed valve at the RW-1 manifold to curtail any leaks. PR-12 was acid washed.

A general policing and cleanup of B-73 has begun in preparation for the upcoming audit.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	FLOW
RW-1	557.4	14.68	15.61	557.73	0.80
RW-2		14.91	15.11		5.02
RW-3	557.2	12.56	12.61	557.10	0.65
PR-4	555.6	13.42	13.68	555.71	1.9
<mark>RW-4</mark>	557.2	12.40	12.42	557.38	0.72
RW-5					
PR-12	557.4		12.35	557.26	4.89
OBA-9AR	557.1	13.00	13.25	556.99	2.0

PH				Acid level: 70%
Readings:				
RW-1	6.91			
PR-4	7.73			
PH Adj. Tanks	7.03	7.21	7.14	
Air Stripper	level Se	ensor Cle	eaned?	yes
Chris Jon	es			

CARBON VESSEL PRESSURE READINGS			
	SP#1	SP#2	dP
GAC #1	15	15	0
	SP#3	SP#4	
GAC #2	15	7	8
TOTAL GAC SYSTEM	6.3	Diff,Pr	
FLOW RATE	44	GPM	
OBA-9AR TOTALIZER	1250198		

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 10	CONTRACT NO. 1113 Div 4	DATE:	3/10/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	К
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	CNT PLANT
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 26	Max: 42

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Other notes and observations:

Sevenson Acid washed PR-12.

The flow meter for the GAC feed system was not functioning, Chris took it apart and cleaned it. Now it is operational.

Chris spent some time searching for the flush mount wells that will have to be inspected and measured this month. He found that Wells: PR-8, PR-13, PR-6, PN-5A, PN-5B are under a mountain of snow that has been pushed up by a plow on the west side of Gill Creek. Wells PN-7A&B, and PR-10 are under a pile of gravel near RW-5. Rob Meyer has been notified and said that he would try to help out in this matter. The rest of the wells are under 1-2' of snow and should melt away (hopefully) in the next week or so.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u> </u>	-		5				
	APEX	PIEZ.	WELL	READOUT	FLOW	CARBON VE	SSEL	SSEL
						PRESSURE RE	ADINGS	ADINGS
								SP#1
RW-1	557.7	14.82	15.75	557.44	0.85	GAC #1		30
RW-2	556.8	14.85	15.10	556.67	7.10			SP#3
RW-3	556.9	12.69	12.73	556.70	0.71	GAC #2		14
PR-4	556.3	13.23	13.44	555.91	1.9			
RW-4	556.8	12.50	12.61	556.92	0.65	TOTAL GAC SYSTEM		16.9
RW-5								
						FLOW RATE		41
PR-12	557.2		12.42	557.30	5.11	OBA-9AR TOTALIZER		1251008
OBA-9AR	557.1	13.03	13.29	557.02	2.1			
		•		·	•	-		
PH				Acid level: 5	50%			
Readings:								
RW-1	6.80							
PR-4	7.79							
PH Adj.	6.99	7.12	7.10					
Γanks	1							

Air Stripper	level Sen	sor Cle	aned?	yes	
Chris Jone	es				

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 11	CONTRACT NO. 1113 Div 4 DATE: 3/17/15					
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP					
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK					
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT					
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 31	Max: 40		

Work performed this week:

The Plant was on a shut down this week. Sevenson was on site to perform the quarterly well level measurements on the sites ground water wells including the solvent area. There was no maintenance or measurements taken on the GWTS and air stripper, as they were not functional.

The site's GW levels were taken after the system was shut down for a few days to give the wells time to equalize (we are calling this round of measurements "static levels".)

Next week after the system is restarted and has run for a few days, we will take another round of level measurements and then have a basis for comparison.

Also this week Sevenson was asked to help troubleshoot the pump atRW-5.

We got it to work on "Manual"; however the auto switch at the well head would not stay in the auto position, Rob Meyer has been notified and is in contact with Olin E&I staff about the problem.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>
RW-1					
RW-2					
RW-3					
PR-4					
<mark>RW-4</mark>					
RW-5					
PR-12					
OBA-9AR					

OLIN Building #73 WWTP	Pumping	Well Data	Sheet	

PR-12						OBA-9
BA-9AR						
				_		
PH Readings:				Acid level: 5	50%	
2W-1						
PR-4						
PH Adj. 'anks						
ir Stripper	level Se	nsor Cle	aned?			

P R R P P T

#2 dP #4
¥4
¥4
Pr
1
/

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 12	CONTRACT NO. 1113 Div 4 DATE: 3/25/15						
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP						
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK						
DESCRIPTION	SUPPORT O & M OF GRO	SUPPORT O & M OF GROUND WATER TREATMENT PLANT					
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 28	Max: 39			

Work performed this week:

Monday: Sevenson was on site to respond to a high level alarm in the secondary containment piping at RW-5. Water was bailed out of the pipe sump and the alarm was reset.

The pump at RW-1 was down that morning also. Chris pulled the pump for inspection, it was discovered that acid had eaten away the fitting connecting the pump to the hose and piping. The fitting was replaced and during the start up testing, it was also discovered that there was some internal damage that was not allowing the pump to push water, even though it was still running. After disassembly and inspection, internal damage suggested that we replace the pump; a new one was ordered and will be installed on Friday.

Tuesday: samples were taken from all the wells that feed the GWTS. Samples were also taken from various points within the treatment system at the direction of Tony Englund. Samples were packaged in ice and sent to ALS for analysis.

Wednesday: Performed the weekly water level calibrations and cleaned the WWT building in preparation for the upcoming inspection.

Thursday: Active water level data collection for the site that were supposed to be today had gotten postponed due to necessary maintenance on the GWTS. Decanted more water from the drums of spent GAC. Collected samples of the spent GAC for characterization analysis, per Rob Meyer request.

Friday: Taking advantage of the snow melt, Sevenson continued with the survey and inspection of the ground water wells. Obvious repairs of note are OBA-6A, PN-10A, and OBA-26A. These are flush mount wells that will need new covers. Sevenson will be doing another round of water level data collections next week and will inspect for further damages.

Replaced the pump in GW well RW-1. Rob has notified the Olin electricians that the electrical leads for this pump need to be rewired.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>
RW-1					
RW-2	556.9	14.83	15.01	556.77	4.97
RW-3	557.2	12.55	12.62	557.11	0.71
PR-4	555.7	13.40	13.67	555.70	1.9
<mark>RW-4</mark>	557.2	12.41	12.45	557.39	0.65
RW-5	557.2	12.42	12.51	557.09	8.56
PR-12	557.4		12.37	557.26	4.80
OBA-9AR	557.1	12.16	12.92	557.14	1.20

CARBON VESSEL			
PRESSURE READINGS			
	SP#1	SP#2	dP
GAC #1	20	14	6
	SP#3	SP#4	
GAC #2	15	10	5
TOTAL GAC SYSTEM	14.6	Diff,Pr	
FLOW RATE	44.1	GPM	
OBA-9AR TOTALIZER	1257301		

PH Readings:				Acid level: 50%
RW-1	6.91			
PR-4	7.73			
PH Adj. Tanks	7.56	7.45	7.30	
Air Stripper	level Se	nsor Cle	eaned? y	/es
Chris Jone	es			

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 13	CONTRACT NO. 1113 Div 4 DATE: 3/31/15					
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP					
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK					
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT					
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 25	Max: 35		

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday: The GWTS was off when Chris arrived, possibly due to low air flow alarm. The system was restarted.

Acid washed RW-4 and PR-12

Walked around the plant and found a couple of well lids in the area where the snow was plowed to and then melted. Replaced them in their proper locations.

Friday: Made adjustments to the expandable plug on well BH-1 and secured the plug and lock. Repaired tubing on acid pump in PR-4 shed, re-primed and started the pump. Repaired the flush mount well box and lid at OBA-6C.

We are planning on measuring and recording the water levels in wells plant wide on Tuesday 4/7/15. This will be done with the system running for at least 48 hrs, prior to.

Please contact Mike Walker or Chris Jones if there will be any maintenance shut downs or other issues that will interrupt this event. Thank you. 716-284-0431.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	READOUT	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	557.9	14.42	15.35	557.54	1.21	GAC #1	30	14	16	
RW-2	556.9	14.80	15.02	556.73	5.12		SP#3	SP#4		
RW-3	557.1	12.52	12.58	556.86	0.65	GAC #2	14	10	4	
<mark>PR-4</mark>	555.2	13.42	13.65	555.71	1.7	1				
RW-4	556.8	12.59	12.25	556.83	0.59	TOTAL GAC SYSTEM	20.7	Diff,Pr	1	
RW-5	557.4	12.29	12.32	557.23	5.23	FLOW RATE	40.2	GPM		
PR-12	557.7		12.36	557.36	4.71	OBA-9AR TOTALIZER	1260091		1	
OBA-9AR	557.1	12.18	12.91	557.14	1.10	1	4	4	4	

Readings:			
RW-1	9.01		
PR-4	7.56		
PH Adj. Tanks	7.89	7.56	7.90
Air Stripper Chris Jon		ensor C	leaned?)

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 15	CONTRACT NO. 1113 Div 4	DATE:	4/13/15				
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP						
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK						
DESCRIPTION	SUPPORT O & M OF GRO	SUPPORT O & M OF GROUND WATER TREATMENT PLANT					
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 38	Max: 54			

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Monday: Sevenson on site to record weekly water levels. Notice pump at PR-4 was down. After trouble shooting decided it was a pump issue. Acid washed PR-12.

Tuesday: Removed the pump from PR-4, inspected and replaced the pump (but not the motor), It ran fine after reinstalling the pump /motor assembly. The old pump head will be disassembled and cleaned/inspected to see if we can resurrect it and keep it as a spare. Also pulled and cleaned pump at RW-1.

Wednesday: Cleaned the trays in the air stripper with a solution of dilute HCl.

Friday: Bailed out the secondary containment piping at RW-4, approximately 500 ml. Air stripper flow was strong. Disassembled and cleaned the old pump head from PR-4.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	-		-	-	
	<u>APEX</u>	<u>PIEZ.</u>	WELL	<u>READOUT</u>	<u>FLOW</u>
RW-1	557.8	13.96	14.89	557.84	1.04
RW-2	556.9	14.72	14.88	556.81	5.23
RW-3	557.1	12.41	12.50	556.94	0.61
PR-4	555.2	13.40	13.61	555.70	2.2
<mark>RW-4</mark>	556.8	12.35	12.29	557.03	0.65
RW-5	557.4	12.18	12.24	557.37	5.32
PR-12	557.6		12.28	557.32	4.55
OBA-9AR	557.1	12.20	12.93	557.11	1.70

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	20	15	5	
	SP#3	SP#4		
GAC #2	15	8	7	
TOTAL GAC SYSTEM	16.8	Diff,Pr		
FLOW RATE	52	GPM		
OBA-9AR TOTALIZER	1268589			

PH Readings:				Acid level: 80%
RW-1	8.78			
PR-4	6.77			
PH Adj. Tanks	7.12	7.38	7.49	

<u> </u>		
r Stripper level Sensor Cleaned? yes		
ris Jones		

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 16	CONTRACT NO. 1113 Div 4	DATE:	4/22/15			
PROJECT TITLE	OLIN CORPORATION, BU	JFFALO AVI	E. GWTP			
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK					
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	INT PLANT		
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 35	Max: 47		

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Monday: Sevenson onsite filled one dumpster with debris from excavation at RW-5.

Tuesday: Completed RW-5 cleanup, prepared for installation of concrete pad at RW-5.

Wednesday: Poured concrete pad at RW-5, Did weekly water level calibration and site inspection.

Thursday: Installed union fittings on the 1" air vent pipe that runs from the top of the air stripper to pH adjust tank #2. Also snaked out the piping to check for any obstructions. There were no obstructions, but there was foam coming out of the pipe.

Friday: Performing "treatability study" on pH tank effluent water to determine the dosage of antifoaming agent needed to reduce foaming of water in the air stripper.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	APEX	PIEZ.	WELL	READOUT	FLOW	CARBON VESSEL				
						PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	558.0	14.06	15.08	557.78	0.99	GAC #1	20	14	6	
RW-2	557.0	14.68	14.89	556.84	5.02		SP#3	SP#4		
RW-3	557.3	12.38	12.45	557.01	0.63	GAC #2	14	10	4	
PR-4	556.6	12.98	13.37	556.66	2.6					
<mark>RW-4</mark>	557.0	12.35	12.22	557.17	0.71	TOTAL GAC SYSTEM	9.5	Diff,Pr		
RW-5	557.6	12.12	12.17	557.42	5.17					
						FLOW RATE	54	GPM		
PR-12	557.7		12.19	557.67	5.07	OBA-9AR TOTALIZER	1274006			
OBA-9AR	557.1	12.22	12.95	557.09	1.80	1	•	•	•	
L	•				•	-				
PH				Acid level: 5	50%					
Readings:										

RW-1	7.34			
PR-4	6.65			
PH Adj. Tanks	7.75	7.27	7.51	
Air Strippe Chris Jon		ensor C	leaned?	yes

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 17	CONTRACT NO. 1113 Div 4	DATE:	4/28/15			
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP					
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK					
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT					
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 44	Max: 60		

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday: Chris Jones was on site, checked the system for foaming by taking a water sample out of the sample port between pH adjust tank #2, and the air stripper, and also checked the air vent in the piping between pH tank 2 and the stripper. No foam was found.

Secondary containment piping for RW-4 showed just a trace of water in it.

Acid washed RW-5 and PR-12.

Installed a new lid on flush mount well OBA-26B.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS			
							SP#1	SP#2	dP
RW-1	557.9	14.32	15.20	557.63	1.12	GAC #1	20	15	5
RW-2	557.0	14.67	14.85	556.82	5.17]	SP#3	SP#4	
RW-3	557.2	12.40	12.43	556.99	0.67	GAC #2	10	10	0
PR-4	556.0	13.55	13.69	556.02	2.4				
RW-4	557.0	12.38	12.29	557.14	0.68	TOTAL GAC SYSTEM	9.2	Diff,Pr	
RW-5 5	557.5	12.22	12.25	557.32	1.26	FLOW RATE	44	GPM	
PR-12	557.6		12.25	557.62	4.98	OBA-9AR TOTALIZER	1277155		
OBA-9AR 5	557.1	12.22	12.95	557.09	1.80	1			

PH				Acid level: 20%
Readings:				
RW-1	7.45			
PR-4	6.67			
PH Adj.	7.10	7.67	7.30	

	1	1	1		
Tanks					
Air Strippe	level Se	ensor Cle	eaned? n	0	
Chris Jon					

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 18	CONTRACT NO. 1113 Div 4	DATE:	5/6/15				
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVI	E. GWTP				
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK						
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT			
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 40	Max: 66			

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

<u>**Tuesday:**</u> Performed transducer calibrations on pumping wells and piezometers. Notice a trace of water in the secondary containment piping at RW-4. Verified that all GW wells have been labeled and secured.

Wednesday: Pulled the pump at RW-5 due to low flow, cleaned intake, reinstalled the pump. We will now monitor the flow to see if there is any improvement.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	-		-	-					
	APEX	PIEZ.	WELL	READOUT	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS			
							SP#1	SP#2	
RW-1	557.8	14.42	15.37	557.52	1.18	GAC #1	20	15	
RW-2	557.0	14.75	15.01	556.79	5.95		SP#3	SP#4	
RW-3	557.2	12.45	12.52	555.96	0.63	GAC #2	11	10	
PR-4	555.5	14.02	14.22	555.52	2.5				
<mark>RW-4</mark>	556.9	12.50	12.55	557.02	0.60	TOTAL GAC SYSTEM	11.9	Diff,Pr	
RW-5	557.4	12.29	12.32	557.26	0.42				
						FLOW RATE	47	GPM	
PR-12	557.3		12.32	557.55	4.96	OBA-9AR TOTALIZER	1281952		
OBA-9AR	557.1	12.22	12.95	557.10	1.50		-		
PH				Acid level: ²	10%				
Readings:									
RW-1	6.98								
PR-4	6.60					1			
PH Adj. Tanks	7.18	7.24	7.38]			

<u> </u>		
r Stripper level Sensor Cleaned? yes		
ris Jones		

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 19	CONTRACT NO. 1113 Div 4	DATE:	5/14/15				
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVI	E. GWTP				
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK						
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT			
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 44	Max: 63			

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday: Rob Meyer notified us via email that the air stripper was running, but the DCS was showing 0 cfm air flow. Chris Jones cleared the induction lines and managed to get the flow reading to 700 cfm. There was a violent rain storm the evening before, some water may have found its way into the lines and possible the air flow gauge.

Wednesday: Sevenson was onsite to perform the annual air blower inspection. Photos have been sent to Rob Meyer. The inspection showed no wear on the fan rotor, fan wheel, silencer or intake parts. All bolts were secure and no vibration was evident. The induction lines were again blown out with air. Subsequently the air flow readings rose to 1100 cfm.

Sevenson also pulled the pump at RW-5. We noticed a black hard scale has developed in the piping at the hotbox end of the line (mainly built up on the stainless steel sections), We cleared the line and reinstalled the pump. We did not see any improvement in flow at the flow meter. After more troubleshooting, we came to the conclusion that the flow meter was not registering proper flow. Possibly due to scaling in the flow tube. Or poor grounding. Rob Meyer has sent a request to Olin Maintenance for assistance with the meter. Presently the pump at RW-5 is running, but the flowmeter is registering about 0.3 gpm.

Thursday: Sevenson was onsite to perform the weekly well level readings and to do the weekly system inspection. RW-4 had a trace of water in the secondary containment. He also did some more trouble shooting at RW-5.

Chris took a small sample of the black scale in the piping at RW-5 to our lab to do some informal testing on it for characterization analysis.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	FLOW
RW-1	557.7	14.48	15.41	557.57	1.06
RW-2	557.0	14.70	14.95	556.83	5.86
RW-3	557.2	12.44	12.55	555.96	0.61
PR-4	555.6	14.04	14.27	555.54	2.5
<mark>RW-4</mark>	556.9	12.51	12.56	557.04	0.66
RW-5	557.5	12.23	12.30	557.25	0.30
PR-12	557.2		12.31	557.57	4.83
OBA-9AR	557.1	12.20	12.95	557.11	1.40

CARBON VESSEL PRESSURE READINGS			
	SP#1	SP#2	dP
GAC #1	20	10	10
	SP#3	SP#4	
GAC #2	14	10	4
TOTAL GAC SYSTEM	12.6	Diff,Pr	
FLOW RATE	45	GPM	
OBA-9AR TOTALIZER	1286773		

PH				Acid level: 40%
Readings:				
RW-1	6.43			
PR-4	6.33			
PH Adj.	7.01	7.12	7.20	
Tanks				
Air Stripper	level Se	ensor Cle	eaned? y	/es
Chris Jon	es			

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 20	CONTRACT NO. 1113 Div 4	DATE:	5/20/15				
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP				
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK						
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT			
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 49	Max: 68			

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday: Performed weekly site inspection and water level measurement recording.RW-4 containment piping had a trace of water in it.

Wednesday: Inspected RW-5 piping, looking for any signs of scale building up inside again. *None were present*. Started the RW-5 pump while we had everything disconnected to see if it was functioning properly, it was. The water coming out of RW-5 was brown like chocolate milk, with fine solids in it, but no odor.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	•		•	•						
	<u>APEX</u>	PIEZ.	WELL	READOUT	FLOW	CARBON VESSEL PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	557.6	14.43	15.40	557.55	1.34	GAC #1	20	15	5	
RW-2	557.1	14.72	14.96	556.84	5.65		SP#3	SP#4		
RW-3	557.2	12.44	12.57	555.94	0.63	GAC #2	15	14	1	
PR-4	555.5	14.02	14.24	555.51	2.5					
<mark>RW-4</mark>	556.9	12.51	12.54	557.01	0.62	TOTAL GAC SYSTEM	8.3	Diff,Pr		
RW-5	557.4	12.25	12.31	557.27	0.30					
						FLOW RATE	42	GPM		
PR-12	557.3		12.33	557.58	4.92	OBA-9AR TOTALIZER	1292003			
OBA-9AR	557.2	12.22	12.90	557.09	1.30		•	•	•	
		•	•	-	•	_				
PH				Acid level '	20%					

PH Readings:			Acid level: 20%
RW-1	6.95		
PR-4	6.45		

PH Adj. Tanks	7.11	6.98	7.02	
Air Strippe	r level S	Sensor C	leaned?	/es
Chris Jon			iounou .	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 21	CONTRACT NO. 1113 Div 4	DATE:	5/26/15	
PROJECT TITLE	OLIN CORPORATION, BU	JFFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	К
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	ENT PLANT
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 55	Max: 74

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday: Performed weekly site inspection and water level measurement recording.RW-4 containment piping had a trace of water in it. Acid Washed RW-3 and RW-4.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	APEX	PIEZ.	WELL	READOUT	FLOW
RW-1	557.6	14.84	15.76	557.35	1.46
RW-2	557.0	14.68	14.91	556.82	6.71
RW-3	557.2	12.35	12.39	557.00	0.57
PR-4	555.4	14.03	14.39	555.43	2.6
<mark>RW-4</mark>	556.8	12.57	12.63	556.94	0.53
RW-5	557.4	12.29	12.31	557.27	0.21
PR-12	557.8		12.28	557.59	4.69
OBA-9AR	557.5	12.11	12.60	557.53	1.20

SP#1	SP#2	dP	
24	15	9	
SP#3	SP#4		
10	8	2	
16.2	Diff,Pr		
43	GPM		
1293432			
	24 SP#3 10 16.2 43	24 15 SP#3 SP#4 10 8 16.2 Diff,Pr 43 GPM	24 15 9 SP#3 SP#4 10 8 2 16.2 Diff,Pr 43 GPM

PH				Acid level: 80%
Readings:				
RW-1	6.82			
PR-4	6.50			
PH Adj. Tanks	7.10	6.68	7.19	

Air Stripper level Sensor Cleaned? yes	3		
Chris Jones			

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 22	CONTRACT NO. 1113 Div 4	DATE:	6/02/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 59	Max: 79

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday: Performed weekly site inspection and water level measurement recording.

RW-5 was on interlock due to water in the secondary containment.

RW-4 containment piping had a trace of water in it.

Checked RW-5 piping for scaling, there was no significant build up.

Used a "Sludge Judge" to check the contents of pH adjustment tank #1, there was about 4" of very fine solids. Rob sent out pictures earlier this week.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>	CARBC PRESS
RW-1	557.4	14.66	15.60	557.68	1.39	GAC #1
RW-2	557.0	14.67	14.93	556.83	6.56	
RW-3	557.1	12.33	12.40	557.02	0.49	GAC #2
PR-4	555.6	13.21	13.44	556.41	2.3	
<mark>RW-4</mark>	557.0	12.35	12.47	557.10	0.45	TOTAL
RW-5	557.5	12.29	12.33	557.25	0.26	FLOW
PR-12	557.3		12.39	557.32	4.82	OBA-9
OBA-9AR	556.2	13.26	13.42	556.69	1.20	

PH Readings:			Acid level: 50%
RW-1	6.39		
PR-4	6.56		

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	25	20	5	
	SP#3	SP#4		
GAC #2	15	9	6	
TOTAL GAC SYSTEM	12.1	Diff,Pr		
FLOW RATE	48	GPM		
OBA-9AR TOTALIZER	1296996			

PH Adj. Tanks	6.84	7.38	6.88	
Air Stripper	r level S	ensor C	leaned?	/es
Chris Jon				

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 23	CONTRACT NO. 1113 Div 4	DATE:	6/09/15	
PROJECT TITLE	OLIN CORPORATION, BU	JFFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	К
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	ENT PLANT
WEATHER: partly cloudy	RAINFALL INCHES: <.10"	TEMP (Deg F)	Min: 63	Max: 75

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday: Performed weekly site inspection and water level measurement recording.

The secondary containment alarms for RW-4 are now functional. We will not have to do the weekly checks on this anymore.

The scaling substance that we took from RW-5 has been delivered to Design Water Tech as requested by Tony Englund.

There was no significant build up f solids or scale on any of the fitings at RW-5. PR-12 was acid washed.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

						-		·		\longrightarrow
	APEX	PIEZ.	WELL	READOUT	FLOW	CARBON VESSEL				ļ
						PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	557.7	14.37	15.31	557.69	1.34	GAC #1	20	15	5	
RW-2	557.0	14.59	14.75	556.92	6.91		SP#3	SP#4		
RW-3	557.2	12.16	12.20	557.14	0.54	GAC #2	16	10	6	
PR-4	555.6	13.29	13.40	556.29	2.4					
<mark>RW-4</mark>	557.0	12.33	12.44	557.11	0.50	TOTAL GAC SYSTEM	14.2	Diff,Pr		
RW-5	557.5	12.30	12.35	557.25	0.23	1				
						FLOW RATE	45	GPM		
PR-12	557.3		12.41	557.33	4.92	OBA-9AR TOTALIZER	1302148			
OBA-9AR	556.2	13.22	13.44	556.70	1.20			·		
				-	-	-				ļ
PH Readings:				Acid level: 2	20%					
RW-1	6.52					1				

PH Adj. 7.14 7.33 7.12 Tanks
Air Stripper level Sensor Cleaned? yes
Chris Jones

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 24	CONTRACT NO. 1113 Div 4	DATE:	6/16/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 64	Max: 83

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday:

There was no significant buildup of solids or scale on any of the fittings at RW-5.

PR-12 was acid washed.

Took Water samples from the wells that feed into the system in Bldg. 73.

Took water samples from Air Stripper influent and effluent sample ports.

Wednesday:

Took water samples from the ground water wells plant wide as per the list supplied by Tony Englund as part of the Annual ground water monitoring event for 2015, including:

OBA-2B, PN15A, PN15B, OBA-16A, OBA-16B

Thursday:

Took water samples from the ground water wells plant wide as per the list supplied by Tony Englund as part of the Annual ground water monitoring event for 2015, including:

PN-14A, PN-14B, DUP01-0615 (Blind Duplicate from PN-14B), PN-12A, PN-12B, OBA-6A, 0BA-6B.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	FLOW	CARBON VESSEL PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	557.7	14.37	15.31	557.69	1.48	GAC #1	24	15	9	
RW-2	557.0	14.60	14.73	556.94	7.12		SP#3	SP#4		
RW-3	557.1	12.18	12.27	557.16	0.61	GAC #2	15	10	5	
PR-4	555.6	13.26	13.46	556.30	2.5					
<mark>RW-4</mark>	557.0	12.32	12.45	557.13	0.53	TOTAL GAC SYSTEM	16.5	Diff,Pr		
RW-5	557.5	12.32	12.37	557.28	0.26					
						FLOW RATE	48	GPM		
PR-12	557.3		12.43	557.30	4.13	OBA-9AR TOTALIZER	1306993			

OBA-9AR	556.1	13.25	13.48	556.71	1.30
	1 -		1 -		
PH				Acid level: 2	20%
Readings:					
RW-1	7.23				
PR-4	6.68				
PH Adj.	7.22	7.18	7.32		
Tanks					
Air Stripper	level S	ensor Cle	eaned?	yes	
Chris Jon	es				

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 25	CONTRACT NO. 1113 Div 4	DATE:	6/26/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 63	Max: 77

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Mon.-Thurs.: Continued with the plant wide groundwater sampling event.

Friday: Performed the weekly inspection including recording the water levels in the wells that feed the GWTS in B-73.

Acid washed RW-4 and PR-12.

Note: there was no significant buildup of solids in RW-5 piping.

The lab is dropping off more sample bottles today. Sampling should be complete by mid next week.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	APEX	PIEZ.	WELL	READOUT	FLOW	CARBON VESSEL				
						PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	557.7	14.80	15.72	557.38	2.10	GAC #1	30	20	10	
RW-2	557.0	14.61	14.79	556.85	8.98		SP#3	SP#4		
RW-3	557.2	12.32	12.37	557.01	0.45	GAC #2	14	9	5	
PR-4	556.1	13.44	13.61	556.13	2.4					
RW-4	556.8	12.59	12.52	556.94	0.49	TOTAL GAC SYSTEM	20.9	Diff,Pr		
RW-5	557.4	12.29	12.34	557.26	0.24					
						FLOW RATE	36	GPM		
PR-12	557.6		12.23	557.63	4.32	OBA-9AR TOTALIZER	1313741			
OBA-9AR	556.1	13.25	13.48	556.71	1.20		•		•	
L			•	•		-				
PH				Acid level:	20%					
Readings:										
DIAL 4	0.00	1				1				

РН				Acid level: 20%
Readings:				
RW-1	6.39			
PR-4	6.65			
PH Adj. Tanks	7.01	6.98	7.11	

Stripper le	vel Sensor (Cleaned? no		
ris Jones			-	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 27	CONTRACT NO. 1113 Div 4	DATE:	7/10/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 63	Max: 77

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Site wide water levels were completed on Tuesday. While uploading the data from the leveloader in Gill Creek, it was noted that the optical cable was compromised. Tony Englund authorized the purchase of a replacement cable.

Over all the WWTP was running well.

Next week Sevenson is scheduled to pull and clean the pump at PR-12.

The flow rate in RW-3 and RW-4 has dropped. Sevenson will acid wash, and then pull the pumps for inspection if necessary.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	FLOW	CARBON VESSEL				
	_	_				PRESSURE READINGS		_	_	
							SP#1	SP#2	dP	
RW-1	557.7	14.85	15.79	557.38	1.92	GAC #1	20	15	5	
RW-2	557.1	14.58	14.74	556.88	8.13	1	SP#3	SP#4		
RW-3	557.2	12.26	12.31	557.02	0.39	GAC #2	12	10	2	
PR-4	556.0	13.47	14.07	556.11	2.6	1				
RW-4	556.8	12.54	12.62	556.97	0.47	TOTAL GAC SYSTEM	8.8	Diff,Pr	1	
RW-5	557.5	12.31	12.35	557.30	0.25	1	1		1	
						FLOW RATE	41	GPM		
PR-12	557.6		12.23	557.68	4.12	OBA-9AR TOTALIZER	1322866			
OBA-9AR	556.6	13.25	13.54	556.73	1.20	1	·		· ·	

Readings:			
RW-1	6.63		
PR-4	6.55		
PH Adj. Tanks	7.16	7.21	7.18
Air Stripper Chris Jon		ensor C	leaned? n

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 28	CONTRACT NO. 1113 Div 4	DATE:	7/14/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	К
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	ENT PLANT
WEATHER: partly cloudy light rain	RAINFALL INCHES: <1"	TEMP (Deg F)	Min: 64	Max: 81

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Chris Jones pulled the pump at PR-12 for inspection. He found that it was crusted with Calcium Carbonate. He cleaned the pump and reinstalled it.

He acid washed RW-3 and RW-4. Both pumps have shown a decrease in flow; however the water levels are still in range. He will consult with Tony Englund about a possible change out for new pumps.

The air flow of the stripper has slowly been decreasing, but still well above the 650 cfm mark. Chris and Rob Meyer have discussed possibly cleaning the stripper trays again at the end of the summer.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

RW-1 557.7 14.81 15.76 557.39 2.13 RW-2 557.0 14.62 14.80 556.85 8.65 RW-3 557.2 12.30 12.36 557.03 0.43 PR-4 556.1 13.45 14.01 556.14 2.6 RW-5 557.4 12.29 12.38 557.28 0.27 FLOW RATE 45 GPM		<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS				
RW-2 557.0 14.62 14.80 556.85 8.65 RW-3 557.2 12.30 12.36 557.03 0.43 PR-4 556.1 13.45 14.01 556.14 2.6 RW-4 556.8 12.57 12.60 556.95 0.68 RW-5 557.4 12.29 12.38 557.28 0.27 FLOW RATE 45 GPM								SP#1	SP#2	dP	
RW-3 557.2 12.30 12.36 557.03 0.43 PR-4 556.1 13.45 14.01 556.14 2.6 RW-4 556.8 12.57 12.60 556.95 0.68 RW-5 557.4 12.29 12.38 557.28 0.27 FLOW RATE 45 GPM	RW-1	557.7	14.81	15.76	557.39	2.13	GAC #1	20	16	4	
PR-4 556.1 13.45 14.01 556.14 2.6 RW-4 556.8 12.57 12.60 556.95 0.68 TOTAL GAC SYSTEM 9.3 Diff,Pr RW-5 557.4 12.29 12.38 557.28 0.27 FLOW RATE 45 GPM	RW-2	557.0	14.62	14.80	556.85	8.65		SP#3	SP#4		
RW-4 556.8 12.57 12.60 556.95 0.68 TOTAL GAC SYSTEM 9.3 Diff,Pr RW-5 557.4 12.29 12.38 557.28 0.27 FLOW RATE 45 GPM	RW-3	557.2	12.30	12.36	557.03	0.43	GAC #2	15	11	4	
RW-5 557.4 12.29 12.38 557.28 0.27 FLOW RATE 45 GPM	<mark>PR-4</mark>	556.1	13.45	14.01	556.14	2.6					
FLOW RATE 45 GPM	RW-4	556.8	12.57	12.60	556.95	0.68	TOTAL GAC SYSTEM	9.3	Diff,Pr		
	RW-5	557.4	12.29	12.38	557.28	0.27					
PR-12 557.6 12.23 557.65 5.12 OBA-9AR TOTALIZER 1325584							FLOW RATE	45	GPM		
	PR-12	557.6		12.23	557.65	5.12	OBA-9AR TOTALIZER	1325584			
OBA-9AR 556.6 13.25 13.54 556.73 1.20	OBA-9AR	556.6	13.25	13.54	556.73	1.20	1	•	•	•	
	PH Readings:				Acid level: 3	30%					

RW-1	6.65			
PR-4	6.67	1	1	
PH Adj. Tanks	7.01	7.07	6.99	
Air Strippe Chris Jor		ensor C	leaned?	yes

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 29	CONTRACT NO. 1113 Div 4	DATE:	7/22/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 59	Max: 83

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Some type of event this week has damaged the level transducers at RW-3, RW-5, and OBA-9AR. Also the level readout at the wellbox in RW-5. Replacements for all have been ordered. Sevenson has received the new optical cable for the Gill Creek Level Loader. It has been installed. Upon Retrieval of the past recorded data. It was noted that the loader stopped recording in January. It may have been from Gill Creek Freezing this year (very cold winter). Last month while doing the annual sampling, Chris pulled the probe, inspected and cleaned it as it had a buildup of silt on the optical lens. Tony Englund has been sent the downloaded data.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

PIEZ. APEX WELL READOUT FLOW **RW-1** 557.4 15.02 15.97 557.18 2.21 RW-2 556.9 14.70 14.88 556.73 8.56 RW-3 12.41 568.6 12.45 568.37 0.39 PR-4 556.3 13.29 13.43 556.33 2.6 RW-4 556.7 12.69 12.62 556.82 0.48 RW-5 542.4 12.43 12.48 0.25 PR-12 12.33 557.5 557.45 5.03 OBA-9AR 559.0 13.57 14.54 559.17 0.5

OLIN Building #73 WWTP Pumping Well Data Shee	t
---	---

PH Readings:			Acid level: 80%
RW-1	6.50		
PR-4	6.68		

<u>CARBON VESSEL</u> PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	40	30	10	
	SP#3	SP#4		
GAC #2	20	15	5	
TOTAL GAC SYSTEM	20.2	Diff,Pr		
FLOW RATE	48	GPM		
OBA-9AR TOTALIZER	1330502			

PH Adj. Tanks	7.07	7.21	7.10	
Air Stripper	· level S	ensor C	leaned? r	0
Chris Jon				

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 30	CONTRACT NO. 1113 Div 4	DATE:	7/28/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	ARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 73	Max: 90

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Tuesday: Chris Jones acid washed RW-3, RW-4 and PR-12.

The security guards at Gate 4 noticed that someone had dumped some plastic shelving on the IWS Site grounds and notified Sevenson. The debris was removed.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	PIEZ.	WELL	READOUT	<u>FLOW</u>
RW-1	557.3	15.30	16.22	557.01	2.39
RW-2	556.8	14.82	14.97	556.62	7.76
RW-3	568.6	12.51	12.59	568.36	0.35
PR-4	556.3	13.30	13.53	556.34	2.3
RW-4	556.6	12.79	12.68	556.72	0.37
RW-5	542.4	12.57	12.63		0.25
PR-12	557.5		12.34	557.47	5.25
OBA-9AR	559.3	13.59	14.59	559.17	0.5

	000.0					
				_		
PH				Acid level: 3	0%	
Readings:						
RW-1	6.56					
PR-4	6.78					
PH Adj. Tanks	6.95	6.96	6.99			
Air Stripper level Sensor Cleaned? no						
Chris Jones						

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	40	30	10	
	SP#3	SP#4		
GAC #2	20	15	5	
TOTAL GAC SYSTEM	21.5	Diff,Pr		
FLOW RATE	41	GPM		
OBA-9AR TOTALIZER	1334706			

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 31	CONTRACT NO. 1113 Div 4	DATE:	8/4/15		
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP				
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK				
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT				
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 70	Max: 83	

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Sevenson performed the Quarterly Maintenance Inspection.

The GAC beds in the GWTS were backwashed.

During the system inspection, it was noted that the flow meter for the GAC feed was not working. It was pulled, inspected and cleaned, then reinstalled. It still did not function properly. Rob Meyer will notify Olin E&I.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	APEX	PIEZ.	WELL	READOUT	FLOW
RW-1	557.2	15.35	16.26	557.03	2.95
RW-2	556.7	14.83	14.95	556.65	7.86
RW-3	568.6	12.53	12.60	568.38	0.39
PR-4	556.3	13.34	13.66	556.37	2.2
<mark>RW-4</mark>	556.6	12.73	12.70	556.77	0.33
RW-5	542.4	12.58	12.66		0.24
PR-12	557.4		12.38	557.42	5.11
OBA-9AR	559.3	13.55	14.64	559.22	1.1

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	40	31	9	
	SP#3	SP#4		
GAC #2	20	14	6	
TOTAL GAC SYSTEM	22.4	Diff,Pr		
FLOW RATE	38	GPM		
OBA-9AR TOTALIZER	133784			

PH Readings:				Acid level: 5%
RW-1	6.71			
PR-4	6.62			
PH Adj. Tanks	6.93	7.12	6.94	

Air Stripper level Sensor Cleaned? yes	3		
Chris Jones			

Quarterly Maintenance Inspection

Frequency	System Component	ОК	Needs Maintenance / Repair	Noted Deficiency
QUARTERLY				
	Carbon Feed Pump #1	ok		
	Carbon Feed Pump #2	ok		
	Air Stripper Blower	ok		
	1st Stage Mixer	ok		
	2nd Stage Mixer	ok		
	Pulsar Acid Metering Pump - RW-1	ok		
	Pulsar Acid Metering Pump - pH Mix Tank	ok		

Date Inspected: Inspector: Chris Jones Sevenson 80415

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 32	CONTRACT NO. 1113 Div 4 DATE: 8/11/15				
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP				
LOCATION OF WORK	BUFFALO AVENUE, NIAG	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK			
DESCRIPTION	SUPPORT O & M OF GRO	SUPPORT O & M OF GROUND WATER TREATMENT PLANT			
WEATHER: partly cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 72	Max: 85	

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

The system went down on Monday night/Tuesday morning due to heavy rains and a 7S interlock. Rob restarted the system Tuesday morning.

The flow meter that tracks flow rate from the GAC feed pump is still only working sporadically. The transducers and the digital readout for RW-3, RW-5, and OBA-9AR have arrived.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>
RW-1	557.4	15.40	16.32	557.08	3.17
RW-2	557.1	14.57	14.73	556.87	5.25
RW-3	568.5	12.28	12.35	568.30	0.29
PR-4	556.6	13.04	13.20	556.56	2.5
RW-4	557.0	12.32	12.38	557.17	0.28
RW-5	542.4	12.32	12.39		0.24
PR-12	557.6		12.36	557.66	5.43
OBA-9AR	558.9	14.09	14.60	559.00	0.5

			1	
CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	20	20	0	
	SP#3	SP#4		
GAC #2	14	10	4	
TOTAL GAC SYSTEM	10.1	Diff,Pr		_
FLOW RATE	0	GPM		
OBA-9AR TOTALIZER	1343963			

PH				Acid level: 70%	
Readings:					
RW-1	6.54				
PR-4	6.94				
PH Adj. Tanks	6.95	7.24	6.86		
Air Stripper level Sensor Cleaned? No					
Chris Jones					

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 33	CONTRACT NO. 1113 Div 4	DATE:	8/18/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 74	Max: 89

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

Sevenson (Chris) was onsite to look at the air stripper system and see if there was any reason that the air flow was fluctuating. He did the following:

Pulled a sample of the process water from pH tank #2 and also checked the air vent in the piping between pH.Tank#2 and the air stripper. There was no foam present and everything looked normal. Marked the air stripper sump sight glass in 1" increments. Observed and recorded the inflow and pump out cycles of the air stripper for 3 cycles for any notable surges or abnormalities that could contribute to fluctuations in air or water flow. The results were sent to Tony Englund for evaluation. Acid washed the well pump for PR-12.

The transducers and the digital readout for RW-3, RW-5, and OBA-9AR have arrived. They are in the B-73 office and are waiting for installation. Rob has filled out a work order.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

		DIEZ					1	Т	1	
	APEX	PIEZ.	WELL	READOUT	FLOW	CARBON VESSEL				
						PRESSURE READINGS				
	\Box		\Box	\square			SP#1	SP#2	dP	
RW-1	557.4	15.37	16.31	557.09	3.15	GAC #1	20	18	2	
RW-2	557.0	14.55	14.68	556.87	5.24		SP#3	SP#4		
RW-3	568.8	12.28	12.36	568.59	0.30	GAC #2	15	10	5	
PR-4	556.4	13.18	13.30	556.44	2.6					
<mark>RW-4</mark>	557.1	12.21	12.25	557.29	0.27	TOTAL GAC SYSTEM	9.5	Diff,Pr		
RW-5	542.4	12.32	12.38		0.24					
						FLOW RATE	0	GPM		
PR-12	557.8		12.30	557.65	5.41	OBA-9AR TOTALIZER	1349207			
OBA-9AR	558.9	14.12	14.62	559.00	0.6				<u> </u>	
	4		4		4	-				
PH			T	Acid level: 2	25%					
Readings:										
RW-1	6.61		1	1		1				

PR-4	6.70			
PH Adj. Tanks	6.74	6.60	6.31	
Tanks				
Air Stripper	level Se	nsor Cle	aned? N	10
~				

Chris Jones

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 34	CONTRACT NO. 1113 Div 4	DATE:	8/25/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	CNT PLANT
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 64	Max: 75

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

The flow meter for RW-5 has been replaced. However there is no reading on the DCS, only at the well. Rob has contacted the Olin DCS specialist on the situation. The pump is running strong at 5.7 gpm.

Acid washed Wells RW-3, RW-4 and PR-12.

Backwashed both GAC vessels. The PSI difference went down afterword, but not as much as normal. It may be time to start thinking about a GAC change out.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

	•		•	-				
	APEX	PIEZ.	WELL	READOUT	FLOW	CARBON VESSEL		
						PRESSURE READINGS		
							SP#1	SP#2
RW-1	557.3	15.40	16.31	557.09	3.30	GAC #1	20	15
RW-2	557.1	14.51	14.69	556.89	5.51		SP#3	SP#4
RW-3	568.2	12.23	12.29	568.03	0.29	GAC #2	17	10
PR-4	556.8	12.74	12.98	556.84	2.3			
<mark>RW-4</mark>	557.2	12.18	12.27	557.34	0.21	TOTAL GAC SYSTEM	10.4	Diff,Pr
RW-5	542.5	12.31	12.35		5.7			
						FLOW RATE	0	GPM
PR-12	557.5		12.18	557.66	5.37	OBA-9AR TOTALIZER	1352754	
OBA-9AR	558.9	14.12	14.62	559.02	0.6			
						_		
PH				Acid level: 2	25%			
Readings:								
RW-1	6.44]		
PR-4	6.73							
PH Adj. Tanks	7.02	7.53	6.87			1		

<u> </u>		
r Stripper level Sensor Cleaned? yes		
ris Jones		

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 35	CONTRACT NO. 1113 Div 4	DATE:	8/31/15	
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	ARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: partly sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 69	Max: 82

Work performed this week:

Sevenson was onsite this week to measure and record water level readings in the pumping wells that feed the Ground Water Treatment System (GWTS).

Other site activities are as follow:

The pump at RW-4 went down. Sevenson pulled the pump to inspect and found that the motor was OK, but the pump head needs to be replaced. The spare that we had in stock was also not functional, so we had to order a new one. We expect delivery late next week.

During the removal of the RW-4 pump. A small amount of the ground water came in contact with a Sevenson worker. A Near Miss Report has been filed with John Gabrielski of Olin.

Olin E&I have been working on installing the new transducers and the display, although not completed yet.

Item 022415.01: During the GAC change out, it was discovered that the sump pump inside the secondary containment area in B-73 was not functioning. Rob Meyer has been notified.

OLIN Building #73 WWTP Pumping Well Data Sheet

6.61

7.12

7.67

6.99

PR-4

PH Adj

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	READOUT	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS			
							SP#1	SP#2	dP
RW-1	557.2	15.45	16.36	557.11	3.20	GAC #1	25	20	5
RW-2	557.1	14.53	14.72	556.90	5.20		SP#3	SP#4	
RW-3	568.2	12.23	12.30	568.03	0.33	GAC #2	14	10	4
PR-4	556.8	12.71	12.95	556.80	2.3				
RW-4	557.2	12.20	12.29	557.35	0	TOTAL GAC SYSTEM	12.4	Diff,Pr	
RW-5 5	542.4	12.30	12.36		5.6	FLOW RATE	0	GPM	
PR-12	557.6		12.20	557.66	5.37	OBA-9AR TOTALIZER	1358970		
OBA-9AR 5	558.9	14.12	14.62	559.02	0.6				

							
Tanks							
						T	
Air Strip	per	level	Ser	nsor Cl	eaned?	no	
Chris J							

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO.	CONTRACT NO.	DATE:	9/9/15	
PROJECT TITLE	OLIN CORPORATION, BU	JFFALO AVI	E. GWTP	
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: rain in morning	RAINFALL	ТЕМР	Min: 64	Max: 78
then clear	INCHES: 0.18 in	(Deg F)		

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

John Wright was on site this week to perform the weekly calibrations of the level transducers and do the inspection. Mike Walker was onsite to assist.

The water level sensor used to determine groundwater levels in the wells and piezometers had caught on something about 13' below TOC at piezometer RW-1. We tried to shake it loose, but it was hung up on something in the well (possibly rotted out well screen?).We tried to pull up and remove the level transducer also to make more room for the sensor removal, but that was stuck also. We tried a few tricks to get them loose but nothing worked, Eventually the wires came loose from both the transducer and the level sensor and they fell to the bottom of the well. Sevenson is trying to find a pipe of the appropriate diameter to insert down the well shaft that will push the well screen back into shape and give us room to install a new transducer to operate RW-1. In the meantime, the well pump is running in manual mode.

CARBON VESSEL

	APEX	PIEZ.	WELL	READOUT	FLOW
RW-1					
RW-2	557.0	15.51	15.80	556.87	6.13
RW-3	556.6	12.31	12.35	556.39	0.33
PR-4	556.9	12.68	12.91	556.89	2.7
<mark>RW-4</mark>	557.3	12.08	12.08	557.43	Off
RW-5	557.8	12.35	12.46	557.49	5.6
PR-12	557.4		12.17	557.60	5.11
OBA-9AR	556.6	13.19	14.03	556.40	0.7

SP#1	SP#2	dP
34	19	15
SP#3	SP#4	
14	10	4
	Diff,Pr	
	GPM not	
	working	
1364144	GPM	
	SP#3 14	34 19 SP#3 SP#4 14 10 Diff,Pr GPM not working

PH				Acid: 40%
Readings:				
RW-1	7.02			
PR-4	6.71			
PH Adj. Tanks	6.97	6.75	6.84	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 35	CONTRACT NO.	DATE:	9/15/15		
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP		
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK				
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT				
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 62	Max: 80	

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

<u>Monday:</u> Noted that over the weekend, the GWTS had shut down a couple of times due to the heavy rains and the interlock with the 7S sump. By Monday early afternoon the system was back to normal operations. The system was never down for more than 12 hours in a row.

Chris Jones was on site to test the new RW-4 pump in preparation to installing it when the crane is available. The air stripper shut down the system a couple of times that day due to low air flow.

Chris adjusted the flow on the carbon feed pump which helped the air flow and the system ran fine after that. Olin Maintenance was able to repair the RW-5 flow meter. It is now fully functional; and can be read at the DCS and recorded in the RTX & PI.

<u>Tuesday:</u> The pH in the adjustment tanks were reading high. Chris increased the acid pump feeding into RW-1 and decreased the flow rate at RW-1. This leveled off the pH in the system. Chris acid washed PR-12. He also took his weekly measurements this day.

Olin maintenance was onsite to install the new level transducer in RW-1. The transducer is now fully functional and RW-1 is back to operating in automatic mode.

Wednesday: Chris was again on site to install the new pump in RW-4. The pump tested OK while above ground. After installation there was no flow. Further investigation determined that there is a column of muck/mud at the bottom of the well and that it is too thick to allow the pump to operate. The well will have to be purged and surged to clean it out and redevelop the well so water will flow. The well pump is now out while the team is planning a solution to the situation.

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	READOUT	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	557.3	15.40	16.33	557.10	2.86	GAC #1	40	25	15	
RW-2	557.1	14.53	14.71	556.89	5.98	1	SP#3	SP#4		
RW-3	556.6	12.31	12.35	556.39	0.35	GAC #2	17	10	7	
PR-4	556.9	12.69	12.89	556.85	2.6	1				
RW-4					Off	TOTAL GAC SYSTEM	22.3	Diff,Pr		
RW-5	557.7	12.35	12.46	557.52	5.7	FLOW RATE		0		
PR-12	557.4		12.17	557.64	5.37	OBA-9AR TOTALIZER	1369122	GPM	1	
OBA-9AR	556.6	13.23	14.06	556.43	0.9	-	4		_	

PH				Acid: 10%	
Readings:					
RW-1	8.67				
PR-4	6.71				
PH Adj.	7.98	8.01	8.15		
Tanks					

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 36	CONTRACT NO.	DATE:	9/22/15		
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP		
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK				
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT				
WEATHER: sunny	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 67	Max: 81	

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

<u>Monday:</u> Went to troubleshoot the problem with the Gill Creek Transducer. It seems that the cable that attaches to the transducer was missing a pin in the connecter that keeps the eyes in alignment. Chris is looking into buying a new one. The transducer had stopped taking readings last January.

<u>**Tuesday:**</u> Inspected RW-4 well screen with a down hole camera. Looks like ¼ or less of the screen has been compromised.

Weekly system inspection revealed that the level read out in RW-1 is blank.

The acid drum in PR-4's shed is empty and needs replacement.

<u>Thursday</u>: Met onsite with Walker and SJB well drilling rep. Walked thru the wells let the rep know what needed work. He will give us a quote on well rehab.

Cleaned out the air stripper trays with acid magic and a power washer.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>	CARBON VESS PRESSURE RE
RW-1	555.8	15.05	15.97		2.51	GAC #1
RW-2	557.0	14.52	14.73	556.85	6.37	
RW-3	556.6	12.21	12.27	556.44	0.34	GAC #2
PR-4	556.7	12.82	13.07	556.75	2.5	
<mark>RW-4</mark>					Off	TOTAL GAC S
RW-5	557.6	12.32	12.37	557.51	5.7	FLOW RATE
PR-12	557.9		12.18	557.66	5.06	OBA-9AR TOT
OBA-9AR	556.6	13.23	14.06	556.43	0.9	

PH				Acid: 70%
Readings:				
RW-1	6.60			
PR-4	7.00			
PH Adj. Tanks	7.09	7.12	6.96	

CARBON VESSEL				
PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	40	26	14	
	SP#3	SP#4		
GAC #2	21	14	7	
TOTAL GAC SYSTEM	24.0	Diff,Pr		
FLOW RATE		0		
OBA-9AR TOTALIZER	1373414	GPM		

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 37	CONTRACT NO.	DATE:	9/30/15		
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP		
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK				
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT				
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 49	Max: 62	

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Tuesday: Weekly inspection, noticed that the flow in OBA_9AR was low, not high enough to bring the water level down to cycle the pump. The pump normally kicks on at 557.75 and pumps down to about 556.6. With all valves open, the most we could get out of it was 0.9 gpm. Rob was notified. Acid washed PR-12.

<u>Wednesday:</u> Fabricated a new pin for the Gill Creek level loader harness. Was able to download the data and send the info to Tony for his reports.

<u>Thursday</u>: Replaced the pump motor and electrical leads in OBA-9AR. The pump was running at 5.0 gpm after replacement, and then dialed back to 1.5 gpm to allow for proper cycle times.

	<u>APEX</u>	PIEZ.	WELL	READOUT	FLOW
RW-1	557.4	15.40	16.36		2.91
RW-2	557.1	14.58	14.76	556.88	5.65
RW-3	556.6	12.23	12.28	556.47	0.31
PR-4	556.6	12.85	13.10	556.77	2.7
<mark>RW-4</mark>					Off
RW-5	557.5	12.33	12.40	557.53	5.5
PR-12	557.1		12.50	557.12	5.15
OBA-9AR	557.4	12.67	12.81	557.44	1.5

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	40	22	18	
	SP#3	SP#4		
GAC #2	23	12	11	
	<u> </u>		Τ	
TOTAL GAC SYSTEM	23.8	Diff,Pr		
FLOW RATE		0		
OBA-9AR TOTALIZER	1377891	GPM		
ODA-JAN TOTALIZEN	10//001			

PH				Acid: 40%
Readings:				
RW-1	6.62			
PR-4	7.04			
PH Adj. Tanks	7.10	7.12	7.21	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 39	CONTRACT NO.	DATE:	10/13/15		
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP				
LOCATION OF WORK	BUFFALO AVENUE, NIAG	ARA FALLS	S, NEW YOR	K	
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT	
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 48	Max: 69	

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Tuesday: Chris Jones was on site to clean the sump in the air stripper. He removed about 12 gallons of sludge from the sump, it is now staged in the fenced in area of B-73 in 3-5 gallon buckets with lids affixed. After the clean out, Chris started the system and backwashed the 1 and 2 GAC vessels, bringing the differential pressures down to 8 and 5 respectively.

<u>Wednesday:</u> Chris did the weekly inspection of the GW wells. Noticed that the air flow was back to cycling between 970 and 1050 scfm even after the sump was cleaned out. Notified Rick, Tony and Rob.

<u>Thursday</u>: Mike Walker confirmed that Nothnagle Drilling will be on site Monday 10-26-15 to clean out and rehab GW Well RW-4.

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	READOUT	<u>FLOW</u>
RW-1	555.4	12.05	12.91		2.66
RW-2	556.9	14.65	14.82	556.72	6.02
RW-3	556.6	12.36	12.40	556.33	0.29
PR-4	556.7	12.88	13.07	556.57	2.8
<mark>RW-4</mark>					Off
RW-5	557.7	12.47	12.55	557.38	5.8
PR-12	557.5		12.31	557.55	5.31
OBA-9AR	557.0	11.72	12.01	556.99	1.6

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	37	25	12	
	SP#3	SP#4		
GAC #2	25	19	6	
TOTAL GAC SYSTEM	19.3	Diff,Pr		
FLOW RATE		0		
OBA-9AR TOTALIZER	1389422	GPM		

PH				Acid: 60%
Readings:				
RW-1	6.81			
PR-4	7.13			
PH Adj. Tanks	7.15	7.17	7.20	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 41	CONTRACT NO. 1094 Div 4 DATE: 10/27/15					
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP					
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK					
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT		
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 43	Max: 66		

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Monday: Nothnagle Drilling was onsite to rehab well RW-4. They pumped about 200 gallons of solids laden water from the well and did the surge/purge to redevelop it. Afterwards, the bottom of the well was sounded at 28' depth. Before the work, the well was 21'. This means they evacuated about 7 feet of solids from the well. Reinstallation of the pump and well start up is scheduled for Monday 11/2/15.

Tuesday: Chris Jones was on site to do the regular well level readings.

<u>Thursday:</u> Chris was back on site to test the well pump for RW-4 to make sure everything is ready for Monday when the crane is scheduled.

He applied the Dow 111 sealant to the leaky gasket on the air stripper trays. They leaks slowed dramatically but did not stop totally. Rob wants to monitor the repair and see how the sealant holds up, then make a decision as to reapplying more 111 or order a different product for the repair.

The pump at PR-4 went down. After trying to troubleshoot the pump while in the well, we will pull early next week and replace with a spare,

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	READOUT	FLOW	CARBON VESSEL PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	555.4	15.22	16.13		2.68	GAC #1	40	32	8	
RW-2	556.8	14.70	14.95	556.86	5.02]	SP#3	SP#4		
RW-3	556.4	12.42	12.38	556.24	0.27	GAC #2	25	15	10	
PR-4	556.6	12.62	12.96	556.92	2.8	1				
<mark>RW-4</mark>						TOTAL GAC SYSTEM	21.6	Diff,Pr		
RW-5	557.4	12.52	12.56	557.32	5.8	FLOW RATE		GPM		
PR-12	557.4	-	12.38	557.47	5.25	OBA-9AR TOTALIZER	1396951	1		
OBA-9AR	556.5	12.33	12.75	556.56	1.6		<u>.</u>	4		

Readings:				
RW-1	7.08			
RW-2	7.19			
PH Adj. Tanks	7.29	7.19	7.29	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 42	CONTRACT NO. 1094 Div 4 DATE: 11/03/15					
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP					
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K		
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT		
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 50	Max: 68		

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

Monday: Sevenson was onsite to replace the pump and motor in RW-4 with the assistance of Olin's crane and operator. By the end of the day flow at RW-4 had reached 1.8 gpm. The flow eventually dropped to 1.1 gpm at the end of the week. Chris took a sounding of the well to check and see if solids were infiltrating and building up in the well bottom. The depth to bottom is holding at approximately 28" for TOC.

Thursday: Replaced the pump and motor for well PR-4, after troubleshooting and system check were unsuccessful. The well was back on line Thursday afternoon; however the acid pump feeding into the well is not keeping its prime.

<u>Friday:</u> Chris was back on site to troubleshoot the acid pump at PR-4. It was determined that the pump head had suffered from years of pumping acid and need to be replaced. He is checking our supply for spares. In the meantime, acid was added to the well manually and will be as needed. Currently the pH is stable at around 7.0.

The air stripper was down in the morning upon arrival due to low air flow. The airflow was dipping below the 650 cfm mark as the sump filled and the carbon feed pumps kicked on. Chris cleaned the level switches and turned up the flow rate of the carbon feed pumps. This seemed to solve the problem, the system cycled several time after that without the low air flow interlock problem.

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	READOUT	<u>FLOW</u>	CARBON VESSEL PRESSURE READINGS				
							SP#1	SP#2	dP	
RW-1	555.4	15.25	16.18	-	3.02	GAC #1	40	30	10	
RW-2	556.8	14.73	14.96	556.88	4.88		SP#3	SP#4		
RW-3	556.4	12.38	12.45	556.30	0.25	GAC #2	30	15	15	
PR-4	556.6	12.75	13.06	556.82	2.1					
<mark>RW-4</mark>	557.2	12.24	12.35		1.10	TOTAL GAC SYSTEM	16.5	Diff,Pr		
RW-5	557.5	12.50	12.57	557.36	5.7				1	
						FLOW RATE		GPM		
PR-12	557.4	-	12.30	557.44	5.12	OBA-9AR TOTALIZER	1404468			
OBA-9AR	556.5	12.33	12.75	556.56	1.6			·		

Readings:				
RW-1	6.54			
RW-2	7.02			
PH Adj. Tanks	7.01	7.14	7.18	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 43	CONTRACT NO. 1094 Div 4 DATE: 11/11/15					
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP					
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K		
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT		
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 42	Max: 51		

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

<u>Wednesday 11/1/15</u>: The GWTS was down upon arrival in the morning. Chris restarted it and got everything back on line.

Acid washed wells PR-4 and PR-12.

Turned on the heaters in the following wells: RW-1, RW-2, RW-5, and PR-12. Also checked the heat tracing on the piping that runs from OBA-9AR to PR-12.

We received notice from Rob Meyer that Olin staff will be replacing the GAC feed pump flow meter with a new on that matches the typical flow meters used at Olin.

	<u>APEX</u>	<u>PIEZ.</u>	WELL	READOUT	<u>FLOW</u>
RW-1	555.4	15.28	16.21		2.92
RW-2	556.8	14.76	14.92	556.85	4.72
RW-3	556.4	12.32	12.41	556.28	0.29
PR-4	556.6	12.72	13.11	556.82	2.3
<mark>RW-4</mark>	557.2	12.27	12.34		1.56
RW-5	557.5	12.50	12.57	557.36	5.4
PR-12	557.4	-	12.32	557.44	5.06
OBA-9AR	556.5	12.32	12.73	556.56	1.6

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	45	30	15	
	SP#3	SP#4		
GAC #2	20	15	5	
TOTAL GAC SYSTEM	19.3	Diff,Pr		
FLOW RATE		GPM		
OBA-9AR TOTALIZER	1408967			
	•	•	•	

PH Readings:				Acid level: 10%
RW-1	6.93			
RW-2	7.11			
PH Adj. Tanks	7.11	7.19	7.23	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 44	CONTRACT NO. 1094 Div 4 DATE: WE 11/22/15			
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP			
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK			
DESCRIPTION	SUPPORT O & M OF GRO	UND WATE	R TREATME	NT PLANT
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 39	Max: 55

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in bldg. 73.

<u>**Tuesday 11/17/15:**</u> Took weekly water levels for the system. Acid washed PR-12 and PR-4.

<u>Friday 11/20/15</u>: Onsite at the request of Rob for troubleshooting the air stripper, due to consistant shutdowns, possibly due to low air flow.

	APEX	PIEZ.	WELL	READOUT	FLOW
RW-1	555.4	15.32	16.27		2.84
RW-2	556.8	14.77	14.89	556.87	4.83
RW-3	556.5	12.29	12.41	556.24	0.24
PR-4	556.6	12.69	13.03	556.83	2.1
RW-4	557.2	12.25	12.32		1.56
RW-5	557.5	12.48	12.52	557.41	5.5
PR-12	557.4	-	12.33	557.45	5.11
OBA-9AR	556.5	12.32	12.73	556.56	1.6

SP#1	SP#2	dP
40	30	10
SP#3	SP#4	
20	15	5
16.2	Diff,Pr	
	GPM	
1410941		
	40 SP#3 20 16.2	40 30 SP#3 SP#4 20 15 16.2 Diff,Pr GPM GPM

PH				Acid level: 90%
Readings:				
RW-1	6.88			
RW-2	7.02			
PH Adj. Tanks	7.23	7.30	7.35	

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 45	CONTRACT NO. 1133 Div 4 DATE: WE 11/29/15			
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP			
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK			
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT			
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 34	Max: 47

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in ldg.. 73.

Tuesday 11/24/15: Took weekly water levels for the system. Acid washed PR-12.

A schedule for the upcoming Quarterly sampling and water levels, also the Olin/DuPont GW well sampling has been established for early December.

OLIN Building #73 WWTP Pumping Well Data Sheet

	APEX	PIEZ.	WELL	READOUT	FLOW
RW-1	555.6	15.29	16.22		2.72
RW-2	556.8	14.75	14.93	556.85	4.73
RW-3	556.5	12.32	12.27	556.75	0.28
PR-4	556.6	12.60	13.07	556.83	2.0
<mark>RW-4</mark>	557.1	12.29	12.34		1.64
RW-5	557.5	12.45	12.56	557.45	5.5
PR-12	557.4	-	12.35	557.43	5.28
OBA-9AR	556.5	12.32	12.73	556.56	1.5

Acid level: 50%

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	35	20	15	
	SP#3	SP#4		
GAC #2	15	10	5	
TOTAL GAC SYSTEM	18.3	Diff,Pr		
FLOW RATE		GPM		
OBA-9AR TOTALIZER	1418500			

Chris	Jones

Readings: RW-1

6.78

7.11

7.02

7.33

7.40

PH

RW-2

Tanks

PH Adj.

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 46	CONTRACT NO. 1133 Div 4 DATE: WE 12/06/15			
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP			
LOCATION OF WORK	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK			
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT			
WEATHER: cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 39	Max: 45

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in ldg. 73.

Wednesday 12/2/15: Took weekly water levels for the system.

Acid washed PR-12.

PH

Installed new acid pump for PR-4 Unable to test it due to lack of electricity at the outlet. Rob Meyer has been notified.

The Sampling event for next week has been pushed back 1 week.

Acid level: 10%

Next week we will be performing a GAC change out.

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	<u>READOUT</u>	<u>FLOW</u>
RW-1	555.5	15.31	16.25		2.92
RW-2	556.8	14.79	14.98	556.91	4.94
RW-3	556.5	12.28	12.37	556.31	0.31
PR-4	556.6	12.65	13.15	556.89	1.9
<mark>RW-4</mark>	557.2	12.27	12.32		1.57
RW-5	557.5	12.44	12.52	557.39	5.6
PR-12	557.3	-	12.29	557.40	5.07
OBA-9AR	556.5	12.30	12.71	556.50	1.5

PRESSURE READINGS			
	SP#1	SP#2	dP
AC #1	40	20	20
	SP#3	SP#4	
AC #2	20	10	10
TOTAL GAC SYSTEM	19.8	Diff,Pr	
FLOW RATE		GPM	
OBA-9AR TOTALIZER	1420721		

Readings:								
RW-1	6.61							
RW-2	7.04							
PH Adj. Tanks	7.05	7.12	7.26					
Tanks								
Chris Jone	Chris Jones							

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 47	CONTRACT NO. 1133 Div 4	DATE:	WE 12/13/15			
PROJECT TITLE	OLIN CORPORATION, BUFFALO AVE. GWTP					
LOCATION OF WORK	BUFFALO AVENUE, NIAG	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK				
DESCRIPTION	SUPPORT O & M OF GRO	SUPPORT O & M OF GROUND WATER TREATMENT PLANT				
WEATHER: partly cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 42	Max: 55		

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in Bldg. 73.

Tuesday 12/08/15: Sevenson walked thru the WWTS looking reviewing the possible system shutdown and "mothballing" of WWTP equipment.

Primed acid pump in PR-4.

Decanted drums containing purge water from the development of GW well RW-4. Took Weekly readings from GW well level sensors.

Wednesday 12/09/15: Sevenson on site to evacuate GAC from the 2 GAC vessels.

Thursday 12/10/15: Sevenson on site to install fresh GAC in the GAC vessels. Drummed the spent GAC in Disposal Drums. Drums are now staged in B-73, they will be decanted and sampled next week for characterization. Replaced damaged pipe nipple on Sample Port #3 on GAC unit #2.

Friday 12/11/15: Sevenson on site to backwash the new GAC and restart the GWTS, Make sure everything gets back on line.

	U		•	0	
	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	READOUT	<u>FLOW</u>
RW-1	555.6	15.28	16.27		2.40
RW-2	556.7	14.74	14.93	556.90	2.96
RW-3	556.8	12.32	12.40	556.35	0.15
PR-4	556.5	12.83	13.21	556.90	1.9
<mark>RW-4</mark>	557.3	12.29	12.36		1.24
RW-5	557.5	12.42	12.55	557.39	5.9
PR-12	557.3	-	12.24	557.42	4.63
OBA-9AR	556.5	12.36	12.82	556.54	1.6

OLIN Building	#73 WWTF	Pumping	Well Data	Sheet
OLIN DUILUING	π 1 3 V V V 1 1	i uniping	wen Data	Olleet

				_
PH				Acid level: 80%
Readings:				
RW-1	7.10			
RW-2	6.66			
PH Adj.	7.15	7.23	7.45	

SP#1	SP#2	dP	
20	20	10	
SP#3	SP#4		
20	15	5	
12.1	Diff,Pr		
	GPM		
1423603			
	20 SP#3 20 12.1	20 20 SP#3 SP#4 20 15 12.1 Diff,Pr GPM	20 20 10 SP#3 SP#4 20 15 5 12.1 Diff,Pr GPM Image: constraint of the second seco

Tanks					
Chris Joi	ies				

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 48	CONTRACT NO. 1133 Div 4	DATE:	WE 12/20/15				
PROJECT TITLE	OLIN CORPORATION, BU	OLIN CORPORATION, BUFFALO AVE. GWTP					
LOCATION OF WORK	BUFFALO AVENUE, NIAG	BUFFALO AVENUE, NIAGARA FALLS, NEW YORK					
DESCRIPTION	SUPPORT O & M OF GRO	SUPPORT O & M OF GROUND WATER TREATMENT PLANT					
WEATHER: partly cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 44	Max: 57			

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in Bldg. 73.

<u>Tuesday 12/15/15:</u> Sevenson performed the Olin Quarterly Sampling round, including the wells that feed the WWTS, Pre and post Air Stripper, and Pre and Post GAC units. Sevenson also sampled OBA-8B, OBA-11B, OBA-7B, for VOC's. . Samples were picked up by the ALS labs courier on Thursday 12/17/15.

<u>Wednesday 12/16/15</u>: Sevenson sampled the following wells on CHEMOURS Property: 22B, 20B, 19B, 16B, and 5B for VOC's. Samples were picked up by ALS courier on Thursday 12/17/15.

<u>Thursday 12/17/15</u>: Sevenson took plant wide ground water levels. Also took and recorded GW levels on Solvent's property.

<u>Friday 12/18/15</u>: Sevenson downloaded the Gill Creek water levels and barometer readings off the "level logger". Data will be sent to Tony Englund.

OLIN Build	mg #73	WWIP	Pumping	Well Data	Sheet

	<u>APEX</u>	<u>PIEZ.</u>	<u>WELL</u>	<u>READOUT</u>	<u>FLOW</u>
RW-1	555.7	15.35	16.32		2.27
RW-2	556.8	14.78	14.94	556.93	3.14
RW-3	556.6	12.30	12.42	556.29	0.19
PR-4	556.6	12.72	13.13	556.84	2.0
<mark>RW-4</mark>	557.2	12.25	12.33		1.56
RW-5	557.5	12.45	12.53	557.43	5.2
PR-12	557.4	-	12.34	557.46	4.72
OBA-9AR	556.5	12.36	12.82	556.54	1.6

CARBON VESSEL PRESSURE READINGS				
	SP#1	SP#2	dP	
GAC #1	25	20	5	
	SP#3	SP#4		
GAC #2	20	15	5	
TOTAL GAC SYSTEM	16.3	Diff,Pr		
FLOW RATE		GPM		
OBA-9AR TOTALIZER	1428702			
			•	

PH				Acid level: 80%
Readings:				
RW-1	6.71			
RW-2	6.89			
PH Adj. Tanks	7.03	7.07	7.13	
Chris Jone	es			

Sevenson Environmental Services, Inc. Niagara Falls, New York

REPORT NO. 49	CONTRACT NO. 1133 Div 4	DATE:	WE 12/27/15		
PROJECT TITLE	OLIN CORPORATION, BU	FFALO AVE	E. GWTP		
LOCATION OF WORK	BUFFALO AVENUE, NIAG	GARA FALLS	S, NEW YOR	K	
DESCRIPTION	SUPPORT O & M OF GROUND WATER TREATMENT PLANT				
WEATHER: partly cloudy	RAINFALL INCHES: NA	TEMP (Deg F)	Min: 41	Max: 52	

Work performed this week:

Sevenson was on site this week to measure and record ground water levels in the wells that feed the WWTS in Bldg. 73.

<u>Wednesday 12/23/15:</u> Sevenson was on site to do the weekly inspection and water levels. Seven drums of spent GAC from the WWTS were decanted of free water and a composite sample of the media was taken and delivered to Rob Meyer of Olin.

	<u> </u>			<u> </u>					
	APEX	PIEZ.	WELL	READOUT	FLOW	CARBON VESSEL			
						PRESSURE READINGS			
							SP#1	SP#2	dP
RW-1	555.5	15.31	16.26		2.40	GAC #1	30	20	10
RW-2	556.7	14.75	14.91	556.95	3.12		SP#3	SP#4	
RW-3	556.6	12.28	12.33	556.37	0.17	GAC #2	20	12	8
PR-4	556.6	12.61	13.02	556.90	1.8				
<mark>RW-4</mark>	557.2	12.29	12.36		2.09	TOTAL GAC SYSTEM	15.4	Diff,Pr	
RW-5	557.5	12.41	12.50	557.45	5.4				
						FLOW RATE		GPM	
PR-12	557.4	-	12.31	557.49	4.35	OBA-9AR TOTALIZER	1429008		
OBA-9AR	556.5	12.36	12.82	556.54	1.7		•		
						_			
PH Readings:				Acid level: {	50%				
RW-1	6.59]			
RW-2	6.70					1			
PH Adj. Tanks	6.90	7.20	6.98						
Chris Jon	es	-	•	•		-			