Fax: 518.783.8397

FINAL SEMI-ANNUAL (JANUARY THROUGH JUNE 2010) SITE MAINTENANCE AND MONITORING REPORT

Former Textron, Inc. Wheatfield, New York Facility

July 2010

Submitted to:

Textron, Inc. 40 Westminster Street Providence, RI 02903-6028

Prepared by:

Shaw Environmental, Inc. 13 British American Boulevard Latham, New York 12110-1405

TABLE OF CONTENTS _____

1.0	INTRODUCTION	1
1.1	Background	1
2.0	FIELD SAMPLING ACTIVITIES	2
2.1	General	2
2.2	Hydraulic Monitoring	
2.3	MONITORING WELL SAMPLING	
2.4	EXTRACTION WELL SAMPLING	2
3.0	LABORATORY ANALYTICAL METHODS AND RESULTS	3
4.0	SUMMARY OF OFF-SITE AND ON-SITE EXTRACTION SYSTEM OPERATIONS	4
4.1	REVIEW OF OFF-SITE AND ON-SITE SYSTEM OPERATIONS	4
4.	1.1 Off-Site System	
	1.2 On-Site System	
4.2	· · · · · · · · · · · · · · · · · · ·	
4.	.2.1 Off-Site System	5
4.	.2.2 On-Site System	5
4.3		
	3.1 Chemical Data for Off-Site and On-Site Systems	
	.3.2 Hydraulic Response for Off-Site and On-Site Systems	5
4.4	ROUTINE OPERATIONAL CORRECTIVE MEASURES	6
5.0	SUMMARY	ç
5.1	Hydraulic Monitoring Data	9
5.2	LABORATORY DATA	
5.3	OFF-SITE AND ON-SITE SYSTEM PERFORMANCE	9
6.0	REFERENCES	10

LIST OF TABLES

- 1. Summary of Hydraulic Monitoring Data March and April 2010
- 2A. Summary of Vertical Hydraulic Gradients March 2010
- 2B. Summary of Vertical Hydraulic Gradients April 2010

LIST OF FIGURES ____

- 1. Groundwater Monitoring Plan Sample Locations
- 2. Groundwater Elevation Contour Map, Zone 1 Bedrock March 2010
- 3. On-Site Groundwater Elevation Contour Map, Zone 1 Bedrock March 2010
- 4. Groundwater Elevation Contour Map, Zone 1 Bedrock April 2010
- 5. On-Site Groundwater Elevation Contour Map, Zone 1 Bedrock April 2010

LIST OF APPENDICES_____

A. Niagara County Sewer District Semi-Annual Report

Introduction 1.0

Shaw Environmental, Inc. (Shaw) has prepared this report to discuss the results of on-going remedial and groundwater gauging activities at Textron's former Wheatfield, New York facility.

1.1 **Background**

The results of the March and April 2010 quarterly groundwater gauging and system maintenance events conducted at the former Textron, Inc., (Textron) facility located in Wheatfield, New York are presented in this report. Additionally, this report also includes a summary of the on-going operation of the Off-Site Groundwater Extraction System (Off-Site System) and On-Site Groundwater Extraction and Treatment System (On-Site System) for the period of January through June 2010.

The field procedures and hydraulic measurements for the monitoring events were conducted in accordance with the October 1998 revision of the Groundwater Monitoring Plan (GMP) prepared by Golder Associates, Inc. and approved by the New York State Department of Environmental Conservation (NYSDEC).

The summary of the operational results of the Off-Site and On-Site system during this semiannual period is presented in accordance with Textron's NYSDEC Title 6 New York Code of Rules and Regulations (6NYCRR) Part 373 Post-Closure Permit, effective September 24, 1998 (Permit No. 9-2940-00001/00079). Module III of this permit was amended in a letter from the NYSDEC dated September 9, 2002. This amendment details the approved reduction in reporting requirements from the previous quarterly system performance reports (plus an annual summary report) to two semi-annual system performance reports and submittal of an annual summary report. The NYSDEC initiated another modification to this permit on April 9, 2004. This modification deleted former 'Part II General Conditions' requirements and all references to it and further amended the permit requiring compliance with 6NYCRR 750-2, entitled 'Operating in Accordance with a SPDES Permit'. The summary of system operations within this report for both the On-Site and Off-Site System is for the period of January 1, 2010 through June 30, 2010.

2.0 Field Sampling Activities

2.1 General

Shaw personnel performed field activities in accordance with the procedures detailed in the GMP. Quarterly groundwater monitoring was performed on March 9, 2010 and April 23, 2010 for the monitoring wells listed in **Table 1**. The well locations are shown on **Figure 1**. The following sections provide details of the field activities and procedures associated with the monitoring and gauging program.

2.2 Hydraulic Monitoring

Groundwater elevations were measured at each monitoring well using an electronic oil/water level meter, capable of measuring to an accuracy of 0.01 feet, to determine the depth to water and total well depth (depth to the bottom) to calculate the height of the water column. Non-aqueous phase liquid (NAPL) was not detected in any of the wells gauged. Groundwater elevations for the extraction wells were recorded from the electronic water level indicators (i.e. pressure tranducers) located inside the well vaults. The summary of the water level measurements obtained during March and April 2010 sampling events is presented in **Table 1**. The groundwater level elevations from the Zone 1 wells are shown on **Figures 2** and **3** for the March 2010 event and **Figures 4** and **5** for the April 2010 event.

2.3 Monitoring Well Sampling

No monitoring wells were scheduled for sampling during this reporting period. Wells are scheduled for sampling in October in accordance with the approved GMP.

2.4 Extraction Well Sampling

No extraction wells were scheduled for sampling during this reporting period. Wells are scheduled for sampling in October pursuant to the approved GMP.

3.0 Laboratory Analytical Methods and Results

No groundwater samples were collected for laboratory analysis during this reporting period.

4.1 Review of Off-Site and On-Site System Operations

4.1.1 Off-Site System

There were no reported operational changes made to the Off-Site System during the First Quarter (January through March 2010). EW-6 remains inactive as approved by the NYSDEC. During this monitoring period, the average daily pumping rate for the Off-Site extraction system was calculated at 62,646 gallons per day (gpd). Approximately 5,638,163 gallons of groundwater was extracted from the subsurface and discharged to the Niagara County Sewer District (NCSD) Publicly Owned Treatment Works (POTW) for treatment by the Off-Site System between January 1 and March 31, 2010.

There were no reported operational changes made to the Off-Site System during the Second Quarter (April through June 2010). The average daily pumping rate for the Off-Site extraction system was calculated at 61,481 gpd. Approximately 5,594,799 gallons of groundwater was extracted from the subsurface and discharged to the NCSD POTW for treatment by the Off-Site system.

The flow rates and totals discussed above are based on the telemetry information sent from the system and are reported semi-annually to the Niagara County Sewer District.

4.1.2 On-Site System

There were no operational changes made to the On-Site System during this reporting period as the thermal oxidizer, scrubber, air stripper ST-2, carbon units, and extraction well DW-9 remain inactive as approved by NYSDEC.

A total of 738,610 gallons of groundwater was extracted from the subsurface and treated by the On-Site System between January and June 2010. Averaged daily flow rates varied from a low of 0 gpd (recorded during January 2010) to a high of 6,506 gpd (recorded during June 2010).

These pumping and flow rates are based upon the monthly effluent totalizer readings and are reported monthly to the NYSDEC in the Discharge Monitoring Reports (DMR).

4.2 Discharge Monitoring

4.2.1 Off-Site System

As specified by Textron's Niagara County Sewer District No. 1 (NCSD) Industrial Discharge Permit (No. 10-07 effective January 31, 2010), the extracted groundwater from the Off-Site System is required to be monitored for flow on a daily basis and sampled and analyzed for VOCs on a semi-annual basis. Results of the sewer discharge monitoring conducted on April 19-20, 2010 indicate that Textron was in compliance with the NCSD permit. A copy of the letter report submitted to the NCSD is included as **Appendix A**.

4.2.2 On-Site System

As required by Textron's National Pollutant Discharge Elimination System (NPDES) Permit No. NY0000469, the extracted and treated groundwater discharged to the Walmore Road storm sewer is monitored for VOCs on a monthly basis. All of the monthly discharge monitoring results indicate that Textron was in compliance with the NPDES permit during this operational period. This information is documented in the Discharge Monitoring Report (DMR) provided to the NYSDEC.

According to the effluent totalizer, approximately 738,610 gallons of water was treated by the On-Site System during reporting period.

4.3 Evaluation

4.3.1 Chemical Data for Off-Site and On-Site Systems

No groundwater samples were collected for laboratory analysis during this reporting period.

4.3.2 Hydraulic Response for Off-Site and On-Site Systems

Off-Site System

Groundwater elevation contour maps of the Zone 1 bedrock aquifer in the vicinity of the On-Site and Off-Site System for the March and April 2010 Hydraulic Monitoring Events are presented on **Figures 2** and **4**, respectively. These maps indicate a consistent and significant overlap of the cone-of-depression (and the contaminant plume) in the off-site area. Groundwater flow direction has remained relatively consistent within the cone-of-depression. The flow direction is toward

the four operating extraction wells (EW-2 through EW-5) of the Off-Site system indicating that the remedial system is controlling groundwater migration in this area.

On-Site System

The hydraulic response of the On-Site System has met all of the following design expectations:

- Establishing a zone of groundwater capture over the DNAPL plume;
- Maintaining an upward gradient between the Zone 3 and Zone 1 aquifers;
- Maintaining a downward gradient between the overburden and the Zone 1 aquifer; and
- Establishing a groundwater capture zone along the southern property boundary of the Textron facility, between extraction wells EW-7, EW-13 and EW-8.

Data from the March 2010 hydraulic monitoring event (**Table 1**) indicates that the desired downward gradient between the overburden and Zone 1 is present in seven of the eight of the On-Site well pairs measured (well pairs 87-01, 87-04, 87-10, 87-13, 87-14, 87-15 and 87-18); well pair 87-17 did not demonstrate the desired downward gradient. Additionally, the data obtained during the April event indicates that the desired downward gradient between the overburden and Zone 1 is again present in seven of the eight of the On-Site well pairs measured (well pairs 87-01, 87-04, 87-10, 87-13, 87-14, 87-15 and 87-18); well pair 87-17 did not demonstrate the desired downward gradient. The data presented in **Table 1** also indicates that an upward gradient between Zone 3 and Zone 1 is present in all of the well pairs measured (87-02, 87-04, 87-05, 87-13, 87-14, and 87-15) during both the March and April 2010 monitoring events. **Tables 2A** and **2B** present a summary of vertical hydraulic gradients between Zones 1 and 3 from the March and April 2010 hydraulic monitoring data, respectively. The data indicate that gradients range from 0.19 feet to 0.48 feet (upward). Maintenance of this 'upward gradient' shows effective containment of the plume within Zone 1.

4.4 Routine Operational Corrective Measures

The On-Site System experienced a continuation of the December 2009 recordable downtime event during this semi-annual monitoring period. The system did not process any water during January. The effluent contact switch was replaced on February 4, 2010; a different type of switch was installed in an effort to alleviate the recurring issues with the previous unit. The new contact switch required a minor rewiring of the On-Site System.

On February 15, 2010, the feed pump failed causing the On-Site System to cease operating. The feed pump was changed on February 24, 2010 and the system was restarted without incident.

Op-Tech Environmental Services cleaned the air stripper tower on March 29 and 30, 2010; the system was manually shut down for a total of approximately 6 hours during this work.

Shaw personnel were onsite June 8 through June 10, 2010 performing various operation and maintenance tasks in order to increase on-site system efficiency. Below is summary of tasks performed:

- A float switch at the influent point inside the Surge Tank was lowered approximately 8 inches. The new level is further from the emergency shutdown high volume alarm; the lowering of the float will begin the discharge process sooner and allow more process water to pass through the treatment system.
- Water had accumulated in the EW-13 vault and partially submerged the electrical junction box causing a power surge problem. The water was pumped out of the vault using submersible pumps and discharged back into the system. The motor within the junction box was replaced. EW-13 was fully operational at the time of departure on June 10th.
- All bag filter housing units were cleaned to remove the buildup of iron flakes and viscous debris and bag filters changed.
- A burned out Transfer Pump indicator bulb on the control panel was replaced.

Inspections of the On-Site treatment facility were conducted by Shaw personnel between January 1, 2010 and February 5, 2010; it was decided to reduce the frequency of these inspections to biweekly starting on February 9, 2010 and continuing on this schedule until further notice. During these inspections, meters were read, routine operations and maintenance (O&M) activities were performed, equipment was re-set or adjusted as necessary and any other activity required to maintain system functions was completed. The only change made to the system was the calibration of the effluent totalizers for both the on-site, and off-site systems according to the instrument specifications on October 28, 2009

Six 55-gallon drums of Redux-525TM have been utilized during this monitoring period to reduce the inorganic deposition and biofouling of the treatment system.

As requested in the May 7, 2010 letter from the NYSDEC, repairs and rehabilitation of the monitoring well network were performed during Shaw's June site visit. A summary of these activities is listed below:

- Monitoring well 89-03(1) damage has comprised the integrity of the monitoring well; recommend abandonment and re-installation of this location;
- Monitoring well 87-23(0) concrete apron and steel riser casing were replaced; the new casing elevation was re-surveyed on July 15, 2010 and redeveloped on July 27, 2010:
- Monitoring well 89-05(1) successfully redeveloped, approximately 50 gallons of water and silt were removed and a "hard bottom" was achieved at this location; and
- Monitoring well 93-02(1) redeveloped on July 22, 2010, approximately 30 gallons (~10 well volumes) of water and black silt was removed. The water level in this location subsequently rose approximately 5 feet immediately following the redevelopment.

5.1 Hydraulic Monitoring Data

As discussed in **Section 2.2**, water level measurements were obtained on March 9, 2010 from all of the monitoring wells and extraction wells as required for the First Quarter hydraulic monitoring event. Second Quarter water level measurements were obtained on April 23, 2010. **Table 2** provides a summary of the water level measurements obtained for all the hydraulic monitoring events. A review of this data indicates that the groundwater recovery systems (both On-Site and Off-Site) continue to exhibit control over the migration of impacted groundwater.

5.2 Laboratory Data

No groundwater samples were collected for laboratory analysis during this reporting period.

5.3 Off-Site and On-Site System Performance

The Off-Site System has maintained control of the dissolved phase plume. The gradient and size of the capture zone is consistent with the conditions observed during previous quarterly monitoring events. The performance of the Off-Site System is acceptable based upon comparison with historic operational data.

The hydraulic response of the On-Site System has met the following design expectations:

- Establishing a zone of groundwater capture over the DNAPL plume;
- Maintaining an upward gradient between the Zone 3 and Zone 1 aguifers;
- Maintaining a downward gradient between the overburden and the Zone 1 aquifer; and
- Establishing a groundwater capture zone along the southern property boundary of the Textron facility, between extraction wells EW-7, EW-13 and EW-8.

6.0 References

Golder Associates, Inc., October 1998 "Groundwater Monitoring Plan, Former Textron, Inc., Wheatfield, New York Facility, October 1998 Revision".

Shaw Environmental, Inc., August 2009, "Final Semi-Annual (March and April 2009) Site Maintenance and Monitoring Report".

Shaw Environmental, Inc., April 2010, "Final Semi-Annual (July through December 2009) Site Maintenance and Monitoring Report".

Shaw Environmental, Inc., April 2010, "Final 2009 Annual Summary and Site Maintenance and Monitoring Report".

TABLES

TABLE 1

Summary of Hydraulic Monitoring Data March and April 2010 Former Textron, Inc. Wheatfield, New York

	Top of Riser	March 9	9, 2010	April 23	3, 2010
Well Name	Elevation	Water Level	Water Level	Water Level	Water Level
	(Ft. MSL)	(Ft. BTOR)	Elevation	(Ft. BTOR)	Elevation
87-01(0)	588.10	13.39	(Ft. MSL) 574.71	13.60	(Ft. MSL) 574.50
87-01(0)	587.99	14.91	573.08	16.31	574.50
87-01(1)	589.21	14.69	574.52	15.73	573.48
87-02(1)	588.63	11.41	577.22	11.77	576.86
87-02(3)	589.32	6.74	582.58	10.70	578.62
87-04(0)	589.08	12.62	576.46	13.30	575.78
87-04(1)	589.49	11.00	578.49	11.35	578.14
87-05(1)	589.37	12.46	576.43	13.35	576.02
87-05(1)	589.46	10.55	578.91	11.00	578.46
87-05(3)	588.27	11.86	576.41	12.54	575.73
87-08(1)	589.48	11.80	577.68	12.71	576.77
87-10(0)	587.30	11.79	575.51	12.13	575.17
87-10(1)	587.52	13.68	573.84	14.95	572.57
87-12(1)	583.84	13.69	570.15	15.81	568.03
87-13(0)	589.77	8.77	581.00	9.36	580.41
87-13(1)	590.06	13.53	576.53	13.87	576.19
87-13(3)	589.91	10.95	578.96	11.40	578.51
87-14(0)	589.56	7.66	581.90	10.51	579.05
87-14(1)	589.06	11.98	577.08	12.83	576.23
87-14(3)	590.35	10.57	579.78	11.18	579.17
87-15(0)	590.70	11.96	578.74	11.68	579.02
87-15(1)	590.27	11.64	578.63	12.36	577.91
87-15(3)	589.87	9.89	579.98	10.57	579.30
87-16(3B)	590.51	10.92	579.59	11.50	579.01
87-17(0)	589.50	11.21	578.29	11.39	578.11
87-17(1)	589.62	10.20	579.42	10.92	578.70
87-18(0)	585.95	11.70	574.25	12.15	573.80
87-18(1)	586.02	16.40	569.62	18.48	567.54
87-19(0)	581.57	5.29	576.28	9.64	571.93
87-19(1)	581.47	11.74	569.73	15.25	566.22
87-20(0)	578.77	4.68	574.09	7.22	571.55
87-20(1)	579.01	8.90	570.11	11.00	568.01
87-21(1)	577.33	7.43	569.90	9.60	567.73
87-22(1)	583.97	14.20	569.77	16.28	567.69
87-23(0)	587.27	4.12	583.15	NG	NA
87-23(1)	587.13	12.97	574.16	14.30	572.83

NOTES:

BTOR = Below top of riser (or measuring point).

MSL = Mean sea level.

(**) Water level elevation measured from top of vault grate.

DRY = No measurable quantity in well at time of measurement.

NG = Not gauged. NA = Data not available.

TABLE 1

Summary of Hydraulic Monitoring Data March and April 2010 Former Textron, Inc. Wheatfield, New York

Well Name	Top of Riser	March 9, 2010		· · · · · · · · · · · · · · · · · · ·	3, 2010
	Elevation	Water Level	Water Level	Water Level	Water Level
	(Ft. MSL)	(Ft. BTOR)	Elevation	(Ft. BTOR)	Elevation
90.02(1)	581.01	2.47	(Ft. MSL) 577.84	NG	(Ft. MSL) NA
89-03(1)		3.17			
89-04(1)	NA 577.50	4.10	NA	5.93	NA FC4.40
89-05(1A)	577.56	14.83	562.73	16.44	561.12
89-05(1B)	577.77	8.19	569.58	10.41	567.36
89-06(1)	575.93	9.32	566.61	10.44	565.49
89-07(1A)	577.66	11.16	566.50	12.29	565.37
89-07(1B)	577.48	10.27	567.21	11.51	565.97
89-12(1)	586.60	13.12	573.48	14.43	572.17
89-13(0)	588.18	9.63	578.55	10.31	577.87
89-14(0)	587.45	7.93	579.52	9.29	578.16
89-14(1)	587.59	10.81	576.78	11.68	575.91
89-15(1)	588.76	14.00	574.76	15.16	573.60
89-16(1)	576.76	7.03	569.73	9.29	567.47
89-17(1)	577.59	6.11	571.48	7.40	570.19
89-18(1)	576.75	11.74	565.01	13.39	563.36
93-02(1)	579.05	15.70	563.35	17.45	561.60
93-03(1)	572.30	11.40	560.90	12.95	559.35
94-02(1)	574.50	7.86	566.64	9.09	565.41
96-01(1)	585.18	14.51	570.67	16.59	568.59
96-02(1)	584.82	14.64	570.18	16.71	568.11
B-8(0)	590.26	8.35	581.91	8.50	581.76
B-12(0)	589.48	6.88	582.60	10.99	578.49
B-13(1)	588.41	12.27	576.14	12.90	575.51
B-14(1)	589.54	13.44	576.10	14.24	575.30
89-SW(2)	577.54	7.68	569.86	9.86	567.68
EW-2	568.15	6.47	561.68	8.62	559.53
EW-3	569.56	15.25	554.31	16.96	552.60
EW-4	570.07	22.57	547.50	22.68	547.39
EW-5	569.47	25.64	543.83	27.04	542.43
EW-6	568.17	9.95	558.22	12.05	556.12
EW-7 (**)	580.96	11.10	569.86	13.45	567.51
EW-8 (**)	578.44	7.62	570.82	9.27	569.17
DW-9 (**)	581.30	3.70	577.60	5.04	576.26
DW-10 (**)	583.95	7.32	576.63	7.97	575.98
DW-11 (**)	583.05	5.98	577.07	6.99	576.06
DW-12 (**)	580.48	4.75	575.73	6.38	574.10
EW-13	579.84	12.51	567.33	14.76	565.08

NOTES:

BTOR = Below top of riser (or measuring point).

MSL = Mean sea level.

(**) Water level elevation measured from top of vault grate.

DRY = No measurable quantity in well at time of measurement.

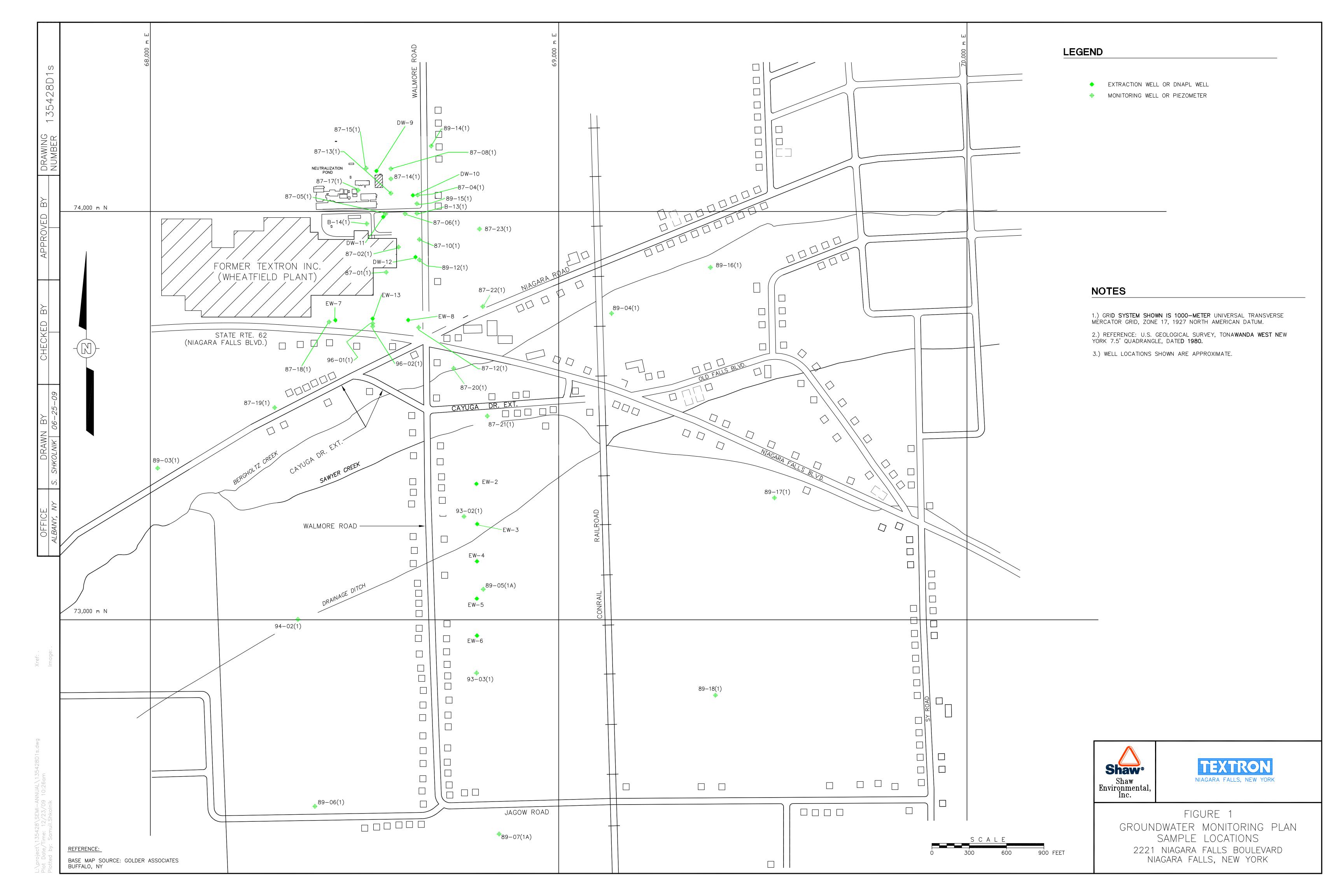
NG = Not gauged. NA = Data not available.

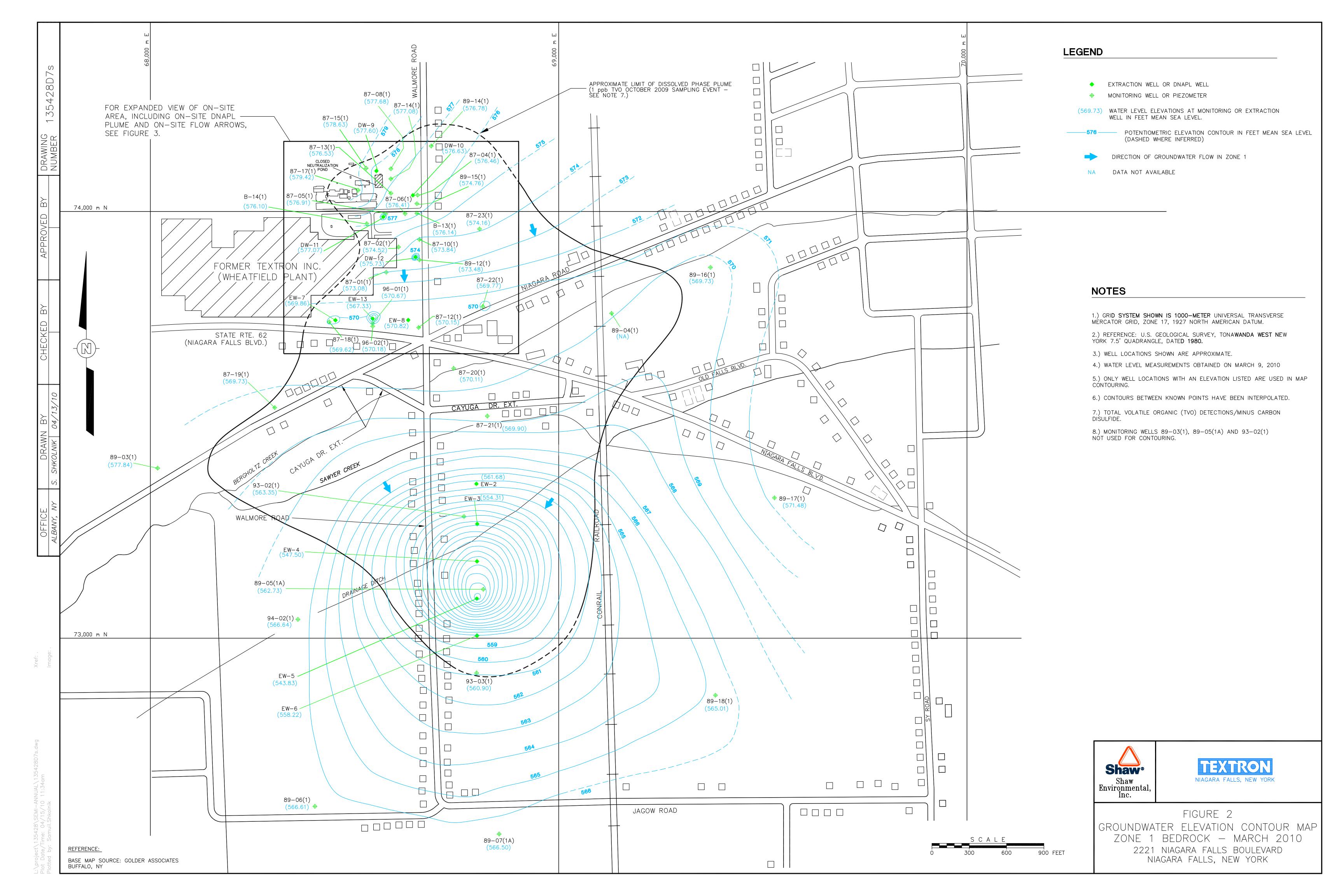
TABLE 2A

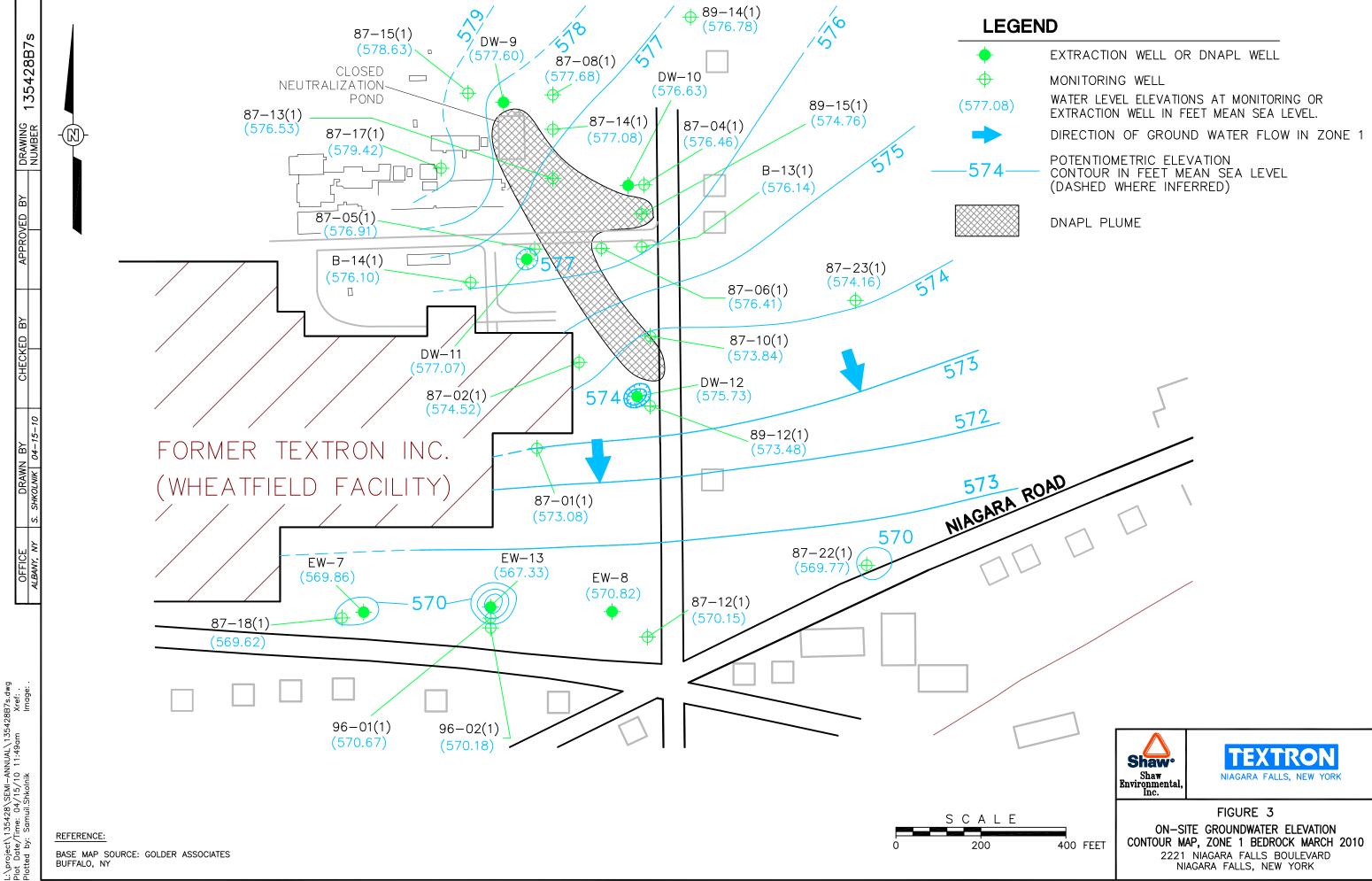
Summary of Vertical Hydraulic Gradients March 2010 Quarterly Hydraulic Monitoring Event Former Textron, Inc. Wheatfield, New York

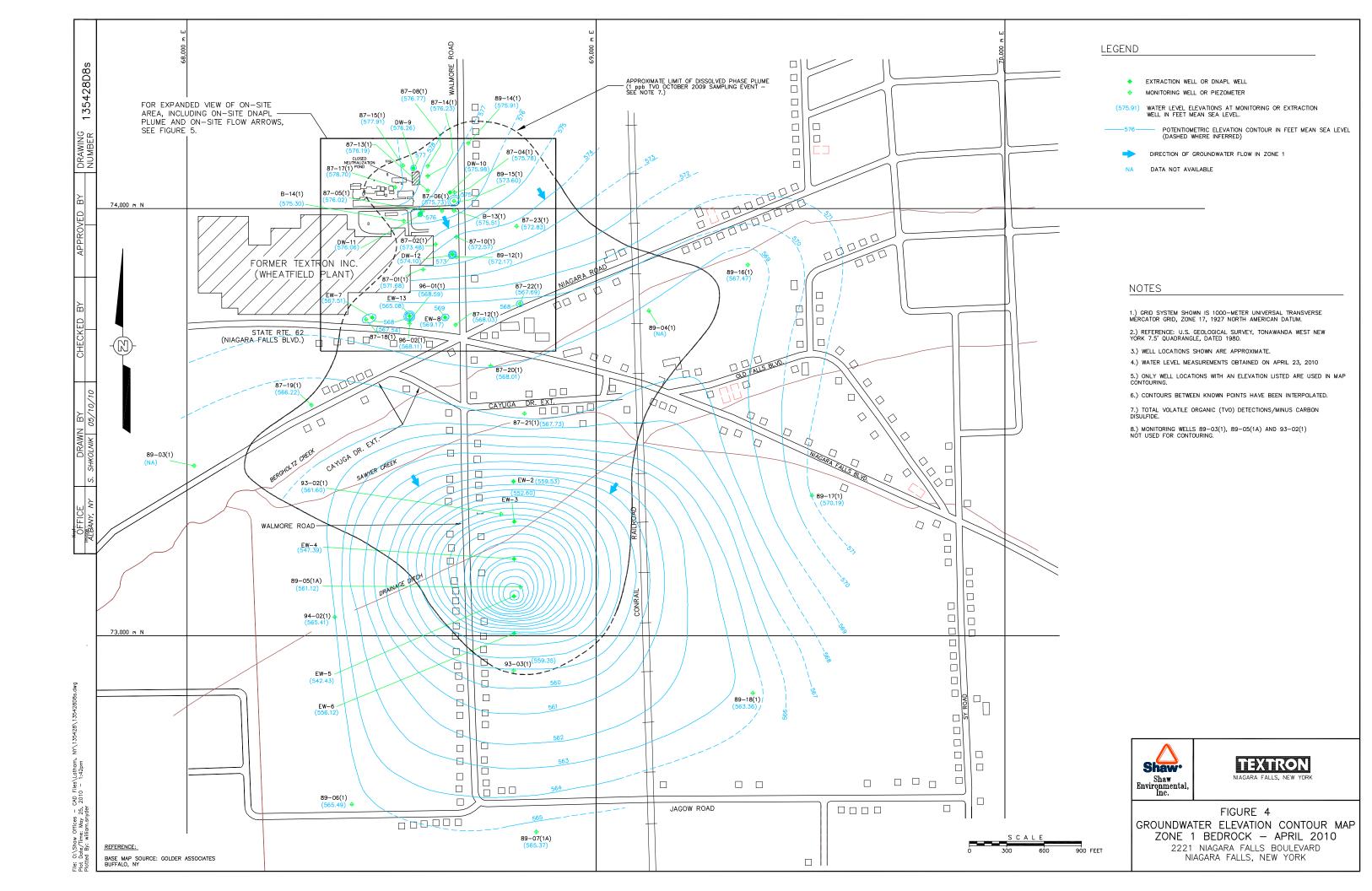
Well Name	Top of Riser Elevation (ft MSL)	Water Level (ft BTOR)	Date Measured	Water Level Elevation (ft MSL)	Head Difference Zone 3 - Zone 1 (dH) (ft)	Thickness Zone 2 (dL) (ft)	Verticle Gradient (dH/dL)
87-02(1) 87-02(3)	589.21 588.63	14.69 11.41	March 9, 2010	574.52 577.22	2.70	7.00	0.39
87-04(1) 87-04(3)	589.08 589.49	12.62 11.00	March 9, 2010	576.46 578.49	2.03	7.00	0.29
87-05(1) 87-05(3)	589.37 589.46	12.46 10.55	March 9, 2010	576.91 578.91	2.00	7.00	0.29
87-13(1) 87-13(3)	590.06 589.91	13.53 10.95	March 9, 2010	576.53 578.96	2.43	7.00	0.35
87-14(1) 87-14(3)	589.06 590.35	11.98 10.57	March 9, 2010	577.08 579.78	2.70	7.00	0.39
87-15(1) 87-15(3)	590.27 589.87	11.64 9.89	March 9, 2010	578.63 579.98	1.35	7.00	0.19

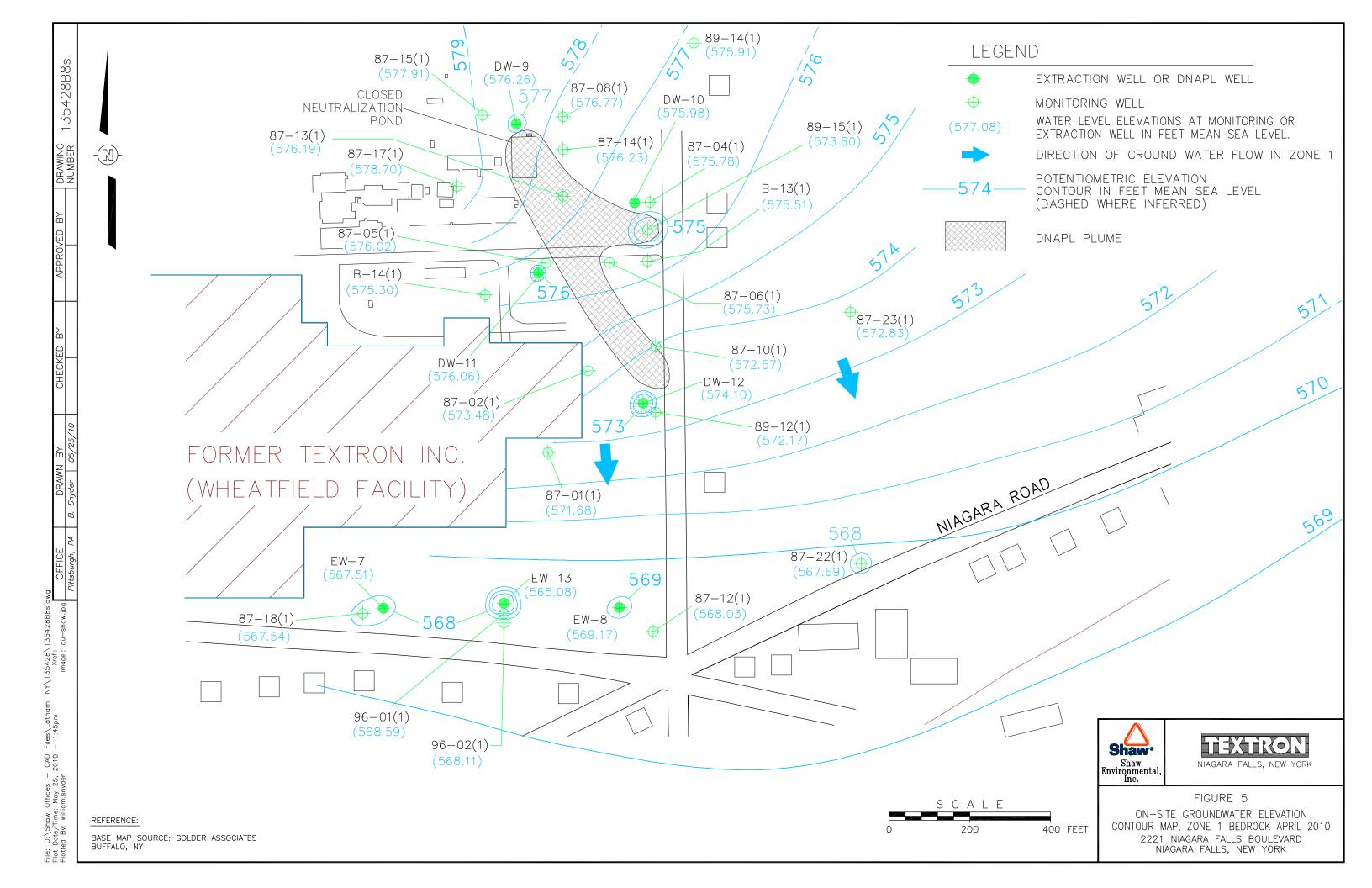
NOTE: Positive vertical gradients are upwards from Zone 3 to Zone 1


TABLE 2B


Summary of Vertical Hydraulic Gradients April 2010 Quarterly Hydraulic Monitoring Event Former Textron, Inc. Wheatfield, New York


Well Name	Top of Riser Elevation (ft MSL)	Water Level (ft BTOR)	Date Measured	Water Level Elevation (ft MSL)	Head Difference Zone 3 - Zone 1 (dH) (ft)	Thickness Zone 2 (dL) (ft)	Verticle Gradient (dH/dL)
87-02(1) 87-02(3)	589.21 588.63	15.73 11.77	April 23, 2010	573.48 576.86	3.38	7.00	0.48
87-04(1) 87-04(3)	589.08 589.49	13.30 11.35	April 23, 2010	575.78 578.14	2.36	7.00	0.34
87-05(1) 87-05(3)	589.37 589.46	13.35 11.00	April 23, 2010	576.02 578.46	2.44	7.00	0.35
87-13(1) 87-13(3)	590.06 589.91	13.87 11.40	April 23, 2010	576.19 578.51	2.32	7.00	0.33
87-14(1) 87-14(3)	589.06 590.35	12.83 11.18	April 23, 2010	576.23 579.17	2.94	7.00	0.42
87-15(1) 87-15(3)	590.27 589.87	12.36 10.57	April 23, 2010	577.91 579.30	1.39	7.00	0.20


NOTE: Positive vertical gradients are upwards from Zone 3 to Zone 1



APPENDIX A NIAGARA COUNTY SEWER DISTRICT SEMI-ANNUAL REPORT

May 5, 2010

Mr. Dan Kummer Niagara County Sewer District #1 7346 Liberty Drive

Niagara Falls, New York 14304-3762

Subject: Niagara County Sewer District Discharge Monitoring

Semi-Annual Analytical Results

Permit Number: 10-07

Textron Off-Site Groundwater Extraction System

Textron, Inc., Wheatfield, New York Sample Date: April 19 – 20, 2010

Dear Mr. Kummer:

Enclosed for your review is the most recent semi-annual discharge monitoring analytical results from Textron, Inc.'s Off-Site Groundwater Extraction System located in Wheatfield, New York. The Off-Site Groundwater Extraction System was brought on-line in March 1993 and discharges to the Niagara County Sewer District (NCSD) sanitary sewer. Shaw Environmental, Inc. (Shaw) on behalf of Textron, Inc. (Textron) collected four grab samples in accordance with the NCSD Permit Number 10-07, between April 19th and 20th, 2010. The field sampling sheets are included as **Appendix A**. The samples were kept on ice and delivered to TestAmerica, Inc. in Amherst, New York. All sampling activities were conducted in accordance with the requirements stated in NCSD Permit Number 10-07.

Approximately 11,111.173 gallons of groundwater was extracted by the Off-Site system and discharged to the NCSD sanitary sewer between November 1, 2009 and April 30, 2010. The discharge flow volumes for the months of November, December, January, February, March and April are detailed on **Tables 1**, **2**, **3**, **4**, **5** and **6**, respectively.

Table 7 contains a summary of the semi-annual discharge monitoring analytical data and an estimate of the discharge loading in comparison to the permitted maximum daily discharge loading limits. As illustrated in **Table 7**, the estimate daily discharge loading during the monitoring period did not exceed the permitted limits. The analytical results for the April 2010 sampling event are provided in **Appendix B**.

Please do not hesitate to contact me at should you have any questions regarding this project.

Sincerely,

Cecelia Campbell

Scientist 4

Shaw Environmental, Inc.

Please Reply To: Cecelia Campbell

Cocolia Campbell

Phone: 412.858.3977

E-Mail Address: cecelia.campbell@shawgrp.com

Attachments: Tables

Appendix A – Field Sampling Sheets Appendix B – Analytical Report

Cc: Greg Simpson – Textron

Shaw - File

TABLES

Table 1 Niagara County Sewer Discharge Monitoring Off-Site Groundwater Extraction System Textron, Inc.

Wheatfield, New York Permit Number: 07-07 November 1 - November 30, 2009 Daily Flow Rates

Date/Time	Total Flow Reading	Total Daily Flow (gal)
11/1/09 7:10 AM	44,664,498	58,917
11/2/09 7:10 AM	44,723,589	59,091
11/3/09 7:10 AM	44,782,362	58,773
11/4/09 7:10 AM	44,840,820	58,458
11/5/09 7:10 AM	44,899,045	58,225
11/6/09 7:10 AM	44,957,202	58,157
11/7/09 7:10 AM	45,015,209	58,007
11/8/09 7:10 AM	45,073,108	57,899
11/9/09 7:10 AM	45,130,854	57,746
11/10/09 7:10 AM	45,188,370	57,516
11/11/09 7:10 AM	45,245,581	57,211
11/12/09 7:10 AM	45,302,795	57,214
11/13/09 7:10 AM	45,360,014	57,081
11/14/09 7:10 AM	45,417,111	57,081
11/15/09 7:10 AM	45,474,038	57,081
11/16/09 7:10 AM	45,530,818	56,780
11/17/09 7:10 AM	45,587,672	56,854
11/18/09 7:10 AM	45,644,486	56,814
11/19/09 7:10 AM	45,701,175	56,689
11/20/09 7:10 AM	45,758,985	57,810
11/21/09 7:10 AM	45,818,596	59,611
11/22/09 7:10 AM	45,878,882	60,286
11/23/09 7:10 AM	45,939,079	60,197
11/24/09 7:10 AM	45,999,154	60,075
11/25/09 7:10 AM	46,059,081	59,927
11/26/09 7:10 AM	46,118,990	59,909
11/27/09 7:10 AM	46,178,988	59,998
11/28/09 7:10 AM	46,239,176	60,188
11/29/09 7:10 AM	46,299,608	60,432
11/30/09 7:10 AM	46,360,011	60,403

Maximum Daily Flow for November (gallons/day): 60,432 Average Daily Flow for November (gallons/day): 54,945

Table 2 Niagara County Sewer Discharge Monitoring Off-Site Groundwater Extraction System Textron, Inc.

Wheatfield, New York Permit Number: 07-07 December 1 - December 31, 2009 Daily Flow Rates

Date/Time	Total Flow Reading	Total Daily Flow (gal)
12/1/09 7:10 AM	46,421,544	61,533
12/2/09 7:10 AM	46,483,418	61,874
12/3/09 7:10 AM	46,545,931	62,513
12/4/09 7:10 AM	46,610,135	64,204
12/5/09 7:10 AM	46,673,361	63,226
12/6/09 7:10 AM	46,735,828	62,467
12/7/09 7:10 AM	46,797,468	61,640
12/8/09 7:10 AM	46,858,598	61,130
12/9/09 7:10 AM	46,919,323	60,725
12/10/09 7:10 AM	46,982,251	62,928
12/11/09 7:10 AM	47,046,487	64,236
12/12/09 7:10 AM	47,109,891	63,404
12/13/09 7:10 AM	47,172,568	62,677
12/14/09 7:10 AM	47,234,965	62,397
12/15/09 7:10 AM	47,296,987	62,022
12/16/09 7:10 AM	47,358,618	61,631
12/17/09 7:10 AM	47,420,103	61,485
12/18/09 7:10 AM	47,481,500	61,397
12/19/09 7:10 AM	47,542,747	61,247
12/20/09 7:10 AM	47,604,024	61,277
12/21/09 7:10 AM	47,665,403	61,379
12/22/09 7:10 AM	47,726,595	61,192
12/23/09 7:10 AM	47,787,521	60,926
12/24/09 7:10 AM	47,848,117	60,438
12/25/09 7:10 AM	47,908,397	60,438
12/26/09 7:10 AM	47,968,999	60,602
12/27/09 7:10 AM	48,032,271	63,272
12/28/09 7:10 AM	48,096,432	64,161
12/29/09 7:10 AM	48,160,075	63,643
12/30/09 7:10 AM		62,755
12/31/09 7:10 AM	48,285,584	62,755

Maximum Daily Flow for December (gallons/day): 64,236 Average Daily Flow for December (gallons/day): 62,115

⁻⁻⁻ Data not available for date indicated, therefore dail flow data is an average.

Table 3 Niagara County Sewer Discharge Monitoring Off-Site Groundwater Extraction System Textron, Inc.

Wheatfield, New York January 1 - Janaury 31, 2010 Daily Flow Rates

Date/Time	Total Flow Reading	Total Daily Flow (gal)
1/1/10 7:10 AM	48,347,816	62,232
1/2/10 7:10 AM	48,409,810	61,994
1/3/10 7:10 AM	48,471,725	61,915
1/4/10 7:10 AM	48,533,575	61,850
1/5/10 7:10 AM	48,595,242	61,667
1/6/10 7:10 AM	48,656,906	61,664
1/7/10 7:10 AM	48,718,573	61,667
1/8/10 7:10 AM	48,780,207	61,634
1/9/10 7:10 AM	48,841,765	61,558
1/10/10 7:10 AM	48,903,255	61,490
1/11/10 7:10 AM	48,964,504	61,249
1/12/10 7:10 AM	49,025,515	61,011
1/13/10 7:10 AM	49,086,452	60,937
1/14/10 7:10 AM	49,147,440	60,988
1/15/10 7:10 AM	49,208,564	61,124
1/16/10 7:10 AM	49,270,046	61,482
1/17/10 7:10 AM	49,332,017	61,971
1/18/10 7:10 AM	49,394,497	62,480
1/19/10 7:10 AM	49,457,329	62,832
1/20/10 7:10 AM	49,520,193	62,864
1/21/10 7:10 AM	49,583,042	62,849
1/22/10 7:10 AM	49,645,761	62,719
1/23/10 7:10 AM	49,708,301	62,540
1/24/10 7:10 AM	49,770,515	62,214
1/25/10 7:10 AM	49,833,456	62,941
1/26/10 7:10 AM	49,901,432	67,976
1/27/10 7:10 AM	49,968,711	67,279
1/28/10 7:10 AM	50,033,117	64,406
1/29/10 7:10 AM	50,097,293	64,176
1/30/10 7:10 AM	50,162,923	65,630
1/31/10 7:10 AM	50,225,560	62,637

Maximum Daily Flow for January (gallons/day): 67,976 Average Daily Flow for January (gallons/day): 62,580

Table 4 Niagara County Sewer Discharge Monitoring Off-Site Groundwater Extraction System Textron, Inc. Wheatfield, New York

February 1 - February 28, 2010 Daily Flow Rates

Date/Time	Total Flow Reading	Total Daily Flow (gal)
2/1/10 7:10 AM	50,288,255	62,695
2/2/10 7:10 AM	50,350,806	62,551
2/3/10 7:10 AM	50,413,198	62,392
2/4/10 7:10 AM	50,475,699	62,501
2/5/10 7:10 AM	50,537,623	61,924
2/6/10 7:10 AM	50,599,011	61,388
2/7/10 7:10 AM	50,660,058	61,047
2/8/10 7:10 AM	50,720,843	60,785
2/9/10 7:10 AM	50,781,562	60,719
2/10/10 7:10 AM	50,842,237	60,675
2/11/10 7:10 AM	50,902,999	60,762
2/12/10 7:10 AM	50,963,635	60,636
2/13/10 7:10 AM	51,024,075	60,440
2/14/10 7:10 AM	51,084,415	60,340
2/15/10 7:10 AM	51,144,833	60,418
2/16/10 7:10 AM	51,205,407	60,574
2/17/10 7:10 AM	51,266,173	60,766
2/18/10 7:10 AM	51,326,959	60,786
2/19/10 7:10 AM	51,387,762	60,803
2/20/10 7:10 AM	51,448,624	60,862
2/21/10 7:10 AM	51,509,454	60,830
2/22/10 7:10 AM	51,570,385	60,931
2/23/10 7:10 AM	51,631,521	61,136
2/24/10 7:10 AM	51,710,732	79,211
2/25/10 7:10 AM	51,749,808	39,076
2/26/10 7:10 AM	51,811,511	61,703
2/27/10 7:10 AM	51,873,253	61,742
2/28/10 7:10 AM	51,935,034	61,781

Maximum Daily Flow for February (gallons/day): 79,211 Average Daily Flow for February (gallons/day): 61,053

Table 5 Niagara County Sewer Discharge Monitoring Off-Site Groundwater Extraction System Textron, Inc. Wheatfield, New York

Wheatfield, New York
March 1 - March 31, 2010
Daily Flow Rates

Date/Time	Total Flow Reading	Total Daily Flow (gal)
3/1/10 7:10 AM	51,997,333	62,299
3/2/10 7:10 AM	52,060,408	63,075
3/3/10 7:10 AM	52,124,130	63,722
3/4/10 7:10 AM	52,188,290	64,160
3/5/10 7:10 AM	52,252,607	64,317
3/6/10 7:10 AM	52,316,873	64,266
3/7/10 7:10 AM	52,381,004	64,131
3/8/10 7:10 AM	52,445,001	63,997
3/9/10 7:10 AM	52,508,979	63,978
3/10/10 7:10 AM	52,573,555	64,576
3/11/10 7:10 AM	52,639,362	65,807
3/12/10 7:10 AM	52,705,638	66,276
3/13/10 7:10 AM	52,772,529	66,891
3/14/10 7:10 AM	52,839,532	67,003
3/15/10 7:10 AM	52,906,790	67,258
3/16/10 7:10 AM	52,972,562	65,772
3/17/10 7:10 AM	53,036,425	63,863
3/18/10 7:10 AM	53,099,803	63,378
3/19/10 7:10 AM	53,162,780	62,977
3/20/10 7:10 AM	53,225,669	62,889
3/21/10 7:10 AM	53,288,649	62,980
3/22/10 7:10 AM	53,351,165	62,516
3/23/10 7:10 AM	53,414,191	63,026
3/24/10 7:10 AM	53,478,583	64,392
3/25/10 7:10 AM	53,542,454	63,871
3/26/10 7:10 AM	53,606,992	64,538
3/27/10 7:10 AM	53,671,039	64,047
3/28/10 7:10 AM	53,734,469	63,430
3/29/10 7:10 AM	53,797,698	63,229
3/30/10 7:10 AM	53,860,622	62,924
3/31/10 7:10 AM	53,923,450	62,828

Maximum Daily Flow for March (gallons/day): 67,258 Average Daily Flow for March (gallons/day): 64,142

Table 6 Niagara County Sewer Discharge Monitoring Off-Site Groundwater Extraction System Textron, Inc. Wheatfield, New York April 1 - April 30, 2010 Daily Flow Rates

Date/Time	Total Flow Reading	Total Daily Flow (gal)
4/1/10 7:10 AM	53,985,979	62,529
4/2/10 7:10 AM	54,047,981	62,002
4/3/10 7:10 AM	54,109,856	61,875
4/4/10 7:10 AM	54,171,632	61,776
4/5/10 7:10 AM	54,233,217	61,585
4/6/10 7:10 AM	54,294,799	61,582
4/7/10 7:10 AM		62,807
4/8/10 7:10 AM	54,420,413	62,807
4/9/10 7:10 AM	54,486,439	66,026
4/10/10 7:10 AM	54,551,642	65,203
4/11/10 7:10 AM	54,614,924	63,282
4/12/10 7:10 AM	54,677,574	62,650
4/13/10 7:10 AM	54,740,104	62,530
4/14/10 7:10 AM	54,802,188	62,084
4/15/10 7:10 AM	54,863,931	61,743
4/16/10 7:10 AM	54,925,171	61,240
4/17/10 7:10 AM	54,986,129	60,958
4/18/10 7:10 AM	55,046,913	60,784
4/19/10 7:10 AM	55,107,597	60,684
4/20/10 7:10 AM	55,168,191	60,594
4/21/10 7:10 AM	55,228,869	60,678
4/22/10 7:10 AM	55,289,996	61,127
4/23/10 7:10 AM	55,351,486	61,490
4/24/10 7:10 AM	55,413,009	61,523
4/25/10 7:10 AM	55,474,235	61,226
4/26/10 7:10 AM	55,534,985	60,750
4/27/10 7:10 AM	55,595,531	60,546
4/28/10 7:10 AM	55,655,800	60,269
4/29/10 7:10 AM	55,715,923	60,123
4/30/10 7:10 AM	55,775,671	59,748

Maximum Daily Flow for April (gallons/day): 66,026 Average Daily Flow for April (gallons/day): 61,741

⁻⁻⁻ Data not available for date indicated, therefore dail flow data is an average.

Table 7 Niagara County Sewer Discharge Monitoring Off-Site Groundwater Extraction System Textron, Inc.

Wheatfield, New York Permit Number: 10-07 April 19 - 20, 2010

Sample ID: MH No. 9-3

Parameter via US EPA Method 624	Reported Concentration (µg/L)	Total Flow (gallons per day) ⁽¹⁾	Discharge Loading Pounds per Day ⁽²⁾	Maximum Daily Discharge Loading Limits
Trichloroethene	< 5.0	60,594	< 0.002528285	1.0
1,2-Dichloroethene (Total)	50	60,594	0.025282847	2.500
Vinyl Chloride	< 5.0	60,594	< 0.002528285	0.4000
Methylene Chloride	< 5.0	60,594	< 0.002528285	0.2

Notes:

Total Flow Limit: 200,000 gallons per day (gpd);

For calculation purposes 'Not Detected' values are assigned the value of the method detection limit;

CF = Conversion Factor 8.3 x 10⁻⁹

< - Not detected at indicated method detection limit;

 $^{^{(1)}}$ Total flow during sampling period was based on the total flow measurements for the sampling date;

 $^{^{(2)}}$ Determined as follows: (Concentration in $\mu g/L)$ x (flow rate in gpd) x (CF)

APPENDIX A FIELD SAMPLING SHEETS

Chain of Custody Record

TestAmerica

Special Instructions/Note T=Tedlar V=Vial Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

— Return To Client — Disposal By Lab — Archive For Month
Special Instructions/OC Requirements: Preservation Codes:
Avictor
C=Z Acades
C=Z Acades
C=Z Acades
C=Z Acades
C=Z Acades
C=Z Acades
C=Z C=Z C=Z
C=Z C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z
C=Z C=Z COC No: D4142010 14:49_1 Page: Date/Time; 1530 Parameter(s) Requested coler Temperature(s) C and Other Remarks Leb PM: Candace Fox E-Mail: candace.fox@testamericainc.com Received by: N to set) aldmak berent recommon of the common of the comm ~ ~ ~ Matrix (wwwater, Smedid, Onwastelett, ≥ > ≥ WO#: RTD1248 Project #: Semi-Annual Event - Textron, Whaatfield, NY SSOW#: Sample Type (C=comp, G=grab) Radiological Ġ 1540 - 157 (1/t) 1530 Sample Time Sample: 202 5091 01/6/10 2550 Bloch P6#: 523218 OP / 135428 Poison B Unknown Date/Tinfe: Due Date Requested Sample Date Date/Time: şibie Hazard identification
Non-Hazard Elammable Skin Initani
verable Requested: I, III, IV, Other (specify) emi-Annual Event - Textron, Wheatfield, NY - NY3A haw Environmental & Infrastructure, Inc. - NY3A91 TRIP BLANK Custody Seals Intact: Custody Seal No.: 412 858 - 3977 NH#9-3 NH#9-3 MH#9-3 MH#9-3 naw E & I, Inc. - Monroeville, PA acelia.campbell@shawgrp.com olect Name: mpty Kit Relinquished by: 90 Mosside Boulevard ient Information ample Identification cefia Campbell 15146-2792 ingdished by: / Relinquished by: nroeville

Site Name: Textron, Wheatfield, NY
Project Number: 100245
NCSD Permit Number: 07-07
Sample Location: EW- 6
Date: 4-19-10
Time: 1605
Field Personnel: KeVIN CKONIN
Physical Condition of Location: GOVD Ambient Temperature: 60°
Wind: LIGHT
Precipitation: NONE
Treespitation.
Sampling Method: Dedicated Poly Bailer
1 Samuel and Total Builds
Sample Number: MH No. 9-3
Sample Description: CLARC
Analysis Requested: 624 VOAS
Notes:
Sampler Signature: Lux Cut

Site Name: <u>Textron, Wheatfield, NY</u>
Project Number: 100245
NCSD Permit Number: 07-07
Sample Location: EW-6
Date: 4-19-10
Time: ZOZO
Field Personnel: KeVIN CHONIN
Physical Condition of Location: Govi Ambient Temperature: 50 F Wind: Govie Precipitation: None
Sampling Method: Dedicated Poly Bailer
Sample Number: MH No. 9-3
Sample Description: CLEAL
Analysis Requested: 624 Vots
Notes:
Sampler Signature: Love Cro
Sampler Signature:

Site Name: Textron, Wheatfield, NY	
Project Number: 100245	
NCSD Permit Number: 07-07	
Sample Location: EW- 6	
Date: 4-20-10	
Time: 0535	
Field Personnel: LOW CLONIN	
Physical Condition of Location: 4000 Ambient Temperature: 32 Wind: 447 Precipitation: NONE	
Sampling Method: Dedicated Poly Bailer	
Sample Number: MH No. 9-3 Sample Description: CLSA/C Analysis Requested: 624 Vol	
* ***	
Notes:	
Sampler Signature: Loo	

Site Name: Textron, Wheatfield, NY
Project Number:100245
NCSD Permit Number: 07-07
Sample Location: EW- 6
Date: 4-20-10
Time: 1245
Field Personnel: Kolta Chowia
Physical Condition of Location:
Ambient Temperature: 60° F
Wind: LIGHT
Precipitation: NON
Sampling Method: Dedicated Poly Bailer
<u> </u>
Sample Number: MH No. 9-3
Sample Description: CLAAL
Analysis Requested: 624 VOAS
Notes:
. 10000
<i>1</i> / 0
Sampler Signature:

APPENDIX B ANALYTICAL REPORT

Analytical Report

Work Order: RTD1605

Project Description
Semi-Annual Event - Textron, Wheatfield, NY

For:

Cecelia Campbell

Shaw E & I, Inc. - Monroeville, PA 2790 Mosside Boulevard Monroeville, PA 15146-2792

Candace Fox

Candace Z. Tox

Project Manager candace.fox@testamericainc.com
Tuesday, April 27, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Monroeville, PA 15146-2792

Work Order: RTD1605

Received: 04/20/10 Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

TestAmerica Buffalo Current Certifications

As of 12/21/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Shaw E & I, Inc. - Monroeville, PA 2790 Mosside Boulevard Monroeville, PA 15146-2792 Work Order: RTD1605

Received: 04/20/10

Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Samples were received in good condition at 3.5 degrees celcius.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Shaw E & I, Inc. - Monroeville, PA

2790 Mosside Boulevard Monroeville, PA 15146-2792 Work Order: RTD1605

Received: 04/20/10

Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

DATA QUALIFIERS AND DEFINITIONS

J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection

Limit (MDL). Concentrations within this range are estimated.

P16 Lab to composite volatile samples by date/time/flow.

P-HS Sample container contained headspace.

SL Volatile sample was composited in the laboratory prior to analysis.

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below

the laboratory reporting limit.

Monroeville, PA 15146-2792

Work Order: RTD1605

Received:

04/20/10

.

Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

Executive	Summary	- Detections
-----------	---------	--------------

			LACOULIV	, Gaiiiiiai y	Dotto					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTD1605-01 (MH#9-3 - Wa	Sam	pled: 04	20/10 12:45	Recv	/d: 04/20/10	15:30			
Volatile Organic Compo	<u>unds</u>									
1,2-Dichloroethene, Total	50	SL	10	3.2	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Sample ID: RTD1605-02 (TRIP BLAN	K - Water)			Sam	pled: 04	20/10	Recv	/d: 04/20/10	15:30
Volatile Organic Compo	<u>unds</u>									
1,2-Dichlorobenzene	2.1	P-HS,J	5.0	0.44	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,4-Dichlorobenzene	3.4	P-HS,J	5.0	0.51	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Benzene	1.3	P-HS,J	5.0	0.60	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Chlorobenzene	4.1	P-HS,J	5.0	0.48	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624

Monroeville, PA 15146-2792

Work Order: RTD1605

Received:

04/20/10

Reported:

04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
MH#9-3	RTD1605-01	Water	04/20/10 12:45	04/20/10 15:30	P16
TRIP BLANK	RTD1605-02	Water	04/20/10	04/20/10 15:30	

Monroeville, PA 15146-2792

Work Order: RTD1605

Received: 04/20/10

Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

Analytical Report

Analysis	Sample	Data	RL	MDL	l le:45	Dil	Date	Lab	Datab	B# - 41 .
Analyte	Result	Qualifiers	KL	INIDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1605-01 (MH#9-3 - Wa	ater)			Samı	pled: 04/	20/10 12:45	Recv	/d: 04/20/10	15:30
Volatile Organic Compou	<u>ınds</u>									
1,1,1-Trichloroethane	ND	SL	5.0	0.38	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,1,2,2-Tetrachloroethane	ND	SL	5.0	0.26	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,1,2-Trichloroethane	ND	SL	5.0	0.48	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,1-Dichloroethane	ND	SL	5.0	0.59	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,1-Dichloroethene	ND	SL	5.0	0.85	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,2-Dichlorobenzene	ND	SL	5.0	0.44	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,2-Dichloroethane	ND	SL	5.0	0.60	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,2-Dichloroethene, Total	50	SL	10	3.2	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,2-Dichloropropane	ND	SL	5.0	0.61	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,3-Dichlorobenzene	ND	SL	5.0	0.54	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,4-Dichlorobenzene	ND	SL	5.0	0.51	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
2-Chloroethyl vinyl ether	ND	SL	25	1.8	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Acrolein	ND	SL	100	17	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Acrylonitrile	ND	SL	100	1.9	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Benzene	ND	SL	5.0	0.60	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Bromodichloromethane	ND	SL	5.0	0.54	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Bromoform	ND	SL	5.0	0.47	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Bromomethane	ND	SL	5.0	1.2	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Carbon Tetrachloride	ND	SL	5.0	0.51	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Chlorobenzene	ND	SL	5.0	0.48	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Dibromochloromethane	ND	SL	5.0	0.41	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Chloroethane	ND	SL	5.0	0.87	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Chloroform	ND	SL	5.0	0.54	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Chloromethane	ND	SL	5.0	0.64	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
cis-1,3-Dichloropropene	ND	SL	5.0	0.33	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Ethylbenzene	ND	SL	5.0	0.46	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Methylene Chloride	ND	SL	5.0	0.81	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Tetrachloroethene	ND	SL	5.0	0.34	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Toluene	ND	SL	5.0	0.45	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
trans-1,3-Dichloropropen	ND	SL	5.0	0.44	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
e										
Trichloroethene	ND	SL	5.0	0.60	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Trichlorofluoromethane	ND	SL	5.0	0.45	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
Vinyl chloride	ND	SL	5.0	0.75	ug/L	1.00	04/23/10 13:06	TRB	10D2238	624
1,2-Dichloroethane-d4	99 %	SL	Surr Limits:				04/23/10 13:06	TRB	10D2238	624
4-Bromofluorobenzene	94 %	SL	Surr Limits:				04/23/10 13:06	TRB	10D2238	624
Toluene-d8	91 %	SL	Surr Limits:	(87-110%)			04/23/10 13:06	TRB	10D2238	624

Monroeville, PA 15146-2792

Work Order: RTD1605

Received: 04/20/10

Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

Analytical Report

			• '	ilalytical i						
	Sample	Data		MDI		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTD1605-02 (1	TRIP BLANK	(- Water)			Sam	oled: 04/	20/10	Recv	/d: 04/20/10	15:30
Volatile Organic Compou	nds_									
1,1,1-Trichloroethane	ND	P-HS	5.0	0.38	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,1,2,2-Tetrachloroethane	ND	P-HS	5.0	0.26	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,1,2-Trichloroethane	ND	P-HS	5.0	0.48	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,1-Dichloroethane	ND	P-HS	5.0	0.59	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,1-Dichloroethene	ND	P-HS	5.0	0.85	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,2-Dichlorobenzene	2.1	P-HS,J	5.0	0.44	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,2-Dichloroethane	ND	P-HS	5.0	0.60	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,2-Dichloroethene, Total	ND	P-HS	10	3.2	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,2-Dichloropropane	ND	P-HS	5.0	0.61	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,3-Dichlorobenzene	ND	P-HS	5.0	0.54	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
1,4-Dichlorobenzene	3.4	P-HS,J	5.0	0.51	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
2-Chloroethyl vinyl ether	ND	P-HS	25	1.8	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Acrolein	ND	P-HS	100	17	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Acrylonitrile	ND	P-HS	100	1.9	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Benzene	1.3	P-HS,J	5.0	0.60	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Bromodichloromethane	ND	P-HS	5.0	0.54	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Bromoform	ND	P-HS	5.0	0.47	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Bromomethane	ND	P-HS	5.0	1.2	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Carbon Tetrachloride	ND	P-HS	5.0	0.51	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Chlorobenzene	4.1	P-HS,J	5.0	0.48	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Dibromochloromethane	ND	P-HS	5.0	0.41	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Chloroethane	ND	P-HS	5.0	0.87	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Chloroform	ND	P-HS	5.0	0.54	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Chloromethane	ND	P-HS	5.0	0.64	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
cis-1,3-Dichloropropene	ND	P-HS	5.0	0.33	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Ethylbenzene	ND	P-HS	5.0	0.46	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Methylene Chloride	ND	P-HS	5.0	0.81	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Tetrachloroethene	ND	P-HS	5.0	0.34	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Toluene	ND	P-HS	5.0	0.45	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
trans-1,3-Dichloropropen	ND	P-HS	5.0	0.44	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
e										
Trichloroethene	ND	P-HS	5.0	0.60	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Trichlorofluoromethane	ND	P-HS	5.0	0.45	ug/L	1.00	04/22/10 09:37	TRB	10D2043	624
Vinyl chloride	ND	P-HS	5.0	0.75	ug/L	1.00	04/22/10 09:37		10D2043	624
1,2-Dichloroethane-d4	104 %	P-HS	Surr Limits:	(88-132%)			04/22/10 09:37	TRB	10D2043	624
4-Bromofluorobenzene	99 %	P-HS	Surr Limits:	'			04/22/10 09:37	TRB	10D2043	624
Toluene-d8	92 %	P-HS	Surr Limits:	(0= 4400()			04/22/10 09:37		10D2043	624

Monroeville, PA 15146-2792

Work Order: RTD1605

Received: Reported:

04/20/10 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
Volatile Organic Compounds									
624	10D2043	RTD1605-02	5.00	mL	5.00	mL	04/21/10 11:16	TRB	5030B MS
624	10D2238	RTD1605-01	5.00	mL	5.00	mL	04/23/10 11:32	TRB	5030B MS

Monroeville, PA 15146-2792

Work Order: RTD1605

Received: 04/20/10

Reported: 0

04/27/10 14:29

 $\label{eq:project: Semi-Annual Event - Textron, Wheatfield, NY} Project: Semi-Annual Event - Textron, Wheatfield, NY$

Project Number: SHAW

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers
Volatile Organic Compou	nds_									_
Blank Analyzed: 04/21/10	(Lab Num	ber:10D20	43-BLK1,	Batch: 10D2043	3)					
1,1,1-Trichloroethane			5.0	0.38	ug/L	ND				
1,1,2,2-Tetrachloroethane			5.0	0.26	ug/L	ND				
1,1,2-Trichloroethane			5.0	0.48	ug/L	ND				
1,1-Dichloroethane			5.0	0.59	ug/L	ND				
1,1-Dichloroethene			5.0	0.85	ug/L	ND				
1,2-Dichlorobenzene			5.0	0.44	ug/L	ND				
1,2-Dichloroethane			5.0	0.60	ug/L	ND				
1,2-Dichloroethene, Total			10	3.2	ug/L	ND				
1,2-Dichloropropane			5.0	0.61	ug/L	ND				
1,3-Dichlorobenzene			5.0	0.54	ug/L	ND				
1,4-Dichlorobenzene			5.0	0.51	ug/L	ND				
2-Chloroethyl vinyl ether			25	1.8	ug/L	ND				
Acrolein			100	17	ug/L	ND				
Acrylonitrile			100	1.9	ug/L	ND				
Benzene			5.0	0.60	ug/L	ND				
Bromodichloromethane			5.0	0.54	ug/L	ND				
Bromoform			5.0	0.47	ug/L	ND				
Bromomethane			5.0	1.2	ug/L	ND				
Carbon Tetrachloride			5.0	0.51	ug/L	ND				
Chlorobenzene			5.0	0.48	ug/L	ND				
Dibromochloromethane			5.0	0.41	ug/L	ND				
Chloroethane			5.0	0.87	ug/L	ND				
Chloroform			5.0	0.54	ug/L	ND				
Chloromethane			5.0	0.64	ug/L	ND				
cis-1,3-Dichloropropene			5.0	0.33	ug/L	ND				
Ethylbenzene			5.0	0.46	ug/L	ND				
Methylene Chloride			5.0	0.81	ug/L	ND				
Tetrachloroethene			5.0	0.34	ug/L	ND				
Toluene			5.0	0.45	ug/L	ND				
trans-1,3-Dichloropropen e			5.0	0.44	ug/L	ND				
Trichloroethene			5.0	0.60	ug/L	ND				
Trichlorofluoromethane			5.0	0.45	ug/L	ND				
Vinyl chloride			5.0	0.75	ug/L	ND				
Surrogate:					ug/L		100	88-132		
1,2-Dichloroethane-d4 Surrogate:					ug/L		92	78-122		
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		94	87-110		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Monroeville, PA 15146-2792

Work Order: RTD1605

04/20/10 Received:

Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

LABORATORY QC DATA

	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compo	<u>unds</u>									
LCS Analyzed: 04/21/10	(Lab Numb	er:10D204	I3-BS1, Bat	tch: 10D2043)						
1,1,1-Trichloroethane		20.0	5.0	0.38	ug/L	19.8	99	75-125		
1,1,2,2-Tetrachloroethane		20.0	5.0	0.26	ug/L	20.2	101	61-140		
1,1,2-Trichloroethane		20.0	5.0	0.48	ug/L	20.2	101	71-129		
1,1-Dichloroethane		20.0	5.0	0.59	ug/L	23.3	116	73-128		
1,1-Dichloroethene		20.0	5.0	0.85	ug/L	17.7	89	51-150		
1,2-Dichlorobenzene		20.0	5.0	0.44	ug/L	19.6	98	63-137		
1,2-Dichloroethane		20.0	5.0	0.60	ug/L	21.3	107	68-132		
1,2-Dichloropropane		20.0	5.0	0.61	ug/L	24.8	124	34-166		
1,3-Dichlorobenzene		20.0	5.0	0.54	ug/L	20.1	100	73-127		
1,4-Dichlorobenzene		20.0	5.0	0.51	ug/L	19.4	97	63-137		
2-Chloroethyl vinyl ether		100	25	1.8	ug/L	123	123	1-224		
Benzene		20.0	5.0	0.60	ug/L	23.6	118	64-136		
Bromodichloromethane		20.0	5.0	0.54	ug/L	21.7	109	66-135		
Bromoform		20.0	5.0	0.47	ug/L	16.0	80	71-129		
Bromomethane		20.0	5.0	1.2	ug/L	20.4	102	14-186		
Carbon Tetrachloride		20.0	5.0	0.51	ug/L	19.2	96	73-127		
Chlorobenzene		20.0	5.0	0.48	ug/L	19.7	98	66-134		
Dibromochloromethane		20.0	5.0	0.41	ug/L	17.7	89	68-133		
Chloroethane		20.0	5.0	0.87	ug/L	22.8	114	38-162		
Chloroform		20.0	5.0	0.54	ug/L	22.1	111	68-133		
Chloromethane		20.0	5.0	0.64	ug/L	35.2	176	1-204		
cis-1,3-Dichloropropene		20.0	5.0	0.33	ug/L	21.7	109	24-176		
Ethylbenzene		20.0	5.0	0.46	ug/L	19.5	97	59-141		
Methylene Chloride		20.0	5.0	0.81	ug/L	23.0	115	61-140		
Tetrachloroethene		20.0	5.0	0.34	ug/L	17.2	86	74-127		
Toluene		20.0	5.0	0.45	ug/L	19.3	96	75-126		
trans-1,3-Dichloropropen e		20.0	5.0	0.44	ug/L	17.6	88	50-150		
Trichloroethene		20.0	5.0	0.60	ug/L	21.5	108	67-134		
Trichlorofluoromethane		20.0	5.0	0.45	ug/L	24.9	125	48-152		
Vinyl chloride		20.0	5.0	0.75	ug/L	31.1	156	4-196		
Surrogate:					ug/L		97	88-132		
1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene					ug/L		97	78-122		
Surrogate: Toluene-d8					ug/L		94	87-110		

Volatile Organic Compounds

Blank Analyzed: 04/23/10 (Lab Number:10D2238-BLK1, Batch: 10D2238)

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Monroeville, PA 15146-2792

Work Order: RTD1605

Received: 04/20/10

Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers
Volatile Organic Compou	nds									
Blank Analyzed: 04/23/10	(Lab Num	nber:10D22	38-BLK1,	Batch: 10D2238	3)					
1,1,1-Trichloroethane			5.0	0.38	ug/L	ND				
1,1,2,2-Tetrachloroethane			5.0	0.26	ug/L	ND				
1,1,2-Trichloroethane			5.0	0.48	ug/L	ND				
1,1-Dichloroethane			5.0	0.59	ug/L	ND				
1,1-Dichloroethene			5.0	0.85	ug/L	ND				
1,2-Dichlorobenzene			5.0	0.44	ug/L	ND				
1,2-Dichloroethane			5.0	0.60	ug/L	ND				
1,2-Dichloroethene, Total			10	3.2	ug/L	ND				
1,2-Dichloropropane			5.0	0.61	ug/L	ND				
1,3-Dichlorobenzene			5.0	0.54	ug/L	ND				
1,4-Dichlorobenzene			5.0	0.51	ug/L	ND				
2-Chloroethyl vinyl ether			25	1.8	ug/L	ND				
Acrolein			100	17	ug/L	ND				
Acrylonitrile			100	1.9	ug/L	ND				
Benzene			5.0	0.60	ug/L	ND				
Bromodichloromethane			5.0	0.54	ug/L	ND				
Bromoform			5.0	0.47	ug/L	ND				
Bromomethane			5.0	1.2	ug/L	ND				
Carbon Tetrachloride			5.0	0.51	ug/L	ND				
Chlorobenzene			5.0	0.48	ug/L	ND				
Dibromochloromethane			5.0	0.41	ug/L	ND				
Chloroethane			5.0	0.87	ug/L	ND				
Chloroform			5.0	0.54	ug/L	ND				
Chloromethane			5.0	0.64	ug/L	ND				
cis-1,3-Dichloropropene			5.0	0.33	ug/L	ND				
Ethylbenzene			5.0	0.46	ug/L	ND				
Methylene Chloride			5.0	0.81	ug/L	ND				
Tetrachloroethene			5.0	0.34	ug/L	ND				
Toluene			5.0	0.45	ug/L	ND				
trans-1,3-Dichloropropen e			5.0	0.44	ug/L	ND				
Trichloroethene			5.0	0.60	ug/L	ND				
Trichlorofluoromethane			5.0	0.45	ug/L	ND				
Vinyl chloride			5.0	0.75	ug/L	ND				
Surrogate: 1,2-Dichloroethane-d4					ug/L		101	88-132		
Surrogate:					ug/L		95	78-122		
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		92	87-110		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Monroeville, PA 15146-2792

Work Order: RTD1605

Received: 04/20/10

Reported: 04/27/10 14:29

Project: Semi-Annual Event - Textron, Wheatfield, NY

Project Number: SHAW

LABORATORY QC DATA

			L	ABONATORT	QC DATA					
	Source	Spike					%	% REC	% RPI	
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Lim	it Qualifiers
Volatile Organic Compo	<u>unds</u>									
LCS Analyzed: 04/23/10	(I ab Numb	ner:10D22:	38-BS1. Bat	tch: 10D2238)						
1,1,1-Trichloroethane	(=05 1101115	20.0	5.0	0.38	ug/L	21.0	105	75-125		
1,1,2,2-Tetrachloroethane		20.0	5.0	0.26	ug/L	20.6	103	61-140		
1,1,2-Trichloroethane		20.0	5.0	0.48	ug/L	21.5	108	71-129		
1,1-Dichloroethane		20.0	5.0	0.59	ug/L	25.1	126	73-128		
1,1-Dichloroethene		20.0	5.0	0.85	ug/L	15.7	79	51-150		
1,2-Dichlorobenzene		20.0	5.0	0.44	ug/L	20.5	103	63-137		
1,2-Dichloroethane		20.0	5.0	0.60	ug/L	22.8	114	68-132		
1,2-Dichloropropane		20.0	5.0	0.61	ug/L	26.7	134	34-166		
1,3-Dichlorobenzene		20.0	5.0	0.54	ug/L	20.9	105	73-127		
1,4-Dichlorobenzene		20.0	5.0	0.51	ug/L	20.3	102	63-137		
2-Chloroethyl vinyl ether		100	25	1.8	ug/L	122	122	1-224		
Benzene		20.0	5.0	0.60	ug/L	25.1	126	64-136		
Bromodichloromethane		20.0	5.0	0.54	ug/L	23.4	117	66-135		
Bromoform		20.0	5.0	0.47	ug/L	18.0	90	71-129		
Bromomethane		20.0	5.0	1.2	ug/L	19.0	95	14-186		
Carbon Tetrachloride		20.0	5.0	0.51	ug/L	20.8	104	73-127		
Chlorobenzene		20.0	5.0	0.48	ug/L	20.8	104	66-134		
Dibromochloromethane		20.0	5.0	0.41	ug/L	19.6	98	68-133		
Chloroethane		20.0	5.0	0.87	ug/L	25.4	127	38-162		
Chloroform		20.0	5.0	0.54	ug/L	23.3	116	68-133		
Chloromethane		20.0	5.0	0.64	ug/L	36.9	185	1-204		
cis-1,3-Dichloropropene		20.0	5.0	0.33	ug/L	24.6	123	24-176		
Ethylbenzene		20.0	5.0	0.46	ug/L	20.8	104	59-141		
Methylene Chloride		20.0	5.0	0.81	ug/L	23.5	118	61-140		
Tetrachloroethene		20.0	5.0	0.34	ug/L	17.9	89	74-127		
Toluene		20.0	5.0	0.45	ug/L	19.8	99	75-126		
trans-1,3-Dichloropropen e		20.0	5.0	0.44	ug/L	19.6	98	50-150		
Trichloroethene		20.0	5.0	0.60	ug/L	23.6	118	67-134		
Trichlorofluoromethane		20.0	5.0	0.45	ug/L	29.9	150	48-152		
Vinyl chloride		20.0	5.0	0.75	ug/L	36.5	182	4-196		
Surrogate:					ug/L		98	88-132		
1,2-Dichloroethane-d4 Surrogate:					ug/L		99	78-122		
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		91	87-110		

Chain of Custody Record

					l	l	l	l	l	l	l	l	ļ		ľ					
	A Last Caso id	Cross d		Lab PM: Candade Fox	80 F	8						ह	Carner Tracking Notal	Č	¥	-			COC No 04142010 14:49_1	· -
keri Contact: Secella Camphett	7/6)4	472-0434	¥	E-Mark condece fox@tostamericainc com	če. či	<u>\$</u>	a mer	<u> </u>	S	_	٠.	一							l .	
Monroeville, PA								₂	Parame	eter)tor(s) Requestad	<u>۾</u>	1881	립					Jeb #:	
द्यालहरू. 790 Mosside Boulevard	Oue Date Requested:	<u>a</u> .			夢		\dashv	괵	\dashv	\dashv	\dashv	\dashv	\neg	\neg				\Box	Preservation Codes: ArtiCL 2=	Y. #
कः tonrosville	TAT Requested Business Days	10										_							H≓NaKOH CaZ∩ Acatata	
nde 20 A, 15146-2792					A														D=Natric Acid I=108	
7598-858(21) Maria	PO #: 523218 OP / 135428	5428			2) 33 3														NaNone S#12\$Qu	
©shawara.	WO*:				or No (d): K													<u> </u>	V-SCAA	
rojekt Alama	Project 6				or n						_	_						iner	4=Amber	T=Terlor
ems Armual Every - Textron, Wheatfield, NY - NY3A	Sem-Annual Event - Textron, Wheatfield, NY	/ent - Textron,	Wheatfield		Ple (Ye∎			_					_					on1a		いません
ile haw Environmental & Infrastructure, Inc NY3A91	SHURE				58m) (3D)													al co	S-Suneria S-Suneria	
				Matrix (w	Filtered em MS/N	OAS												Number		
ample Identification	Sample Date	Ting	Gagrab) Bionana Aran	_	Pe	$\overline{}$	4	+	+	+	+	╁	\top		\top			₹ τ₀	Special Ins	Special Instructions/Note:
전11118년		/bo/	9			ν :	_	+	+	十	-	┪	寸	寸	\neg	╗	\neg	~ ()	ļ	
WHARA	<u> </u>	2020	ক	₹	=	N		\dashv	\dashv	\dashv	\dashv							Ю		
MH#8-3	4/20/10	0535	٩	¥		N		_		Н			$\overline{}$					2		
MH#9-3	•	1245	5	*		Νİ		_							П	Ī	Ī	2		
TRIP BLANK-					H		\bigsqcup						_							
									 -											
					Н			Н		\vdash			П	Ī	П	П				
								┞	├-	┼-										
					┼		╀	+	+-	╂━	╁	1	T		1-		Т			
					+			+			+	\dashv				_				
Sossible Hazard (don/lification	an A Lithannan				- 5	Sample Disposal (A fee	Dispe	sal (A fe		Ŭ.Ž	☐ Disposed If san	3 986	# Se	, ubi	_ #		aine Berie	may be assessed if samples are retained longor (but 1 month)	Months
V. Other (speofy)		- 1	٩		ę,	Special Instructions/OC Requirements:	nsku.	8	ğ	ź	Ten M	inds:			- [- 1.			
moty Kit Relinquished by:		Date:			Tırılı:									verhod of Shipment:	NO Sylva	3				
Completes by	a)och	<u>, (530</u>		Сеприй		*aca		L	Ŋ		32	3	7	^	02,7		0	0)-(1530	Company
shellshoot by.	Dalb/Time:		1 0	Coopery		Roccoved	1 2			ļ.,					<u> </u>	Dale / I Fine.	Ι΄			Canapany
elingushed by:	Date/Time			Company		Rece	Received by								E S	DaiteTime				Company
Custody Seal No.						Cook	Cooler Temperaturejs]°C:		15 °C		erd Other Remarks:	- NEURO		Ņ	J٦,	1				
					ı	ı						ı		ı						