

SEVENTH ANNUAL OPERATION AND MONITORING REPORT JUNE 2007 TO MAY 2008

GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Prepared by: Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario Canada N2V 1C2

Office: (519) 884-0510 Fax: (519) 884-0525

web: http://www.CRAworld.com

NOVEMBER 2008 REF. NO. 00798 (35)

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTROE	DUCTION	1
2.0	GROUNDWATER WITHDRAWAL SYSTEM (GWS)		2
	2.1	HYDRAULIC MONITORING	
	2.2	GROUNDWATER QUALITY MONITORING	3
	2.2.1	SAMPLE RESULTS	
	2.2.2	MONITORING FREQUENCY FOR NEXT 4-YEAR PERIOD	8
	2.3	EFFLUENT MONITORING PROGRAM	8
	2.3.1	SAMPLE RESULTS	9
	2.3.2	MONITORING PROGRAM TO FEBRUARY 2010	9
	2.3.2.1	SAMPLING FREQUENCY	9
	2.3.2.2	ANALYTICAL PARAMETERS	10
	2.4	SURFACE WATER MONITORING PROGRAM	11
	2.4.1	SAMPLE RESULTS	11
	2.4.2	FUTURE MONITORING FREQUENCY	12
	2.5	GWS OPERATIONS	12
	2.6	GWS MAINTENANCE	13
3.0	SITE INSPECTIONS		14
4.0	CONCLUSIONS/RECOMMENDATIONS		15
	4.1	OPERATION AND MAINTENANCE	15
	4.2	MONITORING	15
	4.3	NOTIFICATIONS TO CITY OF NORTH TONAWANDA	16

LIST OF FIGURES

(Following Text)

FIGURE 2.1	MONITORING NETWORK
FIGURE 2.2	MW-6 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.3	MW-7 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.4	MW-8 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.5	MW-9 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.6	OGC-1 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.7	OGC-2 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.8	OGC-3 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.9	OGC-4 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.10	OGC-5 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.11	OGC-6 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.12	OGC-7 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.13	OGC-8 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.14	EFFLUENT TVOCS AND TSVOCS VS. TIME
FIGURE 2.15	EFFLUENT pH VS. TIME
FIGURE 2.16	EFFLUENT TOTAL SUSPENDED SOLIDS VS. TIME
FIGURE 2.17	EFFLUENT BOD VS. TIME
FIGURE 2.18	EFFLUENT VOLUME VS. TIME

LIST OF TABLES (Following Text)

TABLE 2.1	GROUNDWATER HYDRAULIC MONITORING LOCATIONS
TABLE 2.2	WATER LEVELS (FT AMSL)
TABLE 2.3	SUMMARY OF HORIZONTAL GRADIENTS
TABLE 2.4	SUMMARY OF VERTICAL GRADIENTS
TABLE 2.5	GROUNDWATER SAMPLING SUMMARY
TABLE 2.6	SUMMARY OF DETECTED COMPOUNDS, SITE GROUNDWATER AND RIVER WATER
TABLE 2.7	PH READINGS
TABLE 2.7 TABLE 2.8	PH READINGS EFFLUENT SAMPLING SUMMARY, JUNE 2001 TO FEBRUARY 2007
TABLE 2.8	EFFLUENT SAMPLING SUMMARY, JUNE 2001 TO FEBRUARY 2007
TABLE 2.8 TABLE 2.9	EFFLUENT SAMPLING SUMMARY, JUNE 2001 TO FEBRUARY 2007 EFFLUENT SAMPLING SUMMARY, SUBSEQUENT TO FEBRUARY 2007

LIST OF APPENDICES

APPENDIX A MONTHLY INSPECTION LOGS (JUNE 2007 TO MAY 2008)

APPENDIX B QA/QC REVIEWS

1.0 INTRODUCTION

This report is the seventh annual Operation and Monitoring Report (O&M Report) for the remedial actions constructed at the Gratwick-Riverside Park Site (Site) located in North Tonawanda, New York. This report covers the period from June 2007 to May 2008 and was prepared pursuant to Section 7.0 of the report entitled "Operation and Maintenance Manual" (O&M Manual) dated March 2002 (revised January 2004). It is noted that New York State Department of Environmental Conservation (NYSDEC) approval for the O&M Manual was given on April 20, 2005. All O&M activities have been performed in accordance with the methods and frequencies specified in the O&M Manual except as modified in the previous annual report ("Sixth Annual Operation and Monitoring Report, June 2006 to May 2007"). It is noted that NYSDEC approval was received on October 17, 2005 to modify the groundwater discharge monitoring from monthly to semi-annually and for a reduced list of parameters as recommended in Section 4.2 of the Fifth Annual O&M Report. EPA review of this modification was performed and accepted in June 2006. This change was reflected in the new discharge permit dated January 31, 2007. In accordance with the approved monitoring changes, the first semi-annual discharge sample was collected in September 2007.

2.0 GROUNDWATER WITHDRAWAL SYSTEM (GWS)

Full-time operation of the Groundwater Withdrawal System (GWS) at the Site started on May 4, 2001. The objectives of the GWS are to:

- i) achieve and maintain an inward gradient from the Niagara River toward the GWS; and
- ii) achieve and maintain an upward gradient from the fill alluvium layer beneath the GWS.

In order to determine whether the objectives are being met, hydraulic and chemical monitoring programs have been developed. These programs include: Site groundwater; GWS effluent; and River surface water. The wells, manholes, wet wells, and storm sewer outfalls that comprise the monitoring network are shown on Figure 2.1. The monitoring programs are described in the following subsections.

2.1 HYDRAULIC MONITORING

Hydraulic monitoring consists of the collection of water levels in monitoring wells and manholes, and River water levels at the storm sewer outfalls. These data are then used to determine the vertical and horizontal gradients for the groundwater.

The water levels in four GWS manholes and in the River were monitored to confirm that an inward gradient exists. The water levels in five GWS manholes and in four monitoring wells installed near the GWS alignment in the materials directly overlying the confining unit were monitored to confirm that an upward gradient exists. The specific manholes and monitoring wells used to determine the horizontal and vertical gradients are listed in Table 2.1.

Groundwater elevations are measured on a monthly basis. The measured water levels from the beginning of the O&M period are presented in Table 2.2. Summaries of the horizontal and vertical gradients are provided in Tables 2.3 and 2.4, respectively.

The results for the horizontal gradient evaluation show that:

i) inward horizontal gradients were achieved by May 11, 2001, within one week of the start of pumping the GWS;

- ii) the inward gradients were maintained for the remainder of the first 2 years except for a few short intervals in isolated areas; and
- the inward gradients were maintained for the entire third to seventh years inclusive (May 2003 to May 2008), except for a short time period between June 26, 2006 and August 25, 2006 in the vicinity of MH-2 and between October 31, 2006 and December 29, 2006 in the vicinity of MH12.

The short periods of outward gradient did not adversely affect the effectiveness of the remedy because:

- i) the gradients were outward for only short periods of time;
- ii) the outward gradients occurred over only a portion of the barrier wall;
- iii) the 36-inch barrier wall is six inches thicker than the design thickness thereby providing extra protection; and
- iv) any outward migration of Site groundwater into the barrier wall during the short periods of outward gradient is more than offset by the inward migration of river water into the barrier wall during the long periods of inward gradient.

The results for the vertical gradient evaluation showed that the vertical gradients were continually upward for all four monitoring pairs for the time period of May 2005 to May 2008, except for the location of monitoring well pair MH3/MW-6 at which a small downward gradient was measured in July 2005 and July 2006 and in well pair MH14&15/MW-9 in August 2006. An upward gradient existed at these well pairs in all other monitoring events.

2.2 GROUNDWATER QUALITY MONITORING

Groundwater quality monitoring consists of the collection of water samples from on-Site overburden monitoring wells (OGC-1 through OGC-8 and MW-6 through MW-9) and the analysis of these samples to determine the concentrations of chemicals in the groundwater. The purpose of the groundwater quality monitoring program is to monitor the anticipated improvement in the quality of the overburden groundwater:

- i) between the barrier wall and the River (OGC-1 through OGC-4); and
- ii) in the fill/alluvium beneath the GWS (MW-6 through MW-9).

Groundwater quality monitoring locations are presented on Figure 2.1 and the analytical parameters and frequency are listed in Table 2.5.

The sampling frequency for the initial 2-year period after GWS startup was quarterly. Based on the 2-year results, the frequency for most wells was modified to semi-annual for the third year (May and November 2003). The exceptions to this were for SVOCs in OGC-4 and VOCs in OGC-6, which remained at quarterly for the third year. Sampling for years 4 through 7 (from May 2004 to May 2008) was on an annual basis.

2.2.1 SAMPLE RESULTS

A summary of compounds detected in the groundwater samples is presented in Table 2.6 and pH levels are presented in Table 2.7.

To evaluate the trends in the groundwater chemistry and evaluate the appropriate frequency of future sampling, the VOCs and SVOCs were summed and plotted on Figures 2.2 through 2.13 for each of the 12 monitoring wells included in the program. It is believed that the sum of the VOCs (i.e., TVOCs) and SVOCs (i.e., TSVOCs) best represent the trends in the groundwater chemistry.

Review of the TVOC and TSVOC concentrations for the May 2007 and May 2008 results show the following trends:

i) TVOCs:

- decreasing concentrations in 1 of the 12 wells (OGC-6); and
- relatively constant concentrations with random fluctuations in 11 of the 12 wells.

ii) TSVOCs:

- decreasing concentrations in 2 of 12 wells (MW-9 and OGC-4);
- relatively constant concentrations with random fluctuations in 9 of the 12 wells (MW-6, MW-7, OGC-1, OGC-2, OGC-3, OGC-5, OGC-6, OGC-7, and OGC-8); and
- increasing concentrations in 1 of the 12 wells (MW-8).

Many of the wells had only low level concentrations (i.e., $<12 \,\mu g/L$ for TVOCs and TSVOCs in May 2007 and May 2008). These are MW-6, MW-7, MW-9, OGC-1, OGC-2,

OGC-4, and OGC-5 for TVOCs and MW-6, MW-7, OGC-1, OGC-2, OGC-5, OGC-7, and OGC-8 for TSVOCs.

In summary, the number of wells with decreasing or constant but fluctuating concentrations at low level concentrations, shows that the groundwater is being remediated.

Additional description of the TVOC and TSVOC concentrations is provided in the following paragraphs. The MWs are located on the inside of the barrier wall and the OGCs are located between the barrier wall and the river.

Monitoring Wells On-Site - Inside Barrier Wall

The TVOC concentrations for MW-6 shown on Figure 2.2 fluctuated randomly between 2 and 9 μ g/L from August 2001 to February 2003, increased to 64 μ g/L in May 2003, and then decreased to a range of 16 to 32 μ g/L for the time period from November 2003 to May 2006. For the May 2007 and May 2008 samples, the TVOC concentration was <1.0 μ g/L. The TSVOC concentrations, after the initial rapid decrease from 107 to 13 μ g/L between May and November 2001, fluctuated randomly between non-detect (ND) and 25 μ g/L until May 2003, then increased to 350 μ g/L in November 2003 before decreasing to ND in May 2004. No reason for these large variations is apparent. The TSVOC concentration has remained low level (i.e., <5 μ g/L) since May 2004.

The TVOC and TSVOC concentrations for MW-7 on Figure 2.3 show that both TVOC and TSVOC peaked in May 2002 (18 and 41 μ g/L, respectively) and then decreased to non-detect for both TVOC and TSVOC in May 2004. Since that time, the TVOC concentrations have remained low level ranging from non-detect to 7.3 μ g/L. The TSVOC concentrations ranged from non-detect to 1 μ g/L.

The TVOC concentrations for MW-8 on Figure 2.4 show that the trend in the TVOC concentrations is a continual increase with some fluctuations until November 2003 when the concentrations peaked at 1,000 μ g/L. Thereafter, the concentrations continually decreased with a TVOC concentration of 90 μ g/L in the May 2007 and May 2008 samples. The TSVOC concentrations after August 2001 ranged between 200 and 300 μ g/L until November 2003 and then continually decreased with a TSVOC concentration of 31 μ g/L in the May 2006 sample. The TSVOC concentrations in the May 2007 and May 2008 samples increased slightly to 68 and 105 μ g/L, respectively.

The TVOC concentrations for MW-9 on Figure 2.5 show that the TVOC concentrations ranged between 9 and $29 \,\mu\text{g/L}$. The TSVOC concentrations, not considering the

May 2002 non-detect results which appear to be anomalous, fluctuated randomly between 140 to $280\,\mu\text{g/L}$ from May 2001 to May 2003, increased to $380\,\mu\text{g/L}$ in November 2003, and then fluctuated between 270 and $350\,\mu\text{g/L}$ in the May 2004 and May 2005 samples, respectively. Since May 2005, the TSVOC concentrations have continually decreased to $150\,\mu\text{g/L}$ in the May 2008 sample.

All MWs are located on the inside of the barrier wall and an inward gradient has always been maintained in the vicinity of these wells. Thus, the TVOCs and TSVOCs are not migrating to the Niagara River.

Monitoring Wells Between Barrier Wall and River

The TVOC concentrations for OGC-1 on Figure 2.6 show that the concentrations since November 2003 ranged between 0.5 and $4 \mu g/L$. The TSVOC concentrations after November 2001, have fluctuated between non-detect and $59 \mu g/L$ with non-detect to $3 \mu g/L$ concentrations for the last five sampling events (i.e., since November 2003).

The TVOC concentrations for OGC-2 on Figure 2.7 have fluctuated randomly between non-detect and $4.5\,\mu\text{g/L}$ since February 2002. The TSVOC concentrations were all non-detect over this same time period.

The TVOC concentrations for OGC-3 shown on Figure 2.8 ranged from 21 to $57 \,\mu\text{g/L}$ with the peak in November 2001. The TVOC concentrations ranged between 10 and 27 $\,\mu\text{g/L}$ in the May 2004 to May 2008 samples. The TSVOC concentrations fluctuated randomly from 207 to 411 $\,\mu\text{g/L}$ between November 2001 and November 2003. Since November 2003, the TSVOC concentration has continually decreased from 300 $\,\mu\text{g/L}$ to 124 $\,\mu\text{g/L}$ in May 2007 and 129 $\,\mu\text{g/L}$ in May 2008.

The TVOC concentrations for OGC-4 shown on Figure 2.9 fluctuated randomly between non-detect and 6 μ g/L for the time period from November 2002 to May 2008. The TSVOC concentrations showed a continual increase from 380 μ g/L in May 2001 to 2,430 μ g/L in February 2003, decreased to 64 μ g/L in March 2004, and then increased to 2,400 μ g/L in May 2004. Since then, the TSVOC concentrations have continually decreased, with a concentration of 73 μ g/L in the May 2008 sample. The single compound responsible for the higher concentrations was phenol which increased from 310 μ g/L in May 2001 to 2,400 μ g/L in May 2004 and then decreased to 66 μ g/L in May 2008. Phenol was non-detect in the March 2004 sample.

The TVOC concentrations for OGC-5 shown on Figure 2.10, ranged from non-detect to $11 \,\mu\text{g/L}$ after February 2002. The TSVOC concentrations ranged from non-detect to $11 \,\mu\text{g/L}$ with non-detect concentrations for TSVOC since February 2003.

The TVOC concentrations for OGC-6 shown on Figure 2.11 increased continually from 3 μ g/L in May 2001 to 4,200 μ g/L in May 2006 and then decreased to 68 μ g/L by May 2008. The primary compounds detected are PCE and TCE. The TSVOC concentrations increased continually from non-detect in May 2001 to 26 μ g/L in May 2002 and then held relatively constant between 11 and 30 μ g/L from May 2002 to November 2003. Thereafter, they continually increased to 210 μ g/L in the May 2006 sample, decreased to 88 μ g/L in the May 2007 sample and then increased to 160 μ g/L in the May 2008 sample.

The elevated VOCs detected in OGC-6 have not migrated through the barrier wall from the Site. The reasons for this are described in the following text.

OGC-6 is located a short distance upstream of the northerly river monitoring station and is between MH6 and MH8. Review of the water levels for MH6, OGC-6, MH8, and the middle river station show that the water levels in MH6 and MH8 are typically 8 and 4 feet lower, respectively, than the river north level, resulting in a strong inward gradient which has continually existed in this area since pumping began. Thus, there will be no migration of chemicals from the Site through the barrier wall to the Niagara River. The well inside the barrier wall closest to OGC-6 is MW-7. As described above, the analytical results for MW-7 show only low level TVOC concentrations. Furthermore, the maximum May 2007 TVOC concentration for the four wells inside the barrier wall was 90 μ g/L in well MW-8 and in the groundwater discharge was 260 μ g/L (see Figures 2.4 and 2.14, respectively), both significantly less than the TVOC concentration of 2,670 μ g/L detected in OGC-6. The MW and discharge groundwater results support that the PCE and TCE detected in OGC-6 are unlikely to be migrating from the Site. Thus, the source for these VOCs is uncertain but is expected to reside outside of the barrier wall and is being drawn back toward the Site.

The TVOC concentrations for OGC-7 shown on Figure 2.12, ranged between 59 and 156 μ g/L since August 2001, with the peak concentration in November 2003. Since November 2003, the TVOC concentrations have continually decreased with a concentration of 39 μ g/L in both the May 2007 and May 2008 samples. The TSVOC concentrations ranged between non-detect and 2 μ g/L with non-detect concentrations for TSVOC from August 2002 to May 2006.

The TVOC concentrations for OGC-8 shown on Figure 2.13 have decreased from $165 \,\mu\text{g/L}$ in August 2002 to $29 \,\mu\text{g/L}$ for the May 2004 sample. Since May 2004, the TVOC concentration has ranged from 12 to $29 \,\mu\text{g/L}$. The TSVOC concentrations have decreased from $54 \,\mu\text{g/L}$ in August 2002 to non-detect in the November 2003 sample. Since November 2003, the TSVOC concentrations have ranged from non-detect to $11 \,\mu\text{g/L}$.

The QA/QC review of the May 2008 groundwater results is included in Appendix B.

2.2.2 MONITORING FREQUENCY FOR NEXT 4-YEAR PERIOD

The groundwater sampling frequency has been set at annual since May 2004 and continued through the May 2008 sampling event. In accordance with Section 2.2.2 of the Sixth Annual O&M Report, an evaluation with regard to sampling frequency and analytical parameters for the next 4-year period is to take place now. The evaluation has identified that the wells MW-6, MW-7, OGC-1, OGC-2, and OGC-5 have had both TVOCs and TSVOCs \leq 12 μ g/L for at least the 2007 and 2008 sampling events. Due to the continual low level concentrations, it is recommended that these wells only be sampled and analyzed once every 2 years. It is recommended that the remaining wells continue to be sampled and analyzed every year.

2.3 <u>EFFLUENT MONITORING PROGRAM</u>

Groundwater from the GWS is discharged to the POTW without the need for pretreatment. The monitoring performed during the construction phase of the remedy clearly showed that the minimal chemical presence in the groundwater collected in the GWS is easily treated at the POTW and therefore no on-Site pretreatment is necessary. The effluent samples are collected at the monitoring station (meter building), which is located at the south end of the Site as shown on Figure 2.1. The analytical parameters for the time period from June 2001 to February 2007, inclusive, are listed in Table 2.8.

Based on previous results, it was recommended in the Second Annual O&M report to revise the GWS monitoring frequency to semi-annual and reducing the analytical parameter list (see Table 2.9). NYSDEC approval for this recommendation was received on October 17, 2005 and become effective in June 2006. This change was reflected in the new permit dated January 31, 2007 which expires on February 1, 2010. The last monthly discharge sample was collected on February 9, 2007. The first semi-annual discharge sample was collected on September 7, 2007.

2.3.1 <u>SAMPLE RESULTS</u>

Effluent samples were collected monthly until February 2007. Thereafter, the samples were collected semi-annually. A 24-hour composite sample was collected for SVOCs, metals, and wet chemistry parameters. Three grab samples were also collected for VOCs at 8-hour intervals and the measured concentrations were averaged to give a 24-hour concentration.

The effluent sample results are presented in Table 2.10 and the TVOC and TSVOC results are plotted on Figure 2.14. As shown on Figure 2.14, the TVOCs generally peak in the spring and then decline reaching a trough in the fall. This pattern may be attributable to additional flushing during the spring snow melt. The mean TVOC concentrations decreased until June 2004 and thereafter appears to have held relatively uniform. The effluent TSVOC results on Figure 2.14 show no apparent seasonal pattern but the mean TSVOC concentrations show the same pattern with time as the mean TVOC concentrations.

QA/QC reviews of the monthly discharge results to May 2007 have already been submitted to the NYSDEC. Thus, these reviews are not being resubmitted with this O&M Report. The QA/QC reviews of the monthly discharge results from September 2007 and March 2008, inclusive, are provided in Appendix B.

2.3.2 MONITORING PROGRAM TO FEBRUARY 2010

2.3.2.1 SAMPLING FREQUENCY

To assist in evaluating the sampling frequency for the effluent discharge from the GWS, the measured concentrations for the following parameters were plotted: TVOCs, TSVOCs, pH, total suspended solids (TSS), and biochemical oxygen demand (BOD) (see Figures 2.14 through 2.17). It is believed that these parameters are representative of the trends in the chemistry of the water discharged to the POTW and, as such, can be used to determine an appropriate monitoring frequency for the effluent.

The effluent TVOC and TSVOC concentrations are described in Section 2.3.1.

The pH levels are presented on Figure 2.15. As shown on Figure 2.15, the pH levels range between 8.4 and 11.5. An apparent trend in the pH levels is higher pH levels in the winter/spring and lower pH levels in the summer/fall.

The TSS concentrations presented on Figure 2.16 show higher concentrations occurring in the early spring and late summer/fall with elevated concentrations (maximum of 278 mg/L) in the spring of 2005. Because TSS may be related to the discharge flow rate, the monthly discharge volume (see Table 2.11) is plotted on Figure 2.18. Comparison of the results presented on these two figures shows an apparent correlation between higher flows and greater TSS concentrations except for the 2005 spring results.

The BOD concentrations are presented on Figure 2.17. As shown on Figure 2.17, BOD concentrations ranged from 20 to 29 mg/L until April 2002 then decreased to the range of 6 to 22 mg/L since May 2002. The BOD concentrations were compared with the discharge volume but showed no apparent correlation.

In summary, the trends described above support the semi-annual sampling frequency that the NYSDEC approved on October 17, 2005. This modification was implemented starting after February 2007 in accordance with the City of North Tonawanda Industrial Wastewater Discharge Permit.

2.3.2.2 ANALYTICAL PARAMETERS

Review of the analytical results also shows that none of the detected metals exceeded the surface water standard/guidance values listed in Table 2.10. Thus, it was recommended in the Fifth Annual O&M report that metals be deleted from the effluent analytical parameter list.

Furthermore, operation of the POTW does not require monitoring of the general chemistry parameters. Thus, it was recommended that the general chemistry parameters be deleted from the effluent analytical parameter list, other than those parameters which have a surface water standard/guidance level. The parameters retained are: chloride, ammonia, nitrate, sulfate, sulfide, phosphorus, and cyanide. Of these effluent parameters, chloride, ammonia, sulfide, and phosphorus have consistently exceeded their respective surface water quality criteria whereas sulphate concentrations have been below criteria since February 2007 (see Table 2.10). The parameters with standards/guidance levels will continue to be monitored to assist in the determination of when pumping to the POTW for treatment can be stopped and the groundwater thereafter can be allowed to discharge directly to the Niagara River. Phenol, even

though it has a standard, was deleted from the general parameter list because it is already included under the SVOC parameter list.

These recommendations were incorporated into the discharge permit effective January 31, 2007.

A summary of the effluent monitoring program for the period from February 2007 to February 2010 is presented in Table 2.9. This modification was approved by the NYSDEC on October 17, 2005 and was implemented starting March 2007.

2.4 SURFACE WATER MONITORING PROGRAM

To determine that the River sediment remediation and enhancement is working properly, surface water samples were collected upstream of, adjacent to, and at the downstream end of the Site at the locations shown on Figure 2.1. The analytical parameters are listed in Table 2.12. Surface water samples were collected and analyzed concurrent with the groundwater samples.

2.4.1 <u>SAMPLE RESULTS</u>

The river water analytical results are presented in Table 2.6. As shown in Table 2.6, almost all of the analytical results were non-detect. Only a few VOCs were infrequently detected at very low level concentrations and only two SVOCs were ever detected; once each at less than 1 μ g/L. None of the detected compounds exceeded the Class A surface water criteria with the exception of samples collected in May 2002, November 2003, May 2004, and May 2006 at the North River location. The May 2002, May 2004, and May 2006 North River analytical results show detected concentrations of primarily ethylbenzene (20, 40, and 2.9 μ g/L), toluene (63, 130, and 14 μ g/L), and total xylenes (80, 210, and 23 μ g/L). Benzene was detected at 2 μ g/L, slightly above the Class A surface water criteria of 1 μ g/L, in the North River location in the November 2003 sample. Given that:

- i) the North River location is downstream of the on-site boat launch;
- ii) boats and personnel watercraft were present in the area;
- iii) the concentrations for these three compounds in the groundwater are generally much less than the May 2002, May 2004, and May 2006 river water concentrations; and

iv) the concentrations for these three compounds were non-detect in all other samples at this location, except for toluene (0.96J and 2.2 μ g/L) and total xylene (0.96J and 3.7 μ g/L) in the May 2003 and May 2005 samples, respectively, and PCE (1.3 μ g/L) in the May 2007 sample,

the most likely explanation for these measured concentrations of BTEX compounds in the river water sample is a fuel leak or spillage from watercraft.

The QA/QC review of the May 2008 river water results is included in Appendix B.

2.4.2 FUTURE MONITORING FREQUENCY

With regard to the three River water sampling locations, the TVOCs have all been low level, except for the occasional random high concentration at the River North location and the TSVOCs concentration have been predominantly non-detect with only two events with $1\,\mu g/L$. Considering that the River North location is downstream of the boat launch facility and the parameters detected with elevated concentrations are BTEX (gasoline-based compounds), it is believed that these sporadic elevated concentrations are related to boating activities at the launch and are not related to the remediated Site. Thus, it is recommended that no further sampling or analyses of the River water be performed.

2.5 GWS OPERATIONS

The volume of water pumped on a monthly basis from the Site to the City POTW for treatment is presented in Table 2.11 and plotted on Figure 2.18. Due to an oversight, monthly flows were not measured for March to May 2007 although the total pumped in this period is known. Monthly flow monitoring was restarted on June 1, 2007. The monthly volumes show that during the time period of initial dewatering of the Site (i.e., May and June 2001) the monthly volumes ranged from 2,300,000 to 2,900,000 gallons. For the time period from June 2007 to May 2008, the monthly volumes ranged from 23,800 to 2,127,000 gallons.

The total measured volume of water discharged from the Site for the time period from May 2001 to May 2008 was 49,620,000 gallons with 6,102,000 gallons pumped during the last 12 months. This year's volume is an underestimate as a malfunction was identified in the flow meter in March 2008. As a result, the volumes for the period September 2007 through March 2008 of the reporting period are biased low (see Section 2.6). As a result, the actual volume discharged is greater than the measured volume.

It is believed that the greater than usual discharge volumes measured in March, April, and May 2008, are due to the greater precipitation that occurred this spring compared to pervious years.

Section 5.0 of the O&M Manual describes the procedures to be followed in case pumping of the GWS needs to be stopped to prevent the discharge of untreated water from the Site by the City POTW (i.e., wet weather shutdown). No wet weather shutdown occurred in the time period from June 2007 to May 2008.

The treatment of the Site groundwater by the City POTW did not require any modifications to the standard operations of the City POTW and did not cause any operational upsets of the City POTW.

2.6 GWS MAINTENANCE

None of the maintenance or service repairs resulted in extended shut-down periods during the June 2007 to May 2008 time period.

One repair that affected the performance monitoring of the GSW was that on March 14, 2008, the flow meter was inspected and the interior was found to be coated with a tar-like substance. Based on the lower than normal readings (see Table 2.11), it appears that the meter was malfunctioning for the time period of September 2007 until March 14, 2008. Taking into consideration that the water levels in the manholes for this time period remained relatively consistent, it is believed that the tar-like coating resulted in measuring lower volumes of pumped groundwater than the actual amount. The meter was cleaned and made operational that day. To ensure more timely maintenance, future notifications will also be provided to City of North Tonawanda Public Works Engineering and Wastewater Treatment Department if anomalies in the discharge volumes are observed.

Based on the lower than normal flow readings for September 2007 through February 2008 (i.e., 23,800 to 59,500 gallons), these readings were not plotted on Figure 2.18 as they are less than (not representative) of the actual volume pumped.

3.0 SITE INSPECTIONS

Site inspections were performed on a monthly basis. Copies of the inspection logs for the time period to May 2007 were previously submitted and thus are not being resubmitted with this O&M Report. The monthly inspection logs for June 2007 through May 2008 are included in Appendix A. In summary, the June 2007 to May 2008 inspections identified:

- i) some minor erosion on the river bank north and south of the River North location which is to be repaired in late 2008 or early 2009;
- ii) large rocks had been deliberately placed in the mouth of the River South storm sewer pipe. The rocks were removed at the time of observation; and
- iii) the hydraulic and safety arms of the MH-3 cover required repair. They were repaired on April 24, 2008.

4.0 <u>CONCLUSIONS/RECOMMENDATIONS</u>

4.1 <u>OPERATION AND MAINTENANCE</u>

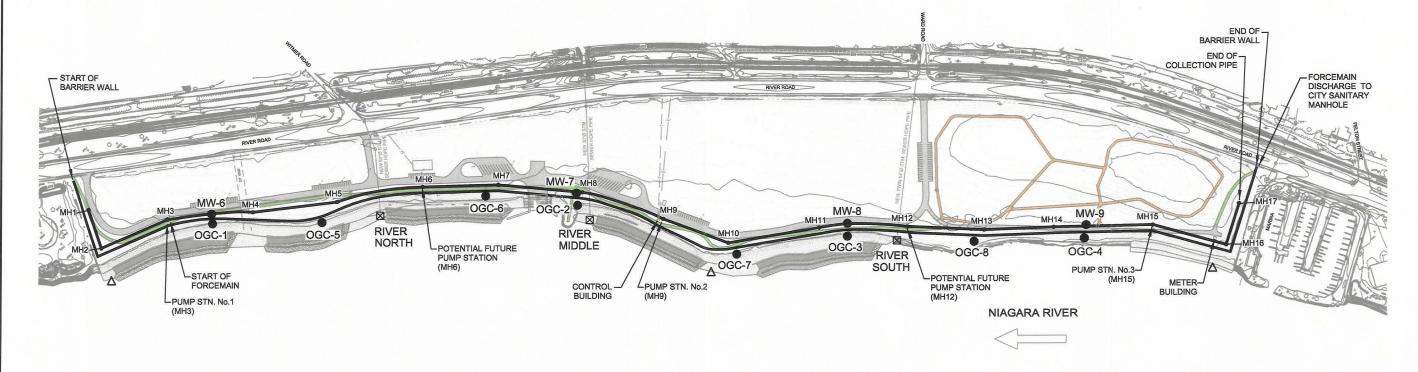
The constructed remedy is achieving the remedial action objectives.

4.2 <u>MONITORING</u>

The trends in the groundwater TVOC and TSVOC analytical results are relatively consistent with time with five wells having TVOC and TSVOC concentrations \leq 12 μ g/L for the 2007 and 2008 events.

In summary, the recommended groundwater sample collection frequency for the next 4-year period is:

Annual	Once Every 2 Years
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	


Furthermore, only a few VOCs and SVOCs were infrequently detected at very low level concentrations in the river water samples. Thus, no further sampling of the river water is recommended.

Pursuant to the discharge permit effective January 31, 2007, semi-annual monitoring commenced in September 2007. The trends in the effluent from the GWS to the POTW support the reduction in the sampling frequency from monthly to semi-annual. Flow monitoring will continue to be performed monthly as a check on the operation of the GWS.

4.3 NOTIFICATIONS TO CITY OF NORTH TONAWANDA

Future notifications of anomalies in the discharge volumes will also be provided to the City of North Tonawanda Public Works Engineering and Wastewater Treatment Department to ensure more timely maintenance.

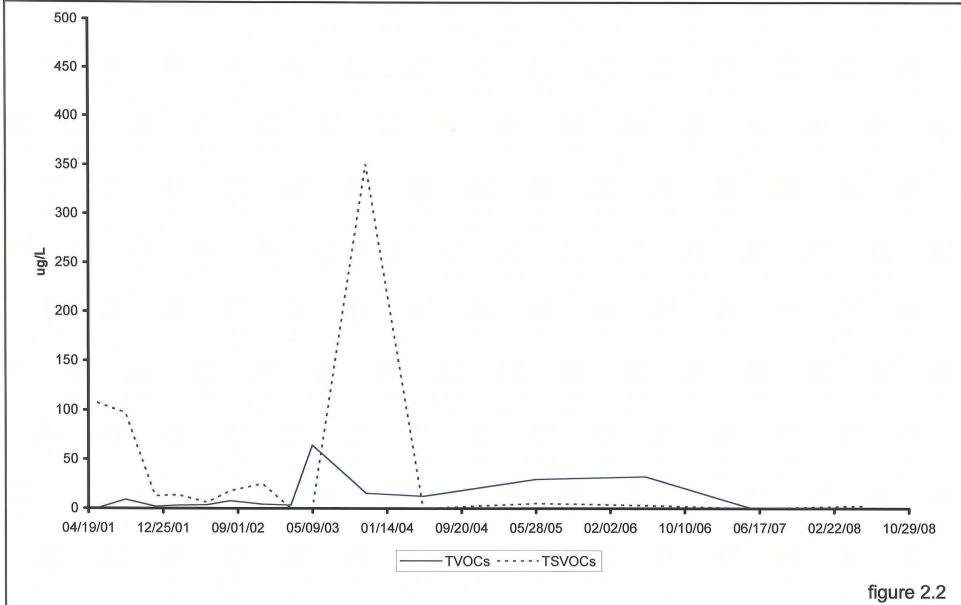
LEGEND

BARRIER WALL

GROUNDWATER COLLECTION SYSTEM

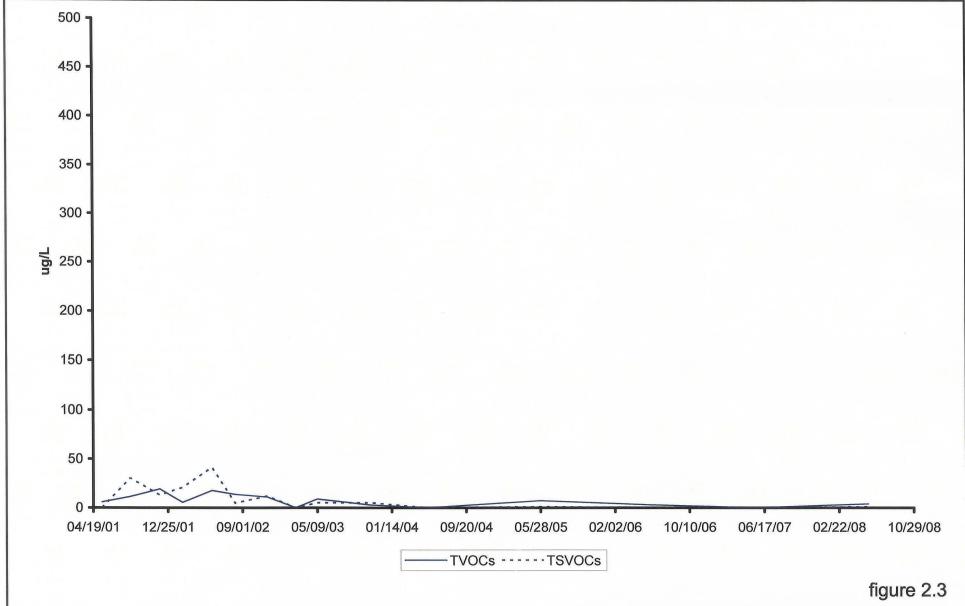
OGC-1
MW-1
MW-1

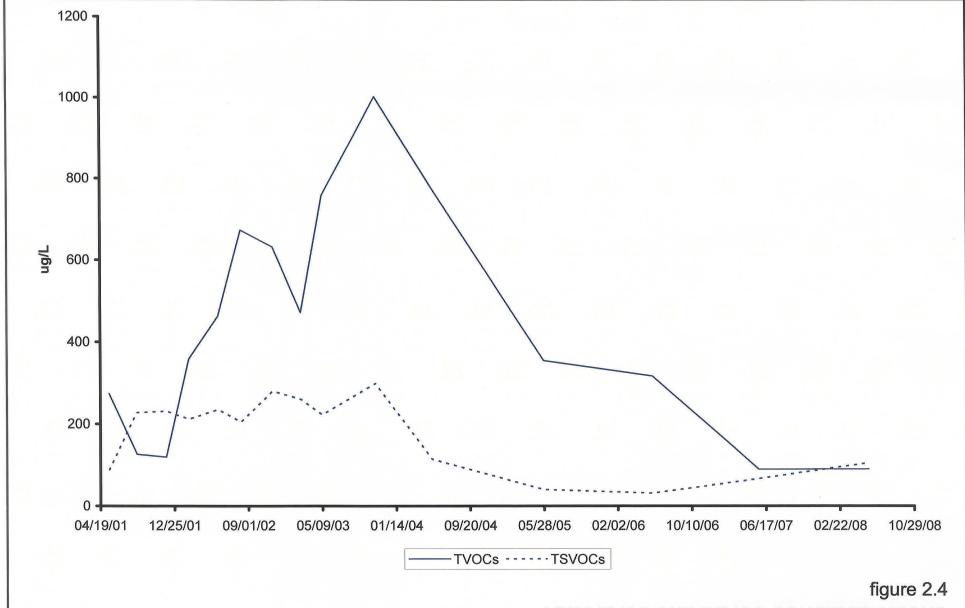
RIVER
SOUTH

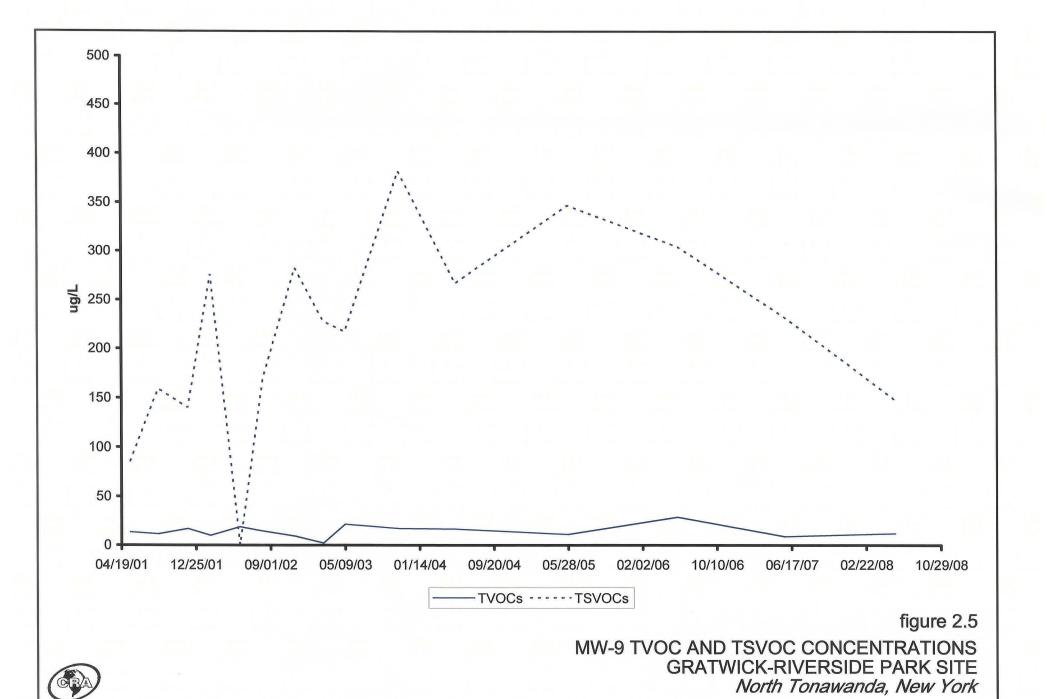

SURFACE WATER LEVEL MONITORING LOCATION

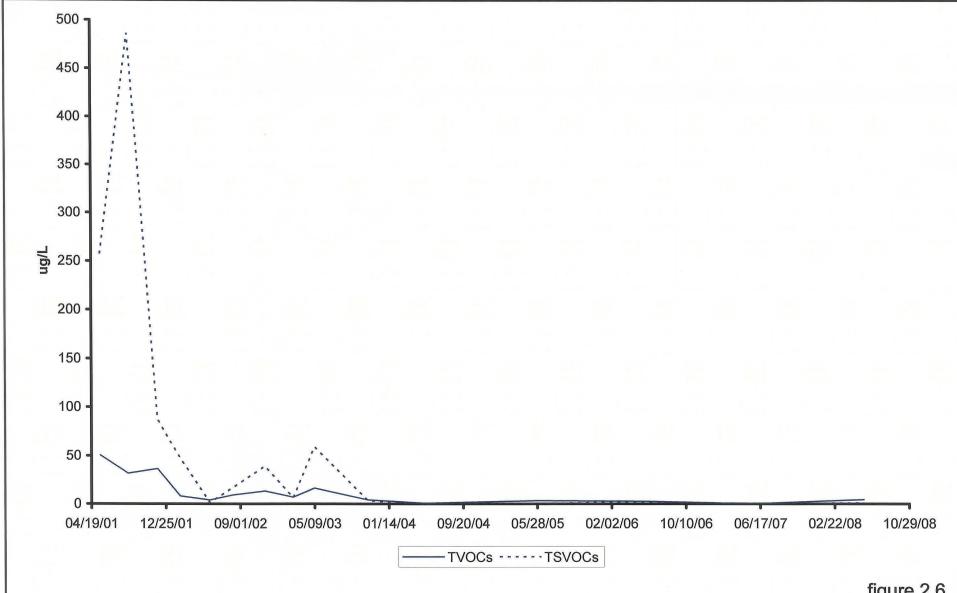
SURFACE WATER CHEMICAL MONITORING LOCATION

figure 2.1

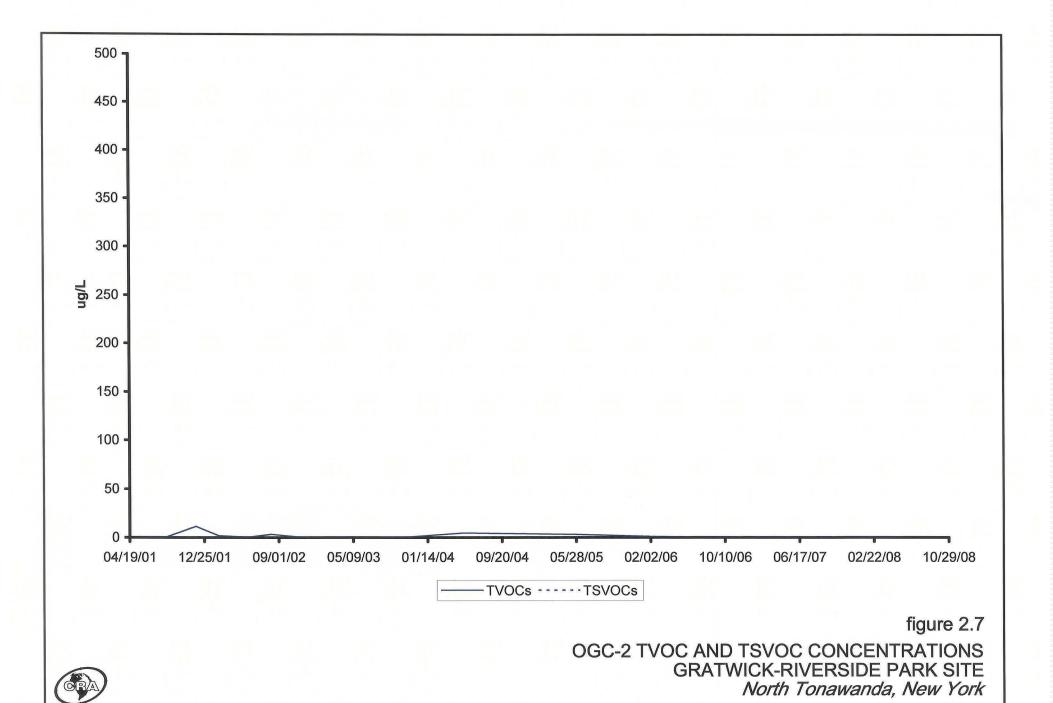

MONITORING NETWORK
GRATWICK-RIVERSIDE PARK SITE
North Tonawanda, New York

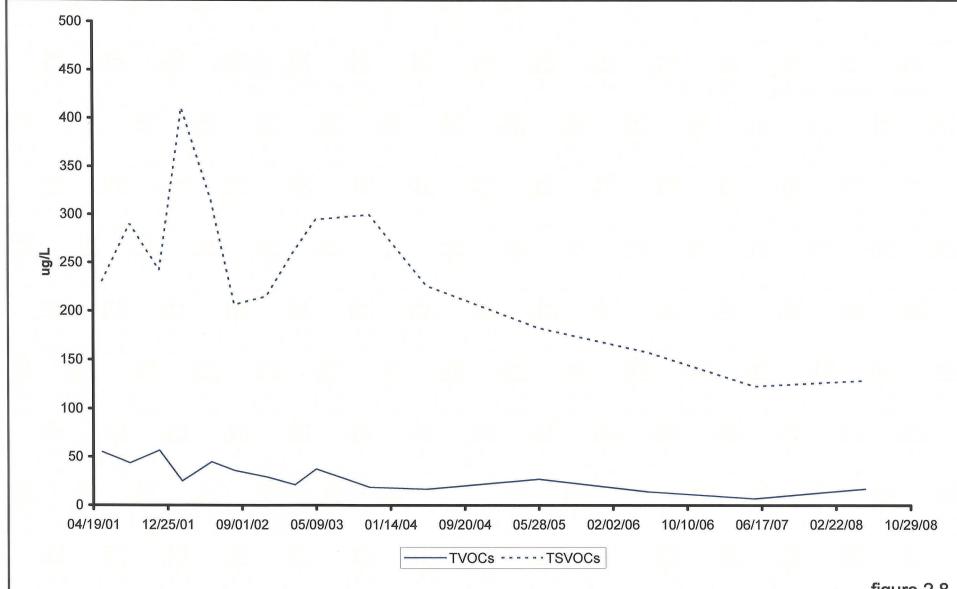


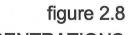



MW-7 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York

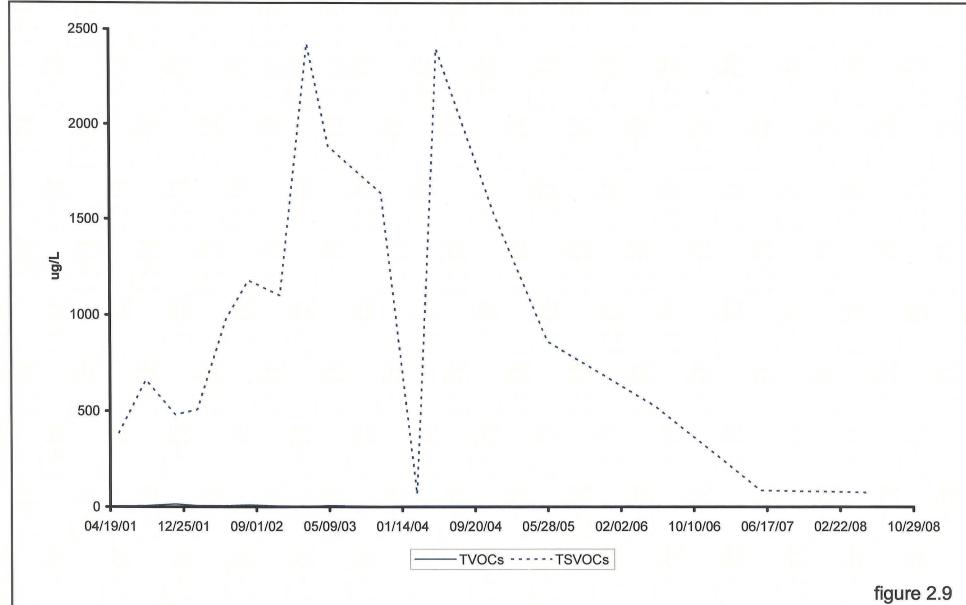
MW-8 TVOC AND TSVOC CONCENTRATIONS
GRATWICK-RIVERSIDE PARK SITE
North Tonawanda, New York

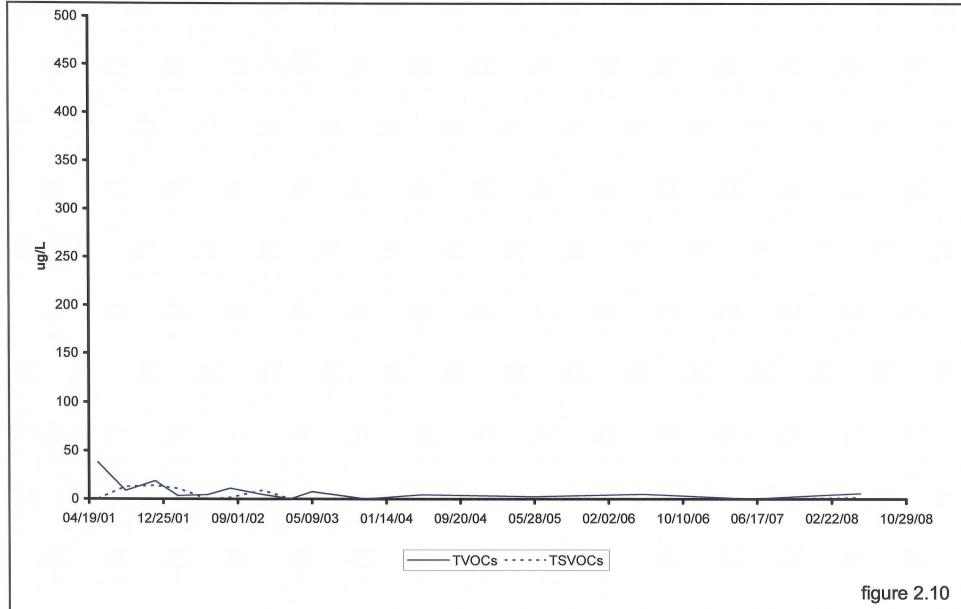





OGC-1 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE

North Tonawanda, New York




OGC-3 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York

OGC-5 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York

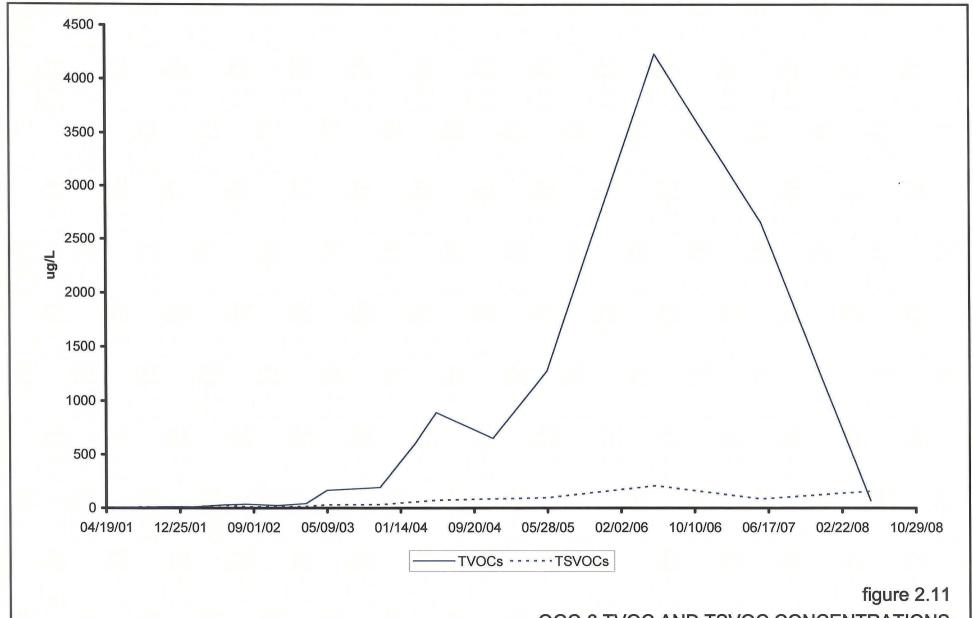
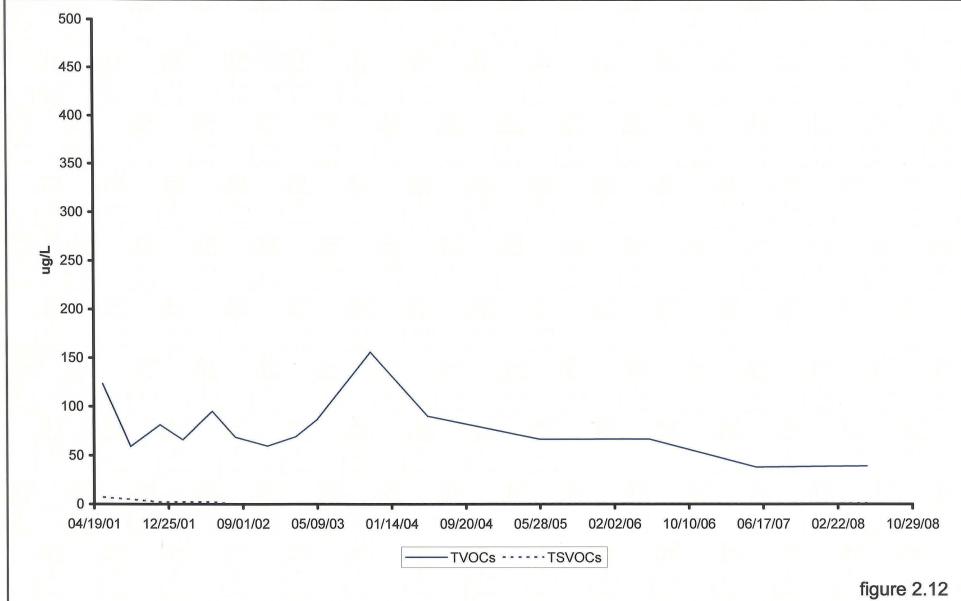
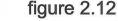




figure 2.11
OGC-6 TVOC AND TSVOC CONCENTRATIONS
GRATWICK-RIVERSIDE PARK SITE
North Tonawanda, New York

OGC-7 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE

North Tonawanda, New York

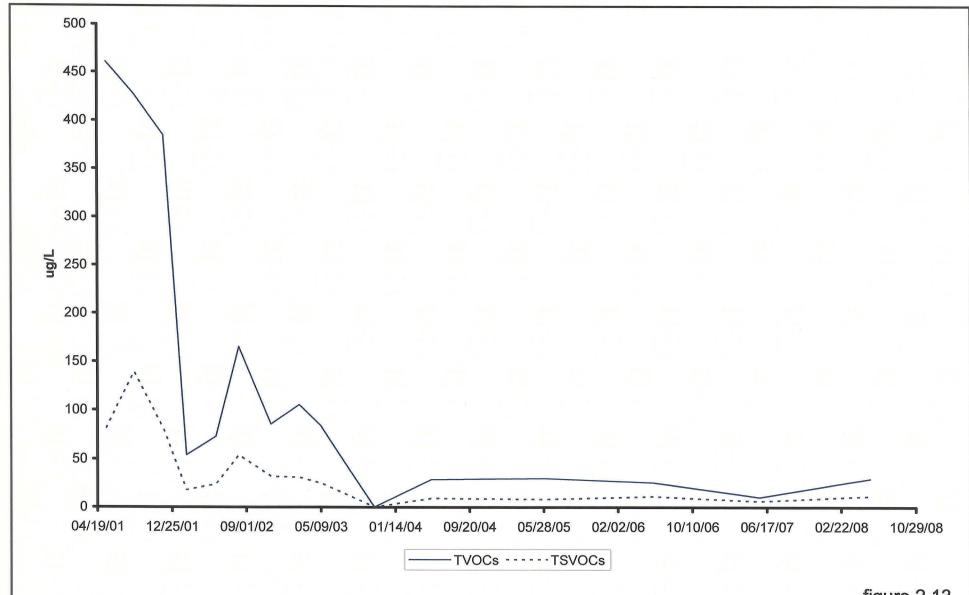
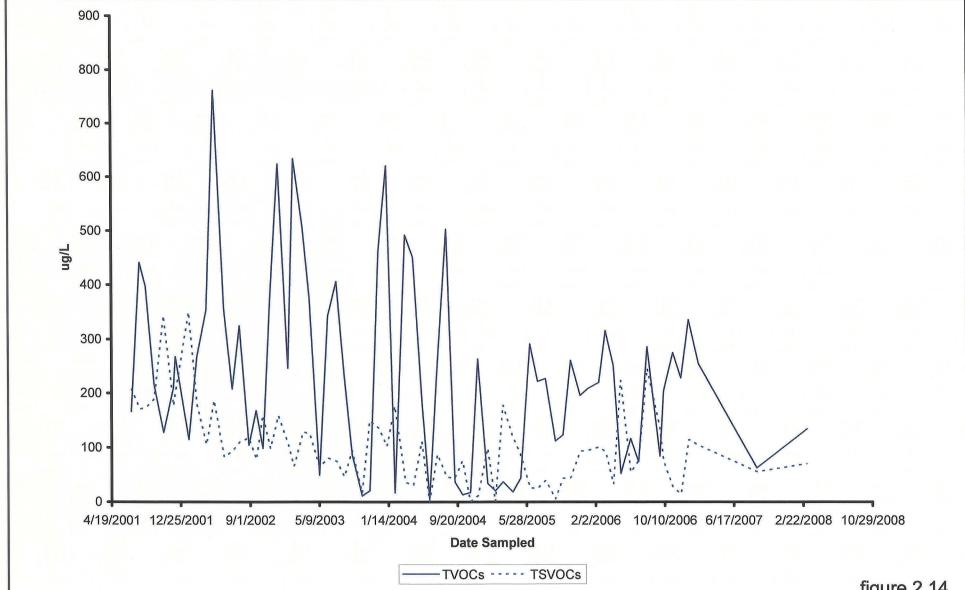
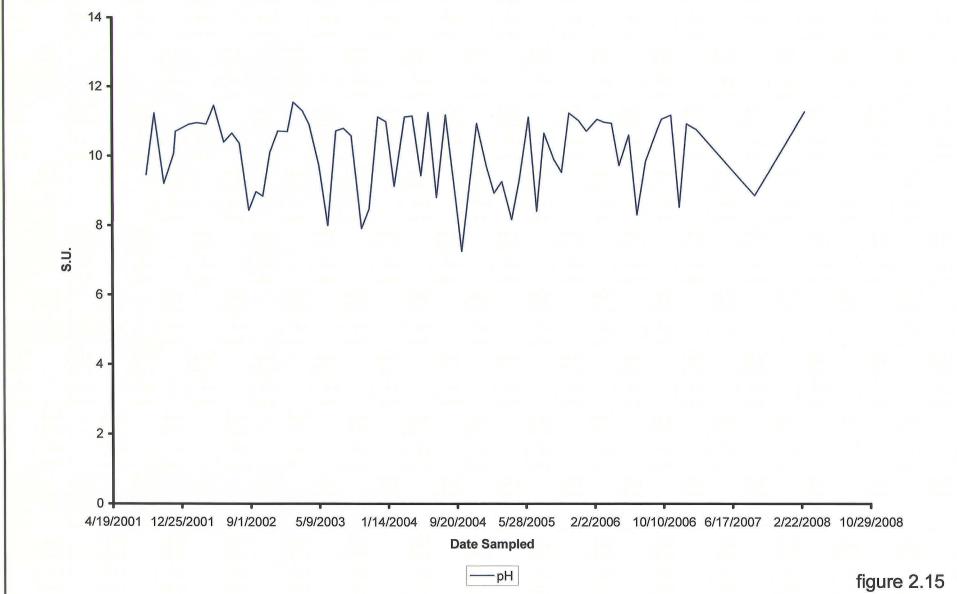
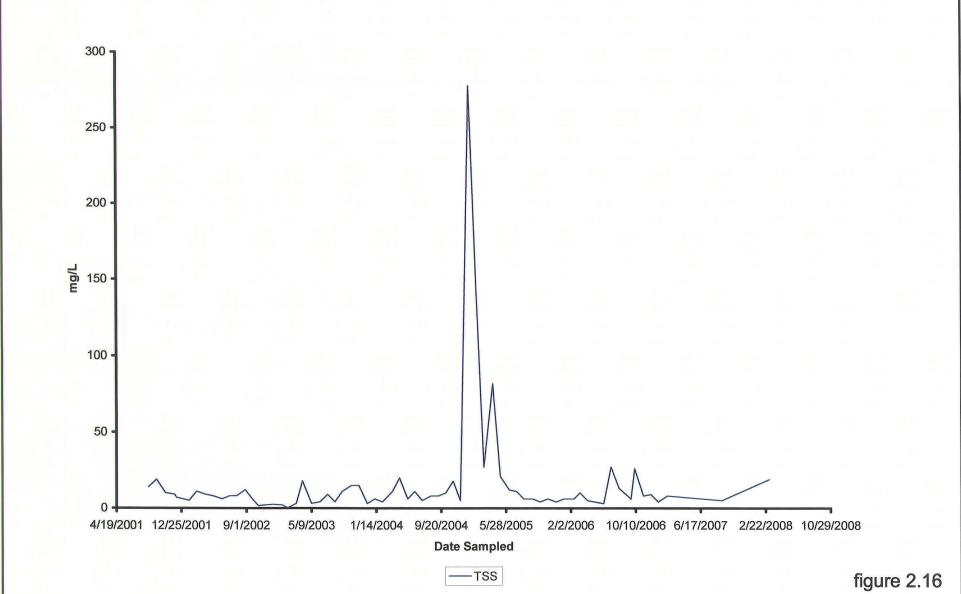
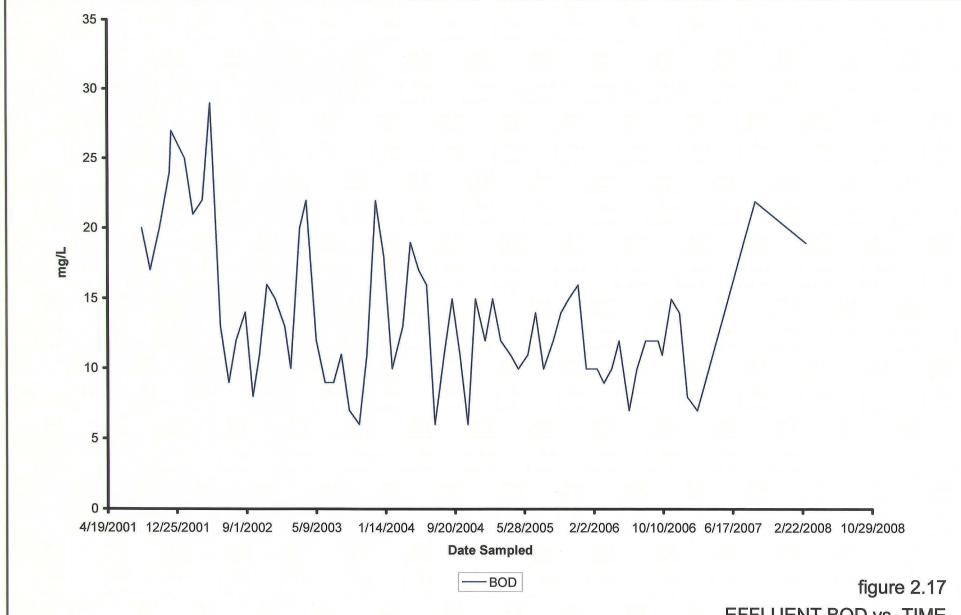


figure 2.13 OGC-8 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York


figure 2.14

EFFLUENT TVOCs AND TSVOCs vs. TIME GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York


EFFLUENT pH vs. TIME GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York

EFFLUENT TOTAL SUSPENDED SOLIDS vs. TIME GRATWICK-RIVERSIDE PARK SITE

North Tonawanda, New York

EFFLUENT BOD vs. TIME GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York

figure 2.18

EFFLUENT VOLUME vs. TIME GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York

TABLE 2.1

GROUNDWATER HYDRAULIC MONITORING LOCATIONS OPERATION AND MAINTENANCE GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

INWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

Inner (1)	<u>Outer</u>
MH2	Niagara River North (Downstream)
МН6	Niagara River North (Downstream)
MH8	Niagara River Middle
MH12	Niagara River South (Upstream)

UPWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

<u>Upper</u> ⁽¹⁾	<u>Lower</u>
МН3	MW-6
MH8	MW-7
MH11	MW-8
MH14/MH15 ⁽²⁾	MW-9

FREQUENCY

- Weekly following GWS startup until six consecutive inward gradients are achieved; and
- Monthly thereafter for the remainder of the initial 2-year period (review after 2 years).
- 2-Year review indicated that the monitoring frequency remain monthly.

- These manholes will be monitored twice daily by POTW staff during a wet weather bypass event pursuant to Section 5.0 of the O&M Manual.
- Distance weighted averages of water levels used (MH14 two thirds and MH15 one third).

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

							River					River	
Date	MH2	МН3	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
December 12, 2000	NM			564.26	567.05	563.84	NM	564.24		567.20	564.58	NM	565.24
January 8, 2001	NM		NM	563.94	567.21	563.82	NM	563.84		567.30	564.01	NM	563.90
March 29, 2001	NM		NM	564.19	567.80	563.82	NM	564.10		566.89	564.28	NM	564.12
May 11, 2001	559.31		561.98	564.39	563.53	564.54	564.54	564.25		561.60	564.53	564.38	564.50
May 18, 2001	NM		562.03	564.21	563.08	564.54	564.49	564.25		561.97	564.53	564.33	564.55
May 25, 2001	NM		NM	564.46	562.80	564.52	563.80	564.22		561.71	564.28	563.63	564.50
June 1, 2001	559.34		561.97	564.51	562.74	564.52	563.52	564.20		561.77	564.18	563.47	564.49
June 8, 2001	NM		562.49	564.63	562.65	564.82	564.75	564.36		561.59	564.60	564.68	564.78
June 15, 2001	560.79	560.59	562.60	564.67	562.54	564.76	564.71	564.53	560.53	561.48	564.77	564.71	564.79
June 22, 2001	560.77	560.55	562.53	564.65	562.50	564.72	564.90	564.43	560.44	561.41	564.66	564.86	564.72
June 29, 2001	560.62	560.40	562.42	564.51	562.42	564.66	564.52	564.35	560.38	561.39	564.57	564.48	564.59
July 31, 2001	559.87	559.21	562.90	564.49	562.19	564.71	564.66	564.35	560.25	561.30	564.60	564.68	565.70
August 20, 2001	561.49	561.07	565.23	(1) 564.60	562.09	563.82	564.69	564.46	560.25	561.29	564.77	564.64	564.81
September 28, 2001	561.03	560.56	563.03	564.61	562.13	564.25	564.68	564.48	560.27	561.32	564.79	564.68	564.99
October 22, 2001	561.38	562.36	567.06	(3) 564.61	562.08	564.41	(2)	564.33	560.43	561.37	564.58	564.26	564.33
November 27, 2001	561.45	560.94	564.53	563.95	561.88	563.65	(2)	563.83	560.45	561.36	564.04	563.54	563.87
December 20, 2001	560.96	560.50	564.39	564.47	561.83	564.78	564.69	564.27	559.75	561.25	564.72	564.45	564.86
January 29, 2002	560.74	560.15	563.75	564.09	561.83	563.87	563.89	563.99	560.98	561.89	564.12	563.74	564.01
February 11, 2002	560.80	560.28	564.19	564.22	561.73	563.84	564.03	564.07	561.06	561.50	564.18	563.97	564.19
March 25, 2002	560.55	560.10	563.25	564.10	561.72	563.51	(2)	564.03	560.65	561.60	564.02	563.59	563.83
April 24, 2002	562.54	562.05	564.12	564.60	561.88	564.70	564.61	564.49	561.13	561.95	564.67	564.19	564.72
May 21, 2002	561.74	561.28	564.10	564.79	561.97	564.84	564.76	564.68	560.05	561.38	564.85	564.66	564.84
June 20, 2002	561.67	561.24	565.58	564.74	561.92	564.56	564.58	564.62	560.68	561.54	564.85	564.68	564.80
July 18, 2002	561.46	560.99	564.99	564.78	561.89	565.00	564.89	564.66	560.79	561.65	564.90	564.90	564.93
August 6, 2002	561.26	560.79	565.89	564.86	561.92	564.70	564.65	564.71	561.05	561.93	564.90	564.59	564.85
September 12, 2002	561.60	561.14	565.60	564.80	561.82	565.05	565.04	564.67	561.10	561.99	564.87	564.95	564.97
October 30, 2002	561.63	561.21	566.24	564.18	561.97	563.95	(2)	564.07	561.07	561.95	564.10	563.75	564.00
November 21, 2002	561.12	560.67	554.47	(4) 564.05	562.05	563.94	(2)	563.98	558.03	561.41	564.20	563.71	564.06
December 11, 2002	561.55	561.08	555.09	563.99	562.04	563.85	(2)	563.84	559.95	561.25	563.94	563.72	563.87

- Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.
- River level too low to obtain a measurement at the measuring location.
- Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.
- (4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.

TABLE 2.2

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date	OGC-3	MH11	MW-8	River South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
Dute	OGC-3	WHILL	IVI VV-0	Journ	MIIIZ	UGC-0	OGC-4	IVI VV-3	1711114	MIIII	1111110
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
December 12, 2000	565.07		567.08	NM		564.45	564.85	567.15			
January 8, 2001	563.95		567.29	NM	NM	564.01	564.00	567.35			567.29
March 29, 2001	564.21		567.96	NM	NM	564.24	564.25	568.06			NM
May 11, 2001	564.58		561.95	564.70	564.15	564.63	564.59	562.53			562.45
May 18, 2001	564.59		562.49	564.65	564.12	564.66	564.66	563.05			562.55
May 25, 2001	564.57		561.99	564.80	564.17	564.63	564.60	562.54			562.48
June 1, 2001	564.59		562.06	565.00	564.19	564.66	564.60	562.57			562.51
June 8, 2001	564.87		561.89	565.05	562.45	564.96	564.89	562.47			562.42
June 15, 2001	564.91	561.12	561.69	565.05	562.34	564.93	564.88	562.45	562.32		562.29
June 22, 2001	564.87	561.05	561.54	565.18	562.29	565.00	564.80	562.19	562.32		562.14
June 29, 2001	564.68	560.97	561.46	564.83	561.80	564.75	564.68	562.11	562.45		562.06
July 31, 2001	564.78	560.73	561.19	564.96	560.77	564.85	564.76	562.45	562.45		561.69
August 20, 2001	564.83	560.50	561.05	564.99	560.42	564.88	564.85	561.55	561.72		561.54
September 28, 2001	564.85	560.61	561.07	564.95	560.36	564.87	564.84	561.58	561.70		561.52
October 22, 2001	564.58	560.51	561.27	564.61	560.42	564.61	564.62	561.75	562.10		561.72
November 27, 2001	563.89	559.51	561.30	564.05	560.06	563.89	563.94	561.71	561.87		563.82
December 20, 2001	564.96	561.31	560.73	564.96	560.23	564.99	565.05	561.77	561.89		561.71
January 29, 2002	564.06	Blocked	561.91	563.92	560.29	564.03	564.08	562.31	562.53		562.31
February 11, 2002	564.28	561.23	561.93	564.53	560.24	564.35	564.35	562.52	562.18		562.54
March 25, 2002	563.87	560.97	561.60	564.15	560.34	563.85	563.95	562.45	562.77		562.61
April 24, 2002	564.79	561.41	561.95	564.86	560.63	564.86	564.84	562.96	563.09		562.95
May 21, 2002	564.95	560.35	560.89	565.07	560.89	565.03	564.98	563.11	563.25	562.17	563.10
June 20, 2002	564.85	560.98	561.50	564.88	561.04	564.90	564.94	562.91	562.98	562.00	562.90
July 18, 2002	565.09	561.07	561.80	565.22	560.95	565.17	565.08	562.84	561.83	561.93	562.83
August 6, 2002	564.88	561.33	561.88	564.90	561.07	564.95	564.91	562.75	562.08	561.86	562.75
September 12, 2002	565.09	561.34	561.91	565.25	561.09	565.20	565.05	562.66	562.11	561.75	562.63
October 30, 2002	564.03	561.36	561.95	564.16	561.31	564.14	564.00	562.57	562.68	561.62	562.56
November 21, 2002	564.04	561.49	560.99	564.15	561.44	564.19	564.18	562.74	562.88	561.82	562.73
December 11, 2002	564.01	561.51	560.73	564.14	561.45	564.09	564.02	562.91	563.07	562.01	562.94

Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

River level too low to obtain a measurement at the measuring location.

 $^{^{(3)}}$ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date	MH2	<i>М</i> Н3	МН6	OGC-1	MW-6	OGC-5	River North	OGC-6	МН8	MW-7	OGC-2	River Middle	OGC-7
	141112	WIIIS	141110	OGC-1	1V1 VV-0	OGC-3	North	UGC-0	NINO	IVI VV-7	OGC-2	Muuie	OGC-/
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 16, 2003	561.65	561.20	556.15	564.03	562.27	563.88	(2)	564.12	561.04	561.95	564.27	563.52	564.10
February 25, 2003	561.58	561.10	555.74	563.80	561.85	563.71	(2)	563.67	560.60	561.49	563.81	563.34	563.81
March 14, 2003	561.65	561.17	555.75	563.75	561.69	563.74	(2)	563.61	560.61	561.49	563.77	563.24	563.77
April 14, 2003	561.68	561.22	554.54	564.32	562.42	564.34	564.30	564.17	558.65	561.42	564.39	564.24	564.40
May 8, 2003	561.52	561.03	555.93	564.37	562.38	564.41	564.29	564.21	560.76	561.59	564.36	564.27	564.37
June 19, 2003	562.26	561.83	556.02	564.73	562.43	564.83	564.78	564.59	560.85	561.60	564.77	564.66	564.81
July 21, 2003	561.21	560.46	556.06	564.68	562.31	564.64	564.49	564.58	560.89	561.74	564.81	564.44	564.75
August 28, 2003	561.65	561.20	554.61	564.65	562.21	564.76	564.64	564.51	558.52	561.29	564.67	564.60	564.75
September 30, 2003	561.57	561.10	555.08	564.64	562.53	564.89	(2)	564.49	559.88	561.35	564.76	564.67	564.91
October 20, 2003	561.48	561.07	554.98	564.61	562.52	564.93	(2)	564.45	559.77	561.17	564.68	564.63	564.86
November 3, 2003	561.53	561.08	555.94	564.29	562.33	563.89	(2)	564.11	560.76	561.12	563.56	564.36	564.15
December 23, 2003	561.08	559.49	555.62	564.29	562.30	564.04	(2)	564.17	560.67	561.48	564.33	(2)	564.18
January 21, 2004	(5)	560.33	555.84	565.24	562.32	564.19	(2)	564.12	560.70	561.55	564.30	(2)	564.26
February 12, 2004	(5)	561.08	556.12	563.99	562.16	563.76	(2)	563.87	560.95	561.81	564.00	(2)	563.88
March 4, 2004	561.33	561.13	555.90	564.17	562.21	557.07 (6)	(2)	564.00	560.75	561.61	564.31	(2)	564.19
April 16, 2004	560.05	558.78	554.91	564.59	562.48	564.49	(2)	564.36	559.59	561.71	564.56	564.43	564.56
May 14, 2004	560.17	559.71	554.56	564.49	562.39	564.57	564.55	564.34	559.45	561.70	564.51	564.48	564.54
June 25, 2004	561.64	561.21	555.74	564.76	562.27	564.71	564.68	564.62	560.50	561.42	564.82	564.56	564.78
July 30, 2004	561.79	561.25	555.24	565.01	562.29	565.20	565.20	564.84	560.04	561.31	565.02	565.16	565.14
August 31, 2004	561.37	560.59	555.83	565.06	562.23	565.05	564.98	564.92	560.67	561.56	565.14	564.93	565.17
September 30, 2004	561.48	560.81	555.60	565.11	562.28	565.22	565.00	564.95	560.71	561.49	565.20	565.05	565.20
October 20, 2004	561.65	561.19	555.96	564.65	562.10	564.57	564.45	564.44	560.82	561.69	564.57	564.41	564.57
November 23, 2004	561.50	561.05	554.95	564.17	561.99	564.20	(2)	564.02	559.77	561.21	564.31	(2)	564.28
December 31, 2004	561.60	560.74	556.19	564.58	562.16	564.50	564.68	564.25	561.02	561.80	564.37	564.56	564.40

- Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.
- River level too low to obtain a measurement at the measuring location.
- Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.
- Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.
- Buried with snow.
- Believed to be erroneous reading.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 16, 2003	564.13	561.68	562.00	564.11	561.83	564.14	564.20	563.17	563.37	562.28	563.20
February 25, 2003	563.87	561.60	561.48	564.21	561.56	563.90	563.94	562.89	563.07	562.01	562.91
March 14, 2003	563.79	561.57	561.46	564.11	561.54	563.92	563.91	562.90	563.09	562.05	562.93
April 14, 2003	564.48	558.53	560.98	564.45	561.56	564.54	564.52	563.36	563.54	562.49	563.40
May 8, 2003	564.48	561.03	561.56	564.61	561.61	564.59	564.44	563.07	563.26	562.01	563.11
June 19, 2003	564.92	561.12	561.56	564.96	561.94	564.99	564.95	563.10	563.41	562.25	563.15
July 21, 2003	564.81	561.10	561.69	564.78	562.03	564.84	564.88	562.89	563.03	561.98	562.89
August 28, 2003	564.86	564.37	562.35	564.91	562.19	564.94	564.85	566.17	566.48	566.36	566.59
September 30, 2003	565.02	558.68	560.17	565.08	562.26	565.08	565.02	562.77	562.89	562.02	562.78
October 20, 2003	564.94	558.66	560.02	565.03	562.25	565.05	564.96	562.75	562.88	562.01	562.76
November 3, 2003	564.26	561.01	561.57	564.28	562.52	564.27	564.31	562.85	563.00	561.91	562.83
December 23, 2003	564.24	560.94	561.34	564.36	562.75	564.08	564.28	563.20	563.31	562.28	563.20
January 21, 2004	564.33	(4)	561.47	564.36	562.49	564.41	564.35	562.72	(4)	561.74	562.68
February 12, 2004	563.93	561.23	561.75	564.16	562.30	563.96	563.98	562.88	(4)	561.73	562.66
March 4, 2004	564.25	561.04	561.56	564.26	562.07	564.34	564.35	562.70	562.75	561.75	562.66
April 16, 2004	564.64	559.85	561.38	564.69	561.00	564.74	564.66	562.64	562.79	561.72	562.63
May 14, 2004	564.63	559.87	561.39	564.71	560.80	564.68	564.55	562.71	562.74	561.74	562.67
June 25, 2004	564.85	560.79	561.19	564.91	560.95	564.89	564.89	562.70	562.74	561.76	562.68
July 30, 2004	565.28	560.26	560.71	565.46	561.15	565.33	565.21	562.70	561.13	561.74	562.67
August 31, 2004	565.26	560.94	561.39	565.25	561.35	565.31	565.27	562.95	563.08	562.02	562.93
September 30, 2004	565.29	561.00	561.43	565.30	561.25	565.40	565.26	562.98	562.90	562.20	562.98
October 20, 2004	564.67	561.09	561.56	564.49	561.50	564.76	564.68	562.64	562.82	561.73	562.88
November 23, 2004	564.34	560.05	560.56	564.30	561.57	564.38	564.40	562.71	561.04	561.62	562.69
December 31, 2004	564.69	561.23	561.75	564.81	561.81	564.78	564.55	562.71	562.05	561.77	562.69

Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

River level too low to obtain a measurement at the measuring location.

Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date	МН2	мнз	мн6	0664	MALC	000.5	River North	000.6	Maria	14147.7	OGC-2	River Middle	OGC-7
Dute	WIFIZ	мпз	MHO	OGC-1	MW-6	OGC-5	North	OGC-6	МН8	MW-7	OGC-2	Miauie	OGC-/
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 28, 2005	562.60	562.15	556.22	564.68	562.27	564.62	(2)	564.53	561.06	561.85	564.67	564.32	564.71
February 28, 2005	561.05	559.96	555.58	564.58	562.14	564.68	(7)	564.48	560.47	561.46	564.21	564.46	564.76
March 31, 2005	561.25	559.94	555.93	564.55	562.04	564.40	(2)	564.38	560.78	561.66	564.63	564.08	564.49
April 20, 2005	560.20	559.54	556.01	565.01	562.26	564.94	564.83	564.84	560.89	561.76	565.01	564.71	565.05
May 27, 2005	560.23	558.92	555.82	564.71	562.24	564.79	564.78	564.63	560.65	561.55	564.78	564.74	564.91
June 24, 2005	561.50	561.09	555.16	564.71	562.22	564.85	564.73	564.61	559.92	561.47	564.78	564.70	564.85
July 29, 2005	562.70	562.26	556.56	564.79	562.11	564.95	564.82	564.65	561.39	562.27	564.87	564.85	564.98
August 31, 2005	561.62	560.64	556.24	564.68	562.09	564.71	(2)	564.59	561.07	561.94	564.79	564.54	564.82
October 3, 2005	561.52	560.54	555.41	564.75	562.24	564.85	564.80	564.62	560.20	561.40	564.78	564.75	564.88
October 31, 2005	561.68	560.73	555.60	564.59	562.34	564.69	564.80	564.44	560.46	561.52	564.64	564.55	564.70
November 22, 2005	561.62	561.20	555.20	564.40	561.67	564.64	(2)	564.28	560.04	561.49	564.44	(2)	564.21
December 23, 2005	562.55	562.09	556.20	564.28	562.45	564.11	(2)	564.22	561.05	561.85	564.42	(2)	564.32
January 27, 2006	562.95	562.53	556.21	564.50	562.97	564.16	(2)	564.32	561.02	561.79	564.41	(2)	564.06
February 28, 2006	563.17	562.26	554.70	564.27	562.90	564.13	(2)	564.31	558.44	561.68	564.37	(2)	564.26
March 24, 2006	562.68	561 <i>.77</i>	555.64	564.46	562.86	564.25	(2)	564.32	560.43	561.57	564.46	(2)	564.36
April 21, 2006	562.31	561.84	555.61	564.42	562.76	564.41	(2)	564.32	560.40	561.48	564.49	564.26	564.46
May 30, 2006	562.73	562.30	555.84	564.91	562.50	565.00	564.87	564.80	560.44	561.75	564.95	564.86	565.07
June 26, 2006	561.57	560.63	556.19	563.04	562.37	564.97	564.81	564.92	561.02	561.92	565.15	564.78	565.06
July 31, 2006 (8)	565.18	564.78	558.88	565.14	564.39	565.24	565.09	565.01	563.66	564.54	565.19	565.07	565.28
August 25, 2006	561.64	561.21	556.06	564.72	562.99	564.81	(2)	564.59	560.89	561.82	564.80	564.68	564.87
September 22, 2006	561.46	561.01 ⁽⁶⁾	555.95	564.88	562.76	564.73	564.70	564.72	560.51	561.99	564.94	564.67	564.88
October 31, 2006	559.98	555.62	556.01	565.03	562.58	564.96	564.82	564.87	559.95	562.09	565.06	564.66	565.03
November 29, 2006	561.35	560.85	555.93	564.30	562.48	564.25	(2)	564.18	560.73	562.01	564.40	(2)	564.35
December 29, 2006	561.52	560.42	555.93	564.46	562.98	564.36	564.82	564.31	560.80	561.89	564.53	(2)	564.49

- Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.
- (2) River level too low to obtain a measurement at the measuring location.
- Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.
- (4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.
- (5) Buried with snow.
- (6) Believed to be erroneous reading.
- (7) Ice on pipe.
- (8) GWS down from July 7 to 31, 2006 because of closed flapper gate in upstream City manhole.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date	МН2	мнз	МН6	OGC-1	MW-6	OGC-5	River North	OGC-6	МН8	MW-7	OGC-2	River Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)			- · <u>-</u> · · ·	575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 26, 2007	561.39	560.92	556.04	564.62	562.78	564.75	(2)	563.79	560.89	562.06	564.67	564.46	564.77
February 27, 2007 March 30, 2007	561.53 560.25	560.57 559.45	556.23 556.24	564.32 564.49	562.49 562.30	564.25 564.40	(2) (2)	564.15 564.27	561.07 561.09	561.96 562.05	564.35 564.46	(7) 564.28	564.33 564.48
April 30, 2007	560.99	559.43	556.31	564.97	562.62	564.97	564.82	564.78	561.14	562.20	564.96	564.78	565.07
May 25, 2007	560.85	559.85	556.12	564.67	562.48	565.73	(2)	564.54	561.02	562.05	564.75	564.67	564.75
June 29, 2007	560.85	558.83	556.45	564.70	562.32	564.78	(2)	564.54	561.26	562.16	564.81	564.64	564.79
July 25, 2007	561.49	560.54	556.24	564.43	562.13	564.55	(2)	564.26	561.02	561.94	564.47	564.41	564.53
August 31, 2007	561.10	559.62	556.22	564.43	561.93	564.56	(2)	564.29	561.04	561.95	564.55	564.44	564.65
September 27, 2007	561.49	561.05	556.02	564.44	561.86	564.44	(2)	564.34	560.47	562.01	564.58	564.27	564.56
October 31, 2007	561.57	560.69	556.17	564.08	562.02	563.88	(2)	564.01	561.08	562.00	564.16	(2)	564.03
November 30, 2007	561.59	560.58	555.84	564.25	562.22	564.03	(2)	564.09	560.68	561.80	564.42	(2)	564.31
December 31, 2007	561.18	559.69	555.58	564.29	562.48	564.07	(2)	564.09	559.37	561.88	564.28	(2)	564.23
January 28, 2008	561.48	559.46	556.14	564.22	562.68	563.99	(2)	564.13	560.99	561.95	564.25	563.68	564.12
February 29, 2008	561.48	560.45	555.99	564.67	562.38	564.68	(2)	564.56	560.02	562.06	564.75	564.50	564.77
March 31, 2008	561.71	560.74	556.10	564.93	562.33	564.62	(2)	564.58	560.06	562.54	564.81	564.48	564.80
April 25, 2008	561.85	559.67	556.27	564.71	562.73	564.71	(2)	564.59	561.10	562.07	564.78	564.64	564.81
May 29, 2008	562.00	559.26	556.65	564.72	562.66	564.73	(2)	564.59	561.39	562.28	564.77	564.75	564.84

Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

River level too low to obtain a measurement at the measuring location.

Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.

⁽⁵⁾ Buried with snow.

⁽⁶⁾ Believed to be erroneous reading.

⁽⁷⁾ Ice on pipe.

⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in downstream City manhole.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date	OGC-3	MH11	MW-8	River South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	МН16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 28, 2005	564.77	561.33	561.82	564.69	561.92	564.79	564.90	562.75	(4)	561.01	562.71
February 28, 2005	564.84	560.74	561.25	564.79	562.05	564.88	564.94	562.78	(4)	561.55	562.77
March 31, 2005	564.54	561.06	561.60	564.56	562.11	564.59	564.65	563.12	563.26	562.21	563.11
April 20, 2005	565.13	561.15	561.65	565.15	562.26	565.19	565.21	`563.21	562.72	562.28	563.20
May 27, 2005	564.99	561.13	561.42	565.02	562.29	565.08	565.08	563.12	563.25	562.19	563.11
June 24, 2005	564.98	560.18	560.76	564.92	562.40	565.06	565.00	562.85	562.93	561.91	562.82
July 29, 2005	565.09	561.17	562.15	565.15	562.51	565.14	561.33	562.88	563.03	561.98	562.87
August 31, 2005	564.88	561.31	561.85	564.88	562.75	564.90	564.96	562.91	563.01	561.98	562.86
October 3, 2005	564.99	560.43	560.95	565.11	562.90	565.07	564.97	563.20	563.26	562.24	563.13
October 31, 2005	564.83	560.71	561.25	565.00	563.15	564.96	564.82	563.39	563.50	562.43	563.35
November 22, 2005	564.26	560.31	561.00	564.18	563.29	564.26	564.35	563.53	563.69	562.25	563.53
December 23, 2005	564.35	561.30	561.84	564.26	563.46	564.32	564.48	563.50	563.67	562.60	563.52
January 27, 2006	564.34	561.26	561.76	564.36	563.61	564.42	564.42	563.90	564.08	563.02	563.92
February 28, 2006	564.32	558.38	561.23	564.29	563.73	564.34	564.38	563.94	564.09	563.02	563.96
March 24, 2006	564.39	560.60	561.16	564.44	563.47	564.45	564.50	563.83	564.02	562.96	563.88
April 21, 2006	564.54	560.63	561.15	564.64	563.49	564.60	564.55	563.65	563.77	562.68	563.61
May 30, 2006	565.18	560.28	561.03	565.24	563.61	565.26	565.25	563.48	563.54	562.53	563.44
June 26, 2006	565.12	561.26	561.75	565.13	563.70	565.15	565.19	563.41	563.52	562.43	563.37
July 31, 2006 (5)	565.44	564.03	564.30	565.45	563.92	565.49	565.45	564.08	564.20	563.15	564.07
August 25, 2006	564.98	561.10	561.57	565.10	563.98	565.26	561.81	563.38	564.62	562.43	563.42
September 22, 2006	564.94	559.81	561.20	565.04	564.29	565.01	564.95	562.73	562.83	561.67	562.54
October 31, 2006	565.11	558.19	561.78	565.07	564.77	565.14	565.16	564.40	564.51	563.36	564.36
November 29, 2006	564.42	560.54	561.69	564.41	564.87	566.44	564.50	562.10	561.27	559.66	561.85
December 29, 2006	564.55	560.96	561.46	564.54	561.89	564.64	564.64	561.90	561.95	560.86	561.71

Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

River level too low to obtain a measurement at the measuring location.

Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

⁽⁵⁾ Buried with snow.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 26, 2007	564.89	561.09	561.73	564.96	560.86	564.99	565.49	563.41	563.52	562.36	563.39
February 27, 2007	564.43	561.16	561.86	564.46	559.97	564.47	564.47	562.64	562.77	561.73	562.62
March 30, 2007	564.58	561.36	561.85	564.65	560.20	564.67	564.64	562.66	561.87	558.93	561.72
April 30, 2007	565.20	561.29	561.77	565.26	559.05	565.26	565.22	562.13	562.22	561.13	562.05
May 25, 2007	564.89	561.12	561.61	564.98	560.04	565.00	564.94	562.10	562.20	561.14	563.09
June 29, 2007	564.90	561.39	561.79	564.98	560.14	565.00	564.95	562.12	562.17	561.18	562.08
July 25, 2007	564.65	561.18	561.55	564.79	560.16	564.76	564.61	562.03	562.13	561.07	561.98
August 31, 2007	564.72	561.28	561.73	564.80	560.23	564.84	564.76	562.05	561.54	561.07	562.01
September 27, 2007	564.65	559.56	561.79	564.48	560.40	561.53	564.66	562.05	562.18	561.09	562.01
October 31, 2007	564.09	561.36	561.86	564.06	560.56	564.12	564.12	562.09	562.21	561.14	562.10
November 30, 2007	564.33	561.00	562.30	564.25	560.68	564.35	564.42	562.05	561.67	559.55	561.98
December 31, 2007	564.28	558.54	561.56	564.20	560.78	564.53	564.35	562.16	562.19	561.12	562.01
January 28, 2008	564.15	561.30	561.80	564.01	560.93	564.20	564.23	562.78	562.89	561.82	562.74
February 29, 2008	564.84	559.51	561.89	564.80	560.69	564.90	564.90	562.17	562.24	561.20	562.11
March 31, 2008	564.61	558.99	561.89	564.84	560.76	564.98	564.97	562.24	561.58	561.18	562.08
April 25, 2008	564.94	561.39	561.90	565.05	560.84	565.02	564.92	562.56	562.70	561.65	562.57
May 29, 2008	564.95	561.50	561.82	565.01	560.92	565.01	564.96	562.14	562.22	561.16	562.07

Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

⁽⁵⁾ Buried with snow.

TABLE 2.3

Date M	onitored	5/11/2		5/18/2		5/25/2			2001	6/8/20		6/15/2	
		Water Level	Gradient Direction	Water Level	Gradient	Water Level	Gradient	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(jt amsi)	Direction	(ji umsi)	Direction	(ji umsi)	Direction
Monito	oring Location												
Outer Inner	River North MH2	564.54 559.31	Inward	564.49 NM	NA	563.80 NM	NA	563.52 559.34	Inward	564.75 NM	NA	564.71 560.79	Inward
Outer Inner	River North MH6	564.54 561.98	Inward	564.49 562.03	Inward	563.80 NM	NA	563.52 561.97	Inward	564.75 562.49	Inward	564.71 562.60	Inward
Outer Inner	River Middle MH8	564.38 NM	NA	564.33 NM	NA	563.63 NM	NA	563.47 NM	NA	564.68 NM	NA	564.71 560.53	Inward
Outer Inner	River South MH12	564.70 564.15	Inward	564.65 561.12	Inward	564.80 564.17	Inward	565.00 564.19	Inward	565.05 562.45	Inward	565.05 562.34	Inward
D-4-14	r	Clante	2004	cinor	2004	7/31/2	1001	ono	//2001	9/28/2	2001	10/22/	2001
Date M	Ionitored	6/22/2 Water Level		6/29/2 Water Level	Gradient	Water Level		Water Level		Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monit	oring Location												
Outer Inner	River North MH2	564.90 560.77	Inward	564.52 560.62	Inward	564.66 559.87	Inward	564.69 561.49	Inward	564.68 561.03	Inward	564.36 (2) 561.38	Inward
Outer Inner	River North MH6	564.90 562.53	Inward	564.52 562.42	Inward	564.66 562.90	Inward	564.69 565.23	(1) Outward	564.68 563.03	Inward	564.36 (2) 567.06	Outward
Outer Inner	River Middle MH8	564.86 560.44	Inward	564.48 560.38	Inward	564.68 560.25	Inward	564.64 560.25	Inward	564.68 560.27	Inward	564.26 560.43	Inward
Outer Inner	River South MH12	565.18 562.29	Inward	564.83 561.8p	Inward	564.96 560.77	Inward	564.99 560.42	Inward	564.95 560.36	Inward	564.61 560.42	Inward

 ⁽¹⁾ Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
 (2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

⁽³⁾ Valves in MH6 were opened on November 18, 2002.

⁽⁴⁾ Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

TABLE 2.3

Date M	onitored	11/27/2	2001	12/20/2	2001	1/29/2	002	2/11/2	002	3/25/2	002	4/24/2	002
		Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level	Gradient Direction	Water Level	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction
		(ji umsi)	Direction	(ji umsi)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ji umsi)	Direction	(ji umsi)	Direction
Monito	oring Location												
Outer Inner	River North MH2	563.80 (2) 561.45	Inward	564.69 560.96	Inward	563.89 560.74	Inward	564.03 560.80	Inward	563.90 (2) 560.55	Inward	564.61 562.54	Inward
Outer Inner	River North MH6	563.80 (2) 564.53	Outward	564.69 564.39	Inward	563.89 563.75	Inward	564.03 564.19	Outward	563.90 (2) 563.25	Inward	564.61 564.12	Inward
Outer Inner	River Middle MH8	563.54 560.45	Inward	564.45 559.75	Inward	563.74 560.98	Inward	563.97 561.06	Inward	563.59 560.65	Inward	564.19 561.13	Inward
Outer Inner	River South MH12	564.05 560.06	Inward	564.96 560.23	Inward	563.92 560.29	Inward	564.53 560.28	Inward	564.15 560.34	Inward	564.86 560.63	Inward
										26-26		T0/20/	2002
Date M	lonitored	5/21/2 Water Level		6/20/2 Water Level	Gradient	7/18/2 Water Level	2002 Gradient	8/6/2 Water Level	002 Gradient	9/12/2 Water Level		10/30/ Water Level	2002 Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monite	oring Location												
Outer Inner	River North MH2	564.76 561.74	Inward	564.58 561.67	Inward	564.89 561.46	Inward	564.65 561.26	Inward	565.04 561.60	Inward	563.91 (2) 561.63	Inward
Outer Inner	River North MH6	564.76 564.10	Inward	564.58 565.58	Outward	564.89 564.99	Outward	564.65 565.89	Outward	565.04 565.60	Outward	563.91 (2) 566.24	Outward
Outer Inner	River Middle MH8	564.66 560.05	Inward	564.68 560.68	Inward	564.90 560.79	Inward	564.59 561.05	Inward	564.95 561.10	Inward	563.75 561.07	Inward
Outer Inner	River South MH12	565.07 560.84	Inward	564.88 561.04	Inward	565.22 560.95	Inward	564.90 561.07	Inward	565.25 561.09	Inward	564.16 561.31	Inward

⁽¹⁾ Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

⁽³⁾ Valves in MH6 were opened on November 18, 2002.

⁽⁴⁾ Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

TABLE 2.3

Date Mor	iitored	11/21/2	2002	12/11/2	2002	1/16/2	003	2/25/2	003	3/14/2	003	4/14/26	003
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitor	ring Location												
Outer Inner	River North MH2	563.90 (2) 561.12	Inward	563.89 (2) 561.55	Inward	563.86 (2) 561.65	Inward	563.96 (2) 561.58	Inward	563.86 (2) 561.65	Inward	564.30 561.68	Inward
Outer Inner	River North MH6	563.90 (2) 554.47 (3)	Inward	563.89 (2) 555.09	Inward	563.86 (2) 556.15	Inward	563.96 (2) 555.74	Inward	563.86 (2) 555.75	Inward	564.30 554.54	Inward
Outer Inner	River Middle MH8	563.71 558.03	Inward	563.72 559.95	Inward	563.52 561.04	Inward	563.34 560.60	Inward	563.24 560.61	Inward	564.24 558.65	Inward
Outer Inner	River South MH12	564.15 561.44	Inward	564.14 561.45	Inward	564.11 561.83	Inward	564.21 561.26	Inward	564.11 561.54	Inward	564.45 561.56	Inward
Date Mo	nitored	5/8/2	003	6/19/2	2003	7/21/2	003	8/28/2	003	9/30/2	2003	10/30/2	2003
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer Inner	River North MH2	564.61 561.52	Inward	564.78 562.26	Inward	564.49 561.21	Inward	564.64 561.65	Inward	564.83 (2) 561.65	Inward	564.78 (2) 561.48	Inward
Outer Inner	River North MH6	564.61 555.93	Inward	564.78 556.02	Inward	564.49 556.06	Inward	564.64 554.61	Inward	564.83 (2) 554.61	Inward	564.78 (2) 554.98	Inward
Outer Inner	River Middle MH8	564.27 560.76	Inward	564.66 560.85	Inward	564.44 560.89	Inward	564.6 558.52	Inward	564.6 558.52	Inward	564.63 559.77	Inward
Outer Inner	River South MH12	564.61 561.61	Inward	564.96 561.94	Inward	564.78 562.03	Inward	564.91 562.19	Inward	565.08 562.26	Inward	565.03 562.25	Inward

⁽¹⁾ Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

⁽³⁾ Valves in MH6 were opened on November 18, 2002.

⁽⁴⁾ Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

TABLE 2.3

Date Mo	nitored	11/21/2	003	12/11	/2003	1/16/	200 4	2/25/	2004	3/14/	2004	4/14/	2004
		Water Level (ft amsl)	Gradient Direction										
Monito	ring Location												
Outer Inner	River North MH2	564.03 (2) 561.53	Inward	564.11 (2) 561.08	Inward	564.11 (2) (4)		563.91 (2) (4)		564.01 (2) 561.33	Inward	564.44 (2) 560.05	Inward
Outer Inner	River North MH6	564.03 (2) 555.94	Inward	564.11 (2) 555.82	Inward	564.11 (2) 555.84	Inward	563.91 (2) 556.12	Inward	564.01 (2) 555.9	Inward	564.44 (2) 554.91	Inward
Outer Inner	River Middle MH8	564.36 560.76	Inward	564.11 (2) 560.67	Inward	564.11 (2) 560.7	Inward	563.91 (2) 560.95	Inward	564.01 (2) 560.75	Inward	564.43 559.59	Inward
Outer Inner	River South MH12	564.28 562.52	Inward	564.36 562.75	Inward	564.36 562.49	Inward	564.16 562.3	Inward	564.26 562.07	Inward	564.69 561	Inward
Date Mo	nitored	5/14/2	004	6/25/	2004	7/30/	/2004	8/31/	/2004	9/30/	/2004	10/20	/2004
		Water Level (ft amsl)	Gradient Direction										
Monito	ring Location												
Outer Inner	River North MH2	564.55 560.17	Inward	564.68 561.64	Inward	565.20 561.79	Inward	564.98 561.37	Inward	565.00 561.48	Inward	564.45 561.65	Inward
Outer Inner	River North MH6	564.55 554.56	Inward	564.68 555.74	Inward	565.20 555.24	Inward	564.98 555.83	Inward	565.00 555.60	Inward	564.45 555.96	Inward
Outer Inner	River Middle MH8	564.48 559.45	Inward	564.56 560.50	Inward	565.16 560.04	Inward	564.93 560.67	Inward	565.05 560.71	Inward	564.41 560.82	Inward
Outer Inner	River South MH12	564.71 560.80	Inward	564.91 560.95	Inward	565.46 561.15	Inward	565.25 561.35	Inward	565.30 561.25	Inward	564.49 561.50	Inward

 ⁽¹⁾ Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
 (2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

⁽³⁾ Valves in MH6 were opened on November 18, 2002.

⁽⁴⁾ Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

TABLE 2.3

Date Moi	nitored	11/23/2	004	12/31	/2004	1/28/	2005	2/28/	2005	3/31/	2005	4/29/	2005
		Water Level (ft amsl)	Gradient Direction										
Monitor	ring Location	y: # <i>m</i> 51/	Direction	gr umst)	Direction	(ji umai)	Direction	(ji umoi)	Direction	() t unisi)	Direction	() t umst)	Direction
Outer Inner	River North MH2	564.05 (2) 561.50	Inward	564.68 561.60	Inward	564.44 (2) 562.60	Inward	(6) 561.05	NA	564.31 (2) 561.25	Inward	564.83 560.20	Inward
Outer Inner	River North MH6	564.05 (2) 554.95	Inward	564.68 556.19	Inward	564.44 (2) 556.22	Inward	(6) 555.58	NA	564.31 (2) 555.93	Inward	564.83 556.01	Inward
Outer Inner	River Middle MH8	564.18 (5) 559.77	Inward	564.56 561.02	Inward	564.32 561.06	Inward	564.46 560.47	Inward	564.08 560.78	Inward	564.71 560.89	Inward
Outer Inner	River South MH12	564.30 561.57	Inward	564.81 561.81	Inward	564.69 561.92	Inward	564.79 562.05	Inward	564.56 562.11	Inward	565.15 562.26	Inward
Date Mo	nitored	5/27/2	005	6/24/	2005	7/29	2005	8/31	/2005	10/3/	/2005	10/31	
		Water Level (ft amsl)	Gradient Direction										
Monito	ring Location												
Outer Inner	River North MH2	564.78 560.23	Inward	564.73 561.50	Inward	564.82 562.70	Inward	564.63(2) 561.62	Inward	564.80 561.52	Inward	564.80 561.68	Inward
Outer Inner	River North MH6	564.78 555.82	Inward	564.73 555.16	Inward	564.82 556.56	Inward	564.63(2) 556.24	Inward	564.80 555.41	Inward	564.80 555.60	Inward
Outer Inner	River Middle MH8	564.74 560.65	Inward	564.70 559.92	Inward	564.85 561.39	Inward	564.54 561.07	Inward	564.75 560.20	Inward	564.55 560.46	Inward
Outer Inner	River South MH12	565.02 562.29	Inward	564.92 562.40	Inward	565.15 562.51	Inward	564.88 562.75	Inward	565.11 562.90	Inward	565.00 563.15	Inward

Notes:

- (1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
- (2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.
- (3) Valves in MH6 were opened on November 18, 2002.
- (4) Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

TABLE 2.3

Date Mon	itored	11/22/2	2005	12/23/2	2005	01/27/2	2006	02/28/2	2006	03/24/	2006	04/21/2	2006
		Water Level (ft amsl)	Gradient Direction	Water Level	Gradient Direction	Water Level	Gradient Direction	Water Level	Gradient Direction	Water Level	Gradient Direction	Water Level	Gradient Direction
		(ji umsi)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitor	ing Location												
Outer Inner	River North MH2	563.93 (2) 561.62	Inward	564.01 (2) 562.55	Inward	564.11 (2) 562.95	Inward	564.04 (2) 563.17	Inward	564.19 (2) 562.68	Inward	564.39 (2) 562.31	Inward
Outer Inner	River North MH6	563.93 (2) 555.20	Inward	564.01 (2) 556.20	Inward	564.11 (2) 556.21	Inward	564.04 (2) 554.70	Inward	564.19 (2) 555.64	Inward	564.39 (2) 555.61	Inward
Outer Inner	River Middle MH8	564.05 (5) 560.64	Inward	564.13 (5) 561.05	Inward	564.23 (5) 561.02	Inward	564.16 (5) 558.44	Inward	564.31 (5) 560.43	Inward	564.26 560.40	Inward
Outer Inner	River South MH12	564.18 563.29	Inward	564.26 563.46	Inward	564.36 563.61	Inward	564.29 563.73	Inward	564.44 563.47	Inward	564.64 563.49	Inward
		05/30/2		06/26/2	2006 Gradient	07/31/	2006 Gradient	08/25/ Water Level	2006 Gradient	09/22/ Water Level	2006 Gradient	10/31/ Water Level	Gradient
		Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Graatent Direction	Water Level (ft amsl)	Direction 1	(ft amsl)	Direction 1	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer Inner	River North MH2	564.87 562.73	Inward	564.81 561.57	Inward	565.09 565.18	Outward	564.85 (2) 561.64	Inward	564.70 561.46	Inward	564.82 559.98	Inward
Outer Inner	River North MH6	564.87 555.84	Inward	564.81 556.19	Inward	565.09 556.19	Inward	564.85 (2) 556.06	Inward	564.70 555.95	Inward	564.82 555.62	Inward
Outer Inner	River Middle MH8	564.86 560.44	Inward	564.78 561.02	Inward	565.07 563.66	Inward	564.68 561.02	Inward	564.67 561.02	Inward	564.66 559.95	Inward
Outer Inner	River South MH12	565.24 563.61	Inward	565.13 563.70	Inward	565.45 563.92	Inward	565.10 563.98	Inward	565.04 564.29	Inward	565.07 564.77	Inward

- (1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
- (2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.
- (3) Valves in MH6 were opened on November 18, 2002.
- (4) Snow covered well, could not locate.
- (5) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.
- NM Not Measured
- NA Not Applicable

TABLE 2.3

		11/29/2	2006	12/29/2	2006	01/26/2	007	02/27/2	007	03/30/2	2007	04/30/	2007
		Water Level	Gradient										
		(ft amsl)	Direction										
Monito	ring Location												
Outer Inner	River North MH2	564.16 561.35	Inward	564.82 561.52	Inward	564.71 (2) 561.39	Inward	564.21 (2) 561.53	Inward	564.40 (2) 560.25	Inward	564.82 560.99	Inward
Outer Inner	River North MH6	564.16 555.93	Inward	564.82 555.93	Inward	564.71 (2) 556.04	Inward	564.21 (2) 556.23	Inward	564.40 (2) 556.24	Inward	564.82 556.31	Inward
Outer Inner	River Middle MH8	564.28 560.73	Inward	564.41 (1) 560.80	Inward	564.46 560.89	Inward	564.33 (1) 561.07	Inward	564.28 561.09	Inward	564.78 561.14	Inward
Outer Inner	River South MH12	564.41 564.87	Outward	564.54 561.89	Inward	564.96 560.86	Inward	564.46 559.97	Inward	564.65 560.20	Inward	565.26 559.85	Inward
		05/25/	2007	06/29/	/2007	07/25/	2007	08/31/	2007	09/27	/2007	10/31	/2007
		Water Level	Gradient	Water Level		Water Level							
		(ft amsl)	Direction										
Monito	ring Location												
Outer Inner	River North MH2	564.73 (2) 560.85	Inward	564.73 (2) 560.85	Inward	564.54 (2) 561.49	Inward	564.55(2) 561.10	Inward	564.23 (2) 561.49	Inward	563.81 (2) 561.57	Inward
Outer Inner	River North MH6	564.73 (2) 556.12	Inward	564.73 (2) 556.45	Inward	564.54 (2) 556.24	Inward	564.55 (2) 556.24	Inward	564.23 (2) 556.02	Inward	563.81 (2) 556.17	Inward
Outer Inner	River Middle MH8	564.67 561.02	Inward	564.64 561.26	Inward	564.41 561.02	Inward	564.44 561.04	Inward	564.27 560.47	Inward	563.98 (1) 561.08	Inward
Outer Inner	River South MH12	564.98 560.04	Inward	564.98 560.14	Inward	564.79 560.16	Inward	564.80 560.23	Inward	564.48 560.40	Inward	564.06 560.56	Inward

⁽¹⁾ River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

⁽²⁾ River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

TABLE 2.3

		11/30/	2007	12/31	2007	01/28	/2008	02/29/	2008	03/31/	/2008	04/28/2	2008
		Water Level	Gradient	Water Level		Water Level				Water Level		Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitor	ring Location												
Outer	River North	564.00 (2)	Inward	563.95 (2)	Inward	563.76 (2)	Inward	564.55 (2)	Inward	564.59 (2)	Inward	564.80 (2)	Inward
Inner	MH2	561.59		561.18		561.48		561.48		561. 7 1		561.85	
Outer	River North	564.00 (2)	Inward	563.95 (2)	Inward	567.76 (2)	Inward	564.55 (2)	Inward	564.59 (2)	Inward	564.80 (2)	Inward
Inner	MH6	555.84		555.58		556.14		555.99		556.10		556.27	
Outer	River Middle	564.12 (1)	Inward	564.07 (1)	Inward	563.68	Inward	564.50	Inward	564.48	Inward	564.64	Inward
Inner	MH8	560.68		559.37		560.99		560.02		560.06		561.10	
Outer	River South	564.25	Inward	564.20	Inward	564.01	Inward	564.80	Inward	564.84	Inward	565.05	Inward
Inner	MH12	560.68		560.78		560.93		560.69		560.76		560.84	

		05/29/2	2008
		Water Level	Gradient
		(ft amsl)	Direction
Monito	ring Location		
Outer	River North	564.76 (2)	Inward
Inner	MH2	562.00	
Outer	River North	564.76 (2)	Inward
Inner	MH6	556.65	
Outer	River Middle	564.75	Inward
Inner	MH8	561.39	
Outer	River South	565.01	Inward
Inner	MH12	560.92	

- (1) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

TABLE 2.4

Date Monitored		6/15/2	001	6/22/2	001	6/29/2	001	7/31/2	2001	8/20/	2001	9/28/2	2001	10/22/	2001
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.59 562.54	Upward	560.55 562.50	Upward	560.40 562.42	Upward	559.21 562.90	Upward	561.07 562.09	Upward	560.56 562.13	Upward	562.36 562.08	Downward
Upper Lower	MH8 MW-7	560.53 561.48	Upward	560.44 561.41	Upward	560.38 561.39	Upward	560.25 561.30	Upward	560.25 561.29	Upward	560.27 561.32	Upward	560.43 561.31	Upward
Upper Lower	MH11 MW-8	561.12 561.69	Upward	561.05 561.54	Upward	560.97 561.46	Upward	560.73 561.19	Upward	560.50 561.05	Upward	560.61 561.07	Upward	560.51 561.27	Upward
Upper Lower	MH14 MW-9	562.32 562.45	Upward	562.32 562.19	Downward	562.45 562.11	Downward	562.45 562.45	Neutral	561.72 561.55	Downward	561.70 561.58	Downward	562.10 561.77	Downward
Upper	MH15	NM		NM		NM		NM		NM		NM		NM	
Date Monitored		11/27/	2001	12/20/	2001	1/29/2	2002	2/11/2	2002	3/25/	/2002	4/24/	2002	5/21/	2002
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.9 4 561.88	Upward	560.50 561.83	Upward	560.15 561.83	Upward	560.28 561.73	Upward	560.10 561.72	Upward	562.05 561.88	Downward	561.28 561.97	Upward
Upper Lower	MH8 MW-7	560.45 561.36	Upward	559.75 561.25	Upward	560.98 561.89	Upward	561.06 561.50	Upward	560.65 561.60	Upward	561.13 561.95	Upward	560.05 561.38	Upward
Upper Lower	MH11 MW-8	559.51 561.30	Upward	561.31 560.73	Downward	NM 561.91		561.23 561.93	Upward	560.97 561.60	Upward	561.41 561.95	Upward	560.35 560.91	Upward
Upper Lower	MH14 MW-9	561.87 561.71	Downward	561.89 561.77	Downward	562.53 562.31	Downward	562.18 562.52	Upward	562.77 562.64	Downward	563.09 562.96	Downward	563.25 563.11	Downward
Upper Average ⁽¹⁾	MH15	NM		NM		NM		NM		NM		NM		562.17 562.89	Upward Upward

Notes:

NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

TABLE 2.4

Date Monitored		6/20/2	2002	7/18/2	2002	8/6/2	002	9/12	/02	10/3	0/02	11/2	1/02	12/11	/02
Monitoring		Water Level	Gradient												
Location		(ft amsl)	Direction												
Upper Lower	MH3 MW-6	561.24 561.92	Upward	560.99 561.89	Upward	560.79 561.92	Upward	561.14 561.82	Upward	561.21 561.97	Upward	560.67 562.05	Upward	561.08 562.04	Upward
Upper Lower	MH8 MW-7	560.68 561.54	Upward	560.79 561.65	Upward	561.05 561.93	Upward	561.10 561.99	Upward	561.07 561.95	Upward	558.03 561.41	Upward	559.95 561.25	Upward
Upper Lower	MH11 MW-8	560.98 561.50	Upward	561.07 561.60	Upward	561.33 561.88	Upward	561.34 561.91	Upward	561.36 561.95	Upward	561.49 560.99	Downward	561.51 560.73	Downward
Upper Lower	MH14 MW-9	562.98 562.91	Downward	561.83 562.84	Upward	562.08 562.75	Upward	562.11 562.66	Upward	562.68 562.57	Downward	562.88 562.74	Downward	563.07 562.91	Downward
Upper Average ⁽¹⁾	MH15	562.00 562.65	Upward Upward	561.93 561.86	Upward Upward	561.86 562.01	Upward Upward	561.75 561.99	Upward Upward	561.62 562.33	Upward Upward	561.82 562.53	Upward Upward	562.01 562.72	Upward Upward

Notes:

NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

TABLE 2.4

Date Monitored		1/16/2	003	2/25/2	003	3/14	/03	4/14	/03	5/8/	03	6/19	/03
Monitoring		Water Level		Water Level	Gradient	Water Level		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	561.20 562.27	Upward	561.10 561.85	Upward	561.17 561.69	Upward	561.22 562.42	Upward	561.03 562.38	Upward	561.83 562.43	Upward
Upper Lower	MH8 MW-7	561.04 561.95	Upward	560.60 561.49	Upward	560.61 561.49	Upward	558.65 561.42	Upward	560.76 561.59	Upward	560.85 561.60	Upward
Upper Lower	MH11 MW-8	561.68 562.00	Upward	561.60 561.48	Downward	561.57 561.46	Downward	558.53 560.98	Upward	561.03 561.56	Upward	561.12 561.56	Upward
Upper Lower	MH14 MW-9	563.37 563.17	Downward	563.07 562.89	Downward	563.09 562.90	Downward	563.54 563.36	Downward	563.26 563.07	Downward	563.41 563.10	Downward
Upper Average ⁽¹⁾	MH15	562.28 563.01	Upward Upward	562.01 562.72	Upward Upward	562.05 562.74	Upward Upward	562.49 563.19	Upward Upward	561.02 562.84	Upward Upward	562.25 563.02	Upward Upward
Date Monitored		7/21	/03	8/28	/03	9/30)/03	10/2	0/03	11/0	3/03	12/2	3/03
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.46 562.31	Upward	561.20 562.21	Upward	561.10 562.53	Upward	561.07 562.52	Upward	561.08 562.33	Upward	559.49 562.30	Upward
Upper Lower	MH8 MW-7	560.89 561.74	Upward	558.52 561.29	Upward	559.88 561.35	Upward	559.77 561.17	Upward	560.76 561.12	Upward	560.67 561.48	Upward
Upper Lower	MH11 MW-8	561.10 561.69	Upward	564.37 562.35	Downward	558.68 561.17	Upward	558.66 560.02	Upward	561.01 561.57	Upward	560.94 561.34	Upward
Upper Lower	MH14 MW-9	563.03 562.89	Downward	566.48 566.17	Downward	562.89 562.77	Downward	562.88 562.75	Downward	563.00 562.85	Downward	563.31 563.20	Downward
Upper Average ⁽¹⁾	MH15	561.98 562.68	Upward Upward	566.36 566.44	Downward Downward	562.02 562.60	Upward Upward	562.01 562.59	Upward Upward	561.91 562.64	Upward Upward	562.28 562.97	Upward Upward

Notes:

^{(1) -} Distance weighted for MH14 (two thirds) and MH15 (one third).

TABLE 2.4 SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		01/21	/04	02/12	/04	03/04	/04	04/16	5/04	05/14	1/04	06/25	5/04
Monitoring		Water Level	Gradient										
Location		(ft amsl)	Direction										
Upper Lower	MH3 MW-6	560.33 562.32	Upward	561.08 562.16	Upward	561.13 562.21	Upward	558.78 562.48	Upward	559.71 562.39	Upward	561.21 562.27	Upward
Upper Lower	MH8 MW-7	560.70 561.55	Upward	560.95 561.81	Upward	560.75 561.61	Upward	559.59 561.71	Upward	559.45 561.70	Upward	560.50 561.42	Upward
Upper Lower	MH11 MW-8	(2) 561.47	NA	561.23 561.75	Upward	561.04 561.56	Upward	559.85 561.38	Upward	559.87 561.39	Upward	560.79 561.19	Upward
Average ⁽¹⁾ Lower	MW-9	(2) 562.72	NA	(2) 562.68	NA	562.08 562.70	Upward	562.43 562.64	Upward	562.41 562.71	Upward	562.41 562.70	Upward
Date Monitored		07	/30/04	08/31	/04	09/30)/04	10/2	0/04	11/23	3/04	12/3	
Monitoring		Water Level	Gradient										
Location		(ft amsl)	Direction										
Upper Lower	MH3 MW-6	561.25 562.29	Upward	560.59 562.23	Upward	560.81 562.28	Upward	561.19 562.10	Upward	561.05 561.99	Upward	560.74 562.16	Upward
Upper Lower	MH8 MW-7	560.04 561.31	Upward	560.67 561.56	Upward	560.71 561.49	Upward	560.82 561.19	Upward	559.77 561.21	Upward	561.02 561.80	Upward
Upper Lower	MH11 MW-8	560.26 560.71	Upward	560.94 561.39	Upward	561.00 561.43	Upward	561.09 561.56	Upward	560.05 560.56	Upward	561.23 561.75	Upward
Average ⁽¹⁾ Lower	MW-9	561.33 562.70	Upward	562.73 562.95	Upward	562.67 562.98	Upward	562.46 562.64	Upward	561.23 562.71	Upward	561.96 562.71	Upward

NA - Not Applicable.
NM - Not monitored. MH11 was blocked and could not be accessed.
(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).
(2) - Buried with snow.

TABLE 2.4

SUMMARY OF VERTICAL GRADIENTS
GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date Monitored		1/28/	2005	2/28/	2005	3/31/	2005	4/29/	2005	5/27/	2005	6/24/	2005
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	562.15 562.27	Upward	559.96 562.14	Upward	559.94 562.04	Upward	559.5 4 562.26	Upward	558.92 562.24	Upward	561.09 562.22	Upward
Upper Lower	MH8 MW-7	561.06 561.85	Upward	560.47 561.46	Upward	560.78 561.66	Upward	560.89 561.76	Upward	560.65 561.55	Upward	559.92 561.47	Upward
Upper Lower	MH11 MW-8	561.33 561.82	Upward	560.74 561.25	Upward	561.06 561.60	Upward	561.15 561.65	Upward	561.13 561.42	Upward	560.18 560.76	Upward
Average ⁽¹⁾ Lower	MW-9	(3) 562.75	NA	(3) 562.78	NA	562.91 563.12	Upward	562.57 563.21	Upward	562.90 563.12	Upward	562.59 562.85	Upward
Date Monitored		7/29/	2005	8/31/	2005	10/3/	2005	10/31	/2005	11/22	/2005	12/23	/2005
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	562.26 562.11	Downward	560.64 562.09	Upward	560.54 562.24	Upward	560.73 562.34	Upward	561.20 561.67	Upward	562.09 562.45	Upward
Upper Lower	MH8 MW-7	561.39 562.27	Upward	561.07 561.94	Upward	560.20 561.40	Upward	560.46 561.52	Upward	560.04 561.49	Upward	561.05 561.85	Upward
Upper Lower	MH11 MW-8	561.17 562.15	Upward	561.31 561.85	Upward	560.43 560.95	Upward	560.71 561.25	Upward	560.31 561.00	Upward	561.30 561.84	Upward
Average ⁽¹⁾ Lower	MW-9	562.68 562.88	Upward	562.67 562.91	Upward	562.92 563.20	Upward	563.14 563.39	Upward	563.33 563.53	Upward	563.31 563.50	Upward

Notes:

NA - Not Applicable.

^{(1) -} Distance weighted for MH14 (two thirds) and MH15 (one third).

^{(2) -} Buried with snow.

^{(3) -} Not Monitored - MH14 was buried with snow and could not be accessed.

TABLE 2.4

Date Monitored		01/27/	2006	02/28/	2006	03/24/	2006	04/21,	/2006	05/30,	/2006	06/26/	/2006
		Water Level	Gradient										
Monitoring Location		(ft amsl)	Direction										
Upper Lower	MH3 MW-6	562.53 562.97	Upward	562.26 562.90	Upward	561.77 562.86	Upward	561.84 562.76	Upward	562.30 562.50	Upward	560.63 562.37	Upward
Upper Lower	MH8 MW-7	561.02 561.79	Upward	558.44 561.68	Upward	560.43 561.57	Upward	560.40 561.48	Upward	560.44 561.75	Upward	561.02 561.97	Upward
Upper Lower	MH11 MW-8	561.26 561.76	Upward	558.38 561.23	Upward	560.60 561.16	Upward	560.63 561.15	Upward	560.28 561.03	Upward	561.26 561.75	Upward
Average (1) Lower	MW-9	563.73 563.90	Upward	563.73 563.94	Upward	563.67 563.83	Upward	563.41 563.65	Upward	563.20 563.48	Upward	563.16 563.41	Upward
Date Monitored		07/31	/2006	08/25,	/2006	09/22,	/2006	10/31	/2006	11/29	/2006	12/29	
		Water Level	Gradient										
Monitoring Location		(ft amsl)	Direction										
Upper Lower	MH3 MW-6	564.78 564.39	Downward	561.21 564.72	Upward	561.01 562.76	Upward	555.62 562.58	Upward	560.85 562.48	Upward	560.42 562.98	Upward
Upper Lower	MH8 MW-7	563.66 564.54	Upward	560.89 561.82	Upward	560.51 561.99	Upward	559.95 562.09	Upward	560.73 562.01	Upward	560.80 561.89	Upward
Upper Lower	MH11 MW-8	564.03 564.30	Upward	561.10 561.57	Upward	559.81 561.20	Upward	558.19 561.78	Upward	560.54 561.69	Upward	560.96 561.46	Upward
Average ⁽¹⁾ Lower	MW-9	563.85 564.08	Upward	563.89 563.38	Downward	562.44 562.73	Upward	564.13 564.40	Upward	560.73 562.10	Upward	561.59 561.90	Upward

Notes:

NA - Not Applicable.

^{(1) -} Distance weighted for MH14 (two thirds) and MH15 (one third).

^{(2) -} Buried with snow.

^{(3) -} Not Monitored - MH14 was buried with snow and could not be accessed.

TABLE 2.4

Date Monitored		01/26/2	2007	02/27/2	2007	03/30/2	2007	04/30/	2007	05/25/	2007	06/29/	2007
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.92 562.78	Upward	560.57 562.49	Upward	559.45 562.30	Upward	559.39 562.62	Upward	559.85 562.48	Upward	558.83 562.32	Upward
Upper Lower	MH8 MW-7	560.89 562.06	Upward	560.89 561.96	Upward	561.09 562.05	Upward	561.14 562.20	Upward	561.02 562.05	Upward	561.26 562.16	Upward
Upper Lower	MH11 MW-8	561.09 561.73	Upward	561.16 561.86	Upward	561.36 561.85	Upward	561.29 561.77	Upward	561.12 561.61	Upward	561.39 561.79	Upward
Average (1) Lower	MW-9	563.13 563.41	Upward	562.42 562.64	Upward	560.89 562.66	Upward	561.86 562.13	Upward	561.85 562.10	Upward	561.84 562.12	Upward
		07/25/		08/31/		09/27/		10/31		11/31/		12/31	
Montenino		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.54 562.13	Upward	559.62 561.93	Upward	561.05 561.86	Upward	560.69 562.02	Upward	560.58 562.22	Upward	559.69 562.48	Upward
Upper Lower	MH8 MW-7	561.02 561.94	Upward	561.0 4 561.95	Upward	560.47 562.01	Upward	561.08 562.00	Upward	560.68 561.80	Upward	559.37 561.88	Upward
Upper Lower	MH11 MW-8	561.18 561.55	Upward	561.28 561.73	Upward	559.56 561.79	Upward	561.36 561.86	Upward	561.00 562.30	Upward	558.54 561.56	Upward
Average ⁽¹⁾ Lower	MW-9	561.78 562.03	Upward	561.38 562.05	Upward	561.82 562.05	Upward	561.85 562.09	Upward	560.96 562.05	Upward	561.83 562.16	Upward

Notes:

NA - Not Applicable.

^{(1) -} Distance weighted for MH14 (two thirds) and MH15 (one third).

^{(2) -} Buried with snow.

^{(3) -} Not Monitored - MH14 was buried with snow and could not be accessed.

TABLE 2.4

		01/28/2	2008	02/29/	2008	03/31/	2008	04/28/	2008	05/29/	2008
		Water Level	Gradient								
Monitoring Location		(ft amsl)	Direction								
Upper	MH3	559.46	Upward	560.45	Upward	560.74	Upward	559.67	Upward	559.26	Upward
Lower	MW-6	562.68	•	562.38	•	562.33	•	562.73	•	562.66	
Upper	мн8	560.99	Upward	560.02	Upward	560.06	Upward	561.10	Upward	561.39	Upward
Lower	MW-7	561.95	·	562.06	·	562.54	-	562.07	·	562.28	
Upper	MH11	561.30	Upward	559.51	Upward	558.99	Upward	561.39	Upward	561.50	Upward
Lower	MW-8	561.80	•	561.89	•	561.89	•	561.90	•	561.82	•
Average ⁽¹⁾ Lower	MW-9	562.53 562.78	Upward	561.89 562.17	Upward	561.48 562.24	Upward	561.96 562.56	Upward	561.87 562.14	Upward

Notes:

NA - Not Applicable.

^{(1) -} Distance weighted for MH14 (two thirds) and MH15 (one third).

^{(2) -} Buried with snow.

^{(3) -} Not Monitored - MH14 was buried with snow and could not be accessed.

TABLE 2.5

GROUNDWATER SAMPLING SUMMARY OPERATION AND MAINTENANCE MANUAL GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

OGC1	MW-6
OGC2	MW-7
OGC3	MW-8
OGC4	MW-9
OGC5	OGC6
OGC7	OGC8

FREQUENCY

- quarterly for 2 years following GWS startup.
- semi-annually for Year 3 except for OGC-4 (quarterly for SVOCs) and OGC-6 (quarterly for VOCs).
- annually for Years 4 through 7 (until May 2008).

PROPOSED SAMPLING PROGRAM (UNTIL MAY 2012)

Annual	Once Every 2 Years
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	

PARAMETERS

Volatiles

Acetone	Methylene Chloride
Benzene	Tetrachloroethene
2-Butanone	Toluene
Chlorobenzene	Trichloroethene
1,1-Dichloroethane	Vinyl Chloride
trans-1,2-Dichloroethene	Xylenes (Total)
Fthylhenzene	•

Semi-Volatiles

1,2-Dichlorobenzene	4-Methylphenol
1,4-Dichlorobenzene	Naphthalene
2,4-Dimethylphenol	Di-n-octylphthalate
2-Methylphenol	Phenol

TABLE 2.6

Location									M	W-9						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/25/07	05/29/08
Volatiles (µg/L)	Class GA Level															
Acetone	50	9.4J	4.3J	7.3]/6.7]		4.2]	7.0/7.2			13/12			17	17		5.7
Benzene	1		0.24J	0.39J/0.35J		0.441	0.29J/0.30J	0.29[/0.29]		0.40J/ND0.70				0.54]		0.,
2-Butanone	50					•		,		· ·				2.6]		
Chlorobenzene	5		0.50J	0.86J/0.85J		1.3		1.0/1.1		0.91J/0.87J		1.1	1.7	1.5	2.8	1.4
trans-1,2-Trichloroethene	5			0.22J/ND		0.31J	0.24]/0.24]	0.22]/0.20]						0.42]		0.55]
Ethylbenzene	5		0.30J	0.46J/0.42J		0.73]		0.46J/0.46J		0.40J/0.38J				0.83]		0.00)
Methylene Chloride	5		0.34J	0.33J/ND	4.0J	0.53J				•		7.2	1.6	,		
Tetrachloroethene	5	1.6J	1.1J	1.0J/0.92J	-	1.6	0.92]/0.80]	0.77]/0.74]		0.67J/0.71J				0.57]		
Toluene	5		1.6J	3.0J/2.5J	2.8J	2.7	2.1/2.0	2.7/2.7	2.0	2.0/1.9	4.6	3.2	2.6		3.1	2.4
Trichloroethene	5	2.2J	1.8J	2.4J/2.2J	3.0J	4.4	2.0/2.0	2.2/2.3		1.8/1.8	9.5	4.9	3.0	1.8	2.9	1.7
Vinyl Chloride	2									1.7/1.7			3.6	4.0		
Total Xylenes	5		1.0J	1.5J/1.5J		2.5J	1.3J/1.3J	1.4J/1.4J		0.98J/1.0J	3.0			2.0J		
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*				0.6J										0.9J	0.7J
1,4-Dichlorobenzene	3*				,								2J		3J	1J
2,4-Dimethylphenol	50	12	12	18/17	38		20/22	30/34	30	35/36	36	42	50	58	46	31
2-Methylphenol	NL	1J	3J	3J/3J	<i>7</i> J		4]/4]	6]/6]	6J	6]/6]	6J	5J	8J	8J	6	6
4-Methylphenol	NL	69	110	97/92	230		100/110	190/230	150	130/130	160	190	260	190	170	96
Naphthalene	10			·			,	, ====		=	- / -	-7-		270	0.2]	0.5]
Di-n-octyl phthalate	50														,	2.0,
Phenol	1	3]	34	28/22	24		38/41	34/35	42	46/46	180	30	27	49	11	13

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled
J - Estimated

TABLE 2.6

Location									OG	C-4								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	3/04/04	05/14/04	11/23/04	05/27/05	05/30/06	05/25/07	05/29/08
Volatiles (µg/L)	Class GA Level											NA		NA				
Acetone	50			7.9J			4.0J											
Benzene	1		0.21J	0.2J														
2-Butanone	50																	
Chlorobenzene	5		0.49]	0.66J		0.83J/0.79J		0.46J		0.83J								
trans-1,2-Trichloroethene	5			0.22J														
Ethylbenzene	5		0.41J	0.39J		0.54J/0.53J	0.48J	0.39J		0.77]						0.44J		
Methylene Chloride	5				5.1J/4.9J								4.6		2.0			
Tetrachloroethene	5	1.0J	1.2J	0.87J		0.86J/0.84J	1.1	0.78J		0.77J								
Toluene	5			1.0J		1.0/0.98J	1.4	0.72J		1.2								
Trichloroethene	5	1.6J	1.4J	1.5J		1.5/1.4	1.7	0.96J		1.5						0.53J		
Vinyl Chloride	2																	
Total Xylenes	5		1.0J	0.94J		0.84J/0.82J	1.1J			0.95J								
Semi-Volatiles (μg/L)																		
1,2-Dichlorobenzene	3*																	
1,4-Dichlorobenzene	3*																	
2,4-Dimethylphenol	50	8J	12	6J	8J/6J	<i>7</i> J/7J	8J		7]/7]	8J	4J	6J		4J				0.9J
2-Methylphenol	NL	0.9]	2J	35	2J/ND	1J/2J	2J			3J	•	зj		2J				0.5J
4-Methylphenol	NL	64	86	40	58/55	61/67	68		69/68	73	32	55		31	14	15	3J	6
Naphthalene	10																•	0.5J
Di-n-octyl phthalate	50																	•
Phenol	1	310	560	400	420/460	710/1100	1100	1100	2400/2300	1800	1600]	2400	1500	850	510	84	66

Notes:

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level NS - Not Sampled J - Estimated

TABLE 2.6

Location								0	GC-8							
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	05/08/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
Volatiles (µg/L)	Class GA Level															
Acetone	50	78	31/29	19 J		4.7]	3.6J				6.2	5.8	4.7J			9.9
Benzene	1	78 11	14/14	14		2.6	5.3	3.3	3.6	3.1	1.8	1.2	1.1	0.92	0.54J	0.84
2-Butanone	50	4.0J												=		
Chlorobenzene	5	3.7J	4.1J/4.1J	4.0J		0.87J	1.7	1.1		1.1	0.65J	0.48J	0.43J	0.44J		
trans-1,2-Trichloroethene	5	4.3J	3.2J/3.1J	4.0J		0.76J	1.5	0.88J		1.0	0.50J	0.41J	1.0			
Ethylbenzene	5	13	16/16	15	1.6J	2.8	5.8	3.1	3.9	3.1	1.8	1.2		0.99J	0.53J	0.84J
Methylene Chloride	5		0.52J/0.48J	0.62J	1.8J											
Tetrachloroethene	5	40	51/52	59 110	7.7]	9.9	22	12	14	11	7.0	5.0	3.8	4.0	2.0	2.3
Toluene	5	140 120 3.7J 43	140/140	110	7.7J 17J 20J	9.9 21 22	53 53	12 28 27	38 35	27	7.0 16 17	11	8.1	8.3	4.0	6.4
Trichloroethene	5	120	110/110	110	20 J	22	53	27	35	27	17		7.7	7.6	4.0	6.5
Vinyl Chloride	2	3.7]	3.4/3.6	3.1	1.1J		1.4	0.70]		0.78J						
Total Xylenes	5	43	55/54	46	4.8J	8.3	18	9.5	11	9.9	5.4	3.7	3.0	3.2	1.1J	2.5J
Semi-Volatiles (µg/L)									*							
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															0.2J
2,4-Dimethylphenol	50	2J	4J/2J	4 J	0.8J	0.8J	3J	1J								1J
2-Methylphenol	NL	18	30/25	16	4J	5J	13	7 <u>J</u>	11	<i>7</i> J	4J	2J	2J	3J	2J	2J
4-Methylphenol	NL	30	51/45	28	81	10	26	14	20	14]	ý	5 j	6 J	8j	6	8
Naphthalene	10	1J	3J/25	1J	•		0.9J			•		•	•	•		
Di-n-octyl phthalate	50	•	0.1J/ND	•			•									
Phenol	1	30	49/44	31	5 J	8 J	11	10		4J	6J	2J]			

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level
NS - Not Sampled

J - Estimated

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location								River	South							
Date		05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02			05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
	Class GA															
Volatiles (µg/L)	Level															
Acetone	50						3.0J						3.2J			12
Benzene	1										0.42J		•			
2-Butanone	50												3.9J			3.1J
Chlorobenzene	5												•			•
trans-1,2-Trichloroethene	5															
Ethylbenzene	5															
Methylene Chloride	5															
Tetrachloroethene	5						0.30J									
Toluene	5			0.29]			0.72	0.35J			1.8					
Trichloroethene	5			-			0.44J	•								
Vinyl Chloride	2						0.27J									
Total Xylenes	5						•				1.8J					
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50															
2-Methylphenol	NL															
4-Methylphenol	NL															
Naphthalene	10															
Di-n-octyl phthalate	50															
Phenol	1															
Notes:																
* Applies to sum of compoun	ds															
NL - Not listed				•												
Exceeds Class GA Lev	vel															
NS - Not Sampled																
J - Estimated																

TABLE 2.6

Location									M	rw-8						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
Volatiles (µg/L)	Class GA Level															
Acetone Benzene 2-Butanone	50 1 50	52 6.5	12J 4.3	11J 4.1	75J	67 8.6	20	12	8.1	73 12	23/24	28/33 10/12	26 4.2	16 4.4	6.6/7.5 1.6/1.5	23 1.5 4.4]
Chlorobenzene trans-1,2-Trichloroethene Ethylbenzene Methylene Chloride Tetrachloroethene Toluene Trichloroethene Vinyl Chloride Total Xylenes	5 5 5 5 5 5 2 5	1.8J 2.2J 5.7 1.1J 21 75 82 5.2 22	1.0J 1.8J 3.7J 0.58J 12 36 40 1.6J	1.0J 2.9J 4.4J 0.66J 9.8 31 35 3.3	4.8J 8.2J 4.4J 23J 80 110 23 30J	3.2 7.3 12 1.2 32 100 180 12 40	4.9 11 18 1.4 61 140 320 18 68	4.4 16 18 1.6 58 160 280 14 69	3.6 12 15 54 100 210 12 58	6.2 13 23 1.3 80 120 320 18 93	6.0/6.4 10/12 30/32 2.2/2.2 91/100 240/240 460/460 21/21 120/120	2.7/3.3 7.3/9.4 20/24 7.3/9.2 120/130 97/120 380/390 13/16 92/110	2.4 7.4 4.6 1.7 62 30 180 5.8 32	2.4 5.3 5.8 0.64J 71 33 150 5.1 25	0.84J/0.82J 4.4/3.9 2.5/2.2 16/14 12/11 40/36 9.8/9.1	0.54J 3.6 1.8 9.5 10 29
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*				2J	2J		2]		4 J	3J/3J					0.4
1,4-Dichlorobenzene	3*			0.6]	2Ĵ	1Ĵ	1J	2J		4]	3J/3J	19U/2J	4j	5J	0.5]/0.4]	0.5]
2,4-Dimethylphenol	50	1J	11	16	19	18	15	27	20	27	37/38	15J/14	7]	6 J	0.8J/0.6J	14
2-Methylphenol	NL	33	55	41	48	44	38	56	37	35	45/46	18J/18	18]	16	7/7	26
4-Methylphenol	NL	10	32	34	55	60	59	83	64	75	130/130	34/31	•		18/16	31
Naphthalene	10				0.7J	0.8J	0.8J	1J			2J/2J				22/22	1J
Di-n-octyl phthalate	50										*					
Phenol	1	43	130	140	85	110	91	110	140	78	80/80	28/28	11J	4J	20/21	32

Notes:

Exceeds Class GA Level

NS - Not Sampled

J - Estimated

^{*} Applies to sum of compounds <u>NL -</u> Not listed

TABLE 2.6

Location								0	GC-3							
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
Volatiles (µg/L)	Class GA Level															
Acetone	50	13J / 19J	3.8J	15J		7.1	6.7			5.6			10/8.4	2.8]	0.76	6.0
Benzene	1	1.6J / 1.6J	1.6	1.8		1.8	1.2	1.5		1.6	1.4		1.2/1.1	0.93J		0.93
2-Butanone	50													•		
Chlorobenzene	5		0.24J	0.28J		0.28J		0.22J								
trans-1,2-Trichloroethene	5	1.6J / 1.6J	1.0J	1.4J	1.1J	1.1	0.98J	0.44J		1.0						
Ethylbenzene	5	1.6J / 1.5J	2.0J	2.3J	1.5J	2.4	1.7	1.8		2.0			1.4/1.3	1.1	0.85J	0.92J
Methylene Chloride	5				1.9J							6.3	1.2/1.0			
Tetrachloroethene	5	2.4] / 2.2]	3.0J	2.2J	1.7J	2.2	1.8	1.8		1.5			0.71J/0.63]	0.61J	0.56J	
Toluene	5	5.7 /5.1	5.9	5.3		5.1	3.7	4.6	4.0	4.3	3.6	2.6	2.6/2.4		1.7	1.8
Trichloroethene	5	20 /20	5.9 18	19	14]	5.1 17	14	13	12	14	9.8	7.7	6.4/6.1	5.6	4.3	4.9
Vinyl Chloride	2	ND /1.0J	0.4	0.72						0.62J					=	
Total Xylenes	5	5.6J / 5.4J	7.5	8.7	4.8J	7.8	5.8	5.8	5.0	6.6	3.9		3.3/3.0	2.9J	2.1J	2.3J
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*				1J										0.6]	0.7]
1,4-Dichlorobenzene	3*				0.7]		0.5J								•	0.6]
2,4-Dimethylphenol	50	5J /5J	9	8]	11	11	71	8J	11	12	10	9J	8J/4J	6J	6	6
2-Methylphenol	NL	98 /96	120	87	160	140	100	100	120	140	150	110	83/73	64	47	45
4-Methylphenol	NL	13 /13	21	17	28	23	14	15	22	23	20	17	14/12	13	10	11
Naphthalene	10															0.81
Di-n-octyl phthalate	50															•
Phenol	1	120 /110	140	130J	210	140	85	92	110	120	120	90	78/74	75	60	65

Notes:

* Applies to sum of compounds NL - Not listed
Exceeds Class GA Level NS - Not Sampled
J - Estimated

Location		GW	/-5S	OGC-7														
Date		12/17/87	08/12/88	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
	Class GA																	
Volatiles (µg/L)	Level																	
Acetone	50	[202]																
Benzene	50	293		21J	0.25J	8.2J			3.6J									
2-Butanone	1	2 27				0.30J		0.28J	0.20J	0. 2 6J				0.34J	0.34J			
Chlorobenzene	50	27					6.											
	5	400																
trans-1,2-Trichloroethene	5	180 9	89 7]	6.3	3.1J	5.4	4.9J	4.8J	4.2	4.7	4.0	5.4	5.0	5.9	4.9	5.8	3.8	
Ethylbenzene	5	<u>9</u>	7]	1.1J	0.80J	1.0J		1.3	0.84J	0.91J		1.4	0.93J	1.5	1.4	1.3	0.87 J	0.84J
Methylene Chloride	5	_1																
Tetrachloroethene	5	11 75	7J 49 220 4J 37	4.3J	3.6J	3.4J	2.9J	4.0	3.4	2.7	2.8	4.1	2.2	4.1	2.9	2.8	1.7	1.2J
Toluene	5	75	49	12 70 2.6J 6.0J	5.8	6.7 48	5.7] 45 3.5]	6.9	5.2 44	6.0 38	6.7 50	8.6 56 2.3	5.8 38	9.3 56 2.9 10	8.3	8.6	5.0	4.9J
Trichloroethene	5	287 7 54	220	70	40	48	45	68	44	38	50	56	38	56	37J	37	22	21]
Vinyl Chloride	2	7	4]	2.6]	0.84	1.7]	3.5J	2.2	1.8	1.8		2.3	2	2.9	3.0	2.9		2.6J
Total Xylenes	5	54	37	6.0J	4.8J	6.5	3.9J	6.9 68 2.2 7.6	5.3	5.3	5.5	8.7	5.4	10	8.6	8.2	5.3	5.0J
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene	3*		2J															
1,4-Dichlorobenzene	3*		-,															
2,4-Dimethylphenol	50	10	11		2J													
2-Methylphenol	NL	24	24	3J	2j	1.0J	0.8J	1J									0.61	0.5 J
4-Methylphenol	NL	38	21	٠,	2)	0.9]	0.5J 0.7J	1J									-	
Naphthalene	10	50				0.93	0.73	13									0.6J	0. 4 J
Di-n-octyl phthalate	50						0.41											
Phenol	1	61	92	4 J	0.7J		0.6J											
* 1101101	1	OT	74	الثا	0.73													

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled
J - Estimated

Location								River M	1iddle					
Date	_	05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03	05/08/03	11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08
Volatiles (μg/L)	Class GA Level													
Acetone	50						3.1J							2.8J
Benzene	1													
2-Butanone	50													
Chlorobenzene	5													
trans-1,2-Trichloroethene	5													
Ethylbenzene	5													
Methylene Chloride	5													
Tetrachloroethene	5												1.3	
Toluene	5													
Trichloroethene	5							0.21 J						
Vinyl Chloride	2													
Total Xylenes	5													
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50													
2-Methylphenol	NL													
4-Methylphenol	NL													
Naphthalene	10													
Di-n-octyl phthalate	50				0. <i>7</i> J									
Phenol	1													
Notes:														
* Applies to sum of compoun	nds													
NL - Not listed														
Exceeds Class GA Le	vel													
NS - Not Sampled	==													
J - Estimated					•									
,														

Location MW-7 Date 05/18/01 08/20/01 11/27/01 02/11/02 05/21/02 08/06/02 11/22/02 02/25/03 05/08/03 11/04/03 05/14/04 05/27/05 05/31/06 05/24/07 05/29/08 Class GA Volatiles (µg/L) Level Acetone 50 5.7J 4.3J 4.8 4.3J 3.0J 3.9J 3.3J/3.4J1.9 2.0 2.0 1.3 1.8 Benzene 0.581 1 0.90 2-Butanone 50 Chlorobenzene 5 trans-1,2-Trichloroethene 5 0.98J 0.36J 0.82J 1.1J 0.89J 1 5 Ethylbenzene 0.75J 0.32J 0.85J 0.81J 1.0 0.61J Methylene Chloride 5 1.6J 5 Tetrachloroethene 0.271 5 0.93J Toluene 1.1 2.8 3.5J 3.6J 3.3 1.9 3 Trichloroethene 5 0.55J 0.36J 0.63J 0.43J0.45J2 2.9 2.2 0.64J/0.61J Vinyl Chloride 1.3 0.80J 1.6J 2.0 3.8J 1.7 Total Xylenes 5 2.1J 2.1J 2.7] 1.5J 1.9J 0.76J Semi-Volatiles (µg/L) 1,2-Dichlorobenzene 3* 1,4-Dichlorobenzene 3* 2,4-Dimethylphenol 50 2J 2J 3J 0.7J 2J 2-Methylphenol 0.4J/0.5JNL 3J 2J 4J 6J 1J 2J 2J 4-Methylphenol NL 4J 6J 2J 1J 0.3J0.5J/0.6J3J 2J 1J Naphthalene 10 Di-n-octyl phthalate 50 0.6J 7J 26 2J 6J 5J 2J 24 10 1J Phenol

Notes:

Exceeds Class GA Level

NS - Not Sampled

^{*} Applies to sum of compounds NL - Not listed

Location									OGC-2							
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/25/07	05/29/08
	Class GA															
Volatiles (µg/L)	Level															
Acetone	50			11J			3.0J					4.5J	3.1			
Benzene	1															
2-Butanone	50															
Chlorobenzene	5															
trans-1,2-Trichloroethene	5															
Ethylbenzene	5															
Methylene Chloride	5				1. 7 J											
Tetrachloroethene	5															
Toluene	5										0.37J					
Trichloroethene	5		0.39J													
Vinyl Chloride	2			0.26J		0.25J	0.26J									
Total Xylenes	5															
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50															
2-Methylphenol	NL															
4-Methylphenol	NL															
Naphthalene	10															
Di-n-octyl phthalate	50															
Phenol	1															
Notes:																
* Applies to sum of compound	ds															
NL - Not listed																
Exceeds Class GA Lev	/el															
NS - Not Sampled																
J - Estimated																

Location										00	GC-6							
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	03/04/04	05/14/04	11/23/04	05/27/05	05/31/06	05/24/07	05/29/08
Volatiles (µg/L)	Class GA Level																	
Acetone	50			6.6J			5.0			3.7J						8.6/8.7		
Benzene	1									0.71	0.87	1.4		2.5	5.2	12/12	7.2	
2-Butanone	50																	
Chlorobenzene	5																	
trans-1,2-Trichloroethene	5			0.23J	0.23J	0.37J	0.45J	0.55J		1.4	2.0	2.1		3.6	5.3	11/12	7.1	
Ethylbenzene	5					0.31J				0.85J	1.1	2.0	3.3	3.1	5.3 7.4	20/20	12	
Methylene Chloride	5				2.1J								4.4	2.5	2.2			
Tetrachloroethene	5		1.4J	0.73J		6.6	7.4	5	12	49	51 12 120	230 27 330	300 40	260 35	550	2000/2100	1400	34
Toluene	5			0.55]		2.0	1.6	1.5	2.4	9.3	12	27	40	35	72	240/260	97	2.9
Trichloroethene	5	3.0J	4.7J	3.1J	5.9	16	19	13	26	9.3 95	120	330	530	330	610	1800/1800	1100	31
Vinyl Chloride	2					0.22J	0.25J			0.45J						2.9/2.8	1.5	
Total Xylenes	5		0.22 J	0.53J	0.26J	1. <i>7</i> J	1.2J	1.0 J		4.1	4.7	8.6	13	12	28	79/76	46	
Semi-Volatiles (µg/L)												NA		NA				
1,2-Dichlorobenzene	3*																	
1,4-Dichlorobenzene	3*																	
2,4-Dimethylphenol	50							1 J										0.9J
2-Methylphenol	NL		2J	2J	5J	11	8J	9J	13	22	27		63		85	89/110	76	76
4-Methylphenol	NL		•	1J	0.02J	10	-	· ·					1J		2J	84/100	2J	70
Naphthalene	10			•	•											1J/2J	2J	2J
Di-n-octyl phthalate	50																	
Phenol	1		7]	2J	4 J	5J	3J	2J		5J	3J		9 J		8J	13/16	8	8

Notes:

 * Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

Location								River N	Iorth						
Date	-	05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02 0		05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/31/07
	Class GA														
Volatiles (µg/L)	Level														
Acetone	EO						0.47		NG			2.61	2.61		
Benzene	50 1					0.017	2. 4 J		NS .			3.6J	3.6J		
2-Butanone	50					0.21J					2.0	0.39J			
Chlorobenzene	50 5					1.0						3.2			
trans-1,2-Trichloroethene	5					1.3									
						0.25J						1.0		2.9	
Ethylbenzene Mathabase Charita	5 5				1.7	20						40		2.9	
Methylene Chloride Tetrachloroethene					1.6J	• •								1.0	
	5			0.007		3.8				0.047		7.7	2.0	1.3	
Toluene	5			0.39J		63				0.96J		130	2.2	14	
Trichloroethene	5			0.35J		4.5						6.4		0.59J	
Vinyl Chloride	2					3.7 80						9.3			
Total Xylenes	5					80]				0.96 J		210	3.7	23	
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50							1J							
2-Methylphenol	NL							·							
4-Methylphenol	NL														
Naphthalene	10														
Di-n-octyl phthalate	50														
Phenol	1														
Notes:															
* Applies to sum of compou	nds														
NL - Not listed															
Exceeds Class GA Le	evel														
NS - Not Sampled															••
No - Not Sampled															

Location									OGC-5						
Date		05/20/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03 05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
Volatiles (µg/L)	Class GA Level														
Acetone	50	38J		_11J_			6.4		4.9J		0.61J		3.0J		3.5J
Benzene	1		1.5	1.4		0.87	0.92	0.87	0.77				0.6 7 J	0.5 4 J	0.69J
2-Butanone	50														
Chlorobenzene	5														
trans-1,2-Trichloroethene	5		0.65J	0.76J		0.42J	0.57J	0.52J			0.34J				
Ethylbenzene	5		0.21J	0.23J											
Methylene Chloride	5				3.4J							2.4			
Tetrachloroethene	5		0.38J	0.27J											
Toluene	5		2.5J	2.2J		0.99J	0.8 7J	1.2	0.80J		0.80J				
Trichloroethene	5		0.87J	0.66J		0.36J	0.41J	0.40J			0.28J				
Vinyl Chloride	2		1.6J	1.2J		1.1	1.5	1.2	1.1		1.4		1.2	0.95J	1.4
Total Xylenes	5		1.0 J	1.0J		0.6 7J	0.37J	0. 4 0J			1.0J				
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50		8J	6J	5J		1J	6J							
2-Methylphenol	NL		1J	1J	1J									0.5J	0.3J
4-Methylphenol	NL		2J	5J	4J			2 J						0.9J	0.4J
Naphthalene	10		1J	1J	•		0.5J	1J						2J	0.5J
Di-n-octyl phthalate	50		-	1J	0.8J		-								
Phenol	1		0.9 J	•											

Notes:

* Applies to sum of compounds

NL - Not listed
Exceeds Class GA Level

NS - Not Sampled

TABLE 2.6

Location		GW-	-6S							i	MW-6							
Date		12/15/1987	08/10/88	05/18/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
Volatiles (µg/L)	Class GA Level																	
Acetone	50	684	4.9J						4.4J			44		6.7	13	31		
Benzene	1	3			0.64J			0.65J	0.59J	0.56J		0.57J						
2-Butanone	50																	
Chlorobenzene	5		3.3J		1.5J	1.3J		0.65J		0.54J		0.81J		0.37J				
trans-1,2-Trichloroethene	5	58	4.4J		1.1J			0.37J	0.32J	0.34J		1.4		0.52J				
Ethylbenzene	5	2			0.21J													
Methylene Chloride	5						1.8 J								2.1			
Tetrachloroethene	5	43			0.44J							0.67J		0.25 J				
Toluene	5	16	3.0J		2.2J	0.29J		1.3	0.91J	1.1		2.1	3.6	0.92J				
Trichloroethene	5	62	5.1] 1.7J		2.0J		1.2J		1.1	1.5	3.2	14	12	3.7	1.5	1.2	0.97J	
Vinyl Chloride	2	11	1.7J					0.29J	0.24J	0.22J		0.52J						
Total Xylenes	5	7			0.90 J	0. 44 J		0.36 J	0.27J									
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene	3*																	
1,4-Dichlorobenzene	3*			1J		0.7J	2J						2J				0.8J	0.6J
2,4-Dimethylphenol	50	5		5J	5J	3J	2J	1J	0.9J	9 J			6J					
2-Methylphenol	NL	3		5J	6J	2J	2J	2J	1J	0.9J			5 J				0.5J	0.3J
4-Methylphenol	NL	4		15	13	5 <u>J</u>	4J	3J	2J	2J			12			1J	1J	
Naphthalene	10			67	69	•	1J	-	14	13			76		5J		2J	1J
Di-n-octyl phthalate	50						2J											
Phenol	1	3		14	4J	2J	0.8J						250			2J	0.6J	0. 4J

Notes:

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level
NS - Not Sampled
J - Estimated

TABLE 2.6

Location									OGC-1								
Date		05/18/01	05/25/07	8/21/2001	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/31/06	05/24/07	05/24/08
Volatiles (µg/L)	Class GA Level																
Acetone	50	20J			11J			4.8J									
Benzene	1			0.64J	0.55J				0.26J								
2-Butanone	50	1.1J															
Chlorobenzene	5	2.2J	2.8	2.0J	1.7J		0.24J		0. 78 J		0.91J						
trans-1,2-Trichloroethene	5	5.6		3.7]	4.6J	1.8J	0.48J	0.58J	2.7		2.8	0.85J			0.55J		
Ethylbenzene	5			0.52J	0.43J				0.21J								
Methylene Chloride	5					1.6 J								1.8			
Tetrachloroethene	5			0.78J	0.54J		0.42J	0.53J	0.30J			0.29J					
Toluene	5	5.2	3.1	5.4	4.2J		0.48J	0.43J	1.9	1.7	2.6	0.59J					
Trichloroethene	5	5.2 15	2.9	16	11	4.5]	2.2	2.7	6.1	5.1	8.4	2.2	0.47J	1.2	1.9	0.53J	4.2
Vinyl Chloride	2	1.3J		0.51J	0.72J				0.42J		0.6 4 J						
Total Xylenes	5			2.1J	1.6J				0. 49 J		0.86J						
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*		0.9 J														
1,4-Dichlorobenzene	3*	1J	3J [*]	3J	2J	1J			1J								
2,4-Dimethylphenol	50	9Ĵ	46	16	8J	3J		0.6J	9 J		4J						
2-Methylphenol	NL	6 J	6	12	5J	2J			2J		3J						
4-Methylphenol	NL	20	170	35	15J	5]		1J	5J	6J	8J				2J		0.4J
Naphthalene	10	71	0.2J	130	•	21		7]	18	7	25	3 J					0.5J
Di-n-octyl phthalate	50		,	ш				-		_							
Phenol	1	150	11	290	57	15	1J	8J	4]		19						

Notes:

* Applies to sum of compounds <u>NL -</u> Not listed

Exceeds Class GA Level

NS - Not Sampled

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

						NORTH	IONAWANI	DA, NEW 1	OKK						
Monitoring Location	МН1	MH2	МН3	MW-6	OGC-1	MH4	OGC-5	МН5	МН6	OGC-6	MH7	MW-7	МН8	OGC-2	МН9
Date															
07/24/00						7.8					10.3				
10/24/00						7.7					10.5				
03/29/01				7.60	10.82		NM			12.55		8.68		9.80	
05/11/01	*	*	*	*	*	*	*	8.30	8.17	8.50	10.16	8.90	11.22	9.22	11.26
05/18/01				11.05	11.14		10.42		10.00	10.50		8.19		8.70	
06/08/01	9.25						9.35		6.90	8.24		7.33		8.40	
06/15/01		10.1	10.38	9.6	9.6		9.4		6.91	8.22		7.43	10.65	8.46	
06/22/01		*	*	*	*										
06/29/01		10.9	10.8	11	10.9		10.56		7	8.97		9.27	11.33	8.63	
07/31/01		10.82	10.81	10.97	11.25		10.54		7.92	8.55		9.2	11.28	9.35	
08/20/01		11	11	9.86	10.95		10.44		7.9	8.31		7.71	11.45	8.49	
09/28/01		10.75	10.97	9.89	11.01		10.6		7.93	8.3		9.0	11.15	8.75	
10/22/01		10.7	10.45	10.5	11		7.86		6.1	9.32		8.97	8.49	8.87	
11/27/01		10.61	10.46	10.12	11.65		10.3			10.54		10.01	8.61	8.63	
12/20/01		10.17	10.11	9.97	11.22		10.19		9.98	10.37		9.68	8.42	8.51	
01/29/02		11.8	11.62	11.15	11.82		10.48		9.91	10.86		10.56	11.91	10.23	
02/11/02		10.26	10.16	10.5	10.4				7.79	11.44		10.04	11.74	8.33	
03/25/02		10.62	10.45	11.22	10.69		10.36		9.94	11.4		10.03	12.21	9.65	
04/24/02		10.37	10.22	10.68	11.36		9.97		9.46	11.15		9.73	11.3	9.52	
05/21/02		9.96	9.81	10.76	10.42		9.85		9.25	11.91		9.38	9.69	9.2	
06/20/02		10.64	9.4	10.91	11.19		9.77		9.46	11.4		10.59	11.76	9.46	
07/18/02		10.89	10.69	10.87	11.75		9.63		9.32	11.24		10.24	11.76	9.51	
08/06/02		10.62	10.47	8.21	5.67		7.25		8.79	8.78		7.46	11.24	7.83	
09/12/02		10.92	11.23	11.17	11.85		9.61		9.27	11.29		10.26	11.9	9.51	
10/30/02		10.1	11.22	10.74	10.89		9.68		9.82	10.63		9.95	11.97	9.64	
11/21/02		9.06	9.3	10.09	11.89		10.72		9.17	12.42		9.76	9.31	9.6	
12/11/02		8.92	9.17	10.16	11.03		9.87		9.02	10.39		10.19	9.5	9.18	
01/16/03		10.9	11.76	11.02	11.59		10.31		10.01	11.52		11.01	12.37	9.83	
02/25/03		10.72	11.12	10.51	11.81		10.22		9.87	12.31		9.42	9.32	8.92	
03/14/03		11.77	11.92	10.07	11.93		10.09		9.71	11.92		10.19	9.28	9.44	
04/14/03		9.78	9.71	9.67	10.82		9.74		9.21	10.45		9.74	10.48	9.01	
05/08/03		10.32	10.48	10.43	12.35		10.13		9.72	12.41		10.88	10.61	9.00	
06/19/03		10.21	10.39	10.36	12.31		10.05		9.68	12.29		10.75	10.51	8.99	
07/21/03		10.06	10.21	10.25	12.17		9.87		9.57	11.99		10.64	10.49	8.84	
08/28/03		10.22	10.91	10.32	11.16		9.8		10.17	10.96		11.04	10.38	9.89	
09/30/03		9.32	9.4	9.95	10.91		8.95		NM	10.22		9.35	9.42	9.58	
10/20/03		9.22	9.3	9	10		8.1		10.2	10.25		9.8	10	9.2	
11/03/03		9.15	9.14	8.86	9.49		7.8		10.51	10.54		10.41	10.28	9.03	
12/23/03		10.03	9.03	9.7	10.3		8.69		10.07	10.49		10.38	10.63	8.62	

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

								211,11211	OILL						
Monitoring Location	МН1	МН2	МНЗ	MW-6	OGC-1	MH4	OGC-5	МН5	МН6	OGC-6	МН7	MW-7	МН8	OGC-2	МН9
Date															
01/21/04		(1)	9.06	9.01	9.56		8.0		10.31	9.84		9.69	10.6	8.8	
02/12/04	8.45	(1)	9.72	13.24	11.02	7.77	8.75		7.65	10.8		10.32	11.23	9.2	
03/04/04	8.21	10.05	8.93	10.28	10.69		8.82		9.43	10.52		10.28	10.87	9.24	
04/16/04		9.52	8.77	10.16	9.28		8.61		9.2	10.96		10.41	11.18	9.12	
05/14/04		10.5	8.08	10.16	9.47		8.74		7.19	11.69	9.49	9.36	11.00	9.09	
06/25/04		10.22	8.66	10.07	9.98		8.46		8.41	10.89		9.82	10.65	9.1	
07/30/04		10.03	9.00	9.91	10.45		8.41		8.42	10.67		9.31	10.51	8.94	
08/31/04		9.89	8.7	9.69	10.0		8.17		7.58	10.36		8.97	10.65	8.85	
09/30/04		10.01	8.77	9.9	9.8		8.4		8.11	10.13		9.2	10.47	8.6	
10/20/04		9.91	7.95	9.8	9.28		8.18		8.46			9.89	9.95	8.84	
11/23/04		9.26	8.47	9.87	9.83		8.32		8.92	10.89		9.8	10.84	8.96	
12/31/04		10.13	8.82	9.42	9.26		8.44		10.31	10.04		9.79	9.57	8.7 3	
01/28/05		10.21	10.75	9.25	8.91		8.39		8.86	10.6		9.66	9.05	9.1	
02/28/05		10.66	9.5	9.09	9.17		8.54		10.89	10.61		9.11	10.8	6.8	
03/31/05		10.91	8.96	9.78	8.95		8.51		9.06	10.99		9.58	11.06	9.18	
04/29/05		10.74	8.92	9.90	9.59		8.74		8.72	11.26		9.62	10.29	9.56	
05/27/05		11.29	9.88	7.85	10.26		9.18		8.12	11.3		9.62	11.16	9.78	
06/24/05		10.72	10.51	10.22	10.2		8.69		8.01	11.48		9.38	11.34	9.31	
07/29/05		7.3	6.20	8.96	9.23		7.83		8.29	9.9		8.91	10.32	8.55	
08/31/05		9.76	7.64	9.35	9.47		8.23		8.5	10.4		8.67	10.68	9.24	
10/03/05		9.1	8.45	9.52	9.14		8.12		7.26	10.43		7.89	9.23	8.9	
10/31/05		10.01	8.59	9.37	8.89		8.47		9.24	10.14		8.63	11.13	9.06	
11/22/05		10.29	8.15	9.13	8.68		8.05		8.25	10.18		8.79	10.70	8.71	
12/23/05		9.24	11.09	10.15	10.11		10.84		9.37	10.84		10.43	9.46	9.23	
01/27/06		9.38	10.69	10.75	9.27		8.63		8.29	11.10		10.05	8.62	9.46	
02/28/06		9.94	11.28	10.49	9.63		8.9		9.56	10.96		9.96	9.56	9.85	
03/24/06		9.57	8.84	10.64	9.43		8.70		9.43	11.14		9.70	9.28	9.40	
04/21/06		11.13	11.03	10.65	9.6		8.91		10.67	11.03		9.44	10.44	9.33	
05/30/06		9.78	10.44	7.50	10.62		8.02		7.10	10.85		9.46	8.98	8.45	
06/26/06		11.24	8.67	10.6	10.83		8.52		8.06	11.24		9.79	10.69	9.24	
07/31/06		7.8	7.85	10.27	10.05		8.12		7.95	10.34		9.93	7.88	8.59	
08/25/06		11.17	8.74	11.07	10.45		8.6		7.7	11.01		8.49	11.4	9.25	
09/22/06		8.33	8.34	10.97	9.73		8.71		8.84	10.85		9.46	11.63	9.23	
10/31/06		10.82	8.26	10.36	9.49		8.62		9.03	10.64		9.86	11.23	9.22	
11/29/06		11.13	9.09	10.45	9.46		8.97		10.90	10.80		9.49	11.13	9.62	
12/29/06		11.15	8.94	10.88	9.36		8.90		11.27	10.56		10.02	11.33	9.05	
			-												

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH1	МН2	МН3	MW-6	OGC-1	MH4	OGC-5	МН5	МН6	OGC-6	МН7	MW-7	МН8	OGC-2	МН9
Date															
01/26/07 02/27/07 03/30/07 04/30/07 05/25/07 06/29/07 07/25/07 08/31/07 09/27/07 10/31/07 11/30/07 12/31/07 01/28/08 02/29/08 03/31/08		11.51 11.55 11.37 11.19 11.3 11.17 11.23 10.36 9.77 10.16 NM 9.07 11.05 9.59 9.15	9.21 10.3 8.89 8.27 8.47 8.33 7.75 8.07 8.62 8.59 8.45 8.46 9.25 9.66 8.76	11.05 10.93 10.68 10.42 10.32 10.28 10.42 9.67 9.79 9.82 10.21 9.69 10.83 9.96 9.96	9.26 9.64 8.83 9.02 8.83 9.52 9.5 9.89 9.99 10.25 10.63 9.24 10.54 9.82 9.14		8.80 8.95 8.78 8.47 8.09 8.36 8.21 8.33 8.43 8.23 8.56 8.60 9.10 9.09 8.98		11.45 11.08 11.18 8.23 7.74 7.89 7.93 8.66 9.26 8.83 11.06 10.84 11.32 10.35 10.75	11.23 11.20 11.13 10.99 10.93 10.91 10.82 10.31 10.22 10.34 10.51 10.44 11.06 10.09 11.06		9.76 9.33 9.35 9.59 9.32 9.02 8.41 8.88 9.55 9.21 8.31 10.06 10.28 10.02 10.17	11.67 11.45 11.28 11.14 11.18 10.98 11.32 10.71 9.63 9.69 11.01 11.07 11.70 11.59 11.38	9.48 10.16 9.21 9.04 9.00 8.86 8.70 8.99 8.93 9.05 9.00 9.20 9.36 9.42	
04/28/08 05/29/08		9.53 8.74	9.17 8.30	10.73 10.60	9.60 8.99		8.78 8.87		8.90 7.95	11.23 11.03		9.97 10.11	10.18 9.14	9.48 9.41	

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

						NORTH	IONAWAN	DA, NEW I	OKK					
Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	MH16	MH17
Date														
07/24/00	9.2						10.6		9.5				7.4	
10/24/00			8.38						7.76				8.15	
03/29/01		8.37		6.41	9.41			9.77		8.17	10.41			
05/11/01	10.9	11.51		11.55	11.59	8.25	7.5	11.58		7.37	11.16	11.21	8.83	9.27
05/18/01		10.93		11.2	11.21	8.25		11.4		10.60	11.32		12.27	
06/08/01		9.68		10.1	10.34	6.99		10.32		10.03	10.44		7.25	
06/15/01		10.0	10.3	10.7	10.8	7.03		10.54	8.75	10.34	10.55		7.27	8.88
06/22/01	*	*	*	*	10.92	7.3		11	8.98	10.47	11.1		7.57	
06/29/01		11.13	10.9	11.4	10.22	7.54		11.2	9.18	10.94	11.2		7.9	
07/31/01		11.49	10.58	11.69	11.75	7.91		11.73	9.73	11.62	11.63		8.28	
08/20/01		9.17	10.59	11.35	10.87	7.7		11.49	9.8	12.05	11.89		8.2	
09/28/01		10	10.57	11.5	11.0	7.9		11.47	9.77	11.2	11.75		8.21	
10/22/01		10.75	10.44	10.89	11.01	7.7		11.01	9.6	10.51	10.7		7.0	
11/27/01		11.98	10.87	12.46	12.46	8.1		12.28	10.01	11.87	12.25		7.26	
12/20/01		11.63	10.22	11.98	11.97	7.82		11.76	8.73	10.61	11.37		7.11	
01/29/02		12.25		12.15	12.59	7.76		12.41	8.09	11.85	12.33		7.16	
02/11/02		11.12		11.79	12.09	7.63		12.13	7.48	11.73	11.8		6.89	
03/25/02		12.38		12.59	12. <i>77</i>	8.01		12.66	8.51	12.11	12.46		7.88	
04/24/02		12		12.26	12.39	7.86		12.34	7.94	11.55	11.95		7.43	
05/21/02		11.86		12.25	12.49	7.94		12.5	7.45	12.16	12.24	7.72	7.22	
06/20/02		11.92		12.26	12.34	8.07		12.28	8.12	11.63	12.2	7.89	7.84	
07/18/02		11.78		12.11	12.16	8.11		12.13	9.82	11.31	11.96	7.81	7.36	
08/06/02		6.95	11.76	7.88	7.63	8.02		8.87	9.76	8.89	9.03	7.64	7.49	
09/12/02		11.93	12.19	12.23	12.32	8.76		12.3	10.81	11.77	12.04	8.16	8.17	
10/30/02		11.91	12.2	12.21	12.24	NM		12.22	8.34	11.89	12.01	7.95	7.63	
11/21/02		11. 7 9	9.46	12.53	12.46	7.64		12.62	7.71	12.42	12.5	7.95	7.37	
12/11/02		11.26	9.41	11.39	11.54	7.56		11.51	7.86	10.76	11.29	7.35	7.18	
01/16/03		12.39		12.55	12.74	8.47		12.82	8.76	12.3	12.52	7.98	8.16	
02/25/03		11.94		12.46	12.49	8.42		12.51	8.71	12.19	12.52	7.89	8.13	
03/14/03		12.16		12.33	12.56	8.26		12.44	8.79	12.11	12.35	8.01	7.79	
04/14/03		11.02		11.63	11.18	7.92		11.62	7.87	10.89	11.89	7.62	7.42	
05/08/03		11.93		12.51	12.55	8.12		12.63	7.77	12.12	12.44	8.43	7.81	
06/19/03		11.87		12.39	12.41	8.02		12.41	7.73	12.01	12.21	8.38	7.79	
07/21/03		11.81		12.12	12.25	7.99		12.32	7.64	11.91	11.98	8.31	7.62	
08/28/03		11.79		12.13	12.24	11.26		12.21	11.52	12.04	12.04	11.46	11.32	
09/30/03		11.27		11.95	11.44	8.65		11.87	9.45	10.33	11.57	8.56	8.68	
10/20/03		11.2		11.8	11.2	8.5		11.6	8	10.42	11.44	8.31	8.01	
11/03/03		11.04		10.91	10.3	8.39		10.63	7.24	10.59	11.24	7.55	7.48	
12/23/03		10.75		11.18	11.17	8.41		11.01	7.66	10.88	11.03	7.13	7.44	

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	МН13	OGC-8	MH14	MW-9	OGC-4	MH15	MH16	MH17
Date														
01/21/04		10.69		11.06	11.16	8.39		11.5	(1)	9.98	10.89	9.53	6.25	
02/12/04		10.79	11.42	11.66	11.78	8.96		11.75	(1)	11.09	11.6	8.5	6.66	
03/04/04		10.79	11.07	11.06	11.29	9.02		11.37	11.5	11.25	11.6	9.03	7.75	
04/16/04		11.23	10.42	11.57	11.62	9.22		11.36	11.6	11.11	11.44	9.6	6.54	
05/15/04		11.19	11.78	11.91	12.13	8.34		11.8	11.7	11.61	11.68	9.5	6.62	
06/25/04		11.22	11.35	11.31	11.48	8.86		11.27	11.21	10.84	11.2	9.11	7.48	
07/30/04		11.10	11.00	11.09	11.42	8.6		11.13	8.40	10.69	11.16	9.42	6.84	
08/31/04		10.84	10.95	10.87	11.19	8.07		10.84	7.78	10.48	10.73	8.14	6.57	
09/30/04		11.0	10.87	11.01	11.4	8.44		11.03	8.1	10.7	10.66	8.32	6.75	
10/20/04		10.91	11.07	11.06	11.26	8.22		11.05	10.84	10.3	10.93	8.64	6.85	
11/23/04		11.08	9.39	11.34	11.44	8.33		11.31	8.64	10.92	11.36	9.08	7.63	
12/31/04		10.64	8.92	10.85	11.09	8.48		10.85	8.57	10.58	10.87	8.86	7.09	
01/28/05		10.79	8.99	11.11	11.31	9.16		11.20	(1)	10.76	11.2	8.95	6.64	
02/28/05		10.79	11.05	10.83	10.81	8.44		10.3	(1)	10.03	10.88	8.49	6.57	
03/31/05		11.22	11.28	11.51	11.49	9.04		11.37	8.5	11.17	11.27	7.24	6.94	
04/29/05		11.48	11.75	11.78	11.75	9.17		11 <i>.7</i> 9	9.64	11.39	11.53	8.32	7.40	
05/27/05		13.65	11.64	13.74	11.79	8.91		11.62	8.6	11.07	11.21	9.05	8.08	
06/24/05		11.59	11.9	11.67	11.92	8.73		11. <i>7</i> 5	10.9	10.51	11.81	9.86	8.07	
07/29/05		9.55	10.46	10.93	11.21	8.28		10.82	8.97	10.35	10.62	8.19	6.97	
08/31/05		10.85	11.12	11.15	11.35	9.02		11.04	9.01	10.7	11.03	8.4	6.93	
10/03/05		10.81	11.1	11.07	11.4	7.61		10.91	7.85	10.66	10.99	8.7	7.56	
10/31/05		10.85	11.34	11.4	11.56	8.13		11.3	7. 7 3	11.15	11.41	8.61	9.69	
11/22/05		10.38	10.25	10.65	10.7	8.5		10.45	7.63	10.36	11.05	8.10	6.60	
12/23/05		11.40	11.58	11.57	11.93	8.11		11.67	7.19	11.23	11.64	7.36	7.30	
01/27/06		11.54	11. 7 5	10.81	12.01	9.04		11.96	7.65	11.51	11.90	7.54	7.84	
02/28/06		11.53	11.57	12.09	12.3	9.73		11.77	7.84	11.43	11.78	7.36	7.22	
03/24/06		11.41	11.53	11.63	11.83	8.88		12.01	8.46	11.54	11.89	7.92	7.09	
04/21/06		11.31	11.65	11.62	11.86	8.79		11.96	7.98	11.40	11.86	8.52	6.97	
05/30/06		11.11	11.43	11.36	11.56	7.45		11.34	8.90	10.73	10.98	8.90	7.68	
06/26/06		11.48	11.62	11.71	11.91	8.92		11.89	8.46	11.6	11.61	8.03	7.18	
07/31/06		10.73	8.01	10.89	11.14	8.53		10.83	8.09	10.71	10.83	7.36	7.35	
08/25/06		11.62	11.9	11.74	12.05	8.83		11.77	9.88	11.44	11.72	10.82	8.11	
09/22/06		11.54	11.85	11.66	12.07	9.05		11.62	11.88	10.98	11.6	11.51	7.31	
10/31/06		11.26	11.37	11.29	11.49	9.35		10.16	8.96	11.05	11.06	8.48	8.86	
11/29/06		11.28	11.45	11.36	11.49	7.15		10.10	11.45	10.19	11.43	11.10	9.36	
											11.45	11.42	10.85	
12/29/06		11.26	9.82	11.51	11.64	9.02		11.54	11.52	10.45	11.45	11.42	10.00	

Notes:

(1) Buried with snow and could not be accessed.

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	МН13	OGC-8	MH14	MW-9	OGC-4	MH15	МН16	MH17
Date														
01/26/07		11.63	11.33	11.82	12.07	9.27		11.87	9.70	11.65	11.84	7.73	7.17	
02/27/07		11.58	10.76	11.66	12.07	8.39		11.91	7.29	11.17	11.92	8.31	7.07	
03/30/07		11.39	9.58	11.61	11.95	8.65		11.78	11.57	11.03	11.69	11.27	8.38	
04/30/07		11.19	10.01	11.42	11.63	8.44		11.40	11.48	11.38	10.73	10.76	7.29	
05/25/07		11.16	11.00	11.41	11.70	8.26		11.35	11.51	10.99	11.26	11.10	7.46	
06/29/07		11.12	10.54	11.38	11.57	8.83		11.31	11.38	10.48	10.94	11.00	7.21	
07/25/07		11.30	11.04	11.55	11.87	8.76		11.61	11.68	10.79	11.43	11.07	7.16	
08/31/07		11.01	10.99	11.11	11.34	8.76		11.14	11.22	10.19	10.88	10.45	6.33	
09/27/07		10.96	9.28	11.20	11.48	8.86		11.26	11.33	9.76	11.03	9.64	6.56	
10/31/07		11.19	11.33	11.24	11.75	9.30		11.02	11.57	10.60	11.38	10.61	7.68	
11/30/07		11.22	8.89	11.51	12.04	9.07		11.47	11.64	10.76	11.66	11.07	7.38	
12/31/07		11.24	9.25	11.43	11.80	8.84		11.73	11.46	10.78	11.60	10.76	7.07	
01/28/08		11.78	10.50	12.07	12.46	9.09		11.93	10.80	11.21	12.00	9.44	6.93.	
02/29/08		11.63	11. 44	11.60	12.01	9.43		11.92	11.91	10.10	11.85	10.78	6.84	
03/31/08		11.61	9.05	11.78	12.07	9.14		11.79	11.95	10.54	11.94	11.13	7.52	
04/28/08		11.64	10.46	11.88	12.28	7.54		11.91	11.65	10.97	11.80	11.21	7.70	
05/29/08		11.50	10.91	11.53	12.00	8.88		12.10	11.86	10.14	11.88	11.45	8.73	

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	City MH1	City MH2	City MH3
Date			
07/24/00	6.3	7.3	
10/24/00	7.08	7.52	7.41
03/29/01	7.52	7.50	7.16
06/15/01	7.7	7.69	7.4
06/22/01	8.0	7.9	7.8
07/31/01	8.0	8.0	7.7
08/20/01	8.2	8.3	8.0
09/28/01	8.1	8.3	7.9
10/22/01	8.0	8.0	7.8
11/27/01	7.9	8.2	8.01
12/20/01	*	*	*
01/29/02	7.62	7.93	7.97
02/11/02	7.52	7.73	7.79
03/25/02	*	*	*
04/24/02	7.46	7.62	7.69
05/21/02	7.47	7.66	7.72
06/20/02	7.57	7.69	7.78
07/18/02	7.72	7.84	8.01
08/06/02	7.63	7.68	7.92
09/12/02	7.72	7.79	7.98
10/30/02	7.73	7.8	7.93
11/21/02	7.32	7.37	7.41
12/11/02	7.29	7.31	7.35
01/16/03	7.62	7.7	7. 7 9
02/25/03	7.64	7.71	7.89
03/14/03	7.39	7.54	7.61
04/14/03	7.22	7.39	7.41
05/08/03	7.29	7.43	7.48
06/19/03	7.27	7.39	7.41
07/21/03	7.25	7.36	7.38
08/28/03	7.29	7.44	7.41
09/30/03	7.29	7.45	7.40
10/20/03	7.4	7.71	7.39
11/03/03	8.46	7.14	7.27
12/23/03	9.34	7.63	7.57

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	City MH1	City MH2	City MH3
Date			
01/21/04	(2)	8.12	(2)
02/12/04	8.45	7.77	7.65
03/04/04	8.21	7.76	7.79
04/16/04	10.95	8.38	8.32
05/14/04	7.30	7.62	7.75
06/25/04	8.06	7.99	7.94
07/30/04	7.85	7.90	7.81
08/31/04	10.2	7.5	7.4
09/30/04	8.6	7.7	7.9
10/20/04	7.59	7.56	7.61
11/23/04	9.64	7.6	7.67
12/31/04	9.09	7.68	7.38
01/28/05	8.92	7.58	7.40
02/28/05	(1)	8.16	7.90
03/31/05	8.49	7.59	7.55
04/29/05	8.74	8.05	7.89
05/27/05	9.24	8.33	8.27
06/24/05	10.53	8.44	8.24
07/29/05	7.3	7.16	6.96
08/31/05	8.06	6.87	7.13
10/03/05	10.3	8.1	NM
10/31/05	10.76	7.9	7.93
11/22/05	9.50	8.54	7.34
12/23/05	10.58	(3)	(3)
01/27/06	10.76	7.87	7.84
02/28/06	11.29	8.73	8.64
03/24/06	11.18	7.98	7.78
04/21/06	NM	8.28	8.05
05/30/06	10.88	7.73	7.63
06/26/06	8.84	7.73	7.68
07/31/06	7.51	7.02	7.24
08/25/06	9.72	7.82	7.67
09/22/06	11.29	8.34	8.99
10/31/06	10.70	8.61	8.13
11/29/06	10.77	8.27	8.04
12/29/06	10.60	8.07	7.73

- * pH meter malfunctioned.
- NM Not Measured.
- (1) Buried with snow.
- (2) Road conditions were not safe to allow for monitoring.
- (3) pH probe damaged.

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	City MH1	City MH2	City MH3
Date			
01/26/07	11.20	7.76	7.81
02/27/07	8.72	8.15	7.86
03/30/07	10.90	8.29	8.42
04/30/07	10.71	8.52	8.30
05/25/07	10.99	7.74	7.68
06/29/07	9.47	7.61	7.62
07/25/07	6.96	6.61	6.60
08/31/07	8.68	7.79	7.52
09/27/07	10.63	8.86	8.73
10/31/07	8.98	7.96	7.85
11/30/07	10.39	7.96	7.97
12/31/07	10.59	9.40	9.20
01/28/08	9.65	9.98	8.41
02/29/08	11.21	8.30	8.13
03/31/08	10.53	8.29	8.33
03/31/08 04/28/08 05/29/08	11.48 11.11	10.09 10.94	8.23 9.92

FFFLUENT SAMPLING SUMMARY JUNE 2001 TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

monthly (as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit)

PARAMETERS

Volatiles

Acetone Methylene Chloride
Benzene Styrene
2-Butanone Tetrachloroethene
Chlorohenzene Toluene

Chlorobenzene Toluene

1,1-Dichloroethane 1,1,1-Trichloroethane

1,2-Dichloroethane Trichloroethene

trans-1,2-Dichloroethene Vinyl Chloride

Ethylbenzene Xylenes (Total)

Semi-Volatiles

1,4-Dichlorobenzene4-Methylphenol1,2-DichlorobenzeneNaphthalene2,4-DimethylphenolDi-n-octylphthalate2-MethylphenolPhenols (4AAP)

Inorganics

Lead Aluminum Magnesium Antimony Manganese Arsenic Mercury Barium Nickel Beryllium Selenium Cadmium Silver Chromium Sodium Copper Zinc Iron

Wet Chemistry

Oil and Grease Alkalinity (Bicarbonate) рΗ Alkalinity (Total) Phosphorous BOD Sulfate Chloride Sulfide COD TDS Cyanide TKN Hardness TOC NH3 TSS NO3

EFFLUENT SAMPLING SUMMARY SUBSEQUENT TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

Semi-Annual (Spring and Fall as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit)

PARAMETERS

Volatiles

Acetone
Benzene
2-Butanone
Chlorobenzene
1,1-Dichloroethane
1,2-Dichloroethane
trans-1,2-Dichloroethene
Ethylbenzene

Semi-Volatiles

1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol

Wet Chemistry

Chloride Cyanide NH3 NO3 Phosphorous Sulfate Sulfide Methylene Chloride Styrene Tetrachloroethene Toluene 1,1,1-Trichloroethane

Trichloroethene
Vinyl Chloride
Xylenes (Total)

4-Methylphenol Naphthalene Di-n-octylphthalate Phenols (4AAP)

TABLE 2.10

Discharge Sample Port

Sample ID:		Discharge Sample Port GRATWICK-RIVERSIDE							
Sample ID. Sample Date:		6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
Parameter	Unit								Surface Water Standard ⁽¹⁾
Volatiles									
1,1,1-Trichloroethane	μg/L	3.0 J	1.8J	1.1J	7.6U	7.6U	3.8U	3.8U	5
1,1-Dichloroethane	$\mu g/L$	8.8	7.3	5.8	3.4J	2.1U	2.6J	3.5J	5
1,2-Dichloroethane	μg/L	5.0U	5.0U	5.0U	10 U	10U	5.0U	5.0U	0.6
2-Butanone	μg/L	7.6 J	10	10U	20U	20U	6.8 J	6. 7J	50
Acetone	μg/L	77	93	140	36	26	55	55	50
Benzene	μg/L	6.4	7.2	6.2	3.5J	3.2J	3.1J	4.0J	1
Chlorobenzene	μg/L	3. <i>7</i> J	4.9J	5.0J	3. 4 J	16	3.5J	5.4J	5
Ethylbenzene	μg/L	8.9	11	9	8.6J	3.6J	4.8J	6.8 J	5
Methylene chloride	μg/L	1.1J	2.8U	2.8U	5.6U	5.6U	2.8U	2.8 U	5
Styrene	μg/L	1.0J	5.0U	5.0U	10U	10U	5.0U	5.0U	5
Tetrachloroethene	μg/L	22	33	25	16	8.3	15	23	0.7 (2)
Toluene	μg/L	74	84	68	42	20	37	50	5
trans-1,2-Dichloroethene	μg/L	2.6	2.1	2.8	3.3J	1.8J	1.5J	2.4	5
Trichloroethene	μg/L	150J	130	87	55	32	56	72	5
Vinyl chloride	μg/L	11	13	13	13J	5.6J	8.0J	13	0.3 (2)
Xylene (total)	μg/L	40	44	34	32	11	17	26	5
Semi-Volatiles									
1,2-Dichlorobenzene	μg/L	9U	2U	1J	6	0.6J	0.9J	9U	3
1,4-Dichlorobenzene	μg/L	21U	4U	1J	2J	1J	4U	1J	3
2,4-Dimethylphenol	μg/L	14	13	19	12	8	17	13	50 (2)
2-Methylphenol	μg/L	49	46	38	28	15	38	3 7J	NL
4-Methylphenol	μg/L	58	47	46	30	21	46	4 0J	NL
Di-n-octyl phthalate	μg/L	12U	2U	2U	2U	1J	2U	12U	50 (2)
Naphthalene	μg/L	1J	1J	1J	1J	67 J	0.8J	8U	10
Phenol	μg/L	86	64	67	110	230	74	110	1

TABLE 2.10

Discharge Sample Port

Sample ID:	G	RATWICK-RIVERSIDE							
Sample Date:		6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
·									Surface Water
Parameter	Unit								Standard ⁽¹⁾
Metals									
Aluminum	mg/L	0.31	0.24	0.24	0.34	0.20U	0.20	0.20U	NL
Antimony	mg/L	0.020U	0.020U	0.020 U	0.020 U	0.020U	0.020U	0.020U	0.003
Arsenic	mg/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.050
Barium	mg/L	0.059	0.063	0.061	0.081	0.067	0.064	0.064	1.0
Beryllium	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.003 (2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005
Chromium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.050
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023 ⁽³⁾
Iron	mg/L	0.050U	0.050U	0.050U	0.16	0.095	0.057	0.062	0.30
Lead	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.012
Magnesium	mg/L	0.35	0.66	1	0.77	6.8	1.1	0.94	35
Manganese	mg/L	0.0030U	0.0030U	0.0036	0.012	0.028	0.0043	0.004	0.30
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026 ⁽⁴⁾
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10
Selenium	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0046 ⁽⁴⁾
Silver	mg/L	0.0030 U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050
Sodium	mg/L	273	271	262	310	290	293	286	NL (2)
Zinc	mg/L	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	2.0 (2)
General Chemistry									
рН	S.U.	NA	NA	9.45	11.23	9.20	10.06	10.71	NL
Hardness	mg/L	524	488	465	529	301	456	410	NL
Total Dissolved Solids (TDS)	mg/L	1500	1450	1530	1520	1280	1200	1200	NL
Total Suspended Solids (TSS)	mg/L	NA	NA	14	19	10	9.0	7.0	NL
Chloride	mg/L	497	123	497	820	577	436	389	250
BOD	mg/L	NA	NA	20	1 <i>7</i>	20	24	27	NL
COD	mg/L	NA	NA	155	240	240	50	49	NL
Oil and Grease	mg/L	NA	NA	0.60U	1.0	0.87U	1.0U	1.0U	NL
Organic Carbon	mg/L	NA	NA	16	10	. 18	9.0	11	
Alkalinity, Total (As CaCO3)	mg/L	131	115	120	115	20.9	22.2	57	NL
Bicarbonate (as CaCO3)	mg/L	5.0U	5.0U	5.0U	5.0U	20.9	22.2	57	NL
Ammonia	mg/L	NA	NA	6	4.9	4.9	21	11.6	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.50U	0.20	0.050U	0.050U	0.050U	10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Discharge Sample Port

Sample ID: Sample Date:		GRATWICK-RIVERSIDE 6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
Parameter	Unit								Surface Water Standard ⁽¹⁾
General Chemistry									
TKN	mg/L	NA	NA	10	7.6	7.6	14.8	10.6	NL
Sulfate	mg/L	281	20.4	307	196	329	245	263	250
Sulfide	mg/L	13.2	16.0	14.3	5.6	2.5	10.6	14	0.002
Phenol	mg/L		NA	0.28	0.24	0.28	0.15	0.11	0.001
Phosphorous	mg/L		NA	0.29	NA	0.05	0.13	0.06	0.020 (2)
Cyanide	mg/L		NA	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

- U Non-detect at associated value
- -- Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
- (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form

TABLE 2.10

Sample ID: Sample Date:		1/23/2002	2/21/2002	3/27/2002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	7/25/2002	8/27/02	9/23/02	10/17/02	11/13/02	12/12/2002	Surface Water
Parameter	Unit														Standard (1)
Volatiles															_
1,1,1-Trichloroethane	μg/L	7.3U	7.6U	7.6U	7.6U	7.6U	7.6U	7.6U	7.6U	3.8U	3.8U	3.8U	3.8U	7.6U	5
1,1-Dichloroethane	μg/L	2.3J	4.1J	4.9J	9.9	9.4U	9.4U	9.4U	2. <i>7</i> J	1.4J	1.8J	1.2J	4.5J	7.3J	5
1,2-Dichloroethane	μg/L	10U	10U	10U	10U	10U	10U	10U	10U	5.0U	5.0U	5.0U	5.0U	10U	0.6
2-Butanone	μg/L	20U	20U	20U	110	20U	20U	20U	20U	10U	10U	2.1J	10U	5.2J	50
Acetone	μg/L	42	53	56	98	52	25	25	130	7.0J	28	15	48	96	50
Benzene	μg/L	2.1J	3.2J	4.6J	9.1	4.7J	2.1J	2.1J	3.3J	1.9J	3.3J	2.1 J	5.3	7.8J	1 -
Chlorobenzene	μg/L	3.8J	6.6J	5.2J	4.4J	8.9J	5.8J	5.8J	5.4J	6.9	4.0J	5.6J	6.1	4.3J	5
Ethylbenzene	$\mu g/L$	2.0J	7.6J	9.6J	18	10J	5.3J	5.3J	7.8J	6.4J	7.2	4.6J	13	18	5
Methylene chloride	μg/L	6. 4U	5.6U	5.6U	2.9 J	5.6U	5.6U	5.6U	3.2J	3.5U	3.5 U	3.5U	3.5U	2.2J	5
Styrene	μg/L	10U	10U	10U	10U	10U	10U	10U	10 U	5.0U	5.0U	5.0U	5.0U	10U	5 0.7 (2)
Tetrachloroethene	μg/L	4.9J	23	28	46	48	27	27	19	9.6	12	6.0	42	48	0.7
Toluene	μg/L	15	46	57	110	42	33	33	41	18	30	14	64	110	5
trans-1,2-Dichloroethene	μg/L		2. 4 J	2.5J	4.2	3.6U	3.6U	3.6U	2.1J	2.2	1.8U	2.0	1.8U	3.2J	5
Trichloroethene	μg/L	27	92	140	260	140	80	80	74	20	48	20	130	230	5 0.3 (2)
Vinyl chloride	μg/L	8.4J	20U	5.1J	14J	13J	8.6J	8.6J	6.6J	11	10	11	18	15J	0.5
Xylene (total)	μg/L	7.3J	29	40	76	37	21	21	30	20	24	15	50	78	5
Semi-Volatiles															
1,2-Dichlorobenzene	μg/L	. 2J	1J	1J	3	9U	0.8J	0.8J	1J	0.6J	0.6J	1J	0.9 J	3	3
1,4-Dichlorobenzene	μg/L	. 2J	2J	1J	3 J	2J	1J	1J	1J	1J	0.8J	2 J	1J	3J	3
2,4-Dimethylphenol	μg/L	. 11J	9 J	8	14	5J	4	4	9	6	7	8	12	21	50 (2)
2-Methylphenol	μg/L	. 28J	21 J	17	36	10 J	8J	8J	18	8J	13	15	19	32	NL
4-Methylphenol	μg/L	40J	27J	24	57	19J	13	13	27	13	20	21	30	61	NL 50 (2)
Di-n-octyl phthalate	μg/L		12U	2U	2U	12U	2U	2U	2U	2U	0.3J	3U	2U	2U	50
Naphthalene	μg/L		24	12	1J	7U	15	15	13	23	8	29	2U	1J	10
Phenol	μg/L		96	42	73	46	51	51	41	66	28	84	35	38	1

TABLE 2.10

Sample ID: Sample Date:		1/23/2002	2/21/2002	3/27/2002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	7/25/2002	8/27/02	9/23/02	10/17/02	11/13/02	12/12/2002	Surface Water
Parameter	Unit														Standard (1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL						
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.003						
Arsenic	mg/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.00 7 0U	0.00 7 0U	0.0070U	0.0070U	0.00 7 0U	0.0070U	0.0070U	0.050
Barium	mg/L	0.077	0.075	0.078	0.095	0.064	0.058	0.058	0.059	0.073	0.054	0.064	0.068	0.096	1.0
Beryllium	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.003 (2)						
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005						
Chromium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.050						
Copper	mg/L	0.010U	$0.010\mathbf{U}$	0.010U	0.010U	0.010U	0.010U	0.010U	0.023 ⁽³⁾						
Iron	mg/L	0.050U	0.050U	0.050U	0.050U	0.090	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.10	0.050U	0.30
Lead	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.012						
Magnesium	mg/L	1.5	1.4	0.92	0.34	2.5	1.7	1.7	1.8	8.8	3.5	6.4	1.9	0.43	35
Manganese	mg/L	0.0034	0.0042	0.0049	0.003U	0.0090	0.0030U	0.0030U	0.0030U	0.0094	0.0030U	0.0098	0.0030U	0.0030U	0.30
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026						
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10						
Selenium	mg/L	0.010U	0.010UJ	0.010U	0.010U	0.010U	0.010U	$0.010\mathbf{U}$	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0046 (4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050						
Sodium	mg/L	317	336	360	242	329	318	318	2 7 0	189	195	204	289	272	NL
Zinc	mg/L		0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	2.0 (2)
General Chemistry															
рН	S.U.	10.91	10.96	10.92	11.46	10.4	10.66	10.66	10.37	8.44	8.97	8.84	10.11	10.72	NL
Hardness	mg/L	415	449	440	484	349	300	300	300	316	277	274	372	507	NL
Total Dissolved Solids (TDS)	mg/L		1490	1640	1610	1530	1130	1130	1100	868	1040	945	1330	1410	NL
Total Suspended Solids (TSS)	mg/L		11.0	9	8	6	8	8	8	12	6	1.5	2	2.3	NL
Chloride	mg/L		545	577	545	518	452	452	424	377	320	329	502	489	250
BOD	mg/L		21	22	29	13	9	9	12	14	8	11	16	15	NL
COD	mg/L		58	255	50	23	26	26	58	49	19	46	16	64	NL
Oil and Grease	mg/L		1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	NL
Organic Carbon	mg/L	. 14	6	10	12	9	11	11	8	6.9	10	7	(5)	(5)	NL
Alkalinity, Total (As CaCO3)	mg/L		53.8	102	126	36.3	43.1	43.1	16.7	27.2	5.0U	22.4	14.3	110	NL
Bicarbonate (as CaCO3)	mg/L		5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	16.7	27.2	5.0U	22.4	14.3	5.0U	NL
Ammonia	mg/I		6.0	6.0	5.2	SL	2.0	2.0	1.7	9.1	10.5	9.4	9.4	7.0	2.0
Nitrate (as N)	mg/I		0.050U	0.050U	0.050U	0.050U	0.050U	0.050 U	0.050U	0.050 U	0.050U	0.050U	0.050U	0.050U	10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/23/2002	2/21/2002	3/27/2002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	7/25/2002	8/27/02	9/23/02	10/17/02	11/13/02	12/12/2002	Surface Water
Parameter	Unit														Standard (1)
General Chemistry															
TKN	mg/L	8.1	4.5	5.0	4.8	SL	2.0	2.0	1.7	5.6	6.2	7.8	10.5	10.8	NL
Sulfate	mg/L	261	250	262	239	239	226	226	215	236	214	213	254	302	250
Sulfide	mg/L	9.9	9.9	11.2	13.7	4.4	1.0U	1.0U	1.0U	1.4	1.0U	1.0U	7.4	21.6	0.002
Phenol	mg/L	0.12	0.28	0.22	0.22	SL	0.40	0.40	0.27	0.16	0.16	0.16	0.12	0.12	0.001
Phosphorous	mg/L	0.09	0.08	0.09	0.17	0.02	0.10	0.10	0.04	0.018	0.04	0.06	0.12	0.10	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.0401	0.005U	0.005	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

- U Non-detect at associated value
- - Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
- (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form
- (5) TOC analyzer malfunction prevented analysis of this compound.

TABLE 2.10

Sample ID:														
Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface Water
Parameter	Unit													Standard (1)
Volatiles														
1,1,1-Trichloroethane	μg/L	2.6 U	2.6 U	2.6U	5.2U	1.3U	2.6U	5.2U	5.2U	5.2U	1.3U	2.6U	2.6U	5
1,1-Dichloroethane	$\mu g/L$	4.1	9.6	5.6	6.4	0.84U	5.4	7.4	4.6	3.3U	0.84U	1.7U	7.0	5
1,2-Dichloroethane	μg/L	1.7U	1.7U	1.7U	3. 4 U	0.85U	1.7U	3.4U	3. 4U	3. 4 U	0.85U	1.7U	1.7U	0.6
2-Butanone	μg/L	9.3U	9.3U	9.3U	19U	4.6U	9.3U	19U	19U	19U	4.6U	9.3U	9.3U	50
Acetone	μg/L	21	56	51	42	10U	28	52	42U	42U	10U	21U	35	50
Benzene	μg/L	3.4	7.9	6.2	4.4 U	1.1U	3.2	4.6	4.4U	4.4 U	1.1U	2.2U	7.2	1
Chlorobenzene	μg/L	6.1	6.6	6.9	7.5	6.9	4.1	7.0	5.0	3.6U	5.4	9.3	6.3	5
Ethylbenzene	μg/L	9.9	2.3	15	12	1.9	11	12	9.5	4.3	1.8	2.1	17	5
Methylene chloride	μg/L	7.0U	7.0U	7.0U	14U	3.5 U	7.0U	1 4 U	14U	14U	3.5U	7.0U	7.0U	5
Styrene	μg/L	5.2U	5.2U	5.2U	10U	2.6U	5.2U	10U	10U	10U	2.6U	5.2U	5.2U	5
Tetrachloroethene	μg/L	22	59	46	31	8.3	45	38	32	12	1.3U	2.5U	47	0.7 (2)
Toluene	μg/L	37	110	81	56	7.1	46	57	39	17	1.2U	3.2	82	5
trans-1,2-Dichloroethene	μg/L	3.0U	4.3	3.0U	6.0U	1.8	4.5	6.0U	6.0U	6.0U	1.5U	3.0U	3.3	5
Trichloroethene	μg/L	92	260	220	160	17	140	170	110	53	1.7	5. <i>7</i>	180	5 0.3 (2)
Vinyl chloride	μg/L	10	20	11	9.6	5.8	12	9.5	5.7U	5.7U	1.9	2.8U	11	0.5
Xylene (total)	μg/L	41	99	64	50	7.0	44	56	40	28U	6.9U	14U	<i>7</i> 3	5
Semi-Volatiles														
1,2-Dichlorobenzene	μg/L	4U	20U	20U	20U	20U	20U	19U	16U	16U	16U	16U	16U	3
1,4-Dichlorobenzene	μg/L	4U	18U	19U	19U	19U	19U	18U	15U	15U	15U	15U	14U	3
2,4-Dimethylphenol	μg/L	10	18U	19U	19U	19U	19U	18U	12U	20	12U	13U	18	50 (2)
2-Methylphenol	μg/L	12	16U	22	16U	16U	16U	15U	15U	15U	15U	16U	15	NL
4-Methylphenol	μg/L	24	35	45	31	18U	19	17U	15U	46	15U	16U	57	NL
Di-n-octyl phthalate	μg/L	4U	19U	20 U	19U	19U	20U	19U	26U	26U	26U	27U	26U	50 (2)
Naphthalene	μg/L	3U	18 U	18U	18U	18U	18U	17U	17U	17U	17U	18U	17U	10
Phenol	μg/L	61	30	62	94	64	61	74	46	28	16	150	46	1

TABLE 2.10

Sample ID:															
Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface Water	
Parameter	Unit													Standard	(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20 U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL	
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.003	
Arsenic	mg/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.010U	0.010U	0.010U	0.010U	0.050	
Barium	mg/L	0.091	0.097	0.090	0.094	0.065	0.070	0.080	0.074	0.082	0.072	0.092	0.10	1.0	(2)
Beryllium	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0020U	0.0020U	0.0020U	0.0020U	0.000	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.00 4 0U	0.0055	0.00 4 0U	0.0040U	0.050	(2)
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023	(3)
Iron	mg/L	0.050U	0.050U	0.050U	0.11	0.050U	0.050U	0.17	0.050U	0.050U	0.072	0.050U	0.050U	0.30	
Lead	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0060U	0.0060U	0.0060U	0.0060U	0.012	
Magnesium	mg/L	1.4	0.26	0.31	3.6	4.8	1.6	2.3	1.4	1.2	7.4	5.9	0.72	35	
Manganese	mg/L	0.0030U	0.0030U	0.0030U	0.012	0.0030	0.0030U	0.0080	0.0030U	0.0030U	0.018	0.0055	0.0030U	0.30	(4)
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	(4)
Selenium	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	343	391	195	401	310	276	293	231UJ	272	239	375	361	NL	(2)
Zinc	mg/L	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	$0.020\mathbf{U}$	0.020U	0.020U	0.020U	0.020U	2.0	(2)
General Chemistry															
pН	S.U.	10.71	11.55	11.3	10.91	9.75	8.0	10.73	10.8	10.59	7.92	8.48	11.13	NL	
Hardness	mg/L	388	435	459	430	368	374	365	294	431	380	399	420	NL	
Total Dissolved Solids (TDS)	mg/L	1500	1580	1590	1 <i>7</i> 50	1120	1230	1440	1050	1400	1000	1590	1400	NL	
Total Suspended Solids (TSS)	mg/L	2.0	6.0	3.0	18.0	3.0	4	9	4	11	15	15	3	NL	
Chloride	mg/L	511	512	628	778	524	416	474	410	347	383	615	834	250	
BOD	mg/L	13	10	20	22	12	9	9	11	7	6	11	22	NL	
COD	mg/L	55	73	46	44	39	73	48	24	21	8	40	53	NL	
Oil and Grease	mg/L	1.0U	0.28	1.0U	1.0	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1. 0 U	1.0U	NL	
Organic Carbon	mg/L	6	13	12	12	9	8	9	6	10	5	10	9	NL	
Alkalinity, Total (As CaCO3)	mg/L	104	155	121	48	7.9	NA	74	119	58.0	38.0	13.4	74.8	NL	
Bicarbonate (as CaCO3)	mg/L	22.5	5.0U	5.0U	5.0U	7.9	NA	10U	10U	10U	38.0	13.4	10U	NL	
Ammonia	mg/L	7.35	3.15	2.10	5.6	5.25	6.3	5.25	3.15	3.15	2.45	4.2	3.5	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.051	0.050U	0.050U	10	
	-														

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface Water
Parameter	Unit													Standard (1)
General Chemistry														
TKN	mg/L	9.24	2.52	1.1	4.48	5.04	8.4	6.7	5.88	5.88	2.24	7.28	5.88	NL
Sulfate	mg/L	202	177	184	230	236	234	170	208	254	149	242	386	250
Sulfide	mg/L	3.2	4.0	8.0	10	2.2	4.0	4.8	4.8	2.4	1.0U	1.0U	2.0	0.002
Phenol	mg/L	0.11	0.10	0.009	0.006	0.01U	0.008U	0.034	0.08U	0.014U	0.006U	0.012U	0.015U	0.001
Phosphorous	mg/L	0.12	0.10	0.18	0.10	0.04	0.11	0.10	0.13	0.16	0.11	0.24	0.13	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

- U Non-detect at associated value
- - Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
- (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form
- (5) TOC analyzer malfunction prevented analysis of this compound.

TABLE 2.10

Sample ID:															
Sample Date:		1/8/04	2/6/04	3/16/04	04/13/04	05/14/04	06/10/04	07/09/94	08/12/04	09/10/04	10/08/04	11/05/04	12/03/04	Surface	
Parameter	Unit													Water Standard ⁽¹⁾)
Volatiles															
1,1,1-Trichloroethane	$\mu g/L$	2.6U	5.2U	1.3U	5.2U	1.3U	5.2U	1.3U	1.3U	5.2U	5.2U	5.2U	1.3U	5	
1,1-Dichloroethane	μg/L	9.2	3.3U	11	14	4.1	11	5.9	10	5.2U	5.2U	3.3U	6.5	5	
1,2-Dichloroethane	$\mu g/L$	1.7U	3. 4 U	0.85U	3.4U	0.85U	3. 4 U	0.85U	0.85U	5.2U	5.2U	3.4U	0.85U	0.6	
2-Butanone	μg/L	9.3U	19U	4.6U	19U	4.6U	19U	4.6U	4.6U	5.2U	5.2U	19U	4.6U	50	
Acetone	μg/L	53	42U	38	42U	12	42U	22	34	5.2U	5.2U	42 U	19	50	
Benzene	μg/L	7.8	4.4U	6.1	4.4	2.1	5.3	2.9	5.6	5.2U	5.2U	4.4U	3.3	1	
Chlorobenzene	μg/L	6.7	8.8	3.0	3.6U	8.8	3.6U	4.4	2.9	19	13	12	4.5	5	
Ethylbenzene	μg/L	19	0.11U	17	14	6.4	18	8.7	18	6.4	0.11U	0.11U	12	5	
Methylene chloride	μg/L	7.0U	14U	3.5U	14U	3.5 U	15	3.5U	3. 5U	14U	14U	14 U	3.5U	5	
Styrene	μg/L	5.2U	10 U	2.6U	10 U	2.6U	10U	2.6U	2.6U	14U	14U	10U	2.6U	5	
Tetrachloroethene	μg/L	60	5.0U	50	38	16	63	22	52	14U	14U	5.0 U	31	0.7 (2)	
Toluene	μg/L	98	4.9U	80	75	26	78	38	83	14U	1 4 U	4.9	4 6	5	
trans-1,2-Dichloroethene	μg/L	3.6	6.0U	4.0	6.0U	1.8	6.0U	2.1	3.6	14U	14U	6.0U	1.5U	5	
Trichloroethene	μg/L	260	7.5	200	220	82	240	97	200	4.8	4.8U	4.8U	130	5	
Vinyl chloride	μg/L	14	5.7U	10	8.9	4.9	11	5.6	12	6.1	5.7U	5.7U	6.7	0.3 (2)	
Xylene (total)	μg/L	91	28U	81	78	29	87	42	83	28U	28U	28U	5.4	5	
Semi-Volatiles															
1,2-Dichlorobenzene	μg/L	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	3	
1,4-Dichlorobenzene	μg/L	15U	15U	15U	15U	15U	15U	15U	14U	15U	14U	15U	15U	3	
2,4-Dimethylphenol	μg/L	15	12U	13U	12U	12U	13U	13U	12U	14	12U	13U	13U	50 (2)	
2-Methylphenol	μg/L	16U	15U	16U	15U	15U	16U	16U	15	15U	15U	16U	16U	NL	
4-Methylphenol	μg/L	48	15U	24	16	15U	16U	20	32	29	15U	16U	16U	NL	
Di-n-octyl phthalate	μg/L	27U	27U	27U	26U	2 7 U	27U	2 7 U	26U	26U	26U	27U	27U	50 (2)	
Naphthalene	μg/L	18U	37	18U	17U	20	18U	18U	1 7 U	17U	20	18U	18U	10	
Phenol	μg/L	39	140	11	14	91	16	67	13	6U	55	6U	11	1	

TABLE 2.10

Parameter Unit Standard (1) Metals	
The second secon	
Aluminum mg/L 0.20U NL	
Antimony mg/L 0.020U 0.020U 0.020U 0.020U 0.020U 0.020U 0.020U 0.020U 0.020U 00020U 00020U 00020U 00020U 0.003	
Arsenic mg/L 0.010U 0.050	
Barium mg/L 0.095 0.092 0.11 0.096 0.085 0.083 0.068 0.076 0.059 0.079 0.070 0.077 1.0	
Beryllium mg/L 0.0020U	
$ \text{Cadmium} \qquad \qquad \text{mg/L} \qquad 0.0010 \text{U} \qquad 0.$	
$ \text{Chromium} \qquad \qquad \text{mg/L} \qquad 0.0040 $	
Copper mg/L 0.010U)
Iron mg/L 0.050U 0.066 0.050U 0.055 0.26 0.050U 0.056 0.097 0.20 0.22 0.11 0.050U 0.30	
Lead mg/L 0.0060U 0.0060U 0.0060U 0.0060U 0.0060U 0.0060U 0.0050U	
Magnesium mg/L 0.68 4.2 1.2 1.0 5.4 0.66 2.8 0.57 5.4 5.2 5.2 2.7 35	
Manganese mg/L 0.0030U 0.19 0.0033 0.0058 0.018 0.0030U 0.012 0.0030U 0.022 0.031 0.022 0.067 0.30	
Mercury mg/L 0.00020U 0.0000000000)
Nickel mg/L 0.010U	
Selenium mg/L 0.015U 0.)
Silver mg/L 0.0030U 0.	
116/12 0.00000 0.00000 0.00000 0.00000 0.00000	
Sodium mg/L 362 425 425 422 423 349 319 305 334 447 360 294 NL Zinc mg/L 0.030 0.020U 0.	

TABLE 2.10

Sample ID: Sample Date:		1/8/04	2/6/04	3/16/04	04/13/04	05/14/04	06/10/04	07/09/94	08/12/04	09/10/04	10/08/04	11/05/04	12/03/04	Surface
Parameter	Unit													Water Standard ⁽¹⁾
General Chemistry														
pН	S.U.	11	9.13	11.13	11.16	9.44	11.26	8.81	11.19	9.21	7.26	9.10	10.95	NL
Hardness	mg/L	450	452	446	484	408	430	336	312	430	372	348	360	NL
Total Dissolved Solids (TDS)	mg/L	1490	1770	1780	1760	1920	1560	1490	1390	1560	1720	1320	1220	NL
Total Suspended Solids (TSS)	mg/L	6	4	11	20	6	11	5	8	8	10	18	5	NL
Chloride	mg/L	742	986	869	809	1020	792	728	678	692	913	676	599	250
BOD	mg/L	18	10	13	19	17	16	6	11	15	11	6	15	NL
COD	mg/L	55	30	51	51	58	26	67	43	46	59	17	24	NL
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	0.57	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	NL
Organic Carbon	mg/L	9	9	6	5	6	6	8	7	8	9	8	7	NL
Alkalinity, Total (As CaCO3)	mg/L	56.0	23.0	71.2	110.0	12.3	122	45.7	113	37.8	44.6	46.5	55.7	NL
Bicarbonate (as CaCO3)	mg/L	10UJ	23	10U	10U	12.3	47.1	10U	10U	37.8	44.6	46.5	55.7	NL
Ammonia	mg/L	0.32	0.7	0.35	1.75	1.05	0.70	0.35	0.70	1.05	0.7	1.05	1.4	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	10
TKN	mg/L	0.56	2.8	1.4	0.28	0	0.84	0.56	1.68	1.12	0.56	0.84	1.12	NL
Sulfate	mg/L	276	315	381	568	356	360	283	279	265	311	225	2.54	250
Sulfide	mg/L	4.0	1.2	3.2	5.6	1.6	1.6	8. 4J	2.4	2.4J	5.6	2.4	2	0.002
Phenol	mg/L	0.015U	0.008U	0.009U	0.012U	0.010U	0.008U	0.010U	0.010U	0.010U	0.007U	0.008U	0.008U	0.001
Phosphorous	mg/L	0.20	0.11	0.24	0.23	0.13	0.05	0.20	0.06	0.14	0.10	0.14	0.10	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

- U Non-detect at associated value
- - Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
- (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form
- (5) TOC analyzer malfunction prevented analysis of this compound.

TABLE 2.10

Sample ID: Sample Date:		04/07/05	02/02/05	02/04/05	04100105	05/06/05	06/40/05	07/00/05	00/05/05	09/09/05	10/07/05	11/04/05	12/08/05	0. (
Sample Date:		01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	09/09/05	10/0//05	11/04/05	12/08/05	Surface Water	
Parameter	Unit														(1)
Volatiles															
1,1,1-Trichloroethane	μg/L	2.6U	2.6U	2.6U	2.6U	13U	2.6U	6.6U	1.3U	5.2U	5.2U	5.2U	5.2U	5	
1,1-Dichloroethane	μg/L	1. 7 U	1.7U	1. 7 U	1.7U	8.4U	9.0	4.2U	6.6	5.7	3.3U	11	7.9	5	
1,2-Dichloroethane	μg/L	1. 7 U	1. 7 U	1. 7 U	1. 7 U	8.5U	1.7U	4.2U	0.85U	3. 4 U	3. 4 U	3.4U	3.4U	0.6	
2-Butanone	μg/L	9.3 U	9.3U	9.3U	9.3U	46U	9.3U	23U	4.6U	19U	19U	19U	19U	50	
Acetone	μg/L	21U	21U	21U	21U	100U	30	53U	10 U	42U	42U	42U	42U	50	
Benzene	μg/L	2.2U	2.2U	2.2U	2.2U	11U	2.5	5.5U	1.3	4.4U	4.4U	4.4 U	4.4U	1	
Chlorobenzene	μg/L	14	18	16	6.4	9.0U	1.8U	5.5	2.6	4.0	7.5	3.6U	4.7	5	
Ethylbenzene	μg/L	3.2	2.2	0.056U	0.056U	0.28U	9.0	8.4	9.4	4.6	6.6	11	8.3	5	
Methylene chloride	μg/L	7.0U	7.0U	7.0U	7.0U	35 U	7.0U	1 7 U	3.5 U	14U	14U	14U	14U	5	
Styrene	μg/L	5.2U	5.2U	5.2U	5.2U	26U	5.2U	13U	2.6 U	10U	10 U	10U	10U	5	
Tetrachloroethene	μg/L	2.5U	2.5U	3.5	2.5U	13U	24	34	28	12	17	20	15	0.7	(2)
Toluene	μg/L	4.0	2.4U	5.3	3.1	14	45	40	44	23	25	45	34	5	
trans-1,2-Dichloroethene	μg/L	3.0U	3.0U	3.0U	3.0U	15U	3.0U	7.6U	1.5U	6.0U	6.0U	6.0U	6.0U	5	
Trichloroethene	μg/L	8.7	2.4U	12	8.5	29	140	100	90	67	61	120	86	5	
Vinyl chloride	μg/L	3.6	2.8U	2.8U	2.8U	14U	5.1	7.1U	1.4U	5.7U	6.6	5.7Ü	5.7U	0.3	(2)
Xylene (total)	μg/L	14U	14U	14U	14U	69U	46	35	46	28U	28U	55	41	5	
Semi-Volatiles															
1,2-Dichlorobenzene	$\mu g/L$	16U	16U	16U	16U	16U	1	1U	1U	1UJ	1	2	2	3	
1,4-Dichlorobenzene	μg/L	15U	14U	15U	15U	15U	1	1	1	1	2	2	2	3	
2,4-Dimethylphenol	μg/L	16	12U	13U	13U	12U	5	3	4	3	6	7	11	50	(2)
2-Methylphenol	μg/L	16U	15U	16U	16U	15 U	6	4	7	1	5	8	7	NL	
4-Methylphenol	μg/L	49	15U	16	16U	15U	12	10	15	0. 7 U	12	21	21	NL	
Di-n-octyl phthalate	μg/L	27U	26U	2 7 U	27U	27U	0.8U	0.8U	0.9U	0.9U	0.9U	0.9U	0.8U	50	(2)
Naphthalene	μg/L	18U	17U	33	18U	19	0.8U	0.8U	3	0.8U	0.8U	0.8U	0.8U	10	
Phenol	μg/L	34	6U	130	120J	68	0.4U	7	9	0.4U	17	4	50	1	

TABLE 2.10

Sample ID: Sample Date: Parameter	Unit	01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	09/09/05	10/07/05	11/0 4 /05	12/08/05	Surface Water Standard	(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20 U	0.20U	0.20U	0.20	0.20U	NL	
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.003	
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	$0.010 \mathbf{U}$	0.010U	0.050	
Barium	mg/L	0.068	0.069	0.085	0.15	0.088	0.067	0.055	0.063	0.073	0.082	0.093	0.10	1.0	
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023	(3)
Iron	mg/L	0.098	0.54	0.37	3.4	0.22	0.050U	0.050U	0.050U	0.17	0.056	0.050U	0.050U	0.30	
Lead	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050 U	0.0050U	0.0050U	0.0050U	0.012	
Magnesium	mg/L	4.3	5. 7	5.6	14.2	6.3	0.50	2.8	1.8	3.2	3.4	0.26	1.2	35	
Manganese	mg/L	0.01	0.035	0.033	0.34	0.053	0.0030U	0.0068	0.0030U	0.022	0.022	0.0030U	0.0030U	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	(4)
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	387	422	448	504	347	289	229	235	264	292	302	357	NL	(0)
Zinc	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.032	0.020U	0.020U	2.0	(2)

TABLE 2.10

Sample ID: Sample Date:		01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	09/09/05	10/07/05	11/04/05	12/08/05	Surface
Parameter	Unit													Water Standard ⁽¹⁾
General Chemistry														
рН	S.U.	9.71	8.94	9.27	8.18	9.3	11.13	8.42	10.67	9.91	9.54	11.25	11.04	NL
Hardness	mg/L	372	390	398	468	400	352	275	268	255	280	360	344	. NL
Total Dissolved Solids (TDS)	mg/L	1520	1480	1620	2010	1540	1370	1110	1140	1050	1320	1320	1380	NL
Total Suspended Solids (TSS)	mg/L	278	147	27	82	21	12	11	6	6	4	6	4	NL
Chloride	mg/L	950	836J	1060	1200	883	729	516	408	451	716	664	762	250
BOD	mg/L	12	15	12	11	10	11	14	10	12	14	15	16	NL
COD	mg/L	52	48	52	65	35	51	56	38	47	31	31	61	NL
Oil and Grease	mg/L	0.28	1.0U	1.0 U	1.0U	1.0U	0.28	1.0U	1.0 U	1.0U	1.0U	1.0U	1.0U	NL
Organic Carbon	mg/L	8	9	9	10	9	10	5.1	5.2	5.1	5.6	6.4	9.2	NL
Alkalinity, Total (As CaCO3)	mg/L	44	46.4	40	105	43.5	99.2	36.3	66	10.2	29.0	114	42	NL
Bicarbonate (as CaCO3)	mg/L	44	46.4	40	105	43.5	10U	36.3	66	10.2	29.0	114	42	NL
Ammonia	mg/L	0.7	0.7	0.7	0.35	1.05	0.35	0.35	0.7	0.35	0.70	0.70	0.70	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	10
TKN	mg/L	0.56	0.28	0.56	0.28	1.4	0.28	0.56	0.56	0.28	0.56	0.56	0.84	NL
Sulfate	mg/L	273	232	431	256	279	276	223	199	206	291	256	263	250
Sulfide	mg/L	8.8	4	5.2	1.0U	1.0U	1.0U	1.0U	2.0	2.0	2.0	5.6	8.8	0.002
Phenol	mg/L	0.006U	0.012U	0.010U	0.014U	0.012U	0.009U	0.009U	0.007U	0.010U	0.010U	0.006U	0.008U	0.001
Phosphorous	mg/L	0.15	0.08	0.11	0.1	0.13	0.08	0.08	0.11	0.14	0.14	0.20	0.04	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.0050U	0.0050U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

- U Non-detect at associated value
- - Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
- (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form
- (5) TOC analyzer malfunction prevented analysis of this compound.

TABLE 2.10

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Water	
Parameter	Unit													Standard	(1)
Volatiles															
1,1,1-Trichloroethane	μg/L	5.2 U	5.2U	5.2U	5.2U	5.2U	5.2U	1.3U	1.3U	2.6U	2.6U	1.3U	1.3U	5	
1,1-Dichloroethane	μg/L	8.9	10	11	12	3.3U	3.3 U	1.1	8.3	1.7U	2.8	12	2.8	5	
1,2-Dichloroethane	μg/L	3.4U	3. 4 U	3. 4U	3.4U	3. 4 U	3.4U	0.85U	0.85U	1.7U	1.7U	0.85U	0.85U	0.6	
2-Butanone	μg/L	19U	19U	19U	19U	19U	19U	4.6U	4.6U	9.3U	9.3U	4.6U	4.6U	50	
Acetone	μg/L	42U	42U	42U	42U	42 U	42U	12	26	21U	21U	22	23	50	
Benzene	μg/L	4.4 U	4.4U	4.4U	4.4U	4.4U	4.4U	1.4	4.1	3.0	3.4	1.5	3.4	1	
Chlorobenzene	μg/L	5.1	5.0	5.0	3.6U	8.6	7.8	6.3	7.7	9.8	11	3.9	6.0	5	
Ethylbenzene	μg/L	7.9	10	12	8.2	7.0U	7.0U	2.4	9.5	16	16	8.8	9.4	5	
Methylene chloride	μg/L	14U	14U	14 U	6.8U	6.8U	14	1. 7 U	1. 7 U	3. 4U	3. 4 U	1.7U	1.7U	5	
Styrene	μg/L	10U	10U	10U	6.6U	6.6U	6.6U	1. 7 U	1.7U	3. 4U	3. 4 U	1. 7 U	1.7U	5	
Tetrachloroethene	μg/L	15	19	27	21	9.1	13	5.4	25	18	21	10	22	0.7	(2)
Toluene	μg/L	36	46	56	41	11	28	. 13	57	13	24	36	44	5	
trans-1,2-Dichloroethene	μg/L	6.0U	6.0U	6.0U	6.0U	6.0U	6.0U	1.5U	3.9	3.0 U	3.0U	2.2	1.9	5	
Trichloroethene	$\mu g/L$	100	130	150	130	23	54	20	94	23	52	130	82	5	
Vinyl chloride	μg/L	5.7U	5.8	6.4	5. 7 U	5.7U	5.7U	2.9	11	4.3	5.2	4.6	1.4U	0.3	(2)
Xylene (total)	μg/L	37	28U	55	41	28U	28U	9.1	41	14U	70	46	41	5	
Semi-Volatiles															
1,2-Dichlorobenzene	μg/L	2	2	2	2	1	0.2U	0.2U	0.2U	4	3	0.2U	0.2U	3	
1,4-Dichlorobenzene	μg/L	2	2	2	2	3	0.4U	2	2	6	4	2	0.4U	3	
2,4-Dimethylphenol	μg/L	9	11	14	10	5	4	3	6	19	9	22	6 J	50	(2)
2-Methylphenol	μg/L	6	7	8	5	4	6	3	10	5	4	0.3U	3	NL	
4-Methylphenol	μg/L	21	28	34	13	12	7	5	21	63	43	2	5	NL	
Di-n-octyl phthalate	μg/L	0.8U	0.9U	0.8U	0.8U	4U	21 U	21U	21U	21U	21U	23U	21U	50	(2)
Naphthalene	μg/L	12	11	1	0.8U	50	16	16	38	0.4U	0.4U	0.4U	0.4U	10	
Phenol	μg/L	43	40	31	0.4U	150	21	46	170	41	10	0.1U	6	1	

TABLE 2.10

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Water	
Parameter	Unit													Standard	(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL	
Antimony	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.003	
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.010 U	0.010U	0.050							
Barium	mg/L	0.10	0.11	0.94	0.093	0.082	0.074	0.071	0.061	0.074	0.076	0.086	0.06	1.0	(0)
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023	(3)
Iron	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.074	0.054	0.20	0.27	0.30	
Lead	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.012	
Magnesium	mg/L	2.3	1.2	0.57	0.46	7.6	1.6	7.0	3.0	3.2	2.1	58	4.8	35	
Manganese	mg/L	0.0030 U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.011	0.011	0.0034	0.0093	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	357	425	454	419	361	350	278	282	366	337	371	305	NL	
Zinc	mg/L	0.020U	0.020U	0.010U	0.010U	0.010U	0.010U	0.010U	0.018	0.0109	0.012	0.014	0.015	2.0	(2)

TABLE 2.10

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Water	
Parameter	Unit													Standard	(1)
General Chemistry															
pH	S.U.	10.73	11.07	10.99	10.96	9.74	10.62	8.32	9.86	10.82	11.08	11.19	8.53	NL	
Hardness	mg/L	329	342	400	408	289	310	292	260	342	320	296	200	NL	
Total Dissolved Solids (TDS)	mg/L	1510	1700	1670	1730	1500	1470	1180	1170	1440	1430	1350	1020	NL	
Total Suspended Solids (TSS)	mg/L	6	6	10	5	4	3	27	13	6	26	8	9	NL	
Chloride	mg/L	910	897	914	962 J	914	737	493	495	728	7 91	7 52	412	250	
BOD	mg/L	10	10	9	10	12	7	10	12	12	11	15	14	NL	
COD	mg/L	38	45	47	47	47	47	47	161	177	47	27	20	NL	
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0 U	1.0U	1.0U	1.0U	NL	
Organic Carbon	mg/L	7.9	8.1	8.3	8.9	9.3	8.1	6.7	9.1	8	6.2	6.7	7.1	NL	
Alkalinity, Total (As CaCO3)	mg/L	69	71.4	95.1	75.4	26.9	44.9	92.6	30.3	64.5	93.4	72.0	44.2	NL	
Bicarbonate (as CaCO3)	mg/L	69	10U	10U	75.4	26.9	44.9	92.6	30.3	64.5	93.4	10 U	44.2	NL	
Ammonia	mg/L	0.35	1.05	0.28	0.70	0.70	0.28	0.70	1.05	0.70	1.05	0.70	1.05	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	0.050 U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	10	
TKN	mg/L	0.28	0.84	0.56	0.84	0.56	0.84	0.56	1.12	0.84	0.56	0.28	1.12	NL	
Sulfate	mg/L	297	288	285	351	296	259	182	242	230	208	269	207	250	
Sulfide	mg/L	4.0	2.9	5.2	6.0	4.4	6.8	2.8	6.4	8.0	8.0	7.2	6.4	0.002	
Phenol	mg/L	0.008U	0.010U	0.009U	0.011U	0.007U	0.008U	0.012U	0.007U	0.011U	0.013U	0.007U	0.006U	0.001	
Phosphorous	mg/L	0.06	0.37	0.13	0.05	0.10	0.12	0.07	0.17	0.14	0.14	0.18	0.13	0.020	(2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005 U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052	

- U Non-detect at associated value
- -- Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
- (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form
- (5) TOC analyzer malfunction prevented analysis of this compound.

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:							
Sample Date:		01/05/07	02/09/07	09/07/07	03/07/08	Surface	
Parameter	Unit					Water Standard	(1)
Volatiles							
1,1,1-Trichloroethane	μg/L	1.3U	1.3U	0.24U	1.2U	5	
1,1-Dichloroethane	μg/L	14	8.2	1.1	6.9	5	
1,2-Dichloroethane	μg/L	0.85U	0.85 U	0.20U	0.2U	0.6	
2-Butanone	μg/L	4.6U	4.6U	1.1U	6.1U	50	
Acetone	μg/L	19	17	17	12	50	
Benzene	μg/L	2.2	1.6	0.2U	1.1 U	1	
Chlorobenzene	μg/L	4.9	5.6	4.8	0.73	5	
Ethylbenzene	μg/L	10	9.1	2.1	2.4	5	
Methylene chloride	μg/L	1.7U	1.7U	0.27U	1.1U	5	
Styrene	μg/L	1.7U	1.7U	0.18U	0.79U	5	
Tetrachloroethene	µg/L	16	15	3.8	4.1	0.7	(2)
Toluene	μg/L	57	35	7.1	20	5	
trans-1,2-Dichloroethene	μg/L	2.7	2.2	0.70	1.2U	5	
Trichloroethene	μg/L	160	120	18	71	5	
Vinyl chloride	μg/L	1.4U	1.4U	0.48U	3.1	0.3	(2)
Xylene (total)	μg/L	52	43	8.3	15	5	
Semi-Volatiles							
1,2-Dichlorobenzene	μg/L	1	0.2U	0.2U	0.9	3	
1,4-Dichlorobenzene	μg/L	0.4U	0.4U	0.9	1	3	
2,4-Dimethylphenol	μg/L	5	4	5	4 J	50	(2)
2-Methylphenol	μg/L	8	5	4	12	NL	
4-Methylphenol	μg/L	14	14	10	12	NL	
Di-n-octyl phthalate	μg/L	21U	22U	21U	22U	50	(2)
Naphthalene	μg/L	18	19	13	7	10	
Phenol	μg/L	69	62	22	33	1	

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:							
Sample Date:		01/05/07	02/09/07	09/07/07	03/07/08	Surface Water	
Parameter	Unit					Standard	(1)
Metals							
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	NL	
Antimony	mg/L	0.20U	0.20U	0.20U	0.20U	0.003	
Arsenic	mg/L	0.010U	0.010U	0.010 U	0.010U	0.050	
Barium	mg/L	0.080	0.077	0.080	0.092	1.0	
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.027	0.018	0.023	(3)
Iron	mg/L	0.078	0.064	0.18	0.053	0.30	
Lead .	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.012	
Magnesium	mg/L	1.9	2.3	5.0	1.5	35	
Manganese	mg/L	0.0037	0.0071	0.032	0.0062	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.10	
Selenium	mg/L	0.015U	0.015U	0.015 U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	376	365	277	414	NL	
Zinc	mg/L	0.010U	0.010U	0.10	0.010U	2.0	(2)

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/05/07	02/09/07	09/07/07	03/07/08	Surface Water	
Parameter	Unit						(1)
General Chemistry							
pН	S.U.	10.94	10.78	8.87	11.29	NL	
Hardness	mg/L	284	269	282	366	NL	
Total Dissolved Solids (TDS)	mg/L	1360	1330	1,310	1,640	NL	
Total Suspended Solids (TSS)	mg/L	4	8	5	19	NL	
Chloride	mg/L	897	741	486	678	250	
BOD	mg/L	8	7	22	19	NL	
COD	mg/L	74	67	67	98	NL	
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	NL	
Organic Carbon	mg/L	8.8	11.5	7	7.6	NL	
Alkalinity, Total (As CaCO3)	mg/L	75.9	56.8	55.8	79.1	NL	
Bicarbonate (as CaCO3)	mg/L	10Ü	10U	55.8	10U	NL	
Ammonia	mg/L	0.70	0.70	0.70	0.35	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	1.3	0.050U	10	
TKN	mg/L	0.84	0.56	0.56	0.28	NL	
Sulfate	mg/L	267	235	215	208	250	
Sulfide	mg/L	6.8J	6.0	2.4	6.4	0.002	
Phenol	mg/L	0.009U	0.009U	0.010U	0.009U	0.001	
Phosphorous	mg/L	0.12	0.01	0.15	0.04	0.020	(2)
Cyanide	mg/L	0.005U	0.005U	0.006	0.005U	0.0052	

Notes:

- U Non-detect at associated value
- - Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
- (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form
- (5) TOC analyzer malfunction prevented analysis of this compound.

TABLE 2.11

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes ((gallons)
Month	Monthly	Total
May 2001	2,900,000	2,900,000
June 2001	2,353,800	5,253,800
July 2001	1,488,500	6,742,300
August 2001	712,800	7,455,100
September 2001	473,100	7,928,200
October 2001	1,213,100	9,141,300
November 2001	1,281,100	10,422,400
December 2001	231,700 (1)	10,654,100
January 2002	1,383,200 (2)	12,037,300
February 2002	1,186,000	13,223,300
March 2002	233,600	13,456,900
April 2002	736,000	14,192,900
May 2002	348,200	14,541,100
June 2002	1,137,200	15,678,300
July 2002	869,300	16,547,600
August 2002	1,060,800	17,608,400
September 2002	707,000	18,315,400
October 2002	679,800	18,995,100
November 2002	489,500	19,484,700
December 2002	743,500	20,228,200
January 2003	1,150,700	21,378,900
February 2003	483,300	21,862,200
March 2003	402,300	22,264,500
April 2003	531,900	22,796,400
May 2003	655,600	23,452,000
June 2003	682,100	24,134,000
July 2003	942,000	25,076,100
August 2003	627,500	25,703,600
September 2003	349,600	26,053,200
October 2003	966,500	27,019,700
November 2003	442,200	27,461,900
December 2003	463,900	27,925,800

TABLE 2.11

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes	(gallons)
Month	Monthly	Total
January 2004	443,900	28,369,700
February 2004	253,700	28,623,400
March 2004	403,700	29,027,100
April 2004	433,600	29,460,700
May 2004	377,400	29,838,100
June 2004	395,000	30,233,100
July 2004	384,300	30,617,400
August 2004	479,700	31,097,100
September 2004	413,900	31,511,000
October 2004	319,400	31,902,400
November 2004	249,200	32,151,600
December 2004	209,900	32,361,500
January 2005	310,100	32,671,600
February 2005	301,100	32,972,700
March 2005	250,200	33,222,900
April 2005	378,400	33,601,300
May 2005	458,800	34,060,100
June 2005	455,900	34,516,000
July 2005	270,200	34,786,200
August 2005	285,100	35,071,300
September 2005	395,600	35,466,900
October 2005	333,200	35,800,100
November 2005	360,200	36,160,300
December 2005	395,300	36,555,600
January 2006	297,500	36,853,100
February 2006	508,300	37,361,400
March 2006	244,700	37,606,100
April 2006	224,400	37,830,500
May 2006	153,300	37,983,800
June 2006	262,300	38,246,100
July 2006	212,900	38,459,000
August 2006	357,500	38,816,500

TABLE 2.11

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)			
Month	Monthly	Total		
September 2006	777,000	39,593,500		
October 2006	254,700	39,848,200		
November 2006	778,700	40,626,900		
December 2006	496,600	41,123,500		
January 2007	410,500	41,534,000		
February 2007	494,600	42,028,600		
March, April &				
May 2007	1,489,200 ⁽³⁾	43,517,800		
June 2007	334,300	43,852,100		
July 2007	258,600	44,110,700		
August 2007	239,000	44,349,700		
September 2007	59,500 ⁽⁴⁾	44,409,200		
October 2007 through January 2008	50,600 ⁽⁴⁾	44,459,800		
February 2008	23,800 ⁽⁴⁾	44,483,600		
March 2008	1,238,300	45,721,900		
April 2008	2,126,700	47,848,600		
May 2008	1,771,100	49,619,700		

Notes:

- (1) To December 7, 2001.
- (2) From December 8, 2001.
- (3) Plotted as 496,400 gallons on Figure 2.18 for each of March, April, and May 2007.
- (4) Meter malfunctioned due to tar-like material buildup inside meter. Meter was cleaned on March 14, 2008. Volumes not plotted on Figure 2.18 as volumes are not representative of actual volume removed.

TABLE 2.12

SURFACE WATER SAMPLING SUMMARY OPERATION AND MAINTENANCE MANUAL GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

River South River Middle River North

FREQUENCY

- quarterly for 2 years following GWS startup (concurrent with groundwater sampling)
- semi-annually for Year 3 (concurrent with groundwater sampling)
- annually for Years 3 through 7 (concurrent with groundwater sampling) (review after Year 7, May 2008)

PARAMETERS

Volatiles

Acetone Methylene Chloride
Benzene Tetrachloroethene
2-Butanone Toluene

Chlorobenzene Trichloroethene
1,1-Dichloroethane Vinyl Chloride
trans-1,2-Dichloroethene Xylenes (Total)

Ethylbenzene

Semi-Volatiles

1,2-Dichlorobenzene4-Methylphenol1,4-DichlorobenzeneNaphthalene2,4-DimethylphenolDi-n-octylphthalate2-MethylphenolPhenol

Recommended Future Sampling Program

- No further sampling and analyses.

APPENDIX A

MONTHLY INSPECTION LOGS (JUNE 2007 TO MAY 2008)

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG PROJECT NAME: Gratwick-Riverside Park Site LOCATION: Wheatfield, New York 10/6/219/0171 DATE: (MM DD YY) INSPECTOR(S): WILLTAMS Comments Inspect For Action Required Item Perimeter Collection System/Off-Site Forcemain 1. NONE Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap NONE Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation **FORM 17**

		ATWICK-RIVERSIDE PARK		
]	MONTHLY INSPECTION LO)G	
PROJECT NAME: Gratwick-	-Riverside Park Site		LOCATION:	Wheatfield, New York
	4		DATE:	016121910171
INSPECTOR(S): JON	WILLIAMS / RACH	e NASHETT		(MM DD YY)
Item	Inspect For	Action Required		Comments
2. Landfill Cap (continued	d)			
X Access Roads X X	bare areas, dead/dying veg.erosionpotholes or puddlesobstruction	NONE		
3. Wetlands (Area "F")	dead/dying vegetationchange in water budgetgeneral condition of wetlands	NONE GOOD '		
4. Other Site Systems Perimeter Fence FORM 1	- integrity of gates - integrity of locks - placement and condi- signs			

		TWICK-RIVERSIDE PARK S MONTHLY INSPECTION LO		
PROJECT NAME: Gratwick-Ri	verside Park Site		LOCATION: DATE:	Wheatfield, New York
		HET NASHETT Action Required	-	(MM DD YY) Comments
Swale Outlets	sediment build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and riprap	IN GOOD CONDI	TON	
	erosion cond wobstructions	Man YES		
FORM 17	- nocks secure	TRAIL YES		

tin yes

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG LOCATION: Wheatfield, New York PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain 1. Abne - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

GRA 1	ATWICK-RIVERSIDE PARK S MONTHLY INSPECTION LO	SITE G	
PROJECT NAME: Gratwick-Riverside Park Site		LOCATION:	Wheatfield, New York
INSPECTOR(S): 5. Mc Eugy D Item Inspect For	Tyran Action Required	-	Comments
2. Landfill Cap (continued)			
Access Roads - bare areas, dead/dying veg erosion - potholes or puddles - obstruction	Done		
3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands			
4. Other Site Systems			
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs	NA		
FORM 17			

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) none - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions Gas Vents - intact /damage Wells - locks secure FORM 17

GRATWICK-RIVERSIDE PARK SITE 4 MONTHLY INSPECTION LOG LOCATION: Wheatfield, New York PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain abre Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap 2. Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation

FORM 17

	ATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG	
PROJECT NAME: Gratwick-Riverside Park Site	LOCA	
INSPECTOR(S): D. Tyran / R. Nashett Item Inspect For 2. Landfill Cap (continued)	Action Required	(MM DD YY) Comments
Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction 3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	Mone W Coocl Cattail growth	
4. Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs	N/A T	
FORM 17		

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG LOCATION: Wheatfield, New York PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments **Action Required Inspect For** Item Other Site Systems (continued) - sediment build-up Drainage Ditches/ **Swale Outlets** - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation bank crosion northand South of - cable concrete/gabion mats and riprap Culverts - sediment build-up - erosion - condition of erosion protection - flow obstructions Gas Vents - intact /damage Wells - locks secure FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York PROJECT NAME: Gratwick-Riverside Park Site LOCATION: 0912171017 DATE: (MM DD INSPECTOR(S): Action Required Comments Item **Inspect For** Perimeter Collection System/Off-Site Forcemain Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation **FORM 17**

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site OGATOT (MM DD YY) DATE: INSPECTOR(S): Comments Action Required Inspect For Item Landfill Cap (continued) - bare areas, dead/dying veg. Access Roads - erosion - potholes or puddles - obstruction - dead/dying vegetation 3. Wetlands (Area "F") - change in water budget - general condition of wetlands Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs **FORM 17**

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site 01912/2017 DATE: DD INSPECTOR(S): Comments Action Required **Inspect For** Item Other Site Systems (continued) - sediment build-up Drainage Ditches/ **Swale Outlets** - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion - condition of erosion protection Maintenance - flow obstructions Gas Vents - intact /damage Wells - locks secure FORM 17

MAINTENANCE RECORD LOG
PROJECT NAME: Gratwick-Riverside Park Site LOCATION: North Tonawanda, New York
CREW MEMBERS: R. Nashett / D. Tyran
1. Date: 092707 (MM DD YY)
Time: 400 (HH mm) Scheduled Unscheduled:
Type of Maintenance Performed: Chaned debris from River South
2. Company Performing Maintenance Name: CCA
Address:
Contact Name:
3. Methods Used:
Waded into the river to remove Several large
rocks deliberately placed at the mouth of River South.
Once the rocks were removed the rolling vegetation that
had backed up against them was scooped out of the pipe allowing the pipe to flow free.
Description of Material Removed:
Large 100+ pound rocks, logs, & If cubic
yards of rolling vegetation
, , , , , , , , , , , , , , , , , , , ,
Problems/Comments:
9/27/07 David J. Tyran Dave Tyran
ORM 18

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York PROJECT NAME: Gratwick-Riverside Park Site LOCATION: DATE: 11031017 (MM DD INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation

FORM 17

- change in water budget - general condition of wetlands Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks	ECT NAME: Gratwick-Riverside Park Site		LOCATION:	Wheatfield, New York
Item Inspect For Action Required Comments Landfill Cap (continued) Access Roads - bare areas, dead/dying veg erosion - potholes or puddles - obstruction Vetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks			DATE:	
Access Roads - bare areas, dead/dying veg erosion - potholes or puddles - obstruction Vetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks		Action Required		Comments
- erosion - potholes or puddles - obstruction Vetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks	Landfill Cap (continued)			
- obstruction - obstruction - dead/dying vegetation - change in water budget - general condition of wetlands Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks	*	Nove		
- change in water budget - general condition of wetlands Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks				
Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks		- +7		
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks		<u> </u>		
- integrity of locks	Perimeter Fence - integrity of fence	NA		
		1-7		

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG

			MONTHLY INSPECTION L	OG	
pp∩t	ECT NAME: Gratwick	k-Riverside Park Site		LOCATION:	Wheatfield, New York
PROJ	ECT MANAGE.			DATE:	[/ 0 3 1 0 7
INSP	ECTOR(S):	.Tyran			
	Item	Inspect For	DATE: [//o/3 10/7] (MM DD YY) #GAN ***Inspect For Action Required Comments ***Comments **Comments **Comments		
4.	Other Site Systems (c	ontinued)			
	Drainage Ditches/ Swale Outlets	sediment build-uperosion	None		
Ĭ	•	erosioncondition of erosion protection			
K		- flow obstructions			
		- dead/dying vegetation			
لكا		 cable concrete/gabion mats and riprap 		· · · · · · · · · · · · · · · · · · ·	
A	Culverts	- sediment build-up			
X		- erosion	dying vegetation concrete/gabion mats and ment build-up on ition of erosion protection		
X	•	- condition of erosion protection			
* Y X	- flow obstructions	- flow obstructions			
	Gas Vents	- intact /damage	++7		
X	Wells	- locks secure		· .	
	• .			•	
FOR	M 17				

GRATWICK-RIVERSIDE PARK SITE . 4. MONTHLY INSPECTION LOG PROJECT NAME: Gratwick-Riverside Park Site LOCATION: Wheatfield, New York DATE: INSPECTOR(S): Action Required Comments Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAME: Grat	wick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York [1	
Item	Inspect For	Action Required	· · · · · · · · · · · · · · · · · · ·	Comments	
2. Landfill Cap (cont Access Roads 3. Wetlands (Area "F")	inued) - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction - dead/dying vegetation	Nove			
	change in water budgetgeneral condition of wetlands	,			
4. Other Site System	- integrity of fence - integrity of gates - integrity of locks - placement and condition of signs	NA			
FORM 17					

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG LOCATION: Wheatfield, New York PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Action Required Comments Inspect For Item Other Site Systems (continued) Drainage Ditches/ - sediment build-up Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up - erosion - condition of erosion protection - flow obstructions **Gas Vents** - intact /damage Wells - locks secure FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park_Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NANE - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

		ATWICK-RIVERSIDE PARK S MONTHLY INSPECTION LO		
INSPECTOR(S):	Riverside Park Site	Action Required	LOCATION: DATE:	Wheatfield, New York 2 3 (0 7) (MM DD YY) Comments
2. Landfill Cap (continued Access Roads	Inspect For - bare areas, dead/dying veg erosion - potholes or puddles - obstruction	NONE		
3. Wetlands (Area "F") 4. Other Site Systems	 dead/dying vegetation change in water budget general condition of wetlands 	De De		
Perimeter Fence FORM 17	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	HONDE NA		

		ATWICK-RIVERSIDE PARK MONTHLY INSPECTION LO		
PROJECT NAME: Gratwick INSPECTOR(S): Item		Action Required	LOCATION: DATE:	Wheatfield, New York 2 3 0 7 (MM DD YY) Comments
4. Other Site Systems (co Drainage Ditches/ Swale Outlets	- sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap	None		
Culverts Gas Vents	 sediment build-up erosion condition of erosion protection flow obstructions intact /damage 	NOME		
Wells	- locks secure			
FORM 17				

NOJECT NAME: Gratwick-Riverside Park Site LOCATION: Wheatfield, New York DATE: O Z 8 0 8 (MM DD YY) Item Inspect For Action Required Comments Perimeter Collection System/Off-Site Forcemain Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vagetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation		. GR	ATWICK-RIVERSIDE PAR MONTHLY INSPECTION			
SPECTOR(S): R. NASHETT D. TYRAN Item Inspect For Action Required Comments Perimeter Collection System/Off-Site Forcemain Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation	OJECT NAME: Grat			LOCATION:	Wheatfield, New York	
Item Inspect For Action Required Comments				DATE:	(MM DD YY)	
Namboles Cover on securely Cool NA A	SPECTOR(S): R .	NASHETT D. TYRAN		·		
Manholes - cover on securely - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation	Item	Inspect For	Action Required	•	Comments	
- condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation	Perimeter Collection	on System/Off-Site Forcemain				
- condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation	Manholes	- cover on securely		G00 D	NA	
- flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation		- condition of cover			,	
Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation		- condition of inside of manhole				
- condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - bare areas - washouts - length of vegetation	k	- flow conditions				
- condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation	Wet Wells	- cover on securely				
- condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion Gcon NA - bare areas - washouts - leachate seeps - length of vegetation			MH-3. NEEDS H	UDRAULTY. AR	m Repured and New	SAFETY
Vegetated Soil Cover - erosion Good NA - bare areas - washouts - leachate seeps - length of vegetation	ł	- condition of inside of wet well				
- bare areas - washouts - leachate seeps - length of vegetation	Landfill Cap					
- bare areas - washouts - leachate seeps - length of vegetation						
- washouts - leachate seeps - length of vegetation	Vegetated Soil Co	over - erosion	<u>G00D</u>		_ NA	
- leachate seeps - length of vegetation	4	- bare areas				
- length of vegetation	4	- washouts		<u> </u>		
	4	- leachate seeps				
		- length of vegetation				
- dead/dying vegetation		•				

Reduct B. Washer

GRA I	ATWICK-RIVERSIDE PARK S MONTHLY INSPECTION LO	SITE G	
PROJECT NAME: Gratwick-Riverside Park Site		LOCATION:	Wheatfield, New York
PROJECT MANAGE CONTRACTOR CONTRAC		DATE:	O1 2868 (MM DD YY)
INSPECTOR(S): R. NASHETT D. TYRAN Item Inspect For	J. Action Required	-	Comments
2. Landfill Cap (continued)			
Access Roads - bare areas, dead/dying veg.	Grond		- NA
- erosion - potholes or puddles			
- obstruction			
3. Wetlands (Area "F") - dead/dying vegetation		· · · · · · · · · · · · · · · · · · ·	
 change in water budget general condition of wetlands 			
4. Other Site Systems			
Perimeter Fence - integrity of fence - integrity of gates			
- integrity of locks			
- placement and condition of signs			
EORM 17			

Rachel B. Mashth

			ERSIDE PARK NSPECTION LC		
PROJECT NAME: Grat	wick-Riverside Park Site			LOCATION:	Wheatfield, New York
INSPECTOR(S):	R. NASHETT T). TYRAN			(MM DD YY)
Item	Inspect For	Action Required		•	Comments
4. Other Site System Drainage Ditches/ Swale Outlets	• • •		GOOD		N/A
	flow obstructionsdead/dying vegetationcable concrete/gabion mats and riprap		4		
Culverts	sediment build-uperosioncondition of erosion protectionflow obstructions		GOOD		N/A
Gas Vents Wells	- intact /damage - locks secure		—		
FORM 17					

Redeel B. Manth

	ATWICK-RIVERSIDE PARK S MONTHLY INSPECTION LO		
PROJECT NAME: Gratwick-Riverside Park Site INSPECTOR(S): D. Tyran JR. Washett		LOCATION: DATE:	Wheatfield, New York OF A FOR SI (MM DD YY)
Item Inspect For	Action Required		Comments
1. Perimeter Collection System/Off-Site Forcemain			
Manholes - cover on securely - condition of cover	None		
- condition of cover - condition of inside of manhole - flow conditions			
Wet Wells - cover on securely - condition of cover	MH 3 needs Hydrau	14 = 500	2 de 20 de 1 de 21 de 20
- condition of inside of wet well	None		Applaced and new safety arm
2. Landfill Cap	ž.		
Vegetated Soil Cover - erosion - bare areas	None		-
- washouts			
- leachate seeps - length of vegetation			
- dead/dying vegetation			
FORM 17			

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAME: Gratwick-Riverside Park Site		LOCATION:	Wheatfield, New York		
		DATE:	8 0 2 5 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
NSPECTOR(S): D. Tyran / R. Washett	Action Required		Comments		
Item Inspect For	Action Acidanian				
Landfill Cap (continued)					
Access Roads - bare areas, dead/dying veg.	NA	<u> </u>			
- erosion					
- potholes or puddles - obstruction					
. Wetlands (Area "F") - dead/dying vegetation	none				
- change in water budget					
~ general condition of wetlands	<u></u>	· · · · · · · · · · · · · · · · · · ·			
4. Other Site Systems					
Perimeter Fence - integrity of fence	ωA				
- integrity of gates		•			
- integrity of locks					
- placement and condition of signs	\forall	•			
ORM 17		· · · · · · · · · · · · · · · · · · ·	Section 1997		

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site MM DD YY) DATE: INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) - sediment build-up Drainage Ditches/ **Swale Outlets** - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap Culverts - sediment build-up - erosion - condition of erosion protection - flow obstructions Gas Vents - intact / damage Wells - locks secure FORM 17

GRATWICK-RIVERSIDE PARK SITE					
•	:	MONTHLY INSPECTION LO	OG		
PROJECT NAME: Gratwick	k-Riverside Park Site		LOCATION:	Wheatfield, New York	
		<u>.</u>	DATE:	1213131110181	
INSPECTOR(S):	W.COKI WT	4/h	<u>.</u>	(MM DD YY)	
Item	Inspect For	Action Required		Comments	
1. Perimeter Collection S	System/Off-Site Forcemain				
Manholes	- cover on securely	ADNE			
	- condition of cover				
Ù,	- condition of inside of manhole				
	- flow conditions		<u> </u>		
Wet Wells	- cover on securely				
	- condition of cover	MH-3 Needs Ha	Salicas	A replaced + wew Safety ARM	
	- condition of inside of wet well	NONE			
2. Landfill Cap				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Vegetated Soil Cover	- erosion	NOWE			
4	- bare areas		······································		
	- washouts				
	- leachate seeps				
19	- length of vegetation				
1 4	- dead/dying vegetation				
FORM 17				•	

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAME: Gratwick-Riverside Park Site INSPECTOR(S): Item Inspect For Action Required	LOCATION: DATE:	Wheatfield, New York 0 3 0 8 (MM DD YY) Comments			
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction					
3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands 4. Other Site Systems					
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs					
FORM 17	· · · .				

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAME: Gratwick-	Riverside Park Site		LOCATION:	Wheatfield, New York 3 3 / 0 8 (MM DD YY)	
INSPECTOR(S):	Inspect For	Action Required		Comments	
4. Other Site Systems (cor	•	NANF			
Drainage Ditches/ Swale Outlets	sediment build-uperosion				
	- condition of erosion protection - flow obstructions	-			
	- dead/dying vegetation				
T.	- cable concrete/gabion mats and riprap				
Culverts	- sediment build-up				
	erosioncondition of erosion protection				
	- flow obstructions				
Gas Vents	- intact /damage	/			
Wells	- locks secure				
FORM 17					

	· G	RATWICK-RIVERSIDI			
		MONTHLY INSPECT	TION LOG		
PROJECT NAME: INSPECTOR(S):	Gratwick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York 10 14 1 4 5 10 1 8 1 (MM DD YY)	
Item	Inspect For	Action Required		Comments	
1. Perimeter Co	ollection System/Off-Site Forcemain	LINE			
Manholes	- cover on securely	1000			
4	 condition of cover condition of inside of manhole 				
	- flow conditions				
Wet Wells	cover on securelycondition of covercondition of inside of wet well				
2. Landfill Cap	P				
Vegetated S	oil Cover - erosion - bare areas - washouts - leachate seeps	Some minor NONE	settling aroun	D wire worksh on bank near	River N
111	- length of vegetation				
1	- dead/dying vegetation	<u> </u>			
FORM 17		· · · · · · · · · · · · · · · · · · ·			

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAME: Gratwick-Riverside Park Site INSPECTOR(S): Value 4/4		LOCATION: DATE:	Wheatfield, New York [142508] (MM DD YY)		
Item Inspect For	Action Required	•	Comments		
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction	NOWE				
Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	Nove V.				
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs					
FORM 17					

GRATWICK-RIVERSIDE PARK SITE						
MONTHLY INSPECTION LOG						
PROJECT NAME: Gratwick-	Riverside Park Site	۸ .	LOCATION:	Wheatfield, New York		
TROJECT WIND.	\ . · \		DATE:	18 141 21 5 10181		
		De : 1/4/1 / (1/60 -		(MM DD YY)		
INSPECTOR(S):	Fariety Ca	OF National Property		Comments		
Item	Inspect For	Action Required		Comments		
4. Other Site Systems (con	ntinued)	\mathcal{L}	1.7			
Drainage Ditches/	- sediment build-up	Th 6000 (en	china_			
Swale Outlets	- erosion					
4/	- condition of erosion protection					
4	- flow obstructions					
1	- dead/dying vegetation					
	 cable concrete/gabion mats and riprap 					
Culverts	- sediment build-up					
	- erosion					
H / ->	- condition of erosion protection					
	- flow obstructions					
Gas Vents	- intact / damage					
Wells	- locks secure	NOWE				
;						
FORM 17		••	·			

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAME: Gratw INSPECTOR(S):	wick-Riverside Park Site	1/4	LOCATION: DATE:	Wheatfield, New York 152908 (MM DD YY)	
Item	Inspect For	Action Required		Comments	
1. Perimeter Collectio	on System/Off-Site Forcemain				
Manholes	- cover on securely	<u> None</u>			
	- condition of cover			1/ ****	
H	- condition of inside of manhole	1			
	- flow conditions			•	
Wet Wells	- cover on securely				
	- condition of cover				
I LI	- condition of inside of wet well	1		•	
2. Landfill Cap					
Vegetated Soil Cov	ver - erosion	NONTE	. · · · · · · · · · · · · · · · · · · ·		
14	- bare areas				
14/	- washouts				
111	- leachate seeps				
1 A	- length of vegetation				
12	- dead/dying vegetation			_	
FORM 17					

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAME: Gratwick-Riverside Park Site INSPECTOR(S): Amalle Alle	<u> </u>	LOCATION: DATE:	Wheatfield, New York VISIZITION (MM DD YY)		
Item Inspect For	Action Required		Comments		
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction 3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	DONE				
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs					

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG						
PROJECT NAME: Gratwick-R INSPECTOR(S):	Riverside Park Site) w/~		LOCATION: DATE:	Wheatfield, New York O 5 2 9 0 8 (MM DD YY)	
Item	Inspect For	Action Required			Comments	
Swale Outlets	- sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap	Good	Conditi	~		
Culverts Gas Vents Wells	- sediment build-up - erosion - condition of erosion protection - flow obstructions - intact / damage - locks secure	NONE				
FORM 17		••.				

APPENDIX B

QA/QC REVIEWS

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Klaus Schmidtke

35

REF. NO.:

7987DM-95

FROM:

Susan Scrocchi/pga/91

DATE:

May 7, 2008

E-Mail and Hard Copy If Requested

RE:

Analytical Results and QA/QC Review

Semi-Annual Wastewater Treatment Plant Sampling

September 2007

INTRODUCTION

One effluent sample was collected in support of the Semi-Annual Wastewater Treatment Plant Sampling at the Gratwick-Riverside Park Site (Site) during September 2007. The sample was submitted to Severn Trent Laboratories (STL) in Amherst, New York, and analyzed for the following:

Parameter	$Methodology^1$
Site-Specific Volatile Organic Compounds (VOCs)	USEPA 624
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	USEPA 625
Target Compound List (TCL) Metals	USEPA 200.7
Mercury	USEPA 245.1
Sulfate	USEPA 300.0
Chloride	USEPA 300.0
Alkalinity	USEPA 310.2
Nitrate	USEPA 353.2
Sulfide	USEPA 376.1
Total Dissolved Solids (TDS)	USEPA 160.1
Total Hardness	USEPA 130.2

The analytical results are summarized in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the following documents:

- i) "USEPA Contract Laboratory National Functional Guidelines for Organic Data Review" (October 1999); and
- ii) "National Functional Guidelines for Inorganic Data Review" (February 1994).

[&]quot;Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983.

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times.

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters and all results were non-detect for the compounds of interest indicating that no compounds were introduced to the samples during preparation and/or analysis.

Blank spikes (BS) were prepared and analyzed for all parameters. All recoveries were acceptable indicating good analytical accuracy.

A matrix spike (MS) was prepared and analyzed for nitrate. All results were acceptable indicating good analytical accuracy.

CONCLUSION

Based on the preceding assessment, the data were acceptable for use without qualification.

TABLE 1 Page 1 of 2

ANALYTICAL RESULTS SUMMARY SEMI-ANNUAL WASTEWATER TREATMENT PLANT SAMPLING GLENN SPRINGS HOLDINGS, INC. GRATWICK - RIVERSIDE PARK SITE TONAWANDA, NEW YORK SEPTEMBER 2007

	ple Location: Sample ID: Sample Date:	Effluent GRATWICK RIVERSIDE 9/7/2007
Parameters	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	ug/L	0.24 U
1,1-Dichloroethane	ug/L	1.1
1,2-Dichloroethane	ug/L	0.20 U
2-Butanone (Methyl Ethyl Ketone) ug/L	1.1 U
Acetone	ug/L	17
Benzene	ug/L	0.20 U
Chlorobenzene	ug/L	4.8
Ethylbenzene	ug/L	2.1
Methylene chloride	ug/L	0.27 U
Styrene	ug/L	0.18 U
Tetrachloroethene	ug/L	3.8
Toluene	ug/L	7.1
trans-1,2-Dichloroethene	ug/L	0.70
Trichloroethene	ug/L	18
Vinyl chloride	ug/L	0.48 U
Xylene (total)	ug/L	8.3
Semi-volatile Organic Compound	s	
1,2-Dichlorobenzene	ug/L	0.2 U
1,4-Dichlorobenzene	ug/L	0.9
2,4-Dimethylphenol	ug/L	5
2-Methylphenol	ug/L	4
4-Methylphenol	ug/L	10
Di-n-octyl phthalate	ug/L	21 U
Naphthalene	ug/L	13
Phenol	ug/L	22
Metals		
Aluminum	mg/L	0.20 U
Antimony	mg/L	0.020 U
Arsenic	mg/L	0.010 U
Barium	mg/L	0.080
Beryllium	mg/L	0.0020 U
Cadmium	mg/L	0.0010 U
Chromium Total	mg/I.	0.0040 U
Copper	mg/L	0.027
Iron	mg/L	0.18
Lead	mg/L	0.0050 U
Magnesium	mg/L	5.0
Manganese	mg/L	0.032
Mercury	mg/L	0.00020 U
Nickel	mg/L	0.010 U
Selenium	mg/L	0.015 U
Silver	mg/L	0.0030 U
Sodium	mg/L	277
Zinc	mg/L	0.10

ANALYTICAL RESULTS SUMMARY SEMI-ANNUAL WASTEWATER TREATMENT PLANT SAMPLING GLENN SPRINGS HOLDINGS, INC. GRATWICK - RIVERSIDE PARK SITE TONAWANDA, NEW YORK SEPTEMBER 2007

S	Sample Location: Sample ID: Sample Date:	
Parameters	Units	
General Chemistry		
Alkalinity, Total (as CaCO3)	mg/L	55.8
Ammonia	mg/L	0.70
Bicarbonate (as CaCO3)	mg/L	55.8
Biochemical Oxygen Demand (BOD)	mg/L	22
Chemical Oxygen Demand (COD)	mg/L	67
Chloride	mg/L	486
Cyanide (total)	mg/L	0.006
Hardness	mg/L	282
Nitrate (as N)	mg/L	1.3
Oil and Grease	mg/L	1.0 U
pH (water)	s.u.	8.87
Phenolics (Total)	mg/L	0.010 U
Phosphorus	mg/L	0.15
Sulfate	mg/L	215
Sulfide	mg/L	2.4
Total Dissolved Solids (TDS)	mg/L	1310
Total Kjeldahl Nitrogen (TKN)	mg/L	0.56
Total Organic Carbon (TOC)	mg/L	7
Total Suspended Solids (TSS)	mg/L	5
Volatile Suspended Solids	mg/L	2

Notes:

U

Not detected.

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716)

Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Klaus Schmidtke

REF. NO.:

7987DM-95

FROM:

Susan Scrocchi/pga/92 5c5

DATE:

May 8, 2008

E-Mail and Hard Copy if Requested

RE:

Analytical Results and QA/QC Review

Semi-Annual Wastewater Treatment Plant Sampling

March 2008

INTRODUCTION

One effluent sample was collected in support of the Semi-Annual Wastewater Treatment Plant Sampling at the Gratwick-Riverside Park Site (Site) during March 2008. The sample was submitted to Severn Trent Laboratories (STL) in Amherst, New York, and analyzed for the following:

$Methodology^1$
USEPA 624
USEPA 625
USEPA 200.7
USEPA 245.1
USEPA 300.0
USEPA 300.0
USEPA 310.2
USEPA 353.2
USEPA 376.1
USEPA 160.1
USEPA 130.2

The analytical results are summarized in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the following documents:

- i) "National Functional Guidelines for Inorganic Data Review" (February 1994); and
- ii) "USEPA Contract Laboratory National Functional Guidelines for Organic Data Review" (October 1999).

[&]quot;Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983.
REGISTERED COMPANY FOR

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times.

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters and all results were non-detect for the compounds of interest indicating that no compounds were introduced to the samples during preparation and/or analysis.

Blank spikes (BS) were prepared and analyzed for all parameters. The SVOC blank spike was prepared and analyzed in duplicate. All recoveries were acceptable indicating good analytical accuracy and precision with the exception of variability between the 2,4-dimethylphenol recoveries. The associated sample result was qualified as estimated (see Table 2).

A matrix spike (MS) was prepared and analyzed for chloride and nitrate. All results were acceptable indicating good analytical accuracy.

CONCLUSION

Based on the preceding assessment, the data were acceptable for use with the qualification noted herein.

ANALYTICAL RESULTS SUMMARY SEMI-ANNUAL WASTEWATER TREATMENT PLANT SAMPLING GLENN SPRINGS HOLDINGS, INC. GRATWICK - RIVERSIDE PARK SITE TONAWANDA, NEW YORK MARCH 2008

	Sample Location: Sample ID: Sample Date:	Effluent GRATWICK RIVERSIDE 3/7/2008
Parameters	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	ug/L	1.2 U
1,1-Dichloroethane	ug/L	6.9
1,2-Dichloroethane	ug/L	1.2 U
2-Butanone (Methyl Ethyl Keton	e) ug/L	6.1 U
Acetone	ug/L	12
Benzene	ug/L	1.1 U
Chlorobenzene	ug/L	0.73
Ethylbenzene	ug/L	2.4
Methylene chloride	ug/L	1.1 U
Styrene	ug/L	0.79 U
Tetrachloroethene	ug/L	4.1
Toluene	ug/L	20
trans-1,2-Dichloroethene	ug/L	1.2 U
Trichloroethene	ug/L	71
Vinyl chloride	ug/L	3.1
Xylene (total)	ug/L	15
Semi-volatile Organic Compoun	ds	
1,2-Dichlorobenzene	ug/L	0.9
1,4-Dichlorobenzene	ug/L	1
2,4-Dimethylphenol	ug/L	4 J
2-Methylphenol	ug/L	12
4-Methylphenol	ug/L	12
Di-n-octyl phthalate	ug/L	22 U
Naphthalene	ug/L	7
Phenol	ug/L	33
Metals		
Aluminum	mg/L	0.20 U
Antimony	mg/L	0.020 U
Arsenic	mg/L	0.010 U
Barium	mg/L	0.092
Beryllium	mg/L	0.0020 U
Cadmium	mg/L	0.0010 U
Chromium Total	mg/L	0.0040 U
Copper	mg/L	0.018
Iron	mg/L	0.053
Lead	mg/L	0.0050 U
Magnesium	mg/L	1.5
Manganese	mg/L	0.0062
Mercury	mg/L	0.00020 U
Nickel	mg/L	0.010 U
Selenium	mg/L	0.015 U
Silver	mg/L	0.0030 U
Sodium	mg/L	414
Zinc	mg/L	0.010 U

ANALYTICAL RESULTS SUMMARY SEMI-ANNUAL WASTEWATER TREATMENT PLANT SAMPLING GLENN SPRINGS HOLDINGS, INC. GRATWICK - RIVERSIDE PARK SITE TONAWANDA, NEW YORK MARCH 2008

s	ample Location: Sample ID: Sample Date:	Effluent GRATWICK RIVERSIDE 3/7/2008
Parameters	Units	
General Chemistry		
Alkalinity, Total (as CaCO3)	mg/L	79.1
Ammonia	mg/L	0.35
Bicarbonate (as CaCO3)	mg/L	10 U
Biochemical Oxygen Demand (BO)	D) mg/L	19
Chemical Oxygen Demand (COD)	mg/L	98
Chloride	mg/L	678
Cyanide (total)	mg/L	0.005 U
Hardness	mg/L	366
Nitrate (as N)	mg/L	0.050 U
Oil and Grease	mg/L	1.0 U
pH (water)	5.u.	11.29
Phenolics (Total)	mg/L	0.009 U
Phosphorus	mg/L	0.04
Sulfate	mg/L	208
Sulfide	mg/L	6.4
Total Dissolved Solids (TDS)	mg/L	1640
Total Kjeldahl Nitrogen (TKN)	mg/L	0.28
Total Organic Carbon (TOC)	mg/L	7.6
Total Suspended Solids (TSS)	mg/L	19
Volatile Suspended Solids	mg/L	6

Notes:

J Estimated.

U Not detected.

QUALIFIED SAMPLE RESULTS DUE TO OUTLYING LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS SEMI-ANNUAL WASTEWATER TREATMENT PLANT SAMPLING

GLENN SPRINGS HOLDINGS, INC. GRATWICK - RIVERSIDE PARK SITE TONAWANDA, NEW YORK MARCH 2008

Parameter	Compound	LCS Date (mm/dd/yy)	Associated . Sample ID	LCS %Rec	LCSD %Rec	RPD (percent)	Control La	imits 6RPD	Qualified Sample Results	Units
SVOC	2,4-Dimethylphenol	03/08/08	GRATWICK RIVERSIDE	76	58	27	42-120	10	4 J	ug/L

Notes:

% Rec Percent Recovery.

J Estimated.

LCS Laboratory Control Sample.

LCSD Laboratory Control Sample Duplicate.

RPD Relative Percent Difference.

SVOC Semi-Volatile Organic Compound.

2371 George Urban Blvd. Depew, New York 14043 Telephone: (716) 206-0202

www.CRAworld.com

Fax: (716) 206-0201

MEMORANDUM

To:

Klaus Schmidtke

Ref. No.:

007987

FROM:

Susan Scrocchi/bjw/93

DATE:

August 19, 2008

E-Mail and Hard Copy if Requested

RE:

Analytical Results and QA/QC Review

Annual Groundwater Sampling Gratwick-Riverside Park Site

May 2008

INTRODUCTION

Fifteen (15) samples, including one field duplicate, were collected in support of the Annual Groundwater Sampling at the Gratwick-Riverside Park Site (Site) during May 2008. Samples were submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	Methodology
Site-Specific Volatile Organic Compounds (VOCs)	SW-846 8260 ¹
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	SW-846 8270 ¹

The sample collection and analysis summary is presented in Table 1. The analytical results are summarized in Table 2. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the "National Functional Guidelines for Organic Data Review" (October 1999).

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times. All samples were received in good condition and properly preserved.

¹ "Test Methods for Solid Waste Physical/Chemical Methods", SW-846, 3rd Edition, September 1986 (with all subsequent revisions).

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters. All method blank results were non-detect for the compounds of interest indicating acceptable analytical procedures.

A trip blank was submitted with the samples for VOC analysis. All VOC results were non-detect indicating that no compounds of interest were introduced during sampling, transportation, storage and/or analysis.

Blank spikes (BS) were prepared and analyzed for all parameters. All recoveries showed acceptable analytical accuracy.

A matrix spike/matrix spike duplicate (MS/MSD) was prepared and analyzed for VOCs and SVOCs. All SVOC recoveries were acceptable indicating adequate analytical accuracy and precision. All VOC recoveries were low. All VOC results for sample WG-7987-052908-007 were qualified as estimated to reflect the implied low bias.

A field duplicate was submitted "blind" to the laboratory for analysis as specified in Table 1. All the results showed good precision outside of the estimated regions of detection, indicating acceptable analytical and sampling precision.

CONCLUSION

Based on the preceding assessment, the data were acceptable with the qualifications noted.

SAMPLE COLLECTION AND ANALYSIS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2008

				Analysis/F	Parameters	
Sample 1.D.	Location I.D.	Collection Date (mm/dd/yy)	Collection Time (hr:min)	Selected VOCs	Selected SVOCs	Comments
WG-7987-052908-001	OGC-4	05/29/08	13:30	х	х	
WG-7987-052908-002	MW-9	05/29/08	13:40	X	X	
WG-7987-052908-003	OGC-8	05/29/08	13:55	X	X	
WG-7987-052908-004	MW-8	05/29/08	14:10	X	X	
WG-7987-052908-005	OGC-3	05/29/08	14:20	X	X	
WG-7987-052908-006	River South	05/29/08	14:30	X	X	
WG-7987-052908-007	OGC-7	05/29/08	14:40	X	X	MS/MSD
WG-7987-052908-008	OGC-2	05/29/08	15:00	х	X	
WG-7987-052908-009	MW-7	05/29/08	15:20	X	X	
WG-7987-052908-010	MW-7	05/29/08	15:20	X	X.	Field duplicate of WG-7987-052908-009
WG-7987-052908-011	River Middle	05/29/08	15:30	X	X	-
WG-7987-052908-012	OGC-6	05/29/08	15:30	х	X	
WG-7987-052908-013	OGC-5	05/29/08	15:40	X	X	
WG-7987-052908-014	MW-6	05/29/08	15:45	X	X	
WG-7987-052908-015	OGC-1	05/29/08	16:00	X	X	
TB-7987-052908	Trip Blank	05/29/08	-	Х		

Notes:

MS

MSD

VOCs SVOCs

Matrix Spike. Matrix Spike Duplicate. Volatile Organic Compounds. Semi-Volatile Organic Compounds.

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2008

Sa	mple Location: Sample ID: Sample Date:	Middle River WG-7987-052908-011 5/29/2008	MW6 WG-7987-052908-014 5/29/2008	MW7 WG-7987-052908-009 5/29/2008	MW7 WG-7987-052908-010 5/29/2008 Duplicate	MW8 WG-7987-052908-004 5/29/2008	MW9 WG-7987-052908-002 5/29/2008
Parameters:	Units				Dupmente		
Volatile Organic Compounds			•				
2-Butanone (Methyl Ethyl Keton	e) μg/L	5.0 U	5.0 U	5.0 U	5.0 U	4.4 [5.0 U
Acetone	μg/L	2.8 J	5.0 U	3.3 J	3.4 J	23	5.7
Benzene	μg/L	0.70 U	0.70 U	0.70 U	0.70 U	1.5	0.70 U
Chlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	0.54 [1.4
Ethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.8	0.55 [
Methylene chloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 Ŭ
Tetrachloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	9.5	1.0 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	10	2.4
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	3.6	1.0 U
Trichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	29	1.7
Vinyl chloride	μg/L	1.0 U	1.0 U	0.64 J	0.61 J	1.0 U	1.0 U
Xylene (total)	μg/L	3.0 U	3.0 U	3.0 U	3.0 U	6.7	3.0 U
Semi-volatile Organic Compoun	ds						
1,2-Dichlorobenzene	μg/L	10 U	9 U	10 U	9 U	0.4 J	0.7 J
1,4-Dichlorobenzene	μg/L	10 U	0.6]	10 U	9 U	0.5 J	1 J
2,4-Dimethylphenol	μg/L	5 U	5 U	5 U	5 U	14	31
2-Methylphenol	μg/L	5 U	0.3 J	0.4 J	0.5 J	26	6
4-Methylphenol	μg/L	5 U	5 U	0.5 J	0.6 J	31	96
Di-n-octyl phthalate	μg/L	5 U	5 U	5 Ú	5 Ú	5 U	5 U
Naphthalene	μg/L	5 U	1 J	5 U	5 U	1 J	0.5 J
Phenol	μg/L	5 U	0.4 J	5 U	5 U	32	13

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2008

	nple Location: Sample ID: Sample Date:	OGC1 WG-7987-052908-015 5/29/2008	OGC2 WG-7987-052908-008 5/29/2008	OGC3 WG-7987-052908-005 5/29/2008	OGC4 WG-7987-052908-001 5/29/2008	OGC5 WG-7987-052908-013 5/29/2008	OGC6 WG-7987-052908-012 5/29/2008
Parameters:	Units						
Volatile Organic Compounds							
2-Butanone (Methyl Ethyl Ketone) μg/L	6.6 U	5.0 U				
Acetone	μg/L	6.7 U	5.0 U	6.0	5.0 U	3.5 J	5.0 U
Benzene	μg/L	1.8 U	0.70 U	0.93	0.70 U	0.69 J	0.70 U
Chlorobenzene	μg/L	1.6 U	1.0 U				
Ethylbenzene	μg/L	1.7 U	1.0 U	0.92 J	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	2.2 U	1.0 U				
Tetrachloroethene	μg/L	1.8 U	1.0 U	1.0 U	1.0 U	1.0 U	34
Toluene	μg/L	2.6 U	1.0 U	1.8	1.0 U	1.0 U	2.9
trans-1,2-Dichloroethene	μg/L	1.7 U	1.0 U				
Trichloroethene	μg/L	4.2	1.0 U	4.9	1.0 U	1.0 U	31
Vinyl chloride	μg/L	1.2 U	1.0 U	1.0 U	1.0 U	1.4	1.0 U
Xylene (total)	μg/L	4.6 U	3.0 U	2.3 J	3.0 U	3.0 U	3.0 U
Semi-volatile Organic Compound	l s						
1,2-Dichlorobenzene	μg/L	10 U	9 U	0.7 J	10 U	10 U	10 U
1,4-Dichlorobenzene	μg/L	10 U	9 U	0.6 J	10 U	10 U	10 U
2,4-Dimethylphenol	μg/L	5 U	5 U	6	0.9 J	5 U	0.91
2-Methylphenol	μg/L	5 U	5 U	45	0.5 J	0.3 J	76
4-Methylphenol	μg/L	0.4 J	5 U	11	6	0.4 J	70
Di-n-octyl phthalate	μg/L	5 U	5 U	5 U	5 U	5 Ú	5 U
Naphthalene	μg/L	0.5 J	5 U	0.8 J	0.5 J	0.5 J	2 J
Phenol	μg/L	5 U	5 U	65	66	5 U	8

TABLE 2

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2008

Sa	mple Location: Sample ID: Sample Date:	OGC7 WG-7987-052908-007 5/29/2008	OGC8 WG-7987-052908-003 5/29/2008	South River WG-7987-052908-006 5/29/2008
Parameters:	Units			
Volatile Organic Compounds				
2-Butanone (Methyl Ethyl Keton	e) μg/L	5.0 UJ	5.0 U	3.1 [
Acetone	μg/L	5.0 UJ	9.9	12
Benzene	μg/L	0.70 UJ	0.84	0.70 U
Chlorobenzene	μg/L	1.0 UJ	1.0 U	i.0 U
Ethylbenzene	μg/L	0.84 J	0.84 J	1.0 U
Methylene chloride	μg/L	1.0 UJ	1.0 U	1.0 U
Tetrachloroethene	μg/L	1.2 J	2.3	1.0 U
Toluene	μg/L	4.9 J	6.4	1.0 U
trans-1,2-Dichloroethene	μg/L	3.5 J	1.0 U	1.0 U
Trichloroethene	μg/L	21 J	6.5	1.0 U
Vinyl chloride	μg/L	2.6 J	1.0 U	1.0 U
Xylene (total)	μg/L	5.0 J	2.5 J	3.0 U
Semi-volatile Organic Compoun	ds			
1,2-Dichlorobenzene	μg/L	10 U	9 U	10 U
1,4-Dichlorobenzene	μ g /L	10 U	0.2 J	10 U
2,4-Dimethylphenol	μ g /L	5 U	1 J	5 U
2-Methylphenol	μg/L	0.5 J	2 J	5 U
4-Methylphenol	μg/L	0.4 J	8	5 U
Di-n-octyl phthalate	μg/L	5 U	5 U	5 U
Naphthalene	μg/L	5 U	5 U	5 U
Phenol	μg/L	5 U	5 U	5 U

Notes:	Notes:
J	Estimated.
U	Not detected.
UJ	Not detected, estimated reporting limit.