

September 9, 2011

Dale W. Marshall, P. E.

City Engineer
Phone: (716) 695-8565
Fax: (716) 695-8568

Reference No. 007987

Mr. Brian Sadowski Project Manager New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2999

Dear Mr. Sadowski:

Re: Site Management Periodic Review Report

Gratwick-Riverside Park Site, North Tonawanda, New York

Pursuant to the New York State Department of Environmental Conservation (NYSDEC) letter dated July 11, 2011, enclosed are one hard copy and one PDF copy on CD of the report entitled "Tenth Annual Operation and Monitoring Report, June 2010 to May 2011". This report is being submitted as the Site Management Periodic Review Report (PRR) for the Gratwick-Riverside Park Site (Site) located in North Tonawanda, New York. This PRR documents the implementation of and compliance with the requirements of the Operation and Maintenance Manual (O&M Manual) dated March 2002 (revised January 2004 and May 2009). The O&M Manual includes the performance monitoring for the constructed remedy. NYSDEC approval for the O&M Manual was given on April 20, 2005. This is the tenth year of reporting for the Site since the implementation of the O&M program. Pursuant to the data presented in the PRR, the constructed remedy is achieving the remedial action objectives.

Also attached is the completed Institutional and Engineering Controls Certification Form which certifies that the NYSDEC listed institutional and engineering controls (ICs/ECs) are accurate as shown and are functioning properly. A PDF copy of the Form and this letter are also included on the CD.

The Site covers approximately 52.9 acres located adjacent to the Niagara River in the City of North Tonawanda, New York. The Site is bordered by River Road to the north, a private marina to the east, the River to the south, and a private residential area to the west. The Site is currently a public park with unrestricted access.

Construction of the remedial action was completed in June 2001 with final inspection performed in November 2001. Groundwater pumping began in May 2001. The description of the constructed remedy is presented in the report entitled "Remedial Action Construction Implementation" dated July 2002. The July 2002 report addressed comments received from the NYSDEC on the Remedial Action Construction Implementation Report submitted in June 2002. Repairs to address shoreline erosion that was observed in 2003 were performed in

November 2004 and are documented in the report entitled "Remedial Action Construction Implementation – Addendum No. 1, Repair of Shoreline Erosion" dated March 2005. NYSDEC acceptance of the Addendum was given on April 20, 2005.

The Certificate of Completion dated March 17, 2008 was accepted by the NYSDEC on March 19, 2008, signifying that all remedial work has been completed.

The purpose and primary objective of the groundwater withdrawal system is to collect groundwater that would otherwise migrate into the Niagara River by creating a hydraulic gradient from the River to the groundwater withdrawal system. The post-RA system performance monitoring program is conducted to collect the hydraulic and groundwater chemical data necessary to evaluate the effectiveness of the barrier slurry wall and groundwater withdrawal system and to track long-term trends in the groundwater chemistry.

The remedial action system components at the Site that have associated O&M activities are as follows:

- Landfill cap
- Barrier slurry wall
- Groundwater withdrawal and discharge system
- Sloped-bank stabilization
- Post-RA system performance monitoring

Inspections of the landfill cap and sloped bank stabilization are performed monthly by CRA. Any observed items requiring corrective actions are reported typically within three business days to the City of North Tonawanda which is responsible for the operation and maintenance of the Site. Performance monitoring of the barrier slurry wall is performed monthly by measuring river and groundwater levels to ensure that a gradient from the river to the groundwater withdrawal system is maintained. Performance monitoring of the groundwater discharge system is performed in accordance with the City of North Tonawanda Industrial Wastewater Discharge Permit Number 2628011 which requires semi-annual collection and analyses of samples of the water that is discharged to the City of North Tonawanda WWIP. Groundwater samples are currently collected and analyzed annually from seven wells and from an additional five wells once every two years in accordance with the schedule in the modified O&M Manual to track the long-term trends in the groundwater concentrations.

If you have any questions, please do not hesitate to contact the undersigned at 716-695-8565.

Marghall

Yours truly,

Dale Marshall, P.E.

City Engineer

KDS/lp/3

Encl.

cc: G. Sutton/Marty Doster, NYSDEC Region 9

M. Forcucci, NYSDOH (electronic copy)

C. Babcock, GSHI

J.P. Moreau/W. Jones (National Grid)

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

			8.5	
	Site Details		Box	1 .
Site No. 932060				
	2 × *		2.00	
Site Name Gratwick - Riverside Par	k.		. 8*	
The file of the fi				
Site Address: River Road Zip Co	ode: 14120			**
City/Town: North Tonawanda	jde. 14120	• 1	23	**
County: Niagara				(3) (3)
Site Acreage: 52.9		1.	125	¥3.
Oile Acreage. 52.5	- 10 - 10 - 10		10 M	
Reporting Period: June 01, 2010 to Au	auct 25 2011			
		* 1		
1/10	ay 31			Ø
			YES	NO .
			IES	NO .
1. Is the information above correct?				W
is the information above conject?				×
If NO, include handwritten above or	on a congrete chapt		2.50	
ii NO, tiloude flatidwitteri above of	on a separate sileet.			7.088
2. Has some or all of the site property	been sold subdivided in	orand or under		
tax map amendment during this Re	norting Period?	lerged, or under	gon e a	W
tax map amenament during this ite	porting renou?			A
3. Has there been any change of use	at the cite during this Dan	orting Boried		9 3
(see 6NYCRR 375-1.11(d))?	at the site during this iver	ording Feriod		×
(occ out of a control (a)):				×
4. Have any federal, state, and/or loca	l permits (e à building c	lischarge) heen	equad	
for or at the property during this Rep	nartina Period?			X .
,				/
		mentation or ex	20. 94	Α .
If you answered YES to questions	s 2 thru 4, include docu	mentation or ex	ridence	
	s 2 thru 4, include docu	mentation or ex this certificatio	ridence	Α .
If you answered YES to questions that documentation has been pre	s 2 thru 4, include docu viously submitted with	mentation or ex this certificatio	ridence	×
If you answered YES to questions that documentation has been pre	s 2 thru 4, include docu viously submitted with	mentation or ev this certificatio	ridence	×
If you answered YES to questions that documentation has been pre	s 2 thru 4, include docu viously submitted with	mentation or ex this certificatio	ridence	×
If you answered YES to questions that documentation has been pre	s 2 thru 4, include docu viously submitted with	mentation or ex this certificatio	ridence	×
If you answered YES to questions that documentation has been pre	s 2 thru 4, include docu viously submitted with	mentation or ex this certificatio	ridence	×
If you answered YES to questions that documentation has been pre	s 2 thru 4, include docu viously submitted with	mentation or ex this certificatio	ridence n form.	×
If you answered YES to questions that documentation has been pre	s 2 thru 4, include docu viously submitted with	mentation or ex this certificatio	ridence n form.	NO
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve	s 2 thru 4, include docu viously submitted with elopment?	this certificatio	ridence n form.	×
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with	s 2 thru 4, include docu viously submitted with elopment?	this certificatio	ridence n form.	×
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve	s 2 thru 4, include docu viously submitted with elopment?	this certificatio	Box 2	NO
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill	s 2 thru 4, include docu viously submitted with elopment?	this certificatio	Box 2	NO
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with	s 2 thru 4, include docu viously submitted with elopment?	this certificatio	Box 2	NO
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill	s 2 thru 4, include docu viously submitted with elopment?	this certificatio	Box 2 YES	NO -
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill 7. Are all ICs/ECs in place and function	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below?	this certificatio	Box 2 YES	NO -
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill 7. Are all ICs/ECs in place and function IF THE ANSWER TO EITHER	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below? ning as designed?	this certificatio	Box 2 YES	NO -
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill 7. Are all ICs/ECs in place and function IF THE ANSWER TO EITHER	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below?	this certificatio	Box 2 YES	NO -
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill 7. Are all ICs/ECs in place and function IF THE ANSWER TO EITHER DO NOT COM	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below? thing as designed? QUESTION 6 OR 7 IS NO	, sign and date	Box 2 YES	NO D
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill 7. Are all ICs/ECs in place and function IF THE ANSWER TO EITHER	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below? thing as designed? QUESTION 6 OR 7 IS NO	, sign and date	Box 2 YES	NO D
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill 7. Are all ICs/ECs in place and function IF THE ANSWER TO EITHER DO NOT COM	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below? thing as designed? QUESTION 6 OR 7 IS NO	, sign and date	Box 2 YES	NO D
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill 7. Are all ICs/ECs in place and function IF THE ANSWER TO EITHER DO NOT COM	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below? thing as designed? QUESTION 6 OR 7 IS NO	, sign and date	Box 2 YES	NO D
If you answered YES to questions that documentation has been presented to the site currently undergoing developments. Is the site currently undergoing developments. Is the current site use consistent with Closed Landfill. Are all ICs/ECs in place and function. IF THE ANSWER TO EITHER DO NOT COM. A corrective Measures Work Plan must. According to the current site use consistent with Closed Landfill.	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below? The use of t	, sign and date	Box 2 YES	NO D
If you answered YES to questions that documentation has been pre 5. Is the site currently undergoing deve 6. Is the current site use consistent with Closed Landfill 7. Are all ICs/ECs in place and function IF THE ANSWER TO EITHER DO NOT COM	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below? thing as designed? QUESTION 6 OR 7 IS NO	, sign and date	Box 2 YES	NO D
If you answered YES to questions that documentation has been presented to the site currently undergoing developments. Is the site currently undergoing developments. Is the current site use consistent with Closed Landfill. Are all ICs/ECs in place and function. IF THE ANSWER TO EITHER DO NOT COM. A corrective Measures Work Plan must. According to the current site use consistent with Closed Landfill.	s 2 thru 4, include docuviously submitted with elopment? th the use(s) listed below? The use of t	, sign and date	Box 2 YES	NO D

SITE NO. 932060. Box 3

Description of Institutional Controls

Parcel 175.19-1-28 Owner :

City of North Tonawanda

Institutional Control

Building Use Restriction Ground Water Use Restriction Landuse Restriction Monitoring Plan O&M Plan

Box 4

Description of Engineering Controls

Parcel

Engineering Control

175.19-1-28

Cover System Groundwater Containment Leachate Collection
Pump & Treat

Control Description for Site No. 932060

Parcel: 175.19-1-28

Deed Restriction. Sloped Bank Stabilization in addition to the ICEC listed above.

Periodic Review Report (PRR) Certification Statements

 I certify by checking "YE 	ES" below that:
---	-----------------

- a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional
 or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the
 following statements are true:
 - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

x . .

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Data

IC CERTIFICATIONS SITE NO. 932060

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 2 and/or 3 are true, I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Owner or Remedial Party) for the Site named in the Site Details Section of this form.

ICIEC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print business address am certifying as a Professional Engineer for the OF AROFESSIONAL Stamp

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

(Required for PE)

TENTH ANNUAL OPERATION AND MONITORING REPORT JUNE 2010 TO MAY 2011

GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

DISCLAIMER:

SOME FORMATTING CHANGES MAY HAVE OCCURRED WHEN THE ORIGINAL DOCUMENT WAS PRINTED TO PDF; HOWEVER, THE ORIGINAL CONTENT REMAINS UNCHANGED.

SEPTEMBER 2011 REF. NO. 007987 (38) Prepared by: Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario Canada N2V 1C2

Office: (519) 884-0510 Fax: (519) 884-0525

web: http://www.CRAworld.com

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTROD	UCTION	1
2.0	GROUNI	DWATER WITHDRAWAL SYSTEM (GWS)	2
	2.1	HYDRAULIC MONITORING	2
	2.2	GROUNDWATER QUALITY MONITORING	4
	2.2.1	SAMPLE RESULTS	4
	2.3	EFFLUENT MONITORING PROGRAM	7
	2.3.1	SAMPLE RESULTS	7
	2.4	SURFACE WATER MONITORING PROGRAM	
	2.5	GWS OPERATIONS	9
3.0	SITE INS	PECTIONS	11
4.0	CONCLU	JSIONS/RECOMMENDATIONS	12
	4.1	OPERATION AND MAINTENANCE	
	4.2	MONITORING	12
	4.3	NOTIFICATIONS TO CITY OF NORTH TONAWANDA	

LIST OF FIGURES

(Following Text)

FIGURE 2.1	MONITORING NETWORK
FIGURE 2.2	MW-6 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.3	MW-7 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.4	MW-8 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.5	MW-9 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.6	OGC-1 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.7	OGC-2 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.8	OGC-3 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.9	OGC-4 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.10	OGC-5 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.11	OGC-6 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.12	OGC-7 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.13	OGC-8 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.14	EFFLUENT TVOCS AND TSVOCS VS. TIME
FIGURE 2.15	EFFLUENT pH VS. TIME
FIGURE 2.16	EFFLUENT TOTAL SUSPENDED SOLIDS VS. TIME
FIGURE 2.17	EFFLUENT BOD VS. TIME
FIGURE 2.18	EFFLUENT VOLUME VS. TIME

LIST OF TABLES (Following Text)

TABLE 2.1	GROUNDWATER HYDRAULIC MONITORING LOCATIONS
TABLE 2.2	WATER LEVELS (FT AMSL)
TABLE 2.3	SUMMARY OF HORIZONTAL GRADIENTS
TABLE 2.4	SUMMARY OF VERTICAL GRADIENTS
TABLE 2.5	GROUNDWATER SAMPLING SUMMARY
TABLE 2.6	SUMMARY OF DETECTED COMPOUNDS, SITE GROUNDWATER AND RIVER WATER
TABLE 2.7	PH READINGS
TABLE 2.8	EFFLUENT SAMPLING SUMMARY, JUNE 2001 TO FEBRUARY 2007
TABLE 2.9	EFFLUENT SAMPLING SUMMARY, SUBSEQUENT TO FEBRUARY 2007
TABLE 2.10	ANALYTICAL RESULTS SUMMARY, SITE EFFLUENT
TABLE 2.11	GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW

LIST OF APPENDICES

APPENDIX A	MONTHLY INSPECTION LOGS (JUNE 2010 TO MAY 2011)
A PPENIDIY R	OA /OC REVIEWS

1.0 INTRODUCTION

This report is the tenth annual Operation and Monitoring Report (O&M Report) for the remedial actions constructed at the Gratwick-Riverside Park Site (Site) located in North Tonawanda, New York. This report covers the period from June 2010 to May 2011 and was prepared pursuant to Section 7.0 of the report entitled "Operation and Maintenance Manual" (O&M Manual) dated March 2002 (revised January 2004 and May 2009). It is noted that New York State Department of Environmental Conservation (NYSDEC) approval for the O&M Manual was given on April 20, 2005. All O&M activities have been performed in accordance with the methods and frequencies specified in the O&M Manual and as modified in previous annual reports and approved by NYSDEC. In accordance with the approved monitoring changes, the groundwater is now monitored annually in seven wells and an additional five wells are monitored once every two years. The surface water quality of the Niagara River adjacent to the Site is no longer monitored. Discharge from the Site is monitored semi-annually in accordance with the City of North Tonawanda Wastewater Discharge Permit.

2.0 GROUNDWATER WITHDRAWAL SYSTEM (GWS)

Full-time operation of the Groundwater Withdrawal System (GWS) at the Site started on May 4, 2001. The objectives of the GWS are to:

- i) Achieve and maintain an inward gradient from the Niagara River toward the GWS
- ii) Achieve and maintain an upward gradient from the fill alluvium layer beneath the GWS

In order to determine whether the objectives are being met, hydraulic and chemical monitoring programs have been developed. These programs include: Site groundwater; GWS effluent; and River surface water. Sampling of the River water was approved for elimination in 2008. The wells, manholes, wet wells, and storm sewer outfalls that comprise the monitoring network are shown on Figure 2.1. The monitoring programs are described in the following subsections.

2.1 HYDRAULIC MONITORING

Hydraulic monitoring consists of the collection of water levels in monitoring wells and manholes, and River water levels at the storm sewer outfalls. These data are then used to determine the vertical and horizontal gradients for the groundwater.

The water levels in four GWS manholes and in the River were monitored to confirm that an inward gradient exists. The water levels in five GWS manholes and in four monitoring wells installed near the GWS alignment in the materials directly overlying the confining unit were monitored to confirm that an upward gradient exists. The specific manholes and monitoring wells used to determine the horizontal and vertical gradients are listed in Table 2.1.

Groundwater elevations are measured on a monthly basis. The measured water levels from the beginning of the O&M period are provided in Table 2.2. Summaries of the horizontal and vertical gradients to May 2010 were previously provided and thus are not provided in this report. The gradients for this reporting period are provided in Tables 2.3 and 2.4, respectively.

The results for the horizontal gradient evaluation show that:

- i) Inward horizontal gradients were achieved by May 11, 2001, within one week of the start of pumping the GWS
- ii) The inward gradients were maintained for the remainder of the first ten years except for a few short intervals in isolated areas. The only exceptions in this reporting period occurred between July 7 through October 12, 2010 in the vicinity of MH-2 and in August in the vicinity of MH-8

These outward gradients were due to the pumps in MH-3 and MH-9 being out-of-service as described in Section 2.6.

Short periods of outward gradient do not adversely affect the effectiveness of the remedy because:

- i) The gradients were outward for only short periods of time
- ii) The outward gradients occurred over only a portion of the barrier wall
- iii) The 36-inch barrier wall is six inches thicker than the design thickness thereby providing extra protection
- iv) Any outward migration of Site groundwater into the barrier wall during the short periods of outward gradient is more than offset by the inward migration of river water into the barrier wall during the long periods of inward gradient

With regard to the period of outward gradients noted in this reporting period, the difference in elevation between the groundwater in the GWS and the Niagara River levels ranged from 1.62 to 3.18 feet in the vicinity of MH2. The maximum difference in water levels is equivalent to a hydraulic gradient of 1.06 over the 3-foot thickness of the barrier wall. The hydraulic conductivity of the in-place barrier wall ranged from 2.34 to 9.45×10^{-8} cm/sec. Using the maximum value of 9.45×10^{-8} cm/sec and an assumed porosity of 0.25, groundwater would have migrated a distance of 1.3 inches through the barrier wall for the 97 day period between July 7, 2010 and October 12, 2010. Thus, there was no adverse effect due to this period of outward gradient.

The results for the vertical gradient evaluation showed that the vertical gradients during this reporting period were continually upward for all four monitoring pairs except for:

i) Monitoring well pair MH3/MW-6 in July, August, and September 2010

2.2 GROUNDWATER QUALITY MONITORING

Groundwater quality monitoring consists of the collection of water samples from on-Site overburden monitoring wells (OGC-1 through OGC-8 and MW-6 through MW-9) and the analysis of these samples to determine the concentrations of chemicals in the groundwater. The purpose of the groundwater quality monitoring program is to monitor the anticipated improvement in the quality of the overburden groundwater:

- i) Between the barrier wall and the River (OGC-1 through OGC-4)
- ii) In the fill/alluvium beneath the GWS (MW-6 through MW-9)

The MWs are located on the inside of the barrier wall and the OGCs are located between the barrier wall and the river.

Groundwater quality monitoring locations are presented on Figure 2.1 and the analytical parameters and frequency are listed in Table 2.5.

Groundwater sampling was on an annual basis between May 2004 and May 2008. As approved in the NYSDEC letter dated February 23, 2009 the sampling frequency for May 2009 through May 2012 will be:

Annual	Once Every Two Years (2010 and 2012)
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	

2.2.1 SAMPLE RESULTS

A summary of compounds detected in the groundwater samples for this reporting period is provided in Table 2.6 and pH levels are provided in Table 2.7.

To evaluate the trends in the groundwater chemistry and evaluate the appropriate frequency of future sampling, the VOCs and SVOCs were summed and plotted on Figures 2.2 through 2.13 for each of the 12 monitoring wells included in the program. It is believed that the sum of the VOCs (i.e., TVOCs) and SVOCs (i.e., TSVOCs) best represent the trends in the groundwater chemistry.

Review of the TVOC and TSVOC concentrations for the seven wells sampled in 2011 show the following trends since May 2008 (the last prior date all 12 wells were sampled):

i) TVOCs:

- Decreasing concentrations in 2 of the 7 wells (OGC-3 andOGC-8)
- Increasing concentrations from May 2008 to May 2010 and then decreasing in 1 of the 7 wells (OGC-6)
- Relatively constant concentrations with random fluctuations in four of the seven wells (MW-8, MW-9, OGC-4 and OGC-7)

ii) TSVOCs:

- Decreasing concentrations in 4 of 7 wells (MW-8, OGC-3, OGC-4 and OGC-6)
- Relatively constant concentrations with random fluctuations in 3 of the 7 wells (MW-9, OGC-7 and OGC-8)

All the wells had only low level TVOC concentrations in this reporting period, except for MW-8 (107 $\mu g/L$), MW-9 (20/18 $\mu g/L$), OGC-6 (435 $\mu g/L$), and OGC-7 (25 $\mu g/L$). With regard to TSVOC concentrations, three wells had higher concentrations, MW-8 (79 $\mu g/L$), MW-9 (304/307 $\mu g/L$), and OGC-3 (95 $\mu g/L$). Wells OGC-4, OGC-6, OGC-7, and OGC-8 had TSVOC concentrations < 20 $\mu g/L$.

In summary, the number of wells with decreasing or constant but fluctuating low level concentrations shows that the groundwater is being remediated.

Additional description of the TVOC and TSVOC concentrations is provided in the following paragraphs.

Monitoring Wells On-Site - Inside Barrier Wall

The TVOC concentrations for MW-6 shown on Figure 2.2 have been less than 5 μ g/L since May 2007. The TSVOC concentrations were low level (i.e., <5 μ g/L) since May 2004 until May 2010 when they increased slightly to 20 μ g/L.

The TVOC and TSVOC concentrations for MW-7 on Figure 2.3 show that both TVOC and TSVOC have remained low level. TVOC concentrations ranged from non-detect to $7.3 \,\mu g/L$ since November 2003. TSVOC concentrations ranged from non-detect to $1 \,\mu g/L$ since May 2004.

The TVOC concentrations for MW-8 on Figure 2.4 show that the TVOC concentration for the May 2011 sample was $107 \,\mu g/L$. This is consistent with the 90 and $142 \,\mu g/L$ for May 2008 and May 2009, respectively. The TSVOC concentrations since May 2006 increased slightly from $31 \,\mu g/L$ to $117 \,\mu g/L$ in the May 2009 sample and since then have continually decreased to $79 \,\mu g/L$ in the May 2011 sample.

The TVOC concentrations for MW-9 on Figure 2.5 show that the TVOC concentrations ranged between 9 and 30 μ g/L for the entire record period. The TSVOC concentrations have fluctuated between 150 to 440 μ g/L since August 2002.

All MWs are located on the inside of the barrier wall and a net inward gradient has always been maintained in the vicinity of these wells. Thus, the TVOCs and TSVOCs are not migrating to the Niagara River.

Monitoring Wells Between Barrier Wall and River

The TVOC concentrations for OGC-1 on Figure 2.6 show that the concentrations since November 2003 ranged between 0.5 and 4 μ g/L. The TSVOC concentrations for the last seven sampling events (i.e., since November 2003) have fluctuated between non-detect and 3 μ g/L.

The TVOC concentrations for OGC-2 on Figure 2.7 have fluctuated randomly between non-detect and $4.5\,\mu g/L$ since February 2002. The TSVOC concentrations were all non-detect over this same time period.

The TVOC concentrations for OGC-3 shown on Figure 2.8 have fluctuated between non-detect to 17 μ g/L since May 2006. The TSVOC concentrations have decreased from 300 μ g/L in November 2003 to 95 μ g/L in May 2011.

The TVOC concentrations for OGC-4 shown on Figure 2.9 fluctuated between non-detect and $6\,\mu g/L$ for the time period from November 2002 to May 2011. The TSVOC concentrations have fluctuated widely but have continually decreased since May 2004 with a concentration of $5.5\,\mu g/L$ in the May 2011 sample. The single compound responsible for the higher historic concentrations was phenol.

The TVOC concentrations for OGC-5 shown on Figure 2.10, ranged from non-detect to $11 \,\mu\text{g/L}$ since February 2002. The TSVOC concentrations ranged from non-detect to $2 \,\mu\text{g/L}$ since February 2003.

The TVOC concentrations for OGC-6 shown on Figure 2.11 increased continually from 3 $\mu g/L$ in May 2001 to 4,200 $\mu g/L$ in May 2006, then decreased to 68 $\mu g/L$ by May 2008 before increasing to 1,130 $\mu g/L$ in the May 2010 sample. The TVOC concentration in the May 2011 sample decreased to 435 $\mu g/L$. The primary compounds detected are PCE and TCE. The TSVOC concentrations have fluctuated between non-detect and 210 $\mu g/L$. The May 2011 TVOC concentration was 17 $\mu g/L$.

The TVOC concentrations for OGC-7 shown on Figure 2.12, have continually decreased since November 2003 and were 25 $\mu g/L$ in the May 2011 sample. The TSVOC concentrations have been non-detect since August 2002 except for May 2008 ($0.9~\mu g/L$) and May 2011 ($0.45~\mu g/L$).

The TVOC concentrations for OGC-8 shown on Figure 2.13 decreased from 460 μ g/L in May 2001 to 84 μ g/L in May 2003 and have ranged from non-detect to 29 μ g/L since that time. The TSVOC concentrations have decreased from 139 μ g/L in August 2001 to 54 μ g/L in August 2002 and have ranged from non-detect to 11 μ g/L since that time.

The QA/QC review of the May 2011 groundwater results is included in Appendix B.

2.3 EFFLUENT MONITORING PROGRAM

Groundwater from the GWS is discharged to the POTW without the need for pretreatment. The monitoring performed during the construction phase of the remedy clearly showed that the minimal chemical presence in the groundwater collected in the GWS is easily treated at the POTW and therefore no on-Site pretreatment is necessary. The effluent samples are collected at the monitoring station (meter building), which is located at the south end of the Site as shown on Figure 2.1. The analytical parameters for the time period from June 2001 to February 2007, inclusive, are listed in Table 2.8 and the parameters monitored since 2007 are listed in Table 2.9.

2.3.1 SAMPLE RESULTS

Effluent samples are collected semi-annually and consist of a 24-hour composite sample collected for SVOCs, metals, and wet chemistry parameters. Three grab samples are also

collected for VOCs at 8-hour intervals and the measured concentrations are averaged to give a 24-hour concentration.

QA/QC reviews of the discharge results to May 2010 have already been submitted to the NYSDEC. Thus, these reviews are not being resubmitted with this O&M Report. The QA/QC reviews of the discharge results from September 2010 and March 2011 are provided in Appendix B.

The effluent sample results for this reporting period are provided in Table 2.10. To assist in evaluating the chemical concentration trends in the effluent discharge from the GWS, the measured concentrations for the following parameters are plotted: TVOCs, TSVOCs, pH, total suspended solids (TSS), and biochemical oxygen demand (BOD) (see Figures 2.14 through 2.17). It is believed that these parameters are representative of the trends in the chemistry of the water discharged to the POTW and, as such, can also be used to determine an appropriate monitoring frequency for the effluent.

As shown on Figure 2.14, the TVOCs generally peak in the spring and then decline reaching a trough in the fall. This pattern may be attributable to additional flushing during the spring snow melt. The long-term trend of the TVOC concentrations show a continual decrease with time. The TVOC concentration in the March 2011 sample was 42 mg/L. The effluent TSVOC results on Figure 2.14 show no apparent seasonal pattern but the TSVOC concentrations show the same decreasing trend with time as the TVOC concentrations. The TSVOC concentration in the March 2011 sample was non-detect.

The pH levels are presented on Figure 2.15. As shown on Figure 2.15, the pH levels range between 7.3 and 11.6. An apparent trend in the pH levels is higher pH levels in the winter/spring and lower pH levels in the summer/fall.

The TSS concentrations presented on Figure 2.16 show higher concentrations occurring in the early spring and late summer/fall with elevated concentrations (maximum of 278 mg/L) in the spring of 2005. Because TSS may be related to the discharge flow rate, the monthly discharge volume (see Table 2.11) is plotted on Figure 2.18. Comparison of the results presented on these two figures shows an apparent correlation between higher flows and greater TSS concentrations except for the 2005 spring results.

The BOD concentrations are presented on Figure 2.17. As shown on Figure 2.17, BOD concentrations ranged from 20 to 29 mg/L until April 2002 then decreased to the range of 6 to 24 mg/L since May 2002. The BOD concentrations were compared with the discharge volume but showed no apparent correlation.

In summary, the trends described above support the semi-annual sampling frequency in the current City of North Tonawanda Industrial Wastewater Discharge Permit.

2.4 SURFACE WATER MONITORING PROGRAM

To determine that the River sediment remediation and enhancement is working properly, surface water samples were collected from May 2001 to May 2008 at locations upstream of, adjacent to, and at the downstream end of the Site (see Figure 2.1 for locations). Pursuant to the NYSDEC approval received on February 23, 2009, no further sampling or analyses of the River water is needed or being performed.

2.5 GWS OPERATIONS

The volume of water pumped on a monthly basis from the Site to the City POTW for treatment is presented in Table 2.11 and plotted on Figure 2.18. The monthly volumes show that during the time period of initial dewatering of the Site (i.e., May and June 2001) the monthly volumes ranged from 2,300,000 to 2,900,000 gallons. For the time period from June 2007 to May 2011, the monthly volumes ranged from 23,800 to 2,661,000 gallons except for March 2009 which had a volume of 4,239,000 gallons.

The total measured volume of water discharged from the Site for the time period from May 2001 to May 2011 was 87,552,600 gallons with 7,766,100 gallons pumped during the last 12 months.

Section 5.0 of the O&M Manual describes the procedures to be followed in case pumping of the GWS needs to be stopped to prevent the discharge of untreated water from the Site by the City POTW (i.e., wet weather shutdown). No wet weather shutdown occurred in the time period from June 2010 to May 2011.

The treatment of the Site groundwater by the City POTW did not require any modifications to the standard operations of the City POTW and did not cause any operational upsets of the City POTW.

2.6 GWS MAINTENANCE

The pump in MH-3 was out-of-service from July 7 through October 12, 2010 due to an accumulation of material on the pump impellor. Attempts to remove the material were

not successful and the pump was replaced on October 12, 2010. The pump in MH-9 was also out-of-service from May 24 through July 28, 2010 due to electrical problems. The pump was rebuilt and was re-installed on July 28, 2010.

007987 (38)

10

3.0 SITE INSPECTIONS

Site inspections were performed on a monthly basis. Copies of the Inspection Logs for the time period to May 2010 were previously submitted and thus are not being resubmitted with this O&M Report. The Monthly Inspection Logs for June 2010 through May 2011 are included in Appendix A. In summary, the June 2010 through May 2011 inspections identified:

- i) Higher water levels in MH-2, MH-3 and MH-8 from July through September 2010
- ii) Higher water levels in MH-11 in June and July 2010
- iii) Higher water levels in MH-14 from March through May 2011
- iv) Soil erosion approximately 20 feet south of OGC-7
- v) Soil erosion north and south of the River North pipe.

The elevated water levels were due to the pumps in MH-3 and MH-9 being out-of-service as described in Section 2.6. The pumps have been repaired or replaced and are operating as of the date of this report. The schedule for repair of the erosion described above is to be determined by the City of North Tonawanda.

4.0 CONCLUSIONS/RECOMMENDATIONS

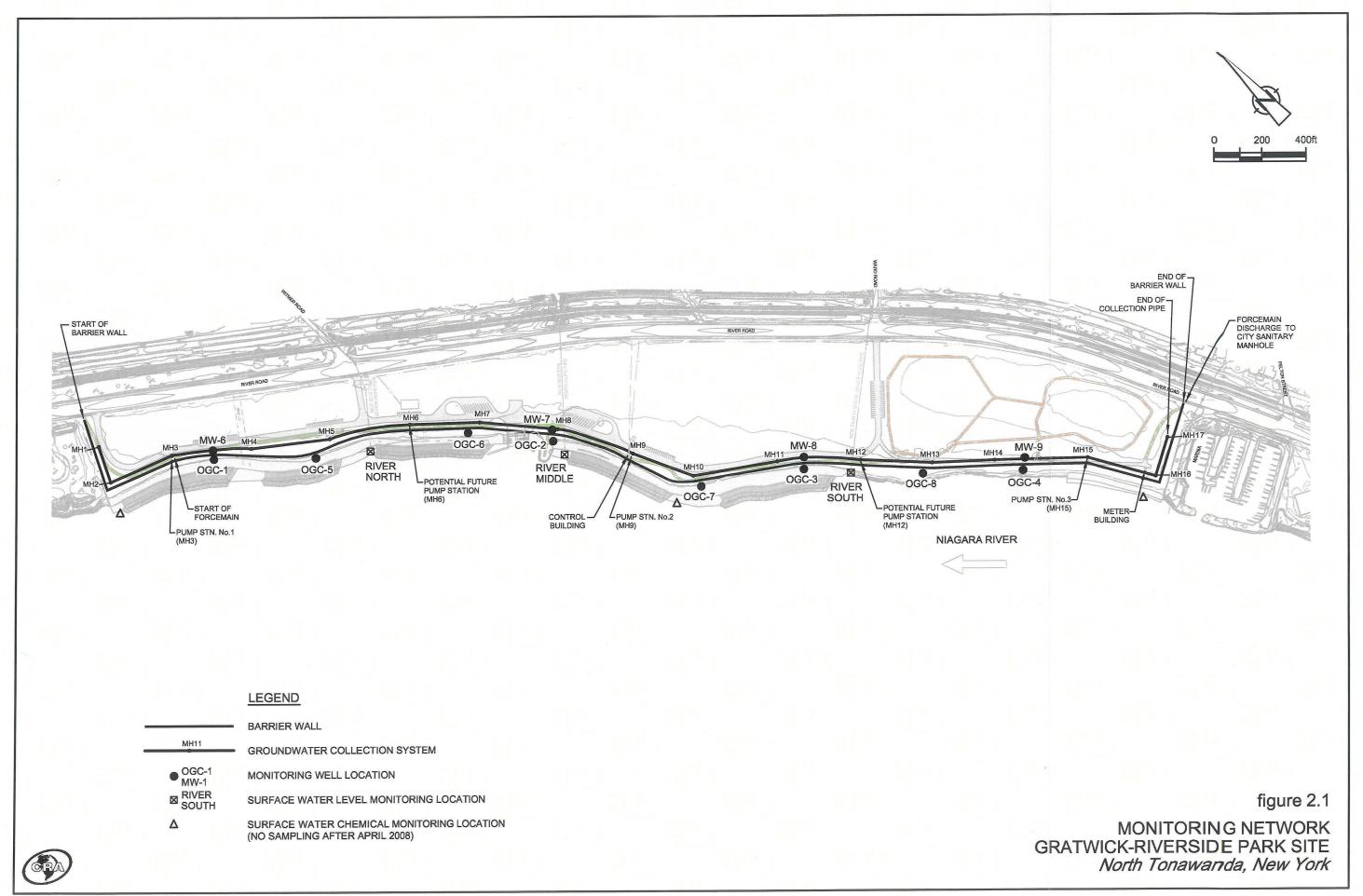
4.1 OPERATION AND MAINTENANCE

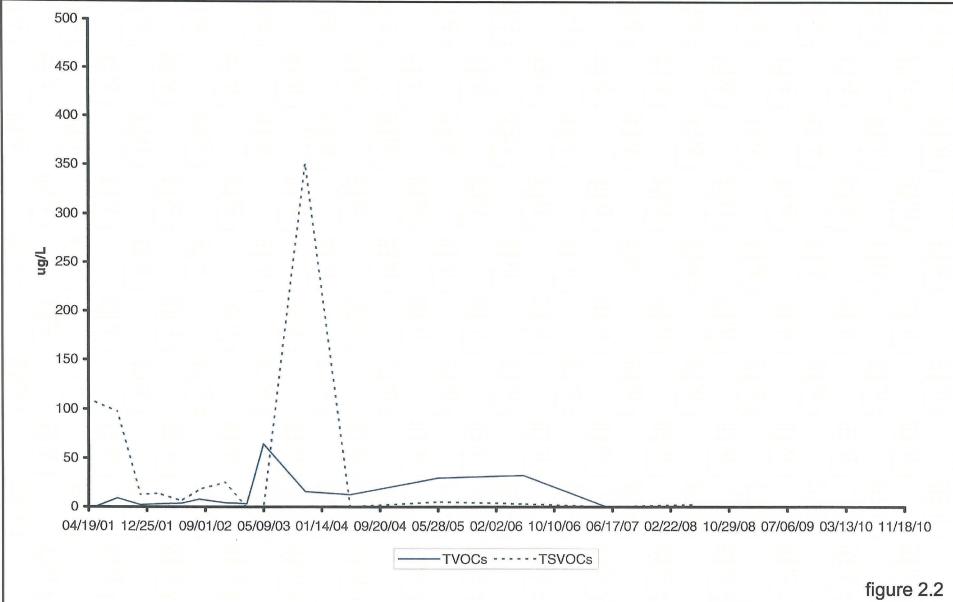
The constructed remedy is achieving the remedial action objectives.

4.2 MONITORING

The trends in the groundwater TVOC and TSVOC analytical results are relatively consistent with time with four of seven wells having TVOC and/or STVOC concentrations $\leq 20 \,\mu\text{g/L}$ for the 2011 event.

In summary, the groundwater sample collection frequency from May 2009 up to and including May 2012 is:

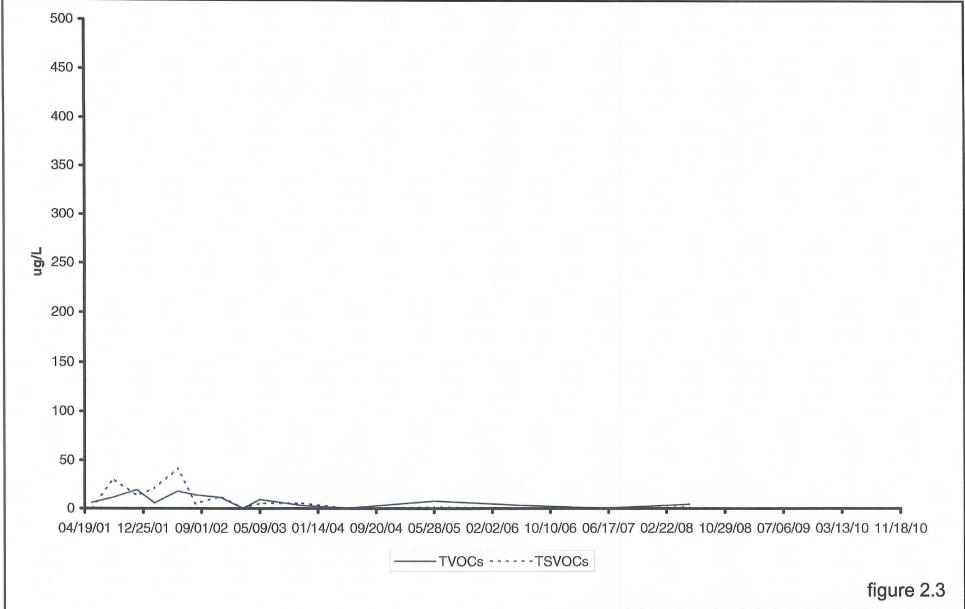

Annual	Once Every 2 Years (2010 and 2012)
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	

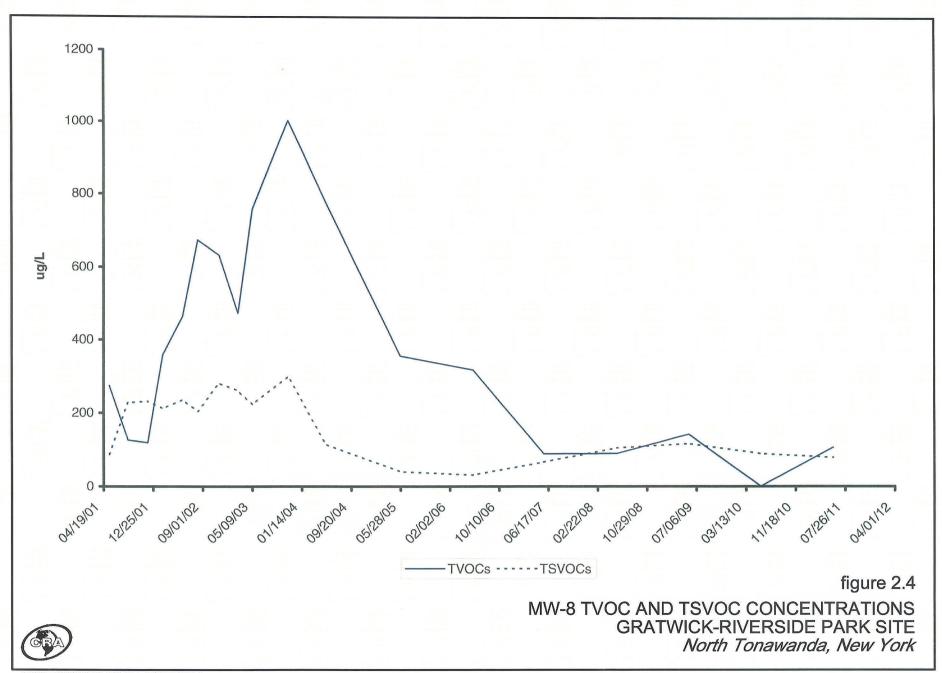

No further sampling of the river water is required.

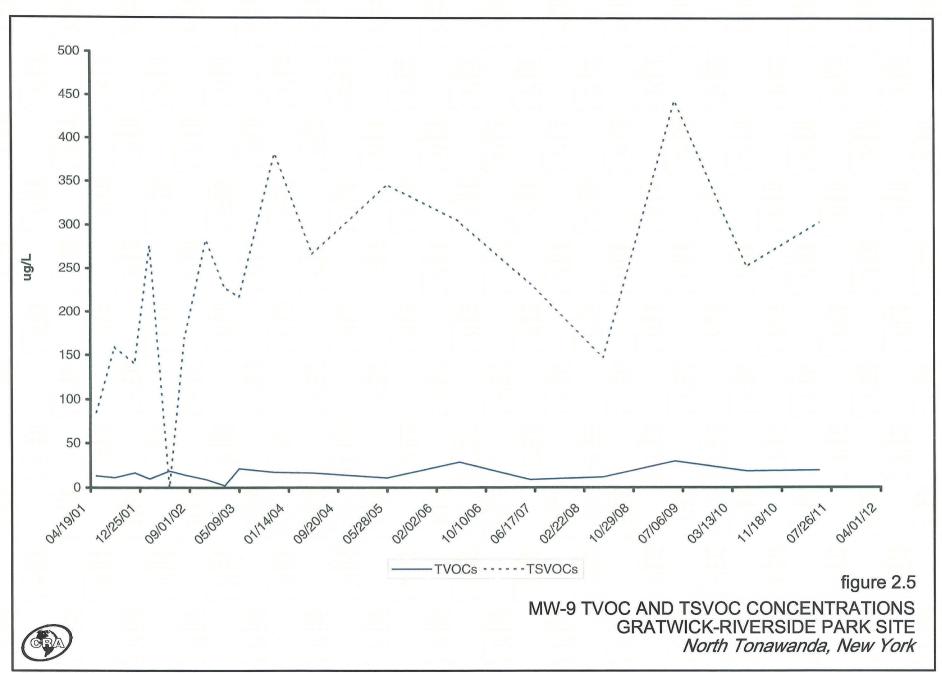
Pursuant to the discharge permit effective January 31, 2007 (renewed March 1, 2010 and effective until February 28, 2013), semi-annual monitoring commenced in September 2007. The trends in the effluent from the GWS to the POTW support the reduction in the sampling frequency from monthly to semi-annual. Flow monitoring will continue to be performed monthly as a check on the operation of the GWS.

4.3 NOTIFICATIONS TO CITY OF NORTH TONAWANDA

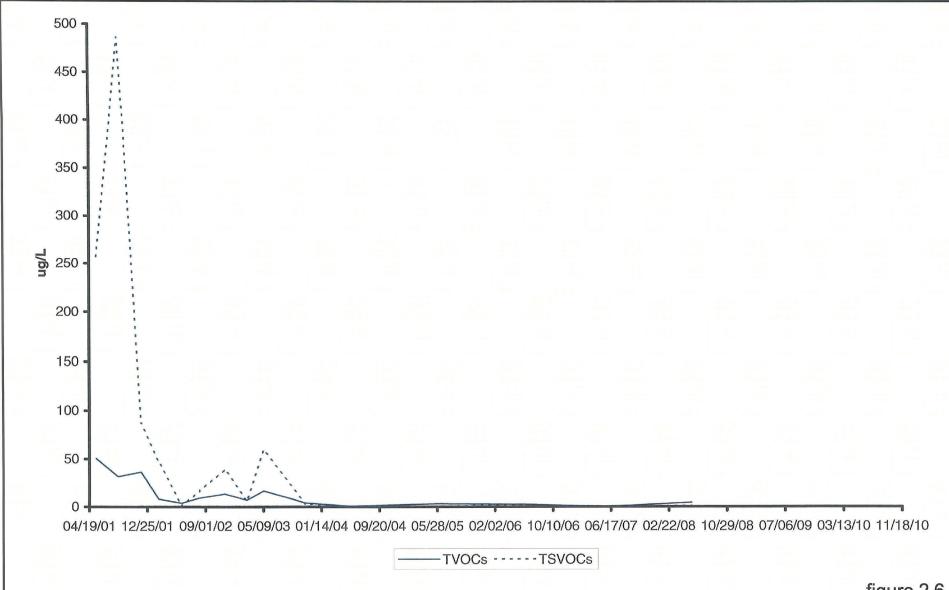
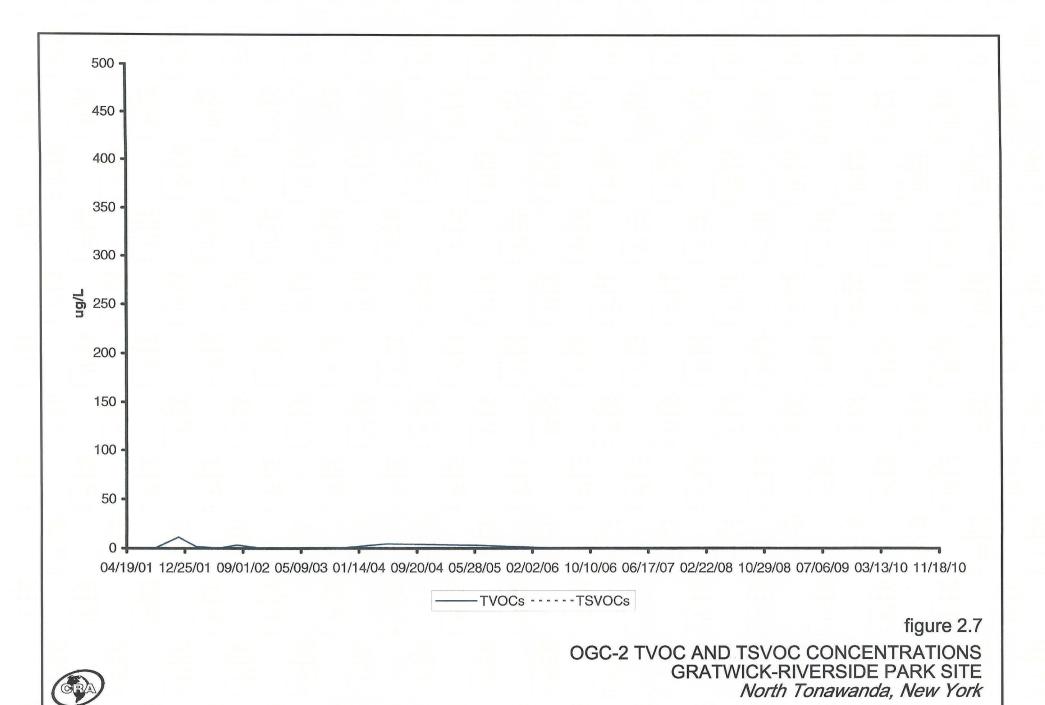
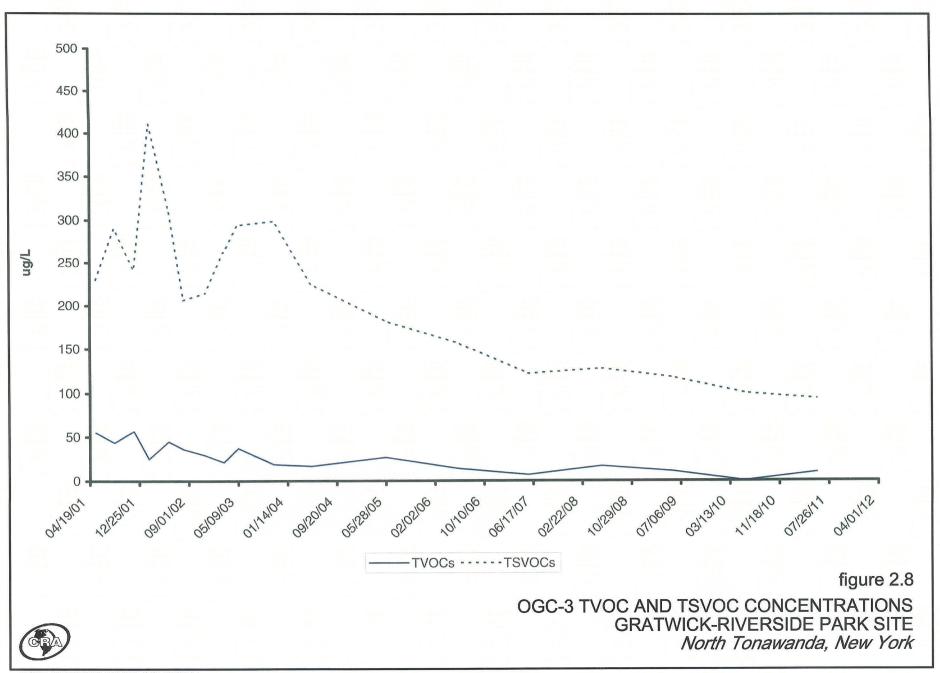
Notifications of anomalies in the discharge volumes and/or groundwater levels were provided and will continue to be provided to the City of North Tonawanda Public Works Engineering and Wastewater Treatment Department within a few days of measurement of the anomaly to ensure timely maintenance.

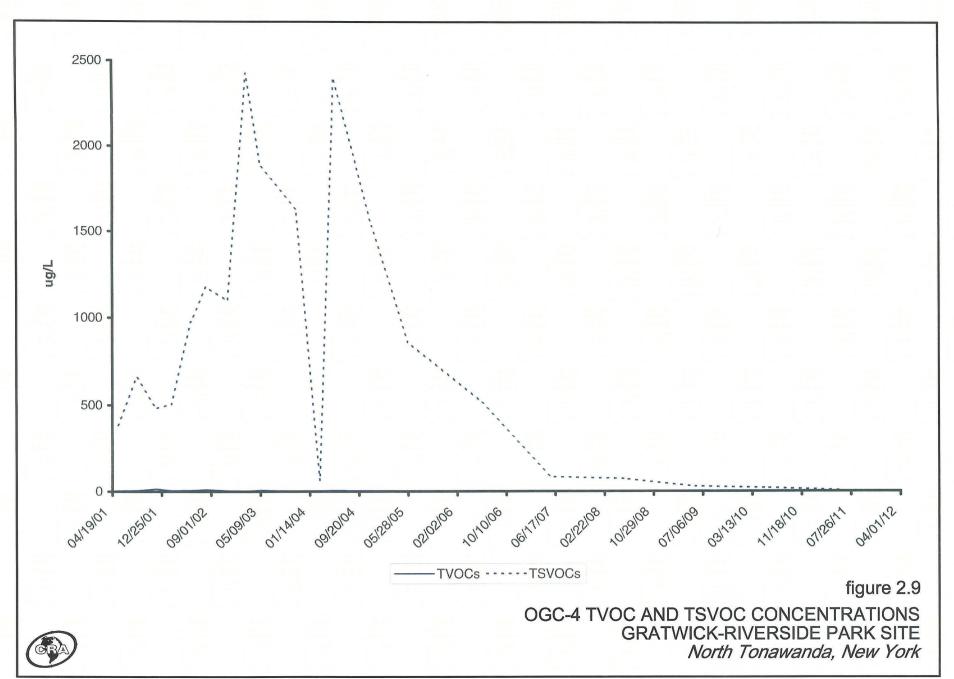


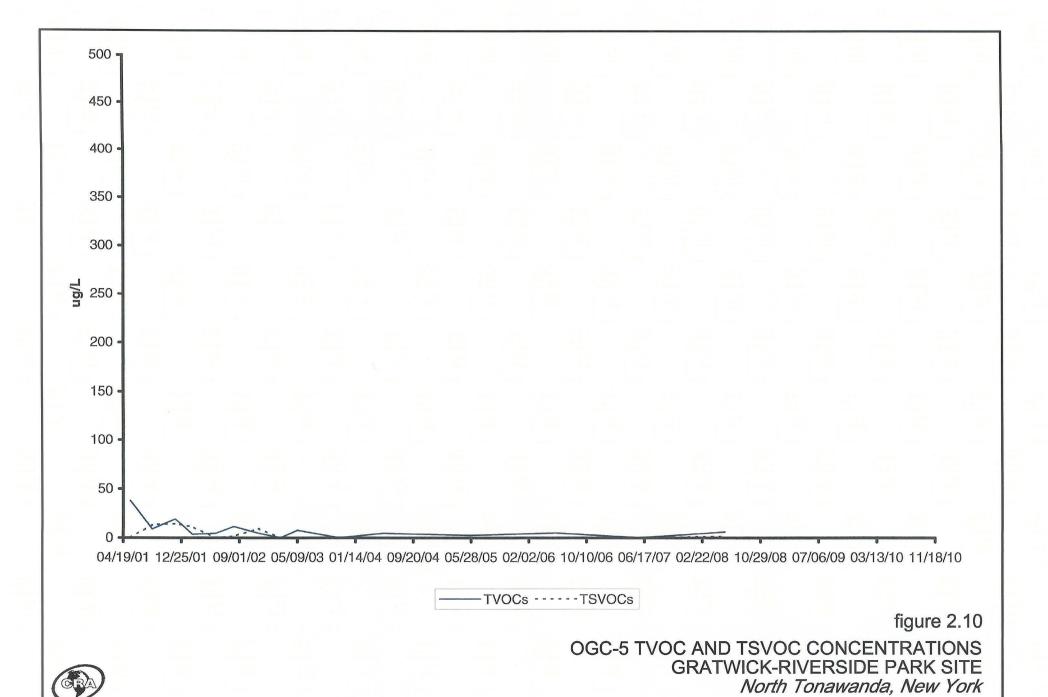

MW-6 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE

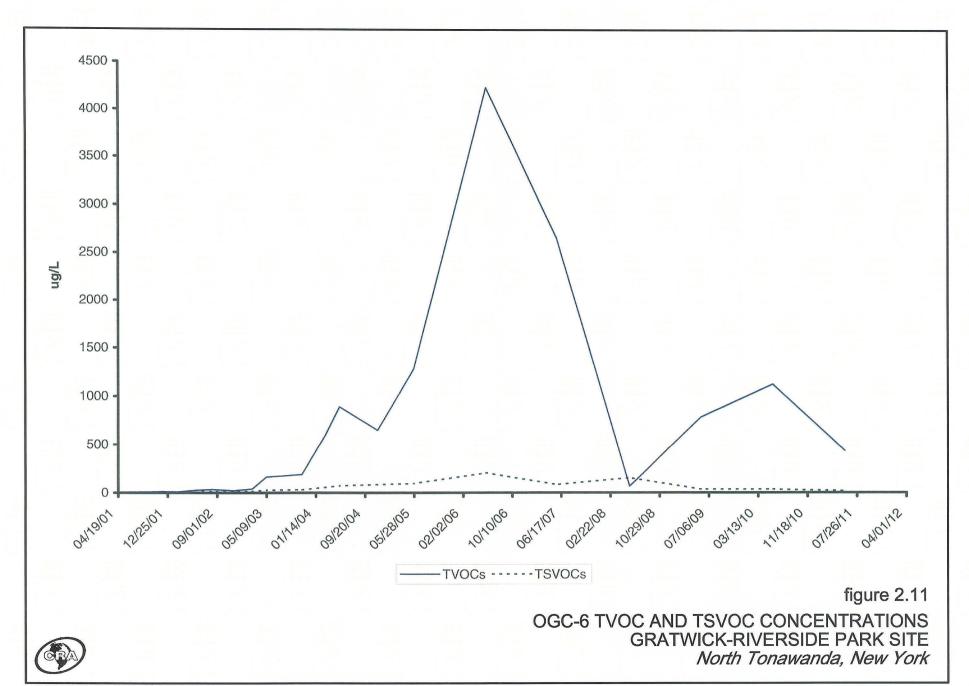

North Tonawanda, New York

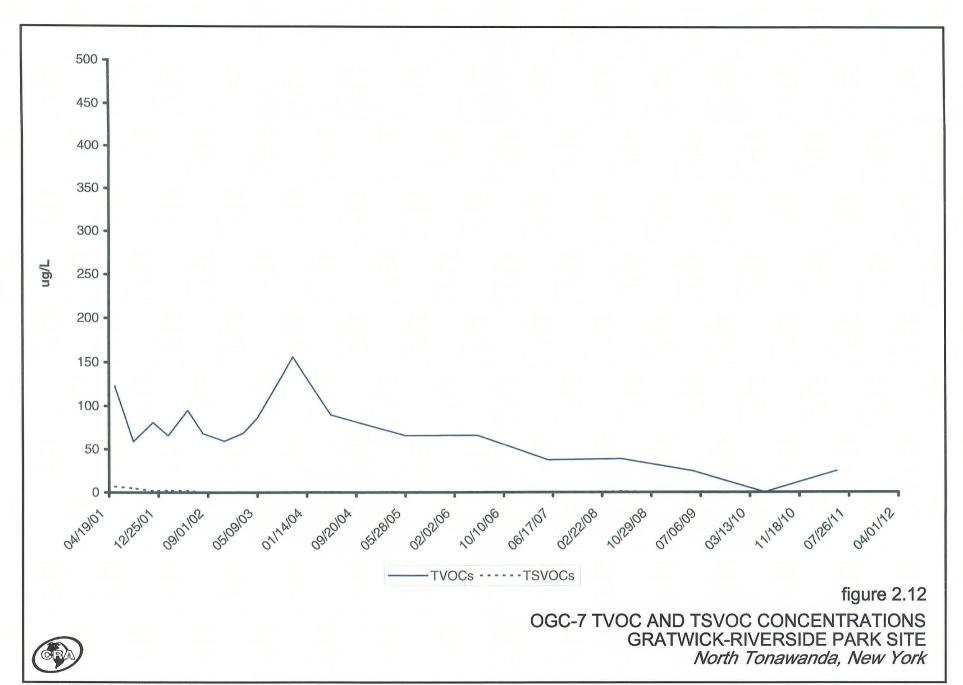
MW-7 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York

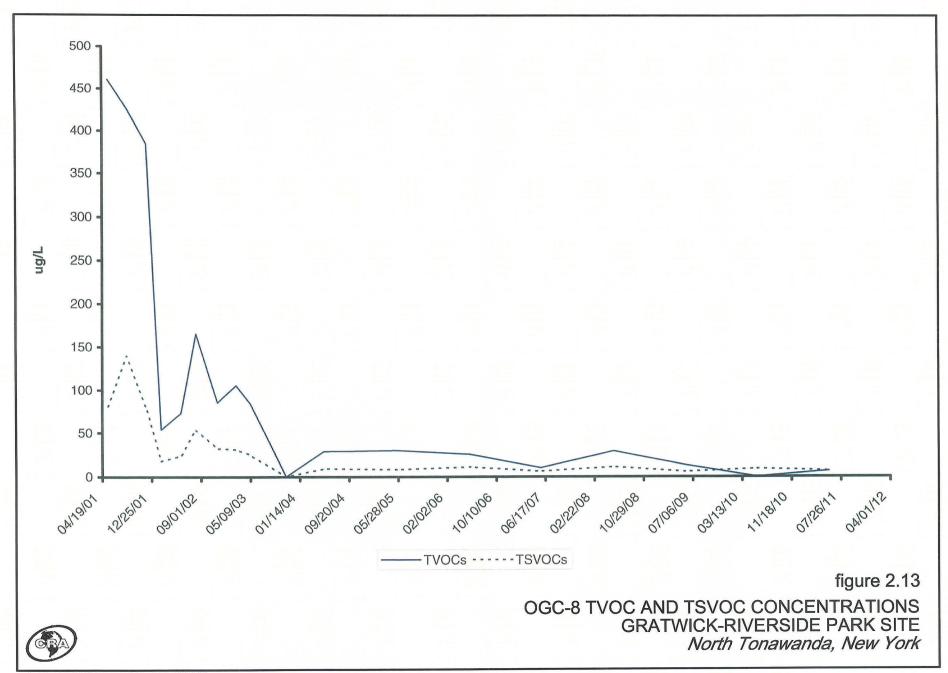




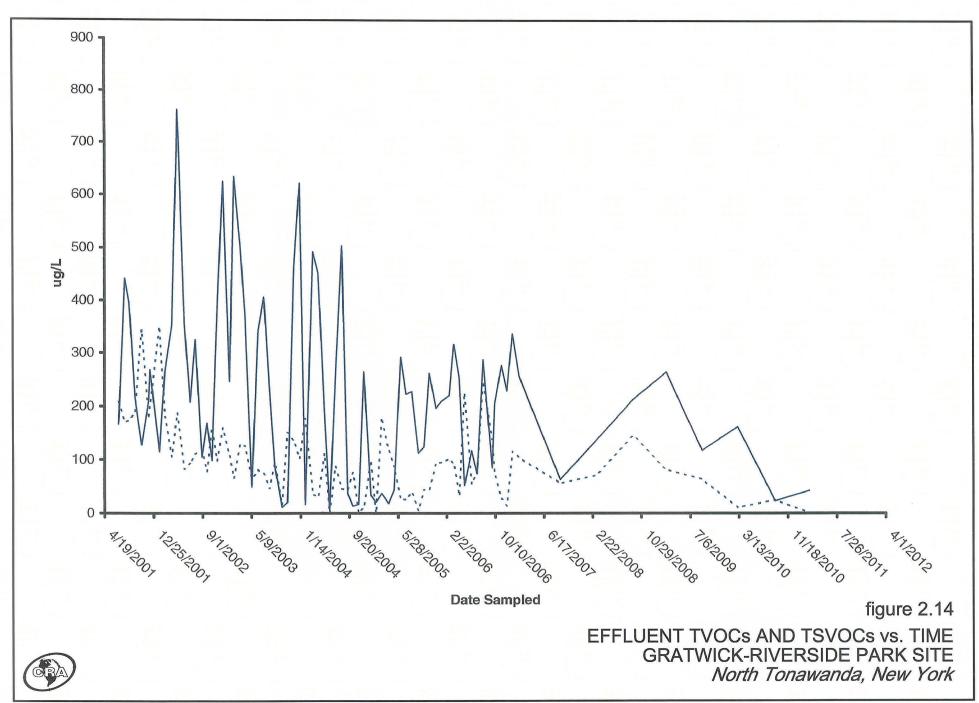


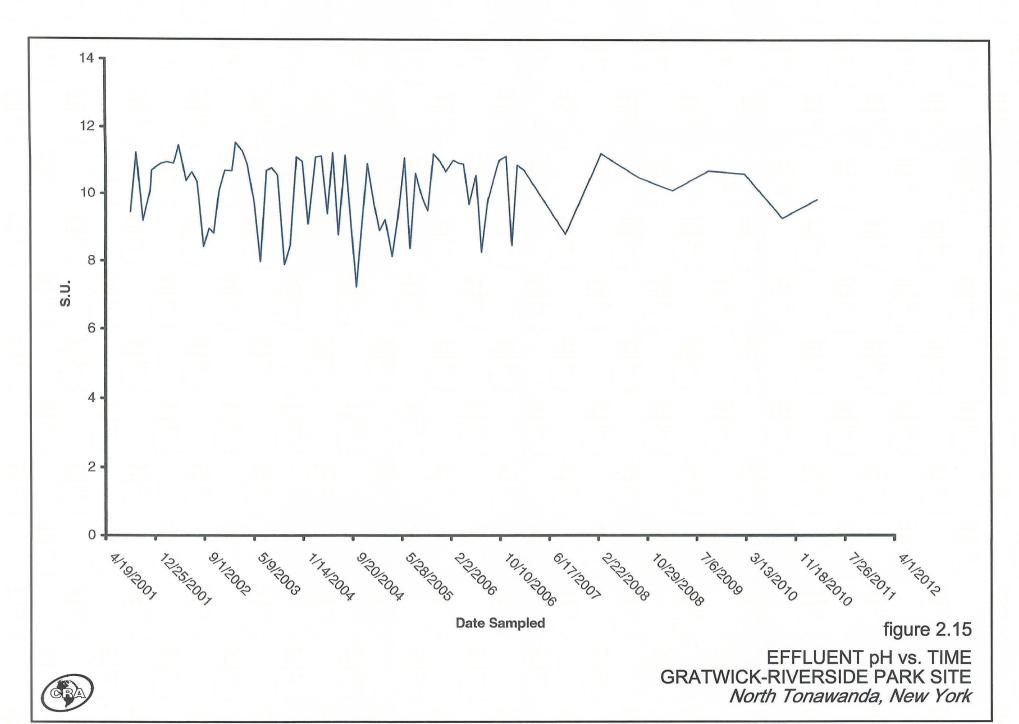

figure 2.6

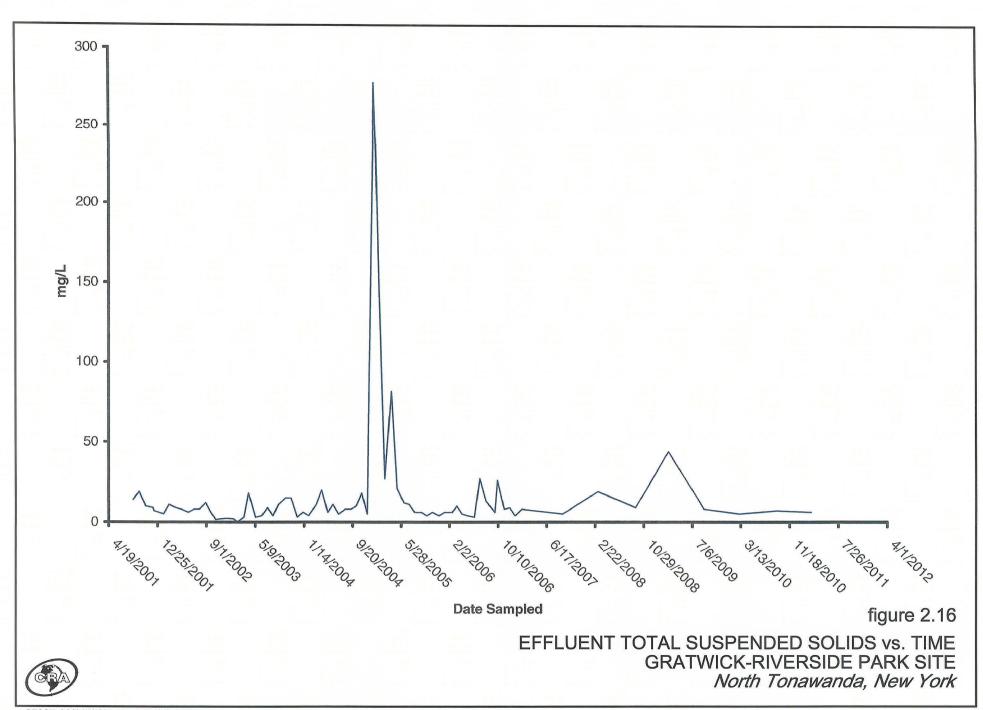

OGC-1 TVOC AND TSVOC CONCENTRATIONS GRATWICK-RIVERSIDE PARK SITE North Tonawanda, New York

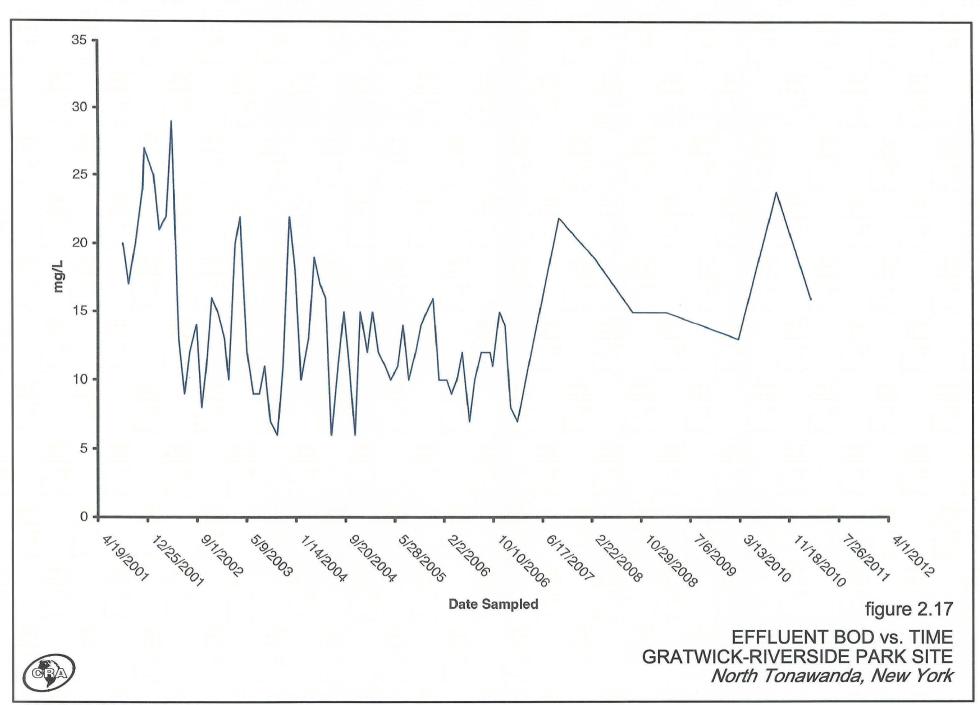


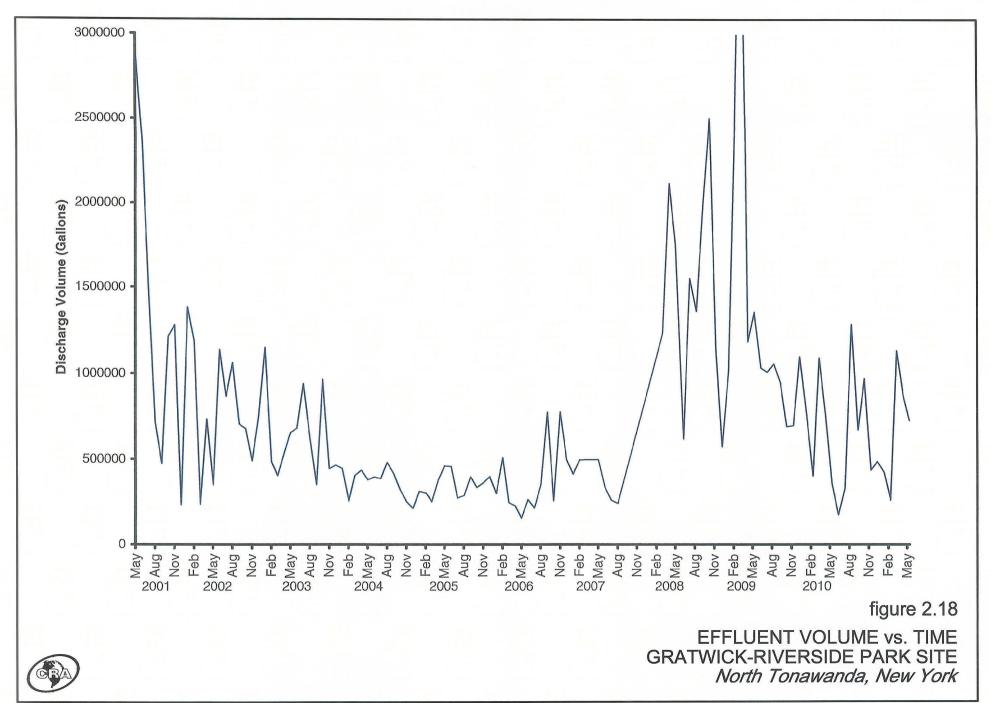












GROUNDWATER HYDRAULIC MONITORING LOCATIONS OPERATION AND MAINTENANCE GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

INWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

Inner (1)	<u>Outer</u>
MH2	Niagara River North (Downstream)
МН6	Niagara River North (Downstream)
MH8	Niagara River Middle
MH12	Niagara River South (Upstream)

UPWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

Upper (1)	Lower
МН3	MW-6
MH8	MW-7
MH11	MW-8
MH14/MH15 (2)	MW-9

FREQUENCY

- Weekly following GWS startup until six consecutive inward gradients are achieved; and
- Monthly thereafter for the remainder of the initial 2-year period (review after 2 years).
- 2-Year and 5-Year reviews indicated that the monitoring frequency remain monthly.

- These manholes will be monitored twice daily by POTW staff during a wet weather bypass event pursuant to Section 5.0 of the O&M Manual.
- Distance weighted averages of water levels used (MH14 two thirds and MH15 one third).

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

_								River					River	
Date	MH2	МН3	MH6	(OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03							572.37				
TOC Elevation (ft amsl)					575.01	575.40	573.82	566.80	576.65	5, 2 .5,	575.57	574.08	566.48	572.49
December 12, 2000	NM				564.26	567.05	563.84	NM	564.24		567.20	564.58	NM	565.24
January 8, 2001	NM		NM		563.94	567.21	563.82	NM	563.84		567.30	564.01	NM	563.90
March 29, 2001	NM		NM		564.19	567.80	563.82	NM	564.10		566.89	564.28	NM	564.12
May 11, 2001	559.31		561.98		564.39	563.53	564.54	564.54	564.25		561.60	564.53	564.38	564.50
May 18, 2001	NM		562.03		564.21	563.08	564.54	564.49	564.25		561.97	564.53	564.33	564.55
May 25, 2001	NM		NM		564.46	562.80	564.52	563.80	564.22		561.71	564.28	563.63	564.50
June 1, 2001	559.34		561.97		564.51	562.74	564.52	563.52	564.20		561.77	564.18	563.47	564.49
June 8, 2001	NM		562.49		564.63	562.65	564.82	564.75	564.36		561.59	564.60	564.68	564.78
June 15, 2001	560.79	560.59	562.60		564.67	562.54	564.76	564.71	564.53	560.53	561.48	564.77	564.71	564.79
June 22, 2001	560.77	560.55	562.53		564.65	562.50	564.72	564.90	564.43	560.44	561.41	564.66	564.86	564.72
June 29, 2001	560.62	560.40	562.42		564.51	562.42	564.66	564.52	564.35	560.38	561.39	564.57	564.48	564.59
July 31, 2001	559.87	559.21	562.90		564.49	562.19	564.71	564.66	564.35	560.25	561.30	564.60	564.68	565.70
August 20, 2001	561.49	561.07	565.23	(1)	564.60	562.09	563.82	564.69	564.46	560.25	561.29	564.77	564.64	564.81
September 28, 2001	561.03	560.56	563.03		564.61	562.13	564.25	564.68	564.48	560.27	561.32	564.79	564.68	564.99
October 22, 2001	561.38	562.36	567.06	(3)	564.61	562.08	564.41	(2)	564.33	560.43	561.37	564.58	564.26	564.33
November 27, 2001	561.45	560.94	564.53		563.95	561.88	563.65	(2)	563.83	560.45	561.36	564.04	563.54	563.87
December 20, 2001	560.96	560.50	564.39		564.47	561.83	564.78	564.69	564.27	559.75	561.25	564.72	564.45	564.86
January 29, 2002	560.74	560.15	563.75		564.09	561.83	563.87	563.89	563.99	560.98	561.89	564.12	563.74	564.01
February 11, 2002	560.80	560.28	564.19		564.22	561.73	563.84	564.03	564.07	561.06	561.50	564.18	563.97	564.19
March 25, 2002	560.55	560.10	563.25		564.10	561.72	563.51	(2)	564.03	560.65	561.60	564.02	563.59	563.83
April 24, 2002	562.54	562.05	564.12		564.60	561.88	564.70	564.61	564.49	561.13	561.95	564.67	564.19	564.72
May 21, 2002	561.74	561.28	564.10		564.79	561.97	564.84	564.76	564.68	560.05	561.38	564.85	564.66	564.84
June 20, 2002	561.67	561.24	565.58		564.74	561.92	564.56	564.58	564.62	560.68	561.54	564.85	564.68	564.80
July 18, 2002	561.46	560.99	564.99		564.78	561.89	565.00	564.89	564.66	560.79	561.65	564.90	564.90	564.93
August 6, 2002	561.26	560.79	565.89		564.86	561.92	564.70	564.65	564.71	561.05	561.93	564.90	564.59	564.85
September 12, 2002	561.60	561.14	565.60		564.80	561.82	565.05	565.04	564.67	561.10	561.99	564.87	564.95	564.97
October 30, 2002	561.63	561.21	566.24		564.18	561.97	563.95	(2)	564.07	561.07	561.95	564.10	563.75	564.00
November 21, 2002	561.12	560.67	554.47	(4)	564.05	562.05	563.94	(2)	563.98	558.03	561.41	564.20	563.71	564.06
December 11, 2002	561.55	561.08	555.09		563.99	562.04	563.85	(2)	563.84	559.95	561.25	563.94	563.72	563.87

- Water level monitored on 09/14/01 was 563.87 ft amsl which provided an inward gradient.
- River level too low to obtain a measurement at the measuring location.
- Water level monitored on 10/27/01 was 563.56 ft. which provided an inward gradient.
- (4) Inspection of the groundwater collection pipe valves in MH6 on November 18, 2002 identified that they were closed. The valves were opened on November 18, 2002 and the water level dropped approximately 6 feet in 10 minutes.
- (5) NM not measured

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23	071.50	373.04	374.02
December 12, 2000	565.07		567.08	NM		564.45	564.85	567.15			
January 8, 2001	563.95		567.29	NM	NM	564.01	564.00	567.35			567.29
March 29, 2001	564.21		567.96	NM	NM	564.24	564.25	568.06			NM
May 11, 2001	564.58		561.95	564.70	564.15	564.63	564.59	562.53			562.45
May 18, 2001	564.59		562.49	564.65	564.12	564.66	564.66	563.05			562.55
May 25, 2001	564.57		561.99	564.80	564.17	564.63	564.60	562.54			562.48
June 1, 2001	564.59		562.06	565.00	564.19	564.66	564.60	562.57			562.51
June 8, 2001	564.87		561.89	565.05	562.45	564.96	564.89	562.47			562.42
June 15, 2001	564.91	561.12	561.69	565.05	562.34	564.93	564.88	562.45	562.32		562.29
June 22, 2001	564.87	561.05	561.54	565.18	562.29	565.00	564.80	562.19	562.32		562.14
June 29, 2001	564.68	560.97	561.46	564.83	561.80	564.75	564.68	562.11	562.45		562.06
July 31, 2001	564.78	560.73	561.19	564.96	560.77	564.85	564.76	562.45	562,45		561.69
August 20, 2001	564.83	560.50	561.05	564.99	560.42	564.88	564.85	561.55	561.72		561.54
September 28, 2001	564.85	560.61	561.07	564.95	560.36	564.87	564.84	561.58	561.70		561.52
October 22, 2001	564.58	560.51	561.27	564.61	560.42	564.61	564.62	561.75	562.10		561.72
November 27, 2001	563.89	559.51	561.30	564.05	560.06	563.89	563.94	561.71	561.87		563.82
December 20, 2001	564.96	561.31	560.73	564.96	560.23	564.99	565.05	561.77	561.89		561.71
January 29, 2002	564.06	Blocked	561.91	563.92	560.29	564.03	564.08	562.31	562.53		562.31
February 11, 2002	564.28	561.23	561.93	564.53	560.24	564.35	564.35	562.52	562.18		562.54
March 25, 2002	563.87	560.97	561.60	564.15	560.34	563.85	563.95	562.45	562.77		562.61
April 24, 2002	564.79	561.41	561.95	564.86	560.63	564.86	564.84	562.96	563.09		562.95
May 21, 2002	564.95	560.35	560.89	565.07	560.89	565.03	564.98	563.11	563.25	562.17	563.10
June 20, 2002	564.85	560.98	561.50	564.88	561.04	564.90	564.94	562.91	562.98	562.00	562.90
July 18, 2002	565.09	561.07	561.80	565.22	560.95	565.17	565.08	562.84	561.83	561.93	562.83
August 6, 2002	564.88	561.33	561.88	564.90	561.07	564.95	564.91	562.75	562.08	561.86	562.75
September 12, 2002	565.09	561.34	561.91	565.25	561.09	565.20	565.05	562.66	562.11	561.75	562.63
October 30, 2002	564.03	561.36	561.95	564.16	561.31	564.14	564.00	562.57	562.68	561.62	562.56
November 21, 2002	564.04	561.49	560.99	564.15	561.44	564.19	564.18	562.74	562.88	561.82	562.73
December 11, 2002	564.01	561.51	560.73	564.14	561.45	564.09	564.02	562.91	563.07	562.01	562.94

(5) NM - not measured

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

							River					River	
Date	MH2	МН3	MH6	OGC-1	MW-6	OGC-5	North	OGC-6	MH8	MW-7	OGC-2	Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 16, 2003	561.65	561.20	556.15	564.03	562.27	563.88	(2)	564.12	561.04	561.95	564.27	563.52	564.10
February 25, 2003	561.58	561.10	555.74	563.80	561.85	563.71	(2)	563.67	560.60	561.49	563.81	563.34	563.81
March 14, 2003	561.65	561.17	555.75	563.75	561.69	563.74	(2)	563.61	560.61	561.49	563.77	563.24	563.77
April 14, 2003	561.68	561.22	554.54	564.32	562.42	564.34	564.30	564.17	558.65	561.42	564.39	564.24	564.40
May 8, 2003	561.52	561.03	555.93	564.37	562.38	564.41	564.29	564.21	560.76	561.59	564.36	564.27	564.37
June 19, 2003	562.26	561.83	556.02	564.73	562.43	564.83	564.78	564.59	560.85	561.60	564.77	564.66	564.81
July 21, 2003	561.21	560.46	556.06	564.68	562.31	564.64	564.49	564.58	560.89	561.74	564.81	564.44	564.75
August 28, 2003	561.65	561.20	554.61	564.65	562.21	564.76	564.64	564.51	558.52	561.29	564.67	564.60	564.75
September 30, 2003	561.57	561.10	555.08	564.64	562.53	564.89	(2)	564.49	559.88	561.35	564.76	564.67	564.91
October 20, 2003	561.48	561.07	554.98	564.61	562.52	564.93	(2)	564.45	559.77	561.17	564.68	564.63	564.86
November 3, 2003	561.53	561.08	555.94	564.29	562.33	563.89	(2)	564.11	560.76	561.12	563.56	564.36	564.15
December 23, 2003	561.08	559.49	555.62	564.29	562.30	564.04	(2)	564.17	560.67	561.48	564.33	(2)	564.18
January 21, 2004	(5)	560.33	555.84	565.24	562.32	564.19	(2)	564.12	560.70	561.55	564.30	(2)	564.26
February 12, 2004	(5)	561.08	556.12	563.99	562.16	563.76	(2)	563.87	560.95	561.81	564.00	(2)	563.88
March 4, 2004	561.33	561.13	555.90	564.17	562.21	557.07 (6)	(2)	564.00	560.75	561.61	564.31	(2)	564.19
April 16, 2004	560.05	558.78	554.91	564.59	562.48	564.49	(2)	564.36	559.59	561.71	564.56	564.43	564.56
May 14, 2004	560.17	559.71	554.56	564.49	562.39	564.57	564.55	564.34	559.45	561.70	564.51	564.48	564.54
June 25, 2004	561.64	561.21	555.74	564.76	562.27	564.71	564.68	564.62	560.50	561.42	564.82	564.56	564.78
July 30, 2004	561.79	561.25	555.24	565.01	562.29	565.20	565.20	564.84	560.04	561.31	565.02	565.16	565.14
August 31, 2004	561.37	560.59	555.83	565.06	562.23	565.05	564.98	564.92	560.67	561.56	565.14	564.93	565.17
September 30, 2004	561.48	560.81	555.60	565.11	562.28	565.22	565.00	564.95	560.71	561.49	565.20	565.05	565.20
October 20, 2004	561.65	561.19	555.96	564.65	562.10	564.57	564.45	564.44	560.82	561.69	564.57	564.41	564.57
November 23, 2004	561.50	561.05	554.95	564.17	561.99	564.20	(2)	564.02	559. <i>77</i>	561.21	564.31	(2)	564.28
December 31, 2004	561.60	560.74	556.19	564.58	562.16	564.50	564.68	564.25	561.02	561.80	564.37	564.56	564.40

River level too low to obtain a measurement at the measuring location

⁽⁵⁾ Buried with snow.

⁽⁶⁾ Believed to be erroneous reading.

TABLE 2.2

WATER LEVELS (ff amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

D /	066.1	Marian		River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23		0,0101	0.1.02
January 16, 2003	564.13	561.68	562.00	564.11	561.83	564.14	564.20	563.17	563.37	562.28	563.20
February 25, 2003	563.87	561.60	561.48	564.21	561.56	563.90	563.94	562.89	563.07	562.01	562.91
March 14, 2003	563.79	561.57	561.46	564.11	561.54	563.92	563.91	562.90	563.09	562.05	562.93
April 14, 2003	564.48	558.53	560.98	564.45	561.56	564.54	564.52	563.36	563.54	562.49	563.40
May 8, 2003	564.48	561.03	561.56	564.61	561.61	564.59	564.44	563.07	563.26	562.01	563.11
June 19, 2003	564.92	561.12	561.56	564.96	561.94	564.99	564.95	563.10	563.41	562.25	563.15
July 21, 2003	564.81	561.10	561.69	564.78	562.03	564.84	564.88	562.89	563.03	561.98	562.89
August 28, 2003	564.86	564.37	562.35	564.91	562.19	564.94	564.85	566.17	566.48	566.36	566.59
September 30, 2003	565.02	558.68	560.17	565.08	562.26	565.08	565.02	562.77	562.89	562.02	562.78
October 20, 2003	564.94	558.66	560.02	565.03	562.25	565.05	564.96	562.75	562.88	562.01	562.76
November 3, 2003	564.26	561.01	561.57	564.28	562.52	564.27	564.31	562.85	563.00	561.91	562.83
December 23, 2003	564.24	560.94	561.34	564.36	562.75	564.08	564.28	563.20	563.31	562.28	563.20
January 21, 2004	564.33	(5)	561.47	564.36	562.49	564.41	564.35	562.72	(5)	561.74	562.68
February 12, 2004	563.93	561.23	561.75	564.16	562.30	563.96	563.98	562.88	(5)	561.73	562.66
March 4, 2004	564.25	561.04	561.56	564.26	562.07	564.34	564.35	562.70	562.75	561.75	562.66
April 16, 2004	564.64	559.85	561.38	564.69	561.00	564.74	564.66	562.64	562.79	561.72	562.63
May 14, 2004	564.63	559.87	561.39	564.71	560.80	564.68	564.55	562.71	562.74	561.74	562.67
June 25, 2004	564.85	560.79	561.19	564.91	560.95	564.89	564.89	562.70	562.74	561.76	562.68
July 30, 2004	565.28	560.26	560.71	565.46	561.15	565.33	565.21	562.70	561.13	561.74	562.67
August 31, 2004	565.26	560.94	561.39	565.25	561.35	565.31	565.27	562.95	563.08	562.02	562.93
September 30, 2004	565.29	561.00	561.43	565.30	561.25	565.40	565.26	562.98	562.90	562.20	562.98
October 20, 2004	564.67	561.09	561.56	564.49	561.50	564.76	564.68	562.64	562.82	561.73	562.88
November 23, 2004	564.34	560.05	560.56	564.30	561.57	564.38	564.40	562.71	561.04	561.62	562.69
December 31, 2004	564.69	561.23	561.75	564.81	561.81	564.78	564.55	562.71	562.05	561.77	562.69

(5) Buried with snow.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date	МН2	мнз	МН6	OGC-1	MW-6	OGC-5	River North	OGC-6	МН8	MW-7	OGC-2	River Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)	57 B. 2 0	070.01	372.00	575.01	575.40	573.82	566.80	576.65	372.37	575.57	574.08	566.48	572.49
January 28, 2005	562.60	562.15	556.22	564.68	562.27	564.62	(2)	564.53	561.06	561.85	564.67	564.32	564.71
February 28, 2005	561.05	559.96	555.58	564.58	562.14	564.68	(7)	564.48	560.47	561.46	564.21	564.46	564.76
March 31, 2005	561.25	559.94	555.93	564.55	562.04	564.40	(2)	564.38	560.78	561.66	564.63	564.08	564.49
April 20, 2005	560.20	559.54	556.01	565.01	562.26	564.94	564.83	564.84	560.89	561.76	565.01	564.71	565.05
May 27, 2005	560.23	558.92	555.82	564.71	562.24	564.79	564.78	564.63	560.65	561.55	564.78	564.74	564.91
June 24, 2005	561.50	561.09	555.16	564.71	562.22	564.85	564.73	564.61	559.92	561.47	564.78	564.70	564.85
July 29, 2005	562.70	562.26	556.56	564.79	562.11	564.95	564.82	564.65	561.39	562.27	564.87	564.85	564.98
August 31, 2005	561.62	560.64	556.24	564.68	562.09	564.71	(2)	564.59	561.07	561.94	564.79	564.54	564.82
October 3, 2005	561.52	560.54	555.41	564.75	562.24	564.85	564.80	564.62	560.20	561.40	564.78	564.75	564.88
October 31, 2005	561.68	560.73	555.60	564.59	562.34	564.69	564.80	564.44	560.46	561.52	564.64	564.55	564.70
November 22, 2005	561.62	561.20	555.20	564.40	561.67	564.64	(2)	564.28	560.04	561.49	564.44	(2)	564.21
December 23, 2005	562.55	562.09	556.20	564.28	562.45	564.11	(2)	564.22	561.05	561.85	564.42	(2)	564.32
January 27, 2006	562.95	562.53	556.21	564.50	562.97	564.16	(2)	564.32	561.02	561.79	564.41	(2)	564.06
February 28, 2006	563.17	562.26	554.70	564.27	562.90	564.13	(2)	564.31	558.44	561.68	564.37	(2)	564.26
March 24, 2006	562.68	561.77	555.64	564.46	562.86	564.25	(2)	564.32	560.43	561.57	564.46	(2)	564.36
April 21, 2006	562.31	561.84	555.61	564.42	562.76	564.41	(2)	564.32	560.40	561.48	564.49	564.26	564.46
May 30, 2006	562.73	562.30	555.84	564.91	562.50	565.00	564.87	564.80	560.44	561.75	564.95	564.86	565.07
June 26, 2006	561.57	560.63	556.19	563.04	562.37	564.97	564.81	564.92	561.02	561.92	565.15	564.78	565.06
July 31, 2006 (8)	565.18	564.78	558.88	565.14	564.39	565.24	565.09	565.01	563.66	564.54	565.19	565.07	565.28
August 25, 2006	561.64	561.21	556.06	564.72	562.99	564.81	(2)	564.59	560.89	561.82	564.80	564.68	564.87
September 22, 2006	561.46	561.01 (6)	555.95	564.88	562.76	564.73	564.70	564.72	560.51	561.99	564.94	564.67	564.88
October 31, 2006	559.98	555.62	556.01	565.03	562.58	564.96	564.82	564.87	559.95	562.09	565.06	564.66	565.03
November 29, 2006	561.35	560.85	555.93	564.30	562.48	564.25	(2)	564.18	560.73	562.01	564.40	(2)	564.35
December 29, 2006	561.52	560.42	555.93	564.46	562.98	564.36	564.82	564.31	560.80	561.89	564.53	(2)	564.49

⁽²⁾ River level too low to obtain a measurement at the measuring location.

⁽⁶⁾ Believed to be erroneous reading.

⁽⁷⁾ Ice on pipe.

⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in upstream City manhole.

NM not measured

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date	OGC-3	MH11	MW-8	River South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 28, 2005	564.77	561.33	561.82	564.69	561.92	564.79	564.90	562.75	(5)	561.01	562.71
February 28, 2005	564.84	560.74	561.25	564.79	562.05	564.88	564.94	562.78	(5)	561.55	562.77
March 31, 2005	564.54	561.06	561.60	564.56	562.11	564.59	564.65	563.12	563.26	562.21	563.11
April 20, 2005	565.13	561.15	561.65	565.15	562.26	565.19	565.21	563.21	562.72	562.28	563.20
May 27, 2005	564.99	561.13	561.42	565.02	562.29	565.08	565.08	563.12	563.25	562.19	563.11
June 24, 2005	564.98	560.18	560.76	564.92	562.40	565.06	565.00	562.85	562.93	561.91	562.82
July 29, 2005	565.09	561.17	562.15	565.15	562.51	565.14	561.33	562.88	563.03	561.98	562.87
August 31, 2005	564.88	561.31	561.85	564.88	562.75	564.90	564.96	562.91	563.01	561.98	562.86
October 3, 2005	564.99	560.43	560.95	565.11	562.90	565.07	564.97	563.20	563.26	562.24	563.13
October 31, 2005	564.83	560.71	561.25	565.00	563.15	564.96	564.82	563.39	563.50	562.43	563.35
November 22, 2005	564.26	560.31	561.00	564.18	563.29	564.26	564.35	563.53	563.69	562.25	563.53
December 23, 2005	564.35	561.30	561.84	564.26	563.46	564.32	564.48	563.50	563.67	562.60	563.52
January 27, 2006	564.34	561.26	561.76	564.36	563.61	564.42	564.42	563.90	564.08	563.02	563.92
February 28, 2006	564.32	558.38	561.23	564.29	563.73	564.34	564.38	563.94	564.09	563.02	563.96
March 24, 2006	564.39	560.60	561.16	564.44	563.47	564.45	564.50	563.83	564.02	562.96	563.88
April 21, 2006	564.54	560.63	561.15	564.64	563.49	564.60	564.55	563.65	563.77	562.68	563.61
May 30, 2006	565.18	560.28	561.03	565.24	563.61	565.26	565.25	563.48	563.54	562.53	563.44
June 26, 2006	565.12	561.26	561.75	565.13	563.70	565.15	565.19	563.41	563.52	562.43	563.37
July 31, 2006 (5)	565.44	564.03	564.30	565.45	563.92	565.49	565.45	564.08	564.20	563.15	564.07
August 25, 2006	564.98	561.10	561.57	565.10	563.98	565.26	561.81	563.38	564.62	562.43	563.42
September 22, 2006	564.94	559.81	561.20	565.04	564.29	565.01	564.95	562.73	562.83	561.67	562.54
October 31, 2006	565.11	558.19	561.78	565.07	564.77	565.14	565.16	564.40	564.51	563.36	564.36
November 29, 2006	564.42	560.54	561.69	564.41	564.87	566.44	564.50	562.10	561.27	559.66	561.85
December 29, 2006	564.55	560.96	561.46	564.54	561.89	564.64	564.64	561.90	561.95	560.86	561.71

⁽⁵⁾ Buried with snow.

⁽⁸⁾ GWS down from July 7 to 31, 2006 because of closed flapper gate in upstream City manhole

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date	МН2	мнз	МН6	OGC-1	MW-6	OGC-5	River North	OGC-6	мн8	MW-7	OGC-2	River Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)	0,0120	070.01	372.00	575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 26, 2007	561.39	560.92	556.04	564.62	562.78	564.75	(2)	563.79	560.89	562.06	564.67	564.46	564.77
February 27, 2007	561.53	560.57	556.23	564.32	562.49	564.25	(2)	564.15	561.07	561.96	564.35	(7)	564.33
March 30, 2007	560.25	559.45	556.24	564.49	562.30	564.40	(2)	564.27	561.09	562.05	564.46	564.28	564.48
April 30, 2007	560.99	559.39	556.31	564.97	562.62	564.97	564.82	564.78	561.14	562.20	564.96	564.78	565.07
May 25, 2007	560.85	559.85	556.12	564.67	562.48	565.73	(2)	564.54	561.02	562.05	564.75	564.67	564.75
June 29, 2007	560.85	558.83	556.45	564.70	562.32	564.78	(2)	564.54	561.26	562.16	564.81	564.64	564.79
July 25, 2007	561.49	560.54	556.24	564.43	562.13	564.55	(2)	564.26	561.02	561.94	564.47	564.41	564.53
August 31, 2007	561.10	559.62	556.22	564.43	561.93	564.56	(2)	564.29	561.04	561.95	564.55	564.44	564.65
September 27, 2007	561.49	561.05	556.02	564.44	561.86	564.44	(2)	564.34	560.47	562.01	564.58	564.27	564.56
October 31, 2007	561.57	560.69	556.17	564.08	562.02	563.88	(2)	564.01	561.08	562.00	564.16	(2)	564.03
November 30, 2007	561.59	560.58	555.84	564.25	562.22	564.03	(2)	564.09	560.68	561.80	564.42	(2)	564.31
December 31, 2007	561.18	559.69	555.58	564.29	562.48	564.07	(2)	564.09	559.37	561.88	564.28	(2)	564.23
January 28, 2008	561.48	559.46	556.14	564.22	562.68	563.99	(2)	564.13	560.99	561.95	564.25	563.68	564.12
February 29, 2008	561.48	560.45	555.99	564.67	562.38	564.68	(2)	564.56	560.02	562.06	564.75	564.50	564.77
March 31, 2008	561.71	560.74	556.10	564.93	562.33	564.62	(2)	564.58	560.06	562.54	564.81	564.48	564.80
April 25, 2008	561.85	559.67	556.27	564.71	562.73	564.71	(2)	564.59	561.10	562.07	564.78	564.64	564.81
May 29, 2008	562.00	559.26	556.65	564.72	562.66	564.73	(2)	564.59	561.39	562.28	564.77	564.75	564.84
June 25, 2008	562.57	559.54	557.84	564.82	562.79	564.79	564.83	564.71	562.66	563.49	564.88	564.72	564.88
July 31, 2008	562.69	561.02	560.18	564.94	563.27	565.73	564.73	564.72	563.00	563.86	565.03	564.69	564.96
August 27, 2008	565.69	565.29	559.36	564.58	565.10	564.46	564.47	564.42	564.13	564.95	564.71	564.42	564.55
September 26, 2008	562.21	559.22	558.36	564.54	563.42	564.51	(2)	564.40	563.21	564.07	564.70	564.34	564.64
October 30, 2008	561.67	560.08	557.64	564.73	562.97	564.51	(2)	564.46	562.57	563.49	564.69	564.37	564.64
November 22, 2008	561.61	561.19	557.41	564.30	562.82	564.04	(2)	564.12	562.36	563.27	564.32	(2)	564.22
December 31, 2008	566.56	565.53	560.22	564.63	566.09	564.56	(2)	564.48	564.91	565.70	564.68	564.18	564.63

River level too low to obtain a measurement at the measuring location.

⁽⁷⁾ Ice on pipe.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

				River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		E77) 11			F70.07				==4.00		==1.00
TOC Elevation (ft amsl)	573.35	572.11	574.00	E C 0. 4 C	572.37	574.01	574.66	554.00	574.30	575.84	574.82
TOC Elevation (it ainsi)	373.33		574.37	568.46		574.01	574.66	576.23			
January 26, 2007	564.89	561.09	561.73	564.96	560.86	564.99	565.49	563.41	563.52	562.36	563.39
February 27, 2007	564.43	561.16	561.86	564.46	559.97	564.47	564.47	562.64	562.77	561.73	562.62
March 30, 2007	564.58	561.36	561.85	564.65	560.20	564.67	564.64	562.66	561.87	558.93	561.72
April 30, 2007	565.20	561.29	561.77	565.26	559.05	565.26	565.22	562.13	562.22	561.13	562.05
May 25, 2007	564.89	561.12	561.61	564.98	560.04	565.00	564.94	562.10	562.20	561.14	563.09
June 29, 2007	564.90	561.39	561.79	564.98	560.14	565.00	564.95	562.12	562.17	561.18	562.08
July 25, 2007	564.65	561.18	561.55	564.79	560.16	564.76	564.61	562.03	562.13	561.07	561.98
August 31, 2007	564.72	561.28	561.73	564.80	560.23	564.84	564.76	562.05	561.54	561.07	562.01
September 27, 2007	564.65	559.56	561.79	564.48	560.40	561.53	564.66	562.05	562.18	561.09	562.01
October 31, 2007	564.09	561.36	561.86	564.06	560.56	564.12	564.12	562.09	562.21	561.14	562.10
November 30, 2007	564.33	561.00	562.30	564.25	560.68	564.35	564.42	562.05	561.67	559.55	561.98
December 31, 2007	564.28	558.54	561.56	564.20	560.78	564.53	564.35	562.16	562.19	561.12	562.01
January 28, 2008	564.15	561.30	561.80	564.01	560.93	564.20	564.23	562.78	562.89	561.82	562.74
February 29, 2008	564.84	559.51	561.89	564.80	560.69	564.90	564.90	562.17	562.24	561.20	562.11
March 31, 2008	564.61	558.99	561.89	564.84	560.76	564.98	564.97	562.24	561.58	561.18	562.08
April 25, 2008	564.94	561.39	561.90	565.05	560.84	565.02	564.92	562.56	562.70	561.65	562.57
May 29, 2008	564.95	561.50	561.82	565.01	560.92	565.01	564.96	562.14	562.22	561.16	562.07
June 25, 2008	565.00	562.83	563.28	565.04	561.05	565.07	564.97	562.11	562.18	561.00	561.82
July 31, 2008	562.69	563.53	566.07	565.01	561.24	565.09	565.07	561.97	562.07	560.98	561.84
August 27, 2008	564.64	564.16	564.61	564.79	561.39	564.77	564.60	564.15	564.34	563.24	564.16
September 26, 2008	564.71	563.53	564.03	564.71	561.55	564.78	564.74	562.02	561.82	559.10	561.59
October 30, 2008	564.67	562.85	563.43	564.71	561.74	564.77	564.71	561.83	562.70	561.92	560.06
November 22, 2008	564.26	562.75	563.29	564.20	561.79	564.30	564.35	561.76	561.28	561.23	561.71
December 31, 2008	564.70	564.91	565.33	564.65	562.09	564.86	564.78	564.71	565.03	563.97	564.59

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

Date	МН2	МН3	МН6	OGC-1	MW-6	OGC-5	River North	OGC-6	МН8	MW-7	OGC-2	River Middle	OGC-7
RIM Elevation	573.28	573.81	572.03						572.37				
TOC Elevation (ft amsl)				575.01	575.40	573.82	566.80	576.65		575.57	574.08	566.48	572.49
January 30, 2009	568.71	570.75	560.62	564.42	566.89	564.02	(2)	564.31	562.42	565.96	564.56	(7)	564.21
February 25, 2009	568.77	571.27	560.22	564.50	567.20	563.88	(2)	564.37	562.52	564.31	564.58	564.11	564.33
March 27, 2009	565.45	559.49	558.31	564.48	564.81	564.41	(2)	564.38	561.18	562.90	564.61	(2)	564.52
April 30, 2009	563.46	560.06	558.36	564.84	563.55	564.85	564.80	564.73	563.14	564.03	564.91	564.74	564.97
May 27, 2009	561.36	560.29	558.18	564.80	563.18	564.84	(2)	564.69	563.04	563.93	564.90	564.78	564.94
June 29, 2009	561.56	561.28	556.26	565.01	562.81	565.01	565.02	564.90	560.74	562.12	565.15	564.93	565.14
July 27, 2009	561.64	559.34	556.22	565.28	562.63	565.20	565.12	565.06	560.99	562.00	565.31	565.05	565.34
August 31, 2009	561.76	561.29	556.06	565.01	562.47	565.00	564.90	564.84	560.85	561.82	565.08	564.86	565.14
September 30, 2009	565.80	565.67	558.36	565.30	564.80	564.93	564.80	564.99	561.46	562.78	565.37	564.71	565.19
October 30, 2009	566.21	566.49	558.71	564.64	565.37	564.60	(2)	564.43	561.66	563.06	564.67	564.35	564.71
November 30, 2009	561.87	561.41	555.76	564.74	563.19	564.30	(2)	564.27	560.65	561.81	564.60	563.98	564.49
December 30, 2009	561.72	560.01	557.87	564.43	562.79	564.21	(2)	564.24	562.80	563.66	564.44	563.89	564.37
January 29, 2010	561.67	560.02	555.87	565.34	562.60	565.08	(2)	565.01	560.13	561.84	565.23	564.63	565.32
February 26, 2010	561.75	561.26	555.72	563.99	562.38	563.88	566.60	563.85	560.66	561.61	564.06	564.29	564.01
March 30, 2010	562.58	561.25	556.36	564.30	562.69	563.94	566.80	564.03	560.76	561.89	564.24	564.19	564.19
April 30, 2010	562.61	560.99	556.62	564.47	562.78	564.45	(2)	564.36	561.11	562.04	564.55	564.38	564.58
May 26, 2010	563.33	559.94	558.05	564.73	562.80	564.90	(2)	564.70	562.87	563.65	564.84	564.78	564.98
June 28, 2010	564.53	560.11	559.43	564.96	564.61	565.02	(2)	564.83	564.25	565.06	565.13	564.68	565.12
July 27, 2010	566.51	566.05	560.28	564.93	565.92	564.96	(2)	564.86	565.12	565.89	565.18	564.78	565.11
August 26, 2010	567.98	570.29	559.49	564.85	566.27	564.84	564.83	564.69	563.68	563.89	565.02	564.75	565.02
September 28, 2010	567.73	570.36	559.14	564.83	565.98	564.71	(2)	564.56	563.35	563.55	564.84	564.49	564.86
October 27, 2010	562.35	560.87	556.52	564.88	563.53	564.77	(2)	564.59	561.26	562.28	564.80	564.51	564.60
November 24, 2010	561.87	560.84	555.89	564.41	562.97	564.84	(2)	564.24	560.69	561.80	564.51	563.55	564.37
December 28, 2010	562.92	561.07	557.97	564.29	562.91	564.55	(2)	563.96	562.85	563.71	564.22	564.33	564.47

River level too low to obtain a measurement at the measuring location.

⁽⁷⁾ Ice on pipe.

TABLE 2.2

WATER LEVELS (ft amsl)

GRATWICK-RIVERSIDE PARK SITE

NORTH TONAWANDA, NEW YORK

D .	0.66.3	Lerra		River							
Date	OGC-3	MH11	MW-8	South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 30, 2009	564.24	564.96	565.25	564.15	562.22	564.29	564.34	563.48	561.59	559.58	563.21
February 25, 2009	564.36	559.64	562.05	564.27	562.29	564.41	564.46	563.30	561.88	561.02	563.44
March 27, 2009	564.57	561.11	561.66	564.48	562.03	564.63	564.71	562.67	561.37	560.58	562.65
April 30, 2009	565.09	563.38	563.93	565.14	562.12	565.15	565.07	563.36	563.64	562.60	563.40
May 27, 2009	565.10	563.45	564.03	565.20	562.17	565.20	565.09	564.58	564.68	563.82	564.63
June 29, 2009	565.25	560.98	562.26	565.23	563.68	565.29	565.24	564.76	565.52	564.68	564.93
July 27, 2009	565.46	561.40	562.16	565.45	562.64	565.51	565.47	564.59	564.89	563.91	564.70
August 31, 2009	565.24	561.28	562.10	562.25	562.79	565.29	565.26	564.65	564.74	563.67	564.71
September 30, 2009	565.22	560.10	561.60	565.10	562.87	565.26	565.28	564.39	564.91	564.03	564.60
October 30, 2009	564.78	560.77	561.70	564.77	562.99	564.84	564.84	564.35	564.80	563.82	564.44
November 30, 2009	564.58	561.13	561.89	564.44	563.10	564.66	564.66	564.44	564.79	563.82	564.53
December 30, 2009	564.40	563.24	563.93	564.37	563.31	564.45	564.50	564.81	565.14	564.13	564.87
January 29, 2010	565.19	559.72	562.18	565.03	563.49	565.20	565.38	564.50	564.03	562.93	564.53
February 26, 2010	564.12	561.15	561.87	564.36	563.56	564.11	564.16	563.98	563.86	562.93	564.13
March 30, 2010	564.24	561.59	562.56	564.45	560.01	564.30	564.35	564.79	564.60	563.52	564.85
April 30, 2010	564.69	560.40	562.25	564.80	559.66	564.79	564.71	564.62	564.54	563.51	564.65
May 26, 2010	565.14	563.21	563.61	565.19	561.01	565.19	565.13	564.57	564.58	563.44	564.60
June 28, 2010	565.15	564.65	564.98	565.11	562.32	565.17	565.29	565.06	565.19	564.14	565.12
July 27, 2010	565.18	565.40	565.72	565.14	563.02	565.20	565.23	565.68	565.75	564.73	565.69
August 26, 2010	565.12	561.53	562.41	565.19	559.84	565.19	565.12	564.46	564.48	563.39	564.51
September 28, 2010	564.85	560.88	561.89	564.80	559.33	564.89	564.88	564.28	564.24	563.18	564.24
October 27, 2010	565.02	560.16	561.81	564.98	559.20	565.11	565.07	564.00	563.98	562.92	564.01
November 24, 2010	564.33	560.82	561.76	564.06	559.16	564.32	564.47	563.97	564.03	563.00	564.00
December 28, 2010	564.64	563.33	563.87	564.81	561.27	564.83	564.64	564.64	564.67	563.61	564.43

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date	MH2	МН3	МН6	OGC-1	MW-6	OGC-5	River North	OGC-6	MH8	<i>MW-</i> 7	OGC-2	River Middle	OGC-7
RIM Elevation TOC Elevation (ft amsl)	573.28	573.81	572.03	575.01	575.40	573.82	566.80	576.65	572.37	575.57	574.08	566.48	572.49
January 3, 2011 February 28, 2011 March 30, 2011 April 27, 2011 May 26, 2011	561.75 562.19 563.05 563.76 563.89	560.81 558.86 560.98 559.28 559.04	555.84 556.18 557.06 560.47 558.04	563.86 564.35 564.39 565.32 565.30	562.64 562.47 563.57 563.84 564.05	563.84 564.11 564.06 564.92 565.13	(2) (2) (2) 564.62 (2)	563.73 563.89 564.12 564.89 565.03	560.65 560.87 561.59 562.24 562.57	561.56 561.65 562.09 562.81 562.93	563.89 561.19 564.28 565.08 565.18	563.46 563.78 563.80 564.48 564.90	563.96 564.25 564.28 565.08 565.28

⁽²⁾ River level too low to obtain a measurement at the measuring location.

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date	OGC-3	MH11	MW-8	River South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
RIM Elevation TOC Elevation (ft amsl)	573.35	572.11	574.37	568.46	572.37	574.01	574.66	576.23	574.30	575.84	574.82
January 31, 2011 February 28, 2011	564.01 564.33	561.22 561.76	562.02 562.63	563.96 564.31	559.59 560.26	564.08 564.37	564.10 564.37	564.39 564.85	564.47	563.42	564.43
March 30, 2011	564.30	562.14	563.15	564.46	560.68	563.87	564.37	565.20	564.88 565.21	563.84 564.18	565.63 565.29
April 27, 2011 May 26, 2011	565.09 565.45	562.68 562.76	563.50 563.52	564.97 565.37	561.06 561.03	565.18 565.49	565.23 565.35	565.40 565.42	565.42 565.59	564.36 564.52	565.46 565.51

TABLE 2.3

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		06/28/2010		07/27/2010		08/26/2010		09/28/2010		10/27/2010		11/24/2010	
		Water Level	Gradient	Water Level	Gradient	Water Level		Water Level		Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction										
Monito	ring Location												
Outer Inner	River North MH2	564.86 (2) 564.53	Inward	564.89 (2) 566.51	Outward	564.83 (2) 567.98	Outward	564.55 (2) 567.73	Outward	564.73 (2) 562.35	Inward	563.81 (2) 561.87	Inward
Outer Inner	River North MH6	564.86 (2) 559.43	Inward	564,89 (2) 560,28	Inward	564.83 (2) 559.49	Inward	564.55 (2) 559.14	Inward	564.73 (2) 556.52	Inward	563.81 (2) 555.89	Inward
Outer Inner	River Middle MH8	564.68 564.25	Inward	564.78 565.12	Outward	564.75 563.68	Inward	564.49 563.35	Inward	564.51 561.26	Inward	563.55 560.69	Inward
Outer Inner	River South MH12	565.11 562.32	Inward	565.14 563.02	Inward	565.19 559.84	Inward	565.80 559.33	Inward	564.98 559.20	Inward	564.06 559.16	Inward
		12/28/2	2010	01/31/2	2011	02/28/2011		03/30/2011		04/27/2011		05/26/2011	
		Water Level	Gradient										
		(ft amsl)	Direction										
Monito	ring Location												
Outer Inner	River North MH2	564.56 (2) 562.92	Inward	563.71 (2) 561.75	Inward	564.06 (2) 562.19	Inward	564.21 (2) 563.05	Inward	564.62 563.76	Inward	565.12 (2) 563.89	Inward
Outer Inner	River North MH6	564.56 (2) 557.97	Inward	563.71 (2) 555.84	Inward	564.06 (2) 556.18	Inward	564.21 (2) 557.06	Inward	564.62 560.47	Inward	565.12 (2) 558.04	Inward
Outer Inner	River Middle MH8	564.33 562.85	Inward	563.46 560.65	Inward	563.78 560.87	Inward	563.80 561.59	Inward	564.48 562.24	Inward	564.90 562.57	Inward
Outer Inner	River South MH12	564.81 561.27	Inward	563.96 559.59	Inward	564.31 560.26	Inward	564.46 560.68	Inward	564.97 561.06	Inward	565.37 561.03	Inward

⁽¹⁾ River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.

⁽²⁾ River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

TABLE 2.4

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring													
Location		06/28/2	2010	07/27/	2010	08/26/	2010	09/28/	2010	10/27/	2010	11/24/	2010
		Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
		(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction	(ft amsl)	Direction
Upper	мн3	560.11	Upward	566.05	Downward	570.29	Downward	570.36	Downward	560.87	Upward	560.84	Upward
Lower	MW-6	564.61		565.92		566,27		565.98		563.53		562.97	•
Upper	MH8	564.25	Upward	565.12	Upward	563.68	Upward	563.35	Upward	561.26	Upward	560.69	Upward
Lower	MW-7	565.06		565.89		563.89	-	563.55	•	562.08	·	561.80	•
Upper	MH11	564.65	Upward	565.40	Upward	561.53	Upward	560.88	Upward	560.16	Upward	560.82	Upward
Lower	MW-8	564.98		565.72		562.41		561.89	·	561.81	-	561.76	•
Average (1)		564.84	Upward	565.41	Upward	564.12	Upward	563.89	Upward	563.63	Upward	563.69	Upward
Lower	MW-9	565.06	•	565.68	•	564.46	r	564.28	•	564.00	•	563.97	1
		12/28/	2010	01/31/	2011	02/28	/2011	3/30/	2011	04/27/	2011	05/26/	2011
16		12/28/ Water Level	2010 Gradient	Water Level	/2011 Gradient	02/28. Water Level	/2011 Gradient	Water Level	2011 Gradient	Water Level	2011 Gradient	05/26/ Water Level	/2011 Gradient
Monitoring Location													
	мн3	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient	Water Level	Gradient
Location	MH3 MW-6	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction
Location Upper		Water Level (ft amsl) 561.07	Gradient Direction	Water Level (ft amsl) 560.81	Gradient Direction	Water Level (ft amsl) 558.86	Gradient Direction	Water Level (ft amsl) 560.98	Gradient Direction	Water Level (ft amsl) 559.28	Gradient Direction	Water Level (ft amsl) 559.04 564.05 562.57	Gradient Direction
Location Upper Lower	MW-6	Water Level (ft amsl) 561.07 562.91	Gradient Direction Upward	(ft amsl) 560.81 562.64	Gradient Direction Upward	Water Level (ft amsl) 558.86 562.47	Gradient Direction Upward	Water Level (ft amsl) 560.98 563.57	Gradient Direction Upward	Water Level (ft amsl) 559.28 563.84	Gradient Direction Upward	Water Level (ft amsl) 559.04 564.05	Gradient Direction Upward
Location Upper Lower Upper	MW-6 MH8	Water Level (ft amsl) 561.07 562.91 562.85	Gradient Direction Upward	Water Level (ft amsl) 560.81 562.64 560.65	Gradient Direction Upward	Water Level (ft amsl) 558.86 562.47 560.87	Gradient Direction Upward	Water Level (ft amsl) 560.98 563.57 561.59	Gradient Direction Upward	Water Level (ft amsl) 559.28 563.84 562.24	Gradient Direction Upward	Water Level (ft amsl) 559.04 564.05 562.57	Gradient Direction Upward
Location Upper Lower Upper Lower Lower	MW-6 MH8 MW-7	Water Level (ft amsl) 561.07 562.91 562.85 563.71	Gradient Direction Upward Upward	Water Level (ft amsl) 560.81 562.64 560.65 561.56	Gradient Direction Upward Upward	Water Level (ft amsl) 558.86 562.47 560.87 561.65	Gradient Direction Upward Upward	Water Level (ft amsl) 560.98 563.57 561.59 562.09	Gradient Direction Upward Upward	Water Level (ft amsl) 559.28 563.84 562.24 562.81	Gradient Direction Upward Upward	Water Level (ft amsl) 559.04 564.05 562.57 562.93	Gradient Direction Upward Upward
Location Upper Lower Upper Lower Upper Lower	MW-6 MH8 MW-7 MH11	Water Level (ft amsl) 561.07 562.91 562.85 563.71 563.33	Gradient Direction Upward Upward	Water Level (ft amsl) 560.81 562.64 560.65 561.56 561.22	Gradient Direction Upward Upward	Water Level (ft amsl) 558.86 562.47 560.87 561.65 561.76	Gradient Direction Upward Upward	Water Level (ft amsl) 560.98 563.57 561.59 562.09	Gradient Direction Upward Upward	Water Level (ft amsl) 559.28 563.84 562.24 562.81 562.68	Gradient Direction Upward Upward	Water Level (ft amsl) 559.04 564.05 562.57 562.93 562.76	Gradient Direction Upward Upward

Notes:

NA - Not Applicable.

NM - Not monitored. MH11 was blocked and could not be accessed.

^{(1) -} Distance weighted for MH14 (two thirds) and MH15 (one third).

^{(2) -} Buried with snow.

^{(3) -} Not Monitored - MH14 was buried with snow and could not be accessed.

GROUNDWATER SAMPLING SUMMARY OPERATION AND MAINTENANCE MANUAL GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

OGC1	MW-6
OGC2	MW-7
OGC3	MW-8
OGC4	MW-9
OGC5	OGC6
OGC7	OGC8

FREQUENCY

- quarterly for 2 years following GWS startup.
- semi-annually for Year 3 except for OGC-4 (quarterly for SVOCs) and OGC-6 (quarterly for VOCs).
- annually for Years 4 through 7 (until May 2008).

SAMPLING PROGRAM (MAY 2009 THROUGH MAY 2012)

Annual	Once Every 2 Years
	(2010 and 2012)
N 4147 ()	MW-6
MW-8	IVI VV - O
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	

PARAMETERS

Volatiles

Acetone	Methylene Chloride
Benzene	Tetrachloroethene
2-Butanone	Toluene
Chlorobenzene	Trichloroethene
1,1-Dichloroethane	Vinyl Chloride
trans-1,2-Dichloroethene	Xylenes (Total)
Ethylbenzene	

Semi-Volatiles

1,2-Dichlorobenzene	4-Methylphenol
1,4-Dichlorobenzene	Naphthalene
2,4-Dimethylphenol	Di-n-octylphthalate
2-Methylphenol	Phenol

TABLE 2.6

Location	_							MW-9						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
Volatiles (μg/L)	Class GA Level													03/30/00
Acetone	50	9.4]	4.3J	7.3]/6.7]		4.2J	7.0/7.2			13/12			17	17
Benzene	1	·	0.24J	0.39J/0.35J		0.44J	0.29J/0.30J	0.29]/0.29]		0.40J/ND0.70			17	17
2-Butanone	50		,	,,,		0.11)	0.27), 0.50)	0.27)/ 0.27)		0.40]/1400.70				0.54J
Chlorobenzene	5		0.50J	0.86]/0.85]		1.3		1.0/1.1		0.91J/0.87J		1.1	1.7	2.6J 1.5
trans-1,2-Dichloroethene	5		,	0.22J/ND		0.31J	0.24J/0.24J	0.22]/0.20]		0.91)/0.07)		1.1	1.7	0.42J
Ethylbenzene	5		0.301	0.461/0.421		0.73J	0.44J/0.42J	0.46J/0.46J		0.40J/0.38J				0.42J 0.83J
Methylene Chloride	5		0.34J	0.33J/ND	4.0[0.53J	0.11), 0.12)	0.10)/ 0.10)		0.40) / 0.50)		7.2	1.6	0.03)
Tetrachloroethene	5	1.6J	1.1J	1.0J/0.92J	,	1.6	0.92J/0.80J	0.77J/0.74J		0.67]/0.71]		7.2	1.0	0.57]
Toluene	5	•	1.6J	3.01/2.51	2.8J	2.7	2.1/2.0	2.7/2.7	2.0	2.0/1.9	4.6	3.2	2.6	0.57)
Trichloroethene	5	2.2J	1.8J	2.4J/2.2J	3.0J	4.4	2.0/2.0	2.2/2.3	2.0	1.8/1.8	9.5	4.9	3.0	1.8
Vinyl Chloride	2	-	•	• •	•		,			1.7/1.7	7.0	,	3.6	4.0
Total Xylenes	5		1.0J	1.5J/1.5J		2.5J	1.3J/1.3J	1.4J/1.4J		0.98J/1.0J	3.0		0.0	2.0J
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*				0.6J									
1,4-Dichlorobenzene	3*				,								2J	
2,4-Dimethylphenol	50	12	12	18/17	38		20/22	30/34	30	35/36	36	42	50	58
2-Methylphenol	NL	1 J	3J	3J/3J	7]		4J/4J	6J/6J	6J	6J/6J	6J	5J	8J	8J
4-Methylphenol	NL	69	110	97/92	230		100/110	190/230	150	130/130	160	190	260	190
Naphthalene	10			–			,			200, 200				2.0
Di-n-octyl phthalate	50													
Phenol	1	3J	34	28/22	24		38/41	34/35	42	46/46	180	30	27	49

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level
NS - Not Sampled

J - Estimated

TABLE 2.6

Location				MW-9		
Date	·	05/25/07	05/29/08	05/27/09	05/26/10	05/26/11
	Class GA					
Volatiles (µg/L)	Level					
Acetone	50		5.7	4.8]	5.9	4.3J
Benzene	1			0.76		0.531
2-Butanone	50					0.00,
Chlorobenzene	5	2.8	1.4	5.3	2.5	2.4
trans-1,2-Dichloroethene	5		0.55]	0.74]		
Ethylbenzene	5		,	1.2	0.82]	1.1
Methylene Chloride	5				,	
Tetrachloroethene	5			0.821	0.57]	0.66]
Toluene	5	3.1	2.4	3.8	3.8	4.3
Trichloroethene	5	2.9	1.7	4.7	2.6	2.7
Vinyl Chloride	2			4.2		1.4
Total Xylenes	5			3.3	2.2J	2.7
Semi-Volatiles (µg/L)						
1,2-Dichlorobenzene	3*	0.91	0.7]		1.41	1.0]
1,4-Dichlorobenzene	3*	31	1J	2.3J	1.7J	1.6]
2,4-Dimethylphenol	50	46	31	110	7 41	43
2-Methylphenol	NL	6	6	12	9.9]	11
4-Methylphenol	NL	170	96	300	180	230
Naphthalene	10	0.2J	0.5J			
Di-n-octyl phthalate	50	,	•			
Phenol	1	11	13	20	20	17

Notes:

Exceeds Class GA Level
NS - Not Sampled

^{*} Applies to sum of compounds NL - Not listed

TABLE 2.6

Location									OGC-4							
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	3/04/04	05/14/04	11/23/04	05/27/05	05/30/06
	Class GA															
Volatiles (μg/L)	Level											NA		NA		
Acetone	50			7.9J			4.0J									
Benzene	1		0.21J	0.2J			,									
2-Butanone	50		•	•												
Chlorobenzene	5		0.49J	0.66J		0.83J/0.79J		0.46J		0.83J						
trans-1,2-Dichloroethene	5		•	0.22J				•		•						
Ethylbenzene	5		0.41J	0.39J		0.54J/0.53J	0.48J	0.39]		0.77J						0.44J
Methylene Chloride	5		•	-	5.1J/4.9J		•	,		•			4.6		2.0	,
Tetrachloroethene	5	1.0)	1.2J	0.87J	• •	0.86J/0.84J	1.1	0.78J		0.77]						
Toluene	5		•	1.0J		1.0/0.98J	1,4	0.72]		1.2						
Trichloroethene	5	1.6J	1.4J	1.5J		1.5/1.4	1.7	0.96J		1.5						0.53J
Vinyl Chloride	2															-
Total Xylenes	5		1.0J	0.94J		0.84J/0.82J	1.13			0.95J						
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50	8J	12	6J	8J/6J	7]/7]	8J		7J/7J	8J	4J	6 J		4J		
2-Methylphenol	NL	0.9J	2J	35	2J/ND	1J/2J	2J			3J		3J		2J		
4-Methylphenol	NL	64	86	40	58/55	61/67	68		69/68	73	32	55		31	14	15
Naphthalene	10															
Di-n-octyl phthalate	50											_				
Phenol	1	310	560	400	420/460	710/1100	1100	1100	2400/2300	1800	1600]	2400	1500	850	510

Notes:

* Applies to sum of compounds NL - Not listed Exceeds Class GA Level
NS - Not Sampled
J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location		OGC-4									
Date		05/25/07	05/29/08	05/27/09	05/26/10	05/26/11					
	Class GA										
Volatiles (µg/L)	Level										
Acetone											
	50			1.6J							
Benzene	1										
2-Butanone	50										
Chlorobenzene	5										
trans-1,2-Dichloroethene	5										
Ethylbenzene	5										
Methylene Chloride	5										
Tetrachloroethene	5										
Toluene	5										
Trichloroethene	5										
Vinyl Chloride	2										
Total Xylenes	5										
Semi-Volatiles (µg/L)											
(1.8. -)											
1,2-Dichlorobenzene	3*										
1,4-Dichlorobenzene	3*										
2,4-Dimethylphenol	50		0.9J		0.51J/ND						
2-Methylphenol	NL		0.5J	2.7J							
4-Methylphenol	NL	3J	6								
Naphthalene	10		0.5]		3.4J/3.4J						
Di-n-octyl phthalate	50		•								
Phenol	1	84	66	25	15/15	5.5					

 * Applies to sum of compounds
NL - Not listed
Exceeds Class GA Leve
NS - Not Sampled

TABLE 2.6

Location								OGC-8						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	05/08/03	05/14/04	05/27/05	05/30/06
Volatiles (µg/L)	Class GA Level													
Acetone	50	78	31/29	19 J		4.7]	3.6]				6.2	5.8	4.7]	
Benzene	1	11	14/14	14		2.6	5.3	3.3	3.6	3.1	1.8	1.2	1.1	0.92
2-Butanone	50	4.0J												
Chlorobenzene	5	3. 7]	4.1J/4.1J	4.0J		0.87J	1.7	1.1		1.1	0.65J	0.48J	0.43[0.44]
trans-1,2-Dichloroethene	5	4.3J	3.2J/3.1J	4.0J		0.76J	1.5	0.88J		1.0	0.50J	0.41J	1.0	ŕ
Ethylbenzene	5	13	16/16	15	1.6}	2.8	5.8	3.1	3.9	3.1	1.8	1.2		0.99J
Methylene Chloride	5	_	0.52J/0.48J	0.62J	1.8J									
Tetrachloroethene	5	40	51/52	59 110	7.7]	9.9	53 53	12 28 27	38 35	11	7.0	5.0	3.8	4.0
Toluene	5	140	140/140		17]	21 22	53	28	38	27	16	11	8.1	7.6
Trichloroethene	5	120	110/110	110	20J	22		27	35	27	17		7.7	7.6
Vinyl Chloride	2	3.7]	3.4/3.6	3.1	1.1J		1.4	0.70J		0.78J				
Total Xylenes	5	43	55/54	46	4.8J	8.3	18	9.5	11	9.9	5.4	3.7	3.0	3.2
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50	2J	4J/2J	4J	0.8J	0.8J	3J	1J						
2-Methylphenol	NL	18	30/25	16	4J	5J	13	7J	11	7 J	4J	2J	2J	3J
4-Methylphenol	NL	30	51/45	28	8J	10	26	14	20	14J	9	5J	6J	8J
Naphthalene	10	1J	3J/25	1J			0.9J							
Di-n-octyl phthalate	50		0.1J/ND											
Phenol	1	30	49/44	31	5J	8J	11	10		4J	6J	2J		

^{*} Applies to sum of compounds NL - Not listed
Exceeds Class GA Level NS - Not Sampled
J - Estimated

TABLE 2.6

Location				OGC-8		
Date		05/24/07	05/29/08	05/27/09	05/26/10	05/26/11
	Class GA					
Volatiles (μg/L)	Level					
Acetone	50		9.9	1.5J		
Benzene	1	0.54J	0.84	0.58J		
2-Butanone	50					
Chlorobenzene	5					
trans-1,2-Dichloroethene	5					
Ethylbenzene	5	0.53J	0.841	0.50]		
Methylene Chloride	5		•	•		
Tetrachloroethene	5	2.0	2.3	1.6		0.941
Toluene	5	4.0	6.4	3.7		2.4
Trichloroethene	5	4.0	6.5	4.0		2.4
Vinyl Chloride	2		·			
Total Xylenes	5	1.1J	2.5J	1.5J		0.82J
Semi-Volatiles (µg/L)						
1,2-Dichlorobenzene	3*					
1,4-Dichlorobenzene	3*		0.2)			
2,4-Dimethylphenol	50		1J		0.73]	
2-Methylphenol	NL	2J	2J		2.2J	1.5J
4-Methylphenol	NL	6	8	5.7	6.5]	5.3J
Naphthalene	10				•	•
Di-n-octyl phthalate	50					
Phenol	1					

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level
NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									River South							
Date		05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
Volatiles (µg/L)	Class GA Level								0 -7-20. 00	00,00,00	11,01,00	00.21.01	00/2/100	00/00/00	OSIZIIVI	03/23/00
Acetone	50						3.0J						3.2J			12
Benzene	1						,				0.42J		,			
2-Butanone	50										,		3.9J			3.1J
Chlorobenzene	5															0.2,
trans-1,2-Dichloroethene	5															
Ethylbenzene	5															
Methylene Chloride	5															
Tetrachloroethene	5						0.30J									
Toluene	5			0.29J			0.72J	0.35J			1.8					
Trichloroethene	5						0.44J									
Vinyl Chloride	2						0.27J									
Total Xylenes	5										1.8J					
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50															
2-Methylphenol	NL															
4-Methylphenol	NL															
Naphthalene	10															
Di-n-octyl phthalate	50															
Phenol	1															
Notes:																
* Applies to sum of compour NL - Not listed Exceeds Class GA Le NS - Not Sampled J - Estimated																

TABLE 2.6

Location								MW-8						
Date	_	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
Volatiles (µg/L)	Class GA Level													
Acetone	50	52 6.5	12J	_11J	75J	67 8.6	_20_			73 12		28/33	26	16
Benzene	1	6.5	4.3	4.1		8.6	12	12	8.1	12	23/24	10/12	4.2	4.4
2-Butanone	50													-
Chlorobenzene	5	1.8J	1.0J	1.0J		3.2	4.9	4.4	3.6	13	6.0/6.4	2.7/3.3	2.4	2.4
trans-1,2-Dichloroethene	5	2.2J	1.8J	2.9J	4.8J	7.3	11	16 18	12 15	13	10/12	7.3/9.4	7.4	5.3
Ethylbenzene	5	5.7	3.7J	4.4J	8.2J				15	23	30/32	20/24	4.6	5.8
Methylene Chloride	5	1.1J	0.58J	0.66J	4.4J	1.2	1.4	1.6		1.3	2.2/2.2	7.3/9.2	1.7	0.64J
Tetrachloroethene	5	21	12 36 40	9.8	23J 80	32 100	61 140	58	54 100	80	91/100	120/130	62	71
Toluene	5	75	36	31	80	100	140	160	100	120	240/240	97/120	30	33
Trichloroethene	5	82 5.2 22	40	35	110	180	320	280	210	320	460/460	380/390	180	150
Vinyl Chloride	2	5.2	1.6J	3.3	23 30J	12 40	18 68	14 69	12 58	18 93	21/21	13/16	5.8	5.1
Total Xylenes	5	22	13	16	30]	40	68	69	58	93	120/120	92/110	32	25
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*				2J	2J		2J		4J	3J/3J			
1,4-Dichlorobenzene	3*			0.6J	2J	1J	1J	2J		4J	3J/3J	19U/2J	4J	5J
2,4-Dimethylphenol	50	1J	11	16	19	18	15	27	20	27	37/38	15J/14	7]	6J
2-Methylphenol	NL	33	55	41	48	44	38	56	37	35	45/46	18J/18	18J	16
4-Methylphenol	NL	10	32	34	55	60	59	83	64	75	130/130	34/31		
Naphthalene	10				0.7J	0.8J	0.8J	1J			2J/2J			
Di-n-octyl phthalate	50	_						[]	[440]	F=0.1	L 00 700 I	20 /20	111	41
Phenol	1	43	130	140	85	110	91	110	140	78	80/80	28/28	11J	ا(ئ ا

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled
J - Estimated

TABLE 2.6

Location			N	∕IW-8		
Date		05/24/07	05/29/08	05/29/09	05/26/10	05/26/11
	Class GA					
Volatiles (µg/L)	Level					
Acetone	50	6.6/7.5	23	2.6J		3.1]
Benzene	1	1.6/1.5	1.5	2.7		2.7
2-Butanone	50		4.4J			
Chlorobenzene	5	0.84J/0.82J	0.54]	0.99[3.8
trans-1,2-Dichloroethene	5	4.4/3.9	3.6	6.8		3.5
Ethylbenzene	5	2.5/2.2	1.8	4.2		5.2
Methylene Chloride	5					
Tetrachloroethene	5	16/14	9.5	12		12
Toluene	5	12/11	10	26		18
Trichloroethene	5	40/36	29	68		34
Vinyl Chloride	2			-		3.0
Total Xylenes	5	9.8/9.1	6.7	19		22
Semi-Volatiles (µg/L)						
1,2-Dichlorobenzene	3*		0.4J		1.5J	1.2J
1,4-Dichlorobenzene	3*	0.5J/0.4J	0.5J		2.1J	3.3J
2,4-Dimethylphenol	50	0.8J/0.6J	14	14	13	14
2-Methylphenol	NL	7/7	26	32	22	16
4-Methylphenol	NL	18/16	31	29	38	41J
Naphthalene	10	22/22	1J			
Di-n-octyl phthalate	50					
Phenol	1	20/21	32	15	13	3.4J

Notes:

J - Estimated

^{*} Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled

TABLE 2.6

Location								OGC-3						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
Volatiles (µg/L)	Class GA Level													
Acetone	50	13J / 19J	3.8J	15J		7.1	6.7			5.6			10/8.4	2.8J
Benzene	1	1.6J / 1.6J	1.6	1.8		1.8	1.2	1.5		1.6	1.4		1.2/1.1	0.93J
2-Butanone	50													,
Chlorobenzene	5		0.24J	0.28J		0.28J		0.22J						
trans-1,2-Dichloroethene	5	1.6J / 1.6J	1.0J	1.4J	1.1J	1.1	0.98J	0.44J		1.0				
Ethylbenzene	5	1.6J / 1.5J	2.0J	2.3J	1.5J	2.4	1.7	1.8		2.0			1.4/1.3	1.1
Methylene Chloride	5				1.9J							6.3	1.2/1.0	
Tetrachloroethene	5	2.4J / 2.2J	3.0J	2.2J	1.7J	2.2	1.8	1.8		1.5			0.71J/0.63J	0.61J
Toluene	5	5.7 /5.1	5.9 18	5.3 19		5.1	3.7	4.6	4.0	4.3	3.6	2.6	2.6/2.4	
Trichloroethene	5 .	20 /20	18	19	14J	5.1 17	14	13	12	14	9.8	7.7	6.4/6.1	5.6
Vinyl Chloride	2	ND /1.0J	0.4	0.72						0.62J				
Total Xylenes	5	5.6J /5.4J	7.5	8.7	4.8J	7.8	5.8	5.8	5.0	6.6	3.9		3.3/3.0	2.9J
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*				1J									
1,4-Dichlorobenzene	3*				0.7J		0.5J							
2,4-Dimethylphenol	50	5J /5J	9	8J	11	11	73	8J	11	12	10	9J	8J/4J	6J
2-Methylphenol	NL	98 / 96	120	87	160	140	100	100	120	140	150	110	83/73	64
4-Methylphenol	NL	13 /13	21	17	28	23	14	15	22	23	20	17	14/12	13
Naphthalene	10													
Di-n-octyl phthalate	50									_				
Phenol	1	120 /110	140	130J	210	140	85	92	110	120	120	90	78/74	75

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled
J - Estimated

TABLE 2.6

Location				OGC-3		
Date		05/24/07	05/29/08	05/27/09	05/26/10	05/26/11
_	Class GA					
Volatiles (μg/L)	Level					
Acetone	50	0.76	6.0	2.01/2.61		2.71
Benzene	1	0.70	0.93	2.9J/2.6J 0.75/0.78		3.7J
2-Butanone	50		0.53	0.7370.78		0.67 J
Chlorobenzene	5					
trans-1,2-Dichloroethene	5					
Ethylbenzene	5	0.85]	0.921	0.691/0.731		0.75]
Methylene Chloride	5	0.00)	0.72)	0.09)/ 0.73)		0.73)
Tetrachloroethene	5	0.56]				
Toluene	5	1.7	1.8	1.4/1.4		1.2
Trichloroethene	5	4.3	4.9	3.3/3.5		2.5
Vinyl Chloride	2	-1.0		0.07 0.0		2.5
Total Xylenes	5	2.1J	2.31	1.7]/1.7]		1.0]
,	-	,	,	2.7), 2.7)		1.0)
Semi-Volatiles (µg/L)						
1,2-Dichlorobenzene	3*	0.6]	0.71		0.86J	0.40]
1,4-Dichlorobenzene	3*	5.5,	0.6]		0.581	0.10,
2,4-Dimethylphenol	50	6	6	6.2/5.9	4.3J	3.7]
2-Methylphenol	NL	47	45	44/43	36	33
4-Methylphenol	NL	10	11	11/11	9.9	10
Naphthalene	10		0.8J			
Di-n-octyl phthalate	50		,			
Phenol	1	60	65	60/57	50	48

Notes:

* Applies to sum of compounds NL - Not listed
Exceeds Class GA Level NS - Not Sampled
J - Estimated

TABLE 2.6

Location	_	GW	'-5S							OGC-7						
Date		2/17/87	08/12/88	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
Volatiles (µg/L)	Class GA Level															
Acetone Benzene 2-Butanone Chlorobenzene	50 1 50 5	293 2 27		21J	0.25]	8.2J 0.30J		0.28J	3.6J 0.20J	0.26J				0.34J	0.34J	
trans-1,2-Dichloroethene Ethylbenzene Methylene Chloride	5 5 5	180 9	89 7J	6.3 1.1J	3.1J 0.80J	5.4 1.0J	4.9J	4.8J 1.3	4.2 0.84J	4.7 0.91J	4.0	5.4 1.4	5.0 0.93J	5.9	4.9 1.4	5.8
Tetrachloroethene Toluene Trichloroethene Vinyl Chloride Total Xylenes	5 5 5 2 5	11 75 287 7 54	7J 49 220 4J 37	4.3J 12 70 2.6J 6.0J	3.6J 5.8 40 0.84 4.8J	3.4J 6.7 48 1.7J 6.5	2.9J 5.7J 45 3.5J 3.9J	4.0 6.9 68 2.2 7.6	3.4 5.2 44 1.8 5.3	2.7 6.0 38 1.8 5.3	2.8 6.7 50	4.1 8.6 56 2.3 8.7	2.2 5.8 38 2 5.4	4.1 9.3 56 2.9 10	2.9 8.3 37J 3.0 8.6	2.8 8.6 37 2.9 8.2
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene 1,4-Dichlorobenzene	3* 3*		2J													
2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Naphthalene	50 NL NL 10	10 24 38	11 24	3J	2J 2J	1.0J 0.9J	0.8J 0.7J	1J 1J								
Di-n-octyl phthalate Phenol	50 1	61	92	4J	0.7J		0.6J									

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled
J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location			OG	C-7	
Date		05/24/07	05/27/09	05/26/10	05/26/11
	$Class\ GA$				
Volatiles (µg/L)	Level				
Acetone	50				
Benzene	50				
2-Butanone	1				
Chlorobenzene	50				
trans-1,2-Dichloroethene	5 5	2.0		0.7	0.7
Ethylbenzene		3.8	0.047	2.7	2.7
Methylene Chloride	5	0.87J	0.84J	0.62J	
Tetrachloroethene	5		1.01	0.001	0.001
Toluene	5	1.7	1.2J	0.80J	0.72J
Trichloroethene	5	5.0	4.9]	3.3	3.4
	5	22	211	14	12
Vinyl Chloride	2	50	2.6J	2.4	2.4
Total Xylenes	5	5.3	5.0J.	3.6	4.0
Semi-Volatiles (µg/L)					
1,2-Dichlorobenzene	3*				
1,4-Dichlorobenzene	3*				
2,4-Dimethylphenol	50				
2-Methylphenol	NL	0.6)	0.5J		0.45J
4-Methylphenol	NL	0.6J	0.4J		
Naphthalene	10 -				
Di-n-octyl phthalate	50				
Phenol	1				
Notes:					
* Applies to sum of compound	ds				
NL - Not listed					
Exceeds Class GA Lev	rel				
NS - Not Sampled					
J - Estimated					
, Louisiaca					

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location								River M	1iddle					
Date		05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03	05/08/03	11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08
Volatiles (µg/L)	Class GA Level				٠									
Acetone	50						3.1J							2.01
Benzene	1						5.1)							2.8J
2-Butanone	50													
Chlorobenzene	5													
trans-1,2-Dichloroethene	5													
Ethylbenzene	5													
Methylene Chloride	5													
Tetrachloroethene	5												1.3	
Toluene	5												-10	
Trichloroethene	5							0.21J						
Vinyl Chloride	2							ŕ						
Total Xylenes	5													
Semi-Volatiles (μg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50													
2-Methylphenol	NL													
4-Methylphenol	NL													
Naphthalene	10													
Di-n-octyl phthalate	50				0.7J									
Phenol	1													•
Notes:														
* Applies to sum of compoun NL - Not listed Exceeds Class GA Le NS - Not Sampled J - Estimated														

TABLE 2.6

Location			t v					÷.	MW-7						
Date	01 0.	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03	05/08/03	11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08	05/26/10
Volatiles (µg/L)	Class GA Level														
Acetone	50	5.7J		6.5J		4.3J	5.4		4.8		4.3J	3.0J	3.9J	3.3J/3.4J	
Benzene	1		1.9	2.0		2.0	1.3	1.8	0.90		0.58J	2.0,	0.7,	0.0,7 0.1,	
2-Butanone	50		_								0.00)				
Chlorobenzene	5														
trans-1,2-Dichloroethene	5		0.82J	1.1J		0.98 J	0.89J	1			0.36J				
Ethylbenzene	5		0.85J	0.81J		1.0	0.61J	0.75J			0.32J				
Methylene Chloride	5				1.6J						-				
Tetrachloroethene	5			0.27J											
Toluene	5		3.5J	3.6J		3.3	1.9	3	1.1	2.8	0.93J				
Trichloroethene	5		0.55J	0.63J		0.43]	0.45J	0.36J							
Vinyl Chloride	2		1.6J	2.0	3.8J	2.9	1.7	2.2	1.3		0.80J			0.64J/0.61J	
Total Xylenes	5		2.1J	2.1J		2.7J	1.5J	1.9J	0.76J						
Semi-Volatiles (µg/L)	•														
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50			2J	2J	3J	0.7J	2J							
2-Methylphenol	NL		3J	2J	4J	6 J	1J	2J		2J				0.4J/0.5J	
4-Methylphenol	NL		3J	2J	4J	6J	1]	2J		1J			0.3J	0.5J/0.6J	
Naphthalene	10		٠,	-,	-7	-,	-,	,		,					
Di-n-octyl phthalate	50				0.6J										
Phenol	1		24	7]	10	26	2J	6J	5J	2J	13				

Notes:

* Applies to sum of compounds
NL - Not listed
_____ Exceeds Class GA Level
NS - Not Sampled
J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location	_								OGC-	-2							
Date	_	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/25/07	05/29/08	05/26/10
Volatiles (µg/L)	Class GA Level																
volutiles (hg/L)	Levei																
Acetone	50			11J			3.0J					4.5J	3.1				
Benzene	1			-			,					,					
2-Butanone	50																
Chlorobenzene	5																
trans-1,2-Dichloroethene	5																
Ethylbenzene	5																
Methylene Chloride	5				1.7J												
Tetrachloroethene	5				•												
Toluene	5										0.37J						
Trichloroethene	5		0.39J								,						
Vinyl Chloride	2			0.26J		0.25J	0.26J										
Total Xylenes	5			-		-	,										
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*																
1,4-Dichlorobenzene	3*																
2,4-Dimethylphenol	50																
2-Methylphenol	NL																
4-Methylphenol	NL																
Naphthalene	10																
Di-n-octyl phthalate	50																
Phenol	1																
Notes:																	
* Applies to sum of compour	nds																
NL - Not listed																	
Exceeds Class GA Le	evel									*							
NS - Not Sampled																	
J - Estimated																	

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location								C	GC-6							
Date	_	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	03/04/04	05/14/04	11/23/04	05/27/05	05/31/06
Volatiles (µg/L)	Class GA Level															
Acetone	50			6.6]			5.0			3.7J						8.6/8.7
Benzene	1			•						0.71	0.87	1.4		2.5	5.2	12/12
2-Butanone	50											لتنتا		2.0	<u> </u>	12/12
Chlorobenzene	5															
trans-1,2-Dichloroethene	5			0.23J	0.23J	0.37J	0.45[0.55J		1.4	2.0	2.1		3.6	5.3	11/12
Ethylbenzene	5			•	,	0.31]	,	,		0.85]	1.1	2.0	3.3	3.1	7.4	20/20
Methylene Chloride	5				2.11	•				,			4.4	2.5	2.2	(=0/=0)
Tetrachloroethene	5		1.4J	0.73J	•	6.6	7.4	5	12	49	51	230	300		550	2000/2100
Toluene	5			0.55J		2.0	1.6	1.5	2.4	9.3 95	51 12 120	230 27 330	40	35 330	72	240/260
Trichloroethene	5	3.0J	4.7J	3.1J	5.9	16	19	13	26	95	120	330	530	330	72 610	1800/1800
Vinyl Chloride	2					0.22J	0.25J			0.45]						2.9/2.8
Total Xylenes	5		0.22J	0.53J	0.26J	1.7J	1.2J	1.0J		4.1	4.7	8.6	13	12	28	79/76
Semi-Volatiles (µg/L)												NA		NA		
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50							1J								
2-Methylphenol	NL		2J	2J	32	11	8J	9J	13	22	27		63		85	89/110
4-Methylphenol	NL		-	1J	0.02J	10							1 J		2J	84/100
Naphthalene	10			•	-											1J/2J
Di-n-octyl phthalate	50															
Phenol	1		7J	2J	45	5J	3J	2J		5 J	3J		9J		8J	13/16

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level

NS - Not Sampled J - Estimated

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location			OGO	C-6		
Date		05/24/07	05/29/08	05/27/09	05/26/10	05/26/11
	Class GA					
Volatiles (µg/L)	Level					
Acetone	50			1.6]		
Benzene	1	7.2		3.2	3.6	1.8
2-Butanone	50					
Chlorobenzene	5					
trans-1,2-Dichloroethene	5	7.1		4.4	8.2	7.6
Ethylbenzene	5	12		4.8	5.2	2.4
Methylene Chloride	5					
Tetrachloroethene	5	1400	34	400	640	220
Toluene	5	97	2.9	34	38	14
Trichloroethene	5	1100	31	320	410	180
Vinyl Chloride	2	1.5		<u> </u>	1.2	
Total Xylenes	5	46		18	20	9.1
Semi-Volatiles (µg/L)						
1,2-Dichlorobenzene	3*					
1,4-Dichlorobenzene	3*					
2,4-Dimethylphenol	50		0.9J			
2-Methylphenol	NL	76	76	32	32	15
4-Methylphenol	NL	2]	70	1.1J	1.4J	1.2]
Naphthalene	10	2J	2J	1.2J	1.4J	1.1J
Di-n-octyl phthalate	50	•	•		•	-
Phenol	1	8	8			

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level
NS - Not Sampled
J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Date Volatiles (µg/L)	Class GA Level	05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	00100100		North						
Volatiles (µg/L)						03/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/31/07
Volatiles (µg/L)	Level													00100100	00/01/0/
Acetone	50						2.4J		NS			3.6J	3.6J		
Benzene	1					0.21J					2.0	0.39J	,		
2-Butanone	50														
Chlorobenzene	5					1.3						3.2			
trans-1,2-Dichloroethene	5					0.25J						1.0			
Ethylbenzene	5					20						40		2.9	
Methylene Chloride	5				1.6J										
Tetrachloroethene	5					3.8						7.7		1.3	
Toluene	5			0.39J		63				0.96J		130	2.2	14	
Trichloroethene	5			0.35J		4.5				•		6.4		0.59]	
Vinyl Chloride	2					3.7						9.3		,	
Total Xylenes	5					3.7 80				0.96J		210	3.7	23	
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50							1J							
2-Methylphenol	NL														
4-Methylphenol	NL														
Naphthalene	10														
Di-n-octyl phthalate	50														
Phenol	1														
Notes:															
* Applies to sum of compou NL - Not listed Exceeds Class GA L NS - Not Sampled J - Estimated															

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location							C	OGC-5						
Date	_	05/20/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
	Class GA													
Volatiles (µg/L)	Level													
Acetone	50	38J		11J			6.4			4.9]		0.61J		3.0J
Benzene	1		1.5	11J 1.4		0.87	0.92	0.87		0.77		•		0.67]
2-Butanone	50										*			,
Chlorobenzene	5													
trans-1,2-Dichloroethene	5		0.65J	0.76]		0.42J	0.57J	0.52J				0.34J		
Ethylbenzene	5		0.21J	0.23J								•		
Methylene Chloride	5				3.4J								2.4	
Tetrachloroethene	5		0.38J	0.27J										
Toluene	5		2.5J	2.2]		0.99J	0.87J	1.2		0.80J		0.80J		
Trichloroethene	5		0.87J	0.66J		0.36J	0.41J	0.40J				0.28J		
Vinyl Chloride	2		1.6J	1.2J		1.1	1.5	1.2		1.1		1.4		1.2
Total Xylenes	5		1.0J	1.0J		0.67J	0.37J	0.40J				1.0J		
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50		8J	6J	5 J		1J	6J						
2-Methylphenol	NL		1J	1J	1J									
4-Methylphenol	NL		2J	5 J	4J			2J						
Naphthalene	10		1J	· 1J			0.5J	1J						
Di-n-octyl phthalate	50			1J	0.8J									
Phenol	1		0.9J											

Notes:

* Applies to sum of compounds <u>NL -</u> Not listed

Exceeds Class GA Level
NS - Not Sampled
J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location			OGC-5	
Date	_	05/24/07	05/29/08	05/26/10
	Class GA			
Volatiles (µg/L)	Level			
Acetone	50		3.5J	
Benzene	1	0.54J	0.69J	
2-Butanone	50			
Chlorobenzene	5			
trans-1,2-Dichloroethene	5			
Ethylbenzene	5			
Methylene Chloride	5			
Tetrachloroethene	5			
Toluene	5			
Trichloroethene	5			
Vinyl Chloride	2	0.95J	1.4	
Total Xylenes	5	·		
Semi-Volatiles (µg/L)				
1,2-Dichlorobenzene	3*			
1,4-Dichlorobenzene	3*			
2,4-Dimethylphenol	50			
2-Methylphenol	NL	0.5J	0.3J	
4-Methylphenol	NL	0.9J	0.4J	
Naphthalene	10	2]	0.5J	1.6J
Di-n-octyl phthalate	50			
Phenol	1			
Notes:				
* Applies to sum of compound	ls			
NL - Not listed				
Exceeds Class GA Lev	el			
NS - Not Sampled				
I Estimated				

J - Estimated

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location		GW-	-6S							MW-6						
Date		12/15/1987	08/10/88	05/18/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
Volatiles (µg/L)	Class GA Level														33.27.03	00/00/00
Acetone	50	684	4.9J						4.4J			44		6.7	13	21
Benzene	1	3	,		0.64J			0.65J	0.59J	0.56J		0.57]		0.7	13	31
2-Butanone	50				0.02,			0.00)	0.57)	0.50)		0.57)				
Chlorobenzene	5		3.3J		1.5J	1.3J		0.65J		0.54]		0.81J		0.37J		
trans-1,2-Dichloroethene	5	58	4.4J		1.1J			0.37J	0.32J	0.34J		1.4		0.52J		
Ethylbenzene	5	2			0.21J			•	,	•				0.02,		
Methylene Chloride	5						1.8J								2.1	
Tetrachloroethene	5	43			0.44J							0.67]		0.25J		
Toluene	5	16	3.0J		2.2J	0.29J		1.3	0.91J	1.1		2.1	3.6	0.92J		
Trichloroethene	5	62	5.1]		2.0J		1.2J		1.1	1.5	3.2	14	12	3.7	1.5	1.2
Vinyl Chloride	2	11 7	1.7J					0.29J	0.24J	0.22J		0.52J				
Total Xylenes	5	7			0.90J	0.44J		0.36J	0.27J							
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*			1J		0.7J	2J						2J			
2,4-Dimethylphenol	50	5		5Ĵ	5 J	3J	2J	1J	0.9J	9J			6J			
2-Methylphenol	NL	3		5 j	6J	2J	2J	2J	1J	0.9J			5J			
4-Methylphenol	NL	4		15	13	5]	4J	3J	2J	2J			12			1J
Naphthalene	10			67	69		1J		14	13			76		5J	
Di-n-octyl phthalate	50						2J									
Phenol	1	3		14	4J	2J	0.8J						250			2J

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled
J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location			MW-6	
Date		05/24/07	05/29/08	05/26/10
	Class GA			
Volatiles (μg/L)	Level			
Acetone	50			
Benzene	1			
2-Butanone	50			
Chlorobenzene	5			
trans-1,2-Dichloroethene	5			
Ethylbenzene	5			
Methylene Chloride	5			
Tetrachloroethene	5			0.551
Toluene	5			0.731
Trichloroethene	5	0.97[2.3]
Vinyl Chloride	2	,		•
Total Xylenes	5			
Semi-Volatiles (µg/L)				
1,2-Dichlorobenzene	3*			0.66]
1.4-Dichlorobenzene	3*	0.81	0.6]	4.2J
2,4-Dimethylphenol	50	,	,	1.4]
2-Methylphenol	NL	0.51	0.3[1.8J
4-Methylphenol	NL	1J	•	2.5J
Naphthalene	10	2]	1J	7.8]
Di-n-octyl phthalate	50	•	•	
Phenol	1	0.6J	0.4j	1.9]

Notes:

* Applies to sum of compounds <u>NL</u> - Not listed

Exceeds Class GA Level
NS - Not Sampled
J - Estimated

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location								OGO	C-1						
Date		05/18/01	05/25/07	8/21/2001	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/31/06
Volatiles (µg/L)	Class GA Level														
Acetone	50	20J			11J			4.8J							
Benzene	1			0.64J	0.55J			,	0.26J						
2-Butanone	50	1.1J		•	•										
Chlorobenzene	5	2.2J	2.8	2.0J	1.7J		0.24]		0.78J		0.91 J				
trans-1,2-Dichloroethene	5	5.6		3.7J	4.6J	1.8J	0.48]	0.58J	2.7		2.8	0.85J			0.55]
Ethylbenzene	5			0.52J	0.43J	-	•	•	0.21J			•			,
Methylene Chloride	5					1.6J			-					1.8	
Tetrachloroethene	5			0.78J	0.54J	•	0.42J	0.53J	0.30J			0.29J			
Toluene	5	5.2	3.1	5.4	4.2J		0.48J	0.43J	1.9	1.7	2.6	0.59J			
Trichloroethene	5	5.2 15	2.9	16	11	4.5]	2.2	2.7	6.1	5.1	8.4	2.2	0.47]	1.2	1.9
Vinyl Chloride	2	1.3J		0.51J	0.72J				0.42J		0.64J		•		
Total Xylenes	5	ŕ		2.1J	1.6J				0.49J		0.86J				
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*		0.9]												
1,4-Dichlorobenzene	3*	1Ĭ	3J	3 J	2J	1J			1J						
2,4-Dimethylphenol	50	9]	46	16	8J	3J		0.6J	9J		4J				
2-Methylphenol	NL	6J	6	12	5 J	2)			2J		3J				
4-Methylphenol	NL	20	170	35	15J	5J		1J	5J	6J	8J				2J
Naphthalene	10	71	0.2J	130	•	21		7]	18	1	25	3J			
Di-n-octyl phthalate	50		•					•		-					
Phenol	1	150	11	290	57	15	1J	8J	4]		19				

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled
J - Estimated

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location			OGC-1	
Date		05/24/07	05/29/08	05/26/10
	Class GA			
Volatiles (μg/L)	Level			
Acetone	50			
Benzene	. 1			
2-Butanone	50			
Chlorobenzene	5			
trans-1,2-Dichloroethene	5			
Ethylbenzene	5			
Methylene Chloride	5			
Tetrachloroethene	5			
Toluene	5			
Trichloroethene	5	0.53J	4.2	
Vinyl Chloride	2			
Total Xylenes	5			
Semi-Volatiles (µg/L)				
1,2-Dichlorobenzene	3*			
1,4-Dichlorobenzene	3*			
2,4-Dimethylphenol	50			
2-Methylphenol	NL			
4-Methylphenol	NL		0.4J	
Naphthalene	10		0.5J	
Di-n-octyl phthalate	50			
Phenol	1			
Notes:				
INUIES.				
* Applies to sum of compounds	;			
NL - Not listed				
	_			

J - Estimated

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	МН1	МН2	МН3	MW-6	OGC-1	МН4	OGC-5	МН5	МН6	OGC-6	МН7	MW-7	МН8	OGC-2	МН9
Date															
07/24/00						7.8					10.3				
10/24/00						7.7					10.5				
03/29/01				7.60	10.82		NM			12.55		8.68		9.80	
05/11/01	*	*	*	*	*	*	*	8.30	8.17	8.50	10.16	8.90	11.22	9.22	11.26
05/18/01				11.05	11.14		10.42		10.00	10.50		8.19		8.70	
06/08/01	9.25						9.35		6.90	8.24		7.33		8.40	
06/15/01		10.1	10.38	9.6	9.6		9.4		6.91	8.22		7.43	10.65	8.46	
06/22/01		*	*	*	*										
06/29/01		10.9	10.8	11	10.9		10.56		7	8.97		9.27	11.33	8.63	
07/31/01		10.82	10.81	10.97	11.25		10.54		7.92	8.55		9.2	11.28	9.35	
08/20/01		11	11	9.86	10.95		10.44		7.9	8.31		7.71	11.45	8.49	
09/28/01		10.75	10.97	9.89	11.01		10.6		7.93	8.3		9.0	11.15	8.75	
10/22/01		10.7	10.45	10.5	11		7.86		6.1	9.32		8.97	8.49	8.87	
11/27/01		10.61	10.46	10.12	11.65		10.3			10.54		10.01	8.61	8.63	
12/20/01		10.17	10.11	9.97	11.22		10.19		9.98	10.37		9.68	8.42	8.51	
01/29/02		. 11.8	11.62	11.15	11.82		10.48		9.91	10.86		10.56	11.91	10.23	
02/11/02		10.26	10.16	10.5	10.4				7. <i>7</i> 9	11.44		10.04	11.74	8.33	
03/25/02		10.62	10.45	11.22	10.69		10.36		9.94	11.4		10.03	12,21	9.65	
04/24/02		10.37	10.22	10.68	11.36		9.97		9.46	11.15		9.73	11.3	9.52	
05/21/02		9.96	9.81	10.76	10.42		9.85		9.25	11.91		9.38	9.69	9.2	
06/20/02		10.64	9.4	10.91	11.19		9.77		9.46	11.4		10.59	11.76	9.46	
07/18/02		10.89	10.69	10.87	11.75		9.63		9.32	11.24		10.24	11.76	9.51	
08/06/02		10.62	10.47	8.21	5.67		7.25		8.79	8.78		7.46	11.24	7.83	
09/12/02		10.92	11.23	11.17	11.85		9.61		9.27	11.29		10.26	11.9	9.51	
10/30/02		10.1	11.22	10.74	10.89		9.68		9.82	10.63		9.95	11.97	9.64	
11/21/02		9.06	9.3	10.09	11.89		10.72		9.17	12.42		9.76 10.19	9.31 9.5	9.6 9.18	
12/11/02		8.92	9.17	10.16	11.03		9.87		9.02	10.39		11.01	9.3 12.37	9.18	
01/16/03		10.9	11.76	11.02	11.59		10.31		10.01	11.52		9,42	9.32	8.92	
02/25/03		10.72	11.12	10.51	11.81		10.22		9.87	12.31		10.19	9.28	9.44	
03/14/03		11.77	11.92	10.07	11.93		10.09		9.71	11.92		9.74	10.48	9.01	
04/14/03		9.78	9.71	9.67	10.82		9.74		9.21	10.45		10.88	10.48	9.00	
05/08/03		10.32	10.48	10.43	12.35		10.13		9.72	12.41		10.66	10.51	8.99	
06/19/03		10.21	10.39	10.36	12.31		10.05		9.68	12.29		10.75	10.51	8.84	
07/21/03		10.06	10.21	10.25	12.17		9.87		9.57	11.99			10.49	9.89	
08/28/03		10.22	10.91	10.32	11.16		9.8		10.17	10.96		11.04		9.89 9.58	
09/30/03		9.32	9.4	9.95	10.91		8.95		NM	10.22		9.35 9.8	9.42 10	9.38 9.2	
10/20/03		9.22	9.3	9	10		8.1		10.2	10.25				9.2 9.03	
11/03/03		9.15	9.14	8.86	9.49		7.8		10.51	10.54		10.41	10.28		
12/23/03		10.03	9.03	9.7	10.3		8.69		10.07	10.49		10.38	10.63	8.62	

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	МН1	МН2	МН3	MW-6	OGC-1	МН4	OGC-5	МН5	МН6	OGC-6	МН7	MW-7	МН8	OGC-2	МН9
Date															
01/21/04		(1)	9.06	9.01	9.56		8.0		10.31	9.84		9.69	10.6	8.8	
02/12/04	8.45	(1)	9.72	13.24	11.02	7.77	8.75		7.65	10.8		10.32	11.23	9.2	
03/04/04	8.21	10.05	8.93	10.28	10.69		8.82		9.43	10.52		10.28	10.87	9.24	
04/16/04		9.52	8.77	10.16	9.28		8.61		9.2	10.96		10.41	11.18	9.12	
05/14/04		10.5	8.08	10.16	9.47		8.74		7.19	11.69	9.49	9.36	11.00	9.09	
06/25/04		10.22	8.66	10.07	9.98		8.46		8.41	10.89		9.82	10.65	9.1	
07/30/04		10.03	9.00	9.91	10.45		8.41		8.42	10.67		9.31	10.51	8.94	
08/31/04		9.89	8.7	9.69	10.0		8.17		7.58	10.36		8.97	10.65	8.85	
09/30/04		10.01	8.77	9.9	9.8		8.4		8.11	10.13		9.2	10.47	8.6	
10/20/04		9.91	7.95	9.8	9.28		8.18		8.46			9.89	9.95	8.84	
11/23/04		9.26	8.47	9.87	9.83		8.32		8.92	10.89		9.8	10.84	8.96	
12/31/04		10.13	8.82	9.42	9.26		8.44		10.31	10.04		9.79	9.57	8.73	
01/28/05		10.21	10.75	9.25	8.91		8.39		8.86	10.6		9.66	9.05	9.1	
02/28/05		10.66	9.5	9.09	9.17		8.54		10.89	10.61		9.11	10.8	6.8	
03/31/05		10.91	8.96	9.78	8.95		8.51		9.06	10.99		9.58	11.06	9.18	
04/29/05		10.74	8.92	9.90	9.59		8.74		8.72	11.26		9.62	10.29	9.56	
05/27/05		11.29	9.88	7.85	10.26		9.18		8.12	11.3		9.62	11.16	9.78	
06/24/05		10.72	10.51	10.22	10.2		8.69		8.01	11.48		9.38	11.34	9.31	
07/29/05		7.3	6.20	8.96	9.23		7.83		8.29	9.9		8.91	10.32	8.55	
08/31/05		9.76	7.64	9.35	9.47		8.23		8.5	10.4		8.67	10.68	9.24	
10/03/05		9.1	8.45	9.52	9.14		8.12		7.26	10.43		7.89	9.23	8.9	
10/31/05		10.01	8.59	9.37	8.89		8.47		9.24	10.14		8.63	11.13	9.06	
11/22/05		10.29	8.15	9.13	8.68		8.05		8.25	10.18		8.79	10.70	8.71	
12/23/05		9.24	11.09	10.15	10.11		10.84		9.37	10.84		10.43	9.46	9.23	
01/27/06		9.38	10.69	10.75	9.27		8.63		8.29	11.10		10.05	8.62	9.46	
02/28/06		9.94	11.28	10.49	9.63		8.9		9.56	10.96		9.96	9.56	9.85	
03/24/06		9.57	8.84	10.64	9.43		8.70		9.43	11.14		9.70	9.28	9.40	
04/21/06		11.13	11.03	10.65	9.6		8.91		10.67	11.03		9.44	10.44	9.33	
05/30/06		9.78	10.44	7.50	10.62		8.02		7.10	10.85		9.46	8.98	8.45	
06/26/06		11.24	8.67	10.6	10.83		8.52		8.06	11.24		9.79	10.69	9.24	
07/31/06		7.8	7.85	10.27	10.05		8.12		7.95	10.34		9.93	7.88	8.59	
08/25/06		11.17	8.74	11.07	10.45		8.6		7.7	11.01		8.49	11.4	9.25	
09/22/06		8.33	8.34	10.97	9.73		8.71		8.84	10.85		9.46	11.63	9.23	
10/31/06		10.82	8.26	10.36	9.49		8.62		9.03	10.64		9.86	11.23	9.22	
11/29/06		11.13	9.09	10.45	9.46		8.97		10.90	10.80		9.49	11.13	9.62	
12/29/06		11.15	8.94	10.88	9.36		8.90		11.27	10.56		10.02	11.33	9.05	

TABLE 2.7

Monitoring Location	МН1	МН2	МН3	MW-6	OGC-1	MH4	OGC-5	МН5	МН6	OGC-6	МН7	MW-7	МН8	OGC-2	МН9
Date															
01/26/07		11.51	9.21	11.05	9.26		8.80		11.45	11.23		9.76	11.67	9.48	
02/27/07		11.55	10.3	10.93	9.64		8.95		11.08	11.20		9.33	11.45	10.16	
03/30/07		11.37	8.89	10.68	8.83		8.78		11.18	11.13		9.35	11.28	9.21	
04/30/07		11.19	8.27	10.42	9.02		8.47		8.23	10.99		9.59	11.14	9.04	
05/25/07		11.3	8.47	10.32	8.83		8.09		7.74	10.93		9.32	11.18	9.00	
06/29/07		11.17	8.33	10.28	9.52		8.36		7.89	10.91		9.02	10.98	8.86	
07/25/07		11.23	7.75	10.42	9.5		8.21		7.93	10.82		8.41	11.32	8.70	
08/31/07		10.36	8.07	9.67	9.89		8.33		8.66	10.31		8.88	10.71	8.99	
09/27/07		9.77	8.62	9.79	9.99		8.43		9.26	10.22		9.55	9.63	8.93	
10/31/07		10.16	8.59	9.82	10.25		8.23		8.83	10.34		9.21	9.69	9.05	
11/30/07		NM	8.45	10.21	10.63		8.56		11.06	10.51		8.31	11.01	9.00	
12/31/07		9.07	8.46	9.69	9.24		8.60		10.84	10.44		10.06	11.07	9.20	
01/28/08		11.05	9.25	10.83	10.54		9.10		11.32	11.06		10.28	11.70	9.36	
02/29/08		9.59	9.66	9.96	9.82		9.09		10.35	10.09		10.02	11.59	9.42	
03/31/08		9.15	8.76	9.96	9.14		8.98		10.75	11.06		10.17	11.38	9.42	
04/28/08		9.53	9.17	10.73	9.60		8.78		8.90	11.23		9.97	10.18	9.48	
05/29/08		8.74	8.30	10.60	8.99		8.87		7.95	11.03		10.11	9.14	9.41	
06/25/08		9.46	8.64	10.60	9.96		8.61		8.50	11.06		10.24	9.28	9.41	
07/31/08		8.88	8.98	10.49	9.90		8.54		8.83	10.86		9.77	9.57	9.55	
08/27/08		8.77	8.67	10.96	8.79		8.58		8.77	10.63		10.87	10.53	9.96	
09/26/08		9.20	9.78	10.17	9.48		8.57		8.89	9.97		9.41	9.56	9.29	
10/30/08		9.40	10.68	10.49	9.76		8.98		9.36	10.42		9.46	9.69	9.52	
11/22/08		9.18	9.52	10.03	9.25		8.46		9.23	9.68		9.50	9.58	9.43	
12/31/08		9.49	8.91	10.71	9.72		8.68		8.89	10.07		9.26	9.50	9.32	
01/30/09		10.88	10.86	10.23	9.83		8.77		8.85	10.22		9.70	9.54	9.84	
02/25/09		9.39	10.63	10.07	9.33		8.50		8.88	9.77		9.36	9.19	9.44	
03/27/09		10.3	10.28	9.54	9.75		8.73		9.17	9.73		9.67	9.51	9.51	
04/30/09		9.13	9.12	10.43	9.77		8.76		9.46	10.50		9.80	10.05	9.54	
05/27/09		9.68	9.97	10.65	9.98		8.84		9.40	10.68		9.85	9.32	10.00	
06/29/09		9.95	8.79	10.50	9.64		8.48		9.21	10.58		9.68	11.26	9.16	
07/27/09		9.93	10.00	11.28	11.00		9.87		10.90	12.11		10.99	11.13	10.71	
08/31/09		8.88	8.99	10.76	10.03		8.52		9.17	10.81		10.11	9.83	9.58	
09/30/09		10.48	10.74	10.91	10.51		8.44		8.17	10.81		10.71	9.14	9.28	
10/30/09		10.84	11.60	11.70	10.74		9.66		10.19	10.83		11.60	10.76	10.78	
11/30/09		9.53	9.70	10.64	10.10		9.16		9.33	10.23		10.76	11.91	10.19	
12/30/09		9.69	9.63	10.38	9.97		9.67		10.61	10.48		10.70	10.27	10.19	

TABLE 2.7

Monitoring Location	МН1	МН2	МН3	MW-6	OGC-1	МН4	OGC-5	МН5	МН6	OGC-6	МН7	MW-7	МН8	OGC-2	МН9
Date															
01/29/10		9.52	9.33	10.04	9.96		9.53		9.91	10.47		10.64	11.11	10.37	
02/26/10		9.98	9.79	10.03	10.01		9.55		9.84	10.78		10.28	10.87	10.43	
03/30/10		9.48	9.45	9.78	10.06		9.91		9.85	10.68		10.58	10.08	10.76	
04/30/10		9.60	9.53	9.82	10.01		9.65		9.94	11.09		11.00	10.91	10.77	
05/26/10		9.54	9.84	10.63	9.33		9.27		9.84	11.24		10.60	9.37	10.75	
06/28/10		8.46	8.82	9.63	9.51		8.62		9.17	9.86		10.25	9.14	9.44	
07/27/10		8.53	8.82	10.88	10.82		9.42		9.77	11.21		11.73	10.75	10.98	
08/26/10		10.03	10.89	10.73	10.33		8.73		9.81	11.96		10.51	9.77	10.69	
09/28/10		9.94	10.83	10.87	10.38		9.40		10.33	10.61		10.82	10.20	10.97	
10/27/10		9.53	9.75	10.56	10.15		9.63		10.02	10.28		10.47	10.31	10.19	
11/24/10		9.54	9.90	10.70	10.04		9.24		9.54	10.32		10.09	9.65	9.97	
12/28/10		9.48	9.56	10.84	10.37		9.60		10.00	10.42		10.17	9.76	10.33	
01/31/11		11.01	10.24	10.53	10.37		9.20		8.72	10.49		10.37	9.80	10.47	
02/28/11		9.45	9.33	9.87	9.95		9.56		9.59	10.75		10.11	9.76	10.13	
03/30/11		8.72	8.40	10.40	8.65		9.42		8.98	10.56		9.46	9.23	9.51	
04/21/11		8.86	8.80	10.80	9.34		9.17		9.80	11.32		10.13	9.40	9.86	
05/26/11		8.59	8.50	10.49	9,22		8.95		9.49	11.11		9.80	8.84	9.91	

TABLE 2.7
PH READINGS

GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MH17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
03/29/01 8.37 6.41 9.41 9.77 8.17 10.41 05/11/01 10.9 11.51 11.55 11.59 8.25 7.5 11.58 7.37 11.16 11.21 8.83 05/18/01 10.93 11.2 11.21 8.25 11.4 10.60 11.32 12.27 06/08/01 9.68 10.1 10.34 6.99 10.32 10.03 10.44 7.25 06/15/01 10.0 10.3 10.7 10.8 7.03 10.54 8.75 10.34 10.55 7.27 06/22/01 * * * * * 10.92 7.3 11 8.98 10.47 11.1 7.57 06/29/01 11.13 10.9 11.4 10.22 7.54 11.2 9.18 10.94 11.2 . 7.9	
05/11/01 10.9 11.51 11.55 11.59 8.25 7.5 11.58 7.37 11.16 11.21 8.83 05/18/01 10.93 11.2 11.21 8.25 11.4 10.60 11.32 12.27 06/08/01 9.68 10.1 10.34 6.99 10.32 10.03 10.44 7.25 06/15/01 10.0 10.3 10.7 10.8 7.03 10.54 8.75 10.34 10.55 7.27 06/22/01 * * * * * 10.92 7.3 11 8.98 10.47 11.1 7.57 06/29/01 11.13 10.9 11.4 10.22 7.54 11.2 9.18 10.94 11.2 . 7.9	
05/18/01 10.93 11.2 11.21 8.25 11.4 10.60 11.32 12.27 06/08/01 9.68 10.1 10.34 6.99 10.32 10.03 10.44 7.25 06/15/01 10.0 10.3 10.7 10.8 7.03 10.54 8.75 10.34 10.55 7.27 06/22/01 * * * * 10.92 7.3 11 8.98 10.47 11.1 7.57 06/29/01 11.13 10.9 11.4 10.22 7.54 11.2 9.18 10.94 11.2 7.9	
06/08/01 9.68 10.1 10.34 6.99 10.32 10.03 10.44 7.25 06/15/01 10.0 10.3 10.7 10.8 7.03 10.54 8.75 10.34 10.55 7.27 06/22/01 * * * * * 10.92 7.3 11 8.98 10.47 11.1 7.57 06/29/01 11.13 10.9 11.4 10.22 7.54 11.2 9.18 10.94 11.2 . 7.9	9.27
06/15/01 10.0 10.3 10.7 10.8 7.03 10.54 8.75 10.34 10.55 7.27 06/22/01 * * * * * 10.92 7.3 11 8.98 10.47 11.1 7.57 06/29/01 11.13 10.9 11.4 10.22 7.54 11.2 9.18 10.94 11.2 7.9	
06/22/01 * * * * 11.92 7.3 11 8.98 10.47 11.1 7.57 06/29/01 11.13 10.9 11.4 10.22 7.54 11.2 9.18 10.94 11.2 7.9	
06/29/01 11.13 10.9 11.4 10.22 7.54 11.2 9.18 10.94 11.2 7.9	8.88
07/31/01 11.49 10.58 11.69 11.75 7.91 11.73 9.73 11.62 11.63 8.28	
08/20/01 9.17 10.59 11.35 10.87 7.7 11.49 9.8 12.05 11.89 8.2	
09/28/01 10 10.57 11.5 11.0 7.9 11.47 9.77 11.2 11.75 8.21	
10/22/01 10.75 10.44 10.89 11.01 7.7 11.01 9.6 10.51 10.7 7.0	
11/27/01 11.98 10.87 12.46 12.46 8.1 12.28 10.01 11.87 12.25 7.26	
12/20/01 11.63 10.22 11.98 11.97 7.82 11.76 8.73 10.61 11.37 7.11	
01/29/02 12.25 12.15 12.59 7.76 12.41 8.09 11.85 12.33 7.16	
02/11/02 11.12 11.79 12.09 7.63 12.13 7.48 11.73 11.8 6.89	
03/25/02 12.38 12.59 12.77 8.01 12.66 8.51 12.11 12.46 7.88	
04/24/02 12 12.26 12.39 7.86 12.34 7.94 11.55 11.95 7.43	
05/21/02 11.86 12.25 12.49 7.94 12.5 7.45 12.16 12.24 7.72 7.22	
06/20/02 11.92 12.26 12.34 8.07 12.28 8.12 11.63 12.2 7.89 7.84	
07/18/02 11.78 12.11 12.16 8.11 12.13 9.82 11.31 11.96 7.81 7.36	
08/06/02 6.95 11.76 7.88 7.63 8.02 8.87 9.76 8.89 9.03 7.64 7.49	
09/12/02 11.93 12.19 12.23 12.32 8.76 12.3 10.81 11.77 12.04 8.16 8.17	
10/30/02 11.91 12.2 12.21 12.24 NM 12.22 8.34 11.89 12.01 7.95 7.63	
11/21/02 11.79 9.46 12.53 12.46 7.64 12.62 7.71 12.42 12.5 7.95 7.37	
12/11/02 11.26 9.41 11.39 11.54 7.56 11.51 7.86 10.76 11.29 7.35 7.18	
01/16/03 12.39 12.55 12.74 8.47 12.82 8.76 12.3 12.52 7.98 8.16	
02/25/03 11.94 12.46 12.49 8.42 12.51 8.71 12.19 12.52 7.89 8.13	
03/14/03 12.16 12.33 12.56 8.26 12.44 8.79 12.11 12.35 8.01 7.79	
04/14/03 11.02 11.63 11.18 7.92 11.62 7.87 10.89 11.89 7.62 7.42	
05/08/03 11.93 12.51 12.55 8.12 12.63 7.77 12.12 12.44 8.43 7.81	
06/19/03 11.87 12.39 12.41 8.02 12.41 7.73 12.01 12.21 8.38 7.79	
07/21/03 11.81 12.12 12.25 7.99 12.32 7.64 11.91 11.98 8.31 7.62	
08/28/03 11.79 12.13 12.24 11.26 12.21 11.52 12.04 12.04 11.46 11.32	
09/30/03 11.27 11.95 11.44 8.65 11.87 9.45 10.33 11.57 8.56 8.68	
10/20/03 11.2 11.8 11.2 8.5 11.6 8 10.42 11.44 8.31 8.01	
11/03/03 11.04 10.91 10.3 8.39 10.63 7.24 10.59 11.24 7.55 7.48	
12/23/03 10.75 11.18 11.17 8.41 11.01 7.66 10.88 11.03 7.13 7.44	

TABLE 2.7

Monitoring Location	MH10	OGC-7	МН11	MW-8	OGC-3	MH12	MH13	OGC-8	МН14	MW-9	OGC-4	МН15	МН16	МН17
Date														
01/21/04		10.69		11.06	11.16	8.39		11.5	(1)	9.98	10.89	9.53	6.25	
02/12/04		10.79	11.42	11.66	11.78	8.96		11.75	(1)	11.09	11.6	8.5	6.66	
03/04/04		10.79	11.07	11.06	11.29	9.02		11.37	11.5	11.25	11.6	9.03	7.75	
04/16/04		11.23	10.42	11.57	11.62	9.22		11.36	11.6	11.11	11.44	9.6	6.54	
05/15/04		11.19	11.78	11.91	12.13	8.34		11.8	11.7	11.61	11.68	9.5	6.62	
06/25/04		11.22	11.35	11.31	11.48	8.86		11.27	11.21	10.84	11.2	9.11	7.48	
07/30/04		11.10	11.00	11.09	11.42	8.6		11.13	8.40	10.69	11.16	9.42	6.84	
08/31/04		10.84	10.95	10.87	11.19	8.07		10.84	7.78	10.48	10.73	8.14	6.57	
09/30/04		11.0	10.87	11.01	11.4	8.44		11.03	8.1	10.7	10.66	8.32	6.75	
10/20/04		10.91	11.07	11.06	11.26	8.22		11.05	10.84	10.3	10.93	8.64	6.85	
11/23/04		11.08	9.39	11.34	11.44	8.33		11.31	8.64	10.92	11.36	9.08	7.63	
12/31/04		10.64	8.92	10.85	11.09	8.48		10.85	8.57	10.58	10.87	8.86	7.09	
01/28/05		10.79	8.99	11.11	11.31	9.16		11.20	(1)	10.76	11.2	8.95	6.64	
02/28/05		10.79	11.05	10.83	10.81	8.44		10.3	(1)	10.03	10.88	8.49	6.57	
03/31/05		11.22	11.28	11.51	11.49	9.04		11.37	8.5	11.17	11.27	7.24	6.94	
04/29/05 05/27/05		11.48	11.75	11.78	11.75 11.79	9.17		11.79	9.64 8.6	11.39 11.07	11.53 11.21	8.32 9.05	7.40 8.08	
06/24/05		13.65	11.64	13.74	11.79	8.91 8.73		11.62	8.6 10.9	10.51	11.21	9.05 9.86	8.07	
06/24/05		11.59 9.55	11.9	11.67 10.93	11.92	8.73 8.28		11.75 10.82	10.9 8.97	10.31	10.62	9.86 8.19	6.97	
08/31/05		9.55 10.85	10.46	10.93	11.21	9.02		10.82	8.97 9.01	10.35	11.03	8.4	6.93	
10/03/05		10.85	11.12 11.1	11.15	11.35	7.61		10.91	7.85	10.7	10.99	8.7	7.56	
10/03/05		10.81	11.1	11.07	11.4	8.13		11.3	7.63	11,15	11.41	8.61	9.69	
11/22/05		10.85	10.25	10.65	10.7	8.5		10.45	7.73	10.36	11.41	8.10	6.60	
12/23/05		10.38	11.58	11.57	11.93	8.11		11.67	7.03	11.23	11.64	7.36	7.30	
01/27/06						9.04		11.96	7.65	11.51	11.90	7.54	7.84	
		11.54	11.75	10.81	12.01							7.34	7.04	
02/28/06		11.53	11.57	12.09	12.3	9.73		11.77	7.84	11.43	11.78			
03/24/06		11.41	11.53	11.63	11.83	8.88		12.01	8.46	11.54	11.89	7.92	7.09	
04/21/06		11.31	11.65	11.62	11.86	8.79		11.96	7.98	11.40	11.86	8.52	6.97	
05/30/06		11.11	11.43	11.36	11.56	7.45		11.34	8.90	10.73	10.98	8.90	7.68	
06/26/06		11.48	11.62	11.71	11.91	8.92		11.89	8.46	11.6	11.61	8.03	7.18	
07/31/06		10.73	8.01	10.89	11.14	8.53		10.83	8.09	10.71	10.83	7.36	7.35	
08/25/06		11.62	11.9	11.74	12.05	8.83		11.77	9.88	11.44	11.72	10.82	8.11	
09/22/06		11.54	11.85	11.66	12.07	9.05		11.62	11.88	10.98	11.6	11.51	7.31	
10/31/06		11.26	11.37	11.29	11.49	9.35		10.16	8.96	11.05	11.06	8.48	8.86	
11/29/06		11.28	11.45	11.36	11.66	7.15		10.34	11.45	10.19	11.43	11.10	9.36	
12/29/06		11.26	9.82	11.51	11.64	9.02		11.54	11.52	10.45	11.45	11.42	10.85	

Notes:

⁽¹⁾ Buried with snow and could not be accessed.

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	МН16	MH17
Date														
01/26/07		11.63	11.33	11.82	12.07	9.27		11.87	9.70	11.65	11.84	7.73	7.17	
02/27/07		11.58	10.76	11.66	12.07	8.39		11.91	7.29	11.17	11.92	8.31	7.07	
03/30/07		11.39	9.58	11.61	11.95	8.65		11.78	11.57	11.03	11.69	11.27	8.38	
04/30/07		11.19	10.01	11.42	11.63	8.44		11.40	11.48	11.38	10.73	10.76	7.29	
05/25/07		11.16	11.00	11.41	11.70	8.26		11.35	11.51	10.99	11.26	11.10	7.46	
06/29/07		11.12	10.54	11.38	11.57	8.83		11.31	11.38	10.48	10.94	11.00	7.21	
07/25/07		11.30	11.04	11.55	11.87	8.76		11.61	11.68	10.79	11.43	11.07	7.16	
08/31/07		11.01	10.99	11.11	11.34	8.76		11.14	11.22	10.19	10.88	10.45	6.33	
09/27/07		10.96	9.28	11.20	11.48	8.86		11.26	11.33	9.76	11.03	9.64	6.56	
10/31/07		11.19	11.33	11.24	11.75	9.30		11.02	11.57	10.60	11.38	10.61	7.68	
11/30/07		11.22	8.89	11.51	12.04	9.07		11.47	11.64	10.76	11.66	11.07	7.38	
12/31/07		11.24	9.25	11.43	11.80	8.84		11.73	11.46	10.78	11.60	10.76	7.07	
01/28/08		11.78	10.50	12.07	12.46	9.09		11.93	10.80	11.21	12.00	9.44	6.93.	
02/29/08		11.63	11.44	11.60	12.01	9.43		11.92	11.91	10.10	11.85	10.78	6.84	
03/31/08		11.61	9.05	11.78	12.07	9.14		11.79	11.95	10.54	11.94	11.13	7.52	
04/28/08		11.64	10.46	11.88	12.28	7.54		11.91	11.65	10.97	11.80	11.21	7.70	
05/29/08		11.50	10.91	11.53	12.00	8.88		12.10	11.86	10.14	11.88	11.45	8.73	
06/25/08		11.40	10.76	11.62	11.88	9.19		11.90	11.86	9.83	11.76	11.33	6.98	
07/31/08		11.36	9.84	11.90	11.67	9.09		11.75	11.55	9.89	11.59	10.95	8.19	
08/27/08		11.27	9.66	11.65	11.89	9.19		11.55	9.75	10.59	11.35	8.32	8.92	
09/26/08		11.17	9.42	11.40	11.69	9.10		11.29	11.42	9.35	11.34	11.12	8.56	
10/30/08		11.31	11.22	11.37	11.83	9.54		11.41	11.08	10.02	11.51	11.09	10.78	
11/22/08		11.29	11.44	11.19	11.75	9.35		10.96	11.14	10.01	11.40	10.48	7.88	
12/31/08		11.58	10.56	11.77	11.92	8.56		11.77	9.76	10.26	11.68	8.41	7.84	
01/30/09		11.65	9.66	12.09	12.31	10.24		12.02	11.10	9.88	11.86	10.62	7.30	
02/25/09		11.15	10.43	11.37	11.57	9.06		11.65	10.90	10.09	11.22	10.83	8.37	
03/27/09		11.36	10.29	11.72	11.80	9.61		11.69	11.66	9.54	11.66	11.56	8.78	
04/30/09		11.37	9.59	11.72	11.90	9.84		11.90	9.10	9.92	11.56	8.92	8.86	
05/27/09		11.55	11.71	11.76	12.13	9.67		11.93	10.80	10.54	11.73	9.72	10.43	
06/29/09		11.14	10.07	11.35	11.61	9.95		11.42	9.81	10.60	11.29	11.01	9.64	
07/27/09		12.63	10.67	13.18	13.36	10.56		12.86	10.68	12.11	12.75	11.78	9.51	
08/31/09		11.57	10.78	11.67	11.90	9.45		11.39	9.14	11.12	11.48	10.96	8.25	
09/30/09		11.19	9.84	11.31	11.44	8.64		11.16	10.51	10.37	11.19	10.57	8.33	
10/30/09		12.29	11.05	12.77	13.02	10.32		12.26	11.81	11.74	12.58	12.01	10.66	
11/30/09		11.41	11.28	11.62	11.93	9.60		11.13	11.33	10.61	11.49	9.99	7.94	
12/30/09		11.47	10.60	12.05	12.21	10.23		11.71	11.02	10.77	11.63	9.00	8.88	

TABLE 2.7

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	МН12	MH13	OGC-8	MH14	MW-9	OGC-4	MH15	МН16	MH17
Date														
01/29/10 02/26/10 03/30/10 04/30/10 05/26/10 05/26/10 06/28/10 07/27/10 08/26/10 09/28/10 11/24/10 12/28/10		11.19 11.30 11.68 11.78 11.81 10.30 12.18 12.23 12.29 11.76 11.67 11.72	11.03 10.91 11.74 11.67 10.92 9.26 10.31 11.60 11.89 11.53 11.48 11.17	11.58 11.59 11.51 12.11 11.85 10.70 12.76 11.62 12.39 11.81 11.85 12.03	11.45 11.74 12.06 12.16 12.14 10.70 12.77 12.37 12.43 11.89 12.08 12.12	10.60 10.27 10.62 10.30 10.51 9.18 10.08 10.04 10.21 9.81 9.90 10.17		11.62 11.64 11.78 12.15 11.88 10.42 12.31 11.56 11.68 11.65 11.42	11.39 11.32 11.24 10.85 10.14 8.81 10.49 8.17 10.04 10.12 9.97 9.70	10.52 11.02 11.49 11.44 11.14 9.90 11.56 11.50 11.24 11.10 10.67 10.91	11.29 11.30 11.76 11.92 11.60 10.24 12.03 11.38 11.45 11.39 11.64 11.73	9.71 10.62 10.86 10.85 11.10 8.36 9.19 7.52 7.69 8.52 8.12 8.00	9.22 8.64 9.14 9.58 9.12 7.48 8.46 8.87 8.48 9.50 8.30 7.87	
01/31/11 02/28/11 03/30/11 04/27/11 05/26/11		11.75 11.68 11.03 11.69 11.48	11.52 10.82 10.46 9.99 10.08	11.27 11.88 11.21 11.78 11.58	11.08 11.96 11.59 12.17 11.97	9.68 10.00 9.71 9.05 9.55		12.36 12.23 11.13 12.09 11.25	9.80 11.12 9.62 9.59 9.27	11.03 11.30 11.00 11.40 11.26	11.53 11.51 11.50 11.78 11.32	8.47 7.93 8.32 8.39 7.62	10.08 8.05 8.11 8.84 8.26	

TABLE 2.7

Monitoring Location	City MH1	City MH2	City MH3
Date			
07/24/00	6.3	7.3	
10/24/00	7.08	7.52	7.41
03/29/01	7.52	7.50	7.16
06/15/01	7.7	7.69	7.4
06/22/01	8.0	7.9	7.8
07/31/01	8.0	8.0	7.7
08/20/01	8.2	8.3	8.0
09/28/01	8.1	8.3	7.9
10/22/01	8.0	8.0	7.8
11/27/01	7.9	8.2	8.01
12/20/01	*	*	*
01/29/02	7.62	7.93	7.97
02/11/02	7.52	7.73	7.79
03/25/02	•	*	*
04/24/02	7.46	7.62	7.69
05/21/02	7.47	7.66	7.72
06/20/02	7.57	7.69	7.78
07/18/02	7.72	7.84	8.01
08/06/02	7.63	7.68	7.92
09/12/02	7.72	7.79	7.98
10/30/02	7.73	7.8	7.93
11/21/02	7.32	7.37	7.41
12/11/02	7.29	7.31	7.35
01/16/03	7.62	7.7	7.79
02/25/03	7.64	7.71	7.89
03/14/03	7.39	7.54	7.61
04/14/03	7.22	7.39	7.41
05/08/03	7.29	7.43	7.48
06/19/03	7.27	7.39	7.41
07/21/03	7.25	7.36	7.38
08/28/03	7.29	7.44	7.41
09/30/03	7.29	7.45	7.40
10/20/03	7.4	7.71	7.39
11/03/03	8.46	7.14	7.27
12/23/03	9.34	7.63	7.57

Note:

pH meter malfunctioned.

TABLE 2.7

Monitoring Location	City MH1	City MH2	City MH3	
Date				
01/21/04	(2)	8.12	(2)	
02/12/04	8.45	7.77	7.65	
03/04/04	8.21	7.76	7.79	
04/16/04	10.95	8.38	8.32	
05/14/04	7.30	7.62	7.75	
06/25/04	8.06	7.99	7.94	
07/30/04	7.85	7.90	7.81	
08/31/04	10.2	7.5	7.4	
09/30/04	8.6	7.7	7.9	
10/20/04	7.59	7.56	7.61	
11/23/04	9.64	7.6	7.67	
12/31/04	9.09	7.68	7.38	
01/28/05	8.92	7.58	7.40	
02/28/05	(1)	8.16	7.90	
03/31/05	8.49	7.59	7.55	
04/29/05	8.74	8.05	7.89	
05/27/05	9.24	8.33	8.27	
06/24/05	10.53	8.44	8.24	
07/29/05	7.3	7.16	6.96	
08/31/05	8.06	6.87	7.13	
10/03/05	10.3	8.1	NM	
10/31/05	10.76	7.9	7.93	
11/22/05	9.50	8.54	7.34	
12/23/05	10.58	(3)	(3)	
01/27/06	10.76	7.87	7.84	
02/28/06	11.29	8.73	8.64	
03/24/06	11.18	7.98	7.78	
04/21/06	NM	8.28	8.05	
05/30/06	10.88	7.73	7.63	
06/26/06	8.84	7.73	7.68	
07/31/06	7.51	7.02	7.24	
08/25/06	9.72	7.82	7.67	
09/22/06	11.29	8.34	8.99	
10/31/06	10.70	8.61	8.13	
11/29/06	10.77	8.27	8.04	
12/29/06	10.60	8.07	7.73	
Notes:				
*	- pH meter ma	lfunctioned.		
NM	- Not Measure			
(1)	- Buried with	snow.		
(2)	- Road conditi	ons were not	safe to allow fo	or monitori
(3)	- pH probe da	maged.		

TABLE 2.7

Monitoring Location	City MH1	City MH2	City MH3
Date			
01/26/07	11.20	7.76	7.81
02/27/07	8.72	8.15	7.86
03/30/07	10.90	8.29	8.42
04/30/07	10.71	8.52	8.30
05/25/07	10.99	7.74	7.68
06/29/07	9.47	7.61	7.62
07/25/07	6.96	6.61	6.60
08/31/07	8.68	7.79	7.52
09/27/07	10.63	8.86	8.73
10/31/07	8.98	7.96	7.85
11/30/07	10.39	7.96	7.97
12/31/07	10.59	9.40	9.20
01/28/08	9.65	9.98	8.41
02/29/08	11.21	8.30	8.13
03/31/08	10.53	8.29	8.33
04/28/08	11.48	10.09	8.23
05/29/08	11.11	10.94	9.92
06/25/08	9.57	8.18	8.68
07/31/08	9.77	8.46	8.85
08/27/08	6.61	7.02	7.24
09/26/08	10.61	9.90	9.72
10/30/08	11.00	9.01	8.58
11/22/08	10.36	9.02	9.57
12/31/08	6.70	7.69	6.77
01/30/09	10.48	9.37	9.29
02/25/09	11.58	10.93	10.28
03/27/09	11.08	11.03	11.04
04/30/09	9.23	9.16	8.27
05/27/09	10.60	10.23	9.42
06/29/09	11.06	10.92	10.67
07/27/09	11.00	9.48	8.69
08/31/09	10.12	8.36	8.43
09/30/09	9.94	8.87	9.38
10/30/09	11.20	10.62	9.00
11/30/09	9.50	8.46	7.27
12/30/09	9.30	9.73	9.08

TABLE 2.7

Monitoring Location	City MH1	City MH2	City MH3
Date			
01/29/10	8.64	8.94	8.74
02/26/10	10.42	10.15	9.35
03/30./10	10.14	9.11	9.29
04/30/10	11.25	11.09	10.99
05/26/10	9.97	9.26	8.96
06/28/10	8.15	7.86	7.69
07/27/10	9.71	8.92	8.61
08/26/10	10.06	8.96	9.50
09/29/10	10.22	9.54	9.48
10/27/10	11.42	10.80	10.43
11/24/10	10.98	9.03	9.12
12/28/10	9.12	8.27	8.26
01/31/11	11.66	10.34	10.45
02/28/11	9.62	8.82	8.57
03/30/11	10.22	10.05	10.03
04/27/11	10.54	9.86	9.60
05/26/11	10.42	10.01	9.79

FFLUENT SAMPLING SUMMARY JUNE 2001 TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

monthly (as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit)

PARAMETERS

Volatiles

Acetone Methylene Chloride
Benzene Styrene

2-Butanone Tetrachloroethene

Chlorobenzene Toluene

1,1-Dichloroethane1,1,1-Trichloroethane1,2-DichloroethaneTrichloroethenetrans-1,2-DichloroetheneVinyl ChlorideEthylbenzeneXylenes (Total)

Semi-Volatiles

1,4-Dichlorobenzene4-Methylphenol1,2-DichlorobenzeneNaphthalene2,4-DimethylphenolDi-n-octylphthalate2-MethylphenolPhenols (4AAP)

Inorganics

Lead Aluminum Magnesium Antimony Manganese Arsenic Barium Mercury Beryllium Nickel Selenium Cadmium Silver Chromium Copper Sodium Zinc Iron

Wet Chemistry

Alkalinity (Bicarbonate) Oil and Grease Alkalinity (Total) pH

BOD Phosphorous
Chloride Sulfate
COD Sulfide
Cyanide TDS
Hardness TKN
NH3 TOC
NO3 TSS

EFFLUENT SAMPLING SUMMARY SUBSEQUENT TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

Semi-Annual (Spring and Fall as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit dated January 31, 2007)

PARAMETERS

Volatiles

Methylene Chloride Acetone Styrene Benzene Tetrachloroethene 2-Butanone Toluene Chlorobenzene 1,1-Dichloroethane 1,1,1-Trichloroethane 1,2-Dichloroethane Trichloroethene Vinyl Chloride trans-1,2-Dichloroethene Ethylbenzene Xylenes (Total)

Semi-Volatiles

1,4-Dichlorobenzene4-Methylphenol1,2-DichlorobenzeneNaphthalene2,4-DimethylphenolDi-n-octylphthalate2-MethylphenolPhenols (4AAP)

Wet Chemistry

Chloride

Cyanide NH3 NO3 Phosphorous Sulfate Sulfide

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:					
Sample Date:		09/13/10	03/07/11	Surface	
Parameter	Unit			Water Standard	(1)
Volatiles					
1,1,1-Trichloroethane	μg/L	5.0U	5.0U	5	
1,1-Dichloroethane	μg/L	5.0U	5.0U	5	
1,2-Dichloroethane	μg/L	5.0U	5.0U	0.6	
2-Butanone	μg/L	25U	25U	50	
Acetone	μg/L	25U	25U	50	
Benzene	μg/L	5.0U	5.0U	1	
Chlorobenzene	μg/L	5.0U	5.0U	5	
Ethylbenzene	μg/L	5.0U	5.0U	5	
Methylene chloride	μg/L	5.0U	5.0U	5	
Styrene	μg/L	5.0U	5.0U	5	
Tetrachloroethene	μg/L	5.0U	5.0U	0.7	(2)
Toluene	μg/L	7.5	12	5	
trans-1,2-Dichloroethene	μg/L	5.0U	5.0U	5	
Trichloroethene	μg/L	15	30	5	
Vinyl chloride	μg/L	5.0U	5.0U	0.3	(2)
Xylene (total)	μg/L	10U	10U	5	
Semi-Volatiles					
1,2-Dichlorobenzene	μg/L	0.68U	0.15U	3	
1,4-Dichlorobenzene	μg/L	0.42U	0.090U	3	
2,4-Dimethylphenol	μg/L	3.5	0.13U	50	(2)
2-Methylphenol	μg/L	1.0U	0.22U	NL	
4-Methylphenol	µg/L	5. 0 U	0.62U	NL	
Di-n-octyl phthalate	μg/L	21	4.6U	50	(2)
Naphthalene	μg/L	0.38U	0.080U	10	
Phenol	μg/L	0.57U	0.12U	1	

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:					
Sample Date:		09/13/10	03/07/11	Surface Water	
Parameter	Unit			Standard	(1)
Metals					
Aluminum	mg/L	0.20U	0.45	NL	
Antimony	mg/L	0.20U	0.020U	0.003	
Arsenic	mg/L	0.010U	0.010U	0.050	
Barium	mg/L	0.069	0.086	1.0	
Beryllium	mg/L	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.050	
Copper	mg/L	0.027	0.023	0.023	(3)
Iron	mg/L	0.050U	0.39	0.30	
Lead	mg/L	0.0050U	0.0050U	0.012	
Magnesium	mg/L	1.43	3.5	35	
Manganese	mg/L	0.030U	0.012	0.30	
Mercury	mg/L	0.00020U	0.00020U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.10	
Selenium	mg/L	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.050	
Sodium	mg/L	253	372	NL	(0)
Zinc	mg/L	0.010U	0.010	2.0	(2)

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID: Sample Date:		09/13/10	03/07/11	Surface	
Parameter	Unit			Water Standard	(1)
General Chemistry					
pН	S.U.	9.39	9.95	NL	
Hardness	mg/L	213	235	NL	
Total Dissolved Solids (TDS)	mg/L	1040	1450	NL	
Total Suspended Solids (TSS)	mg/L	7	6	NL	
Chloride	mg/L	423	655	250	
BOD	mg/L	24	16	NL	
COD	mg/L	33	37	NL	
Oil and Grease	mg/L	0.10U	0.010U	NL	
Organic Carbon	mg/L	7.1	8.1	NL	
Alkalinity, Total (As CaCO3)	mg/L	53.9	57	NL	
Bicarbonate (as CaCO3)	mg/L	53.9	11.1	NL	
Ammonia	mg/L	1.96	1.12	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	10	
TKN	mg/L	2.24	2.24	NL	
Sulfate	mg/L	184	135	250	
Sulfide	mg/L	2.0	2.0	0.002	
Phenol	mg/L	0.008U	U800.0	0.001	
12hosphorous	mg/L	0.12	0.13	0.020	(2)
Cyanide	mg/L	0.005U	0.005	0.0052	

Notes:

- U Non-detect at associated value
- -- Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
 (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form
- (5) TOC analyzer malfunction prevented analysis of this compound.

TABLE 2.11

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Volumes (gallons) Month Monthly Total 2,900,000 May 2001 2,900,000 2,353,800 5,253,800 June 2001 6,742,300 1,488,500 July 2001 August 2001 712,800 7,455,100 473,100 7,928,200 September 2001 October 2001 1,213,100 9,141,300 1,281,100 November 2001 10,422,400 231,700 (1) 10,654,100 December 2001 1,383,200 (2) January 2002 12,037,300 1,186,000 13,223,300 February 2002 233,600 13,456,900 March 2002 736,000 14,192,900 April 2002 348,200 14,541,100 May 2002 1,137,200 15,678,300 June 2002 869,300 16,547,600 July 2002 1,060,800 17,608,400 August 2002 September 2002 707,000 18,315,400 679,800 18,995,100 October 2002 489,500 19,484,700 November 2002 743,500 20,228,200 December 2002 21,378,900 1,150,700 January 2003 21,862,200 February 2003 483,300 March 2003 402,300 22,264,500 531,900 22,796,400 April 2003 655,600 23,452,000 May 2003 June 2003 682,100 24,134,000 942,000 25,076,100 July 2003 627,500 25,703,600 August 2003 26,053,200 September 2003 349,600 966,500 27,019,700 October 2003 442,200 27,461,900 November 2003 463,900 27,925,800 December 2003

TABLE 2.11

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Volumes (gallons) Monthly Month Total January 2004 443,900 28,369,700 February 2004 253,700 28,623,400 March 2004 403,700 29,027,100 433,600 29,460,700 April 2004 377,400 29,838,100 May 2004 395,000 30,233,100 June 2004 July 2004 384,300 30,617,400 479,700 31,097,100 August 2004 September 2004 413,900 31,511,000 319,400 31,902,400 October 2004 November 2004 249,200 32,151,600 December 2004 209,900 32,361,500 310,100 32,671,600 January 2005 301,100 32,972,700 February 2005 March 2005 250,200 33,222,900 378,400 33,601,300 April 2005 458,800 34,060,100 May 2005 June 2005 455,900 34,516,000 270,200 34,786,200 July 2005 285,100 35,071,300 August 2005 September 2005 395,600 35,466,900 333,200 35,800,100 October 2005 360,200 36,160,300 November 2005 395,300 36,555,600 December 2005 297,500 36,853,100 January 2006 508,300 37,361,400 February 2006 244,700 37,606,100 March 2006 224,400 37,830,500 April 2006 May 2006 153,300 37,983,800 June 2006 262,300 38,246,100 July 2006 212,900 38,459,000 357,500 38,816,500 August 2006

TABLE 2.11

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)			
Month	Monthly	Total		
September 2006	777,000	39,593,500		
October 2006	254,700	39,848,200		
November 2006	778,700	40,626,900		
December 2006	496,600	41,123,500		
January 2007	410,500	41,534,000		
February 2007	494,600	42,028,600		
March, April &				
May 2007	1,489,200 ⁽³⁾	43,517,800		
June 2007	334,300	43,852,100		
July 2007	258,600	44,110,700		
August 2007	239,000	44,349,700		
September 2007	59,500 ⁽⁴⁾	44,409,200		
October 2007 through January 2008	50,600 ⁽⁴⁾	44,459,800		
February 2008	23,800 ⁽⁴⁾	44,483,600		
March 2008	1,238,300	45,721,900		
April 2008	2,126,700	47,848,600		
May 2008	1,771,100	49,619,700		
June 2008	618,000	50,237,700		
July 2008	1,559,200	51,796,900		
August 2008	1,365,900	53,162,800		
September 2008	1,998,000	55,160,800		
October 2008	2,511,100	57,671,900		
November 2008	1,151,600	58,823,500		
December 2008	572,700	59,396,200		
January 2009	1,021,700	60,417,900		
February 2009	2,661,400	63,079,300		
March 2009	4,239,300	67,318,600		
April 2009	1,189,900	68,508,500		
May 2009	1,362,500	69,871,000		
June 2009	1,035,200	70,906,200		
July 2009	1,010,100	71,916,300		
August 2009	1,058,000	72,974,400		

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Month	Volumes (gallons)			
	Monthly	Total		
September 2009	947,000	73,921,400		
October 2009	690,800	74,612,200		
November 2009	697,500	75,309,700		
December 2009	1,100,900	76,410,600		
January 2010	767,100	77,177,700		
February 2010	398,600	77,576,300		
March 2010	1,094,500	78,670,800		
April 2010	761,000	79,431,800		
May 2010	354,700	79,786,500		
June 2010	170,300	79,956,800		
July 2010	323,600	80,280,400		
August 2010	1,292,400	81,572,800		
September 2010	672,800	82,245,600		
October 2010	972,800	83,218,400		
November 2010	433,500	83,651,900		
December 2010	483,900	84,135,800		
January 2011	420,300	84,556,100		
February 2011	257,000	84,813,100		
March 2011	1,136,700	85,949,800		
April 2011	875,300	86,825,100		
May 2011	727,500	87,552,600		

Notes:

- (1) To December 7, 2001.
- (2) From December 8, 2001.
- (3) Plotted as 496,400 gallons on Figure 2.18 for each of March, April, and May 2007.
- (4) Meter malfunctioned due to tar-like material buildup inside meter. Meter was cleaned on March 14, 2008. Volumes not plotted on Figure 2.18 as volumes are not representative of actual volume removed.

APPENDIX A

MONTHLY INSPECTION LOGS (JUNE 2010 TO MAY 2011)

GRATWICK-RIVERSIDE PARK SITE . 4. MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: S GARDNER, J FALBO INSPECTOR(S): Comments Action Required Inspect For **Item** Perimeter Collection System/Off-Site Forcemain 1. NONE - cover on securely Manholes - condition of cover - condition of inside of manhole HIGH - flow conditions NONE Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap NONF. Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

ROJECT NAME: Gratwick		MONTHLY INSPECTION LO	LOCATION:	Wheatfield, New York O (3 2 0 t 0 (MM DD YY)
NSPECTOR(S):	S GARDNER, J FALL Inspect For	Action Required	-	Comments
Access Roads Access Roads 3. Wetlands (Area "F")	 bare areas, dead/dying veg. erosion potholes or puddles obstruction dead/dying vegetation change in water budget general condition of wetlands 	NONE 20FT SOUTH OF OGC: 7 WIRE MESSI + RIP RAF NONE	SEVERA	LARGE HOLES EXPOSING
4. Other Site Systems Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	NA +		

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site (MM DD YY) DATE: S GARDNER J FALBO INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) NONE - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions - intact /damage Gas Vents - locks secure Wells FORM 17

GRATWICK-RIVERSIDE PARK SITE . MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain - cover on securely Manholes condition of cover - condition of inside of manhole MH: 3 WIL IN CHAMBER IS HIGH - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG				
PROJECT NAME: Gratwick-Riverside	Park Site		OCATION:	Wheatfield, New York O 7 2 7 1 O (MM DD YY)
INSPECTOR(S): SG/JF Item Inspec	t For Action Req	uired		Comments
- erosion - pothol - obstru 3. Wetlands (Area "F") - dead/ - chang	es or puddles <u>ZOFT</u>	NONE. NONE. NONE. NONE.	EXPOSIA	IG WIRE MESH & RIPRAP
- integr	rity of fence rity of gates rity of locks ment and condition of	NA +		

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG				
PRO	OJECT NAME: Gratwic	k-Riverside Park Site		LOCATION:	Wheatfield, New York O 7 2 7 / O (MM DD YY)
INS	PECTOR(S):	Inspect For	Action Required	- 	Comments
4.	Other Site Systems (co Drainage Ditches/ Swale Outlets	- sediment build-up - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up - erosion - condition of erosion protection	NONE		
FORM	Gas Vents Wells	 flow obstructions intact / damage locks secure 	NONE		

GRATWICK-RIVERSIDE PARK SITE . . MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For ' Item Perimeter Collection System/Off-Site Forcemain - cover on securely Manholes - condition of cover MH-3 W/L IN CHAMBER IS HIGH - condition of inside of manhole MH-2 WIL IN MANHOLE IS HIGH - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap SMALL AREAS OF BANK EROSION ISFT EAST OF RIVER MIDDLE Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation **FORM 17**

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG				
PROJECT NAME: Gratwick-Riverside Park Site INSPECTOR(S): D TYRAN S GARDNER	LOCATION: Wheatfield, New York DATE: OBCIO			
Item Inspect For	Action Required Comments			
2. Landfill Cap (continued)	SEVERAL HOLES EXPOSING WIRE MESI- + RIP RAP			
Access Roads - bare areas, dead/dying veg erosion	ZOFT SOUTH & SET NORTH OF OGC-7 NONE			
- potholes or puddles - obstruction	NONE			
3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	, 7			
4. Other Site Systems				
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs	NA .			
FORM 17				

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site 101812161119 DATE: INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) NONE - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions NA Gas Vents - intact / damage NONE - locks secure Wells FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site [이미시원][이 (MM DD YY) DATE: DTYRAN INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes - condition of cover MH:3 + MH-2 WILS HIGH - condition of inside of manhole NONE - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap SMALL AREAS OF BANK EROSION 15FT FAST OF RIVER MIDDLE Vegetated Soil Cover - erosion OTS OF BANKEROSION NORTH OF RIVER NORTH PIPE - bare areas NONE - washouts - leachate seeps - length of vegetation - dead/dying vegetation **FORM 17**

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG				
PROJECT NAME: Gratwick-Riverside Park Site	LOCATION: Wheatfield, New York DATE: O 2 8 10 (MM DD YY)			
INSPECTOR(S): D. TYRAN, S. GARDNER Item Inspect For	Comments Action Required			
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction 3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands 4. Other Site Systems	SEVERAL HOLES EXPOSING WIRE MESH + RIP RAP 20 FT SOUTH & S FT EAST@ NORTH OF OGC-7 NONE			
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs FORM 17				

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: D. TYRAN, SHAWN GARDNER INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) NONE - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions - intact / damage Gas Vents NONE - locks secure Wells FORM 17

GRATWICK-RIVERSIDE PARK SITE . . . MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: WIT INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap SMALL AREAS OF BANK EROSION ISET EAST OF RIVER Vegetated Soil Cover - erosion MIDDLE - bare areas LOTS OF BANK FROSION NORTH OF RIVER NORTH - washouts - leachate seeps - length of vegetation . - dead/dying vegetation FORM 17

		MONTHLY INSPE	CTION LOG	
PROJECT NAME: Gratwick-Riverside Park Site LOCATION: Wheatfield, New York				
PROJECT IVANIE. CIRCUIT			DATE:	(MM DD YY)
INSPECTOR(S):	DJT			
Item	Inspect For	Action Required		Comments
2. Landfill Cap (contin	ued)			
Access Roads	bare areas, dead/dying veg.erosionpotholes or puddlesobstruction	SEVERAL HOL ZOFT SOUTH	ES EXPOSING AND SET NOR NONE	WIRE MESH & RIP RAP CTH OF OBC-7
3. Wetlands (Area "F") X	 dead/dying vegetation change in water budget general condition of wetlands 	,		
4. Other Site Systems		-		
Perimeter Fence	integrity of fenceintegrity of gatesintegrity of locksplacement and condition of signs		NA -	

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site 111012171119 DATE: (MM DD DIT INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) NONE - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions - intact /damage Gas Vents NONE - locks secure FORM 17

GRATWICK-RIVERSIDE PARK SITE ٠.٠ MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: DTYRAN S GARDNER INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap SMALL AREAS OF BANK EROSION ISFT EAST OF Vegetated Soil Cover - erosion RIVER MIDDLE - bare areas NORTH OF RIVER OTS OF BANK EROSION - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG			
PROJECT NAME: Gratwick-Riverside Park Site	LOCATION: Wheatfield, New York DATE: [1] [2] [4] [1] [0] [MM DD YY)		
INSPECTOR(S): D TYRAN S GARDNER Item Inspect For	Action Required Comments		
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction 3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	SEVERAL HOLES EXPOSING WIRE MESH & RIP RAP 20FT SOUTH AND SFT NORTH OF OGC-7 NONE		
4. Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs FORM 17	NA +		

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: D TYRAN S GARDNER INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) NONE - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions - intact / damage Gas Vents NONE - locks secure Wells FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap ICE AND SNOW COVERED Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps DORMANT - length of vegetation - dead/dying vegetation FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG			
PROJECT NAME: Gratwick-Riverside Park Site	LOCATION: Wheatfield, New York DATE: [1 2 2 8 1 0] (MM DD YY)		
INSPECTOR(S): DIT SG Item Inspect For	Action Required Comments		
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying version - potholes or puddles	B. ICE & SNOW COVERED		
- obstruction 3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	DORMAUT		
4. Other Site Systems			
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition signs	of		
FORM 17			

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item ICE AND SNOW COVERED Other Site Systems (continued) - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap NONE - sediment build-up Culverts NONE - erosion NONE - condition of erosion protection NONE - flow obstructions - intact /damage Gas Vents NONE - locks secure Wells FORM 17

GRATWICK-RIVERSIDE PARK SITE . . . MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site 10/1/3/1/1/ DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain 1. NONE - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap SNOW COVERED = 12" Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG			
PROJECT NAME: Gratwick-Riverside Park Site		OCATION: Wheatfield, New York ATE: O 1 3 1 1 1 1 1 1 1 1	
INSPECTOR(S): D TYRAN, S GARDNER. Item Inspect For	Action Required	Comments	,
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles	SNOW COVERED ±12"	DORMANT	
- obstruction 3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	DORMANT SNOW COVERED !	12"	
4. Other Site Systems	NA NA		
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of			
FORM 17			

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: D TYRAN, S GARDNER INSPECTOR(S): Comments Action Required Inspect For Item Landfill Cap (continued) DORMANT SNOW COVERED ±12" - bare areas, dead/dying veg. Access Roads - erosion - potholes or puddles - obstruction DORMANT - dead/dying vegetation 3. Wetlands (Area "F") - change in water budget × SNOW COVERED - general condition of wetlands Other Site Systems NA - integrity of fence Perimeter Fence - integrity of gates - integrity of locks - placement and condition of signs FORM 17

GRATWICK-RIVERSIDE PARK SITE . . MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

Dove S year

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG
PROJECT NAME: Gratwick-Riverside Park Site	DATE: Wheatfield, New York (MM DD YY)
INSPECTOR(S): D. Tyran S. Gran	Action Required Comments
2. Landfill Cap (continued)	
Access Roads - bare areas, dead/dying veg erosion - potholes or puddles - obstruction	
3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetland	Shoreline erosion from River North pipe north to new Sishing pier and South from River North outsell approx. 100'
4. Other Site Systems	
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs	
FORM 17	

Nave J year

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site 10121218111 DATE: S. Gardner INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap None - sediment build-up Culverts Note - erosion - condition of erosion protection - flow obstructions - intact /damage Gas Vents - locks secure Wells FORM 17

Dare J Tyron

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: S. Gardner INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and гіргар - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions - intact /damage Gas Vents - locks secure Wells FORM 17

Darc Jagan

GR	ATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG	
PROJECT NAME: Gratwick-Riverside Park Site	LOCA DATE:	C. (2001) 111
INSPECTOR(S): D. Tyran S. Gardr Item Inspect For	Action Required	Comments
Perimeter Collection System/Off-Site Forcemain Manholes - cover on securely - condition of cover - condition of inside of manhole	None	
- flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well		
2. Landfill Cap	V	
Vegetated Soil Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation		ft South of OGC 7) @ top of measures 41ft across and 8"clap hade and exiting undermoth
FORM 17		

Dael gra-

GR	ATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG	
PROJECT NAME: Gratwick-Riverside Park Site	DAT	ATION: Wheatfield, New York E: <u>03361111</u> (MM DD YY)
INSPECTOR(S): D. Tyran S. Gard	Action Required	Comments
2. Landfill Cap (continued)		
Access Roads - bare areas, dead/dying veg erosion - potholes or puddles - obstruction	More	
3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands	See Note Februar	y 2011
4. Other Site Systems	•	
Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and condition of signs		
FORM 17		1) () (Taugo

Hart year

GRATWICK-RIVERSIDE PARK SITE

	MONTHLY INSPECTION LOG					
PRC	DJECT NAME: G	ratwick-Riverside Park Site		LOCATION:	Wheatfield, New York OH 27111 (MM DD YY)	
INSI	PECTOR(S):	DTYRAN, S GARDNE	Action Required	-	Comments	
1.	Perimeter Colle	ction System/Off-Site Forcemain				
TAXA	Manholes	- cover on securely - condition of cover	NONE			
(A)		 condition of inside of manhole flow conditions 				
XXX	Wet Wells	cover on securelycondition of covercondition of inside of wet well				
2.	Landfill Cap	· :				
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Vegetated Soil C	Cover - erosion - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation	EMBANKMENT, LARGEST HO SURFACE WATER IS ENTER! THE EMBANY MEINT	NE MEASUR DG THE I	NTH OF OGC-7 AT TOP OF RES AFT ACROSS + 8" DEEP HOLE + EXITING UNDERNEATH NUMERIT EAST + WEST OF MESH	
FORM	17					

	GI	RATWICK-RIVERSIDE PARK MONTHLY INSPECTION L	(SITE .OG	
PROJECT NAME: Gratwic	k-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York O42711 (MM DD YY)
INSPECTOR(S): [TYRAN, S GARDY Inspect For	Action Required		Comments
2. Landfill Cap (continu	ed)			
Access Roads	bare areas, dead/dying veg.erosionpotholes or puddlesObstruction	NONE		
3. Wetlands (Area "F")	dead/dying vegetationchange in water budgetgeneral condition of wetlands	SHORELING EROSION FISHING PIER AND S APPROX 100'	FROM RU SOUTH FRO	VER NORTH PIPE TO NEW DOM RIVER NORTH OUTFALL
4. Other Site Systems				
Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	NA -		
FORM 17				

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: DTYRAN: S GARDNER INSPECTOR(S): Comments Action Required Inspect For 1tem Other Site Systems (continued) NONE - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap NONE - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions - intact /damage Gas Vents - locks secure Wells FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: Gratwick-Riverside Park Site PROJECT NAME: (MM DD YY) DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap SEVERAL VERY LARGE HOLES ABOUT ZOFT SOUTH OF OGC: 7 AT Vegetated Soil Cover - erosion TOP OF EMBANKMENT, LARGEST HOLES MEASURE 4 TO 6 ACROSS - bare areas EXPOSING WIRE MEST AND B" MEP - washouts - leachate seeps LOTS OF SMALL HOLES IN EMBANKMENT FAST AND WEST - length of vegetation OF RIVER MIDDLE EXPOSING WIRE MESH - dead/dying vegetation FORM 17

	GI	RATWICK-RIVERSIDE P MONTHLY INSPECTION	ARK SITE ON LOG	
PROJECT NAME: Gratwick-Riv	erside Park Site		LOCATION:	Wheatfield, New York O
Item I	nspect For	Action Required	<u> </u>	Comments
3. Wetlands (Area "F")	pare areas, dead/dying veg. Prosion Potholes or puddles Obstruction dead/dying vegetation change in water budget general condition of wetlands	SHORELINE EROSIC FISHING PIER AN APPROX 100'	ON FROM R	VER NORTH PIPE TO NEW
	integrity of fence integrity of gates integrity of locks placement and condition of signs	NA T		

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) NONE - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up - erosion - condition of erosion protection - flow obstructions - intact / damage Gas Vents - locks secure FORM 17

APPENDIX B

QA/QC REVIEWS

- WASTEWATER TREATMENT PLANT SAMPLING SEPTEMBER 2010
 - WASTE WATER TREATMENT PLANT SAMPLING MARCH 2011
 - ANNUAL GROUNDWATER SAMPLING MAY 2011

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Klaus Schmidtke

REF. NO.:

7987DM-95

FROM:

Susan Scrocchi/bjw/6

DATE:

January 4, 2011

E-Mail and Hard Copy if Requested

RE:

Analytical Results and QA/QC Review

Wastewater Treatment Plant Sampling

September 2010

INTRODUCTION

One effluent sample was collected in support of the Wastewater Treatment Plant Sampling at the Gratwick-Riverside Park Site (Site) during September 2010. The sample was submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	Methodology ¹
Site-Specific Volatile Organic Compounds (VOCs)	USEPA 624
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	USEPA 625
Target Compound List (TCL) Metals	USEPA 200.7
Mercury	USEPA 245.1
Sulfate	USEPA 300.0
Chloride	USEPA 300.0
Alkalinity	SM 2320B
Nitrate	USEPA 353.2
Sulfide	SM 4500-S F
Total Dissolved Solids (TDS)	SM 2540C
Total Hardness	SM 2340C

The analytical results are summarized in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the following documents:

- i) "USEPA Contract Laboratory National Functional Guidelines for Organic Data Review" (October 1999)
- ii) "National Functional Guidelines for Inorganic Data Review" (February 1994)

[&]quot;Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983 and "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.

TABLE 1

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING GRATWICK-RIVERSIDE PARK SITE SEPTEMBER 2010

	Sample Location: Sample ID: Sample Date:	Effluent GRATWICK RIVERSIDE 9/13/2010
Paramete r s	Units	
Metals (Cont'd.)		
	mg/L	0.050 U
Iron		
Lead	mg/L	0.0050 U
Magnesium	mg/L	1.43
Manganese	mg/L	0.0030 U
Mercury	mg/L	0.0002 U
Nickel	mg/L	0.0100 U
Selenium	mg/L	0.0150 U
Silver	mg/L	0.0030 U
Sodium	mg/L	253
Zinc	mg/L	0.0100 U
General Chemistry		
Alkalinity, total (as CaCO3)	mg/L	53.9
Ammonia	mg/L	1.96
Bicarbonate (as CaCO3)	mg/L	53.9
Biochemical oxygen demand (BOD)	mg/L	24
Chemical oxygen demand (COD)	mg/L	33
Chloride	mg/L	423
Cyanide (total)	mg/L	0.005 U
Hardness	mg/L	213
Nitrate (as N)	mg/L	0.050 U
Oil and grease	mg/L	0.10 U
pH (water)	s.u.	9.39
Phenolics (total)	mg/L	0.008 U
Phosphorus	mg/L	0.12
Sulfate	mg/L	184
Sulfide	mg/L	2.0
Total dissolved solids (TDS)	mg/L	1040
Total kjeldahl nitrogen (TKN)	mg/L	2.24
Total organic carbon (TOC)	mg/L	7.1
Total suspended solids (TSS)	mg/L	7

Notes:

U - Not present at or above the associated value.

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Klaus Schmidtke

REF. No.:

7987DM-95

FROM:

Susan Scrocchi/bjw/8

DATE:

July 6, 2011

E-Mail and Hard Copy if Requested

RE:

Analytical Results and QA/QC Review Wastewater Treatment Plant Sampling

March 2011

INTRODUCTION

One effluent sample was collected in support of the Wastewater Treatment Plant Sampling at the Gratwick-Riverside Park Site (Site) during March 2011. The sample was submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	$Methodology^1$
Site-Specific Volatile Organic Compounds (VOCs)	USEPA 624
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	USEPA 625
Target Compound List (TCL) Metals	USEPA 200.7
Mercury	USEPA 245.1
Sulfate	USEPA 300.0
Chloride	USEPA 300.0
Alkalinity	SM 2320B
Nitrate	USEPA 353.2
Sulfide	SM 4500-S F
Total Dissolved Solids (TDS)	SM 2540C
Total Hardness	SM 2340C

The analytical results are summarized in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the following documents:

- "USEPA Contract Laboratory National Functional Guidelines for Organic Data Review" (October 1999)
- ii) "National Functional Guidelines for Inorganic Data Review" (February 1994)

[&]quot;Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983 and "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.

TABLE 1

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING GRATWICK-RIVERSIDE PARK SITE MARCH 2011

	Sample Location: Sample ID: Sample Date:	Effluent GRATWICK RIVERSIDE 3/7/2011
Parameters	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	μg/L	5.0 U
1,1-Dichloroethane	μg/L	5.0 U
1,2-Dichloroethane	μg/L	5.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	25 U
Acetone	μg/L	25 U
Benzene	μg/L	5.0 U
Chlorobenzene	μg/L	5.0 U
Ethylbenzene	μg/L	5.0 U
Methylene chloride	μg/L	5.0 U
Styrene	μg/L	5.0 U
Tetrachloroethene	μg/L	5.0 U
Toluene	μg/L	12
trans-1,2-Dichloroethene	μg/L	5.0 U
Trichloroethene	μg/L	30
Vinyl chloride	μg/L	5.0 U
Xylene (total)	μg/L	10 U
Semi-volatile Organic Compounds		
1,2-Dichlorobenzene	μg/L	0.15 U
1,4-Dichlorobenzene	μg/L	0.090 U
2,4-Dimethylphenol	μg/L	0.13 U
2-Methylphenol	μg/L	0.22 U
4-Methylphenol	μg/L	0.62 U
Di-n-octyl phthalate (DnOP)	μg/L	4.6 U
Naphthalene	μg/L	0.080 U
Phenol	μg/L	0.12 U
Metals		
Aluminum	mg/L	0.45
Antimony	mg/L	0.020 U
Arsenic	mg/L	0.010 U
Barium	mg/L	0.086
Beryllium	mg/L	0.0020 U
Cadmium	mg/L	0.0010 U
Chromium	mg/L	0.0040 U
Copper	mg/L	0.023
Iron	mg/L	0.39

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Klaus Schmidtke

REF. NO.:

007987

FROM:

Kathleen Willy/bjw/7

DATE:

June 28, 2011

E-Mail and Hard Copy if Requested

RE:

Analytical Results and QA/QC Review

Annual Groundwater Sampling Gratwick-Riverside Park Site

May 2011

INTRODUCTION

Nine (9) samples, including one field duplicate and one trip blank, were collected in support of the Annual Groundwater Sampling at the Gratwick-Riverside Park Site (Site) during May 2011. Samples were submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	Methodology
Site-Specific Volatile Organic Compounds (VOCs) Site-Specific Semi-Volatile Organic Compounds (SVOCs)	SW-846 8260 ¹ SW-846 8270 ¹

The sample collection and analysis summary is presented in Table 1. The analytical results are summarized in Table 2. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the "National Functional Guidelines for Organic Data Review" (October 1999).

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times. All samples were received in good condition and properly preserved.

[&]quot;Test Methods for Solid Waste Physical/Chemical Methods", SW-846, 3rd Edition, September 1986 (with all subsequent revisions).
REGISTERED COMPANY FOR

TABLE 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2011

Analysis/Parameters

Sample I.D.	Location I.D.	Collection Date (mm/dd/yy)	Collection Time (hr:min)	Selected VOCs	Selected SVOCs	Comments
WG-7987-052611-001	OGC-4	05/26/11	13:15	Х	Х	
WG-7987-052611-002	MW-9	05/26/11	13:30	Χ	Χ	
WG-7987-052611-003	MW-9	05/26/11	13:45	Χ	Χ	Field duplicate of sample WG-7987-052611-002
WG-7987-052611-004	OGC-8	05/26/11	14:00	Χ	Χ	
WG-7987-052611-005	MW-8	05/26/11	14:15	Χ	Χ	MS/MSD
WG-7987-052611-006	OGC-3	05/26/11	14:30	Χ	Χ	·
WG-7987-052611-007	OGC-7	05/26/11	14:45	Χ	Χ	
WG-7987-052611-008	OGC-6	05/26/11	15:00	Χ	X	
TB-7987-052611	-	05/26/11	-	X		Trip Blank

Notes:

MS - Matrix Spike.

MSD - Matrix Spike Duplicate.

VOCs - Volatile Organic Compounds.

SVOCs - Semi-Volatile Organic Compounds.

TABLE 2

ANNUAL GROUNDWATER SAMPLING ANALYTICAL RESULTS SUMMARY GRATWICK-RIVERSIDE PARK SITE **MAY 2011**

	Sample Location: Sample ID: Sample Date:	OGC4 WG-7987-052611-001 5262011	OGC6 WG-7987-052611-008 5/26/2011	OGC7 WG-7987-052611-007 \$26/2011	OGC8 WG-7987-052611-004 5/26/2011
Parameters	Units				
Volatile Organic Compounds					
2-Butanone (Methyl ethyl ketone) (MEK)	$^{1/g}$ n	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	$^{\rm hg/L}$	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	$\eta g/\Gamma$	0.70 U	1.8	0.70 U	0.70 U
Chlorobenzene	$^{\rm hg/L}$	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1/8n	1.0 U	2.4	1.0 U	1.0 U
Methylene chloride	$^{1/8}$ n	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	ηg/L	1.0 U	220	0.72 J	0.94 J
Toluene	$\mu g/L$	1.0 U	14	3.4	2.4
trans-1,2-Dichloroethene	$\mu g/L$	1.0 U	7.6	2.7	1.0 U
Trichloroethene	$^{\rm Hg/L}$	1.0 U	180	12	2.4
Vinyl chloride	ng/L	1.0 U	1.0 U	2.4	1.0 U
Xylenes (total)	$\mu g/L$	2.0 U	9.1	4.0	0.82 J
Semi-volatile Organic Compounds					
1,2-Dichlorobenzene	η/gπ	9.5 U	9.4 U	9.4 U	9.4 U
1,4-Dichlorobenzene	µg/L	9.5 U	9.4 U	9.4 U	9.4 U
2,4-Dimethylphenol	T/Bn	9.5 U	9.4 U	9.4 U	9.4 U
2-Methylphenol	ηg/L	9.5 U	15	0.45 J	1.5 J
4-Methylphenol	µg/L	9.5 U	1.2 J	9.4 U	5.3 J
Di-n-octyl phthalate (DnOP)	ηg/L	9.5 U	9.4 U	9.4 U	9.4 U
Naphthalene	ng/L	9.5 U	1.1]	9.4 U	9.4 U
Phenol	$\mu g/L$	5.5 J	9.4 U	9.4 U	9.4 U

Notes:

J - Estimated. U - Not detected.