

TRANSMITTAL

			Via: FedEx
Date:	August 14, 2017		
То:	Mr. Stanley Radon		
Subject:	Bell Aerospace – Textron Wheatfield; #	ŧ932052	
These are:			
🗌 Per you	ur request	For your review/comment	
🔄 For you	ır files	For use on job	
🔀 For you	ır approval/signature		a);

Enclosed please find the *Bioremediation Work Plan* for the former Bell Aerospace facility located in Wheatfield, New York. An electronic copy of the report has been emailed to you on August 14, 2017. We appreciate your time to review of this work plan and await your approval to move forward with this work. If you have any comments or questions regarding this report please contact the undersigned below.

Sincerely,

Ceal Bjes APTIM

Please Reply To: Cecelia Byers Phone: 412-858-3977 E-Mail Address: <u>cecelia.byers@aptim.com</u>

cc: Ms. Charlotte Bethoney, NYSDOH Mr. Greg Simpson, Textron File, APTIM

Bioremediation Program Work Plan

Former Bell Aerospace Textron Facility Wheatfield, New York

Prepared for: Textron Inc. Providence, Rhode Island

Prepared by: Aptim Engineering New York, P.C. Latham, New York

Project No. 156045 August 2017

BIOREMEDIATION PROGRAM WORK PLAN

Former Bell Aerospace Textron Facility Wheatfield, New York

Prepared for: Textron Inc. 40 Westminster Street Providence, Rhode Island 02903-6028

Prepared by:

13 British American Boulevard Latham, New York 12110

Project No. 156045 August 2017

Certification

I certify that I am a New York State-registered Professional Engineer and that this Work Plan prepared for Textron Inc. at the Former Bell Aerospace Facility, in Niagara County, Wheatfield, New York, is in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Paul Farrington Printed Name of Professional Enginee 23 Signature of Professional Enginee

Registration Number: <u>062242-I</u> State: <u>New York</u>

8/11/12 Date:

Table of Contents _____

Certific	cation.		.ii		
List of	Tables	S	iv		
List of	Figure	2S	iv		
List of	Appen	ndices	iv		
List of	Acrony	yms and Abbreviations	V		
Execut	tive Su	ummary	vi		
1.0	Introd	duction	1		
	1.1	Remedial Program Status	1		
	1.2	Work Plan Organization	. 2		
2.0	Back	ground	3		
	2.1	Historical Site Investigations	3		
		2.1.1 Soil Investigation	3		
		2.1.2 Groundwater Investigation	. 4		
	2.2	Hydrogeologic Setting Summary	. 4		
		2.2.1 Overburden	. 4		
		2.2.2 Bedrock	5		
	2.3	Corrective Measures Study	. 6		
	2.4	Corrective Measures Implementation Plans	. 6		
		2.4.1 Off-Site Groundwater Extraction System	. 7		
		2.4.2 On-Site Groundwater Treatment System	. 7		
3.0	Data	Assessment Summary	8		
	3.1	Historical Data Review	8		
	3.2	Groundwater Sample Results	9		
	3.3	Monitoring Well Construction Detail Survey	9		
	3.4	Potable Water Injection Tests	9		
4.0	Biore	mediation Program Design	11		
	4.1	Bioremediation Program Overview	11		
	4.2	Site Preparation	11		
	4.3	Injection Point Installation	12		
	4.4	Remediation Area Layout	13		
	4.5	Bioremediation Materials	4		
	4.6	Amendment Injection	15		
	4.7	On-Site Extraction System Operations	16		
5.0	Biore	mediation Program Monitoring	17		
	5.1	Background Monitoring	17		
	5.2	Injection Monitoring	17		
	5.3	Program Effectiveness Monitoring	18		
6.0	Repo	prting	19		
7.0	Sche	dule	20		
8.0	8.0 References				
Tables					
Figures	S 				
Append	aices				

List of Tables_____

- Table 1Summary of Groundwater Analytical Data May 2017
- Table 2Summary of Potable Water Injection Test Observations May 2017
- Table 3Summary of Monitored Natural Attenuation Parameters and Dechlorinating Bacteria April2016
- Table 4Bioremediation Injection and Monitoring Locations
- Table 5
 Groundwater Monitoring Points Bioremediation Effectiveness Monitoring Program
- Table 6Analytical and Field Parameters

List of Figures ______

- Figure 1 Site Location Map
- Figure 2On-Site Groundwater Elevation Contour Map, Zone 1 Bedrock
- Figure 3 Proposed Injection Locations
- Figure 4 Proposed Groundwater Monitoring Network

List of Appendices _____

- Appendix A Zone 1 CVOC Concentration Graphs
- Appendix B Laboratory Analytical Package May 2017
- Appendix C Monitoring Well Construction Logs
- Appendix D Material Safety Data Sheets SDC-9[™], 3-D Microemulsion[®], Chemical Reducing Solution[®]

List of Acronyms and Abbreviations_____

3DMe [®]	3-D Microemulsion®
APTIM	Aptim Engineering New York, P.C.
BAT	Bell Aerospace Textron
bgs	below ground surface
CMIP	Corrective Measures Implementation Plan
CMS	Corrective Measures Study
CRS®	Chemical Reducing Solution®
CVOC	chlorinated volatile organic compound
DNAPL	dense non-aqueous phase liquid
NYSDEC	New York State Department of Environmental Conservation
PVC	polyvinyl chloride
SWMU	Solid Waste Management Unit
TCE	trichloroethene
Textron	Textron Inc.

Executive Summary

This Bioremediation Program Work Plan provides details for the implementation of in situ bioremediation processes intended to supplement the naturally occurring ongoing degradation of chlorinated volatile organic compounds (CVOCs) in groundwater. The objectives of the program are to reduce the concentrations of dissolved-phase CVOCs to facilitate discontinuing operation of the on-site groundwater extraction system. The targeted area for this treatment program is the Zone 1 fractured-rock water-bearing unit within the capture area of the existing On-Site Groundwater Treatment System (north of Niagara Falls Boulevard and west of Walmore Road). Attainment of these objectives will be measured via the reduction of the CVOC concentrations in groundwater as measured in the current monitoring well network utilized for routine compliance monitoring.

A total of 11 injection points will be utilized for the delivery of the bioaugmentation materials to the Zone 1 bedrock including 6 existing monitoring wells and 5 additional proposed injection points. This program is anticipated to be implemented over an area encompassing approximately 300,000 square feet that is located adjacent to the former Neutralization Pond and the on-site area extending hydraulically downgradient to the south. The proposed bioremediation program includes the augmentation of the naturally occurring subsurface environment with a commercially available electron donor source to support and promote anaerobic biodegradation of CVOCs within the treatment area. Additionally, an iron-based amendment (Chemical Reducing Solution[®]) will be added to stimulate the abiotic degradation of CVOCs and maximize the potential benefits from the combined biological and biogeochemical processes. Finally, a microbial culture (SDC-9TM) developed by Aptim Environmental & Infrastructure, Inc. and proven to biodegrade chlorinated CVOCs will be used to supplement the naturally occurring bacterial population within the treatment area.

The effectiveness of the bioremediation technology will be monitored through the measurement of the CVOCs and select geochemical parameters for approximately 12 to 24 months. Upon completion of the initial 12-month prescribed program monitoring period, data associated with the bioremediation program will be analyzed to evaluate the effectiveness of the bioremediation program. Dependent upon the results of the initial 12-month monitoring period, recommendations may be made for adjustments in monitoring frequency or locations, enhancing the effectiveness of the bioremediation program, and/or decommissioning the On-Site Groundwater Treatment System.

A summary of activities associated with the implementation and subsequent monitoring of the bioremediation program will be included in the project status reports to be generated semiannually and submitted to New York State Department of Environmental Conservation.

1.0 Introduction

Aptim Engineering New York, P.C. (APTIM) has prepared this Bioremediation Work Plan for the former Bell Aerospace Facility in Wheatfield, New York (the site), on behalf of Textron Inc. (Textron). The site and surrounding area are shown on Figure 1. This work plan is submitted in accordance with Textron's New York State Department of Environmental Conservation (NYSDEC) Order on Consent, Index No. 932052-01-04, effective December 16, 2013.

The objectives of the proposed bioremediation program include the following:

- 1. To accelerate the naturally occurring anaerobic dechlorination of dissolved-phase chlorinated volatile organic compounds (CVOCs) through the addition of commercially available carbon substrate and iron-based products and microbial culture
- 2. To facilitate permanent discontinuation of the need for groundwater extraction to control the migration of dissolved-phase CVOCs hydraulically downgradient within the Zone 1 water-bearing unit

The targeted area for this treatment program is the Zone 1 fractured-rock water-bearing unit within the capture area of the existing On-Site Groundwater Treatment System (north of Niagara Falls Boulevard and west of Walmore Road). Attainment of these objectives will be measured via the reduction of the CVOC concentrations in groundwater as measured in Zone 1 monitoring wells.

1.1 Remedial Program Status

The On-Site Groundwater Treatment System (six extraction wells and the groundwater treatment system) has been operating for over 23 years. Based on the graphs presented in Appendix A, the decreasing trends presented show that the influent concentration of CVOCs is declining and may be reaching asymptotic levels in its current configuration. During the 2015 and 2016 calendar years, approximately 300 pounds of CVOCs were removed from the aquifer while the treatment system processed over 16 million gallons of groundwater. This is the equivalent removal rate of approximately 53,000 gallons of water for every pound of CVOCs removed. Based on the objectives of NYSDEC's Division of Environmental Remediation–31 Green Remediation, the On-Site Groundwater Treatment System is no longer the most efficient method of groundwater treatment as the energy consumed and the wastes generated outweigh the amount of CVOCs removed. Textron would like to enhance the rate of contaminant removal while at the same time minimize the long-term environmental footprint of this project by exploring the use of in situ bioremediation technology in favor of the continued operation of the pump and treat technology.

1.2 Work Plan Organization

The following text describes the findings of the preliminary assessment regarding the feasibility of employing bioremediation technologies to treat dissolved phase CVOCs and the primary tasks associated with implementation of the bioremediation program. Section 2.0 provides a brief overview of the history of investigations and characterization of the site. Section 3.0 summarizes the assessment of the bioremediation evaluation that was conducted at the facility. Section 4.0 presents the details of the design and implementation of program activities. Section 5.0 describes the anticipated monitoring plan to assess the effectiveness of the bioremediation program. Sections 6.0 and 7.0 provide information regarding the proposed reporting and schedule for implementation, respectively, that are associated with the program.

2.0 Background

The facility is located on U.S. Highway 62/Niagara Falls Boulevard near the western boundary of the town of Wheatfield, adjacent to the Niagara Falls International Airport.

Bell Aircraft Corporation began operations at the Wheatfield plant in 1940. In 1960, Textron purchased the defense business assets from Bell Aircraft Corporation and leased the Wheatfield plant. Textron established Bell Aerospace Textron (BAT) to operate the plant and related facilities. BAT, an aerospace-defense company, conducted research, development, and testing as well as manufacturing of defense-oriented hardware and systems including propulsion, lasers, vehicles, and electronics at this facility. BAT purchased the plant property in the early 1970s.

Activities at the facility gradually decreased during the 1980s and 1990s. BAT conveyed the plant property to Textron Realty Operations, which is responsible for the management of environmental activities subject to 6 NYCRR Part 373 governing hazardous waste management.

Both Bell Aircraft Corporation and BAT utilized a surface impoundment system (Neutralization Pond) located in the northeast corner of the plant for the treatment of waste fluids. This Neutralization Pond was a rectangular basin with an area of approximately 60 feet by 100 feet and an average depth of 10 feet that had been excavated into the existing overburden soils. The Neutralization Pond, also identified as Solid Waste Management Unit (SWMU) 1, was utilized from 1948 until 1984 for the collection of pad wash water generated from rocket engine test firings. From 1966 through 1970, this surface impoundment was used for the treatment of solvent wash drippings generated from the process line for helicopter rotor blade bonding operations. Additionally, it received storm water runoff and cooling water for over 30 years and, for a brief period of its operation, it was noted to receive coal gasification wastes. Once neutralized, fluid from the pond was discharged into the plant's sanitary sewer. The Neutralization Pond was physically closed in 1987. Closure of this unit included the re-routing of the piping system discharging into the pond, demolition of the former pump house/control building, and the removal of all impacted soils to bedrock according to documents provided to APTIM.

2.1 Historical Site Investigations

The investigation at the facility was divided into two parts based on media of concern: soil and groundwater. The results of these investigations are outlined below.

2.1.1 Soil Investigation

In March 1990, BAT sampled soils at the site, confirming the presence of CVOC impact to overburden soils. This sampling resulted in the submittal of a *RCRA Facility Assessment/RCRA Facility Investigation Report* on March 14, 1991. CVOC impact was identified at certain SWMUs;

³

these locations were excavated, soils were removed for off-site disposal, and confirmatory sampling was conducted. Soil impacts within all of the SWMUs have been addressed to the satisfaction of the NYSDEC, and no further action is required concerning soil-based issues.

2.1.2 Groundwater Investigation

Sampling of the groundwater confirmed the presence of CVOC impact as both aqueous (or dissolved) phase and dense non-aqueous phase liquid (DNAPL). The contaminants of concern were primarily CVOCs, including trichloroethene (TCE), methylene chloride, 1,1,1-trichloroethane, 1,2-dichloroethene (total), and vinyl chloride. As required by NYSDEC Consent Order No. 85-010-9, the nature and extent of the groundwater impact was defined through a series of investigations completed over several years. The results of these investigations were summarized in the *RCRA Facility Investigation, Neutralization Pond, Bell Aerospace Textron Wheatfield Plant, Final Report* submitted in June 1991.

The source of the chlorinated CVOC impact to groundwater was assumed to be the former Neutralization Pond (SWMU 1), the Helicopter Blade Bonding Building (SWMU 9), and the Rocket Test Building (SWMU 13). SWMUs 9 and 13 were addressed under the corrective measures program developed for SWMU 1 due to their proximity and hydraulic connection to the groundwater area of CVOC impact emanating from the former Neutralization Pond.

Historical detections of DNAPL have been limited to the uppermost bedrock strata (Zone 1) and are reported to have extended to a maximum of 750 feet to the southeast of the former Neutralization Pond. The DNAPL did not appear to have migrated off the facility property based upon review of historical documentation. Aqueous phase impacts have been detected in the unconsolidated sediments (overburden soil) and bedrock at the facility. The extent of the aqueous phase CVOC impact in groundwater in the bedrock was considerably larger than in the overburden soil. CVOC impact to groundwater within the upper bedrock zone (Zone 1) extended from the former Neutralization Pond approximately 5,000 feet to the southeast. CVOC impact to groundwater within the lower bedrock zone (Zone 3) was less extensive. Although Zone 3 CVOC-impacted groundwater was detected in off-site monitoring wells, it does not extend south of Niagara Falls Boulevard.

2.2 Hydrogeologic Setting Summary

2.2.1 Overburden

The facility is situated on top of approximately 15.5 to 17.5 feet of overburden deposits above the bedrock. The overburden deposits are classified into four layers (surficial fill, lacustrine clay, lacustrine till, and basal till). Additionally, some discontinuous layers of wet sand have been identified. The surficial fill is comprised of crushed gravel, slag, silty sand, sandy silt, and clay ranging from 1 foot to 6.5 feet in thickness. The lacustrine clay varies in thickness from 2.5 feet

to 11.5 feet with the thickest sections encountered in the southeastern portion of the facility. The lacustrine till underlies the clay and varies in thickness from 1.25 feet to 4.75 feet. The till is comprised of sandy silt to silty sand with trace amounts of clay and gravel and transitions into the basal till overlying the bedrock.

2.2.2 Bedrock

The bedrock surface beneath the facility is comparatively level without major variations, gently dipping southward toward the Niagara River. The bedrock is comprised of the Lockport Group dolostone of the Niagara Series (Middle Silurian). The strata have been subdivided into four zones (Zones 1 through 4) with distinct lithological and geotechnical properties. The contaminants from the facility have entered the upper part of the Lockport Group (Zone 1).

Zone 1

The Zone 1 bedrock, or Guelph Dolomite, is the uppermost formation in the Lockport Group. Zone 1 is a light gray, fine-grained, laminated dolomite ranging from 10 to 20 feet thick. This zone has previously demonstrated high permeability. Most of the bedrock wells at the site are finished in fractures within the Guelph Dolomite Unit A (referred to as Guelph A herein), which contains open/weathered bedding partings formed through gypsum dissolution and is commonly associated with water loss during drilling (Yager, 2002 and Golder, 1987). The groundwater hydraulic gradient in Zone 1 is generally oriented to the south toward the Niagara River as shown on Figure 2.

Zone 2

The Zone 2 bedrock, or Eramosa Dolomite Unit F, is an unweathered, relatively unfractured, medium to thickly bedded massive formation with a consistent thickness of 10 feet. The rock is a light to medium brownish-gray with fine to medium grains and is generally non-porous. Due to the massive nature of the rock, Zone 2 contains very few discontinuities and tends to core in continuous pieces. Zone 2 is considered to be an aquitard based on the massive nature of the rock and its low permeability (Yager, 2002 and Golder, 1987).

Zone 3

The Zone 3 bedrock is comprised of the underlying Eramosa Dolomite Units C, D, and E. This lower portion of the Eramosa Dolomite is notably porous and contains vugs and bedding plane fractures. The thickness of the Zone 3 strata varies from 18 to 29 feet due to the transitional contact with the underlying Zone 4. A majority of the discontinuities within Zone 3 are related to void spaces generated through dissolution of features and small veins. Zone 3 is moderately permeable due to the vuggy, porous nature of the dolostone (Yager, 2002 and Golder, 1987).

Zone 4

The Zone 4 bedrock is light to medium brownish-gray, fine to medium grained dolomite, 6 to 65 feet thick, equivalent to the Eramosa Dolomite Units A and B. The massive, non-porous strata of Zone 4 were found to have low permeabilities (Yager, 2002 and Golder, 1987).

2.3 Corrective Measures Study

Following the completion of the RCRA Facility Investigation, BAT performed a Corrective Measures Study (CMS) to identify and evaluate technologies which could be applied to remediate the groundwater in the study area. The CMS was submitted to the NYSDEC in June 1991; the agency subsequently reviewed and approved the plan. The objective of the CMS was to evaluate the feasibility of select technologies to remediate any significant threat to public health and the environment associated with CVOC-impacted groundwater.

A baseline risk assessment, completed by Environ Corporation in 1991, was included in the CMS. According to the risk assessment, the greatest threat of exposure would be from Zone 1 groundwater being extracted by domestic wells located hydraulically downgradient of the site. The community surrounding the site is serviced by municipal water; therefore, the risk would only be associated with the use of Zone 1 groundwater for irrigation purposes. For this reason, the primary intent of the corrective measures was to reduce the dissolved phase CVOC concentrations in groundwater in Zone 1. The CMS required that the DNAPL source (former Neutralization Pond) be addressed to effectively contain and reduce the extent of the source of the dissolved phase CVOC impact to groundwater.

The CMS concluded that the most technically feasible and effective remedial alternative at the time of the evaluation was to control the dissolution of the DNAPL plume through hydraulic or physical methods. The selected corrective measure alternative involved the operation of two separate groundwater recovery and treatment systems. One system (the On-Site System) was designed to hydraulically contain the DNAPL plume and recover the dissolved phase CVOC-impacted groundwater beneath the site. The other system (Off-Site System) was designed to contain and capture the dissolved phase CVOC-impacted groundwater in the Zone 1 water-bearing unit south of the site.

2.4 Corrective Measures Implementation Plans

Following NYSDEC's approval of the CMS, BAT prepared a Corrective Measures Implementation Plan (CMIP) for each proposed groundwater and recovery system. The CMIP detailing the Off-Site System was submitted in March 1992 and approved by NYSDEC the following month. Construction of the Off-Site System began in October 1992 and concluded with the system being brought on line in March 1993.

The CMIP detailing the On-Site System was submitted and approved by NYSDEC in March 1993. Construction of the On-Site System was initiated on September 20, 1993 and completed by late 1994. The On-Site System was brought on line in April 1995 and continues to be operational.

2.4.1 Off-Site Groundwater Extraction System

The Off-Site System, located south of the site between Niagara Falls Boulevard and Jagow Road, consists of six Zone 1 bedrock groundwater extraction wells (designated EW-1 through EW-6) connected by a subsurface double-containment pipeline that discharges the extracted groundwater to the Niagara County Sewer District Publicly Owned Treatment Works. The Off-Site System has been operating since March 1993. Extraction Well EW-1 was taken out of service during system startup in March 1993, based on the hydraulic response observed during system startup. Extraction Well EW-6 was taken off line on April 11, 1996 in an attempt to reduce the constituent concentration at the southern boundary of the dissolved phase plume in the area of EW-6. The cessation of groundwater extraction at EW-6 allowed Extraction Well EW-5 to "draw" the dissolved phase plume boundary (to the south of EW-6) to the north. As part of an extended pilot study requested by the NYSDEC, Extraction Well EW-5 was taken off line on September 5, 2013 while Extraction Wells EW-2, EW-3, and EW-4 remained operational. The purpose of this pilot study was to evaluate the ability to configure the system to induce the edge of the "plume" in a northerly direction by turning off the southernmost extraction well while demonstrating that three extraction wells can continue to control the migration of the dissolved phase CVOC-impacted groundwater. The Off-Site System continues to operate in this configuration with the permission of the NYSDEC.

2.4.2 On-Site Groundwater Treatment System

The On-Site System consists of seven Zone 1 bedrock groundwater extraction wells (designated EW-7, EW-8, EW-13, and DW-9 through DW-12) connected by a subsurface double-containment pipeline that delivers the extracted groundwater to the On-Site Treatment Plant. At the treatment plant, dissolved-phase CVOCs are removed from the groundwater using an air stripper to aerate the water prior to the water being processed through granular activated carbon units. The recovered groundwater is ultimately discharged to the Walmore Road storm sewer under a National Pollution Discharge Elimination System permit.

Construction of the system was initiated on September 20, 1993 and was substantially completed in late 1994. Startup of the system began in April 1995. Extraction Well DW-9 was taken off line on May 26, 1998 to focus remedial efforts on the southern property line of the facility near Wells EW-7 and EW-8. Extraction Well EW-13 was added to the system approximately midway between these wells and was activated on September 25, 1998 in order to enhance the hydraulic barrier between Wells EW-7 and EW-8.

3.0 Data Assessment Summary

APTIM personnel collected additional information on the Zone 1 water-bearing unit and extent of CVOC-impacted groundwater prior to the development of this work plan. The data obtained between May 22 and June 1, 2017 were used to support the design of the bioremediation scope of work. A summary of the data collection activities and site-specific information generated for use in the design of the proposed bioremediation program is provided in the following sections.

3.1 Historical Data Review

APTIM personnel reviewed available relevant documents pertaining to the site as well as reports provided by the NYSDEC regarding remedial activities completed at neighboring sites. The documents included the following:

- Results of Phase I and II Investigations, Golder Associates, May 1987
- Summary of Closure Activities for Neutralization Pond, Textron, July 1988
- Corrective Measures Implementation Plan, On-Site System, Golder Associates, March 1993
- Simulated Transport and Biodegradation of Chlorinated Ethenes in a Fractured Dolomite Aquifer near Niagara Falls, New York, U.S. Geological Survey, 2002
- Construction Completion and Initial Performance Assessment Report for In-Situ Treatment using Enhanced Bioremediation, Parsons, August 2012
- Remedial Action Injection Summary Memorandum, Versar, Inc. and EA Engineering, P.C., January 2016
- Remedial Action Injection Summary Report, Versar, Inc. and EA Engineering, P.C., June 2017
- 2016 Annual Summary and Site Maintenance and Monitoring Report, CB&I Engineering of New York, P.C., March 2017

Review of these documents provided information pertaining to the site-specific geological, hydrogeological, and chemical characteristics relevant to the design of an application of in situ bioremediation technology. In addition, information regarding the methodologies utilized to address CVOC-impacted groundwater via in situ bioremediation in the local subsurface environment at adjacent facilities provided additional lines of evidence to aid in the development and evaluation regarding the potential application in similar environmental settings near the site.

3.2 Groundwater Sample Results

Groundwater from select Zone 1 monitoring wells was sampled for CVOC analysis using U.S. Environmental Protection Agency Method 8260 to develop a data set of current CVOC concentrations within the area of impacted groundwater to be targeted with the proposed in situ bioremediation program. The monitoring wells selected for sampling were either part of the groundwater monitoring network but not sampled during the routine semiannual monitoring events or monitoring wells that are not currently used in the monitoring well network. Fourteen monitoring wells were sampled between May 22 and 24, 2017 including the following:

• 87-01(1)	• 87-04(1)	• 87-05(1)	• 87-09(1)
• 87-10(1)	• 87-12(1)	• 87-13(1)	• 87-14(1)
• 87-15(1)	• 87-18(1)	• 89-12(1)	• 96-01(1)
• B-10a	• C		

Groundwater samples were collected via methods described in the 2012 Groundwater Monitoring Plan. The results of this sampling event, summarized in Table 1, will be considered to be representative of baseline conditions for the treatment area. Generally speaking, the observed groundwater quality data are consistent with historical groundwater concentration trends developed at the site. Higher concentrations of CVOCs were found at locations in close proximity to the former Neutralization Pond with decreasing concentrations of CVOCs detected in monitoring wells progressing hydraulically downgradient from the former Neutralization Pond.

3.3 Monitoring Well Construction Detail Survey

A survey of existing monitoring wells reported to be completed within Zone 1 was conducted to confirm information regarding their construction details. The objective of this exercise was to establish the available network of monitoring wells completed within Zone 1 in the targeted area of the site that could be used for monitoring or injection as part of the proposed bioremediation program. A waterproof down-hole camera with LED light was used to view the condition of these monitoring wells and record the depth and length of the screened interval. The monitoring wells are provided in Appendix B.

3.4 Potable Water Injection Tests

On May 30 and 31, 2017, short-term potable water injection tests were completed at four monitoring well locations (87-02(1), 87-04(1), 87-13(1) and 87-14(1)) to evaluate the feasibility of fluid injection into the Zone 1 water-bearing unit and the approximate radius of influence for the design of the bioremediation injection program. The injection tests used approximately 500 gallons of potable water at each of these locations. Three of the four locations showed the ability to accept the injected water at a minimum rate of 10 gallons per minute. During the

injection, surrounding monitoring wells were observed for changes in water levels resulting from the injection of potable water. A summary of injection test observations is included in Table 2.

In general, groundwater levels increased in monitoring wells located up to approximately 175 feet from the injection location upon initiation of the injection. Water level increases relative to static water levels were typically most significant in wells located within 100 to 125 feet extending radially from the injection location.

Monitoring Well 87-13(1) did not display the same ability to accept the injected water relative to the other injection test locations. A pumping rate of 3.5 gallons per minute was the maximum that could be sustained at this location. However, a radius of influence, as measured by increase in groundwater elevations in surrounding monitoring wells, was still observed at a distance greater than 175 feet as was observed with other inject test locations.

The information obtained from these potable water injection tests supports the historical information regarding the Zone 1 water-bearing unit. As noted in the literature review, the Zone 1 water-bearing unit consists of numerous well-connected fractures. Given the near-instantaneous hydraulic response to injection observed radially from each injection location, it is apparent that the fracture porosity of the targeted formation will facilitate the effective distribution of the bioremediation materials. The data obtained from this testing are considered in the designed spacing of injection points and determination of injection volumes as described in Section 4.0.

Additional groundwater samples were collected from selected monitoring wells (Monitoring Wells 87-02(1), 87-02(3), 87-05(1) 87-13(1) and 87-13(3)) in April 2016 to evaluate the implementation of alternative remedial technologies to address dissolved CVOCs. The samples were analyzed for geochemical parameters associated with Monitored Natural Attenuation of CVOCs including the presence of dehalococcoides (dechlorinating bacteria). The results of these analyses are presented in Table 3. These analyses provide additional lines of evidence regarding the presence of naturally occurring complete anaerobic dechlorination as the source of the reduction of TCE to ethane in the groundwater.

The results of the April 2016 sampling show that complete degradation of TCE to the final end product (ethane) is occurring naturally at the site. Therefore, it can be expected that enhancing this process with proven in situ bioremediation technologies will likely aid in decreasing the time to reach groundwater protection standards while being a more effective approach to reducing contaminant concentrations than the existing groundwater extraction system.

4.1 Bioremediation Program Overview

Implementation of in situ bioremediation processes to enhance the degradation of dissolved-phase CVOCs will be conducted adjacent to the former Neutralization Pond and the on-site area extending hydraulically downgradient to the south. This program is anticipated to be implemented over an area encompassing approximately 300,000 square feet and to include the augmentation of the naturally occurring subsurface environment with a commercially available electron donor source to support and promote anaerobic biodegradation of chlorinated CVOCs and an iron-based amendment to stimulate the abiotic degradation of CVOCs within the treatment area. Additionally, a microbial culture (SDC-9TM) developed by APTIM and proven to biodegrade chlorinated CVOCs will be used to supplement the naturally occurring bacterial population within the treatment area. These materials will be delivered to the subsurface via injection through monitoring wells.

4.2 Site Preparation

Prior to implementation of subsurface activities associated with the bioremediation program, measures will be taken to provide access to the proposed work locations and ensure that subsurface utilities will not be impacted or create a safety hazard during installation of subsurface borings. Additionally, all locations and the proposed work schedule will be reviewed with Wheatfield Business Park and Moog, Inc. (current owners and occupants of the site) to ensure that field activities do not interrupt daily site operations.

The utility clearance activities associated with this task are intended to minimize the risks associated with conducting intrusive work in the area of subsurface utilities as well as to minimize the potential for short-circuiting the injection of bioremediation materials to the areas of subsurface utility bedding.

A 25-foot radius around each of the five proposed injection locations will be scanned by a private utility clearance contractor using various remote sensing techniques for the presence of underground utilities or other subsurface structures. Additionally, the location of the storm sewer line installed parallel to Walmore Road will be identified in the vicinity of Monitoring Wells 87-04(1) and 87-10(1) in terms of location and depth. The locations of all identified underground utilities and structures will be marked on the ground surface. Additionally, each proposed injection location that is not an existing monitoring well will be manually cleared to a minimum depth of approximately 5 feet below ground surface (bgs) utilizing vacuum excavation equipment or equivalent manual excavation techniques. Should a specific proposed injection or monitoring point need to be relocated due to a confirmed or suspected subsurface obstruction, the point will be relocated such that it safely avoids the obstruction and best meets the objectives of the specific designated location.

4.3 Injection Point Installation

A total of 11 injection points will be utilized for the delivery of the bioaugmentation materials to the subsurface (Figure 3). Five new injection points will be installed to provide for effective distribution of bioremediation materials within the proposed remediation area (Injection Wells 17-01(1), 17-02(1), 17-03(1), 17-04(1), and 17-05(1)). One existing location designated as Monitoring Well 87-11(1) has a bent/pinched casing and requires repairs prior to being utilized as an injection point. The remaining five injection locations will utilize existing monitoring wells that are completed within the targeted Zone 1 depth interval (Injection Wells 87-04(1), 87-05(1), 87-10(1), 87-14(1), and 87-15(1)).

The new injection points will be installed using hollow-stem augers and HQ core drilling techniques under the supervision of an APTIM geologist. The boreholes for each of the proposed new injection points will be advanced into the bedrock surface using hollow-stem augers; the anticipated depth to bedrock is 15.5 to 17.5 feet bgs. Once bedrock is encountered, HQ coring drilling methods will be utilized to retrieve and examine the bedrock core for fractures. Coring will be advanced to approximately 33 to 35 feet bgs and the injection points will be constructed with a 10-foot screened zone extending from approximately 23 to 33 feet bgs. The injection points will use 2-inch inside diameter, Schedule 40 polyvinyl chloride (PVC) flush joint, threaded, factory slotted, 0.020-inch screen. A sand pack filter will be installed in the annular space between the borehole wall and the PVC well screen from the terminal depth to approximately 2 feet above the screened zone. A 2-foot-thick bentonite seal will be installed using bentonite pellets above the

sand filter pack and hydrated with potable water. Each of the injection points will be developed following installation to remove any residual solids from the filter pack and screen.

Each injection point will be completed with either a protective outer steel casing with a lockable lid that will be installed as stick-ups or a flush-mounted protective cover. A concrete mix will be placed above the bentonite seal to the ground surface, and the steel protective casing will be installed over the PVC riser pipe to a depth of approximately 2 feet bgs leaving a 3-foot stick-up above grade. For any new injection point to be installed in an area that is susceptible to being struck by vehicular traffic, those points will be constructed in the same manner as previously discussed, except they will be completed with flush-mounted covers and a thermos-type locking cap.

All soil waste generated during drilling will be placed in U.S. Department of Transportationapproved drums pending characterization and disposal by Textron's selected waste contractor. All liquids generated will be staged by the treatment plant allowing any solids to separate out before introducing the liquid to the system for treatment and discharge.

Approximately 2 weeks following the installation of the injection wells, groundwater samples from each of the new points will be collected following protocols as detailed in the 2010 Groundwater Monitoring Plan and submitted to the analytical laboratory for analysis of CVOCs using Method 8260B. The analytical results from the new injection points will be used to establish background conditions prior to the addition of bioremediation materials to the subsurface.

4.4 Remediation Area Layout

The application of in situ anaerobic bioremediation will be conducted in the area north of the On-Site Treatment System building. This area was chosen for implementation of this technology based on the elevated CVOC concentrations observed and proximity to the former Neutralization Pond. Historical groundwater monitoring results in this area provide multiple lines of evidence of the reduction of CVOCs via reductive dechlorination as a result of ongoing naturally occurring complete anaerobic dechlorination of dissolved-phase CVOCs.

The injection design will focus on delivering the bioremediation materials to the subsurface zone of impacted groundwater (Zone 1) in order to maximize contact between the injection solution and the dissolved-phase chlorinated CVOCs. The preliminary layout of injection points within the targeted treatment area is based upon observations made during the collection of additional field data in May and June 2017. The actual layout may need to be revised in the field based on the presence of underground utilities and drainage tiles. As discussed previously, appropriate efforts will be made to locate the proposed injection points to maximize the potential to meet the bioremediation program objectives.

4.5 Bioremediation Materials

Amendment materials to be used for the bioremediation include 3-D Microemulsion[®] (3DMe[®]), a commercially available electron donor source manufactured by Regenesis that will support anaerobic biodegradation of the chlorinated CVOCs within the treatment area. Additionally, SDC-9TM, a microbial culture developed by APTIM and proven to biodegrade chlorinated CVOCs, will be used to inoculate the site with a sufficient bacterial population. Material Safety Data Sheets for both 3DMe[®] and SDC-9TM are included in Appendix D. These amendments were selected given the available literature pertaining to the ability to distribute the products within similar fractured rock environments, the longevity of the product once injected, and application experience of APTIM with the products in both fractured rock and overburden soil environments.

Dosing of 3DMe[®] amendments for the remediation area was determined by Regenesis based on their proprietary calculations of the stoichiometry of the degradation reactions relevant to the properties of the 3DMe[®] and site-specific conditions, including the volume of subsurface material being treated, the mass of contaminant to be degraded, known geochemical parameters of the groundwater, and a safety factor to account for the non-specific electron demand. For the 3DMe[®] electron donor, it was determined based on these calculations and the data obtained from historical groundwater monitoring that a total of approximately 4,316 gallons (36,000 pounds), or approximately 392 gallons per injection point, will be injected in the remediation area.

The 3DMe[®] is anticipated to be mixed to a 10 percent solution to aid in the distribution of the material to fully saturate the bedrock fracture system within the remediation area. However, dilution rates will be adjusted during implementation based on ability to effectively inject fluids into the targeted subsurface area with the goal of delivering the designated volume of 3DMe[®] to the remediation area.

The volume of SDC-9TM to be added to the subsurface to facilitate successful biodegradation of CVOCs was estimated based on the volume of groundwater being treated. A target bacterial population of 1.0E+07 microbes per liter is considered sufficient for successful bioremediation. Given this target concentration and the anticipated volume of groundwater to be treated, the resulting total volume of the SDC-9TM to be added is approximately 45 liters, or approximately 4 liters per injection point.

Additionally, each injection location will include Chemical Reducing Solution[®] (CRS[®]), manufactured by Regenesis. CRS[®] is an iron-based amendment for in situ chemical reduction of CVOCs including chlorinated ethenes and ethanes. CRS[®] provides a soluble source of ferrous iron which, in combination with the enhanced anaerobic conditions created by the addition of 3DMe[®] to the subsurface, can precipitate reduced iron sulfides, oxides, and hydroxides that are capable of destroying chlorinated contaminants via abiotic chemical reduction pathways.

Approximately 2,055 gallons (18,000 pounds), or approximately 187 gallons per injection point, will be injected in the remediation area.

All injection volumes developed during the design of the bioremediation program are based on activities conducted and observations made during implementation of the injection test activities. It is assumed that equivalent conditions will be encountered and bioremediation materials will be delivered to the subsurface at the targeted depth intervals with minimal migration of the liquids to the ground surface or "daylighting." Injection volumes and/or injection point spacing may be altered based on actual field conditions observed during the field activities. However, efforts will be focused on delivery of a sufficient volume of bioremediation materials to the targeted subsurface zones in order to achieve effective dechlorination of CVOCs.

4.6 Amendment Injection

The bioremediation materials will be delivered to the targeted zone of impacted groundwater via the 11 injection locations. These 11 injection locations consist of 6 existing monitoring wells and 5 proposed injection points to be installed. The proposed injection points are shown on Figure 2. It is anticipated that pressurized injection will be necessary to overcome the natural hydraulic head of the targeted water-bearing zone and to aid in achieving optimal influence and distribution. This will be completed by utilizing a mobile system of mixing and pumping equipment. This system will provide the ability to prepare the bioremediation materials prior to injection and to control delivery of materials to the injection point in order to maximize the efficiency of subsurface distribution.

Mixing of bioremediation materials with deoxygenated potable water to the prescribed concentrations will be conducted prior to injection. It is anticipated that injection will include the simultaneous addition of the prescribed amount of each amendment to one injection point at a time. Injection of the amendments will be followed by the addition of a slug of chase water to aid in distribution of the materials within the subsurface and to flush the materials from the injection point and into the treatment zone. The actual volume of chase water to be used will be determined in the field upon observation of data regarding the delivery and distribution that result from each injection.

Pump pressures and material flow rates will be monitored during the injection process to evaluate the delivery characteristics associated with each injection point. Additionally, each of the monitoring points and injection points will be monitored during injection activities to evaluate the lateral influence resulting from the addition of the bioremediation materials as further described in Section 5.2. Based on these observations of actual field conditions at the time of injection, the volume of bioremediation materials delivered at each location may be adjusted in order to maximize the potential to meet the bioremediation program objectives.

4.7 On-Site Extraction System Operations

With the initiation of this injection program, Textron will shut down all of the operating extraction wells (DW-10, DW-11, DW-12, EW-7, EW-8, and EW-13). With the treatment system offline, Textron will assess the effectiveness of this remedial program through the collection of groundwater samples within the designated monitoring well network during the following 12 months. Should the bioremediation program prove an effective and more efficient method to treat and remove CVOCs from the groundwater than the existing groundwater extraction and treatment method, Textron will petition the NYSDEC for the decommissioning of the On-Site Groundwater Treatment System.

5.1 Background Monitoring

Selected monitoring points (Figure 3) distributed throughout the proposed remediation area will be used to track the degradation process of CVOCs in groundwater. Monitoring of the bioremediation program will begin with the collection of groundwater samples from the newly installed injection points in the proposed treatment area prior to the injection of bioremediation materials. Groundwater samples will be collected from six injection points following the completion of development activities and submitted for laboratory analysis of the program monitoring parameters as described in Section 5.3. These locations will include the proposed locations 17-01(1) through 17-05(1) and repaired 87-11(1), as no sample could be collected from this location in June 2017 due to damage. The field measurements and laboratory analytical results from these samples as well as existing historical data from surrounding monitoring wells will serve as background conditions for evaluation of the program. The wells proposed for monitoring are all completed in the Zone 1 bedrock. No wells completed in either the overburden or deeper Zone 3 bedrock are proposed to be included in the monitoring or remedial program.

All samples will be appropriately labeled and handled following standard industry practices of icing the samples in coolers upon their collection to a temperature of approximately 4 degrees Celsius and shipping the samples to the receiving laboratory via overnight courier using standard chain-of-custody procedures.

Laboratory analysis of groundwater samples will be conducted by ALS, Inc. of Rochester, New York.

5.2 Injection Monitoring

Monitoring of amendment injection operations will be conducted in real time to maximize the delivery of materials to the subsurface. Injection equipment will be equipped with the ability to display instantaneous flow rates and pressures during the injection process. These parameters will be utilized by the injection equipment operators and the site engineer to manage the delivery of the bioremediation materials and maximize the potential for effective distribution within the targeted subsurface zone.

Various groundwater parameters will also be monitored in real time during injection operations to evaluate the subsurface distribution of the amendments. Dissolved oxygen, oxidation-reduction potential, pH, conductivity, and temperature may be monitored in test monitoring points and existing monitoring wells using a YSI, Inc. Model 556 hand-held screening instrument or equivalent. Water level changes will be measured and visual observations will be made in the monitoring wells proximate to the injection locations as shown in Table 4. These parameters will

be monitored by the site engineer for fluctuation potentially indicative of the migration of injected amendments through the subsurface.

5.3 Program Effectiveness Monitoring

The wells within the post-injection monitoring network that are anticipated to be sampled are listed in Table 5 and shown on Figure 3. The effectiveness of the bioremediation technology will be monitored through the measurement of the parameters listed in Table 6.

Groundwater samples will be collected from each of the selected monitoring wells according to the procedures detailed in the 2010 Groundwater Monitoring Plan, as described in Section 5.1. Former Extraction Wells DW-10, DW-11, and DW-12 will no longer contain pumps (as they will be inactive as approved by the NYSDEC) and will be sampled using a dedicated bailer in the same manner as the monitoring wells. Similar to Extraction Well DW-9, these former extraction wells will not be purged prior to sampling, per NYSDEC approval, due to the large purge volume that would be required to be manually removed. All samples will be appropriately labeled and handled following standard industry practices of icing the samples in coolers upon their collection to a temperature of approximately 4 degrees Celsius and shipping the samples to the receiving laboratory via overnight courier using standard chain-of-custody procedures. Laboratory analysis of groundwater samples will be conducted by ALS, Inc. of Rochester, New York.

Prior to the injection event, baseline measurements will be established within the monitoring network through the collection of samples for analysis of the parameters listed in Table 6. The initial 12-month post-injection monitoring program is detailed below.

Groundwater samples will be collected monthly from the monitoring well network for the specified analyses for three months following the injection event. After the initial three months of sampling, the bioremediation monitoring will be extended on a quarterly basis for three quarters.

Upon completion of the prescribed 12-month post-injection monitoring program, the data will be evaluated and a recommendation for continued sample collection frequency will be proposed. If conditions warrant, sampling may be continued on an annual basis or changes to the monitoring network may be proposed. Any proposed changes to the sampling plan or frequency will be discussed with and approved by NYSDEC in advance.

6.0 Reporting

A summary report describing the installation of the injection points, application of the bioremediation amendments, and baseline conditions will be prepared by APTIM and submitted to NYSDEC within 90 days of the completion of field activities. This report is anticipated to include, at a minimum, construction details of all injection wells installed as part of the remedial program; a review of background data collected prior to commencement of injection activities; and a detailed account of all bioremediation material injection activities, including location, amendment dosage, and field observations of subsurface influence.

Data associated with the periodic monitoring and performance of the bioremediation program and a brief project status will be submitted to NYSDEC on a semiannual basis throughout the initial 12-month program monitoring period. When the submittal of the proposed semiannual bioremediation update report coincides with the timing of the submittal of the routine annual project update report, the bioremediation program information will be included in the annual report.

The reports will summarize field measurements and laboratory analytical data collected to date in tabular format and will include a summary of field activities conducted as well as proposed activities for the upcoming monitoring period. Additionally, associated laboratory analytical reports will be included along with other graphical and spatial representations of the data necessary to effectively support evaluation of the bioremediation program. Upon completion of the initial 12-month prescribed program monitoring period, data associated with the bioremediation program and recommendations regarding whether the sampling program should be adjusted or other issues (e.g., the need for added amendments, the possibility of the cessation of sampling at a point in the future, and the decommissioning of the On-Site Groundwater Treatment System) will be submitted to NYSDEC as part of the routine project monitoring update reports that are currently submitted for the semiannual groundwater sampling program.

7.0 Schedule

Implementation of bioremediation program activities is anticipated to begin upon receipt NYSDEC approval of this proposed Bioremediation Program Work Plan. Pending coordination of subcontractor schedules, mobilization of equipment and materials to the site is expected within 30 to 90 days following receipt of plan approval. However, implementation of injection activities may be scheduled to avoid winter conditions not conducive to handling bioremediation amendments and water above ground.

NYSDEC will be notified at least one week prior to initial site mobilization and injection point installation and one week prior to initiating injection activities.

Site activities, including site preparation, injection point installation, and background monitoring are expected to be completed in approximately two weeks. Injection of bioremediation amendments is expected to be completed in approximately two weeks. Periodic monitoring to assess the remedial effectiveness will be completed as discussed in Section 5.3.

8.0 References

Bell Aerospace Textron, June 1988, Certification of Closure for the Former Neutralization Pond.

CB&I Environmental & Infrastructure, Inc., March 2017. "2016 Annual Summary and Site Maintenance and Monitoring Report," Former Bell Aerospace Inc., Wheatfield, New York.

Golder Associates, Inc., May 1987, Results of Phase I and II Investigations Plume Definition Plan.

Golder Associates, Inc., March 1993, Final Report on Corrective Measures Implementation Plan On-Site System.

Shaw Environmental, Inc., April 2012. "Groundwater Monitoring Plan, Former Textron, Inc., Wheatfield, New York Facility."

Shaw Environmental, Inc., April 2012. "Quality Assurance Project Plan, Former Textron Inc., Wheatfield, New York Facility."

Yager, R.M., 2002, Simulated Transport and Biodegradation of Chlorinated Ethenes in a Fractures Dolomite Aquifer near Niagara Falls, New York: U.S. Geological Survey Water Resources Investigations Report 2000-4275, 55 p.

Tables

Sample Location	87-01(1)	87-04(1)	87-05(1)	87-09(1)	
Sample Date	5/23/2017	5/22/2017	5/23/2017	5/22/2017	
VOCs by USEPA Method 8260					
Chloromethane	2.0 U	2.0 U	50 U	2.0 U	
Vinyl chloride	84	210	460	190	
Chloroethane	2.0 U	2.0 U	50 U	2.0 U	
Bromomethane	2.0 U	2.0 U	50 U	2.0 U	
1,1-Dichloroethene	2.6	2.9	50 U	1.5 J	
Acetone	10 U	10.0 U	250 U	4.1 J	
Carbon disulfide	2.0 U	2.0 U	50 U	2.0 U	
Methylene chloride	2.0 U	31	2,100	2.0 U	
trans-1,2-Dichloroethene	6.8	3.6	50 U	1.4 J	
1,1-Dichloroethane	5.6	2.9	42 J	16	
cis-1,2-Dichloroethene	690 D	290	6,900	150	
2-Butanone	10 U	10.0 U	250 U	10 U	
Chloroform	1.1 J	0.80 J	50 U	2.0 U	
1,1,1-Trichloroethane	15	2.0 U	140	85	
Carbon tetrachloride	2.0 U	2.0 U	50 U	2.0 U	
Benzene	2.0 U	2.0 U	50 U	2.0 U	
1,2-Dichloroethane	2.0 U	2.0 U	50 U	2.0 U	
Trichloroethene	110	36	1,300	1.7 J	
1,2-Dichloropropane	2.0 U	2.0 U	50 U	2.0 U	
Bromodichloromethane	2.0 U	2.0 U	50 U	1.0 U	
cis-1,3-Dichloropropene	2.0 U	2.0 U	50 U	2.0 U	
4-Methyl-2-pentanone	10 U	10 U	250 U	10 U	
Toluene	2.0 U	2.0 U	12 J	2.0 U	
trans-1,3-Dichloropropene	2.0 U	2.0 U	50 U	2.0 U	
1,1,2-Trichloroethane	2.0 U	2.0 U	50 U	2.0 U	
Tetrachloroethene	2.0 U	2.0 U	50 U	2.0 U	
2-Hexanone	10 U	10 U	250 U	10 U	
Dibromochloromethane	2.0 U	2.0 U	50 U	2.0 U	
Chlorobenzene	2.0 U	2.0 U	50 U	2.0 U	
Ethylbenzene	2.0 U	2.0 U	50 U	2.0 U	
m/p-Xylenes	4 U	4.0 U	100 U	4.0 U	
o-Xylene	2.0 U	2.0 U	50 U	2.0 U	
Styrene	2.0 U	2.0 U	50 U	2.0 U	
Bromoform	2.0 U	2.0 U	50 U	2.0 U	
1,1,2,2-Tetrachloroethane	2.0 U	2.0 U	50 U	2.0 U	

Sample Location	87-10(1)	87-12(1)	87-13(1)	87-14(1)	
Sample Date	5/23/2017	5/23/2017	5/22/2017	5/22/2017	
VOCs by USEPA Method 8260					
Chloromethane	5.0 U	10 U	500 U	250 U	
Vinyl chloride	12	1,700	3,000	2,900	
Chloroethane	5.0 U	10 U	500 U	250 U	
Bromomethane	5.0 U	10 U	500 U	250 U	
1,1-Dichloroethene	5.0 U	7.2 J	500 U	250 U	
Acetone	6.5 J	50 U	2,500 U	320 J	
Carbon disulfide	5.0 U	10 U	500 U	250 U	
Methylene chloride	5.0 U	10 U	94,000	22,000	
trans-1,2-Dichloroethene	5.0 U	8.7 J	500 U	250 U	
1,1-Dichloroethane	2.3 J	19	320 J	170 J	
cis-1,2-Dichloroethene	130	2,200 D	80,000	16,000	
2-Butanone	25 U	50 U	2,500 U	1,300 U	
Chloroform	1.4 J	10 U	1,200	450	
1,1,1-Trichloroethane	3.6 J	30	1,100	390	
Carbon tetrachloride	5.0 U	10 U	500 U	250 U	
Benzene	5.0 U	10 U	500 U	250 U	
1,2-Dichloroethane	5.0 U	10 U	500 U	250 U	
Trichloroethene	890	14	40,000	32,000	
1,2-Dichloropropane	5.0 U	10 U	500 U	250 U	
Bromodichloromethane	5.0 U	10 U	230 J	250 U	
cis-1,3-Dichloropropene	5.0 U	10 U	500 U	250 U	
4-Methyl-2-pentanone	25 U	50 U	2,500 U	1,300 U	
Toluene	5.0 U	10 U	500 U	250 U	
trans-1,3-Dichloropropene	5.0 U	10 U	500 U	250 U	
1,1,2-Trichloroethane	5.0 U	10 U	500 U	250 U	
Tetrachloroethene	5.0 U	10 U	500 U	250 U	
2-Hexanone	25 U	50 U	2,500 U	1,300 U	
Dibromochloromethane	5.0 U	10 U	500 U	250 U	
Chlorobenzene	5.0 U	10 U	500 U	250 U	
Ethylbenzene	5.0 U	10 U	500 U	250 U	
m/p-Xylenes	10.0 U	20 U	1,000 U	500 U	
o-Xylene	5.0 U	10 U	500 U	250 U	
Styrene	5.0 U	10 U	500 U	250 U	
Bromoform	5.0 U	10 U	500 U	250 U	
1,1,2,2-Tetrachloroethane	5.0 U	10 U	500 U	250 U	

Sample Location	87-15(1)	87-18(1)	89-12(1)	96-01(1)	
Sample Date	5/22/2017	5/22/2017	5/23/2017	5/23/2017	
VOCs by USEPA Method 8260					
Chloromethane	5.0 U	5.0 U	25 U	5.0 U	
Vinyl chloride	180	510	270	700	
Chloroethane	5.0 U	5.0 U	25 U	5.0 U	
Bromomethane	5.0 U	5.0 U	25 U	5.0 U	
1,1-Dichloroethene	5.0 U	5.0 U	25 U	5.0 U	
Acetone	25 U	6.7 J	36 J	25 U	
Carbon disulfide	6.5	5.0 U	25 U	5.0 U	
Methylene chloride	4,300 D	5.0 U	25 U	21	
trans-1,2-Dichloroethene	2.0 J	2.6 J	19 J	4.4 J	
1,1-Dichloroethane	3.9 J	17	9.0 J	29	
cis-1,2-Dichloroethene	390	620	4,300 D	710	
2-Butanone	25 U	25 U	130 U	25 U	
Chloroform	5.0 U	5.0 U	25 U	5.0 U	
1,1,1-Trichloroethane	5.0 U	27	22 J	48	
Carbon tetrachloride	5.0 U	5.0 U	25 U	5.0 U	
Benzene	5.0 U	5.0 U	25 U	5.0 U	
1,2-Dichloroethane	5.0 U	5.0 U	25 U	5.0 U	
Trichloroethene	10	3.9 J	490	17	
1,2-Dichloropropane	5.0 U	5.0 U	25 U	5.0 U	
Bromodichloromethane	5.0 U	5.0 U	25 U	5.0 U	
cis-1,3-Dichloropropene	5.0 U	5.0 U	25 U	5.0 U	
4-Methyl-2-pentanone	25 U	25 U	130 U	25 U	
Toluene	5.0 U	5.0 U	25 U	5.0 U	
trans-1,3-Dichloropropene	5.0 U	5.0 U	25 U	5.0 U	
1,1,2-Trichloroethane	5.0 U	5.0 U	25 U	5.0 U	
Tetrachloroethene	5.0 U	5.0 U	25 U	5.0 U	
2-Hexanone	25 U	25 U	130 U	25 U	
Dibromochloromethane	5.0 U	5.0 U	25 U	5.0 U	
Chlorobenzene	5.0 U	5.0 U	25 U	5.0 U	
Ethylbenzene	5.0 U	5.0 U	25 U	5.0 U	
m/p-Xylenes	10 U	10 U	50 U	10 U	
o-Xylene	5.0 U	5.0 U	25 U	5.0 U	
Styrene	5.0 U	5.0 U	25 U	5.0 U	
Bromoform	5.0 U	5.0 U	25 U	5.0 U	
1,1,2,2-Tetrachloroethane	5.0 U	5.0 U	25 U	5.0 U	

Sample Location	B-10a	Moog C	Trip Blank			
Sample Date	5/23/2017	5/23/2017	10/19/2016			
VOCs by USEPA Method 8260						
Chloromethane	500 U	1.0 U	1.0 U			
Vinyl chloride	430 J	1.0 U	1.0 U			
Chloroethane	500 U	1.0 U	1.0 U			
Bromomethane	500 U	1.0 U	1.0 U			
1,1-Dichloroethene	310 J	1.0 U	1.0 U			
Acetone	2,500 U	5.0 U	5.0 U			
Carbon disulfide	500 U	1.0 U	1.0 U			
Methylene chloride	3,300	1.0 U	1.0 U			
trans-1,2-Dichloroethene	500 U	1.0 U	1.0 U			
1,1-Dichloroethane	350 J	1.7	1.0 U			
cis-1,2-Dichloroethene	20,000	17	1.0 U			
2-Butanone	2,500 U	5.0 U	5.0 U			
Chloroform	980	0.98 J	1.0 U			
1,1,1-Trichloroethane	780	2.0	1.0 U			
Carbon tetrachloride	500 U	1.0 U	1.0 U			
Benzene	500 U	1.0 U	1.0 U			
1,2-Dichloroethane	500 U	1.0 U	1.0 U			
Trichloroethene	58,000	21	1.0 U			
1,2-Dichloropropane	500 U	1.0 U	1.0 U			
Bromodichloromethane	210 J	1.0 U	1.0 U			
cis-1,3-Dichloropropene	500 U	1.0 U	1.0 U			
4-Methyl-2-pentanone	2,500 U	5.0 U	5.0 U			
Toluene	500 U	1.0 U	1.0 U			
trans-1,3-Dichloropropene	500 U	1.0 U	1.0 U			
1,1,2-Trichloroethane	500 U	1.0 U	1.0 U			
Tetrachloroethene	500 U	1.0 U	1.0 U			
2-Hexanone	2,500 U	5.0 U	5.0 U			
Dibromochloromethane	500 U	1.0 U	1.0 U			
Chlorobenzene	500 U	1.0 U	1.0 U			
Ethylbenzene	500 U	1.0 U	1.0 U			
m/p-Xylenes	1,000 U	2.0 U	2.0 U			
o-Xylene	500 U	1.0 U	1.0 U			
Styrene	500 U	1.0 U	1.0 U			
Bromoform	500 U	1.0 U	1.0 U			
1,1,2,2-Tetrachloroethane	500 U	1.0 U	1.0 U			

Notes:

U = Compound not detected at detection limit.

Bold = Compound detected at concentration.

J = Indicates an estimated value below detection limit.

D = Compound analyzed at secondary dilution.

Table 2 Summary of Potable Water Injection Test Observations Former Bell Aerospace Textron, Inc. Wheatfield, NY May 2017

Injection Location	Monitoring Point	Approximate Distance From Injection (ft)	Maximum Observed Groundwater Response (ft)
	DW-11	25	3.13
07.05(1)	B-14	175	0.45
87-05(1)	87-09(1)	162	0.34
	87-10(1)	350	0.17
	DW-9	100	1.97
	87-13(1)	125	0.43
87-14(1)	87-08(1)	125	2.57
	DW-10	175	0.17
	87-04(1)	250	0.12
	87-14(1)	125	0.47
07 12(1)	87-05(1)	175	0.24
07-13(1)	89-15(1)	175	0.2
	87-09(1)	200	0.1
	MP-D	125	0.29
	87-01(1)	150	0.19
87-02(1)	MP-A	150	0.33
	DW-12	150	0.35
	87-10(1)	175	0.26
Table 3 Summary of Monitored Natural Attenutaion Parameters and Dechlorinating Bacteria Former Bell AerospaceTextron Inc. Wheatfield, New York April 2016

Sample	Zone 1			Zor	ne 3
	87-02(1)	87-05(1)	87-13(1)	87-02(3)	87-13(3)
Date	4/28/2016	4/28/2016	4/28/2016	4/28/2016	4/28/2016
General Chemistry (mg/L)					
Alkalinity - Total as CaCO3	311	306	334	165	302
Biochemical Oxygen Demand	3.6	2.2	2.5	69.0	11.9
Total Organic Carbon	4.6	3.4	4.6	1.4	3.6
Chemical Oxygen Demand	9.7	8.1	52.7	96.5	47.6
Chloride	236	162	313	730	229
Nitrate as Nitrogen	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulfate	996	1,150	1,030	1,740	1,320
Inorganic Parameters (µg/L)					
Iron - Total	190	120	8,200	1,420	< 100
Manganese - Total	176	101	51	25	34
Dissolved Gases (µg/L)					
Ethane	1.1	1.7	5.1	140	30
Ethene	13	16	120 D	< 10	25
Methane	45	67	140 D	1,000	140 D
Dechlorinating Bacteria (cells/mL))				
Dehalococcoides	1.10	55,800	30,800	2,860	79,400

Notes:

Bold = Compound detected at concentration.

U = Compound not detected at detection limit.

D = Compound was analyzed at secondary dilution.

Table 4 Bioremediaiton Injection and Monitoring Locations Former Bell Aerospace Facility Wheatfield, NY

Injection Location	Monitoring Point					
	DW-10					
07.04 (1)	87-13 (1)					
87-04 (1)	89-15 (1)					
	87-11 (1)					
	DW-11					
07 OF (1)	B-14 (1)					
07-00(1)	87-09 (1)					
	17-01(1)					
	DW-12					
87-10 (1)	87-12 (1)					
	89-10 (1)					
	DW-10					
87-11 (1)	87-14 (1)					
	87-13 (1)					
	DW-9					
07 14 (1)	B-10A					
87-14 (1)	87-13 (1)					
	87-11 (1)					
	DW-9					
87-15 (1)	B-10A					
	87-17 (1)					
	DW-11					
17-01 (1)	89-15 (1)					
	89-10 (1)					
	DW-11					
17-02 (1)	87-02 (1)					
	89-10 (1)					
	DW-12					
17-03 (1)	87-02 (1)					
	89-12 (1)					
	DW-10					
17.04 (1)	DW-11					
17-04 (1)	87-13 (1)					
	89-15 (1)					
	87-13 (1)					
17-05 (1)	87-14 (1)					
	87-17 (1)					

Table 5 Groundwater Monitoring Points Bioremediation Effectiveness Monitoring Programs Former Bell AerospaceTextron Inc. Wheatfield, New York

Well Number	Groundwater Sample
Zone 1 Monitoring Wells	
87-01(1)	Х*
87-02(1)	Х*
87-08(1)	Х*
87-09(1)	Х
87-13(1)	Х
87-17(1)	X
89-10(1)	Х
89-12(1)	Х
89-15(1)	X
B-10A	Х
B-14(1)	X
Total Zone 1 Samples Per Event	11
On-Site Extraction Wells	
DW-9	Х
DW-10	X
DW-11	X
DW-12	X
Total On-Site Extraction Well Samples Per Event	4
Grand Total Samples Per Event	15

Red indicates location already part of existing annual groundwater monitoring program.

* Indicates location is scheduled for sampling on even numbered years per the groundwater sampling program.

Table 6 Analytical and Field Parameters Former Bell Aerospace Textron, Inc. Wheatfield, New York

Laboratory Analysis Parameter	Analysis Method						
Total Volatile Organic Compounds	USEPA SW-846 Method 8260B						
Total Organic Carbon	USEPA Method 5310C						
Volatile Fatty Acids	USEPA Method 8015 (modified)						
Ethene	USEPA Method RSK 175						
Ethane	USEPA Method RSK 175						
Carbon Dioxide	USEPA Method SM 4500						
Methane	USEPA Method RSK 175						
Ferrous Iron	USEPA Method 3500 FE D						
Sulfate	USEPA SW-846 Method 9056A						
Chloride	USEPA SW-846 Method 9056A						
Nitrate	USEPA SW-846 Method 9056A						
Field Analysis Parameter	Analysis Method						
Oxidation-Reduction Potential							
Dissolved Oxygen							
Conductivity	Field measurement via YSI Model 556						
Temperature							
рН							

Figures

Appendix A

Zone 1 CVOC Concentration Graphs

Appendix B

Laboratory Analytical Package – May 2017

Ms. Cecelia Byers CB&I Environmental & Infrastructure 2790 Mosside Boulevard Monroeville, PA 15146

Laboratory Results for: Textron Wheatfield

Dear Ms.Byers,

Enclosed are the results of the sample(s) submitted to our laboratory May 25, 2017 For your reference, these analyses have been assigned our service request number **R1704784**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Jamanso

Janice Jaeger Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 2 of 68

Client: CB&I Project: Textron Wheatfield/156045 Sample Matrix: Water Service Request:R1704784 Date Received:5/25/17

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt

Fifteen Water samples were received for analysis at ALS Environmental on 05/25/2017. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at \leq 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

Method 8260, 5/31/17, 6/2/17: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Method 8260, 5/31/17: The upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

Approved by	I amanestor	Date	6/6/2017

CLIENT ID: MW-87-18 (1)	Lab ID: R1704784-001					
Analyte	Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride	510		1.6	5.0	ug/L	8260C
Acetone	6.7	J	6.2	25	ug/L	8260C
trans-1,2-Dichloroethene	2.6	J	1.7	5.0	ug/L	8260C
1,1-Dichloroethane	17		1.0	5.0	ug/L	8260C
cis-1,2-Dichloroethene	620		1.5	5.0	ug/L	8260C
1,1,1-Trichloroethane	27		1.8	5.0	ug/L	8260C
Trichloroethene	3.9	J	1.1	5.0	ug/L	8260C

CLIENT ID: MW-87-04 (1)	Lab ID: R1					
Analyte	Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride	210		0.64	2.0	ug/L	8260C
1,1-Dichloroethene	3.5		1.2	2.0	ug/L	8260C
Methylene Chloride	31		1.2	2.0	ug/L	8260C
trans-1,2-Dichloroethene	3.6		0.66	2.0	ug/L	8260C
1,1-Dichloroethane	2.9		0.40	2.0	ug/L	8260C
cis-1,2-Dichloroethene	290		0.60	2.0	ug/L	8260C
Chloroform	0.80	J	0.50	2.0	ug/L	8260C
Trichloroethene	36		0.44	2.0	ug/L	8260C

CLIENT ID: MW-87-14 (1)	Lab ID: R1	Lab ID: R1704784-003				
Analyte	Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride	2900		80	250	ug/L	8260C
Acetone	320	J	310	1300	ug/L	8260C
Methylene Chloride	22000		150	250	ug/L	8260C
1,1-Dichloroethane	170	J	50	250	ug/L	8260C
cis-1,2-Dichloroethene	16000		75	250	ug/L	8260C
Chloroform	450		63	250	ug/L	8260C
1,1,1-Trichloroethane	390		90	250	ug/L	8260C
Trichloroethene	32000		55	250	ug/L	8260C

CLIENT ID: MW-87-15 (1)	Lab ID: R1704784-004						
Analyte		Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride		180		1.6	5.0	ug/L	8260C
Carbon Disulfide		6.5		1.1	5.0	ug/L	8260C
Methylene Chloride		4000	Е	3.0	5.0	ug/L	8260C
trans-1,2-Dichloroethene		2.0	J	1.7	5.0	ug/L	8260C
1,1-Dichloroethane		3.9	J	1.0	5.0	ug/L	8260C
cis-1,2-Dichloroethene		390		1.5	5.0	ug/L	8260C
Trichloroethene		10		1.1	5.0	ug/L	8260C
Vinyl Chloride		170	D	8.0	25	ug/L	8260C
Acetone		34	DJ	31	130	ug/L	8260C
Carbon Disulfide		8.8	DJ	5.5	25	ug/L	8260C
Methylene Chloride	4 of 68	4300	D	15	25	ug/L	8260C

CLIENT ID: MW-87-15 (1)	Lab ID: R1704784-004						
Analyte	Results	Flag	MDL	PQL	Units	Method	
cis-1,2-Dichloroethene	370	D	7.5	25	ug/L	8260C	
Trichloroethene	11	DJ	5.5	25	ug/L	8260C	

CLIENT ID: MW-87-13 (1)	Lab ID: R1704784-005					
Analyte	Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride	3000		160	500	ug/L	8260C
Methylene Chloride	100000	Е	300	500	ug/L	8260C
1,1-Dichloroethane	320	J	100	500	ug/L	8260C
cis-1,2-Dichloroethene	80000		150	500	ug/L	8260C
Chloroform	1200		130	500	ug/L	8260C
1,1,1-Trichloroethane	1100		180	500	ug/L	8260C
Trichloroethene	40000		110	500	ug/L	8260C
Bromodichloromethane	230	J	160	500	ug/L	8260C
Vinyl Chloride	2700	D	320	1000	ug/L	8260C
Methylene Chloride	94000	D	600	1000	ug/L	8260C
1,1-Dichloroethane	270	DJ	200	1000	ug/L	8260C
cis-1,2-Dichloroethene	72000	D	300	1000	ug/L	8260C
Chloroform	1100	D	250	1000	ug/L	8260C
1,1,1-Trichloroethane	1000	D	360	1000	ug/L	8260C
Trichloroethene	35000	D	220	1000	ug/L	8260C

CLIENT ID: MW-87-09 (1)	Lab ID: R1704784-006					
Analyte	Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride	190		0.64	2.0	ug/L	8260C
1,1-Dichloroethene	1.5	J	1.2	2.0	ug/L	8260C
Acetone	4.1	J	2.5	10	ug/L	8260C
trans-1,2-Dichloroethene	1.4	J	0.66	2.0	ug/L	8260C
1,1-Dichloroethane	16		0.40	2.0	ug/L	8260C
cis-1,2-Dichloroethene	150		0.60	2.0	ug/L	8260C
1,1,1-Trichloroethane	85		0.72	2.0	ug/L	8260C
Trichloroethene	1.7	J	0.44	2.0	ug/L	8260C

CLIENT ID: MW-96-01 (1)	Lab ID: R1704784-008											
Analyte	Results	Flag	MDL	PQL	Units	Method						
Vinyl Chloride	700		1.6	5.0	ug/L	8260C						
Methylene Chloride	21		3.0	5.0	ug/L	8260C						
trans-1,2-Dichloroethene	4.4	J	1.7	5.0	ug/L	8260C						
1,1-Dichloroethane	29		1.0	5.0	ug/L	8260C						
cis-1,2-Dichloroethene	710		1.5	5.0	ug/L	8260C						
1,1,1-Trichloroethane	48		1.8	5.0	ug/L	8260C						
Trichloroethene	17		1.1	5.0	ug/L	8260C						

CLIENT ID: MW-87-12 (1)	Lab ID: R1704784-009												
Analyte	Results	Flag	MDL	PQL	Units	Method							
Vinyl Chloride	1700		3.2	10	ug/L	8260C							
1,1-Dichloroethene	7.2	J	5.7	10	ug/L	8260C							
trans-1,2-Dichloroethene	8.7	J	3.3	10	ug/L	8260C							
1,1-Dichloroethane	19		2.0	10	ug/L	8260C							
cis-1,2-Dichloroethene	2200	Е	3.0	10	ug/L	8260C							
1,1,1-Trichloroethane	30		3.6	10	ug/L	8260C							
Trichloroethene	14		2.2	10	ug/L	8260C							
Vinyl Chloride	1800	D	6.4	20	ug/L	8260C							
Acetone	35	DJ	25	100	ug/L	8260C							
trans-1,2-Dichloroethene	9.6	DJ	6.6	20	ug/L	8260C							
1,1-Dichloroethane	20	DJ	4.0	20	ug/L	8260C							
cis-1,2-Dichloroethene	2200	D	6.0	20	ug/L	8260C							
1,1,1-Trichloroethane	29	D	7.2	20	ug/L	8260C							
Trichloroethene	20	DJ	4.4	20	ug/L	8260C							

CLIENT ID: MW-87-01 (1)	Lab ID: R1704784-010													
Analyte	Results	Flag	MDL	PQL	Units	Method								
Vinyl Chloride	84		0.64	2.0	ug/L	8260C								
1,1-Dichloroethene	2.6		1.2	2.0	ug/L	8260C								
trans-1,2-Dichloroethene	6.8		0.66	2.0	ug/L	8260C								
1,1-Dichloroethane	5.6		0.40	2.0	ug/L	8260C								
cis-1,2-Dichloroethene	660	Е	0.60	2.0	ug/L	8260C								
Chloroform	1.1	J	0.50	2.0	ug/L	8260C								
1,1,1-Trichloroethane	15		0.72	2.0	ug/L	8260C								
Trichloroethene	110		0.44	2.0	ug/L	8260C								
Vinyl Chloride	89	D	1.6	5.0	ug/L	8260C								
Acetone	8.0	DJ	6.2	25	ug/L	8260C								
trans-1,2-Dichloroethene	6.6	D	1.7	5.0	ug/L	8260C								
1,1-Dichloroethane	5.8	D	1.0	5.0	ug/L	8260C								
cis-1,2-Dichloroethene	690	D	1.5	5.0	ug/L	8260C								
Chloroform	2.0	DJ	1.3	5.0	ug/L	8260C								
1,1,1-Trichloroethane	16	D	1.8	5.0	ug/L	8260C								
Trichloroethene	110	D	1.1	5.0	ug/L	8260C								

CLIENT ID: MW-89-12 (1)	Lab ID: R1704784-011										
Analyte	Results	Flag	MDL	PQL	Units	Method					
Vinyl Chloride	270		8.0	25	ug/L	8260C					
Acetone	36	J	31	130	ug/L	8260C					
trans-1,2-Dichloroethene	19	J	8.3	25	ug/L	8260C					
1,1-Dichloroethane	9.0	J	5.0	25	ug/L	8260C					
cis-1,2-Dichloroethene	4300		7.5	25	ug/L	8260C					
1,1,1-Trichloroethane	22	J	9.0	25	ug/L	8260C					

CLIENT ID: MW-89-12 (1)	Lab ID: R1	704784-	011			
Analyte	Results	Flag	MDL	PQL	Units	Method
Trichloroethene	490		5.5	25	ug/L	8260C
CLIENT ID: MW-87-10 (1)	Lab ID: R1	704784-	012			
Analyte	Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride	12		1.6	5.0	ug/L	8260C
Acetone	6.5	J	6.2	25	ug/L	8260C
1,1-Dichloroethane	2.3	J	1.0	5.0	ug/L	8260C
cis-1,2-Dichloroethene	130		1.5	5.0	ug/L	8260C
Chloroform	1.4	J	1.3	5.0	ug/L	8260C
1,1,1-Trichloroethane	3.6	J	1.8	5.0	ug/L	8260C
Trichloroethene	890		1.1	5.0	ug/L	8260C
CLIENT ID: MW-87-05 (1)	Lab ID: R1	704784-	013			
Analyte	Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride	460		16	50	ug/L	8260C
Methylene Chloride	2100		30	50	ug/L	8260C
1,1-Dichloroethane	42	J	10	50	ug/L	8260C
cis-1,2-Dichloroethene	6900		15	50	ug/L	8260C
1,1,1-Trichloroethane	140		18	50	ug/L	8260C
Trichloroethene	1300		11	50	ug/L	8260C
Toluene	12	J	10	50	ug/L	8260C
CLIENT ID: MW MOOG-C	Lab ID: R1	704784-	014			
Analyte	Results	Flag	MDL	PQL	Units	Method
1,1-Dichloroethane	1.7		0.20	1.0	ug/L	8260C
cis-1,2-Dichloroethene	17		0.30	1.0	ug/L	8260C
Chloroform	0.98	J	0.25	1.0	ug/L	8260C
1,1,1-Trichloroethane	2.0		0.36	1.0	ug/L	8260C
Trichloroethene	21		0.22	1.0	ug/L	8260C
CLIENT ID: MW B-10 (a)	Lab ID: R1	704784-	015			
Analyte	Results	Flag	MDL	PQL	Units	Method
Vinyl Chloride	430	J	160	500	ug/L	8260C
1,1-Dichloroethene	310	J	290	500	ug/L	8260C
Methylene Chloride	3300		300	500	ug/L	8260C
1,1-Dichloroethane	350	J	100	500	ug/L	8260C
cis-1,2-Dichloroethene	20000		150	500	ug/L	8260C
Chloroform	980		130	500	ug/L	8260C
1,1,1-Trichloroethane	780		180	500	ug/L	8260C
Trichloroethene	58000		110	500	ug/L	8260C
Bromodichloromethane	210	J	160	500	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 8 of 68

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
R1704784-001	MW-87-18 (1)	5/22/2017	1325
R1704784-002	MW-87-04 (1)	5/22/2017	1405
R1704784-003	MW-87-14 (1)	5/22/2017	1500
R1704784-004	MW-87-15 (1)	5/22/2017	1550
R1704784-005	MW-87-13 (1)	5/22/2017	1650
R1704784-006	MW-87-09 (1)	5/22/2017	1735
R1704784-007	Trip Blank	5/22/2017	0920
R1704784-008	MW-96-01 (1)	5/23/2017	0920
R1704784-009	MW-87-12 (1)	5/23/2017	1000
R1704784-010	MW-87-01 (1)	5/23/2017	1030
R1704784-011	MW-89-12 (1)	5/23/2017	1100
R1704784-012	MW-87-10 (1)	5/23/2017	1140
R1704784-013	MW-87-05 (1)	5/23/2017	1205
R1704784-014	MW MOOG-C	5/23/2017	1315
R1704784-015	MW B-10 (a)	5/23/2017	1435

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

44958

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE

____OF____

Project Name	,	ANALYSIS REQUESTIED (Include Method Number and Container Preservative)																			
Project Manager CECELIA BYERS	Report CC				PRE	SERVATI	/E [
Company/Address	•				SF SF		/ /	/	\neg	7	7	7	7	7.	7	/	/	-/	7	Pre: 0.	servative Key NONE
5 DO PENN CONTE	R BWD	SUITE	1500		,TAINEI		/ /		/	/			./	/	/	/	/	/	/	2. 3.	HNO3 H2SO4
PITTSBURGH, PIA	15235				Ч С О Ц	/	2/2/2	/ _{&} /	/ /			50LVED	/ /		/ /	/ /	/ /	/ /	/ /	5. 6.	Zn. Acetate MeOH
Phone # 518-281-2034	Email Cie Cu	ELIA. BYEKS	CBI	. CoM	MBER (\$ 10 m		0010 CIDE0		800°	U.S. Dic	comme		/						8.	Other
Sampler's Signature	Sampler's I		N		Ñ		ઙૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ			MET.	MET I		/ . /		/				/ _{AI}	REMA TERNATE (ARKS/ DESCRIPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPLI DATE	NG TIME	MATRIX																	
MW 87-18(1)		5/22/17	1325	GW	3	\mathbb{N}															
MW-87-04(1)		1	1405	Gw	Э	X															
MW87-14(1)			(500)	GW	3	X															
Mul 87-15(1)			1550	Gw	3	X															
$m \otimes \delta 7 - 13(i)$			1650	GW	3	X															
MW. 89-09(i)		¥ .	1735	GW	ß	ХT															
TRIP BLANK		5/17/17	0920		3	X															
MW 96 - 01(1)		5/23/17	0920	Gw	3	X															
MW 87-12(1)		1	1000	Grad	3	X															
MW 57.01(1)			1030	4W	3	X															
MW 89-12(1)		V /	100	GW	3	X															
SPECIAL INSTRUCTIONS/COMMENTS	المتعادية والمتعادية المتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية وال		(1				REQUI	BEME		T	BEPO	BT BE	QUIRE		s		INV		RMATION
Metals							RUS	H (SURC	HARGES	S APPLY)		-	I. Resul	ts Only			-				
													li Resu	/ lts + 00	Summ	aries		PO #			
						-	1 da 4 da	y2 v5	day day	3 day			(LCS, D	UP, MS/	MSD as	s require	d)				
							4	ANI	SAN	6			_ III. Resu	ilts + QC	C and C	alibratio	n	BILL	TO:		
								D REPO	RT DAT	Е			Summa	ries							
						-							_ IV. Data	Validati	on Repo	ort with	Raw Dat	ta			
See QAPP																					
STATE WHERE SAMPLES WERE COL	LECTED												Edata	<u> </u>	_Yes		No				
RELINQUISHED BY	RECEIVE) BY	RELI	NQUISHED	BY			RECEI	VED BY	/			RE	LINQU	ISHED	BY				RECEIVED) BY
Signature s	Signature	ton-	Signature	AFE		s	gnature	77%	<i>17</i>		- All	Signat	ure					Signa	ature		
Printed Name	Printed Name	JAN I	Printed Name	WORK	EN		ed Neme	NU.	550	\$11	<u></u> /	Printe	d Name				R	170)47	84	5
Film CB & I	irm , , , , , , , , , , , , , , , , , , ,	ις.	Firm	, Ai	5	F	m	Å7	<u>Š</u>		<u> </u>	Firm					CB&/ Textr	Enviror on Whe	imental atfield	& Infrastruc	ture
Date/Time 5/25/17 1115 0	Date/Time5 25	1 1115	Date/Time 5 25	st17	ÍSI		ate/Time	75.ľ	<u> </u>	5:00		Date/	lime			_					

Chain of Custody Record

Temperature on Receipt ____

Drinking Water? Yes 🗆 No

THE LEADER	IN ENVIRONMENTAI	_ TESTING
------------	------------------	-----------

TAL-4124 (1007)							l														
Client de la T	Projec	ct Man	nager	•	·~~,	- 4 4								Date				Chain	of Custo	ody Nur	nber
	(<u>'C</u> C	LL	(r ⁴)	DY	OLS)							5	17:	<u>5 [['</u>	<u>-1</u>				
Address	Telepi	hone l	Vumb	er (An	e's Ceo '	1e)/Fax 7 - 7	(Num. L	ber						Lat A	lumber					-7	
SOU FOUN COVIEL DEVID SUITE TOU		10		19	1-0	<u>,05</u>	٢ <u> </u>							Ļ				Page	<u>, </u>	E	of
O TTER NO I DA 1573	Site C	ontac	(1)	100	1.	Lêb	Conta	ct					Ana. more	lysis () snaci	Attach e is nei	list it eded)					
Project Name and Location (State)	Carrie	or/Mau		Umba	<i>i</i> (10)	<u> </u>						<u> </u>		1							
TEXTLAND (HATTING N K)	Janio	, vvay		umber															-		
Contract/Purchase Order/Quote No.										0									Spec	tial In.	structions/
			M	latrix		1	Pi	ontal." 'eserv	ers ativi	å es	0°								Conu	nions	υ πειειρί
Sample I D No. and Description		+	SI			sa.	5 5	2	I	12 I	72										
(Containers for each sample may be combined on one line)	Time	Air	Aquec	Sed	201	nnoi	H2S		NaO	ZnAc NaO	ω										
MW 87-10(i), 5/23 11	11:40		X					X	-										·		
MW 87-05(1)	T = 1																				·····
Maria Francisco de Carto de Ca	RIS	-	· ·					ŀ													
			X			+		$\overline{\nabla}$	+	++											
AUV D - U(u)						┥_↓		<u> </u>	<u> </u>	+	1										
									T												
		+				+ +			+												
		<u> </u>												_							
		+				+-+		-+	+	+								<u> </u>			
			┥━┤			+			+	+ +											
		+	-+	+		┼╌┼			+	++						+					
Descha Useral Institution																					
M Non-Hazard Elammable Skin Irritant Poison B	[] Unknow		ampie Pa	turn 1	osai o Cliar			nnea'	By I	ah [] Arch	ivo For		Mar	the li	4 fee m	ay be as:	sessed if	samples	s are re	tained
Turn Around Time Required						<u> </u>	OC R	equire	men	ts (Spec						nger in		ninj			
24 Hours 48 Hours 7 Days 14 Days 21 Days	ays 🛃 O	ther	57	HA	war ic	2	۸ ۵۵			-	··· y /										
1. Relinquisped By	Date	:5/	17	Time	9				NR	h	AND	nnea	A	US				Date 5	25	17	
2. Felinguished By CUBRIAL 5/25/17 ACC	S Date			Time	9		2.74		BY	7/	1	· · · ·		h	1, C,			Date	<u>↓</u>	• ;	Time I.C. MI
3. Reinquished By	Date			Tim	9		3. Rei	eiver	BV	Lø.	U.A.	41	2	110				Date		<u> </u>	I <u>J~~~</u> Ime
									-,								R17	'047	'84	1 '	5
Comments						44 -											CB&I Env Textron V	/ironments Wheatfield	il & Infras	tructure	
DISTRIBUTION, W///TE Downod to Chart with Dans to CANADY OF	a with the C-	mala	0/4///	Cie.		110	68												AN NAM P		
UNITHIDUTION: WHITE - HETURNED to Client with Hepcrit; CANARY - Stays	s with the Sal	nple;	r'INK	- <i>r lei</i>	α τορι	V													AN AUNI A		I TO FEE ALON ING!

								R	1704784	5 structure
	S	Cooler	Rec	eipt	and Preserva	tion	Check For			
	C.B	ŦĹ.			Folder Numb	$_{\rm er}$ R1	704782]	i I U I		
oject/Clie	m . האה	.17	1	MS		FD.		' FDFY VF	LOCITY CLIE	νт
oler receive	ed on <u>545</u>	<u> </u>		110			LS OFS T	LDEA VE	eadspace?	Y N NA
Were Cu	istody seals on	outside of coo	oler?		Y N Sa H	rerenio	ate samples na	ve required i	aig* hubbles?	
Custody	papers proper	ly completed	(ink, si	gned)?	(Y N 56 1		A viais, Alk,or :	Sumue nave	ALEDOO (CLIENT
Did all b	ottles arrive in	good conditio	n (unb	roken)	7 N 6	Where d	id the bottles or	iginate?	ALS/ROC	
Circle:	Wet Ice Dry	Ice Gel pac	ks p	resent?		Soil VO.	A received as:	Bulk		
Temperatu	re Readings	Date: 5-2	5-17		ne: 15:10	ID: I	R#7(IR#8)	From	: Temp Blank	Sample Bott
bserved To	emp (°C)	1,5								
orrection I	Factor (°C)	+0.9								
orrected T	emp (°C)	2.4								
emp from:	Type of bottle	Centru	be					V NT	V N	V N
ithin $0-6^{\circ}$	U?	(Y)	N N	$\frac{Y}{V}$			Y N V N	<u> </u>	Y N	Y N
	re samples troz		<u>1N</u>	Y nd:4		maltad	I IN Poorly	Packed	Same Dav	Rule
If out of 1	l'emperature,	note packing	lce co	naitio	anding Approval	lient a	ware at drop-of	f Client no	otified by:	
&Client A	Approval to K	un sampies:	~			- <u>~</u> 17	at la la			
ll samples	s held in storag	e location:	<u>K-(</u>	902	$\frac{by}{12}$ on	Jop-11				
iss samp	es placeu in su	orage location	1		. ⁰					
12.	Were 5035 vial	s acceptable (no extr	a label	s, not leaking)?	ressuriz	YES red Te	5 NO dlar® Bags]	inflated (N/A
<u>13.</u> pH	Lot of test	Reagent	Prese	erved?	Lot Received	Exp	Sample ID	Vol.	Lot Added	Final
	paper		Yes	No			<u> </u>	Added		pH
<u>≥12</u>		HNO:								
<u>></u> 2 <2		H_2SO_4		+						
<4		NaHSO ₄				_				
Residual	٤.	For CN			If +, contact PM to add $Na_2S_2O_3$ (CN),					
(-)		and 522			ascorbic (phenol).					
	<u></u>	Na ₂ S ₂ O ₃	-				**Not to be	tested before	analysis – nH to	ested and
		ZnAcetate HCl	- **	**	4115622	5119	recorded by	VOAs on a	separate worksho	eet
	C))	<u>,i</u>		<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>				
Bottle lot	numbers: 6	-145-00	L							
Explain a	III Discrepanci	es/ Other Cor	nment	s:					CLRE	ES BULK
n. R	10(a)	lof 21	fal	5					DO	FLDT
4W D-			-	. 1.	1				HPRO	DD HGFB
10.4	7-15/1): lof	3 ₹	al	2				HTR	LL3541
MM C									РН	SUB
									SO3	MARRS
									ALS	REV
			H	9,					·	
Labels	secondary re	eviewed by	: <u>/\(</u>	<u> </u>	$\frac{1}{120}$	3				- 4
PC Sec	ondary Revi	iew:	Ch	N.	S/24/17 '*signi	ficant a	r bubbles: VO	A > 5-6 mm	: WC >1 in. diat	meter
D.VINTRAN	VET\OAOC\Form	s Controlled Co	oler Rec	eipt r14.	doc I'			1	/9/17	

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 13 of 68

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester L	ab ID # for State Certifica/	tions ¹	
		ХТ Т	T

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Accredited	Nebraska Accredited	294100 A/B
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047	North Carolina #676	Virginia #460167

¹ Analyses were performed according to our laboratoryø NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Project:	CB&I Textron Wheatfield/156045		Service Request: R1704784
Sample Name: Lab Code: Sample Matrix:	MW-87-18 (1) R1704784-001 Water		Date Collected: 05/22/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-87-04 (1) R1704784-002 Water		Date Collected: 05/22/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-87-14 (1) R1704784-003 Water		Date Collected: 05/22/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-87-15 (1) R1704784-004 Water		Date Collected: 05/22/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-87-13 (1) R1704784-005 Water		Date Collected: 05/22/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Project:	CB&I Textron Wheatfield/156045		Service Request: R1704784
Sample Name: Lab Code: Sample Matrix:	MW-87-09 (1) R1704784-006 Water		Date Collected: 05/22/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	Trip Blank R1704784-007 Water		Date Collected: 05/22/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-96-01 (1) R1704784-008 Water		Date Collected: 05/23/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-87-12 (1) R1704784-009 Water		Date Collected: 05/23/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-87-01 (1) R1704784-010 Water		Date Collected: 05/23/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Project:	CB&I Textron Wheatfield/156045		Service Request: R1704784
Sample Name: Lab Code: Sample Matrix:	MW-89-12 (1) R1704784-011 Water		Date Collected: 05/23/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-87-10 (1) R1704784-012 Water		Date Collected: 05/23/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW-87-05 (1) R1704784-013 Water		Date Collected: 05/23/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW MOOG-C R1704784-014 Water		Date Collected: 05/23/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST
Sample Name: Lab Code: Sample Matrix:	MW B-10 (a) R1704784-015 Water		Date Collected: 05/23/17 Date Received: 05/25/17
Analysis Method 8260C		Extracted/Digested By	Analyzed By KRUEST

Printed 6/6/2017 9:24:14 AM

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
-	
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER 20 of 68

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 13:25
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-18 (1)	Units: ug/L
Lab Code:	R1704784-001	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	5.0 U	5.0	1.1	5	05/30/17 19:31	
Vinyl Chloride	510	5.0	1.6	5	05/30/17 19:31	
Chloroethane	5.0 U	5.0	1.2	5	05/30/17 19:31	
Bromomethane	5.0 U	5.0	1.5	5	05/30/17 19:31	
1,1-Dichloroethene	5.0 U	5.0	2.9	5	05/30/17 19:31	
Acetone	6.7 J	25	6.2	5	05/30/17 19:31	
Carbon Disulfide	5.0 U	5.0	1.1	5	05/30/17 19:31	
Methylene Chloride	5.0 U	5.0	3.0	5	05/30/17 19:31	
trans-1,2-Dichloroethene	2.6 J	5.0	1.7	5	05/30/17 19:31	
1,1-Dichloroethane	17	5.0	1.0	5	05/30/17 19:31	
cis-1,2-Dichloroethene	620	5.0	1.5	5	05/30/17 19:31	
2-Butanone (MEK)	25 U	25	4.1	5	05/30/17 19:31	
Chloroform	5.0 U	5.0	1.3	5	05/30/17 19:31	
1,1,1-Trichloroethane	27	5.0	1.8	5	05/30/17 19:31	
Carbon Tetrachloride	5.0 U	5.0	2.3	5	05/30/17 19:31	
Benzene	5.0 U	5.0	1.0	5	05/30/17 19:31	
1,2-Dichloroethane	5.0 U	5.0	1.8	5	05/30/17 19:31	
Trichloroethene	3.9 J	5.0	1.1	5	05/30/17 19:31	
1,2-Dichloropropane	5.0 U	5.0	1.0	5	05/30/17 19:31	
Bromodichloromethane	5.0 U	5.0	1.6	5	05/30/17 19:31	
cis-1,3-Dichloropropene	5.0 U	5.0	1.2	5	05/30/17 19:31	
4-Methyl-2-pentanone (MIBK)	25 U	25	3.4	5	05/30/17 19:31	
Toluene	5.0 U	5.0	1.0	5	05/30/17 19:31	
trans-1,3-Dichloropropene	5.0 U	5.0	1.0	5	05/30/17 19:31	
1,1,2-Trichloroethane	5.0 U	5.0	1.7	5	05/30/17 19:31	
Tetrachloroethene	5.0 U	5.0	1.5	5	05/30/17 19:31	
2-Hexanone	25 U	25	8.3	5	05/30/17 19:31	
Dibromochloromethane	5.0 U	5.0	1.6	5	05/30/17 19:31	
Chlorobenzene	5.0 U	5.0	1.5	5	05/30/17 19:31	
Ethylbenzene	5.0 U	5.0	1.0	5	05/30/17 19:31	
m,p-Xylenes	10 U	10	1.7	5	05/30/17 19:31	
o-Xylene	5.0 U	5.0	1.0	5	05/30/17 19:31	
Styrene	5.0 U	5.0	1.0	5	05/30/17 19:31	
Bromoform	5.0 U	5.0	2.1	5	05/30/17 19:31	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1.3	5	05/30/17 19:31	

Analytical Report CB&I Service Request: R1704784 Date Collected: 05/22/17 13:25 **Project:** Textron Wheatfield/156045 Sample Matrix: Water Date Received: 05/25/17 15:00 Sample Name: MW-87-18 (1) Units: ug/L Basis: NA Lab Code: R1704784-001

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Client:

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	05/30/17 19:31	
Toluene-d8	115	87 - 121	05/30/17 19:31	
Dibromofluoromethane	109	89 - 119	05/30/17 19:31	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 14:05
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-04 (1)	Units: ug/L
Lab Code:	R1704784-002	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	2.0 U	2.0	0.42	2	05/30/17 15:01	
Vinyl Chloride	210	2.0	0.64	2	05/30/17 15:01	
Chloroethane	2.0 U	2.0	0.48	2	05/30/17 15:01	
Bromomethane	2.0 U	2.0	0.58	2	05/30/17 15:01	
1,1-Dichloroethene	3.5	2.0	1.2	2	05/30/17 15:01	
Acetone	10 U	10	2.5	2	05/30/17 15:01	
Carbon Disulfide	2.0 U	2.0	0.44	2	05/30/17 15:01	
Methylene Chloride	31	2.0	1.2	2	05/30/17 15:01	
trans-1,2-Dichloroethene	3.6	2.0	0.66	2	05/30/17 15:01	
1,1-Dichloroethane	2.9	2.0	0.40	2	05/30/17 15:01	
cis-1,2-Dichloroethene	290	2.0	0.60	2	05/30/17 15:01	
2-Butanone (MEK)	10 U	10	1.7	2	05/30/17 15:01	
Chloroform	0.80 J	2.0	0.50	2	05/30/17 15:01	
1,1,1-Trichloroethane	2.0 U	2.0	0.72	2	05/30/17 15:01	
Carbon Tetrachloride	2.0 U	2.0	0.90	2	05/30/17 15:01	
Benzene	2.0 U	2.0	0.40	2	05/30/17 15:01	
1,2-Dichloroethane	2.0 U	2.0	0.72	2	05/30/17 15:01	
Trichloroethene	36	2.0	0.44	2	05/30/17 15:01	
1,2-Dichloropropane	2.0 U	2.0	0.40	2	05/30/17 15:01	
Bromodichloromethane	2.0 U	2.0	0.64	2	05/30/17 15:01	
cis-1,3-Dichloropropene	2.0 U	2.0	0.48	2	05/30/17 15:01	
4-Methyl-2-pentanone (MIBK)	10 U	10	1.4	2	05/30/17 15:01	
Toluene	2.0 U	2.0	0.40	2	05/30/17 15:01	
trans-1,3-Dichloropropene	2.0 U	2.0	0.40	2	05/30/17 15:01	
1,1,2-Trichloroethane	2.0 U	2.0	0.68	2	05/30/17 15:01	
Tetrachloroethene	2.0 U	2.0	0.60	2	05/30/17 15:01	
2-Hexanone	10 U	10	3.4	2	05/30/17 15:01	
Dibromochloromethane	2.0 U	2.0	0.62	2	05/30/17 15:01	
Chlorobenzene	2.0 U	2.0	0.58	2	05/30/17 15:01	
Ethylbenzene	2.0 U	2.0	0.40	2	05/30/17 15:01	
m,p-Xylenes	4.0 U	4.0	0.66	2	05/30/17 15:01	
o-Xylene	2.0 U	2.0	0.40	2	05/30/17 15:01	
Styrene	2.0 U	2.0	0.40	2	05/30/17 15:01	
Bromoform	2.0 U	2.0	0.84	2	05/30/17 15:01	
1,1,2,2-Tetrachloroethane	2.0 U	2.0	0.50	2	05/30/17 15:01	

Analytical Report **Client:** CB&I Service Request: R1704784 Date Collected: 05/22/17 14:05 **Project:** Textron Wheatfield/156045 Sample Matrix: Water Date Received: 05/25/17 15:00 Sample Name: MW-87-04 (1) Units: ug/L Basis: NA Lab Code: R1704784-002

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	05/30/17 15:01	
Toluene-d8	113	87 - 121	05/30/17 15:01	
Dibromofluoromethane	107	89 - 119	05/30/17 15:01	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 15:00
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-14 (1)	Units: ug/L
Lab Code:	R1704784-003	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	250 U	250	53	250	06/01/17 17:08	
Vinyl Chloride	2900	250	80	250	06/01/17 17:08	
Chloroethane	250 U	250	60	250	06/01/17 17:08	
Bromomethane	250 U	250	73	250	06/01/17 17:08	
1,1-Dichloroethene	250 U	250	150	250	06/01/17 17:08	
Acetone	320 J	1300	310	250	06/01/17 17:08	
Carbon Disulfide	250 U	250	55	250	06/01/17 17:08	
Methylene Chloride	22000	250	150	250	06/01/17 17:08	
trans-1,2-Dichloroethene	250 U	250	83	250	06/01/17 17:08	
1,1-Dichloroethane	170 J	250	50	250	06/01/17 17:08	
cis-1,2-Dichloroethene	16000	250	75	250	06/01/17 17:08	
2-Butanone (MEK)	1300 U	1300	210	250	06/01/17 17:08	
Chloroform	450	250	63	250	06/01/17 17:08	
1,1,1-Trichloroethane	390	250	90	250	06/01/17 17:08	
Carbon Tetrachloride	250 U	250	120	250	06/01/17 17:08	
Benzene	250 U	250	50	250	06/01/17 17:08	
1,2-Dichloroethane	250 U	250	90	250	06/01/17 17:08	
Trichloroethene	32000	250	55	250	06/01/17 17:08	
1,2-Dichloropropane	250 U	250	50	250	06/01/17 17:08	
Bromodichloromethane	250 U	250	80	250	06/01/17 17:08	
cis-1,3-Dichloropropene	250 U	250	60	250	06/01/17 17:08	
4-Methyl-2-pentanone (MIBK)	1300 U	1300	170	250	06/01/17 17:08	
Toluene	250 U	250	50	250	06/01/17 17:08	
trans-1,3-Dichloropropene	250 U	250	50	250	06/01/17 17:08	
1,1,2-Trichloroethane	250 U	250	85	250	06/01/17 17:08	
Tetrachloroethene	250 U	250	75	250	06/01/17 17:08	
2-Hexanone	1300 U	1300	420	250	06/01/17 17:08	
Dibromochloromethane	250 U	250	78	250	06/01/17 17:08	
Chlorobenzene	250 U	250	73	250	06/01/17 17:08	
Ethylbenzene	250 U	250	50	250	06/01/17 17:08	
m,p-Xylenes	500 U	500	83	250	06/01/17 17:08	
o-Xylene	250 U	250	50	250	06/01/17 17:08	
Styrene	250 U	250	50	250	06/01/17 17:08	
Bromoform	250 U	250	110	250	06/01/17 17:08	
1,1,2,2-Tetrachloroethane	250 U	250	63	250	06/01/17 17:08	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 15:00
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-14 (1)	Units: ug/L
Lab Code:	R1704784-003	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	06/01/17 17:08	
Toluene-d8	114	87 - 121	06/01/17 17:08	
Dibromofluoromethane	109	89 - 119	06/01/17 17:08	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 15:50
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-15 (1)	Units: ug/L
Lab Code:	R1704784-004	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	5.0 U	5.0	1.1	5	05/30/17 16:01	
Vinyl Chloride	180	5.0	1.6	5	05/30/17 16:01	
Chloroethane	5.0 U	5.0	1.2	5	05/30/17 16:01	
Bromomethane	5.0 U	5.0	1.5	5	05/30/17 16:01	
1,1-Dichloroethene	5.0 U	5.0	2.9	5	05/30/17 16:01	
Acetone	25 U	25	6.2	5	05/30/17 16:01	
Carbon Disulfide	6.5	5.0	1.1	5	05/30/17 16:01	
Methylene Chloride	4000 E	5.0	3.0	5	05/30/17 16:01	
trans-1,2-Dichloroethene	2.0 J	5.0	1.7	5	05/30/17 16:01	
1,1-Dichloroethane	3.9 J	5.0	1.0	5	05/30/17 16:01	
cis-1,2-Dichloroethene	390	5.0	1.5	5	05/30/17 16:01	
2-Butanone (MEK)	25 U	25	4.1	5	05/30/17 16:01	
Chloroform	5.0 U	5.0	1.3	5	05/30/17 16:01	
1,1,1-Trichloroethane	5.0 U	5.0	1.8	5	05/30/17 16:01	
Carbon Tetrachloride	5.0 U	5.0	2.3	5	05/30/17 16:01	
Benzene	5.0 U	5.0	1.0	5	05/30/17 16:01	
1,2-Dichloroethane	5.0 U	5.0	1.8	5	05/30/17 16:01	
Trichloroethene	10	5.0	1.1	5	05/30/17 16:01	
1,2-Dichloropropane	5.0 U	5.0	1.0	5	05/30/17 16:01	
Bromodichloromethane	5.0 U	5.0	1.6	5	05/30/17 16:01	
cis-1,3-Dichloropropene	5.0 U	5.0	1.2	5	05/30/17 16:01	
4-Methyl-2-pentanone (MIBK)	25 U	25	3.4	5	05/30/17 16:01	
Toluene	5.0 U	5.0	1.0	5	05/30/17 16:01	
trans-1,3-Dichloropropene	5.0 U	5.0	1.0	5	05/30/17 16:01	
1,1,2-Trichloroethane	5.0 U	5.0	1.7	5	05/30/17 16:01	
Tetrachloroethene	5.0 U	5.0	1.5	5	05/30/17 16:01	
2-Hexanone	25 U	25	8.3	5	05/30/17 16:01	
Dibromochloromethane	5.0 U	5.0	1.6	5	05/30/17 16:01	
Chlorobenzene	5.0 U	5.0	1.5	5	05/30/17 16:01	
Ethylbenzene	5.0 U	5.0	1.0	5	05/30/17 16:01	
m,p-Xylenes	10 U	10	1.7	5	05/30/17 16:01	
o-Xylene	5.0 U	5.0	1.0	5	05/30/17 16:01	
Styrene	5.0 U	5.0	1.0	5	05/30/17 16:01	
Bromoform	5.0 U	5.0	2.1	5	05/30/17 16:01	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1.3	5	05/30/17 16:01	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/30/17 16:01	
Toluene-d8	113	87 - 121	05/30/17 16:01	
Dibromofluoromethane	108	89 - 119	05/30/17 16:01	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 15:50
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-15 (1)	Units: ug/L
Lab Code:	R1704784-004	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	25 U	25	5.3	25	06/01/17 16:08	
Vinyl Chloride	170 D	25	8.0	25	06/01/17 16:08	
Chloroethane	25 U	25	6.0	25	06/01/17 16:08	
Bromomethane	25 U	25	7.3	25	06/01/17 16:08	
1,1-Dichloroethene	25 U	25	15	25	06/01/17 16:08	
Acetone	34 DJ	130	31	25	06/01/17 16:08	
Carbon Disulfide	8.8 DJ	25	5.5	25	06/01/17 16:08	
Methylene Chloride	4300 D	25	15	25	06/01/17 16:08	
trans-1,2-Dichloroethene	25 U	25	8.3	25	06/01/17 16:08	
1,1-Dichloroethane	25 U	25	5.0	25	06/01/17 16:08	
cis-1,2-Dichloroethene	370 D	25	7.5	25	06/01/17 16:08	
2-Butanone (MEK)	130 U	130	21	25	06/01/17 16:08	
Chloroform	25 U	25	6.3	25	06/01/17 16:08	
1,1,1-Trichloroethane	25 U	25	9.0	25	06/01/17 16:08	
Carbon Tetrachloride	25 U	25	12	25	06/01/17 16:08	
Benzene	25 U	25	5.0	25	06/01/17 16:08	
1,2-Dichloroethane	25 U	25	9.0	25	06/01/17 16:08	
Trichloroethene	11 DJ	25	5.5	25	06/01/17 16:08	
1,2-Dichloropropane	25 U	25	5.0	25	06/01/17 16:08	
Bromodichloromethane	25 U	25	8.0	25	06/01/17 16:08	
cis-1,3-Dichloropropene	25 U	25	6.0	25	06/01/17 16:08	
4-Methyl-2-pentanone (MIBK)	130 U	130	17	25	06/01/17 16:08	
Toluene	25 U	25	5.0	25	06/01/17 16:08	
trans-1,3-Dichloropropene	25 U	25	5.0	25	06/01/17 16:08	
1,1,2-Trichloroethane	25 U	25	8.5	25	06/01/17 16:08	
Tetrachloroethene	25 U	25	7.5	25	06/01/17 16:08	
2-Hexanone	130 U	130	42	25	06/01/17 16:08	
Dibromochloromethane	25 U	25	7.8	25	06/01/17 16:08	
Chlorobenzene	25 U	25	7.3	25	06/01/17 16:08	
Ethylbenzene	25 U	25	5.0	25	06/01/17 16:08	
m,p-Xylenes	50 U	50	8.3	25	06/01/17 16:08	
o-Xylene	25 U	25	5.0	25	06/01/17 16:08	
Styrene	25 U	25	5.0	25	06/01/17 16:08	
Bromoform	25 U	25	11	25	06/01/17 16:08	
1,1,2,2-Tetrachloroethane	25 U	25	6.3	25	06/01/17 16:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	06/01/17 16:08	
Toluene-d8	112	87 - 121	06/01/17 16:08	
Dibromofluoromethane	107	89 - 119	06/01/17 16:08	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 16:50
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-13 (1)	Units: ug/L
Lab Code:	R1704784-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	500 U	500	110	500	05/30/17 16:31	
Vinyl Chloride	3000	500	160	500	05/30/17 16:31	
Chloroethane	500 U	500	120	500	05/30/17 16:31	
Bromomethane	500 U	500	150	500	05/30/17 16:31	
1,1-Dichloroethene	500 U	500	290	500	05/30/17 16:31	
Acetone	2500 U	2500	620	500	05/30/17 16:31	
Carbon Disulfide	500 U	500	110	500	05/30/17 16:31	
Methylene Chloride	100000 E	500	300	500	05/30/17 16:31	
trans-1,2-Dichloroethene	500 U	500	170	500	05/30/17 16:31	
1,1-Dichloroethane	320 J	500	100	500	05/30/17 16:31	
cis-1,2-Dichloroethene	80000	500	150	500	05/30/17 16:31	
2-Butanone (MEK)	2500 U	2500	410	500	05/30/17 16:31	
Chloroform	1200	500	130	500	05/30/17 16:31	
1,1,1-Trichloroethane	1100	500	180	500	05/30/17 16:31	
Carbon Tetrachloride	500 U	500	230	500	05/30/17 16:31	
Benzene	500 U	500	100	500	05/30/17 16:31	
1,2-Dichloroethane	500 U	500	180	500	05/30/17 16:31	
Trichloroethene	40000	500	110	500	05/30/17 16:31	
1,2-Dichloropropane	500 U	500	100	500	05/30/17 16:31	
Bromodichloromethane	230 J	500	160	500	05/30/17 16:31	
cis-1,3-Dichloropropene	500 U	500	120	500	05/30/17 16:31	
4-Methyl-2-pentanone (MIBK)	2500 U	2500	340	500	05/30/17 16:31	
Toluene	500 U	500	100	500	05/30/17 16:31	
trans-1,3-Dichloropropene	500 U	500	100	500	05/30/17 16:31	
1,1,2-Trichloroethane	500 U	500	170	500	05/30/17 16:31	
Tetrachloroethene	500 U	500	150	500	05/30/17 16:31	
2-Hexanone	2500 U	2500	830	500	05/30/17 16:31	
Dibromochloromethane	500 U	500	160	500	05/30/17 16:31	
Chlorobenzene	500 U	500	150	500	05/30/17 16:31	
Ethylbenzene	500 U	500	100	500	05/30/17 16:31	
m,p-Xylenes	1000 U	1000	170	500	05/30/17 16:31	
o-Xylene	500 U	500	100	500	05/30/17 16:31	
Styrene	500 U	500	100	500	05/30/17 16:31	
Bromoform	500 U	500	210	500	05/30/17 16:31	
1,1,2,2-Tetrachloroethane	500 U	500	130	500	05/30/17 16:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	05/30/17 16:31	
Toluene-d8	115	87 - 121	05/30/17 16:31	
Dibromofluoromethane	109	89 - 119	05/30/17 16:31	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 16:50
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-13 (1)	Units: ug/L
Lab Code:	R1704784-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	1000 U	1000	210	1000	05/30/17 18:01	
Vinyl Chloride	2700 D	1000	320	1000	05/30/17 18:01	
Chloroethane	1000 U	1000	240	1000	05/30/17 18:01	
Bromomethane	1000 U	1000	290	1000	05/30/17 18:01	
1,1-Dichloroethene	1000 U	1000	570	1000	05/30/17 18:01	
Acetone	5000 U	5000	1300	1000	05/30/17 18:01	
Carbon Disulfide	1000 U	1000	220	1000	05/30/17 18:01	
Methylene Chloride	94000 D	1000	600	1000	05/30/17 18:01	
trans-1,2-Dichloroethene	1000 U	1000	330	1000	05/30/17 18:01	
1,1-Dichloroethane	270 DJ	1000	200	1000	05/30/17 18:01	
cis-1,2-Dichloroethene	72000 D	1000	300	1000	05/30/17 18:01	
2-Butanone (MEK)	5000 U	5000	810	1000	05/30/17 18:01	
Chloroform	1100 D	1000	250	1000	05/30/17 18:01	
1,1,1-Trichloroethane	1000 D	1000	360	1000	05/30/17 18:01	
Carbon Tetrachloride	1000 U	1000	450	1000	05/30/17 18:01	
Benzene	1000 U	1000	200	1000	05/30/17 18:01	
1,2-Dichloroethane	1000 U	1000	360	1000	05/30/17 18:01	
Trichloroethene	35000 D	1000	220	1000	05/30/17 18:01	
1,2-Dichloropropane	1000 U	1000	200	1000	05/30/17 18:01	
Bromodichloromethane	1000 U	1000	320	1000	05/30/17 18:01	
cis-1,3-Dichloropropene	1000 U	1000	240	1000	05/30/17 18:01	
4-Methyl-2-pentanone (MIBK)	5000 U	5000	670	1000	05/30/17 18:01	
Toluene	1000 U	1000	200	1000	05/30/17 18:01	
trans-1,3-Dichloropropene	1000 U	1000	200	1000	05/30/17 18:01	
1,1,2-Trichloroethane	1000 U	1000	340	1000	05/30/17 18:01	
Tetrachloroethene	1000 U	1000	300	1000	05/30/17 18:01	
2-Hexanone	5000 U	5000	1700	1000	05/30/17 18:01	
Dibromochloromethane	1000 U	1000	310	1000	05/30/17 18:01	
Chlorobenzene	1000 U	1000	290	1000	05/30/17 18:01	
Ethylbenzene	1000 U	1000	200	1000	05/30/17 18:01	
m,p-Xylenes	2000 U	2000	330	1000	05/30/17 18:01	
o-Xylene	1000 U	1000	200	1000	05/30/17 18:01	
Styrene	1000 U	1000	200	1000	05/30/17 18:01	
Bromoform	1000 U	1000	420	1000	05/30/17 18:01	
1,1,2,2-Tetrachloroethane	1000 U	1000	250	1000	05/30/17 18:01	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	05/30/17 18:01	
Toluene-d8	113	87 - 121	05/30/17 18:01	
Dibromofluoromethane	109	89 - 119	05/30/17 18:01	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 17:35
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-09 (1)	Units: ug/L
Lab Code:	R1704784-006	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	2.0 U	2.0	0.42	2	06/01/17 13:07	
Vinyl Chloride	190	2.0	0.64	2	06/01/17 13:07	
Chloroethane	2.0 U	2.0	0.48	2	06/01/17 13:07	
Bromomethane	2.0 U	2.0	0.58	2	06/01/17 13:07	
1,1-Dichloroethene	1.5 J	2.0	1.2	2	06/01/17 13:07	
Acetone	4.1 J	10	2.5	2	06/01/17 13:07	
Carbon Disulfide	2.0 U	2.0	0.44	2	06/01/17 13:07	
Methylene Chloride	2.0 U	2.0	1.2	2	06/01/17 13:07	
trans-1,2-Dichloroethene	1.4 J	2.0	0.66	2	06/01/17 13:07	
1,1-Dichloroethane	16	2.0	0.40	2	06/01/17 13:07	
cis-1,2-Dichloroethene	150	2.0	0.60	2	06/01/17 13:07	
2-Butanone (MEK)	10 U	10	1.7	2	06/01/17 13:07	
Chloroform	2.0 U	2.0	0.50	2	06/01/17 13:07	
1,1,1-Trichloroethane	85	2.0	0.72	2	06/01/17 13:07	
Carbon Tetrachloride	2.0 U	2.0	0.90	2	06/01/17 13:07	
Benzene	2.0 U	2.0	0.40	2	06/01/17 13:07	
1,2-Dichloroethane	2.0 U	2.0	0.72	2	06/01/17 13:07	
Trichloroethene	1.7 J	2.0	0.44	2	06/01/17 13:07	
1,2-Dichloropropane	2.0 U	2.0	0.40	2	06/01/17 13:07	
Bromodichloromethane	2.0 U	2.0	0.64	2	06/01/17 13:07	
cis-1,3-Dichloropropene	2.0 U	2.0	0.48	2	06/01/17 13:07	
4-Methyl-2-pentanone (MIBK)	10 U	10	1.4	2	06/01/17 13:07	
Toluene	2.0 U	2.0	0.40	2	06/01/17 13:07	
trans-1,3-Dichloropropene	2.0 U	2.0	0.40	2	06/01/17 13:07	
1,1,2-Trichloroethane	2.0 U	2.0	0.68	2	06/01/17 13:07	
Tetrachloroethene	2.0 U	2.0	0.60	2	06/01/17 13:07	
2-Hexanone	10 U	10	3.4	2	06/01/17 13:07	
Dibromochloromethane	2.0 U	2.0	0.62	2	06/01/17 13:07	
Chlorobenzene	2.0 U	2.0	0.58	2	06/01/17 13:07	
Ethylbenzene	2.0 U	2.0	0.40	2	06/01/17 13:07	
m,p-Xylenes	4.0 U	4.0	0.66	2	06/01/17 13:07	
o-Xylene	2.0 U	2.0	0.40	2	06/01/17 13:07	
Styrene	2.0 U	2.0	0.40	2	06/01/17 13:07	
Bromoform	2.0 U	2.0	0.84	2	06/01/17 13:07	
1,1,2,2-Tetrachloroethane	2.0 U	2.0	0.50	2	06/01/17 13:07	

Analytical Report Textron Wheatfield/156045

Service Request: R1704784 Date Collected: 05/22/17 17:35 Date Received: 05/25/17 15:00

> Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

CB&I

Water

MW-87-09(1)

R1704784-006

Client:

Project:

Sample Matrix:

Sample Name:

Lab Code:

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	06/01/17 13:07	
Toluene-d8	113	87 - 121	06/01/17 13:07	
Dibromofluoromethane	109	89 - 119	06/01/17 13:07	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/22/17 09:20
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	Trip Blank	Units: ug/L
Lab Code:	R1704784-007	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	1.0 U	1.0	0.21	1	05/30/17 14:01	
Vinyl Chloride	1.0 U	1.0	0.32	1	05/30/17 14:01	
Chloroethane	1.0 U	1.0	0.24	1	05/30/17 14:01	
Bromomethane	1.0 U	1.0	0.29	1	05/30/17 14:01	
1,1-Dichloroethene	1.0 U	1.0	0.57	1	05/30/17 14:01	
Acetone	5.0 U	5.0	1.3	1	05/30/17 14:01	
Carbon Disulfide	1.0 U	1.0	0.22	1	05/30/17 14:01	
Methylene Chloride	1.0 U	1.0	0.60	1	05/30/17 14:01	
trans-1,2-Dichloroethene	1.0 U	1.0	0.33	1	05/30/17 14:01	
1,1-Dichloroethane	1.0 U	1.0	0.20	1	05/30/17 14:01	
cis-1,2-Dichloroethene	1.0 U	1.0	0.30	1	05/30/17 14:01	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	05/30/17 14:01	
Chloroform	1.0 U	1.0	0.25	1	05/30/17 14:01	
1,1,1-Trichloroethane	1.0 U	1.0	0.36	1	05/30/17 14:01	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	05/30/17 14:01	
Benzene	1.0 U	1.0	0.20	1	05/30/17 14:01	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	05/30/17 14:01	
Trichloroethene	1.0 U	1.0	0.22	1	05/30/17 14:01	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	05/30/17 14:01	
Bromodichloromethane	1.0 U	1.0	0.32	1	05/30/17 14:01	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	05/30/17 14:01	
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	0.67	1	05/30/17 14:01	
Toluene	1.0 U	1.0	0.20	1	05/30/17 14:01	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	05/30/17 14:01	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	05/30/17 14:01	
Tetrachloroethene	1.0 U	1.0	0.30	1	05/30/17 14:01	
2-Hexanone	5.0 U	5.0	1.7	1	05/30/17 14:01	
Dibromochloromethane	1.0 U	1.0	0.31	1	05/30/17 14:01	
Chlorobenzene	1.0 U	1.0	0.29	1	05/30/17 14:01	
Ethylbenzene	1.0 U	1.0	0.20	1	05/30/17 14:01	
m,p-Xylenes	2.0 U	2.0	0.33	1	05/30/17 14:01	
o-Xylene	1.0 U	1.0	0.20	1	05/30/17 14:01	
Styrene	1.0 U	1.0	0.20	1	05/30/17 14:01	
Bromoform	1.0 U	1.0	0.42	1	05/30/17 14:01	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	05/30/17 14:01	

Analytical Report **Client:** CB&I Service Request: R1704784 Date Collected: 05/22/17 09:20 **Project:** Textron Wheatfield/156045 Sample Matrix: Water Date Received: 05/25/17 15:00 Sample Name: Trip Blank Units: ug/L R1704784-007 Basis: NA Lab Code:

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	05/30/17 14:01	
Toluene-d8	112	87 - 121	05/30/17 14:01	
Dibromofluoromethane	106	89 - 119	05/30/17 14:01	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 09:20
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-96-01 (1)	Units: ug/L
Lab Code:	R1704784-008	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	5.0 U	5.0	1.1	5	05/30/17 17:31	
Vinyl Chloride	700	5.0	1.6	5	05/30/17 17:31	
Chloroethane	5.0 U	5.0	1.2	5	05/30/17 17:31	
Bromomethane	5.0 U	5.0	1.5	5	05/30/17 17:31	
1,1-Dichloroethene	5.0 U	5.0	2.9	5	05/30/17 17:31	
Acetone	25 U	25	6.2	5	05/30/17 17:31	
Carbon Disulfide	5.0 U	5.0	1.1	5	05/30/17 17:31	
Methylene Chloride	21	5.0	3.0	5	05/30/17 17:31	
trans-1,2-Dichloroethene	4.4 J	5.0	1.7	5	05/30/17 17:31	
1,1-Dichloroethane	29	5.0	1.0	5	05/30/17 17:31	
cis-1,2-Dichloroethene	710	5.0	1.5	5	05/30/17 17:31	
2-Butanone (MEK)	25 U	25	4.1	5	05/30/17 17:31	
Chloroform	5.0 U	5.0	1.3	5	05/30/17 17:31	
1,1,1-Trichloroethane	48	5.0	1.8	5	05/30/17 17:31	
Carbon Tetrachloride	5.0 U	5.0	2.3	5	05/30/17 17:31	
Benzene	5.0 U	5.0	1.0	5	05/30/17 17:31	
1,2-Dichloroethane	5.0 U	5.0	1.8	5	05/30/17 17:31	
Trichloroethene	17	5.0	1.1	5	05/30/17 17:31	
1,2-Dichloropropane	5.0 U	5.0	1.0	5	05/30/17 17:31	
Bromodichloromethane	5.0 U	5.0	1.6	5	05/30/17 17:31	
cis-1,3-Dichloropropene	5.0 U	5.0	1.2	5	05/30/17 17:31	
4-Methyl-2-pentanone (MIBK)	25 U	25	3.4	5	05/30/17 17:31	
Toluene	5.0 U	5.0	1.0	5	05/30/17 17:31	
trans-1,3-Dichloropropene	5.0 U	5.0	1.0	5	05/30/17 17:31	
1,1,2-Trichloroethane	5.0 U	5.0	1.7	5	05/30/17 17:31	
Tetrachloroethene	5.0 U	5.0	1.5	5	05/30/17 17:31	
2-Hexanone	25 U	25	8.3	5	05/30/17 17:31	
Dibromochloromethane	5.0 U	5.0	1.6	5	05/30/17 17:31	
Chlorobenzene	5.0 U	5.0	1.5	5	05/30/17 17:31	
Ethylbenzene	5.0 U	5.0	1.0	5	05/30/17 17:31	
m,p-Xylenes	10 U	10	1.7	5	05/30/17 17:31	
o-Xylene	5.0 U	5.0	1.0	5	05/30/17 17:31	
Styrene	5.0 U	5.0	1.0	5	05/30/17 17:31	
Bromoform	5.0 U	5.0	2.1	5	05/30/17 17:31	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1.3	5	05/30/17 17:31	

Analytical Report CB&I Service Request: R1704784 Date Collected: 05/23/17 09:20 **Project:** Textron Wheatfield/156045 Sample Matrix: Water Date Received: 05/25/17 15:00 Sample Name: MW-96-01 (1) Units: ug/L Basis: NA Lab Code: R1704784-008

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Client:

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/30/17 17:31	
Toluene-d8	113	87 - 121	05/30/17 17:31	
Dibromofluoromethane	109	89 - 119	05/30/17 17:31	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 10:00
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-12 (1)	Units: ug/L
Lab Code:	R1704784-009	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	10 U	10	2.1	10	05/30/17 18:31	
Vinyl Chloride	1700	10	3.2	10	05/30/17 18:31	
Chloroethane	10 U	10	2.4	10	05/30/17 18:31	
Bromomethane	10 U	10	2.9	10	05/30/17 18:31	
1,1-Dichloroethene	7.2 J	10	5.7	10	05/30/17 18:31	
Acetone	50 U	50	13	10	05/30/17 18:31	
Carbon Disulfide	10 U	10	2.2	10	05/30/17 18:31	
Methylene Chloride	10 U	10	6.0	10	05/30/17 18:31	
trans-1,2-Dichloroethene	8.7 J	10	3.3	10	05/30/17 18:31	
1,1-Dichloroethane	19	10	2.0	10	05/30/17 18:31	
cis-1,2-Dichloroethene	2200 E	10	3.0	10	05/30/17 18:31	
2-Butanone (MEK)	50 U	50	8.1	10	05/30/17 18:31	
Chloroform	10 U	10	2.5	10	05/30/17 18:31	
1,1,1-Trichloroethane	30	10	3.6	10	05/30/17 18:31	
Carbon Tetrachloride	10 U	10	4.5	10	05/30/17 18:31	
Benzene	10 U	10	2.0	10	05/30/17 18:31	
1,2-Dichloroethane	10 U	10	3.6	10	05/30/17 18:31	
Trichloroethene	14	10	2.2	10	05/30/17 18:31	
1,2-Dichloropropane	10 U	10	2.0	10	05/30/17 18:31	
Bromodichloromethane	10 U	10	3.2	10	05/30/17 18:31	
cis-1,3-Dichloropropene	10 U	10	2.4	10	05/30/17 18:31	
4-Methyl-2-pentanone (MIBK)	50 U	50	6.7	10	05/30/17 18:31	
Toluene	10 U	10	2.0	10	05/30/17 18:31	
trans-1,3-Dichloropropene	10 U	10	2.0	10	05/30/17 18:31	
1,1,2-Trichloroethane	10 U	10	3.4	10	05/30/17 18:31	
Tetrachloroethene	10 U	10	3.0	10	05/30/17 18:31	
2-Hexanone	50 U	50	17	10	05/30/17 18:31	
Dibromochloromethane	10 U	10	3.1	10	05/30/17 18:31	
Chlorobenzene	10 U	10	2.9	10	05/30/17 18:31	
Ethylbenzene	10 U	10	2.0	10	05/30/17 18:31	
m,p-Xylenes	20 U	20	3.3	10	05/30/17 18:31	
o-Xylene	10 U	10	2.0	10	05/30/17 18:31	
Styrene	10 U	10	2.0	10	05/30/17 18:31	
Bromoform	10 U	10	4.2	10	05/30/17 18:31	
1,1,2,2-Tetrachloroethane	10 U	10	2.5	10	05/30/17 18:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	05/30/17 18:31	
Toluene-d8	114	87 - 121	05/30/17 18:31	
Dibromofluoromethane	108	89 - 119	05/30/17 18:31	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 10:00
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-12 (1)	Units: ug/L
Lab Code:	R1704784-009	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	20 U	20	4.2	20	06/01/17 14:37	
Vinyl Chloride	1800 D	20	6.4	20	06/01/17 14:37	
Chloroethane	20 U	20	4.8	20	06/01/17 14:37	
Bromomethane	20 U	20	5.8	20	06/01/17 14:37	
1,1-Dichloroethene	20 U	20	12	20	06/01/17 14:37	
Acetone	35 DJ	100	25	20	06/01/17 14:37	
Carbon Disulfide	20 U	20	4.4	20	06/01/17 14:37	
Methylene Chloride	20 U	20	12	20	06/01/17 14:37	
trans-1,2-Dichloroethene	9.6 DJ	20	6.6	20	06/01/17 14:37	
1,1-Dichloroethane	20 DJ	20	4.0	20	06/01/17 14:37	
cis-1,2-Dichloroethene	2200 D	20	6.0	20	06/01/17 14:37	
2-Butanone (MEK)	100 U	100	17	20	06/01/17 14:37	
Chloroform	20 U	20	5.0	20	06/01/17 14:37	
1,1,1-Trichloroethane	29 D	20	7.2	20	06/01/17 14:37	
Carbon Tetrachloride	20 U	20	9.0	20	06/01/17 14:37	
Benzene	20 U	20	4.0	20	06/01/17 14:37	
1,2-Dichloroethane	20 U	20	7.2	20	06/01/17 14:37	
Trichloroethene	20 DJ	20	4.4	20	06/01/17 14:37	
1,2-Dichloropropane	20 U	20	4.0	20	06/01/17 14:37	
Bromodichloromethane	20 U	20	6.4	20	06/01/17 14:37	
cis-1,3-Dichloropropene	20 U	20	4.8	20	06/01/17 14:37	
4-Methyl-2-pentanone (MIBK)	100 U	100	14	20	06/01/17 14:37	
Toluene	20 U	20	4.0	20	06/01/17 14:37	
trans-1,3-Dichloropropene	20 U	20	4.0	20	06/01/17 14:37	
1,1,2-Trichloroethane	20 U	20	6.8	20	06/01/17 14:37	
Tetrachloroethene	20 U	20	6.0	20	06/01/17 14:37	
2-Hexanone	100 U	100	34	20	06/01/17 14:37	
Dibromochloromethane	20 U	20	6.2	20	06/01/17 14:37	
Chlorobenzene	20 U	20	5.8	20	06/01/17 14:37	
Ethylbenzene	20 U	20	4.0	20	06/01/17 14:37	
m,p-Xylenes	40 U	40	6.6	20	06/01/17 14:37	
o-Xylene	20 U	20	4.0	20	06/01/17 14:37	
Styrene	20 U	20	4.0	20	06/01/17 14:37	
Bromoform	20 U	20	8.4	20	06/01/17 14:37	
1,1,2,2-Tetrachloroethane	20 U	20	5.0	20	06/01/17 14:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	06/01/17 14:37	
Toluene-d8	113	87 - 121	06/01/17 14:37	
Dibromofluoromethane	107	89 - 119	06/01/17 14:37	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 10:30
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-01 (1)	Units: ug/L
Lab Code:	R1704784-010	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	2.0 U	2.0	0.42	2	05/30/17 19:01	
Vinyl Chloride	84	2.0	0.64	2	05/30/17 19:01	
Chloroethane	2.0 U	2.0	0.48	2	05/30/17 19:01	
Bromomethane	2.0 U	2.0	0.58	2	05/30/17 19:01	
1,1-Dichloroethene	2.6	2.0	1.2	2	05/30/17 19:01	
Acetone	10 U	10	2.5	2	05/30/17 19:01	
Carbon Disulfide	2.0 U	2.0	0.44	2	05/30/17 19:01	
Methylene Chloride	2.0 U	2.0	1.2	2	05/30/17 19:01	
trans-1,2-Dichloroethene	6.8	2.0	0.66	2	05/30/17 19:01	
1,1-Dichloroethane	5.6	2.0	0.40	2	05/30/17 19:01	
cis-1,2-Dichloroethene	660 E	2.0	0.60	2	05/30/17 19:01	
2-Butanone (MEK)	10 U	10	1.7	2	05/30/17 19:01	
Chloroform	1.1 J	2.0	0.50	2	05/30/17 19:01	
1,1,1-Trichloroethane	15	2.0	0.72	2	05/30/17 19:01	
Carbon Tetrachloride	2.0 U	2.0	0.90	2	05/30/17 19:01	
Benzene	2.0 U	2.0	0.40	2	05/30/17 19:01	
1,2-Dichloroethane	2.0 U	2.0	0.72	2	05/30/17 19:01	
Trichloroethene	110	2.0	0.44	2	05/30/17 19:01	
1,2-Dichloropropane	2.0 U	2.0	0.40	2	05/30/17 19:01	
Bromodichloromethane	2.0 U	2.0	0.64	2	05/30/17 19:01	
cis-1,3-Dichloropropene	2.0 U	2.0	0.48	2	05/30/17 19:01	
4-Methyl-2-pentanone (MIBK)	10 U	10	1.4	2	05/30/17 19:01	
Toluene	2.0 U	2.0	0.40	2	05/30/17 19:01	
trans-1,3-Dichloropropene	2.0 U	2.0	0.40	2	05/30/17 19:01	
1,1,2-Trichloroethane	2.0 U	2.0	0.68	2	05/30/17 19:01	
Tetrachloroethene	2.0 U	2.0	0.60	2	05/30/17 19:01	
2-Hexanone	10 U	10	3.4	2	05/30/17 19:01	
Dibromochloromethane	2.0 U	2.0	0.62	2	05/30/17 19:01	
Chlorobenzene	2.0 U	2.0	0.58	2	05/30/17 19:01	
Ethylbenzene	2.0 U	2.0	0.40	2	05/30/17 19:01	
m,p-Xylenes	4.0 U	4.0	0.66	2	05/30/17 19:01	
o-Xylene	2.0 U	2.0	0.40	2	05/30/17 19:01	
Styrene	2.0 U	2.0	0.40	2	05/30/17 19:01	
Bromoform	2.0 U	2.0	0.84	2	05/30/17 19:01	
1,1,2,2-Tetrachloroethane	2.0 U	2.0	0.50	2	05/30/17 19:01	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/30/17 19:01	
Toluene-d8	112	87 - 121	05/30/17 19:01	
Dibromofluoromethane	107	89 - 119	05/30/17 19:01	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 10:30
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-01 (1)	Units: ug/L
Lab Code:	R1704784-010	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	5.0 U	5.0	1.1	5	06/01/17 13:37	
Vinyl Chloride	89 D	5.0	1.6	5	06/01/17 13:37	
Chloroethane	5.0 U	5.0	1.2	5	06/01/17 13:37	
Bromomethane	5.0 U	5.0	1.5	5	06/01/17 13:37	
1,1-Dichloroethene	5.0 U	5.0	2.9	5	06/01/17 13:37	
Acetone	8.0 DJ	25	6.2	5	06/01/17 13:37	
Carbon Disulfide	5.0 U	5.0	1.1	5	06/01/17 13:37	
Methylene Chloride	5.0 U	5.0	3.0	5	06/01/17 13:37	
trans-1,2-Dichloroethene	6.6 D	5.0	1.7	5	06/01/17 13:37	
1,1-Dichloroethane	5.8 D	5.0	1.0	5	06/01/17 13:37	
cis-1,2-Dichloroethene	690 D	5.0	1.5	5	06/01/17 13:37	
2-Butanone (MEK)	25 U	25	4.1	5	06/01/17 13:37	
Chloroform	2.0 DJ	5.0	1.3	5	06/01/17 13:37	
1,1,1-Trichloroethane	16 D	5.0	1.8	5	06/01/17 13:37	
Carbon Tetrachloride	5.0 U	5.0	2.3	5	06/01/17 13:37	
Benzene	5.0 U	5.0	1.0	5	06/01/17 13:37	
1,2-Dichloroethane	5.0 U	5.0	1.8	5	06/01/17 13:37	
Trichloroethene	110 D	5.0	1.1	5	06/01/17 13:37	
1,2-Dichloropropane	5.0 U	5.0	1.0	5	06/01/17 13:37	
Bromodichloromethane	5.0 U	5.0	1.6	5	06/01/17 13:37	
cis-1,3-Dichloropropene	5.0 U	5.0	1.2	5	06/01/17 13:37	
4-Methyl-2-pentanone (MIBK)	25 U	25	3.4	5	06/01/17 13:37	
Toluene	5.0 U	5.0	1.0	5	06/01/17 13:37	
trans-1,3-Dichloropropene	5.0 U	5.0	1.0	5	06/01/17 13:37	
1,1,2-Trichloroethane	5.0 U	5.0	1.7	5	06/01/17 13:37	
Tetrachloroethene	5.0 U	5.0	1.5	5	06/01/17 13:37	
2-Hexanone	25 U	25	8.3	5	06/01/17 13:37	
Dibromochloromethane	5.0 U	5.0	1.6	5	06/01/17 13:37	
Chlorobenzene	5.0 U	5.0	1.5	5	06/01/17 13:37	
Ethylbenzene	5.0 U	5.0	1.0	5	06/01/17 13:37	
m,p-Xylenes	10 U	10	1.7	5	06/01/17 13:37	
o-Xylene	5.0 U	5.0	1.0	5	06/01/17 13:37	
Styrene	5.0 U	5.0	1.0	5	06/01/17 13:37	
Bromoform	5.0 U	5.0	2.1	5	06/01/17 13:37	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1.3	5	06/01/17 13:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	106	85 - 122	06/01/17 13:37	
Toluene-d8	114	87 - 121	06/01/17 13:37	
Dibromofluoromethane	109	89 - 119	06/01/17 13:37	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 11:00
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-89-12 (1)	Units: ug/L
Lab Code:	R1704784-011	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	25 U	25	5.3	25	06/01/17 16:38	
Vinyl Chloride	270	25	8.0	25	06/01/17 16:38	
Chloroethane	25 U	25	6.0	25	06/01/17 16:38	
Bromomethane	25 U	25	7.3	25	06/01/17 16:38	
1,1-Dichloroethene	25 U	25	15	25	06/01/17 16:38	
Acetone	36 J	130	31	25	06/01/17 16:38	
Carbon Disulfide	25 U	25	5.5	25	06/01/17 16:38	
Methylene Chloride	25 U	25	15	25	06/01/17 16:38	
trans-1,2-Dichloroethene	19 J	25	8.3	25	06/01/17 16:38	
1,1-Dichloroethane	9.0 J	25	5.0	25	06/01/17 16:38	
cis-1,2-Dichloroethene	4300	25	7.5	25	06/01/17 16:38	
2-Butanone (MEK)	130 U	130	21	25	06/01/17 16:38	
Chloroform	25 U	25	6.3	25	06/01/17 16:38	
1,1,1-Trichloroethane	22 J	25	9.0	25	06/01/17 16:38	
Carbon Tetrachloride	25 U	25	12	25	06/01/17 16:38	
Benzene	25 U	25	5.0	25	06/01/17 16:38	
1,2-Dichloroethane	25 U	25	9.0	25	06/01/17 16:38	
Trichloroethene	490	25	5.5	25	06/01/17 16:38	
1,2-Dichloropropane	25 U	25	5.0	25	06/01/17 16:38	
Bromodichloromethane	25 U	25	8.0	25	06/01/17 16:38	
cis-1,3-Dichloropropene	25 U	25	6.0	25	06/01/17 16:38	
4-Methyl-2-pentanone (MIBK)	130 U	130	17	25	06/01/17 16:38	
Toluene	25 U	25	5.0	25	06/01/17 16:38	
trans-1,3-Dichloropropene	25 U	25	5.0	25	06/01/17 16:38	
1,1,2-Trichloroethane	25 U	25	8.5	25	06/01/17 16:38	
Tetrachloroethene	25 U	25	7.5	25	06/01/17 16:38	
2-Hexanone	130 U	130	42	25	06/01/17 16:38	
Dibromochloromethane	25 U	25	7.8	25	06/01/17 16:38	
Chlorobenzene	25 U	25	7.3	25	06/01/17 16:38	
Ethylbenzene	25 U	25	5.0	25	06/01/17 16:38	
m,p-Xylenes	50 U	50	8.3	25	06/01/17 16:38	
o-Xylene	25 U	25	5.0	25	06/01/17 16:38	
Styrene	25 U	25	5.0	25	06/01/17 16:38	
Bromoform	25 U	25	11	25	06/01/17 16:38	
1,1,2,2-Tetrachloroethane	25 U	25	6.3	25	06/01/17 16:38	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 11:00
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-89-12 (1)	Units: ug/L
Lab Code:	R1704784-011	Basis: NA

Analysis Method:	8260C			
Prep Method:	EPA 5030C			

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	103	85 - 122	06/01/17 16:38	
Toluene-d8	112	87 - 121	06/01/17 16:38	
Dibromofluoromethane	107	89 - 119	06/01/17 16:38	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 11:40
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-10 (1)	Units: ug/L
Lab Code:	R1704784-012	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	5.0 U	5.0	1.1	5	06/01/17 14:07	
Vinyl Chloride	12	5.0	1.6	5	06/01/17 14:07	
Chloroethane	5.0 U	5.0	1.2	5	06/01/17 14:07	
Bromomethane	5.0 U	5.0	1.5	5	06/01/17 14:07	
1,1-Dichloroethene	5.0 U	5.0	2.9	5	06/01/17 14:07	
Acetone	6.5 J	25	6.2	5	06/01/17 14:07	
Carbon Disulfide	5.0 U	5.0	1.1	5	06/01/17 14:07	
Methylene Chloride	5.0 U	5.0	3.0	5	06/01/17 14:07	
trans-1,2-Dichloroethene	5.0 U	5.0	1.7	5	06/01/17 14:07	
1,1-Dichloroethane	2.3 J	5.0	1.0	5	06/01/17 14:07	
cis-1,2-Dichloroethene	130	5.0	1.5	5	06/01/17 14:07	
2-Butanone (MEK)	25 U	25	4.1	5	06/01/17 14:07	
Chloroform	1.4 J	5.0	1.3	5	06/01/17 14:07	
1,1,1-Trichloroethane	3.6 J	5.0	1.8	5	06/01/17 14:07	
Carbon Tetrachloride	5.0 U	5.0	2.3	5	06/01/17 14:07	
Benzene	5.0 U	5.0	1.0	5	06/01/17 14:07	
1,2-Dichloroethane	5.0 U	5.0	1.8	5	06/01/17 14:07	
Trichloroethene	890	5.0	1.1	5	06/01/17 14:07	
1,2-Dichloropropane	5.0 U	5.0	1.0	5	06/01/17 14:07	
Bromodichloromethane	5.0 U	5.0	1.6	5	06/01/17 14:07	
cis-1,3-Dichloropropene	5.0 U	5.0	1.2	5	06/01/17 14:07	
4-Methyl-2-pentanone (MIBK)	25 U	25	3.4	5	06/01/17 14:07	
Toluene	5.0 U	5.0	1.0	5	06/01/17 14:07	
trans-1,3-Dichloropropene	5.0 U	5.0	1.0	5	06/01/17 14:07	
1,1,2-Trichloroethane	5.0 U	5.0	1.7	5	06/01/17 14:07	
Tetrachloroethene	5.0 U	5.0	1.5	5	06/01/17 14:07	
2-Hexanone	25 U	25	8.3	5	06/01/17 14:07	
Dibromochloromethane	5.0 U	5.0	1.6	5	06/01/17 14:07	
Chlorobenzene	5.0 U	5.0	1.5	5	06/01/17 14:07	
Ethylbenzene	5.0 U	5.0	1.0	5	06/01/17 14:07	
m,p-Xylenes	10 U	10	1.7	5	06/01/17 14:07	
o-Xylene	5.0 U	5.0	1.0	5	06/01/17 14:07	
Styrene	5.0 U	5.0	1.0	5	06/01/17 14:07	
Bromoform	5.0 U	5.0	2.1	5	06/01/17 14:07	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1.3	5	06/01/17 14:07	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 11:40
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-10 (1)	Units: ug/L
Lab Code:	R1704784-012	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	06/01/17 14:07	
Toluene-d8	113	87 - 121	06/01/17 14:07	
Dibromofluoromethane	108	89 - 119	06/01/17 14:07	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 12:05
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-05 (1)	Units: ug/L
Lab Code:	R1704784-013	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	50 U	50	11	50	06/01/17 15:38	
Vinyl Chloride	460	50	16	50	06/01/17 15:38	
Chloroethane	50 U	50	12	50	06/01/17 15:38	
Bromomethane	50 U	50	15	50	06/01/17 15:38	
1,1-Dichloroethene	50 U	50	29	50	06/01/17 15:38	
Acetone	250 U	250	62	50	06/01/17 15:38	
Carbon Disulfide	50 U	50	11	50	06/01/17 15:38	
Methylene Chloride	2100	50	30	50	06/01/17 15:38	
trans-1,2-Dichloroethene	50 U	50	17	50	06/01/17 15:38	
1,1-Dichloroethane	42 J	50	10	50	06/01/17 15:38	
cis-1,2-Dichloroethene	6900	50	15	50	06/01/17 15:38	
2-Butanone (MEK)	250 U	250	41	50	06/01/17 15:38	
Chloroform	50 U	50	13	50	06/01/17 15:38	
1,1,1-Trichloroethane	140	50	18	50	06/01/17 15:38	
Carbon Tetrachloride	50 U	50	23	50	06/01/17 15:38	
Benzene	50 U	50	10	50	06/01/17 15:38	
1,2-Dichloroethane	50 U	50	18	50	06/01/17 15:38	
Trichloroethene	1300	50	11	50	06/01/17 15:38	
1,2-Dichloropropane	50 U	50	10	50	06/01/17 15:38	
Bromodichloromethane	50 U	50	16	50	06/01/17 15:38	
cis-1,3-Dichloropropene	50 U	50	12	50	06/01/17 15:38	
4-Methyl-2-pentanone (MIBK)	250 U	250	34	50	06/01/17 15:38	
Toluene	12 J	50	10	50	06/01/17 15:38	
trans-1,3-Dichloropropene	50 U	50	10	50	06/01/17 15:38	
1,1,2-Trichloroethane	50 U	50	17	50	06/01/17 15:38	
Tetrachloroethene	50 U	50	15	50	06/01/17 15:38	
2-Hexanone	250 U	250	83	50	06/01/17 15:38	
Dibromochloromethane	50 U	50	16	50	06/01/17 15:38	
Chlorobenzene	50 U	50	15	50	06/01/17 15:38	
Ethylbenzene	50 U	50	10	50	06/01/17 15:38	
m,p-Xylenes	100 U	100	17	50	06/01/17 15:38	
o-Xylene	50 U	50	10	50	06/01/17 15:38	
Styrene	50 U	50	10	50	06/01/17 15:38	
Bromoform	50 U	50	21	50	06/01/17 15:38	
1,1,2,2-Tetrachloroethane	50 U	50	13	50	06/01/17 15:38	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 12:05
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW-87-05 (1)	Units: ug/L
Lab Code:	R1704784-013	Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	06/01/17 15:38	
Toluene-d8	113	87 - 121	06/01/17 15:38	
Dibromofluoromethane	108	89 - 119	06/01/17 15:38	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 13:15
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW MOOG-C	Units: ug/L
Lab Code:	R1704784-014	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	1.0 U	1.0	0.21	1	05/31/17 17:56	
Vinyl Chloride	1.0 U	1.0	0.32	1	05/31/17 17:56	
Chloroethane	1.0 U	1.0	0.24	1	05/31/17 17:56	
Bromomethane	1.0 U	1.0	0.29	1	05/31/17 17:56	
1,1-Dichloroethene	1.0 U	1.0	0.57	1	05/31/17 17:56	
Acetone	5.0 U	5.0	1.3	1	05/31/17 17:56	
Carbon Disulfide	1.0 U	1.0	0.22	1	05/31/17 17:56	
Methylene Chloride	1.0 U	1.0	0.60	1	05/31/17 17:56	
trans-1,2-Dichloroethene	1.0 U	1.0	0.33	1	05/31/17 17:56	
1,1-Dichloroethane	1.7	1.0	0.20	1	05/31/17 17:56	
cis-1,2-Dichloroethene	17	1.0	0.30	1	05/31/17 17:56	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	05/31/17 17:56	
Chloroform	0.98 J	1.0	0.25	1	05/31/17 17:56	
1,1,1-Trichloroethane	2.0	1.0	0.36	1	05/31/17 17:56	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	05/31/17 17:56	
Benzene	1.0 U	1.0	0.20	1	05/31/17 17:56	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	05/31/17 17:56	
Trichloroethene	21	1.0	0.22	1	05/31/17 17:56	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	05/31/17 17:56	
Bromodichloromethane	1.0 U	1.0	0.32	1	05/31/17 17:56	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	05/31/17 17:56	
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	0.67	1	05/31/17 17:56	
Toluene	1.0 U	1.0	0.20	1	05/31/17 17:56	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	05/31/17 17:56	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	05/31/17 17:56	
Tetrachloroethene	1.0 U	1.0	0.30	1	05/31/17 17:56	
2-Hexanone	5.0 U	5.0	1.7	1	05/31/17 17:56	
Dibromochloromethane	1.0 U	1.0	0.31	1	05/31/17 17:56	
Chlorobenzene	1.0 U	1.0	0.29	1	05/31/17 17:56	
Ethylbenzene	1.0 U	1.0	0.20	1	05/31/17 17:56	
m,p-Xylenes	2.0 U	2.0	0.33	1	05/31/17 17:56	
o-Xylene	1.0 U	1.0	0.20	1	05/31/17 17:56	
Styrene	1.0 U	1.0	0.20	1	05/31/17 17:56	
Bromoform	1.0 U	1.0	0.42	1	05/31/17 17:56	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	05/31/17 17:56	

Analytical Report

Client:CB&IService Request:R1704784Project:Textron Wheatfield/156045Date Collected:05/23/17 13:15Sample Matrix:WaterDate Received:05/25/17 15:00Sample Name:MW MOOG-CUnits:ug/LLab Code:R1704784-014Basis:NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	107	85 - 122	05/31/17 17:56	
Toluene-d8	113	87 - 121	05/31/17 17:56	
Dibromofluoromethane	109	89 - 119	05/31/17 17:56	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: 05/23/17 14:35
Sample Matrix:	Water	Date Received: 05/25/17 15:00
Sample Name:	MW B-10 (a)	Units: ug/L
Lab Code:	R1704784-015	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	500 U	500	110	500	06/01/17 17:38	
Vinyl Chloride	430 J	500	160	500	06/01/17 17:38	
Chloroethane	500 U	500	120	500	06/01/17 17:38	
Bromomethane	500 U	500	150	500	06/01/17 17:38	
1,1-Dichloroethene	310 J	500	290	500	06/01/17 17:38	
Acetone	2500 U	2500	620	500	06/01/17 17:38	
Carbon Disulfide	500 U	500	110	500	06/01/17 17:38	
Methylene Chloride	3300	500	300	500	06/01/17 17:38	
trans-1,2-Dichloroethene	500 U	500	170	500	06/01/17 17:38	
1,1-Dichloroethane	350 J	500	100	500	06/01/17 17:38	
cis-1,2-Dichloroethene	20000	500	150	500	06/01/17 17:38	
2-Butanone (MEK)	2500 U	2500	410	500	06/01/17 17:38	
Chloroform	980	500	130	500	06/01/17 17:38	
1,1,1-Trichloroethane	780	500	180	500	06/01/17 17:38	
Carbon Tetrachloride	500 U	500	230	500	06/01/17 17:38	
Benzene	500 U	500	100	500	06/01/17 17:38	
1,2-Dichloroethane	500 U	500	180	500	06/01/17 17:38	
Trichloroethene	58000	500	110	500	06/01/17 17:38	
1,2-Dichloropropane	500 U	500	100	500	06/01/17 17:38	
Bromodichloromethane	210 J	500	160	500	06/01/17 17:38	
cis-1,3-Dichloropropene	500 U	500	120	500	06/01/17 17:38	
4-Methyl-2-pentanone (MIBK)	2500 U	2500	340	500	06/01/17 17:38	
Toluene	500 U	500	100	500	06/01/17 17:38	
trans-1,3-Dichloropropene	500 U	500	100	500	06/01/17 17:38	
1,1,2-Trichloroethane	500 U	500	170	500	06/01/17 17:38	
Tetrachloroethene	500 U	500	150	500	06/01/17 17:38	
2-Hexanone	2500 U	2500	830	500	06/01/17 17:38	
Dibromochloromethane	500 U	500	160	500	06/01/17 17:38	
Chlorobenzene	500 U	500	150	500	06/01/17 17:38	
Ethylbenzene	500 U	500	100	500	06/01/17 17:38	
m,p-Xylenes	1000 U	1000	170	500	06/01/17 17:38	
o-Xylene	500 U	500	100	500	06/01/17 17:38	
Styrene	500 U	500	100	500	06/01/17 17:38	
Bromoform	500 U	500	210	500	06/01/17 17:38	
1,1,2,2-Tetrachloroethane	500 U	500	130	500	06/01/17 17:38	

Analytical Report **Client:** CB&I Service Request: R1704784 Date Collected: 05/23/17 14:35 **Project:** Textron Wheatfield/156045 Sample Matrix: Water Date Received: 05/25/17 15:00 Sample Name: MW B-10 (a) Units: ug/L Basis: NA Lab Code: R1704784-015

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	06/01/17 17:38	
Toluene-d8	114	87 - 121	06/01/17 17:38	
Dibromofluoromethane	109	89 - 119	06/01/17 17:38	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 52 of 68

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 53 of 68

QA/QC Report

Client:CB&IProject:Textron Wheatfield/156045Sample Matrix:Water

Service Request: R1704784

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8	
Sample Name	Lab Code	85 - 122	89 - 119	87 - 121	
MW-87-18 (1)	R1704784-001	105	109	115	
MW-87-04 (1)	R1704784-002	103	107	113	
MW-87-14 (1)	R1704784-003	105	109	114	
MW-87-15 (1)	R1704784-004	104	108	113	
MW-87-15 (1) DL	R1704784-004	104	107	112	
MW-87-13 (1)	R1704784-005	106	109	115	
MW-87-13 (1) DL	R1704784-005	106	109	113	
MW-87-09 (1)	R1704784-006	106	109	113	
Trip Blank	R1704784-007	103	106	112	
MW-96-01 (1)	R1704784-008	104	109	113	
MW-87-12 (1)	R1704784-009	102	108	114	
MW-87-12 (1) DL	R1704784-009	104	107	113	
MW-87-01 (1)	R1704784-010	104	107	112	
MW-87-01 (1) DL	R1704784-010	106	109	114	
MW-89-12 (1)	R1704784-011	103	107	112	
MW-87-10 (1)	R1704784-012	104	108	113	
MW-87-05 (1)	R1704784-013	105	108	113	
MW MOOG-C	R1704784-014	107	109	113	
MW B-10 (a)	R1704784-015	105	109	114	
Lab Control Sample	RQ1704886-03	105	108	113	
Method Blank	RQ1704886-04	102	105	113	
MW-87-18 (1) MS	RQ1704886-05	106	108	114	
MW-87-18 (1) DMS	RQ1704886-06	106	108	114	
Lab Control Sample	RQ1704974-03	106	108	114	
Method Blank	RQ1704974-04	104	107	114	
Lab Control Sample	RQ1705009-03	105	107	113	
Method Blank	RQ1705009-04	105	108	114	
MW B-10 (a) MS	RQ1705009-05	107	110	114	
MW B-10 (a) DMS	RQ1705009-06	106	107	112	

QA/QC Report

Client:	CB&I Textron Wheatfield/156045						Service Request:			R1704784		
Project:							Date Co	llected:	05/22			
Sample Matrix.	Water			Date Received.				05/25	05/25/17			
Sample Matrix.	water	ller						Date Received.				
							Date An	alyzed:	05/30	/1/		
							Date Ex	tracted:	NA			
			Dup	licate Matri	x Spike S	ummarv						
			Volatile	Organic Co	mpounds	s by GC/M	IS					
Sampla Nama:	MW 87 1	9 (1)		- 8	L	<i>J</i> – – – – – – – – – – – – – – – – – – –		Uniter	na/I			
	D1704704	0(1)						Umis.	ug/L			
Lab Code:	R1/04/84	1-001						Basis:	NA			
Analysis Method:	8260C											
Prep Method:	EPA 5030)C										
			М	atrix Snike		Dun	licate Matri	x Snike				
			RC)1704886-05		Dup	RO1704886.	.06				
		Samula		Sniles			Smiles	00	0/ Dec		חחח	
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	70 Kec	RÞD	L imit	
Chloromethane		50U	264	250	106	268	250	107	55-160	1	30	
Vinvl Chloride		510	876	250	146	899	250	155	60-157	3	30	
Chloroethane		5.0 U	282	250	113	292	250	117	70-140	4	30	
Bromomethane		5.0 U	92.1	250	37	139	250	56	10-162	41*	30	
1.1-Dichloroethene		5.0 U	233	250	93	243	250	97	74-139	4	30	
Acetone		6.7 J	197	250	76	214	250	83	29-151	8	30	
Carbon Disulfide		5.0 U	239	250	96	248	250	99	34-162	4	30	
Methylene Chloride		5.0 U	243	250	97	249	250	100	75-121	2	30	
trans-1,2-Dichloroeth	nene	2.6 J	231	250	92	244	250	97	77-125	5	30	
1,1-Dichloroethane		17	275	250	103	287	250	108	74-132	5	30	
cis-1,2-Dichloroethe	ne	620	896	250	111	904	250	115	72-133	<1	30	
2-Butanone (MEK)		25 U	197	250	79	213	250	85	46-141	7	30	
Chloroform		5.0 U	243	250	97	252	250	101	75-130	4	30	
1,1,1-Trichloroethan	e	27	283	250	103	297	250	108	74-127	5	30	
Carbon Tetrachloride	e	5.0 U	256	250	102	258	250	103	65-135	<1	30	
Benzene		5.0 U	248	250	99	257	250	103	76-129	3	30	
1,2-Dichloroethane		5.0 U	257	250	103	260	250	104	68-130	1	30	
Trichloroethene		3.9 J	246	250	97	252	250	99	62-142	3	30	
1,2-Dichloropropane		5.0 U	251	250	100	254	250	102	79-124	1	30	
Bromodichlorometha	ane	5.0 U	242	250	97	248	250	99	76-127	3	30	
cis-1,3-Dichloroprop	ene	5.0 U	226	250	90	229	250	92	52-134	1	30	
4-Methyl-2-pentanor	ne (MIBK)	25 U	218	250	87	224	250	90	60-141	3	30	
Toluene		5.0 U	259	250	104	263	250	105	79-125	2	30	
trans-1,3-Dichloropro	opene	5.0 U	225	250	90	229	250	92	50-142	2	30	
1,1,2-Trichloroethan	e	<u>5.0 U</u>	238	250	95	246	250	98	79-119	3	30	
1 etrachloroethene		5.0 U	250	250	100	265	250	106	6/-13/	6	30	
2-Hexanone		25 U	215	250	80	223	250	89	50-132 70-138	4	30	
Chlorohongono	ane	5.0 U	219	250	88 101	230	250	92 105	76 125	2	30 20	
Ethylhonzono		5.0 U	234	250	101	202	250	105	70-123	2	30 20	
m n-Xylanas		<u> </u>	204 531	<u>230</u> 500	105	550	230 500	1109	68 129	3	30	
n.p-ryicites		501	268	250	100	276	250	110	68_13/	3	30	
Styrene		501	200	250	107	270	250	108	34_156		30	
Bromoform		501	209	250	84	221	250	89	58-133	6	30	
1.1.2.2-Tetrachloroet	thane	5.0 U	237	250	95	245	250	98	72-122	3	30	
						-				-		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	CB&I						Service Request:			R1704784		
Project:	Textron Wheatfield/156045						Date Collected: 05/23/17					
Sample Matrix.	Water						Date Re	ceived	05/25	/17		
Sample Matrix.	water						Date Ac	- Long Ja	05/25	05/25/17		
							Date An	alyzed:	06/1/	1 /		
							Date Ex	tracted:	NA			
			Dup	licate Matri	x Spike S	ummarv						
			Volatile	Organic Co	mnounds	by GC/M	IS					
a i N	NUM D 10		(oraclic	organic et	mpound			T T •4	/T			
Sample Name:	MW B-10	(a)						Units:	ug/L			
Lab Code:	R1704784	-015						Basis:	NA			
Analysis Method:	8260C											
Prep Method:	EPA 5030)C										
-			м	- 4 C 1		D1		C 11				
			M	atrix Spike		Dup	licate Matrix	х Spike				
			RÇ	21705009-05			RQ1705009-	06				
		Sample		Spike			Spike		% Rec		RPD	
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit	
Chloromethane		500 U	26600	25000	106	25500	25000	102	55-160	4	30	
Vinyl Chloride		430 J	35100	25000	139	35700	25000	141	60-157	2	30	
Chloroethane		500 U	28400	25000	113	29000	25000	116	70-140	2	30	
Bromomethane		500 U	10100	25000	41	15100	25000	60	10-162	40*	30	
1,1-Dichloroethene		310 J	24500	25000	9/	24300	25000	96	/4-139	1	30	
Acetone		2500 U	22100	25000	88	21900	25000	88	29-151	<1	30	
Carbon Disulfide		500 U 2200	24400	25000	98	24600	25000	98	34-162 75 121	<1	30	
Methylene Chloride		5300 500 H	27600	25000	97	27800	25000	98	/3-121	<1	30	
1 1 Dishlarasthans	lene	500 U 250 I	23800	25000	95 104	25700	25000	95 104	74 122	<1	30	
1,1-Dichloroethane		<u> </u>	20400	25000	104	20300	25000	104	72 122	<1	20	
2 Butanona (MEK)	le	20000 2500 U	44300 22100	25000	97	21000	25000	97 84	12-155	<1	30 30	
2-Dutatione (MEK)		2300 0	22100	25000	00	25700	25000	04	75 120	J ~1	30	
1 1 1 Trichloroothan		780 780	23800	25000	106	25700	25000	105	73-130	1	30	
Carbon Tetrachloride	~	500 U	27300	25000	100	20900	25000	99	65-135	1	30	
Renzene	·	500 U	24900	25000	100	24700	25000	99	76-129	1	30	
1 2-Dichloroethane		500 U	24500	25000	100	25500	25000	102	68-130	1 4	30	
Trichloroethene		58000	79300	25000	83	77500	25000	76	62-142	2	30	
1 2-Dichloropropane		500 U	25000	25000	100	24700	25000	99	79-124	1	30	
Bromodichlorometha	ne	210 J	24900	25000	99	24300	25000	96	76-127	3	30	
cis-1,3-Dichloroprop	ene	500 U	22200	25000	89	22100	25000	88	52-134	<1	30	
4-Methyl-2-pentanon	e (MIBK)	2500 U	22100	25000	88	22800	25000	91	60-141	3	30	
Toluene	× ,	500 U	25700	25000	103	25400	25000	101	79-125	1	30	
trans-1,3-Dichloropro	opene	500 U	22400	25000	90	22100	25000	89	50-142	1	30	
1,1,2-Trichloroethane		500 U	24200	25000	97	24100	25000	97	79-119	<1	30	
Tetrachloroethene		500 U	25700	25000	103	25300	25000	101	67-137	2	30	
2-Hexanone		2500 U	21900	25000	88	22100	25000	88	56-132	1	30	
Dibromochlorometha	ine	500 U	22400	25000	90	22100	25000	88	72-128	1	30	
Chlorobenzene		500 U	25500	25000	102	25300	25000	101	76-125	<1	30	
Ethylbenzene		500 U	26300	25000	105	25900	25000	103	72-134	2	30	
m,p-Xylenes		1000 U	53200	50000	106	53000	50000	106	68-138	<1	30	
o-Xylene		500 U	26400	25000	106	26200	25000	105	68-134	<1	30	
Styrene		500 U	26200	25000	105	26000	25000	104	34-156	<1	30	
Bromoform		500 U	21000	25000	84	21400	25000	86	58-133	2	30	
1,1,2,2-Tetrachloroet	hane	500 U	23600	25000	94	24000	25000	96	72-122	1	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.
Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1704886-04	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	1.0 U	1.0	0.21	1	05/30/17 11:55	
Vinyl Chloride	1.0 U	1.0	0.32	1	05/30/17 11:55	
Chloroethane	1.0 U	1.0	0.24	1	05/30/17 11:55	
Bromomethane	1.0 U	1.0	0.29	1	05/30/17 11:55	
1,1-Dichloroethene	1.0 U	1.0	0.57	1	05/30/17 11:55	
Acetone	5.0 U	5.0	1.3	1	05/30/17 11:55	
Carbon Disulfide	1.0 U	1.0	0.22	1	05/30/17 11:55	
Methylene Chloride	1.0 U	1.0	0.60	1	05/30/17 11:55	
trans-1,2-Dichloroethene	1.0 U	1.0	0.33	1	05/30/17 11:55	
1,1-Dichloroethane	1.0 U	1.0	0.20	1	05/30/17 11:55	
cis-1,2-Dichloroethene	1.0 U	1.0	0.30	1	05/30/17 11:55	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	05/30/17 11:55	
Chloroform	1.0 U	1.0	0.25	1	05/30/17 11:55	
1,1,1-Trichloroethane	1.0 U	1.0	0.36	1	05/30/17 11:55	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	05/30/17 11:55	
Benzene	1.0 U	1.0	0.20	1	05/30/17 11:55	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	05/30/17 11:55	
Trichloroethene	1.0 U	1.0	0.22	1	05/30/17 11:55	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	05/30/17 11:55	
Bromodichloromethane	1.0 U	1.0	0.32	1	05/30/17 11:55	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	05/30/17 11:55	
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	0.67	1	05/30/17 11:55	
Toluene	1.0 U	1.0	0.20	1	05/30/17 11:55	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	05/30/17 11:55	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	05/30/17 11:55	
Tetrachloroethene	1.0 U	1.0	0.30	1	05/30/17 11:55	
2-Hexanone	5.0 U	5.0	1.7	1	05/30/17 11:55	
Dibromochloromethane	1.0 U	1.0	0.31	1	05/30/17 11:55	
Chlorobenzene	1.0 U	1.0	0.29	1	05/30/17 11:55	
Ethylbenzene	1.0 U	1.0	0.20	1	05/30/17 11:55	
m,p-Xylenes	2.0 U	2.0	0.33	1	05/30/17 11:55	
o-Xylene	1.0 U	1.0	0.20	1	05/30/17 11:55	
Styrene	1.0 U	1.0	0.20	1	05/30/17 11:55	
Bromoform	1.0 U	1.0	0.42	1	05/30/17 11:55	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	05/30/17 11:55	

Analytical Report **Client:** CB&I Service Request: R1704784 **Project:** Textron Wheatfield/156045 Date Collected: NA Water Sample Matrix: Date Received: NA Units: ug/L Sample Name: Method Blank Basis: NA Lab Code: RQ1704886-04

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85 - 122	05/30/17 11:55	
Toluene-d8	113	87 - 121	05/30/17 11:55	
Dibromofluoromethane	105	89 - 119	05/30/17 11:55	

Analytical Report

Client:	CB&I	Service Request: R1	1704784
Project:	Textron Wheatfield/156045	Date Collected: NA	A
Sample Matrix:	Water	Date Received: NA	А
Sample Name:	Method Blank	Units: ug	g/L
Lab Code:	RQ1704974-04	Basis: NA	А

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	1.0 U	1.0	0.21	1	05/31/17 11:55	
Vinyl Chloride	1.0 U	1.0	0.32	1	05/31/17 11:55	
Chloroethane	1.0 U	1.0	0.24	1	05/31/17 11:55	
Bromomethane	0.44 J	1.0	0.29	1	05/31/17 11:55	
1,1-Dichloroethene	1.0 U	1.0	0.57	1	05/31/17 11:55	
Acetone	5.0 U	5.0	1.3	1	05/31/17 11:55	
Carbon Disulfide	1.0 U	1.0	0.22	1	05/31/17 11:55	
Methylene Chloride	1.0 U	1.0	0.60	1	05/31/17 11:55	
trans-1,2-Dichloroethene	1.0 U	1.0	0.33	1	05/31/17 11:55	
1,1-Dichloroethane	1.0 U	1.0	0.20	1	05/31/17 11:55	
cis-1,2-Dichloroethene	1.0 U	1.0	0.30	1	05/31/17 11:55	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	05/31/17 11:55	
Chloroform	1.0 U	1.0	0.25	1	05/31/17 11:55	
1,1,1-Trichloroethane	1.0 U	1.0	0.36	1	05/31/17 11:55	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	05/31/17 11:55	
Benzene	1.0 U	1.0	0.20	1	05/31/17 11:55	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	05/31/17 11:55	
Trichloroethene	1.0 U	1.0	0.22	1	05/31/17 11:55	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	05/31/17 11:55	
Bromodichloromethane	1.0 U	1.0	0.32	1	05/31/17 11:55	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	05/31/17 11:55	
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	0.67	1	05/31/17 11:55	
Toluene	1.0 U	1.0	0.20	1	05/31/17 11:55	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	05/31/17 11:55	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	05/31/17 11:55	
Tetrachloroethene	1.0 U	1.0	0.30	1	05/31/17 11:55	
2-Hexanone	5.0 U	5.0	1.7	1	05/31/17 11:55	
Dibromochloromethane	1.0 U	1.0	0.31	1	05/31/17 11:55	
Chlorobenzene	1.0 U	1.0	0.29	1	05/31/17 11:55	
Ethylbenzene	1.0 U	1.0	0.20	1	05/31/17 11:55	
m,p-Xylenes	2.0 U	2.0	0.33	1	05/31/17 11:55	
o-Xylene	1.0 U	1.0	0.20	1	05/31/17 11:55	
Styrene	1.0 U	1.0	0.20	1	05/31/17 11:55	
Bromoform	1.0 U	1.0	0.42	1	05/31/17 11:55	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	05/31/17 11:55	

Analytical Report **Client:** CB&I Service Request: R1704784 **Project:** Textron Wheatfield/156045 Date Collected: NA Sample Matrix: Water Date Received: NA Units: ug/L Sample Name: Method Blank RQ1704974-04 Basis: NA Lab Code:

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	104	85 - 122	05/31/17 11:55	
Toluene-d8	114	87 - 121	05/31/17 11:55	
Dibromofluoromethane	107	89 - 119	05/31/17 11:55	

Analytical Report

Client:	CB&I	Service Request: R1704784
Project:	Textron Wheatfield/156045	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1705009-04	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Chloromethane	1.0 U	1.0	0.21	1	06/01/17 12:07	
Vinyl Chloride	1.0 U	1.0	0.32	1	06/01/17 12:07	
Chloroethane	1.0 U	1.0	0.24	1	06/01/17 12:07	
Bromomethane	1.0 U	1.0	0.29	1	06/01/17 12:07	
1,1-Dichloroethene	1.0 U	1.0	0.57	1	06/01/17 12:07	
Acetone	5.0 U	5.0	1.3	1	06/01/17 12:07	
Carbon Disulfide	1.0 U	1.0	0.22	1	06/01/17 12:07	
Methylene Chloride	1.0 U	1.0	0.60	1	06/01/17 12:07	
trans-1,2-Dichloroethene	1.0 U	1.0	0.33	1	06/01/17 12:07	
1,1-Dichloroethane	1.0 U	1.0	0.20	1	06/01/17 12:07	
cis-1,2-Dichloroethene	1.0 U	1.0	0.30	1	06/01/17 12:07	
2-Butanone (MEK)	5.0 U	5.0	0.81	1	06/01/17 12:07	
Chloroform	1.0 U	1.0	0.25	1	06/01/17 12:07	
1,1,1-Trichloroethane	1.0 U	1.0	0.36	1	06/01/17 12:07	
Carbon Tetrachloride	1.0 U	1.0	0.45	1	06/01/17 12:07	
Benzene	1.0 U	1.0	0.20	1	06/01/17 12:07	
1,2-Dichloroethane	1.0 U	1.0	0.36	1	06/01/17 12:07	
Trichloroethene	1.0 U	1.0	0.22	1	06/01/17 12:07	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/01/17 12:07	
Bromodichloromethane	1.0 U	1.0	0.32	1	06/01/17 12:07	
cis-1,3-Dichloropropene	1.0 U	1.0	0.24	1	06/01/17 12:07	
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	0.67	1	06/01/17 12:07	
Toluene	1.0 U	1.0	0.20	1	06/01/17 12:07	
trans-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/01/17 12:07	
1,1,2-Trichloroethane	1.0 U	1.0	0.34	1	06/01/17 12:07	
Tetrachloroethene	1.0 U	1.0	0.30	1	06/01/17 12:07	
2-Hexanone	5.0 U	5.0	1.7	1	06/01/17 12:07	
Dibromochloromethane	1.0 U	1.0	0.31	1	06/01/17 12:07	
Chlorobenzene	1.0 U	1.0	0.29	1	06/01/17 12:07	
Ethylbenzene	1.0 U	1.0	0.20	1	06/01/17 12:07	
m,p-Xylenes	2.0 U	2.0	0.33	1	06/01/17 12:07	
o-Xylene	1.0 U	1.0	0.20	1	06/01/17 12:07	
Styrene	1.0 U	1.0	0.20	1	06/01/17 12:07	
Bromoform	1.0 U	1.0	0.42	1	06/01/17 12:07	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	1	06/01/17 12:07	

Analytical Report **Client:** CB&I Service Request: R1704784 **Project:** Textron Wheatfield/156045 Date Collected: NA Water Sample Matrix: Date Received: NA Method Blank Units: ug/L Sample Name: RQ1705009-04 Basis: NA Lab Code:

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	105	85 - 122	06/01/17 12:07	
Toluene-d8	114	87 - 121	06/01/17 12:07	
Dibromofluoromethane	108	89 - 119	06/01/17 12:07	

QA/QC Report

Client:CB&IProject:Textron Wheatfield/156045Sample Matrix:Water

Service Request: R1704784 **Date Analyzed:** 05/30/17

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1704886-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits		
Chloromethane	8260C	20.6	20.0	103	69-145		
Vinyl Chloride	8260C	26.4	20.0	132	69-133		
Chloroethane	8260C	21.0	20.0	105	70-127		
Bromomethane	8260C	22.2	20.0	111	42-166		
1,1-Dichloroethene	8260C	17.5	20.0	88	74-135		
Acetone	8260C	22.6	20.0	113	40-161		
Carbon Disulfide	8260C	20.6	20.0	103	65-127		
Methylene Chloride	8260C	20.1	20.0	101	73-122		
trans-1,2-Dichloroethene	8260C	18.4	20.0	92	80-120		
1,1-Dichloroethane	8260C	20.7	20.0	104	78-117		
cis-1,2-Dichloroethene	8260C	19.7	20.0	98	80-121		
2-Butanone (MEK)	8260C	20.0	20.0	100	61-137		
Chloroform	8260C	19.8	20.0	99	76-120		
1,1,1-Trichloroethane	8260C	19.5	20.0	98	74-120		
Carbon Tetrachloride	8260C	19.5	20.0	97	68-125		
Benzene	8260C	20.2	20.0	101	76-118		
1,2-Dichloroethane	8260C	21.4	20.0	107	71-127		
Trichloroethene	8260C	18.8	20.0	94	78-123		
1,2-Dichloropropane	8260C	20.2	20.0	101	80-119		
Bromodichloromethane	8260C	20.0	20.0	100	78-126		
cis-1,3-Dichloropropene	8260C	19.3	20.0	96	74-126		
4-Methyl-2-pentanone (MIBK)	8260C	19.6	20.0	98	66-124		
Toluene	8260C	20.5	20.0	102	77-120		
trans-1,3-Dichloropropene	8260C	19.5	20.0	97	67-135		
1,1,2-Trichloroethane	8260C	20.7	20.0	103	82-118		
Tetrachloroethene	8260C	20.0	20.0	100	78-124		
2-Hexanone	8260C	20.1	20.0	101	63-124		
Dibromochloromethane	8260C	19.3	20.0	97	77-128		
Chlorobenzene	8260C	20.9	20.0	104	80-121		
Ethylbenzene	8260C	20.9	20.0	105	76-120		
m,p-Xylenes	8260C	42.5	40.0	106	78-123		
o-Xylene	8260C	21.3	20.0	106	80-120		
Styrene	8260C	21.3	20.0	106	80-124		
Printed 6/6/2017 9:24:19 AM			Superset Reference: 17-0000424290 rev 00				

QA/QC Report

Client:CB&IProject:Textron Wheatfield/156045Sample Matrix:Water

Service Request: R1704784 **Date Analyzed:** 05/30/17

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1704886-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Bromoform	8260C	18.7	20.0	93	71-136
1,1,2,2-Tetrachloroethane	8260C	20.6	20.0	103	78-122

QA/QC Report

Client:CB&IProject:Textron Wheatfield/156045Sample Matrix:Water

Service Request: R1704784 **Date Analyzed:** 05/31/17

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1704974-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits		
Chloromethane	8260C	21.0	20.0	105	69-145		
Vinyl Chloride	8260C	28.7	20.0	144 *	69-133		
Chloroethane	8260C	23.6	20.0	118	70-127		
Bromomethane	8260C	19.0	20.0	95	42-166		
1,1-Dichloroethene	8260C	19.3	20.0	97	74-135		
Acetone	8260C	23.0	20.0	115	40-161		
Carbon Disulfide	8260C	20.4	20.0	102	65-127		
Methylene Chloride	8260C	20.4	20.0	102	73-122		
trans-1,2-Dichloroethene	8260C	19.5	20.0	98	80-120		
1,1-Dichloroethane	8260C	20.9	20.0	104	78-117		
cis-1,2-Dichloroethene	8260C	20.6	20.0	103	80-121		
2-Butanone (MEK)	8260C	19.1	20.0	96	61-137		
Chloroform	8260C	20.2	20.0	101	76-120		
1,1,1-Trichloroethane	8260C	20.9	20.0	105	74-120		
Carbon Tetrachloride	8260C	20.4	20.0	102	68-125		
Benzene	8260C	20.8	20.0	104	76-118		
1,2-Dichloroethane	8260C	21.8	20.0	109	71-127		
Trichloroethene	8260C	19.8	20.0	99	78-123		
1,2-Dichloropropane	8260C	21.1	20.0	106	80-119		
Bromodichloromethane	8260C	20.2	20.0	101	78-126		
cis-1,3-Dichloropropene	8260C	19.1	20.0	95	74-126		
4-Methyl-2-pentanone (MIBK)	8260C	19.4	20.0	97	66-124		
Toluene	8260C	21.4	20.0	107	77-120		
trans-1,3-Dichloropropene	8260C	19.2	20.0	96	67-135		
1,1,2-Trichloroethane	8260C	20.1	20.0	100	82-118		
Tetrachloroethene	8260C	21.2	20.0	106	78-124		
2-Hexanone	8260C	19.2	20.0	96	63-124		
Dibromochloromethane	8260C	18.5	20.0	93	77-128		
Chlorobenzene	8260C	21.2	20.0	106	80-121		
Ethylbenzene	8260C	21.7	20.0	109	76-120		
m,p-Xylenes	8260C	44.1	40.0	110	78-123		
o-Xylene	8260C	22.3	20.0	111	80-120		
Styrene	8260C	21.9	20.0	110	80-124		
Printed 6/6/2017 9:24:20 AM			Superset Reference: 17-0000424290 rev 00				

QA/QC Report

Client:CB&IProject:Textron Wheatfield/156045Sample Matrix:Water

Service Request: R1704784 **Date Analyzed:** 05/31/17

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1704974-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Bromoform	8260C	17.3	20.0	86	71-136
1,1,2,2-Tetrachloroethane	8260C	20.2	20.0	101	78-122

QA/QC Report

Client:CB&IProject:Textron Wheatfield/156045Sample Matrix:Water

Service Request: R1704784 **Date Analyzed:** 06/01/17

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1705009-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits		
Chloromethane	8260C	19.9	20.0	100	69-145		
Vinyl Chloride	8260C	25.4	20.0	127	69-133		
Chloroethane	8260C	20.8	20.0	104	70-127		
Bromomethane	8260C	17.6	20.0	88	42-166		
1,1-Dichloroethene	8260C	17.5	20.0	88	74-135		
Acetone	8260C	23.7	20.0	118	40-161		
Carbon Disulfide	8260C	19.4	20.0	97	65-127		
Methylene Chloride	8260C	19.4	20.0	97	73-122		
trans-1,2-Dichloroethene	8260C	17.3	20.0	87	80-120		
1,1-Dichloroethane	8260C	19.9	20.0	100	78-117		
cis-1,2-Dichloroethene	8260C	18.8	20.0	94	80-121		
2-Butanone (MEK)	8260C	18.5	20.0	93	61-137		
Chloroform	8260C	19.4	20.0	97	76-120		
1,1,1-Trichloroethane	8260C	19.4	20.0	97	74-120		
Carbon Tetrachloride	8260C	19.3	20.0	97	68-125		
Benzene	8260C	19.4	20.0	97	76-118		
1,2-Dichloroethane	8260C	20.7	20.0	103	71-127		
Trichloroethene	8260C	18.3	20.0	92	78-123		
1,2-Dichloropropane	8260C	19.6	20.0	98	80-119		
Bromodichloromethane	8260C	19.6	20.0	98	78-126		
cis-1,3-Dichloropropene	8260C	18.7	20.0	93	74-126		
4-Methyl-2-pentanone (MIBK)	8260C	18.3	20.0	91	66-124		
Toluene	8260C	19.9	20.0	99	77-120		
trans-1,3-Dichloropropene	8260C	18.7	20.0	94	67-135		
1,1,2-Trichloroethane	8260C	19.5	20.0	98	82-118		
Tetrachloroethene	8260C	19.4	20.0	97	78-124		
2-Hexanone	8260C	19.7	20.0	98	63-124		
Dibromochloromethane	8260C	17.8	20.0	89	77-128		
Chlorobenzene	8260C	20.2	20.0	101	80-121		
Ethylbenzene	8260C	20.6	20.0	103	76-120		
m,p-Xylenes	8260C	41.9	40.0	105	78-123		
o-Xylene	8260C	20.4	20.0	102	80-120		
Styrene	8260C	20.6	20.0	103	80-124		
Printed 6/6/2017 9:24:21 AM			Superset Reference: 17-0000424290 rev 00				

QA/QC Report

Client:CB&IProject:Textron Wheatfield/156045Sample Matrix:Water

Service Request: R1704784 **Date Analyzed:** 06/01/17

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1705009-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Bromoform	8260C	18.4	20.0	92	71-136
1,1,2,2-Tetrachloroethane	8260C	20.6	20.0	103	78-122

Appendix C

Monitoring Well Construction Logs

AP'	ΤΙΜ		W	ELL NU	MBER 87-01(1) PAGE 1 OF 1
CLIENT Textror	n		PROJECT NAME Former Textron	Wheatfield	
PROJECT NUME	BER 156045		PROJECT LOCATION Niagara Fal	ls, BY	
DATE STARTED	5/22/17		GROUND ELEVATION	HOLES	SIZE inches
DRILLING CONT			GROUND WATER LEVELS:		
DRILLING METH	10D		AT TIME OF DRILLING		
LOGGED BY K	Cronin	CHECKED BY	AT END OF DRILLING		
NOTES Downho	ole Camera used to	determine well construction details	AFTER DRILLING 18.32 ft		
o DEPTH (ft) SAMPLE TYPE NUMBER	GRAPHIC	MATERIAL DES	CRIPTION	ENVIRONMENTAL	WELL DIAGRAM Casing Top Elev: 587.99 (ft) Casing Type: 2" SS
	¥.			PID = 0.9	

2	AF	тп	Μ			W	ELL NUN	IBER 87-02(1) PAGE 1 OF 1
CLIEN	T _ Textr	on				PROJECT NAME _ Former Textron	Wheatfield	
PROJI		BER	156045			PROJECT LOCATION Niagara Fa	ills, BY	
DATE	STARTE	D <u>5/2</u>	2/17			GROUND ELEVATION	HOLE SIZ	ZE inches
DRILL	ING CON	ITRAC	TOR			GROUND WATER LEVELS:		
DRILL	ING MET	HOD				AT TIME OF DRILLING		
LOGG	ED BY _	K.Cror	iin	_ CHECKED BY		AT END OF DRILLING		
NOTE	S Down	hole C	amera used to	determine well constr	uction details	⊻ AFTER DRILLING <u>18.05 ft</u>		
DEPTH (ft)	MPLE TYPE NUMBER	GRAPHIC LOG			MATERIAL	DESCRIPTION		WELL DIAGRAM
0	SA							Casing Top Elev: 589.21 (ft) Casing Type: 2" SS
			¥					

2	AF	ΜΙΤ				WELL NUM	IBER 87-04(1) PAGE 1 OF 1
CLIEN	T Textr	on			PROJECT NAME Former Te	extron Wheatfield	
PROJ		IBER 156045			PROJECT LOCATION Niaga	ara Falls, BY	
DATE	STARTE	D 5/22/17	с	OMPLETED	GROUND ELEVATION	HOLE SIZ	E inches
DRILL	ING CON	ITRACTOR			GROUND WATER LEVELS:		
DRILL	ING MET				AT TIME OF DRILLING		
LOGG	ED BY	K Cronin	С		AT END OF DRILLING		
NOTE	S Down	hole Camera used	to dete	ermine well construction details	AFTER DRILLING 14.	18 ft	
DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG	MATER	IAL DESCRIPTION	UVIRONMENTAL DATA	WELL DIAGRAM
0	0,						Casing Type: 2" SS
		Screen fairly clear, some mineralization, some sediment @ bottom of well		Ā		PID = 0.2	

		V	VELL NU	MBER 87-05(1) PAGE 1 OF 1
CLIENT Textron		PROJECT NAME Former Textrol	n Wheatfield	
PROJECT NUMBER 156045		PROJECT LOCATION Niagara F	alls, BY	
DATE STARTED 5/22/17	COMPLETED	GROUND ELEVATION	HOLE	SIZE inches
		GROUND WATER LEVELS		
LOGGED BY K Cropin				
NOTES Downhole Camera used t	to determine well construction detail	s VAFTER DRILLING 16.52 ft		
HTTAR KEWAKKS	C C C C C C C C C C C C C C C C C C C	ERIAL DESCRIPTION	VIRONMENTA	WELL DIAGRAM
0 0			EN	Casing Top Elev: 589.37 (ft) Casing Type: 2" SS
5 5 10 10 10 10 15 20 20 20 20 5 5 5 5 5 5 5 5 5 5 5 5 5			PID = 0.4	

		WEL	L NUMBER 87-08(1) PAGE 1 OF 1
CLIENT Textron		PROJECT NAME Former Textron Whe	atfield
PROJECT NUMBER 156	045	PROJECT LOCATION Niagara Falls, E	3Y
DATE STARTED _5/22/17	COMPLETED	GROUND ELEVATION	HOLE SIZE
DRILLING CONTRACTOR		GROUND WATER LEVELS:	
DRILLING METHOD		AT TIME OF DRILLING	
LOGGED BY K.Cronin	CHECKED BY	AT END OF DRILLING	
NOTES Downhole Came	ra used to determine well constru	uction details	
DEPTH (ft) (ft) NUMBER NUMBER	COG COG COG COG	MATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Elev: 589.48 (ft)
0 5 5 5 - - - - - - - - - - - - -	fairly nelight alization; liment of well		Casing Type: 2" SS

2	AF	тп	М				WE	LL NUI	MBER 87-09(1) PAGE 1 OF 1
CLIEN	T Textr	on				PROJECT NAME Fo	rmer Textron Wh	heatfield	
PROJE		IBER	156045			PROJECT LOCATION	Niagara Falls,	BY	
DATE	STARTE	D <u>5/2</u>	22/17		ГED	GROUND ELEVATION	N	HOLE S	IZE inches
DRILL		ITRAC	TOR			GROUND WATER LEV	VELS:		
DRILL	ING MET	HOD				AT TIME OF DR	RILLING		
LOGG	ED BY _	K.Croi	nin) ВҮ	AT END OF DRI	ILLING		
NOTES	S Down	hole C	amera used t	to determine w	ell construction de	tails TAFTER DRILLIN	IG <u>12.51 ft</u>		
o DEPTH (ff)	SAMPLE TYPE NUMBER	GRAPHIC LOG			MATERIAL	DESCRIPTION		dd environmental bata	WELL DIAGRAM
<u>10</u> <u>15</u> 			Ţ						
20									
25									
30									

CLIENT Textron PROJECT NAME Former Textron Wheatfield PROJECT NUMBER 156045 PROJECT LOCATION Niagara Fails, BY DATE STARTEDC2217COMPLETEDGROUND LEVATIONHOLE SIZE GROUND WATER LEVELS: DRILLING METHODCHECKED BYAT TIME OF DRILLINGAT END OF DRILLINGAT ENDAT END	WELL NUMBER 87-10(1) PAGE 1 OF 1
PROJECT NUMBER 156045 PROJECT LOCATION Nagara Falls, BY DATE STARTED 5/22/17 COMPLETED GROUND ELEVATION HOLE SIZE i DRILLING CONTRACTOR	ME Former Textron Wheatfield
DATE STARTED 5/22/17 COMPLETED GROUND ELEVATION HOLE SIZE _i DRILLING CONTRACTOR GROUND WATER LEVELS: GROUND WATER LEVELS: GROUND WATER LEVELS: DRILLING METHOD	CATION Niagara Falls, BY
DRILLING CONTRACTOR	VATION HOLE SIZEinches
DRILLING METHOD AT TIME OF DRILLING	TER LEVELS:
LOGGED BY K.Cronin CHECKED BY AT END OF DRILLING	OF DRILLING
NOTES Downhole Camera used to determine well construction details Y AFTER DRILLING 16.98 ft H	OF DRILLING
H H	DRILLING _16.98 ft
	I I I I I I I I I I I I I Casing Top Elev: 587.52 (ft) I Casing Type: 2" SS I I I I

CLIENT Textron PROJECT NUMBER 156045 PROJECT NUMBER 156045 DATE STARTED 5/22/17 COMPLETED GROUD DRILLING CONTRACTOR	W	/ELL NU	IMBER 87-12(1) PAGE 1 OF 1
PROJECT NUMBER_156045 PROJE DATE STARTED _5/22/17 COMPLETED GROU DRILLING CONTRACTOR GROU DRILLING METHOD A LOGGED BY _K.Cronin CHECKED BY A NOTES Downhole Camera used to determine well construction details U A H U A U A U A U A U A U A U A U A	TNAME Former Textron	n Wheatfield	
DATE STARTED <u>5/22/17</u> COMPLETED GROU PRILLING CONTRACTOR GROU DRILLING METHOD A LOGGED BY <u>K.Cronin</u> CHECKED BY A NOTES Downhole Camera used to determine well construction details V A H C U U U U U U U U U U U U U U U U U U	T LOCATION Niagara Fr	alls, BY	
DRILLING CONTRACTOR	DELEVATION	HOLE	SIZE inches
DRILLING METHOD) WATER EVELS		
LOGGED BY K.Cronin CHECKED BY ATERIAL DES	TIME OF DRILLING		
NOTES Downhole Camera used to determine well construction details T T T T T T T T T	END OF DRILLING		
H H </th <th>TER DRILLING 16 81 ft</th> <th></th> <th></th>	TER DRILLING 16 81 ft		
□ □ </th <th></th> <th>UMENTAL TA</th> <th></th>		UMENTAL TA	
0 			Casing Top Elev: 583.84 (ft)
Screen fairly 10 10 10 15 15 15 20 20 20 20 5 5 5 5 5 5 5 5 5 5 5 5 5			Casing Type: 2" SS

1	AF	тп	М			V	VELL NU	MBER 87-13(1) PAGE 1 OF 1
CLIEN	T Textr	on				PROJECT NAME Former Textron	n Wheatfield	
PROJ	PROJECT NUMBER 156045 PROJECT LOCATION Niagara Falls BY							
DATE	STARTE	D _5/2	22/17	COMPLETED		GROUND ELEVATION	HOLES	SIZE inches
DRILL		ITRAC	TOR			GROUND WATER LEVELS:		
DRILL	ING MET	HOD				AT TIME OF DRILLING		
LOGGED BY K.Cronin CHECKED BY AT END OF DRILLING								
NOTE	S Down	hole C	amera used	to determine well cor	nstruction details	AFTER DRILLING <u>15.42 ft</u>		
o DEPTH (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG			MATERIAL DESC	CRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM Casing Top Elev: 590.06 (ft) Casing Type: 2" SS
			¥				PID = 0.2	

1	AF	ΝΙΤ			W	ELL NUMBER 87-13(3) PAGE 1 OF 1
CLIEN	IT Textr	on			PROJECT NAME Former Textron	Wheatfield
PROJ		IBER 156045			PROJECT LOCATION Niagara Fa	lls, BY
DATE	STARTE	D <u>5/22/17</u>	cc	OMPLETED	GROUND ELEVATION	HOLE SIZE inches
DRILL	ING CON				GROUND WATER LEVELS:	
DRILL	ING MET	'HOD			AT TIME OF DRILLING	
LOGG	BED BY	K.Cronin	CF			
NOTE	S Down	hole Camera used	to deter	mine well construction details	- <u>F</u> AFTER DRILLING <u>12.84 ft</u>	
o DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG	Ν	IATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Elev: 589.91 (ft) Casing Type: 2" SS
		Screen mostly clear, visability lost @ bottom				

1	APTIM				WELL NU	MBER 87-14(1) PAGE 1 OF 1
CLIENT	Textron			PROJECT NAME Former Textre	on Wheatfield	
PROJEC	T NUMBER 156045			PROJECT LOCATION Niagara	Falls, BY	
DATE ST	TARTED 5/22/14	COMPLE	TED	GROUND ELEVATION	HOLES	SIZE inches
DRILLIN	G CONTRACTOR			GROUND WATER LEVELS:		
DRILLIN	G METHOD			AT TIME OF DRILLING	-	
	DBY K Cronin	CHECKE) BY		-	
NOTES	Downhole Camera used	to determine w	ell construction details		ft	
DEPTH (ft)	HALL HALL HALL HALL HALL HALL HALL HALL	GRAPHIC LOG	MATER	RIAL DESCRIPTION	/IRONMENTA DATA	WELL DIAGRAM
0	δ				EN	Casing Top Elev: 589.06 (ft) Casing Type: 2" SS
	Screen slightly encrusted more-so @ bottom of well; some sediment @ bottom of well	¥				

1	AF	тім				WELL NU	MBER 87-15(1) PAGE 1 OF 1
	IT Textr	on			PROJECT NAME Former Tex	tron Wheatfield	
PROJ		IBER 156045			PROJECT LOCATION Niagar	a Falls, BY	
DATE	STARTE	D 5/22/17	C	COMPLETED	GROUND ELEVATION	HOLE	SIZE inches
DRILL		ITRACTOR			GROUND WATER LEVELS:		
DRILL	ING MET	'HOD			AT TIME OF DRILLING		
LOGG	ED BY	K.Cronin	(CHECKED BY	AT END OF DRILLING		
NOTE	S Down	hole Camera used	to det	ermine well construction details	AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG	MATER	IAL DESCRIPTION	ENVIRONMENTAL	WELL DIAGRAM Casing Top Elev: 590.27 (ft) Casing Type: 2" SS
		Screen encrusted with sediment @ bottom of well				PID = 0.1	

		WE	LL NUMBER 87-17(1) PAGE 1 OF 1
CLIENT Textron		PROJECT NAME Former Textron W	heatfield
PROJECT NUMBER 156045		PROJECT LOCATION Niagara Falls,	BY
DATE STARTED 5/22/17		GROUND ELEVATION	HOLE SIZE
DRILLING CONTRACTOR		GROUND WATER LEVELS:	
DRILLING METHOD		AT TIME OF DRILLING	
LOGGED BY K.Cronin	CHECKED BY	AT END OF DRILLING	
NOTES _ Downhole Camera used	to determine well construction details	AFTER DRILLING 12.59 ft	
HLdag HLdag HLdag HLdag REMARKS	GRAPHIC LOG	ATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Elev: 589.62 (ft)
0 			Casing Type: 2" SS

		V	ELL NU	MBER 87-18(1) PAGE 1 OF 1
CLIENT Textron		PROJECT NAME Former Textror	n Wheatfield	
PROJECT NUMBER 156045		PROJECT LOCATION Niagara Fa	alls, BY	
DATE STARTED 5/22/17	COMPLETED	GROUND ELEVATION	HOLE S	IZE inches
DRILLING CONTRACTOR		GROUND WATER LEVELS:		
DRILLING METHOD		AT TIME OF DRILLING		
LOGGED BY K.Cronin	CHECKED BY	AT END OF DRILLING		
NOTES Downhole Camera used	to determine well construction deta	hils V AFTER DRILLING 19.62 ft		
DEPTH DE	GRAPHIC LOG	TERIAL DESCRIPTION	VIRONMENTAL	WELL DIAGRAM
0 0 5 5 - - - - - - - - - - - - -	Ā		PID = 0	Casing Type: 2" SS

CLIENT Textron				
		PROJECT NAME Former Textron V	heatfield	
PROJECT NUMBER _156045		PROJECT LOCATION _ Niagara Falls	s, BY	
DATE STARTED 5/22/17	COMPLETED	GROUND ELEVATION	HOLE	SIZE inches
DRILLING CONTRACTOR		GROUND WATER LEVELS:		
DRILLING METHOD		AT TIME OF DRILLING		
LOGGED BY K.Cronin	CHECKED BY	AT END OF DRILLING		
NOTES Downhole Camera used	to determine well construction details	T AFTER DRILLING 16.86 ft		
HLdag HLdag HLdag HLdag HLdag REMARKS	CCGRAPHIC CCGC CCGC CCGC CCGC CCCC CCCC CCCCC CCCCCC	RIAL DESCRIPTION	/IRONMENTAL DATA	WELL DIAGRAM
δ 0			EN	Casing Top Elev: 586.62 (ft) Casing Type: 2" SS
5 5 10 10 10 15 20 20 20 20 21 25 30 30			PID = 0	

ᄎ АРТІМ		WE	LL NUMBER 89-15(1) PAGE 1 OF 1
CLIENT Textron		PROJECT NAME Former Textron Wh	neatfield
PROJECT NUMBER 156045		PROJECT LOCATION Niagara Falls,	BY
DATE STARTED _5/22/17		GROUND ELEVATION	HOLE SIZEinches
DRILLING CONTRACTOR		GROUND WATER LEVELS:	
DRILLING METHOD		AT TIME OF DRILLING	
LOGGED BY K.Cronin	CHECKED BY	AT END OF DRILLING	
NOTES _ Downhole Camera used	to determine well construction detail	s AFTER DRILLING 16.63 ft	
HLdag REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM
U 			

1	AF	мітч				WELL NU	MBER 96-01(1) PAGE 1 OF 1
	Textre	on			PROJECT NAME Former Text	ron Wheatfield	
PROJ		IBER _156045			PROJECT LOCATION Niagara	Falls, BY	
DATE	STARTE	D _5/22/17_	C	OMPLETED	GROUND ELEVATION	HOLE S	IZEinches
DRILL	ING CON	ITRACTOR			GROUND WATER LEVELS:		
DRILL	ING MET				AT TIME OF DRILLING		
LOGG	ED BY	K.Cronin	c	HECKED BY	AT END OF DRILLING		
NOTE	S Down	hole Camera used	to dete	ermine well construction details	Ψ after drilling 18.21	ft	
o DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG	MATER	IAL DESCRIPTION	0 = DATA	WELL DIAGRAM Casing Top Elev: 585.18 (ft) Casing Type: 2" SS
		Screen mostly clear; little sediment @ bottom of well					

1	AP	ТІМ				WELL NUMBER A PAGE 1 OF 1		
CLIEN	r <u>Textro</u>	n			PROJECT NAME Former Tex	PROJECT NAME Former Textron Wheatfield		
PROJE	CT NUM	BER _156045			PROJECT LOCATION Niagar	ra Falls, BY		
DATES	STARTED) <u>5/22/17</u>	c	OMPLETED	GROUND ELEVATION	HOLE SIZEinches		
DRILLI	NG CON				GROUND WATER LEVELS:			
DRILLI	NG METH	HOD			AT TIME OF DRILLING			
LOGGE	ED BY _k	C.Cronin	c	HECKED BY	AT END OF DRILLING			
NOTES	Downh	ole Camera used	to dete	rmine well construction	details AFTER DRILLING _9.00	ft		
o DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRAM Casing Type: 4" HDPE		
		Appears to be solid casing from top to bottom, no bottom cap, open bottom. very soft full of debris/sediment.		Ţ				

1	AF	ΜΙΤ				WELL NUMBER B PAGE 1 OF 1
	T Textr	on			PROJECT NAME Former Textron V	Vheatfield
PROJE		BER 156045			PROJECT LOCATION Niagara Fall	s. BY
DATE	STARTE	D 5/22/17	со	MPLETED	GROUND ELEVATION	HOLE SIZE inches
DRILL					GROUND WATER LEVELS:	
DRILL	ING MET	HOD			AT TIME OF DRILLING	
LOGG	ED BY	K.Cronin	СН	IECKED BY	AT END OF DRILLING	
NOTES	S_Down	hole Camera used	to deterr	mine well construction details	AFTER DRILLING 10.37 ft	
DEPTH (ft)	MPLE TYPE NUMBER	REMARKS	GRAPHIC LOG	Μ	ATERIAL DESCRIPTION	WELL DIAGRAM
	SAI					
		4" HDPE Casing to 16.55 ft BTOC then open bedrock to 30.11. Fractures observed @ 26 ft and 27 ft BTOC.		Υ		Casing Type: 4" HDPE

1	AF	ΡΤΙΜ				WE	LL NUMBER C PAGE 1 OF 1
CLIEI	NT Textr	on			PROJECT NAME _ Former Textron	Wheatfield	
PROJ	IECT NUN	IBER 156045			PROJECT LOCATION Niagara Fa	alls, BY	
	E STARTE	D <u>5/22/17</u> ITRACTOR	C	OMPLETED	GROUND ELEVATION GROUND WATER LEVELS:	HOLE S	IZEinches
		K Cronin	C				
NOTE	S Down	hole Camera used	to dete	rmine well construction details	AFTER DRILLING 10.81 ft		
DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG	MATER	IAL DESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM
		Obstruction @ 16.75 ft BTOC, cannot advance camera.		Ā		PID = 0	Casing Type: 4" HDPE

1	AP	MIT				WELL	PAGE 1 OF 1
CLIEN	T _Textro	on			PROJECT NAME Former Textron W	/heatfield	
PROJ	ECT NUM	BER 156045			PROJECT LOCATION Niagara Falls	s, BY	
DATE	STARTE	D <u>5/22/17</u>	COM		GROUND ELEVATION	HOLE SIZE	inches
DRILL	ING CON				GROUND WATER LEVELS:		
DRILL	ING MET	HOD			AT TIME OF DRILLING		
LOGG	ED BY _	K.Cronin	CHE	CKED BY	AT END OF DRILLING		
NOTE	S Down	hole Camera used	to determi	ne well construction details	AFTER DRILLING 10.75 ft		
o DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG	Ν	ATERIAL DESCRIPTION	V	VELL DIAGRAM
		No visable screen, solid HDPE casing to bottom, no end cap, open hole. Debris/sediment at bottom of well		Ĩ			
GENERAL BH / TP / WELL - GINT S ID US LAB.GUI - 6/2/1/ 11:13 - NAGINI IDKILL LUGSIGINI							

-	AF	ΜΙΤ			WELL NUMBER DW-9 PAGE 1 OF 1
CLIE	NT Textre	on		PROJECT NAME Former Textron	Wheatfield
PRO	JECT NUN	IBER 156045		PROJECT LOCATION Niagara Fal	lls, BY
DAT	E STARTE	D <u>5/22/17</u>		ETED GROUND ELEVATION	HOLE SIZE inches
DRIL	LING CON			GROUND WATER LEVELS:	
DRIL	LING MET	HOD		AT TIME OF DRILLING	
LOG	GED BY	K.Cronin	CHEC	ED BY AT END OF DRILLING	
NOT	ES Down	hole Camera used	to determin	well construction details	
DEPTH (ft)	APLE TYPE UMBER	REMARKS	SRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM
	SAN		0		Casing Top Elev: 581.3 (ft)
INTURILL LOGSIGINT FILESTEXTRON WELL CONSTRUCTION.GPJ		Screen heavily encrusted with mineralization deposits			
GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 6/2/17 11:13 - N:					

A	PTIM				WELL NUMBER DW-10 PAGE 1 OF 1		
CLIENT Text	tron			PROJECT NAME Former Textron Wheatfield			
PROJECT NU	MBER 156045			PROJECT LOCATION Niagara F	Falls, BY		
DATE START	ED 6/1/17	COMPLETE	ED	GROUND ELEVATION	HOLE SIZE inches		
DRILLING CO	NTRACTOR			GROUND WATER LEVELS:			
DRILLING ME				AT TIME OF DRILLING			
LOGGED BY	K.Cronin	CHECKED	BY	AT END OF DRILLING			
NOTES Dow	nhole Camera used	to determine wel	I construction details	_ ĀFTER DRILLING 8.68 ft			
o DEPTH (ft) SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Elev: 583.95 (ft) Casing Type: 6". 8" borehole		
	Casing to 14.8 ft BTOC then open borehole in bedrock	Y					
1	AP	MIT				WELL NUMBER DW-11 PAGE 1 OF 1	
---	-----------------------	---	----------------	--------------------------------	---	--	--
CLIEN	T Textro	מר			DDO JECT NAME Formar Taytran Whaatfield		
PROJ		IBER 156045			PROJECT LOCATION Niagara	Falls, BY	
DATE	STARTE	D _6/1/17	CO	MPLETED	GROUND ELEVATION	HOLE SIZEinches	
DRILL	ING CON				GROUND WATER LEVELS:		
DRILL	ING MET				AT TIME OF DRILLING	-	
LOGG	ED BY _	K.Cronin	СН	ECKED BY	AT END OF DRILLING	-	
NOTE	S Down	hole Camera used	to detern	nine well construction details	AFTER DRILLING 8.61 ft		
o DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG	Λ	IATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Elev: 583.05 (ft) Casing Type: 6"- 8" borehole	
GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 6/2/17 11:13 - N;GINTDRILL LOGS/GINT FILES/TEXTRON WELL CONSTRUCTION.GPJ		Casing to 14 ft BTOC then open borehole in bedrock					

1	APTIM			WELL NUMBER DW-12 PAGE 1 OF 1
CLIENT	Textron		PROJECT NAME Former Textror	n Wheatfield
PROJEC	T NUMBER <u>15</u> 6045		PROJECT LOCATION Niagara Fa	alls, BY
DATE ST	ARTED _ 6/1/17		GROUND ELEVATION	HOLE SIZE _ inches
DRILLING	G CONTRACTOR		GROUND WATER LEVELS:	
DRILLING	G METHOD		AT TIME OF DRILLING	
LOGGED	BY K.Cronin	CHECKED BY	AT END OF DRILLING	
NOTES _	Downhole Camera used	o determine well construc	tion details Y AFTER DRILLING <u>7.68 ft</u>	
O DEPTH (ft) CAMPLE TVDE	HAA HAA HAA HAA HAA HAA HAA HAA HAA HAA	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Elev: 580.48 (ft) Casing Type: 6"- 8" borehole
	Casing to 15 ft BTOC then open borehole in bedrock	Ĩ		

CLIENT _Textron PROJECT NAME _Former Textron Wheatfield PROJECT NUMBER _156045 PROJECT LOCATION _Niagara Falls, BY DATE STARTED _6/1/17 COMPLETED DRILLING CONTRACTOR GROUND ELEVATION DRILLING METHOD CHECKED BY LOGGED BY _K.Cronin CHECKED BY NOTES _Downhole Camera used to determine well construction details Image: Construction details H_L_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H_H	R EW-7 Ge 1 OF 1			
PROJECT NUMBER 156045 PROJECT LOCATION Niagara Falls, BY DATE STARTED 6/1/17 COMPLETED GROUND ELEVATION	PROJECT NAME Former Textron Wheatfield			
DATE STARTED				
DRILLING CONTRACTOR DRILLING METHOD AT TIME OF DRILLING LOGGED BY K.Cronin CHECKED BY AT END OF DRILLING AT END OF DRILLING NOTES Downhole Camera used to determine well construction details The second sec				
DRILLING METHOD AT TIME OF DRILLING				
LOGGED BY K.Cronin CHECKED BY AT END OF DRILLING NOTES Downhole Camera used to determine well construction details Image: Camera used to details Image: Camera				
NOTES Downhole Camera used to determine well construction details Image: After Drilling 12.71 ft H				
H H <td></td>				
	IAGRAM /: 580.96 (ft) - 8" borebole			
5 - 5 - 10 - 10 - 11 - 12 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 21 - 22 - 23 BTOC then open borehole in bedrock	- 8 borenoie			

1	AF	ΜΙΤ				WELL NU	JMBER EW-8 PAGE 1 OF 1	
CLIEN	Textr	on			PROJECT NAME Former Textron Wheatfield			
PROJI		IBER 156045			PROJECT LOCATION Niagara Fa	alls, BY		
DATE	STARTE	D _6/1/17		ETED	GROUND ELEVATION	HOLE SIZE	inches	
DRILL	ING CON				_ GROUND WATER LEVELS:			
DRILL	ING MET	HOD			AT TIME OF DRILLING			
LOGG	ED BY _	K.Cronin		ED BY	AT END OF DRILLING			
NOTE	S Down	hole Camera used	to determine	well construction details	_ AFTER DRILLING 9.65 ft			
o DEPTH (ft)	SAMPLE TYPE NUMBER	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTION	Ca Ca	WELL DIAGRAM sing Top Elev: 578.44 (ft) sing Type: 6"- 8" borehole	
		Casing to 15 ft BTOC then open borehole in bedrock	Ţ.				sing Type: 6"- 8" borehole	

1	AF	тп	М				WELL N	UMBER EW-13 PAGE 1 OF 1
CLIEN	I T Textr	on				PROJECT NAME Former Textron Wheatfield		
PROJ		IBER	156045			PROJECT LOCATION Niagara	Falls, BY	
DATE	STARTE	D _6/1	/17	COMPLETED		GROUND ELEVATION	HOLE S	IZE _ inches
DRILL	ING CON	ITRAC	TOR			GROUND WATER LEVELS:		
DRILL	ING MET	HOD				AT TIME OF DRILLING	-	
LOGG	ED BY _	K.Cror	nin	CHECKED BY		AT END OF DRILLING		
NOTE	S Down	hole C	amera used t	o determine well constru	uction details	V AFTER DRILLING <u>14.94 f</u>	t	
o DEPTH (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG			MATERIAL	DESCRIPTION		WELL DIAGRAM Casing Top Elev: 579.84 (ft) Casing Type: 6"- 8" borehole
			Ā					

Appendix D

Material Safety Data Sheets SDC-9™, 3-D Microemulsion®, Chemical Reducing Solution®

SDC-9

Prepared to U.S. OSHA, CMA, ANSI, Canadian WHMIS Standards, Australian WorkSafe, Japanese Industrial Standard JIS Z 7250:2000, and European Directives

1. PRODUCT IDENTIFICATION

TRADE NAME (AS LABELED):

SYNONYMS: CAS#: PRODUCT USE: CHEMICAL SHIPPING NAME/CLASS: U.N. NUMBER: MANUFACTURER'S NAME: ADDRESS: BUSINESS PHONE: SUPPLIER'S NAME: ADDRESS: BUSINESS PHONE: EMERGENCY PHONE: DATE OF CURRENT REVISION: DATE OF LAST REVISION: SDC-9 None known Mixture This product is used for soil and ground water remediation. Non-Regulated Material None CB&I 17 Princess Road, Lawrencevill, NJ 08648 1-609-895-5340 RNAS Remediation Products 6712 West River Road, Brooklyn Center, MN 55430 1-763-585-6191

1-800-424-9300 (Chemtrec 24 Hr Service – Emergency Only) April 22, 2016 New

2. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW: This product is a light greenish murky liquid with a musty odor. **Health Hazards:** Not expected to cause adverse health effects when used as intended. Prolonged or repeated exposure may cause irritation to skin. May cause irritation to eyes upon contact. Inhalation of vapors/sprays or mist may cause respiratory irritation. Ingestion of large amounts of this product may cause gastrointestinal irritation. **Flammability Hazards:** This product is a Non-Flammable liquid.

Reactivity Hazards: None known

Environmental Hazards: The Environmental effects of this product have not been investigated. Release of this product is not anticipated to have significant adverse effects in the aquatic environment.

US DOT SYMBOLS CANADA (WHMIS) SYMBOLS EUROPEAN and (GHS) Hazard Symbols None Non-Regulated Material Complies with WHMIS 2015 Signal Word: None GHS LABELING AND CLASSIFICATION:

This product does not meet the definition of a hazardous substance or preparation as defined by 29CFR 1910.1200 or the European Union Council Directives 67/548/EEC, 1999/45/EC, 1272/2008/EC and subsequent Directives. **EU HAZARD CLASSIFICATION OF INGREDIENTS PER DIRECTIVE 1272/2008/EC:**

None of the ingredients are listed in Annex VI

Substances not listed either individually or in group entries must be self classified.

Component(s) Contributing to Classification(s)

All Ingredients

GHS Hazard Classification(s):

None known

Hazard Statement(s):

None known

Precautionary Statement(s): None known

HEALTH HAZARDS OR RISKS FROM EXPOSURE:

SYMPTOMS OF OVEREXPOSURE BY ROUTE OF EXPOSURE: The most significant routes of overexposure for this product are by contact with skin or eyes, inhalation of vapors and ingestion. The symptoms of overexposure are described below.

ACUTE:

INHALATION: Not expected to cause adverse health effects when used as intended. Inhalation of vapors/mist/spray may cause respiratory irritation.

CONTACT WITH SKIN: Not expected to cause adverse health effects when used as intended. Prolonged and repeated contact may cause irritation to skin.

EYE CONTACT: Direct eye contact can cause irritation with redness, tearing and blurred vision.

SDC-9

INGESTION: Under normal conditions of intended use, this material is not expected to be an ingestion hazard. Ingestion of large quantities may cause gastrointestinal irritation, nausea and vomiting. **CHRONIC**: None known

TARGET ORGANS: Acute: Skin, Respiratory System and Eyes Chronic: None known

3. COMPOSITION AND INFORMATION ON INGREDIENTS

Hazardous Ingredients:	WT%	CAS#	EINECS #	GHS Hazard Classification(s)
Non-toxic, naturally occurring, non- pathogenic, non-genitically altered anaerobic microbes in a water-based medium	100%	Not available	Not available	None
Balance of other ingredients is less than 1% in concentration (or 0.1% for carcinogens, reproductive toxins, or respiratory sensitizers).				

NOTE: This product has been classified in accordance with the hazard criteria of 29CFR1910.1200 and the SDS contains all the information required by the CPR, EU Directives and the Japanese Industrial Standard JIS Z 7250: 2000.

4. FIRST-AID MEASURES

EYE CONTACT: If product enters the eyes, open eyes while under gentle running water for at least 15 minutes. Seek medical attention if irritation persists.

SKIN CONTACT: Wash skin thoroughly with soap and water after handling. Seek medical attention if irritation develops and persists.

INHALATION: If breathing becomes difficult, remove victim to fresh air. If necessary, use artificial respiration to support vital functions. Seek medical attention.

INGESTION: If product is swallowed, call physician or poison control center for most current information. If professional advice is not available, do not induce vomiting. Never induce vomiting or give diluents (milk or water) to someone who is unconscious, having convulsions, or who cannot swallow. Seek medical advice. Take a copy of the label and/or SDS with the victim to the health professional.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: None known

RECOMMENDATIONS TO PHYSICIANS: Treat symptoms and eliminate overexposure.

5. FIRE-FIGHTING MEASURES

FLASH POINT: Non-Flammable

AUTOIGNITION TEMPERATURE: Not Available

FLAMMABLE LIMITS (in air by volume, %): Lower NA Upper NA

FIRE EXTINGUISHING MATERIALS: Use fire extinguishing methods below:

Water Spray: Yes Carbon Dioxide: Yes

 Foam:
 Yes
 Dry Chemical:
 Yes

 Halon:
 Yes
 Other:
 Any "C" Class

UNUSUAL FIRE AND EXPLOSION HAZARDS: Not considered a fire or explosion hazard.

Explosion Sensitivity to Mechanical Impact: No

Explosion Sensitivity to Static Discharge: No

<u>SPECIAL FIRE-FIGHTING PROCEDURES:</u> Incipient fire responders should wear eye protection. Structural firefighters must wear Self-Contained Breathing Apparatus and full protective equipment. Isolate materials not yet involved in the fire and protect personnel. Move containers from fire area if this can be done without risk; otherwise, cool with carefully applied water spray. If possible, prevent runoff water from entering storm drains, bodies of water, or other environmentally sensitive areas.

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe * = Chronic hazard

6. ACCIDENTAL RELEASE MEASURES

SPILL AND LEAK RESPONSE: Stop the flow of material, if this can be done safety. Contain discharged material. Absorb spill using an absorbent, non-combustible material such as earth, sand, or vermiculite. Place in a proper container for disposal. Dispose of in accordance with U.S. Federal, State, and local hazardous waste disposal regulations and those of Canada and its Provinces, those of Australia, Japan and EU Member States (see Section 13, Disposal Considerations).

7. HANDLING and STORAGE

WORK PRACTICES AND HYGIENE PRACTICES: As with all chemicals, avoid getting this product ON YOU or IN YOU. Wash thoroughly after handling this product. Use good hygiene practices.

STORAGE AND HANDLING PRACTICES: Store in original container. Keep container closed when not in use. Store in a cool, dry location. Avoid freezing or extended storage in high temperatures and away from incompatible materials. Do not exceed pressure of 15 psi during transfer of SDC-9 from kegs. Don't open keg when contents are under pressure.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION				
Chemical Name	CAS#	ACGIH TLV	OSHA TWA	
Non-toxic, naturally occurring, non-pathogenic, non- genitically altered anaerobic microbes in a water-based medium	Not available	Not Listed	Not Listed	

VENTILATION AND ENGINEERING CONTROLS: Use with adequate ventilation to ensure exposure levels are maintained below the limits provided above.

The following information on appropriate Personal Protective Equipment is provided to assist employers in complying with OSHA regulations found in 29 CFR Subpart I (beginning at 1910.132) or equivalent standard of Canada, or standards of EU member states (including EN 149 for respiratory PPE, and EN 166 for face/eye protection), and those of Japan. Please reference applicable regulations and standards for relevant details.

RESPIRATORY PROTECTION: Not required when using this product. Maintain airborne contaminant concentrations below guidelines listed above, if applicable. If necessary, use only respiratory protection authorized in the U.S. Federal OSHA Respiratory Protection Standard (29 CFR 1910.134), equivalent U.S. State standards, Canadian CSA Standard Z94.4-93, the European Standard EN149, or EU member states.

EYE PROTECTION: Safety glasses or goggles are recommended to avoid eye contact. If necessary, refer to U.S. OSHA 29 CFR 1910.133, Canadian Standards, and the European Standard EN166, Australian Standards, or relevant Japanese Standards.

SKIN PROTECTION: Wear impervious gloves for prolonged or repeated exposure as appropriate to task when using this product. If necessary, refer to U.S. OSHA 29 CFR 1910.138, the European Standard DIN EN 374, the appropriate Standards of Canada, Australian Standards, or relevant Japanese Standards.

BODY PROTECTION: Use body protection appropriate to task being performed. If necessary, refer to appropriate Standards of Canada, or appropriate Standards of the EU, Australian Standards, or relevant Japanese Standards.

RNAS

SDC-9

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE (Physical State) and COLOR: This product is a light greenish murky liquid with a musty odor. **ODOR:** Musty odor **ODOR THRESHOLD:** Not Applicable **pH:** 6.0 - 8.0 MELTING/FREEZING POINT: 0°C (water) BOILING POINT: 100°C (water) FLASH POINT: Not Available EVAPORATION RATE (n-BuAc=1): 0.9-1.1 FLAMMABILITY (SOLID, GAS): Not Applicable UPPER/LOWER FLAMMABILITY OR EXPLOSION LIMITS: Not Available VAPOR PRESSURE (mm Hg @ 20°C (68°F): 24mm Hg (water) VAPOR DENSITY: Not Available SPECIFIC GRAVITY: 0.9-1.1 SOLUBILITY IN WATER: Soluble in water WEIGHT PER GALLON: 7.5 - 9.2 lbs/gal PARTITION COEFFICENT (n-octanol/water): Not Available AUTO-IGNITION TEMPERATURE: Not Available **DECOMPOSITION TEMPERATURE:** Not Available VISCOSITY: Not Available

10. STABILITY and REACTIVITY

STABILITY: Stable under conditions of normal storage and use. HAZARDOUS DECOMPOSITION PRODUCTS: None MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: Water-reactive materials. POSSIBILITY OF HAZARDOUS REACTIONS: Will not occur. CONDITIONS TO AVOID: None

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA:

No LD50 Data available for this product.

*Note: This product has tested negative for pathogenic microorganisms such as bacillius cereus, listeria monocytogens, salmonella sp., fecal coliform, total coliform, yeast and mold and pseudomonas sp.

SUSPECTED CANCER AGENT: Ingredients within this product are not found on the following lists: FEDERAL OSHA Z LIST, NTP, IARC, or CAL/OSHA and therefore are not considered to be, nor suspected to be, cancer-causing agents by these agencies.

IRRITANCY OF PRODUCT: No specific data available

SENSITIZATION TO THE PRODUCT: This product is not a skin and respiratory sensitizer

REPRODUCTIVE TOXICITY INFORMATION: No information concerning the effects of this product and its components on the human reproductive system.

12. ECOLOGICAL INFORMATION

ALL WORK PRACTICES MUST BE AIMED AT ELIMINATING ENVIRONMENTAL CONTAMINATION.

TOXICITY DATA:

No data available for this product.

ENVIRONMENTAL STABILITY: This material will degrade in the environment.

CHEMICAL EFFECT ON PLANTS, ANIMALS AND AQUATIC LIFE: This product is not expected to cause significant harm to plants, animals or aquatic life.

WATER ENDANGERMENT CLASS: Water endangering in accordance with EU Guideline 91/155-EWG – Not Determined. **SPECIFIC AVAILABLE COMPONENT INFORMATION:** No additional data available at this time.

13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL: Waste disposal must be in accordance with appropriate U.S. Federal, State, and local regulations, those of Canada, Australia, EU Member States and Japan. To permanently inactivate microorganisms and reduce odors, mix 100 parts SDC-9 with 1 part bleach.

EU Waste Code: Not determined

14. TRANSPORTATION INFORMATION

US DOT, IATA, IMO, ADR:

U.S. DEPARTMENT OF TRANSPORTATION (DOT) SHIPPING REGULATIONS: This product is classified (per 49 CFR 172.101) by the U.S. Department of Transportation, as follows.

None

None

NA

Non-Regulated Material

PROPER SHIPPING NAME:

HAZARD CLASS NUMBER and DESCRIPTION:

UN IDENTIFICATION NUMBER:

PACKING GROUP:

RQ QUANTITY:

DOT LABEL(S) REQUIRED: None NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER: None

None

MARINE POLLUTANT: The components of this product are not designated by the Department of Transportation to be Marine Pollutants (49 CFR 172.101, Appendix B).

INTERNATIONAL AIR TRANSPORT ASSOCIATION SHIPPING INFORMATION (IATA): This product is not considered as dangerous goods.

INTERNATIONAL MARITIME ORGANIZATION SHIPPING INFORMATION (IMO): This product is not considered as dangerous goods.

EUROPEAN AGREEMENT CONCERNING THE INTERNATIONAL CARRIAGE OF DANGEROUS GOODS BY ROAD (ADR): This product is not considered by the United Nations Economic Commission for Europe to be dangerous goods.

15. REGULATORY INFORMATION

UNITED STATES REGULATIONS:

U.S. SARA REPORTING REQUIREMENTS: The components of this product are subject to the reporting requirements of Sections 302, 304, and 313 of Title III of the Superfund Amendments and Reauthorization Act as follows: None

U.S. SARA THRESHOLD PLANNING QUANTITY: There are no specific Threshold Planning Quantities for the components of this product. The default Federal SDS submission and inventory requirement filing threshold of 10,000 lbs (4,540 kg) therefore applies, per 40 CFR 370.20.

U.S. CERCLA REPORTABLE QUANTITY (RQ): None

U.S. TSCA INVENTORY STATUS: The components of this product are listed on the TSCA Inventory or are exempted from listing.

OTHER U.S. FEDERAL REGULATIONS: None

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): Ingredients within this product are not on the Proposition 65 Lists.

CANADIAN REGULATIONS:

CANADIAN DSL/NDSL INVENTORY STATUS: The components of this product are on the DSL Inventory, or are exempted from listing.

OTHER CANADIAN REGULATIONS: Not applicable.

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) PRIORITIES SUBSTANCES LISTS:

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the SDS contains all of the information required by those regulations.

CANADIAN WHMIS CLASSIFICATION and SYMBOLS: Complies with WHMIS 2015

EUROPEAN ECONOMIC COMMUNITY INFORMATION:

This product does not meet the definition of a hazardous substance or preparation as defined by the European Union Council Directives 67/548/EEC, 1999/45/EC, 1272/2008/EC and subsequent Directives. See Section 2 for Details

AUSTRALIAN INFORMATION FOR PRODUCT: The components of this product are listed on the International Chemical Inventory list.

REMEDIATION PRODUCTS SAFETY DATA SHEET

JAPANESE INFORMATION FOR PRODUCT:

JAPANESE MINISTER OF INTERNATIONAL TRADE AND INDUSTRY (MITI) STATUS: The components of this product are not listed as Class I Specified Chemical Substances, Class II Specified Chemical Substances, or Designated Chemical Substances by the Japanese MITI.

JAPANESE ENCS INVENTORY: The components of this product are on the ENCS Inventory as indicated in the section on International Chemical Inventories, below.

POISONOUS AND DELETERIOUS SUBSTANCES CONTROL LAW: No component of this product is a listed Specified Poisonous Substance under the Poisonous and Deleterious Substances Control Law.

INTERNATIONAL CHEMICAL INVENTORIES:

Listing of the components on individual country Chemical Inventories is as follows:

Asia-Pac: Listed or Exempt from listing

Australian Inventory of Chemical Substances (AICS): Listed or Exempt from listing

Korean Existing Chemicals List (ECL): Listed or Exempt from listing

Japanese Existing National Inventory of Chemical Substances (ENCS): Listed or Exempt from listing Philippines Inventory of Chemicals and Chemical Substances (PICCS): Listed or Exempt from listing Swiss Giftliste List of Toxic Substances: Listed or Exempt from listing

U.S. TSCA: Listed

16. OTHER INFORMATION

ABBREVIATIONS AND ACRONYMS:

EPA: United States Environmental Protection Agency ARD: European Agreement concerning the International Carriage of Dangerous Goods by Road IMDG: International Maritime Code for Dangerous Goods DOT: US Department of Transportation IATA: International Air Transport Association ACGIH: American Conference of Governmental Industrial Hygienists NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA)

PREPARED BY: Chris Eigbrett – (MSDS to GHS Compliance) DATE OF PRINTING: April 22, 2016

The information contained herein is believed to be accurate but is not warranted to be so. Data and calculations are based on information furnished by the manufacturer of the product and manufacturers of the components of the product. Users are advised to confirm in advance of the need that information is current, applicable and suited to the circumstances of use. Remediation and Natural Attenuation Services Inc. assumes no responsibility for injury to vendee or third party person proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Furthermore, Remediation and Natural Attenuation Services Inc. assumes no responsibility for injury for injury caused by abnormal use of this material even if reasonable safety procedures are followed.

END OF SDS SHEET

1. Identification

Product identifier	3-D Microemulsion®				
Other means of identification	None				
Recommended use	Remediation of soils and groundwater.				
Recommended restrictions	None known.				
Manufacturer/Importer/Supplier/	Distributor information				
Company Name	Regenesis				
Address	1011 Calle Sombra				
	San Clemente, CA 92673				
Telephone	949-366-8000				
E-mail	CustomerService@regenesis.com				
Emergency phone number	CHEMTREC® at 1-800-424-9300 (Interna	tional)			
2. Hazard(s) identification					
Physical hazards	Not classified.				
Health hazards	Skin corrosion/irritation	Category 2			
	Serious eye damage/eye irritation	Category 1			
OSHA defined hazards	Not classified.				
Label elements					
	~				

3. Composition/information on ingredients

Mixtures

CAS number	%	
823190-10-9	48-53	
61790-12-3 or 112-80-1	30-35	
201167-72-8	<10	
	CAS number 823190-10-9 61790-12-3 or 112-80-1 201167-72-8	

Composition comments

All concentrations are in percent by weight unless otherwise indicated.

4. First-aid measures

Inhalation	Move to fresh air. Call a physician if symptoms develop or persist.
Skin contact	Remove contaminated clothing. Wash with plenty of soap and water. If skin irritation occurs: Get medical advice/attention. Wash contaminated clothing before reuse.
Eye contact	Immediately flush eyes with plenty of water for at least 15 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get medical attention immediately.
Ingestion	Rinse mouth. Never give anything by mouth to a victim who is unconscious or is having convulsions. Do not induce vomiting without advice from poison control center. Get medical attention if symptoms occur.
Most important symptoms/effects, acute and delayed	Severe eye irritation. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result. Skin irritation. May cause redness and pain.
Indication of immediate medical attention and special treatment needed	Provide general supportive measures and treat symptomatically. Keep victim under observation. Symptoms may be delayed.
General information	Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.
5. Fire-fighting measures	
Suitable extinguishing media	Water spray. Carbon dioxide (CO2). Dry chemical powder. Foam.

Unsuitable extinguishing media	Do not use water jet as an extinguisher, as this will spread the fire.
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed. Combustion products may include: carbon oxides, phosphorus compounds and metal oxides.
Special protective equipment and precautions for firefighters	Self-contained breathing apparatus and full protective clothing must be worn in case of fire.
Fire fighting equipment/instructions	Move containers from fire area if you can do so without risk. Water spray should be used to cool containers.
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials.
General fire hazards	No unusual fire or explosion hazards noted.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Keep people away from and upwind of spill/leak. Surfaces may become slippery after spillage. Wear appropriate protective equipment and clothing during clean-up. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Ensure adequate ventilation. Local authorities should be advised if significant spillages cannot be contained. For personal protection, see section 8 of the SDS.
Methods and materials for containment and cleaning up	Spilled product may create a slipping hazard. The product is immiscible with water and will spread on the water surface.
	Large Spills: Stop the flow of material, if this is without risk. Use water spray to reduce vapors or divert vapor cloud drift. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water. Flush area clean with lots of water. Be aware of potential for surfaces to become slippery.
	Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.
Environmental precautions	Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS, Avoid discharge into drains, water courses or onto the ground.
7. Handling and storage	
Precautions for safe handling	Do not get this material in contact with eyes. Avoid contact with eyes, skin, and clothing. Provide adequate ventilation. Wear appropriate personal protective equipment. Observe good industrial hygiene practices.
Conditions for safe storage, including any incompatibilities	Store in original tightly closed container. Store in a cool, dry, well-ventilated place. Store away from incompatible materials (see Section 10 of the SDS). Recommended storage containers: plastic lined steel, plastic, glass, aluminum, stainless steel, or reinforced fiberglass.

8. Exposure controls/personal protection

Occupational exposure limits	No exposure limits noted for ingredient(s),
Biological limit values	No biological exposure limits noted for the ingredient(s).
Appropriate engineering controls	Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level. Eye wash facilities and emergency shower must be available when handling this product.
Individual protection measures, s	such as personal protective equipment
Eye/face protection	Wear approved, tight fitting indirect vented or non-vented safety goggles where splashing is probable. Face shield is recommended.
Skin protection	
Hand protection	Wear appropriate chemical resistant gloves. Rubber or vinyl-coated gloves are recommended.
Other	Wear appropriate chemical resistant clothing.
Respiratory protection	If engineering controls do not maintain airborne concentrations below recommended exposure limits (where applicable) or to an acceptable level (in countries where exposure limits have not been established), an approved respirator must be worn.
Thermal hazards	Wear appropriate thermal protective clothing, when necessary.
General hygiene considerations	Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.

9. Physical and chemical properties

Appearance	
Physical state	Liquid.
Form	Semi-solid.
Color	Amber.
Odor	Odorless.
Odor threshold	Not available.
рН	Not available.
Melting point/freezing point	Not available.
Initial boiling point and boiling range	Not available.
Flash point	> 200.0 °F (> 93.3 °C) Closed Cup
Evaporation rate	Not available.
Flammability (solid, gas)	Not available.
Upper/lower flammability or expl	osive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
Vapor pressure	Not available.
Vapor density	Not available.
Relative density	0.9 - 1.1
Solubility(ies)	
Solubility (water)	Insoluble.
Solubility (other)	Slightly soluble in acetone.
Partition coefficient (n-octanol/water)	Not available.
Auto-ignition temperature	Not available.
Decomposition temperature	Not available.
Viscosity	Not available.

3-D Microemulsion® 923937 Version #: 01 Revision date: - Issue date: 22-April-2015

10. Stability and reactivity

Reactivity	The product is stable and non-reactive under normal conditions of use, storage and transport.
Chemical stability	Undergoes hydrolysis in water to form lactic acid, glycerol and fatty acids.
Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use. $`$
Conditions to avoid	Avoid temperatures exceeding the flash point. Contact with incompatible materials.
Incompatible materials	Strong oxidizing agents. Bases. Acids.
Hazardous decomposition products	Thermal decomposition or combustion may produce: carbon oxides, phosphorus compounds, metal oxides.

11. Toxicological information

Information on likely routes of exposure

Inhalation	May cause irritation to the respiratory system.
Skin contact	Causes skin irritation.
Eye contact	Causes serious eye damage.
Ingestion	Ingestion may cause irritation and malaise.
Symptoms related to the physical, chemical and toxicological characteristics	Severe eye irritation. Symptoms may include stinging, tearing, redness, swelling, and blurred vision. Permanent eye damage including blindness could result. Skin irritation. May cause redness and pain.
Information on toxicological effe	ects
Acute toxicity	Not available,
Skin corrosion/irritation	Causes skin irritation.
Serious eye damage/eye irritation	Causes serious eye damage.
Respiratory or skin sensitization	1
Respiratory sensitization	Not a respiratory sensitizer.
Skin sensitization	This product is not expected to cause skin sensitization.
Germ cell mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.
Carcinogenicity	This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.
OSHA Specifically Regulate	d Substances (29 CFR 1910.1001-1050)
Not listed.	
Reproductive toxicity	This product is not expected to cause reproductive or developmental effects.
Specific target organ toxicity - single exposure	Not classified.
Specific target organ toxicity - repeated exposure	Not classified.
Aspiration hazard	Not an aspiration hazard.
12. Ecological information	I
Ecotoxicity	The product is not classified as environmentally hazardous. However, this does not exclude the possibility that large or frequent spills can have a harmful or damaging effect on the environment
Persistence and degradability	Material is readily degradable and undergoes hydrolysis in several hours.
Bioaccumulative potential	No data available.
Mobility in soil	The product is immiscible in water.
Other adverse effects	None known.
13. Disposal consideration	ns
Disposal instructions	Collect and reclaim or dispose in sealed containers at licensed waste disposal site. Dispose of contents/container in accordance with local/regional/national/international regulations.
Local disposal regulations	Dispose in accordance with all applicable regulations.
Hazardous waste code	The waste code should be assigned in discussion between the user, the producer and the waste

disposal company.

Dispose of in accordance with local regulations. Empty containers or liners may retain some Waste from residues / unused product residues. This material and its container must be disposed of in a safe manner (see: products Disposal instructions). Empty containers should be taken to an approved waste handling site for recycling or disposal. Contaminated packaging Since emptied containers may retain product residue, follow label warnings even after container is emptied. 14. Transport information DOT Not regulated as dangerous goods.

This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication

ΙΑΤΑ

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to Not established. Annex II of MARPOL 73/78 and the IBC Code

15. Regulatory information

US federal regulations TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D) Not regulated. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050) Not listed

CERCLA Hazardous Substance List (40 CFR 302.4)

Not listed.

Hazard categories

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Immediate Hazard - Yes **Delayed Hazard - No** Fire Hazard - No Pressure Hazard - No **Reactivity Hazard - No**

Standard, 29 CFR 1910.1200.

One or more components are not listed on TSCA.

SARA 302 Extremely hazardous substance

Not listed.

SARA 311/312 Hazardous Yes chemical

SARA 313 (TRI reporting) Not regulated.

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act Not regulated. (SDWA)

US state regulations

US. Massachusetts RTK - Substance List

Not regulated.

US. New Jersey Worker and Community Right-to-Know Act Not listed

US. Pennsylvania Worker and Community Right-to-Know Law

Fatty Acids (neutralized) (CAS 61790-12-3 or 112-80-1)

US. Rhode Island RTK

Not regulated.

US. California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	No
Europe	European List of Notified Chemical Substances (ELINCS)	Νο
Japan	Inventory of Existing and New Chemical Substances (ENCS)	Yes
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

Toxic Substances Control Act (TSCA) Inventory United States & Puerto Rico

*A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s). A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing

country(s).

16. Other information, including date of preparation or last revision

Issue date	22-April-2015
Revision date	-
Version #	01
Further information	HMIS® is a registered trade and service mark of the American Coatings Association (ACA).
HMIS® ratings	Health: 3 Flammability: 1 Physical hazard: 0

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

1. Identification

Product identifier	Chemical Reducing Solution (CRS®)
Other means of identification	None.
Recommended use	Soil and Groundwater Remediation.
Recommended restrictions	None known.

Manufacturer/Importer/Supplier/Distributor information

Company Name	Regenesis
Address	1011 Calle Sombra
	San Clemente, CA 92673
Telephone	949-366-8000
E-mail	CustomerService@regenesis.com
Emergency phone number	CHEMTREC® at 1-800-424-9300 (International)

2. Hazard(s) identification

Physical hazards	Not classified.
Health hazards	Not classified.
OSHA defined hazards	Not classified.
Label elements	
Hazard symbol	None.
Signal word	None.
Hazard statement	The mixture does not meet the criteria for classification.
Precautionary statement	
Prevention	Observe good industrial hygiene practices.
Response	Wash hands after handling.
Storage	Store away from incompatible materials.
Disposal	Dispose of waste and residues in accordance with local authority requirements,
Hazard(s) not otherwise classified (HNOC)	None known.

3. Composition/information on ingredients

Mixtures

The manufacturer lists no ingredients as hazardous according to OSHA 29 CFR 1910.1200.

Chemical name		CAS number	%
Water		7732-18-5	85-92
Ferrous Gluconate		299-29-6	8-15
Composition comments	All concentrations are in percent by weight	unless otherwise indicated.	
4. First-aid measures			
Inhalation	Move to fresh air. Call a physician if sympto	oms develop or persist.	
Skin contact	Remove contaminated clothing and shoes. irritation develops and persists.	Wash off with soap and water.	Get medical attention i
Eye contact	Rinse with water. Get medical attention if in	ritation develops and persists.	
Ingestion	Rinse mouth. Never give anything by mouth convulsions. Do not induce vomiting withou keep head low so that stomach content doe symptoms occur.	n to a victim who is unconsciou t advice from poison control ce esn't get into the lungs. Get me	s or is having nter. If vomiting occurs dical attention if

Most important symptoms/effects, acute and delayed	Direct contact with eyes may cause temporary irritation.	
Indication of immediate medical attention and special treatment needed	Treat symptomatically.	
General information	If you feel unwell, seek medical advice (show the label where possible). Show this safety data sheet to the doctor in attendance.	
5. Fire-fighting measures		
Suitable extinguishing media	Small fires: Dry chemical powder. Larger fires: Water spray, fog or foam.	
Unsuitable extinguishing media	None known.	
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed. Combustion products may include: carbon monoxide, carbon dixoide, iron oxides.	
Special protective equipment and precautions for firefighters	Use protective equipment appropriate for surrounding materials.	
Fire fighting equipment/instructions	Move containers from fire area if you can do so without risk.	
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials. Use water spray to keep fire-exposed containers cool.	
General fire hazards	No unusual fire or explosion hazards noted. The product itself does not burn.	
6. Accidental release measures		
Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Avoid contact with spilled material. For personal protection, see section 8 of the SDS.	
Methods and materials for	This product is miscible in water.	
containment and cleaning up	Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water.	
	Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.	
	Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS,	
Environmental precautions	Avoid discharge into drains, water courses or onto the ground.	
7. Handling and storage		
Precautions for safe handling	Avoid contact with eyes, skin, and clothing. Avoid prolonged exposure. Avoid breathing spray mist. Use with adequate ventilation. Observe good industrial hygiene practices. Wear appropriate personal protective equipment (See Section 8).	
Conditions for safe storage, including any incompatibilities	Store in original tightly closed container. Store in a cool, dry, well-ventilated place. Store away from incompatible materials (see Section 10 of the SDS). Keep away from extreme heat and strong oxidizing agents.	
8. Exposure controls/perso	onal protection	
Occupational exposure limits	No exposure limits noted for ingredient(s).	
Biological limit values	No biological exposure limits noted for the ingredient(s).	
Appropriate engineering controls	Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level. Provide eyewash station and safety shower.	
Individual protection measures,	such as personal protective equipment	
Eye/face protection	Use safety glasses. Where contact with eyes is likely, use chemical goggles. Use a face shield as needed.	
Skin protection Hand protection	Wear appropriate chemical resistant gloves.	

Wear suitable protective clothing. Wear appropriate chemical resistant gloves,

Chemical Reducing Solution (CRS®)

Other

923813 Version #: 01 Revision date: - Issue date: 26-February-2015

Respiratory protection

Thermal hazards

In case of insufficient ventilation, wear suitable respiratory equipment. If engineering controls do not maintain airborne concentrations below recommended exposure limits (where applicable) or to an acceptable level (in countries where exposure limits have not been established), an approved respirator must be worn. Wear respiratory protection during operations where spraying or misting occurs. If respirators are used, a program should be instituted to assure compliance with OSHA 29 CFR 1910.134.

Wear appropriate thermal protective clothing, when necessary.

General hygiene
considerationsAlways observe good personal hygiene measures, such as washing after handling the material
and before eating, drinking, and/or smoking. Routinely wash work clothing and protective
equipment to remove contaminants.

9. Physical and chemical properties

Appearance

Physical state	Liquid.
Form	Liquid.
Color	Dark green to black.
Odor	Odorless.
Odor threshold	Not available.
рН	6 - 8
Melting point/freezing point	Not available.
Initial boiling point and boiling range	Not available.
Flash point	Not flammable.
Evaporation rate	Not available.
Flammability (solid, gas)	Not applicable.
Upper/lower flammability or exple	osive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
Vapor pressure	Not available.
Vapor density	Not available.
Relative density	1 - 1.2
Solubility(ies)	
Solubility (water)	Miscible
Partition coefficient (n-octanol/water)	Not available.
Auto-ignition temperature	Not available.
Decomposition temperature	Not available.
Viscosity	Not available.
10. Stability and reactivity	

Reactivity	The product is stable and non-reactive under normal conditions of use, storage and transport.
Chemical stability	A component of this product can oxidize in air: iron (II) to iron (III).
Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use.
Conditions to avoid	Contact with incompatible materials. Keep from freezing.
Incompatible materials	Oxidizing agents.
Hazardous decomposition products	Thermal decomposition can produce oxides of carbon and iron,

11. Toxicological information

Information on likely routes of exposure

Inhalation	Prolonged inhalation may be harmful.	
Skin contact	Prolonged or repeated skin contact may result in minor irritation.	
Eye contact	Direct contact with eyes may cause temporary irritation.	
Ingestion	Expected to be a low ingestion hazard.	
Symptoms related to the physical, chemical and toxicological characteristics	Direct contact with eyes may cause temporary irritation.	
Information on toxicological effe	cts	
Acute toxicity	Not expected to be acutely toxic.	
Skin corrosion/irritation	Prolonged skin contact may cause temporary irritation.	
Serious eye damage/eye irritation	Direct contact with eyes may cause temporary irritation.	
Respiratory or skin sensitization		
Respiratory sensitization	Not a respiratory sensitizer.	
Skin sensitization	This product is not expected to cause skin sensitization.	
Germ cell mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.	
Carcinogenicity	This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.	
OSHA Specifically Regulated Not listed.	d Substances (29 CFR 1910.1001-1050)	
Reproductive toxicity	This product is not expected to cause reproductive or developmental effects.	
Specific target organ toxicity - single exposure	Not classified.	
Specific target organ toxicity - repeated exposure	Not classified.	
Aspiration hazard	Not an aspiration hazard.	
Chronic effects	Prolonged inhalation may be harmful.	
Further information	Ferrous Gluconate Dihydrate $(6047-12-7)$ is Generally Recognized as Safe (GRAS) (21 CFR §184.1308).	

12. Ecological information

Ecotoxicity	The product is not classified as environmentally hazardous. However, this does not exclude the possibility that large or frequent spills can have a harmful or damaging effect on the environment.
Persistence and degradability	No data is available on the degradability of this product.
Bioaccumulative potential	No data available.
Mobility in soil	Expected to be highly mobile in soil.
Other adverse effects	None known.

13. Disposal considerations

Disposal instructions	Collect and reclaim or dispose in sealed containers at licensed waste disposal site.
Local disposal regulations	Dispose in accordance with all applicable regulations.
Hazardous waste code	The waste code should be assigned in discussion between the user, the producer and the waste disposal company.
Waste from residues / unused products	Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see: Disposal instructions).
Contaminated packaging	Empty containers should be taken to an approved waste handling site for recycling or disposal. Since emptied containers may retain product residue, follow label warnings even after container is emptied.

14. Transport information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to Not available. Annex II of MARPOL 73/78 and the IBC Code

15. Regulatory information

US federal regulations

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not listed.

CERCLA Hazardous Substance List (40 CFR 302.4)

Not listed.

Hazard categories

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Immediate Hazard - No Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No

SARA 302 Extremely hazardous substance

Not listed.

SARA 311/312 Hazardous No chemical

SARA 313 (TRI reporting)

Not regulated.

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act Not regulated. (SDWA)

US state regulations

US. Massachusetts RTK - Substance List

Not regulated.

- US. New Jersey Worker and Community Right-to-Know Act
 - Not listed.
- US. Pennsylvania Worker and Community Right-to-Know Law Not listed.

US. Rhode Island RTK

Not regulated.

US. California Proposition 65 Not Listed.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No

Chemical Reducing Solution (CRS®)

Country(s) or region	Inventory name	On inventory (yes/no)*
China	Inventory of Existing Chemical Substances in China (IECSC)	No
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	No
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

*A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s). A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date	26-February-2015
Revision date	-
Version #	01
Further information	HMIS® is a registered trade and service mark of the American Coatings Association (ACA).
HMIS® ratings	Health: 1 Flammability: 0 Physical hazard: 0
NFPA ratings	

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.