

Dale W. Marshall, P. E.

Cit; Engineer

Phone: (716) 695-8565

Fax: (716) 695-8568

Reference No. 007987

Mr. Brian Sadowski
Project Manager
New York State Department of Environmental Conservation
270 Michigan Avenue
Buffalo, NY 14203-2999

Dear Mr. Sadowski:

Re: Site Management Periodic Review Report

Gratwick-Riverside Park Site, North Tonawanda, New York

Pursuant to the New York State Department of Environmental Conservation (NYSDEC) letter dated July 13,2012, enclosed are one hard copy and one PDF copy on CD of the report entitled "Annual Operation and Monitoring Report, June 2011 to May 2012". This report is being submitted as the Site Management Periodic Review Report (PRR) for the Gratwick-Riverside Park Site (Site) located in North Tonawanda, New York. This PRR documents the implementation of and compliance with the requirements of the Operation and Maintenance Manual (O&M Manual) dated March 2002 (revised January 2004 and May 2009). The O&M Manual includes the performance monitoring for the constructed remedy. NYSDEC approval for the O&M Manual was given on April20, 2005. This is the eleventh year of reporting for the Site since the implementation of the O&M program. Pursuant to the data presented in the PRR, the constructed remedy is achieving the remedial action objectives.

Also attached is the completed Institutional and Engineering Controls Certification Form which certifies that the NYSDEC listed institutional and engineering controls (ICs/ECs) are accurate as shown and are functioning properly. A PDF copy of the Form and this letter are also included on the CD.

The Site covers approximately 52.9 acres located adjacent to the Niagara River in the City of North Tonawanda, New York. The Site is bordered by River Road to the north, a private marina to the east, the River to the south, and a private residential area to the west. The Site is currently a public park with unrestricted access.

Construction of the remedial action was completed in June 2001 with final inspection performed in November 2001. Groundwater pumping began in May 2001. The description of the constructed remedy is presented in the report entitled "Remedial Action Construction Implementation" dated July 2002. The July 2002 report addressed comments received from the NYSDEC on the Remedial Action Construction Implementation Report submitted in June 2002. Repairs to address shoreline erosion that was observed in 2003 were performed in

November 2004 and are documented in the report entitled "Remedial Action Construction Implementation- Addendum No. 1, Repair of Shoreline Erosion" dated March 2005. NYSDEC acceptance of the Addendum was given on April 20, 2005.

The Certificate of Completion dated March 17,2008 was accepted by the NYSDEC on March 19, 2008, signifying that all remedial work has been completed.

The purpose and primary objective of the groundwater withdrawal system is to collect groundwater that would otherwise migrate into the Niagara River by creating a hydraulic gradient from the River to the groundwater withdrawal system. The post-RA system performance monitoring program is conducted to collect the hydraulic and groundwater chemical data necessary to evaluate the effectiveness of the barrier slurry wall and groundwater withdrawal system and to track long-term trends in the groundwater chemistry.

The remedial action system components at the Site that have associated O&M activities are as follows:

- Landfill cap
- Barrier slurry wall
- Groundwater withdrawal and discharge system
- Sloped-bank stabilization
- Post-RA system performance monitoring

Inspections of the landfill cap and sloped bank stabilization are performed monthly by CRA. Any observed items requiring corrective actions are reported typically within three business days to the City of North Tonawanda which is responsible for the operation and maintenance of the Site. Performance monitoring of the barrier slurry wall is performed monthly by measuring river and groundwater levels to ensure that a gradient from the river to the groundwater withdrawal system is maintained. Performance monitoring of the groundwater discharge system is performed in accordance with the City of North Tonawanda Industrial Wastewater Discharge Permit Number 2628011 which requires semi-annual collection and analyses of samples of the water that is discharged to the City of North Tonawanda WWTP. Groundwater samples are currently collected and analyzed annually from seven wells and from an additional five wells once every two years in accordance with the schedule in the modified O&M Manual to track the long-term trends in the groundwater concentrations.

If you have any questions, please do not hesitate to contact the undersigned at 716-695-8565.

Yours truly,

Dale Marshall, P.E.

City Engineer

KDS/lp/4

Encl.

cc: Greg Sutton, NYSDEC Region 9

Krista Anders, NYSDOH (electronic copy)

C. Babcock, GSHI

J.P. Moreau/W. Jones (National Grid)

b.c.c.: J. Kay
P. Sattelberg (City of North Tonawanda)

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

s	ite No.	932060	Sit	e Details		Box 1	
S	ite Name Gr	ratwick - Riversi	de Park				
C	te Address: ty/Town: No ounty:Niagar te Acreage:	orth Tonawanda a	Zip Code: 141	20			
R	eporting Peri	od: August 25, 20	011 to August : May 3				
						YES	NO
1.	Is the infor	mation above cor	rect?				Ì X Í
	If NO, inclu	ude handwritten a	bove or on a s	eparate sheet.			
2.		or all of the site p nendment during		old, subdivided, merg Period?	jed, or undergone a		×
3.		been any change RR 375-1.11(d))?		ite during this Reporti	ing Period		×
4.		ederal, state, and e property during		ts (e.g., building, disc Period?	harge) been issued		×
				4, include docume submitted with this			
5.	that docur		en previously	submitted with this			M
5.	that docur	mentation has be	en previously	submitted with this			×
5.	that docur	mentation has be	en previously	submitted with this			₩ NO
5.	Is the site of	currently undergoi	een previously	submitted with this		Box 2	
6.	Is the site of	currently undergoi	een previously ng developme	submitted with this nt? se(s) listed below?		Box 2	NO
6.	Is the curre Closed Lan Are all ICs/	ent site use consisted in place and	tent with the u	submitted with this nt? se(s) listed below?	gn and date below a	Box 2 YES	NO 🗆
6.	Is the curre Closed Lan Are all ICs/	ent site use consisted in place and the ANSWER TO E DO NOT COMPLI	tent with the u	se(s) listed below? designed?	gn and date below a herwise continue.	Box 2 YES	NO
6. 7.	Is the curre Closed Lan Are all ICs/	ent site use consisted in place and the ANSWER TO E DO NOT COMPLI	tent with the u functioning as EITHER QUEST ETE THE REST	se(s) listed below? designed? TON 6 OR 7 IS NO, signer of THIS FORM. Otherwitted along with this	gn and date below a herwise continue.	Box 2 YES	NO

SITE NO. 932060 Box 3

Description of Institutional Controls

<u>Parcel</u>

<u>Owner</u>

Institutional Control

175.19-1-28

City of North Tonawanda

Building Use Restriction

banding osc restriction

Ground Water Use Restriction

Landuse Restriction

Monitoring Plan O&M Plan

Box 4

Description of Engineering Controls

Parcel

Engineering Control

175.19-1-28

Cover System

Groundwater Containment Groundwater Treatment System

Leachate Collection

Control Description for Site No. 932060

Parcel: 175.19-1-28

Deed Restriction. Sloped Bank Stabilization in addition to the ICEC listed above.

		_
ь.	αx	•

		Box 5
	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	 a) the Periodic Review report and all attachments were prepared under the direction of reviewed by, the party making the certification; 	f, and
	 b) to the best of my knowledge and belief, the work and conclusions described in this are in accordance with the requirements of the site remedial program, and generally a engineering practices; and the information presented is accurate and compete. 	certification ccepted
	YES	NO
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of following statements are true:	
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unch the date that the Control was put in-place, or was last approved by the Department;	anged since
	(b) nothing has occurred that would impair the ability of such Control, to protect public the environment;	health and
	(c) access to the site will continue to be provided to the Department, to evaluate the reincluding access to evaluate the continued maintenance of this Control;	emedy,
	(d) nothing has occurred that would constitute a violation or failure to comply with the Management Plan for this Control; and	Site
	(e) if a financial assurance mechanism is required by the oversight document for the s mechanism remains valid and sufficient for its intended purpose established in the doc	
	YES	NO
	×	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
A	Corrective Measures Work Plan must be submitted along with this form to address these is	sues.
		- * *

Signature of Owner, Remedial Party or Designated Representative

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Date VI. Marshall at 216 F.	print business address 4 14120,
am certifying as Nowth Tanaccanda Cit	7 Engineer (Owner or Remedial Party)
for the Site named in the Site Details Section of this f	•
Signature of Owner, Remedial Party, or Designated Rendering Certification	Representative Date

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name print business address

am certifying as a Professional Engineer for the Ctt of North Tongwarda

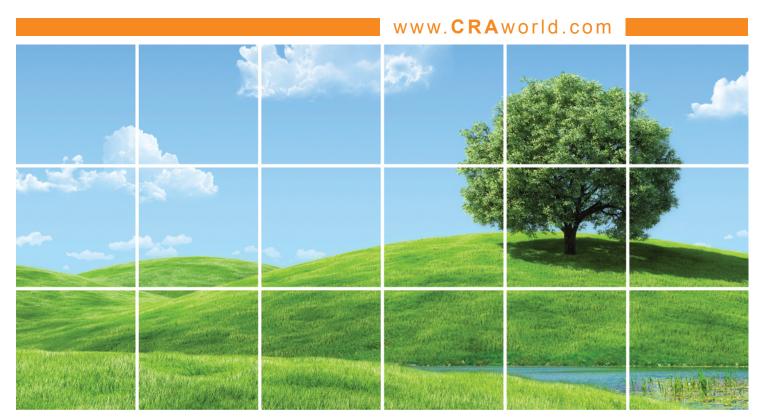
Waer N Engelial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

at 216 Rayne Are Utomuranda Nly 14 29

print business address

All Marshall Tongwarda


Waer N Engelial Party

Standard Tongwarda

Standard Tongwarda

(Required for PE)

OPERATION AND MONITORING REPORT

JUNE 2011 TO MAY 2012 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Prepared for: CITY OF NORTH TONAWANDA

Conestoga-Rovers & Associates 651 Colby Drive Waterloo, Ontario N2V 1C2

September 2012 • #007987 Report Number:40

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	DUCTION	1
2.0	GROUN	NDWATER WITHDRAWAL SYSTEM (GWS)	2
	2.1	HYDRAULIC MONITORING	
	2.2	GROUNDWATER QUALITY MONITORING	3
	2.2.1	SAMPLE RESULTS	
	2.3	EFFLUENT MONITORING PROGRAM	7
	2.3.1	SAMPLE RESULTS	7
	2.4	SURFACE WATER MONITORING PROGRAM	9
	2.5	GWS OPERATIONS	9
	2.6	GWS MAINTENANCE	9
3.0	SITE IN	ISPECTIONS	11
4.0	CONCI	LUSIONS/RECOMMENDATIONS	12
	4.1	OPERATION AND MAINTENANCE	
	4.2	MONITORING	12
	4.3	NOTIFICATIONS TO CITY OF NORTH TONAWANDA	13

LIST OF FIGURES

(Following Text)

FIGURE 2.1	MONITORING NETWORK
FIGURE 2.2	MW-6 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.3	MW-7 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.4	MW-8 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.5	MW-9 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.6	OGC-1 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.7	OGC-2 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.8	OGC-3 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.9	OGC-4 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.10	OGC-5 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.11	OGC-6 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.12	OGC-7 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.13	OGC-8 TVOC AND TSVOC CONCENTRATIONS
FIGURE 2.14	EFFLUENT TVOCS AND TSVOCS VS. TIME
FIGURE 2.15	EFFLUENT pH VS. TIME
FIGURE 2.16	EFFLUENT TOTAL SUSPENDED SOLIDS VS. TIME
FIGURE 2.17	EFFLUENT BOD VS. TIME
FIGURE 2.18	EFFLUENT VOLUME VS. TIME

LIST OF TABLES (Following Text)

TABLE 2.1	GROUNDWATER HYDRAULIC MONITORING LOCATIONS
TABLE 2.2	WATER LEVELS (FT AMSL)
TABLE 2.3	SUMMARY OF HORIZONTAL GRADIENTS
TABLE 2.4	SUMMARY OF VERTICAL GRADIENTS
TABLE 2.5	GROUNDWATER SAMPLING SUMMARY
TABLE 2.6	SUMMARY OF DETECTED COMPOUNDS, SITE GROUNDWATER AND RIVER WATER
TABLE 2.7	PH READINGS
TABLE 2.8	EFFLUENT SAMPLING SUMMARY, JUNE 2001 TO FEBRUARY 2007
TABLE 2.9	EFFLUENT SAMPLING SUMMARY, SUBSEQUENT TO FEBRUARY 2007
TABLE 2.10	ANALYTICAL RESULTS SUMMARY, SITE EFFLUENT
TABLE 2.11	GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW

LIST OF APPENDICES

APPENDIX A MONTHLY INSPECTION LOGS (JUNE 2011 TO MAY 2012)

APPENDIX B QA/QC REVIEWS

1.0 INTRODUCTION

This report is the eleventh annual Operation and Monitoring Report (O&M Report) for the remedial actions constructed at the Gratwick-Riverside Park Site (Site) located in North Tonawanda, New York. This report covers the period from June 2011 to May 2012 and was prepared pursuant to Section 7.0 of the report entitled "Operation and Maintenance Manual" (O&M Manual) dated March 2002 (revised January 2004 and May 2009). It is noted that New York State Department of Environmental Conservation (NYSDEC) approval for the O&M Manual was given on April 20, 2005. All O&M activities have been performed in accordance with the methods and frequencies specified in the O&M Manual and as modified in previous annual reports and approved by NYSDEC. In accordance with the approved monitoring changes, the groundwater is now monitored annually in seven wells and an additional five wells are monitored once every two years. The surface water quality of the Niagara River adjacent to the Site is no longer monitored. The collected groundwater that is discharged from the Site is monitored semi-annually in accordance with the City of North Tonawanda Wastewater Discharge Permit.

2.0 GROUNDWATER WITHDRAWAL SYSTEM (GWS)

Full-time operation of the Groundwater Withdrawal System (GWS) at the Site started on May 4, 2001. The objectives of the GWS are to:

- i) Achieve and maintain an inward gradient from the Niagara River toward the GWS
- ii) Achieve and maintain an upward gradient from the fill alluvium layer beneath the GWS

In order to determine whether the objectives are being met, hydraulic and chemical monitoring programs have been developed. These programs include Site groundwater and GWS effluent. Sampling of the River water was approved for elimination in 2008. The wells, manholes, wet wells, and storm sewer outfalls that comprise the monitoring network are shown on Figure 2.1. The monitoring programs are described in the following subsections.

2.1 HYDRAULIC MONITORING

Hydraulic monitoring consists of the collection of water levels in monitoring wells and manholes, and River water levels at the storm sewer outfalls. These data are then used to determine the vertical and horizontal gradients for the groundwater.

The water levels in four GWS manholes and in the River were monitored to confirm that an inward gradient exists. The water levels in five GWS manholes and in four monitoring wells installed near the GWS alignment in the materials directly overlying the confining unit were monitored to confirm that an upward gradient exists. The specific manholes and monitoring wells used to determine the horizontal and vertical gradients are listed in Table 2.1.

Groundwater elevations are measured on a monthly basis. The measured water levels for the time period January 2011 through May 2012 are provided in Table 2.2. The horizontal and vertical gradients for this reporting period are provided in Tables 2.3 and 2.4, respectively. The water levels and horizontal and vertical gradients to January 2011 were previously provided and thus are not provided in this report.

The results for the horizontal gradient evaluation show that:

- i) Inward horizontal gradients were achieved by May 11, 2001, within one week of the start of pumping the GWS
- ii) The inward gradients were maintained for the remainder of the first 11 years except for a few short intervals in isolated areas. There were no exceptions in the June 2011 through May 2012 reporting period.

Short periods of outward gradient do not adversely affect the effectiveness of the remedy because:

- i) The gradients were outward for only short periods of time
- ii) The outward gradients occurred over only a portion of the barrier wall
- iii) The 36-inch barrier wall is six inches thicker than the design thickness thereby providing extra protection
- iv) Any outward migration of Site groundwater into the barrier wall during the short periods of outward gradient is more than offset by the inward migration of river water into the barrier wall during the long periods of inward gradient

The results for the vertical gradient evaluation showed that the vertical gradients during the June 2011 through May 2012 reporting period were continually upward for all four monitoring locations.

2.2 GROUNDWATER QUALITY MONITORING

Groundwater quality monitoring consists of the collection of water samples from on-Site overburden monitoring wells (OGC-1 through OGC-8 and MW-6 through MW-9) and the analysis of these samples to determine the concentrations of chemicals in the groundwater. The purpose of the groundwater quality monitoring program is to monitor the anticipated improvement in the quality of the overburden groundwater:

- i) Between the barrier wall and the River (OGC-1 through OGC-4)
- ii) In the fill/alluvium beneath the GWS (MW-6 through MW-9)

The MWs are located on the inside of the barrier wall and the OGCs are located between the barrier wall and the river.

Groundwater quality monitoring locations are presented on Figure 2.1 and the analytical parameters and frequency are listed in Table 2.5.

Groundwater sampling was performed on an annual basis between May 2004 and May 2008. As approved in the NYSDEC letter dated February 23, 2009 the sampling frequency for May 2009 through May 2012 was:

Annual	Once Every Two Years (2010 and 2012)
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	

2.2.1 <u>SAMPLE RESULTS</u>

A summary of compounds detected in the groundwater samples for this reporting period is provided in Table 2.6 and pH levels are provided in Table 2.7.

To evaluate the trends in the groundwater chemistry and evaluate the appropriate frequency of future sampling, the VOCs and SVOCs were summed and plotted on Figures 2.2 through 2.13 for each of the 12 monitoring wells included in the program. It is believed that the sum of the VOCs (i.e., TVOCs) and SVOCs (i.e., TSVOCs) best represent the trends in the groundwater chemistry.

Review of the TVOC and TSVOC concentrations for the 12 wells sampled in 2012 show the following trends since May 2008:

i) TVOCs:

- Decreasing concentrations in 5 of the 12 wells (MW-8, MW-9, OGC-3, OGC-6 and OGC-7)
- Relatively constant concentrations with random fluctuations in the remaining 7 wells

ii) TSVOCs:

- Decreasing concentrations in 3 of the 12 wells (MW-6, MW-8 and OGC-4)
- Relatively constant concentrations with random fluctuations in the remaining
 9 wells

All the wells had only low level TVOC concentrations in this reporting period, except for MW-8 (65 μ g/L) and OGC-6 (226 μ g/L). With regard to TSVOC concentrations, three wells had higher concentrations, MW-8 (78 μ g/L), MW-9 (300 μ g/L), and OGC-3 (105 μ g/L). All of the remaining wells had TSVOC concentrations <20 μ g/L.

In summary, the number of wells with decreasing or constant but fluctuating low level concentrations and considering that no wells had increasing concentrations, shows that the groundwater is being remediated.

Additional description of the TVOC and TSVOC concentrations is provided in the following paragraphs.

Monitoring Wells On-Site - Inside Barrier Wall

The TVOC concentrations for MW-6 shown on Figure 2.2 have been less than $5\,\mu g/L$ since May 2007. The TSVOC concentrations were low level (i.e., $<5\,\mu g/L$) since May 2004 until May 2010 when they increased slightly to $20\,\mu g/L$. In May 2012 the TSVOC concentration had reduced to $10\,\mu g/L$.

The TVOC and TSVOC concentrations for MW-7 on Figure 2.3 show that both TVOC and TSVOC have remained low level. TVOC concentrations ranged from non-detect to $4 \mu g/L$ since May 2006. TSVOC concentrations ranged from non-detect to $1 \mu g/L$ since May 2004.

The TVOC concentrations for MW-8 on Figure 2.4 show that the TVOC concentration for the May 2012 sample decreased to 65 μ g/L from the May 2011 sample concentration of 107 μ g/L. The TSVOC concentrations since May 2006 increased slightly from 31 μ g/L to 117 μ g/L in the May 2009 sample and since then have continually decreased since that time to 78 μ g/L in the May 2012 sample.

The TVOC concentrations for MW-9 on Figure 2.5 show that the TVOC concentrations ranged between 9 and 30 μ g/L for the entire record period. The TSVOC concentrations have fluctuated between 150 to 440 μ g/L since August 2002.

All MWs are located on the inside of the barrier wall and a net inward gradient has always been maintained in the vicinity of these wells. Thus, the TVOCs and TSVOCs are not migrating to the Niagara River.

Monitoring Wells Between Barrier Wall and River

The TVOC concentrations for OGC-1 on Figure 2.6 show that the concentrations since November 2003 ranged between 0.5 and $4 \,\mu\text{g/L}$. The TSVOC concentrations since November 2003 have fluctuated between non-detect and $3 \,\mu\text{g/L}$.

The TVOC concentrations for OGC-2 on Figure 2.7 have been non-detect since May 2006. The TSVOC concentrations were all non-detect since monitoring of the remedy started.

The TVOC concentrations for OGC-3 shown on Figure 2.8 have been non-detect since May 2008. The TSVOC concentrations have decreased from 300 μ g/L in November 2003 to 95 μ g/L in May 2011. The TSVOC concentration increased slightly to 105 μ g/L in May 2012.

The TVOC concentrations for OGC-4 shown on Figure 2.9 fluctuated between non-detect and $6\,\mu g/L$ for the time period from November 2002 to May 2012 and have been non-detect since May 2010. The TSVOC concentrations have fluctuated widely but have continually decreased since May 2004 with a concentration of $3.8\,\mu g/L$ in the May 2012 sample. The single compound responsible for the higher historic concentrations was phenol.

The TVOC concentrations for OGC-5 shown on Figure 2.10, ranged from non-detect to $5 \,\mu\text{g/L}$ since November 2003 (except for May 2008 at $5.8 \,\mu\text{g/L}$). The TSVOC concentrations ranged from non-detect to $2 \,\mu\text{g/L}$ since February 2003.

The TVOC concentrations for OGC-6 shown on Figure 2.11 increased continually from 3 μ g/L in May 2001 to 4,200 μ g/L in May 2006, then decreased to 68 μ g/L by May 2008 before increasing to 1,130 μ g/L in the May 2010 sample. The TVOC concentrations have since continually decreased with a concentration of 226 μ g/L in the May 2012 sample. The primary compounds detected are PCE and TCE. The TSVOC concentrations have continually decreased from 157 μ g/L in May 2008 to 20 μ g/L in May 2012.

The TVOC concentrations for OGC-7 shown on Figure 2.12, have continually decreased since November 2003 and were 17 μ g/L in the May 2012 sample. The TSVOC concentrations have been non-detect since August 2002 except for May 2008 (0.9 μ g/L) and May 2011 (0.45 μ g/L).

The TVOC concentrations for OGC-8 shown on Figure 2.13 decreased from 460 μ g/L in May 2001 to 84 μ g/L in May 2003 and have ranged from non-detect to 29 μ g/L since that time. The TSVOC concentrations decreased from 139 μ g/L in August 2001 to 54 μ g/L in August 2002 and have ranged from non-detect to 11 μ g/L since that time.

The QA/QC review of the May 2012 groundwater results is included in Appendix B.

2.3 EFFLUENT MONITORING PROGRAM

Groundwater from the GWS is discharged to the POTW without the need for pretreatment. The monitoring performed during the construction phase of the remedy clearly showed that the minimal chemical presence in the groundwater collected in the GWS is easily treated at the POTW and therefore no on-Site pretreatment is necessary. The effluent samples are collected at the monitoring station (meter building), which is located at the south end of the Site as shown on Figure 2.1. The analytical parameters for the time period from June 2001 to February 2007, inclusive, are listed in Table 2.8 and the parameters monitored since 2007 are listed in Table 2.9.

2.3.1 SAMPLE RESULTS

Effluent samples are collected semi-annually and consist of a 24-hour composite sample collected for SVOCs, metals, and wet chemistry parameters. Three grab samples are also collected for VOCs at 8-hour intervals and the measured concentrations are averaged to give a 24-hour concentration.

QA/QC reviews of the discharge results to May 2011 have already been submitted to the NYSDEC. Thus, these reviews are not being resubmitted with this O&M Report. The QA/QC reviews of the discharge results from September 2011 and March 2012 are provided in Appendix B.

The effluent sample results for this reporting period are provided in Table 2.10. To assist in evaluating the chemical concentration trends in the effluent discharge from the GWS, the measured concentrations for the following parameters are plotted: TVOCs, TSVOCs, pH, total suspended solids (TSS), and biochemical oxygen demand (BOD) (see Figures 2.14 through 2.17). It is believed that these parameters are representative of the trends in the chemistry of the water discharged to the POTW and, as such, can also be used to determine an appropriate monitoring frequency for the effluent.

As shown on Figure 2.14, the TVOCs generally peak in the spring and then decline reaching a trough in the fall. This pattern may be attributable to additional flushing during the spring snow melt. The long-term trend of the TVOC concentrations show a continual decrease with time. The TVOC concentration in the March 2012 sample was 74 μ g/L. The effluent TSVOC results on Figure 2.14 show no apparent seasonal pattern but the TSVOC concentrations show the same decreasing trend with time as the TVOC concentrations. The TSVOC concentration in the March 2012 sample was 16 μ g/L.

The pH levels are presented on Figure 2.15. As shown on Figure 2.15, the pH levels range between 7.3 and 11.6. An apparent trend in the pH levels is higher pH levels in the winter/spring and lower pH levels in the summer/fall.

The TSS concentrations presented on Figure 2.16 show higher concentrations occurring in the early spring and late summer/fall with elevated concentrations (maximum of 278 mg/L) in the spring of 2005. Because TSS may be related to the discharge flow rate, the monthly discharge volume (see Table 2.11) is plotted on Figure 2.18. Comparison of the results presented on these two figures shows an apparent correlation between higher flows and greater TSS concentrations except for the 2005 spring results.

The BOD concentrations are presented on Figure 2.17. As shown on Figure 2.17, BOD concentrations randomly ranged from 6 to 29 mg/L since May 2002. The BOD concentrations were compared with the discharge volume but showed no apparent correlation.

In summary, the trends and low level TVOC and TSVOC concentrations described above support the semi-annual sampling frequency in the current City of North Tonawanda Industrial Wastewater Discharge Permit.

2.4 SURFACE WATER MONITORING PROGRAM

To determine that the River sediment remediation and enhancement is working properly, surface water samples were collected from May 2001 to May 2008 at locations upstream of, adjacent to, and at the downstream end of the Site (see Figure 2.1 for locations). Pursuant to the NYSDEC approval received on February 23, 2009, no further sampling or analyses of the River water is needed or being performed.

2.5 <u>GWS OPERATIONS</u>

The volume of water pumped on a monthly basis from the Site to the City POTW for treatment is presented in Table 2.11 and plotted on Figure 2.18. The monthly volumes show that during the time period of initial dewatering of the Site (i.e., May and June 2001) the monthly volumes ranged from 2,300,000 to 2,900,000 gallons. For the time period from June 2007 to May 2012, the monthly volumes ranged from 23,800 to 2,661,000 gallons except for March 2009 which had a volume of 4,239,000 gallons.

The total measured volume of water discharged from the Site for the time period from May 2001 to May 2012 was 92,954,500 gallons with 5,401,900 gallons (10.3 gpm average) pumped during the last 12 months.

Section 5.0 of the O&M Manual describes the procedures to be followed in case pumping of the GWS needs to be stopped to prevent the discharge of untreated water from the Site by the City POTW (i.e., wet weather shutdown). No wet weather shutdown occurred in the time period from June 2011 to May 2012.

The treatment of the Site groundwater by the City POTW did not require any modifications to the standard operations of the City POTW and did not cause any operational upsets of the City POTW.

2.6 <u>GWS MAINTENANCE</u>

This section describes the GWS maintenance activities performed during the June 2011 through May 2012 time period. A copy of the maintenance log is provided in Appendix A.

The entries in the maintenance log show that the breaker for Pump #1 (MH-3) tripped on January 25, 2012. The breaker was reset and the pump was restarted. The breaker for Pump #2 (MH-9) tripped on February 10, 2012. The pump was removed from the manhole, cleaned in an acid bath, reinstalled and restarted. The breaker for Pump #3 (MH-15) tripped on May 27, 2012. Inspection of the pump showed that the pump needed to be replaced. A replacement has been ordered and will be installed when received.

3.0 <u>SITE INSPECTIONS</u>

Site inspections were performed on a monthly basis. Copies of the Inspection Logs for the time period to May 2011 were previously submitted and thus are not being resubmitted with this O&M Report. The Monthly Inspection Logs for June 2011 through May 2012 are included in Appendix A. In summary, the June 2011 through May 2012 inspections identified:

- i) Higher water levels in MH-15 from December 2011 through May 2012. The higher water levels are believed due to the pump not functioning properly prior to its removal in May 2012.
- ii) Soil erosion approximately 20 feet south of OGC-7
- iii) Soil erosion north and south of the River Middle and North pipe outlets
- iv) Large dead trees partially blocked the River North outlet from October 2011 through May 2012. The trees were removed in June 2012.

The schedule for repair of the erosion is to be determined by the City of North Tonawanda.

4.0 <u>CONCLUSIONS/RECOMMENDATIONS</u>

4.1 <u>OPERATION AND MAINTENANCE</u>

The constructed remedy is achieving the remedial action objectives.

4.2 <u>MONITORING</u>

The groundwater TVOC and TSVOC concentrations are either decreasing or are relatively consistent with time with 10 of 12 wells having TVOC and/or TSVOC concentrations \leq 20 μ g/L for the 2012 event.

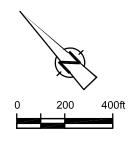
In summary, the groundwater sample collection frequency from May 2009 up to and including May 2012 was:

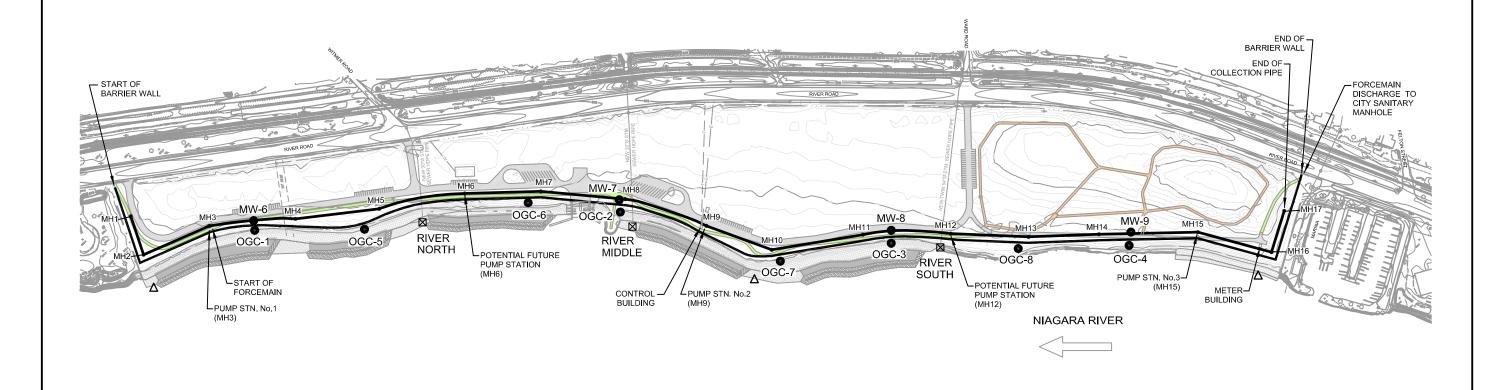
Annual	Once Every 2 Years (2010 and 2012)	
MW-8	MW-6	
MW-9	MW-7	
OGC-3	OGC-1	
OGC-4	OGC-2	
OGC-6	OGC-5	
OGC-7		
OGC-8		

Based on the low TVOC and TSVOC concentrations in the May 2012 samples, it is recommended that the annual sampling for the next 5-year period (through May 2017) continue for five of the wells (MW-8, MW-9, OGC-3, OGC-6 and OGC-7) which were sampled annually from May 2009 through May 2012. It is proposed that wells OGC-4 and OGC-8 be sampled once every two years. The reasons for this are as follows:

- i) The TVOC concentrations in OGC-4 were non-detect in May 2010, May 2011 and May 2012
- ii) The TSVOC concentrations in OGC-4 have continually decreased from 2400 $\mu g/L$ in May 2004 to 3.8 $\mu g/L$ in May 2012
- iii) For OGC-8, the TVOC and TSVOC concentrations have been $<10\,\mu g/L$ for the last three sampling events

Thus, the recommended sampling program for the next 5-year period is:


	Once Every Two Years
Annual	(2014 and 2016)
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-6	OGC-2
OGC-7	OGC-4
	OGC-5
	OGC-8


As previously stated, no further sampling of the river water is required.

Pursuant to the discharge permit effective January 31, 2007 (renewed March 1, 2010 and effective until February 28, 2013), semi-annual monitoring commenced in September 2007. The trends in the effluent from the GWS to the POTW support the continuation of the sampling frequency at semi-annual. Flow monitoring will continue to be performed monthly as a check on the operation of the GWS.

4.3 NOTIFICATIONS TO CITY OF NORTH TONAWANDA

Notifications of anomalies in the discharge volumes and/or groundwater levels will continue to be provided to the City of North Tonawanda Public Works Engineering and Wastewater Treatment Department within a few days of measurement of the anomaly to ensure timely maintenance.

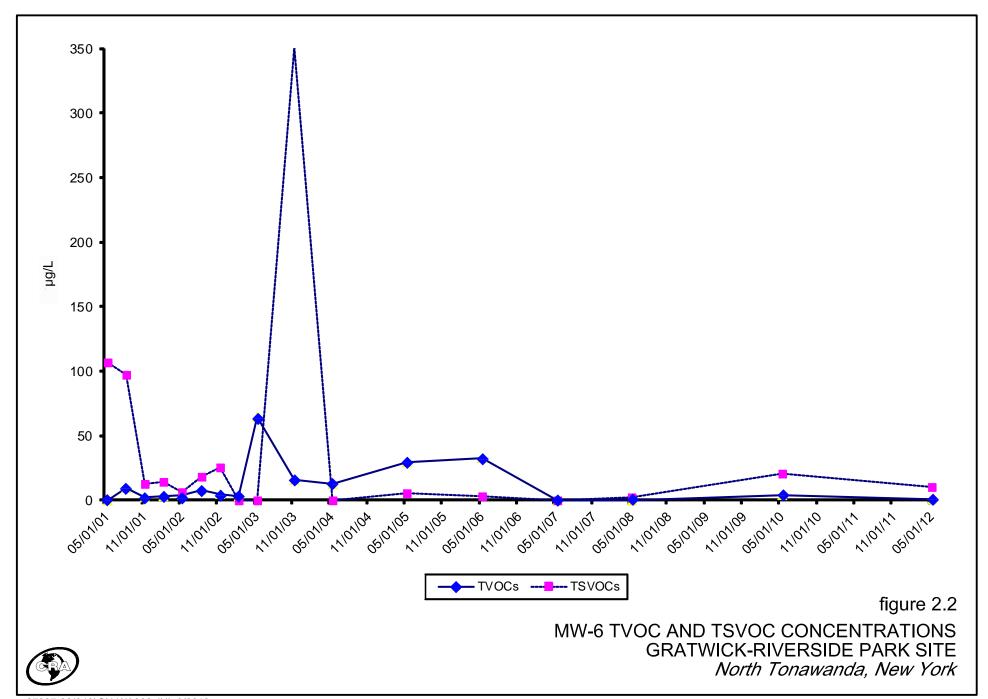
LEGEND

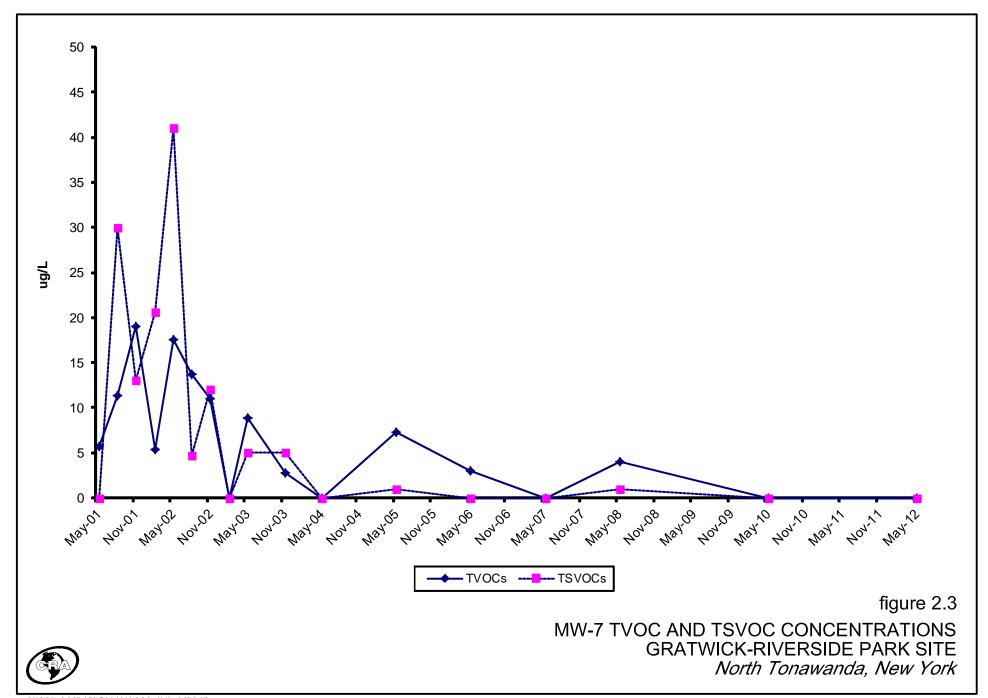
BARRIER WALL

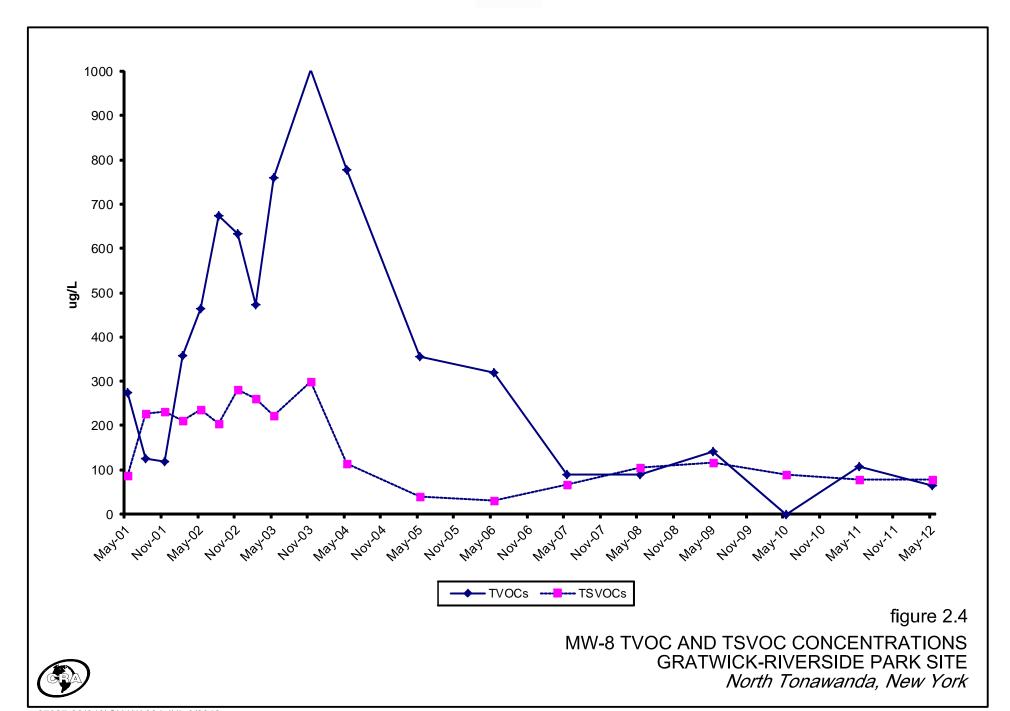
GROUNDWATER COLLECTION SYSTEM

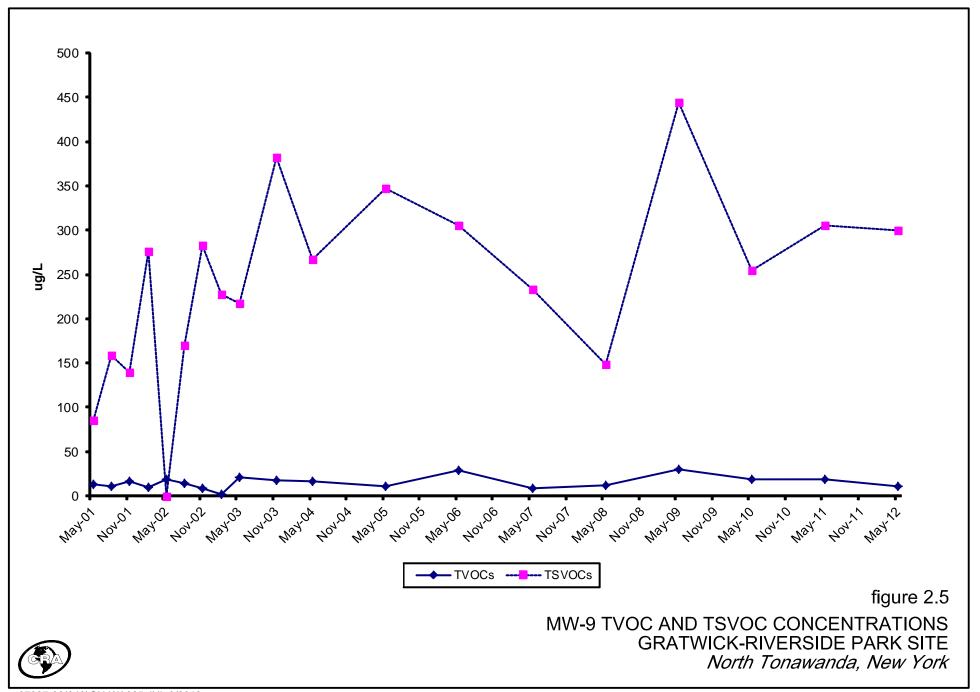
● OGC-1 MW-1 ⊠ RIVER SOUTH

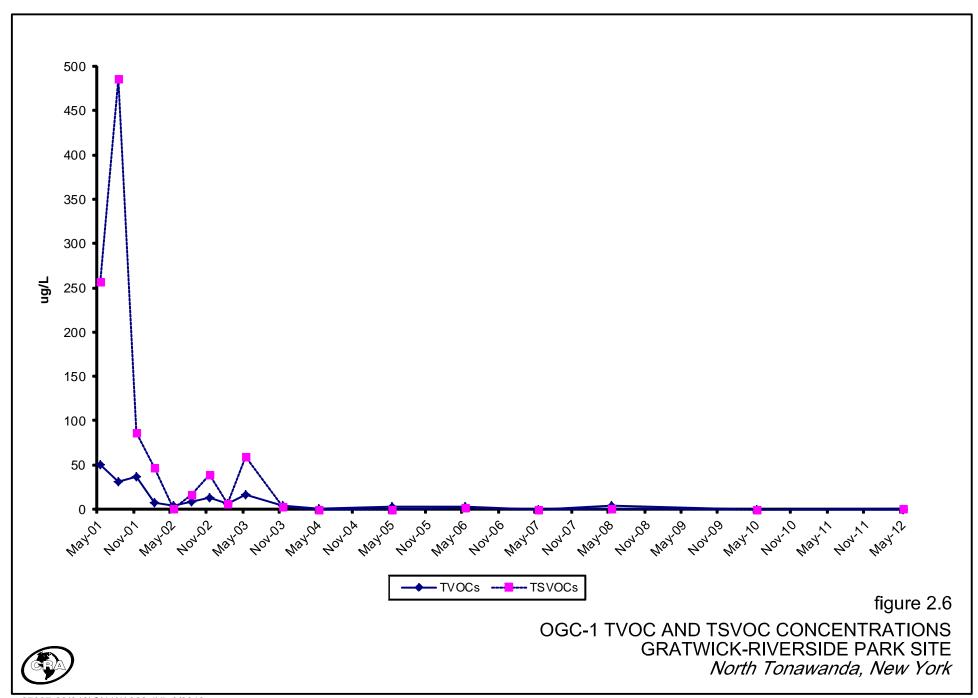
MONITORING WELL LOCATION

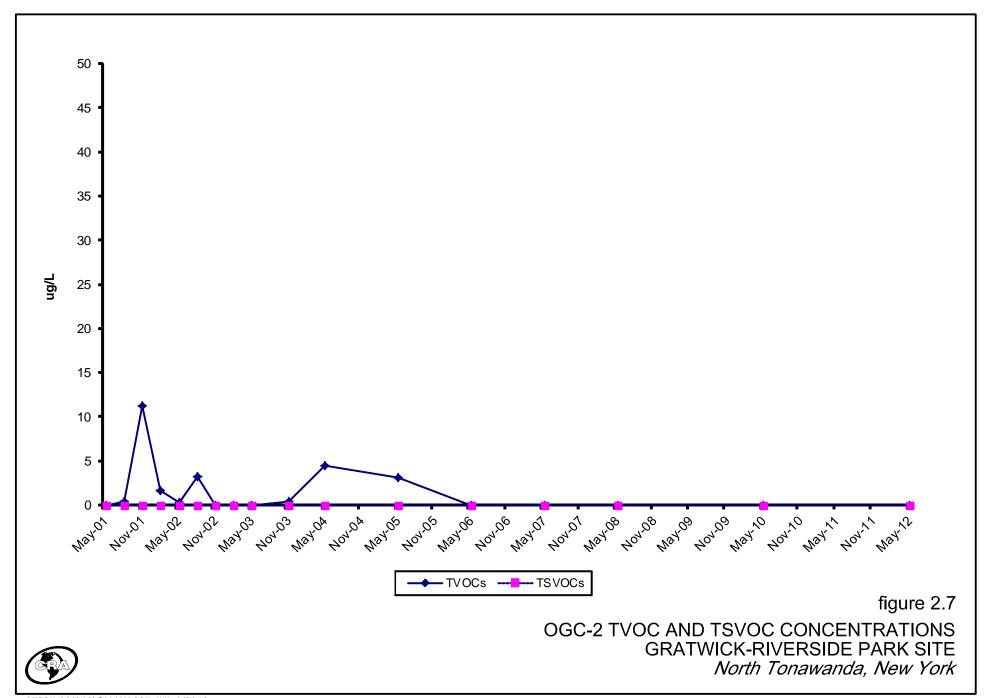

SURFACE WATER LEVEL MONITORING LOCATION

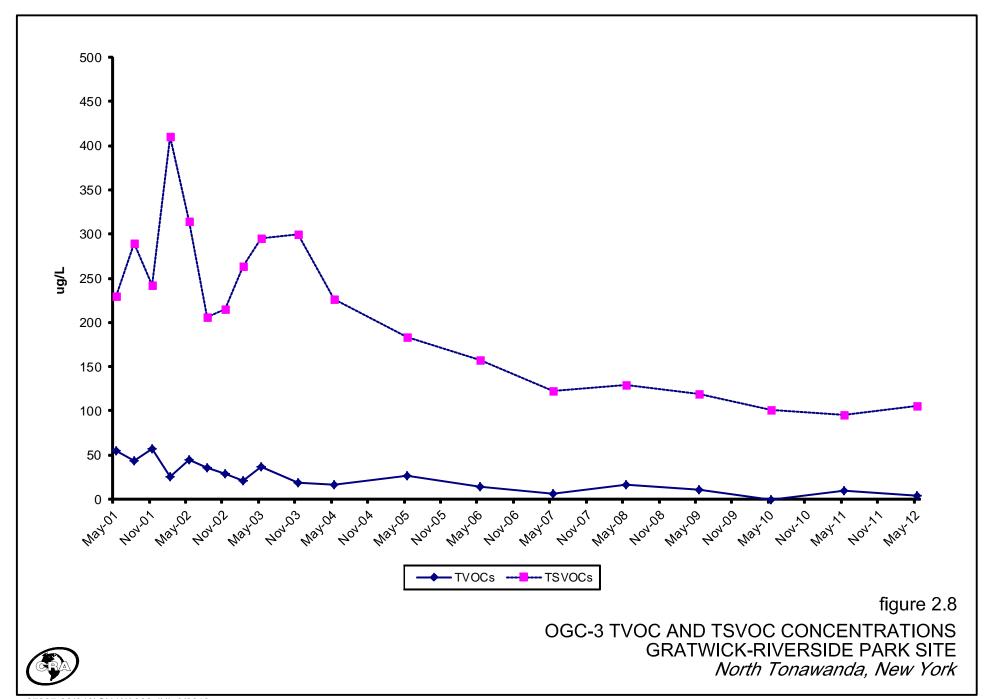

SURFACE WATER CHEMICAL MONITORING LOCATION (NO SAMPLING AFTER APRIL 2008) Δ

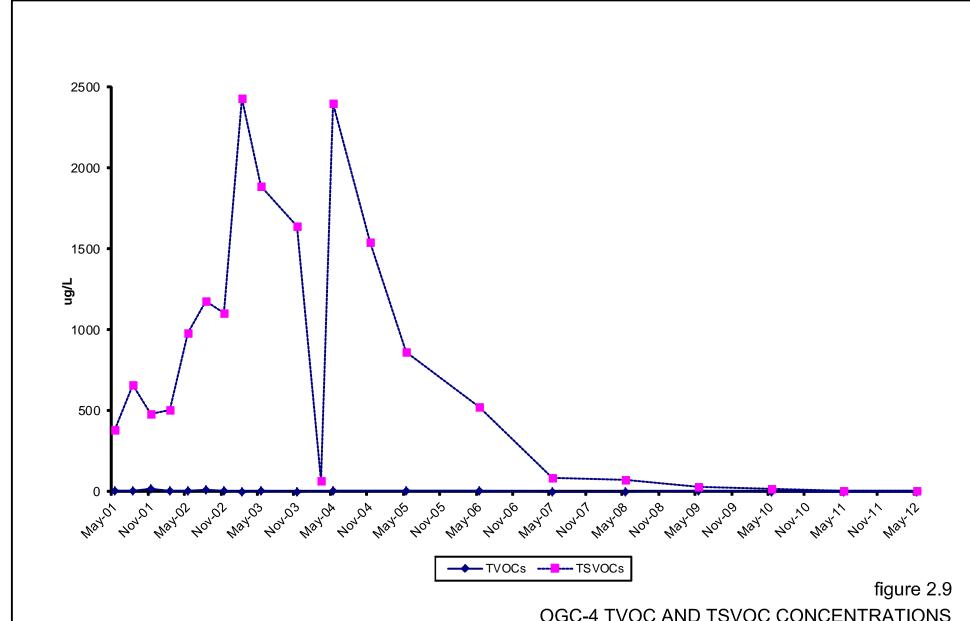


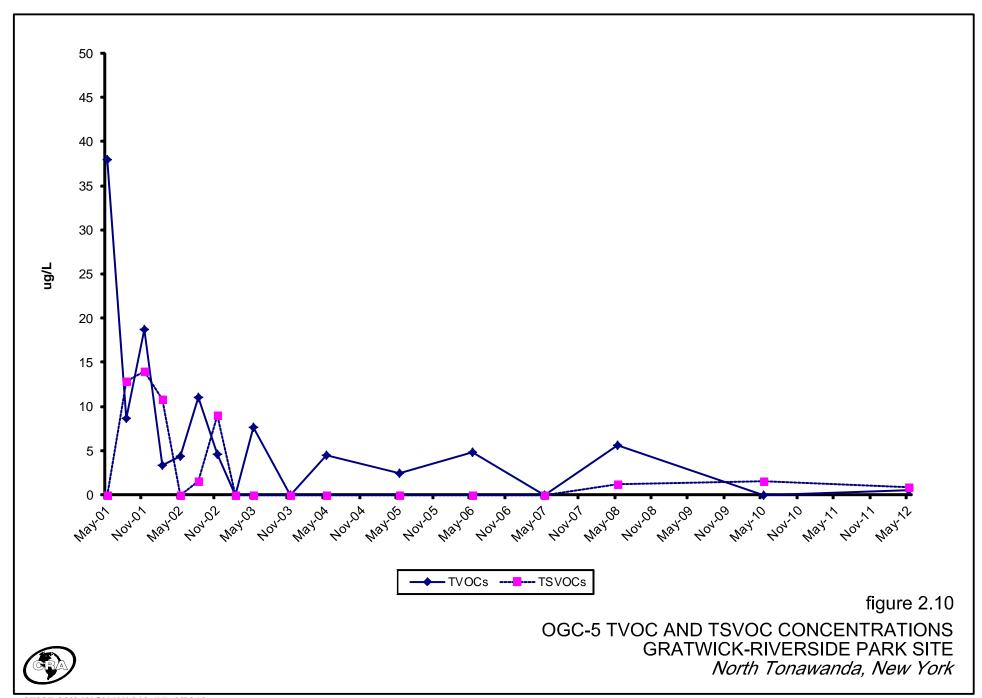

figure 2.1 MONITORING NETWORK GRATWICK-RIVERSIDE PARK SITE

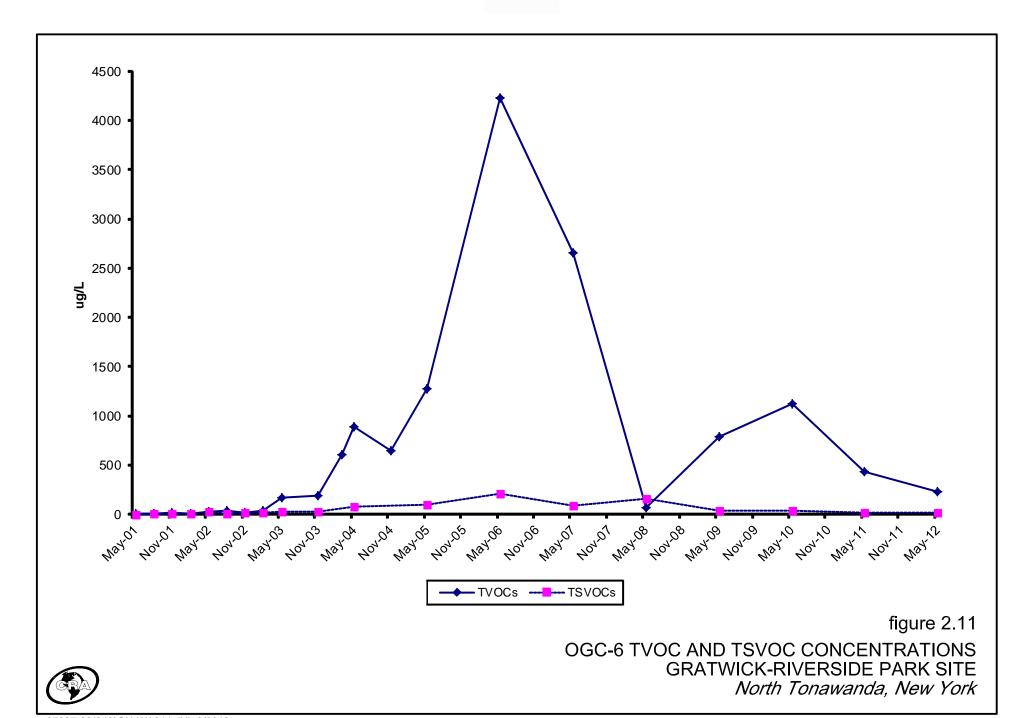

North Tonawanda, New York

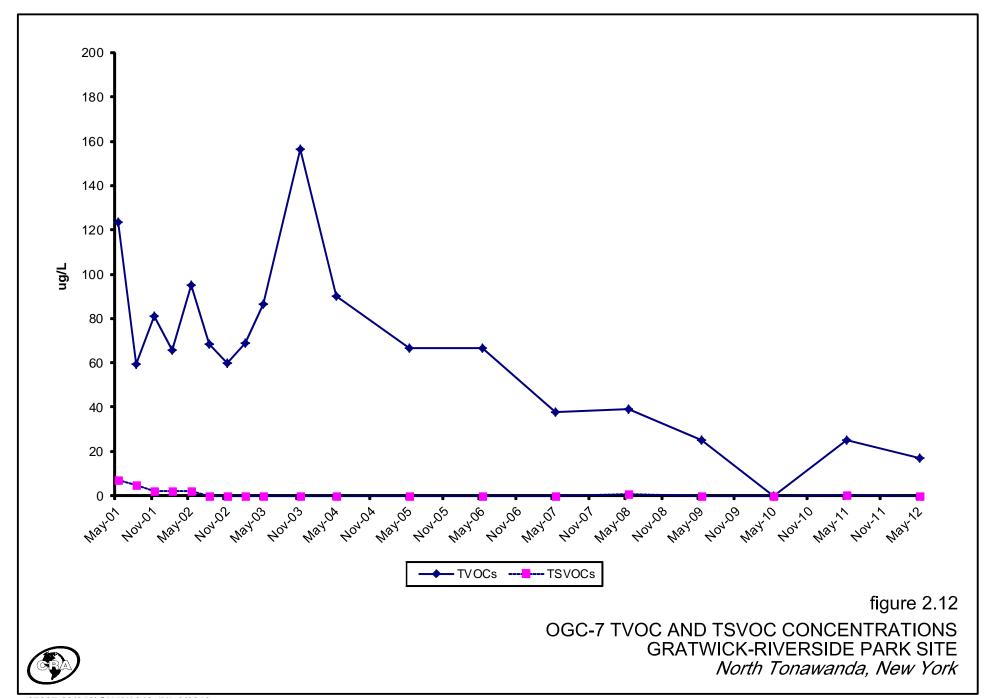


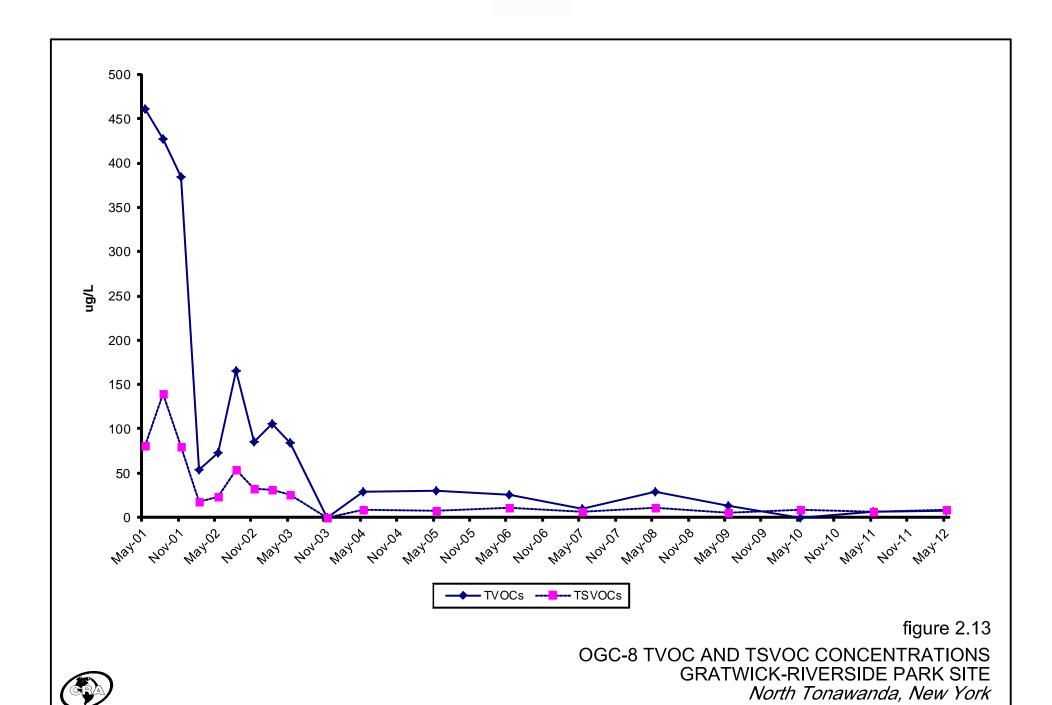


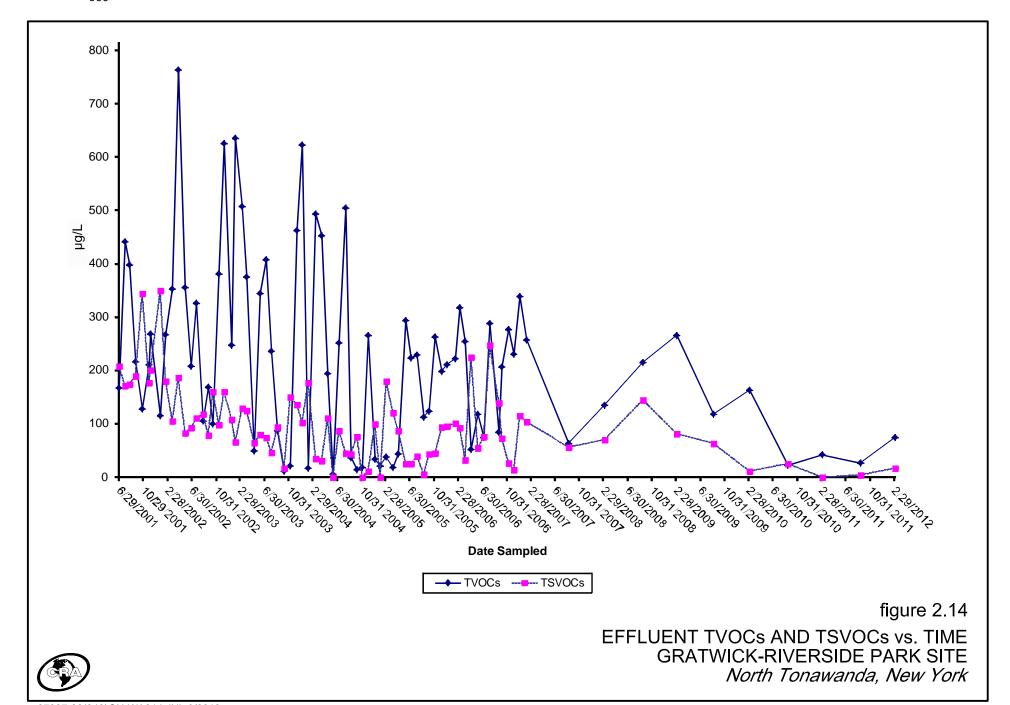


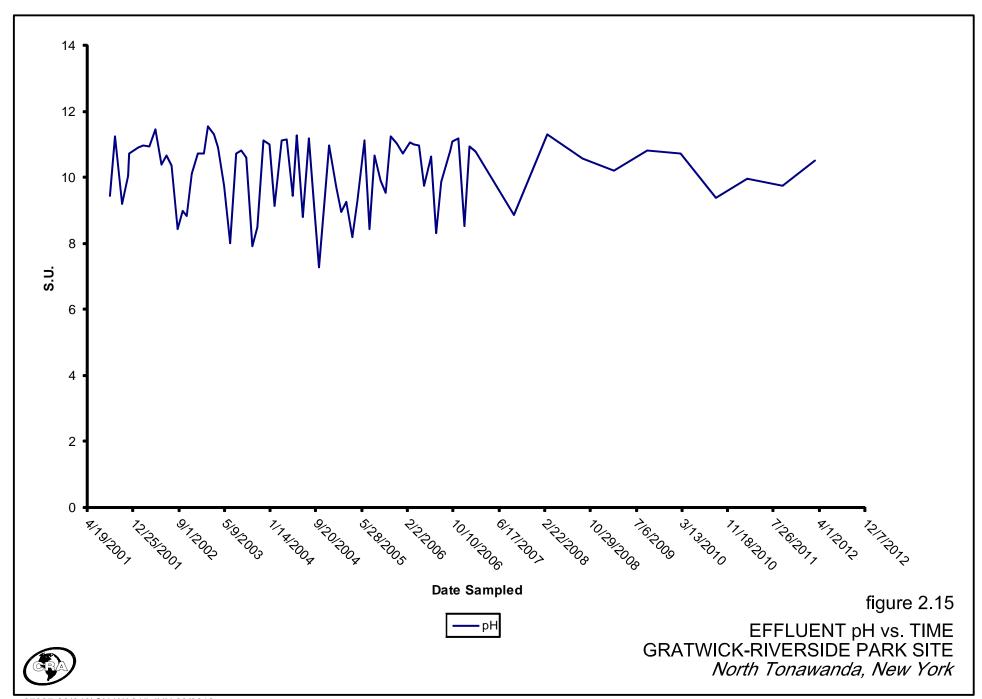


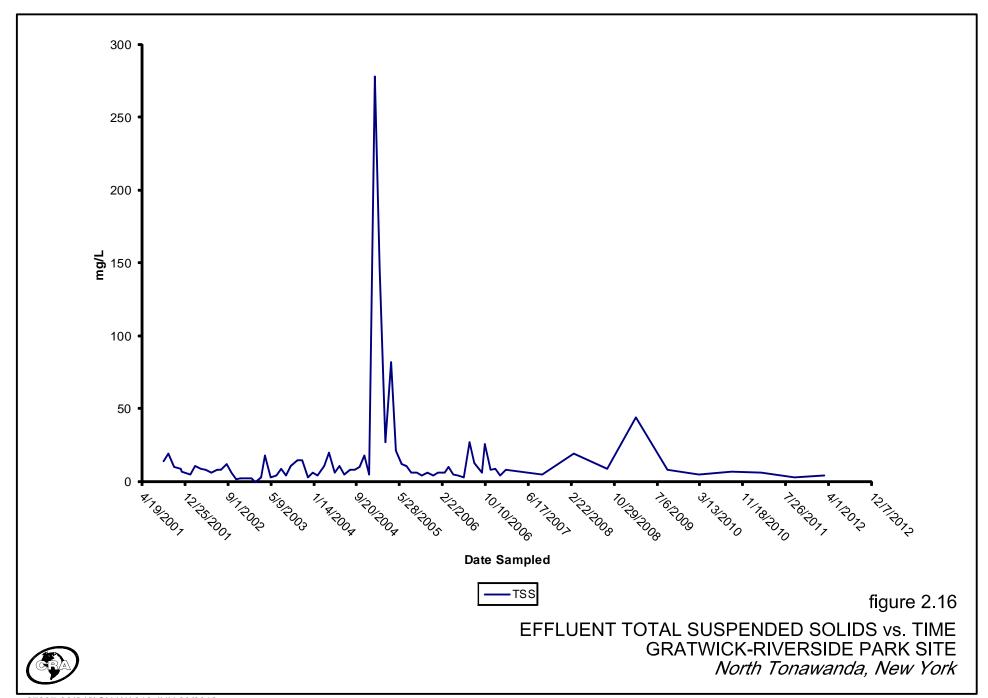


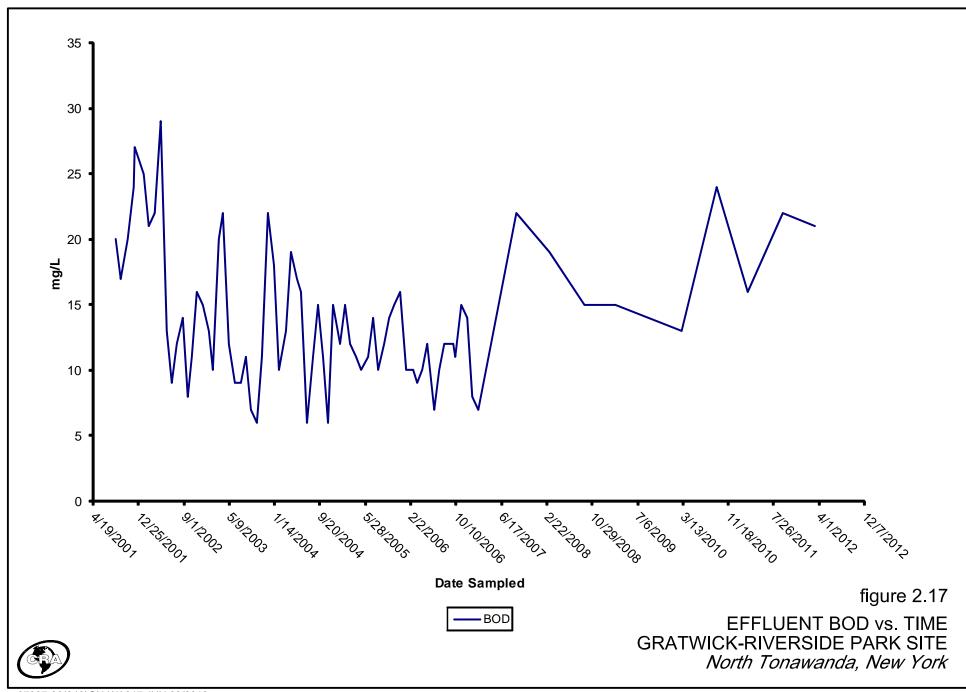


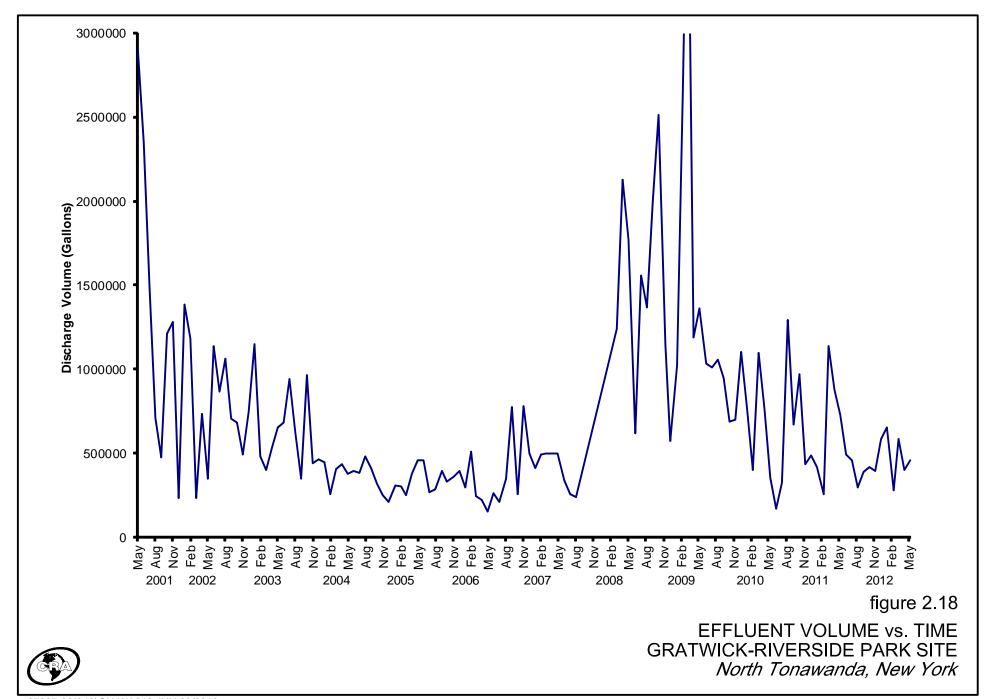












GROUNDWATER HYDRAULIC MONITORING LOCATIONS OPERATION AND MAINTENANCE GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

INWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

Inner (1)	<u>Outer</u>
MH2	Niagara River North (Downstream)
MH6	Niagara River North (Downstream)
MH8	Niagara River Middle
MH12	Niagara River South (Upstream)

UPWARD HYDRAULIC GRADIENT MONITORING LOCATIONS

<u>Upper</u> (1)	Lower
МН3	MW-6
MH8	MW-7
MH11	MW-8
MH14/MH15 ⁽²⁾	MW-9

FREQUENCY

- Weekly following GWS startup until six consecutive inward gradients are achieved; and
- Monthly thereafter for the remainder of the initial 2-year period (review after 2 years).
- 2-Year and 5-Year reviews indicated that the monitoring frequency remain monthly.

Notes:

- These manholes will be monitored twice daily by POTW staff during a wet weather bypass event pursuant to Section 5.0 of the O&M Manual.
- Distance weighted averages of water levels used (MH14 two thirds and MH15 one third).

TABLE 2.2

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date	MH2	МН3	МН6	OGC-1	MW-6	OGC-5	River North	OGC-6	МН8	MW-7	OGC-2	River Middle	OGC-7
RIM Elevation TOC Elevation (ft amsl)	573.28	573.81	572.03	575.01	575.40	573.82	566.80	576.65	572.37	575.57	574.08	566.48	572.49
January 3, 2011 February 28, 2011 March 30, 2011 April 27, 2011 May 26, 2011 June 22, 2011 July 27, 2011 August 26, 2011 September 27, 2011 October 28, 2011 November 30, 2011 December 29, 2011 January 26, 2012	561.75 562.19 563.05 563.76 563.89 563.34 563.00 562.86 562.86 563.16 562.86 563.69 563.77	560.81 558.86 560.98 559.28 559.04 560.50 560.69 560.58 560.49 560.12 560.99 561.38 560.53	555.84 556.18 557.06 560.47 558.04 557.45 557.11 556.99 557.00 557.17 556.78 557.65 557.74	563.86 564.35 564.39 565.32 565.30 565.32 565.09 565.16 564.98 565.20 565.06 565.05 564.93	562.64 562.47 563.57 563.84 564.05 563.59 563.29 563.02 563.02 563.21 562.99 563.81	563.84 564.11 564.06 564.92 565.13 565.02 565.02 565.03 564.93 564.61 564.69 564.53	(2) (2) (2) 564.62 (2) 565.16 564.93 565.07 564.87 (2) (2)	563.73 563.89 564.12 564.89 565.03 565.13 563.96 564.97 564.80 564.84 564.54 564.77 564.69	560.65 560.87 561.59 562.24 562.57 562.04 561.73 561.64 561.66 561.76 561.37 562.06 562.07	561.56 561.65 562.09 562.81 562.93 562.39 562.15 562.06 562.12 562.36 562.45 562.41	563.89 561.19 564.28 565.08 565.18 565.36 565.24 565.19 564.97 565.00 564.82 564.90 564.88	563.46 563.78 563.80 564.48 564.90 565.06 564.86 564.99 564.80 564.70 564.27 564.30 564.35	563.96 564.25 564.28 565.08 565.28 565.38 565.17 565.31 565.18 565.09 564.81 564.86 564.70
January 26, 2012 February 28, 2012 March 29, 2012 April 26, 2012 May 30, 2012	563.77 563.72 563.36 563.56 563.97	560.58 560.58 560.57	557.74 557.56 557.14 557.42 557.91	564.93 564.96 564.63 565.19 564.86	563.88 563.81 563.53 563.51 564.12	564.58 564.59 564.76 564.90	(2) (2) (2) (2) (2)	564.69 564.69 564.52 564.74 564.78	562.07 561.98 561.59 561.81 562.36	562.41 562.30 561.94 562.09 562.46	564.86 564.69 564.96 565.05	564.26 564.28 564.46 564.86	564.70 564.74 564.97 564.90 565.07

TABLE 2.2

WATER LEVELS (ft amsl) GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Date	OGC-3	MH11	MW-8	River South	MH12	OGC-8	OGC-4	MW-9	MH14	MH15	MH16
Dute	OGC-3	WIIII	IVI VV -0	South	WIIIIZ	OGC-0	060-4	1V1 VV-9	WIIII	WIIII	MIIIIU
RIM Elevation		572.11			572.37				574.30	575.84	574.82
TOC Elevation (ft amsl)	573.35		574.37	568.46		574.01	574.66	576.23			
January 31, 2011	564.01	561.22	562.02	563.96	559.59	564.08	564.10	564.39	564.47	563.42	564.43
February 28, 2011	564.33	561.76	562.63	564.31	560.26	564.37	564.37	564.85	564.88	563.84	565.63
March 30, 2011	564.30	562.14	563.15	564.46	560.68	563.87	564.37	565.20	565.21	564.18	565.29
April 27, 2011	565.09	562.68	563.50	564.97	561.06	565.18	565.23	565.40	565.42	564.36	565.46
May 26, 2011	565.45	562.76	563.52	565.37	561.03	565.49	565.35	565.42	565.59	564.52	565.51
June 22, 2011	565.51	562.24	562.95	565.44	560.52	565.50	565.55	565.04	565.11	564.07	565.04
July 27, 2011	565.27	561.80	562.55	565.22	560.13	565.28	565.28	564.71	564.77	563.73	564.71
August 26, 2011	565.43	561.55	562.35	565.43	559.94	565.48	565.40	564.50	564.52	563.47	564.44
September 27, 2011	565.24	561.47	562.28	565.24	559.86	565.28	565.26	564.40	564.39	563.36	564.36
October 28, 2011	565.18	562.13	562.78	565.11	560.37	565.23	565.23	565.02	565.09	564.02	565.03
November 30, 2011	564.86	562.17	562.72	564.80	560.36	564.93	564.94	564.88	564.96	563.88	564.95
December 29, 2011	564.92	562.69	563.34	564.77	560.88	564.90	565.02	565.36	565.34	564.25	565.39
January 26, 2012	564.72	562.97	563.48	564.56	561.06	564.78	564.80	565.61	565.59	564.53	565.63
February 28, 2012	564.72	562.78	563.39	564.58	561.02	564.71	564.88	565.62	565.59	564.53	565.61
March 29, 2012	564.77	562.54	563.15	564.73	560.79	564.85	564.85	565.31	565.32	564.23	565.31
April 26, 2012	564.92	562.37	562.99	564.84	560.61	564.95	565.02	565.17	565.19	564.11	565.16
May 30, 2012	565.21	562.35	562.89	565.27	560.57	565.27	565.20	565.11	565.22	564.11	565.17

TABLE 2.3

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		06/28/2 Water Level (ft amsl)	010 Gradient Direction	07/27/2 Water Level (ft amsl)	Gradient Direction	08/26, Water Level (ft amsl)		09/28, Water Level (ft amsl)		10/27, Water Level (ft amsl)		11/24/2 Water Level (ft amsl)	2010 Gradient Direction
Monitor	ring Location												
Outer Inner	River North MH2	564.86 ⁽² 564.53	²⁾ Inward	564.89 ⁽² 566.51	²⁾ Outward	564.83 ⁽² 567.98	Outward	564.55 ⁽² 567.73) Outward	564.73 ⁽² 562.35) Inward	563.81 ⁽² 561.87	²⁾ Inward
Outer Inner	River North MH6	564.86 ⁽² 559.43	²⁾ Inward	564.89 ⁽² 560.28	²⁾ Inward	564.83 ⁽² 559.49) Inward	564.55 ⁽² 559.14) Inward	564.73 ⁽² 556.52) Inward	563.81 ⁽² 555.89	²⁾ Inward
Outer Inner	River Middle MH8	564.68 564.25	Inward	564.78 565.12	Outward	564.75 563.68	Inward	564.49 563.35	Inward	564.51 561.26	Inward	563.55 560.69	Inward
Outer Inner	River South MH12	565.11 562.32	Inward	565.14 563.02	Inward	565.19 559.84	Inward	565.80 559.33	Inward	564.98 559.20	Inward	564.06 559.16	Inward
		12/28/2	2010	01/31/2	0011	02/28	/2011	03/30,	/2011	04/27/	/2011	05/26/2	0011
		Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)		Water Level (ft amsl)		Water Level (ft amsl)		Water Level (ft amsl)	Gradient Direction
Monitor	ring Location												
Outer Inner	River North MH2	564.56 ⁽² 562.92	²⁾ Inward	563.71 561.75	Inward	564.06 ⁽² 562.19	⁾ Inward	564.21 ⁽² 563.05) Inward	564.62 563.76	Inward	565.12 ⁽² 563.89	²⁾ Inward
Outer Inner	River North MH6	564.56 ⁽² 557.97	²⁾ Inward	563.71 555.84	Inward	564.06 ⁽² 556.18	⁾ Inward	564.21 ⁽² 557.06) Inward	564.62 560.47	Inward	565.12 ⁽² 558.04	²⁾ Inward
Outer Inner	River Middle MH8	564.33 562.85	Inward	563.46 560.65	Inward	563.78 560.87	Inward	563.80 561.59	Inward	564.48 562.24	Inward	564.90 562.57	Inward
Outer Inner	River South MH12	564.81 561.27	Inward	563.96 559.59	Inward	564.31 560.26	Inward	564.46 560.68	Inward	564.97 561.06	Inward	565.37 561.03	Inward

TABLE 2.3

SUMMARY OF HORIZONTAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

		6/22/2011 07/27/2011		08/26/	08/26/2011		2 011	10/28/	2 011	11/30/2	11/30/2011		
		Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction
Monito	ring Location												
Outer Inner	River North MH2	565.16 563.34	Inward	564.93 563.00	Inward	565.07 562.86	Outward	564.87 562.86	Inward	564.86 ⁽¹ 563.16) Inward	564.55 ⁽¹ 562.86	¹⁾ Inward
Outer Inner	River North MH6	565.16 557.45	Inward	564.93 557.11	Inward	562.07 556.99	Inward	564.87 557.00	Inward	564.86 ⁽¹ 557.17) Inward	564.55 ⁽¹ 556.78	¹⁾ Inward
Outer Inner	River Middle MH8	565.06 562.04	Inward	564.86 561.73	Outward	564.99 561.64	Inward	564.80 561.66	Inward	564.70 561.76	Inward	564.27 561.37	Inward
Outer Inner	River South MH12	565.44 560.52	Inward	565.22 560.13	Inward	565.43 559.94	Inward	565.24 559.86	Inward	565.11 560.37	Inward	564.80 560.36	Inward
		12/29/2	2011	01/26/2	2012	02/28/	⁄2012	03/29/	′ 2012	04/26/	⁄2012	05/30/2	2012
		Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction	Water Level (ft amsl)	Gradient Direction
Monito	ring Location												
Outer Inner	River North MH2	564.52 ⁽ 563.69	¹⁾ Inward	564.31 ⁽¹ 563.77	l) Inward	564.33 ⁽¹⁾ 563.72) Inward	564.48 ⁽¹⁾ 563.36) Inward	564.59 ⁽¹ 563.56) Inward	565.02 ⁽¹ 563.97	¹⁾ Inward
Outer Inner	River North MH6	564.52 ⁽ 557.65	¹⁾ Inward	564.31 ⁽¹ 557.74	¹⁾ Inward	564.33 ⁽¹⁾ 557.56) Inward	564.48 ⁽¹ 557.14) Inward	564.59 ⁽¹ 557.42) Inward	565.02 ⁽¹ 557.91	¹⁾ Inward
Outer Inner	River Middle MH8	564.30 562.06	Inward	564.35 562.07	Inward	564.26 561.98	Inward	564.28 561.59	Inward	564.46 561.81	Inward	564.86 562.36	Inward
Outer Inner	River South MH12	564.77 560.88	Inward	564.56 561.06	Inward	564.58 561.02	Inward	564.73 560.79	Inward	564.84 560.61	Inward	565.27 560.57	Inward

Notes:

- (1) River level too low to obtain a measurement. Water level shown is River South water level minus 0.13 feet.
- (2) River level too low to obtain a measurement at the monitoring location. Water level shown is River South Water level minus 0.25 feet.

TABLE 2.4

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring		06/28/	2010	07/27/	2010	08/26/	2 010	09/28,	/2010	10/27/	2010	11/24/	2010
		Water Level (ft amsl)	Gradient Direction										
Upper Lower	MH3 MW-6	560.11 564.61	Upward	566.05 565.92	Downward	570.29 566.27	Downward	570.36 565.98	Downward	560.87 563.53	Upward	560.84 562.97	Upward
Upper Lower	MH8 MW-7	564.25 565.06	Upward	565.12 565.89	Upward	563.68 563.89	Upward	563.35 563.55	Upward	561.26 562.08	Upward	560.69 561.80	Upward
Upper Lower	MH11 MW-8	564.65 564.98	Upward	565.40 565.72	Upward	561.53 562.41	Upward	560.88 561.89	Upward	560.16 561.81	Upward	560.82 561.76	Upward
Average (1) Lower	MW-9	564.84 565.06	Upward	565.41 565.68	Upward	564.12 564.46	Upward	563.89 564.28	Upward	563.63 564.00	Upward	563.69 563.97	Upward
Monitoring		12/28/	2010	01/31/	2011	02/28/	⁄2011	03/30	/2011	04/27/	2011	05/26/	2011
		Water Level (ft amsl)	Gradient Direction										
Upper Lower	MH3 MW-6	561.07 562.91	Upward	560.81 562.64	Upward	558.86 562.47	Upward	560.98 563.57	Upward	559.28 563.84	Upward	559.04 564.05	Upward
Upper Lower	MH8 MW-7	562.85 563.71	Upward	560.65 561.56	Upward	560.87 561.65	Upward	561.59 562.09	Upward	562.24 562.81	Upward	562.57 562.93	Upward
Upper Lower	MH11 MW-8	563.33 563.87	Upward	561.22 562.02	Upward	561.76 562.63	Upward	562.14 563.15	Upward	562.68 563.50	Upward	562.76 563.52	Upward
Average (1) Lower	MW-9	564.32 564.64	Upward	564.12 564.39	Upward	564.53 564.85	Upward	564.87 565.20	Upward	565.07 565.40	Upward	565.23 565.42	Upward

TABLE 2.4

SUMMARY OF VERTICAL GRADIENTS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring		06/22/	2011	07/27/2	2011	08/26/	2011	09/27/	2 011	10/28/	2 011	11/30/	2011
		Water Level (ft amsl)	Gradient Direction										
Upper Lower	MH3 MW-6	560.50 563.59	Upward	560.69 563.29	Upward	560.58 563.09	Upward	560.49 563.02	Upward	560.12 563.21	Upward	560.99 562.99	Upward
Upper Lower	MH8 MW-7	562.04 562.39	Upward	561.73 562.15	Upward	561.64 562.06	Upward	561.66 562.12	Upward	561.76 562.36	Upward	561.37 562.06	Upward
Upper Lower	MH11 MW-8	562.24 562.95	Upward	561.80 562.55	Upward	561.55 562.35	Upward	561.47 562.28	Upward	562.13 562.78	Upward	562.17 562.72	Upward
Average (1) Lower	MW-9	564.76 565.04	Upward	564.42 564.71	Upward	564.17 564.50	Upward	564.05 564.40	Upward	564.73 565.02	Upward	564.60 564.88	Upward
Monitoring		12/29/	2011	01/26/	2012	02/28/	2012	03/29/	2 012	04/26/	2012	05/30/	2012
8		Water Level (ft amsl)	Gradient Direction										
Upper Lower	MH3 MW-6	561.38 563.81	Upward	560.53 563.88	Upward	560.12 563.81	Upward	560.20 563.53	Upward	560.58 563.51	Upward	560.57 564.12	Upward
Upper Lower	MH8 MW-7	562.06 562.45	Upward	562.07 562.41	Upward	561.98 562.30	Upward	561.59 561.94	Upward	561.81 562.09	Upward	562.36 562.46	Upward
Upper Lower	MH11 MW-8	562.69 563.34	Upward	562.97 563.48	Upward	562.78 563.39	Upward	562.54 563.15	Upward	562.37 562.99	Upward	562.35 562.89	Upward
Average (1) Lower	MW-9	564.98 565.36	Upward	565.24 565.61	Upward	565.24 565.62	Upward	564.96 565.31	Upward	564.83 565.17	Upward	564.85 565.11	Upward

Notes:

- NA Not Applicable.
- NM Not monitored. MH11 was blocked and could not be accessed.
- (1) Distance weighted for MH14 (two thirds) and MH15 (one third).
- (2) Buried with snow.
- (3) Not Monitored MH14 was buried with snow and could not be accessed.

GROUNDWATER SAMPLING SUMMARY OPERATION AND MAINTENANCE MANUAL GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

OGC1	MW-6
OGC2	MW-7
OGC3	MW-8
OGC4	MW-9
OGC5	OGC6
OGC7	OGC8

FREQUENCY

- quarterly for 2 years following GWS startup.
- semi-annually for Year 3 except for OGC-4 (quarterly for SVOCs) and OGC-6 (quarterly for VOCs).
- annually for Years 4 through 7 (until May 2008).

SAMPLING PROGRAM (MAY 2009 THROUGH MAY 2012)

Annual	Once Every 2 Years
	(2010 and 2012)
MW-8	MW-6
MW-9	MW-7
OGC-3	OGC-1
OGC-4	OGC-2
OGC-6	OGC-5
OGC-7	
OGC-8	

PARAMETERS

Volatiles

Acetone	Methylene Chloride
Benzene	Tetrachloroethene
2-Butanone	Toluene
Chlorobenzene	Trichloroethene
1,1-Dichloroethane	Vinyl Chloride
trans-1,2-Dichloroethene	Xylenes (Total)
Ethylbenzene	

Semi-Volatiles

1,2-Dichlorobenzene	4-Methylphenol
1,4-Dichlorobenzene	Naphthalene
2,4-Dimethylphenol	Di-n-octylphthalate
2-Methylphenol	Phenol

TABLE 2.6

Location	_							MW-9						
Date	_	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
	Class GA													
Volatiles (µg/L)	Level													
Acetone	50	9.4J	4.3J	7.3J/6.7J		4.2J	7.0/7.2			13/12			17	17
Benzene	1		0.24J	0.39J/0.35J		0.44J	0.29J/0.30J	0.29J/0.29J		0.40J/ND0.70				0.54J
2-Butanone	50													2.6J
Chlorobenzene	5		0.50J	0.86J/0.85J		1.3		1.0/1.1		0.91J/0.87J		1.1	1.7	1.5
trans-1,2-Dichloroethene	5			0.22J/ND		0.31J	0.24J/0.24J	0.22J/0.20J						0.42J
Ethylbenzene	5		0.30J	0.46J/0.42J		0.73J	0.44J/0.42J	0.46J/0.46J		0.40J/0.38J				0.83J
Methylene Chloride	5		0.34J	0.33J/ND	4.0J	0.53J						7.2	1.6	
Tetrachloroethene	5	1.6J	1.1J	1.0J/0.92J		1.6	0.92J/0.80J	0.77J/0.74J		0.67J/0.71J				0.57J
Toluene	5		1.6J	3.0J/2.5J	2.8J	2.7	2.1/2.0	2.7/2.7	2.0	2.0/1.9	4.6	3.2	2.6	
Trichloroethene	5	2.2J	1.8J	2.4J/2.2J	3.0J	4.4	2.0/2.0	2.2/2.3		1.8/1.8	9.5	4.9	3.0	1.8
Vinyl Chloride	2									1.7/1.7			3.6	4.0
Total Xylenes	5		1.0J	1.5J/1.5J		2.5J	1.3J/1.3J	1.4J/1.4J		0.98J/1.0J	3.0			2.0J
Semi-Volatiles (μg/L)														
1,2-Dichlorobenzene	3*				0.6J									
1,4-Dichlorobenzene	3*												2 J	
2,4-Dimethylphenol	50	12	12	18/17	38		20/22	30/34	30	35/36	36	42	50	58
2-Methylphenol	NL	1J	3J	3J/3J	7J		4J/4J	6J/6J	6J	6J/6J	6J	5J	8J	<u>8J</u>
4-Methylphenol	NL	69	110	97/92	230		100/110	190/230	150	130/130	160	190	260	190
Naphthalene	10													
Di-n-octyl phthalate	50													
Phenol	1	3J	34	28/22	24		38/41	34/35	42	46/46	180	30	27	49

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

TABLE 2.6

Location				MW-	-9		
Date		05/25/07	05/29/08	05/27/09	05/26/10	05/26/11	05/30/12
	Class GA						
Volatiles (μg/L)	Level						
Acetone	50		5.7	4.8J	5.9	4.3J	
Benzene	1			0.76		0.53J	0.44J
2-Butanone	50						
Chlorobenzene	5	2.8	1.4	5.3	2.5	2.4	2.3
trans-1,2-Dichloroethene	5		0.55J	0.74J			
Ethylbenzene	5			1.2	0.82J	1.1	0.74J
Methylene Chloride	5						
Tetrachloroethene	5			0.82J	0.57J	0.66J	0.54J
Toluene	5	3.1	2.4	3.8	3.8	4.3	3.5
Trichloroethene	5	2.9	1.7	4.7	2.6	2.7	2.3
Vinyl Chloride	2			4.2		1.4	
Total Xylenes	5			3.3	2.2J	2.7	1.5J
Semi-Volatiles (µg/L)							
1,2-Dichlorobenzene	3*	0.9J	0.7J		1.4J	1.0J	1.1J
1,4-Dichlorobenzene	3*	3J	1J	2.3J	1.7J	1.6J	1.8J
2,4-Dimethylphenol	50	46	31	110	41	43	47
2-Methylphenol	NL	6	6	12	9.9J	11	11
4-Methylphenol	NL	170	96	300	180	230	230
Naphthalene	10	0.2J	0.5J				
Di-n-octyl phthalate	50						
Phenol	1	11	13	20	20	17	9.3]

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

TABLE 2.6

Location								O	GC-4							
Date	_	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	3/04/04	05/14/04	11/23/04	05/27/05	05/30/06
	Class GA															
Volatiles (µg/L)	Level											NA		NA		
Acetone	50			7.9J			4.0J									
Benzene	1		0.21J	0.2J			,									
2-Butanone	50		· · · · · ·	,												
Chlorobenzene	5		0.49J	0.66J		0.83J/0.79J		0.46J		0.83J						
trans-1,2-Dichloroethene	5			0.22J		,				,						
Ethylbenzene	5		0.41J	0.39J		0.54J/0.53J	0.48J	0.39J		0.77J						0.44J
Methylene Chloride	5		,	,	5.1J/4.9J	3,	,	,		,			4.6		2.0	,
Tetrachloroethene	5	1.0J	1.2J	0.87J	3,7 3	0.86J/0.84J	1.1	0.78J		0.77J						
Toluene	5	Ž	,	1.0J		1.0/0.98J	1.4	0.72J		1.2						
Trichloroethene	5	1.6J	1.4J	1.5J		1.5/1.4	1.7	0.96J		1.5						0.53J
Vinyl Chloride	2	•	-	•		·		•								•
Total Xylenes	5		1.0J	0.94J		0.84J/0.82J	1.1J			0.95J						
Semi-Volatiles (μg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50	8J	12	6J	8J/6J	7J/7J	8J		7J/7J	8J	4J	6J		4J		
2-Methylphenol	NL	0.9J	2J	35	2J/ND	1J/2J	2J		<i>3,</i> 3	3J	Í	3J		2J		
4-Methylphenol	NL	64	86	40	58/55	61/67	68		69/68	73	32	55		31	14	15
Naphthalene	10				,	,			•							
Di-n-octyl phthalate	50															
Phenol	1	310	560	400	420/460	710/1100	1100	1100	2400/2300	1800	1600		2400	1500	850	510

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location				OGC-	4		
Date	_	05/25/07	05/29/08	05/27/09	05/26/10	05/26/11	05/30/12
	Class GA						
Volatiles (µg/L)	Level						
Acetone	50			1.6J			
Benzene	1						
2-Butanone	50						
Chlorobenzene	5						
trans-1,2-Dichloroethene	5						
Ethylbenzene	5						
Methylene Chloride	5						
Tetrachloroethene	5						
Toluene	5						
Trichloroethene	5						
Vinyl Chloride	2						
Total Xylenes	5						
Semi-Volatiles (µg/L)							
1,2-Dichlorobenzene	3*						
1,4-Dichlorobenzene	3*						
2,4-Dimethylphenol	50		0.9J		0.51J/ND		
2-Methylphenol	NL		0.5J	2.7J			
4-Methylphenol	NL	3J	6				2.8J
Naphthalene	10		0.5J		3.4J/3.4J		
Di-n-octyl phthalate	50						
Phenol	1	84	66	25	15/15	5.5	0.97J

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level

NS - Not Sampled

TABLE 2.6

Location								OGC-8						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	05/08/03	05/14/04	05/27/05	05/30/06
Volatiles (μg/L)	Class GA Level													
Acetone	50	78	31/29	19J		4.7J	3.6J				6.2	5.8	4.7J	
Benzene	1	11	14/14	14		2.6	5.3	3.3	3.6	3.1	1.8	1.2	1.1	0.92
2-Butanone	50	4.0J										·		
Chlorobenzene	5	3.7J	4.1J/4.1J	4.0J		0.87J	1.7	1.1		1.1	0.65J	0.48J	0.43J	0.44J
trans-1,2-Dichloroethene	5	4.3J	3.2J/3.1J	4.0J		0.76J	1.5	0.88J		1.0	0.50J	0.41J	1.0	
Ethylbenzene	5	13	16/16	15	1.6J	2.8	5.8	3.1	3.9	3.1	1.8	1.2		0.99J
Methylene Chloride	5		0.52J/0.48J	0.62J	1.8J									
Tetrachloroethene	5	40	51/52	59 110 110	7.7J 17J	9.9 21 22	<u>22</u> <u>53</u>	12 28	38 35	11 27 27	7.0	5.0	3.8	4.0
Toluene	5	140	140/140	110	17J	21	53	28	38	27	16 17	11	8.1	8.3
Trichloroethene	5	120	110/110	110	<u>20J</u>	22	53	27	35	27	17		7.7	7.6
Vinyl Chloride	2	3.7]	3.4/3.6	3.1	1.1J		1.4	0.70J		0.78J				
Total Xylenes	5	43	55/54	46	4.8J	8.3	18	9.5	11	9.9	5.4	3.7	3.0	3.2
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50	2J	4J/2J	4J	0.8J	0.8J	3J	1J						
2-Methylphenol	NL	18	30/25	16	4J	5J	13	7J	11	7J	4J	2J	2J	3J
4-Methylphenol	NL	30	51/45	28	8J	10	26	14	20	14J	9	5J	6J	8J
Naphthalene	10	1J	3J/25	1J			0.9J							
Di-n-octyl phthalate	50		0.1J/ND											
Phenol	1	30	49/44	31	5J	8J	11	10		4J	6J	2J		

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

TABLE 2.6

Location				OGO	C -8		
Date		05/24/07	05/29/08	05/27/09	05/26/10	05/26/11	05/30/12
	Class GA						
Volatiles (μg/L)	Level						
Acetone	50		9.9	1.5J			
Benzene	1	0.54J	0.84	0.58J			
2-Butanone	50						
Chlorobenzene	5						
trans-1,2-Dichloroethene	5						
Ethylbenzene	5	0.53J	0.84J	0.50J			
Methylene Chloride	5						
Tetrachloroethene	5	2.0	2.3	1.6		0.94J	1.3
Toluene	5	4.0	6.4	3.7		2.4	2.6
Trichloroethene	5	4.0	6.5	4.0		2.4	2.7
Vinyl Chloride	2						
Total Xylenes	5	1.1J	2.5J	1.5J		0.82J	0.86J
Semi-Volatiles (µg/L)							
1,2-Dichlorobenzene	3*						
1,4-Dichlorobenzene	3*		0.2J				
2,4-Dimethylphenol	50		1J		0.73J		0.52J
2-Methylphenol	NL	2J	2J		2.2J	1.5J	2.0J
4-Methylphenol	NL	6	8	5.7	6.5J	5.3J	6.2J
Naphthalene	10						
Di-n-octyl phthalate	50						
Phenol	1						

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

TABLE 2.6

Location									River Soutl	'n						
Date		05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/24/07	05/29/08
	Class GA															
Volatiles (µg/L)	Level															
Acetone	50						3.0J						3.2J			12
Benzene	1										0.42J					
2-Butanone	50												3.9J			3.1J
Chlorobenzene	5															
trans-1,2-Dichloroethene	5															
Ethylbenzene	5															
Methylene Chloride	5															
Tetrachloroethene	5						0.30J									
Toluene	5			0.29J			0.72J	0.35J			1.8					
Trichloroethene	5						0.44J									
Vinyl Chloride	2						0.27J									
Total Xylenes	5						•				1.8J					
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50															
2-Methylphenol	NL															
4-Methylphenol	NL															
Naphthalene	10															
Di-n-octyl phthalate	50															
Phenol	1															
N																
Notes:																
* Applies to sum of compou																

Exceeds Class GA Level

NS - Not Sampled
J - Estimated

TABLE 2.6

Location								MW-8						
Date	_	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
Volatiles (µg/L)	Class GA Level													
Acetone	50	52 6.5	12J	11J	<i>7</i> 5J	67	20			73 12		28/33	_26	_16
Benzene	1	6.5	4.3	4.1		8.6	12	12	8.1	12	23/24	10/12	4.2	4.4
2-Butanone	50													
Chlorobenzene	5	1.8J	1.0J	1.0J		3.2	4.9	4.4	3.6	6.2 13	6.0/6.4	2.7/3.3	2.4	_2.4
trans-1,2-Dichloroethene	5	2.2J	1.8J	2.9J	4.8J	7.3	11 18	16 18	12 15	13	10/12	7.3/9.4	7.4	5.3
Ethylbenzene	5	5.7	3.7J	4.4J	8.2J	12	18	18	15	23	30/32	20/24	4.6	5.8
Methylene Chloride	5	1.1J	0.58J	0.66J	<u>4.4J</u>	1.2	1.4	1.6		1.3	2.2/2.2	7.3/9.2	1.7	0.64J
Tetrachloroethene	5	21	12 36	9.8	23J 80	32 100	61	58 160	54 100	80	91/100	120/130	62	71
Toluene	5	75		31			140			120	240/240	97/120	30	33
Trichloroethene	5	82	40	35	110	180	320	280	210	320	460/460	380/390	180	150
Vinyl Chloride	2	5.2	1.6J	3.3	23 30J	12	18	14	12	18	21/21	13/16	5.8	5.1
Total Xylenes	5	22	13	16	30J	40	68	69	58	93	120/120	92/110	32	25
Semi-Volatiles (μg/L)														
1,2-Dichlorobenzene	3*				2J	2J		2J		4J	3J/3J			
1,4-Dichlorobenzene	3*			0.6J	2J	1J	1J	2J		4 J	3J/3J	19U/2J	4J	5J
2,4-Dimethylphenol	50	1J	11	16	19	18	15	27	20	27	37/38	15J/14	7J	6J
2-Methylphenol	NL	33	55	41	48	44	38	56	37	35	45/46	18J/18	18J	16
4-Methylphenol	NL	10	32	34	55	60	59	83	64	75	130/130	34/31		
Naphthalene	10				0.7J	0.8J	0.8J	1J			2J/2J			
Di-n-octyl phthalate	50													
Phenol	1	43	130	140	85	110	91	110	140	78	80/80	28/28	11J	4 J

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

TABLE 2.6

Location				MW-8			
Date		05/24/07	05/29/08	05/29/09	05/26/10	05/26/11	05/30/12
	Class GA						
Volatiles (µg/L)	Level						
Acetone	50	66175	23	2.61		2 11	
Benzene		6.6/7.5 1.6/1.5	1.5	2.6J 2.7		3.1J 2.7	2.1
2-Butanone	1	1.6/ 1.3		2.7		2.7	2.1
	50	0.041./0.001	4.4J	0.001		2.0	0.4
Chlorobenzene	5	0.84J/0.82J	0.54J	0.99J		3.8	3.4
trans-1,2-Dichloroethene	5	4.4/3.9	3.6	6.8		3.5	3.3
Ethylbenzene	5	2.5/2.2	1.8	4.2		5.2	4.4
Methylene Chloride	5						
Tetrachloroethene	5	16/14	9.5	12		12	7.7
Toluene	5	12/11	10	26		18	6.5
Trichloroethene	5	40/36	29	68		34	22
Vinyl Chloride	2					3.0	
Total Xylenes	5	9.8/9.1	6.7	19		22	16
Semi-Volatiles (μg/L)							
1,2-Dichlorobenzene	3*		0.4J		1.5J	1.2J	1.3J
1,4-Dichlorobenzene	3*	0.5J/0.4J	0.5J		2.1J	3.3J	6.9J
2,4-Dimethylphenol	50	0.8J/0.6J	14	14	13	14	16
2-Methylphenol	NL	7/7	26	32	22	16	20
4-Methylphenol	NL	18/16	31	29	38	41J	30
Naphthalene	10	22/22	1J			,	
Di-n-octyl phthalate	50	,	•				
Phenol	1	20/21	32	15	13	3.4J	4.0J

Notes:

* Applies to sum of compounds
NL - Not listed
Exceeds Class GA Level
NS - Not Sampled

TABLE 2.6

Location								OGC-3						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
	Class GA	L												
Volatiles (μg/L)	Level													
A 1	Γ0	101 .101	2.01	151		7.1	67			F (10/04	2.01
Acetone	50	13J /19J	3.8J 1.6	15J 1.8		7.1	6.7	1 -		5.6	1.4		10/8.4	2.8J
Benzene	1	1.6J /1.6J	1.6	1.8		1.8	1.2	1.5		1.6	1.4		1.2/1.1	0.93J
2-Butanone	50		0.047	0.001		0.001		0.001						
Chlorobenzene	5		0.24J	0.28J		0.28J		0.22J						
trans-1,2-Dichloroethene	5	1.6J /1.6J	1.0J	1.4J	1.1J	1.1	0.98J	0.44J		1.0				
Ethylbenzene	5	1.6J /1.5J	2.0J	2.3J	1.5J	2.4	1.7	1.8		2.0			1.4/1.3	1.1
Methylene Chloride	5				1.9J							6.3	1.2/1.0	
Tetrachloroethene	5	2.4J / 2.2J	3.0J	<u>2.2J</u>	1.7J	2.2	1.8	1.8		1.5			0.71J/0.63J	0.61J
Toluene	5	5.7 /5.1	5.9	5.3		5.1	3.7	4.6	4.0	4.3	3.6	2.6	2.6/2.4	
Trichloroethene	5	20 / 20	18	5.3	14J	17	14	13	12	14	9.8	7.7	6.4/6.1	5.6
Vinyl Chloride	2	ND /1.0J	0.4	0.72						0.62J				
Total Xylenes	5	5.6J /5.4J	7.5	8.7	4.8J	7.8	5.8	5.8	5.0	6.6	3.9		3.3/3.0	2.9J
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*				1J									
1,4-Dichlorobenzene	3*				0.7J		0.5J							
2,4-Dimethylphenol	50	5J /5J	9	8J	11	11	7J	8J	11	12	10	9J	8J/4J	6J
2-Methylphenol	NL	98 / 96	120	87	160	140	100	100	120	140	150	110	83/73	64
4-Methylphenol	NL	13 /13	21	17	28	23	14	15	22	23	20	17	14/12	13
Naphthalene	10	-											-	
Di-n-octyl phthalate	50													
Phenol	1	120 /110	140	130J	210	140	85	92	110	120	120	90	78/74	75

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level
NS - Not Sampled

TABLE 2.6

Location				OGC	-3		
Date	•	05/24/07	05/29/08	05/27/09	05/26/10	05/26/11	05/30/12
	Class GA						
Volatiles (μg/L)	Level						
Acetone	50	0.76	6.0	2.9J/2.6J		3.7J	
Benzene	1		0.93	0.75/0.78		0.67J	0.45J
2-Butanone	50						
Chlorobenzene	5						
trans-1,2-Dichloroethene	5						
Ethylbenzene	5	0.85J	0.92J	0.69J/0.73J		0.75J	
Methylene Chloride	5						
Tetrachloroethene	5	0.56J					
Toluene	5	1.7	1.8	1.4/1.4		1.2	0.88J
Trichloroethene	5	4.3	4.9	3.3/3.5		2.5	1.8
Vinyl Chloride	2						
Total Xylenes	5	2.1J	2.3J	1.7J/1.7J		1.0J	0.71J
Semi-Volatiles (µg/L)							
1,2-Dichlorobenzene	3*	0.6J	0.7J		0.86J	0.40J	0.61J
1,4-Dichlorobenzene	3*		0.6J		0.58J		
2,4-Dimethylphenol	50		6	6.2/5.9	4.3J	3.7J	5.8J
2-Methylphenol	NL	47	45	44/43	36	33	35
4-Methylphenol	NL	10	11	11/11	9.9	10	11
Naphthalene	10		0.8J				
Di-n-octyl phthalate	50						
Phenol	1	60	65	60/57	50	48	53

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level
NS - Not Sampled

TABLE 2.6

Location		GW	V-5S							OGC-7						
Date		12/17/87	08/12/88	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
Volatiles (µg/L)	Class GA Level															
Acetone Benzene	50	293 2 27		21J	0.25J	8.2J 0.30J		0.28J	3.6J 0.20J	0.26J				0.34J	0.34J	
2-Butanone	50	27				0.30)		0.26)	0.20)	0.26)				0.34)	0.34j	
Chlorobenzene	5															
trans-1,2-Dichloroethene Ethylbenzene	5 5	180 9	89 7J	6.3 1.1J	3.1J 0.80J	5.4 1.0J	4.9J	4.8J 1.3	4.2 0.84J	4.7 0.91J	4.0	5.4 1.4	5.0 0.93J	5.9 1.5	4.9 1.4	5.8 1.3
Methylene Chloride	5	1		1.1,	0.00,	2.0)		1.0	0.01)	0.52)		2.12	0.50,	1.0	-112	1.0
Tetrachloroethene Toluene	5 5	11 75 287 7 54	7]	4.3J 12	3.6J	3.4J 6.7	2.9J	4.0	3.4	2.7	2.8	4.1	2.2	4.1	2.9 8.3	2.8 8.6
Trichloroethene	5	287	7J 49 220 4J 37	70	5.8	48	5.7] 45 3.5]	6.9 68 2.2 7.6	5.2	6.0 38	6.7 50	8.6 56 2.3 8.7	5.8 38	9.3 56 2.9	37J	37
Vinyl Chloride	2	7	<u>4J</u>	2.6J 6.0J	0.84	1.7J	3.5J	2.2	1.8	1.8		2.3	2	2.9	3.0	2.9
Total Xylenes	5	54	37	6.0J	4.8J	6.5	3.9J	7.6	5.3	5.3	5.5	8.7	5.4	10	8.6	8.2
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*		2J													
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50	10	11		2J											
2-Methylphenol	NL	24	24	3J	2J	1.0J	0.8J	1J								
4-Methylphenol	NL	38				0.9J	0.7J	1J								
Naphthalene	10															
Di-n-octyl phthalate	50						0.6J									
Phenol	1	61	92	<u>4</u> J	0.7J											

Notes:

* Applies to sum of compounds <u>NL</u> - Not listed

Exceeds Class GA Level NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location				OGC-7		
Date		05/24/07	05/27/09	05/26/10	05/26/11	05/30/12
	Class GA					
Volatiles (μg/L)	Level					
Acetone	50					
Benzene	1					
2-Butanone	50					
Chlorobenzene	5					
trans-1,2-Dichloroethene	5	3.8		2.7	2.7	2.0
Ethylbenzene	5	0.87J	0.84J	0.62J		
Methylene Chloride	5					
Tetrachloroethene	5	1.7	1.2J	0.80J	0.72J	0.69J
Toluene	5	5.0	4.9J	3.3	3.4	2.4
Trichloroethene	5	22	21J	14	12	7.7
Vinyl Chloride	2		2.6J		2.4	1.6
Total Xylenes	5	5.3	5.0J	3.6	4.0	2.8
Semi-Volatiles (µg/L)						
1,2-Dichlorobenzene	3*					
1,4-Dichlorobenzene	3*					
2,4-Dimethylphenol	50					
2-Methylphenol	NL	0.6J	0.5J		0.45J	
4-Methylphenol	NL	0.6J	0.4J			
Naphthalene	10					
Di-n-octyl phthalate	50					
Phenol	1					
Notes:						
* Applies to sum of compounds	5					
NL - Not listed	.1					
Exceeds Class GA Leve	51					
NS - Not Sampled						

CRA 007987 (40)

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location		River Middle												
Date	-	05/18/01	09/17/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03		11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08
	Class GA													
Volatiles (μg/L)	Level													
Acetone	50						3.1J							2.8J
Benzene	1													
2-Butanone	50													
Chlorobenzene	5													
trans-1,2-Dichloroethene	5													
Ethylbenzene	5													
Methylene Chloride	5													
Tetrachloroethene	5												1.3	
Toluene	5													
Trichloroethene	5							0. 2 1J						
Vinyl Chloride	2													
Total Xylenes	5													
Semi-Volatiles (μg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50													
2-Methylphenol	NL													
4-Methylphenol	NL													
Naphthalene	10													
Di-n-octyl phthalate	50				0.7J									
Phenol	1													
Notes:														
* Applies to sum of compound	ds													
NL - Not listed														
Exceeds Class GA Lev	vel													
NS - Not Sampled														
J - Estimated														
J - Estimated														

TABLE 2.6

Location									<i>MW-7</i>						
Date		05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02 02/25/03	05/08/03	11/04/03 05/14/04	05/27/05	05/31/06	05/24/07	05/29/08	05/26/10
	Class GA														
Volatiles (μg/L)	Level														
Acetone	50	5.7J		6.5J		4.3J	5.4		4.8		4.3J	3.0J	3.9J	3.3J/3.4J	
Benzene	1		1.9	2.0		2.0	1.3	1.8	0.90		0.58J				
2-Butanone	50														
Chlorobenzene	5														
trans-1,2-Dichloroethene	5		0.82J	1.1J		0.98J	0.89J	1			0.36J				
Ethylbenzene	5		0.85J	0.81J		1.0	0.61J	0.75J			0.32J				
Methylene Chloride	5				1.6J										
Tetrachloroethene	5			0.27J											
Toluene	5		3.5J	3.6J		3.3	1.9	3	1.1	2.8	0.93J				
Trichloroethene	5		0.55J	0.63J		0.43J	0.45J	0.36J							
Vinyl Chloride	2		1.6J	2.0	3.8J	2.9	1.7	2.2	1.3		0.80J			0.64J/0.61J	
Total Xylenes	5		2.1J	2.1J		2.7J	1.5J	1.9J	0.76J						
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*														
1,4-Dichlorobenzene	3*														
2,4-Dimethylphenol	50			2J	2J	3J	0.7J	2J							
2-Methylphenol	NL		3J	2J	4 J	6J	1J	2J		2J				0.4J/0.5J	
4-Methylphenol	NL		3J	2J	4J	6J	1J	2J		1J			0.3J	0.5J/0.6J	
Naphthalene	10		·	•	•	•	•	•		•			-		
Di-n-octyl phthalate	50				0.6J										
Phenol	1		24	7J	10	26	2J	6J	5J	2J	1J				

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level
NS - Not Sampled

Page 16 of 27

TABLE 2.6

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location Date	MW- 05/30/	
Dute	Class GA	12
Volatiles (μg/L)	Level	
Acetone	50	
Benzene	1	
2-Butanone	50	
Chlorobenzene	5	
trans-1,2-Dichloroethene	5	
Ethylbenzene	5	
Methylene Chloride	5	
Tetrachloroethene	5	
Toluene	5	
Trichloroethene	5	
Vinyl Chloride	2	
Total Xylenes	5	
Semi-Volatiles (μg/L)		
1,2-Dichlorobenzene	3*	
1,4-Dichlorobenzene	3*	
2,4-Dimethylphenol	50	
2-Methylphenol	NL	
4-Methylphenol	NL	
Naphthalene	10	
Di-n-octyl phthalate	50	
Phenol	1	
Notes:		
* Applies to sum of compound	S	
NL - Not listed		
Exceeds Class GA Leve	<u>e</u> 1	
NS - Not Sampled		
I. Estimated		

CRA 007987 (40)

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location									OGC	-2							
Date	=	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/25/07	05/29/08	05/26/10
Volatiles (μg/L)	Class GA Level																
Acetone	50			11J			3.0J					4.5J	3.1				
Benzene	1																
2-Butanone	50																
Chlorobenzene	5																
trans-1,2-Dichloroethene	5																
Ethylbenzene	5																
Methylene Chloride	5				1.7J												
Tetrachloroethene	5																
Toluene	5										0.37J						
Trichloroethene	5		0.39J														
Vinyl Chloride	2			0.26J		0.25J	0.26J										
Total Xylenes	5																
Semi-Volatiles (µg/L)																	
1,2-Dichlorobenzene	3*																
1,4-Dichlorobenzene	3*																
2,4-Dimethylphenol	50																
2-Methylphenol	NL																
4-Methylphenol	NL																
Naphthalene	10																
Di-n-octyl phthalate	50																
Phenol	1																
Notes:																	
* Applies to sum of compoun	ds																
NL - Not listed																	
Exceeds Class GA Le	vel																
NS - Not Sampled																	
J - Estimated																	

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location	_	OGC-2
Date	_	05/30/12
	Class GA	
Volatiles (μg/L)	Level	
Acetone	50	
Benzene	30 1	
2-Butanone	50	
Chlorobenzene	5	
	5	
trans-1,2-Dichloroethene	5	
Ethylbenzene Mathadana Chlorida		
Methylene Chloride	5	
Tetrachloroethene	5	
Toluene	5	
Trichloroethene	5	
Vinyl Chloride	2	
Total Xylenes	5	
Semi-Volatiles (µg/L)		
1,2-Dichlorobenzene	3*	
1,4-Dichlorobenzene	3*	
2,4-Dimethylphenol	50	
2-Methylphenol	NL	
4-Methylphenol	NL	
Naphthalene	10	
Di-n-octyl phthalate	50	
Phenol	1	
	_	
Notes:		
* Applies to sum of compound	S	
NL - Not listed	=	
Exceeds Class GA Leve	el	
NS - Not Sampled	- -	
T. T		

TABLE 2.6

Location								(OGC-6							
Date	_	05/18/01	08/20/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	03/04/04	05/14/04	11/23/04	05/27/05	05/31/06
	Class GA															
Volatiles (μg/L)	Level															
Acetone	50			6.6J			5.0			3.7J						8.6/8.7
Benzene	1									0.71	0.87	1.4		2.5	5.2	12/12
2-Butanone	50															
Chlorobenzene	5															
trans-1,2-Dichloroethene	5			0.23J	0.23J	0.37J	0.45J	0.55J		1.4	2.0	2.1		3.6	5.3	11/12
Ethylbenzene	5					0.31J				0.85J	1.1	2.0	3.3	3.1	7.4	20/20
Methylene Chloride	5				2.1J								4.4	2.5	2.2	
Tetrachloroethene	5		1.4J	0.73J		6.6	7.4	5	12	49	51	230	300	260	550	2000/2100
Toluene	5			0.55J		2.0	1.6	1.5	2.4	9.3	12	27	40	35 330	72	240/260
Trichloroethene	5	3.0J	4.7J	3.1J	5.9	16	19	13	26	9.3 95	51 12 120	230 27 330	530	330	610	1800/1800
Vinyl Chloride	2					0.22J	0.25J			0.45J						2.9/2.8
Total Xylenes	5		0.22J	0.53J	0.26J	1.7J	1.2J	1.0J		4.1	4.7	8.6	13	12	28	79/76
Semi-Volatiles (µg/L)												NA		NA		
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*															
2,4-Dimethylphenol	50							1J								
2-Methylphenol	NL		2J	2J	32	11	8J	9J	13	22	27		63		85	89/110
4-Methylphenol	NL		-	1J	0.02J	10	•	-					1J		2J	84/100
Naphthalene	10			•	Ž								·		•	1J/2J
Di-n-octyl phthalate	50															-, -
Phenol	1		7J	2J	4J	5J	3J	2J		5J	3J		9J		8J	13/16

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level NS - Not Sampled

TABLE 2.6

Location				OGC-6			
Date		05/24/07	05/29/08	05/27/09	05/26/10	05/26/11	05/30/12
Valatiles (ug/L)	Class GA Level						
Volatiles (µg/L)	Levei						
Acetone	50			1.6J			
Benzene	1	7.2		3.2	3.6	1.8	1.9
2-Butanone	50						
Chlorobenzene	5						
trans-1,2-Dichloroethene	5	7.1		4.4	8.2	7.6	4.8
Ethylbenzene	5	12		4.8	5.2	2.4	2.0
Methylene Chloride	5						
Tetrachloroethene	5	1400	34	400	640	220	100
Toluene	5	97	2.9	34	38	14	16
Trichloroethene	5	1100	31	320	410	180	92
Vinyl Chloride	2	1.5			1.2		
Total Xylenes	5	46		18	20	9.1	8.9
Semi-Volatiles (µg/L)							
1,2-Dichlorobenzene	3*						
1,4-Dichlorobenzene	3*						
2,4-Dimethylphenol	50		0.9J				
2-Methylphenol	NL	76	76	32	32	15	16
4-Methylphenol	NL	2J	70	1.1J	1.4J	1.2J	1.1J
Naphthalene	10	2J	2J	1.2J	1.4J	1.1J	1.1J
Di-n-octyl phthalate	50						
Phenol	1	8	8				1.5
NT-1							J

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level NS - Not Sampled

TABLE 2.6

Location							River	North						
Date	05/18/01	09/17/01 1	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06	05/31/07
	Class GA													
Volatiles (μg/L)	Level													
Azakana	50					2.4J		NS			2.61	2.61		
Acetone Benzene	30 1				0.21J	2. 4 J		NS		2.0	3.6J 0.39J	3.6J		
2-Butanone	50				0.21)					2.0	0.39]			
Chlorobenzene	5				1.3						3.2			
trans-1,2-Dichloroethene	5				0.25J						1.0			
Ethylbenzene	5				20						40		2.9	
Methylene Chloride	5			1.6J							40		2.9	
Tetrachloroethene	5			1.0j	3.8						7.7		1.3	
Toluene	5		0.39J		63				0.96J		130	2.2	1.3	
Trichloroethene	5		0.35J		4.5				0.90j		6.4	2.2	0.59J	
Vinyl Chloride	2		0.55)		3.7						9.3		0.59	
Total Xylenes	5				3.7				0.96J		210	3.7	23	
Total Aylenes	J								0.50j		210	3.7	23	
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50						1J							
2-Methylphenol	NL						,							
4-Methylphenol	NL													
Naphthalene	10													
Di-n-octyl phthalate	50													
Phenol	1													
Notes														
Notes:														
* Applies to sum of compou	ands													
NL - Not listed														
Exceeds Class GA I	Level													
NS - Not Sampled														

TABLE 2.6

Location							(OGC-5						
Date	-	05/20/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
	Class GA													
Volatiles (μg/L)	Level													
A .	F0	201		111			<i>C</i> 1			4.01		0.611		0.01
Acetone	50	38J	1.5	11J 1.4		0.07	6.4	0.07		4.9J		0.61J		3.0J
Benzene	1		1.5	1.4		0.87	0.92	0.87		0.77				0.67J
2-Butanone	50													
Chlorobenzene	5													
trans-1,2-Dichloroethene	5		0.65J	0.76J		0.42J	0.57J	0.52J				0.34J		
Ethylbenzene	5		0. 2 1J	0.23J										
Methylene Chloride	5				3.4J								2.4	
Tetrachloroethene	5		0.38J	0.27J										
Toluene	5		2.5J	2.2J		0.99J	0.87J	1.2		0.80J		0.80J		
Trichloroethene	5		0.87J	0.66J		0.36J	0.41J	0.40J				0.28J		
Vinyl Chloride	2		1.6J	1.2J		1.1	1.5	1.2		1.1		1.4		1.2
Total Xylenes	5		1.0J	1.0J		0.67J	0.37J	0.40J				1.0J		
Semi-Volatiles (µg/L)														
1,2-Dichlorobenzene	3*													
1,4-Dichlorobenzene	3*													
2,4-Dimethylphenol	50		8J	6J	5J		1J	6J						
2-Methylphenol	NL		1J	1J	1J									
4-Methylphenol	NL		2J	5Ĵ	4J			2J						
Naphthalene	10		1Ĵ	1J	,		0.5J	1J						
Di-n-octyl phthalate	50		,	ıJ	0.8J		,	,						
Phenol	1		0.9J	,	,									

Notes:

* Applies to sum of compounds <u>NL</u> - Not listed

Exceeds Class GA Level NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location			OGC-5	5	
Date	_	05/24/07	05/29/08	05/26/10	05/30/12
	Class GA				
Volatiles (μg/L)	Level				
Acetone	50		3.5J		
Benzene	1	0.54J	0.69J		0.58J
2-Butanone	50	·	,		·
Chlorobenzene	5				
trans-1,2-Dichloroethene	5				
Ethylbenzene	5				
Methylene Chloride	5				
Tetrachloroethene	5				
Toluene	5				
Trichloroethene	5				
Vinyl Chloride	2	0.95J	1.4		
Total Xylenes	5				
Semi-Volatiles (µg/L)					
1,2-Dichlorobenzene	3*				
1,4-Dichlorobenzene	3*				
2,4-Dimethylphenol	50				
2-Methylphenol	NL	0.5J	0.3J		
4-Methylphenol	NL	0.9J	0.4J		
Naphthalene	10	2J	0.5J	1.6J	0.85J
Di-n-octyl phthalate	50				
Phenol	1				
Notes:					
* Applies to sum of compound	ls				
NL - Not listed					
Exceeds Class GA Lev	el				
NS - Not Sampled					

TABLE 2.6

Location		GW-	-6S							<i>MW-6</i>						
Date		12/15/1987	08/10/88	05/18/01	08/21/01	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/30/06
	Class GA															
Volatiles (μg/L)	Level															
Acetone	50	684 3	4.9J						4.4J			44		6.7	13	31
Benzene	1	3			0.64J			0.65J	0.59J	0.56J		0.57J				
2-Butanone	50															
Chlorobenzene	5		3.3J		1.5J	1.3J		0.65J		0.54J		0.81J		0.37J		
trans-1,2-Dichloroethene	5	58	4.4J		1.1J			0.37J	0.32J	0.34J		1.4		0.52J		
Ethylbenzene	5	2			0.21J											
Methylene Chloride	5						1.8J								2.1	
Tetrachloroethene	5	43 16			0.44J							0.67J		0.25J		
Toluene	5	16	3.0J		2.2J	0.29J		1.3	0.91J	1.1		2.1	3.6	0.92J		
Trichloroethene	5	62	5.1]		2.0J		1.2J		1.1	1.5	3.2	14	12	3.7	1.5	1.2
Vinyl Chloride	2	11	1.7J					0.29J	0.24J	0.22J		0.52J				
Total Xylenes	5	7			0.90J	0.44J		0.36J	0.27J							
Semi-Volatiles (µg/L)																
1,2-Dichlorobenzene	3*															
1,4-Dichlorobenzene	3*			1J		0.7J	2J						2J			
2,4-Dimethylphenol	50	5		5J	5J	3J	2J	1J	0.9J	9J			6J			
2-Methylphenol	NL	3		5J	6J	2 J	2J	2J	1J	0.9J			5J			
4-Methylphenol	NL	4		15	13	5J	4J	3J	2J	2J			12			1J
Naphthalene	10			67	69		1J		14	2J 13			76		5J	
Di-n-octyl phthalate	50						2J						-			
Phenol	1	3		14	4 J	2J	0.8J						250			2J

Notes:

* Applies to sum of compounds NL - Not listed

Exceeds Class GA Level
NS - Not Sampled

TABLE 2.6

Location		MW-6							
Date		05/24/07	05/29/08	05/26/10	05/30/12				
	Class GA								
Volatiles (µg/L)	Level								
Acetone	50								
	30 1								
Benzene	_								
2-Butanone	50								
Chlorobenzene	5								
trans-1,2-Dichloroethene	5								
Ethylbenzene	5								
Methylene Chloride	5								
Tetrachloroethene	5			0.55J					
Toluene	5			0.73J					
Trichloroethene	5	0.97J		2.3J	0.66J				
Vinyl Chloride	2								
Total Xylenes	5								
Semi-Volatiles (µg/L)									
1,2-Dichlorobenzene	3*			0.66J					
1,4-Dichlorobenzene	3*	0.8J	0.6J	4.2J	2.9J				
2,4-Dimethylphenol	50			1.4J	1.4J				
2-Methylphenol	NL	0.5J	0.3J	1.8J	0.71J				
4-Methylphenol	NL	1J	•	2.5J	1.3J				
Naphthalene	10	2J	1J	7.8J	3.9J				
Di-n-octyl phthalate	50	,	,	,	,				
Phenol	1	0.6J	0.4J	1.9J					

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level
NS - Not Sampled

TABLE 2.6

Location								OGO	C-1						
Date		05/18/01	05/25/07	8/21/2001	11/27/01	02/11/02	05/21/02	08/06/02	11/22/02	02/25/03	05/08/03	11/04/03	05/14/04	05/27/05	05/31/06
	Class GA														
Volatiles (μg/L)	Level														
Acetone	50	20J			11J			4.8J							
Benzene	1			0.64J	0.55J				0.26J						
2-Butanone	50	1.1J													
Chlorobenzene	5	2.2J	2.8	2.0J	1.7J		0.24J		0.78J		0.91J				
trans-1,2-Dichloroethene	5	5.6		3.7J	4.6J	1.8J	0.48J	0.58J	2.7		2.8	0.85J			0.55J
Ethylbenzene	5			0.52J	0.43J				0.21J						
Methylene Chloride	5					1.6J								1.8	
Tetrachloroethene	5			0.78J	0.54J		0.42J	0.53J	0.30J			0.29J			
Toluene	5	5.2	3.1	5.4	4.2J		0.48J	0.43J	1.9	1.7	2.6	0.59J			
Trichloroethene	5	15	2.9	16	11	4.5J	2.2	2.7	6.1	5.1	8.4	2.2	0.47J	1.2	1.9
Vinyl Chloride	2	1.3J		0.51J	0.72J				0.42J		0.64J				
Total Xylenes	5			2.1J	1.6J				0. 4 9J		0.86J				
Semi-Volatiles (µg/L)															
1,2-Dichlorobenzene	3*		0.9J												
1,4-Dichlorobenzene	3*	1J	3J	3J	2J	1J			1J						
2,4-Dimethylphenol	50	9J	46	16	8J	3J		0.6J	9J		4J				
2-Methylphenol	NL	6J	6	12	5J	2J			2J		3J				
4-Methylphenol	NL	_20_	170	35	15J	5J 21		1J	5J	6J	8J				2J
Naphthalene	10	71	0.2J	130		21		7J	18		25	3J			
Di-n-octyl phthalate	50														
Phenol	1	150	11	290	57	15	1J	8J	4J		19				

Notes:

* Applies to sum of compounds

NL - Not listed

Exceeds Class GA Level

NS - Not Sampled

SUMMARY OF DETECTED COMPOUNDS SITE GROUNDWATER AND RIVER WATER GRATWICK-RIVERSIDE PARK NORTH TONAWANDA, NEW YORK

Location			OGC-1		
Date		05/24/07	05/29/08	05/26/10	05/30/12
Volatiles (μg/L)	Class GA Level				
volutiles (μg/L)	Levei				
Acetone	50				
Benzene	1				
2-Butanone	50				
Chlorobenzene	5				
trans-1,2-Dichloroethene	5				
Ethylbenzene	5				
Methylene Chloride	5				
Tetrachloroethene	5				
Toluene	5				
Trichloroethene	5	0.53J	4.2		
Vinyl Chloride	2				
Total Xylenes	5				
Semi-Volatiles (µg/L)					
1,2-Dichlorobenzene	3*				
1,4-Dichlorobenzene	3*				
2,4-Dimethylphenol	50				
2-Methylphenol	NL				
4-Methylphenol	NL		0.4J		0.46J
Naphthalene	10		0.5J		
Di-n-octyl phthalate	50				
Phenol	1				
					0.97J
Notes:					
* Applies to sum of compounds					
NL - Not listed					
Exceeds Class GA Level					
NS - Not Sampled					
J - Estimated					

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	МН1	МН2	МН3	MW-6	OGC-1	МН4	OGC-5	МН5	МН6	OGC-6	МН7	<i>MW-7</i>	МН8	OGC-2	МН9
Date															
01/29/10		9.52	9.33	10.04	9.96		9.53		9.91	10.47		10.64	11.11	10.37	
02/26/10		9.98	9.79	10.03	10.01		9.55		9.84	10.78		10.28	10.87	10.43	
03/30/10		9.48	9.45	9.78	10.06		9.91		9.85	10.68		10.58	10.08	10.76	
04/30/10		9.60	9.53	9.82	10.01		9.65		9.94	11.09		11.00	10.91	10.77	
05/26/10		9.54	9.84	10.63	9.33		9.27		9.84	11.24		10.60	9.37	10.75	
06/28/10		8.46	8.82	9.63	9.51		8.62		9.17	9.86		10.25	9.14	9.44	
07/27/10		8.53	8.82	10.88	10.82		9.42		9.77	11.21		11.73	10.75	10.98	
08/26/10		10.03	10.89	10.73	10.33		8.73		9.81	11.96		10.51	9.77	10.69	
09/28/10		9.94	10.83	10.87	10.38		9.40		10.33	10.61		10.82	10.20	10.97	
10/27/10		9.53	9.75	10.56	10.15		9.63		10.02	10.28		10.47	10.31	10.19	
11/24/10		9.54	9.90	10.70	10.04		9.24		9.54	10.32		10.09	9.65	9.97	
12/28/10		9.48	9.56	10.84	10.37		9.60		10.00	10.42		10.17	9.76	10.33	
01/31/11		11.01	10.24	10.53	10.37		9.20		8.72	10.49		10.37	9.80	10.47	
02/28/11		9.45	9.33	9.87	9.95		9.56		9.59	10.75		10.11	9.76	10.13	
03/30/11		8.72	8.40	10.40	8.65		9.42		8.98	10.56		9.46	9.23	9.51	
04/21/11		8.86	8.80	10.80	9.34		9.17		9.80	11.32		10.13	9.40	9.86	
05/26/11		8.59	8.50	10.49	9.22		8.95		9.49	11.11		9.80	8.84	9.91	
06/22/11		8.91	9.63	10.63	9.07		8.92		9.42	11.21		9.68	9.10	9.00	
07/27/11		8.87	9.56	10.94	10.21		8.85		9.32	10.97		10.22	9.08	9.84	
08/26/11		8.84	9.51	11.16	10.20		8.87		9.45	11.01		10.34	9.21	9.89	
09/27/11		8.61	9.22	10.47	9.74		8.86		9.37	10.60		9.26	9.10	9.51	
10/28/11		9.21	9.65	10.60	10.25		9.33		9.77	10.70		9.71	9.33	9.87	
11/30/11		9.25	9.93	10.00	9.34		8.24		9.82	10.84		10.46	9.26	9.57	
12/29/11		9.24	9.28	10.82	9.80		9.38		9.66	10.91		9.86	9.31	10.02	
01/26/12		9.21	8.93	10.84	9.46		9.13		9.36	10.99		10.02	9.06	10.47	
02/28/12		9.49	9.33	10.69	9.74		9.51		9.60	11.22		10.49	9.10	10.73	
03/29/12		9.75	9.69	10.05	9.97		9.57		9.63	9.93		9.98	9.62	10.13	
04/26/12		10.05	11.29	11.22	9.92		9.58		9.59	11.85		10.05	9.14	10.26	
05/30/12		10.20	11.54	11.54	10.91		6.33		9.84	11.87		10.24	9.49	9.30	

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	MH10	OGC-7	MH11	MW-8	OGC-3	MH12	МН13	OGC-8	MH14	MW-9	OGC-4	MH15	МН16	MH17
Date														
01/29/10		11.19	11.03	11.58	11.45	10.60		11.62	11.39	10.52	11.29	9.71	9.22	
02/26/10		11.30	10.91	11.59	11.74	10.27		11.64	11.32	11.02	11.30	10.62	8.64	
03/30/10		11.68	11.74	11.51	12.06	10.62		11.78	11.24	11.49	11.76	10.86	9.14	
04/30/10		11.78	11.67	12.11	12.16	10.30		12.15	10.85	11.44	11.92	10.85	9.58	
05/26/10		11.81	10.92	11.85	12.14	10.51		11.88	10.14	11.14	11.60	11.10	9.12	
06/28/10		10.30	9.26	10.70	10.70	9.18		10.42	8.81	9.90	10.24	8.36	7.48	
07/27/10		12.18	10.31	12.76	12.77	10.08		12.31	10.49	11.56	12.03	9.19	8.46	
08/26/10		12.23	11.60	11.62	12.37	10.04		11.56	8.17	11.50	11.38	7.52	8.87	
09/28/10		12.29	11.89	12.39	12.43	10.21		11.68	10.04	11.24	11.45	7.69	8.48	
10/27/10		11.76	11.53	11.81	11.89	9.81		11.65	10.12	11.10	11.39	8.52	9.50	
11/24/10		11.67	11.48	11.85	12.08	9.90		11.42	9.97	10.67	11.64	8.12	8.30	
12/28/10		11.72	11.17	12.03	12.12	10.17		11.57	9.70	10.91	11.73	8.00	7.87	
01/31/11		11.75	11.52	11.27	11.08	9.68		12.36	9.80	11.03	11.53	8.47	10.08	
02/28/11		11.68	10.82	11.88	11.96	10.00		12.23	11.12	11.30	11.51	7.93	8.05	
03/30/11		11.03	10.46	11.21	11.59	9.71		11.13	9.62	11.00	11.50	8.32	8.11	
04/27/11		11.69	9.99	11.78	12.17	9.05		12.09	9.59	11.40	11.78	8.39	8.84	
05/26/11		11.48	10.08	11.58	11.97	9.55		11.25	9.27	11.26	11.32	7.62	8.26	
6/22/2011		11.62	10.75	11.83	12.00	9.55		11.43	9.09	11.12	11.29	7.73	8.27	
7/27/2011		11.58	10.51	11.88	11.92	9.85		11.34	8.91	11.11	11.12	7.71	8.45	
8/26/2011		11.78	10.56	12.16	12.30	9.56		11.59	9.31	11.39	11.05	7.39	8.12	
9/27/2011		11.54	10.07	11.83	11.99	9.51		11.30	8.85	11.06	11.00	7.28	7.66	
10/28/11		11.35	9.57	11.50	11.72	9.82		11.12	9.78	10.91	11.19	8.48	8.52	
11/30/11		11.46	10.49	11.87	12.06	9.60		10.92	9.51	11.20	10.53	7.84	8.19	
12/29/11		11.57	9.74	11.94	11.98	9.99		11.50	9.39	11.00	11.62	8.48	8.92	
01/26/12		11.61	10.44	11.73	12.43	10.21		11.71	9.51	11.19	11.81	7.99	8.45	
02/28/12		11.74	10.55	11.79	12.23	9.90		11.66	9.73	11.44	11.89	8.16	8.94	
03/29/12		11.23	10.41	11.38	11.29	10.09		11.22	9.64	10.51	11.17	8.49	9.13	
04/26/12		12.20	10.52	12.31	12.87	9.51		12.47	9.72	11.74	12.29	8.08	8.95	
05/30/12		12.52	10.88	12.42	12.84	10.17		12.65	10.14	11.95	12.48	8.42	9.68	

TABLE 2.7

PH READINGS GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

Monitoring Location	City MH1	City MH2	City MH3
Date			
01/29/10	8.64	8.94	8.74
02/26/10	10.42	10.15	9.35
03/30./10	10.14	9.11	9.29
04/30/10	11.25	11.09	10.99
05/26/10	9.97	9.26	8.96
06/28/10	8.15	7.86	7.69
07/27/10	9.71	8.92	8.61
08/26/10	10.06	8.96	9.50
09/29/10	10.22	9.54	9.48
10/27/10	11.42	10.80	10.43
11/24/10	10.98	9.03	9.12
12/28/10	9.12	8.27	8.26
01/31/11	11.66	10.34	10.45
02/28/11	9.62	8.82	8.57
03/30/11	10.22	10.05	10.03
04/27/11	10.54	9.86	9.60
05/26/11	10.42	10.01	9.79
6/22/2011	10.90	9.42	9.69
7/27/2011	10.72	10.51	10.13
8/26/2011	10.38	9.81	9.27
09/27/11	10.35	8.48	8.46
10/28/11	10.50	9.52	9.40
11/30/11	10.63	9.69	8.71
12/29/11	10.78	10.27	10.02
01/26/12	10.07	10.02	9.73
02/28/12	11.21	10.15	9.48
03/29/12	10.80	9.90	9.86
04/26/12	11.16	10.52	10.52
05/30/12	11.28	10.85	10.52

EFFLUENT SAMPLING SUMMARY JUNE 2001 TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

monthly (as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit)

PARAMETERS

Volatiles

Acetone Methylene Chloride

Benzene Styrene

2-Butanone Tetrachloroethene

Chlorobenzene Toluene

1,1-Dichloroethane1,1,1-Trichloroethane1,2-DichloroethaneTrichloroethenetrans-1,2-DichloroetheneVinyl ChlorideEthylbenzeneXylenes (Total)

Semi-Volatiles

1,4-Dichlorobenzene4-Methylphenol1,2-DichlorobenzeneNaphthalene2,4-DimethylphenolDi-n-octylphthalate2-MethylphenolPhenols (4AAP)

Inorganics

Aluminum Lead Antimony Magnesium Arsenic Manganese Barium Mercury Beryllium Nickel Cadmium Selenium Chromium Silver Copper Sodium Iron Zinc

Wet Chemistry

Alkalinity (Bicarbonate) Oil and Grease

Alkalinity (Total) pH

BOD Phosphorous
Chloride Sulfate
COD Sulfide
Cyanide TDS
Hardness TKN
NH3 TOC
NO3 TSS

EFFLUENT SAMPLING SUMMARY SUBSEQUENT TO FEBRUARY 2007 GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

LOCATIONS

effluent monitoring station at Site discharge point

FREQUENCY

Semi-Annual (Spring and Fall as dictated by the City of North Tonawanda Industrial Wastewater Discharge Permit dated January 31, 2007)

PARAMETERS

Volatiles

Acetone Methylene Chloride
Benzene Styrene
2-Butanone Tetrachloroethene
Chlorobenzene Toluene
1,1-Dichloroethane 1,1,1-Trichloroethane

1,1-Dichloroethane1,1,1-Trichloroethane1,2-DichloroethaneTrichloroethenetrans-1,2-DichloroetheneVinyl ChlorideEthylbenzeneXylenes (Total)

Semi-Volatiles

1,4-Dichlorobenzene4-Methylphenol1,2-DichlorobenzeneNaphthalene2,4-DimethylphenolDi-n-octylphthalate2-MethylphenolPhenols (4AAP)

Wet Chemistry

Chloride Cyanide NH3 NO3 Phosphorous

Phosphorou Sulfate Sulfide

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:	G	KATWICK-K	IVERSIDE LA	IKK SITE			
Sample Date:		09/13/10	03/07/11	09/15/11	03/08/12	Surface Water	
Parameter	Unit					Standard	(1)
Volatiles							
1,1,1-Trichloroethane	μg/L	5.0U	5.0U	5.0U	5.0U	5	
1,1-Dichloroethane	μg/L	5.0U	5.0U	5.0U	5.0U	5	
1,2-Dichloroethane	μg/L	5.0U	5.0U	5.0U	5.0U	0.6	
2-Butanone	μg/L	25U	25U	25U	25U	50	
Acetone	μg/L	25U	25U	25U	25U	50	
Benzene	μg/L	5.0U	5.0U	5.0U	5.0U	1	
Chlorobenzene	μg/L	5.0U	5.0U	5.0U	5.0U	5	
Ethylbenzene	μg/L	5.0U	5.0U	5.0U	5.0U	5	
Methylene chloride	μg/L	5.0U	5.0U	5.0U	5.0U	5	
Styrene	μg/L	5.0U	5.0U	5.0U	5.0U	5	
Tetrachloroethene	μg/L	5.0U	5.0U	5.0U	5.0U	0.7	(2)
Toluene	μg/L	7.5	12	11	15	5	
trans-1,2-Dichloroethene	μg/L	5.0U	5.0U	5.0U	5.0U	5	
Trichloroethene	μg/L	15	30	20	43	5	(0)
Vinyl chloride	μg/L	5.0U	5.0U	5.0U	5.0U	0.3	(2)
Xylene (total)	μg/L	10U	10U	10U	17	5	
Semi-Volatiles							
1,2-Dichlorobenzene	μg/L	0.68U	0.15U	0.15U	0.84	3	
1,4-Dichlorobenzene	μg/L	0.42U	0.090U	1.7	3.6	3	
2,4-Dimethylphenol	μg/L	3.5	0.13U	2.5	7.4	50	(2)
2-Methylphenol	μg/L	1.0U	0.22U	0.22U	0.91	NL	
4-Methylphenol	μg/L	5.0U	0.62U	0.62U	3.1	NL	
Di-n-octyl phthalate	μg/L	21	4.6U	4.6U	4.6U	50	(2)
Naphthalene	μg/L	0.38U	0.080U	0.080U	0.57	10	
Phenol	μg/L	0.57U	0.12U	0.12U	0.12U	1	

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:	G	KATWICK-K	IVERSIDE I A	KK 511E			
Sample Date:		09/13/10	03/07/11	09/15/11	03/08/12	Surface Water	
Parameter	Unit					Standard	(1)
Metals							
Aluminum	mg/L	0.20U	0.45	0.20U	0.20U	NL	
Antimony	mg/L	0.20U	0.020U	0.020U	0.020U	0.003	
Arsenic	mg/L	0.010U	0.010U	0.010U	0.010U	0.050	
Barium	mg/L	0.069	0.086	0.063	0.083	1.0	
Beryllium	mg/L	0.0020U	0.0020U	0.0020U	0.0020U	0.003	(2)
Cadmium	mg/L	0.0010U	0.0010U	0.0010U	0.0010U	0.005	
Chromium	mg/L	0.0040U	0.0040U	0.0040U	0.0040U	0.050	
Copper	mg/L	0.027	0.023	0.010U	0.010U	0.023	(3)
Iron	mg/L	0.050U	0.39	0.050U	0.050U	0.30	
Lead	mg/L	0.0050U	0.0050U	0.0050U	0.0050U	0.012	
Magnesium	mg/L	1.43	3.5	1.6	2.2	35	
Manganese	mg/L	0.030U	0.012	0.030U	0.0030U	0.30	
Mercury	mg/L	0.00020U	0.000 2 0U	0.00020U	0.000 2 0U	0.0000026	(4)
Nickel	mg/L	0.010U	0.010U	0.010U	0.010U	0.10	
Selenium	mg/L	0.015U	0.015U	0.015U	0.015U	0.0046	(4)
Silver	mg/L	0.0030U	0.0030U	0.0030U	0.0030U	0.050	
Sodium	mg/L	253	372	267	380	NL	
Zinc	mg/L	0.010U	0.010	0.010U	0.010U	2.0	(2)

TABLE 2.10

ANALYTICAL RESULTS SUMMARY SITE EFFLUENT GRATWICK-RIVERSIDE PARK SITE

Sample ID:	G	KATVICK-K	IVERSIDE I A	IKK SITE			
Sample Date:		09/13/10	03/07/11	09/15/11	03/08/12	Surface Water	
Parameter	Unit					Standard	(1)
General Chemistry							
рН	S.U.	9.39	9.95	9.75	10.51	NL	
Hardness	mg/L	213	235	244	268	NL	
Total Dissolved Solids (TDS)	mg/L	1040	1450	1030	1280	NL	
Total Suspended Solids (TSS)	mg/L	7	6	3	4	NL	
Chloride	mg/L	423	655	425	551	250	
BOD	mg/L	24	16	22	21	NL	
COD	mg/L	33	37	28	33	NL	
Oil and Grease	mg/L	0.10U	0.10U	0.10U	0.20	NL	
Organic Carbon	mg/L	7.1	8.1	7.2	6.9	NL	
Alkalinity, Total (As CaCO3)	mg/L	53.9	57	30.5	32.0	NL	
Bicarbonate (as CaCO3)	mg/L	53.9	11.1	5.0	8.0	NL	
Ammonia	mg/L	1.96	1.12	1.12	1.68	2.0	
Nitrate (as N)	mg/L	0.050U	0.050U	0.050U	0.050U	10	
TKN	mg/L	2.24	2.24	1.68	2.24	NL	
Sulfate	mg/L	184	135	150	191	250	
Sulfide	mg/L	2.0	2.0	4.8	4.0	0.002	
Phenol	mg/L	0.008U	0.008U	0.009U	0.009	0.001	
Phosphorous	mg/L	0.12	0.13	0.17	0.09	0.020	(2)
Cyanide	mg/L	0.005U	0.005	0.005U	0.005	0.0052	

Notes:

- U Non-detect at associated value
- - Not Analyzed
- J Estimated
- NL Not Listed
- SL Sample Lost
- (1) Lowest Standard/Guidance Value shown
- (2) Guidance Value
- (3) Calculated using a hardness of 300 ppm
- (4) Applies to dissolved form
- (5) TOC analyzer malfunction prevented analysis of this compound.

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (g	gallons)
Month	Monthly	Total
May 2001	2,900,000	2,900,000
June 2001	2,353,800	5,253,800
July 2001	1,488,500	6,742,300
August 2001	712,800	7,455,100
September 2001	473,100	7,928,200
October 2001	1,213,100	9,141,300
November 2001	1,281,100	10,422,400
December 2001	231,700 (1)	10,654,100
January 2002	1,383,200 ⁽²⁾	12,037,300
February 2002	1,186,000	13,223,300
March 2002	233,600	13,456,900
April 2002	736,000	14,192,900
May 2002	348,200	14,541,100
June 2002	1,137,200	15,678,300
July 2002	869,300	16,547,600
August 2002	1,060,800	17,608,400
September 2002	707,000	18,315,400
October 2002	679,800	18,995,100
November 2002	489,500	19,484,700
December 2002	743,500	20,228,200
January 2003	1,150,700	21,378,900
February 2003	483,300	21,862,200
March 2003	402,300	22,264,500
April 2003	531,900	22,796,400
May 2003	655,600	23,452,000
June 2003	682,100	24,134,000
July 2003	942,000	25,076,100
August 2003	627,500	25,703,600
September 2003	349,600	26,053,200
October 2003	966,500	27,019,700
November 2003	442,200	27,461,900
December 2003	463,900	27,925,800
January 2004	443,900	28,369,700
February 2004	253,700	28,623,400
March 2004	403,700	29,027,100
April 2004	433,600	29,460,700
May 2004	377,400	29,838,100
June 2004	395,000	30,233,100
July 2004	384,300	30,617,400
August 2004	479,700	31,097,100
September 2004	413,900	31,511,000
October 2004	319,400	31,902,400
November 2004	249,200	32,151,600
December 2004	209,900	32,361,500

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)
Month	Monthly	Total
January 2005	310,100	32,671,600
February 2005	301,100	32,972,700
March 2005	250,200	33,222,900
April 2005	378,400	33,601,300
May 2005	458,800	34,060,100
June 2005	455,900	34,516,000
July 2005	270,200	34,786,200
August 2005	285,100	35,071,300
September 2005	395,600	35,466,900
October 2005	333,200	35,800,100
November 2005	360,200	36,160,300
December 2005	395,300	36,555,600
January 2006	297,500	36,853,100
February 2006	508,300	37,361,400
March 2006	244,700	37,606,100
April 2006	224,400	37,830,500
May 2006	153,300	37,983,800
June 2006	262,300	38,246,100
July 2006	212,900	38,459,000
August 2006	357,500	38,816,500
September 2006	777,000	39,593,500
October 2006	254,700	39,848,200
November 2006	778,700	40,626,900
December 2006	496,600	41,123,500
January 2007	410,500	41,534,000
February 2007	494,600	42,028,600
March, April &		
May 2007	1,489,200 ⁽³⁾	43,517,800
June 2007	334,300	43,852,100
July 2007	258,600	44,110,700
August 2007	239,000	44,349,700
September 2007	59,500 ⁽⁴⁾	44,409,200
October 2007 through January 2008	50,600 ⁽⁴⁾	44,459,800
February 2008	23,800 ⁽⁴⁾	44,483,600
March 2008	1,238,300	45,721,900
April 2008	2,126,700	47,848,600
May 2008	1,771,100	49,619,700
June 2008	618,000	50,237,700
July 2008	1,559,200	51,796,900
August 2008	1,365,900	53,162,800
September 2008	1,998,000	55,160,800
October 2008	2,511,100	57,671,900
November 2008	1,151,600	58,823,500
December 2008	572,700	59,396,200
	,	22,22,200

GROUNDWATER VOLUMES DISCHARGED TO NORTH TONAWANDA POTW GRATWICK-RIVERSIDE PARK SITE NORTH TONAWANDA, NEW YORK

	Volumes (gallons)
Month	Monthly	Total
January 2009	1,021,700	60,417,900
February 2009	2,661,400	63,079,300
March 2009	4,239,300	67,318,600
April 2009	1,189,900	68,508,500
May 2009	1,362,500	69,871,000
June 2009	1,035,200	70,906,200
July 2009	1,010,100	71,916,300
August 2009	1,058,000	72,974,400
September 2009	947,000	73,921,400
October 2009	690,800	74,612,200
November 2009	697,500	75,309,700
December 2009	1,100,900	76,410,600
January 2010	767,100	77,177,700
February 2010	398,600	77,576,300
March 2010	1,094,500	78,670,800
April 2010	761,000	79,431,800
May 2010	354,700	79,786,500
June 2010	170,300	79,956,800
July 2010	323,600	80,280,400
August 2010	1,292,400	81,572,800
September 2010	672,800	82,245,600
October 2010	972,800	83,218,400
November 2010	433,500	83,651,900
December 2010	483,900	84,135,800
January 2011	420,300	84,556,100
February 2011	257,000	84,813,100
March 2011	1,136,700	85,949,800
April 2011	875,300	86,825,100
May 2011	727,500	87,552,600
June 2011	489,500	88,042,100
July 2011	459,300	88,501,400
August 2011	296,900	88,798,300
September 2011	390,300	89,188,600
October 2011	414,800	89,603,400
November 2011	393,100	89,996,500
December 2011	583,300	90,579,800
January 2012	651,800	91,231,600
February 2012	276,900	91,508,500
March 2012	586,600	92,095,100
April 2012	400,600	92,495,700
May 2012	458,800	92,954,500

Notes:

- (1) To December 7, 2001.
- (2) From December 8, 2001.
- (3) Plotted as 496,400 gallons on Figure 2.18 for each of March, April, and May 2007.
- (4) Meter malfunctioned due to tar-like material buildup inside meter.

 Meter was cleaned on March 14, 2008. Volumes not plotted on
 Figure 2.18 as volumes are not representative of actual volume removed.

APPENDIX A

MONTHLY INSPECTION LOGS (JUNE 2011 TO MAY 2012)

2011/2012 Maintenance Record for Gratwick Riverside Park

#1pump Hrs.	#2 Pump Hrs.	400
	mz rumpins.	#3Pump Hrs.
14771	15655	18312
15027	15946	19040
15239	16191	19785
15439	16415	20552
15653	16676	21248
15830	16892	21967
16075	17239	22759
16233	17465	23288
16295	17557	23457
16395	17711	23744
16513	17891	24151
16715	18206	24919
16857	18426	25615
17064	18706	26220
17064	18757	oos
17199	18975	OOS
	15027 15239 15439 15653 15830 16075 16233 16295 16395 16513 16715 16857 17064 17064	15027 15946 15239 16191 15439 16415 15653 16676 15830 16892 16075 17239 16233 17465 16395 17557 16513 17891 16715 18206 16857 18426 17064 18706 17064 18757

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: GARDNER INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes condition of cover - condition of inside of manhole - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas * SEE PREVIOUS MONTH - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: DTYRAN, S GARDNER INSPECTOR(5): Comments Action Required Inspect For Item Landfill Cap (continued) - bare areas, dead/dying veg. Access Roads - erosion - potholes or puddles - obstruction - dead/dying vegetation 3. Wetlands (Area "F") - change in water budget - general condition of wetlands Other Site Systems - integrity of fence Perimeter Fence - integrity of gates - integrity of locks - placement and condition of signs FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: DTYRAN, S. GARDNER INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) - sediment build-up Drainage Ditches/ Swale Outlets * SEE PREVIOUS MONTH - erosion - condition of erosion protection - flow obstructions dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion - condition of erosion protection flow obstructions - intact / damage Gas Vents - locks secure Wells FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion - bare areas * SEE MAY 2011 - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

G	RATWICK-RIVERSIDE PARK SITE
	MONTHLY INSPECTION LOG
PROJECT NAME: Gratwick-Riverside Park Site	DATE: Wheatfield, New York [O]7 2 7 1 1 (MM DD YY)
INSPECTOR(S): DTYRAN; DOSCAR Inspect For	Action Required Comments
Item Inspect For	
2. Landfill Cap (continued)	NONE
Access Roads - bare areas, dead/dying veg.	NOW TO THE PART OF
- erosion	
- potholes or puddles	
obstruction	
1. 1/ Juin supportion	
3. Wetlands (Area "F") - dead/dying vegetation - change in water budget	
- general condition of wetlands	
X	
4. Other Site Systems	
Perimeter Fence - integrity of fence	NA
Perimeter Fence - integrity of fence - integrity of gates	
- integrity of locks	
- placement and condition of	
signs	
FORM 17	

	GI	RATWICK-RIVERSIDE PARI MONTHLY INSPECTION I	C SITE LOG	
PROJECT NAME: Grate	vick-Riverside Park Site		LOCATION:	Wheatfield, New York O 7 2 7 1 1
Item	Inspect For	Action Required		Comments
4. Other Site Systems Drainage Ditches/ Swale Outlets	(continued) - sediment build-up - erosion - condition of erosion protection - flow obstructions	* SEE MAY 2	DIL	
	 dead/dying vegetation cable concrete/gabion mats and riprap 			
Culverts	sediment build-uperosioncondition of erosion protectionflow obstructions	NONE		
Gas Vents Wells	intact / damagelocks secure	NONE		

		ATWICK-RIVERSIE	E PARK SITE	- 4	
		MONTHLY INSPEC	TION LOG		
PROJECT NAME: Gratwick-Rivers	iide Park Site		LOCATION:	Wheatfield, New York OBJUILL (MM DD YY)	
INSPECTOR(S): DTYRAN,	S GARDNER				
·	oect For	Action Required		Comments	
Perimeter Collection System	Off-Site Forcemain				
J mananon	er on securely dition of cover	NON	VE		
- con	dition of inside of manhole conditions				
J	er on securely dition of cover				
- con	dition of inside of wet well				
Landfill Cap Vegetated Soil Cover - ero - box	sion e areas				
- wa	shouts Chate seeps	* SEE MAYS!	NSPECTION LOG	- SAME	
	gth of vegetation				
FORM 17	•				

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG	
PROJECT NAME: Gratwick-Riverside Park Site DATE: OBJECT \(\text{OM} \) DD \(\text{YY} \) \(\text{(MM} \) DD \(\text{YY} \)	
INSPECTOR(S): DTYRAN & GARDNER Item Inspect For Action Required Comments	
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying veg.	·
- erosion - potholes or puddles	
- obstruction 3. Wetlands (Area "F") - dead/dying vegetation	
3. Wetlands (Area "F") - change in water budget - general condition of wetlands	· ·
4. Other Site Systems	
Perimeter Fence - integrity of fence - integrity of gates	
- integrity of locks - placement and condition of signs	
FORM 17	

	,	GF	RATWICK-RIVERSIDE I MONTHLY INSPECTION	PARK SITE ON LOG		
PRO		ick-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York OBZOIL (MM DD YY)	
INSI	PECTOR(S): <u>DTy</u>	Inspect For	Action Required		Comments	
MXXXX *	Other Site Systems (Drainage Ditches/ Swale Outlets	continued) - sediment build-up - erosion - condition of erosion protection - flow obstructions	* SEE MAYS	INSPECTION	LOG - SAME	
A		 dead/dying vegetation cable concrete/gabion mats and riprap 				
XXXX	Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 				
FORM	Gas Vents Wells	- intact /damage - locks secure	NONE			

	GR.	ATWICK-RIVERSI MONTHLY INSPE	DE PARK SITE CTION LOG	
PROJECT NAME: Gratwick-Riv	erside Park Site		LOCATION: DATE:	Wheatfield, New York O 9 2 7 1 1 (MM DD YY)
	S GARDNER	Action Required		Comments
Perimeter Collection Syste Manholes - c	m/Off-Site Forcemain over on securely	NON	(For	
	ondition of cover ondition of inside of manhole			
Wet Wells -	low conditions cover on securely			
4	condition of cover	4	7	
· Cg	erosion	STILL SEVERAL	L LARGE HOLES NKMENT, LARGES	ABOUT 20' SOUTH OF OBC-7 THOLES BETWEEN 9' TO 6'
-	bare areas washouts leachate seeps	ACROSS AND B	" OFFP, EXPOSINE	THE WIRE MESH
√1 — 1 /	length of vegetation dead/dying vegetation	LOTS OF SMA	LL HOLES IN TH ER MIDDLE FXPOS	E EMBANKMENT FAST AND
FORM 17				

		MONTHLY INSPECTION LOG
ROJECT NAME: Gratwick	k-Riverside Park Site	LOCATION: Wheatfield, New York DATE: OPEN TO THE CONTROL OF THE C
ISPECTOR(S): <u>D</u> TVS	AN, S BARDNER	Action Required
Landfill Cap (continu	ed)	
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction 	NONE NONE THE
		- $ -$
. Wetlands (Area "F")	 dead/dying vegetation change in water budget general condition of wetlands 	SHORELINE EROSION FROM RIVER NORTH PIPE TO THE NEW FISHING PIER AND SOUTH FROM RIVER NORTH OUTFALL ' APPROX 100'
. Wetlands (Area "F") A. Other Site Systems	- change in water budget	NEW FISHING PIER AND SOUTH FROM 1845

		GR	ATWICK-RIVERSIDE PA MONTHLY INSPECTION	RK SITE V LOG	
PRO.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	k-Riverside Park Site		LOCATION:	Wheatfield, New York O 9 2 7 () 1 (MM DD YY)
INSF	PECTOR(S): <u>D Tyr</u> Item	Inspect For	Action Required		Comments
MANANA WANDA CIN	Other Site Systems (co Drainage Ditches/ Swale Outlets	ontinued) - sediment build-up - erosion - condition of erosion protection	NONE		
	Culverts	 condition of erosion protections flow obstructions dead/dying vegetation cable concrete/gabion mats and 			
		riprap - sediment build-up			
		erosioncondition of erosion protectionflow obstructions			
	Gas Vents - intact / damage Wells - locks secure				
FORM	117			·	

	.k GR	RATWICK-RIVERS MONTHLY INSPE	IDE PARK ECTION LO	SITE OG		
PROJECT NAME: Gratwick-				LOCATION:	Wheatfield, New York	
INSPECTOR(S): 0 TY	RAN, S. BARDNER Inspect For	Action Required			Comments	
1. Perimeter Collection Sy	stem/Off-Site Forcemain	•				
	cover on securelycondition of covercondition of inside of manhole	NONE				
<i>X</i>						
	- flow conditions				·	
Wet Wells	- cover on securely			· · · · · · · · · · · · · · · · · · ·		
	 condition of cover condition of inside of wet well 	. \		;		
2. Landfill Cap		•				
Vegetated Soil Cover	- erosion	SEVERAL LARGE	L HOLES	LARGE HOLE	S BETWEEN 4' TO	6' ACROSS
	- bare areas - washouts	AND 8" DEEP		6 WIRE I		
	leachate seepslength of vegetation	LOTES OF SMALL	HOLFE	IN THE E	TRAINMENT EAST	AUD
A	- dead/dying vegetation	WEST OF RIVER MIDDLE EXPOSING WIRE MESH				
FORM 17						

		RATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG
	k-Riverside Park Site	DATE: Wheatfield, New York (MM DD YY)
SPECTOR(S):	TYRAN, S BARDNER Inspect For	Action Required Comments
Landfill Cap (continu	ed)	
7		NONE
Access Roads	- bare areas, dead/dying veg.	
	- erosion	
•	- potholes or puddles	
1 00	- obstruction	
	a att t	NONE
Wetlands (Area "F")	- dead/dying vegetation	
•	- change in water budget	, 🔻
	- general condition of wetlands	
Other Site Systems		
	•	NA
Perimeter Fence	- integrity of fence	No.
	- integrity of gates	
	 integrity of locks 	
	 placement and condition of signs 	<u> </u>

· · · · · · · · · · · · · · · · · · ·		GI	RATWICK-RIVERSIDE PAR MONTHLY INSPECTION I	K SITE LOG		·
PRO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	k-Riverside Park Site		LOCATION: DATE:	Wheatfield, New York [C Z B L I (MM DD YY)	
INSP	PECTOR(S): D T	VRAN S GARDNER Inspect For	Action Required		Comments	
4.	Other Site Systems (continued)					
	Drainage Ditches/ Swale Outlets	- sediment build-up - erosion				
		 condition of erosion protection flow obstructions 	RIVER NORTH BLOCKE	BY HUGE	DEAD TREES	NEED LARGE
		 dead/dying vegetation cable concrete/gabion mats and riprap 	MACHINARY TO HAVE	THE KEL		
XXXX	Culverts	sediment build-uperosioncondition of erosion protectionflow obstructions	NONE			
П	Gas Vents - intact / damage Wells - locks secure				· ·	
		- locks secure		·		
FORM	117					

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: DITYRAN INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap - erosion Vegetated Soil Cover SAME AS LAST MONTH - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation FORM 17

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG
PROJECT NAME: Gratwick-Riverside Park Site	(MM DD YY)
NSPECTOR(S): <u>D. TYRAN</u> , <u>S. GARD</u> Item Inspect For	NER Comments Action Required
Landfill Cap (continued)	NONE
Access Roads - bare areas, dead - erosion - potholes or puc - obstruction	1/ dying veg.
3. Wetlands (Area "F") - dead/dying ve - change in wate - general conditi	r budget
4. Other Site Systems	
Perimeter Fence - integrity of fer - integrity of ga - integrity of loc - placement and signs	iks
DRM 17	

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: S GARDNER INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) - sediment build-up Drainage Ditches/ Swale Outlets RIVER NORTH STILL BLOCKED BY A HUGE DEAD TREE NEED A LARGE RECE OF MACHINERY TO REMOVE - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap NONE - sediment build-up Culverts - erosion condition of erosion protection - flow obstructions intact / damage Gas Vents locks secure Wells FORM 17

GRATWICK-RIVERSIDE PARK SITE . . MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(5): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Martholes - condition of cover - condition of inside of manhole - flow conditions - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap Vegetated Soil Cover - erosion SAME AS OCTOBER + NOVEMBER - bare areas - washouts - leachate seeps - length of vegetation DORMANT - dead/dying vegetation FORM 17

	MONTHLY INSPECTION L		
		LOCATION:	Wheatfield, New York
ROJECT NAME: Gratwick-Riverside Park Site		DATE:	(MM DD YY)
1 1 1 0 1 ER		 '	
ISPECTOR(S): D TYRAN S GARDNER Inspect For	Action Required	\ .	Comments
Landfill Cap (continued)		•	
	DORMANT		
Access Roads - bare areas, dead/dying veg	NONE		
- potholes or puddles		<u>, </u>	
- obstruction			
Watlands (Area "F") - dead/dying vegetation	DORMANT		
. Wetlands (Area "F") - dead/dying vegetation ✓ - change in water budget	NONE		
> - general condition of wetlands			
4. Other Site Systems			
Perimeter Fence - integrity of fence	NA	· · · · · · · · · · · · · · · · · · ·	
- integrity of gates			
- integrity of locks			
- placement and condition of signs	V		
		,	

GRA 1	ATWICK-RIVERSIDE PARK MONTHLY INSPECTION LC	JG
PROJECT NAME: Gratwick-Riverside Park Site		LOCATION: Wheatfield, New York DATE: [1 2 9 1 1 1 1 1 1 1 1 1
INSPECTOR(S): D TYRAN S GARDNER Item Inspect For	Action Required	Comments
4. Other Site Systems (continued) Drainage Ditches/ - sediment build-up Swale Outlets - erosion - condition of erosion protection - flow obstructions	RIVER NORTH BLOC	KED BY A HUGE DEAD TREE
- dead/dying vegetation - cable concrete/gabion mats and riprap	NONE	
Culverts - sediment build-up - erosion - condition of erosion protection - flow obstructions		
Gas Vents - intact / damage Wells - locks secure	NONE	
FORM 17		

		∉ GR	RATWICK-RIVERSIDE PARK SITE	
			MONTHLY INSPECTION LOG	
PRO	·,	k-Riverside Park Site	DATI	ATION: Wheatfield, New York E: OIIZCIIZ (MM DD YY)
INS	PECTOR(S): $D.T$	man S. Gardner	-	
	. Item	Inspect For	Action Required	Comments
1.	Perimeter Collection S	ystem/Off-Site Forcemain		
XXXX	Manholes	cover on securelycondition of covercondition of inside of manholeflow conditions	None	
K	Wet Wells	- cover on securely - condition of cover	Of the high water el	2.02 levation
		- condition of inside of wet well		
2.	Landfill Cap	\$.		
X	Vegetated Soil Cover	- erosion - bare areas		ddle oxposing wire rush
K,		- washouts		
×		- leachate seeps		
X	•	 length of vegetation dead/dying vegetation 	Dormant for Winter	
FORN	4 17			

Dave V upon

	GI	RATWICK-RIVERSIDE PAI MONTHLY INSPECTION	RK SITE LOG	
	Riverside Park Site		LOCATION:	Wheatfield, New York O (Z G / Z (MM DD YY)
Item	Inspect For	Action Required		Comments
Access Roads	 bare areas, dead/dying veg. erosion potholes or puddles obstruction 	None		
3. Wetlands (Area "F")	dead/dying vegetationchange in water budgetgeneral condition of wetlands	None		
4. Other Site Systems Perimeter Fence	 integrity of fence integrity of gates integrity of locks placement and condition of signs 	NA		
FORM 17				

Darl Japan

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(5): Comments Action Required Inspect For Item Other Site Systems (continued) None - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap - sediment build-up Culverts - erosion Several Large trees piled in front of River Worth - condition of erosion protection - flow obstructions Gas Vents - intact / damage ~ locks secure Wells FORM 17

Darl year

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Fark Site DATE: S GARDNER DOSCAR INSPECTOR(S): Comments Action Required Inspect For Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes - condition of cover - condition of inside of manhole flow conditions MOME - cover on securely Wet Wells - condition of cover - condition of inside of wet well Landfill Cap LARGE & SMALL HOLES NORTH AND EAST OF OGC-7 Vegetated Soil Cover - erosion EXPOSIDG WIRE MESH - bare areas washouts - leachate seeps - length of vegetation DORMANT - dead/dying vegetation FORM 17

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG				
PROJECT NAME: Gratwick-Riverside Park Site	DATE: OZZSIZ			
INSPECTOR(S): S GARDNER, DOSCAR Item Inspect For	Action Required Comments			
2. Landfill Cap (continued) Access Roads - bare areas, dead/dying veg. - erosion - potholes or puddles - obstruction	NONE			
 3. Wetlands (Area "F") - dead/dying vegetation - change in water budget - general condition of wetlands 4. Other Site Systems 				
Perimeter Fence - integrity of fence - Integrity of gates - integrity of locks - placement and condition of signs	NA I			
FORM 17				

	G	RATWICK-RIVERSIDE PA MONTHLY INSPECTIO	RK SITE N LOG	
PROJECT NAME: Gratw	ick-Riverside Park Site		LOCATION:	Wheatfield, New York O 2 2 8 1 2 (MM DD YY)
INSPECTOR(S): & &	DARDNER, D. OSCAR Inspect For	Action Required		Comments
4. Other Site Systems (Drainage Ditches/ Swale Outlets	 sediment build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and 	NONE		
X Culverts	riprap - sediment build-up - erosion - condition of erosion protection - flow obstructions	LARGE TREES PILE	D IN FRONT	OF RIVER NORTH PIPE
Gas Vents Wells	- intact / damage- locks secure	NONE		

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For · Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes condition of cover - condition of inside of manhole - flow conditions Wet Wells - cover on securely - condition of cover - condition of inside of wet well Landfill Cap LARGE AND SMALL HOLES NORTH AND EAST OF OGC 7 Vegetated Soil Cover ~ erosion EXPOSING WIRE MESH - bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation

FORM 17

MONTHLY INSPECTION LOG LOCATION: Wheatfield, New York DATE: O 2 2 9 1 2 9 1 2 9 1 1 2 1 1 1 1 1 1 1 1	
PROJECT NAME: Gratwick-Riverside Park Site DATE: OBJ 2[9] [2] (MM DD YY) INSPECTOR(S): DTVRAN, L PABST	
INSPECTOR(S): DTYRAN, L PABST	
Inspect For Action Required	
Item Inspect For	
2. Landfill Cap (continued)	
Access Roads - bare areas, dead/dying veg. NONE	
- erosion	
- potholes or puddles	· · ·
- obstruction	
3. Wetlands (Area "F") - dead/dying vegetation	···
- change in water budget - general condition of wetlands	
> general condition	
4. Other Site Systems	-
Perimeter Fence - integrity of fence	
- integrity of gates	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
- integrity of locks	
- placement and condition of signs	
FORM 17	

		GR	ATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG	
PRC	DJECT NAME: Gratwi	ck-Riverside Park Site	LOCATION DATE:	: Wheatfield, New York [0]3 2 9 1 2 (MM DD YY)
INSI	PECTOR(S): DTy	Inspect For	Action Required	Comments
XXXXX	Other Site Systems (o Drainage Ditches/ Swale Outlets	continued) - sediment build-up - erosion - condition of erosion protection - flow obstructions	NOVE	
		 dead/dying vegetation cable concrete/gabion mats and riprap 	RIVER MIDDLE - MODERATE SH	EEN ON WATER COMING
XXXXX	Culverts	 sediment build-up erosion condition of erosion protection flow obstructions 	FROM PIPE LARGE TREES PLED IN FRO	
	Gas Vents Wells	- intact / damage - locks secure	NONE	
FORM	I 17	•		

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: INSPECTOR(S): Comments Action Required Inspect For · Item Perimeter Collection System/Off-Site Forcemain NONE - cover on securely Manholes - condition of cover - condition of inside of manhole - flow conditions - cover on securely Wet Wells condition of cover - condition of inside of wet well Landfill Cap VERY LARGE HOLES SOUTH OF OGC-7, HOLES ALL AROUND THE WELL ALL EXPOSING WIRE MESH Vegetated Soil Cover - erosion - bare areas - washouts HOLES NORTH OF OGC-5 EXPOSING WIRE - leachate seeps MESH - length of vegetation - dead/dying vegetation FORM 17

	GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG
PROJECT NAME: Gratwick-Riverside Park Site	LOCATION: Wheatfield, New York DATE: OA 2 6 12 (MM DD YY)
Item Inspect For	RDNERComments Action Required
2. Landfill Cap (commuted) Access Roads - bare areas, dead/c - erosion - potholes or puddl - obstruction 3. Wetlands (Area "F") - dead/dying vege - change in water b - general condition	ation udget
4. Other Site Systems Perimeter Fence - integrity of fence - integrity of gates - integrity of locks - placement and co	
FORM 17	

GRATWICK-RIVERSIDE PARK SITE MONTHLY INSPECTION LOG Wheatfield, New York LOCATION: PROJECT NAME: Gratwick-Riverside Park Site DATE: D TYRAN, S GARDNER INSPECTOR(S): Comments Action Required Inspect For Item Other Site Systems (continued) NONE - sediment build-up Drainage Ditches/ Swale Outlets - erosion - condition of erosion protection - flow obstructions - dead/dying vegetation - cable concrete/gabion mats and riprap LARGE TREES FLED IN FRONT OF RIVER NORTH - sediment build-up Culverts - erosion - condition of erosion protection - flow obstructions - intact / damage Gas Vents - locks secure Wells FORM 17

	GRATWICK-RIVERSIDE PAR MONTHLY INSPECTION	K SITE LOG	
		LOCATION:	Wheatfield, New York
PROJECT NAME: Gratwick-Riverside Park Site		DATE:	(MM DD YY)
INSPECTOR(S): DTyran S. Gardner	Action Required		Comments
Item Inspect For			
1. Perimeter Collection System/Off-Site Forcemain	1		
Manholes - cover on securely	None		
- condition of cover - condition of inside of manhole		·	6
- flow conditions			
Wet Wells - cover on securely		MH 15 WY	was above High water elve
- condition of cover - condition of inside of wet well	cl	oor was	
2. Landfill Cap			Same as previous months
Vegetated Soil Cover - erosion			Same as previous months
- bare areas - washouts - leachate seeps - length of vegetation - dead/dying vegetation			
- leachate seeps		<u> </u>	
- length of vegetation			
- dead/dying vegetation			
FORM 17			and the second s

CRA 7987 (25

Dave J Eyro

GRATWICK-RIVERSIDE PARK SITE						
	MONTHLY INSPECTION LOG					
PROJECT NAME: Gratwick-Ri	verside Park Site		LOCATION: Wheatfield, DATE: 0550 (MM DD	11 2		
INSPECTOR(S): D. Tyran	S. Gardner	Action Required	Comments			
Item 2. Landfill Cap (continued)						
Accession	bare areas, dead/dying veg.	None				
	potholes or puddles					
	obstruction					
Υ .	dead/dying vegetation change in water budget					
X	general condition of wetlands					
4. Other Site Systems	456	AI A				
Perimeter Fence	integrity of fence					
	integrity of locks placement and condition of					
	signs					
EORM 17						

Davel Fran

		GR	ATWICK-RIVERSIDE PARK MONTHLY INSPECTION L	K SITE LOG				
PRC	OJECT NAME: Gratwick-I			LOCATION: DATE:	Wheatfield, New York O 5 3 O 1 2 (MM DD YY)			
INSI	PECTOR(S):	Inspect For	Action Required		Comments			
4 × × × ×	o : 1- Outlate	nued) sediment build-up erosion condition of erosion protection flow obstructions dead/dying vegetation cable concrete/gabion mats and riprap	None					
XXXX	Culverts	sediment build-up erosion condition of erosion protection flow obstructions	Large tree in from	Nt of Ri	wer North			
FORM	Gas Vents Wells	intact / damage locks secure	None V					

Dave J yra

APPENDIX B

QA/QC REVIEWS

- GROUNDWATER EFFLUENT, SEPTEMBER 2011
- GROUNDWATER EFFLUENT, MARCH 2012
- ANNUAL GROUNDWATER, MAY 2012

GROUNDWATER EFFLUENT, SEPTEMBER 2011

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Klaus Schmidtke

205

FROM:

Susan Scrocchi/bjw/9

REF. NO.:

7987DM-95

DATE:

November 17, 2011

E-Mail and Hard Copy if Requested

RE:

Analytical Results and QA/QC Review Wastewater Treatment Plant Sampling

September 2011

INTRODUCTION

One effluent sample was collected in support of the Wastewater Treatment Plant Sampling at the Gratwick-Riverside Park Site (Site) during September 2011. The sample was submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	$Methodology^1$
Site-Specific Volatile Organic Compounds (VOCs)	USEPA 624
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	USEPA 625
Target Compound List (TCL) Metals	USEPA 200.7
Mercury	USEPA 245.1
Sulfate	USEPA 300.0
Chloride	USEPA 300.0
Alkalinity	SM 2320B
Nitrate	USEPA 353.2
Sulfide	SM 4500-S F
Total Dissolved Solids (TDS)	SM 2540C
Total Hardness	SM 2340C

The analytical results are summarized in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the following documents:

- i) "USEPA Contract Laboratory National Functional Guidelines for Organic Data Review" (October 1999)
- ii) "National Functional Guidelines for Inorganic Data Review" (February 1994)

[&]quot;Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983 and "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times.

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters and all results were non-detect for the compounds of interest indicating that no compounds were introduced to the samples during preparation and/or analysis.

Blank spikes (BS) were prepared and analyzed for all parameters. All recoveries were acceptable indicating good analytical accuracy and precision.

A matrix spike (MS) using this investigative sample was not requested.

CONCLUSION

Based on the preceding assessment, the data were acceptable for use without qualification.

TABLE 1

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING GRATWICK-RIVERSIDE PARK SITE SEPTEMBER 2011

	Sample Location: Sample ID: Sample Date:	Effluent GRP 9/15/2011
Parameters	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	μg/L	5.0 U
1,1-Dichloroethane	μg/L	5.0 U
1,2-Dichloroethane	μg/L	5.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	2 5 U
Acetone	μg/L	2 5 U
Benzene	μg/L	5.0 U
Chlorobenzene	μg/L	5.0 U
Ethylbenzene	$\mu \mathrm{g}/\mathrm{L}$	5.0 U
Methylene chloride	$\mu \mathrm{g}/\mathrm{L}$	5.0 U
Styrene	μg/L	5.0 U
Tetrachloroethene	$\mu \mathrm{g}/\mathrm{L}$	5.0 U
Toluene	μg/L	11
trans-1,2-Dichloroethene	$\mu \mathrm{g}/\mathrm{L}$	5.0 U
Trichloroethene	μg/L	20
Vinyl chloride	μg/L	5.0 U
Xylenes (total)	μg/L	10 U
Semi-volatile Organic Compounds		
1,2-Dichlorobenzene	μg/Ľ	0.15 U
1,4-Dichlorobenzene	μg/L	1.7
2,4-Dimethylphenol	μg/L	2.5
2-Methylphenol	μg/L	0.22 U
4-Methylphenol	μg/L	0.62 U
Di-n-octyl phthalate (DnOP)	μg/L	4.6 U
Naphthalene	μg/L	0.080 U
Phenol	μg/L	0.12 U
Metals		
Aluminum	mg/L	0.20 U
Antimony	mg/L	0.020 U
Arsenic	mg/L	0.010 U
Barium	mg/L	0.063
Beryllium	mg/L	0.0020 U
Cadmium	mg/L	0.0010 U
Chromium	mg/L	0.0040 U

TABLE 1

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING GRATWICK-RIVERSIDE PARK SITE SEPTEMBER 2011

	Sample Location: Sample ID: Sample Date:	Effluent GRP 9/15/2011
Parameters	Units	
Metals (Cont'd.)		
Copper	mg/L	0.010.U
Iron	mg/L	0.050 U
Lead	mg/L	0.0050 U
Magnesium	mg/L	1.6
Manganese	mg/L	0.0030 U
Mercury	mg/L	0.00020 U
Nickel	mg/L	0.010 U
Selenium	mg/L	0.015 U
Silver	mg/L	0.0030 U
Sodium	mg/L	267
Zinc	mg/L	0.010 U
General Chemistry		
Alkalinity, bicarbonate	mg/L	5.0
Alkalinity, total (as CaCO3)	mg/L	30.5
Ammonia	mg/L	1.12
Biochemical oxygen demand (BOD)	mg/L	22
Chemical oxygen demand (COD)	mg/L	28
Chloride	mg/L	425
Cyanide (total)	mg/L	0.005 U
Hardness, carbonate	mg/L	244
Nitrate (as N)	mg/L	0.050 U
Oil and grease	mg/L	0.10 U
pH (water)	s.u.	9.75
Phenolics (total)	mg/L	0.009 U
Phosphorus	mg/L	0.17
Sulfate	mg/L	150
Sulfide	mg/L	4.8
Total dissolved solids (TDS)	mg/L	1030
Total kjeldahl nitrogen (TKN)	mg/L	1.68
Total organic carbon (TOC)	mg/L	7.2
Total suspended solids (TSS)	mg/L	3

Notes:

U - Not present at or above the associated value.

GROUNDWATER EFFLUENT, MARCH 2012

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Klaus Schmidtke

FROM:

Susan Scrocchi/bjw/10

REF. NO.:

7987DM-95

DATE:

June 22, 2012

E-Mail and Hard Copy if Requested

RE:

Analytical Results and QA/QC Review Wastewater Treatment Plant Sampling

March 2012

INTRODUCTION

One effluent sample was collected in support of the Wastewater Treatment Plant Sampling at the Gratwick-Riverside Park Site (Site) during March 2012. The sample was submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	$Methodology^1$
Site-Specific Volatile Organic Compounds (VOCs)	USEPA 624
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	USEPA 625
Target Compound List (TCL) Metals	USEPA 200.7
Mercury	USEPA 245.1
Sulfate	USEPA 300.0
Chloride	USEPA 300.0
Alkalinity	SM 2320B
Nitrate	USEPA 353.2
Sulfide	SM 4500-S F
Total Dissolved Solids (TDS)	SM 2540C
Total Hardness	SM 2340C

The analytical results are summarized in Table 1. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the following documents:

- i) "USEPA Contract Laboratory National Functional Guidelines for Organic Data Review" (October 1999)
 - ii) "National Functional Guidelines for Inorganic Data Review" (February 1994)

[&]quot;Methods for Chemical Analysis of Water and Wastes", United States Environmental Protection Agency (USEPA) 600/4-79-220, March 1983 and "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992.

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times.

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters and all results were non-detect for the compounds of interest indicating that no compounds were introduced to the samples during preparation and/or analysis.

Blank spikes (BS) were prepared and analyzed for all parameters. All recoveries were acceptable indicating good analytical accuracy and precision.

A matrix spike (MS) using this investigative sample was not requested.

CONCLUSION

Based on the preceding assessment, the data were acceptable for use without qualification.

TABLE 1

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING MARCH 2012

	Sample Location: Sample ID: Sample Date:	Effluent GRATWICK RIVERSIDE 3/8/2012
Parameters	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	μg/L	5.0 U
1,1-Dichloroethane	μg/L	5.0 U
1,2-Dichloroethane	μg/L	5.0 U
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	25 U
Acetone	μg/L	25 U
Benzene	μg/L	5.0 U
Chlorobenzene	μg/L	5.0 U
Ethylbenzene	μg/L	5.0 U
Methylene chloride	μg/L	5.0 U
Styrene	μg/L	5.0 U
Tetrachloroethene	μg/L	5.0 U
Toluene	μg/L	15
trans-1,2-Dichloroethene	μg/L	5.0 U
Trichloroethene	μg/L	43
Vinyl chloride	μg/L	5.0 U
Xylenes (total)	μg/L	17
Semi-volatile Organic Compounds		
1,2-Dichlorobenzene	μg/L	0.84
1,4-Dichlorobenzene	μg/L	3.6
2,4-Dimethylphenol	μg/L	7.4
2-Methylphenol	μg/L	0.91
4-Methylphenol	μg/L	3.1
Di-n-octyl phthalate (DnOP)	μg/L	4.6 U
Naphthalene	μg/Ĺ	0.57
Phenol	μg/L	0.12 U
Metals		
Aluminum	mg/L	0.20 U
Antimony	mg/L	0.020 U
Arsenic	mg/L	0.010 U
Barium	mg/L	0.083
Beryllium	mg/L	0.0020 U
Cadmium	mg/L	0.0010 U
Chromium	mg/L	0.00 4 0 U
Copper	mg/L	0.010 U
Iron	mg/L	0.050 U

TABLE 1

ANALYTICAL RESULTS SUMMARY WASTEWATER TREATMENT PLANT SAMPLING MARCH 2012

Sample Location:

Effluent

	Sumple Location.	Lymeni		
	Sample ID:	GRATWICK RIVERSIDE		
	Sample Date:	3/8/2012		
Parameters	Units			
	•			
Lead	mg/L	0.0050 U		
Magnesium	mg/L	2.2		
Manganese	mg/L	0.0030 U		
Mercury	mg/L	0.00020 U		
Nickel	mg/L	0.010 U		
Selenium	mg/L	0.015 U		
Silver	${\sf mg/L}$	0.0030 U		
Sodium	mg/L	380		
Zinc	mg/L	0.010 U		
General Chemistry				
	17	0.0		
Alkalinity, bicarbonate	mg/L	8.0		
Alkalinity, total (as CaCO3)	mg/L	32.0		
Ammonia	mg/L	1,68		
Biochemical oxygen demand (BOD)	mg/L	21		
Chemical oxygen demand (COD)	mg/L	33		
Chloride	mg/L	551		
Cyanide (total)	mg/L	0.005		
Hardness, carbonate	mg/L	268		
Nitrate (as N)	mg/L	0.050 U		
Oil and grease	mg/L	0.20		
pH (water)	s.u.	10.51		
Phenolics (total)	mg/L	0.009		
Phosphorus	mg/L	0.09		
Sulfate	mg/L	191		
Sulfide	mg/L	4.0		
Total dissolved solids (TDS)	mg/L	1280		
Total kjeldahl nitrogen (TKN)	mg/L	2.24		
Total organic carbon (TOC)	mg/L	6.9		
Total suspended solids (TSS)	mg/L	4		
Volatile suspended solids	mg/L	2		

Notes:

- J Estimated concentration.
- U Not present at or above the associated value.
- -- Not analyzed.

ANNUAL GROUNDWATER, MAY 2012

2055 Niagara Falls Blvd., Suite #3 Niagara Falls, New York 14304

Telephone: (716) 297-6150 Fax: (716) 297-2265

www.CRAworld.com

MEMORANDUM

To:

Klaus Schmidtke

REF. NO.:

007987

FROM:

Susan Scrocchi/bjw/11

DATE:

June 22, 2012

E-Mail and Hard Copy if Requested

RE:

Analytical Results and QA/QC Review

Annual Groundwater Sampling Gratwick-Riverside Park Site

May 2012

INTRODUCTION

Fourteen (14) samples, including one field duplicate and one trip blank, were collected in support of the Annual Groundwater Sampling at the Gratwick-Riverside Park Site (Site) during May 2012. Samples were submitted to Test America Laboratories (TA) in Amherst, New York, and analyzed for the following:

Parameter	Methodology	
Site-Specific Volatile Organic Compounds (VOCs)	SW-846 8260 ¹	
Site-Specific Semi-Volatile Organic Compounds (SVOCs)	SW-846 8270 ¹	

The sample collection and analysis summary is presented in Table 1. The analytical results are summarized in Table 2. The quality assurance/quality control (QA/QC) criteria by which these data have been assessed are outlined in the analytical methods and the "National Functional Guidelines for Organic Data Review" (October 1999).

Data assessment was based on information obtained from final data sheets, blank data, duplicate results, surrogate recoveries, and spike recoveries.

QA/QC REVIEW

All samples were prepared and/or analyzed within the method specified holding times. All samples were received in good condition and properly preserved.

[&]quot;Test Methods for Solid Waste Physical/Chemical Methods", SW-846, 3rd Edition, September 1986 (with all subsequent revisions).

Surrogates were added to all samples, blanks, and QC samples prior to extraction and/or analysis for VOCs and SVOCs. All VOC and SVOC surrogate recoveries met the method criteria indicating acceptable analytical efficiency.

Method blanks were extracted and/or analyzed for all parameters. All method blank results were non-detect for the compounds of interest indicating acceptable analytical procedures.

A trip blank was submitted with the samples for VOC analysis. All VOC results were non-detect for the compounds of interest indicating contamination was not a problem during transport and analysis.

Blank spikes (BS) were prepared and analyzed for all parameters. All recoveries showed acceptable analytical accuracy.

A matrix spike/matrix spike duplicate (MS/MSD) was prepared and analyzed for VOCs and SVOCs. All recoveries were acceptable indicating adequate analytical accuracy and precision.

A field duplicate was submitted "blind" to the laboratory for analysis as specified in Table 1. All the results showed good precision outside of the estimated regions of detection, indicating acceptable analytical and sampling precision.

CONCLUSION

Based on the preceding assessment, the data were acceptable without qualification.

TABLE 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2012

Analysis/Parameters

Sample I.D.	Location I.D.	Collection Date (mm/dd/yy)	Collection Time (hr:min)	Selected VOCs	Selected SVOCs	Comments
WG-7987-053012-001	OGC4	05/30/12	10:35	Χ	Χ	
WG-7987-053012-002	MW9	05/30/12	11:25	χ	Χ	
WG-7987-053012-003	OGC8	05/30/12	12:15	X	Χ	
WG-7987-053012-004	MW8	05/30/12	13:40	X	X	
WG-7987-053012-005	OGC3	05/30/12	14:20	χ	X	
WG-7987-053012-006	OGC1	05/30/12	11:20	X	Χ	
WG-7987-053012-007	MW6	05/30/12	11:50	X	Χ	
WG-7987-053012-008	OGC5	05/30/12	12:15	X	X	
WG-7987-053012-009	OGC6	05/30/12	12:50	X	Χ	
WG-7987-053012-010	MW7	05/30/12	13:15	X	X	
WG-7987-053012-011	OGC2	05/30/12	13:30	X	Χ	
WG-7987-053012-012	OGC7	05/30/12	14:05	Χ	X	
WG-7987-053012-013	OGC7	05/30/12	14:30	Χ	X	Field duplicate of WG-7987-053012-012
TB-7987-053012	Trip Blank	05/30/12	-	Χ.		Trip Blank

Notes:

VOCs - Volatile Organic Compounds. SVOCs - Semi-Volatile Organic Compounds.

TABLE 2

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2012

	Sample Location: Sample ID: Sample Date:	MW6 WG-7987-053012-007 5/30/2012	MW7 WG-7987-053012-010 5/30/2012	MW8 WG-7987-053012-004 5/30/2012	MW9 WG-7987-053012-002 5/30/2012	OGC1 WG-7987-053012-006 5/30/2012	OGC2 WG-7987-053012-011 5/30/2012	OGC3 WG-7987-053012-005 5/30/2012
	•					•		
Parameters	Units						•	
Volatile Organic Compounds								
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	5.0 U	5.0 U	5.0 U				
Acetone	μg/L	5.0 U	5.0 U	5.0 U				
Benzene	μg/L	0.70 U	0.70 U	2.1	0.44 J	0.70 U	0.70 U	0.45 J
Chlorobenzene	μg/L	1.0 U	1.0 U	3.4	2.3	1.0 U	1.0 U	1.0 U
Ethylbenzene	μg/L	1.0 U	1.0 U	4.4	0.74 J	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	1.0 U	1.0 U	1.0 U				
Tetrachloroethene	μg/L	1,0 U	1.0 U	7.7	0.54 J	1.0 U	1.0 U	1.0 U
Toluene	μg/l.	1.0 U	1.0 U	6.5	3.5	1.0 U	1.0 U	0.88 J
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	3.3	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	μg/L	0.66 J	1.0 U	22	2,3	1.0 U	1.0 U	1.8
Vinyl chloride	μg/L	1.0 U	1.0 U	1.0 U				
Xylenes (total)	μg/L	2.0 U	2.0 U	16	1.5 J	2.0 U	2.0 U	0.71 J
Semi-volatile Organic Compounds								
1,2-Dichlorobenzene	μg/L	9.4 U	9.4 U	1.3 J	1.1 J	9.4 U	9.4 Ü	0.61 J
1,4-Dichlorobenzene	μ g/L	2.9 J	9.4 U	6.9 J	1.8 J	9.4 U	9.4 U	9.5 U
2,4-Dimethylphenol	μg/L	1.4 J	9.4 U	16	47	9.4 U	9.4 U	5.8 J
2-Methylphenol	μ g /L	0.71 J	9.4 U	20	11	9.4 U	9.4 U	35
4-Methylphenol	μg/L	1.3 J	9.4 U	30	230	0.46 J	9.4 U	11
Di-n-octyl phthalate (DnOP)	μg/L	9.4 U	9.4 U	9.5 U	9.6 U	9,4 U	9.4 U	9.5 U
Naphthalene	μg/L	3.9 J	9.4 U	9.5 U	9.6 U	9.4 U .	9.4 U	9.5 U
Phenol	μg/L	9.4 U	9.4 U	4.0 J	9.3 J	9.4 U	9.4 U	53

TABLE 2

ANALYTICAL RESULTS SUMMARY ANNUAL GROUNDWATER SAMPLING GRATWICK-RIVERSIDE PARK SITE MAY 2012

	Sample Location: Sample ID; Sample Date:	OGC4 WG-7987-053012-001 5/30/2012	OGC5 WG-7987-053012-008 5/30/2012	OGC6 WG-7987-053012-009 5/30/2012	OGC7 WG-7987-053012-012 5/30/2012	OGC7 WG-7987-053012-013 5/30/2012 (Duplicate)	OGC8 WG-7987-053012-003 5/30/2012
Parameters	Units						
Volatile Organic Compounds							4
2-Butanone (Methyl ethyl ketone) (MEK)	μg/L	5.0 U	5.0 U				
Acetone	μg/L	5.0 U	5.0 U				
Benzene	μg/L	0.70 U	0.58 J	1.9	0.70 U	0.70 U	0.70 U
Chlorobenzene	μg/L	1.0 U	1.0 U				
Ethylbenzene	μg/L	1.0 U	1.0 U	2.0	1.0 U	1.0 U	1.0 U
Methylene chloride	μg/L	1.0 U	1.0 U				
Tetrachloroethene	μg/L	1.0 U	1.0 U	100	0.64 J	0.69 J	1.3
Toluene	μg/L	1.0 U	1.0 U	16	2.3	2.4	2.6
trans-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	4.8	1.8	2.0	1.0 U
Trichloroethene	μg/L	1.0 U	1.0 U	92	7.4	7.7	2.7
Vinyl chloride	μg/L	1.0 U	1.0 U	1.0 U	1.6	1.6	1.0 U
Xylenes (total)	μg/L	2.0 U	2.0 U	8.9	2.6	2.8	0.86 J
Semi-volatile Organic Compounds							
1,2-Dichlorobenzene	μg/L	9.6 U	9.6 U	9.4 U	9.5 U	9.4 U	9.5 U
1,4-Dichlorobenzene	μg/L	9.6 U	9.6 U	9.4 U	9.5 U	9.4 U	9.5 U
2,4-Dimethylphenol	μg/L	9.6 U	9.6 U	9.4 U	· 9.5 U	9.4 U	0.52 J
2-Methylphenol	μg/L	9.6 U	9.6 U	16	9.5 U	9.4 U	2.0 J
4-Methylphenol	μg/L	2.8]	9.6 U	1.1 J	9.5 U	9.4 U	6.2 J
Di-n-octyl phthalate (DnOP)	μg/L	9.6 U	9.6 U	9.4 U	9.5 U	9.4 U	9.5 U
Naphthalene	μg/L	9.6 U	0.85 J	1.1 J	9.5 U	9.4 U	9.5 U
Phenol	μg/L	0.97 J	- 9.6 U	1.5 J	9.5 U	9.4 U	9.5 U

Notes:

J - Estimated concentration.

U - Not present at or above the associated value.