2018 ANNUAL OPERATION, MAINTENANCE, AND MONITORING REPORT

STAUFFER MANAGEMENT COMPANY SITE 5715 OLD LEWISTON ROAD LEWISTON, NY 14092

Prepared For:

Stauffer Management Company LLC 1800 Concord Pike Wilmington DE, 19803

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape
Architecture and Geology, D.P.C
124 Lenox Drive, Suite 124
Lawrenceville, NJ 08648

April 2, 2019 130117301

989 Lenox Drive, Suite 124

Lawrenceville, NJ 08648

T: 609.282.8000

F: 609.282.8001

www.langan.com

2018 ANNUAL OPERATION, MAINTENANCE, and MONITORING REPORT

STAUFFER MANAGEMENT COMPANY SITE 5715 OLD LEWISTON ROAD LEWISTON, NY 14092

Stauffer Management Company LLC 1800 Concord Pike Wilmington DE, 19803

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape
Architecture and Geology, D.P.C.
124 Lenox Drive, Suite 124
Lawrenceville, NJ 08648

Howard Nichols, P.E. Senior Project Manager

Stewart Abrams, P.E. Principal / Vice President

Stent H. almo

April 2, 2019 130117301

TABLE OF CONTENTS

		Page No.
	TIVE SUMMARY	
1.0	INTRODUCTION	4
	3ackground	
REME	DIAL SYSTEM DESCRIPTIONS	5
1.2		
	2.3 Area C	
	2.4 Area T-4	
	2.5 Groundwater Extraction and Treatment System	
	SITE DESCRIPTION	
2.1	Physical Setting	
2.2	SITE REMEDIATION HISTORY	
2.3	MONITORING/EXTRACTION WELL NETWORK	
2.4	SITE HYDROGEOLOGY	
3.0	AREAS A, C AND T-4 REMEDIAL SYSTEM ACTIVITIES	
3.1	Area A Operations For 2018	10
3.2	Area C Operations For 2018	
3.3	Area T-4 Operations For 2018	11
4.0	GROUNDWATER EXTRACTION SYSTEM OM&M ACTIVITIES	11
4.1	SUMMARY OF OPERATIONS	11
4.2	2018 EXTRACTION SYSTEM MODIFICATIONS	12
4.3	Mass Removal	12
4.3	3.1 Extraction Wells EW-1 through EW-6	12
4.3	3.2 Area A Dual Phase Wells DPA-201, DPA-202, DPA-203	13
4.3	3.3 Area T-4 Extraction Well DPT-261 (T-4)	14
4.3		
4.3	3.5 Extraction Well LR-66	14
4.4	ROUTINE MAINTENANCE	14
5.0	GROUNDWATER TREATMENT SYSTEM OM&M ACTIVITIES	15
5.1	SUMMARY OF OPERATIONS	15
5.2	Maintenance, Inspection, and Monitoring Activities	15
5.2		
5.2	2.2 Treatment System Modifications	16

5.	.2.3	Groundwater Treatment System Process Monitoring	17	
5.	.2.4	Additional Monitoring of Treated Effluent	18	
5.2.5		Groundwater Treatment System Performance Monitoring – 2018	19	
5.2.6		Emerging Contaminants Sampling	20	
5.	.2.7	Groundwater Treatment System Performance Monitoring – 2019	20	
5.	.2.8	Facilities, Structures, and Grounds Maintenance	20	
5.2.9		Unscheduled Maintenance	21	
5.	.2.10	Monitoring Well Inventory	21	
6.0	GR	OUNDWATER LEVEL MONITORING AND CHEMISTRY	21	
6.1		BENERAL	21	
6.2	5	HALLOW WELLS	25	
6.3	F	LOW ZONE 10	25	
6.4	F	LOW ZONE 11	26	
6.5	F	LOW ZONE 12	26	
6.6	F	LOW ZONE 13	26	
6.0	SU	Additional Monitoring of Treated Effluent		

LIST OF TABLES

Table 1 Monitoring and extraction well inventory
 Table 2 Mass Removal Table
 Table 3 Treatment System Extraction Volumes
 Table 4 Annual Groundwater Sampling Results
 Table 5 PDB sampling results
 Table 6 Packer Test Sampling Results
 Table 7 Emerging Contaminant Sampling Results

LIST OF FIGURES

Figure 1 Site Location Map Figure 2 Site Plan Figure 3 Site Features Figure 4 Shallow Well Groundwater Potentiometric Surface Shallow Well Carbon Disulfide Isoconcentrations Figure 5 Shallow Well Carbon Tetrachloride and Chloroform Isoconcentrations Figure 6 FZ-10 Groundwater Potentiometric Surface Figure 7 FZ-10 Carbon Disulfide Isoconcentrations Figure 8 Figure 9 FZ-10 Carbon Tetrachloride and Chloroform Isoconcentrations FZ-11 Groundwater Potentiometric Surface Figure 10 Figure 11 FZ-11 Carbon Disulfide Isoconcentrations Figure 12 FZ-11 Carbon Tetrachloride and Chloroform Isoconcentrations Figure 13 FZ-12 Groundwater Potentiometric Surface Figure 14 FZ-12 Carbon Disulfide Isoconcentrations FZ-12 Carbon Tetrachloride and Chloroform Isoconcentrations Figure 15

LIST OF APPENDICES

Appendix A	Groundwater Treatment System 2018 Process Monitoring Data
Appendix B	Groundwater Treatment System 2018 SPDES Data
Appendix C	Low Flow Sampling Purge Sheets
Appendix D	Monitoring Well Inventory

List of Acronyms

SPDES State Pollution Discharge Elimination System

O&M Operations and Maintenance

SMC Stauffer Management Company, LLC

GRD Greater Radiological Dimensions

NYSDEC New York State Department of Environmental Conservation

CO Consent Order

SVE Soil Vapor Extraction

SSPL Site-Specific Parameter List GAC Granular Activated Carbon NYPA New York Power Authority

FZ Flow Zone

PVC Polyvinyl Chloride

NAPL Non-Aqueous Phase Liquid

ROD Record of Decision

GPM Gallons per Minute

BGS Below Ground Surface

VOCs Volatile Organic Compounds

SVOCs Semi- Volatile Organic Compounds

EE Environmental Easement SMP Site Management Plan

OM&M Operations, Maintenance & Monitoring

CSM Conceptual Site Model

DOW Division of Water

DER Division of Environmental Remediation

PDB Passive Diffusion Bag
PCE Tetrachloroethene
TCE Trichloroethene

EXECUTIVE SUMMARY

This report has been prepared to summarize the operation and maintenance (O&M) activities performed at the Stauffer Management Company, LLC (SMC) Site (Site) in Lewiston, New York for the reporting period of January 1, 2018 through December 31, 2018. The report also summarizes any significant modifications to remediation operations during the reporting period.

The SMC Site is located in the Town of Lewiston, New York, immediately north of the Forebay of the Robert Moses Power Plant and is a former chemical manufacturing facility owned and operated by Stauffer Chemical Company. All structures associated with the former plant were demolished in the early 1980s. The overall Site management and remediation is conducted by SMC, with Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) providing day-to-day operation and maintenance of the remediation system in 2018. A local sub-contractor, Greater Radiological Dimensions (GRD), of Lewiston, New York, assists in the routine operations and conducts weekly treatment system inspections. The remedial work is being done in accordance with New York State Department of Environmental Conservation (NYSDEC) Consent Order (CO) #B9-0137-86-04, effective July 19, 2004.

Currently, the active remedial operations consist of a bedrock groundwater extraction and treatment system, including deep bedrock and shallow bedrock extraction wells. A soil vapor extraction (SVE) treatment system for Area A of the Site has been shut off with approval from NYSDEC, but remains operable and is to be decommissioned and demolished. Two other SVE systems were decommissioned in 2001 and 2004.

The major chemicals of concerns in the groundwater at the Site have been identified in the following Site-Specific Parameter List (SSPL):

Benzene

Chlorobenzene

Carbon Disulfide

Chloroform

Carbon tetrachloride

Methylene chloride

Tetrachloroethene (PCE)

Toluene

Trichloroethene (TCE)

The groundwater extraction well network consists of two deep bedrock extraction wells, three intermediate/deep bedrock extraction wells, three shallow bedrock extraction wells and three overburden/shallow bedrock wells in Area A. The locations of the extraction wells are shown on

Figure 2. Underground force mains with secondary containment convey recovered groundwater from the extraction wells to the treatment building.

Extracted groundwater is treated using a series of particulate filters and contaminant removal occurs in in two granular activated carbon (GAC) vessels located in the treatment building. The treated water from the GAC vessels is discharged through the outfall to the New York Power Authority (NYPA) Forebay, located south of the Site. Treated water is discharged in accordance with effluent limits and sampling requirements set by NYSDEC. Due to the Site being operated under the CO, a state Pollution Discharge Elimination System (SPDES) permit is not required.

Approximately 14.7 million gallons of groundwater were extracted, treated, and discharged in 2018. This volume was approximately 3% higher than the amount extracted in 2017. The total contaminant mass removed by the groundwater extraction system in 2018 was approximately 1,676 pounds, which is 20% higher than pounds removed in 2017 (1,386 pounds). Reductions in extraction volumes and mass removal were noted at shallow wells DPA-202 and DPA-203 and deeper extraction wells LR-66 and OW-3. Insufficient water was present in these wells to sustain high groundwater extraction rates, which in turn reduced mass recovery rates. A significant increase in mass extraction was noted in extraction well EW-6, where mass removal rates nearly doubled from 2017. Figures presenting groundwater potentiometric contours and chemical isoconcentrations are presented in Section 6 for each flow zone (FZ) designated at the Site. The current extraction well configuration provides hydraulic capture across the Site and indicates that the extraction system continues to be effective at both hydraulic containment and contaminant mass removal.

The treatment system was re-configured to bring the solids settling tank back on-line, to assist with particulate removal. A chemical feed pilot test was also conducted with NYSDEC permission in 2018 to test the effectiveness of chemical addition to reduce the filter clogging issues. The chemical feed pilot test showed that the addition of disinfectant, biodispersion and anti-scaling agents were successful in reducing the frequency of particulate filter replacement from three times a week to once per week. With NYSDEC approval, Langan implemented full time chemical feed in February 2019.

A field investigation was conducted in 2018 to further refine the conceptual Site Model (CSM). The investigation included conducting the following tasks:

Downhole video logging

Lewiston, New York

Langan Project No.: 130117301

- Groundwater Sampling
- Continuous Water-Level Monitoring
- Downhole Geophysics
- Packer Testing
- Passive Diffusion Bag (PDB) Sampling
- Aguifer Testing

A summary report for the CSM will be provided to NYSDEC under separate cover. The enhanced hydrogeological understanding and characterization of the flow zones has been incorporated into this report, and is discussed in Section6.

At the request of NYSDEC, SMC conducted a sampling event to screen the Site for emerging contaminants, including perfluorinated compounds and 1,4-dioxane. The sampling event was completed in accordance with Emerging Contaminant Sampling Work Plan, submitted to NYSDEC on July 18, 2018. The sampling results are presented in Table 7, and show that the Site groundwater is not impacted by these emerging contaminants.

1.0 INTRODUCTION

This report summarizes the operation and maintenance (O&M) activities performed at the Stauffer Management Company LLC (SMC) Site (Site) in Lewiston, New York for the reporting period of January 1, 2018 through December 31, 2018. This report also summarizes significant modifications to remedial operations made during the reporting period and presents data that can be used to evaluate effectiveness and remedial system optimization.

1.1 Site Background

The SMC Site is located in the Town of Lewiston, New York, immediately north of the Forebay of the Robert Moses Power Plan. Figure 1 depicts the location of the Site and Figure 2 depicts the Site layout.

The Site is the location of a former chemical manufacturing facility owned and operated by Stauffer Chemical Company. All structures associated with the former plant were demolished in the early 1980s. Stauffer Chemical Company was divested in 1987, and Atkemix Thirty Seven, a subsidiary of Stauffer Management Company, became the Site owner. In 2000, Stauffer Management Company and Atkemix Thirty Seven restructured into a limited liability company that is now known as SMC, a wholly owned subsidiary of AstraZeneca.

In 1995, in accordance with Consent Order (CO) #B9-0137-86-04, SMC initiated construction for soil and groundwater remediation. At that time, the treatment building was erected to house the Site groundwater extraction and treatment system and the soil vapor extraction (SVE) treatment system for Area A. A second SVE treatment system, located in Area C, was mounted in a trailer location off-Site, beyond the southeast corner of the Site property. SVE operations at Area C were discontinued in May 2004, and the Area C SVE system was decommissioned in July 2004. A third SVE system at Area T-4 was also installed in 1995, operated until 2000, and decommissioned in September 2001. Note that Area B was a historical landfill located beyond the southeast corner of the Site used for disposal of inert materials. Area B material was disposed of off-Site and investigations determined no need for further remediation.

The major chemicals of concern in the groundwater at the Site have been designated in the Site-Specific Parameter List (SSPL) as follows:

- Benzene
- Carbon Disulfide
- Carbon tetrachloride
- Tetrachloroethene (PCE)
- Trichloroethene (TCE)
- Chlorobenzene
- Chloroform
- Methylene chloride
- Toluene

These chemicals have historically been detected at varying concentrations in the groundwater, subsurface soils, seeps, and surface water run-off at the Site and its immediate vicinity.

1.2 Remedial System Descriptions

The remedial systems currently operable at the Site include:

- 1. Area A SVE System (Note that the Area A SVE system is currently turned off, but remains in operable condition See Section 3.1 below)
- 2. Overburden and bedrock groundwater extraction and treatment system, consisting of shallow and deep bedrock extraction wells.

These remedial systems and Site areas are briefly described in the following sections.

1.2.1 Area A

Area A occupies approximately 136,500 square feet near the center of the property as shown on Figure 3. The remedial system at Area A used a combination of soil vapor and groundwater extraction, consisting of 39 SVE wells, 3 dual-phase groundwater/SVE wells and a multilayer cover comprised of a polyvinyl chloride (PVC) geomembrane liner, a geotextile cushion and crushed stone.

Each SVE well is connected to one of four header pipes that enter the Treatment Building and are connected to the vacuum blower housed in the north side of the building. The SVE piping is mounted on a metal framed pipe strap support system. The Area A SVE treatment system is comprised of an integrated blower skid consisting of a moisture separator tank, an in-line filter, a vacuum blower, a discharge silencer and a condensate removal pump, all located in the treatment building. The heat exchanger and granular activated carbon (GAC) adsorption units are adjacent to the blower skid and anchored separately to the concrete floor in the building.

1.2.3 Area C

Area C occupies approximately 19,350 square feet beyond the southeast corner of the Site property, as shown in Figure 3. Area C is the location of one of the landfills previously used by Stauffer Chemical Company.

Due to the success of the Area C SVE system, and with the approval of the NYSDEC, operations at Area C were discontinued in May 2004 and the SVE system was decommissioned and removed in July 2004. The SVE wells were plugged and abandoned in accordance with NYSDEC regulations in December 2004.

1.2.4 Area T-4

Area T-4 occupies approximately 11,500 square feet and is located southwest of the treatment building, as shown on Figure 3. The Area T-4 SVE system was decommissioned in September 2001 based on the success of the system and with approval of the NYSDEC.

1.2.5 Groundwater Extraction and Treatment System

The groundwater extraction well network consists of two deep bedrock extraction wells (LR-66 and OW-3), three intermediate/deep bedrock extraction wells (EW-1, EW-2 and EW-3), three shallow bedrock extraction wells (EW-4, EW-5 and EW-6) and three shallow dual-phase wells in Area A (DPA-201, DPA-202, DPA-203). The locations of the extraction wells are shown on Figure 3. Underground force mains with secondary containment convey extracted groundwater from the wells to the treatment building. The groundwater treatment system is currently housed in the south side of the original treatment building and in the northwest addition to the building.

All groundwater from each of the extraction wells is pumped into the groundwater treatment system. The major components of the treatment system are listed below:

- Solids Settling Tank: A 1,500-gallon conical bottom tank installed in 2009 to provide solids settling prior to the influent water entering the treatment system. This tank replaced a non-aqueous phase liquid (NAPL) separator tank that had deteriorated. Phase separation is not required at the Site, as no NAPL has been observed since the beginning of system operations.
- 2. System Feed tank: A process tank used to accumulate water from the solids settling tank. This tank serves as an equalization tank.

- 3. System Feed Pump: Pumps water from the feed tank through the rest of the treatment system. The pump is controlled by a variable frequency drive.
- 4. Bag Filters: Groundwater is pumped through thirteen 10-micron bag filters (consisting of an eight bag round filter vessel and a separate five-bag unit) operated in parallel to prevent solids from clogging the GAC.
- GAC Vessels: After the bag filters, the groundwater passes through two 10,000pound GAC adsorption vessels operated in series. The 10,000-pound GAC vessels were installed in 2014 as replacements for two 20,000-pound GAC adsorption vessels.

The treated water from the GAC units is discharged through the outfall to the New York Power Authority (NYPA) Forebay, located south of the Site. Treated water is discharged in accordance with effluent limits and sampling requirements set by NYSDEC. Due to the Site being operated under the CO, a State Pollution Discharge Elimination System (SPDES) permit is not required.

2.0 SITE DESCRIPTION

2.1 Physical Setting

The Site is located at 5715 Old Lewiston Road in Lewiston, New York. A Site Location Map showing the Site on a USGS Topographic Map is provided as Figure 1. The most prominent features near the Site are identified on Figure 3. The Site is bounded on three sides by hydroelectric power generating facilities operated by the New York Power Authority (NYPA). Those facilities consist of the following:

- The Robert Moses Niagara Hydroelectric Power Station located to the west of the Site;
- The Lewiston Pump Generating Plant and Lewiston Pumped Storage Reservoir located to the east of the Site; and
- The Forebay canal/reservoir located along the Site's southern property boundary.

The Forebay is about 0.8 miles long in total and varies in width from about 500 to 1,000 feet. The water surface elevation in the Forebay is typically about 50 to 60 feet lower than the ground surface of the Site.

Also prominent is the gorge of the Lower Niagara River, which is located to the west of the Site and flows south to north. The gorge begins at Niagara Falls and ends seven miles down-river at the Niagara Escarpment. The Site is located about five miles down-river from the Niagara Falls. The base of the gorge is about 300 feet lower in elevation than at its closest point to the Site.

The Gate of Heaven Cemetery is located north of the Site. Interstate 190, the Niagara Thruway, is located east of the Site. State Route 104 is located west of the Site.

2.2 Site Remediation History

As summarized in the current Site Management Plan (May 2017), potential soil and soil vapor exposures are controlled by land use restrictions contained in a recorded environmental easement (EE) and by Site management procedures. Potential migration via overland flow and surface water drainage are controlled by Site grading and vegetative cover. Potential on-Site groundwater exposures are controlled by the EE, which prohibits use of groundwater underlying the Site unless treated to render it safe for its intended use.

A groundwater extraction and treatment system has been in operation since 1995. The groundwater extraction network currently consists of a total of 11 active extraction wells (EW-1 through 6, LR-66, OW-3, and three dual-phase extraction [DPA] wells). Total system flow varies seasonally between 30 and 50 gallons per minute (gpm) and typically averages between 43,000 and 57,000 gallons per day. Treatment system operations have over time been impacted by clogging and diminishing yield from the extraction well network. Additionally, removal efficiency (i.e., pounds of VOCs removed per gallon of extracted groundwater) has been declining since the early 2000s. A declining trend in treatment system performance is common in nearly all systems, and is typically observed as the remaining amount of contaminant mass is diminished over time.

2.3 Monitoring/Extraction Well Network

The Site reportedly has 109 total wells (including extraction and monitoring wells) of various depths. Many of the well locations are shown on Figure 2. An inventory of the monitoring and extraction wells and well construction information gathered from review of previous environmental reports completed by others is provided as Table 1. In some instances, the well completion details, i.e., screen depth, are not available.

2.4 Site Hydrogeology

The water table is encountered in the upper bedrock of the Lockport Formation at a depth of about 20 feet below ground surface. The current extraction and monitoring wells were installed based on the depths to four general hyrdostratigraphic zones, identified as the Upper Lockport Water Bearing Zone, the Lockport Water Bearing Zone, the Lockport/Rochester Water Bearing Zone, and the Rochester Water Bearing Zone.

Two bedrock grout curtains are present on or near the SMC property. According to the 1991 Site Investigation Report by Conestoga-Rovers & Associates, the grout curtains reduce the volume of groundwater discharging to the Forebay and the Niagara Gorge. The main north-south grout curtain extends along the Niagara Gorge from about 2,000 feet north of the Robert Moses Power Plant, crosses the intake structure area, and extends south along the gorge further by about 2,000 feet. The second grout curtain, located mostly on the SMC property, is oriented east-west along the Forebay and is about 1,500 feet long. The Forebay grout curtain terminates at the Niagara Gorge grout curtain near the northern edge of the power plant. The Niagara Gorge grout curtain extends to a depth of about 275 below ground surface (bgs) into the Queenston Shale Formation. Grout boreholes for the upper 150 feet of the Niagara Gorge grout curtain were spaced about 10 to 20 feet apart; for the lower 125 feet, grout boreholes were spaced about 40 feet apart. The Forebay grout curtain extends to a depth of about 100 feet into the Rochester Shale Formation. Grout boreholes for the upper 40 to 50 feet of the Forebay grout curtain were spaced 10 to 20 feet apart; for the lower 50 to 60 feet, grout boreholes were spaced 20 feet.

A field investigation was completed in 2018 to update the understanding of the conceptual Site Model (CSM). A discussion of the CSM investigation is provided in Section 6, while the details of the investigation program and findings are being provided to NYSDEC in a separate submission. An important finding of the CSM is the revision of the groundwater flow zones at the site. Previously, four bedrock water bearing zones (WBZs) had been identified at the site and were used to characterize groundwater transport potential and contaminant distribution. As a result of the 2018 field investigation the WBZs have been replaced with Flow Zones (FZs), which alter the grouping of monitoring. The nomenclature for the flow zones is consistent with the detailed assessment conducted for the Hyde Park Landfill Superfund Site, and is discussed in more detail in Section 6.1. A table summarizing the revisions in groundwater flow is provided below. The approximate elevations of the new flow zone designations is also provided in the table.

WBZ Designation	FZ Designation	FZ Elevation Interval
Overburden	Overburden	Varies with geology
Upper Lockport	FZ-10	520 to 540 feet NAVD88
Lower Lockport	FZ-10	520 to 540 feet NAVD88
Lockport/Rochester	FZ-11	510 to 520 feet NAVD88
Rochester	FZ-12	470 feet NAVD88
Irondequoit Limestone*	FZ-13	440 to 445 feet NAVD

^{* -} Irondequoit Limestone was not included in the previous WBZ assessments.

The table above shows that FZ-10 includes both the Upper and Lower Lockport formation flow zones. A deeper flow zone, FZ-13, was also identified during the CSM investigation, which does not correspond with the previously identified WBZs. Extraction well EW-1 encounters this flow zone. Except possibly for EW-2, the other boreholes at the site are too shallow to intersect with FZ-13.

3.0 AREAS A, C AND T-4 REMEDIAL SYSTEM ACTIVITIES

A summary of the inactive remediation areas is provided below, along with a description of the former treatment area and a summary of the remediation timelines.

3.1 Area A Operations For 2018

The Area A SVE system has been turned off since 2014 and did not operate in 2018. As discussed in the 2013 Annual Operations & Maintenance Report, in 2013 through early 2014, SMC performed an evaluation of historical and current Area A performance. The evaluation concluded that the operation of the SVE system had achieved the maximum amount of contaminant removal reasonably attainable, and that any residual vapor-phase volatile organic compounds (VOCs) are being contributed from the contaminated groundwater that exists within and below the Area A treatment field.

A letter summarizing the evaluation and a recommendation to discontinue operation of the Area A SVE system was submitted to NYSDEC on June 6, 2014. The NYSDEC responded to the request on a June 19, 2014 letter to SMC indicating that preparation and submittal of an EE would

first be required. On August 4, 2014, NYSDEC visited the Site to discuss Area A and other remedial operations. Suring the visit, NYSDEX agreed that the Area A blower could be kept off while the EE process was pending. Therefore, the system has been turned off since August 2014.

The final EE was signed by SMC on April 28, 2015 and by NYSDEC on August 24, 2015. The EE was filed in Niagara County on September 4, 2015. Upon NYSDEC approval of the Site management Plan (SMP) that was submitted in 2017, the Area A SVE system will be decommissioned. Note the SVE system is being maintained in operable condition.

Since the system was not running, there was no contaminant mass removal from the Area A SVE system during 2018.

3.2 Area C Operations For 2018

Due to the success of the system, the former Area C SVE system was decommissioned in July 2004 with the approval of the NYSDEC. The SVE wells were plugged and abandoned in accordance with the NYSDEC regulations in December 2004.

3.3 Area T-4 Operations For 2018

Due to the success of the system, the former Area T-4 SVE system was decommissioned in September 2001 with the approval of the NYSDEC. Dual Phase well T-4 (also known as DPT-261) was taken out of service as an SVE well in 2001. It remains as a monitoring point; however insufficient water was present in the well in 2018 and a groundwater sample was not collected.

4.0 GROUNDWATER EXTRACTION SYSTEM OM&M ACTIVITIES

4.1 Summary of Operations

The bedrock groundwater extraction system operated in automatic mode throughout the reporting period, with visits to the Site two to three times per week to confirm pumping operations, conduct system inspection, perform bag filter change-outs, system process water sampling, and various other OM&M activities. Intermittently, extended periods of non-pumping or reduced rates occurred from the following activities:

- Extraction well disinfection/cleaning event in June 2018 (entire system was down for two weeks),
- CSM update activities during July and August 2018 (majority or entire system was down for seven weeks),
- OW-3 pneumatic controller had frozen breaking the internals during the winter of 2018 and was repaired in September 2018 (nine months), after several trouble shooting, well rehabilitation and equipment replacement events,
- EW-1 and EW-2 electric pumps were not able to be reused after the disinfection event and were replaced in June 2018 (one week of down time),
- EW-2 pressure transducer controller required replacement in July 2018 (reduced production for two weeks), and
- Deteriorating air lines for EW-4, DPA-201 and DPA-202 impeded pumping rates and were replaced in August 2018 (reduced production for one to two months).

4.2 2018 Extraction System Modifications

A well disinfection and redevelopment event in June 2018 led to diagnosing several issues with various pumping wells. The following repairs have been made since:

- Electric pump replacement for EW-1,
- Electric pump replacement for EW-2,
- Pressure transducer controller replacement for EW-2,
- Pneumatic pump cleaning, tubing replacement, pneumatic controller replacement, and airline accessory replacement for OW-3, and
- Repaired air and water lines to EW-4 and DPA-203.

4.3 Mass Removal

4.3.1 Extraction Wells EW-1 through EW-6

Mass removal calculations for the extraction wells are summarized in Table 2. The mass removal was calculated using the extraction volumes from individual well totalizer readings and the analytical results of the annual groundwater sampling event. The percent removal for each compound is displayed for each well, depicting how much of the total mass for each compound was removed at each well. The groundwater extraction volumes for EW-5 and DPA-201 are presented together as a cumulative volume. There is a discrepancy between the groundwater extraction volume as measured by the individual extraction well totalizers and the treatment

system combined effluent totalizer. The treatment system combined effluent totalizer reading shows that 14,738,043 gallons of water were extracted during 2018, while the sum of individual well flow meters is 12,201,593 gallons, representing a 17% discrepancy. This discrepancy in flow totals is likely because of the cyclic performance of the pneumatic wells, where flow rates are unsteady, and therefore, may not be registered in the flow meters. Overall, the treatment system combined effluent totalizer is likely more representative.

The total mass removal from EW-1 through EW-6 is estimated to be 1,675 pounds, and represents over 99% of the mass recovery for the system for 2018. The remaining 1% of contaminant mass removal comes from the other extraction wells, as discussed below. The removal efficiencies for each well are provided in the table below.

Extraction Well	Removal Efficiency				
	(pounds/1,000 gallons)				
EW-1	0.41				
EW-2	0.01				
EW-3	0.011				
EW-4	0.01				
EW-5/DPA-201	0.01				
EW-6	0.61				

4.3.2 Area A Dual Phase Wells DPA-201, DPA-202, DPA-203

Groundwater extraction from the shallow bedrock wells was limited in 2018, because of low water levels. Extraction volumes for DPA-201 (a shallow well) are accounted for in the EW-5 flow measurement because the wells share a common flow meter. In 2018, flowmeters were installed in the piping for these extraction wells to provide more accurate measurements than the pulse counters that were previously used. The pulse counters recorded pump operation rather than directly recording the volume of water removed during each pump cycle. Approximately 38,646 gallons of water were extracted from DPA-202 and DPA-203, with only 101 gallons recovered from DPA-203. Based on the extraction volumes and the annual groundwater sampling data, less than 0.5 pounds of contaminant mass were recovered from DPA-202 and DPA-203 during 2018. The contaminant mass removal efficiencies for DPA-202 and DPA-203 are presented in the table below.

Extraction Well	Removal Efficiency				
	(pounds/1,000 gallons)				
DPA-202	0.01				
DPA-203	2.56				

4.3.3 Area T-4 Extraction Well DPT-261 (T-4)

Extraction well DPT-261 did not operate during 2018 because of a lack of recoverable water, as was the case in 2017. Insufficient water was present during the 2018 groundwater sampling event and a groundwater sample was not collected from this well.

4.3.4 Extraction Well OW-3

Groundwater extraction from OW-3 was limited in 2018. Repairs were completed at the well in June, including repairing a damaged flow controller and replacing air supply lines. Upon completion of the repairs, groundwater extraction resumed, but ceased when water levels fell to the pump intake depth for the well approximately two hours after restarting. Approximately 59 gallons of water were recovered from the well during 2018. Mass removal at OW-3 was limited due to the reduced water extraction volume, with approximately 0.1 pounds of VOCs recovered from the well. The mass removal efficiency for the well was approximately 0.21 pounds per 1,000 gallons.

4.3.5 Extraction Well LR-66

Groundwater extraction from LR-66 was limited to approximately 24,702 gallons for 2018. Approximately 7.53 pounds of VOCs were removed by LR66, providing a mass removal efficiency of 0.3 pounds per 1,000 gallons. The majority of contaminant mass removed from LR-66 was carbon tetrachloride.

4.4 Routine Maintenance

Langan's subcontractor, Greater Radiological Dimensions, Inc. (GRD), has performed weekly system sampling events, and inspections since January 2018. GRD records system operational data, performs basic system maintenance/repairs, and provides house-keeping services. GRD is also responsible for overseeing quarterly liquid phase carbon exchange events, performing annual

groundwater sampling events, and assists with annual extraction well disinfection and redevelopment events.

A-1 Landscaping provides landscaping, road repair and snowplow services as well as assists in all dumpster and heavy equipment needs.

5.0 GROUNDWATER TREATMENT SYSTEM OM&M ACTIVITIES

A summary of the groundwater treatment system OM&M for 2018 is provided in the following sections.

5.1 Summary of Operations

The bedrock groundwater extraction system operated in automatic mode throughout the reporting period, with visits to the Site two to three times per week to confirm pumping operations, perform system inspection, bag filter change-outs, system process water sampling, and various other OM&M activities. Extended periods of non-pumping or reduced rates occurred from the following activities:

- Extraction well disinfection/cleaning event in June 2018 (entire system was down for two weeks).
- CSM update activities during July and August 2018 (majority or entire system was down for seven weeks),
- Brief periods for bag filter changes, carbon exchanges, or power issues (entire system was down for several hours),
- Main air compressor after cooler developed an air leak that led to all pneumatic pumps, except EW-4 (which runs on an individual air compressor), to be shut down during the fall of 2018. The air compressor was repaired on December 12, 2018 and all pneumatic wells resumed operations.

5.2 Maintenance, Inspection, and Monitoring Activities

A summary of the maintenance, inspection and monitoring activities is provided below. The routine treatment system maintenance activities, modifications to the treatment system monitoring, general facility maintenance, monitoring well inventory and the 2018 emerging contaminant sampling event are discussed in the following sections.

5.2.1 Routine Treatment System Maintenance

Routine inspection and maintenance of the groundwater treatment system is performed weekly during visits to the Site. Routine weekly inspections and maintenance include:

- General visual inspection of the treatment equipment for leaks, overflows, or malfunctions.
- Inspection of process-indicating instruments,
- · Recording operating conditions in log sheet,
- Correction of operational problems,
- Addressing health and safety issues,
- General housekeeping,
- Replacement of bag filters, as indicated by differential pressure across the filters, and
- Repair or replacement of damaged parts.

All inspections are recorded in the O&M logbook. The treatment system is shut down periodically to perform routine maintenance on the system components. The periodic maintenance shutdowns involved cleaning, inspection, and maintenance activities associated with the following:

- Liquid phase carbon exchanges,
- Bag filter changes,
- Conveyance piping repairs/upgrades,
- Extraction well disinfection and cleaning event, and
- CSM investigation activities.

5.2.2 Treatment System Modifications

Since Langan took over the OM&M responsibilities in late January 2018 the following minor system modifications have taken place:

- Thorough cleaning of the bag filter housing, equalization tank, and solids removal from the floor sump, trench drain and conical bottom tank in effort to remove accumulated solids, biomass, and mitigate building odors,
- Chemical addition bench scale study took place in the first and second quarter of 2018
 and led to a pilot scale study for the mitigation of biomass and scale loading on the
 bag filters. Positive results from the testing culminated in the installation of a
 permanent chemical feed system in December of 2018,

- Added a vent from the conical bottom tank and cleaned the vent on the equalization tank to exterior ports,
- Added degassing valves and siphon breaks prior to the conical bottom tank, on overhead piping before bag filters, and overhead piping prior to discharge to relieve pipe knocking and noise,
- Added mechanical flow totalizers to the influent lines from OW-3 and LR-66,
- Replaced flow meter on the influent line from EW-4 and the system effluent line, and
- Replaced the after-cooler on the main air compressor for pneumatically driven pumps.

On–Site treatability studies and pilot tests were performed over the course of 2018 to assess options to better manage solids fouling in the extraction wells and the treatment system. Initial testing indicated that the source of the fouling was a combination of: 1) mineral precipitation (calcium sulfate, rather than conventional calcium carbonate scale), and 2) biofouling (sulfate reducing bacteria and other bacteria). Through subsequent bench scale batch testing, Langan identified a combination of three chemicals that were effective at mitigating solids formation and clogging. With the approval of NYSDEC, Langan piloted a full-scale chemical feed system using the identified combination of treatment chemicals. The frequency of bag filter replacements was reduced from every 3 days before the chemical feed pilot test to every 8 days subsequent to implementing chemical addition.

5.2.3 Groundwater Treatment System Process Monitoring

Groundwater treatment system extraction and discharge data from 2018 is presented in Table 3. The extraction flow rates and totalizer readings are collected on a weekly basis as a minimum.

Samples for chemical analysis are collected routinely from the groundwater treatment system. Samples are collected weekly from the mid-carbon sampling point. The groundwater influent and system effluent are sampled monthly, at a minimum. Process monitoring sample analytical results are presented in Appendix A. Influent, mid-carbon, and effluent data are summarized in Tables A-1 to A-3, respectively.

The 2018 analytical data for the monthly influent groundwater samples are presented in Table A-1. The data indicate that typically carbon tetrachloride, carbon disulfide, and chloroform are detected in high concentrations in the influent. The 2018 analytical data for the weekly mid-carbon groundwater samples are presented in Table A-2. The data indicate that the results are generally

non-detect or indicate low (< 50 ppb) total SSPLs except when breakthrough occurred. Four carbon exchanges were performed in 2018, with one 10,000-pound bed exchanged each time, on the following dates:

- January 12, 2018
- April 20, 2018
- July 27, 2018
- October 18, 2018

Note that for each of the four carbon exchanges performed in 2018, the lead carbon bed was exchanged and the former lag bed became the lead bed, by manipulating valve positions in the piping manifold.

The 2018 analytical data for effluent samples collected from the groundwater treatment system are presented in Table A-3. Effluent samples are collected and analyzed monthly for SSPLs (VOCs) at a minimum. The effluent sample results for 2018 show that no VOC compounds were detected above the discharge limit.

5.2.4 Additional Monitoring of Treated Effluent

In addition to the monthly effluent sampling and analysis for SSPLs, groundwater treatment system effluent samples are also collected quarterly. The list of quarterly parameters and associated discharge limits were originally established in a SPDES permit issued by the NYSDEC Division of Water (DOW) in 1995 when Facility groundwater treatment operations commenced.

Since that time, Facility operations have been conducted in accordance with the July 19, 1993 CO executed by NYSDEC as part of the New York State Superfund program, with oversight by the agency's Division of Environmental Remediation (DER). With respect to Facility effluent discharge, the DOW does not have regulatory authority over discharges from a State Superfund Site. Instead, the DER is responsible for ensuring compliance with Facility effluent criteria and for approval of all submittals. For the SMC facility, DER requires monthly effluent sampling for SSPL compounds and quarterly effluent sampling for a combined list of SSPL compounds and other SPDES parameters.

To differentiate it from the Facility's monthly effluent sampling, the quarterly sampling event is known as the "SPDES sampling" event.

Appendix B presents the quarterly SPDES sample results for 2018. Note that since the monthly effluent samples include analyses of the SPDES SSPLs (the required list of VOCs) on a more frequent basis than quarterly, the VOC component of the SPDES requirements is met by the monthly results shown on Appendix A-3. As noted above, all VOC results were below their respective discharge limits for 2018.

Appendix B presents the list of SPDES semi-volatile, metals and wet chemistry parameters, the associated discharge limits, and the analytical laboratory results of the 2018 quarterly SPDES sampling events for the Facility. Discharge limits are concentration-based with the exception of metals, for which mass limits have been established. To calculate average daily mass discharge rates, the laboratory concentrations are multiplied by the daily average effluent flow for the treatment system and converted into pounds per day.

As noted in Appendix B, there were no parameters detected in excess of the established discharge limits. All of the effluent analyses were non-detect throughout 2018, with the exception of de minimis concentrations of chromium (September), nickel (February, March, September and November), zinc (all samples) and total phenolics (all samples).

5.2.5 Groundwater Treatment System Performance Monitoring – 2018

On August 16, 2016, NYSDEC approved an SMC request to eliminate the quarterly extraction well-only sampling events that had been performed since the 1990s. Sampling of the Site-wide monitoring well network and each extraction well continues to be performed annually.

The purpose of the groundwater monitoring is to evaluate progress of the groundwater extraction system in removing SSPL compounds from the aquifer. The groundwater sampling data are used to assess concentration trends over time.

Groundwater samples are collected in accordance with established procedures and protocols in the Site Operations and Maintenance Manual. The samples are shipped to Test America Laboratories, Inc. for analysis following Chain of Custody procedures. The laboratory sends the analytical results to Langan. The results are reviewed, collated, put into tabular form, sent to SMC for review, and included in the quarterly status reports to NYSDEC.

The annual Site-wide groundwater sampling event was performed between July 10 and 16, 2018. The analytical results for the groundwater samples are presented in Table 4. Low flow sampling logs from the sampling event are provided as Appendix C.

5.2.6 Emerging Contaminants Sampling

At the request of the NYSDEC, SMC prepared and submitted a work plan to collect samples of specific emerging contaminants from three on-Site wells. The sampling event was focused on perfluorinated compounds and 1,4-dioxane. The sampling event was completed in accordance with the NYSDEC approved July 18, 2018 Work Plan. The results of the sampling event are presented in Table 7. The sampling results show that the Site groundwater is not impacted by these emerging contaminants, with only very low levels of perfluorinated compounds and 1,4-dioxane detected.

5.2.7 Groundwater Treatment System Performance Monitoring – 2019

The 2019 annual groundwater sampling event is scheduled to be completed in July 2019. The annual sampling event will use low flow purging techniques to collect samples for the SSPL VOC parameters.

Note that in a June 7, 2016 conference call with NYSDEC, SMC requested that a total of 9 monitoring wells be removed from the annual sampling schedule. These well do not show potentiometric surface depressions during groundwater extraction, are dry, and provide no meaningful information regarding plume delineation or contaminant distribution. This request is pending as SMC has not received further correspondence from NYSDEC regarding the sampling program modification request.

5.2.8 Facilities, Structures, and Grounds Maintenance

The facilities, structures, and grounds are inspected and maintained regularly as specified in the O&M Manual. These inspections are carried out during routine Site visits. These routine inspection tasks include checking the appearance of the grass, driveways, walkways fencing, lighting and containment areas. Inspections and maintenance tasks inside of the Treatment Building include checking the appearance of the walls, floors, ceiling, doors, walkways, emergency equipment, lights, sumps, and equipment support structures. Any problems or deficiencies are noted in the O&M logbook and are promptly addressed.

5.2.9 Unscheduled Maintenance

Unscheduled Maintenance was performed as required in 2018. Examples of unscheduled maintenance activities performed are:

- Replacement of trench drain and sump pit grating,
- Process equipment piping repairs,
- Air compressor after-cooler replacement,
- Overhead and exterior lighting replacement,
- Electrical switch and receptacle replacement, and
- Demolition of interior concrete pads formerly used for process equipment.

5.2.10 Monitoring Well Inventory

An inventory/inspection of the Site monitoring wells was performed in June 2018 as part of the annual groundwater sampling event. A copy of the well inventory is included as Appendix D. The well inventory indicates that the wells are in generally good condition.

6.0 GROUNDWATER LEVEL MONITORING AND CHEMISTRY

6.1 General

Groundwater flow potential and observed characteristics within the boreholes, and as associated with discrete fracture flow zones, are summarized below. The groundwater potentiometric maps were generated using data from the low-flow sampling event in July, and from pump intake or shut-off depths for extraction wells. The pump intake depth was used for extraction wells with pneumatic pumps, which are capable of reducing water levels to the pump intake depth. The extraction wells with electrically driven pumps cannot draw water down to the pump intake depth because of the potential for pump damage if insufficient water is present. For this reason, the extraction wells with electric controls have transducers that stop pumping when the water levels drop below the set point and this set point was used to develop the potentiometric surface maps. Extraction wells were included for each flow zone that is intersected by the extraction well screen.

During the CSM field activities, significant groundwater level fluctuations were observed in monitoring wells, which appeared to correlate with water levels in the adjacent Forebay. Because

of these apparent groundwater dynamics and daily water-level fluctuations, an alternate method for collecting synoptic groundwater level measurements is being developed, with a focus on assessing the groundwater flow in each flow zone at different water-level stages in the Forebay. A detailed discussion of the Site groundwater level fluctuations and the Forebay water levels will be presented in the Langan Hydrogeological Conceptual Site Model Report, to be submitted to NYSDEC under separate cover.

A groundwater sampling event was conducted in July 2018. Groundwater samples from monitoring wells were collected using low flow sampling techniques. Groundwater indicator parameters including dissolved oxygen, oxidation reduction potential, pH and specific conductivity, were collected during well purging. All groundwater samples were analyzed for SSPL VOCs, and additional analysis was conducted at 22 wells for the following parameters: calcium, manganese, potassium, sodium, chloride, sulfate and hardness.

Groundwater samples from extraction wells were collected from the influent sample ports in the treatment system building. Low flow purge sheets are presented in Appendix C. Analytical results from the groundwater sampling event are provided in Table 4.

A field investigation to refine the CSM was completed in July and August, 2018, consisting of the following activities:

- Downhole video logging
- Groundwater Sampling
- Continuous Water-Level Monitoring
- Downhole Geophysics
- Packer Testing
- Passive Diffusion Bag (PDB) Sampling
- Aguifer Testing

The discrete depth groundwater samples from wells EW-1, EW-2, EW-3, EW-5, R-19 and R-62 using passive diffusion bag samplers (PDBs) and packer tests have been incorporated along with the annual sample results in the contaminant isoconcentration maps (see Figures 5, 6, 8, 9, 11, 12, 14, and 15). The PDB and packer test analytical results are provided in Table 5 and Table 6, respectively.

During the CSM investigation activities, potential water-bearing fracture zones were identified using the following lines of evidence:

- Direct observations of fractures or voids that can be seen in the video and acoustic televiewer logs,
- Evidence of in-flow and out-flow observed during downhole video logging,
- Increases in the borehole diameter (as measured with a caliper) over a discrete interval in the borehole,
- Fluctuations in the fluid temperature or conductivity, and
- Changes in fluid movement, direction, or velocity as measured by the heat-pulse flowmeter.

Four of these potential water-bearing zones (FZ-10 through FZ-13) are correlated across multiple boreholes and, therefore, have been identified as potentially primary groundwater flow zones. Flow was inferred in those four zones based on a combination of the following lines of evidence: mineral deposits (flows) observed on the downhole video, movement of fibrous bacterial growth adjacent to the fracture observed on the downhole video, vertical changes in borehole flow as measured by the heat pulse flow meter, and shifts in fluid conductivity measurements.

Of the four identified flow zones, the upper two are interpreted to coincide with flow zones previously identified at the Hyde Park site.¹ Accordingly, this report refers to the upper two flow zones at the SMC Site as Flow Zone 10 (FZ-10) and Flow Zone 11 (FZ-11) consistent with the naming convention used at the Hyde Park site. The lower two correlated flow zones are situated below the lower boundary of the hydrogeologic model that was developed for the Hyde Park site.² Nevertheless, for consistency, this report uses the Hyde Park nomenclature to identify the lower two zones – as the next numbered zones in the established sequence – Flow Zone 12 (FZ-12) and Flow Zone 13 (FZ-13). The observed characteristics of FZ-10 through FZ-13 are summarized below. A more complete description of the CSM activities will be provided in separate report to be submitted to NYSDEC in 2019.

¹ Langan projected the Hyde Park flow zones onto the SMC Site using equations provided by CRA & Associates, Sayko Environmental Data Analysis, and S.S. Papadopulos & Associates, Inc. February 2002. Site Characterization Report – Revised Geologic and Hydrogeologic Characterization of the Hyde Park Landfill Site, Town of Niagara, New York.

² The bottom of the Hyde Park model coincides with the bottom of the Lockport Group.

<u>FZ-10</u> – This flow zone is located within the Lockport Group (dolomite and limestone) generally at elevations between 520 and 540 feet NAVD88. It is characterized by small solution cavities ("vugs") and sub-vertical to near horizontal fractures that vary in aperture and continuity. Groundwater inflow is apparent at FZ-10 in well EW-2 (observations from downhole video) and EW-3 (shift in fluid conductivity, changes in flow from HPFM readings), and can also be inferred in EW-1 based on data from the HPFM. These three wells all have long open intervals that intersect multiple flow zones. Outflow was apparent at FZ-10 in EW-5 based on downhole video and HPFM readings. EW-5 has a shorter open hole interval, and does not intersect with any of the deeper flow zones.

<u>FZ-11</u> – This flow zone generally coincides with the contact between the Lockport Group and Rochester Shale, which occurs at elevations between 510 and 520 feet NAVD88. It is characterized by a single larger bedding-parallel fracture flanked above and below by smaller fractures and bedding features. Vugs were observed near this fracture depth in some of the boreholes (EW-2 and EW-3). Groundwater inflow was apparent at FZ-11 in EW-1 (mineralization, conductivity shift, HPFM data), EW-2 (movement of fibrous bacterial growth, conductivity shift, HPFM data), and EW-3 (mineralization, shift in conductivity).

<u>FZ-12</u> – This flow zone is located within the Rochester Shale, at an elevation of around 470 feet NAVD88. It is characterized by a single, somewhat isolated, relatively small bedding-parallel fracture. Groundwater outflow was apparent at FZ-12 in EW-1 and EW-2 (movement of fibrous bacterial growth), EW-3 (mineralization, conductivity shift, HPFM data), R-19 (conductivity shift, HPFM data), and R-62 (HPFM data).

<u>FZ-13</u> – This flow zone is located within the Irondequoit Limestone, at an elevation of around 440 to 445 feet NAVD88. It is characterized by a single, somewhat isolated but relatively large bedding-parallel fracture. Groundwater outflow was apparent at FZ-13 in EW-1 (conductivity shift, HPFM data). Except possibly for EW-2, the other boreholes investigated were too shallow to intersect FZ-13.

A complete description of the CSM investigation activities, and the evidence used to determine flow zones is provided in the Langan Hydrogeological Conceptual Site Model Report, submitted to NYSDEC under separate cover.

Lewiston, New York

Langan Project No.: 130117301

The identified flow zones (FZ-10 through FZ-13), and a shallow zone near the overburden/bedrock interface, have been used in the groundwater level monitoring and chemistry assessment for 2018. Contaminant isoconcentration maps were prepared for each flow zone and the shallow overburden/bedrock interface monitoring wells. The isoconcentration maps were generated to show the concentrations of carbon disulfide on one set of figures by flow zone, and combined concentrations of carbon tetrachloride and chloroform on the second set of figures.

Groundwater potentiometric maps were generated with Kriging interpolation methods using Golden Software's Surfer modeling tools and edited by hand. Contaminant isoconcentration maps for carbon disulfide and combined carbon tetrachloride and chloroform were by drawn hand.

6.2 Shallow Wells

Shallow groundwater wells, screened at or near the overburden/bedrock interface, were sampled in July 2018. The groundwater potentiometric map for the shallow wells is provided as Figure 4.

Contaminant isoconcentration maps for shallow wells were generated to show the concentrations of carbon disulfide on Figure 5, and combined concentrations of carbon tetrachloride and chloroform on Figure 6. The analytical results used to develop the isoconcentration maps are presented in Table 4.

6.3 Flow Zone 10

Flow Zone 10 is the most shallow bedrock water-bearing fracture zone at the Site, as described above. A groundwater potentiometric map was created for the FZ-10 wells using groundwater level data from the July 2018 sampling event as described above. Extraction wells EW-1 through EW-6 are included in this groundwater elevation assessment. The groundwater potentiometric map is provided as Figure 7.

An isoconcentration map for carbon disulfide in FZ-10 is presented as Figure 8, and combined concentrations of carbon tetrachloride and chloroform on Figure 9. The analytical results used to develop the isoconcentration maps are provided in Tables 4 through 6.

6.4 Flow Zone 11

Flow Zone 11 is the second bedrock flow zone identified at the Site, as described above. A groundwater potentiometric map was created for the FZ-11 wells using groundwater level data from the July 2018 sampling event as described above. Extraction wells EW-1 through EW-3 are included in this groundwater elevation assessment. The groundwater potentiometric map is provided as Figure 10.

An isoconcentration map for carbon disulfide in FZ-11 is presented as Figure 11, and combined concentrations of carbon tetrachloride and chloroform on Figure 12. The analytical results used to develop the isoconcentration maps are provided in Tables 4 through 6.

6.5 Flow Zone 12

Flow Zone 12 is the third flow zone encountered in the bedrock at the Site, as described above. A groundwater potentiometric map was created for the FZ-12 wells using groundwater level data from the July 2018 sampling event as described above. Extraction wells EW-1 through EW-3 are included in this groundwater elevation assessment. The groundwater potentiometric map is provided as Figure 13.

An isoconcentration map for carbon disulfide in FZ-12 is presented as Figure 14, and combined concentrations of carbon tetrachloride and chloroform on Figure 15. The analytical results used to develop the isoconcentration maps are provided in Tables 4 through 6.

6.6 Flow Zone 13

Flow zone 13 is the deepest flow zone investigated at the Site. An insufficient number of monitoring or extraction wells are present in FZ-13 to develop meaningful groundwater contour maps or contaminant isoconcentration maps, as only extraction well EW-1 and potentially EW-2 intersect FZ-13.

6.0 SUMMARY OF MASS REMOVAL

Mass removals from groundwater have been reported for the individual wells in previous sections of this report. The mass removal of VOCs from groundwater by the eight bedrock groundwater extraction wells (EW-1 through EW-6, LR-66, and OW-3), and the dual wells (DPA-201, DPA-202,

and DPA-203) was discussed in Section 3.3 of this report. The total volume of groundwater pumped from the Site in 2018 is summarized in Table 3. The total mass of VOCs removed from groundwater at the Site in 2018 is summarized in Table 2.

As Table 3 indicates, approximately 14.7 million gallons of groundwater were pumped from the Site and treated through the on-Site treatment system. This volume represents a 3% increase compared to 2017 (14.3 million gallons). As shown in Table 2, approximately 1,676 pounds of contaminants were removed by the treatment system during 2018.

Z:\LAW\data3\130117301\Project Data_Discipline\Environmental\Reports\Annual OM&M Report\2018\Text\2019-0322_Lewiston-Annual OMM Report.docx

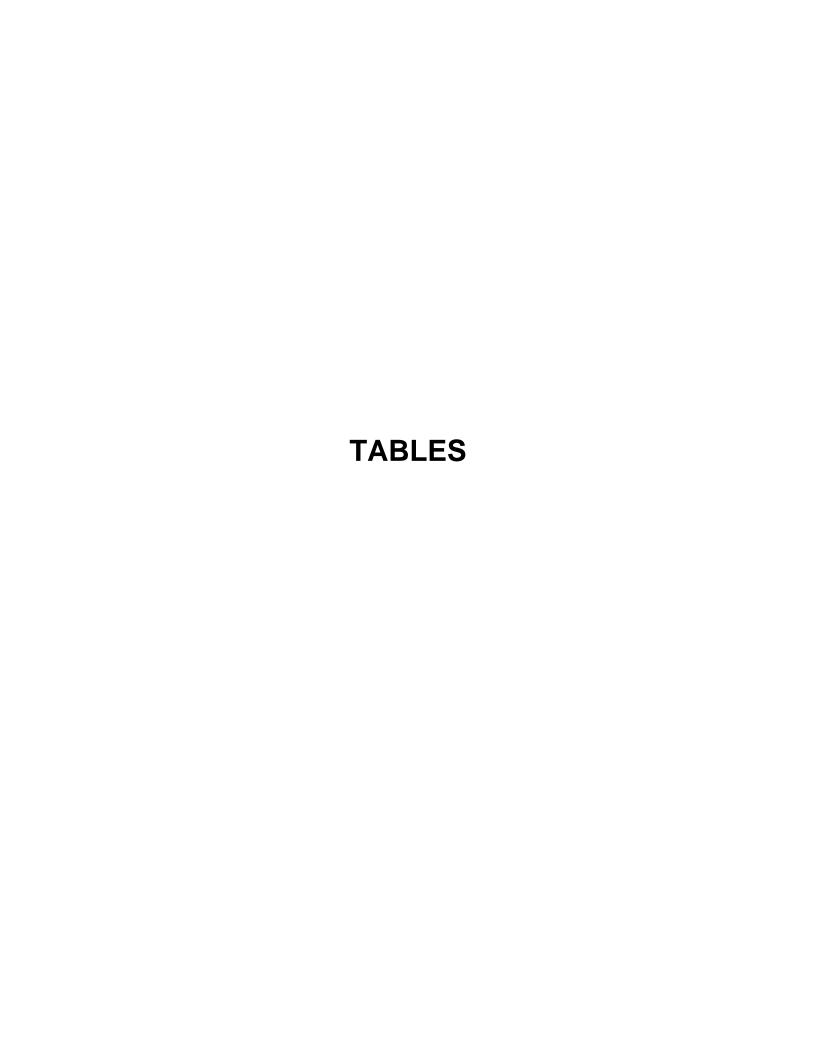


Table 1
Well Construction Summary Table
Stauffer Management Company Site
Lewiston, New York

Well ID	Northing (ft_NAD83)	Easting (ft_NAD83)	Elevation Top of Inner Casing (ft)	Northing, Easting, and Elevation of Top of Inner Casing Data Source	Ground Surface Elevation (ft)	Stickup Length (ft)	Well Depth (ft bgs)	Open Interval Top (ft bgs)	Open Interval Bottom (ft bgs)	Open Interval (ft)	Casing	Well Diameter (in)	Well Type	FLOW ZONE
B-02**	1146250.38	1027130.61	569.84	GHD	566.8	3.04	106	102.8	104.3	1.5	PVC	1.5	screened	12
B-03	1146431.00	1026443.00	-	See Notes 1 and 2	559		-	-	-		-	-	-	undetermined
D-05	1146055.00	1030610.00	_	See Notes 1 and 2	614		_	_	_		_	_	_	undetermined
D-07	1145981.00	1030470.00	_	See Notes 1 and 2	512.5		-	_	-		-	-	-	undetermined
			1										1	overburden/shallow
DPA-201*	1146178.66	1027862.33	600.07	GHD	597	3.07	22	2	22	20	steel	4	screened	bedrock
														overburden/shallow
DPA-202*	1146133.86	1027999.73	602.08	GHD	598.5	3.58	26	5	25	20	steel	4	screened	bedrock
														overburden/shallow
DPA-203*	1146004.36	1028024.14	604.93	GHD	602	2.93	27.5	6.5	26.5	20	steel	4	screened	bedrock
EW-1*	1146227.80	1027257.60	589.45	GHD	587	2.45	163	32	163	131	steel	6	open hole	10,11,12,13
EW-2*	1145964.82	1027521.43	592.09	GHD	588.4	3.69	150	23	150	127	steel	6	open hole	10,11,12,13
EW-3*	1145898.54	1028049.11	605.65	GHD	603.2	2.45	163	27	163	136	steel	6	open hole	10,11,12
EW-4*	1145868.64	1027640.35	595.4	GHD	592.9	2.5	71.6	16	71.6	55.6	steel	6	open hole	10
EW-5*	1146176.92	1027870.81	599.39	GHD	596.9	2.49	69	13.5	69	55.5	steel	6	open hole	10
EW-6*	1145962.39	1027927.15	601.28	GHD	598.8	2.48	71.5	16	71.5	55.5	steel	6	open hole	10
GPG-51	1146136.00	1026910.00	-	See Notes 1 and 2	577.25	-	-	-	-	-	-	-	_	undetermined
IR-49	1146068.00	1027257.00	587.22	See Notes 1 and 2	586	1.22	_		_		-	_	-	undetermined
IR-51	1146140.00	1026941.00	578.99	See Notes 1 and 2	576.75	2.24	-	-	_	-	-	-	-	undetermined
LR-16	1146290.15	1027964.42	599.89	GHD	597.9	1.99	90.5	80.5	90.5	10	PVC	2	screened	11
LR-2	1145951.27	1027666.92	594.53	GHD	592.1	2.43	89	78	88	10	PVC	2	screened	11
LR-20	1146329.88	1027486.05	592.06	GHD	591.5	0.56	85	75	85	10	PVC	2	screened	11
LR-48	1145850.19	1027394.73	586.85	GHD	585	1.85	74.7	54	64	10	PVC	2	screened	11
LR-49	1146096.36	1027350.14	588.01	GHD	586.3	1.71	73	63	73	10	PVC	2	screened	11
LR-50	1146341.31	1027230.19	589.51	GHD	587.9	1.61	75	63.7	73.7	10	PVC	2	screened	11
LR-51	1146150.99	1027010.38	579.15	GHD	577.4	1.75	65	54	64	10	PVC	2	screened	11
LR-61 LR-62	1145873.86	1027848.90 1028288.01	601.66 607.94	GHD GHD	598 603.5	3.66 4.44	99 103	78 83	99 103	21 20	steel	4	open hole	11
LR-62 LR-66*	1145761.51				592.8	3	89.5	79.5		10	steel PVC	2	open hole	11 11
LR-67	1146212.49 1146063.28	1027664.93 1028342.07	595.8 605.74	GHD GHD	603.5	2.24	100	90	89.5 100	10	PVC	2	screened	11
LR-69	1146003.28	1027277.74	585.87	GHD	583.4	2.47	85	75	85	10	PVC	2	screened	11
LR-87	1140003.13	1027277.74	565.67	See Notes 1 and 2	- 565.4	2.47	- 65	75	- 60		FVC		screened	
NX-3	1145569.00	1027916.00	-	See Notes 1 and 2	592.5			_	_		-	_	_	undetermined undetermined
OW-1	1146001.26	1028777.69	614.07	See Notes 1 and 2	612	2.07	139.6	118.3	139.6	21.3	steel	4	open hole	12
OW-10	1146570.00	1026783.00	573.8	See Notes 1 and 2	573.69	0.11	13.89	9	139.0	5	steel	2	open hole	undetermined
OW-10 OW-11	1146484.76	1028230.73	574.9	GHD	573.69	-2.1	13.09	-	- 14	-	51661	_	open note	undetermined
OW-2	1146000.14	1028751.00	614.6	See Notes 1 and 2	612.3	2.3	188	160.2	188	27.8	steel	2	open hole	undetermined
OW-3*	1146319.42	1027449.45	591.8	GHD	589.7	2.1	128	108	128	20	PVC	2	screened	12
OW-4	1146300.54	1027412.96	592.26	See Notes 1 and 2	589.9	2.36	166.2	140.4	166.2	25.8	steel	2	open hole	undetermined
OW-5	1145909.41	1028437.80	609.25	GHD	607.2	2.05	101.8	88.8	101.8	13	steel	2	open hole	11
OW-6	1146043.90	1027248.63	587.87	See Notes 1 and 2	585.9	1.97	257.5	220	257.5	37.5	steel	4	open hole	undetermined
OW-7	1146234.89	1027912.33	600.24	See Notes 1 and 2	597.4	2.84	13.1	7.8	13	5.2	steel	2	screened	undetermined
OW-8	1147321.00	1026874.00	575.55	See Notes 1 and 2	575.4	0.15	11	6	11	5	steel	2	screened	undetermined
OW-9	-		574.9	See Notes 1 and 2	575	-0.1	14.6	9.5	14.5	5	steel	2	screened	undetermined
R-16	1146281.03	1027977.96	600.28	GHD	598	2.28	131	110	130	20	PVC	2	screened	12
R-19	1145637.56	1027895.17	598.86	GHD	594.8	4.06	151	95	151	56	steel	4	open hole	12
R-48	1145861.30	1027385.19	587.81	GHD	585.4	2.41	140	91	140	49	steel	4	open hole	12
R-49	1146056.42	1027269.79	587.57	See Notes 1 and 2	586.1	1.47	112.2	110.7	111.7	1	PVC	2	screened	12

Table 1
Well Construction Summary Table
Stauffer Management Company Site
Lewiston, New York

Well ID	Northing (ft_NAD83)	Easting (ft_NAD83)	Elevation Top of Inner Casing (ft)	Northing, Easting, and Elevation of Top of Inner Casing Data Source	Ground Surface Elevation (ft)	Stickup Length (ft)	Well Depth (ft bgs)	Open Interval Top (ft bgs)	Open Interval Bottom (ft bgs)	Open Interval (ft)	Casing	Well Diameter (in)	Well Type	FLOW ZONE
R-50	1146322.43	1027229.32	590.41	GHD	587.6	2.81	141	90	141	51	steel	4	open hole	12
R-51**	1146167.05	1027008.21	578.78	GHD	577.2	1.58	120.3	118.6	120.1	1.5	PVC	1.5	screened	12
R-60	1146082.82	1027266.28	588.45	GHD	585.6	2.85	139	89	139	50	steel	4	open hole	12
R-61	1145873.34	1027860.10	601.6	GHD	597.9	3.7	155.5	100	155.5	55.5	steel	4	open hole	12
R-62	1145762.38	1028269.96	607.9	GHD	603.5	4.4	159.9	104	159.9	55.9	steel	4	open hole	12
R-66	1146185.36	1027669.49	591.83	GHD	589.4	2.43	150.8	130.8	150.8	20	steel	4	open hole	13
R-67	1146065.45	1028319.50	605.77	GHD	603.5	2.27	141	120	140	20	PVC	2	screened	12
R-68	1146370.17	1027111.05	587.38	GHD	585.7	1.68	121	100	120	20	PVC	2	screened	12
T-4*	1145853.89	1027644.87	595.81	GHD	590	5.81	-	-	-	-	-	-	-	undetermined
TEW2	-		591.38	See Notes 1 and 2	588.4	2.98	150.4	-	-	-	-	6	-	undetermined
W-1	1146193.83	1030527.00	618.49	See Notes 1 and 2	616.4	2.09	27.9	15.9	25.9	10	PVC	2	screened	undetermined
W-11	1145725.82	1029157.04	614.42	See Notes 1 and 2	612.8	1.62	31	19	29	10	PVC	2	screened	undetermined
W-12	1145881.82	1029322.03	616.59	See Notes 1 and 2	615.1	1.49	32.8	10.8	30.8	20	PVC	2	screened	undetermined
W-13	1146253.83	1028703.05	613.58	See Notes 1 and 2	611.6	1.98	21.6	15	20	5	PVC	2	screened	undetermined
W-14	1146019.82	1028766.05	614.85	See Notes 1 and 2	613	1.85	26	19	24	5	PVC	2	screened	undetermined
W-15A	1145769.82	1027936.07	612.89	See Notes 1 and 2	611	1.89	54	47	52	5	PVC	2	screened	undetermined
W-15B	1145725.82	1028672.05	613.22	See Notes 1 and 2	611.3	1.92	34	22	32	10	PVC	2	screened	undetermined
W-15C	1145718.82	1028639.05	612.99	See Notes 1 and 2	611.1	1.89	18	11	16	5	PVC	2	screened	undetermined
W-16	1146282.07	1027935.51	599.77	GHD	599.3	0.47	29.7	17.9	27.8	9.9	PVC	2	screened	shallow bedrock
W-16L	1146272.96	1027962.60	600.16	GHD	598.1	2.06	65	55	65	10	PVC	2	screened	10
W-17	1145957.27	1027916.00	602.36	GHD	600.2	2.16	26.8	15	24.9	9.9	PVC	2	screened	undetermined
W-18A	1145769.82	1027936.07	602.53	See Notes 1 and 2	600.7	1.83	27.5	15.5	25.5	10	PVC	2	screened	undetermined
W-18L	1145770.58	1028012.82	601.47	GHD	599	2.47	71	42	71	29	steel	6	open hole	10
W-18R	1145793.75	1028009.96	601.45	GHD	_		_	_	-		-	-	-	shallow bedrock
W-19A	1145628.66	1027876.51	597.41	GHD	595.5	1.91	39.5	33.5	38.5	5	PVC	2	screened	undetermined
W-19B	1145649.06	1027888.66	596.57	GHD	594.8	1.77	82	65	80	15	PVC	2	screened	10
W-19D	1145646.67	1027845.26	595.49	GHD	593.5	1.99	23	11	21	10	PVC	2	screened	undetermined
W-20	1146342.25	1027461.31	593.75	GHD	591.7	2.05	26.8	15	24.9	9.9	PVC	2	screened	shallow bedrock
W-22A	1145764.31	1027628.34	592.24	GHD	589.9	2.34	22.1	10.1	20.1	10	PVC	2	screened	undetermined
W-23A	1145898.82	1027507.09	594.7	See Notes 1 and 2	592.6	2.1	59	42.4	57.1	14.7	PVC	2	screened	undetermined
W-23B	1145937.55	1027602.34	594.67	GHD	592.7	1.97	41.9	30.1	40	9.9	PVC	2	screened	10
W-23C	1145919.67	1027596.09	594.89	GHD	592.8	2.09	21	14.2	19.1	4.9	PVC	2	screened	undetermined
W-29A	1146254.89	1030563.30	-	See Notes 1 and 2	615.6	-	-	-	-		-	-	-	undetermined
W-29B	1146257.60	1030533.10	-	See Notes 1 and 2	615.3	-	-	-	-		-	-	-	undetermined
W-2A	1146590.83	1030187.01	617.33	See Notes 1 and 2	615.5	1.83	31.5	15	20	5	PVC	2	screened	undetermined
W-2B	1146583.83	1030186.01	617.33	See Notes 1 and 2	615.5	1.83	51.1	26.75	41.5	14.75	PVC	2	screened	undetermined
W-2C	1146572.83	1030176.01	617.19	See Notes 1 and 2	615.5	1.69	13.2	8.2	13.2	5	PVC	2	screened	undetermined
W-34	1146152.90	1030536.20	-	See Notes 1 and 2	615.8	-	-	-	-			-	-	undetermined
W-3A	1146214.83	1029455.03	619.54	See Notes 1 and 2	617.4	2.14	60	44	54	10	PVC	2	screened	undetermined
W-3B	=		-	See Notes 1 and 2	=	-	-	-	-	-	-	-	-	undetermined
W-3C	1146208.83	1029462.03	619.11	See Notes 1 and 2	617.5	1.61	40.5	28.5	38.5	10	PVC	2	screened	undetermined
W-3D	1146218.83	1029466.03	619.48	See Notes 1 and 2	617.6	1.88	17.8	10.8	15.8	5	PVC	2	screened	undetermined
W-4	1146098.82	1029577.03	619.78	See Notes 1 and 2	617.8	1.98	21	9.3	19.2	9.9	PVC	2	screened	undetermined
W-48E	1145859.39	1027396.47	587.7	GHD	585.9	1.8	38.2	27.4	37.2	9.8	PVC	2	screened	undetermined
W-50L	1146328.51	1027248.64	589.96	GHD	588	1.96	65	55	65	10	PVC	2	screened	10
W-5A	1146005.82	1029865.02	619.81	See Notes 1 and 2	618	1.81	35.3	29.3	34.3	5	PVC	2	screened	undetermined
W-5B	1146007.82	1029880.02	619.75	See Notes 1 and 2	617.9	1.85	26.1	18	23	5	PVC	2	screened	undetermined

Table 1 Well Construction Summary Table Stauffer Management Company Site Lewiston, New York

Wel	II ID	Northing (ft_NAD83)	Easting (ft_NAD83)	Elevation Top of Inner Casing (ft)	Northing, Easting, and Elevation of Top of Inner Casing Data Source	Ground Surface Elevation (ft)	Stickup Length (ft)	Well Depth (ft bgs)	Open Interval Top (ft bgs)	Open Interval Bottom (ft bgs)	Open Interval (ft)	Casing	Well Diameter (in)	Well Type	FLOW ZONE
W-5C		1146019.82	1029868.02	619.82	See Notes 1 and 2	617.8	2.02	19.1	11	17	6	PVC	2	screened	undetermined
W-6		1145913.82	1029764.02	619.93	See Notes 1 and 2	617.6	2.33	17	10.2	15.1	4.9	PVC	2	screened	undetermined
W-60L		1146077.85	1027246.83	588.86	GHD	585.5	3.36	_	_	_	ı	_	_	-	undetermined
W-65		1145924.94	1027275.38	586.2	GHD	583.3	2.9	55	23	55	32	steel	6	open hole	10
W-66		1146185.58	1027646.92	595.1	GHD	592.5	2.6	46	19	46	27	steel	4	open hole	shallow bedrock
W-66L		1146207.72	1027640.84	594.26	GHD	592.3	1.96	64.7	55	65	10	PVC	2	screened	10
W-67		1146086.72	1028342.72	605.98	GHD	603.4	2.58	40	15	40	25	steel	4	open hole	shallow bedrock
W-67L		1146088.24	1028320.80	605.47	GHD	603.5	1.97	70	50	70	20	PVC	2	screened	10
W-70L		1145802.85	1027645.26	594.57	GHD	591.5	3.07	72	42	72	30	steel	6	open hole	10
W-7A		1145816.80	1029648.90	618.59	See Notes 1 and 2	616.8	1.79	34.4	28.4	33.4	5	PVC	2	screened	undetermined
W-7B		1145817.82	1029668.02	618.83	See Notes 1 and 2	616.6	2.23	61.8	45.8	59.8	14	PVC	2	screened	undetermined
W-7C		1145829.82	1029658.02	618.86	See Notes 1 and 2	616.8	2.06	19	12	17	5	PVC	2	screened	undetermined
W-8A		1145734.82	1029567.03	617.97	See Notes 1 and 2	616	1.97	24.45	7.85	22.55	14.7	PVC	2	screened	undetermined
W-9A		1145652.82	1029472.03	616.97	See Notes 1 and 2	614.9	2.07	54.5	42	52	10	PVC	2	screened	undetermined
W-9B		1145642.82	1029457.03	617.06	See Notes 1 and 2	615.1	1.96	35	28	33	5	PVC	2	screened	undetermined
W-9C		1145635.82	1029470.03	617.27	See Notes 1 and 2	615.2	2.07	26	14	24	10	PVC	2	screened	undetermined

Notes:

Northing and easting coordinates were obtained from GHD in electronic format on February 28, 2018. Additional northing and easting coordinates were obtained from well logs, if available, and converted from NAD27 to NAD83. Otherwise coordinates were estimated from a survey map by Niagara Boundary and Mapping Services dated July 6, 1993.

2 Elevation data were obtained from GHD in electronic format on February 28, 2018. Additional ground surface elevations were obtained from well logs, if available. Otherwise, ground surface elevations were estimated from a survey map by Niagara Boundary and Mapping Services dated July 6, 1993. Elevation datum is NAVD88

NAD27 North American Datum of 1927 NAD83 North American Datum of 1983 NAVD88 North American Vertical Datum of 1988

ft - feet

bgs - below ground surface

in - inches

indicates no data is available.

Extraction wells

** Well screens defined in well completion/boring logs as having a length of 1.5 feet and an outside diameter of 1.5 inches.

Table 2 Pump and Treat System Mass Removal by Well Former Stauffer Mangement Company Lewiston, New York Langan Project No.: 130117301

4/2/2019

Extr	action Well		EW1			EW2			EW3			EW4	
S	ample Date		07/10/2018 18:25	:00		07/10/2018 18:35	:00		07/10/2018 19:15	:00		07/16/2018 17:45	:00
Extraction V	olume (gal)	Volume:	1,197,390		Volume:	1,977,008		Volume:	3,787,426		Volume:	16,978	
WATER BY 8260C (UG/L)		Result	Mass Removal	% Removal									
Benzene	0.7	0	-	0%	0	-	0%	0	-	0%	0	-	0%
Carbon disulfide	50	39000	391.42	75%	4.5	0.07	0%	3800	120.64	23%	19	0.00	0%
Carbon tetrachloride	5	6800	68.25	8%	420	6.96	1%	5400	171.43	21%	480	0.07	0%
Chlorobenzene	5	0	-	0%	0	-	0%	0	-	0%	29	0.00	100%
Chloroform	7	3300	33.12	10%	240	3.98	1%	3400	107.94	34%	310	0.04	0%
Methylene Chloride	5	0	-	0%	12	0.20	41%	0	-	0%	12	0.00	0%
Tetrachloroethene	5	0	-	0%	12	0.20	1%	96	3.05	16%	30	0.00	0%
Toluene	5	0	-	0%	0	-	0%	0	-	0%	0	-	0%
Trichloroethene	5	0	-	0%	4.9	0.08	1%	180	5.71	67%	11	0.00	0%
Total VOCs	NA	49100.0	492.79	29%	693.4	11.49	1%	12876.0	408.76	24%	891.0	0.13	0%
Removal Efficiency (lbs/1,0	000 gal)		0.41			0.01			0.11			0.01	7%

^{- %} removal column shows the % of individual compound mass removed by each well.

Table 2 Pump and Treat System Mass Removal by Well Former Stauffer Mangement Company Lewiston, New York Langan Project No.: 130117301

4/2/2019

Ex	traction Well		EW5/DPA201			EW6			DPA202			DPA203	
;	Sample Date		07/11/2018 18:20	:00		07/11/2018 18:40	:00	07	7/13/2018 12:30:00)	07/11	1/2018 18:30:0)0
Extraction '	Volume (gal)	Volume:	3,995,688		Volume:	1,163,724		Volume:	38,545		Volume:	101	
WATER BY 8260C (UG/L)		Result	Mass Removal	% Removal	Result	Mass Removal	% Removal	Result	Mass Removal	Result	Mass Removal	% Removal	% Removal
Benzene	0.7	0	ı	0%	0	-	0%	0	-	0%	0	-	0%
Carbon disulfide	50	230	7.70	1%	0	-	0%	130	0.04	0%	8300	0.01	0%
Carbon tetrachloride	5	580	19.43	2%	56000	546.24	67%	320	0.10	0%	240000	0.20	0%
Chlorobenzene	5	0	-	0%	0	-	0%	0	-	0%	0	-	0%
Chloroform	7	430	14.40	5%	16000	156.07	49%	190	0.06	0%	55000	0.05	0%
Methylene Chloride	5	7.2	0.24	50%	0	-	0%	6.4	0.00	0%	0	-	0%
Tetrachloroethene	5	110	3.68	20%	1200	11.71	62%	33	0.01	0%	2000	0.00	0%
Toluene	5	0	-	0%	0	-	0%	0	-	0%	0	-	0%
Trichloroethene	5	80	2.68	32%	0	-	0%	20	0.01	0%	0	-	0%
Total VOCs	NA	1437.2	48.13	3%	73200.0	714.02	43%	699.4	0.23	0%	305300.0	0.26	0%
Removal Efficiency (lbs/1	,000 gal)		0.01			0.61			0.01			2.56	

^{- %} removal column shows the % of individual compound mass removed by each well.

Table 2 Pump and Treat System Mass Removal by Well Former Stauffer Mangement Company Lewiston, New York Langan Project No.: 130117301 4/2/2019

Extr	action Well		LR66			OW3		Total Mass
S	ample Date		07/13/2018 12:45:	00	0	7/12/2018 20:50:0	0	Removal
Extraction V	olume (gal)	Volume:	24,702		Volume:	59		(pounds)
WATER BY 8260C (UG/L)		Result	Mass Removal	% Removal	Result	Mass Removal	% Removal	
Benzene	0.7	0	-	0%	0	-	0%	-
Carbon disulfide	50	320	0.07	0%	1200000	0.60	0%	520.55
Carbon tetrachloride	5	26000	5.38	1%	12000	0.01	0%	818.07
Chlorobenzene	5	0	-	0%	0	-	0%	0.00
Chloroform	7	9300	1.93	1%	11000	0.01	0%	317.59
Methylene Chloride	5	200	0.04	9%	0	-	0%	0.49
Tetrachloroethene	5	510	0.11	1%	1600	0.00	0%	18.76
Toluene	5	0	-	0%	0	-	0%	-
Trichloroethene	5	53	0.01	0%	0	-	0%	8.49
Total VOCs	NA	699.0	0.14	0%	24600.0	0.01	0%	1,676
Removal Efficiency (lbs/1,0)00 gal)		0.01			0.21		0.11

^{- %} removal column shows the % of individual compound mass removed by each well.

Table 3 System Extraction and Discharge Flow Rates Former Stauffer Management Company, LLC Lewiston, New York Langan Project No.: 130117301 2/26/2019

								Totaliz	er Readings											To	otalizer Reading	S			
			EW-1		EW-2		EW-3	E	W-4/T-4		EW-5/DF	PA-201	1		EW-6		DPA-202		DPA-203		OW-3	l	R-66		Effluent
		Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate	Pulses	Calculated Flow from DPA-201	Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate	Totalizer	Calculated Flow Rate
Date	Difference in Minutes	Gallons	GPM	Gallons	GPM	Gallons	GPM	Gallons	GPM	Gallons	GPM	#	GPM	Gallons	GPM	Gallons	GPM	Gallons	GPM	Gallons	GPM	Gallons	GPM	Gallons	GPM
1/2/2018		6177254		31150698		4108720		183417		84955547		619564		648955		298643		143839						206400	41.00
1/29/2018 2/5/2018	38880 10080	6298879 6334786	3.13 3.56	31359872 31400000	5.38 3.98	4405108 4498626	7.62 9.28	184294 184830	0.02 0.05	85290137 85400000	8.61 10.90		-10.36 -39.95	649183 651317	0.01 0.21	301118 303446	0.06 0.23	143840 143840	0.00					1424954 1838234	31.34 41.00
2/7/2018	2880	6347196	4.31	31425000	8.68	4528176	10.26	184995	0.06	85433226	11.54		0.00	653679	0.82	303443	0.00	143840	0.00					1956314	41.00
2/9/2018	2880	6357381	3.54	31450000	8.68	4552143	8.32	185126	0.05	85466451	11.54		0.00	656041	0.82	303348	-0.03	143840	0.00					2074394	41.00
2/12/2018 2/14/2018	4320 2880	6373311 6383468	3.69 3.53	31484740 31502671	8.04 6.23	4598134 4615297	10.65 5.96	185340	0.05	85499677	7.69 11.54		0.00 0.00	658403 660765	0.55 0.82	303378 303408	0.01	143840 143840	0.00 0.00					2251514 2369594	41.00 41.00
2/14/2018	2880	6392766	3.23	31502671	6.56	4613297	9.41	185480 185634	0.05 0.05	85532903 85566129	11.54		0.00	663127	0.82	303408	0.01 0.01	143840	0.00					2487674	41.00
2/19/2018	4320	6402184	2.18	31543615	5.11	4676248	7.83	185839	0.05	85632580	15.38		0.00	665489	0.55	304506	0.25	143840	0.00					2664794	41.00
2/21/2018 2/23/2018	2880 2880	6407542 6414944	1.86 2.57	31560963 31577663	6.02 5.80	4703843 4729735	9.58 8.99	186006 186134	0.06 0.04	85670388 85718728	13.13 16.78		0.00 0.00	677677 689865	4.23 4.23	305574 309612	0.37 1.40	143840 143840	0.00 0.00					2782874 2900954	41.00 41.00
2/23/2018	7200	6427121	1.69	31616167	5.35	4729733	9.61	186476	0.05	85767067	6.71		0.00	702053	1.69	313649	0.56	143840	0.00					3243705	47.60
3/5/2018	7200	6438657	1.60	31654477	5.32	4851731	7.33	186785	0.04	85831262	8.92		0.00	713202	1.55	316665	0.42	143840	0.00					3500000	35.60
3/7/2018	2880	6444938	2.18	31671962	6.07	4878262	9.21	186935	0.05	85863500	11.19	024222	0.00	714343	0.40	318827	0.75	143848	0.00					3638792	48.19
3/14/2018 3/16/2018	10080 2880	6458418 6463215	1.34 1.67	31718161 31733816	4.58 5.44	4956527 4988454	7.76 11.09	187475 187626	0.05 0.05	85947972 85977082	8.38 10.11	831232 837348	53.60 1.38	717324 717331	0.30 0.00	320731 320726	0.19 0.00	143848 143840	0.00 0.00					3967366 4076639	32.60 37.94
3/19/2018	4320	6467374	0.96	31755946	5.12	5016883	6.58	187899	0.06	86011100	7.87	845419	1.21	719217	0.44	320789	0.01	143840	0.00					4220336	33.26
3/21/2018	2880	6470783	1.18	31773066	5.94	5043293	9.17	188069	0.06	86041091	10.41	852771	1.66	722686	1.20	320713	-0.03	143840	0.00					4338892	41.17
3/23/2018 3/26/2018	2880 4320	6473118 6477389	0.81 0.99	31790735 31817639	6.14 6.23	5078773 5111389	12.32 7.55	188248 188530	0.06 0.07	86071951 86119436	10.72 10.99	859555 869072	1.53 1.43	723947.6 723957	0.44 0.00	320829 320819	0.04 0.00	143840 143840	0.00 0.00					4458458 4639202	41.52 41.84
3/28/2018	2880	6479819	0.84	31832698	5.23	5133331	7.62	188679	0.05	86146319	9.33	874598	1.25	723958	0.00	320916	0.03	143840	0.00					4738535	34.49
3/29/2018	1440	6481145	0.92	31841138	5.86	5146223	8.95	188766	0.06	86160647	9.95	877570	1.34	723958	0.00	320918	0.00	143840	0.00					4796318	40.13
3/30/2018 4/2/2018	1440 4320	6482578 6486825	1.00 0.98	31850643 31887778	6.60 8.60	5166245 5202128	13.90 8.31	188861 189130	0.07 0.06	86177204 86220589	11.50 10.04	881534 893061	1.79 1.73	723958.8 731476.6	0.00 1.74	321002 321181	0.06 0.04	143840 143840	0.00 0.00					4857385 5042953	42.41 42.96
4/4/2018	2880	6490649	1.33	31896518	3.03	5231373	10.15	189314	0.06	86249997	10.21	900737	1.73	740016	2.97	321131	0.09	143840	0.00					5172880	45.11
4/6/2018	2880	6493709	1.06	31915318	6.53	5259707	9.84	189510	0.07	86275163	8.74	903850	0.70	750098.3	3.50	321562	0.04	143840	0.00					5296212	42.82
4/9/2018	4320 2880	6498818 6501726	1.18	31944038	6.65	5304152	10.29	189798	0.07	86319980 86347861	10.37 9.68	915835 919470	1.80	765395.7	3.54	321637	0.02	143840	0.00					5497069	46.49
4/11/2018 4/13/2018	2880	6504823	1.01 1.08	31961676 31981723	6.12 6.96	5331033 5361351	9.33 10.53	189965 190151	0.06 0.06	86378897	10.78	919470	0.82 0.00	772833.6 780956.9	2.58 2.82	321729 321629	0.03 -0.03	143840 143840	0.00 0.00					5618699 5755171	42.23 47.39
4/16/2018	4320	6508823	0.93	32010863	6.75	5403863	9.84	190499	0.08	86418124	9.08	920989	0.23	794554.8	3.15	321627	0.00	143840	0.00					5942186	43.29
4/18/2018	2880	6512158	1.16	32029016	6.30	5432614	9.98	190671	0.06	86445567	9.53	925534	1.03	806387.8	4.11	321686	0.02	143840	0.00					6072416	45.22
4/20/2018 4/23/2018	2880 4320	6515295 6517282	1.09 0.46	32046933 32065398	6.22 4.27	5461589 5493241	10.06 7.33	190869 191128	0.07 0.06	86473428 86495995	9.67 5.22	925939 934368	0.09 1.27	818947.6 829895.3	4.36 2.53	321716 322383	0.01 0.15	143840 143840	0.00 0.00					6202419 6329553	45.14 29.43
4/25/2018	2880	6521303	1.40	32084143	6.51	5523466	10.49	191299	0.06	86528300	11.22	937821	0.78	842121.8	4.25	322412	0.01	143840	0.00					6469943	48.75
4/27/2018	2880	6524571	1.13	32101065	5.88	5551889	9.87	191439	0.05	86551505	8.06	941023	0.72	851339.8	3.20	322410	0.00	143840	0.00					6592901	42.69
5/2/2018 5/9/2018	7200 10080	6530898 6541512	0.88 1.05	32140978 32200212	5.54 5.88	5617841 5709959	9.16 9.14	191798 192247	0.05 0.04	86607905 86700142	7.83 9.15	950485 957493	0.85 0.45	869758.2 884364.2	2.56 1.45	322392 322381	0.00 0.00	143840 143840	0.00 0.00					6868140 7279475	38.23 40.81
5/16/2018	10080	6552176	1.06	32261886	6.12	5882557	17.12	192690	0.04	86798684	9.78	966448	0.58	886288.4	0.19	322923	0.05	143840	0.00					7692722	41.00
5/23/2018	10080	6561729	0.95	32320737	5.84	5888379	0.58	193114	0.04	86903695	10.42	967820	0.09	887280	0.10	323282	0.04	143840	0.00					8078660	38.29
5/30/2018 6/6/2018	10080 10080	6568516 6570516	0.67 0.20	32380279 32380279	5.91 0.00	5972444 5972444	8.34 0.00	193578 193982	0.05 0.04	86983837 86984458	7.95 0.06	974394 989936	0.42 1.00	887288.4 887288.4	0.00 0.00	324425 326206	0.11 0.18	143840 143840	0.00 0.00					8499324 8582644	41.73 8.27
6/22/2018	23040	6575335	0.21	32380279	0.00	6099086	5.50	194343	0.02	87016112	1.37	2568	0.36	887288.4	0.00	328358	0.09	143840	0.00					8667810	3.70
6/25/2018	4320	6590545	3.52	32380467	0.04	6131172	7.43	194449	0.02	87052422	8.41	3543	0.15	887288.4	0.00	328358	0.00	143840	0.00					8776662	25.20
7/2/2018 7/24/2018	10080 31680	6632539 6742657	4.17 3.48	32380555 32388789	0.01 0.26	6267854 6426591	13.56 5.01	194666 195101	0.02 0.01	87162903 87465187	10.96 9.54	3559 3559	0.00 0.00	887288.4 894233.3	0.00 0.22	328358 328381	0.00	143840 143840	0.00 0.00					8874534 371088	9.71 11.71
8/3/2018	14400	6749878	0.50	32388789	0.00	6448298	1.51	197453	0.16	87484998	1.38	3559	0.00	895268.2	0.07	329688	0.09	143840	0.00					437718	4.63
8/8/2018	7200	6749878	0.00	32388789	0.00	6448298	0.00	197462	0.00	87485153	0.02	3559	0.00	895268.2	0.00	332284	0.36	143840	0.00					453578	2.20
8/15/2018 8/24/2018	10080 12960	6749878 6749897	0.00 0.00	32388798 32388790	0.00 0.00	6448298 6460871	0.00 0.97	197464 197476	0.00 0.00	87485298 87485732	0.01 0.03	3559 3559	0.00 0.00	895268.2 895268.4	0.00 0.00	335026 337017	0.27 0.15	143840 143840	0.00 0.00					468309 499049	1.46 2.37
8/27/2018	4320	6751382	0.34	32390810	0.47	6467249	1.48	197939	0.11	87490876	1.19	3559	0.00	897451.8	0.51	337017	0.00	143840	0.00					522938	5.53
8/30/2018	4320	6751606	0.05	32391796	0.23	6478386	2.58	198187	0.06	87493176	0.53	3559	0.00	898438.4	0.23	337023	0.00	143840	0.00					533779	2.51
9/4/2018	7200	6778760	3.77 3.49	32435815	6.11	6532169 6543567	7.47	199033	0.12	87591384	13.64	3559 3559	0.00	899983.2	0.21	337036	0.00	143840	0.00	1388 1388	0.19	0	0.00	828295	40.91
9/5/2018 9/6/2018	1440 1440	6783783 6788871	3.49	32444333 32452403	5.92 5.60	6554695	7.92 7.73	199179 199292	0.10 0.08	87608604 87628163	11.96 13.58	3559 3559	0.00 0.00	899983.3 900003.2	0.00 0.01	337037 337043	0.00 0.00	143840 143840	0.00 0.00	1388	0.00 0.02	9667.5	0.00 6.71	882208 939981	37.44 40.12
9/10/2018	5760	6805668	2.92	32474286	3.80	6597765	7.48	200020	0.13	87680385	9.07	3559	0.00	985568.8	14.86	337042	0.00	143848	0.00	1416	0.00	15420.10	1.00	1119470	31.16
9/12/2018	2880	6815652	3.47	32486325	4.18	6618147	7.08	200243	0.08	87708987	9.93	3559	0.00	985818.2	0.09	337042	0.00	143848	0.00	1416	0.00	16825.00	0.49	1209885	31.39
9/14/2018 9/19/2018	2880 7200	6822868 6858383	2.51 4.93	32493322 32518194	2.43 3.45	6631572 6694988	4.66 8.81	200295 200395	0.02 0.01	87727695 87820644	6.50 12.91	3559 3559	0.00 0.00	986568.7 988837.4	0.26 0.32	337040 337852	0.00 0.11	143848 143848	0.00 0.00	1416 1416	0.00 0.00	19065.80 24576.00	0.78 0.77	1269724 1549636	20.78 38.88
9/26/2018	10080	6888934	3.03	32549619	3.12	6788684	9.30	200395	0.00	87947646	12.60	3559	0.00	988837.4	0.00	337856	0.00	143940	0.01	1416	0.00	24576.10	0.00	1932412	37.97
9/28/2018	2880	6923124	11.87	32557290	2.66	6803883	5.28	200395	0.00	87983668	12.51	3559	0.00	988837.4	0.00	337856	0.00	143940	0.00	1416	0.00	24576.10	0.00	2038349	36.78
10/5/2018 10/10/2018	10080 7200	6971558 7004398	4.80 4.56	32586716 32611428	2.92 3.43	6884718 6945846	8.02 8.49	200395 200395	0.00	88105229 88186110	12.06 11.23	3559 3559	0.00	987837.4 988236.1	-0.10 0.06	337856 337089	0.00 -0.11	143940 143940	0.00	1416 1416	0.00	24576.10 24576.10	0.00 0.00	2403975 2665848	36.27 36.37
10/15/2018	7200	7048778	6.16	32621919	1.46	6988238	5.89	200395	0.00	88272499	12.00	3559	0.00	988944.4	0.10	337089	0.00	143940	0.00	1416	0.00	24576.10	0.00	2935172	37.41
10/23/2018	11520	7074389	2.22	32657203	3.06	7075145	7.54	200395	0.00	88353306	7.01	3559	0.00	912663.2	-6.62	337089	0.00	143940	0.00	1416	0.00	24576.10	0.00	3631198	60.42
10/30/2018 11/14/2018	10080 21600	7113749 7185865	3.90 3.34	32720989 32800731	6.33 3.69	7167185 7334675	9.13 7.75	200395 200395	0.00 0.00	88473067 88668190	11.88 9.03	3559 3559	0.00 0.00	914571.2 917737.4	0.19 0.15	337096 337089	0.00 0.00	143940 143940	0.00 0.00	1416 1416	0.00 0.00	24576.10 24576.10	0.00 0.00	3631198 4304146	0.00 31.16
11/14/2018	18720	7241138	2.95	32896363	5.11	7488799	8.23	200395	0.00	88843244	9.03	3559	0.00	917/37.4	0.15	337089	0.00	143940	0.00	1416	0.00	24576.10	0.00	4924858	33.16
12/5/2018	11520	7288711	4.13	32962007	5.70	7583678	8.24	200395	0.00	88932848	7.78	3559	0.00	937528.8	1.62	337188	0.01	143940	0.00	1416	0.00	24576.00	0.00	5352858	37.15
12/12/2018	10080	7324453	3.55	33026476	6.40	7716687	13.20	200395	0.00	88945735	1.28	3359	-0.01	937528.8	0.00	337188	0.00	143940	0.00	1416	0.00	24702.00	0.01	5645675	29.05
12/26/2018	20160	7374644	2.49	33127706	5.02	7896146	8.90	200395	0.00	88951235	0.27	3359	-0.01	1812679	43.41	337188	0.00	143940	0.00	3.3	0.00	24702.00	0.00	6069909	21.04
Notes:																						1			

Notes: GPM - Gallons per Minute

Greyed boxes denote calculated data

Page 1 of 1 \\langan.com\\data\\LA\W\\data3\130117301\\Project Data_Discipline\\Environmenta\\Treatment System OM&\M\Extraction Volume Data.xlsx

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York

Langan Project No.: 130117301 3/8/2019

								Shallo	w Redr	ock/Overbur	den	Wells					
				W16			W18		v Dcui	OOK/ O VCIBAI	ucii	W20				W66	
	Client ID		W	16-071118		W1		142018			W	20-071218			W	66-071018	
	Lab Sample ID		480	0-138935-8							480)-138935-24			48	0-138935-3	
	Sampling Date	0	7/11/2	2018 10:55:0	0	07/1	4/2018	00:45:00)	0	7/12/	2018 13:45:0	0	0	7/10/	2018 11:45:0	00
	Matrix			Water			Wate	er				Water				Water	
	Dilution Factor			2			1000)				1				10	
	NY NYSDEC																
	Groundwater	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
	Criteria																
WATER BY 8260C (UG/L)																	
Benzene	0.7	3.6		0.82	2.0		J	8.2	20	0.41		0.41	1.0	4.1		4.1	10
Carbon disulfide	50	4.7		0.38	2.0		JDB		1000	0.19		0.19	1.0	1.9		1.9	
Carbon tetrachloride	5	0.54	U	0.54	2.0		D		1000	0.27		0.27	1.0	650		2.7	10
Chlorobenzene	5	1.5		1.5	2.0		U		20		_	0.75	1.0	7.5		7.5	
Chloroform	7	2.6		0.68	2.0	18000	D	340	1000	0.34	U	0.34	1.0	490		3.4	10
Methylene Chloride	5	0.88		0.88	2.0		JD		1000	0.44		0.44	1.0	4.4	U	4.4	10
Tetrachloroethene	5	2.3		0.72	2.0	280		7.2	20	0.36		0.36	1.0	60		3.6	10
Toluene	5	2.6		1.0	2.0	10	U	10	20	0.51	U	0.51	1.0	5.1	U	5.1	10
Trichloroethene	5	3.0		0.92	2.0	17	J	9.2	20	0.46	U	0.46	1.0	22		4.6	10
Total Conc	NA	18.8		NA	NA	45000.0		NA	NA	0.0		NA	NA	1222.0		NA	NA
WATER BY 200.7 REV 4.4(UG/L)																	
Calcium	NA	2.97E+05		6.08E+02	5.00E+03	6260		100	500	3.03E+05		6.08E+02	5.00E+03	1.95E+05		6.08E+02	5.00E+03
Manganese	NA	3010		5.0	15.0	30.5	В	0.40	3.0	54.2		5.0	15.0	763		5.0	15.0
Potassium	NA	11300		207	5000	5960		100	500	9240		207	5000	1950	J	207	5000
Sodium	NA	6.03E+05		4.23E+03	2.50E+04	1240000		1620	5000	3.56E+05		8.46E+02	5.00E+03	5.29E+04		8.46E+02	5.00E+03
WATER BY 300.0 (MG/L)																	
Chloride	NA	468	D	7.80	12.0	307		5.6	10.0	355	D	7.80	12.0	21.8	D	0.78	1.20
Sulfate	NA	961	D	33.2	60.0	462		7.0	40.0	900	D	33.2	60.0	434	D	9.96	18.0
WATER BY SM 2340C (MG/L)																	
Hardness as calcium carbonate (mg/l)	NA	1220		50.0	50.0	20.0		2.6	10.0	1160		50.0	50.0	706		50.0	50.0
Field Parameters																	
pH (S.U.)	NA	6.80				10.32				7.59				7.21			
Specific Conductivity (mS/cm)	NA	4.67				3.76				2.73				1.26			
Redox Potential (mV)	NA	-297				-198				31				159			
Dissolved Oxygen (mg/L)	NA	0.03				2.20				0.40				1.48			
Turbidity (NTU)	NA	4				4				0				0			

Notes:

NYSDEC New York State Department of Environmental Concervation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.

NA Not applicable.

Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL

and the concentration is an approximate value. 250 Concentration exceeds NYSDEC groundwater criteria.

22 MDL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York

Langan Project No.: 130117301 3/8/2019

										Flow	Zone	10 W	ells								
			W1	18L				W-16L			We	67				W50L			W6	5	
	Client ID	W	18L-(071218			W1	6L-071018		W	67-0	71218			W	50L-071218		W6	5-07	71218	
	Lab Sample ID	480)-138	3935-21			480	0-138935-7		480)-138	935-25	;		480	0-138935-22		480-	138	935-29	
	Sampling Date	07/12/	/2018	3 10:30	:00	0	7/10/	2018 10:45:0	0	07/12	/2018	14:40	:00	0.	7/12/	/2018 10:50:0	0	07/12/2	2018	18:05:	00
	Matrix		Wa	iter				Water			Wa ⁻	ter				Water			Wat	er	
	Dilution Factor		1	0				2			40)				1			1		
	NY NYSDEC																				
	Groundwater Criteria	Result	a	MDL	RL	Result	σ	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
WATER BY 8260C (UG/L)																					
Benzene	0.7	4.1	U	4.1	10	0.82	U	0.82	2.0	16	U	16	40	0.41	U	0.41	1.0	1.0		0.41	1.0
Carbon disulfide	50	1.9	U	1.9	10	23		0.38	2.0	93		7.6	40	0.49	J	0.19	1.0		J	0.19	1.0
Carbon tetrachloride	5	280		2.7	10	0.54	\cap	0.54	2.0	1800		11	40	0.27	U	0.27	1.0	0.27	U	0.27	1.0
Chlorobenzene	5	7.5	U	7.5	10	1.5	\cap	1.5	2.0	30	J	30	40	0.75	U	0.75	1.0	6.5		0.75	1.0
Chloroform	7	740	F1	3.4	10	12		0.68	2.0	1400		14	40	0.34	U	0.34	1.0		J	0.34	1.0
Methylene Chloride	5	82		4.4	10	0.88	U	0.88	2.0	18	U	18	40	0.44	U	0.44	1.0		U	0.44	1.0
Tetrachloroethene	5	39	l l	3.6	10	0.72	U	0.72	2.0	150		14	40	0.36	U	0.36	1.0		U	0.36	1.0
Toluene	5	5.1	U	5.1	10	1.0	U	1.0	2.0	20	U	20	40	0.51	U	0.51	1.0		U	0.51	1.0
Trichloroethene	5	65		4.6	10	2.8		0.92	2.0			18	40	0.46	U	0.46	1.0	0.46	U	0.46	1.0
Total Conc	NA	1206.0		NA	NA	37.8		NA	NA	3583.0		NA	NA	0.49		NA	NA	8.32		NA	NA
WATER BY 200.7 REV 4.4(UG/L)																					
Calcium	NA					5.36E+05		1.82E+03	1.50E+04					2.55E+05		6.08E+02	5.00E+03				
Manganese	NA					104		5.0	15.0					444		5.0	15.0				
Potassium	NA					10400		207	5000					5880		207	5000				
Sodium	NA					3.69E+05		8.46E+02	5.00E+03					5.01E+05		4.23E+03	2.50E+04				
WATER BY 300.0 (MG/L)																					
Chloride	NA					594	D	15.6	24.0					896	D	15.6	24.0				
Sulfate	NA					964	D	66.4	120					377	D	66.4	120				
WATER BY SM 2340C (MG/L)																					
Hardness as calcium carbonate (mg/l)	NA					1530		50.0	50.0					1020		50.0	50.0				
Field Parameters																					
pH (S.U.)	NA	7.28				7.11				6.78				7.11				7.12			
Specific Conductivity (mS/cm)	NA	2.54				4.15				1.92				3.19				2.58			
Redox Potential (mV)	NA	-179				-280				-112				18				-55			
Dissolved Oxygen (mg/L)	NA	0.09				0.00				0.04				0.41				0.08			
Turbidity (NTU)	NA	0				4				3				3	lī			0			

Notes:

NYSDEC New York State Department of Environmental Concervation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.

NA Not applicable.

U Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL

and the concentration is an approximate value.

250 Concentration exceeds NYSDEC groundwater criteria.

22 MDL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York

Langan Project No.: 130117301 3/8/2019

									Flow Z	one 10 Wel	lls										
				W66L				W67L			W	70L					W19I	3			
	Client ID		W	66L-071018			W	67L-071218		W	70L-	071218		W	19B_07	132018		DUP3_0	7132	018 (W	/19B)
	Lab Sample ID		48	0-138935-2			480	0-138935-23		480)-13	8935-26		4	180-139	047-1		48	0-139	9047-2	
	Sampling Date	0	7/10,	/2018 16:10:0	10	07	7/12/	/2018 12:35:0	00	07/12/	/201	8 16:10:	:00	07/1	3/2018	11:10:0	0	07/13	/2018	11:10:	.00
	Matrix			Water				Water			Wa	ater			Wate	er			Wat	er	
	Dilution Factor			1				5				1			1				80	,	
	NY NYSDEC																				
	Groundwater	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
	Criteria																				
WATER BY 8260C (UG/L)																					
Benzene	0.7	0.41	U	0.41	1.0	2.1	U	2.1	5.0	2.5		0.41	1.0			0.41	1.0			33	
Carbon disulfide	50	0.19	U	0.19	1.0	17		0.95	5.0	9.7		0.19	1.0		_				JΒ		
Carbon tetrachloride	5	0.27	U	0.27	1.0	92		1.4	5.0	0.27	U	0.27	1.0		D		100			22	
Chlorobenzene	5	0.75	U	0.75	1.0	3.8	U	3.8	5.0	57		0.75	1.0		D					60	
Chloroform	7	0.34	U	0.34	1.0	290		1.7	5.0	0.60	J	0.34	1.0		D	1				27	_
Methylene Chloride	5	0.44	U	0.44	1.0	2.2	U	2.2	5.0	0.44	U	0.44	1.0				100			35	
Tetrachloroethene	5	0.36	_	0.36	1.0	26		1.8	5.0	0.36	U	0.36	1.0			0.36				29	
Toluene	5	0.51	U	0.51	1.0	2.6	U	2.6	5.0	0.59	J	0.51	1.0			0.51	1.0			41	
Trichloroethene	5	0.46	U	0.46	1.0	32		2.3	5.0	8.4		0.46	1.0				100			37	
Total Conc	NA	0.0		NA	NA	457.0		NA	NA	78.79		NA	NA	70.9		NA	NA	7225.0		NA	NA
WATER BY 200.7 REV 4.4(UG/L)																					
Calcium	NA	2.54E+05		6.08E+02	5.00E+03	2.99E+05		6.08E+02	5.00E+03	1.01E+06		6080	50000	370000		100	500				
Manganese	NA	36.4		5.0	15.0	13.0	J	5.0	15.0	1240		5.0	15.0	362	В	0.40	3.0				
Potassium	NA	4530	J	207	5000	12400		207	5000	44100		207	5000	8300		100	500			<u> </u>	\perp
Sodium	NA	2.69E+05		8.46E+02	5.00E+03	5.41E+05		4.23E+03	2.50E+04	1.10E+06		8460	50000	183000		324	1000				
WATER BY 300.0 (MG/L)																					
Chloride	NA	485	D	7.80	12.0	1040	D	23.4	36.0	2580	D	78.0	120	310		2.8	5.0				
Sulfate	NA	391	D	33.2	60.0	430	D	99.6	180	1720	D	332	600	887		3.5	20.0				
WATER BY SM 2340C (MG/L)																					
Hardness as calcium carbonate (mg/l)	NA	823		25.0	25.0	1140		50.0	50.0	3770		125	125	1300		5.3	20.0				
Field Parameters																					
pH (S.U.)	NA	7.30				6.85				6.85				6.80				6.80			
Specific Conductivity (mS/cm)	NA	2.71				4.29				10.40				2.82				2.82			
Redox Potential (mV)	NA	-4				63				-205				-138				-138			
Dissolved Oxygen (mg/L)	NA	0.01				4.29				0.93				0.00				0.00			
Turbidity (NTU)	NA	0				0				0				7				7			

- NYSDEC New York State Department of Environmental Concervation.
 - VOC Volatile organic compound.
- CAS # Chemical abstract service number.
- μg/L micrograms per liter.
- Q Laboratory qualifier.
- MDL Laboratory method detection limit.
- RL Laboratory reporting limit.
- ND Analyte not detected above corresponding laboratory MDL.
- NA Not applicable.
- U Indicates the analyte was analyzed for but not detected.
- B Compound was found in the blank and sample.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- 250 Concentration exceeds NYSDEC groundwater criteria.
 - 22 MDL exceeds NYSDEC groundwater criteria.
 - 1 RL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York

Langan Project No.: 130117301 3/8/2019

										F	low 2	Zone 11 Wel	ls								
				LR16			LR	67				LR20			LR	48				LR50	
	Client ID		LR	16-071118		LR6	7_07	7132018	}		LR	20-071018		LR4	8_07	7162018	}		LR5	0-071118	
	Lab Sample ID		480	0-138935-9		480	0-13	9047-7			480)-138935-1		480)-139	9047-14			480-	138935-13	
	Sampling Date	07	7/11/:	2018 13:40:C	00	07/13/	2018	3 14:35:	00	0	7/10/2	2018 18:25:0	0	07/16/	/2018	3 13:25:	00	07	7/11/2	2018 17:45:0	0
	Matrix			Water			Wa	iter				Water			Wa	iter				Water	
	Dilution Factor			5000			20	00				1			1	0				1	
	NY NYSDEC																				
	Groundwater	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
	Criteria																				
WATER BY 8260C (UG/L)																					
Benzene	0.7	2100	U	2100	5000	82		~-	200	0.41	U	0.41	1.0	4.1		4.1	10	0.41	U	0.41	1.0
Carbon disulfide	50	140000		950	5000	12000			200	0.19	U	0.19	1.0	16			10	0.44	J	0.19	1.0
Carbon tetrachloride	5	1400	U	1400	5000	54		54	200	0.27	U	0.27	1.0	480		2.7	10	0.27	U	0.27	1.0
Chlorobenzene	5	3800	U	3800	5000	150			200	0.75	U	0.75	1.0	110		7.5	10	0.75	U	0.75	1.0
Chloroform	7	36000		1700	5000	100	J	68	200	0.40	J	0.34	1.0	430	F1	3.4	10	0.34	U	0.34	1.0
Methylene Chloride	5	15000		2200	5000	88	U	88	200	0.44	U	0.44	1.0	24		4.4	10	0.44	U	0.44	1.0
Tetrachloroethene	5	5600		1800	5000	450		72	200	0.36	U	0.36	1.0	31		3.6	10	0.36	U	0.36	1.0
Toluene	5	2600	U	2600	5000	100	U	100	200	0.51	U	0.51	1.0	5.1	U	5.1	10	0.51	U	0.51	1.0
Trichloroethene	5	2300	U	2300	5000	210		92	200	0.46	U	0.46	1.0	17		4.6	10	0.46	U	0.46	1.0
Total Conc	NA	196600.0		NA	NA	12760.0		NA	NA	0.4		NA	NA	1108.0		NA	NA	0.44		NA	NA
WATER BY 200.7 REV 4.4(UG/L)																					
Calcium	NA	2.33E+06		1.22E+04	1.00E+05	459000		100	500	1.38E+05		6.08E+02	5.00E+03	164000		100	500	2.41E+05		6.08E+02	5.00E+03
Manganese	NA	942		99.2	300	119	В	0.40	3.0	65.8		5.0	15.0	140	В	0.40	3.0	42.3		5.0	15.0
Potassium	NA	71200	J	4140	100000	16100		100	500	4140	J	207	5000	4130		100	500	7110		207	5000
Sodium	NA	2.44E+06		1.69E+04	1.00E+05	415000		324	1000	2.02E+05		8.46E+02	5.00E+03	262000		324	1000	4.88E+05		4.23E+03	2.50E+04
WATER BY 300.0 (MG/L)																					
Chloride	NA	7440	D	156	240	678		5.6	10.0	330	D	7.80	12.0	529		2.8	5.0	870		15.6	24.0
Sulfate	NA	1360	D	33.2	60.0	1190		7.0	40.0	110	D	3.32	6.00	248		3.5	20.0	324	D	66.4	120
WATER BY SM 2340C (MG/L)																					
Hardness as calcium carbonate (mg/l)	NA	7450		250	250	1500		13.1	50.0	494		10.0	10.0	660		2.6	10.0	1040		50.0	50.0
Field Parameters																					
pH (S.U.)	NA	6.04				6.67				7.21				7.06				7.12			
Specific Conductivity (mS/cm)	NA	22.40				4.07				1.71				2.33				3.63			
Redox Potential (mV)	NA	-226				-260				186				-216				-214			1
Dissolved Oxygen (mg/L)	NA	0.00				0.07				0.28				0.26				0.16			
Turbidity (NTU)	NA	5				13				48				6				0			- I

Notes:

NYSDEC New York State Department of Environmental Concervation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.

NA Not applicable.

U Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL

and the concentration is an approximate value.

250 Concentration exceeds NYSDEC groundwater criteria. MDL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York

Langan Project No.: 130117301 3/8/2019

							Flo	w Zoi	ne 11	Wells						Flo	w Zone 12 \	Wells			
					LR	51						LR62				R16			R1	9	
	Client ID	LR5	1-071	1218		DUP2-0	712	18 (LR	·51)		LR	62-071118			R	16-071118		R1	9_071	32018	
	Lab Sample ID	480-1	13893	35-27		480	-138	935-28			480	-138935-18			480	0-138935-10		48	30-139	047-3	
	Sampling Date	07/12/20	018 1	17:25:0	00	07/12/	2018	17:25	:00	0	7/11/2	2018 20:25:0	0	0	7/11,	/2018 16:45:0	00	07/13	3/2018	11:10:0	00
	Matrix	/	Wate	r			Wa	ter				Water				Water			Wat	er	
	Dilution Factor		1				1					4				2			20	0	
	NY NYSDEC																				
	Groundwater Criteria	Result	Q N	MDL	RL	Result	a	MDL	RL	Result	a	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
WATER BY 8260C (UG/L)																					
Benzene	0.7	0.41	U	0.41	1.0	0.41	U	0.41	1.0	7.2		1.6	4.0	110		0.82	2.0	33	J	33	80
Carbon disulfide	50	0.19	U	0.19	1.0	0.19	U	0.19	1.0	1.7	J	0.76	4.0	0.38	U	0.38	2.0	260	ВD	38	200
Carbon tetrachloride	5	0.27	U	0.27	1.0	0.27	U	0.27	1.0	1.1	U	1.1	4.0	0.54	U	0.54	2.0	8100	D	54	200
Chlorobenzene	5	4.7		0.75	1.0	5.2		0.75	1.0	3.0	U	3.0	4.0	1.5	U	1.5	2.0	150	U	150	200
Chloroform	7	0.34	U	0.34	1.0	0.34	U	0.34	1.0	3.4	J	1.4	4.0	0.68	U	0.68	2.0	3100	D	68	200
Methylene Chloride	5	0.44	U	0.44	1.0	0.44	U	0.44	1.0	1.8	U	1.8	4.0	0.88	U	0.88	2.0	600	D	88	200
Tetrachloroethene	5	0.36	U	0.36	1.0	0.36	U	0.36	1.0	1.4	U	1.4	4.0	0.72	U	0.72	2.0	33	J	29	80
Toluene	5	0.51	U	0.51	1.0	0.51	U	0.51	1.0	2.0	U	2.0	4.0	37		1.0	2.0	41	U	41	80
Trichloroethene	5	0.46	U	0.46	1.0	0.46	U	0.46	1.0	3.7	J	1.8	4.0	0.92	U	0.92	2.0	37	U	37	80
Total Conc	NA	4.7		NA	NA	5.2		NA	NA	16.0		NA	NA	147.0		NA	NA	8100.0		NA	NΑ
WATER BY 200.7 REV 4.4(UG/L)																					
Calcium	NA									3.72E+05		6.08E+02	5.00E+03	2.38E+07		3.04E+04	2.50E+05	725000		100	500
Manganese	NA									499		5.0	15.0	4070		248	750	362	В	0.40	
Potassium	NA									33800		207	5000	829000		10400	250000	54800		100	500
Sodium	NA									1.31E+06		8.46E+03	5.00E+04	4.25E+07		1.69E+05	1.00E+06	1990000		1620	5000
WATER BY 300.0 (MG/L)																					
Chloride	NA									828	D	31.2	48.0	152000	D	3900	6000	4710		28.2	50.0
Sulfate	NA									2020	D	33.2	60.0	145	D	3.32	6.00	705		34.9	200
WATER BY SM 2340C (MG/L)																					
Hardness as calcium carbonate (mg/l)	NA									1350		50.0	50.0	99000		2500	2500	2850		13.1	50.0
Field Parameters																					
pH (S.U.)	NA	7.12				7.12				8.08				6.20				7.18			
Specific Conductivity (mS/cm)	NA	2.37				2.37				7.40			,	100.00				16.00			
Redox Potential (mV)	NA	-70				-70				-164				16				-225			
Dissolved Oxygen (mg/L)	NA	0.00				0.00				0.05				1.17				0.17			
Turbidity (NTU)	NA	0				0				24				58				38			1

Notes:

NYSDEC New York State Department of Environmental Concervation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.

NA Not applicable.

U Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL

and the concentration is an approximate value.

250 Concentration exceeds NYSDEC groundwater criteria.

22 MDL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York

Langan Project No.: 130117301 3/8/2019

									-	low Zone 1	2 W	/ells									
			R6	8			R4	8					R	50					R6	0	
	Client ID	R6	8_07 <i>′</i>	132018		R4	8_07	162018		R5	0-0	71118		DUP1	-071	1118 (R5	0)	R6	0_07	132018	3
	Lab Sample ID	48	30-139	9047-8		48	0-139	047-15		480	-138	3935-19		480	-138	3935-20		480	0-139	047-11	
	Sampling Date	07/13	/2018	19:55:0	00	07/16	6/2018	14:45:0	10	07/11/2	2018	3 21:10:0	00	07/11/	2018	8 21:10:0	00	07/13/	/2018	3 23:25	:00
	Matrix		Wa	ter			Wa	ter			Wa	iter			Wa	ater			Wa	ter	
	Dilution Factor		100	00			80)			40	00			40	000			20)	
	NY NYSDEC																				
	Groundwater	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
	Criteria																				
WATER BY 8260C (UG/L)																					
Benzene	0.7	480		160	400	75		33	80	1600	U		4000	1600	U		4000			8.2	
Carbon disulfide	50	520000	B D		10000	22		15	80	160000		760	4000	140000		760	4000			3.8	
Carbon tetrachloride	5	70000	D	2700	10000	150		22	80	12000		1100	4000	11000		1100	4000			5.4	20
Chlorobenzene	5	300	U	300	400	60		60	80	3000	U		4000	3000	U	3000	4000			15	
Chloroform	7	81000	D		10000	2900		27	80	11000		1400	4000	12000		1400	4000		_	6.8	
Methylene Chloride	5	2700		180	400	4500		35	80	1800			4000	1800		1800	4000		_	8.8	
Tetrachloroethene	5	890		140	400	29	_	29	80	1400			4000	1400			4000	7.2		7.2	
Toluene	5	330	J	200	400	41		41	80	2000			4000	2000		2000	4000	10		10	
Trichloroethene	5	180	U	.00	400	37	_	37	80	1800	U	1800	4000	1800	U	1800	4000		1	9.2	
Total Conc	NA	671000.0		NA	NA	7647.0		NA	NA	183000.0		NA	NA	163000.0		NA	NA	1187.0)	NA	NA
WATER BY 200.7 REV 4.4(UG/L)																					
Calcium	NA	2740000		2000	10000	2810000		1000	5000												<u> </u>
Manganese	NA	937	В	00	3.0	1840		0.40	3.0												
Potassium	NA	237000		100	500	170000		100	500												<u> </u>
Sodium	NA	9340000		6480	20000	6990000		3240	10000												
WATER BY 300.0 (MG/L)																					
Chloride	NA	22400		141	250	18500		56.4	100												
Sulfate	NA	1970		69.8	400	574		69.8	400												
WATER BY SM 2340C (MG/L)																					
Hardness as calcium carbonate (mg/l)	NA	10000		131	500	11100		26.3	100												
Field Parameters																					
pH (S.U.)	NA	6.00				6.82				6.01				6.01				6.79			
Specific Conductivity (mS/cm)	NA	60.70				51.40				100.00				100.00				0.56			
Redox Potential (mV)	NA	-213				-75				-104				-104				-84			
Dissolved Oxygen (mg/L)	NA	0.24				1.93				0.21				0.21				0.62			
Turbidity (NTU)	NA	22				5				23				23				8	:1		

- NYSDEC New York State Department of Environmental Concervation.
- VOC Volatile organic compound.
- CAS # Chemical abstract service number.
- μg/L micrograms per liter.
- Q Laboratory qualifier.
- MDL Laboratory method detection limit.
- RL Laboratory reporting limit.
- ND Analyte not detected above corresponding laboratory MDL.
- NA Not applicable.
- U Indicates the analyte was analyzed for but not detected.
- B Compound was found in the blank and sample.
- J Result is less than the RL but greater than or equal to the MDL
 - and the concentration is an approximate value.
- 250 Concentration exceeds NYSDEC groundwater criteria.
 - 22 MDL exceeds NYSDEC groundwater criteria.
 - 1 RL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York

Langan Project No.: 130117301 3/8/2019

				F	low Zone 12	Wells								Extra	ctio	n Well	6				
				R62			Re	57			EW	/1			E۷	V2			EW	3	
	Client ID		Re	62-071118		R	67_07	132018		EV	V1-07	71018		ΕV	/2-0	71018		EW:	3-07	1018	
	Lab Sample ID		480)-138935-17		4	80-13	9047-6		480)-138	3935-4		480)-13	8935-5		480-	-138	935-6	
	Sampling Date	0	7/11/	2018 16:30:0	0	07/1	3/2018	3 18:20:00)	07/10/2	2018	18:25:	00	07/10/2	2018	3 18:35	:00	07/10/2	018	19:15:0	00
	Matrix			Water			Wa	ter			Wat	ter			Wa	ter		\	Wate	ər	
	Dilution Factor			125			20	00			40	0			8	3			125	į	
	NY NYSDEC																				
	Groundwater Criteria	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
WATER BY 8260C (UG/L)																					
Benzene	0.7	190		51	130	210		210	500	160	U	160	400	3.3	U	3.3	8.0	51	U	51	130
Carbon disulfide	50	6900		24	130	67000	ΕВ		500	39000		76	400		J	1.5	8.0	3800		24	130
Carbon tetrachloride	5	34	U	34	130	1000		140	500	6800		110	400			2.2	8.0	5400		34	130
Chlorobenzene	5	94	U	94	130	380	U	380	500	300	U	300	400		U	6.0	8.0	94	U	94	130
Chloroform	7	43	U	43	130	630		170	500	3300		140	400	240		2.7	8.0	3400		43	130
Methylene Chloride	5	55	U	55	130	220	U	220	500	180	U	180	400	12		3.5	8.0	55	U	55	130
Tetrachloroethene	5	45	U	45	130	180	U	180	500	140	U	140	400	12		2.9	8.0	96	J	45	130
Toluene	5	64	J	64	130	260	U	260	500	200	U	200	400	4.1	U	4.1	8.0	64	U	64	130
Trichloroethene	5	58	U	58	130	230	U	230	500	180	U	180	400	4.9	J	3.7	8.0	180		58	130
Total Conc	NA	7154.0		NA	NA	68000.0		NA	NA	49100.0		NA	NA	693.4		NA	NA	12876.0		NA	NA
WATER BY 200.7 REV 4.4(UG/L)																					
Calcium	NA	1.75E+07		3.04E+04	2.50E+05	6850000		1000	5000												
Manganese	NA	4810		248	750	942	В	4.0	30.0												
Potassium	NA	673000		10400	250000	408000		100	500												
Sodium	NA	3.79E+07		1.69E+05	1.00E+06	19400000		16200	50000												
WATER BY 300.0 (MG/L)																					
Chloride	NA	115000	D	3900	6000	60300		282	500												
Sulfate	NA	292	D	3.32	6.00	1580		175	1000												
WATER BY SM 2340C (MG/L)																					
Hardness as calcium carbonate (mg/l)	NA	91100		2500	2500	26000		263	1000												
Field Parameters																					
pH (S.U.)	NA	6.30				5.67				7.23				7.06				6.74			
Specific Conductivity (mS/cm)	NA	100.00				100.00				5.56				1.49				2.96			
Redox Potential (mV)	NA	-49				-175				-156				29				54			
Dissolved Oxygen (mg/L)	NA	0.55				0.54				9.22				4.21				2.66			
Turbidity (NTU)	NA	0				3				17				11				31			

Notes:

NYSDEC New York State Department of Environmental Concervation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.

NA Not applicable.

Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL

and the concentration is an approximate value. 250 Concentration exceeds NYSDEC groundwater criteria.

22 MDL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York

Langan Project No.: 130117301 3/8/2019

											Ext	raction	Wells								
					E۱	N4				EW	5/D	PA201			ΕV	V6)PA	203	
	Client ID	EW4	4_07	162018	3	EW4_0	716	2018 D	UP	EW	/5-0	71118		EV	V6-0	71118		DPA	203-	071118	
	Lab Sample ID	480)-139	047-16		480	-139	9047-17		480-	-138	3935-14		480	-138	3935-15		480-	-138	935-16	
	Sampling Date	07/16/	2018	3 17:45:	:00	07/16/2	2018	3 17:45:	00	07/11/2	2018	8 18:20:	00	07/11/2	2018	8 18:40:	:00	07/11/2	2018	18:30:0	00
	Matrix		Wa	ter			Wa	iter			Wa	ater			Wa	iter			Wa	ter	
	Dilution Factor		1(0			1	0			8	3			10	00			250	00	
	NY NYSDEC																				
	Groundwater	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
	Criteria																				
WATER BY 8260C (UG/L)																					
Benzene	0.7	4.1		4.1	10				10	3.3	U		8.0	410				1000	U	1000	2500
Carbon disulfide	50	18	В	1.9			В		10			1.5	8.0	190	U		1000	8300		480	2500
Carbon tetrachloride	5	460		2.7	10			2.7	10			2.2	8.0	56000		270		240000		680	2500
Chlorobenzene	5	30		7.5				7.5	10	6.0	U	6.0	8.0	750	U	, 00	1000	1900	U	1900	2500
Chloroform	7	300		3.4	10	310		3.4	10	430		2.7	8.0	16000		340	1000	55000		850	2500
Methylene Chloride	5	11		4.4	10			4.4	10	7.2	J	3.5	8.0	440	U	440	1000	1100	U	1100	2500
Tetrachloroethene	5	29		3.6	10	30		3.6	10	110		2.9	8.0	1200		360	1000	2000	J	900	2500
Toluene	5	5.1	U	5.1	10	5.1	U	5.1	10	4.1	U	4.1	8.0	510	U	510	1000	1300	U	1300	2500
Trichloroethene	5	12		4.6	10	11		4.6	10	80		3.7	8.0	460	U	460	1000	1200	U	1200	2500
Total Conc	NA	860.0		NA	NA	891.0		NA	NA	1437.2		NA	NA	73200.0		NA	NA	305300.0		NA	NA
WATER BY 200.7 REV 4.4(UG/L)																					
Calcium	NA																				
Manganese	NA																				1
Potassium	NA																				1
Sodium	NA																				
WATER BY 300.0 (MG/L)																					
Chloride	NA																				 [
Sulfate	NA																				
WATER BY SM 2340C (MG/L)																					
Hardness as calcium carbonate (mg/l)	NA																				
Field Parameters																					
pH (S.U.)	NA	7.10				7.10				6.95				7.03							
Specific Conductivity (mS/cm)	NA	2.78				2.78				3.56				1.58							
Redox Potential (mV)	NA	0				0				-191				-17							
Dissolved Oxygen (mg/L)	NA	5.40				5.40				6.24				3.50							
Turbidity (NTU)	NA	115				115				14				12							

Notes:

NYSDEC New York State Department of Environmental Concervation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.NA Not applicable.

U Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL

and the concentration is an approximate value.

250 Concentration exceeds NYSDEC groundwater criteria.

22 MDL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York Langan Project No.: 130117301

3/8/2019

							Extract	tion We	lls								F:-	ום גו	lanks					
		[DPA	202			LR66	;		(ow	' 3					rie	ia bi	ianks					
	Client ID	DPA2	02_0	071320	18	LR	66_0713	32018		OW:	3-07	71218		FB1-	071118		FB3_	071	32018		FB ²	4_071	62018	
	Lab Sample ID	480)-13	9047-4		48	30-1390	47-5		480-1	389	935-31		480-1	38935-1	2	480-	1390	047-9		480	J-139	047-18	
	Sampling Date	07/13/2	2018	3 12:30	:00	07/13	/2018 1	2:45:00	1	07/12/20	018	20:50:00	0	07/11/20	18 17:40	0:00	07/13/20	018	20:30:	00	07/16	/2018	18:55:	ე0
	Matrix		Wa	ter			Wate	r		V	Nate	er		V	/ater		\	Nate	er			Wat	er	
	Dilution Factor		10	0			10				400	0			1			20				20)	
	NY NYSDEC																							
	Groundwater	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result C	MDL	RL	Result	Q I	MDL	RL	Result	Q	MDL	RL
	Criteria																							
WATER BY 8260C (UG/L)																								
Benzene	0.7	4.1	U	4.1	10		U	4.1	10	1600	U		4000	0.41	J 0.4	+	0.2	U	8.2	20	8.2	_	8.2	
Carbon disulfide	50	130	В	1.9	_			150	800	1200000	Ε	760	4000	0.97	J 0.19			В	3.8	20	15		3.8	
Carbon tetrachloride	5	320		2.7			D	220	800	12000		1100	4000	0.27	J 0.2			U	5.4	20	5.4	_	5.4	
Chlorobenzene	5	7.5	U	7.5			U	7.5	10	3000	U	3000	4000	0.75	J 0.7!		. •	U	15	20	15	_	15	
Chloroform	7	190		3.4	10		D	270	800	11000		1400	4000	0.34	J 0.34		6.8	U	6.8	20	6.8		6.8	
Methylene Chloride	5	6.4	J	4.4	10			4.4	10	1800	U	1800	4000	0.44	J 0.44		0.0	U	8.8	20	8.8		8.8	
Tetrachloroethene	5	33		3.6	10		JD	290	800	1600	J	1400	4000	0.36	J 0.36		7	U	7.2	20	7.2	U	7.2	20
Toluene	5	5.1	U	5.1	10	5.1	U	5.1	10	2000	U	2000	4000	0.51	J 0.5	1.0	10	U	10	20	10	U	10	_
Trichloroethene	5	20		4.6	10	53		4.6	10	1800	U	1800	4000	0.46	J 0.46	1.0	9.2	U	9.2	20	9.2	U	9.2	20
Total Conc	NA	699.4		NA	NA	699.0		NA	NA	24600.0		NA	NA	0.97	N/	NA	51.0		NA	NA	15.0		NA	NA
WATER BY 200.7 REV 4.4(UG/L)																								
Calcium	NA																					<u> </u>		
Manganese	NA																							
Potassium	NA																							
Sodium	NA																					<u> </u>		
WATER BY 300.0 (MG/L)																								
Chloride	NA																							
Sulfate	NA																							
WATER BY SM 2340C (MG/L)																								
Hardness as calcium carbonate (mg/l)	NA																							
Field Parameters																								
pH (S.U.)	NA	7.06				6.77				6.55								T						
Specific Conductivity (mS/cm)	NA	4.30				1.95				41.90														
Redox Potential (mV)	NA	-169				-24				-119														
Dissolved Oxygen (mg/L)	NA	8.21				6.61				0.06														
Turbidity (NTU)	NA	51				140			İ	171									İ					

Notes:

NYSDEC New York State Department of Environmental Concervation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.

NA Not applicable.

U Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL

and the concentration is an approximate value.

250 Concentration exceeds NYSDEC groundwater criteria.

22 MDL exceeds NYSDEC groundwater criteria.

Summary of Groundwater Analytical Data July 2018 Low Flow Sampling Event Former Stauffer Management Company Site Lewiston, New York Langan Project No.: 130117301

3/8/2019

				Т	rip B	lanks			
	Client ID	TI	B1-07	0518		TR	IP B	LANK	
	Lab Sample ID	480)-1389	935-11		480	-139	047-10	
	Sampling Date	07/05/	/2018	00:00:0	00	07/13/	2018	3 00:00	:00
	Matrix		Wat	er			Wa	ter	
	Dilution Factor		1				1		
	NY NYSDEC								
	Groundwater	Result	Q	MDL	RL	Result	Q	MDL	RL
	Criteria								
WATER BY 8260C (UG/L)									
Benzene	0.7	0.41	U	0.41	_	0.41	U	0.41	1.0
Carbon disulfide	50	0.75	JΒ	0.19	1.0	21	В	0.19	
Carbon tetrachloride	5	0.27	U	0.27	1.0	0.27	U		1.0
Chlorobenzene	5	0.75	U	0.75	1.0	0.75	U		_
Chloroform	7	5.2		0.34		5.4		0.34	
Methylene Chloride	5	0.44	U	0.44		0.44	_	0.44	
Tetrachloroethene	5	0.36	U	0.36	1.0	0.36		0.36	1.0
Toluene	5	0.51	U	0.51	1.0	0.51	U	0.51	1.0
Trichloroethene	5	0.46	U	0.46	1.0	0.46	U	0.46	1.0
Total Conc	NA	5.95		NA	NA	26.4		NA	NΑ
WATER BY 200.7 REV 4.4(UG/L)									
Calcium	NA								
Manganese	NA								
Potassium	NA								
Sodium	NA								
WATER BY 300.0 (MG/L)									
Chloride	NA								
Sulfate	NA								
WATER BY SM 2340C (MG/L)									
Hardness as calcium carbonate (mg/l)	NA								
Field Parameters									
pH (S.U.)	NA								
Specific Conductivity (mS/cm)	NA								
Redox Potential (mV)	NA								
Dissolved Oxygen (mg/L)	NA								
Turbidity (NTU)	NA								

Notes:

NYSDEC VOC	New York State Department of Environmental Concervation. Volatile organic compound.
CAS#	Chemical abstract service number.
μg/L	micrograms per liter.
Q	Laboratory qualifier.
MDL	Laboratory method detection limit.
RL	Laboratory reporting limit.
ND	Analyte not detected above corresponding laboratory MDL.
NA	Not applicable.
U	Indicates the analyte was analyzed for but not detected.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL
	and the concentration is an approximate value.
250	Concentration exceeds NYSDEC groundwater criteria.
22	MDL exceeds NYSDEC groundwater criteria.

Passive Diffusion Bag - Summary of Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		Sample Lo	cation and Depth		EW-	1 - 55'			E۱	W-1 - 67'			EV	V-1 - 76'			ΕW	/-1 0 107'			EW	'-1 - 120 '	
			Client ID	EV	V-1-5!	5-081618		I	EW-1	I-67-08161	8	I	W-1	-76-08161	8	E	W-1-	-107-08161	18	E	W-1-	120-08161	8
			Lab Sample ID	4	80-14	40618-1			480)-140618-2			480-	-140618-3			480	-140618-4			480-	140618-5	
			Sampling Date	8,	/16/20	018 9:20			8/16	6/2018 9:25			8/16/	/2018 9:30			8/16	/2018 9:35	ı		8/16/	2018 9:40	
			Matrix		W	ater				Water			1	Water				Water			\	Nater	
			Dilution Factor			1				1				1				1				1	
VOCs by Method 8260C	CAS#	NYSDEC Groundwater	Unit	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	٥	MDL	RL
		Criteria																					
Benzene	71-43-2	0.7	μg/l	ND	U	0.41	1	ND	U	0.41	1	ND	U	0.41	1	ND	U	0.41	1	ND	U	0.41	1
Carbon disulfide	75-15-0	50	μg/l	0.21	ЈΒ	0.19	1	ND	U	0.19	1	ND	U	0.19	1	ND	U	0.19	1	13	В	0.19	1
Carbon tetrachloride	56-23-5	5	μg/l	1		0.27	1	1		0.27	1	1.1		0.27	1	1.1		0.27	1	1.3		0.27	1
Chlorobenzene	108-90-7	5	μg/l	ND	U	0.75	1	ND	U	0.75	1	ND	U	0.75	1	ND	U	0.75	1	ND	U	0.75	1
Chloroform	67-66-3	7	μg/l	ND	U	0.34	1	ND	U	0.34	1	0.44	J	0.34	1	0.55	J	0.34	1	1.5		0.34	1
Methylene Chloride	75-09-2	5	μg/l	ND	U	0.44	1	ND	U	0.44	1	ND	\supset	0.44	1	ND	U	0.44	1	ND	U	0.44	1
Tetrachloroethene	127-18-4	5	μg/l	ND	U	0.36	1	ND	U	0.36	1	ND	U	0.36	1	ND	U	0.36	1	ND	U	0.36	1
Toluene	108-88-3	5	μg/l	ND	U	0.51	1	ND	U	0.51	1	ND	U	0.51	1	ND	U	0.51	1	ND	U	0.51	1
Trichloroethene	79-01-6	5	μg/l	ND	U	0.46	1	ND	U	0.46	1	ND	U	0.46	1	ND	U	0.46	1_	ND	U	0.46	11
Total Conc	NA	NA	μg/l	1.21		NA	NA	1		NA	NA	1.54		NA	NA	1.65		NA	NA	15.8		NA	NA

NYSDEC New York State Department of Environmental Cor	nservation.
---	-------------

- VOC Volatile organic compound.
- CAS # Chemical abstract service number.
- μg/L micrograms per liter.
- Q Laboratory qualifier.
- MDL Laboratory method detection limit.
- RL Laboratory reporting limit.
- ND Analyte not detected above corresponding laboratory MDL.
- NA Not applicable.
- U Indicates the analyte was analyzed for but not detected.
- B Compound was found in the blank and sample.
- J Result is less than the RL but greater than or equal to the MDL
 - and the concentration is an approximate value.
- 250 Concentration exceeds NYSDEC groundwater criteria.
- **22** MDL exceeds NYSDEC groundwater criteria.
- 1 RL exceeds NYSDEC groundwater criteria.

Passive Diffusion Bag - Summary of Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		Sample Lo	cation and Depth		EW	/-1 - 137'			EW	V-1 - 149'			EW	/-1 - 157'			ΕV	V-3 - 54'			EW	/-3 - 66'	
			Client ID	E	W-1-	137-08161	8	E	W-1-	-149-08161	8	E	W-1-	157-08161	18		EW-3	-54-08161	8	Е	W-3-	66-081618	3
			Lab Sample ID		480	-140618-6			480-	-140618-7			480	-140618-8			480-	140618-9			480-1	40618-10	
			Sampling Date		8/16	/2018 9:40			8/16/	/2018 9:50			8/16	/2018 9:55			8/16/2	2018 10:30)	8	3/16/2	.018 10:35)
			Matrix			Water			'	Water			,	Water			1	Water			V	Vater	
			Dilution Factor			1				80				200				200				50	
VOCs by Method 8260C	CAS#	NYSDEC Groundwater Criteria	Unit	Result	Q	MDL	RL	Result	a	MDL	RL	Result	Q	MDL	RL	Result	a	MDL	RL	Result	a	MDL	RL
Benzene	71-43-2	0.7	μg/l	ND	U	0.41	1	ND	U	33	80	ND	U	82	200	ND	U	82	200	ND	U	21	50
Carbon disulfide	75-15-0	50	μg/l	1.1	В	0.19	1	5700	В	15	80	13000	В	38	200	190	ЈΒ	38	200	29	JΒ	9.5	50
Carbon tetrachloride	56-23-5	5	μg/l	1.1		0.27	1	800		22	80	2400		54	200	3700		54	200	2500		14	50
Chlorobenzene	108-90-7	5	μg/l	ND	U	0.75	1	ND	U	60	80	ND	U	150	200	ND	U	150	200	ND	U	38	50
Chloroform	67-66-3	7	μg/l	0.59	J	0.34	1	1300		27	80	2900		<i>68</i>	200	12000		<i>68</i>	200	3400	F1	17	50
Methylene Chloride	75-09-2	5	μg/l	ND	U	0.44	1	110		35	80	280		88	200	210		88	200	460		22	50
Tetrachloroethene	127-18-4	5	μg/l	ND	U	0.36	1	ND	U	29	80	ND	U	72	200	260		72	200	22	J	18	50
Toluene	108-88-3	5	μg/l	ND	U	0.51	1	ND	U	41	80	ND	U	100	200	ND	U	100	200	ND	U	26	50
Trichloroethene	79-01-6	5	μg/l	ND	U	0.46	1	ND	U	<i>37</i>	80	ND	U	92	200	250		92	200	180		23	50
Total Conc	NA	NA	μg/l	2.79		NA	NA	7910		NA	NA	18580		NA	NA	16610		NA	NA	6591		NA	NA

- NYSDEC New York State Department of Environmental Conservation.
- VOC Volatile organic compound.
- CAS # Chemical abstract service number.
- μg/L micrograms per liter.
- Q Laboratory qualifier.
- MDL Laboratory method detection limit.
- RL Laboratory reporting limit.
- ND Analyte not detected above corresponding laboratory MDL.
- NA Not applicable.
- U Indicates the analyte was analyzed for but not detected.
- B Compound was found in the blank and sample.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- 250 Concentration exceeds NYSDEC groundwater criteria.
 - **22** MDL exceeds NYSDEC groundwater criteria.
 - 1 RL exceeds NYSDEC groundwater criteria.

Passive Diffusion Bag - Summary of Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		Sample Lo	cation and Depth		EV	V-3 - 76'			ΕV	V-3 - 84'			ΕV	V-3 - 94'			ΕW	/-3 - 108'			EW-	-3 - 117'	
			Client ID		EW-3	-76-08161	8	1	EW-3	-84-08161	8	E	EW-3	-94-081618	8	E	W-3-	108-08161	18	E/	W-3- 1	117-08161	8
			Lab Sample ID		480-	140618-11			480-	140618-12			480-	140618-13			480-	140618-14	-		480-1	140618-15	
			Sampling Date		8/16/2	2018 10:40)		8/16/2	2018 10:4	5		8/16/	2018 10:50)		8/16/	2018 10:5!	5	8	8/16/2	2018 11:00	<u> </u>
			Matrix		1	Water			1	Water				Water				Water			V	Vater	
			Dilution Factor			50				50				50				50				50	
VOCs by Method 8260C	CAS#	NYSDEC Groundwater Criteria	Unit	Result	a	MDL	RL	Result	a	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
Benzene	71-43-2	0.7	μg/l	ND	U	21	50	ND	U	21	50	ND	U	21	50	ND	U	21	50	ND	U	21	50
Carbon disulfide	75-15-0	50	μg/l	18	ЈΒ	9.5	50	14	ЈΒ	9.5	50	17	ЈΒ	9.5	50	29	JΒ	9.5	50	13	ЈΒ	9.5	50
Carbon tetrachloride	56-23-5	5	μg/l	2400		14	50	2000		14	50	2200		14	50	2000		14	50	2400		14	50
Chlorobenzene	108-90-7	5	μg/l	ND	U	38	50	ND	U	38	50	ND	U	38	50	ND	U	38	50	ND	U	38	50
Chloroform	67-66-3	7	μg/l	2600		17	50	2600		17	50	2700		17	50	2600		17	50	2900		17	50
Methylene Chloride	75-09-2	5	μg/l	450		22	50	450		22	50	450		22	50	460		22	50	470		22	50
Tetrachloroethene	127-18-4	5	μg/l	18	J	18	50	20	J	18	50	ND	U	18	50	ND	U	18	50	19	J	18	50
Toluene	108-88-3	5	μg/l	ND	U	26	50	ND	U	26	50	ND	U	26	50	ND	U	26	50	ND	U	26	50
Trichloroethene	79-01-6	5	μg/l	170		23	50	160		23	50	170		23	50	150		23	50	170		23	50
Total Conc	NA	NA	μg/l	5656		NA	NA	5244		NA	NA	5537		NA	NA	5239		NA	NA	5972		NA	NA

- NYSDEC New York State Department of Environmental Conservation.
- VOC Volatile organic compound.
- CAS # Chemical abstract service number.
- μg/L micrograms per liter.
- Q Laboratory qualifier.
- MDL Laboratory method detection limit.
- RL Laboratory reporting limit.
- ND Analyte not detected above corresponding laboratory MDL.
- NA Not applicable.
- U Indicates the analyte was analyzed for but not detected.
- B Compound was found in the blank and sample.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- 250 Concentration exceeds NYSDEC groundwater criteria.
 - **22** MDL exceeds NYSDEC groundwater criteria.
 - 1 RL exceeds NYSDEC groundwater criteria.

Passive Diffusion Bag - Summary of Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		Sample Lo	cation and Depth		EW	/-3 - 127'			EW	/-3 - 140'			EW	/-3 - 157'			ΕV	V-5 - 48'			ΕV	/-5 - 57'	
			Client ID	E	EW-3-	127-08161	8	Е	W-3-	140-08161	8	E	W-3-	157-08161	8	I	EW-5	-48-08161	8	Е	W-5-	57-081618	3
			Lab Sample ID		480-	140618-16			480-1	140618-17			480-	140618-18			480-	140618-19)		480-1	40618-20	
			Sampling Date		8/16/2	2018 11:05)	1	8/16/2	2018 11:10)		8/16/	2018 11:15	·)		8/16/:	2018 11:3	5	8	8/16/2	2018 11:40	,
			Matrix		1	Water			/	Water			,	Water			,	Water			V	Vater	
			Dilution Factor			50				50				80				50				50	
VOCs by Method 8260C	CAS#	NYSDEC Groundwater Criteria	Unit	Result	Q	MDL	RL	Result	a	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
Benzene	71-43-2	0.7	μg/l	ND	U	21	50	ND	U	21	50	ND	U	33	80	ND	U	21	50	ND	U	21	50
Carbon disulfide	75-15-0	50	μg/l	14	ЈΒ	9.5	50	22	ЈΒ	9.5	50	25	ЈΒ	15	80	ND	U	9.5	50	ND	U	9.5	50
Carbon tetrachloride	56-23-5	5	μg/l	2000		14	50	1700		14	50	2000		22	80	1500		14	50	1500		14	50
Chlorobenzene	108-90-7	5	μg/l	ND	U	38	50	ND	U	38	50	ND	U	60	80	ND	U	38	50	ND	U	38	50
Chloroform	67-66-3	7	μg/l	2600		17	50	2600		17	50	2500		27	80	2200		17	50	2200		17	50
Methylene Chloride	75-09-2	5	μg/l	430		22	50	470		22	50	440		35	80	40	J	22	50	24	J	22	50
Tetrachloroethene	127-18-4	5	μg/l	19	J	18	50	ND	U	18	50	ND	U	29	80	570		18	50	410		18	50
Toluene	108-88-3	5	μg/l	ND	U	26	50	ND	U	26	50	ND	U	41	80	ND	U	26	50	ND	U	26	50
Trichloroethene	79-01-6	5	μg/l	150		23	50	150		23	50	170		37	80	720		23	50	700		23	50
Total Conc	NA	NA	μg/l	5213		NA	NA	4942		NA	NA	5135		NA	NA	5030		NA	NA	4834		NA	NA

- NYSDEC New York State Department of Environmental Conservation.
- VOC Volatile organic compound.
- CAS # Chemical abstract service number.
- μg/L micrograms per liter.
- Q Laboratory qualifier.
- MDL Laboratory method detection limit.
- RL Laboratory reporting limit.
- ND Analyte not detected above corresponding laboratory MDL.
- NA Not applicable.
- U Indicates the analyte was analyzed for but not detected.
- B Compound was found in the blank and sample.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- 250 Concentration exceeds NYSDEC groundwater criteria.
 - **22** MDL exceeds NYSDEC groundwater criteria.
 - 1 RL exceeds NYSDEC groundwater criteria.

Passive Diffusion Bag - Summary of Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		Sample Lo	cation and Depth		ΕV	V-5 - 62'			ΕV	N-5 - 67'			R-	-19 - 97'			R-	19 - 117'			R-1	19 - 126'	•
			Client ID		EW-5	-62-081618	3		EW-5	-67-08161	3		R-19	-97-081618	3		R-19-	117-08161	8	F	R-19-1	126-08161	8
			Lab Sample ID		480-	140618-21			480-	140618-22			480-	140618-23			480-	140618-24			480-1	140618-25	
			Sampling Date		8/16/	2018 11:45)		8/16/2	2018 11:50			8/16/	2018 13:20)		8/16/	2018 13:2!	5		8/16/2	2018 13:30	<u> </u>
			Matrix		,	Water			1	Water				Water				Water			\	Water	•
			Dilution Factor			4				1				100				100				100	
VOCs by Method 8260C	CAS#	NYSDEC Groundwater Criteria	Unit	Result	Q	MDL	RL	Result	a	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	a	MDL	RL
Benzene	71-43-2	0.7	μg/l	ND	U	1.6	4	ND	U	0.41	1	ND	U	41	100	ND	U	41	100	50	J	41	100
Carbon disulfide	75-15-0	50	μg/l	0.93	JΒ	0.76	4	1	В	0.19	1	34	ЈΒ	19	100	200	В	19	100	1200	В	19	100
Carbon tetrachloride	56-23-5	5	μg/l	160		1.1	4	28		0.27	1	390		27	100	1600		27	100	7900		27	100
Chlorobenzene	108-90-7	5	μg/l	ND	U	3	4	ND	U	0.75	1	ND	U	<i>75</i>	100	ND	U	<i>75</i>	100	ND	U	<i>7</i> 5	100
Chloroform	67-66-3	7	μg/l	130		1.4	4	16		0.34	1	3300		34	100	4500		34	100	4200		34	100
Methylene Chloride	75-09-2	5	μg/l	5.1		1.8	4	0.9	J	0.44	1	940		44	100	730		44	100	720		44	100
Tetrachloroethene	127-18-4	5	μg/l	80		1.4	4	31		0.36	1	ND	U	36	100	ND	U	36	100	ND	U	36	100
Toluene	108-88-3	5	μg/l	ND	U	2	4	ND	U	0.51	1	ND	U	51	100	ND	U	51	100	ND	U	51	100
Trichloroethene	79-01-6	5	μg/l	47		1.8	4	11		0.46	1	ND	U	46	100	ND	U	46	100	ND	U	46	100
Total Conc	NA	NA	μg/l	423.03		NA	NA	87.9		NA	NA	4664		NA	NA	7030		NA	NA	14070		NA	NA

Notes:

NYSDEC New York State Department of Environmental Conservation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.

NA Not applicable.

U Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

250 Concentration exceeds NYSDEC groundwater criteria.

MDL exceeds NYSDEC groundwater criteria.

Passive Diffusion Bag - Summary of Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		Sample Lo	cation and Depth		R-	19 - 136'			R-	-62 - 72'			R-	-62 - 82'			R-	62 - 107'			R-6	2 - 127'	
			Client ID		R-19-	136-08161	8		R-62-	-72-081618	3		R-62-	82-081618	3		R-62-	107-08161	8	F	R-62-1	27-08161	8
			Lab Sample ID		480-	140618-26			480-	140618-27			480-	140618-28			480-	140618-29)		480-1	40618-30	
			Sampling Date		8/16/	2018 13:35	5		8/16/:	2018 14:20)		8/16/	2018 14:25	5		8/16/	2018 14:30	0		8/16/2	018 14:35	<u>;</u>
			Matrix			Water			1	Water			1	Water			,	Water			V	Vater	
			Dilution Factor			200				500				500				500				500	
VOCs by Method 8260C	CAS#	NYSDEC Groundwater	Unit	Result	a	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	a	MDL	RL	Result	α	MDL	RL
		Criteria																					
Benzene	71-43-2	0.7	μg/l	240		<i>82</i>	200	300	J	210	500	320	J	210	500	320	J	210	500	370	J	210	500
Carbon disulfide	75-15-0	50	μg/l	9900	В	38	200	33000	В	95	500	34000	В	95	500	38000	В	95	500	42000	В	95	500
Carbon tetrachloride	56-23-5	5	μg/l	6800		54	200	ND	U	140	500	ND	U	140	500	ND	U	140	500	ND	U	140	500
Chlorobenzene	108-90-7	5	μg/l	ND	U	150	200	ND	U	380	500	ND	U	380	500	ND	U	380	500	ND	U	380	500
Chloroform	67-66-3	7	μg/l	2000		<i>68</i>	200	ND	U	170	500	ND	\subset	170	500	ND	С	170	500	ND	U	170	500
Methylene Chloride	75-09-2	5	μg/l	400		<i>88</i>	200	300	J	220	500	280	J	220	500	ND	U	220	500	320	J	220	500
Tetrachloroethene	127-18-4	5	μg/l	ND	U	72	200	ND	U	180	500	ND	U	180	500	ND	U	180	500	ND	U	180	500
Toluene	108-88-3	5	μg/l	240		100	200	ND	U	260	500	ND	U	260	500	ND	U	260	500	ND	U	260	500
Trichloroethene	79-01-6	5	μg/l	ND	U	92	200	ND	U	230	500	ND	U	230	500	ND	U	230	500	ND	U	230	500
Total Conc	NA	NA	μg/l	19580		NA	NA	33600		NA	NA	34600		NA	NA	38320		NA	NA	42690		NA	NA

Notes:

NYSDEC New York State Department of Environmental Conservation.

VOC Volatile organic compound.

CAS # Chemical abstract service number.

μg/L micrograms per liter.

Q Laboratory qualifier.

MDL Laboratory method detection limit.

RL Laboratory reporting limit.

ND Analyte not detected above corresponding laboratory MDL.

NA Not applicable.

U Indicates the analyte was analyzed for but not detected.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

250 Concentration exceeds NYSDEC groundwater criteria.

22 MDL exceeds NYSDEC groundwater criteria.

Passive Diffusion Bag - Summary of Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		Sample Lo	cation and Depth		R-	62 - 135'			R-	62 - 147'	
		-	Client ID	F	R-62-	135-08161	8	F	R-62-	147-08161	8
			Lab Sample ID		480-	140618-31			480-	140618-32	
			Sampling Date		8/16/	2018 14:40)		8/16/	2018 14:45	;)
			Matrix			Water			,	Water	
			Dilution Factor			800				200	
VOCs by Method 8260C	CAS#	NYSDEC Groundwater Criteria	Unit	Result	σ	MDL	RL	Result	α	MDL	RL
Benzene	71-43-2	0.7	μg/l	340	J	330	800	420		82	200
Carbon disulfide	75-15-0	50	μg/l	45000	В	150	800	9600	В	38	200
Carbon tetrachloride	56-23-5	5	μg/l	ND	U	220	800	ND	U	54	200
Chlorobenzene	108-90-7	5	μg/l	ND	U	600	800	ND	U	150	200
Chloroform	67-66-3	7	μg/l	ND	U	270	800	ND	U	<i>68</i>	200
Methylene Chloride	75-09-2	5	μg/l	500	J	350	800	110	J	88	200
Tetrachloroethene	127-18-4	5	μg/l	ND	U	290	800	ND	U	72	200
Toluene	108-88-3	5	μg/l	ND	U	410	800	ND	U	100	200
Trichloroethene	79-01-6	5	μg/l	ND	U	370	800	ND	U	92	200
Total Conc	NA	NA	μg/l	45840		NA	NA	10130		NA	NA

- NYSDEC New York State Department of Environmental Conservation.
- VOC Volatile organic compound.
- CAS # Chemical abstract service number.
- μg/L micrograms per liter.
- Q Laboratory qualifier.
- MDL Laboratory method detection limit.
- RL Laboratory reporting limit.
- ND Analyte not detected above corresponding laboratory MDL.
- NA Not applicable.
- U Indicates the analyte was analyzed for but not detected.
- B Compound was found in the blank and sample.
- Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- 250 Concentration exceeds NYSDEC groundwater criteria.
 - MDL exceeds NYSDEC groundwater criteria.
 - 1 RL exceeds NYSDEC groundwater criteria.

Table 6 Packer Test Sampling Results Former Stauffer Management Company Site Lewiston, New York Langan Project No. 130117301 3/26/2019

mple Location - Depth (ft)				EW-2 - 55'				EW-2 -58'				EW-2 -73'				Е	W-2 -	105'		EW-2 -118'				EW-2 -138'			
			Client ID	EW-2	2- 55-	08091	8	EW-2-58 -080918				EW-2-73				EW-2-105 -080918				EW-2-118				EW-2-138-080718			8
Lab Sample ID Sampling Date						480-140248-1 08/09/2018 12:30:00				480-140172-1 8/8/2018 19:00				480-140248-3 08/09/2018 09:20:00				480-140172-2 8/8/2018 13:05				480-140079-1 8/7/2018 16:30					
	Matrix				Water			Water			Water				Water				Water				Water				
	Dilution Factor				40		10				100				40				20			25					
		NYSDEC																									
VOCs-8260C	CAS#	Groundwater	Unit	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
		Criteria																									
Benzene	71-43-2	0.7	μg/L	ND	U	16	40	ND	U	4.1	10	ND	U	41	100	ND	U	16	40	ND	U	8.2	20	ND	U	10	25
Carbon disulfide	75-15-0	50	μg/L	73		7.6	40	3.2	J	1.9	10	270	В	19	100	99		7.6	40	43	В	3.8	20	21	J	4.8	25
Carbon tetrachloride	56-23-5	5	μg/L	1800		11	40	540		2.7	10	3400		27	100	1900	F1	11	40	710		5.4	20	1900	F1	6.8	25
Chlorobenzene	108-90-7	5	μg/L	ND	U	30	40	ND	U	7.5	10	ND	U	75	100	ND	U	30	40	ND	U	15	20	ND	U	19	25
Chloroform	67-66-3	7	μg/L	1100		14	40	210		3.4	10	1800		34	100	1100		14	40	710		6.8	20	1100	F1	8.5	25
Methylene Chloride	75-09-2	5	μg/L	91		18	40	15		4.4	10	160		44	100	110		18	40	61		8.8	20	63		11	25
Tetrachloroethene	127-18-4	5	μg/L	34	J	14	40	18		3.6	10	61	J	36	100	31	J	14	40	27		7.2	20	44		9	25
Toluene	108-88-3	5	μg/L	31	J	20	40	ND	U	5.1	10	ND	U	51	100	28	J	20	40	ND	U	10	20	ND	U	13	25
Trichloroethene	79-01-6	5	μg/L	ND	U	18	40	7.9	J	4.6	10	ND	U	46	100	ND	U	18	40	10	J	9.2	20	16	JF2	12	25

Notes:

VOC Volatile organic compound
CAS # Chemical abstract service number

μg/L micrograms per liter Ω Laboratory qualifier

MDL Laboratory method detection limit

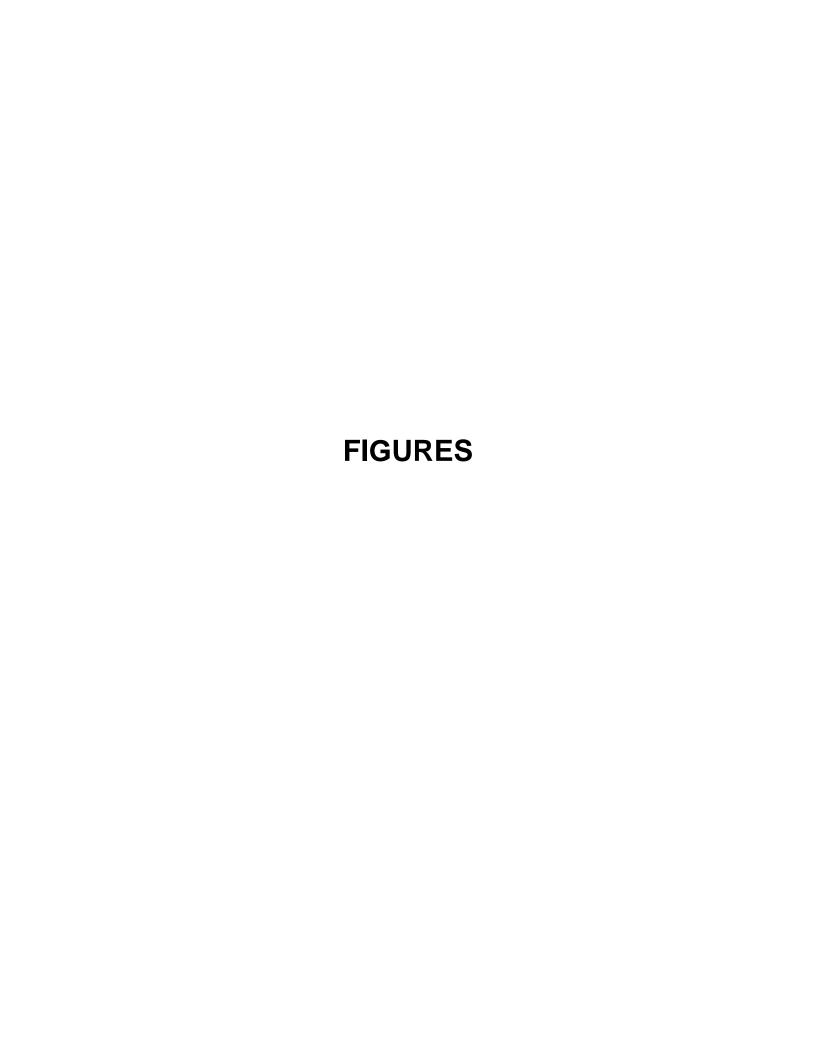
RL Laboratory reporting limit

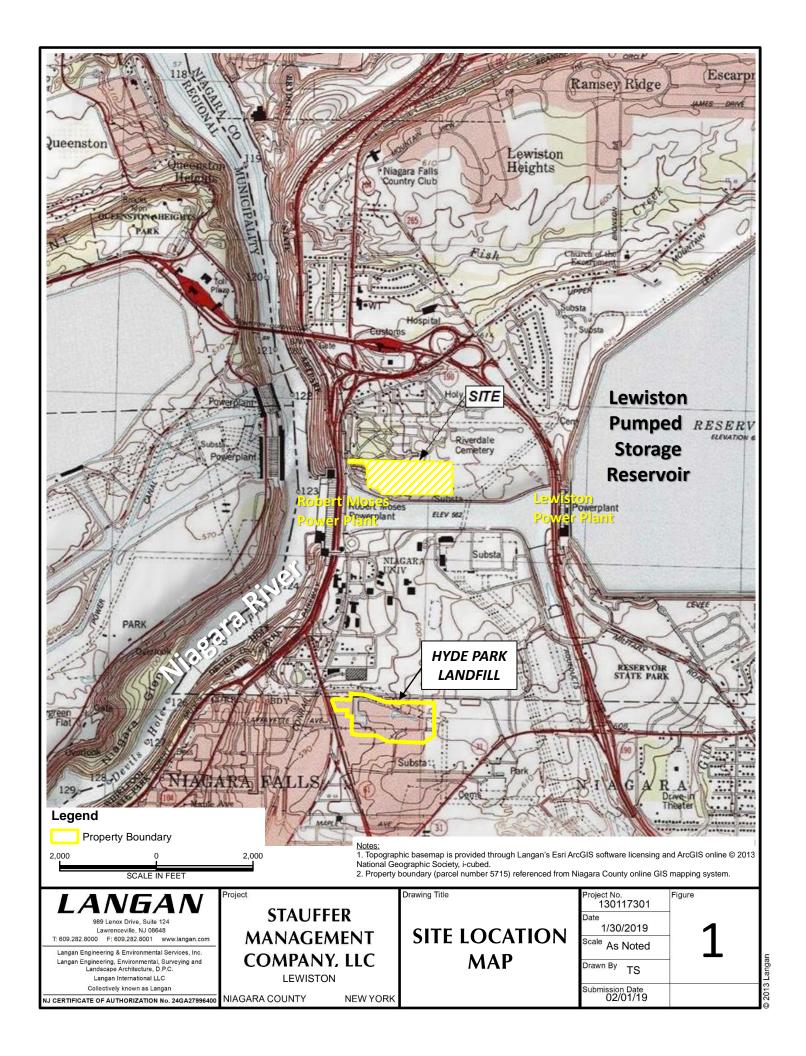
U Indicates the analyte was analyzed for but not detected.

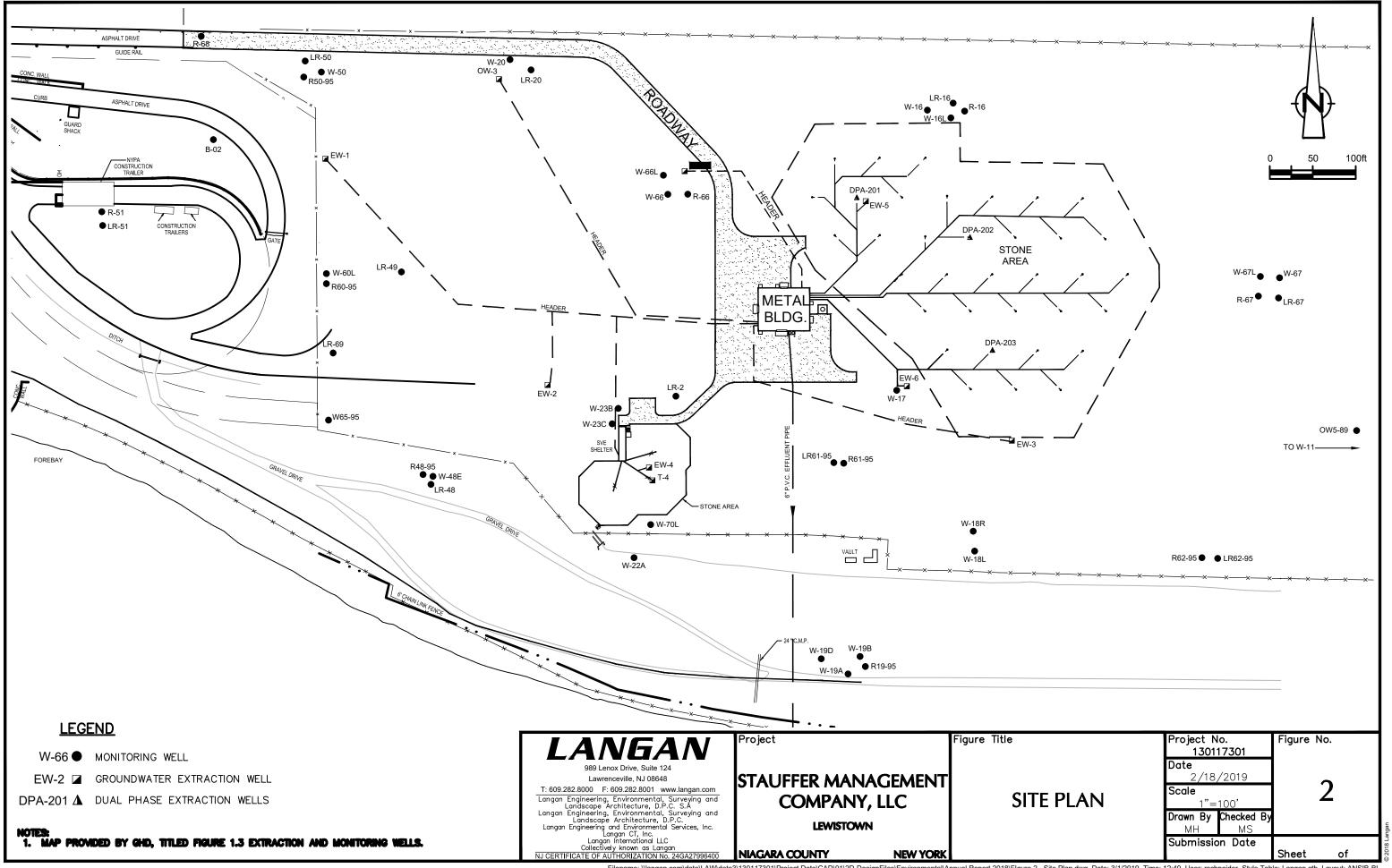
B Compound was found in the blank and sample.

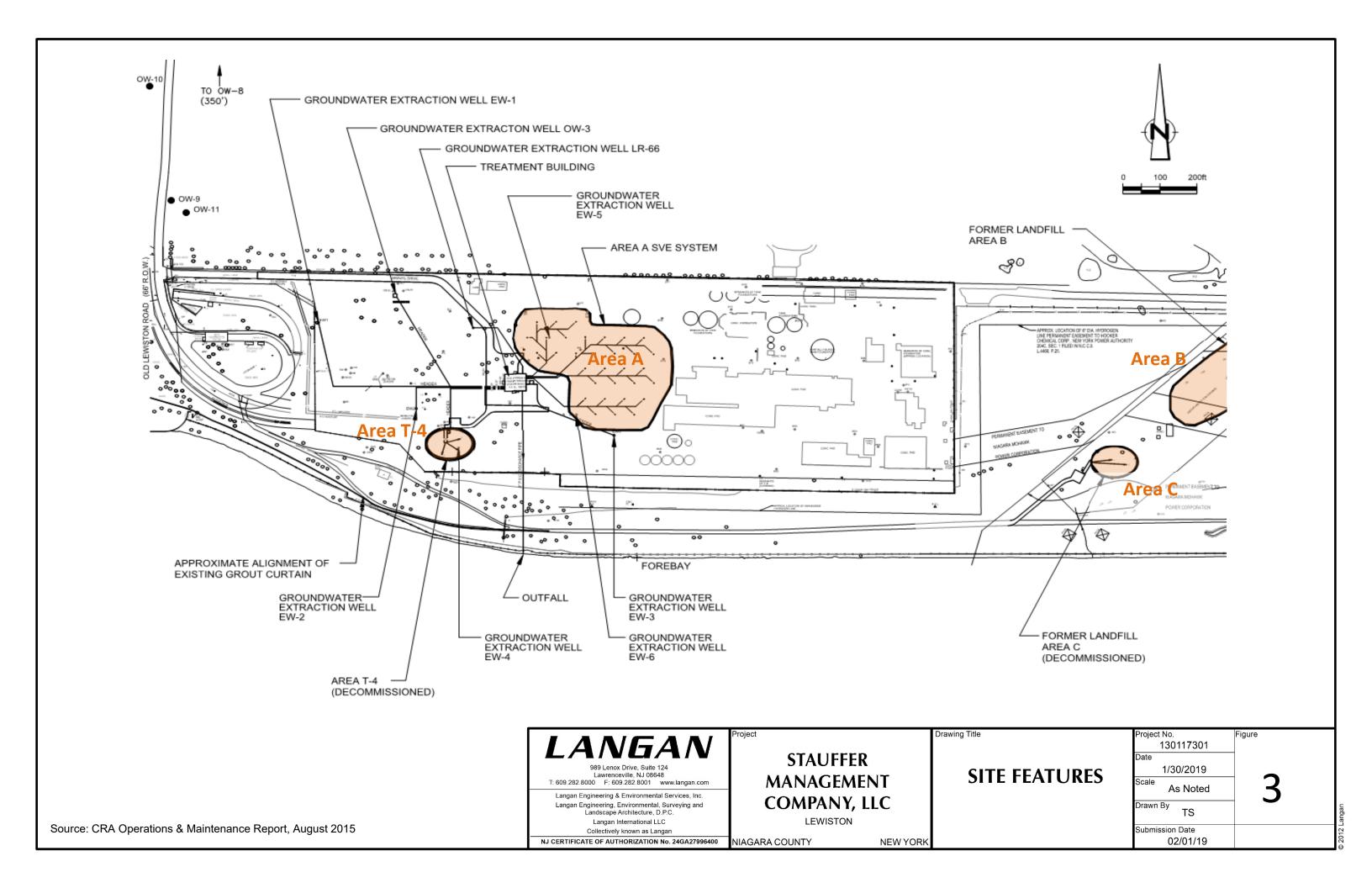
J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

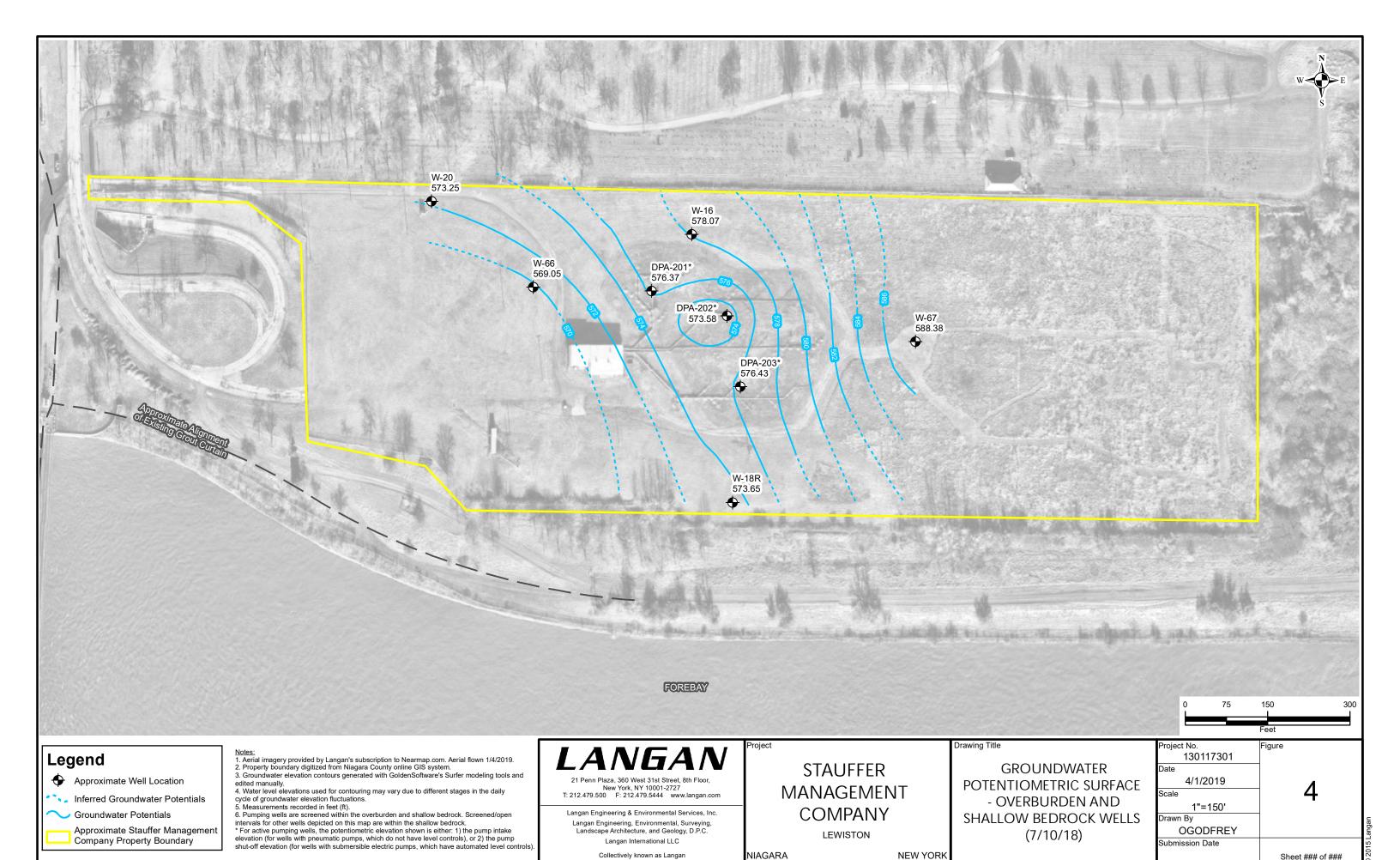
F1 MS and/or MSD Recovery is outside acceptance limits.

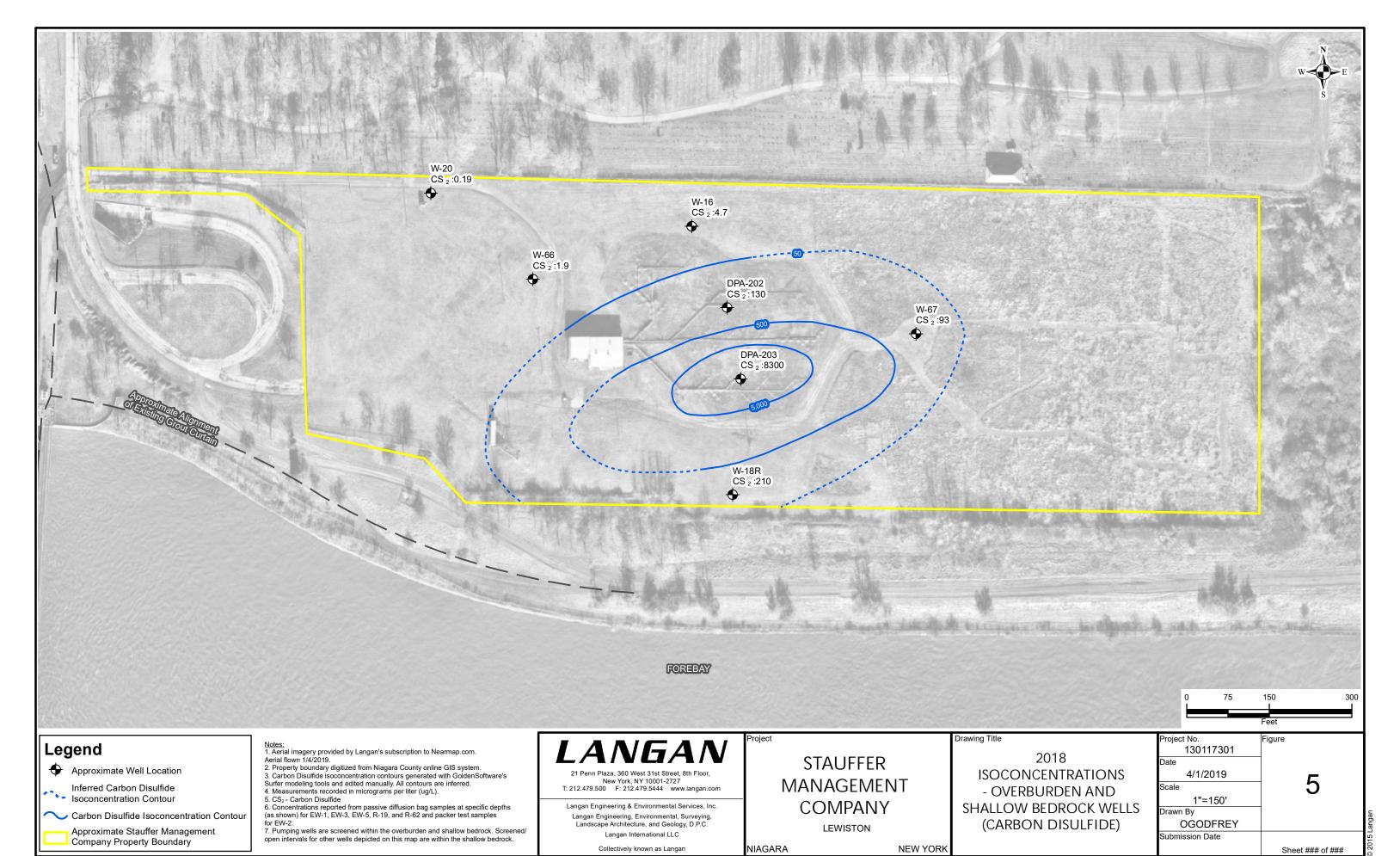

F2 MS/MSD RPD exceeds control limits

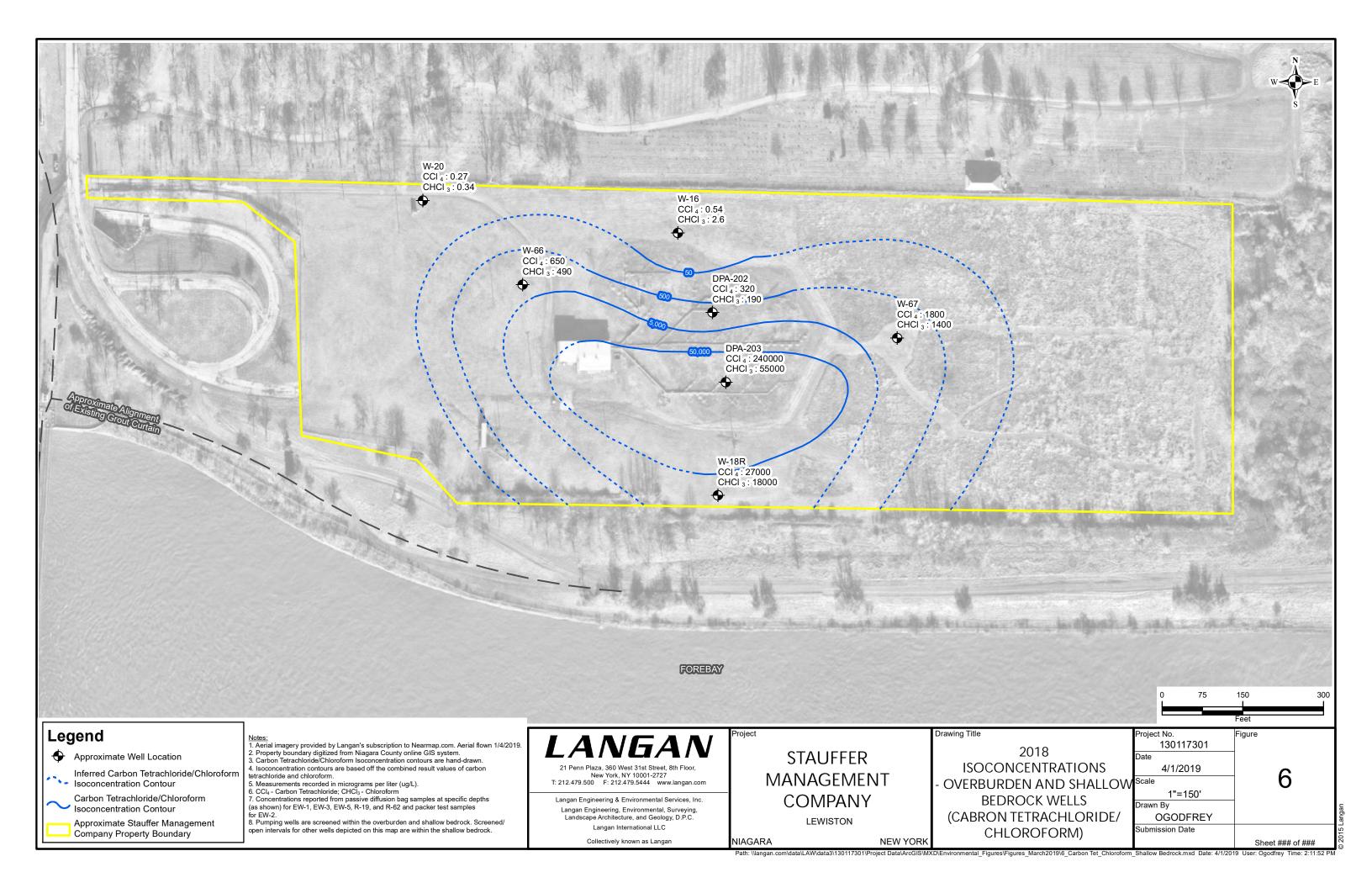

MS Laboratory matrix spike
MSD Laboratory matrix spike deplicate

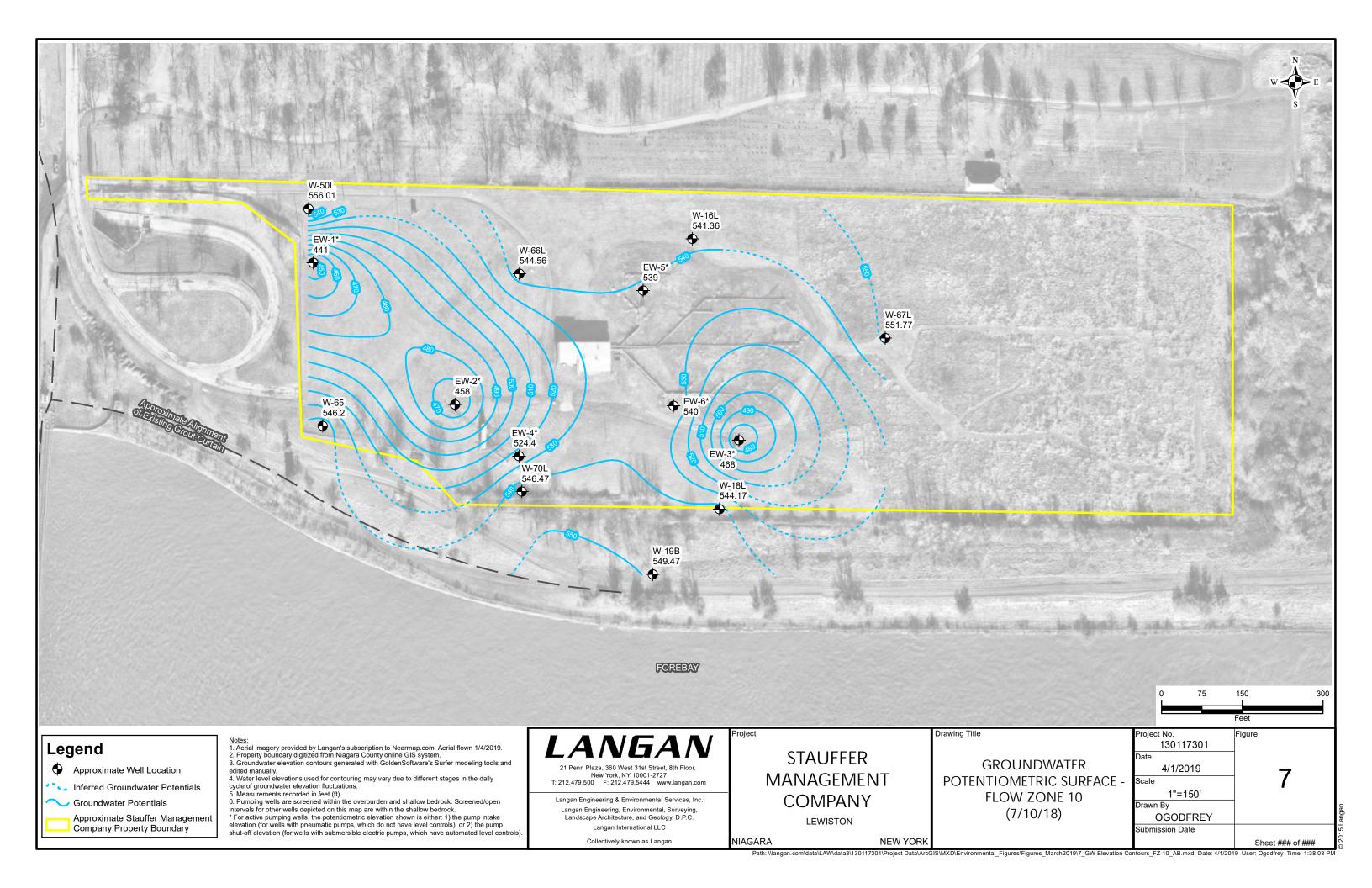

270 Concentration exceedes NYSDEC groundwater criteria

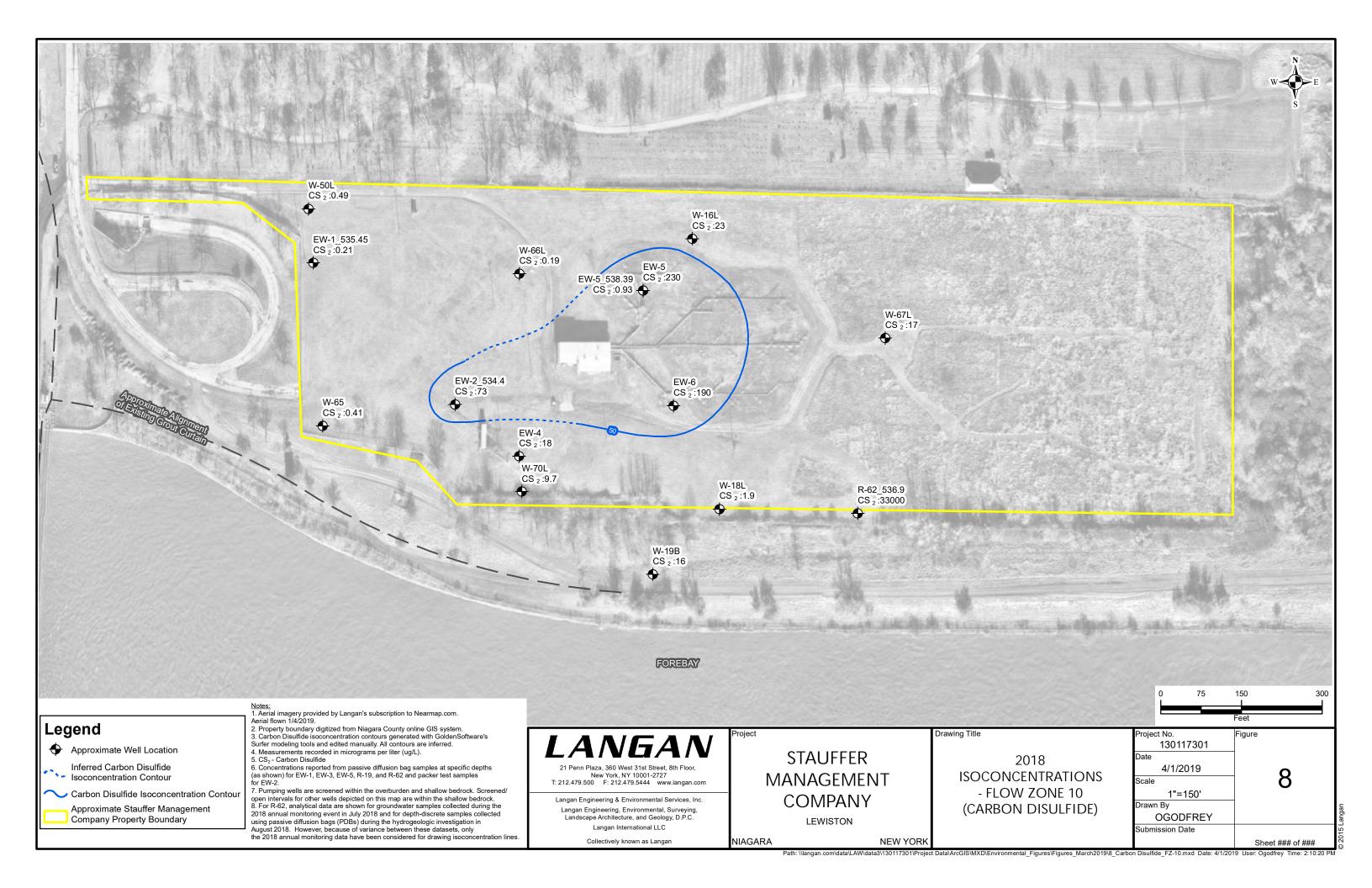

	Sample Location	DPA-203 DPA203-101718				DPA-	Duplicate)			/-67			W	-66		Field Blank					
	Client ID					DUP-1	8 (DPA-203)		W	-101718		V	101818		FB-101718						
	480-143845-1 10/17/2018 15:00:00 Water				48	3845-3		48	43845-2		48	43845-5		480-143845-4 10/17/2018 17:00:00							
					10/17	8 00:00:00		10/17	18 17:25:00		10/18	8 16:30:00									
					Water					ater			ater		Water						
			1	1				1				1				1					
	NY NYSDEC																				
SVOA-8270D SIM ID-WATER	Groundwater	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
	Criteria																				
WATER BY 8270D SIM ID (μg/L)																					
1,4-Dioxane	NA	0.060	J	0.016	0.20	0.046	J	0.016	0.20	0.034	J	0.016	0.20	0.016	U	0.016	0.20	0.010	6 U	0.016	0.20
LCMS-537 (MODIFIED)-WATER		Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL
WATER BY 537 (MODIFIED) (ng/L)																					
6:2 FTS	NA	1.74	U	1.74	17.4	1.66	U	1.66	16.6	1.73	U	1.73	17.3	14.5	J	1.64	16.4	1.82	2 U	1.82	18.2
8:2 FTS	NA	1.74	U	1.74	17.4	1.66	U	1.66	16.6	1.73	C	1.73	17.3	1.64	U	1.64	16.4	1.82	2 U	1.82	18.2
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	NA	1.65	U	1.65	17.4	1.58	U	1.58	16.6	1.64	U	1.64	17.3	1.55	U	1.55	16.4	1.72	2 U	1.72	18.2
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	NA	2.69	U	2.69	17.4	2.57	U	2.57	16.6	2.68	U	2.68	17.3	2.53	U	2.53	16.4	2.8	1 U	2.81	18.2
Perfluorobutanesulfonic acid (PFBS)	NA	0.85	J	0.17	1.74	0.36	J	0.17	1.66	0.98	J	0.17	1.73	1.21	J	0.16	1.64	0.18	B U	0.18	1.82
Perfluorobutanoic acid (PFBA)	NA	0.30	U	0.30	1.74	0.29	U	0.29	1.66	16.3		0.30	1.73	7.34		0.29	1.64	0.3	2 U	0.32	1.82
Perfluorodecanesulfonic acid (PFDS)	NA	0.28	U	0.28	1.74	0.27	U	0.27	1.66	0.28	U	0.28	1.73	0.26	U	0.26	1.64	0.29	9 U	0.29	1.82
Perfluorodecanoic acid (PFDA)	NA	0.27	U	0.27	1.74	0.26	U	0.26	1.66	0.27	U	0.27	1.73	0.84	J	0.25	1.64	0.23	8 U	0.28	1.82
Perfluorododecanoic acid (PFDoA)	NA	0.48	U	0.48	1.74	0.46	U	0.46	1.66	0.48	U	0.48	1.73	0.45	U	0.45	1.64	0.50	O U	0.50	1.82
Perfluoroheptanesulfonic Acid (PFHpS)	NA	0.17	U	0.17	1.74	0.16	U	0.16	1.66	0.16	U	0.16	1.73	0.16	U	0.16	1.64	0.1	7 U	0.17	1.82
Perfluoroheptanoic acid (PFHpA)	NA	1.39	J	0.22	1.74	1.09	J	0.21	1.66	1.67	J	0.22	1.73	1.99		0.20	1.64	0.23	3 U	0.23	1.82
Perfluorohexanesulfonic acid (PFHxS)	NA	1.08	JΒ	0.15	1.74	0.87	JΒ	0.14	1.66	1.39	JΒ	0.15	1.73	0.69	JΒ	0.14	1.64	0.2	8 J B	0.15	1.82
Perfluorohexanoic acid (PFHxA)	NA	1.93		0.50	1.74	1.96		0.48	1.66	2.32		0.50	1.73	2.40		0.47	1.64	0.5	3 U	0.53	1.82
Perfluorononanoic acid (PFNA)	NA	0.23	U	0.23	1.74	0.25	J	0.22	1.66	0.23	U	0.23	1.73	0.46	J	0.22	1.64	0.2		0.25	1.82
Perfluorooctanesulfonamide (FOSA)	NA	0.30	U	0.30	1.74	0.29	U	0.29	1.66	0.30	U	0.30	1.73	0.29	U	0.29	1.64	0.33	2 U	0.32	1.82
Perfluorooctanesulfonic acid (PFOS)	NA	1.73	J	0.47	1.74	1.62	J	0.45	1.66	2.72		0.47	1.73	2.01		0.44	1.64	0.49	9 U	0.49	1.82
Perfluorooctanoic acid (PFOA)	NA	6.35		0.74	1.74	6.18		0.71	1.66	8.20		0.74	1.73	3.66		0.69	1.64	0.7	7 U	0.77	1.82
Perfluoropentanoic acid (PFPeA)	NA	0.98	J	0.43	1.74	1.37	J	0.41	1.66	0.42	U	0.42	1.73	1.99		0.40	1.64	0.4	4 U	0.44	1.82
Perfluorotetradecanoic acid (PFTeA)	NA	0.25	U	0.25	1.74	0.24	U	0.24	1.66	0.25	U	0.25	1.73	0.24	U	0.24	1.64	0.2	6 U	0.26	1.82
Perfluorotridecanoic acid (PFTriA)	NA	1.13		1.13	1.74	1.08		1.08	1.66	1.12	U	1.12	1.73	1.06	U	1.06	1.64	1.18		1.18	1.82
Perfluoroundecanoic acid (PFUnA)	NA	0.96	U	0.96	1.74	0.91	U	0.91	1.66	0.95	U	0.95	1.73	0.90	U	0.90	1.64	1.0	_	1.0	1.82
Total Detected Perfluorinateds:		14.31				13.7	•			33.58				37.09			İ	0.28	<u> </u>		

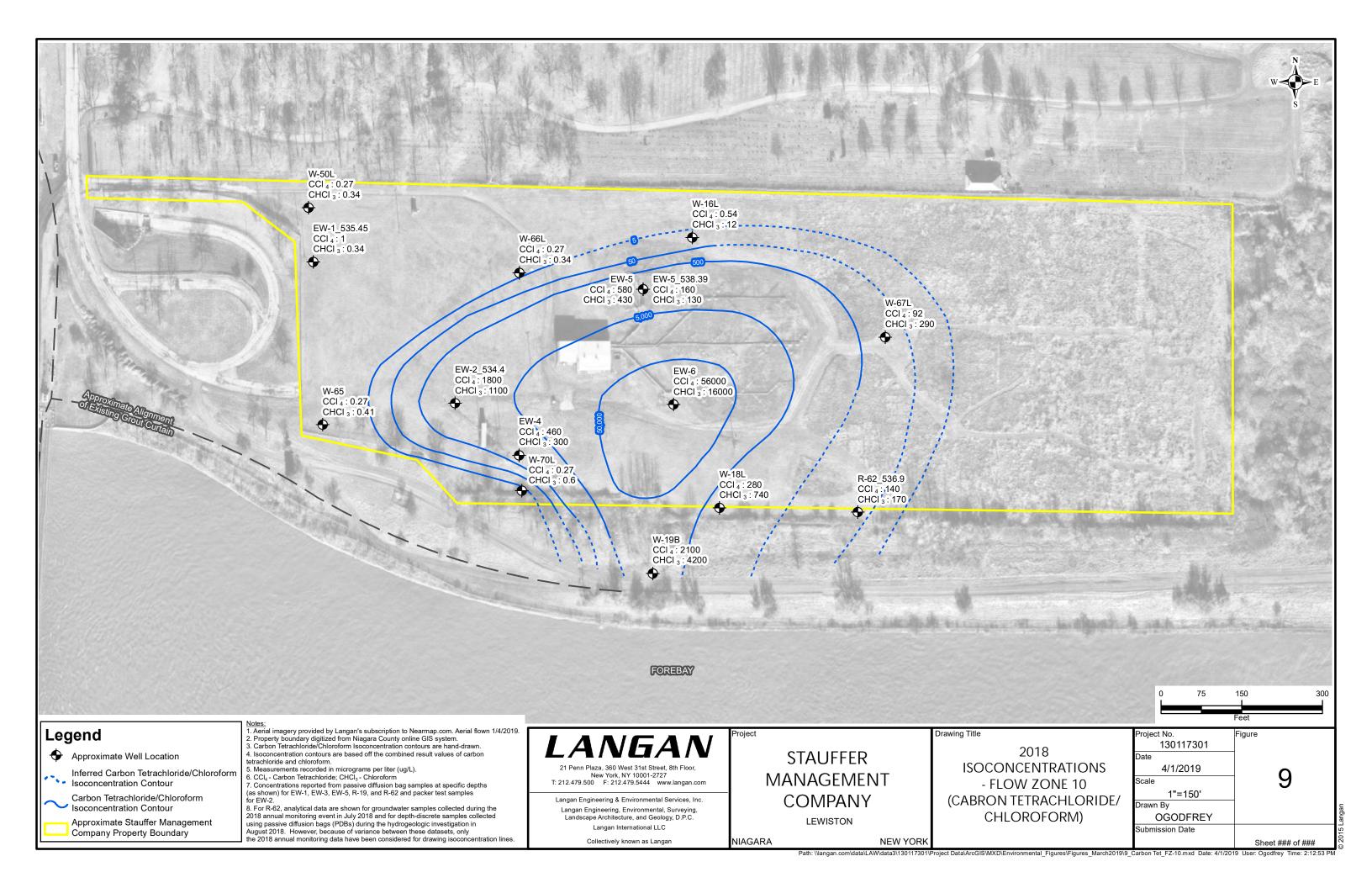

- B Compound was found in the blank and sample.
 J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
 U Indicates the analyte was analyzed for but not detected.

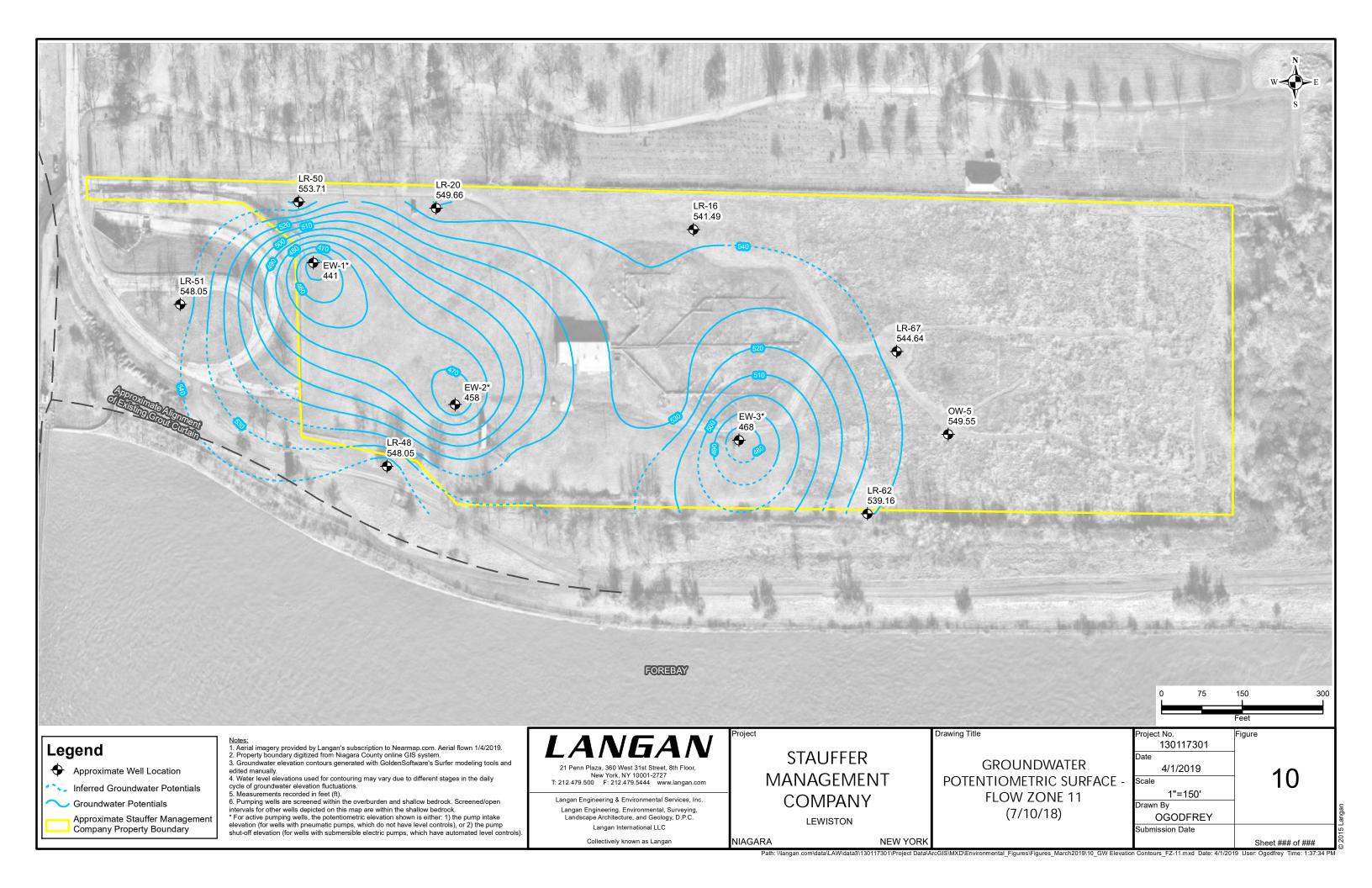


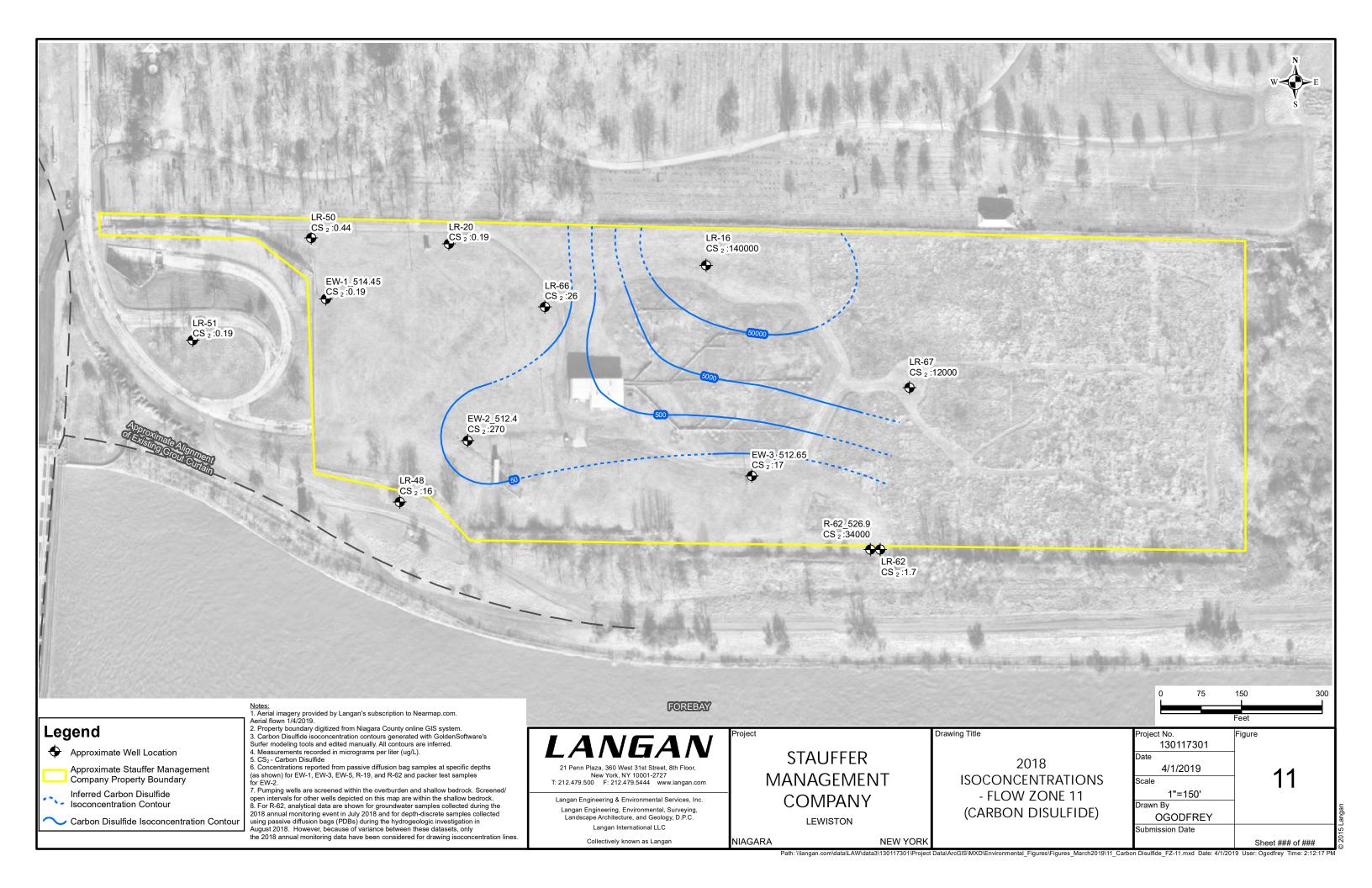


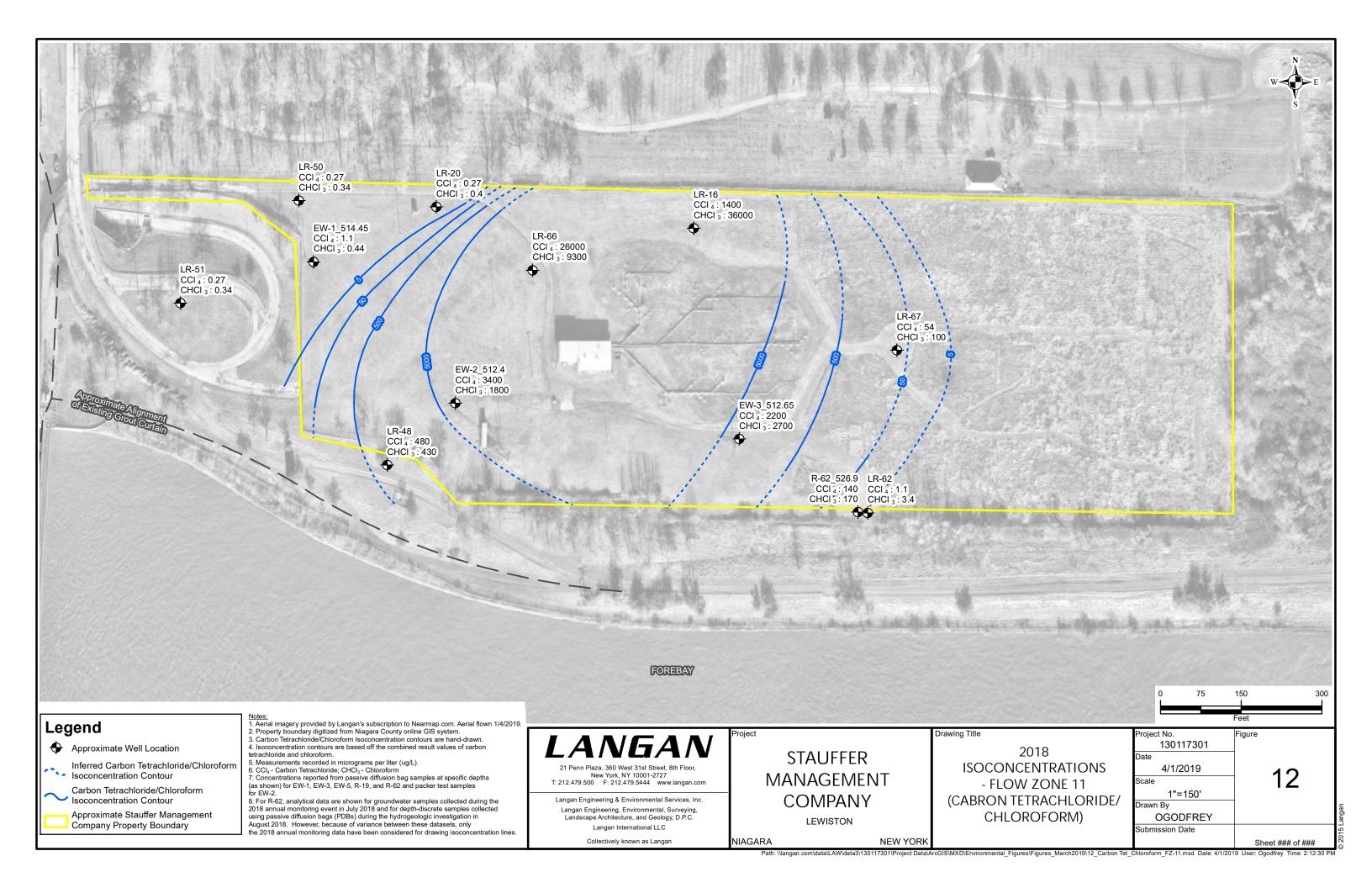


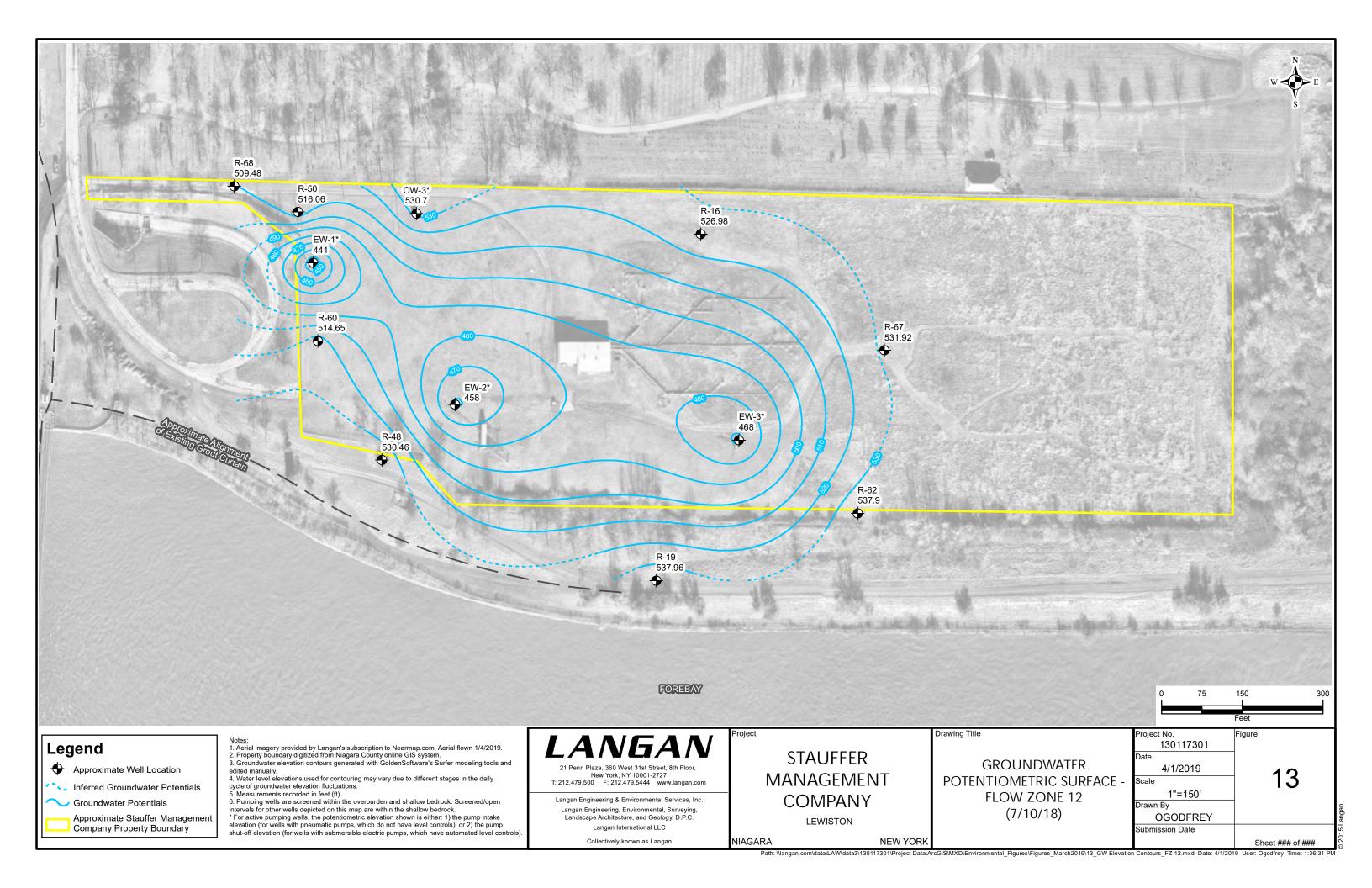


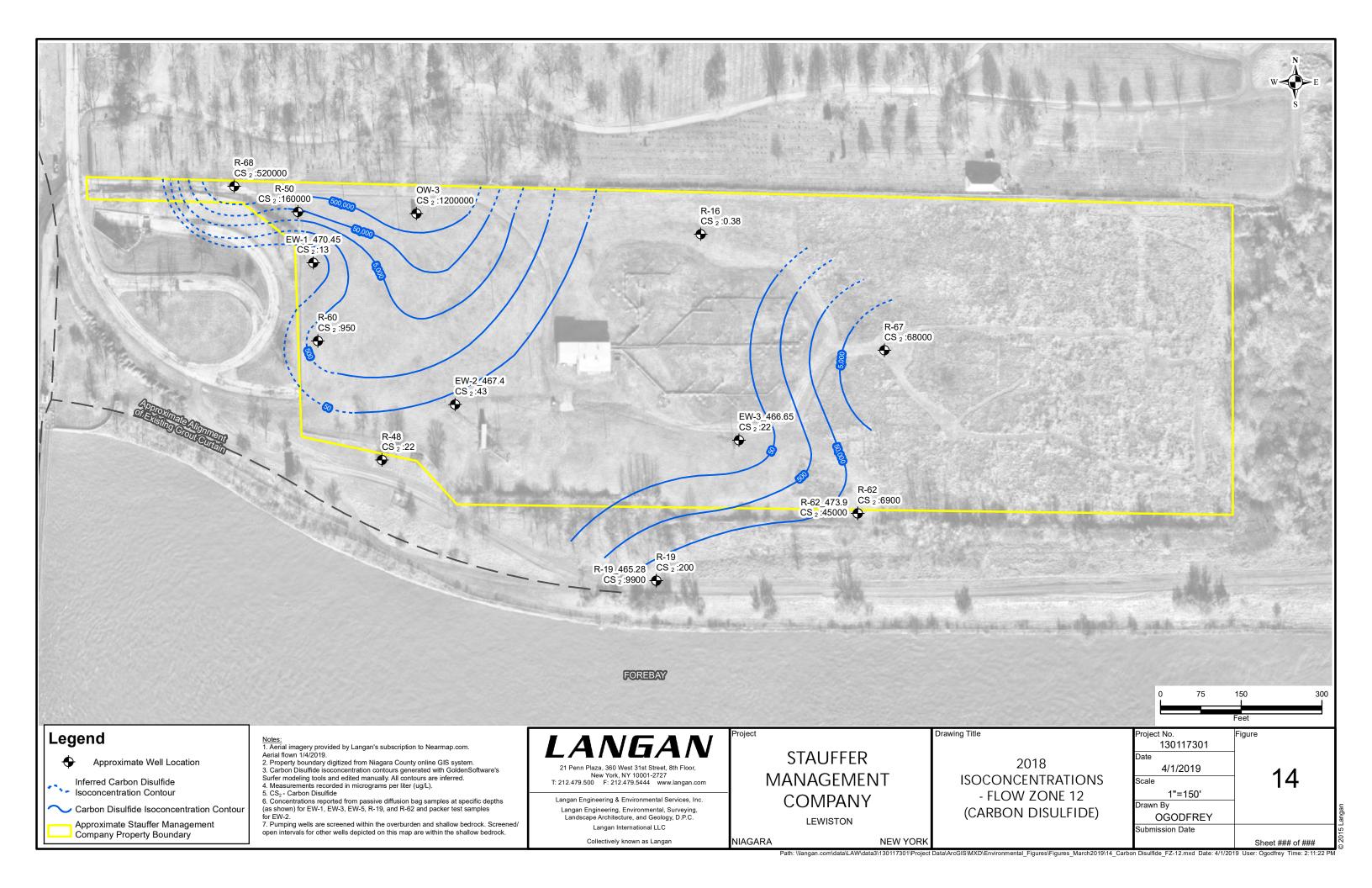


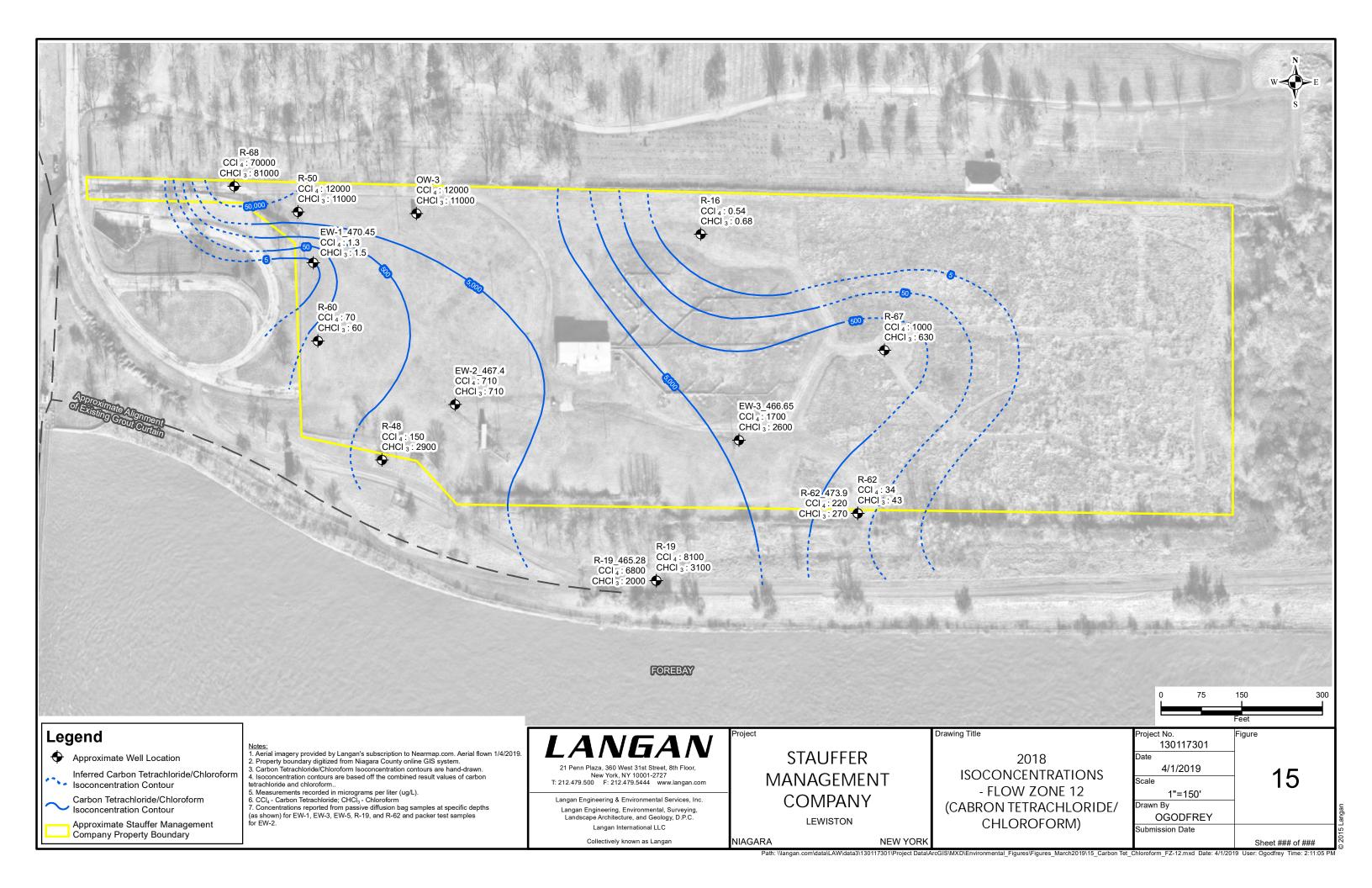


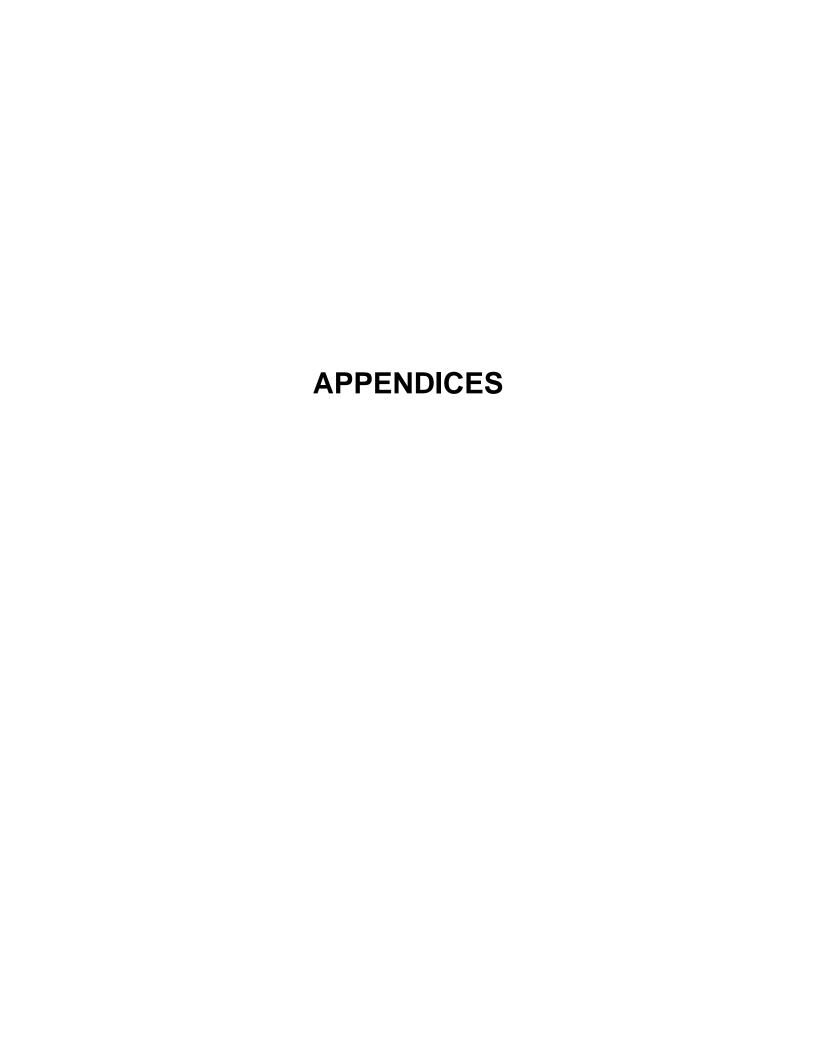












APPENDIX A GROUNDWATER TREATMENT SYSTEM 2018 PROCESS MONITORING DATA

3/26/2019

		LOCATION	INI	LUE	INT	INIE	LUE	INIT	INI	FLUE	NIT	INI	LUE	INT		INFLUEN ¹	Т	1 1	NFLUENT	
			IINI	INF			_			_									_	
		SAMPLE ID	400			I	_140			_	1418		_)418		IF-050920			F-062220 ²	
		LAB SAMPLE ID	480-			480-			480-					3-1-DL		80-135695			80-138178	
		SAMPLING DATE			16:30			13:00			12:00			12:00	05/09	9/2018 08:	:00:00	06/22	/2018 11:0	00:00
		SAMPLE TYPE	\	Nate	er	\	Nate	r	'	Wate	r	\	Wate	er		Water			Water	
	DII	LLUTION FACTOR		100			50			1			80			1			1	
		NYSDEC																		
Analyte	CasNum	Groundwater	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL									
		Criteria																		
Volatile Organic Compo	ounds (µg/L)																			
Benzene	71-43-2	0.7	41	U	41	21	U	21	3.1		0.41	NR			0.41	U	0.41	7.2		0.41
Carbon disulfide	75-15-0	50	5000		19	3800	F1	9.5	NR			2,000	D	15	0.19	U	0.19	NR		1
Carbon tetrachloride	56-23-5	5	5300		27	3100		14	NR			2,100	D	22	11		0.27	NR		
Chlorobenzene	108-90-7	5	75	U	75	38	U	38	2.5		0.75	NR			0.75	U	0.75	2.2		0.75
Chloroform	67-66-3	7	1700		34	1400		17	NR			1,500	D	27	0.68	J	0.34	NR		1
Methylene chloride	75-09-2	5	67	J	44	65		22	64		0.44	NR			0.44	U	0.44	NR		
Tetrachloroethene	127-18-4	5	230		36	95		18	96		0.36	NR			0.46	J	0.36	NR		1
Toluene	108-88-3	5	51	U	51	26	U	26	2		0.51	NR			0.51	U	0.51	5		0.51
Trichloroethene	79-01-6	5	100		46	74		23	59		0.46	NR			0.46	U	0.46	65		0.46
Total Concentration			10697			8534.0						5,827			12.1					

NOTES:

NYSDEC: New York State Department of Environmental

Conservation Q : Data Qualifier

MDL : Method Detection Limit

F1 : MS and/or MSD Recovery is outside acceptance limits.

J: Result is less than the RL but greater than or equal to the

MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

3/26/2019

		LOCATION		NFLUENT			NFLUENT			NFLUENT	_	<u> </u>	NFLUENT	_	l i	NFLUENT	-		NFLUENT	Γ
		SAMPLE ID	IN	F-0622201	18	INI	_0727201	18	IN	F-080820	18	IN	F 083120	18	INI	-091220 ²	18	IN	F-091220	18
		LAB SAMPLE ID	480-	-138178-1-	-DL		_ 0-139703-		48	0-140160)-1	48	30-141309	-1	48	0-141619	-1	48	80-141619	} -1
		SAMPLING DATE	06/22	/2018 11:0	00:00	07/27	/2018 16:0	00:00	8/8	/2018 14:	00	08/31	/2018 16:0	00:00	9/12	2/2018 11	:00	9/1:	2/2018 11	:00
		SAMPLE TYPE		Water			Water			Water			Water			Water			Water	
	DII	LLUTION FACTOR		100			200			100			80			80			80	
		NYSDEC																		
Analyte	CasNum	Groundwater	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Criteria																		
Volatile Organic Compo	ounds (µg/L)																			
Benzene	71-43-2	0.7	NR			82	U	82	41	U	41	33	U	33	33	U	33	33	U	33
Carbon disulfide	75-15-0	50	6,800	D	19	38	U	38	19	U	19	3900		15	5200		15	5200		15
Carbon tetrachloride	56-23-5	5	7,400	D	27	8200		54	47000	Е	27	3300		22	2000		22	2000		22
Chlorobenzene	108-90-7	5	NR			150	U	150	75	U	75	60	U	60	60	U	60	60	U	60
Chloroform	67-66-3	7	4,100	D	34	4600		68	9600		34	1700		27	1300		27	1300		27
Methylene chloride	75-09-2	5	170	D	44	88	U	88	64	J	44	110		35	110		35	110		35
Tetrachloroethene	127-18-4	5	120	D	36	100	J	72	1000		36	48	J	29	38	J	29	38	J	29
Toluene	108-88-3	5	NR			100	U	100	51	U	51	41	U	41	41	U	41	41	U	41
Trichloroethene	79-01-6	5	NR			92	U	92	52	J	46	67	J	37	68	J	37	68	J	37
Total Concentration	-		18,669			12,900			57,716			9,125		NA	8,716		NA	8716.0		NA

NOTES:

NYSDEC: New York State Department of Environmental Conservation

Q : Data Qualifier

MDL: Method Detection Limit

F1 : MS and/or MSD Recovery is outside acceptance limits.

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

| :.an Project No | 3/26/2019

				INTELLIENT	-	T .			1		-
		LOCATION		INFLUEN			INFLUEN			NFLUEN ⁻	
		SAMPLE ID	IN	IF-101020	18	IN	F_111420	18	IN	F-121220	18
		LAB SAMPLE ID	48	80-143322	2-1	48	30-145327	7-1	48	30-146744	l-1
		SAMPLING DATE	10/10	0/2018 08:	30:00	11/1	14/2018 1	2:00	12/1	12/2018 1	5:10
		SAMPLE TYPE		Water			Water			Water	
	[DILLUTION FACTOR		80			80			80	
		NYSDEC									
Analyte	CasNum	Groundwater	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Criteria									
Volatile Organic Compo	unds (µg/L)										
Benzene	71-43-2	0.7	33	\supset	33	33	U	33	33	U	33
Carbon disulfide	75-15-0	50	3900		15	3000		15	5700		15
Carbon tetrachloride	56-23-5	5	3300		22	2200		22	5900	F1	22
Chlorobenzene	108-90-7	5	60	U	60	60	U	60	60	U	60
Chloroform	67-66-3	7	1500		27	1200		27	2600		27
Methylene chloride	75-09-2	5	100		35	96		35	140		35
Tetrachloroethene	127-18-4	5	29	U	29	47	J	29	110		29
Toluene	108-88-3	5	41	U	41	41	U	41	41	U	41
Trichloroethene	79-01-6	5	55	J	37	60	J	37	95		37
Total Concentration	-		8855		NA	6603		NA	14545		NA

NOTES:

NYSDEC : New York State Department of Environmental Conservation

Q : Data Qualifier

MDL: Method Detection Limit

F1 : MS and/or MSD Recovery is outside acceptance limits.

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

3/26/2019

		LOCATION	MID-	-CAR	BON	MID	-CAR	BON	MID-	CAF	RBON	MID-	CAF	RBON	МІГ)-CAR	BON	MID-	CAR	RBON
		SAMPLE ID)818-CBT			1518-CBT	WG-6488				_	918-CBT			bon
		LAB SAMPLE ID	R180	0003	6-001	R180	0019	8-001	R180	039	7-001	R180	068	9-001	R18	00835	5-001	460-	1500	057-1
		SAMPLING DATE	1/2/2	018	12:20	1/8/2	2018	12:00	1/15/2	2018	11:00	1/24/2	2018	11:15	1/29,	/2018	12:30	2/7/2	018	16:00
		SAMPLE TYPE	\	Nate	er	,	Wate	er	\	Nate	er	\	Vate	er		Wate	r	\	Vate	;r
		Discharge Limit																		
Analyte	c Compounds (μg/L)		Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
	CasNum (Dail Maximu Compounds (μg/L)																			
Volatile Organic Compo	ounds (μg/L)																			
Benzene	71-43-2	10	1.0	U	0.20	1.0	U	0.20	1.0	U	0.20	1.0	U	0.20	1.0	U	0.20	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	1.0	U	0.22	0.23	J	0.22	1.0	U	0.22	1.0	U	0.22	1.0	U	0.22	0.19	U	0.19
Carbon tetrachloride	56-23-5	10	1.0	U	0.45	1.0	U	0.45	1.0	U	0.45	1.0	\cup	0.45	1.0	U	0.45	0.27	U	0.27
Chlorobenzene	108-90-7	10	1.0	U	0.29	1.0	U	0.29	1.0	U	0.29	1.0	U	0.29	1.0	U	0.29	0.75	U	0.75
Chloroform	67-66-3	10	1.6		0.25	4.0		0.25	1.0	U	0.25	1.0	U	0.25	1.0	U	0.25	0.34	U	0.34
Methylene chloride	75-09-2	10	3.5		0.60	3.4		0.60	1.0	U	0.60	1.0	U	0.60	1.0	U	0.60	0.44	U	0.44
Tetrachloroethene	127-18-4	10	1.0	U	0.30	1.0	U	0.30	1.0	U	0.30	1.0	U	0.30	1.0	U	0.30	0.36	U	0.36
Toluene	108-88-3	10	1.0	U	0.20	1.0	U	0.20	1.0	U	0.20	1.0	U	0.20	1.0	U	0.20	0.51	U	0.51
Trichloroethene	79-01-6	10	1.0	U	0.22	1.0	U	0.22	1.0	U	0.22	1.0	U	0.22	0.22	J	0.22	0.46	U	0.46
Total Concentration	-		5.1			7.6			0.0			0.0			0.22			0.0		

Notes:

* - CBT and Effluent samples were miss labeled on the sample bottle ware

Q : Data Qualifier

MDL: Method Detection Limit

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

B: Compound was found in blank and sample.

U ^{t-} Analyte not detected, LCS or LCSD is outside acceptance limits

3/26/2019

		LOCATION	MID	CAR	BON	MID	$C \Lambda E$	RBON	MID	CVB	BON	MID-	CAR	RON	MID-	CVE	RON	MID	CAR	BON
					IDON															
		SAMPLE ID		CBT				VOC-001	_)218		_	0318		_	0318		_210	
		LAB SAMPLE ID	480-	1314	183-2	480-	1316	678-1	480-	1320	01-1	480-	1323	341-1	480-	1326	695-2	480-	1329	84-1
		SAMPLING DATE	2/15/2	018	16:40	2/21/	2018	8 2:50	2/28/2	2018	10:30	3/7/2	018	12:30	3/14/2	2018	13:10	3/21/	2018	9:45
		SAMPLE TYPE	V	Vate	er	\	Vate	er	V	Vate	er	V	Vate	er	\	Vate	er	١ ١	Nate	r
		Discharge Limit																		
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Maximum)																		
Volatile Organic Compo	ounds (μg/L)																			
Benzene	71-43-2	10	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	0.77	J	0.19	0.22	J	0.19	0.19	U	0.19	0.19	U	0.19	0.19	U	0.19	0.19	U	0.19
Carbon tetrachloride	56-23-5	10	0.27	U	0.27	0.27	\Box	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27
Chlorobenzene	108-90-7	10	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	0.34	U	0.34	0.34	U	0.34	0.34	U	0.34	0.34	U	0.34	0.34	U	0.34	0.34	U	0.34
Methylene chloride	75-09-2	10	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	0.97	J	0.44	2.5		0.44
Tetrachloroethene	127-18-4	10	0.36	U	0.36	0.36	\Box	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46
Total Concentration	-		0.77			0.22			0.0			0.0			0.97			0.0		

- Notes:
 * CBT and Effluent samples were miss labeled on the sample bottle ware
- Q : Data Qualifier
- MDL : Method Detection Limit
- J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.
- D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
- B: Compound was found in blank and sample.
- U ^{t-} Analyte not detected, LCS or LCSD is outside acceptance limits

3/26/2019

		LOCATION	I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		201	I N.41		201	I 1		N. I	I 1.4		\ N. I	I N.4) N I	I 1		211
		LOCATION		ID-CARBO			ID-CARBC			ID-CARBC			ID-CARBC			IID-CARBC			D-CARBO	
		SAMPLE ID	C	BT_28031	18	_ C	BT_11041	18	CE	T_041820	18	CE	T_042520	18	CE CE	3T_050220)18	CE	T-050920	18ر
		LAB SAMPLE ID	48	30-133737	'-1	48	30-134193	3-2	48	30-134535	-1	48	30-134922	-1	48	80-135343	I - 1	48	30-135695	j-2
		SAMPLING DATE	3/2	8/2018 12	2:30	4/1	1/2018 12	2:10	4/1	8/2018 12	:00	04/25	5/2018 12:0	00:00	05/02	2/2018 12:	00:00	05/09	/2018 08:	.00:00
		SAMPLE TYPE		Water			Water			Water			Water			Water			Water	
		Discharge Limit		Q MDL Result U 0.41 0.41 U 0.19 0.19																
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Maximum)																		
Volatile Organic Compo	ounds (μg/L)			Water 1																
Benzene	71-43-2	10	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	0.19	\cup	0.19	0.19	U	0.19	0.19	U	0.19	0.19	\subset	0.19	0.19	U	0.19	0.19	U	0.19
Carbon tetrachloride	56-23-5	10	0.27	U	0.27	0.72	J	0.27	1.9		0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27
Chlorobenzene	108-90-7	10	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	0.34	U	0.34	2.8		0.34	13		0.34	0.34	U	0.34	0.34	U	0.34	0.34	U	0.34
Methylene chloride	75-09-2	10	4.8		0.44	7.7		0.44	9.5		0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44
Tetrachloroethene	127-18-4	10	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	\subset	0.36	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46
Total Concentration		-	0.0			11.2			24.4			0.0			0.0			0.0		

Notes:
* - CBT and Effluent samples were miss labeled on the sample bottle ware

Q : Data Qualifier

- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.
- D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
- B: Compound was found in blank and sample.
- U ^{t-} Analyte not detected, LCS or LCSD is outside acceptance limits

3/26/2019

		LOCATION SAMPLE ID LAB SAMPLE ID	CB 48	ID-CARBC T_051620 30-136106)18 -1	CB 48	ID-CARBC T_052320 30-136493	18 -1	CB 48	ID-CARBC T_053020 30-136737)18 -1	CB 48	D-CARBO T 060620 30-137091)18 -1	CE 48	IID-CARB(BT-062220 80-138178)18 3-2	CB 48	D-CARBO T_062720 80-138179	018 9-1
		SAMPLING DATE SAMPLE TYPE	05/16	5/2018 12: Water	00:00	05/23	3/2018 11:0 Water	00:00	05/30	/2018 19: Water	40:00	06/06	/2018 11: Water	00:00	06/22	2/2018 11: Water	:00:00	06/27	/2018 16: Water	00:00
		Discharge Limit		Q MDL Result U 0.41 0.41																
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
Volatile Organic Compo	unds (ua/L)	Maximum)																		
Benzene	71-43-2	10	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	0.19	U	0.19	0.19	U	0.19	0.19	U	0.19	0.19	U	0.19	1.2		0.19	NR		1
Carbon tetrachloride	56-23-5	10	0.27	U	0.27	0.27	U	0.27	0.43	J	0.27	0.27	U	0.27	15		0.27	NR		
Chlorobenzene	108-90-7	10	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	0.34	U	0.34	2.1		0.34	5.4		0.34	0.48	J	0.34	40		0.34	NR		
Methylene chloride	75-09-2	10	0.44	U	0.44	5.8		0.44	3.5		0.44	0.44	U	0.44	6.5		0.44	19		0.44
Tetrachloroethene	127-18-4	10	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.47	J	0.36
Toluene	108-88-3	10	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.5	J	0.46
Total Concentration	-	-	0.0			7.90			9.33			0.48			62.7			1.0		

Notes:
* - CBT and Effluent samples were miss labeled on the sample bottle ware

Q : Data Qualifier

- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.
- D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
- B: Compound was found in blank and sample.
- U ^{t-} Analyte not detected, LCS or LCSD is outside acceptance limits

3/26/2019

		LOCATION	N 4) N I	I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D-CARBC	NI	I N.4		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N 4	ID-CARBO	201	I 1.4		N I	I N 41		<u> </u>
		LOCATION		ID-CARBO						ID-CARBO						IID-CARBO			D-CARBO	
		SAMPLE ID		T_062720			T_070620			BT-071820			Γ_072720			3T_080220			T-080820	
		LAB SAMPLE ID	480	-138179-1	-DL	48	80-138546	5-1	48	30-139257	-1	48	30-139703	3-3	48	80-139978	3-1	48	80-140160)-3
		SAMPLING DATE	06/27	/2018 16:	00:00	07/06	/2018 14:	00:00	07/18	/2018 11:	45:00	07/27	/2018 16:	00:00	8/2	2/2018 13:	:50	8/8	3/2018 14:	:05
		SAMPLE TYPE		Water			Water			Water			Water			Water			Water	
		Discharge Limit		Q MDL Resul 1.6 D 0.76 41																
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Maximum)																		
Volatile Organic Compo	ounds (μg/L)																			
Benzene	71-43-2	10	NR			1.6	U	1.6	1.6	U	1.6	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	96	D	0.76	41		0.76	17		0.76	2.5		0.19	0.19	U	0.19	2.1		0.19
Carbon tetrachloride	56-23-5	10	160	D	1.1	110		1.1	37		1.1	2.8		0.27	0.27	U	0.27	0.27	U	0.27
Chlorobenzene	108-90-7	10	NR			3	U	3	3	U	3	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	180	D	1.4	160		1.4	200		1.4	72		0.34	0.47	J	0.34	50		0.34
Methylene chloride	75-09-2	10	NR			14		1.8	19		1.8	2.6		0.44	0.44	U	0.44	0.96	J	0.44
Tetrachloroethene	127-18-4	10	NR			1.4	U	1.4	1.4	U	1.4	0.36	U ^t	0.36	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	NR			2	U	2	2	U	2	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	NR			1.8	U	1.8	1.8	U	1.8	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46
Total Concentration			456			325.0			273.0			79.9			0.47			53.06		

Notes:
* - CBT and Effluent samples were miss labeled on the sample bottle ware

Q : Data Qualifier

- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.
- D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
- B: Compound was found in blank and sample.
- U ^{t-} Analyte not detected, LCS or LCSD is outside acceptance limits

3/26/2019

		LOCATION SAMPLE ID LAB SAMPLE ID	CB 48	D-CARBC T_081520 30-140504	18 -1	CB ⁻	D-CARBO T 0831201 30-141309	8*	СВ	D-CARBC T_090620 30-141696	18	CB ⁻	D-CARBC T-091220 30-141619	18*	СВ	ID-CARB(3T_09192(30-142027)18	СВ	D-CARB(T_09262(30-142496)18
		SAMPLING DATE SAMPLE TYPE	08/15	/2018 14: Water	10:00	08/31	/2018 16:0 Water	05:00	09/06	/2018 15:0 Water	30:00	9/1:	2/2018 11 Water	:05	09/19	9/2018 10: Water	00:00	09/26	/2018 11: Water	00:00
Analyte	CasNum	Discharge Limit (Daily	Result	Q MDL Result U 0.41 0.41		Ω	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Ω	MDL	
Allalyte	Casivuiii	Maximum)	nesuit	<u>u</u>	IVIDE	Hesuit	<u>u</u>	IVIDE	nesuit	Q	WIDE	nesuit	· ·	IVIDE	nesuit	Q .	IVIDE	nesuit	· ·	IVIDE
Volatile Organic Compo	unds (μg/L)			U 0.41 0.41 U 0.19 0.79																
Benzene	71-43-2	10	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	0.19	U	0.19	0.79	J	0.19	0.19	U	0.19	0.19	U	0.19	0.19	\supset	0.19	0.19	U	0.19
Carbon tetrachloride	56-23-5	10	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27
Chlorobenzene	108-90-7	10	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	\supset	0.75	0.75	U	0.75
Chloroform	67-66-3	10	0.34	U	0.34	9.0		0.34	0.34	U	0.34	0.36	J	0.34	0.34	U	0.34	0.34	U	0.34
Methylene chloride	75-09-2	10	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	1.5		0.44	10		0.44
Tetrachloroethene	127-18-4	10	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46
Total Concentration			0.0			9.79			0.0			0.36			0.0	_		0.0		

- Notes:
 * CBT and Effluent samples were miss labeled on the sample bottle ware
- Q : Data Qualifier

- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.
- D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
- B: Compound was found in blank and sample.
- U ^{t-} Analyte not detected, LCS or LCSD is outside acceptance limits

3/26/2019

		LOCATION	MI	D-CARBO	N	М	ID-CARBO	N	М	D-CARBC	N	MI	D-CARBC)N	М	ID-CARBO	N	М	D-CARBO	NC
		SAMPLE ID	СВ	T_100320)18	CE	3T-101020	18	СВ	T_101920	18	СВ	T_102420)18	CB	3T_103120	018	CB	T_111420)18
		LAB SAMPLE ID	48	30-142980	-1	48	30-143322	2-2	48	30-143846	-1	48	0-144222	!-1	48	80-144561	-1	48	30-145327	′-2
		SAMPLING DATE	10/03	/2018 15:	00:00	10/10)/2018 08:	35:00	10/1	9/2018 13	3:30	10/2	4/2018 12	2:00	10/3	31/2018 1:	2:00	11/	4/2018 13	2:07
		SAMPLE TYPE		Water			Water			Water			Water			Water			Water	
		Discharge Limit																		
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Maximum)																		
Volatile Organic Compo	unds (μg/L)	_			_															
Benzene	71-43-2	10	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	0.19	U	0.19	0.19	U	0.19	0.84	J	0.19	0.37	J	0.19	0.42	J	0.19	0.37	J	0.19
Carbon tetrachloride	56-23-5	10	0.27	U	0.27	0.27	U	0.27	1.4		0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27
Chlorobenzene	108-90-7	10	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	0.34	U	0.34	0.69	J	0.34	2.4		0.34	1.9		0.34	1.6		0.34	1		0.34
Methylene chloride	75-09-2	10	19		0.44	30		0.44	0.59	J	0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44
Tetrachloroethene	127-18-4	10	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46
Total Concentration	-		0.0			0.0			5.2			2.3			2.0			1.4		

Notes:
* - CBT and Effluent samples were miss labeled on the sample bottle ware

Q : Data Qualifier

- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.
- D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
- B: Compound was found in blank and sample.
- U ^{t-} Analyte not detected, LCS or LCSD is outside acceptance limits

3/26/2019

		LOCATION	N/I	480-145665-1 1/22/2018 19:45 1 Water		N /	ID-CARBC)VI	N /	ID-CARBC)NI	N //	ID-CARBO) NI	I 1/4	ID-CARBC) NI	N/I	D-CARBO	7/1
		SAMPLE ID					3T-112820			3T_12520 ²			3T-121220			BT_121920			T_122720	
		LAB SAMPLE ID	48	30-145665	-1	48	30-145887	'-1	48	30-146407	-1	48	30-146744	-2	48	30-146744	- -1	48	30-147339	<i>ب</i> -1
		SAMPLING DATE	11/2	22/2018 19	9:45	11/2	28/2018 11	1:00	12/	5/2018 18	:00	12/1	2/2018 1	5:15	12/	19/2018 14	4:00	12/2	27/2018 10	3:00
		SAMPLE TYPE		Water			Water			Water			Water			Water			Water	
		Discharge Limit																		
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Maximum)																		
Volatile Organic Compo	ounds (μg/L)																			
Benzene	71-43-2	10	0.41	\supset	0.41	0.41	J	0.41	0.41	U	0.41	0.41	U	0.41	0.41	\supset	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	0.26	J	0.19	0.2	J	0.19	0.43	JΒ	0.19	0.29	J	0.19	0.23	JВ	0.19	0.56	J	0.19
Carbon tetrachloride	56-23-5	10	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	12		0.27
Chlorobenzene	108-90-7	10	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	0.88	J	0.34	0.82	J	0.34	0.75	J	0.34	0.65	J	0.34	0.58	J	0.34	13		0.34
Methylene chloride	75-09-2	10	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	4.7		0.44
Tetrachloroethene	127-18-4	10	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46
Total Concentration		-	1.1			1.0			1.2			0.94			0.81			30		

Notes:
* - CBT and Effluent samples were miss labeled on the sample bottle ware

Q : Data Qualifier

- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.
- D : Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
- B: Compound was found in blank and sample.
- U ^{t-} Analyte not detected, LCS or LCSD is outside acceptance limits

Appendix A-3 Pump and Treat System Monthly Effluent Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		LOCATION	FFF	-LUI	=NIT	T FFI	FIII	ENT	FFF	LUI	FNT	I	EFFLUEN ⁻	Γ	Ι .	EFFLUEN ^T	Γ	l :	EFFLUEN	
		SAMPLE ID	l				EFF				0318	1	FF_11041			F-050920			F-053120	
		_				400				_			_				_	l		
		LAB SAMPLE ID	R180			l		483-3			695-3	1	80-134193			80-135695		l	30-136765	
		SAMPLING DATE	1/2/20	018	12:30	02/15/20	018	16:50:00	03/14/20)18	13:15:00	4/1	1/2018 12	2:20	05/09	9/2018 08:	00:00	05/31	/2018 12:	30:00
		SAMPLE TYPE	V	Vate	er	\	Nate	er	V	Vate	er		Water			Water			Water	
		Discharge Limit																		
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Maximum)																		
Volatile Organic Compo	ounds (µg/L)																			
Benzene	71-43-2	10	1.0	U	1.0	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	J	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	10	\Box	10	0.3	J	0.19	0.19	\Box	0.19	0.19	U	0.19	0.19	U	0.19	0.19	U	0.19
Carbon tetrachloride	56-23-5	10	1.0	U	1.0	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27
Chlorobenzene	108-90-7	10	1.0	U	1.0	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	1.0	U	1.0	0.34	U	0.34	0.34	U	0.34	0.34	U	0.34	0.34	J	0.34	0.43	J	0.34
Methylene chloride	75-09-2	10	1.0	U	1.0	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	0.44	J	0.44	0.44	U	0.44
Tetrachloroethene	127-18-4	10	1.0	\Box	1.0	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	1.0	U	1.0	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	1.0	U	1.0	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46
Total Concentration			0			0.3			0.0			0.0			0.0			0.43		

NOTES:

- * CBT and Effluent samples were miss labeled on the sample bottle ware
- Q : Data Qualifier

- J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

Appendix A-3 Pump and Treat System Monthly Effluent Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

		LOCATION		EFFLUENT	Γ	l E	FFLUEN	Γ		EFFLUEN	Γ		EFFLUENT	Γ		EFFLUENT	Γ	l E	FFLUEN	Γ
		SAMPLE ID		F-062220	18	EFF	_072720	18*	EF	F-0808201	18*	EF	F 0831201	8*	EF	F-0912201	8*	EF.	F-101020	18
		LAB SAMPLE ID	48	80-138178	-3	48	30-139703	3-2	48	30-140160)-2	48	30-141309	-2	48	30-141619	-2	48	80-143322	-3
		SAMPLING DATE	06/22	2/2018 11:	00:00	7/2	7/2018 16	6:00	8/8	3/2018 14:	:10	08/31	/2018 16:	10:00	9/1	2/2018 11	:10	10/	10/2018 8	:40
		SAMPLE TYPE		Water			Water			Water			Water			Water			Water	
		Discharge Limit																		
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
		Maximum)																		
Volatile Organic Compo	ounds (µg/L)																			
Benzene	71-43-2	10	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Carbon disulfide	75-15-0	Monitor	0.23	J	0.19	0.19	U	0.19	0.19	U	0.19	0.19	U	0.19	0.19	U	0.19	0.42	J	0.19
Carbon tetrachloride	56-23-5	10	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27	0.27	U	0.27
Chlorobenzene	108-90-7	10	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	0.49	J	0.34	0.38	J	0.34	0.59	J	0.34	0.34	U	0.34	0.36	J	0.34	2.9		0.34
Methylene chloride	75-09-2	10	0.44	J	0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44	0.44	U	0.44
Tetrachloroethene	127-18-4	10	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46	0.46	U	0.46
Total Concentration			0.72			0.4			0.59			0.0			0.36			3.32		NA

NOTES:

* - CBT and Effluent samples were miss labeled on the sample bottle ware

Q : Data Qualifier

MDL: Method Detection Limit

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U: Indicates the analyte was analyzed for but not detected.

Appendix A-3 Pump and Treat System Monthly Effluent Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301 3/26/2019

						1		
		LOCATION		EFFLUENT	Γ		EFFLUEN	Γ
		SAMPLE ID	EF	F_111420	18	EF	F-121220	18
		LAB SAMPLE ID	48	30-145327	-3	48	30-146744	3
		SAMPLING DATE	11/	14/2018 12	2:14	12/	12/2018 1	5:20
		SAMPLE TYPE		Water			Water	
		Discharge Limit						
Analyte	CasNum	(Daily	Result	Q	MDL	Result	Q	MDL
		Maximum)						
Volatile Organic Compo	ounds (µg/L)							
Benzene	71-43-2	10	0.41	U	0.41	0.41	J	0.41
Carbon disulfide	75-15-0	Monitor	0.19	J	0.19	0.19	J	0.19
Carbon tetrachloride	56-23-5	10	0.27	U	0.27	0.27	U	0.27
Chlorobenzene	108-90-7	10	0.75	U	0.75	0.75	U	0.75
Chloroform	67-66-3	10	0.34	U	0.34	0.34	U	0.34
Methylene chloride	75-09-2	10	0.44	U	0.44	0.44	U	0.44
Tetrachloroethene	127-18-4	10	0.36	U	0.36	0.36	U	0.36
Toluene	108-88-3	10	0.51	U	0.51	0.51	U	0.51
Trichloroethene	79-01-6	10	0.46	U	0.46	0.46	U	0.46
Total Concentration	-		0.0		NA	0.0		NA

NOTES:

- * CBT and Effluent samples were miss labeled on the sample bottle ware
- Q : Data Qualifier
- MDL: Method Detection Limit
- J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

APPENDIX B GROUNDWATER TREATMENT SYSTEM 2018 SPDES DATA

Appendix B Pump and Treat System Quarterly Effluent (SPDES) Analytical Results Former Stauffer Management Company Lewiston, New York Langan Project No.: 130117301

4/2/2019

SAMPLE ID **EFFLUENT EFFLUENT EFFLUENT EFFLUENT EFFLUENT** EFF 11142018 SAMPLE ID EFF EFF_140318 EFF-09122018 EFF-05092018 LAB SAMPLE ID 480-131483-3 480-132695-3 480-135695-3 480-141619-3 480-145327-3 9/12/18 11:10 11/14/2018 12:14 SAMPLING DATE 02/15/2018 16:50:00 03/14/2018 13:15:00 05/09/2018 08:00:00 SAMPLE TYPE Water Water Water Water Water **Discharge Limit** Discharge Discharge **Discharge Discharge** Discharge Result Q Result Q MDL MDL MDL Analyte CasNum (Daily MDL Rate Result Q MDL Rate Result Q Result Q Rate lbs/day Rate Ibs/day Rate lbs/day Maximum) lbs/day lbs/day Semi-Volatile Organic Compounds (µg/L) 2,4-Dichlorophenol 120-83-2 0.51 0.51 NA 0.51 0.51 NA 0.51 0.51 NΑ 0.51 0.51 NA 0.51 0.51 NA 10 Hexachloroethane 67-72-1 10 0.59 \subset 0.59 NA 0.59 0.59 NA 0.59 0.59 NA 0.59 U 0.59 NA 0.59 \cap 0.59 NA Naphthalene 91-20-3 U 0.76 0.76 0.76 NA 0.76 0.76 NA 0.76 U 0.76 0.76 0.76 NA 10 0.76 NA U NA U Metals (mg/L) 7440-38-2 0.036* 0.0056 U 0.0056 0.0056 0.0056 U 0.0056 0.0056 Arsenic 0.0013 0.0056 U 0.0013 0.0056 0.0013 0.0013 0.0056 U 0.0056 0.0013 U 7440-47-3 0.072* 0.001 0.001 0.0002 0.001 0.001 0.0002 0.001 0.001 0.0002 0.0015 0.001 0.0004 0.001 0.001 0.0002 Chromium 7440-50-8 0.1* 0.0016 0.0016 0.0004 0.0016 0.0016 0.0004 0.0016 0.0016 0.0004 0.0016 0.0016 0.0004 0.0016 0.0016 0.0004 Copper 7439-92-1 0.16* 0.0007 Lead 0.015 U 0.015 0.0036 0.015 0.015 0.0036 0.015 0.015 0.0036 0.015 U 0.015 0.0036 0.003 U 0.003 7440-02-0 0.072* 0.0039 0.0024 0.0006 Nickel 0.0013 0.0013 0.0003 0.0016 0.0013 0.0004 0.0013 0.0013 0.0003 0.0013 0.0009 0.0013 0.48* Selenium 7782-49-2 0.0087 0.0087 0.0021 0.0087 0.0087 0.0021 0.0087 0.0087 0.0021 0.0087 0.0087 0.0021 0.0087 0.0087 0.0021 U 0.86* Zinc 7440-66-6 0.011 0.0015 0.0026 0.019 0.0015 0.0046 0.0046 0.0015 0.0011 0.05 B 0.0015 0.0120 0.0034 J 0.0015 0.0008 Total Recoverable Phenolics (mg/L) Phenolics, Total STL00166 10 0.018 0.005 NA 0.012 0.005 NA 0.02 0.005 NA 0.0059 0.005 NA 0.011 0.005 NA

Notes:

Q : Data Qualifier

Recoverable (mg/l)

MDL : Method Detection Limit

B : Compound was found in the blank and sample.

Discharge Rate for metals assumes a 40 gpm system flow rate

^{*} Discharge limits for metals are in lbs/day

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

APPENDIX C LOW FLOW SAMPLING PURGE SHEETS

Site Name:				SMC Lewiston Water Quality Meter Make/Model: Horiba U-52												
1	-								_							
Location:	-			Lewisto	n, NY		•	Wate	er Qualit	y Meter S	Serial #:		222	203		
Project No.	.: _			130177	7301					Field Pe	rsonnel:			Ad	rian S.	
Weather:	_									Sig	gnature:					
Well ID:			W-18L		We	ll Depth:	79	ft below	тос		Screene	ed/Open	Interval:	42	to 71	ft BGS
Well Permit	it #:				Well Di	iameter:	4	inches								_
PID/FID Rea	adi	ngs	s (ppm)								Pur	np Intak	e Depth:	6	0 ft bel	low TOC
			ground:		0				Depth to	Water E		-	-			low TOC
Benes			ner Cap:		0	_										
						_										
TIME	PURGING	SAMPLING	pl (standar		SPEC CONDUC (µS/	CTIVITY	POTE	DOX NTIAL nV)	oxy	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PUMPING RATE	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING		READING	CHANGE*	READING	CHANGE*	(mL/min)	(ft below TOC)
9:55	х		7.28	-	2.58	-	-153	-	3.48	-	0	-	15.16	-	2 Liters	56.0
10:00	x		7.27	0.01	2.53	0.05	-160	7	0.64	2.84	0	0	15.13	0.03	3 Liters	56.1
10:05	x		7.30	0.03	2.59	0.06	-166	6	0.30	0.34	0	0	15.24	0.11	4 Liters	56.1
10:10	x		7.30	0	2.59	0	-173	7	0.25	0.05	0	0	15.32	0.08	5 Liters	56.0
10:15	X		7.30	0	2.57	0.02	-176	3	0.17	80.0	0	0	15.45	0.13	6 Liters	55.8
10:20	x		7.30	0	2.56	0.01	-178	2	0.12	0.05	0	0	15.50	0.05	7 Liters	55.3
10:25	x		7.29	0.01	2.55	0.01	-179	1	0.10	0.02	0	0	15.90	0.4	8 Liters	55.1
10:30	x	X	7.28	0.01	2.54	0.01	-179	0	0.09	0.01	0	0	15.78	0.12	9 Liters	55.1
i I																

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

Site Name	e:			SMC Le	wiston			Water Qu	uality Me	eter Mak	e/Model:		Horiba	U-5000						
Location:				Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		XASW	/76H9						
Project N	o.:			130177	7301					Field Pe	rsonnel:			An	gelo F.					
Weather:	,			80° partly	cloudy		· -			Si	gnature:									
							40							40						
Well ID:			W-66		-	II Depth:		_ft below 	TOC		Screene	ed/Open	Interval:	19	to 46	_ft BGS				
Well Pern	nit #	•			Well Di	iameter:	4	inches												
PID/FID R	eadi	ings	s (ppm)								Pur	np Intak	e Depth:	3	5 ft be l	low TOC				
	В	ack	ground:		0				Depth to	Water E	Before Pu	ump Inst	allation:	26	.05 ft be l	low TOC				
Bene	eath	Inr	ner Cap:		0	- -								11 Delow 100						
TIME	D D PH (standard units				SPEC CONDUC (µS/	CTIVITY	POTE	DOX :NTIAL nV)	ox	OLVED YGEN ng/L)		BIDITY TU)		RATURE C)	PUMPING RATE	DEPTH TO WATER				
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING		READING	CHANGE*	READING	CHANGE*	(mL/min)	(ft below TOC)				
10:20	х		7.19	-	1.24	-	179	-	6.53	-	18.4		16.91	-		25.63				
10:25	х		7.21	0.02	1.26	0.02	178	1	6.03	0.5	12.9	5.5	14.91	2		26.6				
10:30	х		7.18	0.03	1.26	0	166	12	5.16	0.87	13.3	0.4	14.55	0.36	~2.5 Liters	27.1				
10:35	х		7.17	0.01	1.26	0	163	3	4.93	0.23	10.5	2.8	14.44	0.11		27.3				
10:40	x		7.18	0.01	1.26	0	160	3	4.31	0.62	12.1	1.6	17.16	2.72		27.4				
10:45	х		7.22	0.04	1.30	0.04	158	2	4.26	0.05	8.3	3.8	19.52	2.36		28.0				
10:50	х		7.20	0.02	1.27	0.03	156	2	3.65	0.61	9.9	1.6	19.47	0.05		28.0				
10:55	х		7.18	0.02	1.24	0.03	155	1	3.19	0.46	7.5	2.4	17.09	2.38		28.2				
11:00	х		7.18	0	1.26	0.02	154	1	2.98	0.21	5.4	2.1	15.65	1.44	~3.5 Liters	28.5				
11:05	х		7.20	0.02	1.27	0.01	154	0	2.69	0.29	7.8	2.4	15.11	0.54		28.7				
11:10	х		7.18	0.02	1.27	0	153	1	2.57	0.12	4.6	3.2	15.04	0.07	~4.75 Liters	29.0				
11:15	х		7.20	0.02	1.27	0	154	1	2.36	0.21	3.5	1.1	15.16	0.12	~5.25 Liters	29.2				
11:20	х		7.20	0	1.27	0	155	1	2.43	0.07	2.2	1.3	15.30	0.14	~6.0 Liters	29.4				
11:25	x		7.19	0.01	1.26	0.01	155	0	2.03	0.4	1.1	1.1	15.40	0.1	~6.5 Liters	29.7				
COMMENTS	i:																			

Site Name	e:			SMC Le	wiston			Water Qเ	uality Me	eter Mak	e/Model:		Horiba	U-5000		
Location:				Lewisto	n, NY		- -	Wate	er Qualit	y Meter	Serial #:		XASW	/76H9		
Project N	o.:			13017	7301		_			Field Pe	rsonnel:			An	gelo F.	
Weather:				80° partly	/ cloudy		-			Si	gnature:					
Well ID:			W-66		Wel	l Depth:	46	ft below	тос		Screene	ed/Open	Interval:	19	to 46	ft BGS
Well Pern	nit #	! :			Well Di	ameter:	4	inches								_
PID/FID R	ead	inas	(maa)								Pun	np Intak	e Depth:	3	5 ft be	low TOC
		_	ground:		0				Depth to	Water E		-	-	-		low TOC
Bend	eath	ı Inı	ner Cap:		0	.			•			-				
TIME	TIME SPECIFIC CONDUCTIVI (µS/cm)						POTE	DOX NTIAL 1V)	ox	OLVED YGEN ng/L)		BIDITY TU)		RATURE C)	PUMPING RATE	DEPTH TO WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/min)	(ft below TOC)
11:30	x		7.20	-	1.26	-	158	-	1.81	-	0.2		15.66	-	~7.25 Liters	29.95
11:35	x		7.21	0.01	1.26	0	160	2	1.72	0.09	0.0	0.2	15.83	0.17	~7.75 Liters	30.1
11:40	x		7.22	0.01	1.26	0	161	1	1.57	0.15	0.2	0.2	15.96	0.13	~8.25 Liters	30.3
11:45	x	x	7.21	0.01	1.26	0	159	2	1.48	0.09	0.0	0.2	16.23	0.27	~9.0 Liters	30.5
	<u> </u>															
	-															
																+
	-															
																_
																_
	<u> </u>															
COMMENTS	<u> </u>															
COMMENTS	-															

Site Nam	e:			SMC Le	wiston			Water Qu	uality Me	eter Mak	e/Model:		Horiba	a U-52		
Location:	:			Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		21	160		
Project N	lo.:			13017	7301					Field Pe	rsonnel:			Ad	rian S.	
Weather:				Sunny	/ 83°					Sig	gnature:					
Well ID:			W-66L		Wa	II Depth:	67.9	ft below	TOC		Saraana	ed/Open	l4	55	4- 6	65 ft BGS
			VV-00L		-	-		-	100		Screene	ea/Open i	intervai:		to	T BGS
Well Pern	nit #	•			Well D	iameter:	2	inches								
PID/FID R	Read	ings	s (ppm)								Pur	np Intak	e Depth:	6	0 ft	below TOC
	В	ack	ground:		0				Depth to	Water E	Before Pi	ump Inst	allation:	49).7 ft	below TOC
Ben			ner Cap:		0	_			•			•				
						_										
	D pH SPECIFIC							рох		OLVED	TURE	BIDITY	TEMPE	RATURE	PUMPING	БЕРТН ТО
TIME	NE S	N	(standa	rd units)	CONDUC (µS/	CTIVITY (cm)		NTIAL nV)		YGEN ng/L)	(N	TU)	(°	C)	RATE	WATER
	PURGING	SAMPLING	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING		READING	CHANGE*	READING	CHANGE*	(mL/min)	(ft below TOC)
15:25	х		7.53	-	3.22	-	-6	-	3.03	-	70.2	-	18.27	-	-	48.85
15:30	х		7.49	0.04	3.79	0.57	-33	27	1.22	1.81	65.1	5.1	16.24	2.03	-	48.83
15:35	х		7.43	0.06	3.8	0.01	-30	3	0.57	0.65	48.5	16.6	15.79	0.45	-	48.52
15:40	х		7.36	0.07	3.41	0.39	-14	16	0.44	0.13	27.1	21.4	15.46	0.33	2 Liters	48.82
15:45	х		7.34	0.02	3.13	0.28	-95	81	0.38	0.06	13.4	13.7	15.15	0.31	3 Liters	48.82
15:50	х		7.32	0.02	2.98	0.15	-67	28	0.26	0.12	7.2	6.2	15.12	0.03	4 Liters	48.80
15:55	х		7.30	0.02	2.85	0.13	-38	29	0.21	0.05	1.3	5.9	14.9	0.22	4.5 Liters	48.80
16:00	х		7.30	0	2.8	0.05	-22	16	0.17	0.04	0	1.3	14.78	0.12	5 Liters	47.50
16:05	х		7.31	0.01	2.73	0.07	-13	9	0.07	0.10	0	0	14.68	0.1	6 Liters	47.50
							-4	9	0.01	0.06	0	0	14.54	0.14	7 Liters	
16:10	x	X	7.30	0.01	2.71	0.02						_	17.57	0.14	/ Liters	
	x	X	7.30	0.01	2.71	0.02							14.54	0.14	7 Liters	
	x	X	7.30	0.01	2.71	0.02							14.54	0.14	/ Liters	
	x	X	7.30	0.01	2.71	0.02							14.04	0.14	7 Liters	

1	: _			SMC Lev	wiston			Water Q	uality Me	eter Mak	e/Model:		Horiba	u-52		
Location:	_			Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		21	60		
Project No				130177	7301					Field Pe	rsonnel:			Ac	drian S.	
Weather:	_			Sunny	83°					Sig	gnature:					
Well ID:			LR-20		We	II Depth:	85	ft below	тос		Screene	ed/Open	Interval:	75	to 85	ft BGS
Well Permi	it #:	١ .			Well D	iameter:	2	inches								_
PID/FID Re	adi	nas	(maa)								Pur	np Intak	e Depth:	8	30 ft b e	elow TOC
		•	ground:		0				Depth to	Water E		-	-			elow TOC
Benea			ner Cap:		0	<u>-</u>			_ _	-						
TIME	TIME US PH SPECIFIC CONDUCTIVIT (µS/cm)					CTIVITY	POTE	DOX NTIAL nV)	ох	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PUMPING RATE (Liters	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING		READING	CHANGE*	READING	CHANGE*	(21.010	(ft below TOC)
17:30	х		7.61	-	1.53	-	735	-	2.94	-	520		26.01		-	41.40
17:35	x		7.48	0.13	2.65	1.12	492	243	1.32	1.62	487	33	21.34	4.67	0.5	41.35
17:40	x		7.75	0.27	2.58	0.07	355	137	1.7	0.38	277	210	20.14	1.2	-	41.35
17:45	х		7.42	0.33	2.2	0.38	291	64	0.82	0.88	150	127	19.72	0.42	2	41.35
17:50	x		7.37	0.05	1.93	0.27	269	22	0.65	0.17	107	43	18.97	0.75	3	41.35
17:55	x		7.37	0	1.83	0.1	247	22	0.5	0.15	91.6	15.4	19.08	0.11	4	41.40
18:00	x		7.33	0.04	1.78	0.05	226	21	0.43	0.07	72	19.6	19.76	0.68	4.5	41.40
18:05	х		7.29	0.04	1.77	0.01	207	19	0.42	0.01	73.5	1.5	18.79	0.97	5	41.40
18:10	х		7.27	0.02	1.76	0.01	191	16	0.37	0.05	61.7	11.8	18.48	0.31	5.5	41.40
18:15	x		7.29	0.02	1.77	0.01	197	6	0.67	0.3	54.1	7.6	18.41	0.07	6	41.40
18:20	x		7.25	0.04	1.71	0.06	192	5	0.33	0.34	49.5	4.6	18.44	0.03	6.5	41.40
18:25	х	X	7.21	0.04	1.71	0	186	6	0.28	0.05	47.8	1.7	18.48	0.04	7	41.40
COMMENTS:			I	ı		I .				<u>I</u>	I		I		Ш	1

Langan Engineering and Environmental Services (NJDEP Laboratory PA035)

Site Nam	e:			SMC Lev	wiston			Water Qu	ality Me	eter Make	e/Model:		Horiba	a U-52		
Location:	:			Lewisto	n, NY			Wate	r Qualit	y Meter (Serial #:		PCHE	F6F2		
Project N	lo.:			130177	7301					Field Pe	rsonnel:			An	gelo F.	
Weather:				80° St	unny					Sig	gnature:					
Well ID:			R-50		Wel	I Depth:	146	ft below		Screene	ed/Open	Interval:	90	to	141 ft BG	 S
Well Pern	nit #	:			Well Di	ameter:	4	inches						-		
PID/FID R Ben	В	ack	ground: ger Cap:		0	-		ı	Depth to	o Water E		np Intake	•			ow TOC ow TOC
TIME	PURGING	SAMPLING	pi (standar		SPEC CONDUC (µS/	TIVITY	POTE	DOX NTIAL 1V)	ox	OLVED YGEN ng/L)		SIDITY FU)		RATURE C)	PUMPING RATE	DEPTH TO WATER
	P. P.	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/min)	(ft below TOC
20:05	X		6.69	-	100	-	-14	-	1.72	-	34.6	-	17.54	-		74.80
20:10	X		6.47	0.22	100	0	2.0	16	1.31	0.41	28.9	5.7	14.48	3.06		74.80
20:15	X		6.44	0.03	100	0	-10.0	12	0.89	0.42	25.3	3.6	14.01	0.47	~2 Liters	
					100	0	-18.0	8	0.69	0.2	24.9	0.4	13.59	0.42	2.75 Liters	
20:20	Х		6.43	0.01	100				0.03	0.2						
20:20 20:25	x		6.43	0.01	100	0	-27.0	9	0.58	0.11	26.2	1.3	13.39	0.2	3.5 Liters	
							-27.0 -36.0	9				1.3 7.4	13.39 12.7	0.2	3.5 Liters 4.75 Liters	
20:25	х		6.41	0.02	100	0			0.58	0.11	26.2					
20:25 20:30	x		6.41	0.02	100	0	-36.0	9	0.58	0.11	26.2 33.6	7.4	12.7	0.69	4.75 Liters	
20:25 20:30 20:35	x x x		6.41 6.38 6.22	0.02 0.03 0.16	100 100 100	0 0	-36.0 -40.0	9	0.58 0.59 0.35	0.11 0.01 0.24	26.2 33.6 28	7.4 5.6	12.7	0.69	4.75 Liters 5.75 Liters	
20:25 20:30 20:35 20:40	x x x		6.41 6.38 6.22 5.98	0.02 0.03 0.16 0.24	100 100 100 100	0 0 0	-36.0 -40.0 -64.0	9 4 24	0.58 0.59 0.35 0.36	0.11 0.01 0.24 0.01	26.2 33.6 28 24.8	7.4 5.6 3.2	12.7 12.39 12.38	0.69 0.31 0.01	4.75 Liters 5.75 Liters 6.75 Liters	
20:25 20:30 20:35 20:40 20:45	x x x x		6.41 6.38 6.22 5.98 5.94	0.02 0.03 0.16 0.24 0.04	100 100 100 100 100	0 0 0 0 0 0	-36.0 -40.0 -64.0 -94.0	9 4 24 30	0.58 0.59 0.35 0.36 0.33	0.11 0.01 0.24 0.01 0.03	26.2 33.6 28 24.8 24.5	7.4 5.6 3.2 0.3	12.7 12.39 12.38 12.14	0.69 0.31 0.01 0.24	4.75 Liters 5.75 Liters 6.75 Liters 7.75 Liters	
20:25 20:30 20:35 20:40 20:45 20:50	x x x x x		6.41 6.38 6.22 5.98 5.94 5.93	0.02 0.03 0.16 0.24 0.04	100 100 100 100 100 100	0 0 0 0	-36.0 -40.0 -64.0 -94.0 -113	9 4 24 30 19	0.58 0.59 0.35 0.36 0.33 0.35	0.11 0.01 0.24 0.01 0.03	26.2 33.6 28 24.8 24.5 16.5	7.4 5.6 3.2 0.3	12.7 12.39 12.38 12.14 12.2	0.69 0.31 0.01 0.24 0.06	4.75 Liters 5.75 Liters 6.75 Liters 7.75 Liters 9 Liters	
20:25 20:30 20:35 20:40 20:45 20:50 20:55	x x x x x x		6.41 6.38 6.22 5.98 5.94 5.93	0.02 0.03 0.16 0.24 0.04 0.01	100 100 100 100 100 100 100	0 0 0 0 0	-36.0 -40.0 -64.0 -94.0 -113 -108	9 4 24 30 19 5	0.58 0.59 0.35 0.36 0.33 0.35 0.23	0.11 0.01 0.24 0.01 0.03 0.02 0.12	26.2 33.6 28 24.8 24.5 16.5	7.4 5.6 3.2 0.3 8 15.3	12.7 12.39 12.38 12.14 12.2 14.25	0.69 0.31 0.01 0.24 0.06 2.05	4.75 Liters 5.75 Liters 6.75 Liters 7.75 Liters 9 Liters 9.5 Liters	

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

duplicate taken (dup1)

water level meter not working due to groundwater conductivity

Water Quality Meter Make/Model: Horiba U-52	
Water Quality Meter Serial #: PCHDF6F2	
Field Personnel: Angelo F.	
Signature:	
7.1 ft below TOC Screened/Open Interval: 63.7 to 73.7	<u> </u>
	ft BGS
2 inches	
Pump Intake Depth: 70.1 ft bel	low TOC
Depth to Water Before Pump Installation: 35.8 ft bel	low TOC
•	
REDOX DISSOLVED TURBIDITY TEMPERATURE PUMPING POTENTIAL (mV) (mg/L) (NTU) (°C) RATE	DEPTH TO WATER
DING CHANGE* READING CHANGE* READING CHANGE* (mL/min)	(ft below TOC)
	34.10
91 12 0.82 1.57 9.6 13.3 13.59 4.48	34.90
97 6 0.36 0.46 4.7 4.9 13.12 0.47 ~2.5 Liters	35.15
02 5 0.21 0.15 3.2 1.5 12.86 0.26 4 Liters	35.30
09 7 0.19 0.02 1.4 1.8 12.59 0.27 5 Liters	35.40
14 5 0.18 0.01 1.7 0.3 12.51 0.08 6 Liters	35.45
15 1 0.18 0 0.7 1 12.4 0.11 7.5 Liters	35.45
14 1 0.16 0.02 0.4 0.3 12.34 0.06 9 Liters	35.50
	

Site Name: SMC Lewiston Water Quality Meter Make/Model: Horiba U-52 Water Quality Meter Serial #: 25212 Location: Lewiston, NY Field Personnel: Adrian S. Project No.: 130177301 Weather: Sunny 83F Signature: 106.5 Well ID: LR-62 Well Depth: ft below TOC Screened/Open Interval: 83 103 **ft BGS** Well Permit #: **Well Diameter:** inches PID/FID Readings (ppm) ft below TOC Pump Intake Depth: Background: **Depth to Water Before Pump Installation:** 62.5 ft below TOC **Beneath Inner Cap:** SPECIFIC REDOX DISSOLVED SAMPLING рΗ **TURBIDITY TEMPERATURE** PURGING **PUMPING DEPTH TO POTENTIAL** CONDUCTIVITY **OXYGEN** (standard units) (NTU) (°C) TIME RATE WATER (µS/cm) (mV) (mg/L) (mL/min) (ft below TOC) READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* 19:50 X 7.76 5.3 -35 2.47 53 21.09 61.3 19:55 8.09 0.33 7.14 1.84 -54 19 1.13 1.34 44 9 15.47 5.62 1 Liter 61.6 Х 20:00 8.12 0.03 7.58 0.44 -159 105 0.49 0.64 47.5 3.5 14.21 1.26 2 Liters 61.6 3 Liters 63.1 20:05 8.12 0 7.57 0.01 -145 14 0.26 0.23 38 13.9 0.31 X 0.22 34 13.72 20:10 8.15 0.03 7.52 0.05 -143 2 0.04 0.18 4 Liters 63.1 20:15 8.09 0.06 7.46 0.06 -149 6 0.15 0.07 26.2 13.46 0.26 5 Liters 63.7 7.8 7.43 20:20 X 0.02 13.4 6 Liters 64.1 8.13 0.04 0.03 -159 10 0.13 23.3 2.9 0.06 20:25 X X 8.08 0.05 0.03 0.05 0.03 24 13.41 6.5 Liters 61.4 7.4 -164 0.7 0.01 COMMENTS:

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

Site Name	e:			SMC Le	wiston			Water Qu	uality Me	eter Mak	e/Model:		Horiba	a U-52		
Location:	!			Lewisto	n, NY		•	Wate	er Qualit	y Meter :	Serial #:		247	741		
Project N	0.:			13017	7301		•			Field Pe	rsonnel:			Adı	rian S.	
Weather:				Sunny	y 83					Sig	gnature:					
Well ID:			R-62		Wel	II Depth:	163	ft below	тос		Screene	ed/Open	Interval:	104	to 159	.9 ft BGS
Well Pern	nit #	:			Well Di	iameter:	4	inches								_
PID/FID R												np Intak	_			elow TOC
Bene			ground: ner Cap:		0.3	-			Depth to	Water E	Before P) ft b	elow TOC			
TIME	PURGING	SAMPLING		H rd units)	SPEC CONDUC (µS/	CTIVITY	POTE	DOX ENTIAL nV)	(mg/L) (NTU) (°C) RATE							DEPTH TO WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/min)	(ft below TOC)
18:05	х		6.88	-	100	-	-42	-	2.14	-	0	-	18.91	-		67.4
18:10	х		6.70	0.18	100	0	-38.0	4	1.53	0.61	0	0	17.48	1.43	1 Liter	69.0
18:15	х		6.30	0.4	100	0	-49.0	11	0.58	0.95	0	0	15.45	2.03	2 Liters	69.1
18:20	Х		6.30	0	100	0	-59.0	10	0.59	0.01	0	0	15.33	0.12	2.5 Liters	69.1
18:25	X		6.27	0.03	100	0	-48.0	11	0.55	0.04	0	0	15.41	80.0	3 Liters	69.1
18:30	X	X	6.30	0.03	100	0	-49.0	1	0.55	0	0	0	15.51	0.1	3 Liters	69.1
COMMENTS):															

Site Name	e:			SMC Le	wiston		-	Water Qu	uality Me	eter Mak	e/Model:		Horiba	a U-52		
Location:				Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		illeg	jible		
Project N	o.:			13017	7301		<u>-</u> .			Field Pe	rsonnel:			An	igelo F.	
Weather:				Sunny	85F					Sig	gnature:					
Well ID:			D 10		Wa	II Danth.	141	ft below	TOC		Savaana	- d/O	latamal.	0.E	4- 151	# BCC
			R-19		-	II Depth:		-	100		Screene	ed/Open	intervai:	95	to 151	ft BGS
Well Perm	nit #	:			Well D	iameter:	4	inches								
PID/FID R	ead	ings	s (ppm)								Pur	np Intak	e Depth:	1	15 ft b e	elow TOC
	В	ack	ground:		0				Depth to	Water E	Before P	ump Inst	allation:	60).9 ft be	elow TOC
Ren			ner Cap:		0	_										
			Cup.			=										
TIME	AMPLING		-	H rd units)	SPEC CONDUC (µS/	CTIVITY	POTE	DOX NTIAL nV)	ox	OLVED YGEN ng/L)		BIDITY TU)		RATURE C)	PUMPING VOLUME	DEPTH TO WATER
	PURG	SAMP	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING		READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
10:20	х		7.33	-	11.6	-	-142	-	1.54	-	39.8	-	15.73	-		60.1
10:25	х		7.31	0.02	16.1	4.5	-196	54	0.79	0.75	33.4	6.4	14.83	0.9	2	60.8
10:30	х		7.31	0	16.5	0.4	-212	16	0.63	0.16	36.4	3	14.23	0.6	3	21.2
10:35	x		7.3	0.01	16.5	0	-218	6	0.32	0.31	42.3	5.9	14.10	0.13	4	21.5
10:40	x		7.24	0.06	16.4	0.1	-223	5	0.20	0.12	25.3	17	14.03	0.07	5	21.9
10:45	х		7.27	0.03	16.4	0	-228	5	0.18	0.02	25.1	0.2	13.97	0.06	6	62.2
10:50	х		7.24	0.03	16.4	0	-228	0	0.22	0.04	27.9	2.8	13.98	0.01	7	62.5
10:55	x		7.23	0.01	16.2	0.2	-227	1	0.19	0.03	30.3	2.4	13.79	0.19	8	62.7
11:00	x		7.27	0.04	15.9	0.3	-234	7	0.2	0.01	32.8	2.5	16.50	2.71	8.5	62.8
11:05	x		7.25	0.02	16	0.1	-225	9	0.18	0.02	34.3	1.5	15.12	1.38	9.25	62.9
11:10		X	7.18	0.07	16	0	-225	0	0.17	0.01	38.3	4	14.35	0.77	10	63.1
•																
	-															

Site Nam	e:			SMC Le	wiston		-	Water Q	uality Me	eter Mak	e/Model:		Horiba	a U-52		
Location:	ŀ			Lewisto	n, NY		_	Wate	er Qualit	y Meter	Serial #:		XASV	V76H9		
Project N	lo.:			13017	7301					Field Pe	rsonnel:			An	gelo F.	
Weather:				Sunny	80F		<u>.</u>			Sig	gnature:					
Well ID:			LR-51		We	II Depth:	66.65	ft below	TOC		Screen	ed/Open	Interval:	54	to 64	ft BGS
Well Pern	nit #	:			=	iameter:		inches								
PID/FID R	ead	ings	s (ppm)								Pur	np Intak	e Depth:	6	1 ft b	elow TOC
	В	ack	ground:		0	_			Depth to	Water E	Before P	ump Inst	allation:	31	.1 ft b	elow TOC
Ben	eath	In	ner Cap:		0	-										
TIME	MP ING BWIT			H rd units)	SPEC CONDUC (µS/	CTIVITY	POTE	DOX ENTIAL nV)	ox	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PUMPING VOLUME	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
16:45	х		7.26	-	2.13	-	-67	-	1.98	-	17.1	-	16.17	-		28.40
16:50	x		7.21	0.05	2.27	0.14	-82	15	0.66	1.32	5.2	11.9	14.62	1.55	2	28.90
16:55	x		7.14	0.07	2.3	0.03	-86	4	0.35	0.31	0.4	4.8	14.15	0.47	2.75	28.95
17:00	x		7.13	0.01	2.32	0.02	-81	5	0.15	0.2	0.0	0.4	13.74	0.41	3.75	
17:05	x		7.20	0.07	2.34	0.02	-76	5	0.30	0.15	0.0	0	13.60	0.14	4.75	
17:10	X		7.18	0.02	2.34	0	-79	3	0.09	0.21	0.0	0	13.53	0.07	5.75	29.30
17:15	X		7.16	0.02	2.35	0.01	-77	2	0.02	0.07	0.0	0	13.57	0.04	6.5	29.40
17:20	X		7.12	0.04	2.36	0.01	-74	3	0.00	0.02	0.0	0	13.36	0.21	7.5	29.45
17:25		X	7.12	0	2.37	0.01	-70	4	0.00	0	0.0	0	13.27	0.09	8.5	29.60
	-															
	<u> </u>															
no cation/anio		ple														
DUP-2 taken																

Site Name:				SMC Le	wiston		•	eter Mak	e/Model:		Horiba					
Location:			Lewisto	n, NY			y Meter	Serial #:		XASV						
Project No.: Weather:			130177301					Field Personnel:							gelo F.	
				Sunny	85F					Sig	gnature:					
Well ID:	W-20			Well Depth:		29.3	ft below	тос		Screene	ed/Open l	Interval:	15	to 24.9	ft BGS	
Well Pern	nit #	:			Well Diameter:		2	inches				•				_
DID/FID D		•	. (D		- Danth.		<i></i>	TOO
PID/FID K		ngs (ppm)					Pump Intake Depth: 26.5 Depth to Water Before Pump Installation: 20.5								ft below TOC	
			ground:		0	-			Depth to	Water E	Setore P	ump Inst	allation:	20	.5 ft be	low TOC
Ben	eatn	ıını	ner Cap:		0	-										
TIME	PURGING	SAMPLING	pH (standard units)		SPECIFIC CONDUCTIVITY (µS/cm)		REDOX POTENTIAL (mV)		DISSOLVED OXYGEN (mg/L)		TURBIDITY (NTU)		TEMPERATURE (°C)		PUMPING VOLUME	DEPTH TO WATER
	PUR		READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING		READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
13:00	х		7.57	-	3.11	-	60	-	0.96	-	2.9	-	13.65	-		22.1
13:05	х		7.59	0.02	2.81	0.3	-69	129	0.67	0.29	1	1.9	14.92	1.27	2.0	22.6
13:10	x		7.58	0.01	2.82	0.01	-48	21	0.95	0.28	0.7	0.3	13.50	1.42	3.0	23.3
13:15	x		7.61	0.03	2.69	0.13	48	96	1.68	0.73	0.0	0.7	17.0	3.5	4.0	24.3
13:20	x		7.61	0	2.72	0.03	35	13	1.08	0.6	0.0	0	16.40	0.6	4.5	24.4
13:25	x		7.58	0.03	2.73	0.01	33	2	0.75	0.33	0.0	0	15.24	1.16	5.0	24.7
13:30	x		7.6	0.02	2.70	0.03	30	3	0.54	0.21	0.0	0	15.37	0.13	5.5	25.0
13:35	x		7.59	0.01	2.70	0	31	1	0.49	0.05	0.0	0	15.38	0.01	6.0	25.5
13:40	x		7.59	0	2.69	0.01	33	2	0.42	0.07	0.0	0	15.53	0.15	6.5	25.7
42.45		x	7.59	0	2.73	0.04	31	2	0.4	0.02	0.0	0	15.49	0.04	7.0	26.2
13:45																
13:45																
13:45																
13:45																

Site Name: Location: Project No.: Weather:				SMC Le	wiston			eter Mak	e/Model:	Horiba U-52							
				Lewisto	n, NY			Water Quality Meter Serial #:						RBE9TX83			
		130177301						Field Personnel:									
				Sunny	80F					Sig	gnature:						
							•										
Well ID:	W-50L			Well Depth:		39.5	ft below	тос		Screene	ed/Open	Interval:		to	ft BGS		
Well Pern	nit #	:			Well Di	iameter:	6	inches									
PID/FID R	ead	inas	s (nnm)								Pur	np Intak	e Denth:	3	6 ft i	pelow TOC	
	,							Donth to	Water E		•	•			pelow TOC		
_			•	-	0	_			Depth to) water E	selore P	ump mst	anation:		.95 11 1	Jelow TOC	
Ben	eath	In	ner Cap:		0	_											
					SPEC	EIFIC	RF	DOX	DISS	OLVED							
TIME	9	SAMPLING	pH (standard units)		CONDUCTIVITY (µS/cm)		POTENTIAL		OXYGEN		TURBIDITY		TEMPERATURE		PURGE VOLUME	DEPTH TO	
	PURGING						(n	(mV)		(mg/L)		(NTU)		(°C)		WATER (ft below TOC)	
	PUF		READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(It below 100)	
9:55	х		7.1	-	3.33	-	-36	-	1.09	-	5.4	-	20.90	-		34.1	
10:00	X		7.05	0.05	3.35	0.02	-31	5	0.65	0.44	5.6	0.2	20.15	0.75		34.4	
10:05	x		7.05	0	3.39	0.04	-10	21	0.56	0.09	6.4	0.8	19.92	0.23	3	34.55	
10:10	x		7.07	0.02	3.37	0.02	1	11	0.46	0.1	5.7	0.7	19.88	0.04	4	34.7	
10:15	x		7.08	0.01	3.41	0.04	8	7	0.50	0.04	5.8	0.1	20.09	0.21	4.75	34.75	
10:20	х		7.07	0.01	3.36	0.05	14	6	0.63	0.13	4.4	1.4	20.43	0.34	5.5	34.9	
10:25	х		7.09	0.02	3.33	0.03	19	5	0.64	0.01	4.4	0	20.77	0.34	6	35.0	
10:30	х		7.11	0.02	3.29	0.04	23	4	0.6	0.04	4.3	0.1	21.10	0.33	7	35.15	
10:35	х		7.11	0	3.22	0.07	14	9	0.44	0.16	4.1	0.2	21.60	0.5	8.25	35.4	
10:40	х		7.09	0.02	3.23	0.01	16	2	0.45	0.01	3.9	0.2	21.80	0.2	9	35.6	
10:45	х		7.08	0.01	3.22	0.01	18	2	0.43	0.02	4.2	0.3	22.08	0.28	10	35.7	
10:50		х	7.11	0.03	3.19	0.03	18	0	0.41	0.02	3.3	0.9	22.58	0.5	11	35.8	
COMMENTS):																

Site Name	e:			SMC Le	wiston			Water Qu	uality Me	eter Mak	e/Model:		Horiba	a U-52		
Location:				Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		252	212		
Project N	o.:			13017	7301					Field Pe	rsonnel:			Ad	drian S.	
Weather:							•			Sig	gnature:					
Well ID:			W-16L		We	l Depth:	68.4	ft below	TOC		Screene	ed/Open	Interval:	55	to 65	ft BGS
Well Pern	nit #	:			Well Di	ameter:		inches								
PID/FID R	eadi	ings	s (ppm)								Pur	np Intak	e Depth:		ft bel	low TOC
	В	ack	ground:		0	_			Depth to	Water E	Before P	ump Inst	allation:	58	3.8 ft be l	low TOC
Bend	eath	Inr	ner Cap:		0	-										
TIME	TIME DE CONDUCTIVITY (µS/cm) READING CHANGE READING CHANG						POTE	DOX NTIAL 1V)	ox	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PURGE VOLUME	DEPTH TO WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	(Lite				(ft below TOC)
9:45	х		7.14	-	4.06	-	-236	-	1.81	-	17.1	-	17.27	-	-	56.6
9:50	x		7.13	0.01	4.04	0.02	-264	28	0.67	1.14	17.6	0.5	15.31	1.96	2	56.7
9:55	X		1.09	6.04	4.05	0.01	-270	6	0.21	0.46	131	113.4	14.75	0.56	3	56.4
10:00	X		7.12	6.03	4.13	0.08	-278	8	0.05	0.16	104	27	14.58	0.17	4.5	56.4
10:05	x		7.13	0.01	4.12	0.01	-280	2	0.01	0.04	62	42	14.50	0.08	6	56
10:10	x		7.19	0.06	4.16	0.04	-282	2	0.11	0.1	34	28	14.41	0.09	7	56
10:15	x		7.11	0.08	4.15	0.01	-288	6	0	0.11	20.9	13.1	14.38	0.03	8	55.6
10:20	x		7.09	0.02	4.14	0.01	-283	5	0	0	16.2	4.7	14.50	0.12	9.5	56.2
10:25	x		7.11	0.02	4.13	0.01	-284	1	0	0	24.9	8.7	14.67	0.17	11	56.4
10:30	x		7.07	0.04	4.14	0.01	-290	6	0	0	22.6	2.3	14.56	0.11	12	56.4
10:35	x		7.12	0.05	4.14	0	-287	3	0	0	12.2	10.4	14.77	0.21	14	56
10:40	x		7.11	0.01	4.15	0.01	-287	0	0	0	7.2	5	14.77	0	15	56
10:45	x	x	7.11	0	4.15	0	-280	7	0	0	3.9	3.3	14.56	0.21	16	56
COMMENTS	i:															

Site Nam		SMC Lewiston Water Quality Meter Make/Model: Horiba U-52														
							-		-							
Location	•			Lewisto	n, NY		-	Wate	er Qualit	y Meter :	Serial #:		252	212		
Project N	lo.:			13017	7301		<u>=</u>			Field Pe	rsonnel:			Ad	Irian S.	
Weather:							-			Sig	gnature:					
							70.45									
Well ID:			W-70L		-	l Depth:		ft below	тос		Screene	ed/Open	Interval:	42	to 72	_ft BGS
Well Perr	nit #	:			Well Di	ameter:	6	inches								
PID/FID R	Read	ings	s (ppm)								Pur	np Intak	e Depth:		ft be	low TOC
	В	ack	ground:		0				Depth to	Water E	Before Pi	ump Inst	allation:	48	 3.1 ft be	low TOC
Ben			ner Cap:		0	-			•			•			<u>·</u>	
						-										
TIME	D Z PH COI					IFIC CTIVITY cm)	POTE	DOX :NTIAL nV)	ох	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PURGE VOLUME	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
15:40	х		6.89	-	10.4	-	-169	-	8.70	-	0	-	18.15	-	0.5	48.2
15:45	x		6.85	0.04	10.3	0.1	-183	14	1.18	7.52	0	0	15.99	2.16	1.5	48.35
15:50	x		6.83	0.02	10.3	0	-195	12	1.92	0.74	0	0	15.09	0.9	2	48.5
15:55	x		6.82	0.01	10.3	0	-203	8	1.23	0.69	0	0	14.74	0.35	3	48.7
16:00	x		6.83	0.01	10.2	0.1	-209	6	0.64	0.59	0	0	14.39	0.35	4	49.0
16:05	x		6.86	0.03	10.3	0.1	-206	3	0.53	0.11	0	0	15.61	1.22	5	49.0
16:10	x		6.85	0.01	10.4	0.1	-205	1	0.93	0.4	0	0	15.41	0.2	6	49.1
COMMENTS	S:															

Site Nam																
Location:	•			Lewisto	n, NY		<u>.</u>	Wate	er Qualit	y Meter	Serial #:		222	203		
Project N	lo.:			13017	7301		_			Field Pe	rsonnel:			Ad	rian S.	
Weather:										Sig	gnature:					
Well ID:			W-65		We	II Depth:	60.4	ft below	тос		Screene	ed/Open l	Interval:	23	to 55	ft BGS
Well Pern	nit #	:			-	iameter:		inches								
DID/FID F		•	- (D	14	- Da4l		£4 h.a.	TOO
PID/FID R		_	,						D			np Intak	•			low TOC
_			(ground:		0	_			Depth to	Water E	Setore P	ump Inst	allation:	4	0 ft be	low TOC
Ben	eath	i Ini	ner Cap:		0	_										
TIME	PURGING	SAMPLING	-	H rd units)	SPEC CONDUC (µS/	CTIVITY	POTE	DOX ENTIAL nV)	ох	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PURGE VOLUME	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
17:35	х		7.24	-	2.54	-	-55	-		-	0		18.26	-	-	40.0
17:40	х		7.15	0.09	2.66	0.12	-57	2		0	0	0	14.62	3.64	2	40.35
17:45	x		7.11	0.04	2.64	0.02	-59	2		0	0	0	14.42	0.2	3.5	40.8
17:50	x		7.12	0.01	2.61	0.03	-60	1		0	0	0	14.12	0.3	5	41.0
17:55	X		7.12	0	2.58	0.03	-57	3	0.08	0.08	0	0	14.00	0.12	6.5	41.3
18:00	х		7.12	0	2.57	0.01	-56	1	0.07	0.01	0	0	14.00	0	8	41.6
18:05	x	X	7.12	0	2.58	0.01	-55	1	0.08	0.01	0	0	14.01	0.01	9.5	41.9
4																
	_	 		1												

Water Quality Meter Make/Model: Horiba U-52	
Water Quality Meter Serial #: 22203	
Field Personnel:	Adrian S.
Signature:	
Depth: 42.6 ft below TOC Screened/Open Interval: 15	to 40 ft BGS
meter: inches	
Pump Intake Depth:	ft below TOC
Depth to Water Before Pump Installation:	17.6 ft below TOC
IC REDOX DISSOLVED TURBIDITY TEMPERATURE OXYGEN (NTU) (°C)	VOLUME WATER
HANGE' READING CHANGE' READING CHANGE' READING CHANGE	(Liters) (ft below TOC)
96 - 0.82 - 2.3 - 13.38 -	2 17.0
0 -103 7 0.29 0.53 2.4 0.1 12.94 0.44	3 18.0
0 -109 6 0.13 0.16 3 0.6 12.54 0.4	4 18.1
0 -111 2 0.07 0.06 3.5 0.5 12.35 0.19	5 18.2
0 -112 1 0.04 0.03 3.3 0.2 12.69 0.34	6 18.2

Site Nam	e:			SMC Le	wiston			Water Qu	alitv Me	ter Mak	e/Model:	el: Horiba U-52					
Location				Lewisto					-	y Meter			15′			•	
								wate		_			15			=	
Project N	lo.:			13017	7301					Field Pe	rsonnel:			Ac	Irian S.		
Weather:										Sig	gnature:						
Well ID:			W-67L		We	II Depth:	73	ft below		Screene	ed/Open	Interval:	50	to	70	ft BG	S
Well Perr	nit #	:			Well D	iameter:	2	inches				•		•		•	
PID/FID R	ead.	ina	= (nnm)								Dur	np Intake	Donth			ft hal	ow TOC
PID/FID R		_	,		0				Daw4h 4a	. Watar F		-	-				ow TOC
_			ground:		0	-			Deptn to	water E	serore P	ump Insta	allation:	- 53	3.7	Tt bei	ow IOC
Ben	eath	Ini	ner Cap:		0	=											
TIME	TIME UN SPECIFIC CONDUCTIVIT (pS/cm) READING CHANGE* READING CHAN							DOX INTIAL	ox	OLVED YGEN		BIDITY TU)		RATURE C)	PURC		DEPTH TO WATER
111112	PURGING	AMPI	READING	CHANGE*	(μS/ READING	CHANGE*	(n READING	CHANGE*	(m	g/L) CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liter		(ft below TOC)
11:45	X	S	7.01	-	4.92	-	-51	- CHANGE	12.85	-	14.5	- CHANGE	16.12	-	2		54.9
11:45	x		6.95	0.06	4.82	0.1	-39	12	11.27	1.58	23.8	9.3	15.82	0.3	3		55.2
11:55	x		6.9	0.05	4.02	0.12	-24	15	10.94	0.33	36.1	12.3	15.62	0.14	3.5		55.8
12:00	x		6.89	0.03	4.65	0.12	-9	15	11.05	0.33	46.6	10.5	15.93	0.03	4		56.1
12:05	x		6.87	0.01	4.69	0.04	36	45	3.85	7.2	3.2	43.4	15.83	0.03	6		56.5
12:10	x		6.86	0.01	4.61	0.08	35	1	3.72	0.13	1.6	1.6	16.29	0.46	6		57.0
12:15	x		6.81	0.05	4.5	0.11	52	17	4.1	0.38	1.5	0.1	16.01	0.28	7		57.1
12:20	х		6.87	0.06	4.5	0	52	0	4.29	0.19	1.4	0.1	15.92	0.09	8		57.8
12:25	х		6.86	0.01	4.43	0.07	50	2	4.49	0.2	0.4	1	15.43	0.49	8.5	1	58.3
12:30	х		6.85	0.01	4.34	0.09	60	10	4.95	0.46	0	0.4	15.97	0.54	9		58.7
	х	х	6.85	0	4.29	0.05	63	3	4.29	0.66	0	0	16	0.03	10		59.2
12:35																	
12:35																	
12:35																	

Site Nam	SMC Lewiston cocation: Lewiston, NY							Water Qu	ıality Me	eter Mak	e/Model:		Horiba	a U-52		
Location	:			Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		22:	203		
Project N	lo.:			13017	7301					Field Pe	rsonnel:			Ad	rian S.	
Weather:				Dark Cal	m 71F					Sig	gnature:					
			W 40D		347	U.B41.	31.9	64 1 1 .							4 -	" POO
Well ID:		<u> </u>	W-18R		•	II Depth:		ft below	100		Screene	ed/Open	intervai:		to	_ft BGS
Well Pern	nit #	•			well D	iameter:	4	inches								
PID/FID R	Read	ings	s (ppm)								Pur	np Intak	e Depth:		ft be	low TOC
			ground:		0				Depth to	Water E	Before Pi	ump Inst	allation:	27	.8 ft be	low TOC
Ben	eath	In	ner Cap:		0	-			•			•			<u>-i</u>	
	,		1		T	-			1		T		ı	1		1
	o	D	-	Н		CIFIC CTIVITY		DOX :NTIAL		OLVED YGEN		BIDITY		RATURE	PURGE	DEPTH TO
TIME	PURGING	SAMPLING	(standa	rd units)	(μS/			nV)		ıg/L)	(N	TU)	(°	C)	VOLUME	WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
0:20	х		10.50	-	5.57	-	-190	-	1.04	-	62.8	-	13.88	-	1	28.1
0:25	х		10.46	0.04	5.33	0.24	-191	1	1.03	0.01	32.9	29.9	13.01	0.87	2	28.5
0:30	х		10.16	0.3	3.88	1.45	-176	15	2.20	1.17	4.1	28.8	12.90	0.11	3	29.0
0:35	х		10.02	0.14	3.34	0.54	-188	12	3.26	1.06	4.2	0.1	14.45	1.55	4	29.4
0:40	x		10.14	0.12	3.74	0.4	-202	14	2.40	0.86	4.1	0.1	12.25	2.2	5	30.1
0:45	х	X	10.32	0.18	3.76	0.02	-198	4	2.20	0.2	3.9	0.2	12.45	0.2	6	30.5

Site Nam	e:			SMC Le	wiston		-	Water Q	uality Me	eter Mak	e/Model:		Horiba	a U-52		
Location	:			Lewisto	n, NY		_	Wate	er Qualit	y Meter	Serial #:		22:	203		
Project N	lo.:			13017	7301		_			Field Pe	rsonnel:			Ad	rian S.	
Weather:	:									Sig	gnature:					
Well ID:			R-60		We	II Depth:	112.4	_ft below	TOC		Screene	ed/Open	Interval:	89	to	139 ft BGS
Well Perr	mit #	:			Well D	iameter:	4	inches								
PID/FID R	Read	inas	s (ppm)								Pur	np Intak	e Depth:		ft	: below TOC
		_	ground:		0				Donth to	. Water E		ump Inst	•	-		below TOC
_			•	-		-			Deptii to	Water E	selole P	unip mst	anation		0.0	below 100
Ben	eath	Ini	ner Cap:		0	-										
	TIME UNITED TO THE SPECIFIC CONDUCTIVITY (µS/cm) READING CHANGE* READING CHANGE							DOX ENTIAL		OLVED YGEN		BIDITY TU)		RATURE	PURGE VOLUMI	_
IIIVIE	PURGING	M	(Standar	- u u	(µS/	cm)	(r	nV)	(m	ıg/L)	,	,	,	-	(Liters)	
	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	,,	,
23:00	X		7.50	-	14.7	-	-94	-	4.49	-	3.5	-	15.33	-	1	63.5
23:05	х		6.82	0.68	50.0	35.3	-51	43	2.75	1.74	7.6	4.1	13.26	2.07	2	63.9
23:10	х		6.8	0.02	53.7	3.7	-75	24	1.00	1.75	7.1	0.5	13.34	0.08	3	64.2
23:15	Х		6.71	0.09	54.8	1.1	-80	5	0.75	0.25	7.4	0.3	13.23	0.11	4	64.25
23:20	х		6.80	0.09	56.0	1.2	-88	8	0.58	0.17	7.8	0.4	13.26	0.03	5	65.3
23:25	х	х	6.79	0.01	56.0	0	-84	4	0.62	0.04	7.6	0.2	13.20	0.06	6	64.5
no cation/anio		pling														
		_														
i																

																1		
		U-52	Horiba		e/Model:	ter Make	ality Me	Water Qu			ame: SMC Lewiston							
		03	222		Serial #:	y Meter S	r Quality	Wate			n, NY	Lewisto			n:	Location		
	rian S.	Adr			rsonnel:	Field Per					7301	13017			No.:	Project N		
					nature:	Sig					81F	Sunny			er:	Weather:		
ft BGS	to 120	100	ntervali	ed/Open I	Screens		TOC	ft below	124.2	II Depth:	Wo		R-68			Well ID:		
	120	100	c.va	и орен 1	Corcene		.00	inches		iameter:	•		11 00	#:	-	Well Perr		
low TOC	ft bel		e Depth:	np Intake	Pun								s (ppm)	lings	Read	PID/FID R		
low TOC	.9 ft bel	77.	allation:	ımp Insta	efore Pu	Water B	Depth to	ľ		=	0.6	(ground:	Back	E	1		
										spray)	ie to wasp	363.4 (du	ner Cap:	h Ini	eneat	Ben		
DEPTH TO WATER	PURGE VOLUME	ll.	TEMPER	SIDITY TU)		OLVED (GEN g/L)	оху	DOX NTIAL 1V)	POTE	CTIVITY	SPEC CONDUC (µS/	H rd units)		SAMPLING	PURG ING			
(ft below TOC)	(Liters)	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	SAM	PUR	<u> </u>		
65.2	-	-	21.44	-	12.4	-	4.37	-	-165	-	55.4	-	6.23		х	19:20		
66.8	1	6.47	14.97	0.7	11.7	3.36	1.01	30	-195	3.9	59.3	0.15	6.08		х	19:25		
	2	0.61	15.58	57.6	69.3	0.46	0.55	12	-207	0.4	59.7	0.05	6.03		х	19:30		
	3	0.09	15.49	26.6	42.7	0.15	0.4	3	-210	0.4	60.1	0.01	6.02		х	19:35		
67.9	4	0.3	15.79	10	32.7	0.05	0.35	1	-211	0.3	60.4	0.02	6.00		х	19:40		
			44				0.26	2	-213	0.1	60.5	0	6.00		х	19:45		
69.0	5	80.0	15.71	10.2	22.5	0.09	0.20	 		1				-				
69.0 69.9	5 5.5	0.08	15.71	0.3	22.5	0.09	0.26	1	-214	0.2	60.7	0	6.00		х	19:50		
							İ	1	-214 -213	0.2	60.7 60.7	0	6.00			19:50 19:55		
69.9	5.5	0.11	15.6	0.3	22.8	0	0.26					_						
69.9	5.5	0.11	15.6	0.3	22.8	0	0.26					_						
69.9	5.5	0.11	15.6	0.3	22.8	0	0.26					_						
69.9	5.5	0.11	15.6	0.3	22.8	0	0.26					_						
69.9	5.5	0.11	15.6	0.3	22.8	0	0.26					_						

Site Nam									Horiba	a U-52						
Location:	•			Lewisto	n, NY		_	Wate	er Qualit	y Meter	Serial #:		15 ⁻	139		
Project N	lo.:			13017	7301		_			Field Pe	rsonnel:			Ad	Irian S.	
Weather:				Hot Suni	ny 87F					Sig	gnature:					
Well ID:			R-48		We	II Depth:	99.1	ft below	TOC		Screene	ed/Open	Interval:	91	to 14	40 ft BGS
Well Pern	nit #	:			•	iameter:		inches								
DID/FID E			- ()								D		- Danth	4.0		h ele TOO
PID/FID R		_							-			np Intak	•			below TOC
			ground:		0	=			Depth to	Water E	Setore P	ump Inst	allation:	57.	.35 ft l	below TOC
Ben	eath	In	ner Cap:		0	_										
TIME	PURGING	SAMPLING		H rd units)	SPEC CONDUC (µS/	CTIVITY	POTE	DOX NTIAL	ox	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PURGE VOLUME	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
14:15	х		7.83	-	4.5	-	-97	-	7.39	-	4	-	19.13	-	0	48.2
14:20	x		7.62	0.21	4.56	0.06	-81	16	5.02	2.37	4.6	0.6	17.81	1.32	1	48.2
14:25	x		6.98	0.64	50.3	45.74	-94	13	3.93	1.09	4.7	0.1	18.38	0.57	2	48.2
14:30	X		6.9	0.08	50.4	0.1	-81	13	3.41	0.52	4.5	0.2	16.71	1.67	3	48.55
14:35	X		6.86	0.04	51	0.6	-79	2	2.65	0.76	4.2	0.3	17.03	0.32	4	48.8
14:40	X		6.84	0.02	51	0	-77	2	2.16	0.49	3.9	0.3	16.9	0.13	5	48.8
14:45	X	X	6.82	0.02	51.4	0.4	-75	2	1.93	0.23	4.6	0.7	16.86	0.04	6	48.8
									1							
<u> </u>																
	-															

Site Nam	e:			SMC Le	wiston			Water Qu	ality Me	eter Mak	e/ivioael:	-	Horiba	1 U-52		
Location:				Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		222	203		
Project N	0.:			13017	7301					Field Pe	rsonnel:			Adı	rian S.	
Weather:										Sig	gnature:					
Well ID:			EW-4		We	II Depth:		ft below	тос		Screene	ed/Open	Interval:	16	to 71.6	ft BGS
Well Pern	nit #	:			Well D	iameter:	4	inches								_
PID/FID R	ead	ings	s (ppm)								Pur	np Intak	e Depth:		ft be	low TOC
	В	ack	ground:	I		_			Depth to	water E	Before P	ump Inst	allation:		ft be	low TOC
Ben	eath	In	ner Cap:			_										
TIME	N M				CONDU	CIFIC CTIVITY (cm)	POTE	DOX NTIAL 1V)	ОХ	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PURGE VOLUME	DEPTH TO WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC
16:20			7.2	-	2.68	-	3.86	-	5.59	-	306	-	18.02	-	0	48.80
16:25			7.19	0.01	2.61	0.07	4.43	0.57	4.36	1.23	711	405	18.94	0.92	1	40.30
16:30			7.12	0.07	2.61	0	3.84	0.59	3.38	0.98	731	20	25.97	7.03	2	40.30
17:00			7.09	0.03	2.6	0.01	3.87	0.03	3.8	0.42	0	731	23.21	2.76	3	40.30
17:05			7.10	0.01	2.6	0	3.90	0.03	3.92	0.12	0	0	23.79	0.58	4	40.40
17:10			6.95	0.15	2.75	0.15	4.49	0.59	4.26	0.34	0	0	21.77	2.02	5	40.60
17:15			6.98	0.03	2.86	0.11	4.82	0.33	5.33	1.07	0	0	17.11	4.66	5.5	40.50
17:20			7.61	0.63	2.91	0.05	0.06	4.76	4.12	1.21	365	365	16.53	0.58	6	40.40
17:25			7.02	0.59	2.85	0.06	0.01	0.05	3.6	0.52	350	15	17.27	0.74	6.5	40.40
17:30			7.42	0.4	2.78	0.07	46.20	46.19	4.95	1.35	816	466	16.15	1.12	7	40.40
17:35			7.6	7.6 0.18 2.81 0.03 0.00 46.2 5.42 0.47 104 712 16.01 0.14 7.5									7.5	40.20		
			7	0.6	2.78	0.03	0.07	0.07	5.51	0.09	112	8	16.15	0.14	8	40.2
17:40		l	l	0.1	2.78	0	0 0.00 0.07 5.51 0.09 112 8 16.15 0.14 8 0 0 0.00 0.07 5.39 0.12 115 3 16.15 0 8									40.2
	x	X	7.1	0.1	2.70											

Site Nam	e:			SMC Le	wiston		_	Water Qu	uality Me	eter Mak	e/Model:		Horiba	a U-52			
Location:				Lewisto	n, NY		_	Wate	er Qualit	y Meter	Serial #:						
Project N	0.:			13017	7301		_			Field Pe	rsonnel:						
Weather:							_			Sig	gnature:						
Well ID:			W-16		We	II Depth:		_ft below	TOC		Screene	ed/Open	Interval:	17.9	to _	27.8	ft BGS
Well Pern	nit #	:			Well D	iameter:	2	inches									
PID/FID R	ead	ings	s (ppm)								Pur	np Intak	e Depth:		f	ft belo	w TOC
			ground:	0):00				Depth to	Water E	Before P	ump Inst	allation:	21	.7 f	it belo	w TOC
Ben	eath	In	ner Cap:		0	=						-					
					SPEC	CIFIC	RE	DOX	DISS	OLVED							
TIME	PURGING	SAMPLING	_	H rd units)	CONDU	CTIVITY	POTE	:NTIAL nV)	ox	YGEN ng/L)		BIDITY TU)		RATURE C)	PURGI VOLUM	1E	DEPTH TO WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters	5)	(ft below TOC)
10:25	х		3.95	-	4.22	-	228	-	10.09	-	5.8	-	20.56	-	-		24.80
10:30			3.95	0	4.95	0.73	228.00	0	10.09	0	5.8	0	20.53	0.03	5		24.80
10:35			3.95	0	4.22	0.73	228.00	0	10.09	0	5.8	0	20.53	0	5.5		27.20
10:40	x		7.14	3.19	4.14	0.08	-234.00	462	0	10.09	9.7	3.9	14.27	6.26	6		NA
10:45	x		6.82	0.32	4.19	0.05	-290.00	56	0.00	0	21.7	12	16.92	2.65	6.5		NA
10:50	x		6.60	0.22	4.29	0.1	-228.00	62	0.04	0.04	21.9	0.2	15.96	0.96	7		NA
10:55	X	X	6.8	0.2	4.67	0.38	-297.00	69	0.03	0.01	4.25	17.65	14.75	1.21	7.5		NA
	-																
10:40 Pump di		ver to	bottom and	reset @ 10:	:43												

Site Nam	e:			SMC Le	wiston			Water Qu	ıality Me	eter Mak	e/Model:		Horiba	a U-52		
Location:				Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		222	203		
Project N	o.:			13017	7301					Field Pe	rsonnel:			Ad	rian S.	
Weather:				Sunny	86F					Sig	gnature:					
Well ID:			R-67		We	II Depth:	144.6	ft below	тос		Screene	ed/Open	Interval:	120	to 140	ft BGS
Well Pern	nit #	:			Well Di	iameter:	2	inches								
PID/FID R	ead	ings	s (ppm)								Pun	np Intak	e Depth:	69).5 ft b e	elow TOC
			ground:		0				Depth to	Water E	Before Pu	· ump Inst	allation:	73.	.85 ft b e	elow TOC
Ben	eath	In	ner Cap:		0	-										
TIME	PURGING	SAMPLING	_	H rd units)	SPEC CONDUC (µS/	CTIVITY	POTE	DOX INTIAL nV)	ox	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PURGE VOLUME	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
17:40	x		6.43	-	100	-	-167	-	4.25	-	185		23.09	-	0.5	69.5
17:45	x		6.34	0.09	100	0	-182	15	3.3	0.95	30	155	22.92	0.17	1	69.5
17:50	x		6.31	0.03	100	0	-196	14	1.13	2.17	32.6	2.6	22.86	0.06	1.5	69.5
18:00	x		5.83	0.48	100	0	-175	21	0.76	0.37	3.4	29.2	22.55	0.31	2	70.0
18:05	X		5.71	0.12	100	0	-171	4	0.64	0.12	3.31	0.09	22.50	0.05	2.5	70.0
18:10	X		5.71	0	100	0	-176	5	0.59	0.05	3.29	0.02	22.5	0	3	70.1
18:20	X	х	5.67	0.04	100	0	-175	1	0.54	0.05	3.28	0.01	22.5	0	3.5	70.2
									-							
ı									1							
									1							
	<u> </u>															
COMMENTS	•															

SMC Lewiston Site Name: Water Quality Meter Make/Model: Horiba U-52 Lewiston, NY 22203 Water Quality Meter Serial #: Location: Adrian S. Project No.: 130177301 Field Personnel: Sunny Hot Weather: Signature: 104.3 Screened/Open Interval: 90 100 **ft BGS** Well ID: LR-67 Well Depth: ft below TOC Well Permit #: 2 **Well Diameter:** inches PID/FID Readings (ppm) Pump Intake Depth: ft below TOC **Background: Depth to Water Before Pump Installation:** 61.1 ft below TOC **Beneath Inner Cap:** SPECIFIC REDOX DISSOLVED SAMPLING рΗ **TURBIDITY TEMPERATURE** PURGING **PURGE DEPTH TO POTENTIAL** CONDUCTIVITY **OXYGEN** (standard units) (NTU) (°C) TIME VOLUME WATER (µS/cm) (mV) (mg/L) (Liters) (ft below TOC) READING READING CHANGE* READING CHANGE* READING CHANGE* CHANGE* READING CHANGE* READING CHANGE* 16:00 X 6.78 4.05 -236 2.81 57.7 16.76 1 58.20 16:05 6.73 0.05 4.01 0.04 -242 6 1.35 1.46 69.7 12 15.26 1.5 2 58.50 Х 16:10 6.62 0.11 3.99 0.02 -250 8 0.47 0.88 45.2 24.5 14.4 0.86 3 59.00 4 17.4 59.30 16:15 6.56 0.06 3.94 0.05 -255 0.23 0.24 27.8 13.9 X 16:20 6.60 0.04 4 0.06 -255 0 0.14 0.09 15.1 2.3 13.80 0.1 5 59.35 16:25 6.59 0.01 4.12 0.12 -258 3 0.08 0.06 12.4 13.45 0.35 6 59.40 2.7 X 0.03 11 0.06 0.02 13.78 7 59.60 16:30 6.67 80.0 4.15 -269 12.5 0.1 0.33 16:35 X X 6.67 0 4.07 0.08 9 0.07 0.01 12.5 0 13.89 8 -260 0.11 59.70 COMMENTS:

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

		U-52	Horiba	SMC Lewiston Water Quality Meter Make/Model: Lewiston, NY Water Quality Meter Serial #:										e:	Site Nam	
		03	222		Serial #:	y Meter S	er Quality	Wate			n, NY	Lewisto			:	Location:
	rian S.	Adr			sonnel:	Field Per					7301	130177			lo.:	Project N
					ınature:	Sig									-	Weather:
ft BGS	to 64	54	nterval:	ed/Open I	Screene		тос	ft below	69.3	II Depth:	We		LR-48			Well ID:
_			-	-				inches	2	iameter:	Well D			:	nit #	Well Pern
low TOC	'8 ft ho l	37.	Denth:	nn Intake	Dun								s (nnm)	inas	e a di	PID/FID R
low TOC			•	•								ground:	_		, , , , , , , , , , , , , , , , , , ,	
10W 100	1.0	30.	anation.	mp mst	eioie ru	water b	beptii to	'		-			ner Cap:			Ren
										_			пет Сар.		catii	Den
DEPTH TO WATER	PURGE VOLUME		TEMPER	SIDITY FU)		OLVED (GEN g/L)	оху	DOX NTIAL iV)	POTE	CTIVITY	SPEC CONDUC (µS/		pi (standar	SAMPLING	PURGING	TIME
(ft below TOC)	(Liters)	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	SAM	PUR	
37.8	0	-	23.55	-	47.3	-	5.45	-	-221	-	2.76	-	7.29		х	12:50
37.6	1	4.08	19.47	4.3	51.6	4.63	0.82	41	-262	0.74	3.5	0.09	7.20		х	12:55
37.5	2	0.32	19.15	15.6	36	0.19	0.63	10	-252	0.35	3.15	0.08	7.12		х	13:00
37.2	3	0.14	19.01	18.3	17.7	0.08	0.55	15	-237	0.37	2.78	0.04	7.08		х	13:05
37.2	4	0.26	19.27	5.6	12.1	0.07	0.48	8	-229	0.18	2.6	0.02	7.06		х	13:10
37.2	4	0.09	19.18	4.5	7.6	0.06	0.42	5	-224	0.13	2.47	0	7.06		х	13:15
37.1	5	0.25	19.43	2.7	4.9	0.07	0.35	1	-225	0.07	2.4	0	7.06		х	13:20
37.0	6	0.54	19.97	0.9	5.8	0.09	0.26	9	-216	0.07	2.33	0	7.06	х	х	13:25

Site Nam	e:			SMC Le	wiston			Water Q	uality Me	eter Mak	e/Model:		Horiba	a U-52		
Location:	ŀ			Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		222	203		
Project N	0.:			130177	7301					Field Pe	rsonnel:			Adrian S	S. & Steve P.	
Weather:				Sunny	85F					Sig	gnature:					
Well ID:			W-19B		Wel	II Depth:	83.8	ft below	тос		Screen	ed/Open	Interval:	65	to 80	ft BGS
Well Pern	nit #	:			Well Di	iameter:	2	inches								
PID/FID R	ead	inas	(ppm) Pump Intake De									e Denth:		ft be	low TOC	
		_							Danth to	- W-4 F		•	•			low TOC
			ground:			-			Deptn to	Water E	serore P	ump inst	anation:	47	7.1 ft be l	low IOC
Ben	eath	Ini	ner Cap:			=										
					SPEC	TEIC	DE	рох	Dice	OLVED					I	Т
	<u>9</u>	D N	-	Н	CONDUC			NTIAL		YGEN		BIDITY		RATURE	PURGE	DEPTH TO
TIME	PURGING	SAMPLING	(standaı	rd units)	(µS/	cm)	(n	ıV)	(m	ng/L)	(N	TU)	(°	C)	VOLUME	WATER
	P.	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
10:20			6.96	-	2.7	-	-138	-	2.1	-	242	-	14.09	-	-	
10:25	x		6.88	0.08	2.73	0.03	-146	8	0.67	1.43	84.9	157.1	13.29	0.8	2	
10:30	х		6.86	0.02	2.73	0	-148	2	0.28	0.39	32.3	52.6	12.94	0.35	2.5	
10:35	х		6.82	0.04	2.73	0	-154	6	0.13	0.15	19.8	12.5	12.71	0.23	3	
10:40	х		6.79	0.03	2.76	0.03	-159	5	0.06	0.07	13.8	6	12.55	0.16	4	
10:45	х		6.79	0	2.79	0.03	-163	4	0.01	0.05	11.7	2.1	12.52	0.03	5	
10:50	х		6.78	0.01	2.81	0.02	-165	2	0	0.01	9.7	2	12.39	0.13	6.5	
10:55	х		6.79	0.01	2.81	0	-167	2	0	0	8.1	1.6	12.35	0.04	7.5	
11:00	х		6.79	0	2.82	0.01	-167	0	0	0	7.9	0.2	12.33	0.02	8	
11:05	х		6.8	0.01	2.82	0	-168	1	0	0	7.7	0.2	12.36	0.03	9	
11:10	х	x	6.8	0	2.82	0	-138	30	0	0	7	0.7	12.36	0	10.5	
COMMENTS	:															

Site Nam	e:			SMC Le	wiston			Water Qu	uality Me	eter Mak	e/Model:		Horiba	a U-52		
Location:	l			Lewisto	n, NY		_	Wate	er Qualit	y Meter	Serial #:		XASV	/76H9		
Project N	0.:			13017	7301		_			Field Pe	rsonnel:			An	gelo F.	
Weather:							_			Sig	gnature:					
							440									
Well ID:			OW-3		We	II Depth:	113	ft below	TOC		Screene	ed/Open	Interval:	108	to	128 ft BGS
Well Pern	nit #	:			Well D	iameter:	2	inches								
PID/FID R	ead	ings	s (ppm)								Pur	np Intak	e Depth:	1	12 f	t below TOC
		_	ground:		0				Denth to	o Water E		-	-		 l.1 f f	t below TOC
_			•	-		_			Deptii t	, water i	belole F	ump mst	anationi		····	i below 100
Ben	eath	ı Inı	ner Cap:		0	_										
			1		SPEC	rieic	DE	DOX	niee	OLVED	1		1		1	
	9	S	-	Н	CONDU			NTIAL		YGEN		BIDITY		RATURE	PUMPIN	IG DEPTH TO
TIME	Z 5	PLI	(standa	rd units)	(μS/			nV)		ng/L)	(N	TU)	(°	C)	RATE	
	PURGING	SAMPLING	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/mir	n) (ft below TOC
20:00	х		6.61	-	42.8	-	-70	-	0.84	-	347	-	15.92	-		59.3
20:05	x		6.61	0	41.1	1.7	-84	14	0.36	0.48	341	6	14.84	1.08		59.9
20:10	х		6.6	0.01	40.5	0.6	-85	1	0.16	0.2	237	104	14.21	0.63	2.5	60.1
20:15	х		6.55	0.05	40.8	0.3	-87	2	0.39	0.23	205	32	13.93	0.28	3.5	60.3
20:20	x		6.45	0.1	40.7	0.1	-93	6	0.44	0.05	209	4	13.70	0.23	4.5	60.4
20:25	X		6.58	0.13	41	0.3	-94	1	0.26	0.18	215	6	13.6	0.1	5.5	60.5
20:30	x		6.55	0.03	40.8	0.2	-93	1	0.21	0.05	210	5	13.61	0.01	6	60.6
20:35	х		6.54	0.01	41.4	0.6	-94	1	0.16	0.05	150	60	13.54	0.07	7	60.7
20:40	х		6.56	0.02	41.4	0	-100	6	0.13	0.03	163	13	13.44	0.1	8	60.7
20:45	х		6.53	0.03	41.6	0.2	-110	10	0.09	0.04	170	7	13.37	0.07	9	60.8
20:50		x	6.55	0.02	41.9	0.3	-119	9	0.06	0.03	171	1	13.42	0.05	10	60.8
COMMENTS	:															

Site Nam								Water Qu	ality Me	eter Make	e/Model:		Horiba	u U-52		
Location	•			Lewisto	n, NY			Wate	r Qualit	y Meter s	Serial #:		XASW	/76H9		
Project N	lo.:			13017	7301					Field Pe	rsonnel:			Adr	ian S.	
Weather:										Sig	gnature:					
Well ID:			R-16		We	II Depth:	134.8	ft below	тос		Screene	ed/Open I	Interval:	110	to 130	ft BGS
Well Pern	nit #	:			-	iameter:	2	inches				-				•
PID/FID R	Read	ings	s (ppm)								Pun	np Intake	e Depth:		ft bel	ow TOC
			ground:		Depth to Water Before Pump Installation										.3 ft bel	ow TOC
Ben	eath	Ini	ner Cap:	,	1.7	-										
TIME	PURGING	SAMPLING	p (standaı		SPEC CONDUC (µS/	CTIVITY	POTE	DOX NTIAL 1V)	ох	OLVED YGEN ng/L)		SIDITY TU)		RATURE C)	PURGE VOLUME	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	(ft below TOC)
15:30	x		6.35	-	100	-	50	-	2.06	-	19.1	-	36.23	-	•	70
15:35	x		6.52	0.17	100	0	38	12	1.46	0.6	33	13.9	39.38	3.15	1	NA
45.40	х		6.54	0.02	100	0	37	1.3	1.25	0.21	38.1	5.1	31.94	7.44	2	NA
15:40					100	0	31	5.7	1.02	0.23	39.5	1.4	31.01	0.93	2	NA
15:40	х		6.56	0.02												
			6.56 6.56	0.02	100	0	14	17	1.03	0.01	45.5	6	28.09	2.92	3	NA
15:45	х					0	14 11	17 3	1.03 0.64	0.01	45.5 49.8	6 4.3	28.09 27.11	2.92 0.98	3	NA NA
15:45 15:50	x		6.56	0	100	<u> </u>								1		
15:45 15:50 16:30	x x x		6.56	0	100	0	11	3	0.64	0.39	49.8	4.3	27.11	0.98	4	NA
15:45 15:50 16:30 16:35	x x x	x	6.56 6.39 6.25	0 0.17 0.14	100 100 100	0	11 22	3 11	0.64	0.39	49.8 53.7	4.3 3.9	27.11	0.98	4 4.5	NA NA
15:45 15:50 16:30 16:35 16:40	x x x x	x	6.56 6.39 6.25 6.2	0 0.17 0.14 0.05	100 100 100 100	0 0	11 22 14	3 11 8	0.64 1.34 1.83	0.39 0.7 0.49	49.8 53.7 56.1	4.3 3.9 2.4	27.11 24.2 23.70	0.98 2.91 0.5	4 4.5 4.5	NA NA NA
15:45 15:50 16:30 16:35 16:40	x x x x	x	6.56 6.39 6.25 6.2	0 0.17 0.14 0.05	100 100 100 100	0 0	11 22 14	3 11 8	0.64 1.34 1.83	0.39 0.7 0.49	49.8 53.7 56.1	4.3 3.9 2.4	27.11 24.2 23.70	0.98 2.91 0.5	4 4.5 4.5	NA NA NA
15:45 15:50 16:30 16:35 16:40	x x x x	x	6.56 6.39 6.25 6.2	0 0.17 0.14 0.05	100 100 100 100	0 0	11 22 14	3 11 8	0.64 1.34 1.83	0.39 0.7 0.49	49.8 53.7 56.1	4.3 3.9 2.4	27.11 24.2 23.70	0.98 2.91 0.5	4 4.5 4.5	NA NA NA
15:45 15:50 16:30 16:35 16:40	x x x x	x	6.56 6.39 6.25 6.2	0 0.17 0.14 0.05	100 100 100 100	0 0	11 22 14	3 11 8	0.64 1.34 1.83	0.39 0.7 0.49	49.8 53.7 56.1	4.3 3.9 2.4	27.11 24.2 23.70	0.98 2.91 0.5	4 4.5 4.5	NA NA NA

Site Na	ame:			SMC Le	wiston			Water Qu	ality Me	eter Mak	e/Model:		Horiba	a U-52			
Locati	on:			Lewisto	on, NY		-	Wate	er Qualit	y Meter	Serial #:		212	233			
Projec	t No.:			13017	7301		-			Field Pe	rsonnel:			Ad	rian S.		
Weath	er:			Hot Sun	ny 82°		-			Sig	gnature:						
							-										
Well ID):		LR-16		Wel	l Depth:	94.4	ft below TOC		Screene	ed/Open	Interval:	80.5	to	90.5 ft	t BGS	5
Well P	ermit	#:			Well Di	ameter:	2	inches									
PID/FII	Rea	ding	s (ppm)								Pur	np Intak	e Depth:		ft	t belo	ow TOC
	ı	Bacl	kground:		0.0				Depth to	Water E	Before P	ump Inst	allation:	58	3.4 f f	t belo	w TOC
В	eneat	h In	ner Cap:		3.5	-											
TIME	PURGING	SAMPLING	p (standa	H rd units)	SPEC CONDUC (µS/c	TIVITY		REDOX OTENTIAL (mV)	ox	OLVED YGEN ng/L)		BIDITY TU)		RATURE C)	PURGE	E	DEPTH TO WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(Liters)	,	(ft below TOC)
13:10	х		5.74	-	33.8	-	-154	-	1	-	264	-	15.92	-	2		54.7
13:19	5 X		5.86	0.12	24.9	8.9	-207	53	0.11	0.89	35.8	228.2	14.67	1.25	3.5		
13:20	Х		5.9	0.04	22.9	2	-217	10	0.03	0.08	9	26.8	11.37	3.3	5		54.4
13:2	5 X		5.88	0.02	22.9	0	-217	0	0	0.03	6.1	2.9	14.16	2.79	5.5		54.24
13:30) х		5.94	0.06	22.5	0.4	-229	12	0	0	4.4	1.7	13.83	0.33	6		54.8
13:3	5 X		5.96	0.02	22.5	0	-219	10	0	0	4.8	0.4	15.03	1.2	6.5		54.65
13:40) х	X	6.04	0.08	22.4	0.1	-226	7	0	0	4.9	0.1	15.81	0.78	6.8		54.7
	_																
	+																
COMME	NTS:														<u> </u>		
I																	

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

Site Name	e:			SMC Lev	wiston		_	Water Qu	uality Me	eter Mak	e/Model:		Horiba	a U-52			
Location:	ŀ			Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:		212	233			
Project N	lo.:			130177	7301					Field Pe	rsonnel:			Ad	Irian S.		
Weather:				Hot Sunr	ny 82F					Sig	gnature:						
Well ID:			W-19A		We	II Depth:		ft below	TOC		Screene	ed/Open	Interval:	33.5	to _	38.5	ft BGS
Well Pern	nit #	ŧ			Well Di	iameter:		inches									
PID/FID R	ead	ings	(ppm)								Pur	np Intak	e Depth:		f	t belo	ow TOC
			ground:						Denth to	Water E				t held	ow TOC		
			•	-		-			Deptii t	, water i	Jeiore P	ump met	anationi			t beit	W 100
Bene	eatr	ınr	ner Cap:			_											
TIME	PURGING	SAMPLING	-	H rd units)	SPEC CONDUC (µS/c	CTIVITY	POTE	DOX NTIAL	ОХ	OLVED YGEN ng/L)		BIDITY TU)		RATURE C)	PUMPIN RATE		DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/mi	n)	(ft below TOC)
COMMENTS not enough wa																	

Site Nam Location: Project N Weather: Well ID: Well Pern	o.:			SMC Le Lewisto 13017	on, NY 7301 We l	ll Depth:		Water Qu Wate ft below TOC inches	er Qualit	y Meter : Field Pe Sig	Serial #: rsonnel: gnature:			a U-52			5
PID/FID R	В	ack	ground: ner Cap:	-		-			Depth to	o Water I							ow TOC
TIME	PURGING	SAMPLING	-	H rd units)	SPEC CONDUC (µS/	CTIVITY	P	REDOX DTENTIAL (mV)	ox	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PUMPI RATI (mL/m	E	DEPTH TO WATER (ft below TOC)
	2	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(1112/111	,	(It below Toc)
COMMENTS not enough wa																	

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

1																	
Site Name:	•			SMC Le	wiston		_	Water Qu	ality Me	eter Mak	e/Model:		Horiba	a U-52		_	
Location:				Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:						
Project No.	.:			13017	7301					Field Pe	rsonnel:					_	
Weather:	_									Sig	gnature:						
													07.4		07.0		
Well ID:			W-48E		=	ll Depth:		ft below TOC		Screene	ed/Open	Interval:	27.4	_ to	37.2	_ft BG	S
Well Permi	t #:				Well Di	iameter:		inches									
PID/FID Rea	adi	ngs	(ppm)								Pur	np Intak	e Depth:			ft bel	ow TOC
	Ва	ack	ground:						Depth to	Water E	Before P	ump Inst	allation:			ft bel	ow TOC
Benea	ath	Inn	er Cap:			- -										_	
TIME	PURGING	SAMPLING	p (standar	H rd units)	SPEC CONDUC (µS/	CTIVITY		REDOX DTENTIAL (mV)	ох	OLVED YGEN 1g/L)		BIDITY TU)		RATURE C)	PUMI RA	TE	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/i	min)	(ft below TOC)
_																	

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

Site Nan	ne:			SMC Lev	wiston			Water Qu	ıality Me	eter Mak	e/Model:		Horiba	a U-52			
Location	ı:			Lewisto	n, NY		_	Wate	er Qualit	y Meter	Serial #:					_	
Project I	No.:			130177301 Field Personnel:													
Weather	:						_			Sig	gnature:						
													440.0		100.1		
Well ID:			R-51		-	ll Depth:		ft below TOC		Screene	ed/Open	Interval:	118.6	to	120.1	ft BG	5
Well Per	mit #	#:			Well Di	iameter:		inches									
PID/FID I	Read	lings	(ppm)								Pur	np Intak	e Depth:			ft bel	ow TOC
	E	ack	ground:			_			Depth to	Water E	Before P	ump Inst	allation:			ft bel	ow TOC
Ber	neatl	n Inr	er Cap:			-											
TIME	PURGING	SAMPLING	-	H rd units)	SPEC CONDUC (µS/	CTIVITY		REDOX DTENTIAL (mV)	ox	OLVED YGEN ng/L)		BIDITY TU)		RATURE C)	PUMP RAT	ΓE	DEPTH TO WATER
	PUR	SAM	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/n	nin)	(ft below TOC)
				<u> </u>													
				-													
COMMENT 1/2" PVC - ca		nple															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

Site Nam	e:			SMC Le	wiston		_	Water Qu	ıality Me	eter Mak	e/Model:		Horiba	a U-52		=	
Location				Lewisto	n, NY		<u>-</u> .	Wate	er Qualit	y Meter	Serial #:					_	
Project N	lo.:			13017	7301		<u>-</u> .			Field Pe	rsonnel:						
Weather:							_			Sig	gnature:						
Well ID:			B-02		-	ll Depth:		ft below TOC		Screene	ed/Open	Interval:	102.6	to	104.3	ft BG	5
Well Perr	nit #	t:			Well Di	iameter:		inches									
PID/FID R	Read	ings	s (ppm)								Pui	np Intak	e Depth:			ft bel	ow TOC
	В	ack	ground:			_			Depth to	Water E	Before P	ump Inst	allation:			ft bel	ow TOC
Ben	eath	lnr	ner Cap:			-											
TIME	PURGING	SAMPLING	_	H rd units)	SPEC CONDUC (µS/c	CTIVITY		REDOX DTENTIAL (mV)	ох	OLVED YGEN ng/L)		BIDITY TU)		RATURE C)	PUMP RAT	ΓE	DEPTH TO WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/n	nin)	(ft below TOC)
									1								
																	
									-								_
									<u> </u>								
																	-
COMMENTS 1/2" OVC - ca		nple															

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

Site Nam	e:	SMC Lewiston Water Quality Meter Make/Model: Horiba U-52 Lewiston, NY Water Quality Meter Serial #:											_				
Location:	•			Lewisto	n, NY			Wate	er Qualit	y Meter	Serial #:					_	
Project N	lo.:			13017	7301					Field Pe	rsonnel:						
Weather:										Si	gnature:						
							•										
Well ID:			OW-5		We	II Depth:	104.6	ft below TOC		Screen	ed/Open	Interval:	88.8	to	101.8	ft BG	S
Well Pern	nit #	ŧ:			Well Diameter:inches												
PID/FID R	ead	ings	(ppm)								Pui	np Intak	e Depth:	1		ft bel	ow TOC
			ground:		0.6				Depth to	o Water I		-	-	-	9.7	- ft bel	ow TOC
Ben			ner Cap:		due to was	- o spray)						•				-	
			ſ		1				1		1		1		n		1
TIME	PURGING	SAMPLING	_	H rd units)	SPEC CONDUC (µS/	CTIVITY	P	(mV) (mg/L) (NTU) (°C)								ING TE	DEPTH TO WATER
	PUR	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(mL/n	nin)	(ft below TOC)
									-								
									+		1						
											1						
									1								
Probe stunk in add additiona	hole																

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

APPENDIX D MONITORING WELL INVENTORY

INSPECTION DATE:	9/12/1	8			
INSPECTED BY:	M. Wen	rick (LA	INGAN)		
Overall Site					- Control
Has the Site use changed	since the last inspe	ection?	Yes		No
If yes, please describe the	e changes:				
House pointh bring proper	the consistency of the constant of the constan		Was		N- X
Have neighboring proper	,		Yes		No
If yes, please describe the	e changes:				
Monitoring Wells	•				
Potential Problems Missing locks	• Potential access		ed persons	_	rrective Action Replace lock
Wilson's locks	· Foteritial access	by diractions	eu persons	•	Replace lock
Missing J-plugs	 Potential well co or rain water 	ontamination f	rom surface water	•	Replace J-plug
Concrete surface seal	 Damaged seal ca around casing as groundwater 			•	Contract drilling subcontractor to have surface seal replaced
Damaged flush-mount or stickup casing	Damaged casing	can result in o	damage to riser	•	Contract drilling subcontractor to have casing replaced
Monitoring Well	ı	Nell Condition	(circle one)		Comments
Unner Lacknert					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Monitoring Well Upper Lockport	Well Condition (circle one)			Comments
OW-11	Good	Fair	Needs Repair	
W-16	Good	Fair	Needs Repair	
W-17	Good	Fair	Needs Repair	
W-18R	Rood	Fair	Needs Repair	
W-19D	Goods	Fair	Needs Repair	
W-20	Ø60d	Fair	Needs Repair	
W-22A	6000	Fair	Needs Repair	
W-23C	GOOd	Fair	Needs Repair	

INSPECTION DATE:

INSPECTED BY:

M. Wenrick (LANGAN)

W-66	Good	Fair	Needs Repair
W-67	Good	Fair	Needs Repair
Lower Lockport			
W-16L	Good	Fair	Needs Repair
W-18L	800d	Fair	Needs Repair
W-19A	Good	Fair	Needs Repair
W-23B	GOOD	Fair	Needs Repair
W-48E	Good	Fair	Needs Repair
W-50	8000	Fair	Needs Repair
W-60L	Good	Fair	Needs Repair
W-65	Good	Fair	Needs Repair
W-66L	Good	Fair	Needs Repair
W-67L	6000	Fair	Needs Repair
W-70L	Bood	Fair	Needs Repair
.ockport/Rochester			
LR-2	€ God	Fair	Needs Repair
LR-16	800	Fair	Needs Repair
LR-20	Good	Fair	Needs Repair
LR-48	6000	Fair	Needs Repair
LR-49	8000	Fair	Needs Repair
LR-50	Good	Fair	Needs Repair
LR-51	G600	Fair	Needs Repair
LR-61	GOOD	Fair	Needs Repair
LR-62	Good	Fair	Needs Repair
LR-67	Good	Fair	Needs Repair
LR-69	Good	Fair	Needs Repair
OW-5	Good	Fair	Needs Repair
W-19B	Good	Fair	Needs Repair
Rochester			
B-02	GOOD	Fair	Needs Repair

INSPECTION DATE:

9/12/18

INSPECTED BY:

M. WENTIL (LANGAN)

R-16	Good	Fair	Needs Repair	
R-19	Good	Fair	Needs Repair	
R-48	Good	Fair	Needs Repair	
R-50	Good	Fair	Needs Repair	
R-51	Good	Fair	Needs Repair	
R-60	Good	Fair	Needs Repair	
R-61	Good	Fair	Needs Repair	
R-62	Good	Fair	Needs Repair	Casing in Poor Condr
R-66	Good	Fair	Needs Repair	
R-67	600	Fair	Needs Repair	
R-68	6008	Fair	Needs Repair	

Extraction Wells

<u>Potential Problems</u> Missing locks	• Potential access by unauthorized persons	• Replace lock
Missing J-plugs	Potential well contamination from surface water or rain water	Replace J-plug
Concrete surface seal	 Damaged seal can allow water infiltration around casing and contamination of groundwater 	 Contract drilling subcontractor to have surface seal replaced
Damaged flush-mount or stickup casing	Damaged casing can result in damage to riser	 Contract drilling subcontractor to have casing replaced
Damaged Pumps	• not able to maintain hydraulic containemnt	Repair or replace pump immediately

Well Condition (circle one)			Comments	
Good	Fair	Needs Repair	AKA DPT-261	
Good	Fair	Needs Repair		
Good	Fair	Needs Repair		
Good)	Fair	Needs Repair		
	Good	Good Fair Good Fair	Fair Needs Repair Fair Needs Repair Reds Repair Reds Repair Reds Repair	

INSPECTION DATE: 9/12/18
INSPECTED BY: M. Wenrick (LANGAN)

EW-1	Good	Fair	Needs Repair	
EW-2	Good	Fair	Needs Repair	
EW-3	Good	Fair	Needs Repair	
EW-4	GOOG	Fair	Needs Repair	
EW-5	9000	Fair	Needs Repair	
EW-6	6009	Fair	Needs Repair	
LR-66	600	Fair	Needs Repair	
OW-3	6000	Fair	Needs Repair	