

City of North Tonawanda Department of Engineering

City Hall, 216 Payne Avenue North Tonawanda, NY 14120-5493 www.northtonawanda.org

August 25, 2010

Dale W. Marshall, P. E. *City Engineer* Phone: (716) 695-8565 Fax: (716) 695-8568

Reference No. 007987

Mr. Brian Sadowski Project Manager New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2999

Dear Mr. Sadowski:

Re: Site Management Periodic Review Report Gratwick-Riverside Park Site, North Tonawanda, New York

Pursuant to the New York State Department of Environmental Conservation (NYSDEC) letter dated July 19, 2010, enclosed are three hard copies and one pdf copy on CD of the report entitled "Ninth Annual Operation and Monitoring Report, June 2009 to May 2010". This report is being submitted as the Site Management Periodic Review Report (PRR) for the Gratwick-Riverside Park Site (Site) located in North Tonawanda, New York. This PRR documents the implementation of and compliance with the requirements of the Operation and Maintenance Manual (O&M Manual) dated March 2002 (revised January 2004 and May 2009). The O&M Manual includes the performance monitoring for the constructed remedy. NYSDEC approval for the O&M Manual was given on April 20, 2005. This is the ninth year of reporting for the Site since the implementation of the O&M program. Pursuant to the data presented in the PRR, the constructed remedy is achieving the remedial action objectives.

Also attached is the completed Institutional and Engineering Controls Certification Form which certifies that the NYSDEC listed institutional and engineering controls (ICs/ECs) are accurate as shown and are functioning properly.

The Site covers approximately 52.9 acres located adjacent to the Niagara River in the City of North Tonawanda, New York. The Site is bordered by River Road to the north, a private marina to the east, the River to the south, and a private residential area to the west. The Site is currently a public park with unrestricted access.

Construction of the remedial action was completed in June 2001 with final inspection performed in November 2001. Groundwater pumping began in May 2001. The description of the constructed remedy is presented in the report entitled "Remedial Action Construction Implementation" dated July 2002. The July 2002 report addressed comments received from the NYSDEC on the Remedial Action Construction Implementation Report submitted in June 2002. Repairs to address shoreline erosion that was observed in 2003 were performed in November 2004 and are documented in the report entitled "Remedial Action Construction Implementation – Addendum No. 1, Repair of Shoreline Erosion" dated March 2005. NYSDEC acceptance of the Addendum was given on April 20, 2005.

The Certificate of Completion dated March 17, 2008 was accepted by the NYSDEC on March 19, 2008, signifying that all remedial work has been completed.

The purpose and primary objective of the groundwater withdrawal system is to collect groundwater that would otherwise migrate into the Niagara River by creating a hydraulic gradient from the River to the groundwater withdrawal system. The post-RA system performance monitoring program is conducted to collect the hydraulic and groundwater chemical data necessary to evaluate the effectiveness of the barrier slurry wall and groundwater withdrawal system and to track long-term trends in the groundwater chemistry.

The remedial action system components at the Site that have associated O&M activities are as follows:

- Landfill cap
- Barrier slurry wall
- Groundwater withdrawal and discharge system
- Sloped-bank stabilization
- Post-RA system performance monitoring

Inspections of the landfill cap and sloped bank stabilization are performed monthly by CRA. Any observed items requiring corrective actions are reported within three business days to the City of North Tonawanda which is responsible for the operation and maintenance of the Site. Performance monitoring of the barrier slurry wall is performed monthly by measuring river and groundwater levels to ensure that a gradient from the river to the groundwater withdrawal system is maintained. Performance monitoring of the groundwater discharge system is performed in accordance with the City of North Tonawanda Industrial Wastewater Discharge Permit Number 2628011 which requires semi-annual collection and analyses of samples of the water that is discharged to the City of North Tonawanda WWTP. Groundwater samples are currently collected and analyzed annually from seven wells and from an additional five wells once every two years in accordance with the schedule in the modified O&M Manual to track the long-term trends in the groundwater concentrations. July 29, 2010

3

Reference No. 007987

If you have any questions, please do not hesitate to contact the undersigned at 716-695-8565.

Yours truly,

autiMayhall

Dale Marshall, P.E. City Engineer

KDS/cb/2 Encl.

cc:

R. Knizek, NYSDEC Remedial Bureau E J. Drumm, NYSDEC Albany G. Sutton/Marty Doster, NYSDEC Region 9 G. Litwin, NYSDOH C. Babcock, GSHI J.P. Moreau/W. Jones (National Grid)

	· ·	a ser		
+	. 1		á.	
	-			
- [Ê.,	14	
	100	-		

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	No.	932060	Site Details	Box 1	
Site	Name G	ratwick - Rive	rside Park		
Site City Cou	Address: /Town: N inty: Niaga	River Road onth Tonawand ra	Zip Code: 14120 a		
Site	Acreage: her: City of 216 P	f North Tonawa syne St., North	e, does not address local zoning): Inda I Tonawanda, NY 14120-5493		
Rep	orting Per	iod: Decembe June	01, 2009 to June 04, 2010 May 31		
	10		Madenation of City Datalla	6	lox 2
			ARTIFICATION OF ONE MERSING	YES	NÔ
1.	Is the info	miation in Box	1 correct?		×
	If NO, are	changes hand	written above or included on a separate she	eet? 🗙	- 25
2.	Has some tax map a	or all of the sit mendment dur	e property been sold, subdivided, merged, ng this Reporting Period?	or undergone a	×
	If YES, is submitted	documentation included with t	or evidence that documentation has been phis certification?	previously	
3. ity	Have any tor or at the $of Nov$	federal, state, i e property duri h Tonawa	and/or local permits (e.g., building, discharging this Reporting Period? Inda Industrial Discharge Pe	e) been issued wmitrenewed M	arch1,2
	submitted)	included with	(or evidence that documentation has been his certification?	previously	
4. 1	If use of th restrictions	e site is restric v?	ted, is the current use of the site consistent	with those	۵
	If NO, is a	n explanation i	cluded with this certification?	D	
5.	For non-si has any ne Assessme	gnificant-threat w information nt regarding of	Brownfield Cleanup Program Sites subject revealed that assumptions made in the Qua site contamination are no longer valid? N	to ECL 27-1415.7(c), alitative Exposure A	Π
1	f YES, is t submitted	he new inform included with t	ation or evidence that new information has his Certification?	been previously 口	
6. I	For non-signare the associated end	gnificant-threat sumptions in th	Brownfield Cleanup Program Sites subject e Qualitative Exposure Assessment still val	to ECL 27-1415.7(c), lid (must be	
- 1	f NC are	channee in the	* NH assessment included with this confidentian	,	Transf
1	* 1994) BIN	an an gue nit dife	second process and the conductor	•	

SITE NO. 932060		Box 3
Description of Institutio	nal Controls	
Parcel	Institutional Control	
S_B_L Image: 175.19-1-28	Ground Water Use Restriction Landuse Restriction Monitoring Plan O&M Plan	
		Box 4
Description of Engineer	ing Controls	
Parcel	Engineering Control	
S_B_L Image: 175.19-1-28	A	
	Groundwater Containment Leachate Collection Pump & Treat	
Attach documentation if IC/E (See instructions)	Cs cannot be certified or why IC/ECs are no longer applicabl	ė.
	Control Description for Site No. 932060	
Parcel: 175.19-1-28		
Deed Restriction. Sloped Ba	ink Stabilization in addition to the ICEC listed above.	

and the second second

÷

Box 5

Periodic Review Report (PRR) Certification Statements

1. I certify by checking "YES" below that:

 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

Û

X

If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional
or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the
following statements are true:

(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;

(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;

(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;

(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and

(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

× □

 If this site has an Operation and Maintenance (O&M) Plan (or equivalent as required in the Decision Document);

I certify by checking "YES" below that the O&M Plan Requirements (or equivalent as required in the Decision Document) are being met.

YES NO

Ш

X

X

and the second track of the

If this site has a Monitoring Plan (or equivalent as required in the remedy selection document);

I certify by checking "YES" below that the requirements of the Monitoring Plan (or equivalent as required in the Decision Document) is being met.

YES NO

IC CERTIFICATIONS SITE NO. 932050 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. print name 16 Payne 14120 am certifying as North Toray (Owner or Remedial Party) PINTER for the Site named in the Site Details Section of this form. Signature of Owner or Remedial Party Rendering Certification IC/EC CERTIFICATIONS Box 7 **QUALIFIED ENVIRONMENTAL PROFESSIONAL (QEP) SIGNATURE** I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class 'A" misdemeanor, pursuant to Soction 210,45 of the Penal Law. print name at 216 Payne Ave Lan am certifying as a Qualified Environmental Professional for the Ctry (Owner or Remedial Party) for the Site named in the Site Detail uis form. ENGINEER + Y V TS*ncenson SIONAL 8 Date RA Signature of Qualified Environmental F the Owner or Ramadial Party-Rendering Certification

NINTH ANNUAL OPERATION AND MONITORING REPORT JUNE 2009 TO MAY 2010

GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

DISCLAIMER: SOME FORMATTING CHANGES MAY HAVE OCCURRED WHEN THE ORIGINAL DOCUMENT WAS PRINTED TO PDF; HOWEVER, THE ORIGINAL CONTENT REMAINS UNCHANGED.

AUGUST 2010 Ref. no. 007987 (37)

Prepared by: Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario Canada N2V 1C2

Office: (519) 884-0510 Fax: (519) 884-0525

web: http://www.CRAworld.com

TABLE OF CONTENTS

1.0 2.0 GROUNDWATER WITHDRAWAL SYSTEM (GWS)......2 2.1 2.2 2.2.1 2.3 2.3.1SAMPLE RESULTS7 2.4 2.4.1 2.5 GWS OPERATIONS 9 2.6 3.0 4.04.14.2

<u>Page</u>

LIST OF FIGURES (Following Text)

FIGURE 2.1	MONITORING NETWORK
FIGURE 2.2	MW-6 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.3	MW-7 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.4	MW-8 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.5	MW-9 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.6	OGC-1 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.7	OGC-2 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.8	OGC-3 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.9	OGC-4 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.10	OGC-5 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.11	OGC-6 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.12	OGC-7 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.13	OGC-8 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.14	EFFLUENT TVOCS AND TSVOCS VS. TIME
FIGURE 2.15	EFFLUENT pH VS. TIME
FIGURE 2.16	EFFLUENT TOTAL SUSPENDED SOLIDS VS. TIME
FIGURE 2.17	EFFLUENT BOD VS. TIME
FIGURE 2.18	EFFLUENT VOLUME VS. TIME

LIST OF TABLES (Following Text)

- TABLE 2.1
 GROUNDWATER HYDRAULIC MONITORING LOCATIONS
- TABLE 2.2WATER LEVELS (FT AMSL)
- TABLE 2.3SUMMARY OF HORIZONTAL GRADIENTS
- TABLE 2.4SUMMARY OF VERTICAL GRADIENTS
- TABLE 2.5GROUNDWATER SAMPLING SUMMARY
- TABLE 2.6SUMMARY OF DETECTED COMPOUNDS, SITE GROUNDWATER AND
RIVER WATER
- TABLE 2.7PH READINGS
- TABLE 2.8EFFLUENT SAMPLING SUMMARY, JUNE 2001 TO FEBRUARY 2007
- TABLE 2.9EFFLUENT SAMPLING SUMMARY, SUBSEQUENT TO FEBRUARY 2007
- TABLE 2.10ANALYTICAL RESULTS SUMMARY, SITE EFFLUENT
- TABLE 2.11GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA
POTW
- TABLE 2.12SURFACE WATER SAMPLING SUMMARY

LIST OF APPENDICES

- APPENDIX A MONTHLY INSPECTION LOGS (JUNE 2009 TO MAY 2010)
- APPENDIX B QA/QC REVIEWS

1.0 INTRODUCTION

This report is the ninth annual Operation and Monitoring Report (O&M Report) for the remedial actions constructed at the Gratwick-Riverside Park Site (Site) located in North Tonawanda, New York. This report covers the period from June 2009 to May 2010 and was prepared pursuant to Section 7.0 of the report entitled "Operation and Maintenance Manual" (O&M Manual) dated March 2002 (revised January 2004 and May 2009). It is noted that New York State Department of Environmental Conservation (NYSDEC) approval for the O&M Manual was given on April 20, 2005. All O&M activities have been performed in accordance with the methods and frequencies specified in the O&M Manual and as modified in previous annual reports and approved by NYSDEC. In accordance with the approved monitoring changes, the groundwater is now monitored annually in seven wells and an additional five wells are monitored once every two years. Discharge from the Site is monitored semi-annually in accordance with the City of North Tonawanda Wastewater Discharge Permit.

2.0 <u>GROUNDWATER WITHDRAWAL SYSTEM (GWS)</u>

Full-time operation of the Groundwater Withdrawal System (GWS) at the Site started on May 4, 2001. The objectives of the GWS are to:

- i) Achieve and maintain an inward gradient from the Niagara River toward the GWS
- ii) Achieve and maintain an upward gradient from the fill alluvium layer beneath the GWS

In order to determine whether the objectives are being met, hydraulic and chemical monitoring programs have been developed. These programs include: Site groundwater; GWS effluent; and River surface water. Sampling of the River water was no longer required after April 2008. The wells, manholes, wet wells, and storm sewer outfalls that comprise the monitoring network are shown on Figure 2.1. The monitoring programs are described in the following subsections.

2.1 <u>HYDRAULIC MONITORING</u>

Hydraulic monitoring consists of the collection of water levels in monitoring wells and manholes, and River water levels at the storm sewer outfalls. These data are then used to determine the vertical and horizontal gradients for the groundwater.

The water levels in four GWS manholes and in the River were monitored to confirm that an inward gradient exists. The water levels in five GWS manholes and in four monitoring wells installed near the GWS alignment in the materials directly overlying the confining unit were monitored to confirm that an upward gradient exists. The specific manholes and monitoring wells used to determine the horizontal and vertical gradients are listed in Table 2.1.

Groundwater elevations are measured on a monthly basis. The measured water levels from the beginning of the O&M period are presented in Table 2.2. Summaries of the horizontal and vertical gradients are provided in Tables 2.3 and 2.4, respectively.

The results for the horizontal gradient evaluation show that:

i) Inward horizontal gradients were achieved by May 11, 2001, within one week of the start of pumping the GWS

The inward gradients were maintained for the remainder of the first nine years except for a few short intervals in isolated areas. The only exception in this reporting period occurred between September 30 and October 30, 2009 in the vicinity of MH-2

These outward gradients were due to electrical problems with the pump in MH-3 as described in Section 2.6 and have been rectified.

Short periods of outward gradient do not adversely affect the effectiveness of the remedy because:

- i) The gradients were outward for only short periods of time
- ii) The outward gradients occurred over only a portion of the barrier wall
- iii) The 36-inch barrier wall is six inches thicker than the design thickness thereby providing extra protection
- iv) Any outward migration of Site groundwater into the barrier wall during the short periods of outward gradient is more than offset by the inward migration of river water into the barrier wall during the long periods of inward gradient

With regard to the period of outward gradients noted in this reporting period, the difference in elevation between the groundwater in the GWS and the Niagara River levels ranged from 1.00 to 1.69 feet. The maximum difference in water levels is equivalent to a hydraulic gradient of 0.56 over the 3-foot thickness of the barrier wall. The hydraulic conductivity of the in-place barrier wall ranged from 2.34 to 9.45×10^{-8} cm/sec. Using the maximum value of 9.45×10^{-8} cm/sec and an assumed porosity of 0.25, groundwater would have migrated a distance of 0.06 inches through the barrier wall for the 60 day period between September 16, 2009 and November 15, 2009 (assuming outward gradient started and ended halfway between consecutive water level dates). Thus, there was no adverse effect due to this period of outward gradient.

The results for the vertical gradient evaluation showed that the vertical gradients during this reporting period were continually upward for all four monitoring pairs except for:

- i) Monitoring well pair MH3/MW-6 in September and October 2009
- ii) Well pair MH14&15/MW-9 in June, September, October, and November 2009

An upward gradient existed at these well pairs in all other monitoring events.

2.2 <u>GROUNDWATER QUALITY MONITORING</u>

Groundwater quality monitoring consists of the collection of water samples from on-Site overburden monitoring wells (OGC-1 through OGC-8 and MW-6 through MW-9) and the analysis of these samples to determine the concentrations of chemicals in the groundwater. The purpose of the groundwater quality monitoring program is to monitor the anticipated improvement in the quality of the overburden groundwater:

- i) between the barrier wall and the River (OGC-1 through OGC-4)
- ii) in the fill/alluvium beneath the GWS (MW-6 through MW-9)

The MWs are located on the inside of the barrier wall and the OGCs are located between the barrier wall and the river.

Groundwater quality monitoring locations are presented on Figure 2.1 and the analytical parameters and frequency are listed in Table 2.5.

Groundwater sampling was on an annual basis between May 2004 and May 2008. As approved in the NYSDEC letter dated February 23, 2009 the sampling frequency for May 2009 through May 2012 will be:

Annual	Once Every Two Years (2010 and 2012)
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	

2.2.1 <u>SAMPLE RESULTS</u>

A summary of compounds detected in the groundwater samples is presented in Table 2.6 and pH levels are presented in Table 2.7.

To evaluate the trends in the groundwater chemistry and evaluate the appropriate frequency of future sampling, the VOCs and SVOCs were summed and plotted on Figures 2.2 through 2.13 for each of the 12 monitoring wells included in the program. It is believed that the sum of the VOCs (i.e., TVOCs) and SVOCs (i.e., TSVOCs) best represent the trends in the groundwater chemistry.

Review of the TVOC and TSVOC concentrations show the following trends since May 2008 (the last prior date all 12 wells were sampled):

- i) TVOCs:
 - Decreasing concentrations in 4 of the 12 wells (MW-8, OGC-3, OGC-7, and OGC-8)
 - Increasing concentrations in 1 of the 12 wells (OGC-6)
 - Relatively constant concentrations with random fluctuations in 7 of the 12 wells
- ii) TSVOCs:
 - Decreasing concentrations in 3 of 12 wells (MW-7, OGC-3, and OGC-4)
 - Relatively constant concentrations with random fluctuations in 9 of the 12 wells

All the wells had only low level VOC concentrations (i.e., $<12 \mu g/L$) in this reporting period, except for MW-9 (18 $\mu g/L$) and OGC-6 (1130 $\mu g/L$). MW-7, OGC-1, OGC-2, OGC-5, OGC-7, and OGC-8 had TSVOC concentrations $<12 \mu g/L$.

In summary, the number of wells with decreasing or constant but fluctuating concentrations at low level concentrations, shows that the groundwater is being remediated.

Additional description of the TVOC and TSVOC concentrations is provided in the following paragraphs.

Monitoring Wells On-Site - Inside Barrier Wall

The TVOC concentrations for MW-6 shown on Figure 2.2 have been less than 5 μ g/L since May 2007. The TSVOC concentrations were low level (i.e., <5 μ g/L) since May 2004 until May 2010 when they increased slightly to 20 μ g/L.

The TVOC and TSVOC concentrations for MW-7 on Figure 2.3 show that both TVOC and TSVOC have remained low level. TVOC concentrations ranged from non-detect to 7.3 μ g/L since November 2003. TSVOC concentrations ranged from non-detect to 1 μ g/L since May 2004.

The TVOC concentrations for MW-8 on Figure 2.4 show that the TVOC concentrations for the May 2010 sample was non-detect. This is significantly less than the 90 and 142 μ g/L for May 2008 and May 2009, respectively. The TSVOC concentrations since May 2006 increased slightly from 31 μ g/L to 117 μ g/L in the May 2009 sample and then decreased slightly to 90 μ g/L in the May 2010 sample.

The TVOC concentrations for MW-9 on Figure 2.5 show that the TVOC concentrations ranged between 9 and 30 μ g/L for the entire record period. The TSVOC concentrations decreased to 150 μ g/L in the May 2008 sample, then increased to 440 μ g/L in the May 2009 sample before decreasing to 254 μ g/L in the May 2010 sample.

All MWs are located on the inside of the barrier wall and a net inward gradient has always been maintained in the vicinity of these wells. Thus, the TVOCs and TSVOCs are not migrating to the Niagara River.

Monitoring Wells Between Barrier Wall and River

The TVOC concentrations for OGC-1 on Figure 2.6 show that the concentrations since November 2003 ranged between 0.5 and 4 μ g/L. The TSVOC concentrations for the last seven sampling events (i.e., since November 2003) have fluctuated between non-detect and 3 μ g/L.

The TVOC concentrations for OGC-2 on Figure 2.7 have fluctuated randomly between non-detect and $4.5 \,\mu$ g/L since February 2002. The TSVOC concentrations were all non-detect over this same time period.

The TVOC concentrations for OGC-3 shown on Figure 2.8 decreased from 7 μ g/L in May 2008 to non-detect in the May 2010 sample. The TSVOC concentrations have decreased from 300 μ g/L in November 2003 to 102 μ g/L in May 2010.

The TVOC concentrations for OGC-4 shown on Figure 2.9 fluctuated between non-detect and $6 \mu g/L$ for the time period from November 2002 to May 2010. The TSVOC concentrations have fluctuated widely but have continually decreased since May 2004 with a concentration of $19 \mu g/L$ in the May 2010 sample. The single compound responsible for the higher historic concentrations was phenol.

The TVOC concentrations for OGC-5 shown on Figure 2.10, ranged from non-detect to $11 \mu g/L$ since February 2002. The TSVOC concentrations ranged from non-detect to $2 \mu g/L$ since February 2003.

The TVOC concentrations for OGC-6 shown on Figure 2.11 increased continually from $3 \mu g/L$ in May 2001 to $4,200 \mu g/L$ in May 2006, then decreased to $68 \mu g/L$ by May 2008 before increasing to $1,130 \mu g/L$ in the May 2010 sample. The primary compounds detected are PCE and TCE. The TSVOC concentrations have fluctuated between non-detect and 210 $\mu g/L$. The May 2010 TVOC concentration was $35 \mu g/L$.

The TVOC concentrations for OGC-7 shown on Figure 2.12, have continually decreased since November 2003 and were non-detect in the May 2010 sample. The TSVOC concentrations have been non-detect since August 2002 except for May 2008 when the TSVOC concentration was $0.9 \mu g/L$.

The TVOC concentrations for OGC-8 shown on Figure 2.13 decreased from 460 μ g/L in May 2001 to 84 μ g/L in May 2003 and have ranged from non-detect to 29 μ g/L since that time. The TSVOC concentrations have decreased from 139 μ g/L in August 2001 to 54 μ g/L in August 2002 and have ranged from non-detect to 11 μ g/L since that time.

The QA/QC review of the May 2010 groundwater results is included in Appendix B.

2.3 <u>EFFLUENT MONITORING PROGRAM</u>

Groundwater from the GWS is discharged to the POTW without the need for pretreatment. The monitoring performed during the construction phase of the remedy clearly showed that the minimal chemical presence in the groundwater collected in the GWS is easily treated at the POTW and therefore no on-Site pretreatment is necessary. The effluent samples are collected at the monitoring station (meter building), which is located at the south end of the Site as shown on Figure 2.1. The analytical parameters for the time period from June 2001 to February 2007, inclusive, are listed in Table 2.8 and the parameters monitored since 2007 are listed in Table 2.9.

2.3.1 <u>SAMPLE RESULTS</u>

Effluent samples are collected semi-annually and consist of a 24-hour composite sample collected for SVOCs, metals, and wet chemistry parameters. Three grab samples are also

collected for VOCs at 8-hour intervals and the measured concentrations are averaged to give a 24-hour concentration.

QA/QC reviews of the discharge results to May 2009 have already been submitted to the NYSDEC. Thus, these reviews are not being resubmitted with this O&M Report. The QA/QC reviews of the discharge results from September 2009 and March 2010 are provided in Appendix B.

The effluent sample results are presented in Table 2.10. To assist in evaluating the chemical concentration trends in the effluent discharge from the GWS, the measured concentrations for the following parameters are plotted: TVOCs, TSVOCs, pH, total suspended solids (TSS), and biochemical oxygen demand (BOD) (see Figures 2.14 through 2.17). It is believed that these parameters are representative of the trends in the chemistry of the water discharged to the POTW and, as such, can also be used to determine an appropriate monitoring frequency for the effluent.

As shown on Figure 2.14, the TVOCs generally peak in the spring and then decline reaching a trough in the fall. This pattern may be attributable to additional flushing during the spring snow melt. The mean TVOC concentrations decreased until June 2004 and thereafter appear to have held relatively uniform. The effluent TSVOC results on Figure 2.14 show no apparent seasonal pattern but the mean TSVOC concentrations show the same decreasing trend with time as the mean TVOC concentrations.

The pH levels are presented on Figure 2.15. As shown on Figure 2.15, the pH levels range between 7.3 and 11.6. An apparent trend in the pH levels is higher pH levels in the winter/spring and lower pH levels in the summer/fall.

The TSS concentrations presented on Figure 2.16 show higher concentrations occurring in the early spring and late summer/fall with elevated concentrations (maximum of 278 mg/L) in the spring of 2005. Because TSS may be related to the discharge flow rate, the monthly discharge volume (see Table 2.11) is plotted on Figure 2.18. Comparison of the results presented on these two figures shows an apparent correlation between higher flows and greater TSS concentrations except for the 2005 spring results.

The BOD concentrations are presented on Figure 2.17. As shown on Figure 2.17, BOD concentrations ranged from 20 to 29 mg/L until April 2002 then decreased to the range of 6 to 22 mg/L since May 2002. The BOD concentrations were compared with the discharge volume but showed no apparent correlation.

In summary, the trends described above support the semi-annual sampling frequency in the current City of North Tonawanda Industrial Wastewater Discharge Permit.

2.4 SURFACE WATER MONITORING PROGRAM

To determine that the River sediment remediation and enhancement is working properly, surface water samples were collected from May 2001 to May 2008 at locations upstream of, adjacent to, and at the downstream end of the Site (see Figure 2.1 for locations). The analytical parameters are listed in Table 2.12. It was recommended in the Seventh Annual O&M Report that no further sampling or analyses of the River water be performed. NYSDEC approval for this was received on February 23, 2009.

2.4.1 <u>SAMPLE RESULTS</u>

The river water analytical results are presented in Table 2.6. Almost all of the analytical results were non-detect.

The TVOCs were low level, except for the occasional random high concentration at the River North location and the TSVOCs concentration were predominantly non-detect with only two events with $1 \mu g/L$. Considering that the River North location is downstream of the boat launch facility and the parameters detected with elevated concentrations are BTEX (gasoline-based compounds), it is believed that these sporadic elevated concentrations are related to boating activities at the launch and are not related to the remediated Site.

2.5 <u>GWS OPERATIONS</u>

The volume of water pumped on a monthly basis from the Site to the City POTW for treatment is presented in Table 2.11 and plotted on Figure 2.18. The monthly volumes show that during the time period of initial dewatering of the Site (i.e., May and June 2001) the monthly volumes ranged from 2,300,000 to 2,900,000 gallons. For the time period from June 2007 to May 2010, the monthly volumes ranged from 23,800 to 2,661,000 gallons except for March 2009 which had a volume of 4,239,000 gallons.

The total measured volume of water discharged from the Site for the time period from May 2001 to May 2010 was 79,786,500 gallons with 9,915,500 gallons pumped during the last 12 months.

Section 5.0 of the O&M Manual describes the procedures to be followed in case pumping of the GWS needs to be stopped to prevent the discharge of untreated water from the Site by the City POTW (i.e., wet weather shutdown). No wet weather shutdown occurred in the time period from June 2009 to May 2010.

The treatment of the Site groundwater by the City POTW did not require any modifications to the standard operations of the City POTW and did not cause any operational upsets of the City POTW.

2.6 <u>GWS MAINTENANCE</u>

An extended shut-down period occurred between September 30 to October 30, 2009 in the area of MH-2 due to electrical problems with the pumps (i.e., a short in the electrical circuit for the pump in MH-3). Repairs were completed and the entire system became operational on November 5, 2009.

3.0 <u>SITE INSPECTIONS</u>

Site inspections were performed on a monthly basis. Copies of the Inspection Logs for the time period to May 2009 were previously submitted and thus are not being resubmitted with this O&M Report. The Monthly Inspection Logs for June 2009 through May 2010 are included in Appendix A. In summary, the June 2009 through May 2010 inspections identified:

- i) Higher water levels in MH-12 from November 30, 2009 to March 2010
- ii) Some moderate erosion approximately 20 feet south of OGC-7 (see April 2010 Inspection Forms).

The higher water levels observed in MH-12 were still low enough that the horizontal gradient was inward (i.e., from the River to the GWS). Inspection of MH-12 identified that the GWS valves were closed. The reason for or timing of the valve closure could not be determined. The valves were opened on March 10, 2010 and the water level in MH-12 dropped 4 feet by the next day.

The erosion in the vicinity of OGC-7 will be repaired during the summer of 2010.

4.0 <u>CONCLUSIONS/RECOMMENDATIONS</u>

4.1 <u>OPERATION AND MAINTENANCE</u>

The constructed remedy is achieving the remedial action objectives.

4.2 <u>MONITORING</u>

The trends in the groundwater TVOC and TSVOC analytical results are relatively consistent with time with ten wells having TVOC concentrations and six wells having TSVOC concentrations $\leq 12 \ \mu g/L$ for the 2010 event.

In summary, the groundwater sample collection frequency from May 2009 up to and including May 2012 is:

Annual	Once Every 2 Years (2010 and 2012)
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	

No further sampling of the river water is required.

Pursuant to the discharge permit effective January 31, 2007 (renewed March 1, 2010 and effective until February 28, 2013), semi-annual monitoring commenced in September 2007. The trends in the effluent from the GWS to the POTW support the reduction in the sampling frequency from monthly to semi-annual. Flow monitoring will continue to be performed monthly as a check on the operation of the GWS.

4.3 NOTIFICATIONS TO CITY OF NORTH TONAWANDA

Notifications of anomalies in the discharge volumes and/or groundwater levels were provided and will continue to be provided to the City of North Tonawanda Public Works Engineering and Wastewater Treatment Department within a few days of measurement of the anomaly to ensure timely maintenance.

⁰⁷⁹⁸⁷⁻⁰⁰⁽⁰³⁷⁾GN-WA014 JUN 24/2010

⁰⁷⁹⁸⁷⁻⁰⁰⁽⁰³⁷⁾GN-WA017 JUN 24/2010

GROUNDWATER HYDRAULIC MONITORING LOCATIONS OPERATION AND MAINTENANCE GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

INWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

Inner ⁽¹⁾	Outer
MH2	Niagara River North (Downstream)
MH6	Niagara River North (Downstream)
MH8	Niagara River Middle
MH12	Niagara River South (Upstream)

UPWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

Upper ⁽¹⁾	Lower
MH3	MW-6
MH8	MW-7
MH11	MW-8
MH14/MH15 ⁽²⁾	MW-9

FREQUENCY

- Weekly following GWS startup until six consecutive inward gradients are achieved; and
- Monthly thereafter for the remainder of the initial 2-year period (review after 2 years).
- 2-Year and 5-Year reviews indicated that the monitoring frequency remain monthly.

Notes:

- ⁽¹⁾ These manholes will be monitored twice daily by POTW staff during a wet weather bypass event pursuant to Section 5.0 of the O&M Manual.
- ⁽²⁾ Distance weighted averages of water levels used (MH14 two thirds and MH15 one third).

GROUNDWATER HYDRAULIC MONITORING LOCATIONS OPERATION AND MAINTENANCE GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

INWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

Inner ⁽¹⁾	Outer
MH2	Niagara River North (Downstream)
MH6	Niagara River North (Downstream)
MH8	Niagara River Middle
MH12	Niagara River South (Upstream)

UPWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

Upper ⁽¹⁾	Lower
MH3	MW-6
MH8	MW-7
MH11	MW-8
MH14/MH15 ⁽²⁾	MW-9

FREQUENCY

- Weekly following GWS startup until six consecutive inward gradients are achieved; and
- Monthly thereafter for the remainder of the initial 2-year period (review after 2 years).
- 2-Year and 5-Year reviews indicated that the monitoring frequency remain monthly.

Notes:

- ⁽¹⁾ These manholes will be monitored twice daily by POTW staff during a wet weather bypass event pursuant to Section 5.0 of the O&M Manual.
- ⁽²⁾ Distance weighted averages of water levels used (MH14 two thirds and MH15 one third).

.

TABLE 2.2

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

								River					<i>River</i>	
Date	MH2	MH3	MH6		OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03							572.37				
TOC Elevation (ft amsl)					575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
December 12, 2000	NM				564.26	567.05	563.84	NM	564.24		567.20	564.58	NM	565.24
January 8, 2001	NM		NM		563.94	567.21	563.82	NM	563.84		567.30	564.01	NM	563.90
March 29, 2001	NM		NM		564.19	567.80	563.82	NM	564.10		566.89	564.28	NM	564.12
May 11, 2001	559.31		561.98		564.39	563.53	564.54	564.54	564.25		561.60	564.53	564.38	564.50
May 18, 2001	NM		562.03		564.21	563.08	564.54	564.49	564.25		561.97	564.53	564.33	564.55
May 25, 2001	NM		NM		564.46	562.80	564.52	563.80	564.22		561.71	564.28	563.63	564.50
June 1, 2001	559.34		561.97		564.51	562.74	564.52	563.52	564.20		561.77	564.18	563.47	564.49
June 8, 2001	NM		562.49		564.63	562.65	564.82	564.75	564.36		561.59	564.60	564.68	564.78
June 15, 2001	560.79	560.59	562.60		564.67	562.54	564.76	564.71	564.53	560.53	561.48	564.77	564.71	564.79
June 22, 2001	560.77	560.55	562.53		564.65	562.50	564.72	564.90	564.43	560.44	561.41	564.66	564.86	564.72
June 29, 2001	560.62	560.40	562.42		564.51	562.42	564.66	564.52	564.35	560.38	561.39	564.57	564.48	564.59
July 31, 2001	559.87	559.21	562.90		564.49	562.19	564.71	564.66	564.35	560.25	561.30	564.60	564.68	565.70
August 20, 2001	561.49	561.07	565.23	(1)	564.60	562.09	563.82	564.69	564.46	560.25	561.29	564.77	564.64	564.81
September 28, 2001	561.03	560.56	563.03		564.61	562.13	564.25	564.68	564.48	560.27	561.32	564.79	564.68	564.99
October 22, 2001	561.38	562.36	567.06	(3)	564.61	562.08	564.41	(2)	564.33	560.43	561.37	564.58	564.26	564.33
November 27, 2001	561.45	560.94	564.53		563.95	561.88	563.65	(2)	563.83	560.45	561.36	564.04	563.54	563.87
December 20, 2001	560.96	560.50	564.39		564.47	561.83	564.78	564.69	564.27	559.75	561.25	564.72	564.45	564.86
January 29, 2002	560.74	560.15	563.75		564.09	561.83	563.87	563.89	563.99	560.98	561.89	564.12	563.74	564.01
February 11, 2002	560.80	560.28	564.19		564.22	561.73	563.84	564.03	564.07	561.06	561.50	564.18	563.97	564.19
March 25, 2002	560.55	560.10	563.25		564.10	561.72	563.51	(2)	564.03	560.65	561.60	564.02	563.59	563.83
April 24, 2002	562.54	562.05	564.12		564.60	561.88	564.70	564.61	564.49	561.13	561.95	564.67	564.19	564.72
May 21, 2002	561.74	561.28	564.10		564.79	561.97	564.84	564.76	564.68	560.05	561.38	564.85	564.66	564.84
June 20, 2002	561.67	561.24	565.58		564.74	561.92	564.56	564.58	564.62	560.68	561.54	564.85	564.68	564.80
July 18, 2002	561.46	560.99	564.99		564.78	561.89	565.00	564.89	564.66	560.79	561.65	564.90	564.90	564.93
August 6, 2002	561.26	560.79	565.89		564.86	561.92	564.70	564.65	564.71	561.05	561.93	564.90	564.59	564.85
September 12, 2002	561.60	561.14	565.60		564.80	561.82	565.05	565.04	564.67	561.10	561.99	564.87	564.95	564.97
October 30, 2002	561.63	561.21	566.24		564.18	561.97	563.95	(2)	564.07	561.07	561.95	564.10	563.75	564.00
November 21, 2002	561.12	560.67	554.47	(4)	564.05	562.05	563.94	(2)	563.98	558.03	561.41	564.20	563.71	564.06
December 11, 2002	561.55	561.08	555.09		563.99	562.04	563.85	(2)	563.84	559.95	561.25	563.94	563.72	563.87

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

(4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575 84	574 82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23		0.0101	
December 12, 2000	565.07		567.08	NM		564.45	564.85	567.15			
January 8, 2001	563.95		567.29	NM	NM	564.01	564.00	567.35			567.29
March 29, 2001	564.21		567.96	NM	NM	564.24	564.25	568.06			NM
May 11, 2001	564.58		561.95	564.70	564.15	564.63	564.59	562.53			562.45
May 18, 2001	564.59		562.49	564.65	564.12	564.66	564.66	563.05			562.55
May 25, 2001	564.57		561.99	564.80	564.17	564.63	564.60	562.54			562.48
June 1, 2001	564.59		562.06	565.00	564.19	564.66	564.60	562.57			562.51
June 8, 2001	564.87		561.89	565.05	562.45	564.96	564.89	562.47			562.42
June 15, 2001	564.91	561.12	561.69	565.05	562.34	564.93	564.88	562.45	562.32		562.29
June 22, 2001	564.87	561.05	561.54	565.18	562.29	565.00	564.80	562.19	562.32		562.14
June 29, 2001	564.68	560.97	561.46	564.83	561.80	564.75	564.68	562.11	562.45		562.06
July 31, 2001	564.78	560.73	561.19	564.96	560.77	564.85	564.76	562.45	562.45		561.69
August 20, 2001	564.83	560.50	561.05	564.99	560.42	564.88	564.85	561.55	561.72		561.54
September 28, 2001	564.85	560.61	561.07	564.95	560.36	564.87	564.84	561.58	561.70		561.52
October 22, 2001	564.58	560.51	561.27	564.61	560.42	564.61	564.62	561.75	562.10		561.72
November 27, 2001	563.89	559.51	561.30	564.05	560.06	563.89	563.94	561.71	561.87		563.82
December 20, 2001	564.96	561.31	560.73	564.96	560.23	564.99	565.05	561.77	561.89		561.71
January 29, 2002	564.06	Blocked	561.91	563.92	560.29	564.03	564.08	562.31	562.53		562.31
February 11, 2002	564.28	561.23	561.93	564.53	560.24	564.35	564.35	562.52	562.18		562.54
March 25, 2002	563.87	560.97	561.60	564.15	560.34	563.85	563.95	562.45	562.77		562.61
April 24, 2002	564.79	561.41	561.95	564.86	560.63	564.86	564.84	562.96	563.09		562.95
May 21, 2002	564.95	560.35	560.89	565.07	560.89	565.03	564.98	563.11	563.25	562.17	563.10
June 20, 2002	564.85	560.98	561.50	564.88	561.04	564.90	564.94	562.91	562.98	562.00	562.90
July 18, 2002	565.09	561.07	561.80	565.22	560.95	565.17	565.08	562.84	561.83	561.93	562.83
August 6, 2002	564.88	561.33	561.88	564.90	561.07	564.95	564.91	562.75	562.08	561.86	562.75
September 12, 2002	565.09	561.34	561.91	565.25	561.09	565.20	565.05	562.66	562.11	561.75	562.63
October 30, 2002	564.03	561.36	561.95	564.16	561.31	564.14	564.00	562.57	562.68	561.62	562.56
November 21, 2002	564.04	561.49	560.99	564.15	561.44	564.19	564.18	562.74	562.88	561.82	562.73
December 11, 2002	564.01	561.51	560.73	564.14	561.45	564.09	564.02	562.91	563.07	562.01	562.94

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

							River					River	
Date	MH2	МНЗ	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 16, 2003	561.65	561.20	556.15	564.03	562.27	563.88	(2)	564.12	561.04	561.95	564.27	563.52	564.10
February 25, 2003	561.58	561.10	555.74	563.80	561.85	563.71	(2)	563.67	560.60	561.49	563.81	563.34	563.81
March 14, 2003	561.65	561.17	555.75	563.75	561.69	563.74	(2)	563.61	560.61	561.49	563.77	563.24	563.77
April 14, 2003	561.68	561.22	554.54	564.32	562.42	564.34	564.30	564.17	558.65	561.42	564.39	564.24	564.40
May 8, 2003	561.52	561.03	555.93	564.37	562.38	564.41	564.29	564.21	560.76	561.59	564.36	564.27	564.37
June 19, 2003	562.26	561.83	556.02	564.73	562.43	564.83	564.78	564.59	560.85	561.60	564.77	564.66	564.81
July 21, 2003	561.21	560.46	556.06	564.68	562.31	564.64	564.49	564.58	560.89	561.74	564.81	564.44	564.75
August 28, 2003	561.65	561.20	554.61	564.65	562.21	564.76	564.64	564.51	558.52	561.29	564.67	564.60	564.75
September 30, 2003	561.57	561.10	555.08	564.64	562.53	564.89	(2)	564.49	559.88	561.35	564.76	564.67	564.91
October 20, 2003	561.48	561.07	554.98	564.61	562.52	564.93	(2)	564.45	559.77	561.17	564.68	564.63	564.86
November 3, 2003	561.53	561.08	555.94	564.29	562.33	563.89	(2)	564.11	560.76	561.12	563.56	564.36	564.15
December 23, 2003	561.08	559.49	555.62	564.29	562.30	564.04	(2)	564.17	560.67	561.48	564.33	(2)	564.18
January 21, 2004	(5)	560.33	555.84	565.24	562.32	564.19	(2)	564.12	560.70	561.55	564.30	(2)	564.26
February 12, 2004	(5)	561.08	556.12	563.99	562.16	563.76	(2)	563.87	560.95	561.81	564.00	(2)	563.88
March 4, 2004	561.33	561.13	555.90	564.17	562.21	557.07 (6)	(2)	564.00	560.75	561.61	564.31	(2)	564.19
April 16, 2004	560.05	558.78	554.91	564.59	562.48	564.49	(2)	564.36	559.59	561.71	564.56	564.43	564.56
May 14, 2004	560.17	559.71	554.56	564.49	562.39	564.57	564.55	564.34	559.45	561.70	564.51	564.48	564.54
June 25, 2004	561.64	561.21	555.74	564.76	562.27	564.71	564.68	564.62	560.50	561.42	564.82	564.56	564.78
July 30, 2004	561.79	561.25	555.24	565.01	562.29	565.20	565.20	564.84	560.04	561.31	565.02	565.16	565.14
August 31, 2004	561.37	560.59	555.83	565.06	562.23	565.05	564.98	564.92	560.67	561.56	565.14	564.93	565.17
September 30, 2004	561.48	560.81	555.60	565.11	562.28	565.22	565.00	564.95	560.71	561.49	565.20	565.05	565.20
October 20, 2004	561.65	561.19	555.96	564.65	562.10	564.57	564.45	564.44	560.82	561.69	564.57	564.41	564.57
November 23, 2004	561.50	561.05	554.95	564.17	561.99	564.20	(2)	564.02	559.77	561.21	564.31	(2)	564.28
December 31, 2004	561.60	560.74	556.19	564.58	562.16	564.50	564.68	564.25	561.02	561.80	564.37	564.56	564.40

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

(4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.

⁽⁵⁾ Buried with snow.

⁽⁶⁾ Believed to be erroneous reading.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 16, 2003	564.13	561.68	562.00	564.11	561.83	564.14	564.20	563.17	563.37	562.28	563.20
February 25, 2003	563.87	561.60	561.48	564.21	561.56	563.90	563.94	562.89	563.07	562.01	562.91
March 14, 2003	563.79	561.57	561.46	564.11	561.54	563.92	563.91	562.90	563.09	562.05	562.93
April 14, 2003	564.48	558.53	560.98	564.45	561.56	564.54	564.52	563.36	563.54	562.49	563.40
May 8, 2003	564.48	561.03	561.56	564.61	561.61	564.59	564.44	563.07	563.26	562.01	563.11
June 19, 2003	564.92	561.12	561.56	564.96	561.94	564.99	564.95	563.10	563.41	562.25	563.15
July 21, 2003	564.81	561.10	561.69	564.78	562.03	564.84	564.88	562.89	563.03	561.98	562.89
August 28, 2003	564.86	564.37	562.35	564.91	562.19	564.94	564.85	566.17	566.48	566.36	566.59
September 30, 2003	565.02	558.68	560.17	565.08	562.26	565.08	565.02	562.77	562.89	562.02	562.78
October 20, 2003	564.94	558.66	560.02	565.03	562.25	565.05	564.96	562.75	562.88	562.01	562.76
November 3, 2003	564.26	561.01	561.57	564.28	562.52	564.27	564.31	562.85	563.00	561.91	562.83
December 23, 2003	564.24	560.94	561.34	564.36	562.75	564.08	564.28	563.20	563.31	562.28	563.20
January 21, 2004	564.33	(4)	561.47	564.36	562.49	564.41	564.35	562.72	(4)	561.74	562.68
February 12, 2004	563.93	561.23	561.75	564.16	562.30	563.96	563.98	562.88	(4)	561.73	562.66
March 4, 2004	564.25	561.04	561.56	564.26	562.07	564.34	564.35	562.70	562.75	561.75	562.66
April 16, 2004	564.64	559.85	561.38	564.69	561.00	564.74	564.66	562.64	562.79	561.72	562.63
May 14, 2004	564.63	559.87	561.39	564.71	560.80	564.68	564.55	562.71	562.74	561. 74	562.67
June 25, 2004	564.85	560.79	561.19	564.91	560.95	564.89	564.89	562.70	562.74	561.76	562.68
July 30, 2004	565.28	560.26	560.71	565.46	561.15	565.33	565.21	562.70	561.13	561.74	562.67
August 31, 2004	565.26	560.94	561.39	565.25	561.35	565.31	565.27	562.95	563.08	562.02	562.93
September 30, 2004	565.29	561.00	561.43	565.30	561.25	565.40	565.26	562.98	562.90	562.20	562.98
October 20, 2004	564.67	561.09	561.56	564.49	561.50	564.76	564.68	562.64	562.82	561.73	562.88
November 23, 2004	564.34	560.05	560.56	564.30	561.57	564.38	564.40	562.71	561.04	561.62	562.69
December 31, 2004	564.69	561.23	561.75	564.81	561.81	564.78	564.55	562.71	562.05	561.77	562.69

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

							River					River	
Date	MH2	MH3	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 28, 2005	562.60	562.15	556.22	564.68	562.27	564.62	(2)	564.53	561.06	561.85	564.67	564.32	564.71
February 28, 2005	561.05	559.96	555.58	564.58	562.14	564.68	(7)	564.48	560.47	561.46	564.21	564.46	564.76
March 31, 2005	561.25	559.94	555.93	564.55	562.04	564.40	(2)	564.38	560.78	561.66	564.63	564.08	564.49
April 20, 2005	560.20	559.54	556.01	565.01	562.26	564.94	564.83	564.84	560.89	561.76	565.01	564.71	565.05
May 27, 2005	560.23	558.92	555.82	564.71	562.24	564.79	564.78	564.63	560.65	561.55	564.78	564.74	564.91
June 24, 2005	561.50	561.09	555.16	564.71	562.22	564.85	564.73	564.61	559.92	561.47	564.78	564.70	564.85
July 29, 2005	562.70	562.26	556.56	564.79	562.11	564.95	564.82	564.65	561.39	562.27	564.87	564.85	564.98
August 31, 2005	561.62	560.64	556.24	564.68	562.09	564.71	(2)	564.59	561.07	561.94	564.79	564.54	564.82
October 3, 2005	561.52	560.54	555.41	564.75	562.24	564.85	564.80	564.62	560.20	561.40	564.78	564.75	564.88
October 31, 2005	561.68	560.73	555.60	564.59	562.34	564.69	564.80	564.44	560.46	561.52	564.64	564.55	564.70
November 22, 2005	561.62	561.20	555.20	564.40	561.67	564.64	(2)	564.28	560.04	561.49	564.44	(2)	564.21
December 23, 2005	562.55	562.09	556.20	564.28	562.45	564.11	(2)	564.22	561.05	561.85	564.42	(2)	564.32
January 27, 2006	562.95	562.53	556.21	564.50	562.97	564.16	(2)	564.32	561.02	561.79	564.41	(2)	564.06
February 28, 2006	563.17	562.26	554.70	564.27	562.90	564.13	(2)	564.31	558.44	561.68	564.37	(2)	564.26
March 24, 2006	562.68	561.77	555.64	564.46	562.86	564.25	(2)	564.32	560.43	561.57	564.46	(2)	564.36
April 21, 2006	562.31	561.84	555.61	564.42	562.76	564.41	(2)	564.32	560.40	561.48	564.49	564.26	564.46
May 30, 2006	562.73	562.30	555.84	564.91	562.50	565.00	564.87	564.80	560.44	561.75	564.95	564.86	565.07
June 26, 2006	561.57	560.63	556.19	563.04	562.37	564.97	564.81	564.92	561.02	561.92	565.15	564.78	565.06
July 31, 2006 (8)	565.18	564.78	558.88	565.14	564.39	565.24	565.09	565.01	563.66	564.54	565.19	565.07	565.28
August 25, 2006	561.64	561.21	556.06	564.72	562.99	564.81	(2)	564.59	560.89	561.82	564.80	564.68	564.87
September 22, 2006	561.46	561.01 ⁽⁶⁾	555.95	564.88	562.76	564.73	564.70	564.72	560.51	561.99	564.94	564.67	564.88
October 31, 2006	559.98	555.62	556.01	565.03	562.58	564.96	564.82	564.87	559.95	562.09	565.06	564.66	565.03
November 29, 2006	561.35	560.85	555.93	564.30	562.48	564.25	(2)	564.18	560.73	562.01	564.40	(2)	564.35
December 29, 2006	561.52	560.42	555.93	564.46	562.98	564.36	564.82	564.31	560.80	561.89	564.53	(2)	564.49

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

- ⁽²⁾ River level too low to obtain a measurement at the measuring location.
- ⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.
- ⁽⁴⁾ Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.
- ⁽⁵⁾ Buried with snow.
- ⁽⁶⁾ Believed to be erroneous reading.
- ⁽⁷⁾ Ice on pipe.
- ⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in upstream City manhole.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 28, 2005	564.77	561.33	561.82	564.69	561.92	564.79	564.90	562.75	(4)	561.01	562.71
February 28, 2005	564.84	560.74	561.25	564.79	562.05	564.88	564.94	562.78	(4)	561.55	562.77
March 31, 2005	564.54	561.06	561.60	564.56	562.11	564.59	564.65	563.12	563.26	562.21	563.11
April 20, 2005	565.13	561.15	561.65	565.15	562.26	565.19	565.21	563.21	562.72	562.28	563.20
May 27, 2005	564.99	561.13	561.42	565.02	562.29	565.08	565.08	563.12	563.25	562.19	563.11
June 24, 2005	564.98	560.18	560.76	564.92	562.40	565.06	565.00	562.85	562.93	561.91	562.82
July 29, 2005	565.09	561.17	562.15	565.15	562.51	565.14	561.33	562.88	563.03	561.98	562.87
August 31, 2005	564.88	561.31	561.85	564.88	562.75	564.90	564.96	562.91	563.01	561.98	562.86
October 3, 2005	564.99	560.43	560.95	565.11	562.90	565.07	564.97	563.20	563.26	562.24	563.13
October 31, 2005	564.83	560.71	561.25	565.00	563.15	564.96	564.82	563.39	563.50	562.43	563.35
November 22, 2005	564.26	560.31	561.00	564.18	563.29	564.26	564.35	563.53	563.69	562.25	563.53
December 23, 2005	564.35	561.30	561.84	564.26	563.46	564.32	564.48	563.50	563.67	562.60	563.52
January 27, 2006	564.34	561.26	561.76	564.36	563.61	564.42	564.42	563.90	564.08	563.02	563.92
February 28, 2006	564.32	558.38	561.23	564.29	563.73	564.34	564.38	563.94	564.09	563.02	563.96
March 24, 2006	564.39	560.60	561.16	564.44	563.47	564.45	564.50	563.83	564.02	562.96	563.88
April 21, 2006	564.54	560.63	561.15	564.64	563.49	564.60	564.55	563.65	563.77	562.68	563.61
May 30, 2006	565.18	560.28	561.03	565.24	563.61	565.26	565.25	563.48	563.54	562.53	563.44
June 26, 2006	565.12	561.26	561.75	565.13	563.70	565.15	565.19	563.41	563.52	562.43	563.37
July 31, 2006 (5)	565.44	564.03	564.30	565.45	563.92	565.49	565.45	564.08	564.20	563.15	564.07
August 25, 2006	564.98	561.10	561.57	565.10	563.98	565.26	561.81	563.38	564.62	562.43	563.42
September 22, 2006	564.94	559.81	561.20	565.04	564.29	565.01	564.95	562.73	562.83	561.67	562.54
October 31, 2006	565.11	558.19	561.78	565.07	564.77	565.14	565.16	564.40	564.51	563.36	564.36
November 29, 2006	564.42	560.54	561.69	564.41	564.87	566.44	564.50	562.10	561.27	559.66	561.85
December 29, 2006	564.55	560.96	561.46	564.54	561.89	564.64	564.64	561.90	561.95	560.86	561.71

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

(4) Buried with snow.

⁽⁵⁾ Buried with snow.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				NORTH	IUNAWA		River					River	
Date	MH2	МНЗ	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 26, 2007	561.39	560.92	556.04	564.62	562.78	564.75	(2)	563.79	560.89	562.06	564.67	564.46	564.77
February 27, 2007	561.53	560.57	556.23	564.32	562.49	564.25	(2)	564.15	561.07	561.96	564.35	(7)	564.33
March 30, 2007	560.25	559.45	556.24	564.49	562.30	564.40	(2)	564.27	561.09	562.05	564.46	564.28	564.48
April 30, 2007	560.99	559.39	556.31	564.97	562.62	564.97	564.82	564.78	561.14	562.20	564.96	564.78	565.07
May 25, 2007	560.85	559.85	556.12	564.67	562.48	565.73	(2)	564.54	561.02	562.05	564.75	564.67	564.75
June 29, 2007	560.85	558.83	556.45	564.70	562.32	564.78	(2)	564.54	561.26	562.16	564.81	564.64	564.79
July 25, 2007	561.49	560.54	556.24	564.43	562.13	564.55	(2)	564.26	561.02	561.94	564.47	564.41	564.53
August 31, 2007	561.10	559.62	556.22	564.43	561.93	564.56	(2)	564.29	561.04	561.95	564.55	564.44	564.65
September 27, 2007	561.49	561.05	556.02	564.44	561.86	564.44	(2)	564.34	560.47	562.01	564.58	564.27	564.56
October 31, 2007	561.57	560.69	556.17	564.08	562.02	563.88	(2)	564.01	561.08	562.00	564.16	(2)	564.03
November 30, 2007	561.59	560.58	555.84	564.25	562.22	564.03	(2)	564.09	560.68	561.80	564.42	(2)	564.31
December 31, 2007	561.18	559.69	555.58	564.29	562.48	564.07	(2)	564.09	559.37	561.88	564.28	(2)	564.23
January 28, 2008	561.48	559.46	556.14	564.22	562.68	563.99	(2)	564.13	560.99	561.95	564.25	563.68	564.12
February 29, 2008	561.48	560.45	555.99	564.67	562.38	564.68	(2)	564.56	560.02	562.06	564.75	564.50	564.77
March 31, 2008	561.71	560.74	556.10	564.93	562.33	564.62	(2)	564.58	560.06	562.54	564.81	564.48	564.80
April 25, 2008	561.85	559.67	556.27	564.71	562.73	564.71	(2)	564.59	561.10	562.07	564.78	564.64	564.81
May 29, 2008	562.00	559.26	556.65	564.72	562.66	564.73	(2)	564.59	561.39	562.28	564.77	564.75	564.84
June 25, 2008	562.57	559.54	557.84	564.82	562.79	564.79	564.83	564.71	562.66	563.49	564.88	564.72	564.88
July 31, 2008	562.69	561.02	560.18	564.94	563.27	565.73	564.73	564.72	563.00	563.86	565.03	564.69	564.96
August 27, 2008	565.69	565.29	559.36	564.58	565.10	564.46	564.47	564.42	564.13	564.95	564.71	564.42	564.55
September 26, 2008	562.21	559.22	558.36	564.54	563.42	564.51	(2)	564.40	563.21	564.07	564.70	564.34	564.64
October 30, 2008	561.67	560.08	557.64	564.73	562.97	564.51	(2)	564.46	562.57	563.49	564.69	564.37	564.64
November 22, 2008	561.61	561.19	557.41	564.30	562.82	564.04	(2)	564.12	562.36	563.27	564.32	(2)	564.22
December 31, 2008	566.56	565.53	560.22	564.63	566.09	564.56	(2)	564.48	564.91	565.70	564.68	564.18	564.63

Notes:

- ⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.
- ⁽²⁾ River level too low to obtain a measurement at the measuring location.
- ⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.
- (4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.
- ⁽⁵⁾ Buried with snow.
- ⁽⁶⁾ Believed to be erroneous reading.
- ⁽⁷⁾ Ice on pipe.
- ⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in downstream City manhole.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK *River*

OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
	572.11			572.37				574.30	575 84	574 82
573.35		574.37	568.46		574.01	574.66	576.23		0,0101	0, 1.0=
564.89	561.09	561.73	564.96	560.86	564.99	565.49	563.41	563.52	562.36	563 39
564.43	561.16	561.86	564.46	559.97	564.47	564.47	562.64	562.77	561.73	562.62
564.58	561.36	561.85	564.65	560.20	564.67	564.64	562.66	561.87	558.93	561 72
565.20	561.29	561.77	565.26	559.05	565.26	565.22	562.13	562.22	561.13	562.05
564.89	561.12	561.61	564.98	560.04	565.00	564.94	562.10	562.20	561.14	563.09
564.90	561.39	561.79	564.98	560.14	565.00	564.95	562.12	562.17	561.18	562.08
564.65	561.18	561.55	564.79	560.16	564.76	564.61	562.03	562.13	561.07	561.98
564.72	561.28	561.73	564.80	560.23	564.84	564.76	562.05	561.54	561.07	562.01
564.65	559.56	561.79	564.48	560.40	561.53	564.66	562.05	562.18	561.09	562.01
564.09	561.36	561.86	564.06	560.56	564.12	564.12	562.09	562.21	561.14	562.10
564.33	561.00	562.30	564.25	560.68	564.35	564.42	562.05	561.67	559.55	561.98
564.28	558.54	561.56	564.20	560.78	564.53	564.35	562.16	562.19	561.12	562.01
564.15	561.30	561.80	564.01	560.93	564.20	564.23	562.78	562.89	561.82	562.74
564.84	559.51	561.89	564.80	560.69	564.90	564.90	562.17	562.24	561.20	562.11
564.61	558.99	561.89	564.84	560.76	564.98	564.97	562.24	561.58	561.18	562.08
564.94	561.39	561.90	565.05	560.84	565.02	564.92	562.56	562.70	561.65	562.57
564.95	561.50	561.82	565.01	560.92	565.01	564.96	562.14	562.22	561.16	562.07
565.00	562.83	563.28	565.04	561.05	565.07	564.97	562.11	562.18	561.00	561.82
562.69	563.53	566.07	565.01	561.24	565.09	565.07	561.97	562.07	560.98	561.84
564.64	564.16	564.61	564.79	561.39	564.77	564.60	564.15	564.34	563.24	564.16
564.71	563.53	564.03	564.71	561.55	564.78	564.74	562.02	561.82	559.10	561.59
564.67	562.85	563.43	564.71	561.74	564.77	564.71	561.83	562.70	561.92	560.06
564.26	562.75	563.29	564.20	561.79	564.30	564.35	561.76	561.28	561.23	561.71
564.70	564.91	565.33	564.65	562.09	564.86	564.78	564.71	565.03	563.97	564.59
	573.35 564.89 564.43 564.58 565.20 564.89 564.90 564.65 564.72 564.65 564.72 564.63 564.28 564.15 564.84 564.61 564.94 564.94 564.95 565.00 562.69 564.64 564.71 564.67 564.26 564.70	OGC-3 MH11 573.35 564.89 561.09 564.43 561.16 564.33 561.36 564.58 561.36 565.20 561.29 564.89 561.12 564.89 561.12 564.89 561.12 564.89 561.12 564.65 561.39 564.65 561.18 564.65 561.28 564.65 559.56 564.65 559.56 564.33 561.00 564.63 561.30 564.28 558.54 564.61 558.99 564.61 558.99 564.61 558.99 561.30 564.61 558.99 564.64 564.94 561.30 562.63 563.53 564.64 564.94 561.39 562.69 563.53 564.64 564.16 564.70 562.85 564.67 562.85 564.26 562.75 564.26 562.75 564.70 564.91	OGC-3 MH11 MW-8 572.11 573.35 574.37 564.89 561.09 561.73 564.43 561.16 561.86 564.43 561.29 561.77 564.89 561.29 561.77 564.89 561.29 561.77 564.89 561.12 561.61 564.90 561.39 561.79 564.65 561.18 561.55 564.72 561.28 561.73 564.65 559.56 561.79 564.65 559.56 561.79 564.65 559.51 561.86 564.72 561.30 561.86 564.61 558.54 561.56 564.15 561.30 561.80 564.61 558.99 561.80 564.61 558.99 561.89 564.61 558.99 561.80 564.61 561.50 561.82 565.00 562.83 563.28 562.69 56	OGC-3MH11MW-8South 572.11 574.37 568.46 564.89 561.09 561.73 564.96 564.43 561.16 561.85 564.46 564.43 561.36 561.85 564.65 562.20 561.29 561.77 565.26 564.89 561.12 561.61 564.98 564.90 561.39 561.79 564.98 564.65 561.18 561.55 564.79 564.72 561.28 561.73 564.80 564.65 559.56 561.79 564.80 564.65 559.56 561.79 564.80 564.65 559.56 561.79 564.48 564.09 561.36 561.86 564.25 564.33 561.00 562.30 564.25 564.25 561.30 561.80 564.20 564.48 559.51 561.89 564.80 564.61 58.99 561.89 564.80 564.61 58.99 561.89 564.80 564.61 58.99 561.80 564.61 564.95 561.50 561.82 565.01 564.95 561.50 561.82 565.01 564.95 561.50 561.82 565.01 564.95 561.50 561.82 565.01 564.95 561.50 564.28 563.28 564.95 563.53 564.03 564.71 564.64 564.16 564.71 564.27 </td <td>OGC-3MH11MW-8SouthMH12$572.11$$572.37$$574.37$$568.46$$564.89$$561.09$$561.73$$564.96$$560.86$$564.43$$561.16$$561.85$$564.65$$560.20$$565.20$$561.29$$561.77$$565.26$$559.97$$564.89$$561.12$$561.61$$564.98$$560.20$$565.20$$561.29$$561.77$$565.26$$559.05$$564.89$$561.12$$561.61$$564.98$$560.14$$564.90$$561.39$$561.79$$564.98$$560.14$$564.65$$561.18$$561.79$$564.98$$560.14$$564.65$$559.56$$561.79$$564.80$$560.23$$564.65$$559.56$$561.79$$564.48$$560.23$$564.65$$559.56$$561.79$$564.48$$560.23$$564.65$$559.56$$561.79$$564.48$$560.40$$564.33$$561.00$$562.30$$564.25$$560.68$$564.28$$558.54$$561.56$$564.20$$560.78$$564.41$$558.99$$561.80$$560.69$$564.84$$560.76$$564.45$$559.51$$561.82$$565.05$$560.84$$564.61$$558.99$$561.82$$565.05$$560.84$$564.94$$561.39$$561.82$$565.01$$560.92$$565.00$$562.83$$563.28$$565.01$$561.24$$564.95$$561.50$$561.32$$565.01$$561.$</td> <td>OGC-3MH11MW-8SouthMH12OGC-8$572.11$$572.37$$574.37$$568.46$$572.37$$573.35$$574.37$$568.46$$572.37$$564.89$$561.09$$561.73$$564.96$$560.86$$564.43$$561.16$$561.85$$564.46$$559.97$$564.43$$561.16$$561.85$$564.65$$560.20$$564.58$$561.36$$561.85$$564.65$$560.20$$564.59$$561.12$$561.77$$565.26$$559.05$$564.89$$561.12$$561.61$$564.98$$560.04$$564.90$$561.39$$561.79$$564.98$$560.14$$564.65$$561.18$$561.55$$564.79$$560.16$$564.72$$561.28$$561.73$$564.80$$560.23$$564.65$$559.56$$561.79$$564.48$$560.40$$564.35$$559.56$$561.79$$564.48$$560.40$$564.35$$561.30$$561.30$$564.25$$560.68$$564.33$$561.00$$562.30$$564.25$$560.68$$564.28$$558.54$$561.56$$564.20$$560.78$$564.48$$559.51$$561.89$$564.80$$560.69$$564.44$$559.51$$561.89$$564.80$$560.69$$564.59$$561.50$$561.89$$564.84$$560.76$$564.98$$561.50$$565.01$$565.01$$565.02$$564.45$$561.50$$565.01$$561.02$$565.01$</td> <td>OGC-3MH11MW-8SouthMH12OGC-8OGC-4$572.11$$572.37$$574.37$$568.46$$572.37$$573.35$$574.37$$568.46$$574.01$$574.66$$564.89$$561.09$$561.73$$564.96$$560.86$$564.99$$565.49$$564.43$$561.16$$561.86$$564.46$$559.97$$564.47$$564.47$$564.58$$561.29$$561.77$$565.26$$559.97$$564.47$$564.64$$565.20$$561.29$$561.77$$565.26$$559.05$$565.26$$565.22$$564.89$$561.12$$561.61$$564.98$$560.14$$565.00$$564.94$$564.99$$561.39$$561.77$$564.98$$560.14$$565.00$$564.95$$564.65$$561.18$$561.79$$564.48$$560.16$$564.76$$564.61$$564.65$$559.56$$561.79$$564.48$$560.16$$564.76$$564.61$$564.65$$559.56$$561.79$$564.48$$560.476$$564.12$$564.42$$564.20$$561.36$$564.20$$560.78$$564.35$$564.42$$564.28$$58.54$$561.56$$564.20$$560.78$$564.20$$564.23$$564.48$$559.51$$561.89$$564.80$$560.69$$564.90$$564.92$$564.59$$561.30$$564.80$$560.69$$564.90$$564.92$$564.59$$561.50$$561.89$$565.05$$560.84$$560.07$</td> <td>OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 572.11 574.37 568.46 572.37 574.01 574.66 576.23 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 564.43 561.16 561.85 564.65 560.20 564.47 564.47 562.64 564.58 561.29 561.77 565.26 559.05 565.26 565.22 562.13 564.89 561.12 561.61 564.98 560.04 565.00 564.94 562.12 564.65 561.12 561.77 565.26 550.00 564.94 562.12 564.64 561.28 561.79 564.98 560.14 565.00 564.94 562.10 564.65 559.56 561.73 564.80 560.23 564.64 562.05 564.65 559.56 561.73 564.80 560.23 564.64 562.05 564.65 <</td> <td>OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 MH14 572.11 572.37 568.46 572.37 574.01 574.66 576.23 574.30 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 563.52 564.43 561.16 561.85 564.65 560.20 564.67 564.64 562.26 561.87 564.59 561.29 561.77 565.26 565.20 564.94 562.10 562.21 564.89 561.12 561.61 564.98 560.14 565.00 564.95 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.13 564.72 561.83 564.65 560.43 564.64 562.05 561.54 564.65 561.79 564.48 560.40 561</td> <td>OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 MH14 MH15 572.11 572.37 574.37 568.46 572.37 574.30 575.84 574.30 575.84 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 563.52 562.36 564.43 561.16 561.85 564.65 560.20 564.47 564.47 562.64 562.27 561.73 565.20 561.29 561.77 565.26 559.05 565.22 562.13 562.20 561.14 564.89 561.12 561.61 564.98 560.14 565.00 564.95 562.12 562.13 562.22 561.13 564.65 561.18 561.73 564.79 560.16 564.95 562.12 562.13 562.12 561.17 561.67 564.65 559.56 51.79 564.48 560.23 564.43 564.66 562.05 561.36 561.07</td>	OGC-3MH11MW-8SouthMH12 572.11 572.37 574.37 568.46 564.89 561.09 561.73 564.96 560.86 564.43 561.16 561.85 564.65 560.20 565.20 561.29 561.77 565.26 559.97 564.89 561.12 561.61 564.98 560.20 565.20 561.29 561.77 565.26 559.05 564.89 561.12 561.61 564.98 560.14 564.90 561.39 561.79 564.98 560.14 564.65 561.18 561.79 564.98 560.14 564.65 559.56 561.79 564.80 560.23 564.65 559.56 561.79 564.48 560.23 564.65 559.56 561.79 564.48 560.23 564.65 559.56 561.79 564.48 560.40 564.33 561.00 562.30 564.25 560.68 564.28 558.54 561.56 564.20 560.78 564.41 558.99 561.80 560.69 564.84 560.76 564.45 559.51 561.82 565.05 560.84 564.61 558.99 561.82 565.05 560.84 564.94 561.39 561.82 565.01 560.92 565.00 562.83 563.28 565.01 561.24 564.95 561.50 561.32 565.01 $561.$	OGC-3MH11MW-8SouthMH12OGC-8 572.11 572.37 574.37 568.46 572.37 573.35 574.37 568.46 572.37 564.89 561.09 561.73 564.96 560.86 564.43 561.16 561.85 564.46 559.97 564.43 561.16 561.85 564.65 560.20 564.58 561.36 561.85 564.65 560.20 564.59 561.12 561.77 565.26 559.05 564.89 561.12 561.61 564.98 560.04 564.90 561.39 561.79 564.98 560.14 564.65 561.18 561.55 564.79 560.16 564.72 561.28 561.73 564.80 560.23 564.65 559.56 561.79 564.48 560.40 564.35 559.56 561.79 564.48 560.40 564.35 561.30 561.30 564.25 560.68 564.33 561.00 562.30 564.25 560.68 564.28 558.54 561.56 564.20 560.78 564.48 559.51 561.89 564.80 560.69 564.44 559.51 561.89 564.80 560.69 564.59 561.50 561.89 564.84 560.76 564.98 561.50 565.01 565.01 565.02 564.45 561.50 565.01 561.02 565.01	OGC-3MH11MW-8SouthMH12OGC-8OGC-4 572.11 572.37 574.37 568.46 572.37 573.35 574.37 568.46 574.01 574.66 564.89 561.09 561.73 564.96 560.86 564.99 565.49 564.43 561.16 561.86 564.46 559.97 564.47 564.47 564.58 561.29 561.77 565.26 559.97 564.47 564.64 565.20 561.29 561.77 565.26 559.05 565.26 565.22 564.89 561.12 561.61 564.98 560.14 565.00 564.94 564.99 561.39 561.77 564.98 560.14 565.00 564.95 564.65 561.18 561.79 564.48 560.16 564.76 564.61 564.65 559.56 561.79 564.48 560.16 564.76 564.61 564.65 559.56 561.79 564.48 560.476 564.12 564.42 564.20 561.36 564.20 560.78 564.35 564.42 564.28 58.54 561.56 564.20 560.78 564.20 564.23 564.48 559.51 561.89 564.80 560.69 564.90 564.92 564.59 561.30 564.80 560.69 564.90 564.92 564.59 561.50 561.89 565.05 560.84 560.07	OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 572.11 574.37 568.46 572.37 574.01 574.66 576.23 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 564.43 561.16 561.85 564.65 560.20 564.47 564.47 562.64 564.58 561.29 561.77 565.26 559.05 565.26 565.22 562.13 564.89 561.12 561.61 564.98 560.04 565.00 564.94 562.12 564.65 561.12 561.77 565.26 550.00 564.94 562.12 564.64 561.28 561.79 564.98 560.14 565.00 564.94 562.10 564.65 559.56 561.73 564.80 560.23 564.64 562.05 564.65 559.56 561.73 564.80 560.23 564.64 562.05 564.65 <	OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 MH14 572.11 572.37 568.46 572.37 574.01 574.66 576.23 574.30 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 563.52 564.43 561.16 561.85 564.65 560.20 564.67 564.64 562.26 561.87 564.59 561.29 561.77 565.26 565.20 564.94 562.10 562.21 564.89 561.12 561.61 564.98 560.14 565.00 564.95 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.13 564.72 561.83 564.65 560.43 564.64 562.05 561.54 564.65 561.79 564.48 560.40 561	OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 MH14 MH15 572.11 572.37 574.37 568.46 572.37 574.30 575.84 574.30 575.84 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 563.52 562.36 564.43 561.16 561.85 564.65 560.20 564.47 564.47 562.64 562.27 561.73 565.20 561.29 561.77 565.26 559.05 565.22 562.13 562.20 561.14 564.89 561.12 561.61 564.98 560.14 565.00 564.95 562.12 562.13 562.22 561.13 564.65 561.18 561.73 564.79 560.16 564.95 562.12 562.13 562.12 561.17 561.67 564.65 559.56 51.79 564.48 560.23 564.43 564.66 562.05 561.36 561.07

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

⁽⁵⁾ Buried with snow.

.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				NORTH			River					River	
Date	MH2	МНЗ	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 30, 2009	568.71	570.75	560.62	564.42	566.89	564.02	(2)	564.31	562.42	565.96	564.56	(7)	564.21
February 25, 2009	568.77	571.27	560.22	564.50	567.20	563.88	(2)	564.37	562.52	564.31	564.58	564.11	564.33
March 27, 2009	565.45	559.49	558.31	564.48	564.81	564.41	(2)	564.38	561.18	562.90	564.61	(2)	564.52
April 30, 2009	563.46	560.06	558.36	564.84	563.55	564.85	564.80	564.73	563.14	564.03	564.91	564.74	564.97
May 27, 2009	561.36	560.29	558.18	564.80	563.18	564.84	(2)	564.69	563.04	563.93	564.90	564.78	564.94
June 29, 2009	561.56	561.28	556.26	565.01	562.81	565.01	565.02	564.90	560.74	562.12	565.15	564.93	565.14
July 27, 2009	561.64	559.34	556.22	565.28	562.63	565.20	565.12	565.06	560.99	562.00	565.31	565.05	565.34
August 31, 2009	561.76	561.29	556.06	565.01	562.47	565.00	564.90	564.84	560.85	561.82	565.08	564.86	565.14
September 30, 2009	565.80	565.67	558.36	565.30	564.80	564.93	564.80	564.99	561.46	562.78	565.37	564.71	565.19
October 30, 2009	566.21	566.49	558.71	564.64	565.37	564.60	(2)	564.43	561.66	563.06	564.67	564.35	564.71
November 30, 2009	561.87	561.41	555.76	564.74	563.19	564.30	(2)	564.27	560.65	561.81	564.60	563.98	564.49
December 30, 2009	561.72	560.01	557.87	564.43	562.79	564.21	(2)	564.24	562.80	563.66	564.44	563.89	564.37
January 29, 2010	561.67	560.02	555.87	565.34	562.60	565.08	(2)	565.01	560.13	561.84	565.23	564.63	565.32
February 26, 2010	561.75	561.26	555.72	563.99	562.38	563.88	566.60	563.85	560.66	561.61	564.06	564.29	564.01
March 30, 2010	562.58	561.25	556.36	564.30	562.69	563.94	566.80	564.03	560.76	561.89	564.24	564.19	564.19
April 30, 2010	562.61	560.99	556.62	564.47	562.78	564.45	(2)	564.36	561.11	562.04	564.55	564.38	564.58
May 26, 2010	563.33	559.94	558.05	564.73	562.80	564.90	(2)	564.70	562.87	563.65	564.84	564.78	564.98

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.

⁽⁵⁾ Buried with snow.

⁽⁶⁾ Believed to be erroneous reading.

⁽⁷⁾ Ice on pipe.

⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in downstream City manhole.

Page 10 of 10

TABLE 2.2

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK *River*

Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575 84	574 82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23	0. 100	0,0.01	07 1.02
January 30, 2009	564.24	564.96	565.25	564.15	562.22	564.29	564.34	563.48	561.59	559.58	563.21
February 25, 2009	564.36	559.64	562.05	564.27	562.29	564.41	564.46	563.30	561.88	561.02	563.44
March 27, 2009	564.57	561.11	561.66	564.48	562.03	564.63	564.71	562.67	561.37	560.58	562.65
April 30, 2009	565.09	563.38	563.93	565.14	562.12	565.15	565.07	563.36	563.64	562.60	563.40
May 27, 2009	565.10	563.45	564.03	565.20	562.17	565.20	565.09	564.58	564.68	563.82	564.63
June 29, 2009	565.25	560.98	562.26	565.23	563.68	565.29	565.24	564.76	565.52	564.68	564.93
July 27, 2009	565.46	561.40	562.16	565.45	562.64	565.51	565.47	564.59	564.89	563.91	564.70
August 31, 2009	565.24	561.28	562.10	562.25	562.79	565.29	565.26	564.65	564.74	563.67	564.71
September 30, 2009	565.22	560.10	561.60	565.10	562.87	565.26	565.28	564.39	564.91	564.03	564.60
October 30, 2009	564.78	560.77	561.70	564.77	562.99	564.84	564.84	564.35	564.80	563.82	564.44
November 30, 2009	564.58	561.13	561.89	564.44	563.10	564.66	564.66	564.44	564.79	563.82	564.53
December 30, 2009	564.40	563.24	563.93	564.37	563.31	564.45	564.50	564.81	565.14	564.13	564.87
January 29, 2010	565.19	559.72	562.18	565.03	563.49	565.20	565.38	564.50	564.03	562.93	564.53
February 26, 2010	564.12	561.15	561.87	564.36	563.56	564.11	564.16	563.98	563.86	562.93	564.13
March 30, 2010	564.24	561.59	562.56	564.45	560.01	564.30	564.35	564.79	564.60	563.52	564.85
April 30, 2010	564.69	560.40	562.25	564.80	559.66	564.79	564.71	564.62	564.54	563.51	564.65
May 26, 2010	565.14	563.21	563.61	565.19	561.01	565.19	565.13	564.57	564.58	563.44	564.60

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

⁽⁵⁾ Buried with snow.

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date M	onitored	5/11/2	001	5/18/2	2001	5/25/2	001	6/1/2	001	6/8/2	001	6/15/2	2001
		Water Level	Gradient										
		(ft amsl)	Direction										
Monit	oring Location												
Outer Inner	River North MH2	564.54 559.31	Inward	564.49 NM	NA	563.80 NM	NA	563.52 559.34	Inward	564.75 NM	NA	564.71 560.79	Inward
Outer Inner	River North MH6	564.54 561.98	Inward	564.49 562.03	Inward	563.80 NM	NA	563.52 561.97	Inward	564.75 562.49	İnward	564.71 562.60	Inward
Outer Inner	River Middle MH8	564.38 NM	NA	564.33 NM	NA	563.63 NM	NA	563.47 NM	NA	564.68 NM	NA	564.71 560.53	Inward
Outer Inner	River South MH12	564.70 564.15	Inward	564.65 561.12	Inward	564.80 564.17	Inward	565.00 564.19	Inward	565.05 562.45	Inward	565.05 562.34	Inward

Date M	lonitored	6/22/2	001	6/29/2	2001	7/31/2	2001	8/20	0/2001	9/28/2	001	10/22/2	2001
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient						
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction						
Monite	oring Location												
Outer	River North	564.90	Inward	564.52	Inward	564.66	Inward	564.69	Inward	564.68	Inward	564.36 (2)	Inward
Inner	MH2	560.77		560.62		559.87		561.49		561.03		561.38	
Outer	River North	564.90	Inward	564.52	Inward	564.66	Inward	564.69	(1) Outward	564.68	Inward	564.36 (2)	Outward
Inner	MH6	562.53		562.42		562.90		565.23		563.03		567.06	
Outer	River Middle	564.86	Inward	564.48	Inward	564.68	Inward	564.64	Inward	564.68	Inward	564.26	Inward
Inner	MH8	560.44		560.38		560.25		560.25		560.27		560.43	
			1										
Outer	River South	565.18	Inward	564.83	Inward	564.96	Inward	564.99	Inward	564.95	Inward	564.61	Inward
Inner	MH12	562.29		561.80		560.77		560.42		560.36		560.42	

Notes:

Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

.

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date M	onitored	11/27/	2001	12/20/	2001	1/29/2	002	2/11/2	002	3/25/2	002	4/24/2	2002
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monite	oring Location	yt umstj	Differion	(ji umsi)	Direction	(ji umsi)	Direction	(jt amsi)	Direction	(ft amsi)	Direction	(ft amsl)	Direction
Outer Inner	River North MH2	563.80 (2) 561.45	Inward	564.69 560.96	Inward	563.89 560.74	Inward	564.03 560.80	Inward	563.90 (2) 560.55	Inward	564.61 562.54	Inward
Outer Inner	River North MH6	563.80 (2) 564.53	Outward	564.69 564.39	Inward	563.89 563.75	Inward	564.03 564.19	Outward	563.90 (2) 563.25	Inward	564.61 564.12	Inward
Outer Inner	River Middle MH8	563.54 560.45	Inward	564.45 559.75	Inward	563.74 560.98	Inward	563.97 561.06	Inward	563.59 560.65	Inward	564.19 561.13	Inward
Outer Inner	River South MH12	564.05 560.06	Inward	564.96 560.23	Inward	563.92 560.29	Inward	564.53 560.28	Inward	564.15 560.34	Inward	564.86 560.63	Inward

Date M	onitored	5/21/2	:002	6/20/2	002	7/18/2	002	8/6/2	002	9/12/2	002	10/30/2	2002
		Water Level	Gradient										
		(ft amsl)	Direction										
Monite	oring Location												
Outer	River North	564.76	Inward	564.58	Inward	564.89	Inward	564.65	Inward	565.04	Inward	563.91 (2)	Inward
Inner	MH2	561.74		561.67		561.46		561.26		561.60		561.63	
Outer	River North	564.76	Inward	564.58	Outward	564.89	Outward	564.65	Outward	565.04	Outward	563.91 (2)	Outward
Inner	MH6	564.10		565.58		564.99		565.89		565.60		566.24	
Outer	River Middle	564.66	Inward	564.68	Inward	564.90	Inward	564.59	Inward	564.95	Inward	563.75	Inward
Inner	MH8	560.05		560.68		560.79		561.05		561.10		561.07	
Outer	River South	565.07	Inward	564.88	Inward	565.22	Inward	564.90	Inward	565.25	Inward	564.16	Inward
Inner	MH12	560.84		561.04		560.95		561.07		561.09		561.31	

Notes:

,

Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

-

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Mo	nitored		2002	12/11/	2002	1/16/2	2003	2/25/2	003	3/14/2	003	4/14/2	003
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ji amsi)	Direction	(ft amsi)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer Inner	River North MH2	563.90 (2) 561.12	Inward	563.89 (2) 561.55	Inward	563.86 (2) 561.65	Inward	563.96 (2) 561.58	Inward	563.86 (2) 561.65	Inward	564.30 561.68	Inward
Outer Inner	River North MH6	563.90 (2) 554.47 (3)	Inward	563.89 (2) 555.09	Inward	563.86 (2) 556.15	Inward	563.96 (2) 555.74	Inward	563.86 (2) 555.75	Inward	564.30 554.54	Inward
Outer Inner	River Middle MH8	563.71 558.03	Inward	563.72 559.95	Inward	563.52 561.04	Inward	563.34 560.60	Inward	563.24 560.61	Inward	564.24 558.65	Inward
Outer Inner	River South MH12	564.15 561.44	Inward	564.14 561.45	Inward	564.11 561.83	Inward	564.21 561.26	Inward	564.11 561.54	Inward	564.45 561.56	Inward

Date Mon	itored	5/8/2	003	6/19/2	003	7/21/2	003	8/28/2	003	9/30/2	003	10/30/2	2003
		Water Level (ft amsl)	Gradient Direction										
Monitor	ing Location												
Outer Inner	River North MH2	564.61 561.52	Inward	564.78 562.26	Inward	564.49 561.21	Inward	564.64 561.65	Inward	564.83 (2) 561.65	Inward	564.78 (2) 561.48	Inward
Outer Inner	River North MH6	564.61 555.93	Inward	564.78 556.02	Inward	564.49 556.06	Inward	564.64 554.61	Inward	564.83 (2) 554.61	Inward	564.78 (2) 554.98	Inward
Outer Inner	River Middle MH8	564.27 560.76	Inwa r d	564.66 560.85	Inward	564.44 560.89	Inward	564.6 558.52	Inward	564.6 558.52	Inward	564.63 559.77	Inward
Outer Inner	River South MH12	564.61 561.61	Inward	564.96 561.94	Inward	564.78 562.03	Inward	564.91 562.19	Inward	565.08 562.26	Inward	565.03 562.25	Inward

Notes:

(1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

.

Page 4 of 10

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Mo	nitored	11/21/2	003	12/11	/2003	1/16/	2004	2/25	2004	3/14/	2004	4/14/	2004
		Water Level	Gradient										
		(ft amsl)	Direction										
Monito	ring Location												
Outer Inner	River North MH2	564.03 (2) 561.53	Inward	564.11 (2) 561.08	Inward	564.11 (2) (4)		563.91 (2) (4)		564.01 (2) 561.33	Inward	564.44 (2) 560.05	Inward
Outer Inner	River North MH6	564.03 (2) 555.94	Inward	564.11 (2) 555.82	Inward	564.11 (2) 555.84	Inward	563.91 (2) 556.12	Inward	564.01 (2) 555.9	Inward	564.44 (2) 554.91	Inward
Outer Inner	River Middle MH8	564.36 560.76	Inward	564.11 (2) 560.67	Inward	564.11 (2) 560.7	Inward	563.91 (2) 560.95	Inward	564.01 (2) 560.75	Inward	564.43 559.59	Inward
Outer Inner	River South MH12	564.28 562.52	Inward	564.36 562.75	Inward	564.36 562.49	Inward	564.16 562.3	Inward	564.26 562.07	Inward	564.69 561	Inward

Date Mon	itored	5/14/20	004	6/25/	2004	7/30/	2004	8/31/	2004	9/30/	2004	10/20	/2004
		Water Level (ft amsl)	Gradient Direction										
Monitori	ing Location												
Outer Inner	River North MH2	564.55 560.17	Inward	564.68 561.64	Inward	565.20 561.79	Inward	564.98 561.37	Inward	565.00 561.48	Inward	564.45 561.65	Inward
Outer Inner	River North MH6	564.55 554.56	Inward	564.68 555.74	Inward	565.20 555.24	Inward	564.98 555.83	Inward	565.00 555.60	Inward	564.45 555.96	Inward
Outer Inner	River Middle MH8	564.48 559.45	Inward	564.56 560.50	Inward	565.16 560.04	Inward	564.93 560.67	Inward	565.05 560.71	Inward	564.41 560.82	Inward
Outer Inner	River South MH12	564.71 560.80	Inward	564.91 560.95	Inward	565.46 561.15	Inward	565.25 561.35	Inward	565.30 561.25	Inward	564.49 561.50	Inward

Notes:

(1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Mon	itored	11/23/2	004	12/31	/2004	1/28/	2005	2/28/	2005	3/31/	2005	4/29/	2005
		Water Level	Gradient										
		(ft amsl)	Direction										
Monitor	ing Location												
Outer	River North	564.05 (2)	Inward	564.68	Inward	564.44 (2)	Inward	(6)	NA	564.31 (2)	Inward	564.83	Inward
Inner	MH2	561.50		561.60		562.60		561.05		561.25		560.20	
Outer	River North	564.05 (2)	Inward	564.68	Inward	564.44 (2)	Inward	(6)	NA	564.31 (2)	Inward	564.83	Inward
Inner	MH6	554.95		556.19		556.22		555.58		555.93		556.01	
Outer	River Middle	564.18 (5)	Inward	564.56	Inward	564.32	Inward	564.46	Inward	564.08	Inward	564.71	Inward
Inner	MH8	559.77		561.02		561.06		560.47		560.78		560.89	
Outer	River South	564.30	Inward	564.81	Inward	564.69	Inward	564.79	Inward	564.56	Inward	565.15	Inward
Inner	MH12	561.57		561.81		561.92		562.05		562.11		562.26	

Date Mon	itored	5/27/20	005	6/24/	2005	7/29/	2005	8/31/	2005	10/3/	2005	10/31	/2005
		Water Level	Gradient	Water Level	Gradient	Wate r Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitor	ing Location												
Outer	River North	564.78	Inward	564.73	Inward	564.82	Inward	564.63(2)	Inward	564.80	Inward	564.80	Inward
Inner	MH2	560.23		561.50		562.70		561.62		561.52		561.68	
Outer	River North	564.78	Inward	564.73	Inward	564.82	Inward	564.63(2)	Inward	564.80	Inward	564.80	Inward
Inner	MH6	555.82		555.16		556.56		556.24		555.41		555.60	
Outer	River Middle	564.74	Inward	564.70	Inward	564.85	Inward	564.54	Inward	564.75	Inward	564.55	Inward
Inner	MH8	560.65		559.92		561.39		561.07		560.20		560.46	
Outer	River South	565.02	Inward	564.92	Inward	565.15	Inward	564.88	Inward	565.11	Inward	565.00	Inward
Inner	MH12	562.29		562.40		562.51		562.75		562.90		563.15	

Notes:

(1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Moni	tored	11/22/2	2005	12/23/2	2005	01/27/2	2006	02/28/	2006	03/24/2	2006	04/21/	2006
		Water Level	Gradient										
		(ft amsl)	Direction										
Monitori	ing Location												
Outer Inner	River North MH2	563.93 (2) 561.62	Inward	564.01 (2) 562.55	Inward	564.11 (2) 562.95	Inward	564.04 (2) 563.17	Inward	564.19 (2) 562.68	Inward	564.39 (2) 562.31	Inward
Outer Inner	River North MH6	563.93 (2) 555.20	Inward	564.01 (2) 556.20	Inward	564.11 (2) 556.21	Inward	564.04 (2) 554.70	Inward	564.19 (2) 555.64	Inward	564.39 (2) 555.61	Inward
Outer Inner	River Middle MH8	564.05 (5) 560.64	Inward	564.13 (5) 561.05	Inward	564.23 (5) 561.02	Inward	564.16 (5) 558.44	Inward	564.31 (5) 560.43	Inward	564.26 560.40	Inward
Outer Inner	River South MH12	564.18 563.29	Inward	564.26 563.46	Inward	564.36 563.61	Inward	564.29 563.73	Inward	564.44 563.47	Inward	564.64 563.49	Inward

		05/30/2	2006	06/26/2	2006	07/31/	2006	08/25/	2006	0 9 /22/	2006	10/31/	2006
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Wate r Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitor	ing Location												
Outer	River North	564.87	Inward	564.81	Inward	565.09	Outward	564.85 (2)	Inward	564.70	Inward	564.82	Inward
Inner	MH2	562.73		561.57		565.18		561.64		561.46		559.98	
Outer	River North	564.87	Inward	564.81	Inward	565.09	Inward	564.85 (2)	Inward	564.70	Inward	564.82	Inward
Inner	MH6	555.84		556.19		556.19		556.06		555.95		555.62	
Outer	River Middle	564.86	Inward	564.78	Inward	- 565.07	Inward	564.68	Inward	564.67	Inward	564.66	Inward
Inner	MH8	560.44		561.02		563.66		561.02		561.02		559.95	
Outer	River South	565.24	Inward	565.13	Inward	565.45	Inward	565.10	Inward	565.04	Inward	565.07	Inward
Inner	MH12	563.61		563.70		563.92		563.98		564.29		564.77	

Notes:

(1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

(5) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

NM - Not Measured

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		11/29/2	2006	12/29/2	2006	01/26/2	2007	02/27/2	2007	03/30/2	2007	04/30/	2007
		Water Level	Gradient										
		(ft amsl)	Direction										
Monitor	ing Location												
Outer	River North	564.16	Inward	564.82	Inward	564.71 (2)	Inward	564.21 (2)	Inward	564.40 (2)	Inward	564.82	Inward
Inner	MH2	561.35		561.52		561.39		561.53		560.25		560.99	
Outer	River North	564.16	Inward	564.82	Inward	564.71 (2)	Inward	564.21 (2)	Inward	564.40 (2)	Inward	564.82	Inward
Inner	MH6	555.93		555.93		556.04		556.23		556.24		556.31	
Outer	River Middle	564.28	Inward	564.41 (1)	Inward	564.46	Inward	564.33 (1)	Inward	564.28	Inward	564.78	Inward
Inner	MH8	560.73		560.80		560.89		561.07		561.09		561.14	
Outer	River South	564.41	Outward	564.54	Inward	564.96	Inward	564.46	Inward	564.65	Inward	565.26	Inward
Inner	MH12	564.87		561.89		560.86		559.97		560.20		559.85	

		05/25/	2007	06/29/	/2007	07/25/	2007	08/31/	2007	09/27	/2007	10/31	/2007
		Water Level	Gradient										
		(ft amsl)	Direction										
Monito	oring Location												
Outer	River North	564.73 (2)	Inward	564.73 (2)	Inward	564.54 (2)	Inward	564.55(2)	Inward	564.23 (2)	Inward	563.81 (2)	Inward
Inner	MH2	560.85		560.85		561.49		561.10		561.49		561.57	
Outer	River North	564.73 (2)	Inward	564.73 (2)	Inward	564.54 (2)	Inward	564.55 (2)	Inward	564.23 (2)	Inward	563.81 (2)	Inward
Inner	MH6	556.12		556.45		556.24		556.24		556.02		556.17	
Outer	River Middle	564.67	Inward	564.64	Inward	- 564.41	Inward	564.44	Inward	564.27	Inward	563.98 (1)	Inward
Inner	MH8	561.02		561.26		561.02		561.04		560.47		561.08	
Outer	River South	564.98	Inward	564.98	Inward	564.79	Inward	564.80	Inward	564.48	Inward	564.06	Inward
Inner	MH12	560.04		560.14		560.16		560.23		560.40		560.56	

Notes:

(1) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		11/30/	2007	12/31/	2007	01/28/	2008	02/29/	2008	03/31/	2008	04/28/2	2008
		Water Level	Gradient	Wate r Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito ri	ing Location												
Outer Inner	River North MH2	564.00 (2) 561.59	Inward	563.95 (2) 561.18	Inward	563.76 (2) 561.48	Inward	564.55 (2) 561.48	Inward	564.59 (2) 561.71	Inward	564.80 (2) 561.85	Inward
Outer Inner	River North MH6	564.00 (2) 555.84	Inward	563.95 (2) 555.58	Inward	567.76 (2) 556.14	Inward	564.55 (2) 555.99	Inward	564.59 (2) 556.10	Inward	564.80 (2) 556.27	Inward
Outer Inner	River Middle MH8	564.12 (1) 560.68	Inward	564.07 (1) 559.37	Inward	563.68 560.99	Inwarđ	564.50 560.02	Inward	564.48 560.06	Inward	564.64 561.10	Inward
Outer Inner	River South MH12	564.25 560.68	Inward	564.20 560.78	Inward	564.01 560.93	Inward	564.80 560.69	Inward	564.84 560.76	Inward	565.05 560.84	Inward

		05/29/2	2008	06/25/	2008	07/31/	2008	08/27/	2008	09/26/	2008	10/30/2	008
		Water Level	Gradient										
		(ft amsl)	Direction										
Monitori	ng Location												
Outer	River North	564.76 (2)	Inward	564.83	Inward	564.73	Inward	564.47	Outward	564.46 (2)	Inward	564.46 (2)	Inward
Inner	MH2	562.00		562.57		562.69		565.69		562.21		561.67	
Outer	River North	564.76 (2)	Inward	564.83	Inward	564.73	Inward	564.47	Inward	564.46 (2)	Inward	564.46 (2)	Inward
Inner	MH6	556.65		557.84		560.18		559.36		558.36		557.64	
Outer	River Middle	564.75	Inward	564.72	Inward	564.69	Inward	564.42	Inward	564.34	Inward	564.37	Inward
Inner	MH8	561.39		562.66		563.00		564.13		563.21		562.57	
Outer	River South	565.01	Inward	565.04	Inward	565.01	Inward	564.79	Inward	564.71	Inward	564.71	Inward
Inner	MH12	560.92		561.05		561.24		561.39		565.55		561.74	

Notes:

(1) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

.

.

-

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		11/22/2	008	12/31/2	008	01/29/2	2009	02/2	5/2009	03/27/2	2009	04/3	0/2009
		Water Level	Gradient	Water Level	Gradient								
		(ft amsl)	Direction	(ft amsl)	Direction								
Monito	ring Location												
Outer Inner	River North MH2	563.95 (2) 561.61	Inward	564.40 (2) 566.56	Outward	563.90 (2) 568.71	Outward	564.02 (2) 568.77	Outward	564.23 (2) 565.45	Outward	564.80 563.46	Inward
Outer Inner	River North MH6	563.95 (2) 557.41	Inward	564.40 (3) 560.22	Inward	563.90 (2) 560.62	Inward	564.02 (2) 560.22	Inward	564.23 (2) 558.31	Inward	564.80 558.36	Inward
Outer Inner	River Middle MH8	564.07 (1) 562.36	Inward	564.18 564.91	Outward	564.02 (1) 562.42	Inward	564.11 562.52	Inward	564.35 (1) 561.18	Inward	564.74 563.14	Inward
Outer Inner	River South MH12	564.20 561.79	Inward	564.65 562.09	Inward	564.15 562.22	Inward	564.27 562.29	Inward	564.48 562.03	Inward	565.14 562.12	Inward

		05/27/2	2009	06/29/2	2009	07/27/2	2009	08/3	1/2009	09/30/2	2009	10/3	0/2009
		Water Level	Gradient										
		(ft amsl)	Direction										
Monito	ring Location												
Outer	River North	564.95 (2)	Inward	565.02	Inward	565.12	Inward	564.90	Inward	564.80	Outward	564.52 (2)	Outward
Inner	MH2	561.36		561.56		561.64		561.76		565.80		566.21	
Outer	River North	564.95 (3)	Inward	565.02	Inward	565.12	Inward	564.90	Inward	564.80	Inward	564.52 (2)	Inward
Inner	MH6	558.18		556.26		556.22		556.06		558.36		558.71	
Outer	River Middle	. 564.78	Inward	564.93	Inward	565.05	Inward	564.86	Inward	564.71	Inward	564.35	Inward
Inner	MH8	563.08		560.74		560.99		560.85		561.46		561.66	
Outer	River South	565.20	Inward	565.23	Inward	565.45	Inward	565.25	Inward	565.10	Inward	564.77	Inward
Inner	MH12	562.17		563.68		562.64		562.79		562.87		562.99	

Notes:

(1) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

Page 10 of 10

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

			2009	12/30/2	2009	01/29	/2010	02/26/2	2010	03/30/2	2010	04/30/2	2010
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer Inner	River North MH2	564.19 (2) 561.87	Inward	564.12 (2) 561.72	Inward	564.78 (2) 561.67	Inward	566.60 561.75	Inward	566.80 562.58	Inward	564.55 (2) 562.61	Inward
Outer Inner	River North MH6	564.19 (2) 555.76	Inward	564.12 (2) 557.87	Inward	564.78 (2) 555.87	Inward	566.60 555.72	Inward	566.60 556.36	Inward	564.55 (2) 556.62	Inward
Outer Inner	River Middle MH8	563.98 560.65	Inward	563.89 562.80	Inward	564.63 560.13	Inward	564.29 560.66	Inward	564.19 560.76	Inward	564.38 561.11	Inward
Outer Inner	River South MH12	564.44 563.10	Inward	564.37 563.31	Inward	565.03 563.49	Inward	564.36 563.56	Inward	564.45 560.01	Inward	564.80 559.66	Inward

Monitoring Location

Outer	River North	564.94 (2)	Inward
Inner	MH2	563.33	
Outer	River North	564.94 (2)	Inward
Inner	MH6	558.05	
Outer	River Middle	564.78	Inward
Inner	MH8	562.87	
Outer	River South	565.19	Inward
Inner	MH12	561.01	

Notes:

River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.
River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		6/15/2	2001	6/22/2	2001	6/29/	2001	7/31/	2001		/2001	9/28	2001	10/22/	2001
Monitoring		Water Level	Gradient												
Location		(ft amsl)	Direction												
Upper Lower	MH3 MW-6	560.59 562.54	Upward	560.55 562.50	Upward	560.40 562.42	Upward	559.21 562.90	Upward	561.07 562.09	Upward	560.56 562.13	Upward	562.36 562.08	Downward
Upper Lower	MH8 MW-7	560.53 561.48	Upward	560.44 561.41	Upward	560.38 561.39	Upward	560.25 561.30	Upward	560.25 561.29	Upward	560.27 561.32	Upward	560.43 561.31	Upward
Uppe r Lower	MH11 MW-8	561.12 561.69	Upward	561.05 561.54	Upward	560.97 561.46	Upward	560.73 561.19	Upward	560.50 561.05	Upward	560.61 561.07	Upward	560.51 561.27	Upward
Uppe r Lower	MH14 MW-9	562.32 562.45	Upward	562.32 562.19	Downward	562.45 562.11	Downward	562.45 562.45	Neutral	561.72 561.55	Downward	561.70 561.58	Downward	562.10 561.77	Downward
Upper	MH15	NM													
Date Monitored		11/27/	2001	12/20/	2001	1/29/	2002	2/11/	2002	3/25,	/2002	4/24,	/2002	5/21/2	2002
Monitoring		Water Level	Gradient												
Location		(ft amsl)	Direction												
Upper Lower	MH3 MW-6	560.94 561.88	Upward	560.50 561.83	Upward	560.15 561.83	Upward	560.28 561.73	Upward	560.10 561.72	Upward	562.05 561.88	Downward	561.28 561.97	Upward
Upper Lower	MH8 MW-7	560.45 561.36	Upward	559.75 561.25	Upward	560.98 561.89	Upward	561.06 561.50	Upward	560.65 561.60	Upward	561.13 561.95	Upward	560.05 561.38	Upward
Upper Lower	MH11 MW-8	559.51 561.30	Upward	561.31 560.73	Downward	NM 561.91		561.23 561.93	Upward	560.97 561.60	Upward	561.41 561.95	Upward	560.35 560.91	Upward
Upper Lower	MH14 MW-9	561.87 561.71	Downward	561.89 561.77	Downward	562.53 562.31	Downward	562.18 562.52	Upward	562.77 562.64	Downward	563.09 562.96	Downward	563.25 563.11	Downward
Upper Average ⁽¹⁾	MH15	NM		562.17 562.89	Upward Upward										

Notes:

NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		6/20/2	2002	7/18/2	2002	8/6/2	002	9/12	/02	10/3	0/02	11/2	1/02	12/1	1/02
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Wate r Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	561.24 561.92	Upward	560.99 561.89	Upward	560.79 561.92	Upward	561.14 561.82	Upward	561.21 561.97	Upward	560.67 562.05	Upward	561.08 562.04	Upward
Upper Lower	MH8 MW-7	560.68 561.54	Upward	560.79 561.65	Upward	561.05 561.93	Upward	561.10 561.99	Upward	561.07 561.95	Upward	558.03 561.41	Upward	559.95 561.25	Upward
Upper Lower	MH11 MW-8	560.98 561.50	Upward	561.07 561.60	Upward	561.33 561.88	Upward	561.34 561.91	Upward	561.36 561.95	Upward	561.49 560.99	Downward	561.51 560.73	Downward
Uppe r Lower	MH14 MW-9	562.98 562.91	Downward	561.83 562.84	Upward	562.08 562.75	Upward	562.11 562.66	Upward	562.68 562.57	Downward	562.88 562.74	Downward	563.07 562.91	Downward
Upper Average ⁽¹⁾	MH15	562.00 562.65	Upward Upward	561.93 561.86	Upward Upward	561.86 562.01	Upward Upward	561.75 561.99	Upward Upward	561.62 562.33	Upward Upward	561.82 562.53	Upward Upward	562.01 562.72	Upward Upward

Notes:

NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		1/16/2	2003	2/25/2	2003	3/14	1/03	4/14	1/03	5/8	/03	6/1	9/03
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	561.20 562.27	Upward	561.10 561.85	Upward	561.17 561.69	Upward	561.22 562.42	Upward	561.03 562.38	Upward	561.83 562.43	Upward
Upper Lower	MH8 MW-7	561.04 561.95	Upward	560.60 561.49	Upward	560.61 561.49	Upward	558.65 561.42	Upward	560.76 561.59	Upward	560.85 561.60	Upward
Upper Lower	MH11 MW-8	561.68 562.00	Upward	561.60 561.48	Downward	561.57 561.46	Downward	558.53 560.98	Upward	561.03 561.56	Upward	561.12 561.56	Upward
Upper Lower	MH14 MW-9	563.37 563.17	Downward	563.07 562.89	Downward	563.09 562.90	Downward	563.54 563.36	Downward	563.26 563.07	Downward	563.41 563.10	Downward
Upper Average ⁽¹⁾	MH15	562.28 563.01	Upward Upward	562.01 562.72	Upward Upward	562.05 562.74	Upward Upward	562.49 563.19	Upward Upward	561.02 562.84	Upward Upward	562.25 563.02	Upward Upward
Date Monitored		7/21	/03	8/28	/03	9/3(0/03	10/2	0/03	11/0	3/03	12/2	3/03
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.46 562.31	Upward	561.20 562.21	Upward	561.10 562.53	Upward	561.07 562.52	Upward	561.08 562.33	Upward	559.49 562.30	Upward
Upper - Lower	MH8 MW-7	560.89 561.74	Upward	558.52 561.29	Upward	559.88 561.35	Upward	559.77 561.17	Upward	560.76 561.12	Upward	560.67 561.48	Upward
Upper Lower	MH11 MW-8	561.10 561.69	Upward	564.37 562.35	Downward	558.68 561.17	Upward	558.66 560.02	Upward	561.01 561.57	Upward	560.94 561.34	Upward
Upper Lower	MH14 MW-9	563.03 562.89	Downward	566.48 566.17	Downward	562.89 562.77	Downward	562.88 562.75	Downward	563.00 562.85	Downward	563.31 563.20	Downward
Upper Average ⁽¹⁾	MH15	561.98 562.68	Upward Upward	566.36 566.44	Downward Downward	562.02 562.60	Upward Upward	562.01 562.59	Upward Upward	561.91 562.64	Upward Upward	562.28 562.97	Upward Upward

Notes:

NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		01/21	/04	02/12	/04	03/04	/04	04/1	5/04	05/14	4/04	06/2	5/04
Monitoring		Water Level	Gradient										
Location		(ft amsl)	Direction										
Uppe r Lower	MH3 MW-6	560.33 562.32	Upward	561.08 562.16	Upward	561.13 562.21	Upward	558.78 562.48	Upward	559.71 562.39	Upward	561.21 562.27	Upward
Upper Lower	MH8 MW-7	560.70 561.55	Upward	560.95 561,81	Upward	560.75 561.61	Upward	559.59 561.71	Upward	559.45 561.70	Upward	560.50 561.42	Upward
Upper Lower	MH11 MW-8	(2) 561.47	NA	561.23 561.75	Upward	561.04 561.56	Upward	559.85 561.38	Upward	559.87 561.39	Upward	560.79 561.19	Upward
Average ⁽¹⁾ Lower	MW-9	(2) 562.72	NA	(2) 562.68	NA	562.08 562.70	Upward	562.43 562.64	Up`ward	562.41 562.71	Upward	562.41 562.70	Upward
Date Monitored		07,	/30/04	08/31	/04	09/30	0/04	10/2	0/04	11/2	3/04	12/3	1/04
Monitoring		Water Level	Gradient										
Location		(ft amsl)	Direction										
Upper Lower	MH3 MW-6	561.25 562.29	Upward	560.59 562.23	Upward	560.81 562.28	Upward	561.19 562.10	Upward	561.05 561.99	Upward	560.74 562.16	Upward
Upper Lower	MH8 MW-7	560.04 561.31	Upward	560.67 561.56	Upward	560.71 561.49	Upward	560.82 561.19	Upward	559.77 561.21	Upward	561.02 561.80	Upward
Upper Lower	MH11 MW-8	560.26 560.71	Upward	560.94 561.39	Upward	561.00 561.43	Upward	561.09 561.56	Upward	560.05 560.56	Upward	561.23 561.75	Upward
Average ^(I) Lower	MW-9	561.33 562.70	Upward	562.73 562.95	Upward	562.67 562.98	Upward	562.46 562.64	Upward	561.23 562.71	Upward	561.96 562.71	Upward

Notes:

NA - Not Applicable. NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third). (2) - Buried with snow.

.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		1/28/	2005	2/28/	2005	3/31/	2005	4/29/	2005	5/27/	2005	6/24/	2005
Monitoring		Water Level	Gradient										
Location		(ft amsl)	Direction										
Upper	MH3	562.15	Upward	559.96	Upward	559.94	Upward	559.54	Upward	558.92	Upward	561.09	Upward
Lower	MW-6	562.27		562.14		562.04		562.26		562.24		562.22	•
Upper	MH8	561.06	Upward	560.47	Upward	560.78	Upward	560,89	Upward	560.65	Upward	559.92	Upward
Lower	MW-7	561.85		561.46		561.66		561.76		561.55		561.47	•
Upper	MH11	561.33	Upward	560.74	Upward	561.06	Upward	561.15	Upward	561.13	Upward	560.18	Upward
Lower	MW-8	561.82		561.25		561.60		561.65		561.42	-	560.76	-
Average ⁽¹⁾		(3)	NA	(3)	NA	562.91	Upward	562.57	Upward	562.90	Upward	562.59	Upward
Lower	MW-9	562.75		562.78		563.12	-	563.21	-	563.12	•	562.85	•

Date Monitored		7/29/	2005	8/31/	2005	10/3/	2005	10/31	/2005	11/22	/2005	12/23,	/2005
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	562.26 562.11	Downward	560.64 562.09	Upward	560.54 562.24	Upward	560.73 562.34	Upward	561.20 561.67	Upward	562.09 562.45	Upward
Upper Lower	MH8 MW-7	561.39 562.27	Upward	561.07 561.94	Upward	560.20 561.40	Upward	560.46 561.52	Upward	560.04 561.49	Upward	561.05 561.85	Upward
Upper Lower	MH11 MW-8	561.17 562.15	Upward	561.31 561.85	Upward -	560.43 560.95	Upward	560.71 561.25	Upward	560.31 561.00	Upward	561.30 561.84	Upward .
Average ⁽¹⁾ Lower	MW-9	562.68 562.88	Upward	562.67 562.91	Upward	562.92 563.20	Upward	563.14 563.39	Upward	563.33 563.53	Upward	563.31 563.50	Upward

Notes:

NA - Not Applicable. NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

(3) - Not Monitored - MH14 was buried with snow and could not be accessed.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		01/27/	2006	02/28/	2006	03/24/	/2006	04/21	/2006	05/30	/2006	06/26/	/2006
Manifester		Water Level	Gradient										
Location		(ft amsl)	Direction										
Upper Lower	MH3 MW-6	562.53 562.97	Upward	562.26 562.90	Upward	561.77 562.86	Upward	561.84 562.76	Upward	562.30 562.50	Upward	560.63 562.37	Upward
Upper Lower	MH8 MW-7	561.02 561.79	Upward	558.44 561.68	Upward	560.43 561.57	Upward	560.40 561.48	Upward	560.44 561.75	Upward	561.02 561.97	Upward
Upper Lower	MH11 MW-8	561.26 561.76	Upward	558.38 561.23	Upward	560.60 561.16	Upward	560.63 561.15	Upward	560.28 561.03	Upward	561.26 561.75	Upward
Average ⁽¹⁾ Lower	MW-9	563.73 563.90	Upward	563.73 563.94	Upward	563.67 563.83	Upward	563.41 563.65	Upward	563.20 563.48	Upward	563.16 563.41	Upward
Date Monitored		07/31/	2006	08/25/	/2006	09/22,	/2006	10/31	/2006	11/29	/2006	12/29/	/2006
		Water Level	Gradient										

								,	,	,		• + , ,	,
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	564.78 564.39	Downward	561.21 564.72	Upward	561.01 562.76	Upward	555.62 562.58	Upward	560.85 562.48	Upward	560.42 562.98	Upward
Upper Lower	MH8 MW-7	563.66 564.54	Upward	560.89 561.82	Upward	560.51 561.99	Upward	559.95 562.09	Upward	560.73 562.01	Upward	560.80 561.89	Upward
Upper Lower	MH11 MW-8	564.03 564.30	Upward	561.10 561.57	Upward	559.81 561.20	Upward	558.19 561.78	Upward	560.54 561.69	Upward	560.96 561.46	Upward
Average ⁽¹⁾ Lower	MW-9	563.85 564.08	Upward	563.89 563.38	Downward	562.44 562.73	Upward	564.13 564.40	Upward	560.73 562.10	Upward	561.59 561.90	Upward

Notes:

NA - Not Applicable. NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

(3) - Not Monitored - MH14 was buried with snow and could not be accessed.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		01/26/2	2007	02/27/2	2007	03/30/	2007	04/30/	2007	05/25/	2007	06/29/	2007
		Water Level	Gradient										
Monitoring													
Location		(ft amsl)	Direction										
Upper	MH3	560.92	Upward	560.57	Upward	559.45	Upward	559.39	Upward	559.85	Upward	558.83	Upward
Lower	MW-6	562.78		562.49		562.30	•	562.62	·	562.48		562.32	1
Upper	MH8	560.89	Upward	560.89	Upward	561.09	Upward	561.14	Upward	561.02	Upward	561.26	Upward
Lower	MW-7	562.06		561.96		562.05	·	562.20	•	562.05	L.	562.16	
Upper	MH11	561.09	Upward	561.16	Upward	561.36	Upward	561.29	Upward	561.12	Upward	561.39	Upward
Lower	MW-8	561.73		561.86		561.85	•	561.77	•	561.61		561.79	
Average ⁽¹⁾		563.13	Upward	562.42	Upward	560.89	Upward	561.86	Upward	561.85	Upward	561.84	Upward
Lower	MW-9	563.41		562.64	1	562.66	-1	562.13	-1	562.10	- F	562.12	opnara

		07/25/	2007	08/31/	2007	09/27/	2007	10/31	2007	11/31/	2007	12/31/	2007
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	560.54	Upward	559.62	Upward	561.05	Upward	560.69	Upward	560.58	Upward	559.69	Upward
Lower	MW-6	562.13	·	561.93		561.86		562.02	·	562.22		562.48	1
Upper	MH8	561.02	Upward	561.04	Upward	560.47	Upward	561.08	Upward	560.68	Upward	559.37	Upward
Lower	MW-7	561,94		561.95	-1	562.01		562.00	-1	561.80		561.88	
Upper	MH11	561.18	Upward	561.28	Upward	559 56	Unward	561 36	Unward	561.00	Linward	558 54	Linward
Lower	MW-8	561.55	opnara	561.73	ophilia	561.79	opmanu	561.86	opiiaia	562.30	opwara	561.56	opwaru
Average ⁽¹⁾		561.78	Upward	561.38	Upward	561.82	Upward	561.85	Upward	560.96	Upward	561.83	Upward
Lower	MW-9	562.03		562.05	- r	562.05	-r ·····	562.09	- F . ara	562.05	-r.und	562.16	opinala

Notes:

NA - Not Applicable.

NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

(3) - Not Monitored - MH14 was buried with snow and could not be accessed.

.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		01/28/	2008	02/29/	2008	03/31/	2008	04/28/	2008	05/29/	2008	06/25/	2008
		Water Level	Gradient										
Monitoring Location		(ft amsl)	Direction										
Upper	MH3	559.46	Upward	560.45	Upward	560.74	Upward	559.67	Upward	559.26	Upward	559.54	Upward
Lower	MW-6	562.68		562.38		562.33		562.73		562.66	•	562.79	
Upper	MH8	560.99	Upward	560.02	Upward	560.06	Upward	561.10	Upward	561.39	Upward	562.66	Upward
Lower	MW-7	561.95	·	562.06	•	562.54	•	562.07	•	562.28	•	563.49	
Upper	MH11	561.30	Upward	559.51	Upward	558.99	Upward	561.39	Upward	561.50	Upward	562.83	Upward
Lower	MW-8	561.80	•	561.89	•	561.89		561.90	•	561.82		563.28	•
Average (1)		562.53	Upward	561.89	Upward	561.48	Upward	561.96	Upward	561.87	Upward	561.79	Upward
Lower	MW-9	562.78		562.17		562.24	-1	562.56	-1	562.14	-r	562.11	- 1

		07/31/	2008	08/27/	2008	09/26/	2008	10/30	/2008	11/22/	2008	12/31/	2008
		Water Level	Gradient										
Monitoring Location		(ft amsl)	Direction										
Upper	MH3	561.02	Upward	565.29	Downward	559.22	Upward	560.08	Upward	561.19	Upward	565.53	Upward
Lower	MW-6	563.27		565.10		563.42		562.97		565.10		566.09	
Upper	MH8	563.00	Upward	564.13	Upward	563.21	Upward	562.57	Upward	562.36	Upward	564.91	Upward
Lower	MW-7	563.86		564.95		564.07		563.49		563.27		565.70	
Upper	MH11	563.53	Upward	564.16	Upward	563.53	Upward	562.85	Upward	562.75	Upward	564.91	Upward
Lower	MW-8	566.07	•	564.61	·	564.03		563.93		563.29		565.33	
Average ⁽¹⁾ Lower	MW-9	561.71 561.97	Upward	563.97 564.15	Upward	560.91 562.02	Upward	562.18 561.83	Downward	561.26 561.76	Upward	564.68 564.71	Upward

Notes:

NA - Not Applicable.

NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

(3) - Not Monitored - MH14 was buried with snow and could not be accessed.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		01/30/	2009	02/25/	2009	03/27/	2009	04/30/	2009	05/27/	2009	06/29	2009
Monitorina		Water Level	Gradient										
Location		(ft amsl)	Direction										
Upper Lower	MH3 MW-6	570.75 566.89	Downward	571.27 567.20	Downward	559.49 564.81	Upward	560.06 563.55	Upward	560.29 563.18	Upward	561.28 562.81	Upward
Upper Lower	MH8 MW-7	562.42 565.96	Upward	562.52 564.31	Upward	561.18 562.90	Upward	563.14 564.03	Upward	563.04 563.93	Upward	560.74 562.12	Upward
Upper Lower	MH11 MW-8	564.96 565.25	Upward	559.64 562.05	Upward	561.11 561.66	Upward	563.38 563.93	Upward	563.45 564.03	Upward	560.98 562.26	Upward
Average ⁽¹⁾ Lower	MW-9	560.92 563.48	Upward	561.59 563.30	Upward	561.11 562.67	Upward	563.29 563.36	Upward	564.39 564.58	Upward	565.24 564.76	Downward

		07/27/	2009	08/31/	2009	09/30	2009	10/30	/2009	11/30/	2009	12/30/	2009
		Water Level	Gradient										
Monitoring Location		(ft amsl)	Direction										
Upper	MH3	559.34	Upward	561.29	Upward	565.67	Downward	566.49	Downward	561.41	Upward	560.01	Upward
Lower	MW-6	562.63		562.47	·	564.80		565.37		563.19	•	562.79	
Upper	MH8	560.99	Upward	560.85	Upward	561.46	Upward	561.66	Upward	560.65	Upward	562.80	Upward
Lower	MW-7	562.00	·	561.82		562.78		563.06		561.81		563.66	
Upper	MH11	561.40	Upward	561.28	Upward	560.10	Upward	560.77	Upward	561.13	Upward	563.24	Upward
Lower	MW-8	562.16		562.10		561.60	·	561.70	•	561.89	·	563.93	
Average ⁽¹⁾		564.56	Upward	564.38	Upward	564.62	Downward	564.47	Downward	564.47	Downward	564.80	Upward
Lower	MW-9	564.59	-1	564.65	-	564.39		564.35		564.44		564.81	•

Notes:

NA - Not Applicable. NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

(3) - Not Monitored - MH14 was buried with snow and could not be accessed.
Page 10 of 10

TABLE 2.4

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		01/29/2	2010	02/26/2	2010	03/30/	2010	04/30/	2010	05/26/	2010
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	560.02	Upward	561.26	Upward	561.25	Upward	560.99	Upward	559,94	Upward
Lower	MW-6	562.60		562.38		562.69	1	562.78		562.80	-1
Upper	MH8	560.13	Upward	560.66	Upward	560.76	Upward	561.11	Upward	562.87	Upward
Lower	MW-7	561.84	•	561.61		561.89	·	562.04		563.65	
Upper	MH 11	559.72	Upward	561.15	Upward	561.59	Upward	560.40	Upward	563.21	Upward
Lower	MW-8	562.18		561.87	- r	562.56	-1	562.25	- F	563.61	- F
Average ⁽¹⁾ Lower	MW-9	563.66 564.50	Upward	563.55 563.98	Upward	564.24 564.79	Upward	564.20 564.62	Upward	564.20 564.57	Upward

Notes:

NA - Not Applicable.

NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

(3) - Not Monitored - MH14 was buried with snow and could not be accessed.

1,4-Dichlorobenzene 1,2-Dichlorobenzene Semi-Volatiles

TABLE 2.5

OPERATION AND MAINTENANCE MANUAL GROUNDWATER SAMPLING SUMMARY NORTH TONAWANDA, NEW YORK GRATWICK-RIVERSIDE PARK SITE

LOCATIONS

OGC7	0GC5	OGC4	OGC3	OGC2	OGC1
OGC8	00006	MM-9	MW-8	MW-7	MW-6

FREQUENCY

quarterly for 2 years following GWS startup.
semi-annually for Year 3 except for OGC-4 (quarterly for SVOCs) and OGC-6 (quarterly for VOCs).

• annually for Years 4 through 7 (until May 2008).

SAMPLING PROGRAM (MAY 2009 THROUGH MAY 2012)

Annual	Once Every 2 Years (2010 and 2012)
MW-8	MW-6
9-WM	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	

PARAMETERS

OGC-8

Volatiles

2-Butanone Benzene Acetone

1,1-Dichloroethane

Chlorobenzene

trans-1,2-Dichloroethene

Ethylbenzene

Naphthalene 4-Methylphenol Xylenes (Total)

Trichloroethene Toluene Vinyl Chloride

Tetrachloroethene

Methylene Chloride

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									М	W-9								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/25/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																	
Acetone	50	9.4J	4.3J	7.3J/6.7J		4.2]	7.0/7.2			13/12			17	17		5.7	4.8I	5.9
Benzene	1		0.24J	0.39J/0.35J		0.44J	0.29]/0.30]	0.291/0.291		0.40I/ND0.70				0.54I			0.76	
2-Butanone	50													2.61				
Chlorobenzene	5		0.50J	0.86[/0.85]		1.3		1.0/1.1		0.911/0.871		1.1	1.7	1.5	2.8	1.4	5.3	2.5
trans-1,2-Dichloroethene	5		-	0.22J/ND		0.31J	0.24J/0.24J	0.22J/0.20J						0.42]		0.55J	0.741	
Ethylbenzene	5		0.30J	0.46]/0.42]		0.73J	0.44J/0.42J	0.46J/0.46J		0.401/0.381				0.831			1.2	0.821
Methylene Chloride	5		0.34J	0.33J/ND	4.0J	0.53J						7.2	1.6					
Tetrachloroethene	5	1.6J	1.1J	1.0J/0.92J		1.6	0.92J/0.80J	0.77J/0.74J		0.67J/0.71J				0.57J			0.82J	0.57J
Toluene	5		1.6J	3.0J/2.5J	2.8J	2.7	2.1/2.0	2.7/2.7	2.0	2.0/1.9	4.6	3.2	2.6		3.1	2.4	3.8	3.8
Trichloroethene	5	2.2J	1.8J	2.4J/2.2J	3.0J	4.4	2.0/2.0	2.2/2.3		1.8/1.8	9.5	4.9	3.0	1.8	2.9	1.7	4.7	2.6
Vinyl Chloride	2									1.7/1.7			3.6	4.0			4.2	
Total Xylenes	5		1.0J	1.5J/1.5J		2.5J	1.3J/1.3J	1.4J/1.4J		0.98J/1.0J	3.0			2.0J			3.3	2.2J
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene	3*				0.6J										0.9J	0.7J		1.4J
1,4-Dichlorobenzene	3*				-								2J		3J	1J	2.3J	1.7J
2,4-Dimethylphenol	50	12	12	18/17	38		20/22	30/34	30	35/36	36	42	50	58	46	31	110	41
2-Methylphenol	NL	1J	3J	3J/3J	7J		4J/4J	6J/6J	6J	6J/6J	6J	5J	8J		6	6	12	9.9J
4-Methylphenol	NL	69	110	97/92	230		100/110	190/230	150	130/130	160	190	260	190	170	96	300	180
Naphthalene	10														0.2J	0.5J		
Di-n-octyl phthalate	50																	·
Phenol	1	J	34	28/22	24		38/41	34/35	42	46/46	180	30	27	49	11	13	20	20

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level NS - Not Sampled

J - Estimated

/

Page 2 of 15

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location										OG	C-4									
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	3/04/04	05/14/04	11/23/04	05/27/05	05/30/06	05/25/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level											NA		NA						
Acetone	50			7.9J			4.0]												1.61	
Benzene	1		0.21J	0.2J																
2-Butanone	50		•	•																
Chlorobenzene	5		0.49]	0.66]		0.83[/0.79]		0.461		0.831										
trans-1,2-Dichloroethene	5			0.22J				,		,										
Ethylbenzene	5		0.41J	0.39J		0.54J/0.53J	0.48J	0.39]		0.77]						0.44J				
Methylene Chloride	5				5.1J/4.9J					•			4.6		2.0					
Tetrachloroethene	5	1.0J	1.2J	0.87J		0.86J/0.84J	1.1	0.78J		0.77J										
Toluene	5			1.0J		1.0/0.98J	1.4	0.72J		1.2										
Trichloroethene	5	1.6J	1.4J	1.5J		1.5/1.4	1.7	0.96J		1.5						0.53J				
Vinyl Chloride	2																			
Total Xylenes	5		1.0J	0.94J		0.84J/0.82J	1.1J			0. 95 J										
Semi-Volatiles (µg/L)																				
1,2-Dichlorobenzene	3*																			
1,4-Dichlorobenzene	3*																			
2,4-Dimethylphenol	50	81	12	61	81/61	71/71	81		71/71	81	41	6J		4J				0.9J		0.51J/ND
2-Methylphenol	NL	0.9]	2J	35	2J/ND	1J/2J	2]			3J		зj		2J				0.5J	2.7J	
4-Methylphenol	NL	64	86	40	58/55	61/67	68		69/68	73	32	55		31	14	15	ЗJ	6		
Naphthalene	10																	0.5J		3.4J/3.4J
Di-n-octyl phthalate	50																			
Phenol	1 ·	310	560	400	420/460	710/1100	1100-	1100	2400/2300	1800	- 1600		2400	1500	850	510	84	66	25	15/15

Notes:

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									00	GC-8								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	05/08/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																	
Acetone	50	78	31/29	19J		4.7J	3.6J				6.2	5.8	4.71			9.9	1.51	
Benzene	1	11	14/14	14		2.6	5.3	3.3	3.6	3.1	1.8	1.2	1.1	0.92	0.54J	0.84	0.58J	
2-Butanone	50	4.0J	· · · · · · · · · · · · · · · · · · ·															
Chlorobenzene	5	3.7J	4.1J/4.1J	4.0J		0.87J	1.7	1.1		1.1	0.65J	0.48J	0.43J	0.44J				
trans-1,2-Dichloroethene	5	4.3J	3.2J/3.1J	4.0J		0.76J	1.5	0.88J		1.0	0.50J	0.41J	1.0					
Ethylbenzene	5	13	16/16	15	1.6J	2.8	5.8	3.1	3.9	3.1	1.8	1.2		0.99J	0.53J	0.84J	0.50J	
Methylene Chloride	5		0.52J/0.48J	0.62J	1.8J													
Tetrachloroethene	5	40	51/52	59	7.7J	9.9	22	12	14	11	7.0	5.0	3.8	4.0	2.0	2.3	1.6	
Toluene	5	140	140/140	110	17]	21	53	28	38	27	16	11	8.1	8.3	4.0	6.4	3.7	
Trichloroethene	5	120	110/110	110	20J	22	53	27	35	27	17		7.7	7.6	4.0	6.5	4.0	
Vinyi Chloride	2	3.7	3.4/3.6	3.1	1.1J	1	1.4	0.70		0.78]			• •			T		
Total Xylenes	5	43	55/54	46	4.8J	8.3	18	9.5	_11	9.9	5.4	3.7	3.0	3.2	1.1)	2.5)	1.5)	
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene	3*																	
1,4-Dichlorobenzene	3*															0.2J		
2,4-Dimethylphenol	50	2J	4J/2J	4J	0.8J	0.8J	ЗJ	1J								1J		0.73J
2-Methylphenol	NL	18	30/25	16	4J	5J	13	7J	11	7J	4J	2J	2J	3J	2J	2J		2.2J
4-Methylphenol	NL	30	51/45	28	8J	10	26	14	20	14J	9	5J	6J	8J	6	8	5.7	6.5J
Naphthalene	10	1J	3J/25	1J			0.9J											
Di-n-octyl phthalate	50		0.1J/ND															
- Phenol	· 1	30	49/44	31	5]	<u>8</u>]	11	10		4J	6J	2J						

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location								River	South							
Date		05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03 0	5/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
	Class GA															
Volatiles (µg/L)	Level															
							0.07						2.27			10
Acetone	50						3.0J				A /AT		3.23			12
Benzene	1										0.42)		0 0 7			0.17
2-Butanone	50												3.9J			3.1j
Chlorobenzene	5															
trans-1,2-Dichloroethene	5															
Ethylbenzene	5															
Methylene Chloride	5															
Tetrachloroethene	5						0.30J									
Toluene	5			0.29J			0.72J	0.35J			1.8					
Trichloroethene	5						0.44J									
Vinyl Chloride	2						0.27J									
Total Xylenes	5										1.8J					
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50															
2-Methylphenol	NL															
4-Methylphenol	NL															
Naphthalene	10															
Di-n-octyl phthalate	50															
Phenol	1															
Notes:																

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location Data		05140104	00100101							MW-8								
Date Volatiles (µg/L)	Class GA Level	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/29/09	05/26/10
Acetone Benzene 2-Butanone	50 1 50	52 6.5	12J 4.3	11J 4.1	75]	67 8.6	20 12	12	8.1	73 12	23/24	28/33 10/12	26 4.2	16 4.4	6.6/7.5 1.6/1.5	23 1.5 4.4]	2.6J	
Chlorobenzene trans-1,2-Dichloroethene Ethylbenzene Methylene Chloride	5 5 5	1.8J 2.2J 5.7	1.0J 1.8J 3.7J	1.0J 2.9J 4.4J 0.66J	4.8J 8.2J	3.2 7.3 12	4.9 11 18	4.4 16 18	3.6 12 15	6.2 13 23	6.0/6.4 10/12 30/32	2.7/3.3 $7.3/9.4$ $20/24$ $7.2/9.2$	2.4 7.4 4.6	2.4 5.3 5.8	0.84J/0.82J 4.4/3.9 2.5/2.2	0.54J 3.6 1.8	0.99J 6.8 4.2	
Tetrachloroethene Toluene Trichloroethene	5 5 5	21 75 82	12 36 40	9.8 31 35	23J 80 110	32 100 180	61 140 320	58 160 280	54 100 210	80 120 320	91/100 240/240 460/460	7.3/9.2 120/130 97/120 380/390	62 30 180	71 33 150	16/14 12/11 40/36	9.5 10 29	12 26 68	
Vinyl Chloride Total Xylenes	2 5	5.2	1.6J 13	3.3 16	23 30J	12 40	18 68	14 69	12 58	18 93	21/21 120/120	13/16 92/110	5.8 32	5.1 25	9.8/9.1	6.7	19	
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Naphthalene	3* 3* 50 NL NL 10	1J 33 10	11 55 32	0.6J 16 41 34	2J 2J 19 48 55 0.7J	2J 1J 18 44 60 0.8J	1J 15 38 59 0.8J	2J 2J 27 56 83 1J	20 37 64	4J 4J 27 35 75	3J/3J 3J/3J 37/38 45/46 130/130 2J/2J	19U/2J 15J/14 18J/18 34/31	4J 7J 18J	5J 6J 16	0.5J/0.4J 0.8J/0.6J 7/7 18/16 22/22	0.4J 0.5J 14 26 31 1J	14 32 29	1.5J 2.1J 13 22 38
Phenol	50 1 -	43	130	140	85	110	91	110	140	78	80/80	28/28	[11J]	4J	20/21	32	15	13

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									0	GC-3								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																	
Acetone	50	13J / 19J	3.8J	15J		7.1	6.7			5.6			10/8.4	2.81	0.76	6.0	2.91/2.61	
Benzene	1	1.6J / 1.6J	1.6	1.8		1.8	1.2	1.5		1.6	1.4		1.2/1.1	0.931		0.93	0.75/0.78	
2-Butanone	50																	
Chlorobenzene	5		0.24J	0.28J		0.28J		0.22J										
trans-1,2-Dichloroethene	5	1.6J / 1.6J	1.0J	1.4J	1.1J	1.1	0.98J	0.44J		1.0								
Ethylbenzene	5	1.6J / 1.5J	2.0]	2.3J	1.5J	2.4	1.7	1.8		2.0			1.4/1.3	1.1	0.85I	0.921	0.69[/0.73]	
Methylene Chloride	5				1.9J							6.3	1.2/1.0		, i			
Tetrachloroethene	5	2.4J / 2.2J	3.0J	2.2J	1.7J	2.2	1.8	1.8		1.5			0.71]/0.63]	0.61J	0.56J			
Toluene	5	5.7 / 5.1	5.9	5.3		5.1	3.7	4.6	4.0	4.3	3.6	2.6	2.6/2.4		1.7	1.8	1.4/1.4	
Trichloroethene	5	20 / 20	18	19	[14J]	17	14	13	12	14	9.8	7.7	6.4/6.1	5.6	4.3	4.9	3.3/3.5	
Vinyl Chloride	2	ND / 1.0J	0.4	0.72						0.62J								
Total Xylenes	5	5.6J / 5.4J	7.5	8.7	4.8J	7.8	5.8	5.8	5.0	6.6	3.9		3.3/3.0	2.9J	2.1J	2.3J	1.7J/1.7J	
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene	3*				1]										0.6J	0.7J		0.86J
1,4-Dichlorobenzene	3*				0.7J		0.5J									0.6J		0.58J
2,4-Dimethylphenol	50	5J /5J	9	8J	11	11	7J	8J	11	12	10	9J	8J/4J	6J	6	6	6.2/5.9	4.3J
2-Methylphenol	NL	98 / 96	120	87	160	140	100	100	120	140	150	110	83/73	64	47	45	44/43	36
4-Methylphenol	NL	13 /13	21	17	28	23	14	15	22	23	20	17	14/12	13	10	11	11/11	9.9
Naphthalene	10															0.8J		
Di-n-octyl phthalate	50																	
Phenol ·	1	120 / 110	140	130J	210	140	85	92	110	120	120	90	78/74	75	60	65	60/57	50

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location		GW	-58								C	GC-7								
Date		12/17/87	08/12/88	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																			
Acetone	50	293		21J	0.25J	8.2J			3.6J											
Benzene	1	2				0.30J		0.28J	0.20J	0.26J				0.34J	0.34]					
2-Butanone	50	27								-				·						
Chlorobenzene	5																			
trans-1,2-Dichloroethene	5	180	89	6.3	3.1J	5.4	4.9J	4.8J	4.2	4.7	4.0	5.4	5.0	5.9	4.9	5.8	3.8		2.7	
Ethylbenzene	5	9	7]	1.1J	0.80J	1.0J		1.3	0.84J	0.91J		1.4	0.93J	1.5	1.4	1.3	0.87]	0.84J	0.62]	
Methylene Chloride	5	1																		
Tetrachloroethene	5	11	7]	4.3J	3.6J	3.4J	2.9J	4.0	3.4	2.7	2.8	4.1	2.2	4.1	2.9	2.8	1.7	1.2J	0.80J	
Toluene	5	75	49	12	5.8	6.7	5.7	6.9	5.2	6.0	6.7	8.6	5.8	9.3	8.3	8.6	5.0	4.9J	3.3	
Trichloroethene	5	287	220	70	40	48	45	68	44	38	50	56	38	56	37J	37	22	21	14	
Vinyl Chloride	2	7	4J	2.6J	0.84	1.7J	3.5J	2.2	1.8	1.8		2.3	2	2.9	3.0	2.9		2.6J		
Total Xylenes	5	54	37	6.0J	4.8J	6.5	3.9J	7.6	5.3	5.3	5.5	8.7	5.4	10	8.6	8.2	5.3	5.0J	3.6	
Semi-Volatiles (µg/L)																				
1,2-Dichlorobenzene	3*		2J																	
1,4-Dichlorobenzene	3*																			
2,4-Dimethylphenol	50	10	11		2J															
2-Methylphenol	NL	24	24	3J	2J	1.0J	0.8J	1J									0.6J	0.5J		
4-Methylphenol	NL	38				0.9J	0.7J	1J									0.6J	0.4J		
Naphthalene	10																			
Di-n-octyl phthalate	50						0.6J													
Phenol	1	61	92	4J	0.7J											·				

Notes:

* Applies to sum of compounds

NL - Not listed

IND Free Instead Exceeds Class GA Level NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location Data	-	05/10/01	00117101	44/07/04	00/11/00	0=/04/00	00100100	River M	liddle					
Dute	Class CA	05/18/01	09/1//01	11/2//01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03	05/08/03	11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08
Volatiles (µg/L)	Level													
Acetone	50						3.1J							2.8J
Benzene	1													
2-Butanone	50													
Chlorobenzene	5													
trans-1,2-Dichloroethene	5													
Ethylbenzene	5													
Methylene Chloride	5													
Tetrachloroethene	5												1.3	
Toluene	5.													
Trichloroethene	5							0.21J						
Vinyl Chloride	2													
Total Xylenes	5													
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50													
2-Methylphenol	NL													
4-Methylphenol	NL													
Naphthalene	10													
Di-n-octyl phthalate	50				0.7J									
Phenol	1				-									
Notes:														
* Applies to sum of compound	ls													
<u>NL</u> - Not listed														
Exceeds Class GA Lev	el													
NS - Not Sampled														

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									MW-7						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03	05/08/03	11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08	05/26/10
Volatiles (µg/L)	Class GA Level														
Acetone	50	5.7]		6.5]		4.3I	5.4		4.8		4.3I	3.01	3.91	3.31/3.41	
Benzene	1		1.9	2.0		2.0	1.3	1.8	0.90		0.581	,	2,		
2-Butanone	50										,				
Chlorobenzene	5														
trans-1,2-Dichloroethene	5		0.82J	1.11		0.981	0.891	1			0.361				
Ethylbenzene	5		0.851	0.811		1.0	0.611	0.751			0.321				
Methylene Chloride	5				1.6J						,				
Tetrachloroethene	5			0.27											
Toluene	5		3.5J	3.6J		3.3	1.9	3	1.1	2.8	0.93J				
Trichloroethene	5		0.55J	0.63J		0.43J	0.45J	0.36J			-				
Vinyl Chloride	2		1.6J	2.0	3.8J	2.9	1.7	2.2	1.3		0.80J			0.64J/0.61J	
Total Xylenes	5		2.1J	2.1J		2.7J	1.5J	1.9J	0.76J						
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50			2]	2J	3J	0.7J	2J							
2-Methylphenol	NL		3J	2J	4J	6J	1J	2J		2J				0.4J/0.5J	
4-Methylphenol	NL		3J	2J	4J	6J	1J	2J		1J			0.3J	0.5J/0.6J	
Naphthalene	10		-	-											
Di-n-octyl phthalate	50				0.6J										
Phenol	1		24	7]	10	26	2J	6]	5J	2J	1J				

Notes:

* Applies to sum of compounds <u>NL -</u> Not listed

Exceeds Class GA Level NS - Not Sampled

J - Estimated

٠

.

.

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									OGG	C-2							
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/25/07	05/29/08	05/26/10
Volatiles (µg/L)	Class GA Level																
Acetone	50			11J			3.0J					4.5]	. 3.1				
Benzene	1																
2-Butanone	50																
Chlorobenzene	5																
trans-1,2-Dichloroethene	5																
Ethylbenzene	5																
Methylene Chloride	5				1.7J												
Tetrachloroethene	5																
Toluene	5										0.37]						
Trichloroethene	5		0.39J														
Vinyl Chloride	2			0.26J		0.25J	0.26J										
Total Xylenes	5																
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*																
1,4-Dichlorobenzene	3*																
2,4-Dimethylphenol	50																
2-Methylphenol	NL																
4-Methylphenol	NL																
Naphthalene	10																
Di-n-octyl phthalate	50																
Phenol	1																
Notes:																	
* Applies to sum of compound NL - Not listed Exceeds Class GA Lev NS - Not Sampled	ls el																

.

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location											OG	C-6								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	03/04/04	05/14/04	11/23/04	05/27/05	05/31/06	05/24/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																			
Acetone	50			6.6J			5.0			3.7J						8.6/8.7			1.6J	
Benzene	1									0.71	0.87	1.4		2.5	5.2	12/12	7.2		3.2	3.6
2-Butanone	50																d		•	
Chlorobenzene	5																			
trans-1,2-Dichloroethene	5			0.23J	0.23J	0.37J	0.45J	0.55J		1.4	2.0	2.1		3.6	5.3	11/12	7.1		4.4	8.2
Ethylbenzene	5					0.31J				0.85J	1.1	2.0	3.3	3.1	7.4	20/20	12		4.8	5.2
Methylene Chloride	5				2.1J								4.4	2.5	2.2					L
Tetrachloroethene	5		1.4J	0.73J		6.6	7.4	5	12	49	51	230	300	260	550	2000/2100	1400	34	400	640
Toluene	5			0.55J		2.0	1.6	1.5	2.4	9.3	12	27	40	35	72	240/260	97	2.9	34	38
Trichloroethene	5	3.0J	4.7J	3.1J	5.9	16	19	13	26	95	120	330	530	330	610	1800/1800	1100	31	320	410
Vinyl Chloride	2					0.22J	0.25J			0.45J						2.9/2.8	1.5			1.2
Total Xylenes	5		0.22J	0.53J	0.26J	1.7J	1.2J	1.0J		4.1	4.7	8.6	13	12	28	79/76	46		18	20
Semi-Volatiles (µg/L)												NA		NA						
1,2-Dichlorobenzene	3*																			
1,4-Dichlorobenzene	3*																			
2,4-Dimethylphenol	50							1J										0.9J		
2-Methylphenol	NL		2J	2J	32	11	8J	9J	13	22	27		63		85	89/110	76	76	32	32
4-Methylphenol	NL			1J	0.02J	10							1J		2J	84/100	2J	70	1.1J	1.4J
Naphthalene	10															1J/2J	2J	2J	1.2J	1.4J
Di-n-octyl phthalate	50																			
Phenol	- 1		7 J	_2J		5]	3]	_2J		<u>5</u>]	3J		9J		8J	13/16	8	8		

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location	_							River	North						
Date		05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/31/07
Volatiles (µg/L)	Class GA Level														
Acetone	50						2.4J		NS			3.6J	3.6J		
Benzene	1					0.21J					2.0	0.39]	-		
2-Butanone	50														
Chlorobenzene	5					1.3						3.2			
trans-1,2-Dichloroethene	5					0.25J						1.0			
Ethylbenzene	5					20						40		2.9	
Methylene Chloride	5				1.6J										
Tetrachloroethene	5					3.8						7.7		1.3	
Toluene	5			0.39J		63				0.96J		130	2.2	14	
Trichloroethene	5			0.35J		4.5						6.4		0.59J	
Vinyl Chloride	2					3.7						9.3			
Total Xylenes	5					80				0.96J		210	3.7	23	
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50							1J							
2-Methylphenol	NL														
4-Methylphenol	NL														
Naphthalene	10														
Di-n-octyl phthalate	50														
Phenol	1														
Notes:															
* Applies to sum of compound	ds												÷		
INL - INOL IISTED															

NL - Not listed Exceeds Class GA Level NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location					_				OGC-5								
Date		05/20/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/26/10
	Class GA																
Volatiles (µg/L)	Level																
Acetone	50	38J		11[6.4			4 91		0.611		3.01		3 51	
Benzene	1		1.5	1.4		0.87	0.92	0.87		0.77		0.01)		0.671	0.541	0.691	
2-Butanone	50							0.01		v				0.073	0.54	0.07	
Chlorobenzene	5																
trans-1,2-Dichloroethene	5		0.65J	0.76I		0.42I	0.571	0.521				0.341					
Ethylbenzene	5		0.211	0.231		,	,	···-,				0.01)					
Methylene Chloride	5		,		3.4J								2.4				
Tetrachloroethene	5		0.381	0.271	,								2.1				
Toluene	5		2.5]	2.21		0.991	0.871	1.2		0.801		0.801					
Trichloroethene	5		0.87	0.661		0.361	0.411	0.401		,		0.281					
Vinyl Chloride	2		1.6J	1.2J		1.1	1.5	1.2		1.1		1.4		1.2	0.95I	1.4	
Total Xylenes	5		1.0J	1.0J		0.67J	0.37J	0.40J				1.0J			,		
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*																
1,4-Dichlorobenzene	3*																
2,4-Dimethylphenol	50		8J	6J	5J		1J	6J									
2-Methylphenol	NL		1J	1J	1J			-							0.5J	0.3J	
4-Methylphenol	NL		2J	5J	4J			2J							0.9J	0.4J	
Naphthalene	10		1J	1J			0.5J	1J							2J	0.5J	1.6J
Di-n-octyl phthalate	50			1J	0.8J												
Phenol	1		0.9J														
NT-1																	

Notes:

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level

NS - Not Sampled

Page 14 of 15

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location		GW	6S								MW-	6							
Date		12/15/1987	08/10/88	05/18/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/26/10
Volatiles (µg/L)	Class GA Level																		
Acetone	50	684	4.91						4.4I			44		67	13	31			
Benzene	1	3			0.641			0.651	0.591	0.561		0.571		0.7	10	51			
2-Butanone	50				,			0,00)	0.075	0.00)		0.573							
Chlorobenzene	5		3.3F		1.51	1.31		0.651		0 541		0.811		0.371					
trans-1,2-Dichloroethene	5	58	4.41		1.11			0.371	0.321	0.341		14		0.571					
Ethylbenzene	5	2			0.211			,	,	010 1)				0.02)					
Methylene Chloride	5						1.8I								21				
Tetrachloroethene	5	43			0.44J							0.671		0.251					0.551
Toluene	5	16	3.0J		2.2]	0.29J		1.3	0.91J	1.1		2.1	3.6	0.921					0.731
Trichloroethene	5	62	5.1		2.0]		1.2J		1.1	1.5	3.2	14	12	3.7	1.5	1.2	0.971		2.31
Vinyl Chloride	2	11	1.7]					0.29J	0.24J	0.22J		0.521							,
Total Xylenes	5	7			0.90J	0.44J		0.36J	0.27J										
Semi-Volatiles (µg/L)																			
1,2-Dichlorobenzene	3*																		0.661
1,4-Dichlorobenzene	3*			11		0.71	21						21				0.81	0.6]	4.21
2,4-Dimethylphenol	50	5		51	51	31	2J	11	0.91	91			-) 61				,	,	1.4]
2-Methylphenol	NL	3		51	6I	21	21	21	11	0.91			51				0.51	0.3J	1.8
4-Methylphenol	NL	4		15	13	51	41	31	21	21			12	•		11	11	,	2.5]
Naphthalene	10			67	69		11	,	14	13			76		5]		2J	1J	7.8J
Di-n-octyl phthalate	50						2J						<u> </u>					·	-
Phenol	1	3		14	<u>4</u>]	2J	0.8J						250			2J	0.6J	0. 4 J	1.9]

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location										OGC-1							
Date		05/18/01	05/25/07	8/21/2001	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/31/06	05/24/07	05/24/08
Volatiles (µg/L)	Class GA Level														00000000		00/21/00
Acetone	50	20J			11]			4.8]									
Benzene	1			0.64J	0.55J				0.26J								
2-Butanone	50	1.1J															
Chlorobenzene	5	2.2J	2.8	2.0J	1.7]		0.24J		0.781		0.91I						
trans-1,2-Dichloroethene	5	5.6		3.7]	4.6	1.8J	0.48]	0.581	2.7		2.8	0.851			0.551		
Ethylbenzene	5			0.52J	0.43]				0.211			,			,		
Methylene Chloride	5					1.6J								1.8			
Tetrachloroethene	5			0.78J	0.54J		0.42J	0.53]	0.30]			0.29]					
Toluene	5	5.2	3.1	5.4	4.2]		0.48]	0.431	1.9	1.7	2.6	0.591					
Trichloroethene	5	15	2.9	16	11	4.5J	2.2	2.7	6.1	5.1	8.4	2.2	0.47]	1.2	1.9	0.531	4.2
Vinyl Chloride	2	1.3]		0.51]	0.72]				0.421		0.641						
Total Xylenes	5			2.1J	1.6J				0.49J		0.86J						
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*		0.9J														
1,4-Dichlorobenzene	3*	1J	3J	3J	2J	1J			1J								
2,4-Dimethylphenol	50	9J	46	16	8J	3J		0.6J	9J		4J						
2-Methylphenol	NL	6J	6	12	5J	2J			2J		ЗJ						
4-Methylphenol	NL	20	170	35	15J	5J		1J	5J	6J	8J				2J		0.4J
Naphthalene	10	71	0.2J	130		21		7 J	18]	25	3J					0.5J
Di-n-octyl phthalate	50									_							
Phenol	1	150	11	290	57	15	1J	8J	41		19						
Notes:																	
* Applies to sum of compounds																	
NL - Not listed																	
Exceeds Class GA Level	L																
NS - Not Sampled																	

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH1	MH2	МН3	MW-6	OGC-1	MH4	OGC-5	MH5	MH6	OGC-6	MH7	MW-7	MH8	OGC-2	МН9
Date															
07/24/00						7.8					10.3				
10/24/00						7.7					10.5				
03/29/01				7.60	10.82		NM			12.55		8.68		9.80	
05/11/01	*	*	*	*	*	*	*	8.30	8.17	8.50	10.16	8.90	11.22	9.22	11.26
05/18/01				11.05	11.14		10.42		10.00	10.50		8.19		8.70	
06/08/01	9.25						9.35		6.90	8.24		7.33		8.40	
06/15/01		10.1	10.38	9.6	9.6		9.4		6.91	8.22		7.43	10.65	8.46	
06/22/01		*	*	*	*								10100	0.10	
06/29/01		10.9	10.8	11	10.9		10.56		7	8.97		9.27	11.33	8.63	
07/31/01		10.82	10.81	10.97	11.25		10.54		7.92	8.55		9.2	11.28	9.35	
08/20/01		11	11	9.86	10.95		10.44		7.9	8.31		7.71	11.45	8.49	
09/28/01		10.75	10.97	9.89	11.01		10.6		7.93	8.3		9.0	11.15	8.75	
10/22/01		10.7	10.45	10.5	11		7.86		6.1	9.32		8.97	8.49	8.87	
11/27/01		10.61	10.46	10.12	11.65		10.3			10.54		10.01	8.61	8.63	
12/20/01		10.17	10.11	9.97	11.22		10.19		9.98	10.37		9.68	8.42	8.51	
01/29/02		11.8	11.62	11.15	11.82		10.48		9.91	10.86		10.56	11.91	10.23	
02/11/02		10.26	10.16	10.5	10.4				7.79	11.44		10.04	11.74	8.33	
03/25/02		10.62	10.45	11.22	10.69		10.36		9.94	11.4		10.03	12.21	9.65	
04/24/02		10.37	10.22	10.68	11.36		9.97		9.46	11.15		9.73	11.3	9.52	
05/21/02		9.96	9.81	10.76	10.42		9.85		9.25	11.91		9.38	9.69	9.2	
06/20/02		10.64	9.4	10.91	11.19		9.77		9.46	11.4		10.59	11.76	9.46	
07/18/02		10.89	10.69	10.87	11.75		9.63		9.32	11.24		10.24	11.76	9.51	
08/06/02		10.62	10.47	8.21	5.67		7.25		8.79	8.78		7.46	11.24	7.83	
09/12/02		10.92	11.23	11.17	11.85		9.61		9.27	11.29		10.26	11.9	9.51	
10/30/02		10.1	11.22	10.74	10.89		9.68		9.82	10.63		9.95	11.97	9.64	
11/21/02		9.06	9.3	10.09	11.89		10.72		9.17	12.42		9.76	9.31	9.6	
12/11/02		8.92	9.17	10.16	11.03		9.87		9.02	10.39		10.19	9.5	9.18	
01/16/03		10.9	11.76	11.02	11.59		10.31		10.01	11.52		11.01	12.37	9.83	
02/25/03		10.72	11.12	10.51	11.81		10.22		9.87	12.31		9.42	9.32	8.92	
03/14/03		11.77	11.92	10.07	11.93		10.09		9.71	11.92		10.19	9.28	9.44	
04/14/03		9.78	9.71	9.67	10.82		9.74		9.21	10.45		9.74	10.48	9.01	
05/08/03		10.32	10.48	10.43	12.35		10.13		9.72	12.41		10.88	10.61	9.00	
06/19/03		10.21	10.39	10.36	12.31		10.05		9.68	12.29		10.75	10.51	8.99	
07/21/03		10.06	10.21	10.25	12.17		9.87		9.57	11.99		10.64	10.49	8.84	
08/28/03		10.22	10.91	10.32	11.16		9.8		10.17	10.96		11.04	10.38	9.89	
09/30/03		9.32	9.4	9.95	10.91		8.95		NM	10.22		9.35	9.42	9.58	
10/20/03		9.22	9.3	9	10		8.1		10.2	10.25		9.8	10	9.2	
11/03/03		9.15	9.14	8.86	9.49		7.8		10.51	10.54		10.41	10.28	9.03	
12/23/03		10.03	9.03	9.7	10.3		8.69		10.07	10.49		10.38	10.63	8.62	

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH1	MH2	МН3	MW-6	OGC-1	MH4	OGC-5	MH5	MH6	OGC-6	MH7	MW-7	MH8	OGC-2	MH9
Date															
01/21/04		(1)	9.06	9.01	9.56		8.0		10.31	9.84		9.69	10.6	8.8	
02/12/04	8.45	(1)	9.72	13.24	11.02	7.77	8.75		7.65	10.8		10.32	11.23	9.2	
03/04/04	8.21	10.05	8.93	10.28	10.69		8.82		9.43	10.52		10.28	10.87	9.24	
04/16/04		9.52	8.77	10.16	9.28		8.61		9.2	10.96		10.41	11.18	9.12	
05/14/04		10.5	8.08	10.16	9.47		8.74		7.19	11.69	9.49	9.36	11.00	9.09	
06/25/04		10.22	8.66	10.07	9.98		8.46		8.41	10.89		9.82	10.65	9.1	
07/30/04		10.03	9.00	9.91	10.45		8.41		8.42	10.67		9.31	10.51	8.94	
08/31/04		9.89	8.7	9.69	10.0		8.17		7.58	10.36		8.97	10.65	8.85	
09/30/04		10.01	8.77	9.9	9.8		8.4		8.11	10.13		9.2	10.47	8.6	
10/20/04		9.91	7.95	9.8	9.28		8.18		8.46			9.89	9.95	8.84	
11/23/04		9.26	8.47	9.87	9.83		8.32		8.92	10.89		9.8	10.84	8.96	
12/31/04		10.13	8.82	9.42	9.26		8.44		10.31	10.04		9.79	9.57	8.73	
01/28/05		10.21	10.75	9.25	8.91		8.39		8.86	10.6		9.66	9.05	9.1	
02/28/05		10.66	9.5	9.09	9.17		8.54		10.89	10.61		9.11	10.8	6.8	
03/31/05		10.91	8.96	9.78	8.95		8.51		9.06	10.99		9.58	11.06	9.18	
04/29/05		10.74	8.92	9.90	9.59		8.74		8.72	11.26		9.62	10.29	9.56	
05/27/05		11.29	9.88	7.85	10.26		9.18		8.12	11.3		9.62	11.16	9.78	
06/24/05		10.72	10.51	10.22	10.2		8.69		8.01	11.48		9.38	11.34	9.31	
07/29/05		7.3	6.20	8.96	9.23		7.83		8.29	9.9		8.91	10.32	8.55	
08/31/05		9.76	7.64	9.35	9.47		8.23		8.5	10.4		8.67	10.68	9.24	
10/03/05		9.1	8.45	9.52	9.14		8.12		7.26	10.43		7.89	9.23	8.9	
10/31/05		10.01	8.59	9.37	8.89		8.47		9.24	10.14		8.63	11.13	9.06	
11/22/05		10.29	8.15	9.13	8.68		8.05		8.25	10.18		8.79	10.70	8.71	
12/23/05		9.24	11.09	10.15	10.11		10.84		9.37	10.84		10.43	9.46	9.23	
01/27/06		9.38	10.69	10.75	9.27		8.63		8.29	11.10		10.05	8.62	9.46	
02/28/06		9.94	11.28	10.49	9.63		8.9		9.56	10.96		9.96	9.56	9.85	
03/24/06		9.57	8.84	10.64	9.43		8.70		9.43	11.14		9.70	9.28	9.40	
04/21/06		11.13	11.03	10.65	9.6		8.91		10.67	11.03		9.44	10.44	9.33	
05/30/06		9.78	10.44	7.50	10.62		8.02		7.10	10.85		9.46	8.98	8.45	
06/26/06		11.24	8.67	10.6	10.83		8.52		8.06	11.24		9.79	10.69	9.24	
07/31/06		7.8	7.85	10.27	10.05		8.12		7.95	10.34		9.93	7.88	8.59	
08/25/06		11.17	8.74	11.07	10.45		8.6		7.7	11.01		8.49	11.4	9.25	
09/22/06		8.33	8.34	10.97	9.73		8.71		8.84	10.85		9.46	11.63	9.23	
10/31/06		10.82	8.26	10.36	9.49		8.62		9.03	10.64		9.86	11.23	9.22	
11/29/06		11.13	9.09	10.45	9.46		8.97		10.90	10.80		9.49	11.13	9.62	
12/29/06		11.15	8.94	10.88	9.36		8.90		11.27	10.56		10.02	11.33	9.05	

.

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH1	MH2	МНЗ	MW-6	OGC-1	MH4	OGC-5	MH5	MH6	OGC-6	MH7	MW-7	MH8	OGC-2	MH9
Date															
01/26/07		11.51	9.21	11.05	9.26		8.80		11.45	11.23		9.76	11.67	9.48	
02/27/07		11.55	10.3	10.93	9.64		8.95		11.08	11.20		9.33	11.45	10.16	
03/30/07		11.37	8.89	10.68	8.83		8.78		11.18	11.13		9.35	11.28	9.21	
04/30/07		11.19	8.27	10.42	9.02		8.47		8.23	10.99		9.59	11.14	9.04	
05/25/07		11.3	8.47	10.32	8.83		8.09		7.74	10.93		9.32	11.18	9.00	
06/29/07		11.17	8.33	10.28	9.5 2		8.36		7.89	10.91		9.02	10.98	8.86	
07/25/07		11.23	7.75	10.42	9.5		8.21		7.93	10.82		8.41	11.32	8.70	
08/31/07		10.36	8.07	9.67	9.89		8.33		8.66	10.31		8.88	10.71	8.99	
09/27/07		9.77	8.62	9.79	9.99		8.43		9.26	10.22		9.55	9.63	8.93	
10/31/07		10.16	8.59	9.82	10.25		8.23		8.83	10.34		9.21	9.69	9.05	
11/30/07		NM	8.45	10.21	10.63		8.56		11.06	10.51		8.31	11.01	9.00	
12/31/07		9.07	8.46	9.69	9.24		8.60		10.84	10.44		10.06	11.07	9.20	
01/28/08		11.05	9.25	10.83	10.54		9.10		11.32	11.06		10.28	11.70	9.36	
02/29/08		9.59	9.66	9.96	9.82		9.09		10.35	10.09		10.02	11.59	9.42	
03/31/08		9.15	8.76	9.96	9.14		8.98		10.75	11.06		10.17	11.38	9.42	
04/28/08		9.53	9.17	10.73	9.60		8.78		8.90	11.23		9.97	10.18	9.48	
05/29/08		8.74	8.30	10.60	8.99		8.87		7.95	11.03		10.11	9.14	9.41	
06/25/08		9.46	8.64	10.60	9.96		8.61		8.50	11.06		10.24	9.28	9.41	
07/31/08		8.88	8.98	10.49	9.90		8.54		8.83	10.86		9.77	9.57	9.55	
08/27/08		8.77	8.67	10.96	8.79		8.58		8.77	10.63		10.87	10.53	9.96	
09/26/08		9.20	9.78	10.17	9.48		8.57		8.89	9.97		9.41	9.56	9.29	
10/30/08		9.40	10.68	10.49	9.76		8.98		9.36	10.42		9.46	9.69	9.52	
11/22/08		9.18	9.52	10.03	9.25		8.46		9.23	9.68		9.50	9.58	9.43	
12/31/08		9.49	8.91	10.71	9.72		8.68		8.89	10.07		9.26	9.50	9.32	
01/30/09		10.88	10.86	10.23	9.83		8.77		8.85	10.22		9.70	9.54	9.84	
02/25/09		9.39	10.63	10.07	9.33		8.50		8.88	9.77		9.36	9.19	9.44	
03/27/09		10.3	10.28	9.54	9.75		8.73		9.17	9.73		9.67	9.51	9.51	
04/30/09		9.13	9.12	10.43	9.77		8.76		9.46	10.50		9.80	10.05	9.54	
05/27/09		9.68	9.97	10.65	9.98		8.84		9.40	10.68		9.85	9.32	10.00	
06/29/09		9.95	8.79	10.50	9.64		8.48		9.21	10.58		9.68	11.26	9.16	
07/27/09		9.93	10.00	11.28	11.00		9.87		10.90	12.11		10.99	11.13	10.71	
08/31/09		8.88	8.99	10.76	10.03		8.52		9.17	10.81		10.11	9.83	9.58	
09/30/09		10.48	10.74	10.91	10.51		8.44		8.17	10.81		10.71	9.14	9.28	
10/30/09		10.84	11.60	11.70	10.74		9.66		10.19	10.83		11.60	10.76	10.78	
11/30/09		9.53	9.70	10.64	10.10		9.16		9.33	10.23		10.76	11.91	10.19	
12/30/09		9.69	9.63	10.38	9.97		9.67		10.61	10.48		10.70	10.27	10.19	
01/29/10		9.52	9.33	10.04	9.96		9.53		9.91	10.47		10.64	11.11	10.37	
02/26/10		9.98	9.79	10.03	10.01		9.55		9.84	10.78		10.28	10.87	10.43	
03/30/10		9.48	9.45	9.78	10.06		9.91		9.85	10.68		10.58	10.08	10.76	
04/30/10		9.60	9.53	9.82	10.01		9.65		9.94	11.09		11.00	10.91	10.77	
05/26/10		9.54	9.84	10.63	9.33		9.27		9.84	11.24		10.60	9.37	10.75	

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	MH16	MH17
Date														
07/24/00	9.2						10.6		9.5				7.4	
10/24/00			8.38						7.76				8.15	
03/29/01		8.37		6.41	9.41			9.77		8.17	10.41			
05/11/01	10.9	11.51		11.55	11.59	8.25	7.5	11.58		7.37	11.16	11.21	8.83	9.27
05/18/01		10.93		11.2	11.21	8.25		11.4		10.60	11.32		12.27	
06/08/01		9.68		10.1	10.34	6.99		10.32		10.03	10.44		7.25	
06/15/01		10.0	10.3	10.7	10.8	7.03		10.54	8.75	10.34	10.55		7.27	8.88
06/22/01	*	*	*	*	10.92	7.3		11	8.98	10.47	11.1		7.57	
06/29/01		11.13	10.9	11.4	10.22	7.54		11.2	9.18	10.94	11.2		7.9	
07/31/01		11.49	10.58	11.69	11.75	7.91		11.73	9.73	11.62	11.63		8.28	
08/20/01		9.17	10.59	11.35	10.87	7.7		11.49	9.8	12.05	11.89		8.2	
09/28/01		10	10.57	11.5	11.0	7. 9		11.47	9.77	11.2	11.75		8.21	
10/22/01		10.75	10.44	10.89	11.01	7.7		11.01	9.6	10.51	10.7		7.0	
11/27/01		11.98	10.87	12.46	12.46	8.1		12.28	10.01	11.87	12.25		7.26	
12/20/01		11.63	10.22	11.98	11.97	7.82		11.76	8.73	10.61	11.37		7.11	
01/29/02		12.25		12.15	12.59	7.76		12.41	8.09	11.85	12.33		7.16	
02/11/02		11.12		11.79	12.09	7.63		12.13	7.48	11.73	11.8		6.89	
03/25/02		12.38		12.59	12.77	8.01		12.66	8.51	12.11	12.46		7.88	
04/24/02		12		12.26	12.39	7.86		12.34	7.94	11.55	11.95		7.43	
05/21/02		11.86		12.25	12.49	7.94		12.5	7.45	12.16	12.24	7.72	7.22	
06/20/02		11.92		12.26	12.34	8.07		12.28	8.12	11.63	12.2	7.89	7.84	
07/18/02		11.78		12.11	12.16	8.11		12.13	9.82	11.31	11.96	7.81	7.36	
08/06/02		6.95	11.76	7.88	7.63	8.02		8.87	9.76	8.89	9.03	7.64	7.49	
09/12/02		11.93	12.19	12.23	12.32	8.76		12.3	10.81	11.77	12.04	8.16	8.17	
10/30/02		11.91	12.2	12.21	12.24	NM		12.22	8.34	11.89	12.01	7.95	7.63	
11/21/02		11.79	9.46	12.53	12.46	7.64		12.62	7.71	12.42	12.5	7.95	7.37	
12/11/02		11.26	9.41	11.39	11.54	7.56		11.51	7.86	10.76	11.29	7.35	7.18	
01/16/03		12.39		12.55	12.74	8.47		12.82	8.76	12.3	12.52	7.98	8.16	
02/25/03		11.94		12.46	12.49	8.42		12.51	8.71	12.19	12.52	7.89	8.13	
03/14/03		12.16		12.33	12.56	8.26		12.44	8.79	12.11	12.35	8.01	7.79	
04/14/03		11.02		11.63	11.18	7.92		11.62	7.87	10.89	11.89	7.62	7.42	
05/08/03		11.93		12.51	12.55	8.12		12.63	7.77	12.12	12.44	8.43	7.81	
06/19/03		11.87		12.39	12.41	8.02		12.41	7.73	12.01	12.21	8.38	7.79	
07/21/03		11.81		12.12	12.25	7.99		12.32	7.64	11.91	11.98	8.31	7.62	
08/28/03		11.79		12.13	12.24	11.26		12.21	11.52	12.04	12.04	11.46	11.32	
09/30/03		11.27		11.95	11.44	8.65		11.87	9.45	10.33	11.57	8.56	8.68	
10/20/03		11.2		11.8	11.2	8.5		11.6	8	10.42	11.44	8.31	8.01	
11/03/03		11.04		10.91	10.3	8.39		10.63	7.24	10.59	11.24	7.55	7.48	
12/23/03		10.75		11.18	11.17	8.41		11.01	7.66	10.88	11.03	7.13	7.44	

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	MH16	MH17
Date														
01/21/04		10.69		11.06	11.16	8.39		11.5	(1)	9.98	10.89	9.53	6.25	
02/12/04		10.79	11.42	11.66	11.78	8.96		11.75	(1)	11.09	11.6	8.5	6.66	
03/04/04		10.79	11.07	11.06	11.29	9.02		11.37	11.5	11.25	11.6	9.03	7.75	
04/16/04		11.23	10.42	11.57	11.62	9.22		11.36	11.6	11.11	11.44	9.6	6.54	
05/15/04		11.19	11.78	11.91	12.13	8.34		11.8	11.7	11.61	11.68	9.5	6.62	
06/25/04		11.22	11.35	11.31	11.48	8.86		11.27	11.21	10.84	11.2	9.11	7.48	
07/30/04		11.10	11.00	11.09	11.42	8.6		11.13	8.40	10.69	11.16	9.42	6.84	
08/31/04		10.84	10.95	10.87	11.19	8.07		10.84	7.78	10.48	10.73	8.14	6.57	
09/30/04		11.0	10.87	11.01	11.4	8.44		11.03	8.1	10.7	10.66	8.32	6.75	
10/20/04		10.91	11.07	11.06	11.26	8.22		11.05	10.84	10.3	10.93	8.64	6.85	
11/23/04		11.08	9.39	11.34	11.44	8.33		11.31	8.64	10.92	11.36	9.08	7.63	
12/31/04		10.64	8.92	10.85	11.09	8.48		10.85	8.57	10.58	10.87	8.86	7.09	
01/28/05		10.79	8.99	11.11	11.31	9.16		11.20	(1)	10.76	11.2	8.95	6.64	
02/28/05		10.79	11.05	10.83	10.81	8.44		10.3	(1)	10.03	10.88	8.49	6.57	
03/31/05		11.22	11.28	11.51	11.49	9.04		11.37	8.5	11.17	11.27	7.24	6.94	
04/29/05		11.48	11.75	11.78	11.75	9.17		11.79	9.64	11.39	11.53	8.32	7.40	
05/27/05		13.65	11.64	13.74	11.79	8.91		11.62	8.6	11.07	11.21	9.05	8.08	
06/24/05		11.59	11.9	11.67	11.92	8.73		11.75	10.9	10.51	11.81	9.86	8.07	
07/29/05		9.55	10.46	10.93	11.21	8.28		10.82	8.97	10.35	10.62	8.19	6.97	
08/31/05		10.85	11.12	11.15	11.35	9.02		11.04	9.01	10.7	11.03	8.4	6.93	
10/03/05		10.81	11.1	11.07	11.4	7.61		10.91	7.85	10.66	10.99	8.7	7.56	
10/31/05		10.85	11.34	11.4	11.56	8.13		11.3	7.73	11.15	11.41	8.61	9.69	
11/22/05		10.38	10.25	10.65	10.7	8.5		10.45	7.63	10.36	11.05	8.10	6.60	
12/23/05		11.40	11.58	11.57	11.93	8.11		11.67	7.19	11.23	11.64	7.36	7.30	
01/27/06		11.54	11.75	10.81	12.01	9.04		11.96	7.65	11.51	11.90	7.54	7.84	
02/28/06		11.53	11.57	12.09	12.3	9.73		11.77	7.84	11.43	11.78	7.36	7.22	
03/24/06		11.41	11.53	11.63	11.83	8.88		12.01	8.46	11.54	11.89	7.92	7.09	
04/21/06		11.31	11.65	11.62	11.86	8.79		11.96	7.98	11.40	11.86	8.52	6.97	
05/30/06		11.11	11.43	11.36	11.56	7.45		11.34	8.90	10.73	10.98	8.90	7.68	
06/26/06		11.48	11.62	11.71	11.91	8.92		11.89	8.46	11.6	11.61	8.03	7.18	
07/31/06		10.73	8.01	10.89	11.14	8.53		10.83	8.09	10.71	10.83	7.36	7.35	
08/25/06		11.62	11.9	11.74	12.05	8.83		11.77	9.88	11.44	11.72	10.82	8.11	
09/22/06		11 54	11.85	11.66	12.07	9.05		11.62	11.88	10.98	11.6	11.51	7.31	
10/31/06		11.26	11 37	11.00	11 49	9.35		10.16	8 96	11.05	11.06	8 48	8 86	
11/20/06		11.20	11.57	11.29	11.49	7.55		10.34	11.45	10.19	11.00	11 10	9.36	
11/27/00		11.20	0.82	11.30	11.00	7.15		10.54	11.50	10.19	11.45	11.10	10.85	
12/29/06		11.26	9.82	11.51	11.64	9.02		11.54	11.52	10.45	11.45	11.44	10.65	

Notes:

(1) Buried with snow and could not be accessed.

.

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	MH16	MH17
Date														
01/26/07		11.63	11.33	11.82	12.07	9.27		11.87	9,70	11.65	11.84	7.73	7.17	
02/27/07		11.58	10.76	11.66	12.07	8.39		11.91	7.29	11.17	11.92	8.31	7.07	
03/30/07		11.39	9.58	11.61	11.95	8.65		11.78	11.57	11.03	11.69	11.27	8.38	
04/30/07		11.19	10.01	11.42	11.63	8.44		11.40	11.48	11.38	10.73	10.76	7.29	
05/25/07		11.16	11.00	11.41	11.70	8.26		11.35	11.51	10.99	11.26	11.10	7.46	
06/29/07		11.12	10.54	11.38	11.57	8.83		11.31	11.38	10.48	10.94	11.00	7.21	
07/25/07		11.30	11.04	11.55	11.87	8.76		11.61	11.68	10.79	11.43	11.07	7.16	
08/31/07		11.01	10.99	11.11	11.34	8.76		11.14	11.22	10.19	10.88	10.45	6.33	
09/27/07		10.96	9.28	11.20	11.48	8.86		11.26	11.33	9.76	11.03	9.64	6.56	
10/31/07		11.19	11.33	11.24	11.75	9.30		11.02	11.57	10.60	11.38	10.61	7.68	
11/30/07		11.22	8.89	11.51	12.04	9.07		11.47	11.64	10.76	11.66	11.07	7.38	
12/31/07		11.24	9.25	11.43	11.80	8.84		11.73	11.46	10.78	11.60	10.76	7.07	
01/28/08		11.78	10.50	12.07	12.46	9.09		11.93	10.80	11.21	12.00	9.44	6.93.	
02/29/08		11.63	11.44	11.60	12.01	9.43		11.92	11.91	10.10	11.85	10.78	6.84	
03/31/08		11.61	9.05	11.78	12.07	9.14		11.79	11.95	10.54	11.94	11.13	7.52	
04/28/08		11.64	10.46	11.88	12.28	7.54		11.91	11.65	10.97	11.80	11.21	7.70	
05/29/08		11.50	10.91	11.53	12.00	8.88		12.10	11.86	10.14	11.88	11.45	8.73	
06/25/08		11.40	10.76	11.62	11.88	9.19		11.90	11.86	9.83	11.76	11.33	6.98	
07/31/08		11.36	9.84	11.90	11.67	9.09		11.75	11.55	9.89	11.59	10.95	8.19	
08/27/08		11.27	9.66	11.65	11.89	9.19		11.55	9.75	10.59	11.35	8.32	8.92	
09/26/08		11.17	9.42	11.40	11.69	9.10		11.29	11.42	9.35	11.34	11.12	8.56	
10/30/08		11.31	11.22	11.37	11.83	9.54		11.41	11.08	10.02	11.51	11.09	10.78	
11/22/08		11.29	11.44	11.19	11.75	9.35		10.96	11.14	10.01	11.40	10.48	7.88	
12/31/08		11.58	10.56	11.77	11.92	8.56		11.77	9.76	10.26	11.68	8.41	7.84	
01/30/09		11.65	9.66	12.09	12.31	10.24		12.02	11.10	9.88	11.86	10.62	7.30	
02/25/09		11.15	10.43	11.37	11.57	9.06		11.65	10.90	10.09	11.22	10.83	8.37	
03/27/09		11.36	10.29	11.72	11.80	9.61		11.69	11.66	9.54	11.66	11.56	8.78	
04/30/09		11.37	9.59	11.72	11.90	9.84		11.90	9.10	9.92	11.56	8.92	8.86	
05/27/09		11.55	11.71	11.76	12.13	9.67		11.93	10.80	10.54	11.73	9.72	10.43	
06/29/09		11.14	10.07	11.35	11.61	9.95		11.42	9.81	10.60	11.29	11.01	9.64	
07/27/09		12.63	10.67	13.18	13.36	10.56		12.86	10.68	12.11	12.75	11.78	9.51	
08/31/09		11.57	10.78	11.67	11.90	9.45		11.39	9.14	11.12	11.48	10.96	8.25	
09/30/09		11.19	9.84	11.31	11.44	8.64		11.16	10.51	10.37	11.19	10.57	8.33	
10/30/09		12.29	11.05	12.77	13.02	10.32		12.26	11.81	11.74	12.58	12.01	10.66	
11/30/09		11 41	11.28	11.62	11.93	9.60		11.13	11.33	10.61	11.49	9.99	7.94	
12/30/09		11.47	10.60	12.05	12.21	10.23		11.71	11.02	10.77	11.63	9.00	8.88	
01/29/10		11 19	11.03	11.58	11.45	10.60		11.62	11.39	10.52	11.29	9.71	9.22	
$\frac{02}{26}$		11.30	10.91	11.59	11.74	10.27		11.64	11.32	11.02	11.30	10.62	8.64	
03/30/10		11.68	11 74	11.51	12.06	10.62		11.78	11.24	11.49	11.76	10.86	9.14	
04/30/10		11 78	11.67	12 11	12.16	10.30		12.15	10.85	11.44	11.92	10.85	9.58	
05/26/10		11.81	10.92	11.85	12.14	10.51		11.88	10.14	11.14	11.60	11.10	9.12	

Page 7 of 9

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	City MH1	City MH2	City MH3				
Date							
07/24/00	6.3	7.3					
10/24/00	7.08	7.52	7.41				
03/29/01	7.52	7.50	7.16				
06/15/01	7.7	7.69	7.4				
06/22/01	8.0	7.9	7.8				
07/31/01	8.0	8.0	7.7				
08/20/01	8.2	8.3	8.0				
09/28/01	8.1	8.3	7.9				
10/22/01	8.0	8.0	7.8				
11/27/01	7. 9	8.2	8.01				
12/20/01	*	*	*				
01/29/02	7.62	7.93	7.97				
02/11/02	7.52	7.73	7.79				
03/25/02	*	*	*				
04/24/02	7.46	7.62	7.69				
05/21/02	7.47	7.66	7.72				
06/20/02	7.57	7.69	7.78				
07/18/02	7.72	7.84	8.01				
08/06/02	7.63	7.68	7.92				
09/12/02	7.72	7.79	7.98				
10/30/02	7.73	7.8	7.93				
11/21/02	7.32	7.37	7.41				
12/11/02	7.29	7.31	7.35				
01/16/03	7.62	7.7	7.79				
02/25/03	7.64	7.71	7.89				
03/14/03	7.39	7.54	7.61				
04/14/03	7.22	7.39	7.41				
05/08/03	7.29	7.43	7.48				
06/19/03	7.27	7.39	7.41				
07/21/03	7.25	7.36	7.38				
08/28/03	7.29	7.44	7.41				
09/30/03	7.29	7.45	7.40				
10/20/03	7.4	7.71	7.39				
11/03/03	8.46	7.14	7.27				
12/23/03	9.34	7.63	7.57				

Note:

* - pH meter malfunctioned.

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	City MH1	City MH2	City MH3
Date			
01/21/04	(2)	8.12	(2)
02/12/04	8.45	7.77	7.65
03/04/04	8.21	7.76	7.79
04/16/04	10.95	8.38	8.32
05/14/04	7.30	7.62	7.75
06/25/04	8.06	7.99	7.94
07/30/04	7.85	7.90	7.81
08/31/04	10.2	7.5	7.4
09/30/04	8.6	7.7	7.9
10/20/04	7.59	7.56	7.61
11/23/04	9.64	7.6	7.67
12/31/04	9.09	7.68	7.38
01/28/05	8.92	7.58	7.40
02/28/05	(1)	8.16	7.90
03/31/05	8.49	7.59	7.55
04/29/05	8.74	8.05	7.89
05/27/05	9.24	8.33	8.27
06/24/05	10.53	8.44	8.24
07/29/05	7.3	7.16	6.96
10/02/05	8.06	5.87	7.13
10/03/05	10.3	8.1	NM Roa
10/31/05	10.76	7.9	7.93
11/22/05	9.50	8.54	7.34
12/23/05	10.58	(3)	(3)
01/2//06	10.76	7.87	7.84
02/28/06	11.29	8.73	8.64
03/24/06	11.18	7.98	7.78
04/21/06	INM	8.28	8.05
05/30/06	10.88	7.73	7.63
06/26/06	8.84	7.73	7.68
07/31/06	7.51	7.02	7.24
08/25/06	9.72	7.82	7.67
09/22/06	11.29	8.34	8.99
10/31/06	10.70	8.61	8.13
11/29/06	10.77	8.27	8.04
12/29/06	10.60	8.07	7.73

Notes:

* - pH meter malfunctioned.

NM - Not Measured.

(1) - Buried with snow.

(2) - Road conditions were not safe to allow for monitoring.

(3) - pH probe damaged.

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Location	City MH1	City MH2	City MH3			
Date						
01/26/07	11.20	7 76	7 81			
02/27/07	8.72	8.15	7.86			
03/30/07	10.90	8.29	8.42			
04/30/07	10.71	8.52	8.30			
05/25/07	10.99	7.74	7.68			
06/29/07	9.47	7.61	7.62			
07/25/07	6.96	6.61	6.60			
08/31/07	8.68	7.79	7.52			
09/27/07	10.63	8.86	8.73			
10/31/07	8.98	7.96	7.85			
11/30/07	10.39	7.96	7.97			
12/31/07	10.59	9.40	9.20			
01/28/08	9.65	9.98	8.41			
02/29/08	11.21	8.30	8.13			
03/31/08	10.53	8.29	8.33			
04/28/08	11.48	10.09	8.23			
05/29/08	11.11	10.94	9.92			
06/25/08	9.57	8.18	8.68			
07/31/08	9.77	8.46	8.85			
08/27/08	6.61	7.02	7.24			
09/26/08	10.61	9.90	9.72			
10/30/08	11.00	9.01	8.58			
11/22/08	10.36	9.02	9.57			
12/31/08	6.70	7.69	6.77			
01/30/09	10.48	9.37	9.29			
02/25/09	11.58	10.93	10.28			
03/27/09	11.08	11.03	11.04			
04/30/09	9.23	9.16	8.27			
05/27/09	10.60	10.23	9.42			
06/29/09	11.06	10.92	10.67			
07/27/09	11.00	9.48	8.69			
08/31/09	10.12	8.36	8.43			
09/30/09	9.94	8.87	9.38			
10/30/09	11.20	10.62	9.00			
11/30/09	9.50	8.46	7.27			
12/30/09	9.30	9.73	9.08			
01/29/10	8.64	8.94	8.74			
02/26/10	10.42	10.15	9.35			
03/30./10	10.14	9.11	9.29			
04/30/10	11.25	11.09	10.99			
05/26/10	9.97	9.26	8.96			

Monitoring

EFFLUENT SAMPLING SUMMARY JUNE 2001 TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

monthly (as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit)

PARAMETERS

Volatiles

Acetone Benzene 2-Butanone Chlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane trans-1,2-Dichloroethene Ethylbenzene

Semi-Volatiles

1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol

Inorganics

Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Iron

Wet Chemistry

Alkalinity (Bicarbonate) Alkalinity (Total) BOD Chloride COD Cyanide Hardness NH3 NO3 Methylene Chloride Styrene Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl Chloride Xylenes (Total)

4-Methylphenol Naphthalene Di-n-octylphthalate Phenols (4AAP)

Lead Magnesium Manganese Mercury Nickel Selenium Silver Sodium Zinc

Oil and Grease pH Phosphorous Sulfate Sulfide TDS TKN TOC TSS

EFFLUENT SAMPLING SUMMARY SUBSEQUENT TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

Semi-Annual (Spring and Fall as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit dated January 31, 2007)

PARAMETERS

Volatiles

Acetone Benzene 2-Butanone Chlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane trans-1,2-Dichloroethene Ethylbenzene

Semi-Volatiles

1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol

Wet Chemistry

Chloride Cyanide NH3 NO3 Phosphorous Sulfate Sulfide Methylene Chloride Styrene Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl Chloride Xylenes (Total)

4-Methylphenol Naphthalene Di-n-octylphthalate Phenols (4AAP)

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		Discharge Sample Port GRATWICK-RIVERSIDE 6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
Parameter	Unit								Surface Water Standard ⁽¹⁾
Volatiles									
1,1,1-Trichloroethane	µg/L	3.0J	1.8J	1.1J	7.6U	7.6U	3.8U	3.8U	5
1,1-Dichloroethane	µg/L	8.8	7.3	5.8	3.4J	2.1U	2.6J	3.5J	5
1,2-Dichloroethane	µg/L	5.0U	5.0U	5.0U	10U	10U	5.0U	5.0U	0.6
2-Butanone	µg/L	7.6J	10	10 U	20U	20U	6.8J	6.7J	50
Acetone	µg/L	77	93	140	36	26	55	55	50
Benzene	µg/L	6.4	7.2	6.2	3.5J	3.2J	3.1J	4.0J	1
Chlorobenzene	µg/L	3.7J	4.9J	5.0J	3.4J	16	3.5J	5.4J	5
Ethylbenzene	µg/L	8.9	11	9	8.6J	3.6J	4.8J	6.8J	5
Methylene chloride	µg/L	1.1J	2.8U	2.8U	5.6U	5.6U	2.8U	2.8U	5
Styrene	µg/L	1.0J	5.0U	5.0U	10U	10U	5.0U	5.0U	5
Tetrachloroethene	µg/L	22	33	25	16	8.3	15	23	0.7 (2)
Toluene	µg/L	74	84	68	42	20	37	50	5
trans-1,2-Dichloroethene	µg/L	2.6	2.1	2.8	3.3J	1.8J	1.5J	2.4	5
Trichloroethene	µg/L	150J	130	87	55	32	56	72	5
Vinyl chloride	µg/L	11	13	13	13J	5.6J	8.0J	13	0.3 (2)
Xylene (total)	µg/L	40	44	34	32	11	17	26	5
Semi-Volatiles									
1,2-Dichlorobenzene	µg/L	9U	2U	1J	6	0.6J	0.9J	9U	3
1,4-Dichlorobenzene	µg/L	21U	4U	1J	2J	1J	4U	1J	3
2,4-Dimethylphenol	µg/L	14	13	19	12	8	17	13	50 ⁽²⁾
2-Methylphenol	µg/L	49	46	38	28	15	38	37J	NL
4-Methylphenol	µg/L	58	47	46	30	21	46	40J	NL
Di-n-octyl phthalate	µg/L	12U	2U	2U	2U	1J	2U	12U	50 ⁽²⁾
Naphthalene	µg/L	1J	1J	1J	1J	67J	0.8J	8U	10
Phenol	µg/L	86	64	67	110	230	74	110	1

.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

		Discharge Sample Port							
Sample ID:	0	RATWICK-RIVERSIDE							
Sample Date:		6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
Parameter U	nit								Surface Water Standard ⁽¹⁾
Metals									
Aluminum m	g/L	0.31	0.24	0.24	0.34	0.20U	0.20	0.20U	NL
Antimony m	g/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.003
Arsenic m	g/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.050
Barium m	g/L	0.059	0.063	0.061	0.081	0.067	0.064	0.064	1.0
Beryllium m	g/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.003 ⁽²⁾
Cadmium m	g/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005
Chromium m	g/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.050
Copper m	g/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023 ⁽³⁾
Iron m	g/L	0.050U	0.050U	0.050U	0.16	0.095	0.057	0.062	0.30
Lead m	g/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.012
Magnesium m	g/L	0.35	0.66	1	0.77	6.8	1.1	0.94	35
Manganese m	g/L	0.0030U	0.0030U	0.0036	0.012	0.028	0.0043	0.004	0.30
Mercury m	g/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026 ⁽⁴⁾
Nickel m	g/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10
Selenium m	g/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0046 (4)
Silver m	z/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050
Sodium m	g/L	273	271	262	310	290	293	286	NL
Zinc m	g/L	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	2.0 ⁽²⁾
General Chemistry									
pH · S	U.	NA	NA	9.45	11.23	9.20	10.06	10.71	NL ·
Hardness m	z/L	524	488	465	529	301	456	410	NL
Total Dissolved Solids (TDS) m	z/L	1500	1450	1530	1520	1280	1200	1200	NL
Total Suspended Solids (TSS) m	g/L	NA	NA	14	19	10	9.0	7.0	NL
Chloride m	z/L	497	123	497	820	577	436	389	250
BOD m	z/L	NA	NA	20	17	20	24	27	NL
COD m	z/L	NA	NA	155	240	240	50	49	NL.
Oil and Grease m	2/L	NA	NA	0.60U	1.0	0.87U	1.0U	1.0U	NL
Organic Carbon m	z/L	NA	NA	16	10	18	9.0	11	
Alkalinity, Total (As CaCO3) m	z/L	131	115	120	115	20.9	22.2	57	NL
Bicarbonate (as CaCO3) m	g/L	5.0U	5.0U	5.0U	5.0U	20.9	22.2	57	NL
Ammonia m	g/L	NA	NA	6	4.9	4.9	21	11.6	2.0
Nitrate (as N) m	g/L	0.050U	0.050U	0.50U	0.20	0.050U	0.050U	0.050U	10

Page 2 of 21

.

-

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:	Di GR/	scharge Sample Port ATWICK-RIVERSIDE							
Sample Date:		6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
Parameter	Unit								Surface Water Standard ⁽¹⁾
General Chemistry									
TKN	mg/L	NA	NA	10	7.6	7.6	14.8	10.6	NL
Sulfate	mg/L	281	20.4	307	196	329	245	263	250
Sulfide	mg/L	13.2	16.0	14.3	5.6	2.5	10.6	14	0.002
Phenol	mg/L	NA	NA	0.28	0.24	0.28	0.15	0.11	0.001
Phosphorous	mg/L	NA	NA	0.29	NA	0.05	0.13	0.06	0.020 ⁽²⁾
Cyanide	mg/L	NA	NA	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

.

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/23/2002	2/21/2002	3/27/2002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	7/25/2002	8/27/02	9/23/02	10/17/02	11/13/02	12/12/2002	Surface Water
Parameter	Unit														Standard(1)
Volatiles															
1,1,1-Trichloroethane	µg/L	7.3U	7.6U	7.6U	7.6U	7.6U	7.6U	7.6U	7.6U	3.8U	3.8U	3.8U	3.8U	7.6U	5
1,1-Dichloroethane	µg/L	2.3J	4.1J	4.9J	9.9	9.4U	9.4U	9.4U	2.7J	1.4J	1.8J	1.2J	4.5J	7.3J	5
1,2-Dichloroethane	µg/L	10U	10U	10U	10 U	10U	10U	10U	10U	5.0U	5.0U	5.0U	5.0U	10U	0.6
2-Butanone	µg/L	20U	20U	20U	110	20U	20U	20U	20U	10U	10U	2.1J	10U	5.2J	50
Acetone	µg/L	42	53	56	98	52	25	25	130	7.0J	28	15	48	96	50
Benzene	µg/L	2.1J	3.2J	4.6J	9.1	4.7J	2.1J	2.1J	3.3J	1.9J	3.3J	2.1J	5.3	7.8J	1
Chlorobenzene	µg/L	3.8J	6.6J	5.2J	4.4J	8.9J	5.8J	5.8J	5.4J	6.9	4.0J	5.6J	6.1	4.3J	5
Ethylbenzene	µg/L	2.0J	7.6J	9.6J	18	10J	5.3J	5.3J	7.8J	6.4J	7.2	4.6J	13	18	5
Methylene chloride	µg/L	6.4U	5.6U	5.6U	2.9J	5.6U	5.6U	5.6U	3.2J	3.5U	3.5U	3.5U	3.5U	2.2J	5
Styrene	µg/L	10U	10U	10U	10U	10 U	10U	10U	10U	5.0U	5.0U	5.0U	5.0U	10U	5
Tetrachloroethene	µg/L	4.9J	23	28	46	48	27	27	19	9.6	12	6.0	42	48	0.7 (2)
Toluene	µg/L	15	46	57	110	42	33	33	41	18	30	14	64	110	5
trans-1,2-Dichloroethene	µg/L	3.6U	2.4J	2.5J	4.2	3.6U	3.6U	3.6U	2.1J	2.2	1.8U	2.0	1.8U	3.2J	5
Trichloroethene	ug/L	27	92	140	260	140	80	80	74	20	48	20	130	230	5
Vinyl chloride	ug/L	8.41	20U	5.1J	14J	13J	8.6J	8.6J	6.6J	11	10	11	18	15J	0.3 (2)
Xylene (total)	µg/L	7.3J	29	40	76	37	21	21	30	20	24	15	50	78	5
Semi-Volatiles															
1,2-Dichlorobenzene	µg/L	2J	1J	1J	3	9U	0.8J	0.8J	1J	0.6J	0.6J	1J	0.9J	3	3
1,4-Dichlorobenzene	µg/L	2J	2J	1J	ЗJ	2J	1J	1J	1J	1J	0.8J	2J	1J	3J	3
2,4-Dimethylphenol	µg/L	11J -	9J	8	14	5J	4	-4	9	6	7	8	12	21	50 (2)
2-Methylphenol	µg/L	28J	21J	17	36	10J	8J	8J	18	8J	13	15	19	32	NL
4-Methylphenol	µg/L	40J	27J	24	57	19J	13	13	27	13	20	21	30	61	NL
Di-n-octyl phthalate	µg/L	14U	12U	2U	2U	12U	2U	2U	2U	2U	0.3J	3U	2U	2U	50 (2)
Naphthalene	µg/L	57	24	12	1J	7U	15	15	13	23	8	29	2U	1J	10
Phenol	µg/L	210	96	42	73	46	51	51	41	66	28	84	35	38	1

•

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:		1/22/2002	2/27/2002	2/27/2002	412412002	<i>5/20/2002</i>	(120/2002	(120/2002	7/25/2002	0/27/02	0/22/02	10/17/00	11/12/02	10/10/2000	
Sumple Dute:		1/23/2002	2/21/2002	312712002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	712512002	8/2//02	9/23/02	10/1//02	11/13/02	12/12/2002	Surface Water
Parameter	Unit														Standard(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.003
Arsenic	mg/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.050
Barium	mg/L	0.077	0.075	0.078	0.095	0.064	0.058	0.058	0.059	0.073	0.054	0.064	0.068	0.096	1.0
Beryllium	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.003 (2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005
Chromium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.050
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023
Iron	mg/L	0.050U	0.050U	0.050U	0.050U	0.090	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.10	0.050U	0.30
Lead	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.012
Magnesium	mg/L	1.5	1.4	0.92	0.34	2.5	1.7	1.7	1.8	8.8	3.5	6.4	1.9	0.43	35
Manganese	mg/L	0.0034	0.0042	0.0049	0.003U	0.0090	0.0030U	0.0030U	0.0030U	0.0094	0.0030U	0.0098	0.0030U	0.0030U	0.30
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026
Nickel	mg/L	0.010U	0.010 U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10
Selenium	mg/L	0.010U	0.010UJ	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0046
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050
Sodium	mg/L	317	336	360	242	329	318	318	270	189	195	204	289	272	NL (2)
Zinc	mg/L	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	2.0 (2)
General Chemistry															
pH	S.U.	10.91	10.96	10.92	11.46	10.4	10.66	10,66	10.37	8.44	8.97	8.84	10.11	10.72	NL
Hardness	mg/L	415	449	440	484	349	300	300	300	316	277	274	372	507	NL
Total Dissolved Solids (TDS)	mg/L	1450	1490	1640	1610	1530	1130	1130	1100	868	1040	945	1330	1410	NL
Total Suspended Solids (TSS)	mg/L	5.0	11.0	9	8	6	8	8	8	12	6	1.5	2	2.3	NL
Chloride	mg/L	514	545	577	545	518	452	452	424	377	320	329	502	489	250
BOD	mg/L	25	21	22	29	13	9	9	12	14	8	11	16	15	NL
COD	mg/L	45	58	255	50	23	26	26	58	49	1 9	46	16	64	NL
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	NL
Organic Carbon	mg/L	14	6	10	12	9	11	11	8	6.9	10	7	(5)	(5)	NL
Alkalinity, Total (As CaCO3)	mg/L	62.4	53.8	102	126	36.3	43.1	43.1	16.7	27.2	5.0U	22.4	14.3	110	NL
Bicarbonate (as CaCO3)	mg/L	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	16.7	27.2	5.0U	22.4	14.3	5.0U	NL
Ammonia	mg/L	9.1	6.0	6.0	5.2	SL	2.0	2.0	1.7	9.1	10.5	9.4	9.4	7.0	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050Ú	0.050U	0.050U	0.050U	0.0500	10

•

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/23/2002	2/21/2002	3/27/2002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	7/25/2002	8/27/02	9/23/02	10/17/02	11/13/02	12/12/2002	Europa a Watan
Parameter	Unit														Standard(1)
General Chemistry															
TKN	mg/L	8.1	4.5	5.0	4.8	SL	2.0	2.0	1.7	5.6	6.2	7.8	10.5	10.8	NL
Sulfate	mg/L	261	250	262	239	239	226	226	215	236	214	213	254	302	250
Sulfide	mg/L	9.9	9.9	11.2	13.7	4.4	1.0U	1.0U	1.0U	1.4	1.0U	1.0U	7.4	21.6	0.002
Phenol	mg/L	0.12	0.28	0.22	0.22	SL	0.40	0.40	0.27	0.16	0.16	0.16	0.12	0.12	0.001
Phosphorous	mg/L	0.09	0.08	0.09	0.17	0.02	0.10	0.10	0.04	0.018	0.04	0.06	0.12	0.10	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.040J	0.005U	0.005	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

•

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:														
Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface Water
Parameter	Unit													Standard (1)
Volatiles														
1,1,1-Trichloroethane	µg/L	2.6U	2.6U	2.6U	5.2U	1.3U	2.6U	5.2U	5.2U	5.2U	1.3U	2.6U	2.6U	5
1,1-Dichloroethane	µg/L	4.1	9.6	5.6	6.4	0.84U	5.4	7.4	4.6	3.3U	0.84U	1.7U	7.0	5
1,2-Dichloroethane	µg/L	1.7U	1.7U	1.7U	3.4U	0.85U	1.7U	3.4U	3.4U	3.4U	0.85U	1.7U	1.7U	0.6
2-Butanone	µg/L	9.3U	9.3U	9.3U	19U	4.6U	9.3U	19U	19U	19U	4.6U	9.3U	9.3U	50
Acetone	µg/L	21	56	51	42	10U	28	52	42U	42U	10U	21U	35	50
Benzene	µg/L	3.4	7.9	6.2	4.4U	1.1U	3.2	4.6	4.4U	4.4U	1.1U	2.2U	7.2	1
Chlorobenzene	µg/L	6.1	6.6	6.9	7.5	6.9	4.1	7.0	5.0	3.6U	5.4	9.3	6.3	5
Ethylbenzene	µg/L	9.9	2.3	15	12	1.9	11	12	9.5	4.3	1.8	2.1	17	5
Methylene chloride	µg/L	7.0U	7.0U	7.0U	14U	3.5U	7.0U	14U	14U	14U	3.5U	7.0U	7.0U	5
Styrene	µg/L	5.2U	5.2U	5.2U	10U	2.6U	5.2U	10U	10U	10U	2.6U	5.2U	5.2U	5
Tetrachloroethene	µg/L	22	59	46	31	8.3	45	38	32	12	1.3U	2.5U	47	0.7 (2)
Toluene	µg/L	37	110	81	56	7.1	46	57	39	17	1.2U	3.2	82	5
trans-1,2-Dichloroethene	µg/L	3.0U	4.3	3.0U	6.0U	1.8	4.5	6.0U	6.0U	6.0U	1.5U	3.0U	3.3	5
Trichloroethene	µg/L	92	260	220	160	17	140	170	110	53	1.7	5.7	180	5
Vinyl chloride	ug/L	10	20	11	9.6	5.8	12	9.5	5.7U	5.7U	1.9	2.8U	11	0.3 (2)
Xylene (total)	µg/L	41	99	64	50	7.0	44	56	40	28U	6.9U	14U	73	5
Semi-Volatiles														
1,2-Dichlorobenzene	µg/L	4U	20U	20U	20U	20U	20U	19U	16U	16U	16U	16U	16U	3
1,4-Dichlorobenzene	µg/L	4U	18U	19U	19U	19U	19U	18U	15U	15U	15U	15U	140	3
2,4-Dimethylphenol	µg/L	· 10	18U	19U	19U	19U	19U	18U	12U	20	12U	13U	18	50 .(2)
2-Methylphenol	µg/L	12	16U	22	16U	16U	16U	15U	15U	15U	15U	16U	15	NL
4-Methylphenol	µg/L	24	35	45	31	18U	19	17U	15U	46	15U	16U	57	NL (2)
Di-n-octyl phthalate	$\mu g/L$	4U	19U	20U	19U	19U	20U	19U	26U	26U	26U	27U	26U	50 (2)
Naphthalene	$\mu g/L$	3U	18U	18U	18U	18U	18U	17U	17U	17U	17U	18U	17U	10
Phenol	µg/L	61	30	62	94	64	61	74	46	28	16	150	46	1

.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:															
Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface	
Parameter	Unit													Standard	(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL	
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.003	
Arsenic	mg/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.010U	0.010U	0.010U	0.010U	0.050	
Barium	mg/L	0.091	0.097	0.090	0.094	0.065	0.070	0.080	0.074	0.082	0.072	0.092	0.10	1.0	
Beryllium	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0040U	0.0055	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023	(3)
Iron	mg/L	0.050U	0.050U	0.050U	0.11	0.050U	0.050U	0.17	0.050U	0.050U	0.072	0.050U	0.050U	0.30	
Lead	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0060U	0.0060U	0.0060U	0.0060U	0.012	
Magnesium	mg/L	1.4	0.26	0.31	3.6	4.8	1.6	2.3	1.4	1.2	7.4	5.9	0.72	35	
Manganese	mg/L	0.0030U	0.0030U	0.0030U	0.012	0.0030	0.0030U	0.0080	0.0030U	0.0030U	0.018	0.0055	0.0030U	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	(4)
Selenium	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	343	391	195	401	310	276	293	231UJ	272	239	375	361	NL	2
Zinc	mg/L	0.026U	0.026U	0.0 2 6U	0.026U	0.026U	0.026U	0.026U	0.020U	0.020U	0.020U	0.020U	0.020U	2.0	2)
General Chemistry															
pH	S.U.	10.71	11.55	11.3	10.91	9.75	8.0	10.73	10.8	10.59	7.92	8.48	11.13	NL	
Hardness	mg/L	388	435	459	430	368	374	365	294	431	380	399	420	NL	
Total Dissolved Solids (TDS)	mg/L	1500	1580	1590	1750	1120	1230	1440	1050	1400	1000	1590	1400	NL	
Total Suspended Solids (TSS)	mg/L	2.0	6.0	3.0	18.0	3.0	4	9	4	11	15	15	3	NL	
Chloride	mg/L	511	512	628	778	524	416	474	410	347	383	615	834	250	
BOD	mg/L	13	10	20	22	12	9	9	11	7	6	11	22	NL	
COD	mg/L	55	73	46	44	39	73	48	24	21	8	40	53	NL	
Oil and Grease	mg/L	1.0U	0.28	1.0U	1.0	1.0U	NL								
Organic Carbon	mg/L	6	13	12	12	9	8	9	6	10	5	10	9	NL	
Alkalinity, Total (As CaCO3)	mg/L	104	155	121	48	7.9	NA	74	119	58.0	38.0	13.4	74.8	NL	
Bicarbonate (as CaCO3)	mg/L	22.5	5.0U	5.0U	5.0U	7.9	NA	10U	10U	10U	38.0	13.4	10U	NL	
Ammonia	mg/L	7.35	3.15	2.10	5.6	5.25	6.3	5.25	3.15	3.15	2.45	4.2	3.5	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.051	0.0500	0.050U	10	

-
ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:														
Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface Water
Parameter	Unit													Standard (1)
General Chemistry														
TKN	mg/L	9.24	2.52	1.1	4.48	5.04	8.4	6.7	5.88	5.88	2.24	7.28	5.88	NL
Sulfate	mg/L	202	177	184	230	236	234	170	208	254	149	242	386	250
Sulfide	mg/L	3.2	4.0	8.0	10	2.2	4.0	4.8	4.8	2.4	1.0U	1.0U	2.0	0.002
Phenol	mg/L	0.11	0.10	0.009	0.006	0.01U	0.008U	0.034	0.08U	0.014U	0.006U	0.012U	0.015U	0.001
Phosphorous	mg/L	0.12	0.10	0.18	0.10	0.04	0.11	0.10	0.13	0.16	0.11	0.24	0.13	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

.

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form
(5) - TOC analyzer malfunction prevented analysis of this compound.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:														
Sample Date:		1/8/04	2/6/04	3/16/04	04/13/04	05/14/04	06/10/04	07/09/94	08/12/04	09/10/04	10/08/04	11/05/04	12/03/04	Surface
Parameter	Unit													Standard ⁽¹⁾
Volatiles														
1,1,1-Trichloroethane	µg/L	2.6U	5.2U	1.3U	5.2U	1.3U	5.2U	1.3U	1.3U	5.2U	5.2U	5.2U	1.3U	5
1,1-Dichloroethane	µg/L	9.2	3.3U	11	14	4.1	11	5.9	10	5.2U	5.2U	3.3U	6.5	5
1,2-Dichloroethane	µg/L	1.7U	3.4U	0.85U	3.4U	0.85U	3.4U	0.85U	0.85U	5.2U	5.2U	3.4U	0.85U	0.6
2-Butanone	µg/L	9.3U	19U	4.6U	19U	4.6U	19U	4.6U	4.6U	5.2U	5.2U	19U	4.6U	50
Acetone	μg/L	53	42U	38	42U	12	42U	22	34	5.2U	5.2U	42U	19	50
Benzene	µg/L	7.8	4.4U	6.1	4.4	2.1	5.3	2.9	5.6	5.2U	5.2U	4.4U	3.3	1
Chlorobenzene	µg/L	6.7	8.8	3.0	3.6U	8.8	3.6U	4.4	2.9	19	13	12	4.5	5
Ethylbenzene	µg/L	19	0.11U	17	14	6.4	18	8.7	18	6.4	0.11U	0.11U	12	5
Methylene chloride	µg/L	7.0U	14U	3.5U	14U	3.5U	15	3.5U	3.5U	14U	14U	14U	3.5U	5
Styrene	µg/L	5.2U	10U	2.6U	10U	2.6U	10U	2.6U	2.6U	14U	14U	10U	2.6U	5
Tetrachloroethene	µg/L	60	5.0U	50	38	16	63	22	52	14U	14U	5.0U	31	0.7 (2)
Toluene	µg/L	98	4.9U	80	75	26	78	38	83	14U	14U	4.9	46	5
trans-1,2-Dichloroethene	µg/L	3.6	6.0U	4.0	6.0U	1.8	6.0U	2.1	3.6	14U	14U	6.0U	1.5U	5
Trichloroethene	µg/L	260	7.5	200	220	82	240	97	200	4.8	4.8U	4.8U	130	5
Vinyl chloride	µg/L	14	5.7U	10	8.9	4.9	11	5.6	12	6.1	5.7U	5.7U	6.7	0.3 (2)
Xylene (total)	µg/L	91	28U	81	78	29	87	42	83	28U	28U	28U	5.4	5
Semi-Volatiles														
1,2-Dichlorobenzene	µg/L	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	3
1,4-Dichlorobenzene	µg/L	15U	15U	15U	15U	15U	15U	15U	14U	15U	14U	- 15U	15U	3
2,4-Dimethylphenol	µg/L	15	12U	13U	12U	12U	13U	13U	12U	14	12U	13U	13U	50 (2)
2-Methylphenol	µg/L	16U	15U	16U	15U	15U	16U	16U	15	15U	15U	16U	16U	NL
4-Methylphenol	µg/L	48	15U	24	16	15U	16U	20	32	29	15U	16U	16U	NL
Di-n-octyl phthalate	µg/L	27U	27U	27U	26U	27U	27U	27U	26U	26U	26U	27U	27U	50 (2)
Naphthalene	µg/L	18U	37	18U	17U	20	18U	18U	17U	17Ų	20	18U	18U	10
Phenol	μg/L	39	140	11	14	91	16	67	13	6U	55	6U	11	1

-

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/8/04	2/6/04	3/16/04	04/13/04	05/14/04	06/10/04	07/09/94	08/12/04	09/10/04	10/08/04	11/05/04	12/03/04	Surface Water
Parameter	Unit													Standard ⁽¹⁾
Metals														
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	00020U	00020U	00020U	00020U	0.003
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.050
Barium	mg/L	0.095	0.092	0.11	0.096	0.085	0.083	0.068	0.076	0.059	0.079	0.070	0.077	1.0
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.003 (2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010 U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.050
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010 U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023 (3)
Iron	mg/L	0.050U	0.066	0.050U	0.055	0.26	0.050U	0.056	0.097	0.20	0.22	0.11	0.050U	0.30
Lead	mg/L	0.0060U	0.0060U	0.0060U	0.0060U	0.0060U	0.0060U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.012
Magnesium	mg/L	0.68	4.2	1.2	1.0	5.4	0.66	2.8	0.57	5.4	5.2	5.2	2.7	35
Manganese	mg/L	0.0030U	0.19	0.0033	0.0058	0.018	0.0030U	0.012	0.0030U	0.022	0.031	0.022	0.067	0.30
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026 (4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.0046
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050
Sodium	mg/L	362	425	425	422	423	349	319	305	334	447	360	294	NL (2)
Zinc	mg/L	0.030	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	2.0 (2)

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/8/04	2/6/04	3/16/04	04/13/04	05/14/04	06/10/04	07/09/94	08/12/04	09/10/04	10/08/04	11/05/04	12/03/04	Surface Water
Parameter	Unit													Standard ⁽¹⁾
General Chemistry														
pH	S.U.	11	9.13	11.13	11.16	9.44	11.26	8.81	11.19	9.21	7.26	9.10	10.95	NL
Hardness	mg/L	450	452	446	484	408	430	336	312	430	372	348	360	NL
Total Dissolved Solids (TDS)	mg/L	1490	1770	1780	1760	1920	1560	1490	1390	1560	1720	1320	1220	NL
Total Suspended Solids (TSS)	mg/L	6	4	11	20	6	11	5	8	8	10	18	5	NL
Chloride	mg/L	742	986	869	809	1020	792	728	678	692	913	676	599	250
BOD	mg/L	18	10	13	19	17	16	6	11	15	11	6	15	NL
COD	mg/L	55	30	51	51	58	26	67	43	46	59	17	24	NL
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	0.57	1.0U	NL						
Organic Carbon	mg/L	9	9	6	5	6	6	8	7	8	9	8	7	NL
Alkalinity, Total (As CaCO3)	mg/L	56.0	23.0	71.2	110.0	12.3	122	45.7	113	37.8	44.6	46.5	55.7	NL
Bicarbonate (as CaCO3)	mg/L	10UJ	23	10U	10U	12.3	47.1	10U	10U	37.8	44.6	46.5	55.7	NL
Ammonia	mg/L	0.32	0.7	0.35	1.75	1.05	0.70	0.35	0.70	1.05	0.7	1.05	1.4	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	10
TKN	mg/L	0.56	2.8	1.4	0.28	0	0.84	0.56	1.68	1.12	0.56	0.84	1.12	NL
Sulfate	mg/L	276	315	381	568	356	360	283	279	265	311	225	2.54	250
Sulfide	mg/L	4.0	1.2	3.2	5.6	1.6	1.6	8.4J	2.4	2.4J	5.6	2.4	2	0.002
Phenol	mg/L	0.015U	0.008U	0.009U	0.01 2 U	0.010U	0.008U	0.010U	0.010U	0.010U	0.007U	0.008U	0.008U	0.001
Phosphorous	mg/L	0.20	0.11	0.24	0.23	0.13	0.05	0.20	0.06	0.14	0.10	0.14	0.10	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:															
Sample Date:		01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	09/09/05	10/07/05	11/04/05	12/08/05	Surface Water	
Parameter	Unit													Standard	(1)
Volatiles															
1,1,1-Trichloroethane	µg/L	2.6U	2.6U	2.6U	2.6U	13U	2.6U	6.6U	1.3U	5.2U	5.2U	5.2U	5.2U	5	
1,1-Dichloroethane	µg/L	1.7U	1.7U	1.7U	1. 7U	8.4U	9.0	4.2U	6.6	5.7	3.3U	11	7.9	5	
1,2-Dichloroethane	µg/L	1.7U	1.7U	1.7U	1.7U	8.5U	1.7U	4.2U	0.85U	3.4U	3.4U	3.4U	3.4U	0.6	
2-Butanone	µg/L	9.3U	9.3U	9.3U	9.3U	46U	9.3U	23U	4.6U	19U	19U	19U	19U	50	
Acetone	µg/L	21U	21U	21U	21U	100U	30	53U	10U	42U	42U	42U	42U	50	
Benzene	µg/L	2.2U	2.2U	2.2U	2.2U	11U	2.5	5.5U	1.3	4.4U	4.4U	4.4U	4.4U	1	
Chlorobenzene	µg/L	14	18	16	6.4	9.0U	1.8U	5.5	2.6	4.0	7.5	3.6U	4.7	5	
Ethylbenzene	µg/L	3.2	2.2	0.056U	0.056U	0.28U	9.0	8.4	9.4	4.6	6.6	11	8.3	5	
Methylene chloride	µg/L	7.0U	7.0U	7.0U	7.0U	35U	7.0U	17U	3.5U	14U	14U	14U	14U	5	
Styrene	µg/L	5.2U	5.2U	5.2U	5.2U	26U	5.2U	13U	2.6U	10U	10U	10U	10U	5	0
Tetrachloroethene	µg/L	2.5U	2.5U	3.5	2.5U	13U	24	34	28	12	17	20	15	0.7	(2)
Toluene	µg/L	4.0	2.4U	5.3	3.1	14	45	40	44	23	25	45	34	5	
trans-1,2-Dichloroethene	µg/L	3.0U	3.0U	3.0U	3.0U	15U	3.0U	7.6U	1.5U	6.0U	6.0U	6.0U	6.00	5	
Trichloroethene	µg/L	8.7	2.4U	12	8.5	29	140	100	90	67	61	120	86	5	(2)
Vinyl chloride	µg/L	3.6	2.8U	2.8U	2.8U	14U	5.1	7.1U	1.4U	5.7U	6.6	5.7U	5.70	0.3	(-
Xylene (total)	µg/L	14U	14U	14U	14U	69U	46	35	46	28U	28U	55	41	э	
Semi-Volatiles												_		2	
1,2-Dichlorobenzene	µg∕L	16U	16U	16U	16U	16U	1	1U	1U	1UJ	1	2	2	3	
1,4-Dichlorobenzene	µg/L	15U	. 14U	15U	15U	15U	1	1	1	1	2	2	2	3	(2
2,4-Dimethylphenol	µg/L	16	12U	13U	13U	12U	5	3	. 4	3	6	7		50	(2
2-Methylphenol	µg/L	16U	15U	16U	16U	15U	6	4	7	1	5	8	7	INL	
4-Methylphenol	µg/L	49	15U	16	16U	15U	12	10	15	0.7U	12	21	21	INL 50	12
Di-n-octyl phthalate	µg/L	27U	26U	27U	27U	27U	0.8U	0.8U	0.9U	0.9U	0.9U	0.90	0.80	50	(-
Naphthalene	ug/L	18U	17U	33	18U	19	0.8U	0.8U	3	0.8U	0.8U	0.80	0.80	10	
Phenol	µg/L	34	6U	130	120J	68	0.4U	7	9	0.4U	17	4	50	1	

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	09/09/05	10/07/05	11/04/05	12/08/05	Surface Water	
Parameter	Unit													Standard	(1)
Metals															
Aluminum	mg/L	0.20U	0.20	0.20U	NL										
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.20U	0.003							
Arsenic	mg/L	0.010U	0.050												
Barium	mg/L	0.068	0.069	0.085	0.15	0.088	0.067	0.055	0.063	0.073	0.082	0.093	0.10	1.0	
Beryllium	mg/L	0.0020U	0.003	(2)											
Cadmium	mg/L	0.0010U	0.005												
Chromium	mg/L	0.0040U	0.050												
Copper	mg/L	0.010U	0.023	(3)											
Iron	mg/L	0.098	0.54	0.37	3.4	0.22	0.050U	0.050U	0.050U	0.17	0.056	0.050U	0.050U	0.30	
Lead	mg/L	0.0050U	0.012												
Magnesium	mg/L	4.3	5.7	5.6	14.2	6.3	0.50	2.8	1.8	3.2	3.4	0.26	1.2	35	
Manganese	mg/L	0.01	0.035	0.033	0.34	0.053	0.0030U	0.0068	0.0030U	0.022	0.022	0.0030U	0.0030U	0.30	
Mercury	mg/L	0.00020U	0.0000026	(4)											
Nickel	mg/L	0.010U	0.10	(4)											
Selenium	mg/L	0.015U	0.0046	(4)											
Silver	mg/L	0.0030U	0.050												
Sodium	mg/L	387	422	448	504	347	289	229	235	264	292	302	357	NL	(2)
Zinc	mg/L	0.020U	0.032	0.020U	0.020U	2.0	(2)								

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:														
Sample Date:		01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	<i>09/09/05</i>	10/07/05	11/04/05	12/08/05	Surface
Parameter	Unit													Standard ⁽¹⁾
General Chemistry														
pH	S.U.	9.71	8.94	9.27	8.18	9.3	11.13	8.42	10.67	9.91	9.54	11.25	11.04	NL
Hardness	mg/L	372	390	398	468	400	352	275	268	255	280	360	344	NL
Total Dissolved Solids (TDS)	mg/L	1520	1480	1620	2010	1540	1370	1110	1140	1050	1320	1320	1380	NL
Total Suspended Solids (TSS)	mg/L	278	147	27	82	21	12	11	6	6	4	6	4	NL
Chloride	mg/L	950	836J	1060	1200	883	729	516	408	451	716	664	762	250
BOD	mg/L	12	15	12	11	10	11	14	10	12	14	15	16	NL
COD	mg/L	52	48	52	65	35	51	56	38	47	31	31	61	NL
Oil and Grease	mg/L	0.28	1.0U	1.0U	1.0U	1.0U	0.28	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	NL
Organic Carbon	mg/L	8	9	9	10	9	10	5.1	5.2	5.1	5.6	6.4	9.2	NL
Alkalinity, Total (As CaCO3)	mg/L	44	46.4	40	105	43.5	99.2	36.3	66	10.2	29.0	114	42	NL
Bicarbonate (as CaCO3)	mg/L	44	46.4	40	105	43.5	10U	36.3	66	10.2	29.0	114	42	NL
Ammonia	mg/L	0.7	0.7	0.7	0.35	1.05	0.35	0.35	0.7	0.35	0.70	0.70	0.70	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	10								
TKN	mg/L	0.56	0.28	0.56	0.28	1.4	0.28	0.56	0.56	0.28	0.56	0.56	0.84	NL
Sulfate	mg/L	273	232	431	256	279	276	223	199	206	291	256	263	250
Sulfide	mg/L	8.8	4	5.2	1.0U	1.0U	1.0U	1.0U	2.0	2.0	2.0	5.6	8.8	0.002
Phenol	mg/L	0.006U	0.012U	0.010U	0.014U	0.012U	0.009U	0.009U	0.007U	0.010U	0.010U	0.006U	0.008U	0.001
Phosphorous	mg/L	0.15	0.08	0.11	0.1	0.13	0.08	0.08	0.11	0.14	0.14	0.20	0.04	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.0050U	0.0050U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Water	
Parameter	Unit													Standard	(1)
Volatiles									•						
1,1,1-Trichloroethane	µg/L	5.2U	5.2U	5.2U	5.2U	5.2U	5.2U	1.3U	1.3U	2.6U	2.6U	1.3U	1.3 U	5	
1,1-Dichloroethane	μg/L	8.9	10	11	12	3.3U	3.3U	1.1	8.3	1.7U	2.8	12	2.8	5	
1,2-Dichloroethane	µg/L	3.4U	3.4U	3.4U	3.4U	3.4U	3.4U	0.85U	0.85U	1.7U	1.7U	0.85U	0.85 U	0.6	
2-Butanone	µg/L	19U	19U	19U	19U	19U	19U	4.6U	4.6U	9.3U	9.3U	4.6U	4.6 U	50	
Acetone	µg/L	42U	42U	42U	42U	42U	42U	12	26	21U	21U	22	23	50	
Benzene	µg/L	4.4U	4.4U	4.4U	4.4U	4.4U	4.4U	1.4	4.1	3.0	3.4	1.5	3.4	1	
Chlorobenzene	µg/L	5.1	5.0	5.0	3.6U	8.6	7.8	6.3	7.7	9.8	11	3.9	6.0	5	
Ethylbenzene	µg/L	7.9	10	12	8.2	7.0U	7.0U	2.4	9.5	16	16	8.8	9.4	5	
Methylene chloride	µg/L	14U	14U	14U	6.8U	6.8U	14	1.7U	1.7U	3.4U	3.4U	1.7U	1.7U	5	
Styrene	µg/L	10U	10U	10U	6.6U	6.6U	6.6U	1.7U	1.7U	3.4U	3.4U	1.7U	1.7U	5	
Tetrachloroethene	µg/L	15	19	27	21	9.1	13	5.4	25	18	21	10	22	0.7	(2)
Toluene	µg/L	36	46	56	41	11	28	13	57	13	24	36	44	5	
trans-1,2-Dichloroethene	µg/L	6.0U	6.0U	6.0U	6.0U	6.0U	6.0U	1.5U	3.9	3.0U	3.0U	2.2	1.9	5	
Trichloroethene	µg/L	100	130	150	130	23	54	20	94	23	52	130	82	5	(2)
Vinyl chloride	µg/L	5.7U	5.8	6.4	5.7U	5.7U	5.7U	2.9	11	4.3	5.2	4.6	1.4 U	0.3	(2)
Xylene (total)	µg/L	37	28U	55	41	28U	28U	9.1	41	14U	70	46	41	5	
Semi-Volatiles														_	
1,2-Dichlorobenzene	µg/L	2	2	2	2	1	0.2U	0.2U	0.2U	4	3	0.2U	0.2U	3	
1,4-Dichlorobenzene	µg/L	2	2	2	2	3	0.4U	2	2	6	4	2	0.4U	3	(2)
2,4-Dimethylphenol	µg/L	9	11	14	10	5	4	3	6	19	.9	22	6 J	. 50	(2)
2-Methylphenol	µg/L	6	7	8	5	4	6	3	10	5	4	0.3U	3	NL	
4-Methylphenol	µg/L	21	28	34	13	12	7	5	21	63	43	2	5	NL	(2)
Di-n-octyl phthalate	µg/L	0.8U	0.9U	0.8U	0.8U	4U	21U	21U	21U	21U	21U	23U	21 U	50	(2)
Naphthalene	µg/L	12	11	1	0.8U	50	16	16	38	0.4U	0.4U	0.4U	0.4 U	10	
Phenol	µg/L	43	40	31	0.4U	150	21	46	170	41	10	0.1U	6	1	

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Watar	
Parameter	Unit													Standard	(1)
Metals															
Aluminum	mg/L	0.20U	NL												
Antimony	mg/L	0.20U	0.003												
Arsenic	mg/L	0.010U	0.050												
Barium	mg/L	0.10	0.11	0.94	0.093	0.082	0.074	0.071	0.061	0.074	0.076	0.086	0.06	1.0	
Beryllium	mg/L	0.0020U	0.003	(2)											
Cadmium	mg/L	0.0010U	0.005												
Chromium	mg/L	0.0040U	0.050												
Copper	mg/L	0.010U	0.023	(3)											
Iron	mg/L	0.050U	0.074	0.054	0.20	0.27	0.30								
Lead	mg/L	0.0050U	0.012												
Magnesium	mg/L	2.3	1.2	0.57	0.46	7.6	1.6	7.0	3.0	3.2	2.1	58	4.8	35	
Manganese	mg/L	0.0030U	0.011	0.011	0.0034	0.0093	0.30	(1)							
Mercury	mg/L	0.00020U	0.0000026	(4)											
Nickel	mg/L	0.010U	0.10	(1)											
Selenium	mg/L	0.015U	0.0046	(4)											
Silver	mg/L	0.0030U	0.050												
Sodium	mg/L	357	425	454	419	361	350	278	282	366	337	371	305	NL	(2)
Zinc	mg/L	0.020U	0.020U	0.010U	0.010U	0.010U	0.010U	0.010U	0.018	0.0109	0.012	0.014	0.015	2.0	(2)

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Water	
Parameter	Unit													Standard	(1)
General Chemistry															
pH	S.U.	10.73	11.07	10.99	10.96	9.74	10.62	8.32	9.86	10.82	11.08	11.19	8.53	NL	
Hardness	mg/L	329	342	400	408	289	310	292	260	342	320	296	200	NL	
Total Dissolved Solids (TDS)	mg/L	1510	1700	1670	1730	1500	1470	1180	1170	1440	1430	1350	1020	NL	
Total Suspended Solids (TSS)	mg/L	6	6	10	5	4	3	27	13	6	26	8	9	NL	
Chloride	mg/L	910	897	914	962J	914	737	493	495	728	791	752	412	250	
BOD	mg/L	10	10	9	10	12	7	10	12	12	11	15	14	NL	
COD	mg/L	38	45	47	47	47	47	47	161	177	47	27	20	NL	
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0 U	NL	
Organic Carbon	mg/L	7.9	8.1	8.3	8.9	9.3	8.1	6.7	9.1	8	6.2	6.7	7.1	NL	
Alkalinity, Total (As CaCO3)	mg/L	69	71.4	95.1	75.4	26.9	44.9	92.6	30.3	64.5	93.4	72.0	44.2	NL	
Bicarbonate (as CaCO3)	mg/L	69	10U	10U	75.4	26.9	44.9	92.6	30.3	64.5	93.4	10U	44.2	NL	
Ammonia	mg/L	0.35	1.05	0.28	0.70	0.70	0.28	0.70	1.05	0.70	1.05	0.70	1.05	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050 U	10	
TKN	mg/L	0.28	0.84	0.56	0.84	0.56	0.84	0.56	1.12	0.84	0.56	0.28	1.12	NL	
Sulfate	mg/L	297	288	285	351	296	259	182	242	230	208	269	207	250	
Sulfide	mg/L	4.0	2.9	5.2	6.0	4.4	6.8	2.8	6.4	8.0	8.0	7.2	6.4	0.002	
Phenol	mg/L	0.008U	0.010 U	0.009U	0.011U	0.007U	0.008U	0.012U	0.007U	0.011U	0.013U	0.007U	0.006 U	0.001	
Phosphorous	mg/L	0.06	0.37	0.13	0.05	0.10	0.12	0.07	0.17	0.14	0.14	0.18	0.13	0.020	(2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005 U	0.0052	

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:									
Sample Date:		01/05/07	02/09/07	09/17/08	03/05/09	09/04/09	03/05/10	Surface	
Parameter	Unit							Standard	I ⁽¹⁾
Volatiles									
1,1,1-Trichloroethane	µg/L	1.3 U	1.3 U	0.73 U	1.1	5.0U	5.0U	5	
1,1-Dichloroethane	µg/L	14	8.2	1.0	13	5.6	5.6	5	
1,2-Dichloroethane	µg/L	0.85 U	0.85 U	0.60 U	0.60U	5.0U	5.0U	0.6	
2-Butanone	µg/L	4.6 U	4.6 U	3.6 U	3.6U	25U	25U	50	
Acetone	µg/L	19	17	20	19	25U	25	50	
Benzene	µg/L	2.2	1.6	2.3	2.1	5.0U	5.0U	1	
Chlorobenzene	µg/L	4.9	5.6	7.0	5.1	5.0U	5.0U	5	
Ethylbenzene	µg/L	10	9.1	13	4.0	5.0U	5.2	5	
Methylene chloride	µg/L	1.7U	1.7U	0.81 U	0.8IU	5.0U	5.0U	5	
Styrene	µg/L	1. 7 U	1.7U	1.0	0.38U	5.0U	5.0U	5	
Tetrachloroethene	µg/L	16	15	26	15	6.6	8.4	0.7	(2)
Toluene	µg/L	57	35	20	35	22	29	5	
trans-1,2-Dichloroethene	µg/L	2.7	2.2	2.8	2.8	5.0U	5.0U	5	
Trichloroethene	µg/L	160	120	63	110	64	64	5	12
Vinyl chloride	µg/L	1.4U	1. 4 U	6.0	6.7	5.0U	5.0U	0.3	(1
Xylene (total)	µg/L	52	43	52	46	19	25	5	
Semi-Volatiles									
1,2-Dichlorobenzene	µg/L	1	0.2U	2	1.2	0.54	1.1	3	
1,4-Dichlorobenzene	µg/L	0.4U	0.4U	3	1.9	0.95	1.8	3	(2
2,4-Dimethylphenol	µg/L	5	4	19	19	13	5.6	50	. (2
2-Methylphenol	µg/L	8	5	16	8.3	9.4	1.4	NL	
4-Methylphenol	μg/L	14	14	66	41	25	5.0U	NL	12
Di-n-octyl phthalate	µg/L	21U	22U	21 U	4.5U	4.5U	4.5U	50	(2
Naphthalene	µg/L	18	19	0.6	1.8	0.080U	0.54	10	
Phenol	μg/L	69	62	38	7.5	14	0.12U	1	

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/05/07	02/09/07	09/17/08	03/05/09	09/04/09	03/05/10	Surface Water	(1)
Parameter	Unit							Standard	(1)
Metals									
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.361	0.239	NL	
Antimony	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.003	
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.050	
Barium	mg/L	0.080	0.077	0.071	0.135	0.063	0.088	1.0	
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.010U	0.030	0.010U	0.0312	0.023	(3)
Iron	mg/L	0.078	0.064	0.054	0.49	0.050U	0.247	0.30	
Lead	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.012	
Magnesium	mg/L	1.9	2.3	1.7	4.2	1.12	2.91	35	
Manganese	mg/L	0.0037	0.0071	0.013	0.097	0.030U	0.0098	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0002	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	(4)
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	376	365	260	367	307	4160	NL	(2)
Zinc	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	23.7	2.0	(2)

.

~

.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/05/07	02/09/07	09/17/08	03/05/09	09/04/09	03/05/10	Surface	
Parameter	Unit							Water Standard ⁽¹⁾	
General Chemistry									
pH	S.U.	10.94	10.78	10.58	10.20	10.80	10.72	NL	
Hardness	mg/L	284	269	346	700	245	310	NL	
Total Dissolved Solids (TDS)	mg/L	1360	1330	1180	1550	1150	1550	NL	
Total Suspended Solids (TSS)	mg/L	4	8	9	44	8	5	NL	
Chloride	mg/L	897	741	460	720	516	793	250	
BOD	mg/L	8	7	15	15	14	13	NL	
COD	mg/L	74	67	33	41	4.4	59	NL	
Oil and Grease	mg/L	1.0 U	1.0 U	1.0 U	0.10	0.10	0.10U	NL	
Organic Carbon	mg/L	8.8	11.5	5.6	7.7	5.5	8.7	NL	
Alkalinity, Total (As CaCO3)	mg/L	75.9	56.8	59.8	38.2	70.2	88.1	NL	
Bicarbonate (as CaCO3)	mg/L	10U	10U	10 U	38.2	70.2	10U	NL	
Ammonia	mg/L	0.70	0.70	0.35	0.56	0.84	2.24	2.0	
Nitrate (as N)	mg/L	0.050 U	0.050U	0.050U	0.050U	0.050U	0.050U	10	
TKN	mg/L	0.84	0.56	0.56	0.56	1.68	1.68	NL	
Sulfate	mg/L	267	235	216	280	216	202	250	
Sulfide	mg/L	6.8J	6.0	8.8	6.8	6.0	2.4	0.002	
Phenol	mg/L	0.009U	0.009U	0.007 U	0.011U	0.011U	0.012U	0.001	
Phosphorous	mg/L	0.12	0.01	0.15	0.17	0.10U	0.08	0.020 (2))
Cyanide	mg/L	0.005 U	0.005 U	0.005 U	0.005U	0.005	0.005	0.0052	

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)						
Month	Monthly	Total					
May 2001	2,900,000	2,900,000					
June 2001	2,353,800	5,253,800					
July 2001	1,488,500	6,742,300					
August 2001	712,800	7,455,100					
September 2001	473,100	7,928,200					
October 2001	1,213,100	9,141,300					
November 2001	1,281,100	10,422,400					
December 2001	231,700 (1)	10,654,100					
January 2002	1,383,200 (2)	12,037,300					
February 2002	1,186,000	13 ,22 3,300					
March 2002	233,600	13,456,900					
April 2002	736,000	14,192,900					
May 2002	348,200	14,541,100					
June 2002	1,137,200	15,678,300					
July 2002	869,300	16,547,600					
August 2002	1,060,800	17,608,400					
September 2002	707,000	18,315,400					
October 2002	679,800	18,995,100					
November 2002	489,500	19,484,700					
December 2002	743,500	20,228,200					
January 2003	1,150,700	21,378,900					
February 2003	483,300	21,862,200					
March 2003	402,300	22,264,500					
April 2003	531,900	22,796,400					
May 2003	655,600	23,452,000					
June 2003	682,100	24,134,000					
July 2003	942,000	25,076,100					
August 2003	627,500	25,703,600					
September 2003	349,600	26,053,200					
October 2003	966,500	27,019,700					
November 2003	442,200	27,461,900					
December 2003	463,900	27,925,800					

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes	(gallons)
Month	Monthly	Total
January 2004	443,900	28,369,700
February 2004	253,700	28,623,400
March 2004	403,700	29,027,100
April 2004	433,600	29,460,700
May 2004	377,400	29,838,100
June 2004	395,000	30,233,100
July 2004	384,300	30,617,400
August 2004	479,700	31,097,100
September 2004	413,900	31,511,000
October 2004	319,400	31,902,400
November 2004	249,200	32,151,600
December 2004	209,900	32,361,500
January 2005	310,100	32,671,600
February 2005	301,100	32,972,700
March 2005	250,200	33,222,900
April 2005	378,400	33,601,300
May 2005	458,800	34,060,100
June 2005	455,900	34,516,000
July 2005	270,200	34,786,200
August 2005	285,100	35,071,300
September 2005	395,600	35,466,900
October 2005	333,200	35,800,100
November 2005	360,200	36,160,300
December 2005	395,300	36,555,600
January 2006	297,500	36,853,100
February 2006	508,300	37,361,400
March 2006	244,700	37,606,100
April 2006	224,400	37,830,500
May 2006	153,300	37,983,800
June 2006	262,300	38,246,100
July 2006	212,900	38,459,000
August 2006	357,500	38,816,500

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes ('gallons)
Month	Monthly	Total
September 2006	777,000	39,593,500
October 2006	254,700	39,848,200
November 2006	778,700	40,626,900
December 2006	496,600	41,123,500
January 2007	410,500	41,534,000
February 2007	494,600	42,028,600
March, April &		
May 2007	1,489,200 ⁽³⁾	43,517,800
June 2007	334,300	43,852,100
July 2007	258,600	44,110,700
August 2007	239,000	44,349,700
September 2007	59,500 ⁽⁴⁾	44,409,200
October 2007 through January 2008	50,600 ⁽⁴⁾	44,459,800
February 2008	23,8 00 ⁽⁴⁾	44,483,600
March 2008	1,238,300	45,721,900
April 2008	2,126,700	47,848,600
May 2008	1,771,100	49,619,700
June 2008	618,000	50,237,700
July 2008	1,559,200	51,796,900
August 2008	1,365,900	53,162,800
September 2008	1,998,000	55,160,800
October 2008	2,511,100	57,671,900
November 2008	1,151,600	58,823,500
December 2008	572,700	59,396,200
January 2009	1,021,700	60,417,900
February 2009	2,661,400	63,079,300
March 2009	4,239,300	67,318,600
April 2009	1,189,900	68,508,500
May 2009	1,362,500	69,871,000
June 2009	1,035,200	70,906,200
July 2009	1,010,100	71,916,300
August 2009	1,058,000	72,974,400

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes	(gallons)
Month	Monthly	Total
September 2009	947,000	73,921,400
October 2009	690,800	74,612,200
November 2009	697,500	75,309,700
December 2009	1,100,900	76,410,600
January 2010	767,100	77,177,700
February 2010	398,600	77,576,300
March 2010	1,094,500	78,670,800
April 2010	761,000	79,431,800
May 2010	354,700	79,786,500

Notes:

- (1) To December 7, 2001.
- (2) From December 8, 2001.
- (3) Plotted as 496,400 gallons on Figure 2.18 for each of March, April, and May 2007.
- (4) Meter malfunctioned due to tar-like material buildup inside meter. Meter was cleaned on March 14, 2008. Volumes not plotted on Figure 2.18 as volumes are not representative of actual volume removed.

SURFACE WATER SAMPLING SUMMARY OPERATION AND MAINTENANCE MANUAL GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

River South River Middle River North

FREQUENCY

- quarterly for 2 years following GWS startup (concurrent with groundwater sampling)
- semi-annually for Year 3 (concurrent with groundwater sampling)
- annually for Years 3 through 7 (concurrent with groundwater sampling)
- Year 8 and thereafter no sampling required (i.e., starting May 2009)

PARAMETERS

Volatiles

Acetone Benzene 2-Butanone Chlorobenzene 1,1-Dichloroethane trans-1,2-Dichloroethene Ethylbenzene

Methylene Chloride Tetrachloroethene Toluene Trichloroethene Vinyl Chloride Xylenes (Total)

Semi-Volatiles

1,2-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Naphthalene Di-n-octylphthalate Phenol

Recommended Future Sampling Program

- No further sampling and analyses.

.

TABLE 2.2

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

								River					<i>River</i>	
Date	MH2	MH3	MH6		OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03							572.37				
TOC Elevation (ft amsl)					575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
December 12, 2000	NM				564.26	567.05	563.84	NM	564.24		567.20	564.58	NM	565.24
January 8, 2001	NM		NM		563.94	567.21	563.82	NM	563.84		567.30	564.01	NM	563.90
March 29, 2001	NM		NM		564.19	567.80	563.82	NM	564.10		566.89	564.28	NM	564.12
May 11, 2001	559.31		561.98		564.39	563.53	564.54	564.54	564.25		561.60	564.53	564.38	564.50
May 18, 2001	NM		562.03		564.21	563.08	564.54	564.49	564.25		561.97	564.53	564.33	564.55
May 25, 2001	NM		NM		564.46	562.80	564.52	563.80	564.22		561.71	564.28	563.63	564.50
June 1, 2001	559.34		561.97		564.51	562.74	564.52	563.52	564.20		561.77	564.18	563.47	564.49
June 8, 2001	NM		562.49		564.63	562.65	564.82	564.75	564.36		561.59	564.60	564.68	564.78
June 15, 2001	560.79	560.59	562.60		564.67	562.54	564.76	564.71	564.53	560.53	561.48	564.77	564.71	564.79
June 22, 2001	560.77	560.55	562.53		564.65	562.50	564.72	564.90	564.43	560.44	561.41	564.66	564.86	564.72
June 29, 2001	560.62	560.40	562.42		564.51	562.42	564.66	564.52	564.35	560.38	561.39	564.57	564.48	564.59
July 31, 2001	559.87	559.21	562.90		564.49	562.19	564.71	564.66	564.35	560.25	561.30	564.60	564.68	565.70
August 20, 2001	561.49	561.07	565.23	(1)	564.60	562.09	563.82	564.69	564.46	560.25	561.29	564.77	564.64	564.81
September 28, 2001	561.03	560.56	563.03		564.61	562.13	564.25	564.68	564.48	560.27	561.32	564.79	564.68	564.99
October 22, 2001	561.38	562.36	567.06	(3)	564.61	562.08	564.41	(2)	564.33	560.43	561.37	564.58	564.26	564.33
November 27, 2001	561.45	560.94	564.53		563.95	561.88	563.65	(2)	563.83	560.45	561.36	564.04	563.54	563.87
December 20, 2001	560.96	560.50	564.39		564.47	561.83	564.78	564.69	564.27	559.75	561.25	564.72	564.45	564.86
January 29, 2002	560.74	560.15	563.75		564.09	561.83	563.87	563.89	563.99	560.98	561.89	564.12	563.74	564.01
February 11, 2002	560.80	560.28	564.19		564.22	561.73	563.84	564.03	564.07	561.06	561.50	564.18	563.97	564.19
March 25, 2002	560.55	560.10	563.25		564.10	561.72	563.51	(2)	564.03	560.65	561.60	564.02	563.59	563.83
April 24, 2002	562.54	562.05	564.12		564.60	561.88	564.70	564.61	564.49	561.13	561.95	564.67	564.19	564.72
May 21, 2002	561.74	561.28	564.10		564.79	561.97	564.84	564.76	564.68	560.05	561.38	564.85	564.66	564.84
June 20, 2002	561.67	561.24	565.58		564.74	561.92	564.56	564.58	564.62	560.68	561.54	564.85	564.68	564.80
July 18, 2002	561.46	560.99	564.99		564.78	561.89	565.00	564.89	564.66	560.79	561.65	564.90	564.90	564.93
August 6, 2002	561.26	560.79	565.89		564.86	561.92	564.70	564.65	564.71	561.05	561.93	564.90	564.59	564.85
September 12, 2002	561.60	561.14	565.60		564.80	561.82	565.05	565.04	564.67	561.10	561.99	564.87	564.95	564.97
October 30, 2002	561.63	561.21	566.24		564.18	561.97	563.95	(2)	564.07	561.07	561.95	564.10	563.75	564.00
November 21, 2002	561.12	560.67	554.47	(4)	564.05	562.05	563.94	(2)	563.98	558.03	561.41	564.20	563.71	564.06
December 11, 2002	561.55	561.08	555.09		563.99	562.04	563.85	(2)	563.84	559.95	561.25	563.94	563.72	563.87

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

(4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575 84	574 82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23		0.0101	
December 12, 2000	565.07		567.08	NM		564.45	564.85	567.15			
January 8, 2001	563.95		567.29	NM	NM	564.01	564.00	567.35			567.29
March 29, 2001	564.21		567.96	NM	NM	564.24	564.25	568.06			NM
May 11, 2001	564.58		561.95	564.70	564.15	564.63	564.59	562.53			562.45
May 18, 2001	564.59		562.49	564.65	564.12	564.66	564.66	563.05			562.55
May 25, 2001	564.57		561.99	564.80	564.17	564.63	564.60	562.54			562.48
June 1, 2001	564.59		562.06	565.00	564.19	564.66	564.60	562.57			562.51
June 8, 2001	564.87		561.89	565.05	562.45	564.96	564.89	562.47			562.42
June 15, 2001	564.91	561.12	561.69	565.05	562.34	564.93	564.88	562.45	562.32		562.29
June 22, 2001	564.87	561.05	561.54	565.18	562.29	565.00	564.80	562.19	562.32		562.14
June 29, 2001	564.68	560.97	561.46	564.83	561.80	564.75	564.68	562.11	562.45		562.06
July 31, 2001	564.78	560.73	561.19	564.96	560.77	564.85	564.76	562.45	562.45		561.69
August 20, 2001	564.83	560.50	561.05	564.99	560.42	564.88	564.85	561.55	561.72		561.54
September 28, 2001	564.85	560.61	561.07	564.95	560.36	564.87	564.84	561.58	561.70		561.52
October 22, 2001	564.58	560.51	561.27	564.61	560.42	564.61	564.62	561.75	562.10		561.72
November 27, 2001	563.89	559.51	561.30	564.05	560.06	563.89	563.94	561.71	561.87		563.82
December 20, 2001	564.96	561.31	560.73	564.96	560.23	564.99	565.05	561.77	561.89		561.71
January 29, 2002	564.06	Blocked	561.91	563.92	560.29	564.03	564.08	562.31	562.53		562.31
February 11, 2002	564.28	561.23	561.93	564.53	560.24	564.35	564.35	562.52	562.18		562.54
March 25, 2002	563.87	560.97	561.60	564.15	560.34	563.85	563.95	562.45	562.77		562.61
April 24, 2002	564.79	561.41	561.95	564.86	560.63	564.86	564.84	562.96	563.09		562.95
May 21, 2002	564.95	560.35	560.89	565.07	560.89	565.03	564.98	563.11	563.25	562.17	563.10
June 20, 2002	564.85	560.98	561.50	564.88	561.04	564.90	564.94	562.91	562.98	562.00	562.90
July 18, 2002	565.09	561.07	561.80	565.22	560.95	565.17	565.08	562.84	561.83	561.93	562.83
August 6, 2002	564.88	561.33	561.88	564.90	561.07	564.95	564.91	562.75	562.08	561.86	562.75
September 12, 2002	565.09	561.34	561.91	565.25	561.09	565.20	565.05	562.66	562.11	561.75	562.63
October 30, 2002	564.03	561.36	561.95	564.16	561.31	564.14	564.00	562.57	562.68	561.62	562.56
November 21, 2002	564.04	561.49	560.99	564.15	561.44	564.19	564.18	562.74	562.88	561.82	562.73
December 11, 2002	564.01	561.51	560.73	564.14	561.45	564.09	564.02	562.91	563.07	562.01	562.94

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

							River					River	
Date	MH2	МНЗ	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 16, 2003	561.65	561.20	556.15	564.03	562.27	563.88	(2)	564.12	561.04	561.95	564.27	563.52	564.10
February 25, 2003	561.58	561.10	555.74	563.80	561.85	563.71	(2)	563.67	560.60	561.49	563.81	563.34	563.81
March 14, 2003	561.65	561.17	555.75	563.75	561.69	563.74	(2)	563.61	560.61	561.49	563.77	563.24	563.77
April 14, 2003	561.68	561.22	554.54	564.32	562.42	564.34	564.30	564.17	558.65	561.42	564.39	564.24	564.40
May 8, 2003	561.52	561.03	555.93	564.37	562.38	564.41	564.29	564.21	560.76	561.59	564.36	564.27	564.37
June 19, 2003	562.26	561.83	556.02	564.73	562.43	564.83	564.78	564.59	560.85	561.60	564.77	564.66	564.81
July 21, 2003	561.21	560.46	556.06	564.68	562.31	564.64	564.49	564.58	560.89	561.74	564.81	564.44	564.75
August 28, 2003	561.65	561.20	554.61	564.65	562.21	564.76	564.64	564.51	558.52	561.29	564.67	564.60	564.75
September 30, 2003	561.57	561.10	555.08	564.64	562.53	564.89	(2)	564.49	559.88	561.35	564.76	564.67	564.91
October 20, 2003	561.48	561.07	554.98	564.61	562.52	564.93	(2)	564.45	559.77	561.17	564.68	564.63	564.86
November 3, 2003	561.53	561.08	555.94	564.29	562.33	563.89	(2)	564.11	560.76	561.12	563.56	564.36	564.15
December 23, 2003	561.08	559.49	555.62	564.29	562.30	564.04	(2)	564.17	560.67	561.48	564.33	(2)	564.18
January 21, 2004	(5)	560.33	555.84	565.24	562.32	564.19	(2)	564.12	560.70	561.55	564.30	(2)	564.26
February 12, 2004	(5)	561.08	556.12	563.99	562.16	563.76	(2)	563.87	560.95	561.81	564.00	(2)	563.88
March 4, 2004	561.33	561.13	555.90	564.17	562.21	557.07 (6)	(2)	564.00	560.75	561.61	564.31	(2)	564.19
April 16, 2004	560.05	558.78	554.91	564.59	562.48	564.49	(2)	564.36	559.59	561.71	564.56	564.43	564.56
May 14, 2004	560.17	559.71	554.56	564.49	562.39	564.57	564.55	564.34	559.45	561.70	564.51	564.48	564.54
June 25, 2004	561.64	561.21	555.74	564.76	562.27	564.71	564.68	564.62	560.50	561.42	564.82	564.56	564.78
July 30, 2004	561.79	561.25	555.24	565.01	562.29	565.20	565.20	564.84	560.04	561.31	565.02	565.16	565.14
August 31, 2004	561.37	560.59	555.83	565.06	562.23	565.05	564.98	564.92	560.67	561.56	565.14	564.93	565.17
September 30, 2004	561.48	560.81	555.60	565.11	562.28	565.22	565.00	564.95	560.71	561.49	565.20	565.05	565.20
October 20, 2004	561.65	561.19	555.96	564.65	562.10	564.57	564.45	564.44	560.82	561.69	564.57	564.41	564.57
November 23, 2004	561.50	561.05	554.95	564.17	561.99	564.20	(2)	564.02	559.77	561.21	564.31	(2)	564.28
December 31, 2004	561.60	560.74	556.19	564.58	562.16	564.50	564.68	564.25	561.02	561.80	564.37	564.56	564.40

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

(4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.

⁽⁵⁾ Buried with snow.

⁽⁶⁾ Believed to be erroneous reading.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 16, 2003	564.13	561.68	562.00	564.11	561.83	564.14	564.20	563.17	563.37	562.28	563.20
February 25, 2003	563.87	561.60	561.48	564.21	561.56	563.90	563.94	562.89	563.07	562.01	562.91
March 14, 2003	563.79	561.57	561.46	564.11	561.54	563.92	563.91	562.90	563.09	562.05	562.93
April 14, 2003	564.48	558.53	560.98	564.45	561.56	564.54	564.52	563.36	563.54	562.49	563.40
May 8, 2003	564.48	561.03	561.56	564.61	561.61	564.59	564.44	563.07	563.26	562.01	563.11
June 19, 2003	564.92	561.12	561.56	564.96	561.94	564.99	564.95	563.10	563.41	562.25	563.15
July 21, 2003	564.81	561.10	561.69	564.78	562.03	564.84	564.88	562.89	563.03	561.98	562.89
August 28, 2003	564.86	564.37	562.35	564.91	562.19	564.94	564.85	566.17	566.48	566.36	566.59
September 30, 2003	565.02	558.68	560.17	565.08	562.26	565.08	565.02	562.77	562.89	562.02	562.78
October 20, 2003	564.94	558.66	560.02	565.03	562.25	565.05	564.96	562.75	562.88	562.01	562.76
November 3, 2003	564.26	561.01	561.57	564.28	562.52	564.27	564.31	562.85	563.00	561.91	562.83
December 23, 2003	564.24	560.94	561.34	564.36	562.75	564.08	564.28	563.20	563.31	562.28	563.20
January 21, 2004	564.33	(4)	561.47	564.36	562.49	564.41	564.35	562.72	(4)	561.74	562.68
February 12, 2004	563.93	561.23	561.75	564.16	562.30	563.96	563.98	562.88	(4)	561.73	562.66
March 4, 2004	564.25	561.04	561.56	564.26	562.07	564.34	564.35	562.70	562.75	561.75	562.66
April 16, 2004	564.64	559.85	561.38	564.69	561.00	564.74	564.66	562.64	562.79	561.72	562.63
May 14, 2004	564.63	559.87	561.39	564.71	560.80	564.68	564.55	562.71	562.74	561. 74	562.67
June 25, 2004	564.85	560.79	561.19	564.91	560.95	564.89	564.89	562.70	562.74	561.76	562.68
July 30, 2004	565.28	560.26	560.71	565.46	561.15	565.33	565.21	562.70	561.13	561.74	562.67
August 31, 2004	565.26	560.94	561.39	565.25	561.35	565.31	565.27	562.95	563.08	562.02	562.93
September 30, 2004	565.29	561.00	561.43	565.30	561.25	565.40	565.26	562.98	562.90	562.20	562.98
October 20, 2004	564.67	561.09	561.56	564.49	561.50	564.76	564.68	562.64	562.82	561.73	562.88
November 23, 2004	564.34	560.05	560.56	564.30	561.57	564.38	564.40	562.71	561.04	561.62	562.69
December 31, 2004	564.69	561.23	561.75	564.81	561.81	564.78	564.55	562.71	562.05	561.77	562.69

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

							River					River	
Date	MH2	MH3	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 28, 2005	562.60	562.15	556.22	564.68	562.27	564.62	(2)	564.53	561.06	561.85	564.67	564.32	564.71
February 28, 2005	561.05	559.96	555.58	564.58	562.14	564.68	(7)	564.48	560.47	561.46	564.21	564.46	564.76
March 31, 2005	561.25	559.94	555.93	564.55	562.04	564.40	(2)	564.38	560.78	561.66	564.63	564.08	564.49
April 20, 2005	560.20	559.54	556.01	565.01	562.26	564.94	564.83	564.84	560.89	561.76	565.01	564.71	565.05
May 27, 2005	560.23	558.92	555.82	564.71	562.24	564.79	564.78	564.63	560.65	561.55	564.78	564.74	564.91
June 24, 2005	561.50	561.09	555.16	564.71	562.22	564.85	564.73	564.61	559.92	561.47	564.78	564.70	564.85
July 29, 2005	562.70	562.26	556.56	564.79	562.11	564.95	564.82	564.65	561.39	562.27	564.87	564.85	564.98
August 31, 2005	561.62	560.64	556.24	564.68	562.09	564.71	(2)	564.59	561.07	561.94	564.79	564.54	564.82
October 3, 2005	561.52	560.54	555.41	564.75	562.24	564.85	564.80	564.62	560.20	561.40	564.78	564.75	564.88
October 31, 2005	561.68	560.73	555.60	564.59	562.34	564.69	564.80	564.44	560.46	561.52	564.64	564.55	564.70
November 22, 2005	561.62	561.20	555.20	564.40	561.67	564.64	(2)	564.28	560.04	561.49	564.44	(2)	564.21
December 23, 2005	562.55	562.09	556.20	564.28	562.45	564.11	(2)	564.22	561.05	561.85	564.42	(2)	564.32
January 27, 2006	562.95	562.53	556.21	564.50	562.97	564.16	(2)	564.32	561.02	561.79	564.41	(2)	564.06
February 28, 2006	563.17	562.26	554.70	564.27	562.90	564.13	(2)	564.31	558.44	561.68	564.37	(2)	564.26
March 24, 2006	562.68	561.77	555.64	564.46	562.86	564.25	(2)	564.32	560.43	561.57	564.46	(2)	564.36
April 21, 2006	562.31	561.84	555.61	564.42	562.76	564.41	(2)	564.32	560.40	561.48	564.49	564.26	564.46
May 30, 2006	562.73	562.30	555.84	564.91	562.50	565.00	564.87	564.80	560.44	561.75	564.95	564.86	565.07
June 26, 2006	561.57	560.63	556.19	563.04	562.37	564.97	564.81	564.92	561.02	561.92	565.15	564.78	565.06
July 31, 2006 (8)	565.18	564.78	558.88	565.14	564.39	565.24	565.09	565.01	563.66	564.54	565.19	565.07	565.28
August 25, 2006	561.64	561.21	556.06	564.72	562.99	564.81	(2)	564.59	560.89	561.82	564.80	564.68	564.87
September 22, 2006	561.46	561.01 ⁽⁶⁾	555.95	564.88	562.76	564.73	564.70	564.72	560.51	561.99	564.94	564.67	564.88
October 31, 2006	559.98	555.62	556.01	565.03	562.58	564.96	564.82	564.87	559.95	562.09	565.06	564.66	565.03
November 29, 2006	561.35	560.85	555.93	564.30	562.48	564.25	(2)	564.18	560.73	562.01	564.40	(2)	564.35
December 29, 2006	561.52	560.42	555.93	564.46	562.98	564.36	564.82	564.31	560.80	561.89	564.53	(2)	564.49

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

- ⁽²⁾ River level too low to obtain a measurement at the measuring location.
- ⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.
- ⁽⁴⁾ Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.
- ⁽⁵⁾ Buried with snow.
- ⁽⁶⁾ Believed to be erroneous reading.
- ⁽⁷⁾ Ice on pipe.
- ⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in upstream City manhole.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 28, 2005	564.77	561.33	561.82	564.69	561.92	564.79	564.90	562.75	(4)	561.01	562.71
February 28, 2005	564.84	560.74	561.25	564.79	562.05	564.88	564.94	562.78	(4)	561.55	562.77
March 31, 2005	564.54	561.06	561.60	564.56	562.11	564.59	564.65	563.12	563.26	562.21	563.11
April 20, 2005	565.13	561.15	561.65	565.15	562.26	565.19	565.21	563.21	562.72	562.28	563.20
May 27, 2005	564.99	561.13	561.42	565.02	562.29	565.08	565.08	563.12	563.25	562.19	563.11
June 24, 2005	564.98	560.18	560.76	564.92	562.40	565.06	565.00	562.85	562.93	561.91	562.82
July 29, 2005	565.09	561.17	562.15	565.15	562.51	565.14	561.33	562.88	563.03	561.98	562.87
August 31, 2005	564.88	561.31	561.85	564.88	562.75	564.90	564.96	562.91	563.01	561.98	562.86
October 3, 2005	564.99	560.43	560.95	565.11	562.90	565.07	564.97	563.20	563.26	562.24	563.13
October 31, 2005	564.83	560.71	561.25	565.00	563.15	564.96	564.82	563.39	563.50	562.43	563.35
November 22, 2005	564.26	560.31	561.00	564.18	563.29	564.26	564.35	563.53	563.69	562.25	563.53
December 23, 2005	564.35	561.30	561.84	564.26	563.46	564.32	564.48	563.50	563.67	562.60	563.52
January 27, 2006	564.34	561.26	561.76	564.36	563.61	564.42	564.42	563.90	564.08	563.02	563.92
February 28, 2006	564.32	558.38	561.23	564.29	563.73	564.34	564.38	563.94	564.09	563.02	563.96
March 24, 2006	564.39	560.60	561.16	564.44	563.47	564.45	564.50	563.83	564.02	562.96	563.88
April 21, 2006	564.54	560.63	561.15	564.64	563.49	564.60	564.55	563.65	563.77	562.68	563.61
May 30, 2006	565.18	560.28	561.03	565.24	563.61	565.26	565.25	563.48	563.54	562.53	563.44
June 26, 2006	565.12	561.26	561.75	565.13	563.70	565.15	565.19	563.41	563.52	562.43	563.37
July 31, 2006 (5)	565.44	564.03	564.30	565.45	563.92	565.49	565.45	564.08	564.20	563.15	564.07
August 25, 2006	564.98	561.10	561.57	565.10	563.98	565.26	561.81	563.38	564.62	562.43	563.42
September 22, 2006	564.94	559.81	561.20	565.04	564.29	565.01	564.95	562.73	562.83	561.67	562.54
October 31, 2006	565.11	558.19	561.78	565.07	564.77	565.14	565.16	564.40	564.51	563.36	564.36
November 29, 2006	564.42	560.54	561.69	564.41	564.87	566.44	564.50	562.10	561.27	559.66	561.85
December 29, 2006	564.55	560.96	561.46	564.54	561.89	564.64	564.64	561.90	561.95	560.86	561.71

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

(4) Buried with snow.

⁽⁵⁾ Buried with snow.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				NORTH	IUNAWA		River					River	
Date	MH2	МНЗ	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 26, 2007	561.39	560.92	556.04	564.62	562.78	564.75	(2)	563.79	560.89	562.06	564.67	564.46	564.77
February 27, 2007	561.53	560.57	556.23	564.32	562.49	564.25	(2)	564.15	561.07	561.96	564.35	(7)	564.33
March 30, 2007	560.25	559.45	556.24	564.49	562.30	564.40	(2)	564.27	561.09	562.05	564.46	564.28	564.48
April 30, 2007	560.99	559.39	556.31	564.97	562.62	564.97	564.82	564.78	561.14	562.20	564.96	564.78	565.07
May 25, 2007	560.85	559.85	556.12	564.67	562.48	565.73	(2)	564.54	561.02	562.05	564.75	564.67	564.75
June 29, 2007	560.85	558.83	556.45	564.70	562.32	564.78	(2)	564.54	561.26	562.16	564.81	564.64	564.79
July 25, 2007	561.49	560.54	556.24	564.43	562.13	564.55	(2)	564.26	561.02	561.94	564.47	564.41	564.53
August 31, 2007	561.10	559.62	556.22	564.43	561.93	564.56	(2)	564.29	561.04	561.95	564.55	564.44	564.65
September 27, 2007	561.49	561.05	556.02	564.44	561.86	564.44	(2)	564.34	560.47	562.01	564.58	564.27	564.56
October 31, 2007	561.57	560.69	556.17	564.08	562.02	563.88	(2)	564.01	561.08	562.00	564.16	(2)	564.03
November 30, 2007	561.59	560.58	555.84	564.25	562.22	564.03	(2)	564.09	560.68	561.80	564.42	(2)	564.31
December 31, 2007	561.18	559.69	555.58	564.29	562.48	564.07	(2)	564.09	559.37	561.88	564.28	(2)	564.23
January 28, 2008	561.48	559.46	556.14	564.22	562.68	563.99	(2)	564.13	560.99	561.95	564.25	563.68	564.12
February 29, 2008	561.48	560.45	555.99	564.67	562.38	564.68	(2)	564.56	560.02	562.06	564.75	564.50	564.77
March 31, 2008	561.71	560.74	556.10	564.93	562.33	564.62	(2)	564.58	560.06	562.54	564.81	564.48	564.80
April 25, 2008	561.85	559.67	556.27	564.71	562.73	564.71	(2)	564.59	561.10	562.07	564.78	564.64	564.81
May 29, 2008	562.00	559.26	556.65	564.72	562.66	564.73	(2)	564.59	561.39	562.28	564.77	564.75	564.84
June 25, 2008	562.57	559.54	557.84	564.82	562.79	564.79	564.83	564.71	562.66	563.49	564.88	564.72	564.88
July 31, 2008	562.69	561.02	560.18	564.94	563.27	565.73	564.73	564.72	563.00	563.86	565.03	564.69	564.96
August 27, 2008	565.69	565.29	559.36	564.58	565.10	564.46	564.47	564.42	564.13	564.95	564.71	564.42	564.55
September 26, 2008	562.21	559.22	558.36	564.54	563.42	564.51	(2)	564.40	563.21	564.07	564.70	564.34	564.64
October 30, 2008	561.67	560.08	557.64	564.73	562.97	564.51	(2)	564.46	562.57	563.49	564.69	564.37	564.64
November 22, 2008	561.61	561.19	557.41	564.30	562.82	564.04	(2)	564.12	562.36	563.27	564.32	(2)	564.22
December 31, 2008	566.56	565.53	560.22	564.63	566.09	564.56	(2)	564.48	564.91	565.70	564.68	564.18	564.63

Notes:

- ⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.
- ⁽²⁾ River level too low to obtain a measurement at the measuring location.
- ⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.
- (4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.
- ⁽⁵⁾ Buried with snow.
- ⁽⁶⁾ Believed to be erroneous reading.
- ⁽⁷⁾ Ice on pipe.
- ⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in downstream City manhole.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK *River*

OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
	572.11			572.37				574.30	575 84	574 82
573.35		574.37	568.46		574.01	574.66	576.23		0,0101	0, 1.0=
564.89	561.09	561.73	564.96	560.86	564.99	565.49	563.41	563.52	562.36	563 39
564.43	561.16	561.86	564.46	559.97	564.47	564.47	562.64	562.77	561.73	562.62
564.58	561.36	561.85	564.65	560.20	564.67	564.64	562.66	561.87	558.93	561 72
565.20	561.29	561.77	565.26	559.05	565.26	565.22	562.13	562.22	561.13	562.05
564.89	561.12	561.61	564.98	560.04	565.00	564.94	562.10	562.20	561.14	563.09
564.90	561.39	561.79	564.98	560.14	565.00	564.95	562.12	562.17	561.18	562.08
564.65	561.18	561.55	564.79	560.16	564.76	564.61	562.03	562.13	561.07	561.98
564.72	561.28	561.73	564.80	560.23	564.84	564.76	562.05	561.54	561.07	562.01
564.65	559.56	561.79	564.48	560.40	561.53	564.66	562.05	562.18	561.09	562.01
564.09	561.36	561.86	564.06	560.56	564.12	564.12	562.09	562.21	561.14	562.10
564.33	561.00	562.30	564.25	560.68	564.35	564.42	562.05	561.67	559.55	561.98
564.28	558.54	561.56	564.20	560.78	564.53	564.35	562.16	562.19	561.12	562.01
564.15	561.30	561.80	564.01	560.93	564.20	564.23	562.78	562.89	561.82	562.74
564.84	559.51	561.89	564.80	560.69	564.90	564.90	562.17	562.24	561.20	562.11
564.61	558.99	561.89	564.84	560.76	564.98	564.97	562.24	561.58	561.18	562.08
564.94	561.39	561.90	565.05	560.84	565.02	564.92	562.56	562.70	561.65	562.57
564.95	561.50	561.82	565.01	560.92	565.01	564.96	562.14	562.22	561.16	562.07
565.00	562.83	563.28	565.04	561.05	565.07	564.97	562.11	562.18	561.00	561.82
562.69	563.53	566.07	565.01	561.24	565.09	565.07	561.97	562.07	560.98	561.84
564.64	564.16	564.61	564.79	561.39	564.77	564.60	564.15	564.34	563.24	564.16
564.71	563.53	564.03	564.71	561.55	564.78	564.74	562.02	561.82	559.10	561.59
564.67	562.85	563.43	564.71	561.74	564.77	564.71	561.83	562.70	561.92	560.06
564.26	562.75	563.29	564.20	561.79	564.30	564.35	561.76	561.28	561.23	561.71
564.70	564.91	565.33	564.65	562.09	564.86	564.78	564.71	565.03	563.97	564.59
	OGC-3 573.35 564.89 564.43 564.58 565.20 564.89 564.90 564.65 564.72 564.63 564.28 564.15 564.84 564.84 564.84 564.94 564.95 565.00 562.69 564.64 564.71 564.67 564.67	OGC-3 MH11 573.35 564.89 561.09 564.43 561.16 564.33 561.36 564.58 561.36 565.20 561.29 564.89 561.12 564.89 561.12 564.89 561.12 564.89 561.12 564.65 561.39 564.65 561.18 564.65 561.28 564.65 559.56 564.63 561.30 564.33 561.00 564.28 558.54 564.13 564.35 564.61 558.99 564.61 558.99 564.61 558.99 561.30 564.61 558.99 564.64 564.94 561.30 562.63 563.53 564.64 564.94 561.39 562.69 563.53 564.64 564.16 564.70 562.85 564.67 562.85 564.26 562.75 564.26 562.75 564.70 564.91	OGC-3 MH11 MW-8 572.11 573.35 574.37 564.89 561.09 561.73 564.43 561.16 561.86 564.43 561.29 561.77 564.89 561.29 561.77 564.89 561.12 561.61 564.90 561.39 561.79 564.65 561.18 561.55 564.72 561.28 561.79 564.65 559.56 561.79 564.65 559.56 561.79 564.65 559.56 561.79 564.65 559.56 561.79 564.65 559.56 561.79 564.61 558.54 561.86 564.15 561.30 561.80 564.61 558.99 561.80 564.61 558.99 561.80 564.61 558.99 561.80 564.61 561.50 561.82 565.00 562.83 563.28 562.69 56	OGC-3MH11MW-8South 572.11 574.37 568.46 564.89 561.09 561.73 564.96 564.43 561.16 561.85 564.46 564.43 561.36 561.85 564.65 562.20 561.29 561.77 565.26 564.89 561.12 561.61 564.98 564.90 561.39 561.79 564.98 564.65 561.18 561.55 564.79 564.72 561.28 561.73 564.80 564.65 559.56 561.79 564.80 564.65 559.56 561.79 564.80 564.65 559.56 561.79 564.48 564.09 561.36 561.86 564.25 564.33 561.00 562.30 564.25 564.25 561.30 561.80 564.20 564.48 559.51 561.89 564.80 564.61 58.99 561.89 564.80 564.61 58.99 561.89 564.80 564.61 58.99 561.80 564.61 564.95 561.50 561.82 565.01 564.95 561.50 561.82 565.01 564.95 561.50 561.82 565.01 564.95 561.50 561.82 565.01 564.95 561.50 564.28 563.28 564.95 563.53 564.03 564.71 564.61 564.75 563.29 564.20 </td <td>OGC-3MH11MW-8SouthMH12$572.11$$572.37$$574.37$$568.46$$564.89$$561.09$$561.73$$564.96$$560.86$$564.43$$561.16$$561.85$$564.65$$560.20$$565.20$$561.29$$561.77$$565.26$$559.97$$564.89$$561.12$$561.61$$564.98$$560.20$$565.20$$561.29$$561.77$$565.26$$559.05$$564.89$$561.12$$561.61$$564.98$$560.14$$564.90$$561.39$$561.79$$564.98$$560.14$$564.65$$561.18$$561.79$$564.98$$560.14$$564.65$$559.56$$561.79$$564.80$$560.23$$564.65$$559.56$$561.79$$564.48$$560.23$$564.65$$559.56$$561.79$$564.48$$560.23$$564.65$$559.56$$561.79$$564.48$$560.40$$564.33$$561.00$$562.30$$564.25$$560.68$$564.28$$558.54$$561.56$$564.20$$560.78$$564.41$$558.99$$561.80$$560.69$$564.84$$560.76$$564.45$$559.51$$561.82$$565.05$$560.84$$564.61$$558.99$$561.82$$565.05$$560.84$$564.94$$561.39$$561.82$$565.01$$560.92$$565.00$$562.83$$563.28$$565.01$$561.24$$564.95$$561.50$$561.32$$565.01$$561.$</td> <td>OGC-3MH11MW-8SouthMH12OGC-8$572.11$$572.37$$574.37$$568.46$$572.37$$573.35$$574.37$$568.46$$572.37$$564.89$$561.09$$561.73$$564.96$$560.86$$564.43$$561.16$$561.85$$564.46$$559.97$$564.43$$561.16$$561.85$$564.65$$560.20$$564.58$$561.36$$561.85$$564.65$$560.20$$564.59$$561.12$$561.77$$565.26$$559.05$$564.89$$561.12$$561.61$$564.98$$560.04$$564.90$$561.39$$561.79$$564.98$$560.14$$564.65$$561.18$$561.55$$564.79$$560.16$$564.72$$561.28$$561.73$$564.80$$560.23$$564.65$$559.56$$561.79$$564.48$$560.40$$564.35$$559.56$$561.79$$564.48$$560.40$$564.35$$561.30$$561.30$$564.25$$560.68$$564.33$$561.00$$562.30$$564.25$$560.68$$564.28$$558.54$$561.56$$564.20$$560.78$$564.48$$559.51$$561.89$$564.80$$560.69$$564.44$$559.51$$561.89$$564.80$$560.69$$564.59$$561.50$$561.89$$564.84$$560.76$$564.98$$561.50$$565.01$$565.01$$565.02$$564.45$$561.50$$565.01$$561.02$$565.01$</td> <td>OGC-3MH11MW-8SouthMH12OGC-8OGC-4$572.11$$572.37$$574.37$$568.46$$572.37$$573.35$$574.37$$568.46$$574.01$$574.66$$564.89$$561.09$$561.73$$564.96$$560.86$$564.99$$565.49$$564.43$$561.16$$561.86$$564.46$$559.97$$564.47$$564.47$$564.58$$561.29$$561.77$$565.26$$559.97$$564.47$$564.64$$565.20$$561.29$$561.77$$565.26$$559.05$$565.26$$565.22$$564.89$$561.12$$561.61$$564.98$$560.14$$565.00$$564.94$$564.99$$561.39$$561.77$$564.98$$560.14$$565.00$$564.95$$564.65$$561.18$$561.79$$564.48$$560.16$$564.76$$564.61$$564.65$$559.56$$561.79$$564.48$$560.16$$564.76$$564.61$$564.65$$559.56$$561.79$$564.48$$560.476$$564.12$$564.42$$564.20$$561.36$$564.20$$560.78$$564.35$$564.42$$564.28$$58.54$$561.56$$564.20$$560.78$$564.20$$564.23$$564.48$$559.51$$561.89$$564.80$$560.69$$564.90$$564.92$$564.59$$561.30$$564.80$$560.69$$564.90$$564.92$$564.59$$561.50$$561.89$$565.05$$560.84$$560.07$</td> <td>OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 572.11 574.37 568.46 572.37 574.01 574.66 576.23 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 564.43 561.16 561.85 564.65 560.20 564.47 564.47 562.64 564.58 561.29 561.77 565.26 559.05 565.26 565.22 562.13 564.89 561.12 561.61 564.98 560.04 565.00 564.94 562.12 564.65 561.18 561.79 564.88 560.14 565.00 564.94 562.12 564.65 561.18 561.79 564.80 560.23 564.64 562.03 564.49 562.12 564.65 559.56 561.73 564.80 560.23 564.64 562.05 564.65 564.20 564.53 564.64 562.05 564.65 559.56 561.73</td> <td>OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 MH14 572.11 572.37 568.46 572.37 574.01 574.66 576.23 574.30 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 563.52 564.43 561.16 561.85 564.65 560.20 564.67 564.64 562.26 561.87 564.59 561.29 561.77 565.26 565.20 564.94 562.10 562.21 564.89 561.12 561.61 564.98 560.14 565.00 564.95 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.13 564.72 561.83 564.65 560.43 564.64 562.05 561.54 564.65 561.79 564.48 560.40 561</td> <td>OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 MH14 MH15 572.11 572.37 574.37 568.46 572.37 574.30 575.84 574.30 575.84 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 563.52 562.36 564.43 561.16 561.85 564.65 560.20 564.47 564.47 562.64 562.27 561.73 565.20 561.29 561.77 565.26 559.05 565.22 562.13 562.20 561.14 564.89 561.12 561.61 564.98 560.14 565.00 564.95 562.12 562.13 562.22 561.13 564.65 561.18 561.79 564.98 560.14 565.00 564.95 562.12 562.17 561.18 564.65 561.18 561.57 564.79 560.16 564.84 564.66 562.05 561.39 561.07</td>	OGC-3MH11MW-8SouthMH12 572.11 572.37 574.37 568.46 564.89 561.09 561.73 564.96 560.86 564.43 561.16 561.85 564.65 560.20 565.20 561.29 561.77 565.26 559.97 564.89 561.12 561.61 564.98 560.20 565.20 561.29 561.77 565.26 559.05 564.89 561.12 561.61 564.98 560.14 564.90 561.39 561.79 564.98 560.14 564.65 561.18 561.79 564.98 560.14 564.65 559.56 561.79 564.80 560.23 564.65 559.56 561.79 564.48 560.23 564.65 559.56 561.79 564.48 560.23 564.65 559.56 561.79 564.48 560.40 564.33 561.00 562.30 564.25 560.68 564.28 558.54 561.56 564.20 560.78 564.41 558.99 561.80 560.69 564.84 560.76 564.45 559.51 561.82 565.05 560.84 564.61 558.99 561.82 565.05 560.84 564.94 561.39 561.82 565.01 560.92 565.00 562.83 563.28 565.01 561.24 564.95 561.50 561.32 565.01 $561.$	OGC-3MH11MW-8SouthMH12OGC-8 572.11 572.37 574.37 568.46 572.37 573.35 574.37 568.46 572.37 564.89 561.09 561.73 564.96 560.86 564.43 561.16 561.85 564.46 559.97 564.43 561.16 561.85 564.65 560.20 564.58 561.36 561.85 564.65 560.20 564.59 561.12 561.77 565.26 559.05 564.89 561.12 561.61 564.98 560.04 564.90 561.39 561.79 564.98 560.14 564.65 561.18 561.55 564.79 560.16 564.72 561.28 561.73 564.80 560.23 564.65 559.56 561.79 564.48 560.40 564.35 559.56 561.79 564.48 560.40 564.35 561.30 561.30 564.25 560.68 564.33 561.00 562.30 564.25 560.68 564.28 558.54 561.56 564.20 560.78 564.48 559.51 561.89 564.80 560.69 564.44 559.51 561.89 564.80 560.69 564.59 561.50 561.89 564.84 560.76 564.98 561.50 565.01 565.01 565.02 564.45 561.50 565.01 561.02 565.01	OGC-3MH11MW-8SouthMH12OGC-8OGC-4 572.11 572.37 574.37 568.46 572.37 573.35 574.37 568.46 574.01 574.66 564.89 561.09 561.73 564.96 560.86 564.99 565.49 564.43 561.16 561.86 564.46 559.97 564.47 564.47 564.58 561.29 561.77 565.26 559.97 564.47 564.64 565.20 561.29 561.77 565.26 559.05 565.26 565.22 564.89 561.12 561.61 564.98 560.14 565.00 564.94 564.99 561.39 561.77 564.98 560.14 565.00 564.95 564.65 561.18 561.79 564.48 560.16 564.76 564.61 564.65 559.56 561.79 564.48 560.16 564.76 564.61 564.65 559.56 561.79 564.48 560.476 564.12 564.42 564.20 561.36 564.20 560.78 564.35 564.42 564.28 58.54 561.56 564.20 560.78 564.20 564.23 564.48 559.51 561.89 564.80 560.69 564.90 564.92 564.59 561.30 564.80 560.69 564.90 564.92 564.59 561.50 561.89 565.05 560.84 560.07	OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 572.11 574.37 568.46 572.37 574.01 574.66 576.23 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 564.43 561.16 561.85 564.65 560.20 564.47 564.47 562.64 564.58 561.29 561.77 565.26 559.05 565.26 565.22 562.13 564.89 561.12 561.61 564.98 560.04 565.00 564.94 562.12 564.65 561.18 561.79 564.88 560.14 565.00 564.94 562.12 564.65 561.18 561.79 564.80 560.23 564.64 562.03 564.49 562.12 564.65 559.56 561.73 564.80 560.23 564.64 562.05 564.65 564.20 564.53 564.64 562.05 564.65 559.56 561.73	OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 MH14 572.11 572.37 568.46 572.37 574.01 574.66 576.23 574.30 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 563.52 564.43 561.16 561.85 564.65 560.20 564.67 564.64 562.26 561.87 564.59 561.29 561.77 565.26 565.20 564.94 562.10 562.21 564.89 561.12 561.61 564.98 560.14 565.00 564.95 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.12 562.13 564.72 561.83 564.65 560.43 564.64 562.05 561.54 564.65 561.79 564.48 560.40 561	OGC-3 MH11 MW-8 South MH12 OGC-8 OGC-4 MW-9 MH14 MH15 572.11 572.37 574.37 568.46 572.37 574.30 575.84 574.30 575.84 564.89 561.09 561.73 564.96 560.86 564.99 565.49 563.41 563.52 562.36 564.43 561.16 561.85 564.65 560.20 564.47 564.47 562.64 562.27 561.73 565.20 561.29 561.77 565.26 559.05 565.22 562.13 562.20 561.14 564.89 561.12 561.61 564.98 560.14 565.00 564.95 562.12 562.13 562.22 561.13 564.65 561.18 561.79 564.98 560.14 565.00 564.95 562.12 562.17 561.18 564.65 561.18 561.57 564.79 560.16 564.84 564.66 562.05 561.39 561.07

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

⁽⁵⁾ Buried with snow.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

				NORTH			River					River	
Date	MH2	МНЗ	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 30, 2009	568.71	570.75	560.62	564.42	566.89	564.02	(2)	564.31	562.42	565.96	564.56	(7)	564.21
February 25, 2009	568.77	571.27	560.22	564.50	567.20	563.88	(2)	564.37	562.52	564.31	564.58	564.11	564.33
March 27, 2009	565.45	559.49	558.31	564.48	564.81	564.41	(2)	564.38	561.18	562.90	564.61	(2)	564.52
April 30, 2009	563.46	560.06	558.36	564.84	563.55	564.85	564.80	564.73	563.14	564.03	564.91	564.74	564.97
May 27, 2009	561.36	560.29	558.18	564.80	563.18	564.84	(2)	564.69	563.04	563.93	564.90	564.78	564.94
June 29, 2009	561.56	561.28	556.26	565.01	562.81	565.01	565.02	564.90	560.74	562.12	565.15	564.93	565.14
July 27, 2009	561.64	559.34	556.22	565.28	562.63	565.20	565.12	565.06	560.99	562.00	565.31	565.05	565.34
August 31, 2009	561.76	561.29	556.06	565.01	562.47	565.00	564.90	564.84	560.85	561.82	565.08	564.86	565.14
September 30, 2009	565.80	565.67	558.36	565.30	564.80	564.93	564.80	564.99	561.46	562.78	565.37	564.71	565.19
October 30, 2009	566.21	566.49	558.71	564.64	565.37	564.60	(2)	564.43	561.66	563.06	564.67	564.35	564.71
November 30, 2009	561.87	561.41	555.76	564.74	563.19	564.30	(2)	564.27	560.65	561.81	564.60	563.98	564.49
December 30, 2009	561.72	560.01	557.87	564.43	562.79	564.21	(2)	564.24	562.80	563.66	564.44	563.89	564.37
January 29, 2010	561.67	560.02	555.87	565.34	562.60	565.08	(2)	565.01	560.13	561.84	565.23	564.63	565.32
February 26, 2010	561.75	561.26	555.72	563.99	562.38	563.88	566.60	563.85	560.66	561.61	564.06	564.29	564.01
March 30, 2010	562.58	561.25	556.36	564.30	562.69	563.94	566.80	564.03	560.76	561.89	564.24	564.19	564.19
April 30, 2010	562.61	560.99	556.62	564.47	562.78	564.45	(2)	564.36	561.11	562.04	564.55	564.38	564.58
May 26, 2010	563.33	559.94	558.05	564.73	562.80	564.90	(2)	564.70	562.87	563.65	564.84	564.78	564.98

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.

⁽⁵⁾ Buried with snow.

⁽⁶⁾ Believed to be erroneous reading.

⁽⁷⁾ Ice on pipe.

⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in downstream City manhole.

Page 10 of 10

TABLE 2.2

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK *River*

Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575 84	574 82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23	0. 100	0,0.01	07 1.02
January 30, 2009	564.24	564.96	565.25	564.15	562.22	564.29	564.34	563.48	561.59	559.58	563.21
February 25, 2009	564.36	559.64	562.05	564.27	562.29	564.41	564.46	563.30	561.88	561.02	563.44
March 27, 2009	564.57	561.11	561.66	564.48	562.03	564.63	564.71	562.67	561.37	560.58	562.65
April 30, 2009	565.09	563.38	563.93	565.14	562.12	565.15	565.07	563.36	563.64	562.60	563.40
May 27, 2009	565.10	563.45	564.03	565.20	562.17	565.20	565.09	564.58	564.68	563.82	564.63
June 29, 2009	565.25	560.98	562.26	565.23	563.68	565.29	565.24	564.76	565.52	564.68	564.93
July 27, 2009	565.46	561.40	562.16	565.45	562.64	565.51	565.47	564.59	564.89	563.91	564.70
August 31, 2009	565.24	561.28	562.10	562.25	562.79	565.29	565.26	564.65	564.74	563.67	564.71
September 30, 2009	565.22	560.10	561.60	565.10	562.87	565.26	565.28	564.39	564.91	564.03	564.60
October 30, 2009	564.78	560.77	561.70	564.77	562.99	564.84	564.84	564.35	564.80	563.82	564.44
November 30, 2009	564.58	561.13	561.89	564.44	563.10	564.66	564.66	564.44	564.79	563.82	564.53
December 30, 2009	564.40	563.24	563.93	564.37	563.31	564.45	564.50	564.81	565.14	564.13	564.87
January 29, 2010	565.19	559.72	562.18	565.03	563.49	565.20	565.38	564.50	564.03	562.93	564.53
February 26, 2010	564.12	561.15	561.87	564.36	563.56	564.11	564.16	563.98	563.86	562.93	564.13
March 30, 2010	564.24	561.59	562.56	564.45	560.01	564.30	564.35	564.79	564.60	563.52	564.85
April 30, 2010	564.69	560.40	562.25	564.80	559.66	564.79	564.71	564.62	564.54	563.51	564.65
May 26, 2010	565.14	563.21	563.61	565.19	561.01	565.19	565.13	564.57	564.58	563.44	564.60

Notes:

⁽¹⁾ Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽³⁾ Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.

⁽⁴⁾ Buried with snow.

⁽⁵⁾ Buried with snow.

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date M	onitored	5/11/2	001	5/18/2	2001	5/25/2	001	6/1/2	001	6/8/2	001	6/15/2	2001
		Water Level	Gradient										
		(ft amsl)	Direction										
Monit	oring Location												
Outer Inner	River North MH2	564.54 559.31	Inward	564.49 NM	NA	563.80 NM	NA	563.52 559.34	Inward	564.75 NM	NA	564.71 560.79	Inward
Outer Inner	River North MH6	564.54 561.98	Inward	564.49 562.03	Inward	563.80 NM	NA	563.52 561.97	Inward	564.75 562.49	İnward	564.71 562.60	Inward
Outer Inner	River Middle MH8	564.38 NM	NA	564.33 NM	NA	563.63 NM	NA	563.47 NM	NA	564.68 NM	NA	564.71 560.53	Inward
Outer Inner	River South MH12	564.70 564.15	Inward	564.65 561.12	Inward	564.80 564.17	Inward	565.00 564.19	Inward	565.05 562.45	Inward	565.05 562.34	Inward

Date M	lonitored	6/22/2	001	6/29/2	2001	7/31/2	2001	8/20	0/2001	9/28/2	001	10/22/2	2001
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient						
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monite	oring Location												
Outer	River North	564.90	Inward	564.52	Inward	564.66	Inward	564.69	Inward	564.68	Inward	564.36 (2)	Inward
Inner	MH2	560.77		560.62		559.87		561.49		561.03		561.38	
Outer	River North	564.90	Inward	564.52	Inward	564.66	Inward	564.69	(1) Outward	564.68	Inward	564.36 (2)	Outward
Inner	MH6	562.53		562.42		562.90		565.23		563.03		567.06	
Outer	River Middle	564.86	Inward	564.48	Inward	564.68	Inward	564.64	Inward	564.68	Inward	564.26	Inward
Inner	MH8	560.44		560.38		560.25		560.25		560.27		560.43	
			1										
Outer	River South	565.18	Inward	564.83	Inward	564.96	Inward	564.99	Inward	564.95	Inward	564.61	Inward
Inner	MH12	562.29		561.80		560.77		560.42		560.36		560.42	

Notes:

Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
 River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

.

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date M	onitored	11/27/	2001	12/20/	2001	1/29/2	002	2/11/2	002	3/25/2	002	4/24/2	2002
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monite	oring Location	yt umstj	Differion	(ji umsi)	Direction	(ji umsi)	Direction	(jt amsi)	Direction	(ft amsi)	Direction	(ft amsl)	Direction
Outer Inner	River North MH2	563.80 (2) 561.45	Inward	564.69 560.96	Inward	563.89 560.74	Inward	564.03 560.80	Inward	563.90 (2) 560.55	Inward	564.61 562.54	Inward
Outer Inner	River North MH6	563.80 (2) 564.53	Outward	564.69 564.39	Inward	563.89 563.75	Inward	564.03 564.19	Outward	563.90 (2) 563.25	Inward	564.61 564.12	Inward
Outer Inner	River Middle MH8	563.54 560.45	Inward	564.45 559.75	Inward	563.74 560.98	Inward	563.97 561.06	Inward	563.59 560.65	Inward	564.19 561.13	Inward
Outer Inner	River South MH12	564.05 560.06	Inward	564.96 560.23	Inward	563.92 560.29	Inward	564.53 560.28	Inward	564.15 560.34	Inward	564.86 560.63	Inward

Date M	onitored	5/21/2	:002	6/20/2	002	7/18/2	002	8/6/2	002	9/12/2	002	10/30/2	2002
		Water Level	Gradient										
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monite	oring Location												
Outer	River North	564.76	Inward	564.58	Inward	564.89	Inward	564.65	Inward	565.04	Inward	563.91 (2)	Inward
Inner	MH2	561.74		561.67		561.46		561.26		561.60		561.63	
Outer	River North	564.76	Inward	564.58	Outward	564.89	Outward	564.65	Outward	565.04	Outward	563.91 (2)	Outward
Inner	MH6	564.10		565.58		564.99		565.89		565.60		566.24	
Outer	River Middle	564.66	Inward	564.68	Inward	564.90	Inward	564.59	Inward	564.95	Inward	563.75	Inward
Inner	MH8	560.05		560.68		560.79		561.05		561.10		561.07	
Outer	River South	565.07	Inward	564.88	Inward	565.22	Inward	564.90	Inward	565.25	Inward	564.16	Inward
Inner	MH12	560.84		561.04		560.95		561.07		561.09		561.31	

Notes:

,

Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.
 River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

-

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Mo	nitored		2002	12/11/	2002	1/16/2	2003	2/25/2	003	3/14/2	003	4/14/2	003
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ji amsi)	Direction	(ft amsi)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer Inner	River North MH2	563.90 (2) 561.12	Inward	563.89 (2) 561.55	Inward	563.86 (2) 561.65	Inward	563.96 (2) 561.58	Inward	563.86 (2) 561.65	Inward	564.30 561.68	Inward
Outer Inner	River North MH6	563.90 (2) 554.47 (3)	Inward	563.89 (2) 555.09	Inward	563.86 (2) 556.15	Inward	563.96 (2) 555.74	Inward	563.86 (2) 555.75	Inward	564.30 554.54	Inward
Outer Inner	River Middle MH8	563.71 558.03	Inward	563.72 559.95	Inward	563.52 561.04	Inward	563.34 560.60	Inward	563.24 560.61	Inward	564.24 558.65	Inward
Outer Inner	River South MH12	564.15 561.44	Inward	564.14 561.45	Inward	564.11 561.83	Inward	564.21 561.26	Inward	564.11 561.54	Inward	564.45 561.56	Inward

Date Mon	itored	5/8/2	003	6/19/2	003	7/21/2	003	8/28/2	003	9/30/2	003	10/30/2	2003
		Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction
Monitor	ing Location												
Outer Inner	River North MH2	564.61 561.52	Inward	564.78 562.26	Inward	564.49 561.21	Inward	564.64 561.65	Inward	564.83 (2) 561.65	Inward	564.78 (2) 561.48	Inward
Outer Inner	River North MH6	564.61 555.93	Inward	564.78 556.02	Inward	564.49 556.06	Inward	564.64 554.61	Inward	564.83 (2) 554.61	Inward	564.78 (2) 554.98	Inward
Outer Inner	River Middle MH8	564.27 560.76	Inwa r d	564.66 560.85	Inward	564.44 560.89	Inward	564.6 558.52	Inward	564.6 558.52	Inward	564.63 559.77	Inward
Outer Inner	River South MH12	564.61 561.61	Inward	564.96 561.94	Inward	564.78 562.03	Inward	564.91 562.19	Inward	565.08 562.26	Inward	565.03 562.25	Inward

Notes:

(1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

NA - Not Applicable

Page 4 of 10

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Mo	nitored	11/21/2	003	12/11	/2003	1/16/	2004	2/25	2004	3/14/	2004	4/14/	2004
		Water Level	Gradient										
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer Inner	River North MH2	564.03 (2) 561.53	Inward	564.11 (2) 561.08	Inward	564.11 (2) (4)		563.91 (2) (4)		564.01 (2) 561.33	Inward	564.44 (2) 560.05	Inward
Outer Inner	River North MH6	564.03 (2) 555.94	Inward	564.11 (2) 555.82	Inward	564.11 (2) 555.84	Inward	563.91 (2) 556.12	Inward	564.01 (2) 555.9	Inward	564.44 (2) 554.91	Inward
Outer Inner	River Middle MH8	564.36 560.76	Inward	564.11 (2) 560.67	Inward	564.11 (2) 560.7	Inward	563.91 (2) 560.95	Inward	564.01 (2) 560.75	Inward	564.43 559.59	Inward
Outer Inner	River South MH12	564.28 562.52	Inward	564.36 562.75	Inward	564.36 562.49	Inward	564.16 562.3	Inward	564.26 562.07	Inward	564.69 561	Inward

Date Mon	itored	5/14/20	004	6/25/	2004	7/30/	2004	8/31/	2004	9/30/	2004	10/20	/2004
		Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction
Monitori	ing Location												
Outer Inner	River North MH2	564.55 560.17	Inward	564.68 561.64	Inward	565.20 561.79	Inward	564.98 561.37	Inward	565.00 561.48	Inward	564.45 561.65	Inward
Outer Inner	River North MH6	564.55 554.56	Inward	564.68 555.74	Inward	565.20 555.24	Inward	564.98 555.83	Inward	565.00 555.60	Inward	564.45 555.96	Inward
Outer Inner	River Middle MH8	564.48 559.45	Inward	564.56 560.50	Inward	565.16 560.04	Inward	564.93 560.67	Inward	565.05 560.71	Inward	564.41 560.82	Inward
Outer Inner	River South MH12	564.71 560.80	Inward	564.91 560.95	Inward	565.46 561.15	Inward	565.25 561.35	Inward	565.30 561.25	Inward	564.49 561.50	Inward

Notes:

(1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Mon	itored	11/23/2	004	12/31	/2004	1/28/	2005	2/28/	2005	3/31/	2005	4/29/	2005
		Water Level	Gradient										
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitor	ing Location												
Outer	River North	564.05 (2)	Inward	564.68	Inward	564.44 (2)	Inward	(6)	NA	564.31 (2)	Inward	564.83	Inward
Inner	MH2	561.50		561.60		562.60		561.05		561.25		560.20	
Outer	River North	564.05 (2)	Inward	564.68	Inward	564.44 (2)	Inward	(6)	NA	564.31 (2)	Inward	564.83	Inward
Inner	MH6	554.95		556.19		556.22		555.58		555.93		556.01	
Outer	River Middle	564.18 (5)	Inward	564.56	Inward	564.32	Inward	564.46	Inward	564.08	Inward	564.71	Inward
Inner	MH8	559.77		561.02		561.06		560.47		560.78		560.89	
Outer	River South	564.30	Inward	564.81	Inward	564.69	Inward	564.79	Inward	564.56	Inward	565.15	Inward
Inner	MH12	561.57		561.81		561.92		562.05		562.11		562.26	

Date Monitored		5/27/20	005	6/24/2005		7/29/2005		8/31/2005		10/3/2005		10/31/2005	
		Water Level	Gradient										
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitor	ing Location												
Outer	River North	564.78	Inward	564.73	Inward	564.82	Inward	564.63(2)	Inward	564.80	Inward	564.80	Inward
Inner	MH2	560.23		561.50		562.70		561.62		561.52		561.68	
Outer	River North	564.78	Inward	564.73	Inward	564.82	Inward	564.63(2)	Inward	564.80	Inward	564.80	Inward
Inner	MH6	555.82		555.16		556.56		556.24		555.41		555.60	
Outer	River Middle	564.74	Inward	564.70	Inward	564.85	Inward	564.54	Inward	564.75	Inward	564.55	Inward
Inner	MH8	560.65		559.92		561.39		561.07		560.20		560.46	
Outer	River South	565.02	Inward	564.92	Inward	565.15	Inward	564.88	Inward	565.11	Inward	565.00	Inward
Inner	MH12	562.29		562.40		562.51		562.75		562.90		563.15	

Notes:

(1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

NM - Not Measured

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		11/22/2005		12/23/2005		01/27/2006		02/28/2006		03/24/2006		04/21/2006	
		Water Level	Gradient										
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitori	ing Location												
Outer Inner	River North MH2	563.93 (2) 561.62	Inward	564.01 (2) 562.55	Inward	564.11 (2) 562.95	Inward	564.04 (2) 563.17	Inward	564.19 (2) 562.68	Inward	564.39 (2) 562.31	Inward
Outer Inner	River North MH6	563.93 (2) 555.20	Inward	564.01 (2) 556.20	Inward	564.11 (2) 556.21	Inward	564.04 (2) 554.70	Inward	564.19 (2) 555.64	Inward	564.39 (2) 555.61	Inward
Outer Inner	River Middle MH8	564.05 (5) 560.64	Inward	564.13 (5) 561.05	Inward	564.23 (5) 561.02	Inward	564.16 (5) 558.44	Inward	564.31 (5) 560.43	Inward	564.26 560.40	Inward
Outer Inner	River South MH12	564.18 563.29	Inward	564.26 563.46	Inward	564.36 563.61	Inward	564.29 563.73	Inward	564.44 563.47	Inward	564.64 563.49	Inward

		05/30/2006		06/26/2006		07/31/2006		08/25/2006		09/22/2006		10/31/2006	
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Wate r Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito r	ing Location												
Outer	River North	564.87	Inward	564.81	Inward	565.09	Outward	564.85 (2)	Inward	564.70	Inward	564.82	Inward
Inner	MH2	562.73		561.57		565.18		561.64		561.46		559.98	
Outer	River North	564.87	Inward	564.81	Inward	565.09	Inward	564.85 (2)	Inward	564.70	Inward	564.82	Inward
Inner	MH6	555.84		556.19		556.19		556.06		555.95		555.62	
Outer	River Middle	564.86	Inward	564.78	Inward	- 565.07	Inward	564.68	Inward	564.67	Inward	564.66	Inward
Inner	MH8	560.44		561.02		563.66		561.02		561.02		559.95	
Outer	River South	565.24	Inward	565.13	Inward	565.45	Inward	565.10	Inward	565.04	Inward	565.07	Inward
Inner	MH12	563.61		563.70		563.92		563.98		564.29		564.77	

Notes:

(1) Water level monitored on 9/14/01 was 563.87 ft amsl which provided an inward gradient.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

(3) Valves in MH6 were opened on November 18, 2002.

(4) Snow covered well, could not locate.

(5) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

NM - Not Measured

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		11/29/2006		12/29/2006		01/26/2007		02/27/2007		03/30/2007		04/30/2007	
	Water Level		Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitor	ing Location												
Outer	River North	564 .16	Inward	564.82	Inward	564.71 (2)	Inward	564.21 (2)	Inward	564.40 (2)	Inward	564.82	Inward
Inner	MH2	561.35		561.52		561.39		561.53		560.25		560.99	
Outer	River North	564.16	Inward	564.82	Inward	564.71 (2)	Inward	564.21 (2)	Inward	564.40 (2)	Inward	564.82	Inward
Inner	MH6	555.93		555.93		556.04		556.23		556.24		556.31	
Outer	River Middle	564.28	Inward	564.41 (1)	Inward	564.46	Inward	564.33 (1)	Inward	564.28	Inward	564.78	Inward
Inner	MH8	560.73		560.80		560.89		561.07		561.09		561.14	
Outer	River South	564.41	Outward	564.54	Inward	564.96	Inward	564.46	Inward	564.65	Inward	565.26	Inward
Inner	MH12	564.87		561.89		560.86		559.97		560.20		559.85	

		05/25/	05/25/2007		06/29/2007		07/25/2007		08/31/2007		09/27/2007		10/31/2007	
		Water Level	Gradient											
		(ft amsl)	Direction											
Monito	oring Location													
Outer	River North	564.73 (2)	Inward	564.73 (2)	Inward	564.54 (2)	Inward	564.55(2)	Inward	564.23 (2)	Inward	563.81 (2)	Inward	
Inner	MH2	560.85		560.85		561.49		561.10		561.49		561.57		
Outer	River North	564.73 (2)	Inward	564.73 (2)	Inward	564.54 (2)	Inward	564.55 (2)	Inward	564.23 (2)	Inward	563.81 (2)	Inward	
Inner	MH6	556.12		556.45		556.24		556.24		556.02		556.17		
Outer	River Middle	564.67	Inward	564.64	Inward	- 564.41	Inward	564.44	Inward	564.27	Inward	563.98 (1)	Inward	
Inner	MH8	561.02		561.26		561.02		561.04		560.47		561.08		
Outer	River South	564.98	Inward	564.98	Inward	564.79	Inward	564.80	Inward	564.48	Inward	564.06	Inward	
Inner	MH12	560.04		560.14		560.16		560.23		560.40		560.56		

Notes:

(1) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		11/30/2007		12/31/2007		01/28/2008		02/29/2008		03/31/2008		04/28/2008	
		Water Level	Gradient	Wate r Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitoring Location													
Outer Inner	River North MH2	564.00 (2) 561.59	Inward	563.95 (2) 561.18	Inward	563.76 (2) 561.48	Inward	564.55 (2) 561.48	Inward	564.59 (2) 561.71	Inward	564.80 (2) 561.85	Inward
Outer Inner	River North MH6	564.00 (2) 555.84	Inward	563.95 (2) 555.58	Inward	567.76 (2) 556.14	Inward	564.55 (2) 555.99	Inward	564.59 (2) 556.10	Inward	564.80 (2) 556.27	Inward
Outer Inner	River Middle MH8	564.12 (1) 560.68	Inward	564.07 (1) 559.37	Inward	563.68 560.99	Inwarđ	564.50 560.02	Inward	564.48 560.06	Inward	564.64 561.10	Inward
Outer Inner	River South MH12	564.25 560.68	Inward	564.20 560.78	Inward	564.01 560.93	Inward	564.80 560.69	Inward	564.84 560.76	Inward	565.05 560.84	Inward

		05/29/2008		06/25/2008		07/31/2008		08/27/2008		09/26/2008		10/30/2008	
		Water Level	Gradient										
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monitori	ng Location												
Outer	River North	564.76 (2)	Inward	564.83	Inward	564.73	Inward	564.47	Outward	564.46 (2)	Inward	564.46 (2)	Inward
Inner	MH2	562.00		562.57		562.69		565.69		562.21		561.67	
Outer	River North	564.76 (2)	Inward	564.83	Inward	564.73	Inward	564.47	Inward	564.46 (2)	Inward	564.46 (2)	Inward
Inner	MH6	556.65		557.84		560.18		559.36		558.36		557.64	
Outer	River Middle	564.75	Inward	564.72	Inward	564.69	Inward	564.42	Inward	564.34	Inward	564.37	Inward
Inner	MH8	561.39		562.66		563.00		564.13		563.21		562.57	
Outer	River South	565.01	Inward	565.04	Inward	565.01	Inward	564.79	Inward	564.71	Inward	564.71	Inward
Inner	MH12	560.92		561.05		561.24		561.39		565.55		561.74	

Notes:

(1) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

.
-

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		11/22/2	008	12/31/2	008	01/29/2	2009	02/2	5/2009	03/27/2	2009	04/3	0/2009
		Water Level	Gradient	Water Level	Gradient								
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer Inner	River North MH2	563.95 (2) 561.61	Inward	564.40 (2) 566.56	Outward	563.90 (2) 568.71	Outward	564.02 (2) 568.77	Outward	564.23 (2) 565.45	Outward	564.80 563.46	Inward
Outer Inner	River North MH6	563.95 (2) 557.41	Inward	564.40 (3) 560.22	Inward	563.90 (2) 560.62	Inward	564.02 (2) 560.22	Inward	564.23 (2) 558.31	Inward	564.80 558.36	Inward
Outer Inner	River Middle MH8	564.07 (1) 562.36	Inward	564.18 564.91	Outward	564.02 (1) 562.42	Inward	564.11 562.52	Inward	564.35 (1) 561.18	Inward	564.74 563.14	Inward
Outer Inner	River South MH12	564.20 561.79	Inward	564.65 562.09	Inward	564.15 562.22	Inward	564.27 562.29	Inward	564.48 562.03	Inward	565.14 562.12	Inward

		05/27/2	2009	06/29/2	2009	07/27/2	2009	08/3	1/2009	09/30/2	2009	10/3	0/2009
		Water Level	Gradient										
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer	River North	564.95 (2)	Inward	565.02	Inward	565.12	Inward	564.90	Inward	564.80	Outward	564.52 (2)	Outward
Inner	MH2	561.36		561.56		561.64		561.76		565.80		566.21	
Outer	River North	564.95 (3)	Inward	565.02	Inward	565.12	Inward	564.90	Inward	564.80	Inward	564.52 (2)	Inward
Inner	MH6	558.18		556.26		556.22		556.06		558.36		558.71	
Outer	River Middle	. 564.78	Inward	564.93	Inward	565.05	Inward	564.86	Inward	564.71	Inward	564.35	Inward
Inner	MH8	563.08		560.74		560.99		560.85		561.46		561.66	
Outer	River South	565.20	Inward	565.23	Inward	565.45	Inward	565.25	Inward	565.10	Inward	564.77	Inward
Inner	MH12	562.17		563.68		562.64		562.79		562.87		562.99	

Notes:

(1) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

(2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

Page 10 of 10

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

			2009	12/30/2	2009	01/29	/2010	02/26/2	2010	03/30/2	2010	04/30/2	2010
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Monito	ring Location												
Outer Inner	River North MH2	564.19 (2) 561.87	Inward	564.12 (2) 561.72	Inward	564.78 (2) 561.67	Inward	566.60 561.75	Inward	566.80 562.58	Inward	564.55 (2) 562.61	Inward
Outer Inner	River North MH6	564.19 (2) 555.76	Inward	564.12 (2) 557.87	Inward	564.78 (2) 555.87	Inward	566.60 555.72	Inward	566.60 556.36	Inward	564.55 (2) 556.62	Inward
Outer Inner	River Middle MH8	563.98 560.65	Inward	563.89 562.80	Inward	564.63 560.13	Inward	564.29 560.66	Inward	564.19 560.76	Inward	564.38 561.11	Inward
Outer Inner	River South MH12	564.44 563.10	Inward	564.37 563.31	Inward	565.03 563.49	Inward	564.36 563.56	Inward	564.45 560.01	Inward	564.80 559.66	Inward

Monitoring Location

Outer	River North	564.94 (2)	Inward
Inner	MH2	563.33	
Outer	River North	564.94 (2)	Inward
Inner	MH6	558.05	
Outer	River Middle	564.78	Inward
Inner	MH8	562.87	
Outer	River South	565.19	Inward
Inner	MH12	561.01	

Notes:

River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.
 River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		6/15/2	2001	6/22/2	2001	6/29/	2001	7/31/	2001		/2001	9/28	2001	10/22/	2001
Monitoring		Water Level	Gradient												
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.59 562.54	Upward	560.55 562.50	Upward	560.40 562.42	Upward	559.21 562.90	Upward	561.07 562.09	Upward	560.56 562.13	Upward	562.36 562.08	Downward
Upper Lower	MH8 MW-7	560.53 561.48	Upward	560.44 561.41	Upward	560.38 561.39	Upward	560.25 561.30	Upward	560.25 561.29	Upward	560.27 561.32	Upward	560.43 561.31	Upward
Uppe r Lower	MH11 MW-8	561.12 561.69	Upward	561.05 561.54	Upward	560.97 561.46	Upward	560.73 561.19	Upward	560.50 561.05	Upward	560.61 561.07	Upward	560.51 561.27	Upward
Uppe r Lower	MH14 MW-9	562.32 562.45	Upward	562.32 562.19	Downward	562.45 562.11	Downward	562.45 562.45	Neutral	561.72 561.55	Downward	561.70 561.58	Downward	562.10 561.77	Downward
Upper	MH15	NM													
Date Monitored		11/27/	2001	12/20/	2001	1/29/	2002	2/11/	2002	3/25,	/2002	4/24,	/2002	5/21/2	2002
Monitoring		Water Level	Gradient												
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.94 561.88	Upward	560.50 561.83	Upward	560.15 561.83	Upward	560.28 561.73	Upward	560.10 561.72	Upward	562.05 561.88	Downward	561.28 561.97	Upward
Upper Lower	MH8 MW-7	560.45 561.36	Upward	559.75 561.25	Upward	560.98 561.89	Upward	561.06 561.50	Upward	560.65 561.60	Upward	561.13 561.95	Upward	560.05 561.38	Upward
Upper Lower	MH11 MW-8	559.51 561.30	Upward	561.31 560.73	Downward	NM 561.91		561.23 561.93	Upward	560.97 561.60	Upward	561.41 561.95	Upward	560.35 560.91	Upward
Upper Lower	MH14 MW-9	561.87 561.71	Downward	561.89 561.77	Downward	562.53 562.31	Downward	562.18 562.52	Upward	562.77 562.64	Downward	563.09 562.96	Downward	563.25 563.11	Downward
Upper Average ⁽¹⁾	MH15	NM		562.17 562.89	Upward Upward										

Notes:

NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		6/20/2	2002	7/18/2	2002	8/6/2	002	9/12	/02	10/3	0/02	11/2	1/02	12/1	1/02
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Wate r Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	561.24 561.92	Upward	560.99 561.89	Upward	560.79 561.92	Upward	561.14 561.82	Upward	561.21 561.97	Upward	560.67 562.05	Upward	561.08 562.04	Upward
Upper Lower	MH8 MW-7	560.68 561.54	Upward	560.79 561.65	Upward	561.05 561.93	Upward	561.10 561.99	Upward	561.07 561.95	Upward	558.03 561.41	Upward	559.95 561.25	Upward
Upper Lower	MH11 MW-8	560.98 561.50	Upward	561.07 561.60	Upward	561.33 561.88	Upward	561.34 561.91	Upward	561.36 561.95	Upward	561.49 560.99	Downward	561.51 560.73	Downward
Uppe r Lower	MH14 MW-9	562.98 562.91	Downward	561.83 562.84	Upward	562.08 562.75	Upward	562.11 562.66	Upward	562.68 562.57	Downward	562.88 562.74	Downward	563.07 562.91	Downward
Upper Average ⁽¹⁾	MH15	562.00 562.65	Upward Upward	561.93 561.86	Upward Upward	561.86 562.01	Upward Upward	561.75 561.99	Upward Upward	561.62 562.33	Upward Upward	561.82 562.53	Upward Upward	562.01 562.72	Upward Upward

Notes:

NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		1/16/2	2003	2/25/2	2003	3/14	1/03	4/14	1/03	5/8	/03	6/1	9/03
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	561.20 562.27	Upward	561.10 561.85	Upward	561.17 561.69	Upward	561.22 562.42	Upward	561.03 562.38	Upward	561.83 562.43	Upward
Upper Lower	MH8 MW-7	561.04 561.95	Upward	560.60 561.49	Upward	560.61 561.49	Upward	558.65 561.42	Upward	560.76 561.59	Upward	560.85 561.60	Upward
Upper Lower	MH11 MW-8	561.68 562.00	Upward	561.60 561.48	Downward	561.57 561.46	Downward	558.53 560.98	Upward	561.03 561.56	Upward	561.12 561.56	Upward
Upper Lower	MH14 MW-9	563.37 563.17	Downward	563.07 562.89	Downward	563.09 562.90	Downward	563.54 563.36	Downward	563.26 563.07	Downward	563.41 563.10	Downward
Upper Average ⁽¹⁾	MH15	562.28 563.01	Upward Upward	562.01 562.72	Upward Upward	562.05 562.74	Upward Upward	562.49 563.19	Upward Upward	561.02 562.84	Upward Upward	562.25 563.02	Upward Upward
Date Monitored		7/21	/03	8/28	/03	9/3(0/03	10/2	0/03	11/0	3/03	12/2	3/03
Monitoring		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	560.46 562.31	Upward	561.20 562.21	Upward	561.10 562.53	Upward	561.07 562.52	Upward	561.08 562.33	Upward	559.49 562.30	Upward
Upper - Lower	MH8 MW-7	560.89 561.74	Upward	558.52 561.29	Upward	559.88 561.35	Upward	559.77 561.17	Upward	560.76 561.12	Upward	560.67 561.48	Upward
Upper Lower	MH11 MW-8	561.10 561.69	Upward	564.37 562.35	Downward	558.68 561.17	Upward	558.66 560.02	Upward	561.01 561.57	Upward	560.94 561.34	Upward
Upper Lower	MH14 MW-9	563.03 562.89	Downward	566.48 566.17	Downward	562.89 562.77	Downward	562.88 562.75	Downward	563.00 562.85	Downward	563.31 563.20	Downward
Upper Average ⁽¹⁾	MH15	561.98 562.68	Upward Upward	566.36 566.44	Downward Downward	562.02 562.60	Upward Upward	562.01 562.59	Upward Upward	561.91 562.64	Upward Upward	562.28 562.97	Upward Upward

Notes:

NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		01/21	/04	02/12	/04	03/04	/04	04/1	5/04	05/14	4/04	06/2	5/04
Monitoring		Water Level	Gradient										
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Uppe r Lower	MH3 MW-6	560.33 562.32	Upward	561.08 562.16	Upward	561.13 562.21	Upward	558.78 562.48	Upward	559.71 562.39	Upward	561.21 562.27	Upward
Upper Lower	MH8 MW-7	560.70 561.55	Upward	560.95 561,81	Upward	560.75 561.61	Upward	559.59 561.71	Upward	559.45 561.70	Upward	560.50 561.42	Upward
Upper Lower	MH11 MW-8	(2) 561.47	NA	561.23 561.75	Upward	561.04 561.56	Upward	559.85 561.38	Upward	559.87 561.39	Upward	560.79 561.19	Upward
Average ⁽¹⁾ Lower	MW-9	(2) 562.72	NA	(2) 562.68	NA	562.08 562.70	Upward	562.43 562.64	Up`ward	562.41 562.71	Upward	562.41 562.70	Upward
Date Monitored		07,	/30/04	08/31	/04	09/30	0/04	10/2	0/04	11/2	3/04	12/3	1/04
Monitoring		Water Level	Gradient										
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	561.25 562.29	Upward	560.59 562.23	Upward	560.81 562.28	Upward	561.19 562.10	Upward	561.05 561.99	Upward	560.74 562.16	Upward
Upper Lower	MH8 MW-7	560.04 561.31	Upward	560.67 561.56	Upward	560.71 561.49	Upward	560.82 561.19	Upward	559.77 561.21	Upward	561.02 561.80	Upward
Upper Lower	MH11 MW-8	560.26 560.71	Upward	560.94 561.39	Upward	561.00 561.43	Upward	561.09 561.56	Upward	560.05 560.56	Upward	561.23 561.75	Upward
Average ^(I) Lower	MW-9	561.33 562.70	Upward	562.73 562.95	Upward	562.67 562.98	Upward	562.46 562.64	Upward	561.23 562.71	Upward	561.96 562.71	Upward

Notes:

NA - Not Applicable. NM - Not monitored. MH11 was blocked and could not be accessed. (1) - Distance weighted for MH14 (two thirds) and MH15 (one third). (2) - Buried with snow.

.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		1/28/	2005	2/28/	2005	3/31/	2005	4/29/	2005	5/27/	2005	6/24/	2005
Monito ri ng		Water Level	Gradient										
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	562.15	Upward	559.96	Upward	559.94	Upward	559.54	Upward	558.92	Upward	561.09	Upward
Lower	MW-6	562.27		562.14		562.04		562.26		562.24		562.22	•
Upper	MH8	561.06	Upward	560.47	Upward	560.78	Upward	560,89	Upward	560.65	Upward	559.92	Upward
Lower	MW-7	561.85		561.46		561.66		561.76		561.55		561.47	•
Upper	MH11	561.33	Upward	560.74	Upward	561.06	Upward	561.15	Upward	561.13	Upward	560.18	Upward
Lower	MW-8	561.82		561.25		561.60		561.65		561.42	-	560.76	-
Average ⁽¹⁾		(3)	NA	(3)	NA	562.91	Upward	562.57	Upward	562.90	Upward	562.59	Upward
Lower	MW-9	562.75		562.78		563.12	-	563.21	-	563.12	•	562.85	•

Date Monitored		7/29/	2005	8/31/	2005	10/3/	2005	10/31	/2005	11/22	/2005	12/23,	/2005
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	562.26 562.11	Downward	560.64 562.09	Upward	560.54 562.24	Upward	560.73 562.34	Upward	561.20 561.67	Upward	562.09 562.45	Upward
Upper Lower	MH8 MW-7	561.39 562.27	Upward	561.07 561.94	Upward	560.20 561.40	Upward	560.46 561.52	Upward	560.04 561.49	Upward	561.05 561.85	Upward
Upper Lower	MH11 MW-8	561.17 562.15	Upward	561.31 561.85	Upward -	560.43 560.95	Upward	560.71 561.25	Upward	560.31 561.00	Upward	561.30 561.84	Upward .
Average ⁽¹⁾ Lower	MW-9	562.68 562.88	Upward	562.67 562.91	Upward	562.92 563.20	Upward	563.14 563.39	Upward	563.33 563.53	Upward	563.31 563.50	Upward

Notes:

NA - Not Applicable. NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		01/27/	2006	02/28/	2006	03/24/	/2006	04/21	/2006	05/30	/2006	06/26/	/2006
Manifester		Water Level	Gradient										
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	562.53 562.97	Upward	562.26 562.90	Upward	561.77 562.86	Upward	561.84 562.76	Upward	562.30 562.50	Upward	560.63 562.37	Upward
Upper Lower	MH8 MW-7	561.02 561.79	Upward	558.44 561.68	Upward	560.43 561.57	Upward	560.40 561.48	Upward	560.44 561.75	Upward	561.02 561.97	Upward
Upper Lower	MH11 MW-8	561.26 561.76	Upward	558.38 561.23	Upward	560.60 561.16	Upward	560.63 561.15	Upward	560.28 561.03	Upward	561.26 561.75	Upward
Average ⁽¹⁾ Lower	MW-9	563.73 563.90	Upward	563.73 563.94	Upward	563.67 563.83	Upward	563.41 563.65	Upward	563.20 563.48	Upward	563.16 563.41	Upward
Date Monitored		07/31/	2006	08/25/	/2006	09/22,	/2006	10/31	/2006	11/29	/2006	12/29/	/2006
		Water Level	Gradient										

								,	,	,	. =	• + , ,	,
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	564.78 564.39	Downward	561.21 564.72	Upward	561.01 562.76	Upward	555.62 562.58	Upward	560.85 562.48	Upward	560.42 562.98	Upward
Upper Lower	MH8 MW-7	563.66 564.54	Upward	560.89 561.82	Upward	560.51 561.99	Upward	559.95 562.09	Upward	560.73 562.01	Upward	560.80 561.89	Upward
Upper Lower	MH11 MW-8	564.03 564.30	Upward	561.10 561.57	Upward	559.81 561.20	Upward	558.19 561.78	Upward	560.54 561.69	Upward	560.96 561.46	Upward
Average ⁽¹⁾ Lower	MW-9	563.85 564.08	Upward	563.89 563.38	Downward	562.44 562.73	Upward	564.13 564.40	Upward	560.73 562.10	Upward	561.59 561.90	Upward

Notes:

NA - Not Applicable. NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date Monitored		01/26/2	2007	02/27/2	2007	03/30/	2007	04/30/	2007	05/25/	2007	06/29/	2007
		Water Level	Gradient										
Monitoring													
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	560.92	Upward	560.57	Upward	559.45	Upward	559.39	Upward	559.85	Upward	558.83	Upward
Lower	MW-6	562.78		562.49		562.30	•	562.62	·	562.48		562.32	1
Upper	MH8	560.89	Upward	560.89	Upward	561.09	Upward	561.14	Upward	561.02	Upward	561.26	Upward
Lower	MW-7	562.06		561.96		562.05		562.20	•	562.05	L.	562.16	
Upper	MH11	561.09	Upward	561.16	Upward	561.36	Upward	561.29	Upward	561.12	Upward	561.39	Upward
Lower	MW-8	561.73		561.86		561.85	•	561.77	•	561.61		561.79	
Average ⁽¹⁾		563.13	Upward	562.42	Upward	560.89	Upward	561.86	Upward	561.85	Upward	561.84	Upward
Lower	MW-9	563.41		562.64	1	562.66	-1	562.13	-1	562.10	- F	562.12	opnara

		07/25/	2007	08/31/	2007	09/27/	2007	10/31	2007	11/31/	2007	12/31/	2007
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	560.54	Upward	559.62	Upward	561.05	Upward	560.69	Upward	560.58	Upward	559.69	Upward
Lower	MW-6	562.13	·	561.93		561.86		562.02	·	562.22		562.48	1
Upper	MH8	561.02	Upward	561.04	Upward	560.47	Upward	561.08	Upward	560.68	Upward	559.37	Upward
Lower	MW-7	561,94		561.95	-1	562.01		562.00	-1	561.80		561.88	
Upper	MH11	561.18	Upward	561.28	Upward	559 56	Unward	561 36	Unward	561.00	Linward	558 54	Linward
Lower	MW-8	561.55	opnara	561.73	ophilia	561.79	opmanu	561.86	opiiaia	562.30	opwara	561.56	opwaru
Average ⁽¹⁾		561.78	Upward	561.38	Upward	561.82	Upward	561.85	Upward	560.96	Upward	561.83	Upward
Lower	MW-9	562.03		562.05	- r	562.05	-r ·····	562.09	- F . ara	562.05	-r.und	562.16	opinala

Notes:

NA - Not Applicable.

NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

(3) - Not Monitored - MH14 was buried with snow and could not be accessed.

.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		01/28/	2008	02/29/	2008	03/31/	2008	04/28/	2008	05/29/	2008	06/25/	2008
		Water Level	Gradient										
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	559.46	Upward	560.45	Upward	560.74	Upward	559.67	Upward	559.26	Upward	559.54	Upward
Lower	MW-6	562.68		562.38		562.33		562.73		562.66	•	562.79	
Upper	MH8	560.99	Upward	560.02	Upward	560.06	Upward	561.10	Upward	561.39	Upward	562.66	Upward
Lower	MW-7	561.95	·	562.06	•	562.54	•	562.07	•	562.28	•	563.49	
Upper	MH11	561.30	Upward	559.51	Upward	558.99	Upward	561.39	Upward	561.50	Upward	562.83	Upward
Lower	MW-8	561.80	•	561.89	•	561.89		561.90	•	561.82		563.28	•
Average (1)		562.53	Upward	561.89	Upward	561.48	Upward	561.96	Upward	561.87	Upward	561.79	Upward
Lower	MW-9	562.78		562.17		562.24	-1	562.56	-1	562.14	-r	562.11	- 1

		07/31/	2008	08/27/	2008	09/26/	2008	10/30	/2008	11/22/	2008	12/31/	2008
		Water Level	Gradient										
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	561.02	Upward	565.29	Downward	559.22	Upward	560.08	Upward	561.19	Upward	565.53	Upward
Lower	MW-6	563.27		565.10		563.42		562.97		565.10		566.09	
Upper	MH8	563.00	Upward	564.13	Upward	563.21	Upward	562.57	Upward	562.36	Upward	564.91	Upward
Lower	MW-7	563.86		564.95		564.07		563.49		563.27		565.70	
Upper	MH11	563.53	Upward	564.16	Upward	563.53	Upward	562.85	Upward	562.75	Upward	564.91	Upward
Lower	MW-8	566.07	•	564.61	·	564.03		563.93		563.29		565.33	
Average ⁽¹⁾ Lower	MW-9	561.71 561.97	Upward	563.97 564.15	Upward	560.91 562.02	Upward	562.18 561.83	Downward	561.26 561.76	Upward	564.68 564.71	Upward

Notes:

NA - Not Applicable.

NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		01/30/	2009	02/25/	2009	03/27/	2009	04/30/	2009	05/27/	2009	06/29	2009
Monitorina		Water Level	Gradient										
Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper Lower	MH3 MW-6	570.75 566.89	Downward	571.27 567.20	Downward	559.49 564.81	Upward	560.06 563.55	Upward	560.29 563.18	Upward	561.28 562.81	Upward
Upper Lower	MH8 MW-7	562.42 565.96	Upward	562.52 564.31	Upward	561.18 562.90	Upward	563.14 564.03	Upward	563.04 563.93	Upward	560.74 562.12	Upward
Upper Lower	MH11 MW-8	564.96 565.25	Upward	559.64 562.05	Upward	561.11 561.66	Upward	563.38 563.93	Upward	563.45 564.03	Upward	560.98 562.26	Upward
Average ⁽¹⁾ Lower	MW-9	560.92 563.48	Upward	561.59 563.30	Upward	561.11 562.67	Upward	563.29 563.36	Upward	564.39 564.58	Upward	565.24 564.76	Downward

		07/27/	2009	08/31/	2009	09/30	2009	10/30	/2009	11/30/	2009	12/30/	2009
		Water Level	Gradient										
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	559.34	Upward	561.29	Upward	565.67	Downward	566.49	Downward	561.41	Upward	560.01	Upward
Lower	MW-6	562.63		562.47	·	564.80		565.37		563.19	•	562.79	
Upper	MH8	560.99	Upward	560.85	Upward	561.46	Upward	561.66	Upward	560.65	Upward	562.80	Upward
Lower	MW-7	562.00	·	561.82		562.78		563.06		561.81		563.66	
Upper	MH11	561.40	Upward	561.28	Upward	560.10	Upward	560.77	Upward	561.13	Upward	563.24	Upward
Lower	MW-8	562.16		562.10		561.60	·	561.70	•	561.89	·	563.93	
Average ⁽¹⁾		564.56	Upward	564.38	Upward	564.62	Downward	564.47	Downward	564.47	Downward	564.80	Upward
Lower	MW-9	564.59	-1	564.65	-	564.39		564.35		564.44		564.81	•

Notes:

NA - Not Applicable. NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

Page 10 of 10

TABLE 2.4

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		01/29/2	2010	02/26/2	2010	03/30/	2010	04/30/	2010	05/26/	2010
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Monitoring Location		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	MH3	560.02	Upward	561.26	Upward	561.25	Upward	560.99	Upward	559,94	Upward
Lower	MW-6	562.60		562.38		562.69	1	562.78		562.80	-1
Upper	MH8	560.13	Upward	560.66	Upward	560.76	Upward	561.11	Upward	562.87	Upward
Lower	MW-7	561.84	•	561.61		561.89	·	562.04		563.65	
Upper	MH 11	559.72	Upward	561.15	Upward	561.59	Upward	560.40	Upward	563.21	Upward
Lower	MW-8	562.18		561.87	- r	562.56	-1	562.25	- F	563.61	- F
Average ⁽¹⁾ Lower	MW-9	563.66 564.50	Upward	563.55 563.98	Upward	564.24 564.79	Upward	564.20 564.62	Upward	564.20 564.57	Upward

Notes:

NA - Not Applicable.

NM - Not monitored. MH11 was blocked and could not be accessed.

(1) - Distance weighted for MH14 (two thirds) and MH15 (one third).

(2) - Buried with snow.

1,4-Dichlorobenzene 1,2-Dichlorobenzene Semi-Volatiles

TABLE 2.5

OPERATION AND MAINTENANCE MANUAL GROUNDWATER SAMPLING SUMMARY NORTH TONAWANDA, NEW YORK GRATWICK-RIVERSIDE PARK SITE

LOCATIONS

OGC7	0GC5	OGC4	OGC3	OGC2	OGC1
OGC8	00006	MM-9	MW-8	MW-7	MW-6

FREQUENCY

quarterly for 2 years following GWS startup.
semi-annually for Year 3 except for OGC-4 (quarterly for SVOCs) and OGC-6 (quarterly for VOCs).

• annually for Years 4 through 7 (until May 2008).

SAMPLING PROGRAM (MAY 2009 THROUGH MAY 2012)

Annual	Once Every 2 Years (2010 and 2012)
MW-8	MW-6
9-WM	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	

PARAMETERS

OGC-8

Volatiles

2-Butanone Benzene Acetone

1,1-Dichloroethane

Chlorobenzene

trans-1,2-Dichloroethene

Ethylbenzene

Naphthalene 4-Methylphenol Xylenes (Total)

Trichloroethene Toluene Vinyl Chloride

Tetrachloroethene

Methylene Chloride

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									М	W-9								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/25/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																	
Acetone	50	9.4J	4.3J	7.3J/6.7J		4.2]	7.0/7.2			13/12			17	17		5.7	4.8I	5.9
Benzene	1		0.24J	0.39J/0.35J		0.44J	0.29]/0.30]	0.291/0.291		0.40I/ND0.70				0.54I			0.76	
2-Butanone	50													2.61				
Chlorobenzene	5		0.50J	0.86[/0.85]		1.3		1.0/1.1		0.911/0.871		1.1	1.7	1.5	2.8	1.4	5.3	2.5
trans-1,2-Dichloroethene	5		-	0.22J/ND		0.31J	0.24J/0.24J	0.22J/0.20J						0.42]		0.55J	0.741	
Ethylbenzene	5		0.30J	0.46]/0.42]		0.73J	0.44J/0.42J	0.46J/0.46J		0.401/0.381				0.831			1.2	0.821
Methylene Chloride	5		0.34J	0.33J/ND	4.0J	0.53J						7.2	1.6					
Tetrachloroethene	5	1.6J	1.1J	1.0J/0.92J		1.6	0.92J/0.80J	0.77J/0.74J		0.67J/0.71J				0.57J			0.82J	0.57J
Toluene	5		1.6J	3.0J/2.5J	2.8J	2.7	2.1/2.0	2.7/2.7	2.0	2.0/1.9	4.6	3.2	2.6		3.1	2.4	3.8	3.8
Trichloroethene	5	2.2J	1.8J	2.4J/2.2J	3.0J	4.4	2.0/2.0	2.2/2.3		1.8/1.8	9.5	4.9	3.0	1.8	2.9	1.7	4.7	2.6
Vinyl Chloride	2									1.7/1.7			3.6	4.0			4.2	
Total Xylenes	5		1.0J	1.5J/1.5J		2.5J	1.3J/1.3J	1.4J/1.4J		0.98J/1.0J	3.0			2.0J			3.3	2.2J
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene	3*				0.6J										0.9J	0.7J		1.4J
1,4-Dichlorobenzene	3*				-								2J		3J	1J	2.3J	1.7J
2,4-Dimethylphenol	50	12	12	18/17	38		20/22	30/34	30	35/36	36	42	50	58	46	31	110	41
2-Methylphenol	NL	1J	3J	3J/3J	7J		4J/4J	6J/6J	6J	6J/6J	6J	5J	8J		6	6	12	9.9J
4-Methylphenol	NL	69	110	97/92	230		100/110	190/230	150	130/130	160	190	260	190	170	96	300	180
Naphthalene	10														0.2J	0.5J		
Di-n-octyl phthalate	50																	·
Phenol	1	J	34	28/22	24		38/41	34/35	42	46/46	180	30	27	49	11	13	20	20

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level NS - Not Sampled

J - Estimated

/

Page 2 of 15

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location										OG	C-4									
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	3/04/04	05/14/04	11/23/04	05/27/05	05/30/06	05/25/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level											NA		NA						
Acetone	50			7.9J			4.0]												1.61	
Benzene	1		0.21J	0.2J																
2-Butanone	50		•	•																
Chlorobenzene	5		0.49]	0.66]		0.83[/0.79]		0.461		0.831										
trans-1,2-Dichloroethene	5			0.22J				,		,										
Ethylbenzene	5		0.41J	0.39J		0.54J/0.53J	0.48J	0.39]		0.77]						0.44J				
Methylene Chloride	5				5.1J/4.9J					•			4.6		2.0					
Tetrachloroethene	5	1.0J	1.2J	0.87J		0.86J/0.84J	1.1	0.78J		0.77J										
Toluene	5			1.0J		1.0/0.98J	1.4	0.72J		1.2										
Trichloroethene	5	1.6J	1.4J	1.5J		1.5/1.4	1.7	0.96J		1.5						0.53J				
Vinyl Chloride	2																			
Total Xylenes	5		1.0J	0.94J		0.84J/0.82J	1.1J			0. 95 J										
Semi-Volatiles (µg/L)																				
1,2-Dichlorobenzene	3*																			
1,4-Dichlorobenzene	3*																			
2,4-Dimethylphenol	50	81	12	61	81/61	71/71	81		71/71	81	41	6J		4J				0.9J		0.51J/ND
2-Methylphenol	NL	0.9]	2J	35	2J/ND	1J/2J	2]			3J		зj		2J				0.5J	2.7J	
4-Methylphenol	NL	64	86	40	58/55	61/67	68		69/68	73	32	55		31	14	15	ЗJ	6		
Naphthalene	10																	0.5J		3.4J/3.4J
Di-n-octyl phthalate	50																			
Phenol	1 ·	310	560	400	420/460	710/1100	1100-	1100	2400/2300	1800	- 1600		2400	1500	850	510	84	66	25	15/15

Notes:

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									00	GC-8								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	05/08/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																	
Acetone	50	78	31/29	19J		4.7J	3.6J				6.2	5.8	4.71			9.9	1.51	
Benzene	1	11	14/14	14		2.6	5.3	3.3	3.6	3.1	1.8	1.2	1.1	0.92	0.54J	0.84	0.58J	
2-Butanone	50	4.0J	· · · · · · · · · · · · · · · · · · ·															
Chlorobenzene	5	3.7J	4.1J/4.1J	4.0J		0.87J	1.7	1.1		1.1	0.65J	0.48J	0.43J	0.44J				
trans-1,2-Dichloroethene	5	4.3J	3.2J/3.1J	4.0J		0.76J	1.5	0.88J		1.0	0.50J	0.41J	1.0					
Ethylbenzene	5	13	16/16	15	1.6J	2.8	5.8	3.1	3.9	3.1	1.8	1.2		0.99J	0.53J	0.84J	0.50J	
Methylene Chloride	5		0.52J/0.48J	0.62J	1.8J													
Tetrachloroethene	5	40	51/52	59	7.7J	9.9	22	12	14	11	7.0	5.0	3.8	4.0	2.0	2.3	1.6	
Toluene	5	140	140/140	110	17]	21	53	28	38	27	16	11	8.1	8.3	4.0	6.4	3.7	
Trichloroethene	5	120	110/110	110	20J	22	53	27	35	27	17		7.7	7.6	4.0	6.5	4.0	
Vinyi Chloride	2	3.7	3.4/3.6	3.1	1.1J	1	1.4	0.70		0.78]			• •			T		
Total Xylenes	5	43	55/54	46	4.8J	8.3	18	9.5	_11	9.9	5.4	3.7	3.0	3.2	1.1)	2.5)	1.5)	
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene	3*																	
1,4-Dichlorobenzene	3*															0.2J		
2,4-Dimethylphenol	50	2J	4J/2J	4J	0.8J	0.8J	ЗJ	1J								1J		0.73J
2-Methylphenol	NL	18	30/25	16	4J	5J	13	7J	11	7J	4J	2J	2J	3J	2J	2J		2.2J
4-Methylphenol	NL	30	51/45	28	8J	10	26	14	20	14J	9	5J	6J	8J	6	8	5.7	6.5J
Naphthalene	10	1J	3J/25	1J			0.9J											
Di-n-octyl phthalate	50		0.1J/ND															
- Phenol	· 1	30	49/44	31	5]	<u>8</u>]	11	10		4J	6J	2J						

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location								River	South							
Date		05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03 0	5/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
	Class GA															
Volatiles (µg/L)	Level															
							0.07						2.27			10
Acetone	50						3.0J				A /AT		3.23			12
Benzene	1										0.42)		0 0 7			0.17
2-Butanone	50												3.9J			3.1j
Chlorobenzene	5															
trans-1,2-Dichloroethene	5															
Ethylbenzene	5															
Methylene Chloride	5															
Tetrachloroethene	5						0.30J									
Toluene	5			0.29J			0.72J	0.35J			1.8					
Trichloroethene	5						0.44J									
Vinyl Chloride	2						0.27J									
Total Xylenes	5										1.8J					
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50															
2-Methylphenol	NL															
4-Methylphenol	NL															
Naphthalene	10															
Di-n-octyl phthalate	50															
Phenol	1															
Notes:																

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location Data		05140104	00100101							MW-8								
Date Volatiles (µg/L)	Class GA Level	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/29/09	05/26/10
Acetone Benzene 2-Butanone	50 1 50	52 6.5	12J 4.3	11J 4.1	75]	67 8.6	20 12	12	8.1	73 12	23/24	28/33 10/12	26 4.2	16 4.4	6.6/7.5 1.6/1.5	23 1.5 4.4]	2.6J	
Chlorobenzene trans-1,2-Dichloroethene Ethylbenzene Methylene Chloride	5 5 5	1.8J 2.2J 5.7	1.0J 1.8J 3.7J	1.0J 2.9J 4.4J 0.66J	4.8J 8.2J	3.2 7.3 12	4.9 11 18	4.4 16 18	3.6 12 15	6.2 13 23	6.0/6.4 10/12 30/32	2.7/3.3 $7.3/9.4$ $20/24$ $7.2/9.2$	2.4 7.4 4.6	2.4 5.3 5.8	0.84J/0.82J 4.4/3.9 2.5/2.2	0.54J 3.6 1.8	0.99J 6.8 4.2	
Tetrachloroethene Toluene Trichloroethene	5 5 5	21 75 82	12 36 40	9.8 31 35	23J 80 110	32 100 180	61 140 320	58 160 280	54 100 210	80 120 320	91/100 240/240 460/460	7.3/9.2 120/130 97/120 380/390	62 30 180	71 33 150	16/14 12/11 40/36	9.5 10 29	12 26 68	
Vinyl Chloride Total Xylenes	2 5	5.2	1.6J 13	3.3 16	23 30J	12 40	18 68	14 69	12 58	18 93	21/21 120/120	13/16 92/110	5.8 32	5.1 25	9.8/9.1	6.7	19	
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Naphthalene	3* 3* 50 NL NL 10	1J 33 10	11 55 32	0.6J 16 41 34	2J 2J 19 48 55 0.7J	2J 1J 18 44 60 0.8J	1J 15 38 59 0.8J	2J 2J 27 56 83 1J	20 37 64	4J 4J 27 35 75	3J/3J 3J/3J 37/38 45/46 130/130 2J/2J	19U/2J 15J/14 18J/18 34/31	4J 7J 18J	5J 6J 16	0.5J/0.4J 0.8J/0.6J 7/7 18/16 22/22	0.4J 0.5J 14 26 31 1J	14 32 29	1.5J 2.1J 13 22 38
Phenol	50 1 -	43	130	140	85	110	91	110	140	78	80/80	28/28	[11J]	4J	20/21	32	15	13

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									0	GC-3								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																	
Acetone	50	13J / 19J	3.8J	15J		7.1	6.7			5.6			10/8.4	2.81	0.76	6.0	2.91/2.61	
Benzene	1	1.6J / 1.6J	1.6	1.8		1.8	1.2	1.5		1.6	1.4		1.2/1.1	0.931		0.93	0.75/0.78	
2-Butanone	50																	
Chlorobenzene	5		0.24J	0.28J		0.28J		0.22J										
trans-1,2-Dichloroethene	5	1.6J / 1.6J	1.0J	1.4J	1.1J	1.1	0.98J	0.44J		1.0								
Ethylbenzene	5	1.6J / 1.5J	2.0]	2.3J	1.5J	2.4	1.7	1.8		2.0			1.4/1.3	1.1	0.85I	0.921	0.69[/0.73]	
Methylene Chloride	5				1.9J							6.3	1.2/1.0		, i			
Tetrachloroethene	5	2.4J / 2.2J	3.0J	2.2J	1.7J	2.2	1.8	1.8		1.5			0.71]/0.63]	0.61J	0.56J			
Toluene	5	5.7 / 5.1	5.9	5.3		5.1	3.7	4.6	4.0	4.3	3.6	2.6	2.6/2.4		1.7	1.8	1.4/1.4	
Trichloroethene	5	20 / 20	18	19	[14J]	17	14	13	12	14	9.8	7.7	6.4/6.1	5.6	4.3	4.9	3.3/3.5	
Vinyl Chloride	2	ND / 1.0J	0.4	0.72						0.62J								
Total Xylenes	5	5.6J / 5.4J	7.5	8.7	4.8J	7.8	5.8	5.8	5.0	6.6	3.9		3.3/3.0	2.9J	2.1J	2.3J	1.7J/1.7J	
Semi-Volatiles (µg/L)																		
1,2-Dichlorobenzene	3*				1]										0.6J	0.7J		0.86J
1,4-Dichlorobenzene	3*				0.7J		0.5J									0.6J		0.58J
2,4-Dimethylphenol	50	5J / 5J	9	8J	11	11	7J	8J	11	12	10	9J	8J/4J	6J	6	6	6.2/5.9	4.3J
2-Methylphenol	NL	98 / 96	120	87	160	140	100	100	120	140	150	110	83/73	64	47	45	44/43	36
4-Methylphenol	NL	13 /13	21	17	28	23	14	15	22	23	20	17	14/12	13	10	11	11/11	9.9
Naphthalene	10															0.8J		
Di-n-octyl phthalate	50																	
Phenol ·	1	120 / 110	140	130J	210	140	85	92	110	120	120	90	78/74	75	60	65	60/57	50

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location		GW	-58								C	GC-7								
Date		12/17/87	08/12/88	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																			
Acetone	50	293		21J	0.25J	8.2J			3.6J											
Benzene	1	2				0.30J		0.28J	0.20J	0.26J				0.34J	0.34]					
2-Butanone	50	27								-				·						
Chlorobenzene	5																			
trans-1,2-Dichloroethene	5	180	89	6.3	3.1J	5.4	4.9J	4.8J	4.2	4.7	4.0	5.4	5.0	5.9	4.9	5.8	3.8		2.7	
Ethylbenzene	5	9	7]	1.1J	0.80J	1.0J		1.3	0.84J	0.91J		1.4	0.93J	1.5	1.4	1.3	0.87]	0.84J	0.62]	
Methylene Chloride	5	1																		
Tetrachloroethene	5	11	7]	4.3J	3.6J	3.4J	2.9J	4.0	3.4	2.7	2.8	4.1	2.2	4.1	2.9	2.8	1.7	1.2J	0.80J	
Toluene	5	75	49	12	5.8	6.7	5.7	6.9	5.2	6.0	6.7	8.6	5.8	9.3	8.3	8.6	5.0	4.9J	3.3	
Trichloroethene	5	287	220	70	40	48	45	68	44	38	50	56	38	56	37J	37	22	21	14	
Vinyl Chloride	2	7	4J	2.6J	0.84	1.7J	3.5J	2.2	1.8	1.8		2.3	2	2.9	3.0	2.9		2.6J		
Total Xylenes	5	54	37	6.0J	4.8J	6.5	3.9J	7.6	5.3	5.3	5.5	8.7	5.4	10	8.6	8.2	5.3	5.0J	3.6	
Semi-Volatiles (µg/L)																				
1,2-Dichlorobenzene	3*		2J																	
1,4-Dichlorobenzene	3*																			
2,4-Dimethylphenol	50	10	11		2J															
2-Methylphenol	NL	24	24	3J	2J	1.0J	0.8J	1J									0.6J	0.5J		
4-Methylphenol	NL	38				0.9J	0.7J	1J									0.6J	0.4J		
Naphthalene	10																			
Di-n-octyl phthalate	50						0.6J													
Phenol	1	61	92	4J	0.7J											·				

Notes:

* Applies to sum of compounds

NL - Not listed

IND Free Instead Exceeds Class GA Level NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location Data	-	05/10/01	00117101	44/07/04	00/11/00	0=/04/00	00100100	River M	liddle					
Dute	Class CA	05/18/01	09/1//01	11/2//01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03	05/08/03	11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08
Volatiles (µg/L)	Level													
Acetone	50						3.1J							2.8J
Benzene	1													
2-Butanone	50													
Chlorobenzene	5													
trans-1,2-Dichloroethene	5													
Ethylbenzene	5													
Methylene Chloride	5													
Tetrachloroethene	5												1.3	
Toluene	5.													
Trichloroethene	5							0.21J						
Vinyl Chloride	2													
Total Xylenes	5													
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50													
2-Methylphenol	NL													
4-Methylphenol	NL													
Naphthalene	10													
Di-n-octyl phthalate	50				0.7J									
Phenol	1				-									
Notes:														
* Applies to sum of compound	ls													
<u>NL</u> - Not listed														
Exceeds Class GA Lev	el													
NS - Not Sampled														

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									MW-7						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03	05/08/03	11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08	05/26/10
Volatiles (µg/L)	Class GA Level														
Acetone	50	5.7]		6.5]		4.3I	5.4		4.8		4.3I	3.01	3.91	3.31/3.41	
Benzene	1		1.9	2.0		2.0	1.3	1.8	0.90		0.581	,	2,		
2-Butanone	50										,				
Chlorobenzene	5														
trans-1,2-Dichloroethene	5		0.82J	1.11		0.981	0.891	1			0.361				
Ethylbenzene	5		0.851	0.811		1.0	0.611	0.751			0.321				
Methylene Chloride	5				1.6J						,				
Tetrachloroethene	5			0.27											
Toluene	5		3.5J	3.6J		3.3	1.9	3	1.1	2.8	0.93J				
Trichloroethene	5		0.55J	0.63J		0.43J	0.45J	0.36J			-				
Vinyl Chloride	2		1.6J	2.0	3.8J	2.9	1.7	2.2	1.3		0.80J			0.64J/0.61J	
Total Xylenes	5		2.1J	2.1J		2.7J	1.5J	1.9J	0.76J						
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50			2]	2J	3J	0.7J	2J							
2-Methylphenol	NL		3J	2J	4J	6J	1J	2J		2J				0.4J/0.5J	
4-Methylphenol	NL		3J	2J	4J	6J	1J	2J		1J			0.3J	0.5J/0.6J	
Naphthalene	10		-	-											
Di-n-octyl phthalate	50				0.6J										
Phenol	1		24	7]	10	26	2J	6]	5J	2J	1J				

Notes:

* Applies to sum of compounds <u>NL -</u> Not listed

Exceeds Class GA Level NS - Not Sampled

J - Estimated

٠

.

.

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									OGG	C-2							
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/25/07	05/29/08	05/26/10
Volatiles (µg/L)	Class GA Level																
Acetone	50			11J			3.0J					4.5]	. 3.1				
Benzene	1																
2-Butanone	50																
Chlorobenzene	5																
trans-1,2-Dichloroethene	5																
Ethylbenzene	5																
Methylene Chloride	5				1.7]												
Tetrachloroethene	5																
Toluene	5										0.37]						
Trichloroethene	5		0.39J														
Vinyl Chloride	2			0.26J		0.25J	0.26J										
Total Xylenes	5																
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*																
1,4-Dichlorobenzene	3*																
2,4-Dimethylphenol	50																
2-Methylphenol	NL																
4-Methylphenol	NL																
Naphthalene	10																
Di-n-octyl phthalate	50																
Phenol	1																
Notes:																	
* Applies to sum of compound NL - Not listed Exceeds Class GA Lev NS - Not Sampled	ls el																

.

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location											OG	C-6								
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	03/04/04	05/14/04	11/23/04	05/27/05	05/31/06	05/24/07	05/29/08	05/27/09	05/26/10
Volatiles (µg/L)	Class GA Level																			
Acetone	50			6.6J			5.0			3.7J						8.6/8.7			1.6J	
Benzene	1									0.71	0.87	1.4		2.5	5.2	12/12	7.2		3.2	3.6
2-Butanone	50																d		•	
Chlorobenzene	5																			
trans-1,2-Dichloroethene	5			0.23J	0.23J	0.37J	0.45J	0.55J		1.4	2.0	2.1		3.6	5.3	11/12	7.1		4.4	8.2
Ethylbenzene	5					0.31J				0.85J	1.1	2.0	3.3	3.1	7.4	20/20	12		4.8	5.2
Methylene Chloride	5				2.1J								4.4	2.5	2.2					L
Tetrachloroethene	5		1.4J	0.73J		6.6	7.4	5	12	49	51	230	300	260	550	2000/2100	1400	34	400	640
Toluene	5			0.55J		2.0	1.6	1.5	2.4	9.3	12	27	40	35	72	240/260	97	2.9	34	38
Trichloroethene	5	3.0J	4.7J	3.1J	5.9	16	19	13	26	95	120	330	530	330	610	1800/1800	1100	31	320	410
Vinyl Chloride	2					0.22J	0.25J			0.45J						2.9/2.8	1.5			1.2
Total Xylenes	5		0.22J	0.53J	0.26J	1.7J	1.2J	1.0J		4.1	4.7	8.6	13	12	28	79/76	46		18	20
Semi-Volatiles (µg/L)												NA		NA						
1,2-Dichlorobenzene	3*																			
1,4-Dichlorobenzene	3*																			
2,4-Dimethylphenol	50							1J										0.9J		
2-Methylphenol	NL		2J	2J	32	11	8J	9J	13	22	27		63		85	89/110	76	76	32	32
4-Methylphenol	NL			1J	0.02J	10							1J		2J	84/100	2J	70	1.1J	1.4J
Naphthalene	10															1J/2J	2J	2J	1.2J	1.4J
Di-n-octyl phthalate	50																			
Phenol	- 1		7 J	_2J		5]	3]	_2J		<u>5</u>]	3J		9J		8J	13/16	8	8		

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location	_							River	North						
Date		05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/31/07
Volatiles (µg/L)	Class GA Level														
Acetone	50						2.4J		NS			3.6J	3.6J		
Benzene	1					0.21J					2.0	0.39]			
2-Butanone	50														
Chlorobenzene	5					1.3						3.2			
trans-1,2-Dichloroethene	5					0.25J						1.0			
Ethylbenzene	5					20						40		2.9	
Methylene Chloride	5				1.6J										
Tetrachloroethene	5					3.8						7.7		1.3	
Toluene	5			0.39J		63				0.96J		130	2.2	14	
Trichloroethene	5			0.35J		4.5						6.4		0.59J	
Vinyl Chloride	2					3.7						9.3			
Total Xylenes	5					80				0.96J		210	3.7	23	
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50							1J							
2-Methylphenol	NL														
4-Methylphenol	NL														
Naphthalene	10														
Di-n-octyl phthalate	50														
Phenol	1														
Notes:															
* Applies to sum of compound	ds												÷		
INL - INOL IISTED															

NL - Not listed Exceeds Class GA Level NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									OGC-5								
Date		05/20/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/26/10
	Class GA																
Volatiles (µg/L)	Level																
Acetone	50	38J		11[6.4			4 91		0.611		3.01		3 51	
Benzene	1		1.5	1.4		0.87	0.92	0.87		0.77		0.01)		0.671	0.541	0.691	
2-Butanone	50							0.01		v				0.073	0.54	0.07	
Chlorobenzene	5																
trans-1,2-Dichloroethene	5		0.65J	0.76I		0.42I	0.571	0.521				0.341					
Ethylbenzene	5		0.211	0.231		,	,	···-,				0.01)					
Methylene Chloride	5		,		3.4J								2.4				
Tetrachloroethene	5		0.381	0.271	,								2.1				
Toluene	5		2.5]	2.21		0.991	0.871	1.2		0.801		0.801					
Trichloroethene	5		0.87	0.661		0.361	0.411	0.401		,		0.281					
Vinyl Chloride	2		1.6J	1.2J		1.1	1.5	1.2		1.1		1.4		1.2	0.95I	1.4	
Total Xylenes	5		1.0J	1.0J		0.67J	0.37J	0.40J				1.0J			,		
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*																
1,4-Dichlorobenzene	3*																
2,4-Dimethylphenol	50		8J	6J	5J		1J	6J									
2-Methylphenol	NL		1J	1J	1J			-							0.5J	0.3J	
4-Methylphenol	NL		2J	5J	4J			2J							0.9J	0.4J	
Naphthalene	10		1J	1J			0.5J	1J							2J	0.5J	1.6J
Di-n-octyl phthalate	50			1J	0.8J												
Phenol	1		0.9J														
NT-1																	

Notes:

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level

NS - Not Sampled

Page 14 of 15

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location		GW	6S								MW-	6							
Date		12/15/1987	08/10/88	05/18/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08	05/26/10
Volatiles (µg/L)	Class GA Level																		
Acetone	50	684	4.91						4.4I			44		67	13	31			
Benzene	1	3			0.641			0.651	0.591	0.561		0.571		0.7	10	51			
2-Butanone	50				,			0,00)	0.075	0.00)		0.573							
Chlorobenzene	5		3.3F		1.51	1.31		0.651		0 541		0.811		0.371					
trans-1,2-Dichloroethene	5	58	4.41		1.11			0.371	0.321	0.341		14		0.571					
Ethylbenzene	5	2			0.211			,	,	010 1)				0.02)					
Methylene Chloride	5						1.8I								21				
Tetrachloroethene	5	43			0.44J							0.671		0.251					0.551
Toluene	5	16	3.0J		2.2]	0.29J		1.3	0.91J	1.1		2.1	3.6	0.921					0.731
Trichloroethene	5	62	5.1		2.0]		1.2J		1.1	1.5	3.2	14	12	3.7	1.5	1.2	0.971		2.31
Vinyl Chloride	2	11	1.7]					0.29J	0.24J	0.22J		0.521							,
Total Xylenes	5	7			0.90J	0.44J		0.36J	0.27J										
Semi-Volatiles (µg/L)																			
1,2-Dichlorobenzene	3*																		0.661
1,4-Dichlorobenzene	3*			11		0.71	21						21				0.81	0.6]	4.21
2,4-Dimethylphenol	50	5		51	51	31	2J	11	0.91	91			-) 61				,	,	1.4]
2-Methylphenol	NL	3		51	6I	21	21	21	11	0.91			51				0.51	0.3J	1.8
4-Methylphenol	NL	4		15	13	51	41	31	21	21			12	•		11	1		2.5]
Naphthalene	10			67	69		11		14	13			76		5]		2J	1J	7.8J
Di-n-octyl phthalate	50						2J						<u> </u>					·	-
Phenol	1	3		14	<u>4</u>]	2J	0.8J						250			2J	0.6J	0. 4 J	1.9]

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location										OGC-1							
Date		05/18/01	05/25/07	8/21/2001	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/31/06	05/24/07	05/24/08
Volatiles (µg/L)	Class GA Level														00000000		00/21/00
Acetone	50	20J			11]			4.8J									
Benzene	1			0.64J	0.55J				0.26J								
2-Butanone	50	1.1J															
Chlorobenzene	5	2.2J	2.8	2.0J	1.7]		0.24J		0.781		0.91I						
trans-1,2-Dichloroethene	5	5.6		3.7]	4.6	1.8J	0.48]	0.581	2.7		2.8	0.851			0.551		
Ethylbenzene	5			0.52J	0.43]				0.211			,			,		
Methylene Chloride	5					1.6J								1.8			
Tetrachloroethene	5			0.78J	0.54J		0.42J	0.53]	0.30]			0.29]					
Toluene	5	5.2	3.1	5.4	4.2]		0.48]	0.431	1.9	1.7	2.6	0.591					
Trichloroethene	5	15	2.9	16	11	4.5J	2.2	2.7	6.1	5.1	8.4	2.2	0.47]	1.2	1.9	0.531	4.2
Vinyl Chloride	2	1.3]		0.51]	0.72]				0.421		0.641						
Total Xylenes	5			2.1J	1.6J				0.49J		0.86J						
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*		0.9J														
1,4-Dichlorobenzene	3*	1J	3J	3J	2J	1J			1J								
2,4-Dimethylphenol	50	9J	46	16	8J	3J		0.6J	9J		4J						
2-Methylphenol	NL	6J	6	12	5J	2J			2J		ЗJ						
4-Methylphenol	NL	20	170	35	15J	5J		1J	5J	6J	8J				2J		0.4J
Naphthalene	10	71	0.2J	130		21		7 J	18]	25	3J					0.5J
Di-n-octyl phthalate	50									_							
Phenol	1	150	11	290	57	15	1J	8J	41		19						
Notes:																	
* Applies to sum of compounds																	
NL - Not listed																	
Exceeds Class GA Level	L																
NS - Not Sampled																	

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH1	MH2	МН3	MW-6	OGC-1	MH4	OGC-5	MH5	MH6	OGC-6	MH7	MW-7	MH8	OGC-2	МН9
Date															
07/24/00						7.8					10.3				
10/24/00						7.7					10.5				
03/29/01				7.60	10.82		NM			12.55		8.68		9.80	
05/11/01	*	*	*	*	*	*	*	8.30	8.17	8.50	10.16	8.90	11.22	9.22	11.26
05/18/01				11.05	11.14		10.42		10.00	10.50		8.19		8.70	
06/08/01	9.25						9.35		6.90	8.24		7.33		8.40	
06/15/01		10.1	10.38	9.6	9.6		9.4		6.91	8.22		7.43	10.65	8.46	
06/22/01		*	*	*	*								10100	0.10	
06/29/01		10.9	10.8	11	10.9		10.56		7	8.97		9.27	11.33	8.63	
07/31/01		10.82	10.81	10.97	11.25		10.54		7.92	8.55		9.2	11.28	9.35	
08/20/01		11	11	9.86	10.95		10.44		7.9	8.31		7.71	11.45	8.49	
09/28/01		10.75	10.97	9.89	11.01		10.6		7.93	8.3		9.0	11.15	8.75	
10/22/01		10.7	10.45	10.5	11		7.86		6.1	9.32		8.97	8.49	8.87	
11/27/01		10.61	10.46	10.12	11.65		10.3			10.54		10.01	8.61	8.63	
12/20/01		10.17	10.11	9.97	11.22		10.19		9.98	10.37		9.68	8.42	8.51	
01/29/02		11.8	11.62	11.15	11.82		10.48		9.91	10.86		10.56	11.91	10.23	
02/11/02		10.26	10.16	10.5	10.4				7.79	11.44		10.04	11.74	8.33	
03/25/02		10.62	10.45	11.22	10.69		10.36		9.94	11.4		10.03	12.21	9.65	
04/24/02		10.37	10.22	10.68	11.36		9.97		9.46	11.15		9.73	11.3	9.52	
05/21/02		9.96	9.81	10.76	10.42		9.85		9.25	11.91		9.38	9.69	9.2	
06/20/02		10.64	9.4	10.91	11.19		9.77		9.46	11.4		10.59	11.76	9.46	
07/18/02		10.89	10.69	10.87	11.75		9.63		9.32	11.24		10.24	11.76	9.51	
08/06/02		10.62	10.47	8.21	5.67		7.25		8.79	8.78		7.46	11.24	7.83	
09/12/02		10.92	11.23	11.17	11.85		9.61		9.27	11.29		10.26	11.9	9.51	
10/30/02		10.1	11.22	10.74	10.89		9.68		9.82	10.63		9.95	11.97	9.64	
11/21/02		9.06	9.3	10.09	11.89		10.72		9.17	12.42		9.76	9.31	9.6	
12/11/02		8.92	9.17	10.16	11.03		9.87		9.02	10.39		10.19	9.5	9.18	
01/16/03		10.9	11.76	11.02	11.59		10.31		10.01	11.52		11.01	12.37	9.83	
02/25/03		10.72	11.12	10.51	11.81		10.22		9.87	12.31		9.42	9.32	8.92	
03/14/03		11.77	11.92	10.07	11.93		10.09		9.71	11.92		10.19	9.28	9.44	
04/14/03		9.78	9.71	9.67	10.82		9.74		9.21	10.45		9.74	10.48	9.01	
05/08/03		10.32	10.48	10.43	12.35		10.13		9.72	12.41		10.88	10.61	9.00	
06/19/03		10.21	10.39	10.36	12.31		10.05		9.68	12.29		10.75	10.51	8.99	
07/21/03		10.06	10.21	10.25	12.17		9.87		9.57	11.99		10.64	10.49	8.84	
08/28/03		10.22	10.91	10.32	11.16		9.8		10.17	10.96		11.04	10.38	9.89	
09/30/03		9.32	9.4	9.95	10.91		8.95		NM	10.22		9.35	9.42	9.58	
10/20/03		9.22	9.3	9	10		8.1		10.2	10.25		9.8	10	9.2	
11/03/03		9.15	9.14	8.86	9.49		7.8		10.51	10.54		10.41	10.28	9.03	
12/23/03		10.03	9.03	9.7	10.3		8.69		10.07	10.49		10.38	10.63	8.62	

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH1	MH2	МН3	MW-6	OGC-1	MH4	OGC-5	MH5	MH6	OGC-6	MH7	MW-7	MH8	OGC-2	MH9
Date															
01/21/04		(1)	9.06	9.01	9.56		8.0		10.31	9.84		9.69	10.6	8.8	
02/12/04	8.45	(1)	9.72	13.24	11.02	7.77	8.75		7.65	10.8		10.32	11.23	9.2	
03/04/04	8.21	10.05	8.93	10.28	10.69		8.82		9.43	10.52		10.28	10.87	9.24	
04/16/04		9.52	8.77	10.16	9.28		8.61		9.2	10.96		10.41	11.18	9.12	
05/14/04		10.5	8.08	10.16	9.47		8.74		7.19	11.69	9.49	9.36	11.00	9.09	
06/25/04		10.22	8.66	10.07	9.98		8.46		8.41	10.89		9.82	10.65	9.1	
07/30/04		10.03	9.00	9.91	10.45		8.41		8.42	10.67		9.31	10.51	8.94	
08/31/04		9.89	8.7	9.69	10.0		8.17		7.58	10.36		8.97	10.65	8.85	
09/30/04		10.01	8.77	9.9	9.8		8.4		8.11	10.13		9.2	10.47	8.6	
10/20/04		9.91	7.95	9.8	9.28		8.18		8.46			9.89	9.95	8.84	
11/23/04		9.26	8.47	9.87	9.83		8.32		8.92	10.89		9.8	10.84	8.96	
12/31/04		10.13	8.82	9.42	9.26		8.44		10.31	10.04		9.79	9.57	8.73	
01/28/05		10.21	10.75	9.25	8.91		8.39		8.86	10.6		9.66	9.05	9.1	
02/28/05		10.66	9.5	9.09	9.17		8.54		10.89	10.61		9.11	10.8	6.8	
03/31/05		10.91	8.96	9.78	8.95		8.51		9.06	10.99		9.58	11.06	9.18	
04/29/05		10.74	8.92	9.90	9.59		8.74		8.72	11.26		9.62	10.29	9.56	
05/27/05		11.29	9.88	7.85	10.26		9.18		8.12	11.3		9.62	11.16	9.78	
06/24/05		10.72	10.51	10.22	10.2		8.69		8.01	11.48		9.38	11.34	9.31	
07/29/05		7.3	6.20	8.96	9.23		7.83		8.29	9.9		8.91	10.32	8.55	
08/31/05		9.76	7.64	9.35	9.47		8.23		8.5	10.4		8.67	10.68	9.24	
10/03/05		9.1	8.45	9.52	9.14		8.12		7.26	10.43		7.89	9.23	8.9	
10/31/05		10.01	8.59	9.37	8.89		8.47		9.24	10.14		8.63	11.13	9.06	
11/22/05		10.29	8.15	9.13	8.68		8.05		8.25	10.18		8.79	10.70	8.71	
12/23/05		9.24	11.09	10.15	10.11		10.84		9.37	10.84		10.43	9.46	9.23	
01/27/06		9.38	10.69	10.75	9.27		8.63		8.29	11.10		10.05	8.62	9.46	
02/28/06		9.94	11.28	10.49	9.63		8.9		9.56	10.96		9.96	9.56	9.85	
03/24/06		9.57	8.84	10.64	9.43		8.70		9.43	11.14		9.70	9.28	9.40	
04/21/06		11.13	11.03	10.65	9.6		8.91		10.67	11.03		9.44	10.44	9.33	
05/30/06		9.78	10.44	7.50	10.62		8.02		7.10	10.85		9.46	8.98	8.45	
06/26/06		11.24	8.67	10.6	10.83		8.52		8.06	11.24		9.79	10.69	9.24	
07/31/06		7.8	7.85	10.27	10.05		8.12		7.95	10.34		9.93	7.88	8.59	
08/25/06		11.17	8.74	11.07	10.45		8.6		7.7	11.01		8.49	11.4	9.25	
09/22/06		8.33	8.34	10.97	9.73		8.71		8.84	10.85		9.46	11.63	9.23	
10/31/06		10.82	8.26	10.36	9.49		8.62		9.03	10.64		9.86	11.23	9.22	
11/29/06		11.13	9.09	10.45	9.46		8.97		10.90	10.80		9.49	11.13	9.62	
12/29/06		11.15	8.94	10.88	9.36		8.90		11.27	10.56		10.02	11.33	9.05	

.

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH1	MH2	МНЗ	MW-6	OGC-1	MH4	OGC-5	MH5	MH6	OGC-6	MH7	MW-7	MH8	OGC-2	MH9
Date															
01/26/07		11.51	9.21	11.05	9.26		8.80		11.45	11.23		9.76	11.67	9.48	
02/27/07		11.55	10.3	10.93	9.64		8.95		11.08	11.20		9.33	11.45	10.16	
03/30/07		11.37	8.89	10.68	8.83		8.78		11.18	11.13		9.35	11.28	9.21	
04/30/07		11.19	8.27	10.42	9.02		8.47		8.23	10.99		9.59	11.14	9.04	
05/25/07		11.3	8.47	10.32	8.83		8.09		7.74	10.93		9.32	11.18	9.00	
06/29/07		11.17	8.33	10.28	9.5 2		8.36		7.89	10.91		9.02	10.98	8.86	
07/25/07		11.23	7.75	10.42	9.5		8.21		7.93	10.82		8.41	11.32	8.70	
08/31/07		10.36	8.07	9.67	9.89		8.33		8.66	10.31		8.88	10.71	8.99	
09/27/07		9.77	8.62	9.79	9.99		8.43		9.26	10.22		9.55	9.63	8.93	
10/31/07		10.16	8.59	9.82	10.25		8.23		8.83	10.34		9.21	9.69	9.05	
11/30/07		NM	8.45	10.21	10.63		8.56		11.06	10.51		8.31	11.01	9.00	
12/31/07		9.07	8.46	9.69	9.24		8.60		10.84	10.44		10.06	11.07	9.20	
01/28/08		11.05	9.25	10.83	10.54		9.10		11.32	11.06		10.28	11.70	9.36	
02/29/08		9.59	9.66	9.96	9.82		9.09		10.35	10.09		10.02	11.59	9.42	
03/31/08		9.15	8.76	9.96	9.14		8.98		10.75	11.06		10.17	11.38	9.42	
04/28/08		9.53	9.17	10.73	9.60		8.78		8.90	11.23		9.97	10.18	9.48	
05/29/08		8.74	8.30	10.60	8.99		8.87		7.95	11.03		10.11	9.14	9.41	
06/25/08		9.46	8.64	10.60	9.96		8.61		8.50	11.06		10.24	9.28	9.41	
07/31/08		8.88	8.98	10.49	9.90		8.54		8.83	10.86		9.77	9.57	9.55	
08/27/08		8.77	8.67	10.96	8.79		8.58		8.77	10.63		10.87	10.53	9.96	
09/26/08		9.20	9.78	10.17	9.48		8.57		8.89	9.97		9.41	9.56	9.29	
10/30/08		9.40	10.68	10.49	9.76		8.98		9.36	10.42		9.46	9.69	9.52	
11/22/08		9.18	9.52	10.03	9.25		8.46		9.23	9.68		9.50	9.58	9.43	
12/31/08		9.49	8.91	10.71	9.72		8.68		8.89	10.07		9.26	9.50	9.32	
01/30/09		10.88	10.86	10.23	9.83		8.77		8.85	10.22		9.70	9.54	9.84	
02/25/09		9.39	10.63	10.07	9.33		8.50		8.88	9.77		9.36	9.19	9.44	
03/27/09		10.3	10.28	9.54	9.75		8.73		9.17	9.73		9.67	9.51	9.51	
04/30/09		9.13	9.12	10.43	9.77		8.76		9.46	10.50		9.80	10.05	9.54	
05/27/09		9.68	9.97	10.65	9.98		8.84		9.40	10.68		9.85	9.32	10.00	
06/29/09		9.95	8.79	10.50	9.64		8.48		9.21	10.58		9.68	11.26	9.16	
07/27/09		9.93	10.00	11.28	11.00		9.87		10.90	12.11		10.99	11.13	10.71	
08/31/09		8.88	8.99	10.76	10.03		8.52		9.17	10.81		10.11	9.83	9.58	
09/30/09		10.48	10.74	10.91	10.51		8.44		8.17	10.81		10.71	9.14	9.28	
10/30/09		10.84	11.60	11.70	10.74		9.66		10.19	10.83		11.60	10.76	10.78	
11/30/09		9.53	9.70	10.64	10.10		9.16		9.33	10.23		10.76	11.91	10.19	
12/30/09		9.69	9.63	10.38	9.97		9.67		10.61	10.48		10.70	10.27	10.19	
01/29/10		9.52	9.33	10.04	9.96		9.53		9.91	10.47		10.64	11.11	10.37	
02/26/10		9.98	9.79	10.03	10.01		9.55		9.84	10.78		10.28	10.87	10.43	
03/30/10		9.48	9.45	9.78	10.06		9.91		9.85	10.68		10.58	10.08	10.76	
04/30/10		9.60	9.53	9.82	10.01		9.65		9.94	11.09		11.00	10.91	10.77	
05/26/10		9.54	9.84	10.63	9.33		9.27		9.84	11.24		10.60	9.37	10.75	

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	MH16	MH17
Date														
07/24/00	9.2						10.6		9.5				7.4	
10/24/00			8.38						7.76				8.15	
03/29/01		8.37		6.41	9.41			9.77		8.17	10.41			
05/11/01	10.9	11.51		11.55	11.59	8.25	7.5	11.58		7.37	11.16	11.21	8.83	9.27
05/18/01		10.93		11.2	11.21	8.25		11.4		10.60	11.32		12.27	
06/08/01		9.68		10.1	10.34	6.99		10.32		10.03	10.44		7.25	
06/15/01		10.0	10.3	10.7	10.8	7.03		10.54	8.75	10.34	10.55		7.27	8.88
06/22/01	*	*	*	*	10.92	7.3		11	8.98	10.47	11.1		7.57	
06/29/01		11.13	10.9	11.4	10.22	7.54		11.2	9.18	10.94	11.2		7.9	
07/31/01		11.49	10.58	11.69	11.75	7.91		11.73	9.73	11.62	11.63		8.28	
08/20/01		9.17	10.59	11.35	10.87	7.7		11.49	9.8	12.05	11.89		8.2	
09/28/01		10	10.57	11.5	11.0	7.9		11.47	9.77	11.2	11.75		8.21	
10/22/01		10.75	10.44	10.89	11.01	7.7		11.01	9.6	10.51	10.7		7.0	
11/27/01		11.98	10.87	12.46	12.46	8.1		12.28	10.01	11.87	12.25		7.26	
12/20/01		11.63	10.22	11.98	11.97	7.82		11.76	8.73	10.61	11.37		7.11	
01/29/02		12.25		12.15	12.59	7.76		12.41	8.09	11.85	12.33		7.16	
02/11/02		11.12		11.79	12.09	7.63		12.13	7.48	11.73	11.8		6.89	
03/25/02		12.38		12.59	12.77	8.01		12.66	8.51	12.11	12.46		7.88	
04/24/02		12		12.26	12.39	7.86		12.34	7.94	11.55	11.95		7.43	
05/21/02		11.86		12.25	12.49	7.94		12.5	7.45	12.16	12.24	7.72	7.22	
06/20/02		11.92		12.26	12.34	8.07		12.28	8.12	11.63	12.2	7.89	7.84	
07/18/02		11.78		12.11	12.16	8.11		12.13	9.82	11.31	11.96	7.81	7.36	
08/06/02		6.95	11.76	7.88	7.63	8.02		8.87	9.76	8.89	9.03	7.64	7.49	
09/12/02		11.93	12.19	12.23	12.32	8.76		12.3	10.81	11.77	12.04	8.16	8.17	
10/30/02		11.91	12.2	12.21	12.24	NM		12.22	8.34	11.89	12.01	7.95	7.63	
11/21/02		11.79	9.46	12.53	12.46	7.64		12.62	7.71	12.42	12.5	7.95	7.37	
12/11/02		11.26	9.41	11.39	11.54	7.56		11.51	7.86	10.76	11.29	7.35	7.18	
01/16/03		12.39		12.55	12.74	8.47		12.82	8.76	12.3	12.52	7.98	8.16	
02/25/03		11.94		12.46	12.49	8.42		12.51	8.71	12.19	12.52	7.89	8.13	
03/14/03		12.16		12.33	12.56	8.26		12.44	8.79	12.11	12.35	8.01	7.79	
04/14/03		11.02		11.63	11.18	7.92		11.62	7.87	10.89	11.89	7.62	7.42	
05/08/03		11.93		12.51	12.55	8.12		12.63	7.77	12.12	12.44	8.43	7.81	
06/19/03		11.87		12.39	12.41	8.02		12.41	7.73	12.01	12.21	8.38	7.79	
07/21/03		11.81		12.12	12 25	7.99		12.32	7.64	11.91	11.98	8.31	7.62	
08/28/03		11.01		12.13	12.24	11.26		12.21	11.52	12.04	12.04	11.46	11.32	
09/30/03		11.77		11 95	11.44	8.65		11.87	9.45	10.33	11.57	8.56	8.68	
10/20/03		11.2		11.8	11.2	8.5		11.6	8	10.42	11.44	8.31	8.01	
11/03/03		11.04		10.91	10.3	8.39		10.63	7.24	10.59	11.24	7.55	7.48	
12/23/03		10.75		11.18	11.17	8.41		11.01	7.66	10.88	11.03	7.13	7.44	

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	MH16	MH17
Date														
01/21/04		10.69		11.06	11.16	8.39		11.5	(1)	9.98	10.89	9.53	6.25	
02/12/04		10.79	11.42	11.66	11.78	8.96		11.75	à	11.09	11.6	8.5	6.66	
03/04/04		10.79	11.07	11.06	11.29	9.02		11.37	11.5	11.25	11.6	9.03	7.75	
04/16/04		11.23	10.42	11.57	11.62	9.22		11.36	11.6	11.11	11.44	9.6	6.54	
05/15/04		11.19	11.78	11.91	12.13	8.34		11.8	11.7	11.61	11.68	9.5	6.62	
06/25/04		11.22	11.35	11.31	11.48	8.86		11.27	11.21	10.84	11.2	9.11	7.48	
07/30/04		11.10	11.00	11.09	11.42	8.6		11.13	8.40	10.69	11.16	9.42	6.84	
08/31/04		10.84	10.95	10.87	11.19	8.07		10.84	7.78	10.48	10.73	8.14	6.57	
09/30/04		11.0	10.87	11.01	11.4	8.44		11.03	8.1	10.7	10.66	8.32	6.75	
10/20/04		10.91	11.07	11.06	11.26	8.22		11.05	10.84	10.3	10.93	8.64	6.85	
11/23/04		11.08	9.39	11.34	11.44	8.33		11.31	8.64	10.92	11.36	9.08	7.63	
12/31/04		10.64	8.92	10.85	11.09	8.48		10.85	8.57	10.58	10.87	8.86	7.09	
01/28/05		10.79	8.99	11.11	11.31	9.16		11.20	(1)	10.76	11.2	8.95	6.64	
02/28/05		10.79	11.05	10.83	10.81	8.44		10.3	(1)	10.03	10.88	8.49	6.57	
03/31/05		11.22	11.28	11.51	11.49	9.04		11.37	8.5	11.17	11.27	7.24	6.94	
04/29/05		11.48	11.75	11.78	11.75	9.17		11.79	9.64	11.39	11.53	8.32	7.40	
05/27/05		13.65	11.64	13.74	11.79	8.91		11.62	8.6	11.07	11.21	9.05	8.08	
06/24/05		11.59	11.9	11.67	11.92	8.73		11.75	10.9	10.51	11.81	9.86	8.07	
07/29/05		9.55	10.46	10.93	11.21	8.28		10.82	8.97	10.35	10.62	8.19	6.97	
08/31/05		10.85	11.12	11.15	11.35	9.02		11.04	9.01	10.7	11.03	8.4	6.93	
10/03/05		10.81	11.1	11.07	11.4	7.61		10.91	7.85	10.66	10.99	8.7	7.56	
10/31/05		10.85	11.34	11.4	11.56	8.13		11.3	7.73	11.15	11.41	8.61	9.69	
11/22/05		10.38	10.25	10.65	10.7	8.5		10.45	7.63	10.36	11.05	8.10	6.60	
12/23/05		11.40	11.58	11.57	11.93	8.11		11.67	7.19	11.23	11.64	7.36	7.30	
01/27/06		11.54	11.75	10.81	12.01	9.04		11.96	7.65	11.51	11.90	7.54	7.84	
02/28/06		11.53	11.57	12.09	12.3	9.73		11.77	7.84	11.43	11.78	7.36	7.22	
03/24/06		11.41	11.53	11.63	11.83	8.88		12.01	8.46	11.54	11.89	7.92	7.09	
04/21/06		11.31	11.65	11.62	11.86	8.79		11.96	7.98	11.40	11.86	8.52	6.97	
05/30/06		11.11	11.43	11.36	11.56	7.45		11.34	8.90	10.73	10.98	8.90	7.68	
06/26/06		11.48	11.62	11.71	11.91	8.92		11.89	8.46	11.6	11.61	8.03	7.18	
07/31/06		10.73	8.01	10.89	11.14	8.53		10.83	8.09	10.71	10.83	7.36	7.35	
08/25/06		11.62	11.9	11.74	12.05	8.83		11.77	9.88	11.44	11.72	10.82	8.11	
09/22/06		11 54	11.85	11.66	12.07	9.05		11.62	11.88	10.98	11.6	11.51	7.31	
10/31/06		11.26	11 37	11.00	11 49	9.35		10.16	8 96	11.05	11.06	8 48	8 86	
11/20/06		11.20	11.57	11.29	11.49	7.55		10.10	11 45	10.19	11.00	11 10	9.36	
11/27/00		11.20	0.82	11.30	11.00	7.15		10.54	11.50	10.19	11.45	11.10	10.85	
12/29/06		11.26	9.82	11.51	11.64	9.02		11.54	11.52	10.45	11.45	11.44	10.05	

Notes:

(1) Buried with snow and could not be accessed.

.

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	MH16	MH17
Date														
01/26/07		11.63	11.33	11.82	12.07	9.27		11.87	9,70	11.65	11.84	7.73	7.17	
02/27/07		11.58	10.76	11.66	12.07	8.39		11.91	7.29	11.17	11.92	8.31	7.07	
03/30/07		11.39	9.58	11.61	11.95	8.65		11.78	11.57	11.03	11.69	11.27	8.38	
04/30/07		11.19	10.01	11.42	11.63	8.44		11.40	11.48	11.38	10.73	10.76	7.29	
05/25/07		11.16	11.00	11.41	11.70	8.26		11.35	11.51	10.99	11.26	11.10	7.46	
06/29/07		11.12	10.54	11.38	11.57	8.83		11.31	11.38	10.48	10.94	11.00	7.21	
07/25/07		11.30	11.04	11.55	11.87	8.76		11.61	11.68	10.79	11.43	11.07	7.16	
08/31/07		11.01	10.99	11.11	11.34	8.76		11.14	11.22	10.19	10.88	10.45	6.33	
09/27/07		10.96	9.28	11.20	11.48	8.86		11.26	11.33	9.76	11.03	9.64	6.56	
10/31/07		11.19	11.33	11.24	11.75	9.30		11.02	11.57	10.60	11.38	10.61	7.68	
11/30/07		11.22	8.89	11.51	12.04	9.07		11.47	11.64	10.76	11.66	11.07	7.38	
12/31/07		11.24	9.25	11.43	11.80	8.84		11.73	11.46	10.78	11.60	10.76	7.07	
01/28/08		11.78	10.50	12.07	12.46	9.09		11.93	10.80	11.21	12.00	9.44	6.93.	
02/29/08		11.63	11.44	11.60	12.01	9.43		11.92	11.91	10.10	11.85	10.78	6.84	
03/31/08		11.61	9.05	11.78	12.07	9.14		11.79	11.95	10.54	11.94	11.13	7.52	
04/28/08		11.64	10.46	11.88	12.28	7.54		11.91	11.65	10.97	11.80	11.21	7.70	
05/29/08		11.50	10.91	11.53	12.00	8.88		12.10	11.86	10.14	11.88	11.45	8.73	
06/25/08		11.40	10.76	11.62	11.88	9.19		11.90	11.86	9.83	11.76	11.33	6.98	
07/31/08		11.36	9.84	11.90	11.67	9.09		11.75	11.55	9.89	11.59	10.95	8.19	
08/27/08		11.27	9.66	11.65	11.89	9.19		11.55	9.75	10.59	11.35	8.32	8.92	
09/26/08		11.17	9.42	11.40	11.69	9.10		11.29	11.42	9.35	11.34	11.12	8.56	
10/30/08		11.31	11.22	11.37	11.83	9.54		11.41	11.08	10.02	11.51	11.09	10.78	
11/22/08		11.29	11.44	11.19	11.75	9.35		10.96	11.14	10.01	11.40	10.48	7.88	
12/31/08		11.58	10.56	11.77	11.92	8.56		11.77	9.76	10.26	11.68	8.41	7.84	
01/30/09		11.65	9.66	12.09	12.31	10.24		12.02	11.10	9.88	11.86	10.62	7.30	
02/25/09		11.15	10.43	11.37	11.57	9.06		11.65	10.90	10.09	11.22	10.83	8.37	
03/27/09		11.36	10.29	11.72	11.80	9.61		11.69	11.66	9.54	11.66	11.56	8.78	
04/30/09		11.37	9.59	11.72	11.90	9.84		11.90	9.10	9.92	11.56	8.92	8.86	
05/27/09		11.55	11.71	11.76	12.13	9.67		11.93	10.80	10.54	11.73	9.72	10.43	
06/29/09		11.14	10.07	11.35	11.61	9.95		11.42	9.81	10.60	11.29	11.01	9.64	
07/27/09		12.63	10.67	13.18	13.36	10.56		12.86	10.68	12.11	12.75	11.78	9.51	
08/31/09		11.57	10.78	11.67	11.90	9.45		11.39	9.14	11.12	11.48	10.96	8.25	
09/30/09		11.19	9.84	11.31	11.44	8.64		11.16	10.51	10.37	11.19	10.57	8.33	
10/30/09		12.29	11.05	12.77	13.02	10.32		12.26	11.81	11.74	12.58	12.01	10.66	
11/30/09		11 41	11.28	11.62	11.93	9.60		11.13	11.33	10.61	11.49	9.99	7.94	
12/30/09		11.47	10.60	12.05	12.21	10.23		11.71	11.02	10.77	11.63	9.00	8.88	
01/29/10		11 19	11.03	11.58	11.45	10.60		11.62	11.39	10.52	11.29	9.71	9.22	
$\frac{02}{26}$		11.30	10.91	11.59	11.74	10.27		11.64	11.32	11.02	11.30	10.62	8.64	
03/30/10		11.68	11 74	11.51	12.06	10.62		11.78	11.24	11.49	11.76	10.86	9.14	
04/30/10		11 78	11.67	12 11	12.16	10.30		12.15	10.85	11.44	11.92	10.85	9.58	
05/26/10		11.81	10.92	11.85	12.14	10.51		11.88	10.14	11.14	11.60	11.10	9.12	

Page 7 of 9

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	City MH1	City MH2	City MH3
Date			
07/24/00	6.3	7.3	
10/24/00	7.08	7.52	7.41
03/29/01	7.52	7.50	7.16
06/15/01	7.7	7.69	7.4
06/22/01	8.0	7.9	7.8
07/31/01	8.0	8.0	7.7
08/20/01	8.2	8.3	8.0
09/28/01	8.1	8.3	7.9
10/22/01	8.0	8.0	7.8
11/27/01	7. 9	8.2	8.01
12/20/01	*	*	*
01/29/02	7.62	7.93	7.97
02/11/02	7.52	7.73	7.79
03/25/02	*	*	*
04/24/02	7.46	7.62	7.69
05/21/02	7.47	7.66	7.72
06/20/02	7.57	7.69	7.78
07/18/02	7.72	7.84	8.01
08/06/02	7.63	7.68	7.92
09/12/02	7.72	7.79	7.98
10/30/02	7.73	7.8	7.93
11/21/02	7.32	7.37	7.41
12/11/02	7.29	7.31	7.35
01/16/03	7.62	7.7	7.79
02/25/03	7.64	7.71	7.89
03/14/03	7.39	7.54	7.61
04/14/03	7.22	7.39	7.41
05/08/03	7.29	7.43	7.48
06/19/03	7.27	7.39	7.41
07/21/03	7.25	7.36	7.38
08/28/03	7.29	7.44	7.41
09/30/03	7.29	7.45	7.40
10/20/03	7.4	7.71	7.39
11/03/03	8.46	7.14	7.27
12/23/03	9.34	7.63	7.57

Note:

* - pH meter malfunctioned.

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	City MH1	City MH2	City MH3
Date			
01/21/04	(2)	8.12	(2)
02/12/04	8.45	7.77	7.65
03/04/04	8.21	7.76	7.79
04/16/04	10.95	8.38	8.32
05/14/04	7.30	7.62	7.75
06/25/04	8.06	7.99	7.94
07/30/04	7.85	7.90	7.81
08/31/04	10.2	7.5	7.4
09/30/04	8.6	7.7	7.9
10/20/04	7.59	7.56	7.61
11/23/04	9.64	7.6	7.67
12/31/04	9.09	7.68	7.38
01/28/05	8.92	7.58	7.40
02/28/05	(1)	8.16	7.90
03/31/05	8.49	7.59	7.55
04/29/05	8.74	8.05	7.89
05/27/05	9.24	8.33	8.27
06/24/05	10.53	8.44	8.24
07/29/05	7.3	7.16	6.96
10/02/05	8.06	5.87	7.13
10/03/05	10.3	8.1	NM Roa
10/31/05	10.76	7.9	7.93
11/22/05	9.50	8.54	7.34
12/23/05	10.58	(3)	(3)
01/2//06	10.76	7.87	7.84
02/28/06	11.29	8.73	8.64
03/24/06	11.18	7.98	7.78
04/21/06	INM	8.28	8.05
05/30/06	10.88	7.73	7.63
06/26/06	8.84	7.73	7.68
07/31/06	7.51	7.02	7.24
08/25/06	9.72	7.82	7.67
09/22/06	11.29	8.34	8.99
10/31/06	10.70	8.61	8.13
11/29/06	10.77	8.27	8.04
12/29/06	10.60	8.07	7.73

Notes:

* - pH meter malfunctioned.

NM - Not Measured.

(1) - Buried with snow.

(2) - Road conditions were not safe to allow for monitoring.

(3) - pH probe damaged.
PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Location	City MH1	City MH2	City MH3
Date			
01/26/07	11.20	7 76	7 81
02/27/07	8.72	8.15	7.86
03/30/07	10.90	8.29	8.42
04/30/07	10.71	8.52	8.30
05/25/07	10.99	7.74	7.68
06/29/07	9.47	7.61	7.62
07/25/07	6.96	6.61	6.60
08/31/07	8.68	7.79	7.52
09/27/07	10.63	8.86	8.73
10/31/07	8.98	7.96	7.85
11/30/07	10.39	7.96	7.97
12/31/07	10.59	9.40	9.20
01/28/08	9.65	9.98	8.41
02/29/08	11.21	8.30	8.13
03/31/08	10.53	8.29	8.33
04/28/08	11.48	10.09	8.23
05/29/08	11.11	10.94	9.92
06/25/08	9.57	8.18	8.68
07/31/08	9.77	8.46	8.85
08/27/08	6.61	7.02	7.24
09/26/08	10.61	9.90	9.72
10/30/08	11.00	9.01	8.58
11/22/08	10.36	9.02	9.57
12/31/08	6.70	7.69	6.77
01/30/09	10.48	9.37	9.29
02/25/09	11.58	10.93	10.28
03/27/09	11.08	11.03	11.04
04/30/09	9.23	9.16	8.27
05/27/09	10.60	10.23	9.42
06/29/09	11.06	10.92	10.67
07/27/09	11.00	9.48	8.69
08/31/09	10.12	8.36	8.43
09/30/09	9.94	8.87	9.38
10/30/09	11.20	10.62	9.00
11/30/09	9.50	8.46	7.27
12/30/09	9.30	9.73	9.08
01/29/10	8.64	8.94	8.74
02/26/10	10.42	10.15	9.35
03/30./10	10.14	9.11	9.29
04/30/10	11.25	11.09	10.99
05/26/10	9.97	9.26	8.96

Monitoring

EFFLUENT SAMPLING SUMMARY JUNE 2001 TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

monthly (as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit)

PARAMETERS

Volatiles

Acetone Benzene 2-Butanone Chlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane trans-1,2-Dichloroethene Ethylbenzene

Semi-Volatiles

1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol

Inorganics

Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Iron

Wet Chemistry

Alkalinity (Bicarbonate) Alkalinity (Total) BOD Chloride COD Cyanide Hardness NH3 NO3 Methylene Chloride Styrene Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl Chloride Xylenes (Total)

4-Methylphenol Naphthalene Di-n-octylphthalate Phenols (4AAP)

Lead Magnesium Manganese Mercury Nickel Selenium Silver Sodium Zinc

Oil and Grease pH Phosphorous Sulfate Sulfide TDS TKN TOC TSS

EFFLUENT SAMPLING SUMMARY SUBSEQUENT TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

Semi-Annual (Spring and Fall as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit dated January 31, 2007)

PARAMETERS

Volatiles

Acetone Benzene 2-Butanone Chlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane trans-1,2-Dichloroethene Ethylbenzene

Semi-Volatiles

1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol

Wet Chemistry

Chloride Cyanide NH3 NO3 Phosphorous Sulfate Sulfide Methylene Chloride Styrene Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl Chloride Xylenes (Total)

4-Methylphenol Naphthalene Di-n-octylphthalate Phenols (4AAP)

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		Discharge Sample Port GRATWICK-RIVERSIDE 6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
Parameter	Unit								Surface Water Standard ⁽¹⁾
Volatiles									
1,1,1-Trichloroethane	µg/L	3.0J	1.8J	1.1J	7.6U	7.6U	3.8U	3.8U	5
1,1-Dichloroethane	µg/L	8.8	7.3	5.8	3.4J	2.1U	2.6J	3.5J	5
1,2-Dichloroethane	µg/L	5.0U	5.0U	5.0U	10U	10U	5.0U	5.0U	0.6
2-Butanone	µg/L	7.6J	10	10 U	20U	20U	6.8J	6.7J	50
Acetone	µg/L	77	93	140	36	26	55	55	50
Benzene	µg/L	6.4	7.2	6.2	3.5J	3.2J	3.1J	4.0J	1
Chlorobenzene	µg/L	3.7J	4.9J	5.0J	3.4J	16	3.5J	5.4J	5
Ethylbenzene	µg/L	8.9	11	9	8.6J	3.6J	4.8J	6.8J	5
Methylene chloride	µg/L	1.1J	2.8U	2.8U	5.6U	5.6U	2.8U	2.8U	5
Styrene	µg/L	1.0J	5.0U	5.0U	10U	10U	5.0U	5.0U	5
Tetrachloroethene	µg/L	22	33	25	16	8.3	15	23	0.7 (2)
Toluene	µg/L	74	84	68	42	20	37	50	5
trans-1,2-Dichloroethene	µg/L	2.6	2.1	2.8	3.3J	1.8J	1.5J	2.4	5
Trichloroethene	µg/L	150J	130	87	55	32	56	72	5
Vinyl chloride	$\mu g/L$	11	13	13	13J	5.6J	8.0J	13	0.3 (2)
Xylene (total)	µg/L	40	44	34	32	11	17	26	5
Semi-Volatiles									
1,2-Dichlorobenzene	µg/L	9U	2U	1J	6	0.6J	0.9J	9U	3
1,4-Dichlorobenzene	$\mu g/L$	21U	4U	1J	2J	1J	4U	1J	3
2,4-Dimethylphenol	µg/L	14	13	19	12	8	17	13	50 (2)
2-Methylphenol	µg/L	49	46	38	28	15	38	37J	NL
4-Methylphenol	µg/L	58	47	46	30	21	46	40J	NL
Di-n-octyl phthalate	µg/L	12U	2U	2U	2U	1J	2U	12U	50 ⁽²⁾
Naphthalene	ug/L	1J	1J	1J	1J	67J	0.8J	8U	10
Phenol	µg/L	86	64	67	110	230	74	110	1

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

		Discharge Sample Port							
Sample ID:		GRATWICK-RIVERSIDE							
Sample Date:		6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
Parameter	Unit								Surface Water Standard ⁽¹⁾
Metals									
Aluminum	mg/L	0.31	0.24	0.24	0.34	0.20U	0.20	0.20U	NL
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.003
Arsenic	mg/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.050
Barium	mg/L	0.059	0.063	0.061	0.081	0.067	0.064	0.064	1.0
Beryllium	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.003 ⁽²⁾
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005
Chromium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.050
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023 ⁽³⁾
Iron	mg/L	0.050U	0.050U	0.050U	0.16	0.095	0.057	0.062	0.30
Lead	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.012
Magnesium	mg/L	0.35	0.66	1	0.77	6.8	1.1	0.94	35
Manganese	mg/L	0.0030U	0.0030U	0.0036	0.012	0.028	0.0043	0.004	0.30
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026 (4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10
Selenium	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0046 (4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050
Sodium	mg/L	273	271	262	310	290	293	286	NL
Zinc	mg/L	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	2.0 ⁽²⁾
General Chemistry									
pH ·	S.U.	NA	NA	9.45	11.23	9.20	10.06	10.71	NL ·
Hardness	mg/L	524	488	465	529	301	456	410	NL
Total Dissolved Solids (TDS)	mg/L	1500	1450	1530	1520	1280	1200	1200	NL
Total Suspended Solids (TSS)	mg/L	NA	NA	14	19	10	9.0	7.0	NL
Chloride	mg/L	497	123	497	820	577	436	389	250
BOD	mg/L	NA	NA	20	17	20	24	27	NL
COD	mg/L	NA	NA	155	240	240	50	49	NL
Oil and Grease	mg/L	NA	NA	0.60U	1.0	0.87U	1.0U	1.0U	NL
Organic Carbon	mg/L	NA	NA	16	10	18	9.0	11	
Alkalinity, Total (As CaCO3)	mg/L	131	115	120	115	20.9	22.2	57	NL
Bicarbonate (as CaCO3)	mg/L	5.0U	5.0U	5.0U	5.0U	20.9	22.2	57	NL
Ammonia	mg/L	NA	NA	6	4.9	4.9	21	11.6	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.50U	0.20	0.050U	0.050U	0.050U	10

Page 2 of 21

.

-

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:	Di: GR/	scharge Sample Port ATWICK-RIVERSIDE							
Sample Date:		6/29/2001	7/30/2001	8/21/2001	9/20/2001	10/24/2001	11/29/2001	12/6/2001	
Parameter	Unit								Surface Water Standard ⁽¹⁾
General Chemistry									
TKN	mg/L	NA	NA	10	7.6	7.6	14.8	10.6	NL
Sulfate	mg/L	281	20.4	307	196	329	245	263	250
Sulfide	mg/L	13.2	16.0	14.3	5.6	2.5	10.6	14	0.002
Phenol	mg/L	NA	NA	0.28	0.24	0.28	0.15	0.11	0.001
Phosphorous	mg/L	NA	NA	0.29	NA	0.05	0.13	0.06	0.020 ⁽²⁾
Cyanide	mg/L	NA	NA	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

.

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/23/2002	2/21/2002	3/27/2002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	7/25/2002	8/27/02	9/23/02	10/17/02	11/13/02	12/12/2002	Surface Water
Parameter	Unit														Standard(1)
Volatiles															
1,1,1-Trichloroethane	µg/L	7.3U	7.6U	7.6U	7.6U	7.6U	7.6U	7.6U	7.6U	3.8U	3.8U	3.8U	3.8U	7.6U	5
1,1-Dichloroethane	µg/L	2.3J	4.1J	4.9J	9.9	9.4U	9.4U	9.4U	2.7J	1.4J	1.8J	1.2J	4.5J	7.3J	5
1,2-Dichloroethane	µg/L	10U	10U	10U	10 U	10U	10U	10U	10U	5.0U	5.0U	5.0U	5.0U	10U	0.6
2-Butanone	µg/L	20U	20U	20U	110	20U	20U	20U	20U	10U	10U	2.1J	10U	5.2J	50
Acetone	µg/L	42	53	56	98	52	25	25	130	7.0J	28	15	48	96	50
Benzene	µg/L	2.1J	3.2J	4.6J	9.1	4.7J	2.1J	2.1J	3.3J	1.9J	3.3J	2.1J	5.3	7.8J	1
Chlorobenzene	μg/L	3.8J	6.6J	5.2J	4.4J	8.9J	5.8J	5.8J	5.4J	6.9	4.0J	5.6J	6.1	4.3J	5
Ethylbenzene	µg/L	2.0J	7.6J	9.6J	18	10J	5.3J	5.3J	7.8J	6.4J	7.2	4.6J	13	18	5
Methylene chloride	µg/L	6.4U	5.6U	5.6U	2.9J	5.6U	5.6U	5.6U	3.2J	3.5U	3.5U	3.5U	3.5U	2.2J	5
Styrene	µg/L	10U	10U	10U	10U	10 U	10U	10U	10U	5.0U	5.0U	5.0U	5.0U	10U	5
Tetrachloroethene	µg/L	4.9J	23	28	46	48	27	27	19	9.6	12	6.0	42	48	0.7 (2)
Toluene	µg/L	15	46	57	110	42	33	33	41	18	30	14	64	110	5
trans-1,2-Dichloroethene	µg/L	3.6U	2.4J	2.5J	4.2	3.6U	3.6U	3.6U	2.1J	2.2	1.8U	2.0	1.8U	3.2J	5
Trichloroethene	ug/L	27	92	140	260	140	80	80	74	20	48	20	130	230	5
Vinyl chloride	ug/L	8.41	20U	5.1J	14J	13J	8.6J	8.6J	6.6J	11	10	11	18	15J	0.3 (2)
Xylene (total)	µg/L	7.3J	29	40	76	37	21	21	30	20	24	15	50	78	5
Semi-Volatiles															
1,2-Dichlorobenzene	µg/L	2J	1J	1J	3	9U	0.8J	0.8J	1J	0.6J	0.6J	1J	0.9J	3	3
1,4-Dichlorobenzene	µg/L	2J	2J	1J	ЗJ	2J	1J	1J	1J	1J	0.8J	2J	1J	3J	3
2,4-Dimethylphenol	µg/L	111	91	8	14	5J	4	-4	9	6	7	8	12	21	50 (2)
2-Methylphenol	µg/L	28J	21J	17	36	10J	8J	8J	18	8J	13	15	19	32	NL
4-Methylphenol	µg/L	40J	27]	24	57	19J	13	13	27	13	20	21	30	61	NL
Di-n-octyl phthalate	µg/L	14Ú	12U	2U	2U	12U	2U	2U	2U	2U	0.3J	3U	2U	2U	50 (2)
Naphthalene	$\mu g/L$	57	24	12	1J	7U	15	15	13	23	8	29	2U	1J	10
Phenol	µg/L	210	96	42	73	46	51	51	41	66	28	84	35	38	1

•

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:		1/22/2002	2/27/2002	2/27/2002	412.412.002	F/20/2002	(120/2002	(120/2002	7/25/2002	0/27/02	0/22/02	10/17/02	11/12/02	10/10/2000	
Sumple Dute:		1/23/2002	2/21/2002	312712002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	712512002	8/2//02	9/23/02	10/1//02	11/13/02	12/12/2002	Surface Water
Parameter	Unit														Standard(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.003
Arsenic	mg/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.050
Barium	mg/L	0.077	0.075	0.078	0.095	0.064	0.058	0.058	0.059	0.073	0.054	0.064	0.068	0.096	1.0
Beryllium	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.003 (2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005
Chromium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.050
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023
Iron	mg/L	0.050U	0.050U	0.050U	0.050U	0.090	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.10	0.050U	0.30
Lead	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.012
Magnesium	mg/L	1.5	1.4	0.92	0.34	2.5	1.7	1.7	1.8	8.8	3.5	6.4	1.9	0.43	35
Manganese	mg/L	0.0034	0.0042	0.0049	0.003U	0.0090	0.0030U	0.0030U	0.0030U	0.0094	0.0030U	0.0098	0.0030U	0.0030U	0.30
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026
Nickel	mg/L	0.010U	0.010 U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10
Selenium	mg/L	0.010U	0.010UJ	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0046
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050
Sodium	mg/L	317	336	360	242	329	318	318	270	189	195	204	289	272	NL (2)
Zinc	mg/L	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	0.026U	2.0 (2)
General Chemistry															
pH	S.U.	10.91	10.96	10.92	11.46	10.4	10.66	10,66	10.37	8.44	8.97	8.84	10.11	10.72	NL
Hardness	mg/L	415	449	440	484	349	300	300	300	316	277	274	372	507	NL
Total Dissolved Solids (TDS)	mg/L	1450	1490	1640	1610	1530	1130	1130	1100	868	1040	945	1330	1410	NL
Total Suspended Solids (TSS)	mg/L	5.0	11.0	9	8	6	8	8	8	12	6	1.5	2	2.3	NL
Chloride	mg/L	514	545	577	545	518	452	452	424	377	320	329	502	489	250
BOD	mg/L	25	21	22	29	13	9	9	12	14	8	11	16	15	NL
COD	mg/L	45	58	255	50	23	26	26	58	49	19	46	16	64	NL
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	NL
Organic Carbon	mg/L	14	6	10	12	9	11	11	8	6.9	10	7	(5)	(5)	NL
Alkalinity, Total (As CaCO3)	mg/L	62.4	53.8	102	126	36.3	43.1	43.1	16.7	27.2	5.0U	22.4	14.3	110	NL
Bicarbonate (as CaCO3)	mg/L	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	16.7	27.2	5.0U	22.4	14.3	5.0U	NL
Ammonia	mg/L	9.1	6.0	6.0	5.2	SL	2.0	2.0	1.7	9.1	10.5	9.4	9.4	7.0	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	10

•

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/23/2002	2/21/2002	3/27/2002	4/24/2002	5/30/2002	6/29/2002	6/29/2002	7/25/2002	8/27/02	9/23/02	10/17/02	11/13/02	12/12/2002	Europa a Watan
Parameter	Unit														Standard(1)
General Chemistry															
TKN	mg/L	8.1	4.5	5.0	4.8	SL	2.0	2.0	1.7	5.6	6.2	7.8	10.5	10.8	NL
Sulfate	mg/L	261	250	262	239	239	226	226	215	236	214	213	254	302	250
Sulfide	mg/L	9.9	9.9	11.2	13.7	4.4	1.0U	1.0U	1.0U	1.4	1.0U	1.0U	7.4	21.6	0.002
Phenol	mg/L	0.12	0.28	0.22	0.22	SL	0.40	0.40	0.27	0.16	0.16	0.16	0.12	0.12	0.001
Phosphorous	mg/L	0.09	0.08	0.09	0.17	0.02	0.10	0.10	0.04	0.018	0.04	0.06	0.12	0.10	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.040J	0.005U	0.005	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

•

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:														
Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface Water
Parameter	Unit													Standard (1)
Volatiles														
1,1,1-Trichloroethane	µg/L	2.6U	2.6U	2.6U	5.2U	1.3U	2.6U	5.2U	5.2U	5.2U	1.3U	2.6U	2.6U	5
1,1-Dichloroethane	µg/L	4.1	9.6	5.6	6.4	0.84U	5.4	7.4	4.6	3.3U	0.84U	1.7U	7.0	5
1,2-Dichloroethane	µg/L	1.7U	1.7U	1.7U	3.4U	0.85U	1.7U	3.4U	3.4U	3.4U	0.85U	1.7U	1.7U	0.6
2-Butanone	µg/L	9.3U	9.3U	9.3U	19U	4.6U	9.3U	19U	19U	19U	4.6U	9.3U	9.3U	50
Acetone	µg/L	21	56	51	42	10U	28	52	42U	42U	10U	21U	35	50
Benzene	µg/L	3.4	7.9	6.2	4.4U	1.1U	3.2	4.6	4.4U	4.4U	1.1U	2.2U	7.2	1
Chlorobenzene	µg/L	6.1	6.6	6.9	7.5	6.9	4.1	7.0	5.0	3.6U	5.4	9.3	6.3	5
Ethylbenzene	µg/L	9.9	2.3	15	12	1.9	11	12	9.5	4.3	1.8	2.1	17	5
Methylene chloride	µg/L	7.0U	7.0U	7.0U	14U	3.5U	7.0U	14U	14U	14U	3.5U	7.0U	7.0U	5
Styrene	µg/L	5.2U	5.2U	5.2U	10U	2.6U	5.2U	10U	10U	10U	2.6U	5.2U	5.2U	5
Tetrachloroethene	µg/L	22	59	46	31	8.3	45	38	32	12	1.3U	2.5U	47	0.7 (2)
Toluene	µg/L	37	110	81	56	7.1	46	57	39	17	1.2U	3.2	82	5
trans-1,2-Dichloroethene	µg/L	3.0U	4.3	3.0U	6.0U	1.8	4.5	6.0U	6.0U	6.0U	1.5U	3.0U	3.3	5
Trichloroethene	µg/L	92	260	220	160	17	140	170	110	53	1.7	5.7	180	5
Vinyl chloride	µg/L	10	20	11	9.6	5.8	12	9.5	5.7U	5.7U	1.9	2.8U	11	0.3 (2)
Xylene (total)	µg/L	41	99	64	50	7.0	44	56	40	28U	6.9U	14U	73	5
Semi-Volatiles														
1,2-Dichlorobenzene	µg/L	4U	20U	20U	20U	20U	20U	19U	16U	16U	16U	16U	160	3
1,4-Dichlorobenzene	µg/L	4U	18U	19U	19U	19U	19U	18U	15U	15U	15U	15U	140	3
2,4-Dimethylphenol	µg/L	· 10	18U	19U	19U	19U	19U	18U	12U	20	12U	13U	18	50 .(2)
2-Methylphenol	µg/L	12	16U	22	16U	16U	16U	15U	15U	15U	15U	16U	15	NL
4-Methylphenol	µg/L	24	35	45	31	18U	19	17U	15U	46	15U	16U	57	NL
Di-n-octyl phthalate	μg/L	4U	19U	20U	19U	19U	20U	19U	26U	26U	26U	27U	26U	50 (2)
Naphthalene	µg/L	3U	18U	18U	18U	18U	18U	17U	17U	17U	17U	18U	17U	10
Phenol	µg/L	61	30	62	94	64	61	74	46	28	16	150	46	1

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:															
Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface Water	
Parameter	Unit													Standard	(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL	
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.003	
Arsenic	mg/L	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.0070U	0.010U	0.010U	0.010U	0.010U	0.050	
Barium	mg/L	0.091	0.097	0.090	0.094	0.065	0.070	0.080	0.074	0.082	0.072	0.092	0.10	1.0	
Beryllium	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0040U	0.0055	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023	(3)
Iron	mg/L	0.050U	0.050U	0.050U	0.11	0.050U	0.050U	0.17	0.050U	0.050U	0.072	0.050U	0.050U	0.30	
Lead	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.0060U	0.0060U	0.0060U	0.0060U	0.012	
Magnesium	mg/L	1.4	0.26	0.31	3.6	4.8	1.6	2.3	1.4	1.2	7.4	5.9	0.72	35	
Manganese	mg/L	0.0030U	0.0030U	0.0030U	0.012	0.0030	0.0030U	0.0080	0.0030U	0.0030U	0.018	0.0055	0.0030U	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	
Selenium	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	343	391	195	401	310	276	293	231UJ	272	239	375	361	NL	(2)
Zinc	mg/L	0.026U	0.026U	0.0 2 6U	0.026U	0.026U	0.026U	0.026U	0.020U	0.020U	0.020U	0.020U	0.020U	2.0	,Z)
General Chemistry															
pH	S.U.	10.71	11.55	11.3	10.91	9.75	8.0	10.73	10.8	10.59	7.92	8.48	11.13	NL	
Hardness	mg/L	388	435	459	430	368	374	365	294	431	380	399	420	NL	
Total Dissolved Solids (TDS)	mg/L	1500	1580	1590	1750	1120	1230	1440	1050	1400	1000	1590	1400	NL	
Total Suspended Solids (TSS)	mg/L	2.0	6.0	3.0	18.0	3.0	4	9	4	11	15	15	3	NL	
Chloride	mg/L	511	512	628	778	524	416	474	410	347	383	615	834	250	
BOD	mg/L	13	10	20	22	12	9	9	11	7	6	11	22	NL	
COD	mg/L	55	73	46	44	39	73	48	24	21	8	40	53	NL	
Oil and Grease	mg/L	1.0U	0.28	1.0U	1.0	1.0U	NL								
Organic Carbon	mg/L	6	13	12	12	9	8	9	6	10	5	10	9	NL	
Alkalinity, Total (As CaCO3)	mg/L	104	155	121	48	7.9	NA	74	119	58.0	38.0	13.4	74.8	NL	
Bicarbonate (as CaCO3)	mg/L	22.5	5.0U	5.0U	5.0U	7.9	NA	10U	10U	10U	38.0	13.4	10U	NL	
Ammonia	mg/L	7.35	3.15	2.10	5.6	5.25	6.3	5.25	3.15	3.15	2.45	4.2	3.5	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.051	0.050Ŭ	0.050U	10	

-

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:														
Sample Date:		1/16/03	2/06/03	3/11/03	4/04/03	5/09/03	6/10/03	7/10/03	8/7/03	9/4/03	10/10/03	11/7/03	12/10/03	Surface Water
Parameter	Unit													Standard (1)
General Chemistry														
TKN	mg/L	9.24	2.52	1.1	4.48	5.04	8.4	6.7	5.88	5.88	2.24	7.28	5.88	NL
Sulfate	mg/L	202	177	184	230	236	234	170	208	254	149	242	386	250
Sulfide	mg/L	3.2	4.0	8.0	10	2.2	4.0	4.8	4.8	2.4	1.0U	1.0U	2.0	0.002
Phenol	mg/L	0.11	0.10	0.009	0.006	0.01U	0.008U	0.034	0.08U	0.014U	0.006U	0.012U	0.015U	0.001
Phosphorous	mg/L	0.12	0.10	0.18	0.10	0.04	0.11	0.10	0.13	0.16	0.11	0.24	0.13	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

.

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form
(5) - TOC analyzer malfunction prevented analysis of this compound.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:														
Sample Date:		1/8/04	2/6/04	3/16/04	04/13/04	05/14/04	06/10/04	07/09/94	08/12/04	09/10/04	10/08/04	11/05/04	12/03/04	Surface
Parameter	Unit													Standard ⁽¹⁾
Volatiles														
1,1,1-Trichloroethane	µg/L	2.6U	5.2U	1.3U	5.2U	1.3U	5.2U	1.3U	1.3U	5.2U	5.2U	5.2U	1.3U	5
1,1-Dichloroethane	µg/L	9.2	3.3U	11	14	4.1	11	5.9	10	5.2U	5.2U	3.3U	6.5	5
1,2-Dichloroethane	µg/L	1.7U	3.4U	0.85U	3.4U	0.85U	3.4U	0.85U	0.85U	5.2U	5.2U	3.4U	0.85U	0.6
2-Butanone	µg/L	9.3U	19U	4.6U	19U	4.6U	19U	4.6U	4.6U	5.2U	5.2U	19U	4.6U	50
Acetone	μg/L	53	42U	38	42U	12	42U	22	34	5.2U	5.2U	42U	19	50
Benzene	µg/L	7.8	4.4U	6.1	4.4	2.1	5.3	2.9	5.6	5.2U	5.2U	4.4U	3.3	1
Chlorobenzene	µg/L	6.7	8.8	3.0	3.6U	8.8	3.6U	4.4	2.9	19	13	12	4.5	5
Ethylbenzene	µg/L	19	0.11U	17	14	6.4	18	8.7	18	6.4	0.11U	0.11U	12	5
Methylene chloride	µg/L	7.0U	14U	3.5U	14U	3.5U	15	3.5U	3.5U	14U	14U	14U	3.5U	5
Styrene	µg/L	5.2U	10U	2.6U	10U	2.6U	10U	2.6U	2.6U	14U	14U	10U	2.6U	5
Tetrachloroethene	µg/L	60	5.0U	50	38	16	63	22	52	14U	14U	5.0U	31	0.7 (2)
Toluene	µg/L	98	4.9U	80	75	26	78	38	83	14U	14U	4.9	46	5
trans-1,2-Dichloroethene	µg/L	3.6	6.0U	4.0	6.0U	1.8	6.0U	2.1	3.6	14U	14U	6.0U	1.5U	5
Trichloroethene	µg/L	260	7.5	200	220	82	240	97	200	4.8	4.8U	4.8U	130	5
Vinyl chloride	µg/L	14	5.7U	10	8.9	4.9	11	5.6	12	6.1	5.7U	5.7U	6.7	0.3 (2)
Xylene (total)	µg/L	91	28U	81	78	29	87	42	83	28U	28U	28U	5.4	5
Semi-Volatiles														
1,2-Dichlorobenzene	µg/L	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	16U	3
1,4-Dichlorobenzene	µg/L	15U	15U	15U	15U	15U	15U	15U	14U	15U	14U	- 15U	15U	3
2,4-Dimethylphenol	µg/L	15	12U	13U	12U	12U	13U	13U	12U	14	12U	13U	13U	50 (2)
2-Methylphenol	µg/L	16U	15U	16U	15U	15U	16U	16U	15	15U	15U	16U	16U	NL
4-Methylphenol	µg/L	48	15U	24	16	15U	16U	20	32	29	15U	16U	16U	NL
Di-n-octyl phthalate	µg/L	27U	27U	27U	26U	27U	27U	27U	26U	26U	26U	27U	27U	50 (2)
Naphthalene	µg/L	18U	37	18U	17U	20	18U	18U	17U	17Ų	20	18U	18U	10
Phenol	μg/L	39	140	11	14	91	16	67	13	6U	55	6U	11	1

-

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/8/04	2/6/04	3/16/04	04/13/04	05/14/04	06/10/04	07/09/94	08/12/04	09/10/04	10/08/04	11/05/04	12/03/04	Surface Water
Parameter	Unit													Standard ⁽¹⁾
Metals														
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	00020U	00020U	00020U	00020U	0.003
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.050
Barium	mg/L	0.095	0.092	0.11	0.096	0.085	0.083	0.068	0.076	0.059	0.079	0.070	0.077	1.0
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.003 (2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010 U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.050
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010 U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023 (3)
Iron	mg/L	0.050U	0.066	0.050U	0.055	0.26	0.050U	0.056	0.097	0.20	0.22	0.11	0.050U	0.30
Lead	mg/L	0.0060U	0.0060U	0.0060U	0.0060U	0.0060U	0.0060U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.012
Magnesium	mg/L	0.68	4.2	1.2	1.0	5.4	0.66	2.8	0.57	5.4	5.2	5.2	2.7	35
Manganese	mg/L	0.0030U	0.19	0.0033	0.0058	0.018	0.0030U	0.012	0.0030U	0.022	0.031	0.022	0.067	0.30
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026 (4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.0046
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050
Sodium	mg/L	362	425	425	422	423	349	319	305	334	447	360	294	NL (2)
Zinc	mg/L	0.030	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	2.0 (2)

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		1/8/04	2/6/04	3/16/04	04/13/04	05/14/04	06/10/04	07/09/94	08/12/04	09/10/04	10/08/04	11/05/04	12/03/04	Surface Water
Parameter	Unit													Standard ⁽¹⁾
General Chemistry														
pH	S.U.	11	9.13	11.13	11.16	9.44	11.26	8.81	11.19	9.21	7.26	9.10	10.95	NL
Hardness	mg/L	450	452	446	484	408	430	336	312	430	372	348	360	NL
Total Dissolved Solids (TDS)	mg/L	1490	1770	1780	1760	1920	1560	1490	1390	1560	1720	1320	1220	NL
Total Suspended Solids (TSS)	mg/L	6	4	11	20	6	11	5	8	8	10	18	5	NL
Chloride	mg/L	742	986	869	809	1020	792	728	678	692	913	676	599	250
BOD	mg/L	18	10	13	19	17	16	6	11	15	11	6	15	NL
COD	mg/L	55	30	51	51	58	26	67	43	46	59	17	24	NL
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	0.57	1.0U	NL						
Organic Carbon	mg/L	9	9	6	5	6	6	8	7	8	9	8	7	NL
Alkalinity, Total (As CaCO3)	mg/L	56.0	23.0	71.2	110.0	12.3	122	45.7	113	37.8	44.6	46.5	55.7	NL
Bicarbonate (as CaCO3)	mg/L	10UJ	23	10U	10U	12.3	47.1	10U	10U	37.8	44.6	46.5	55.7	NL
Ammonia	mg/L	0.32	0.7	0.35	1.75	1.05	0.70	0.35	0.70	1.05	0.7	1.05	1.4	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	10
TKN	mg/L	0.56	2.8	1.4	0.28	0	0.84	0.56	1.68	1.12	0.56	0.84	1.12	NL
Sulfate	mg/L	276	315	381	568	356	360	283	279	265	311	225	2.54	250
Sulfide	mg/L	4.0	1.2	3.2	5.6	1.6	1.6	8.4J	2.4	2.4J	5.6	2.4	2	0.002
Phenol	mg/L	0.015U	0.008U	0.009U	0.01 2 U	0.010U	0.008U	0.010U	0.010U	0.010U	0.007U	0.008U	0.008U	0.001
Phosphorous	mg/L	0.20	0.11	0.24	0.23	0.13	0.05	0.20	0.06	0.14	0.10	0.14	0.10	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:															
Sample Date:		01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	09/09/05	10/07/05	11/04/05	12/08/05	Surface Water	
Parameter	Unit													Standard	(1)
Volatiles															
1,1,1-Trichloroethane	µg/L	2.6U	2.6U	2.6U	2.6U	13U	2.6U	6.6U	1.3U	5.2U	5.2U	5.2U	5.2U	5	
1,1-Dichloroethane	µg/L	1.7U	1.7U	1.7U	1. 7U	8.4U	9.0	4.2U	6.6	5.7	3.3U	11	7.9	5	
1,2-Dichloroethane	µg/L	1.7U	1.7U	1.7U	1.7U	8.5U	1.7U	4.2U	0.85U	3.4U	3.4U	3.4U	3.4U	0.6	
2-Butanone	µg/L	9.3U	9.3U	9.3U	9.3U	46U	9.3U	23U	4.6U	19U	19U	19U	19U	50	
Acetone	µg/L	21U	21U	21U	21U	100U	30	53U	10U	42U	42U	42U	42U	50	
Benzene	µg/L	2.2U	2.2U	2.2U	2.2U	11U	2.5	5.5U	1.3	4.4U	4.4U	4.4U	4.4U	1	
Chlorobenzene	µg/L	14	18	16	6.4	9.0U	1.8U	5.5	2.6	4.0	7.5	3.6U	4.7	5	
Ethylbenzene	µg/L	3.2	2.2	0.056U	0.056U	0.28U	9.0	8.4	9.4	4.6	6.6	11	8.3	5	
Methylene chloride	µg/L	7.0U	7.0U	7.0U	7.0U	35U	7.0U	17U	3.5U	14U	14U	14U	14U	5	
Styrene	µg/L	5.2U	5.2U	5.2U	5.2U	26U	5.2U	13U	2.6U	10U	10U	10U	10U	5	0
Tetrachloroethene	µg/L	2.5U	2.5U	3.5	2.5U	13U	24	34	28	12	17	20	15	0.7	(2)
Toluene	µg/L	4.0	2.4U	5.3	3.1	14	45	40	44	23	25	45	34	5	
trans-1,2-Dichloroethene	µg/L	3.0U	3.0U	3.0U	3.0U	15U	3.0U	7.6U	1.5U	6.0U	6.0U	6.0U	6.00	5	
Trichloroethene	µg/L	8.7	2.4U	12	8.5	29	140	100	90	67	61	120	86	5	(2)
Vinyl chloride	µg/L	3.6	2.8U	2.8U	2.8U	14U	5.1	7.1U	1.4U	5.7U	6.6	5.7U	5.70	0.3	(-
Xylene (total)	µg/L	14U	14U	14U	14U	69U	46	35	46	28U	28U	55	41	э	
Semi-Volatiles												_		2	
1,2-Dichlorobenzene	µg∕L	16U	16U	16U	16U	16U	1	1U	1U	1UJ	1	2	2	3	
1,4-Dichlorobenzene	µg/L	15U	. 14U	15U	15U	15U	1	1	1	1	2	2	2	3	(2
2,4-Dimethylphenol	µg/L	16	12U	13U	13U	12U	5	3	. 4	3	6	7		50	(2
2-Methylphenol	µg/L	16U	15U	16U	16U	15U	6	4	7	1	5	8	7	INL	
4-Methylphenol	µg/L	49	15U	16	16U	15U	12	10	15	0.7U	12	21	21	INL 50	12
Di-n-octyl phthalate	µg/L	27U	26U	27U	27U	27U	0.8U	0.8U	0.9U	0.9U	0.9U	0.90	0.80	50	(-
Naphthalene	ug/L	18U	17U	33	18U	19	0.8U	0.8U	3	0.8U	0.8U	0.80	0.80	10	
Phenol	µg/L	34	6U	130	120J	68	0.4U	7	9	0.4U	17	4	50	1	

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	09/09/05	10/07/05	11/04/05	12/08/05	Surface Watar	
Parameter	Unit													Standard	(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20	0.20U	NL	
Antimony	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.20U	0.003							
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.050	
Barium	mg/L	0.068	0.069	0.085	0.15	0.088	0.067	0.055	0.063	0.073	0.082	0.093	0.10	1.0	
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023	(3)
Iron	mg/L	0.098	0.54	0.37	3.4	0.22	0.050U	0.050U	0.050U	0.17	0.056	0.050U	0.050U	0.30	
Lead	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.012	
Magnesium	mg/L	4.3	5.7	5.6	14.2	6.3	0.50	2.8	1.8	3.2	3.4	0.26	1.2	35	
Manganese	mg/L	0.01	0.035	0.033	0.34	0.053	0.0030U	0.0068	0.0030U	0.022	0.022	0.0030U	0.0030U	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	(4)
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	387	422	448	504	347	289	229	235	264	292	302	357	NL	(2)
Zinc	mg/L	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.020U	0.032	0.020U	0.020U	2.0	(2)

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:														
Sample Date:		01/07/05	02/03/05	03/04/05	04/08/05	05/06/05	06/10/05	07/08/05	08/05/05	<i>09/09/05</i>	10/07/05	11/04/05	12/08/05	Surface
Parameter	Unit													Standard ⁽¹⁾
General Chemistry														
pH	S.U.	9.71	8.94	9.27	8.18	9.3	11.13	8.42	10.67	9.91	9.54	11.25	11.04	NL
Hardness	mg/L	372	390	398	468	400	352	275	268	255	280	360	344	NL
Total Dissolved Solids (TDS)	mg/L	1520	1480	1620	2010	1540	1370	1110	1140	1050	1320	1320	1380	NL
Total Suspended Solids (TSS)	mg/L	278	147	27	82	21	12	11	6	6	4	6	4	NL
Chloride	mg/L	950	836J	1060	1200	883	729	516	408	451	716	664	762	250
BOD	mg/L	12	15	12	11	10	11	14	10	12	14	15	16	NL
COD	mg/L	52	48	52	65	35	51	56	38	47	31	31	61	NL
Oil and Grease	mg/L	0.28	1.0U	1.0U	1.0U	1.0U	0.28	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	NL
Organic Carbon	mg/L	8	9	9	10	9	10	5.1	5.2	5.1	5.6	6.4	9.2	NL
Alkalinity, Total (As CaCO3)	mg/L	44	46.4	40	105	43.5	99.2	36.3	66	10.2	29.0	114	42	NL
Bicarbonate (as CaCO3)	mg/L	44	46.4	40	105	43.5	10U	36.3	66	10.2	29.0	114	42	NL
Ammonia	mg/L	0.7	0.7	0.7	0.35	1.05	0.35	0.35	0.7	0.35	0.70	0.70	0.70	2.0
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	10
TKN	mg/L	0.56	0.28	0.56	0.28	1.4	0.28	0.56	0.56	0.28	0.56	0.56	0.84	NL
Sulfate	mg/L	273	232	431	256	279	276	223	199	206	291	256	263	250
Sulfide	mg/L	8.8	4	5.2	1.0U	1.0U	1.0U	1.0U	2.0	2.0	2.0	5.6	8.8	0.002
Phenol	mg/L	0.006U	0.012U	0.010U	0.014U	0.012U	0.009U	0.009U	0.007U	0.010U	0.010U	0.006U	0.008U	0.001
Phosphorous	mg/L	0.15	0.08	0.11	0.1	0.13	0.08	0.08	0.11	0.14	0.14	0.20	0.04	0.020 (2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.0050U	0.0050U	0.005U	0.005U	0.005U	0.005U	0.005U	0.0052

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Water	
Parameter	Unit													Standard	(1)
Volatiles									•						
1,1,1-Trichloroethane	µg/L	5.2U	5.2U	5.2U	5.2U	5.2U	5.2U	1.3U	1.3U	2.6U	2.6U	1.3U	1.3 U	5	
1,1-Dichloroethane	μg/L	8.9	10	11	12	3.3U	3.3U	1.1	8.3	1.7U	2.8	12	2.8	5	
1,2-Dichloroethane	µg/L	3.4U	3.4U	3.4U	3.4U	3.4U	3.4U	0.85U	0.85U	1.7U	1.7U	0.85U	0.85 U	0.6	
2-Butanone	µg/L	19U	19U	19U	19U	19U	19U	4.6U	4.6U	9.3U	9.3U	4.6U	4.6 U	50	
Acetone	µg/L	42U	42U	42U	42U	42U	42U	12	26	21U	21U	22	23	50	
Benzene	µg/L	4.4U	4.4U	4.4U	4.4U	4.4U	4.4U	1.4	4.1	3.0	3.4	1.5	3.4	1	
Chlorobenzene	µg/L	5.1	5.0	5.0	3.6U	8.6	7.8	6.3	7.7	9.8	11	3.9	6.0	5	
Ethylbenzene	µg/L	7.9	10	12	8.2	7.0U	7.0U	2.4	9.5	16	16	8.8	9.4	5	
Methylene chloride	µg/L	14U	14U	14U	6.8U	6.8U	14	1.7U	1.7U	3.4U	3.4U	1.7U	1.7U	5	
Styrene	µg/L	10U	10U	10U	6.6U	6.6U	6.6U	1.7U	1.7U	3.4U	3.4U	1.7U	1.7U	5	
Tetrachloroethene	µg/L	15	19	27	21	9.1	13	5.4	25	18	21	10	22	0.7	(2)
Toluene	µg/L	36	46	56	41	11	28	13	57	13	24	36	44	5	
trans-1,2-Dichloroethene	µg/L	6.0U	6.0U	6.0U	6.0U	6.0U	6.0U	1.5U	3.9	3.0U	3.0U	2.2	1.9	5	
Trichloroethene	µg/L	100	130	150	130	23	54	20	94	23	52	130	82	5	(2)
Vinyl chloride	µg/L	5.7U	5.8	6.4	5.7U	5.7U	5.7U	2.9	11	4.3	5.2	4.6	1.4 U	0.3	(2)
Xylene (total)	µg/L	37	28U	55	41	28U	28U	9.1	41	14U	70	46	41	5	
Semi-Volatiles														_	
1,2-Dichlorobenzene	µg/L	2	2	2	2	1	0.2U	0.2U	0.2U	4	3	0.2U	0.2U	3	
1,4-Dichlorobenzene	µg/L	2	2	2	2	3	0.4U	2	2	6	4	2	0.4U	3	(2)
2,4-Dimethylphenol	µg/L	9	11	14	10	5	4	3	6	19	.9	22	6 J	. 50	(2)
2-Methylphenol	µg/L	6	7	8	5	4	6	3	10	5	4	0.3U	3	NL	
4-Methylphenol	µg/L	21	28	34	13	12	7	5	21	63	43	2	5	NL	(2)
Di-n-octyl phthalate	µg/L	0.8U	0.9U	0.8U	0.8U	4U	21U	21U	21U	21U	21U	23U	21 U	50	(2)
Naphthalene	µg/L	12	11	1	0.8U	50	16	16	38	0.4U	0.4U	0.4U	0.4 U	10	
Phenol	µg/L	43	40	31	0.4U	150	21	46	170	41	10	0.1U	6	1	

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Watar	
Parameter	Unit													Standard	(1)
Metals															
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	NL	
Antimony	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.003	
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.050	
Barium	mg/L	0.10	0.11	0.94	0.093	0.082	0.074	0.071	0.061	0.074	0.076	0.086	0.06	1.0	
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.023	(3)
Iron	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.074	0.054	0.20	0.27	0.30	
Lead	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.012	
Magnesium	mg/L	2.3	1.2	0.57	0.46	7.6	1.6	7.0	3.0	3.2	2.1	58	4.8	35	
Manganese	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.011	0.011	0.0034	0.0093	0.30	(1)
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	(1)
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	357	425	454	419	361	350	278	282	366	337	371	305	NL	(2)
Zinc	mg/L	0.020U	0.020U	0.010U	0.010U	0.010U	0.010U	0.010U	0.018	0.0109	0.012	0.014	0.015	2.0	(2)

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/06/06	02/14/06	03/10/06	04/07/06	05/04/06	06/09/06	07/07/06	08/08/06	09/22/06	10/06/06	11/09/06	12/08/06	Surface Water	
Parameter	Unit													Standard	(1)
General Chemistry															
pH	S.U.	10.73	11.07	10.99	10.96	9.74	10.62	8.32	9.86	10.82	11.08	11.19	8.53	NL	
Hardness	mg/L	329	342	400	408	289	310	292	260	342	320	296	200	NL	
Total Dissolved Solids (TDS)	mg/L	1510	1700	1670	1730	1500	1470	1180	1170	1440	1430	1350	1020	NL	
Total Suspended Solids (TSS)	mg/L	6	6	10	5	4	3	27	13	6	26	8	9	NL	
Chloride	mg/L	910	897	914	962J	914	737	493	495	728	791	752	412	250	
BOD	mg/L	10	10	9	10	12	7	10	12	12	11	15	14	NL	
COD	mg/L	38	45	47	47	47	47	47	161	177	47	27	20	NL	
Oil and Grease	mg/L	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0 U	NL	
Organic Carbon	mg/L	7.9	8.1	8.3	8.9	9.3	8.1	6.7	9.1	8	6.2	6.7	7.1	NL	
Alkalinity, Total (As CaCO3)	mg/L	69	71.4	95.1	75.4	26.9	44.9	92.6	30.3	64.5	93.4	72.0	44.2	NL	
Bicarbonate (as CaCO3)	mg/L	69	10U	10U	75.4	26.9	44.9	92.6	30.3	64.5	93.4	10U	44.2	NL	
Ammonia	mg/L	0.35	1.05	0.28	0.70	0.70	0.28	0.70	1.05	0.70	1.05	0.70	1.05	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050U	0.050 U	10	
TKN	mg/L	0.28	0.84	0.56	0.84	0.56	0.84	0.56	1.12	0.84	0.56	0.28	1.12	NL	
Sulfate	mg/L	297	288	285	351	296	259	182	242	230	208	269	207	250	
Sulfide	mg/L	4.0	2.9	5.2	6.0	4.4	6.8	2.8	6.4	8.0	8.0	7.2	6.4	0.002	
Phenol	mg/L	0.008U	0.010 U	0.009U	0.011U	0.007U	0.008U	0.012U	0.007U	0.011U	0.013U	0.007U	0.006 U	0.001	
Phosphorous	mg/L	0.06	0.37	0.13	0.05	0.10	0.12	0.07	0.17	0.14	0.14	0.18	0.13	0.020	(2)
Cyanide	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005 U	0.0052	

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:									
Sample Date:		01/05/07	02/09/07	09/17/08	03/05/09	09/04/09	03/05/10	Surface	
Parameter	Unit							Standard	I ⁽¹⁾
Volatiles									
1,1,1-Trichloroethane	µg/L	1.3 U	1.3 U	0.73 U	1.1	5.0U	5.0U	5	
1,1-Dichloroethane	µg/L	14	8.2	1.0	13	5.6	5.6	5	
1,2-Dichloroethane	µg/L	0.85 U	0.85 U	0.60 U	0.60U	5.0U	5.0U	0.6	
2-Butanone	µg/L	4.6 U	4.6 U	3.6 U	3.6U	25U	25U	50	
Acetone	µg/L	19	17	20	19	25U	25	50	
Benzene	µg/L	2.2	1.6	2.3	2.1	5.0U	5.0U	1	
Chlorobenzene	µg/L	4.9	5.6	7.0	5.1	5.0U	5.0U	5	
Ethylbenzene	µg/L	10	9.1	13	4.0	5.0U	5.2	5	
Methylene chloride	µg/L	1.7U	1.7U	0.81 U	0.8IU	5.0U	5.0U	5	
Styrene	µg/L	1. 7 U	1.7U	1.0	0.38U	5.0U	5.0U	5	
Tetrachloroethene	µg/L	16	15	26	15	6.6	8.4	0.7	(2)
Toluene	µg/L	57	35	20	35	22	29	5	
trans-1,2-Dichloroethene	µg/L	2.7	2.2	2.8	2.8	5.0U	5.0U	5	
Trichloroethene	µg/L	160	120	63	110	64	64	5	12
Vinyl chloride	µg/L	1.4U	1. 4 U	6.0	6.7	5.0U	5.0U	0.3	(1
Xylene (total)	µg/L	52	43	52	46	19	25	5	
Semi-Volatiles									
1,2-Dichlorobenzene	µg/L	1	0.2U	2	1.2	0.54	1.1	3	
1,4-Dichlorobenzene	µg/L	0.4U	0.4U	3	1.9	0.95	1.8	3	(2
2,4-Dimethylphenol	µg/L	5	4	19	19	13	5.6	50	. (2
2-Methylphenol	µg/L	8	5	16	8.3	9.4	1.4	NL	
4-Methylphenol	μg/L	14	14	66	41	25	5.0U	NL	12
Di-n-octyl phthalate	µg/L	21U	22U	21 U	4.5U	4.5U	4.5U	50	(2
Naphthalene	µg/L	18	19	0.6	1.8	0.080U	0.54	10	
Phenol	μg/L	69	62	38	7.5	14	0.12U	1	

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/05/07	02/09/07	09/17/08	03/05/09	09/04/09	03/05/10	Surface Water	(1)
Parameter	Unit							Standard	(1)
Metals									
Aluminum	mg/L	0.20U	0.20U	0.20U	0.20U	0.361	0.239	NL	
Antimony	mg/L	0.20U	0.20U	0.20U	0.20U	0.20U	0.20U	0.003	
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.050	
Barium	mg/L	0.080	0.077	0.071	0.135	0.063	0.088	1.0	
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.0040U	0.050	
Copper	mg/L	0.010U	0.010U	0.010U	0.030	0.010U	0.0312	0.023	(3)
Iron	mg/L	0.078	0.064	0.054	0.49	0.050U	0.247	0.30	
Lead	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.0050U	0.012	
Magnesium	mg/L	1.9	2.3	1.7	4.2	1.12	2.91	35	
Manganese	mg/L	0.0037	0.0071	0.013	0.097	0.030U	0.0098	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.00020U	0.00020U	0.00020U	0.0002	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	0.010U	0.10	(4)
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	376	365	260	367	307	4160	NL	(2)
Zinc	mg/L	0.010U	0.010U	0.010U	0.010U	0.010U	23.7	2.0	(2)

.

~

.

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		01/05/07	02/09/07	09/17/08	03/05/09	09/04/09	03/05/10	Surface	
Parameter	Unit							Water Standard ⁽¹⁾	
General Chemistry									
pH	S.U.	10.94	10.78	10.58	10.20	10.80	10.72	NL	
Hardness	mg/L	284	269	346	700	245	310	NL	
Total Dissolved Solids (TDS)	mg/L	1360	1330	1180	1550	1150	1550	NL	
Total Suspended Solids (TSS)	mg/L	4	8	9	44	8	5	NL	
Chloride	mg/L	897	741	460	720	516	793	250	
BOD	mg/L	8	7	15	15	14	13	NL	
COD	mg/L	74	67	33	41	4.4	59	NL	
Oil and Grease	mg/L	1.0 U	1.0 U	1.0 U	0.10	0.10	0.10U	NL	
Organic Carbon	mg/L	8.8	11.5	5.6	7.7	5.5	8.7	NL	
Alkalinity, Total (As CaCO3)	mg/L	75.9	56.8	59.8	38.2	70.2	88.1	NL	
Bicarbonate (as CaCO3)	mg/L	10U	10U	10 U	38.2	70.2	10U	NL	
Ammonia	mg/L	0.70	0.70	0.35	0.56	0.84	2.24	2.0	
Nitrate (as N)	mg/L	0.050 U	0.050U	0.050U	0.050U	0.050U	0.050U	10	
TKN	mg/L	0.84	0.56	0.56	0.56	1.68	1.68	NL	
Sulfate	mg/L	267	235	216	280	216	202	250	
Sulfide	mg/L	6.8J	6.0	8.8	6.8	6.0	2.4	0.002	
Phenol	mg/L	0.009U	0.009U	0.007 U	0.011U	0.011U	0.012U	0.001	
Phosphorous	mg/L	0.12	0.01	0.15	0.17	0.10U	0.08	0.020 (2))
Cyanide	mg/L	0.005 U	0.005 U	0.005 U	0.005U	0.005	0.005	0.0052	

Notes:

U - Non-detect at associated value

- - Not Analyzed

J - Estimated

NL - Not Listed

SL - Sample Lost

(1) - Lowest Standard/Guidance Value shown

(2) - Guidance Value

(3) - Calculated using a hardness of 300 ppm

(4) - Applies to dissolved form

(5) - TOC analyzer malfunction prevented analysis of this compound.

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)				
Month	Monthly	Total			
May 2001	2,900,000	2,900,000			
June 2001	2,353,800	5,253,800			
July 2001	1,488,500	6,742,300			
August 2001	712,800	7,455,100			
September 2001	473,100	7,928,200			
October 2001	1,213,100	9,141,300			
November 2001	1,281,100	10,422,400			
December 2001	231,700 (1)	10,654,100			
January 2002	1,383,200 (2)	12,037,300			
February 2002	1,186,000	13 ,22 3,300			
March 2002	233,600	13,456,900			
April 2002	736,000	14,192,900			
May 2002	348,200	14,541,100			
June 2002	1,137,200	15,678,300			
July 2002	869,300	16,547,600			
August 2002	1,060,800	17,608,400			
September 2002	707,000	18,315,400			
October 2002	679,800	18,995,100			
November 2002	489,500	19,484,700			
December 2002	743,500	20,228,200			
January 2003	1,150,700	21,378,900			
February 2003	483,300	21,862,200			
March 2003	402,300	22,264,500			
April 2003	531,900	22,796,400			
May 2003	655,600	23,452,000			
June 2003	682,100	24,134,000			
July 2003	942,000	25,076,100			
August 2003	627,500	25,703,600			
September 2003	349,600	26,053,200			
October 2003	966,500	27,019,700			
November 2003	442,200	27,461,900			
December 2003	463,900	27,925,800			

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)					
Month	Monthly	Total				
January 2004	443,900	28,369,700				
February 2004	253,700	28,623,400				
March 2004	403,700	29,027,100				
April 2004	433,600	29,460,700				
May 2004	377,400	29,838,100				
June 2004	395,000	30,233,100				
July 2004	384,300	30,617,400				
August 2004	479,700	31,097,100				
September 2004	413,900	31,511,000				
October 2004	319,400	31,902,400				
November 2004	249,200	32,151,600				
December 2004	209,900	32,361,500				
January 2005	310,100	32,671,600				
February 2005	301,100	32,972,700				
March 2005	250,200	33,222,900				
April 2005	378,400	33,601,300				
May 2005	458,800	34,060,100				
June 2005	455,900	34,516,000				
July 2005	270,200	34,786,200				
August 2005	285,100	35,071,300				
September 2005	395,600	35,466,900				
October 2005	333,200	35,800,100				
November 2005	360,200	36,160,300				
December 2005	395,300	36,555,600				
January 2006	297,500	36,853,100				
February 2006	508,300	37,361,400				
March 2006	244,700	37,606,100				
April 2006	224,400	37,830,500				
May 2006	153,300	37,983,800				
June 2006	262,300	38,246,100				
July 2006	212,900	38,459,000				
August 2006	357,500	38,816,500				

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)			
Month	Monthly	Total		
September 2006	777,000	39,593,500		
October 2006	254,700	39,848,200		
November 2006	778,700	40,626,900		
December 2006	496,600	41,123,500		
January 2007	410,500	41,534,000		
February 2007	494,600	42,028,600		
March, April &				
May 2007	1,489,200 ⁽³⁾	43,517,800		
June 2007	334,300	43,852,100		
July 2007	258,600	44,110,700		
August 2007	239,000	44,349,700		
September 2007	59,500 ⁽⁴⁾	44,409,200		
October 2007 through January 2008	50,600 ⁽⁴⁾	44,459,800		
February 2008	23,8 00 ⁽⁴⁾	44,483,600		
March 2008	1,238,300	45,721,900		
April 2008	2,126,700	47,848,600		
May 2008	1,771,100	49,619,700		
June 2008	618,000	50,237,700		
July 2008	1,559,200	51,796,900		
August 2008	1,365,900	53,162,800		
September 2008	1,998,000	55,160,800		
October 2008	2,511,100	57,671,900		
November 2008	1,151,600	58,823,500		
December 2008	572,700	59,396,200		
January 2009	1,021,700	60,417,900		
February 2009	2,661,400	63,079,300		
March 2009	4,239,300	67,318,600		
April 2009	1,189,900	68,508,500		
May 2009	1,362,500	69,871,000		
June 2009	1,035,200	70,906,200		
July 2009	1,010,100	71,916,300		
August 2009	1,058,000	72,974,400		

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)			
Month	Monthly	Total		
September 2009	947,000	73,921,400		
October 2009	690,800	74,612,200		
November 2009	697,500	75,309,700		
December 2009	1,100,900	76,410,600		
January 2010	767,100	77,177,700		
February 2010	398,600	77,576,300		
March 2010	1,094,500	78,670,800		
April 2010	761,000	79,431,800		
May 2010	354,700	79,786,500		

Notes:

- (1) To December 7, 2001.
- (2) From December 8, 2001.
- (3) Plotted as 496,400 gallons on Figure 2.18 for each of March, April, and May 2007.
- (4) Meter malfunctioned due to tar-like material buildup inside meter. Meter was cleaned on March 14, 2008. Volumes not plotted on Figure 2.18 as volumes are not representative of actual volume removed.

SURFACE WATER SAMPLING SUMMARY OPERATION AND MAINTENANCE MANUAL GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

River South River Middle River North

FREQUENCY

- quarterly for 2 years following GWS startup (concurrent with groundwater sampling)
- semi-annually for Year 3 (concurrent with groundwater sampling)
- annually for Years 3 through 7 (concurrent with groundwater sampling)
- Year 8 and thereafter no sampling required (i.e., starting May 2009)

PARAMETERS

Volatiles

Acetone Benzene 2-Butanone Chlorobenzene 1,1-Dichloroethane trans-1,2-Dichloroethene Ethylbenzene

Methylene Chloride Tetrachloroethene Toluene Trichloroethene Vinyl Chloride Xylenes (Total)

Semi-Volatiles

1,2-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Naphthalene Di-n-octylphthalate Phenol

Recommended Future Sampling Program

- No further sampling and analyses.

APPENDIX A

MONTHLY INSPECTION LOGS (JUNE 2009 TO MAY 2010)

Page 1 of 3

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAME	Gratwick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York 0 6 2 9 0 9 (MM DD YY)	
Item	Inspect For Collection System/Off-Site Forcemain	Action Required		Comments	
X X X X	 cover on securely condition of cover condition of inside of manhole flow conditions 	None			
X Wet Wells	 cover on securely condition of cover condition of inside of wet well 				
2. Landfill C X X X X X X X X	Cap Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation	$\overline{\nabla}$			
FORM 17	·				

yra Dare

1.4

CRA 7987 (24)

- -

• · · ·

Page 2 of 3

	GI	RATWICK-RIVERSIDE MONTHLY INSPECT	PARK SITE ION LOG	
PROJECT NAME: Gratwic	k-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York
INSPECTOR(S):	G/DT			(MM DD YY)
Item	Inspect For	Action Required		Comments
2. Landfill Cap (continu	ied)	•		
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction 			
3. Wetlands (Area "F") X X	 dead/dying vegetation change in water budget general condition of wetlands 	Klone		
4. Other Site Systems				
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	NA T	· · · · · · · · · · · · · · · · · · ·	
0.0.17				
UKIVI 1/				. Dave J y

- -

•

.

CRA 7987 (24)

а і

F ()

P 4

а ;

. .

Page 3 of 3

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJ INSPI	ECT NAME: Gratwick	-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York OGATOTY (MM DD YY)
	Item	Inspect For	Action Required		Comments
4. X X	Other Site Systems (co Drainage Ditches/ Swale Outlets	ntinued) - sediment build-up - erosion - condition of erosion protection	None		
XXXX		 - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap 			
KKKX	Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 			
XX	Gas Vents Wells	- intact / damage - locks secure			

a - 1

• • •

97 **1**

• •

- -

. .

-yrm Dae

.

τ

1.01

...

CRA 7967 (24)

. .

•••

.

• • •

Page 1 of 3

...

3

r -

.

-

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJECT NAM	E: Gratwick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York	
INSPECTOR(S):	DJT/9G	······			
Item	Inspect For	Action Required		Comments	
1. Perimete	r Collection System/Off-Site Forcemain				
X Manholes X X X X X X X X X X X X X X X X X X X	 cover on securely condition of cover condition of inside of manhole flow conditions cover on securely condition of cover 	NONE			
	- condition of inside of wet well	V	·····		
2. Landfill X Vegetated X X X X X X X X	Cap d Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation	NONE			
FORM 17	·				

..

.

.

Page 2 of 3

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG				
PROJECT NAME: Grat	vick-Riverside Park Site		LOCATION:	Wheatfield, New York
			DATE:	072709
INSPECTOR(S):	DJT/SG			(MM DD YY)
Item	Inspect For	Action Required		Comments
2. Landfill Cap (conti	nued)			
X Access Roads X X X X X X X X X X X X X X X X X X X	 bare areas, dead/dying veg. erosion potholes or puddles obstruction dead/dying vegetation 	NONE		
+ +	 change in water budget general condition of wetlands 		<u></u>	
4. Other Site System	8			
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 			
FORM 17				

. .

••

...

· 1

. 1

1.4

1

1

_

Page 3 of 3

.

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PROJI	ECT NAME: Gratwick	k-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York $[\sigma 7 2 7 \sigma 9]$ (MM DD YY)
INSPE	ECTOR(S):	DJT/GG Inspect For	Action Required		Comments
$4. \begin{array}{ c c c c c c } \hline X & X & X & X \\ \hline X & X & X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline X & X & X \\ \hline $	Other Site Systems (co Drainage Ditches/ Swale Outlets Culverts	 sediment build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and riprap sediment build-up erosion condition of erosion protection flow obstructions 			
×	Gas Vents Wells	- intact / damage - locks secure	NANONE		

· •

11

1 3

-

.

. .

**

• •

 ~ 1
PROJECT NAME: Gratwick	-Riverside Park Site		LOCATION:	Wheatfield, New York
	- <i>1</i>		DATE:	083109
INSPECTOR(S):	NT/SG	·····		(MM DD YY)
Item	Inspect For	Action Required		Comments
1. Perimeter Collection S	ystem/Off-Site Forcemain			
Manholes	- cover on securely	NONE		
×	- condition of cover			
×	- condition of inside of manhole			-
\mathbf{X}	- flow conditions			•
Wet Wells	- cover on securely			
$\overline{\mathbf{X}}$	- condition of cover			
X	- condition of inside of wet well			
2. Landfill Cap			"	
Vegetated Soil Cover	- erosion	NONE		
Ŕ	- bare areas			····
\mathbf{v}	- washouts		<u></u>	
	- leachate seeps			
212	- length of vegetation		· · · · · · · · · · · · · · · · · · ·	
×	- dead/dying vegetation		•	

٠

.

. . .

.....

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG						
PROJECT NAME: Gratw	ick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York		
INSPECTOR(S):	DJT/SG			(MM עט זי)		
Item	Inspect For	Action Required		Comments		
2. Landfill Cap (contin	ued)					
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction dead/dying vegetation change in water budget general condition of wetlands 	NONE				
4. Other Site Systems						
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 		· · · · · · · · · · · · · · · · · · ·			

• •

4.1

-- -

CRA 7987 (24)

. . .

** **

- -

٠

.

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG						
PROJ	ECT NAME: Gratwic	k-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York [0 8 3 1 0 9] (MM DD YY)		
11451	Item	Inspect For	Action Required		Comments		
4 . [√]	Other Site Systems (co	ontinued) - sediment build-up	NONE				
AXXXXX	Swale Outlets	 seament build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and riprap 					
XXXX	Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 					
	Gas Vents Wells	- intact /damage - locks secure	NA NONE				
FORM	17				· · · · · · · · · · · · · · · · · · ·		

۰.1

.

88-4

1.28

. .

÷

.

• •

MONTHLY INSPECTION LOG PROJECT NAME: Gratwick-Riverside Park Site LOCATION: Wheatfield, New York DATE: [0] [9] [3] [0] [9] INSPECTOR(S): DJT/SG Item Inspect For Action Required Comments 1. Perimeter Collection System/Off-Site Foreconain X - condition of inside of manhole - flow conditions		GRATWICK-RIVERSIDE PARK SITE							
PROJECT NAME: Gratwick-Riverside Park Site LOCATION: Wheatfield, New York DATE: DATE: DATE: INSPECTOR(5): DST/SEP Item Inspect For Action Required Comments Image: Contract of the second secure of the second seco		MONTHLY INSPECTION LOG							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PRO]	ECT NAME: Gratwick	-Riverside Park Site		LOCATION:	Wheatfield, New York			
INSPECTOR(S): DJT/SE Item Inspect For Action Required Comments 1. Perimeter Collection System/Off-Site Forcenain X - condition of cover - condition of inside of manhole - - condition of inside of manhole - - flow conditions - X - condition of inside of manhole - flow conditions - X - condition of cover - condition of inside of wet well - X - condition of inside of wet well Y - condition of inside of wet well X - condition of inside of wet well Y - condition of inside of wet well X - condition of inside of wet well Y - condition of inside of wet well X - erosion <t< td=""><td></td><td></td><td></td><td></td><td>DATE:</td><td>093009</td></t<>					DATE:	093009			
Item Inspect For Action Required Comments 1. Perimeter Collection System/Off-Site Forcemain	INSP	ECTOR(S):	JT/SG			(MM DD YY)			
1. Perimeter Collection System/Off-Site Forcemain X Manholes - cover on securely NONE X - condition of cover - - X - condition of inside of manhole - - F - conditions - - - X - conditions - - - X - conditions - - - X - condition of cover - - - - condition of cover - - - - - condition of cover - - - - - X - condition of inside of wet well - - - - - 2. Landfill Cap - <		Item	Inspect For	Action Required		Comments			
X Manholes - cover on securely NONE X - condition of cover	1.	Perimeter Collection S	ystem/Off-Site Forcemain						
X - condition of cover	×	Manholes	- cover on securely	NONE					
X - condition of inside of manhole - flow conditions - X Wet Wells - cover on securely - condition of cover - - condition of inside of wet well V 2. Landfill Cap X Vegetated Soil Cover - bare areas - - washouts - - leachate seeps - - length of vegetation -	×		- condition of cover						
× - flow conditions × - cover on securely × - condition of cover - condition of inside of wet well - 2. Landfill Cap × - erosion × - bare areas - washouts - × - leachate seeps × - length of vegetation	×		- condition of inside of manhole						
X Wet Wells - cover on securely - condition of cover - condition of inside of wet well 2. Landfill Cap X Vegetated Soil Cover Vegetated Soil Cover - erosion - bare areas	×		- flow conditions						
X - condition of cover × - condition of inside of wet well 2. Landfill Cap X Vegetated Soil Cover × - erosion × - bare areas × - washouts × - leachate seeps × - length of vegetation	x	Wet Wells	- cover on securely						
× - condition of inside of wet well 2. Landfill Cap X Vegetated Soil Cover × - bare areas - bare areas - washouts - leachate seeps × - length of vegetation	×		- condition of cover		· · · · · · · · · · · · · · · · · · ·				
2. Landfill Cap X Vegetated Soil Cover - erosion NONE X - bare areas	×		- condition of inside of wet well						
X Vegetated Soil Cover - erosion NONE X - bare areas	2.	Landfill Cap							
× - bare areas × - washouts × - leachate seeps × - length of vegetation	X	Vegetated Soil Cover	- erosion	NONE					
× - washouts × - leachate seeps × - length of vegetation	×		- bare areas						
- leachate seeps - length of vegetation	×		- washouts						
- length of vegetation	×		- leachate seeps						
	×		- length of vegetation						
L - dead/dying vegetation	K		- dead/dying vegetation	4					
FORM 17	FORM	. 17							

-

. .

.

• >

1.19

,

.

...

a (

•

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG						
PROJECT NAME: Gratwick-Riv	verside Park Site			LOCATION: DATE:	Wheatfield, New York	
INSPECTOR(S):	DJT(SG	<u> </u>		-	(MM DD YY)	
Item	Inspect For	Action Required			Comments	
2. Landfill Cap (continued)						
X Access Roads - 1	bare areas, dead/dying veg.	NOL				
X	erosion		_ <u></u>			
X -	potholes or puddles					
Χ.	obstruction			<u></u>		
3. Wetlands (Area "F") -	dead/dying vegetation					
X -	change in water budget		<u></u>	<u></u>		
χ.	general condition of wetlands	·*				
4. Other Site Systems					•	
Perimeter Fence -	integrity of fence	NA	•			
-	integrity of gates					
	integrity of locks					
-	placement and condition of signs					
FORM 17						

CRA 7987 (24)

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG						
PROJI	ECT NAME: Gratwic	k-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York OJ91300191 (MM DD YY)	
INSPI	ECTOR(S):	DJT/96 Inspect For	Action Required		Comments	
4.	Other Site Systems (co	ontinued)	N/MIF			
X X	Drainage Ditches/ Swale Outlets	ale Outlets - erosion				
× X		 condition of erosion protection flow obstructions 				
XX		 dead/dying vegetation cable concrete/gabion mats and riprap 				
X X X X	Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 			-	
	Gas Vents	- intact / damage	NA			
X	Wells	- locks secure	NONE	<u></u>		
FORM	17					

....

1.146

r a **k**i

x 1

...

2

.

1 E

1.1

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG							
PROJECT NAME: Gratwick-F	PROJECT NAME: Gratwick-Riverside Park Site LOCATION: Wheatfield, New York						
	·		DATE:	103009 MM DD 700			
INSPECTOR(S):	TYRAN, S. GARDI	NER					
Item	Inspect For	Action Required		Comments			
1. Perimeter Collection Sys	tem/Off-Site Forcemain						
X Manholes	- cover on securely	NONE		······································			
X	- condition of cover						
×	- condition of inside of manhole						
x	- flow conditions			- <u></u>			
X Wet Wells	- cover on securely						
X .	- condition of cover		·				
x	- condition of inside of wet well	¥					
2. Landfill Cap							
X Vegetated Soil Cover	- erosion	NONE					
×	- bare areas						
	- washouts						
X	- leachate seeps						
×	- length of vegetation						
	- dead/dying vegetation	47	·				
FORM 17							

...

.

0.4

...**.**

,

19-A

. .

•• ••

•• ••

.

< **1**

11 8

s -

. .

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG						
PROJECT NAME: Gratwick	k-Riverside Park Site	LOCATION:	Wheatfield, New York			
			DATE:	103009		
INSPECTOR(S):	TYRAN S. GARDNER			(MM DD YY)		
Item	Inspect For	Action Required		Comments		
2. Landfill Cap (continu	ed)					
X Access Roads	- bare areas, dead/dying veg.	NONE				
×	- erosion					
	- potholes or puddles					
×	- obstruction					
	dead (duing upgotation					
3. Wetlands (Area "F")	- dead/ dying vegetation					
X X	- change in water budget					
	- general condition of wenditur					
4. Other Site Systems						
Perimeter Fence	- integrity of fence	NA				
	- integrity of gates					
	- integrity of locks		<u></u>			
	- placement and condition of	\downarrow				
-	21210					
IFORM 17		والمنبع والمراجع				

...

Pro C

1.40

(ra

 αa

....

1.68

8--1

-

-

•

5 **I**

5.1

14 (1

1 :

1 - N

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG						
PROJE	CT NAME: Gratwick	c-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York [1]0]3[0]0]9] (MM DD YY)		
INSPEC	CTOR(S): <u>)</u> Item	TYRAN S. BARDNEK Inspect For	Action Required		Comments		
4. × × ×	Other Site Systems (co Drainage Ditches/ Swale Outlets	ontinued) - sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation	NONE				
x x x x x x x	Culverts	 cable concrete/gabion mats and riprap sediment build-up erosion condition of erosion protection flow obstructions 					
×	Gas Vents Wells	- intact / damage - locks secure	NA NONE		-		
FORM 1	17						

- -

--

11.4

- **-**

.

: (

1 1

11 1

1.1

×

ŧ

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG						
PROJECT NAME: Gratwick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York			
INSPECTOR(5): D. Tyran S. Gard	Action Required	-	Comments			
1. Perimeter Collection System/Off-Site Forcemain X Manholes - cover on securely Manholes	None					
X - condition of cover X - condition of inside of manhole X - flow conditions	$\overline{\nabla}$					
Wet Wells - cover on securely Condition of cover - condition of cover Condition of inside of wet well - condition of inside of wet well	None Note Uas Vetal	: Wate high . grate	It was right at the			
2. Landfill Cap		N				
Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation	Nore					
FORM 17						

te d

.....

....

.

....

: **: : : :**

 $\mathbf{1}$

1 F

11 I

1.4

: KAŬ

84.**8**

ŧ '

11 E

11

113

⊭-**i**

1

٩.

-

٠

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG							
PROJECT NAME: Gratwic	ck-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York			
NSPECTOR(S): D	Inspect For	Action Required		(MM DD YY) Comments			
Conter Site Systems (Drainage Ditches/ Swale Outlets	continued) - sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap	None					
Culverts X X	 sediment build-up erosion condition of erosion protection flow obstructions 	None <u>Several large</u> tre River Middle attal	es washe Is cant	d <u>up against River South</u> move			
Gas Vents Wells	- intact / damage - locks secure	None					

6.4

11.0

. .

• •

.

85 T

•

B14

6**61**

-

5 g - g 19 - k d - 1

		GR	ATWICK-RIVERSIDE F MONTHLY INSPECTIO	PARK SITE ON LOG	
PROJ	ECT NAME: (Gratwick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York
INSP	ECTOR(S):	DJT/SG			
	Item	Inspect For	Action Required		Comments
1.	Perimeter Coll	ection System/Off-Site Forcemain			
XXXX	Manholes	 cover on securely condition of cover condition of inside of manhole flow conditions 	NONE		· · · · · · · · · · · · · · · · · · ·
XXX	Wet Wells	 cover on securely condition of cover condition of inside of wet well 	MH12 LEVEL II NONE	N CHAMBER	HIGHER THAN NORMAL
2.	Landfill Cap				
XXXXXX	Vegetated Soil	Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation	NONE		
FORM	17				

. .

--

: 1 10

.

, ,

•	GI	RATWICK-RIVERSIDE PAP MONTHLY INSPECTION	LOG	
PROJECT NAME: Gratwic	ck-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York [1]2]3]0]0]9] (MM DD YY)
INSPECTOR(S):	Inspect For	Action Required		Comments
2. Landfill Cap (continu	ied)			
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction dead/dying vegetation 	NONE		
	 change in water budget general condition of wetlands 			
4. Other Site Systems				
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 			

· · · ·

:04

•...

.....

٠

: 1

r ar - -

i) (

. .

5 18

. .

۲ ۲

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG								
proji	ECT NAME: C	Gratwick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York [1]2]3 0 0 7] (MM DD YY)			
INSPI	CTOR(S):	DUT/SG						
	Item	Inspect For	Action Required		Comments			
<pre> KXXXXXX </pre>	Other Site Syst Drainage Ditch Swale Outlets	tems (continued) tess/ - sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up - erosion						
		- condition of erosion protection - flow obstructions						
	Gas Vents Wells	 intact / damage locks secure 	NONE					
FORM	17							

.

-

ţ :

2

.

-

	GI	ATWICK-RIVERSIDE PAR MONTHLY INSPECTION	K SITE LOG	
PROJECT NAME: Gratw	rick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York
INSPECTOR(S):	D.TYRAN, S. GARDNE Inspect For	Action Required		Comments
1. Perimeter Collection	n System/Off-Site Forcemain - cover on securely - condition of cover - condition of inside of manhole form conditions	NONE		
Wet Wells	 - cover on securely - condition of cover - condition of inside of wet well 	MHIZ W/LIN CHAR	1BER HIGH	ABOVE GRATING
2. Landfill Cap Vegetated Soil Cove	er - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation	NONE		· · · · · · · · · · · · · · · · · · ·

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG								
PRO,	JECT NAME: Gratwic	k-Riverside Park Site			LOCATION: DATE:	Wheatfield, New York OIIIZI (MM DD YY)			
INSP	ECTOR(S):	TYRAN, S. GARDNE Inspect For	SR Action Required		_	Comments			
	Other Site Systems (co Drainage Ditches/ Swale Outlets	ontinued) - sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap							
	Culverts	 sediment build-up erosion condition of erosion protection flow obstructions intact / damage 							
FORM	Wells	- locks secure		DNE					

1

1 1

Page	1	of	3
------	---	----	---

		GR	ATWICK-RIVERSIDE PAR	RK SITE	
			MONTHLY INSPECTION	LOG	
PROJE	CT NAME: Gratwick	k-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York 020110 (MM DD YY)
INSPE	CTOR(5): <u>5</u>	GARDNER, D. OSCAF Inspect For	Action Required		Comments
1.	Perimeter Collection S	ystem/Off-Site Forcemain			
XXXX XXXX	Manholes Wet Wells	 cover on securely condition of cover condition of inside of manhole flow conditions cover on securely condition of cover condition of inside of wet well 	MH12 W/L IN CH2	MBER HIG	H, ABOVE GRATINE
2.	Landfill Cap	·			
XXXXXXX	Vegetated Soil Cover	 erosion bare areas washouts leachate seeps length of vegetation dead/dying vegetation 	NONE	2	
FORM	17				

ал 🛍 ал так на простоя на на проставлята на пактура на поставлята ставителя со ставителя стар на нарожет стар и ставители ра

۰.

CRA 7987 (24)

Page 2 of 3

	·····	GR	ATWICK-RIVERSIDE MONTHLY INSPECTI	PARK SITE ION LOG	
PRO INSF	JECT NAME: Gratwick PECTOR(S): <u>S</u>	-Riverside Park Site 7ARDNER, DOSCA Inspect For	Action Required	LOCATION: DATE:	Wheatfield, New York O 2 2 9 1 1 (MM DD YY) Comments
	Other Site Systems (con Drainage Ditches/ Swale Outlets	 sediment build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and riprap 		E	
	Culverts Gas Vents	 sediment build-up erosion condition of erosion protection flow obstructions intact / damage 		IE	
FORM	Wells	- locks secure			

I was seen as a second second second

antes to anno

🗰 gir never samalak annona ay concernenteren eyergirigiri andersetiri. Soore ey

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG							
PROJECT NAME: Gra	twick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York [0]3]3]0] i [0] (MM DD YY)				
INSPECTOR(S):	GARDNER Inspect For	Action Required		Comments				
1. Perimeter Collect	 cover on securely condition of cover condition of inside of manhole flow conditions cover on securely condition of cover 							
2. Landfill Cap	- containion of inside of wet wen							
Vegetated Soil Co X X X X X X	over - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation	NONE.						
FORM 17								

a second s

•

معرد مراجعهم

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG								
PROJECT NAME: Gratwic	k-Riverside Park Site			location: DATE:	Wheatfield, New York			
INSPECTOR(S): <u> </u>	GARDNER	Action Required			Comments			
 Landfill Cap (continue) Access Roads X X<	 bare areas, dead/dying veg. erosion potholes or puddles obstruction dead/dying vegetation change in water budget general condition of wetlands 		E					
4. Other Site Systems Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 							

.,

and a Anomatication

_ _

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG								
PROJECT NAME: Gratwick-Riverside Park Site					LOCATION: DATE:	Wheatfield, New York			
INSI	Item	Inspect For	Action Required			Comments			
4 . ★ ★ ★ ★ ★ ★ ★	Other Site Systems Drainage Ditches/ Swale Outlets	 (continued) sediment build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and riprap 	N						
X X X X X X X X X X X X X X X X X X X	Culverts Gas Vents Wells	 sediment build-up erosion condition of erosion protection flow obstructions intact / damage locks secure 	N	VA ONF					
FORM	á 17		. ·						

j

PROJECT NAME: Gratwick-Riverside Park Site LOCATION: Wheatfield, New York DNT/SC- DT/SC- DATE: U(MM DD YY) Item Inspect For Action Required Comments 1. Perimeter Collection System/Off-Site Forcemain Comments X - coordition of cover - - - condition of inside of manhole - - - - flow conditions - coordition of cover - - X - coordition of cover - - - - condition of cover - - - - X - cover on securely - - - - X - coorditions - - - - - X - coordition of cover - <th></th> <th>GI</th> <th>RATWICK-RIVERS MONTHLY INSPI</th> <th>IDE PARK ECTION LO</th> <th>SITE. DG</th> <th></th>		GI	RATWICK-RIVERS MONTHLY INSPI	IDE PARK ECTION LO	SITE. DG	
INSPECTOR(S): DT/SG: Item Inspect For Action Required Comments 1. Perimeter Collection System/Off-Site Forcemain NONE	PROJECT NAME: Gratw	rick-Riverside Park Site			LOCATION: DATE:	Wheatfield, New York
1. Perimeter Collection System/Off-Site Forcemain Manholes - cover on securely NoNE - condition of cover - flow conditions Wet Wells - cordition of inside of manhole - flow conditions - flow conditions - cover on securely - condition of cover - condition of cover - condition of inside of wet well	INSPECTOR(S):	DUT/SG Inspect For	Action Required		_	Comments
Wet Wells - cover on securely - condition of cover - condition of inside of wet well 2. Landfill Cap Vegetated Soil Cover - erosion - bare areas NONE	1. Perimeter Collection	n System/Off-Site Forcemain - cover on securely - condition of cover - condition of inside of manhole - flow conditions	NC	NE		
2. Landfill Cap Vegetated Soil Cover - erosion	Wet Wells	- cover on securely - condition of cover - condition of inside of wet well				
 - washouts - leachate seeps - length of vegetation - dead/dying vegetation 	2. Landfill Cap Vegetated Soil Cover	r - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation	N			

.

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site 043010 DATE: (MM DD YY) DUT/SG INSPECTOR(S): Comments Action Required Inspect For Item Landfill Cap (continued) 2. 20FT SOUTH OF WELL OGC. 7 MODERATE EROSION OF BONK SEVERAL LARGE HOLES EXPOSING WIRE MESH + RIP RAF - bare areas, dead/dying veg. XXX Access Roads - erosion - potholes or puddles NONE - obstruction dead/dying vegetation 3. Wetlands (Area "F") X - change in water budget Х 1 \mathbf{A} - general condition of wetlands × Other Site Systems 4. NA - integrity of fence Perimeter Fence - integrity of gates - integrity of locks - placement and condition of signs FORM 17

Page 2 of 3

		GR	ATWICK-RIVERSII MONTHLY INSPEC	DE PARK	SITE OG	
PRO,	IECT NAME: Gratwic	k-Riverside Park Site			LOCATION: DATE:	Wheatfield, New York OABOII
INSP	ECTOR(S):	JT/SG Inspect For	Action Required	. <u> </u>		Comments
4. XXXXXXX	Other Site Systems (co Drainage Ditches/ Swale Outlets	ontinued) - sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap	NC			
XXXX	Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 		7		
	Gas Vents Wells	- intact / damage - locks secure		A		

÷

Project # 7987

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG				
	k-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York
INSPECTOR(5):	Inspect For	Action Required		Comments
1. Perimeter Collection	System/Off-Site Forcemain			
X Manholes X X X Wet Wells X	 cover on securely condition of cover condition of inside of manhole flow conditions cover on securely condition of cover 	None		
Z Landfill Cap	- condition of inside of wet well	V		
Vegetated Soil Cover	 erosion bare areas washouts leachate seeps length of vegetation dead/dying vegetation 	<u>Continued erosion</u> <u>as noted in pr</u> <u>wire mesh and</u>	<u>along</u> evious p fabric e	parts of river bank nspection Logs Some xposid

on a start a second

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG					
PRO)	JECT NAME: Gratwick	-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York [0]5]2Ko]1]0] (MM DD YY)
INSP	ECTOR(S): <u>7</u>	Inspect For	Action Required	_	Comments
* * * * * * * *	Other Site Systems (co. Drainage Ditches/ Swale Outlets	ntinued) - sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap	None		
X X X X X X X	Culverts Gas Vents Wells	 sediment build-up erosion condition of erosion protection flow obstructions intact /damage locks secure 			
FORM	1 7				

:

APPENDIX B

QA/QC REVIEWS

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304 Telephone: (716) 297-6150 Fax: (716) 297-2265 www.CRAworld.com

REF. NO.:

DATE:

7987DM-95

E-Mail and Hard Copy if Requested

February 4, 2010

MEN	10	R A	N	DL	JM
-----	----	------------	----------	----	----

TO:	Klaus Schmidtke				
		~	• • •	5	

FROM: Susan Scrocchi/cs/3

RE: Analytical Results and QA/QC Review Wastewater Treatment Plant Sampling September 2009

INTRODUCTION

One effluent sample was collected in support of the Wastewater Treatment Plant Sampling at the Gratwick-Riverside Park Site (Site) during September 2009. The sample was submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	M ethodology ¹	
Site-Specific Volatile Organic Compounds (VOCs)	USEPA 624	
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	USEPA 625	
Target Compound List (TCL) Metals	USEPA 200.7	
Mercury	USEPA 245.1	
Sulfate	USEPA 300.0	
Chloride	USEPA 300.0	
Alkalinity	USEPA 310.2	
Nitrate	USEPA 353.2	
Sulfide	SM 4500-S F	
Total Dissolved Solids (TDS)	SM 2540C	
Total Hardness	SM 2340C	

The analytical results are summarized in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the following documents:

- i) "USEPA Contract Laboratory National Functional Guidelines for Organic Data Review" (October 1999); and
- ii) "National Functional Guidelines for Inorganic Data Review" (February 1994).

¹ "Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983 and "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.

CRA MEMORANDUM

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times.

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters and all results were non-detect for the compounds of interest indicating that no compounds were introduced to the samples during preparation and/or analysis.

Blank spikes (BS) were prepared and analyzed for all parameters. The SVOC blank spike was prepared and analyzed in duplicate. All recoveries were acceptable indicating good analytical accuracy and precision with the exception of variability between the di-n-octylphthalate recoveries. The associated sample result was non-detect and would not have been impacted.

A matrix spike (MS) using this investigative sample was not requested.

CONCLUSION

Based on the preceding assessment, the data were acceptable for use without qualification.

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING GRATWICK-RIVERSIDE PARK SITE SEPTEMBER 2009

Sample Location:		Effluent
Sample ID:		GRATWICK RIVERSIDE
Sample Date:		9/4/2009
Parameters:	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	μg/L	5.0 U
1,1-Dichloroethane	μg/L	5.6
1,2-Dichloroethane	μg/L	5.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	25 U
Acetone	μg/L	25 U
Benzene	μg/L	5.0 U
Chlorobenzene	μg/L	5.0 U
Ethylbenzene	μg/L	5.0 U
Methylene chloride	μg/L	5.0 U
Styrene	μg/L	5.0 U
Tetrachloroethene	μg/L	6.6
Toluene	μg/L	22
trans-1,2-Dichloroethene	μg/L	5.0 U
Trichloroethene	μg/L	64
Vinyl chloride	μg/L	5.0 U
Xylene (total)	µg/L	19
Semi-Volatile Organic Compounds		
1,2-Dichlorobenzene	μg/L	0.54
1,4-Dichlorobenzene	μg/L	0.95
2,4-Dimethylphenol	μg/L	13
2-Methylphenol	μg/L	9.4
4-Methylphenol	µg/L	25
Di-n-octyl phthalate (DnOP)	µg/L	4.5 U
Naphthalene	µg/L	0.080 U
Phenol	μg/L	14
Metals		
Atiminum	/ T	0.261
Antimony	mg/L	0.000 II
Arconic	mg/L	0.0200 U
Barium	mg/L	0.0100 0
Boryllium	mg/L	0.0020
Cadmium	mg/L	0.0020 U
Chromium	mg/L	0.0010 U
Copper	mg/L	0.0040 U
Iron	mg/L ma/I	0.0100 U
Load	mg/L	0.0000 0
Magnesium	mg/L	1.10
Manganese	mg/L	0.0020 11
Marcury	mg/L	0.0000 0
Nickel	mg/L	
Salanium	mg/L	0.0100 0
Silver	mg/L	0.0100 U
Sodium	mg/L	207
Zinc	ma/I	0.0100 TT
		0.0100 0

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING GRATWICK-RIVERSIDE PARK SITE SEPTEMBER 2009

Sample Location: Sample ID: Sample Date:		Effluent GRATWICK RIVERSIDE 9/4/2009
Parameters:	Units	
General Chemistry		
Alkalinity, total (as CaCO3)	mg/L	70.2
Ammonia	mg/L	0.84
Bicarbonate (as CaCO3)	mg/L	70.2
Biochemical oxygen demand (BOD)	mg/L	14
Chemical oxygen demand (COD)	mg/L	44
Chloride	mg/L	516
Cyanide (total)	mg/L	0.005
Hardness	mg/L	245
Nitrate (as N)	mg/L	0.050 U
Oil and grease	mg/L	0.10
pH (water)	s.u.	10.80
Phenolics (total)	mg/L	0.010 U
Phosphorus	mg/L	0.10 U
Sulfate	mg/L	216
Sulfide	mg/L	6.0
Total dissolved solids (TDS)	mg/L	1150
Total kjeldahl nitrogen (TKN)	mg/L	1.68
Total organic carbon (TOC)	mg/L	5.5
Total suspended solids (TSS)	mg/L	8

Notes:

U

Not present at or above the associated value.

) نور

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304 Telephone: (716) 297-6150 Fax: (716) 297-2265 www.CRAworld.com

7987DM-95

E-Mail and Hard Copy if Requested

May 17, 2010

REF. NO.:

DATE:

MEMORANDUM

TO: Klaus Schmidtke

FROM: Susan Scrocchi/bjw/4

RE: Analytical Results and QA/QC Review Wastewater Treatment Plant Sampling March 2010

5C5

INTRODUCTION

One effluent sample was collected in support of the Wastewater Treatment Plant Sampling at the Gratwick-Riverside Park Site (Site) during March 2010. The sample was submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	Methodology ¹	
Site-Specific Volatile Organic Compounds (VOCs)	USEPA 624	
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	USEPA 625	
Target Compound List (TCL) Metals	USEPA 200.7	
Mercury	USEPA 245.1	
Sulfate	USEPA 300.0	
Chloride	USEPA 300.0	
Alkalinity	SM 2320B	
Nitrate	USEPA 353.2	
Sulfide	SM 4500-S F	
Total Dissolved Solids (TDS)	SM 2540C	
Total Hardness	SM 2340C	

The analytical results are summarized in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the following documents:

- i) "USEPA Contract Laboratory National Functional Guidelines for Organic Data Review" (October 1999)
- ii) "National Functional Guidelines for Inorganic Data Review" (February 1994)

¹ "Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983 and "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.

CRA MEMORANDUM

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times.

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters and all results were non-detect for the compounds of interest indicating that no compounds were introduced to the samples during preparation and/or analysis.

Blank spikes (BS) were prepared and analyzed for all parameters. All recoveries were acceptable indicating good analytical accuracy and precision.

A matrix spike (MS) using this investigative sample was not requested.

CONCLUSION

Based on the preceding assessment, the data were acceptable for use without qualification.

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING GRATWICK-RIVERSIDE PARK SITE MARCH 2010

	Sample Location:	Effluent		
	Sample ID:	GRATWICK RIVERSIDE		
	Sample Date:	3/5/2010		
Parameters	Units			
Volatile Organic Compounds				
1,1,1-Trichloroethane	µg/L	5.0 U		
1,1-Dichloroethane	μg/L	5.4		
1,2-Dichloroethane	μg/L	5.0 U		
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	25 U		
Acetone	μg/L	25		
Benzene	µg/L	5.0 U		
Chlorobenzene	μg/L	5.0 U		
Ethylbenzene	µg/L	5.2		
Methylene chloride	μg/L	5.0 U		
Styrene	μg/L	5.0 U		
Tetrachloroethene	μg/L	8.4		
Toluene	μg/L	29		
trans-1,2-Dichloroethene	μg/L	5.0 U		
Trichloroethene	μg/L	64		
Vinyl chloride	μg/L	5.0 U		
Xylene (total)	µg/L	25		
Semi-volatile Organic Compounds				
1,2-Dichlorobenzene	μg/L	1.1		
1,4-Dichlorobenzene	μg/L	1.8		
2,4-Dimethylphenol	μg/L	5.6		
2-Methylphenol	µg/L	1.4		
4-Methylphenol	μg/L	5.0 U		
Di-n-octyl phthalate (DnOP)	µg/L	4.5 U		
Naphthalene	µg/L	0.54		
Phenol	µg/L	0.12 U		
Metals				
Aluminum	mg/L	0.239		
Antimony	mg/L	0.0200 U		
Arsenic	mg/L	0.0100 U		
Barium	mg/L	0.0876		
Beryllium	mg/L	0.0020 U		
Cadmium	mg/L	0.0010 U		
Chromium	mg/L	0.0040 U		
Copper	mg/L	0.0312		
Iron	mg/L	0.247		

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING GRATWICK-RIVERSIDE PARK SITE MARCH 2010

	Sample Location: Sample ID: Sample Date:	Effluent GRATWICK RIVERSIDE 3⁄5⁄2010
Parameters	Units	
Metals (Cont'd.)		
Lead	mg/L	0.0050 U
Magnesium	mg/L	2.91
Manganese	mg/L	0.0098
Mercury	mg/L	0.0002
Nickel	mg/L	0.0100 U
Selenium	mg/L	0.0150 U
Silver	mg/L	0.0030 U
Sodium	mg/L	4160
Zinc	mg/L	23.7
General Chemistry		
Alkalinity, total (as CaCO3)	mg/L	88.1
Ammonia	mg/L	2.24
Bicarbonate (as CaCO3)	mg/L	10.0 U
Biochemical oxygen demand (BOD)	mg/L	13
Chemical oxygen demand (COD)	mg/L	59
Chloride	mg/L	793
Cyanide (total)	mg/L	0.005
Hardness	mg/L	310
Nitrate (as N)	mg/L	0.050 U
Oil and grease	mg/L	0.10 U
pH (water)	s.u.	10.72
Phenolics (total)	mg/L	0.012 U
Phosphorus	mg/L	0.08
Sulfate	mg/L	202
Sulfide	mg/L	2.4
Total dissolved solids (TDS)	mg/L	1550
Total kjeldahl nitrogen (TKN)	mg/L	1.68
Total organic carbon (TOC)	mg/L	8.7
Total suspended solids (TSS)	mg/L	5
Volatile suspended solids	mg/L	2

Notes:

U - Not present at or above the associated value.

	CONESTOGA-ROVERS & ASSOCIATES
--	---

2371 George Urban Blvd. Depew, New York 14043 Telephone: (716) 206-0202 Fax: (7 www.CRAworld.com

Fax: (716) 206-0201

MEMO	RA	ND	UM
		a de la composition de la composition de la composition de la composition de la composition de la composition d	An and a state of the

TO:	Klaus Schmidtke	Ref. No.:	007987
From:	Susan Scrocchi/bjw/5 5	DATE: <u>E-Mail and H</u>	June 22, 2010 l <mark>ard Copy if Requested</mark>
RE:	Analytical Results and QA/QC Review Annual Groundwater Sampling Gratwick-Riverside Park Site May 2010		

INTRODUCTION

Thirteen (13) samples, including one field duplicate, were collected in support of the Annual Groundwater Sampling at the Gratwick-Riverside Park Site (Site) during May 2010. Samples were submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	Methodology
Site-Specific Volatile Organic Compounds (VOCs)	SW-846 8260 ¹
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	SW-846 8270 ¹

The sample collection and analysis summary is presented in Table 1. The analytical results are summarized in Table 2. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the "National Functional Guidelines for Organic Data Review" (October 1999).

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times. All samples were received in good condition and properly preserved.

¹ "Test Methods for Solid Waste Physical/Chemical Methods", SW-846, 3rd Edition, September 1986 (with all subsequent revisions).

CRA MEMORANDUM

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters. All method blank results were non-detect for the compounds of interest indicating acceptable analytical procedures.

A trip blank was submitted with the samples for VOC analysis. All VOC results were non-detect with the exception of 2-butanone present at a low concentration. All samples were non-detect and would not have been impacted.

Blank spikes (BS) were prepared and analyzed for all parameters. All recoveries showed acceptable analytical accuracy.

A matrix spike/matrix spike duplicate (MS/MSD) was prepared and analyzed for VOCs and SVOCs. All recoveries were acceptable indicating adequate analytical accuracy and precision with the exception of some high VOC recoveries. All non-detect results would not have been impacted by the implied high bias, all positive sample results were qualified as estimated (see Table 3).

A field duplicate was submitted "blind" to the laboratory for analysis as specified in Table 1. All the results showed good precision outside of the estimated regions of detection, indicating acceptable analytical and sampling precision.

CONCLUSION

Based on the preceding assessment, the data were acceptable with the qualifications mentioned herein.

SAMPLE COLLECTION AND ANALYSIS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2010

Analysis/Parameters

Location I.D.	Collection Date (mm/dd/yy)	Collection Time (hr:min)	Selected VOCs	Selected SVOCs	Comments
MW-6	05/26/10	14:00	x	х	MS/MSD
MW-9	05/26/10	14:10	Х	Х	
OGC-4	05/26/10	14:20	Х	х	
OGC-1	05/26/10	13:45	х	х	
OGC-4	05/26/10	14:40	Х	Х	Field duplicate of WG-7987-052610-003
OGC-8	05/26/10	15:00	Х	х	
MW-8	05/26/10	14:50	Х	Х	
OGC-3	05/26/10	15:00	Х	х	
OGC-7	05/26/10	14:05	Х	Х	
MW-7	05/26/10	14:25	Х	Х	
OGC-2	05/26/10	14:35	Х	Х	
OGC-6	05/26/10	15:10	Х	х	
OGC-5	05/26/10	15:20	Х	Х	
TRIP BLANK	05/26/10	-	Х		
	Location I.D. MW-6 MW-9 OGC-4 OGC-1 OGC-4 OGC-8 MW-8 OGC-3 OGC-7 MW-7 OGC-2 OGC-7 MW-7 OGC-2 OGC-6 OGC-5 TRIP BLANK	Location I.D. Collection Date (mm/dd/yy) MW-6 05/26/10 MW-9 05/26/10 OGC-4 05/26/10 OGC-1 05/26/10 OGC-4 05/26/10 OGC-4 05/26/10 OGC-4 05/26/10 OGC-3 05/26/10 OGC-7 05/26/10 OGC-7 05/26/10 OGC-2 05/26/10 OGC-5 05/26/10 OGC-5 05/26/10	Location I.D. Collection Date (mm/dd/yy) Collection Time (hr:min) MW-6 05/26/10 14:00 MW-9 05/26/10 14:10 OGC-4 05/26/10 14:20 OGC-1 05/26/10 14:40 OGC-4 05/26/10 13:45 OGC-4 05/26/10 13:45 OGC-4 05/26/10 14:50 OGC-4 05/26/10 14:50 OGC-3 05/26/10 14:50 OGC-3 05/26/10 14:50 OGC-7 05/26/10 14:05 MW-7 05/26/10 14:25 OGC-7 05/26/10 14:35 OGC-2 05/26/10 14:35 OGC-6 05/26/10 15:10 OGC-5 05/26/10 15:20 TRIP BLANK 05/26/10 -	Location I.D. Collection Date (mm/dd/yy) Collection Time (hr:min) Yample X MW-6 05/26/10 14:00 X MW-9 05/26/10 14:10 X OGC-4 05/26/10 14:20 X OGC-1 05/26/10 13:45 X OGC-4 05/26/10 13:45 X OGC-4 05/26/10 14:40 X OGC-4 05/26/10 14:40 X OGC-4 05/26/10 14:40 X OGC-3 05/26/10 14:50 X OGC-3 05/26/10 14:50 X OGC-7 05/26/10 14:05 X MW-7 05/26/10 14:35 X OGC-2 05/26/10 14:35 X OGC-5 05/26/10 15:10 X OGC-5 05/26/10 15:20 X	Location I.D.Collection Date (mm/dd/yy)Collection Time (hr:min)Solution operationMW-6 $05/26/10$ $14:00$ XXMW-9 $05/26/10$ $14:10$ XXOGC-4 $05/26/10$ $14:20$ XXOGC-1 $05/26/10$ $14:20$ XXOGC-4 $05/26/10$ $13:45$ XXOGC-4 $05/26/10$ $13:45$ XXOGC-4 $05/26/10$ $15:00$ XXOGC-8 $05/26/10$ $15:00$ XXOGC-3 $05/26/10$ $15:00$ XXOGC-7 $05/26/10$ $14:05$ XXOGC-7 $05/26/10$ $14:25$ XXOGC-2 $05/26/10$ $14:35$ XXOGC-6 $05/26/10$ $15:10$ XXOGC-5 $05/26/10$ $15:20$ XXTRIP BLANK $05/26/10$ $-$ XX

Notes:

MS - Matrix Spike. MSD - Matrix Spike Duplicate. VOCs - Volatile Organic Compounds. SVOCs - Semi-Volatile Organic Compounds.

CRA 007987Memo-5-Tbls

Page 1 of 2

TABLE 2

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2010

S	Sample Location: Sample ID: Sample Date:	MW6 WG-7987-052610-001 5 /26/2 010	MW7 WG-7987-052610-010 5/26/2010	MW8 WG-7987-052610-007 5/26/2010	MW9 WG-7987-052610-002 5⁄26/2010	OGC1 WG-7987-052610-004 5/26/2010	OGC2 WG-7987-052610-011 5/26/2010	OGC3 WG-7987-052610-008 5/26/2010
Parameters	Units							
Volatile Organic Compounds								
2-Butanone (Methyl ethyl ketone) (N	MEK) µg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	μg/L	5.0 U	5.0 U	5.0 U	5.9	5.0 U	5.0 U	5.0 U
Benzene	μg/L	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U
Chlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	2.5	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	0.82 J	1.0 U	1.0 U	1.0 U
Methylene chloride	µg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	0.55 J	1.0 U	1.0 U	0.57 J	1.0 U	1.0 U	1.0 U
Toluene	μg/L	0.73 J	1.0 U	1.0 U	3.8	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	µg/L	2.3 J	1.0 U	1.0 U	2.6	1.0 U	1.0 U	1.0 U
Vinyl chloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	µg/L	3.0 U	3.0 U	3.0 U	2.2 J	3.0 U	3.0 U	3.0 U
Semi-volatile Organic Compounds								
1,2-Dichlorobenzene	μg/L	0.66 J	9.5 U	1.5 J	1.4 J	9.4 U	9.5 U	0.86 J
1,4-Dichlorobenzene	μg/L	4.2 J	9.5 U	2.1 J	1.7 J	9.4 U	9.5 U	0.58 J
2,4-Dimethylphenol	μg/L	1.4]	10 U	13	41	10 U	10 U	4.3 J
2-Methylphenol	μg/L	1.8]	10 U	22	9.9 J	10 U	10 U	36
4-Methylphenol	μg/L	2.5 J	9.5 U	38	180	9.4 U	9.5 U	9.9
Di-n-octyl phthalate (DnOP)	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Naphthalene	μg/L	7.8]	10 U	10 U	10 U	10 U	10 U	10 U
Phenol	μg/L	1.9 J	10 U	13	20	10 U	10 U	50

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2010

S	ample Location: Sample ID: Sample Date:	OGC4 WG-7987-052610-003 5 /26/2 010	OGC4 WG-7987-052610-005 5/26/2010 (Dunlicate)	OGC5 WG-7987-052610-013 5/26/2010	OGC6 WG-7987-052610-012 5/26/2010	OGC7 WG-7987-052610-009 5/26/2010	OGC8 WG-7987-052610-006 5/26/2010
Parameters	Units		(Dupment)				
Volatile Organic Compounds							
2-Butanone (Methyl ethyl ketone) (N	ИЕК) μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	μg/L	0.70 U	0.70 U	0.70 U	3.6	0.70 U	0.70 U
Chlorobenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	5.2	1.0 U	1.0 U
Methylene chloride	µg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	1.0 U	640	1.0 U	1.0 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	38	1.0 U	1.0 U
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	8.2	1.0 U	1.0 U
Trichloroethene	µg/L	1.0 U	1.0 U	1.0 U	410	1.0 U	1.0 U
Vinyl chloride	μg/L	1.0 U	1.0 U	1.0 U	1.2	1.0 U	1.0 U
Xylene (total)	µg/L	3.0 U	3.0 U	3.0 U	20	3.0 U	3.0 U
Semi-volatile Organic Compounds							
1,2-Dichlorobenzene	μg/L	9.4 U	9.5 U	9.4 U	9.4 U	9.5 U	9.4 U
1,4-Dichlorobenzene	μg/L	9.4 U	9.5 U	9.4 U	9.4 U	9.5 U	9.4 U
2,4-Dimethylphenol	μg/L	0.51 J	10 U	10 U	10 U	10 U	0.73 J
2-Methylphenol	μg/L	10 U	10 U	10 U	32	10 U	2.2 J
4-Methylphenol	µg/L	3.4 J	3.4 J	9.4 U	1.4 J	9.5 U	6.5 J
Di-n-octyl phthalate (DnOP)	μg/L	10 U	10 U	10 U	10 U	10 U	10 U
Naphthalene	µg/L	10 U	10 U	1.6 J	1.4 J	10 U	10 U
Phenol	μg/L	15	15	10 U	10 U	10 U	10 U

Notes:

J - Estimated concentration.

U - Not detected.

QUALIFIED SAMPLE RESULTS DUE TO OUTLYING MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2010

	Associated	MS Analyte Recovery (percent)	MSD		Contro	ol Limits	Qualified Sample		
Parameter	Sample ID		Recovery (percent)	Recovery (percent)	RPD	Recovery (percent)	RPD (percent)	Result	Units
VOCs	WG-7987-052610-001	Tetrachloroethene Trichloroethene	121 122	138 140	13 13	74-122 74-123	20 16	0.55 J 2.3 J	μg/L μg/L

Notes:

J Estimated.

MS Matrix Spike.

MSD Matrix Spike Duplicate.

RPD Relative Percent Difference.

VOCs Volatile Organic Compounds.