

3855 NORTH OCOEE STREET SUITE 200, CLEVELAND, TN 37312 OFFICE: (423) 336-4000 FAX: (423) 336-4166

January22, 2009

Mr. Michael J. Hinton, P.E. Environmental Engineer II New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203-2999

Subject:

Charles Gibson Site

NYSDEC Registry No. 9-32-063 Sixteenth Annual Report - 2008

Dear Mr. Hinton:

As requested by NYSDEC I have attached one hard copy and one electronic version (in Adobe PDF format) of the subject report. This report summarizes the activities performed during 2008 for the operation and maintenance of the containment remedy for the site and for the ground water monitoring program outside of the containment area.

The following major activities occurred during 2008.

- Semi-annual groundwater sampling events were performed during April and September, 2008.
- Annual sediment sampling was performed in September.
- Annual sampling and analysis of leachate was completed in April.
- 40,223 gallons of leachate were discharged to the City of Niagara Falls Wastewater Treatment Facility.
- An improved automated level control was installed in the sump.
- Sump intake level was lowered by approximately one foot to enhance the site inward hydraulic gradient.

The Semi-Annual Ground Water Sampling Laboratory Report and Annual Sediment Sampling Laboratory Report - September 2008, are included as Appendix A to this report. The Data Evaluation Narrative is also included in Appendix A.

Please direct any comments to me at 423/336-4587. Thank you.

Sincerely,

OLIN CORPORATION

Michael J. Belloth

Principal Environmental Specialist

cc: C. M. Richards via e-mail

Brian Vain - Olin Niagara Falls via e-mail

Mike Walker - Sevenson Environmental Services via e-mail

Matthew Forcucci - NYSDOH Buffalo

SIXTEENTH ANNUAL REPORT 2008

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063

PREPARED BY OLIN CORPORATION

JANUARY - 2009

Introduction

This is the sixteenth Annual Report from Olin Corporation (Olin) for the Charles Gibson Site (Pine and Tuscarora Site), located in Niagara Falls, New York. This report summarizes activities performed during 2008 for the operations and maintenance of the containment remedy for the Site and the ground water monitoring program outside of the containment area. This year's data for the Semi-Annual Ground Water and Annual Sediment Sampling, collected during September 2008 has been incorporated as part of the Annual Report.

Background

The Charles Gibson Site (Site) is located approximately four miles east of downtown Niagara Falls, New York. The Site comprises an area of approximately two acres of land in Niagara County bordered on the south by private property, on the west by Tuscarora Road and on the north and east by Cayuga Creek. The Site is a fully remediated waste site currently surrounded by a fence.

Construction of the remedy on the Site concluded in 1990. The remedy consisted of rerouting Cayuga Creek around and away from the waste, installation of a fully circumscribed soil-bentonite slurry wall barrier and installation of a double flexible membrane liner cap with a perimeter collection drain system. The first year of operations and maintenance (O&M) of the containment remedy for the Site and the ground water monitoring program began in 1993.

Waters collected in the Site perimeter collection drain system are managed by direct discharge to the City of Niagara Falls Wastewater Treatment Facility. The Site is classified as a commercial/small industrial/residential user (CSIRU) and does not require a permit.

Reports are submitted as appropriate to the New York State Department of Environmental Conservation (NYSDEC). Records of all environmental monitoring are maintained by Olin Corporation. These records are available for review and inspection by the State.

Discussion

The Stipulation and Consent Judgment, CIV 83-1400, and its modification, CIV 83-1400C, (the Agreement) listed the following elements to be included in the required remediation plan for the Site (Plan C):

- 1. Quarterly ground water monitoring for 30 years (revised in 1997 to semiannual);
- 2. Sample collection and analysis of creek water and of creek sediments annually for 30 years. During 1993 the creek water sampling was discontinued and sediment sampling was modified to collection during the low flow/dry season;
- 3. Establishment of an upward hydraulic gradient within the containment area, unless Olin can demonstrate by clear and convincing evidence the establishment of the same is unnecessary or inappropriate to the accomplishment of the goals set forth in paragraph 4(a) of the stipulation;
- 4. Acquisition by Olin of easements which would permit the required monitoring;
- 5. Provisions for protection of the Site from disturbance which might increase the threat of contamination migration, including regular inspection of the site;
- 6. Provisions for the design and implementation of a contingency plan in the event that migration of the contaminants occurs despite the implementation of the containment remediation plan;
- 7. Containment or removal of the contaminants deposited or caused to be deposited by Olin which have migrated off-Site consistent with the goals of paragraph 4(a);

8. Fiscal arrangements, guarantees, or the provision of financial assurances sufficient to ensure that Olin possess the financial ability to perform the containment remedial plan and monitoring. Olin's performance has been demonstrated and the financial assurance notification is no longer required.

The Agreement includes a provision in the event that after seven years following the delivery of a Release of Liability (issued December 15, 1992), Olin demonstrates that conditions at the Site are such that the stated frequency or duration of the requirements of elements 1, 2, or 5 are no longer necessary to determine whether the remediation is effective, Olin may reduce the frequency and duration of such monitoring or inspections. Modifications are noted in the discussion above.

The approved Operation and Maintenance Manual (O&M Manual (June 2000)) provides details on the O&M of the containment remedy on the northern portion of the site and includes provisions for site control and environmental monitoring. The O&M Manual (June 2000) reflects current activities being performed for the operation and maintenance of the containment remedy for the Site and the ground water monitoring program outside the containment area. The yearly inspection and sampling schedule for the Site is included in *Attachment 1*.

The O&M Manual (2000) addresses the required elements as set forth in the Agreement. Element 4, acquisition of easements, is a completed task. Element 6, a contingency plan, is addressed in the O&M Manual. Element 7, containment of the contaminants, has been achieved and is being monitored for effectiveness. Element 8, provision of financial assurance, is being met. This report discusses elements 1, 2, 3, and 5 of the Agreement.

Element 1) Semi-annual ground water monitoring. Monitor wells MW-A3, MW-1R, MW-2, MW-4, and MW-5 were sampled on April 03 and on September 11 for the site compounds alpha-BHC, beta-BHC, gamma-BHC, delta-BHC. Analyses were performed using SW-846 Method 8080. During 2008, sampling results for all BHC isomers in all wells were either undetected (U) or tentatively detected (J) at levels below 0.1 ug/l. Since 2000, monitor wells have been sampled for hexachlorobenzene (HCB) biennially. This sampling is done in even years, which is why it was sampled for in 2008. The next HCB sampling is scheduled for September 2010. Monitoring locations are shown on *Figure 1*.

A historic summary of semi-annual ground water monitoring data from 2000 through 2008 is provided in *Table 1. Table 1A* shows groundwater monitoring data for 2008. Since 2003, concentrations of site compounds being monitored have been undetected or estimated at concentrations below the detection levels, in all monitor wells.

Element 2)Annual creek sediment monitoring. Annual sediment sampling was performed on September 11, 2008. A historic summary of annual sediment sampling results is presented in **Table 2**. Sediment monitoring was modified in 2001 from collecting a grab sample to placement of sediment traps at the upstream and downstream locations. Sediment traps were installed for the first time during the April 2001 sampling event. All detections in 2008 are higher than detections since 2001, for both upstream and downstream samples. An investigation of the laboratory and field sampling QC does not indicate that the increased levels are attributable to laboratory or sampling error. In 2009, sampling duplicates will be taken to further check the validity of the 2008 results.

The Semi-Annual Ground Water Sampling Laboratory Report and Annual Sediment Sampling Laboratory Report - September 2008, are included as Appendix A to this report. The Data Evaluation Narrative is also included in Appendix A.

Charles Gibson Site NYSDEC Registry No. 9-32-063 Sixteenth Annual Report -2008

Establishment of an upward (inward) hydraulic gradient. Quarterly ground water elevations were monitored at piezometer pairs P1/P2, P3/P4, and P5/P6 to document an inward hydraulic gradient in the containment area of the site. The data collected during each event are recorded on the Sampling Field Form. The ground water elevations from the first quarter were not taken during 2008. An evaluation of data from the piezometer pairs at the Site indicates that an inward hydraulic gradient is being maintained year round in two of the three piezometer pairs. The third pair (P1/P2) has an inward gradient during the last two quarters. We have adjusted pump intake levels down on Manhole B by 1.07 feet during 2008 to ensure the inward gradient. Water level elevations in Manhole A and Manhole B are monitored quarterly and are consistently below the 565 ft-msl level. The new level at which the pump turns on is at 563.40 feet. All data are shown in **Table 3**.

There were 40,223 gallons of leachate discharged to the POTW during 2008. A summary of yearly discharge volumes for the Site is provided in *Table 4*. Since 1992 a total of 1,044,862 gallons of leachate were removed from the Site. Annual leachate sampling and analysis for BHC isomers began in 2000 to replace the POTW sampling that was previously performed. HCB is monitored every five years (started in 2000). The sampling location is Manhole B. Analytical results for 2008 are provided in *Table 5*. The next scheduled sampling is 2010.

Element 5) Site protection. Quarterly site inspections were conducted to identify any potential issues with the physical structures and to ensure that the remedial measure components are operating effectively. Routine site maintenance included fertilizing, mowing, weeding and mulching the site area.

Other non-routine repairs completed in 2008 include:

- Repairing wind damaged wooden fence facing Tuscarora Road.
- General site conditions and security status were noted on the Site Inspection Form and addressed as appropriate.

All inspection forms and field notes are included in Appendix B.

Conclusions/Recommendations:

The work performed for the Site during 2008 was done in accordance with the approved O&M Manual (2000). Ground water monitoring indicates there are no increased concentrations of the Site compounds being monitored. Evaluation of the ground water data generated during the 2008 monitoring year indicates that the containment remedy continues to be effective. An evaluation of data from the piezometer pairs at the Site indicates that an inward hydraulic gradient has been established in the containment area of the site, due to lowering of the sump intake level. This gradient improvement (P1/P2 area) will be monitored and enhanced as necessary. Data from 2008 sediment trap monitoring showed increases at both upstream and downstream points relative to prior monitoring episodes. Duplicate sediment analyses will be performed in 2009 to monitor this trend.

Figure 1 Site Aerial and Monitoring Points

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

TABLES

TABLE 1 CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL SUMMARY SEMI-ANNUAL GROUND WATER SAMPLING 2001-2008

MONITOR WELL: MW-A3

	2	2001	2,	2002	2003	33	2	2004	20	2005	2	2006	7	2007	2(2008
Parameter	April	October	April	September												
Alpha-BHC	.050U	.050U	N050'	.029J	.048U	.035J	.048U	.047U	.047U	.048U	.049U	.032	.048U	,	.048U	.0480
Beta-BHC	.050U	.050U	.050U	.016J		.059U	.048U	.0470	.047U	.048U	.049U	.014	.048U		.048U	.048U
Gamma-BHC	.050U	.050U	.050U	.050U	.0480	U630.	.048U	U47U	.047U	.048U	.049U	.048U	.048U	,	.0480	.048U
Delta-BHC	.050U	.050U	N050'	.050U	.048U	.059U	.048U	.047U	.047U	.048U	.0490	.03	.048U		.0480	.048U
lexachlorobenzene	100	A.	NR	NR.	NR.	NR.	100	N.	NR.	NR.	NR.	ō	ď	ď	7 1	αN

MONITOR WELL: MW-1R

	20	2001	20	2002	2003	33	20	2004	2005	35	2	2006	2	2007	2	2008
Parameter	April	October	April	September	April	September	April	September	April	September	April	September	April	September	April	September
Alpha-BHC	.050U/.050U	090'/660'	190./070.	.055/.030J	U310./L410.	.052U	.049U/.049	.026J/.048U	.040J/.049U	.047U/.048U	.037J	.032J	.041	.029J	0323	.015
Beta-BHC	.12J/.050U	.19/.15	.10/.050U	.13/.095	.053/.052	.052U	.049U/.065	.090U/.024J	.050U/.049U	.047U/.048U	.036J	.022J	.035	.024J	.049U	.050
Gamma-BHC	.050U/.050U	U830/LE90.	.050U/.050U	.055U	.049U	.052U	.049U/.049U	.048U/.048U	.036J/.049U	.047U/.048U	.050U	.048U	0480	.048U	.023	.05U
Delta-BHC	.050U/.050U	.061U/.058U	.050U/.053	.055U	.0490	.052U	.049U/.049	.048U/.048U	.050U/.049U	.047U/.048U	.050U	.034J	.0480	.048U	.025J	.05U
Hexachlorobenzene	10U/10U	NR	NR	NR	NR.	Æ	A.R.	N.R.	NR	N.	Z,	1001	N.	NR	90	A.

MONITOR WELL: MW-2

	20	2001	20	2002	2003	33	20	2004	20	2005		2006	2	2002	Ž	2008
Parameter	April	October	April	September												
Alpha-BHC	.050U	.054U	.050U	.050U	N050'	U030.	.050U	.050U	.050U	.050	.050U	.0480	.048U	.047U	,038	U47V
Beta-BHC	.050U	.054U	N050'	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.0480	.048U	.047U	.056U	.047U
Gamma-BHC	.050U	.054U	.050U	.050U	.050U	.030	.050U	.030	.0500	.050U	.050U	.048U	.048U	.047U	.056U	.047U
Delta-BHC	.050U	.054U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.050U	.030J	.048U	.047U	.034.	0470
Hexachlorobenzene	100	æ	NR	RN	NR.	N.	1001	N.	A.N	NR.	NR.	100	N.	NA.	51	X.

Notes: Concentration in ug/l
insufficient sample
U Undetected
J Estimated value
NR Not required

TABLE 1 CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL SUMMARY SEMI-ANNUAL GROUND WATER SAMPLING 2001-2008

MONITOR WELL: MW-4

	2001	101	2	2002	2	2003	2	2004	ಸ	2005	2	2006	2	2007	2	2008
Parameter	April	October	April	September												
Alpha-BHC	.050U	L6900.	.050U	.050U	.049U	0.056	.048U	.048U	.047U	.047U	.0490	.0413	.042	.025J	03	0480
Beta-BHC	.050U	.047	.041J	.033	.049U	.026J	.048U	.037J	.047U	.036J	.0223	.044	.033	0470	037.1	0481
Gamma-BHC	.050U	U030.	L170.	.050U	.049U	.033	.048U	.048U	.047U	.047U	0490	0480	0481	04711	0511	0481
Delta-BHC	.050U	.050U	.050	.050U	.0490	.050U	.048U	.048U	.0470	.047U	0307	036,1	0481	04711	024.1	0481
Hexachlorobenzene	100	N.	AR	R.	NR.	W.	NR	76	AR	NR	N.	100	NR	NR	5115	NR

MONITOR WELL: MW-5

	2001	01	Ø	2002	2	2003	,	2004	Ñ	2005	2	2006	,	2007	20	2008
Parameter	April	October	April	September	April	September	April	Sentember								
Alpha-BHC	.050U	.013	.050U	.050U	.048U	.049U	.048U	.048U	.047U	.047UJ	.049U	.032.1	041.1	026.1	035.1	017.1
Beta-BHC	U030.	.0220	.050U	.050U	.048U	.0490	.048U	.0480	.047U	.04703	0490	015.1	025.1	04811	05211	04711
Gamma-BHC	.0500	.0550	.050U	.050U	.048U	.049U	.048U	.0480	.047U	047113	0491	04811	04711	04811	027.1	0181
Delta-BHC	.050U	.055U	.050U	.050U	.048U	.049U	.048U	.048U	.047U	04711,1	0491	030.1	04711	04811	031	0094.1
Hexachlorobenzene	100	NR.	N.	NR.	Æ	N.	100	S. S.	Ä	N.N.	NR.	aN	AN N	a a	- 15	aN

Notes: Concentration in ug/I
insufficient sample
U Undertected
J Estimated value
NR Not required

Table 1A Olin Corp. Gibson Site Groundwater Monitoring Data: 2008

Sample ID	Sample Date	CAS No	Parameter	Flags	Result	UM	Monitor Point
MW-1R-040308	4/3/2008	319-84-6	alpha-BHC	J	0.032	UG/L	Well
MW-1R-040308	4/3/2008	319-85-7	beta-BHC	U	0.049	UG/L	Well
MW-1R-040308	4/3/2008	319-86-8	delta-BHC	J	0.023	UG/L	Well
MW-1R-040308	4/3/2008	58-89-9	gamma-BHC	j	0.025	UG/L	Well
MW-1R-040308	4/3/2008	118-74-1	hexachlor	Ū	5	UG/L	Well
MW-1R-091108	9/11/2008	319-84-6	alpha-BHC	j	0.015	UG/L	Well
MW-1R-091108	9/11/2008	319-85-7	beta-BHC	Ū	0.05	UG/L	Well
MW-1R-091108	9/11/2008	319-86-8	delta-BHC	Ü	0.05	UG/L	Well
MW-1R-091108	9/11/2008	58-89-9	gamma-BHC	U	0.05	UG/L	Well
MW-2-040308	4/3/2008	319-84-6	alpha-BHC	J	0.038	UG/L	Well
MW-2-040308	4/3/2008	319-85-7	beta-BHC	Ü	0.056	UG/L	Well
MW-2-040308	4/3/2008	319-86-8	delta-BHC	Ū	0.056	UG/L	Well
MW-2-040308	4/3/2008	58-89-9	gamma-BHC	J	0.034		
MW-2-040308	4/3/2008	118-74-1	hexachlor	U	5	UG/L	Well
MW-2-091108	9/11/2008	319-84-6	alpha-BHC	U		UG/L	Well
MW-2-091108	9/11/2008	319-84-0	beta-BHC	U	0.047	UG/L	Well
MW-2-091108	9/11/2008	319-86-8			0.047	UG/L	Well
			delta-BHC	U	0.047	UG/L	Well
MW-2-091108	9/11/2008	58-89-9	gamma-BHC	U	0.047	UG/L	Well
MW-4-040308	4/3/2008	319-84-6	alpha-BHC	J	0.03	UG/L	Well
MW-4-040308	4/3/2008	319-85-7	beta-BHC	J	0.037	UG/L	Well
MW-4-040308	4/3/2008	319-86-8	delta-BHC	U	0.05	UG/L	Well
MW-4-040308	4/3/2008	58-89-9	gamma-BHC	J	0.024	UG/L	Well
MW-4-040308	4/3/2008	118-74-1	hexachlor	U	5	UG/L	Well
MW-4-091108	9/11/2008	319-84-6	alpha-BHC	U	0.048	UG/L	Well
MW-4-091108	9/11/2008	319-85-7	beta-BHC	U	0.048	UG/L	Well
MW-4-091108	9/11/2008	319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-4-091108	9/11/2008	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-5-040308	4/3/2008	319-84-6	alpha-BHC	J	0.035	UG/L	Well
MW-5-040308	4/3/2008	319-85-7	beta-BHC	U	0.052	UG/L	Well
MW-5-040308	4/3/2008	319-86-8	delta-BHC	J	0.027	UG/L	Well
MW-5-040308	4/3/2008	58-89-9	gamma-BHC	J	0.031	UG/L	Well
MW-5-040308	4/3/2008	118-74-1	hexachlor	U	5	UG/L	Well
MW-5-091108	9/11/2008	319-84-6	alpha-BHC	J	0.017	UG/L	Well
MW-5-091108	9/11/2008	319-85-7	beta-BHC	U	0.047	UG/L	Well
MW-5-091108	9/11/2008	319-86-8	delta-BHC	J	0.018	UG/L	Well
MW-5-091108	9/11/2008	58-89-9	gamma-BHC	J	0.0094	UG/L	Well
MW-7-040308	4/3/2008	319-84-6	alpha-BHC	J	0.029	UG/L	Well
MW-7-040308	4/3/2008	319-85-7	beta-BHC	U	0.052	UG/L	Well
MW-7-040308	4/3/2008	319-86-8	delta-BHC	Ū	0.052	UG/L	Well
MW-7-040308	4/3/2008	58-89-9	gamma-BHC	J	0.023	UG/L	Well
MW-7-040308	4/3/2008	118-74-1	hexachlor	Ü	5	UG/L	Well
MW-7-091108	9/11/2008	319-84-6	alpha-BHC	J	0.014	UG/L	Well
MW-7-091108	9/11/2008	319-85-7	beta-BHC	Ü	0.047	UG/L	Well
MW-7-091108	9/11/2008	319-86-8	delta-BHC	U	0.047	UG/L	Well
MW-7-091108	9/11/2008	58-89-9	gamma-BHC	U	0.047	UG/L	Well
MW-8-040308	4/3/2008	319-84-6	alpha-BHC	J	0.029	UG/L	Well
MW-8-040308	4/3/2008	319-85-7	beta-BHC	U	0.029	UG/L	Well
MW-8-040308	4/3/2008	319-86-8	delta-BHC	U	0.056	UG/L	Well
MW-8-040308	4/3/2008	58-89-9	gamma-BHC	U	0.056	UG/L	Well
MW-8-040308	4/3/2008	118-74-1	hexachlor	U			
MW-3-040308	4/3/2008	319-84-6	alpha-BHC	U	6	UG/L	Well
MW-3-040308	4/3/2008				0.048	UG/L	Well
MW-3-040308	4/3/2008	319-85-7	beta-BHC	U	0.048	UG/L	Well
		319-86-8	delta-BHC	U	0.048	UG/L	Well
MW-3-040308	4/3/2008	58-89-9	gamma-BHC	U	0.048	UG/L	Well
MW-3-040308	4/3/2008	118-74-1	hexachlor	U	5	UG/L	Well

TABLE 2 Charles Gibson Site Niagara Falls, New York

ANALYTICAL SUMMARY

Annual Cayuga Creek Sediment Sampling 2001 - 2008

UPSTREAM

	2001	2002	2003	2004	2005	2006	2007	2008
Parameter	October*	September						
Alpha- BHC	55	19/90	28/22J	80U/86J	23J	13	40	77
Beta- BHC	49	37/76	48/30	20J/190	36	34	4.8	69
Gamma- BHC	24	31/26	12J/28	23J/56J	15J	13	4.6	17J
Delta- BHC	3.3J	5.8U/1.6U	1.9J/26U	80U/38J	26U	3.9J	3.7	26U

DOWNSTREAM

	2001	2002	2003	2004	2005	2006	2007	2008
Parameter	October*	September						
Alpha- BHC	55	19/90	28/22J	80U/86J	23J	8.3	NS	5200
Beta- BHC	49	37/76	48/30	20J/190	36	22	NS	1000
Gamma- BHC	24	31/26	12J/28	23J/56J	15J	11	NS	66J
Delta- BHC	3.3J	5.8U/1.6U	1.9J/26U	80U/38J	26U	3.7J	NS	82J

Notes:

U Not Detected

J Estimated value

NS No sample in trap

* Sediment traps installed April 2001

Table 3

2008 Quarterly Groundwater Elevations Summary

Piezometer Pair	2/13/2008	Inward gradient	4/03/2008	Inward gradient	9/11/2008	Inward gradient	11/05/2008	Inward gradient
P1 outside P2 inside	N N A A	A V	565.44 565.50	Level	566.13 565.28	Inward	565.46 565.24	Inward
P3 outside P4 inside	A N	NA	567.55 565.44	Inward	566.31 565.20	Inward	566.52 565.17	Inward
P5 outside P6 inside	Z Z	ΝΑ	569.84 567.99	Inward	568.37 567.39	Inward	568.76 567.43	Inward
		Below 565 ft msl		Below 565 ft msl		Below 565 ft msl		Below 565 ft msl
Manhole A Manhole B	A A	A A	564.13 564.17	Yes	564.11 564.23	Yes	563.81 563.89	Yes Yes

Notes: Measurement units are in feet above MSL.
Piezometers P1, P3, P5 are outside the slurry wall.
Piezometers P2, P4, P6 are located within the containment area.
NA – Not Available

Manhole monitoring:

- Maintain water level below 565 feet to prevent hydrostatic pressure buildup under concrete slab.
 - Pump Manhole B as required to maintain an inward gradient.

Table 4 Olin Corp. Gibson Site Discharge Volumes

Summary of Yearly Discharge Volumes

Date Volume (gallons) 104,120 1991 1992 76,562 1993 77,797 1994 69,724 1995 56,940 77,512 1996 1997(*) 64,687 51,070 1998 1999 140,860 67,236 2000 2001 20,855 2002 0 2003 (1) 5230 2004 65,082 2005 51,115 52,891 2006 2007 22,958 40,223 2008 TOTALS 1,044,862

Monthly Discharge Volumes 2008

Month	Volume (gallons)
Jan	5,700
Feb	5,801
Mar	5,800
Apr	5,631
May	5,697
Jun	0
Jul	0
Aug	331
Sep	3,203
Oct	887
Nov	1,782
Dec	5,391
Total	40,223

Notes:

(*) Represents start of operation of direct discharge system

(1) Pumped during test of system on 4/13/2003

Table 5

Annual Manhole B Sampling

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL RESULTS SUMMARY ANNUAL LEACHATE SAMPLING

April 03, 2008

	MANHOLE B (MHB)
PARAMETER	
alpha-BHC	.03J
beta-BHC	.066
delta-BHC	.072
gamma-BHC	.019J
Hexachlorobenzene	NR

Notes:

U Undetected

J Estimated value

NR Not Required

Concentration in ug/l

Field blank was non-detect for all parameters of interest.

Data has been validated and judged acceptable as qualified.
Next hexachlorobenzene (HCB) sampling scheduled for October 2010

ATTACHMENT 1

INSPECTION AND SAMPLING SCHEDULE

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

GIBSON SITE NIAGARA FALLS, NEW YORK 2008 INSPECTION AND SAMPLING SCHEDULE

Quarterly Site Inspection (including Site Cover/Cap, Site Fence,

Creek Riprap, Site Structures, CPVC Drain/Sump

System).

Quarterly Piezometer and sump groundwater level elevation

measurements.

Semi-Annually Groundwater monitoring well sampling (April and

September) for BHC isomers.

Annually Cayuga Creek sediment sampling (September) for BHC

isomers.

Annually Leachate sample collection and analysis (Manhole B) for

BHC isomers (starting in 2000).

Annually Annual report to NYSDEC (1st Quarter).

Biennially Groundwater monitoring well sampling (starting in

April 2000) for HCB. The biennial sampling events following 2000 will alternate seasonally between April and September sampling. Next HCB sampling is

September 2010.

Every Five Years Leachate sample collection and analysis (Manhole B) (for HCB)

(starting in 2000). Next leachate sampling for HCB is 2010.

APPENDIX A

Data Evaluation Narratives
(April and September)
and
Summary Analytical Report
and
Chain of Custody Forms

2008

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

Data Evaluation Narrative

Charles Gibson – April 2008 Groundwater Sampling Event

Matrix: Groundwater

SDG: A-08-3411 – Test America Laboratories (STL), Amherst, NY

Deliverables

The data packages as submitted to Olin Corporation are complete as stipulated under the Quality Assurance Project Plan (QAPP) for United States Environmental Protection Agency (USEPA) Methods 8081A and 8270.

Sample Integrity

Samples within this sample delivery group (SDG) were submitted to the Test America laboratory in Amherst, NY (Buffalo) for chlorinated pesticide analyses. The sample cooler received at the laboratory measured 2.0° C which is within the required limit of 4° C \pm 2° . The proper bottles and preservatives were used, the Chain of Custody was properly relinquished, and the correct analytical method was employed.

Sample Identification

This SDG contains the following water, soil and quality control (QC) samples, collected in April 2008:

SDG A-08-3411

Sample ID	Sample ID	Sample ID	Sample ID	Sample ID
MHB-043008	MW-1R-040308	MW-2-040308	MW4-040308	MW-5-040308
MW-7-040308	MW-8-040308	MWA-3-040308	,	

Chlorinated Pesticides (8081A)

The samples in this SDG were submitted for chlorinated pesticides by USEPA Method 8081A.

Holding Times

The extraction and analytical logs indicate that applicable holding times were met for samples submitted for chlorinated pesticide analyses.

Practical Quantitation Limits

The practical quantitation limits (PQLs) as stipulated in the QAPP were met for the analysis of chlorinated pesticides by USEPA Method 8081A.

Calibration

The initial and continuing calibration data for this SDG indicates that the applicable initial calibration criteria were met for samples submitted for chlorinated pesticide analyses.

Surrogates

The surrogate recoveries were within applicable QC limits as stipulated by the laboratory.

Internal Standards

The internal standard (IS) recoveries were within applicable QC limits as stipulated by the laboratory for volatile analysis. No additional qualification of the data was required.

Blank Summary

The analytical results of the laboratory method blanks indicate that chlorinated pesticides were not detected.

Laboratory Control Sample and Standard Reference Material Check

The laboratory control sample (LCS) (ongoing precision and recovery [OPR] sample) spike recoveries and the standard reference material (SRM) check are within the applicable QC advisory limits as specified in the QAPP.

Matrix Spike/Matrix Spike Duplicate

The results of the MS/MSD analyses were within acceptable QC limits as stipulated in the QAPP.

Sampling Accuracy

The data was within applicable QC advisory limits; therefore no qualification was required.

Laboratory Duplicate Samples

No samples were selected by the laboratory for duplicate analyses.

Field Duplicate Samples

No samples were selected in the field for duplicate analyses.

Semi-volatiles (8270C)

The samples in this SDG were submitted for semi-volatile analyses by USEPA Method 8270C.

Holding Times

The extraction and analytical logs indicate that applicable holding times were met for samples submitted for semi-volatile analyses.

Practical Quantitation Limits

The practical quantitation limits (PQLs) as stipulated in the QAPP were met for the analysis of semi-volatiles by USEPA Method 8270C.

Calibration

The initial and continuing calibration data for this SDG indicates that the applicable initial calibration criteria were met for samples submitted for semi-volatile analyses.

Surrogates

The surrogate recoveries were within applicable QC limits as stipulated by the laboratory.

Internal Standards

The internal standard (IS) recoveries were within applicable QC limits as stipulated by the laboratory for volatile analysis. No additional qualification of the data was required.

Blank Summary

The analytical results of the laboratory method blanks indicate that semi-volatiles were not detected.

Laboratory Control Sample and Standard Reference Material Check

The laboratory control sample (LCS) (ongoing precision and recovery [OPR] sample) spike recoveries and the standard reference material (SRM) check are within the applicable QC advisory limits as specified in the QAPP.

Matrix Spike/Matrix Spike Duplicate

The percent recoveries and relative percent differences of the MS/MSD analyses were within acceptable QC limits as stipulated in the QAPP.

Sampling Accuracy

The data was within applicable QC advisory limits; therefore no qualification was required.

Laboratory Duplicate Samples

No samples were selected by the laboratory for duplicate analyses.

Field Duplicate Samples

No samples were selected in the field for duplicate analyses.

Overall Site Evaluation and Professional Judgment Flagging Changes

The data within these SDG's were compared to site data and edits to the DQE flags were not required based on professional judgment.

Monitoring period completeness, which is the percentage of analytical results judged to be valid, including estimated values, was 100 percent for the April 2008 sampling event. Typically, project objectives are met when completeness is 90 percent or better.

Prepared by:	Date:
Trepared by:	Date.

Data Evaluation Narrative

Charles Gibson – September 2008 Groundwater Sampling Event

Matrix: Groundwater and Sediment

SDG: A-08-B130 - Test America Laboratories (STL), Amherst, NY

Deliverables

The data packages as submitted to Olin Corporation are complete as stipulated under the Quality Assurance Project Plan (QAPP) for United States Environmental Protection Agency (USEPA) Methods 8081A.

Sample Integrity

Samples within this sample delivery group (SDG) were submitted to the Test America laboratory in Amherst, NY (Buffalo) for chlorinated pesticide analyses. The sample cooler received at the laboratory measured $4.4^{\circ}C$ which is within the required limit of $4^{\circ}C \pm 2^{\circ}$. The proper bottles and preservatives were used, the Chain of Custody was properly relinquished, and the correct analytical method was employed.

Sample Identification

This SDG contains the following water, soil and quality control (QC) samples collected on September 11, 2008:

SDG A-08-B130

Sample ID	Sample ID	Sample ID	Sample ID	Sample ID
DS-1-091108	FB-091108	MS-1-091108	MW-1R-0911-08	MW-2-091108
MW-4-091108	MW-5-09-08	MW-7-091108	MW-A3-0911-8	US-1-091108

Chlorinated Pesticides (8081A)

The samples in this SDG were submitted for chlorinated pesticides by USEPA Method 8081A.

Holding Times

The extraction and analytical logs indicate that applicable holding times were met for samples submitted for chlorinated pesticide analyses.

Practical Quantitation Limits

The practical quantitation limits (PQLs) as stipulated in the QAPP were met all groundwater samples submitted for the analysis of chlorinated pesticides by USEPA Method 8081A. The PQLs for soil samples DS-1 (A8B13010), MS-1 (A8B13009) and US-1 (A8B13008) were not met due to matrix interferences. Sample DS-1 was diluted 50X, MS-1 was diluted 10X and US-1 required a 5X dilution.

Calibration

The initial and continuing calibration data for this SDG indicates that the applicable calibration criteria were met for samples submitted for chlorinated pesticide analyses.

Surrogates

The surrogate recoveries were outside applicable QC limits as stipulated by the laboratory for samples MS-1 US-1 and DS-1. The surrogate failures were due to matrix interferences. If the percent recovery was greater than 140%, positive results were flagged "JH" and non-detects did no require qualification. If the percent recovery was less than 40% positive results were flagged "JL" and non-detects were flagged "UL.

Qualification Table

Data Flag:

JH = Estimated quantitation: possibly biased high based upon QC data

UL = Undetected, reporting limit is higher than indicated

Sample ID	Constituent	Data Flag	Sample ID	Constituent	Data Flag	Sample ID	Constituent	Data Flag
US-1	d-BHC	JH	MS-1	d-BHC	JH	DS-1	d-BHC	JH
	a-BHC	JH		a-BHC	JH		a-BHC	JH
	b-BHC	JH		b-BHC	JH		b-BHC	JH
	g-BHC	UL		g-BHC	UL		g-BHC	JH

Internal Standards

The internal standard (IS) recoveries were within applicable QC limits as stipulated by the laboratory for volatile analysis. No additional qualification of the data was required.

Blank Summary

The analytical results of the laboratory method blanks indicate that chlorinated pesticides were not detected.

Laboratory Control Sample and Standard Reference Material Check

The laboratory control sample (LCS) (ongoing precision and recovery [OPR] sample) spike recoveries and the standard reference material (SRM) check are within the applicable QC advisory limits as specified in the QAPP.

Matrix Spike/Matrix Spike Duplicate

Samples from MW-2/A8B13001 were selected in the filed for MS/MSD analysis. The percent recoveries and relative percent differences were within acceptable QC limits as stipulated in the OAPP.

Sampling Accuracy

The data was within applicable QC advisory limits; therefore no qualification was required.

Laboratory Duplicate Samples

No samples were selected by the laboratory for duplicate analyses.

Field Duplicate Samples

No samples were selected in the field for duplicate analyses.

Overall Site Evaluation and Professional Judgment Flagging Changes

The data within this SDG were compared to site data and edits to the DQE flags were required based on professional judgment. Monitoring period completeness, which is the percentage of analytical results judged to be valid, including estimated values, was 100 percent for the September 2008 sampling event. Typically, project objectives are met when completeness is 90 percent or better.

Prepared by:

James E. Young

Date: September 29, 2008

ANALYTICAL REPORT

Job#: A08-3411

STL Project#: NY3A9025 Site Name: OLIN CORPORATION Task: Charles Gibson Site

> Mr. Mike Bellotti Olin Corporation 1186 Lower River Road Charleston, TN 37310

CC: Mr. Michael Walker

TestAmerica Laboratories

Brian J. Fischer Project (Manager

Donna Besco

Analyst

TestAmerica Buffalo Current Certifications

As of 6/15/2007

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	NELAP,SDWA, CWA, RCRA,	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	SAMPLED		ED .
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A8341101	MHB-040308	LEACH			04/03/2008	
A8341102	MW-1R-040308	GW			04/03/2008	
A8341103	MW-2-040308	GW			04/03/2008	
A8341103MS	MW-2-040308 MS	GW	04/03/2008	10:35	04/03/2008	16:00
A8341103 <i>S</i> D	MW-2-040308 MSD	GW	04/03/2008	10:35	04/03/2008	16:00
A8341104	MW-4-040308	GW	04/03/2008	14:10	04/03/2008	16:00
A8341105	MW-5-040308	GW	04/03/2008	13:10	04/03/2008	16:00
A8341106	MW-7-040308	GW	04/03/2008	08:30	04/03/2008	16:00
A8341107	MW-8-040308	GW	04/03/2008	15:40	04/03/2008	16:00
A8341108	MWA-3-040308	GW	04/03/2008	15:05	04/03/2008	16:00

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: A08-3411

Project#: NY3A9025

Site Name: Olin Corporation

PARAMETER METHOD

ASP 2000/8270 - HEXACHLOROBENZENE ONLY ASP00 8270

ASP 2000- METHOD 8081 BHC'S

ASP00 8081

References:

ASP00

"Analytical Services Protocol", New York State Department of Environmental Conservation, June 2000.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: A08-3411

Project#: NY3A9025

Site Name: Olin Corporation

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-3411

Sample Cooler(s) were received at the following temperature(s); 3@2.0 °C All samples were received in good condition.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

GC Extractable Data

For method 8081, the recovery of surrogate Decachlorobiphenyl in sample MW-7-040308 is outside of established quality control limits due to the sample matrix. The recovery of surrogate Tetrachloro-m-xylene is within quality control limits; no corrective action is required.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

4-29-08

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: TESTAMERICA LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
MHB-040308	A8341101			-	SW8463	-	•	-
MW-1R-040308	A8341102	-	SW8463	- _	SW8463	-	-	-
MW-2-040308	A8341103	-	SW8463		SW8463	-	-	-
MW-4-040308	A8341104	_	SW8463	-	SW8463	-	-	i
MW-5-040308	A8341105	-	SW8463	-	SW8463	-	-	
MW-7-040308	A8341106		SW8463		SW8463	-	-	-
MW-8-040308	A8341107		SW8463	***	SW8463	-	-	-
MWA-3-040308	A8341108	-	SW8463	-	SW8463	-	<u>-</u>	-

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY B\N-A ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
MW-1R-040308	GW	04/03/2008	04/03/2008	04/04/2008	04/09/2008
MW-2-040308	GW	04/03/2008	04/03/2008	04/04/2008	04/09/2008
MW-4-040308	GW	04/03/2008	04/03/2008	04/04/2008	04/09/2008
MW-5-040308	GW	04/03/2008	04/03/2008	04/04/2008	04/09/2008
MW-7-040308	GW	04/03/2008	04/03/2008	04/04/2008	04/09/2008
MW-8-040308	GW	04/03/2008	04/03/2008	04/04/2008	04/09/2008
MWA-3-040308	GW	04/03/2008	04/03/2008	04/04/2008	04/09/2008

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
MHB-040308	LEACH	04/03/2008	04/03/2008	-	-
MW-1R-040308	GW	04/03/2008	04/03/2008		-
MW-2-040308	GW	04/03/2008	04/03/2008	-	-
MW-4-040308	GW	04/03/2008	04/03/2008	-	-
MW-5-040308	GW	04/03/2008	04/03/2008	~	-
MW-7-040308	GW	04/03/2008	04/03/2008	-	
MW-8-040308	GW	04/03/2008	04/03/2008	•	-
MWA-3-040308	GW	04/03/2008	04/03/2008	-	-

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
MHB-040308	LEACH	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-1R-040308	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-2-040308	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-4-040308	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-5-040308	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-7-040308	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-8-040308	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MWA-3-040308	GW	SW8463	SEPF	AS REQUIRED	AS REQUIRED

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Lab Name	: <u>TestAmeric</u>	ca Laboratories Inc.	Contract:		MW-1R-0)40308 ————	
Lab Code	: <u>RECNY</u> C	Case No.:	SAS No.:	SDG No.:	4-4-70-00-00-00-00-00-00-00-00-00-00-00-00-		
Matrix:	(soil/water)	WATER		Lab Sample ID:	A8341102	<u>} </u>	
Sample wt	:/vol:	<u>1005.0</u> (g/mL) <u>ML</u>		Lab File ID:	X23031.R	<u>'R</u>	
Level:	(low/med)	LOW		Date Samp/Recv	: <u>04/03/20</u>	08 04/0	03/2008
% Moistur	æ:	decanted: (Y/N) N		Date Extracted	: 04/04/20	<u>08</u>	
Concentra	ated Extract	: Volume: <u>1000</u> (uL)		Date Analyzed:	04/09/20	08	
Injection	n Volume:	_1.00 (uL)		Dilution Factor	r:1.00		
GPC Clear	nup: (Y/N)	N pH: <u>6.0</u>					
	CAS NO.	COMPOUND		CENIRATION UNITS g/L or ug/Kg)		Q	
	118-74-1	Hexachlorobenzene_			5	บ	

Lab Name	: <u>TestAmeri</u>	ca Laboratories Inc.	Contract:		MW-2-	040308	
Lab Code	: RECNY	Case No.:	SAS No.:	SDG No	.:		
Matrix:	(soil/water)) <u>WATER</u>		Lab Sample I	D: <u>A83411</u>	03	
Sample w	t/vol:	<u>1000.0</u> (g/mL) <u>M</u> L		Lab File ID:	<u>X23032</u>	.RR	
Level:	(low/med)	LOW		Date Samp/Re	cv: <u>04/03/</u>	2008 04/0	03/2008
% Moistu	re:	decanted: (Y/N) \underline{N}		Date Extract	ed: <u>04/04/</u>	2008	
Concentra	ated Extract	: Volume: <u>1000</u> (uL)		Date Analyze	d: <u>04/09/</u> 2	2008	
Injection	n Volume:	1.00 (uL)		Dilution Fact	tor:1.0	<u>00</u>	
GPC Clear	nup: (Y/N)	<u>N</u> pH: <u>6.0</u>					
	CAS NO.	COMPOUND		CENTRATION UN g/L or ug/Kg)		Q	
	118-74-1	Hexachlorobenzene_			5	U	

Lab Name: <u>TestAmerica Laboratories Inc.</u>	Contract:	MW-4-040308
Lab Code: RECNY Case No.:	SAS No.: SDG	No.:
Matrix: (soil/water) WATER	Lab Sample	ID: <u>A8341104</u>
Sample wt/vol: 1005.0 (g/mL) ML	Lab File I	D: <u>X23035.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/	Recv: <u>04/03/2008</u> <u>04/03/2008</u>
% Moisture: decanted: (Y/N) N	Date Extra	cted: <u>04/04/2008</u>
Concentrated Extract Volume: 1000 (uL)	Date Analy	zed: <u>04/09/2008</u>
Injection Volume: 1.00 (uL)	Dilution Fa	actor: <u>1.00</u>
GPC Cleanup: (Y/N) N pH: 6.0		
CAS NO. COMPOUND	CONCENTRATION ((ug/L or ug/K	
118-74-1Hexachlorobenzene		5 U

Lab Name: <u>TestAn</u>	merica Laboratories Inc.	Contract:		MW-5-04	.0308	
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:			
Matrix: (soil/wa	ater) <u>WATER</u>	Lab	Sample ID:	A8341105		
Sample wt/vol:	<u>1015.0</u> (g/mL) <u>ML</u>	Lab	File ID:	X23036.R	R	
Level: (low/me	ed) <u>LOW</u>	Date	e Samp/Recv:	04/03/20	08 <u>04/03/</u>	2008
% Moisture:	_ decanted: (Y/N) N	Date	e Extracted:	04/04/20	08	
Concentrated Ext	ract Volume: 1000 (uL)	Date	e Analyzed:	04/09/20	<u>08</u>	
Injection Volume	e:1.00 (uL)	Dil	ution Factor	:1.00		
GPC Cleanup: (Y	/N) <u>N</u> pH: <u>6.0</u>					
CAS NO.	COMPOUND		RATION UNITS or ug/Kg)	-	Q	
118-74-	1Hexachlorobenzene			5	U	

Lab Name: <u>TestAmerica Laboratories</u> Inc.	Contract:	MW-7-040308
	SAS No.: SDG No.: _	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A8341106</u>
Sample wt/vol: <u>1010.0</u> (g/mL) <u>ML</u>	Lab File ID:	X23037.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	04/03/2008 04/03/2008
% Moisture: decanted: (Y/N) N	Date Extracted:	04/04/2008
Concentrated Extract Volume: 1000 (uL)	Date Analyzed:	04/09/2008
Injection Volume: 1.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) <u>N</u> pH: <u>6.0</u>		
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>U</u>	<u>rg/L</u> Q
118-74-1Hexachlorobenzene		5 U

Lab Name	: <u>TestAmeric</u>	ca Laboratories Inc.	Contract:		MW-8-04	10308	
Lab Code	: RECNY (Case No.:	SAS No.:	SDG No.:			
Matrix:	(soil/water)	WATER		Lab Sample ID:	A8341107	7	
Sample wt	:/vol:	<u>870.00</u> (g/mL) <u>ML</u>		Lab File ID:	<u>X23038.F</u>	R.	
Level:	(low/med)	LOW		Date Samp/Recv	·: 04/03/20	08 04/03	/2008
% Moistur	ce:	decanted: (Y/N) N		Date Extracted	l: <u>04/04/20</u>	008	
Concentra	ated Extract	Volume: 1000 (uL)		Date Analyzed:	04/09/20	008	
Injection	n Volume:	1.00 (uL)		Dilution Facto	r:1.00	<u>)</u>	
GPC Clear	nup: (Y/N)	<u>N</u> pH: <u>6.0</u>					
	CAS NO.	COMPOUND		ICENIRATION UNIT 1g/L or ug/Kg)		Q	
	118-74-1	Hexachlorobenzene			6	U	

OLIN CORPORATION OLIN CORPORATION

ASP 2000/8270 - HEXACHLOROBENZENE ONLY ANALYSIS DATA SHEET

Lab Name	: <u>TestAmeri</u>	ca Laboratories Inc.	Contract:		MWA-3-040	308
Lab Code	: RECNY	Case No.:	SAS No.:	SDG No.	:	
Matrix:	(soil/water)	<u>WATER</u>		Lab Sample ID	: <u>A8341108</u>	
Sample w	t/vol:	<u>1010.0</u> (g/mL) <u>ML</u>		Lab File ID:	X23039.RR	
Level:	(low/med)	LOW		Date Samp/Rec	v: <u>04/03/2008</u>	04/03/2008
% Moistu	re:	decanted: (Y/N) N		Date Extracted	d: <u>04/04/2008</u>	
Concentra	ated Extract	: Volume: <u>1000</u> (uL)		Date Analyzed	: 04/09/2008	
Injection	n Volume:	1.00 (uL)		Dilution Facto	or: <u>1.00</u>	
GPC Clear	nup: (Y/N)	<u>N</u> pH: <u>6.0</u>				
	CAS NO.	COMPOUND		CENTRATION UNIT g/L or ug/Kg)		Q
	118-74-1	Hexachlorobenzene_			5 U	

Lab Name: <u>TestAmerica Laboratories</u> Contract	C:	MHB-040308
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A8341101</u>
Sample wt/vol: 1040.00 (g/mL) ML	Lab File ID:	5A05032.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	04/03/2008 04/03/2008
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted:	04/04/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	04/07/2008
Injection Volume: 1.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 7.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.030 0.066 0.072 0.019	J

Lab Name: <u>TestAmerica Laboratories</u> Contract	:
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A8341102</u>
Sample wt/vol: <u>1015.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>5A05033.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: <u>04/03/2008</u> <u>04/03/2008</u>
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: <u>04/04/2008</u>
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>04/07/2008</u>
Injection Volume:1.00(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) N pH: 7.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.032 J 0.049 U 0.023 J 0.025 J

Lab Name: <u>TestAmerica Laboratories</u> Contract:	MW-2-040308	
Lab Code: <u>RECNY</u> Case No.: SAS No.: _	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A8341103</u>	
Sample wt/vol: 900.00 (g/mL) ML	Lab File ID: <u>5A05034.TX0</u>	
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/03/2008 04/03	/2008
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/04/2008	
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 04/07/2008	
Injection Volume:1.00(uL)	Dilution Factor: 1.00	
GPC Cleanup: (Y/N) N pH: 7.00	Sulfur Cleanup: (Y/N) N	
	ONCENIRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.038 J 0.056 U 0.056 U 0.034 J	

_ ,	MW-4-040308
Lab Name: <u>TestAmerica Laboratories</u> Contrac	t:
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A8341104
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID: <u>5A05037.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/03/2008 04/03/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted: 04/04/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 04/07/2008
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 7.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC	0.030 J 0.037 J 0.050 U
58-89-9gamma-BHC (Lindane)	0.024 J

Lab Name: <u>TestAmerica Laboratories</u> Contrac	MW-5-040308
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A8341105
Sample wt/vol: 970.00 (g/mL) ML	Lab File ID: <u>5A05038.TX0</u>
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 04/03/2008 04/03/2008
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 04/04/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 04/07/2008
Injection Volume: 1.00 (uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 7.00	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.035 J 0.052 U 0.027 J 0.031 J

Lab Name: TestAmerica Laboratories Contract:		MW-7-040308
Lab Code: RECNY Case No.: SAS No.: SD	G No.:	
Matrix: (soil/water) WATER La	ab Sample ID:	A8341106
Sample wt/vol: 960.00 (g/mL) ML	ab File ID:	5A05058.TX0
% Moisture: decanted: (Y/N) \underline{N}	ate Samp/Recv:	04/03/2008 04/03/2008
Extraction: (SepF/Cont/Sonc/Soxh): SEPF Date:	ate Extracted:	04/04/2008
Concentrated Extract Volume: 10000 (uL)	ate Analyzed:	04/08/2008
Injection Volume: 1.00 (uL)	ilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 7.00	ulfur Cleanup:	(Y/N) <u>N</u>
CONCENTRATION (ug/L or ug/	N UNITS: /Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.029 0.052 0.052 0.023	J U U J

Lab Name: TestAmerica Laboratories Contract:		MW-8-040308		
Lab Code: RECNY Case No.: SAS No.: SDG	3 No.:			
Matrix: (soil/water) WATER La	ab Sample ID:	A8341107		
Sample wt/vol: 900.00 (g/mL) $\underline{\text{ML}}$ La	ab File ID:	5A05059.TX0		
% Moisture: decanted: (Y/N) N Da	ate Samp/Recv:	04/03/2008 04/03/2008		
Extraction: (SepF/Cont/Sonc/Soxh): SEPF Da	te Extracted:	04/04/2008		
Concentrated Extract Volume: 10000 (uL)	ate Analyzed:	04/08/2008		
Injection Volume: 1.00 (uL)	.lution Factor:	1.00		
GPC Cleanup: (Y/N) N pH: 6.00	ılfur Cleanup:	(Y/N) <u>N</u>		
CAS NO. COMPOUND CAS NO. COMPOUND (ug/L or ug/		Q		
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.029 0.056 0.056 0.056	J U U U		

Lab Name: TestAmerica Laboratories Contract:		MWA-3-040308		
Lab Code: RECNY Case No.: SAS No.: SDG	G No.:			
Matrix: (soil/water) WATER La	ab Sample ID:	A8341108		
Sample wt/vol: <u>1040.00</u> (g/mL) <u>ML</u> La	ab File ID:	5A05060.TX0		
% Moisture: decanted: (Y/N) N Da	ate Samp/Recv:	04/03/2008 04/03/2008		
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u> Da	ate Extracted:	04/04/2008		
Concentrated Extract Volume: 10000 (uL) Da	ate Analyzed:	04/08/2008		
Injection Volume: 1.00 (uL)	llution Factor:	1.00		
GPC Cleanup: (Y/N) N pH: 6.00 Su	ılfur Cleanup:	(Y/N) <u>N</u>		
CONCENTRATION CAS NO. COMPOUND (ug/L or ug/		Q		
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.048 0.048 0.048 0.048	U U U		

OLIN CORPORATION OLIN CORPORATION ASP 2000/8270 - HEXACHLOROBENZENE ONLY WATER SURROGATE RECOVERY

Lab Name:	TestAmerica	<u>Laboratories</u>	Inc.	Contract:	·			
Lab Code:	RECNY	Case No.:		SAS No.:		SDG N	No.:	

	Client Sample ID	Lab Sample ID	2FP	FBP	NBZ	PHL	ТВР	ТРН			тот
			%REC #			OUT					
	=======================================	=========	======	======	======	======	======	======	======	======	===
1	MW-1R-040308	A8341102	36	74	78	30	97	59			0
_ 2	MW-2-040308	A8341103	32	69	72	26	91	58			Ô
3	MW-2-040308 MS	A8341103MS	36	84	82	29	95	65		İ	0.
4	MW-2-040308 MSD	A8341103SD	38	89	85	30	97	70			0
5	MW-4-040308	A8341104	36	72	76	30	98	59			o l
6	MW-5-040308	A8341105	38	77	82	32	107	50		ſ	ō
7	MW-7-040308	A8341106	35	72	78	29	97	60			0
8	MW-8-040308	A8341107	43	79	87	36	103	78			0
9	MWA-3-040308	A8341108	37	77	80	31	99	67		1	0
10	SBLK70	A8B1275302	41	77	84	34	101	64		- 1	0
11	SMSB70	A8B1275301	42	90	88	33	101	80			ō
									i		-

QC LIMITS

2FP	=	2-Fluorophenol	(20-120)
FBP	=	2-Fluorobiphenyl	(48-120)
NBZ	=	Nitrobenzene-D5	(46-120)
PHL	=	Phenol-D5	(16-120)
TBP	_ ≃	2,4,6-Tribromophenol	(52-132)
TPH	=	p-Terphenyl-d14	(24-136)

[#] Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

OLIN CORPORATION OLIN CORPORATION ASP 2000- METHOD 8081 BHC'S WATER SURROGATE RECOVERY

Lab Name:	TestAmerica	Laborato	ories Inc.	Contract:			
Lab Code:	RECNY	Case No	o.:	SAS No.:	-	SDG No.:	
GC Column	(1): RTX-CLPI		D: <u>0.53</u> (mm)	,			

	Client Sample ID	Lab Sample ID	DCBP %REC		TCMX %REC	#							TOT OUT
		=========	=====	==	=====	==	======	======	======	======	======	======	===
1	Matrix Spike Blank	A8B1275801	84		73								0
2	Method Blank	A8B1275802	103		72								0
3	MHB-040308	A8341101	82		76								0
4	MW-1R-040308	A8341102	66		62								0
5	MW-2-040308	A8341103	85		67								0
6	MW-2-040308 MS	A8341103MS	95		76								0
7	MW-2-040308 MSD	A8341103SD	85		77								0
8	MW-4-040308	A8341104	99		78								0
9	MW-5-040308	A8341105	44		73								0
10	MW-7-040308	A8341106	153	*	78								1
11	MW-8-040308	A8341107	114		87								0
12	MWA-3-040308	A8341108	92		76	-					İ		0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(15-139) (30-139)

Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogates diluted out

OLIN CORPORATION OLIN CORPORATION ASP 2000/8270 - HEXACHLOROBENZENE ONLY WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: TestAmerica Labor	ratories Inc.	Contract:		Lab Samp ID: <u>A8B1275302</u>			
Lab Code: <u>RECNY</u> Case No	o.:	SAS No.: _		SDG No.:			
Matrix Spike - Client Sampl	le No.: <u>SBLK70</u>						
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.			
Hexachlorobenzene	93.1	93	38 - 131				
# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits							
Spike recovery:0 out o	of <u>1</u> outside	limits					
Comments:							

TOTAL TIT OF AND THE

OLIN CORPORATION OLIN CORPORATION

ASP 2000/8270 - HEXACHLOROBENZENE ONLY WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: <u>TestAmerica Labor</u>	catories Inc.	Contract:		Lab s	Samp ID	: <u>A8341103</u>
Lab Code: <u>RECNY</u> Case No	D.:	SAS No.:	S	SDG No.:		
Matrix Spike - Client Sampl	.e No.: <u>MW-2-040</u>	308				
COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	M: CONCENTI UG/	RATION	MS % REC #	QC LIMITS REC.
Hexachlorobenzene	100	0	85	5.1	85	38 - 131
COMPOUND ====================================	SPIKE ADDED UG/L ====================================	MSD CONCENTRATION UG/L ====================================	MSD % REC # ======	% RPD # ======3	1	C LIMITS REC. ====================================
# Column to be used to flag * Values outside of QC limi RPD:0 out of1 out Spike recovery:0 out o	ts side limits		n asterisk	ς		
Comments:						

OLIN CORPORATION OLIN CORPORATION

ASP 2000- METHOD 8081 BHC'S WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: <u>TestAmerica Labor</u>	catories Inc.	Contract:		Lab Sam	p ID: <u>A8B1275802</u>		
Lab Code: <u>RECNY</u> Case No	D.:	SAS No.:		SDG No.:			
Matrix Spike - Client Sampl	Le No.: <u>Method B</u>	<u>lank</u>					
COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #		+		
gamma-BHC (Lindane)alpha-BHCbeta-BHCdelta-BHC	0.500 0.500 0.500 0.500	0.485 0.465 0.508 0.530	97 93 102 106	46 - 120 39 - 121 39 - 138 40 - 121			
# Column to be used to flag		PD values with ar	ı asteri	sk			
Spike recovery:0 out c	of <u>4</u> outside	limits					
Comment c.							

OLIN CORPORATION OLIN CORPORATION

ASP 2000- METHOD 8081 BHC'S

WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: <u>TestAmerica Labor</u>	Contract:		Lab S	Samp ID	: <u>A8341103</u>		
Lab Code: <u>RECNY</u> Case No).:	SAS No.:		S	SDG No.		
Matrix Spike - Client Sampl	e No.: <u>MW-2-040</u>	308					
COMPOUND	SAMPLE CONCENTRATION UG/L	M: CONCENTI UG/	RATION	MS % REC #			
gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	0.500 0.500 0.500 0.500	0.0344 0.0377 0.00367 0	(0.520 0.501 0.529 0.524	97 93 105 105	46 - 120 39 - 121 39 - 138 40 - 121	
COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	RPD	C LIMITS REC.	
gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	0.485 0.485 0.485 0.485	0.513 0.494 0.537 0.517	99 94 110 106	2 1 5 0	50 50 50 50 50	46 - 120 39 - 121 39 - 138 40 - 121	
# Column to be used to flag * Values outside of QC limi RPD:0 out of4 out Spike recovery:0 out o	ts side limits		ı asterisk				

OLIN CORPORATION OLIN CORPORATION

ASP 2000/8270 - HEXACHLOROBENZENE ONLY

Client No.

METHOD BLANK SUMMARY

SBLK70			
--------	--	--	--

Lab Name: <u>TestAmeric</u>	a Laboratories Inc.	Contract:	
Lab Code: <u>RECNY</u> C	ase No.:	SAS No.:	SDG No.:
Lab File ID: \underline{X}	23029.RR	Lab Sample ID: A8	B1275302
Instrument ID:	HP5973X	Date Extracted: 04	4/04/2008
Matrix: (soil/water)	WATER	Date Analyzed: 04	4/09/2008
Level: (low/med)	LOW	Time Analyzed: 10	<u>0:36</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
1	MU 1D 040200	70241100	**************************************	
T	MW-1R-040308	A8341102	X23031.RR	04/09/2008
2	MW-2-040308	A8341103	X23032.RR	04/09/2008
3	MW-2-040308 MS	A8341103MS	X23033.RR	04/09/2008
4	MW-2-040308 MSD	A8341103SD	X23034.RR	04/09/2008
5	MW-4-040308	A8341104	X23035.RR	04/09/2008
6	MW-5-040308	A8341105	X23036.RR	04/09/2008
7	MW-7-040308	A8341106	X23037.RR	04/09/2008
8	MW-8-040308	A8341107	X23038.RR	04/09/2008
9	MWA-3-040308	A8341108	X23039.RR	04/09/2008
10	SMSB70	A8B1275301	X23028.RR	04/09/2008

Comments:	

Lab Name	: <u>TestAmerica</u>	a Laboratories Inc.	Contract:	and the second second second second	SBLK70		
Lab Code	: <u>RECNY</u> Ca	ase No.:	SAS No.:	SDG No.:			
Matrix:	(soil/water)	WATER		Lab Sample ID:	: <u>A8B1275</u> :	302	
Sample wt	:/vol:	<u>1000.0</u> (g/mL) <u>ML</u>		Lab File ID:	X23029.1	RR	
Level:	(low/med)	LOW		Date Samp/Recv	<i>7</i> :	<u> </u>	
% Moistur	re:	decanted: (Y/N) N		Date Extracted	d: <u>04/04/2</u> 0	008	
Concentra	ated Extract	Volume: 1000 (uL)		Date Analyzed:	04/09/20	208	
Injection	n Volume:	1.00 (uL)		Dilution Facto	or: <u>1.00</u>	<u> </u>	
GPC Clear	nup: (Y/N) <u>N</u>	рн: <u>5.0</u>					
	CAS NO.	COMPOUND		CENTRATION UNIT g/L or ug/Kg)		Q	
	118-74-1	Hexachlorobenzene_			5	U	

OLIN CORPORATION OLIN CORPORATION ASP 2000- METHOD 8081 BHC'S METHOD BLANK SUMMARY

Lab Name:	TestAmerica Laborat	Contract: _		Method Blank	
	RECNY Case No.:			DG No.:	
Lab Sampl	e ID: <u>A8B1275802</u>	Lab	File ID: <u>5A05</u>	030.TX0	
Matrix: (soil/water) <u>WATER</u>	Extr	action:	SEPF	
Sulfur Cl	eanup: (Y/N): <u>N</u>	Date	Extracted:	04/04/2008	
Date Anal	yzed (1): <u>04/07/2008</u>	Date	Analyzed (2)	:	
Time Anal	yzed (1): <u>13:25</u>	Time	Analyzed (2)	:	
Instrumen	t ID (1): <u>HP6890-5</u>	Inst	rument ID (2)	:	
GC Column	(1): <u>RTX-CLPI</u> Dia: <u>0</u> .	. <u>53</u> (mm) GC C	olumn (2):	Dia: _	(mm)
r ·	THIS METHOD BLANK APPLIE	ES TO THE FOL	LOWING SAMPLE	S, MS AND MSD:	
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2	
1 2 3 4 5 6 7 8 9 10	Matrix Spike Blank MHB-040308 MW-1R-040308 MW-2-040308 MW-2-040308 MW-2-040308 MW-4-040308 MW-5-040308 MW-7-040308 MW-7-040308 MW-8-040308 MW-8-040308	A8B1275801 A8341101 A8341102 A8341103MS A8341103SD A8341104 A8341105 A8341106 A8341107 A8341108	04/07/2008 04/07/2008 04/07/2008 04/07/2008 04/07/2008 04/07/2008 04/07/2008 04/07/2008 04/07/2008 04/08/2008 04/08/2008		
Comment d .					

Lab Name: TestAmerica Laboratories Contract:		Method Blank
Lab Code: RECNY Case No.: SAS No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A8B1275802</u>
Sample wt/vol: 1000.00 (g/mL) ML	Lab File ID:	5A05030.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted:	04/04/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	04/07/2008
Injection Volume: 1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND (ug/L or u	ION UNITS: ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9qamma-BHC (Lindane)	0.050 0.050 0.050 0.050	U U U

OLIN CORPORATION OLIN CORPORATION ASP 2000/8270 - HEXACHLOROBENZENE ONLY SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>Tes</u>	stAmerica Laborat	ories Inc. Co	ontract:	La	absampid:	A8C0000780
Lab Code: REC	C <u>NY</u> Cas	e No.:	SAS No.:		SDG No	.:
Lab File ID	(Standard): X230	22.RR		Date Ar	nalyzed:	04/09/2008
Instrument IC): HP5973X			Time Ar	nal vzed•	07-56

			IS1 (ANT) AREA #	RT #	IS2 (CRY) AREA #	RT #	IS3 (DCB) AREA #	RT #
	12 HOUR STD		365784	9.72	620267	13.73	176354	6.16
	UPPER LIMIT		731568	10.22	1240534	14.23	352708	6.66
	LOWER LIMIT		182892	9.22	310134	13.23	88177	5.66
	=======================================	==========	=======================================	======	=========	======	=========	======
	CLIENT SAMPLE	Lab Sample ID			·			4.
		==========	=========	======	=========	======		======
	MW-1R-040308	A8341102	322791	9.72	598580	13.72	144897	6.16
2	MW-2-040308	A8341103	308913	9.72	584480	13.72	141010	6.16
3	MW-2-040308 MS	A8341103MS	291762	9.72	518467	13.73	148831	6.16
4	MW-2-040308 MSD	A8341103SD	284789	9.72	502810	13.73	144860	6.16
5	MW-4-040308	A8341104	334544	9.72	611948	13.72	152117	6.16
6	MW-5-040308	A8341105	333911	9.72	600097	13.72	151047	6.16
7	MW-7-040308	A8341106	310209	9.72	575512	13.72	138616	6.16
8	MW-8-040308	A8341107	312365	9.72	577980	13.72	139723	6.16
9	MWA-3-040308	A8341108	316152	9.72	592082	13.72	142523	6.16
0	SBLK70	A8B1275302	312177	9.72	592971	13.72	138850	6.16
1	SMSB70	A8B1275301	287594	9.72	526708	13.73	148806	6.16

AREA UNIT QC LIMITS RT QC LIMITS

IS1 (ANT) = Acenaphthene-D10

IS2 (CRY) = Chrysene-D12
IS3 (DCB) = 1,4-Dichlorobenzene-D4

(50-200)

(50-200) (50-200)

-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min

Column to be used to flag recovery values* Values outside of contract required QC limits

OLIN CORPORATION OLIN CORPORATION ASP 2000/8270 - HEXACHLOROBENZENE ONLY SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TestAmerica Laboratories Inc. Contract: Labsampid: A8C0000780 Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____ Lab File ID (Standard): X23022.RR Date Analyzed: 04/09/2008

Instrument ID: HP5973X Time Analyzed: 07:56

		IS4 (NPT) AREA #	RT #	IS5(PHN) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT	523332222332	646925 1293850 323463	7.66 8.16 7.16	654185 1308370 327093	11.32 11.82 10.82	725084 1450168 362542	14.99 15.49 14.49
CLIENT SAMPLE	Lab Sample ID						
MW-2-040308 MW-2-040308 MS MW-2-040308 MSD MW-4-040308 MW-5-040308 MW-7-040308 MW-8-040308 MWA-3-040308	A8341102 A8341103 A8341103MS A8341103SD A8341104 A8341105 A8341106 A8341107 A8341108	519566 529150 540823	7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66	565192 542652 575508 571289 581423 567149 538500 551060 551708	11.31 11.32 11.32 11.32 11.31 11.31 11.31 11.31	624091 613297 611720 583703 655627 631184 602035 611459 621553	14.98 14.99 14.99 14.99 14.98 14.99 14.99 14.98
SBLK70	A8B1275302 A8B1275301	532523 572896	7.66 7.66	549463 573966	11.31 11.32	613958 608521	

AREA UNIT QC LIMITS QC LIMITS

IS4 (NPT) = Naphthalene-D8 IS5 (PHN) = Phenanthrene-D10 -0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min (50-200) (50-200) IS6 (PRY) = Perylene-D12 (50-200)

Column to be used to flag recovery values* Values outside of contract required QC limits

ANALYTICAL REPORT

Job#: A08-B130

STL Project#: NY3A9025 Site Name: OLIN CORPORATION Task: Charles Gibson Site

Mr. Mike Bellotti
Olin Corporation
Environmental Remediation Group
3855 North Ocoee Street, Suite 200
Cleveland, TN 37312

CC: Mr. Michael Walker

TestAmerica Laboratories

Brian J. Rischer Project Manager

for Donna Besco

TestAmerica Buffalo Current Certifications

As of 7/16/2008

STATE	Program	Cert # / Lab ID
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	Registration, NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	- DOECAP-STB
Virginia	SDWA	. 278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

^{*}As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED	RECEIVE	ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A8B13010	DS-1-091108	SOIL			09/11/2008	
A8B13007	FIELD BLANK-091108	WATER			09/11/2008	
A8B13009	MS-1-091108	SOIL			09/11/2008	
A8B13002	MW-1R-091108	WATER			09/11/2008	
A8B13001	MW-2-091108	WATER	09/11/2008	10:30	09/11/2008	16:15
A8B13001MS	MW-2-091108	WATER	09/11/2008	10:30	09/11/2008	16:15
A8B13001 <i>S</i> D	MW-2-091108	WATER			09/11/2008	
A8B13005	MW-4-091108	WATER			09/11/2008	
A8B13004	MW-5-091108	WATER	09/11/2008	12:50	09/11/2008	16:15
A8B13003	MW-7-091108	WATER	09/11/2008	12:30	09/11/2008	16:15
A8B13006	MW-A3-091108	WATER	09/11/2008	14:30	09/11/2008	16:15
A8B13008	US-1-091108	SOIL	09/11/2008	15:30	09/11/2008	16:15

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: A08-B130

Project#: NY3A9025

Site Name: Olin Corporation

ANALYTICAL

PARAMETER METHOD

ASP 2000 - METHOD 8081 BHC'S ASP00 8081

ASP 2000 - METHOD 8081 BHC'S ASP00 8081

References:

ASP00

"Analytical Services Protocol", New York State Department of Environmental Conservation, June 2000.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

SDG NARRATIVE

Job#: A08-B130

Project#: NY3A9025

Site Name: Olin Corporation

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A08-B130

Sample Cooler(s) were received at the following temperature(s); $4.4\,^{\circ}\text{C}$ All samples were received in good condition.

GC Extractable Data

For method 8081, the recovery of surrogate Decachlorobiphenyl in sample US-1-091108 is outside of established quality control limits due to the sample matrix and dilution. The recovery of surrogate Tetrachloro-m-xylene is within quality control limits; no corrective action is required.

For method 8081, samples DS-1-091108 and MS-1-091108 required dilution prior to analysis due to the heavy matrix present. The surrogate and spike recoveries are diluted out of all sample extracts with a dilution factor of 10% or greater.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

For method 8081, the associated calibration verifications demonstrated an decreased instrument response, >15% difference, for both of the surrogates. The theoretical consequence of these would be a low bias in the calculated surrogate recoveries. The associated sample surrogate recoveries are well within the quality control limits. In the technical judgment of the laboratory, the sample data has not been impacted and no corrective action is required.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Fischer Project Manager

10-608

Date

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 10/02/2008 Time: 16:30:39

Dilution Log w/Code Information For Job A08-B130

8/503

Rept: AN1266R

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	Dilution	Code
US-1-091108	A8B13008	8081	5.00	800
MS-1-091108	A8B13009	8081	10.00	800
DS-1-091108	A8B13010	8081	50.00	800

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUEST SUMMARY

LAB NAME: TESTAMERICA LABORATORIES, INC.

CUSTOMER SAMPLE ID	LABORATORY SAMPLE ID	ANALYTICAL REQUIREMENTS						
		VOA GC/MS	BNA GC/MS	VOA GC	PEST PCB	METALS	TCLP HERB	WATER QUALITY
DS-1-091108	A8B13010	_	-	_	SW8463	-	-	-
FIELD BLANK-09110	A8B13007	-	-	_	SW8463	-	-	-
MS-1-091108	A8B13009	-	<u>-</u>	-	SW8463	-	-	
MW-1R-091108	A8B13002	•	<u>-</u>	<u>-</u>	SW8463	-	•	-
MW-2-091108	A8B13001	-	-	-	SW8463	-	-	-
MW-4-091108	A8B13005	<u>-</u>	-		SW8463	-		-
MW-5-091108	A8B13004	-	-	-	SW8463	-	_	-
MW-7-091108	A8B13003	<u>-</u>	-	-	SW8463	-	-	-
MW-A3-091108	A8B13006	-	-	-	SW8463	-	-	•
US-1-091108	A8B13008	-	-	-	SW8463	-	-	-

NYSDEC-1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE/PCB ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

LAB NAME: TESTAMERICA	TABOKA IC	RIES, INC.			
SAMPLE IDENTIFICATION	MATRIX	DATE COLLECTED	DATE RECEIVED AT LAB	DATE EXTRACTED	DATE ANALYZED
DS-1-091108	SOIL	09/11/2008	09/11/2008	-	_
FIELD BLANK-091108	WATER	09/11/2008	09/11/2008	-	-
MS-1-091108	SOIL	09/11/2008	09/11/2008	_	-
MW-1R-091108	WATER	09/11/2008	09/11/2008	· ·	-
MW-2-091108	WATER	09/11/2008	09/11/2008	-	-
MW-4-091108	WATER	09/11/2008	09/11/2008	-	-
MW-5-091108	WATER	09/11/2008	09/11/2008	-	-
MW-7-091108	WATER	09/11/2008	09/11/2008	-	-
MW-A3-091108	WATER	09/11/2008	09/11/2008	-	-
US-1-091108	SOIL	09/11/2008	09/11/2008	-	•

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY ORGANIC ANALYSIS

LAB NAME: TESTAMERICA LABORATORIES, INC.

LAB NAME: 1ESTAMERICA LABORATORIES, INC.					
SAMPLE IDENTIFICATION	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEAN UP	DIL/CONC FACTOR
DS-1-091108	SOIL	SW8463	SONC	AS REQUIRED	AS REQUIRED
FIELD BLANK-091108	WATER	SW8463	SEPF	AS REQUIRED	AS ŘEQUIRED
MS-1-091108	SOIL	SW8463	SONC	AS REQUIRED	AS REQUIRED
MW-1R-091108	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-2-091108	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-4-091108	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-5-091108	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-7-091108	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
MW-A3-091108	WATER	SW8463	SEPF	AS REQUIRED	AS REQUIRED
US-1-091108	SOIL	SW8463	SONC	AS REQUIRED	AS REQUIRED

NYSDEC-6

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- G Indicates a value greater than or equal to the project reporting limit but less than the laboratory quantitation limit
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Lab Name: TestAmerica Laboratories Contract:		DS-1-091108
Lab Code: RECNY Case No.: SAS No.: SDG	G No.:	
Matrix: (soil/water) <u>SOIL</u> La	ab Sample ID:	A8B13010
Sample wt/vol: 30.00 (g/mL) G	ab File ID:	5B17200.TX0
	ate Samp/Recv:`	09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u> Da	ate Extracted:	09/13/2008
Concentrated Extract Volume: 10000 (uL)	ate Analyzed:	09/29/2008
Injection Volume: 1.00 (uL)	ilution Factor:	50.00
GPC Cleanup: (Y/N) N pH: _ Su	ulfur Cleanup:	(Y/N) <u>N</u>
CONCENTRATION CAS NO. COMPOUND (ug/L or ug/		Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	5200 1000 66 82	J J

Lab Name: TestAmerica Laboratories Contract:	FIELD BLANK-091108
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A8B13007
Sample wt/vol:1060.00 (g/mL) ML	Lab File ID: 6A22148.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv: 09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): SEPF	Date Extracted: 09/12/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/28/2008
Injection Volume:1.00(uL)	Dilution Factor:1.00
GPC Cleanup: (Y/N) N pH: 5.00	Sulfur Cleanup: (Y/N) N
	RATION UNITS: or ug/Kg) <u>UG/L</u> Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.047 U 0.047 U 0.047 U 0.047 U

Lab Name: TestAmerica Laboratories Contract:		MS-1-091108	
Lab Code: RECNY Case No.: SAS No.: SD	G No.:		
Matrix: (soil/water) <u>SOIL</u>	ab Sample ID:	A8B13009	
Sample wt/vol: 30.72 (g/mL) G	ab File ID:	5B17199.TX0	
% Moisture: 69 decanted: (Y/N) Y Decanted:	ate Samp/Recv:	09/11/2008 09/11/2008	3
Extraction: (SepF/Cont/Sonc/Soxh): SONC De	ate Extracted:	09/13/2008	
Concentrated Extract Volume: 10000 (uL)	ate Analyzed:	09/29/2008	
Injection Volume: 1.00 (uL)	ilution Factor:	10.00	
GPC Cleanup: (Y/N) N pH: _ St	ulfur Cleanup:	(Y/N) <u>N</u>	
CONCENTRATION (ug/L or ug,		Q	
319-84-6alpha-RHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	82 89 25 52	J U	

Lab Name: TestAmerica Laboratories Contract:		MW-1R-091108
	EDG No.:	
	Lab Sample ID:	<u>A8B13002</u>
Sample wt/vol:1000.00 (g/mL) ML	Lab File ID:	6A22143.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted:	09/12/2008
Concentrated Extract Volume: <u>10000</u> (uL)	Date Analyzed:	09/27/2008
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CONCENTRATI CAS NO. COMPOUND (ug/L or u	ON UNITS: pg/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.015 0.050 0.050 0.050	J U U U

Lab Name: TestAmerica Laboratories Contract:		MW-2-091108
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A8B13001
Sample wt/vol: 1055.00 (g/mL) ML	Lab File ID:	6A22140.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted:	09/12/2008
Concentrated Extract Volume: <u>10000</u> (uL)	Date Analyzed:	09/27/2008
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND (ug/L or u	ION UNITS: ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.047 0.047 0.047 0.047	U U

Lab Name: TestAmerica Laboratories Contract:		MW-4-091108
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A8B13005
Sample wt/vol: 1050.00 (g/mL) ML	Lab File ID:	6A22146.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted:	09/12/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	09/28/2008
Injection Volume:1.00(uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CONCENTRAT CAS NO. COMPOUND (ug/L or	TION UNITS: ug/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.048 0.048 0.048 0.048	U U

Lab Name: TestAmerica Laboratories Contract:		MW-5-091108
	ab Sample ID:	A8B13004
Sample wt/vol: 1060.00 (g/mL) ML La	ab File ID:	6A22145.TX0
% Moisture: decanted: (Y/N) N Da	ate Samp/Recv:	09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u> Da	ate Extracted:	09/12/2008
Concentrated Extract Volume: 10000 (uL)	ate Analyzed:	09/28/2008
Injection Volume:1.00(uL) Di	ilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	ılfur Cleanup:	(Y/N) <u>N</u>
CONCENTRATION CAS NO. COMPOUND (ug/L or ug/	N UNITS: /Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.017 0.047 0.018 0.0094	J U J J

Lab Name: TestAmerica Laboratories Contract:		MW-7-091108
	G No.:	
Matrix: (soil/water) <u>WATER</u> La	ab Sample ID:	A8B13003
Sample wt/vol: <u>1060.00</u> (g/mL) <u>ML</u> La	ab File ID:	6A22144.TX0
% Moisture: decanted: (Y/N) N Da	ate Samp/Recv:	09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u> Da	ate Extracted:	09/12/2008
Concentrated Extract Volume: 10000 (uL)	ate Analyzed:	09/28/2008
Injection Volume:1.00(uL)	ilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	ulfur Cleanup:	(Y/N) <u>N</u>
CONCENTRATION CAS NO. COMPOUND (ug/L or ug/		Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.014 0.047 0.047 0.047	J U U

Lab Name: TestAmerica Laboratories Contract:		MW-A3-091108
	EDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A8B13006
Sample wt/vol: <u>1030.00</u> (g/mL) <u>ML</u>	Lab File ID:	6A22147.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SEPF</u>	Date Extracted:	09/12/2008
Concentrated Extract Volume: <u>10000</u> (uL)	Date Analyzed:	09/28/2008
Injection Volume: 1.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 6.00	Sulfur Cleanup:	(Y/N) <u>N</u>
CAS NO. COMPOUND CONCENTRATION (ug/L or us	ON UNITS: g/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.048 0.048 0.048 0.048	U U U U

Lab Name: TestAmerica Laboratories Contract:		US-1-091108
Lab Code: RECNY Case No.: SAS No.:		
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8B13008
Sample wt/vol: 30.20 (g/mL) G	Lab File ID:	5B17198.TX0
% Moisture: 68 decanted: (Y/N) Y	Date Samp/Recv:	09/11/2008 09/11/2008
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u>	Date Extracted:	09/13/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	09/29/2008
Injection Volume:1.00(uL)	Dilution Factor:	5.00
GPC Cleanup: (Y/N) N pH:_	Sulfur Cleanup:	(Y/N) <u>N</u>
	RATION UNITS: or ug/Kg) <u>UG/KG</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	77 69 17 26	J U

OLIN CORPORATION OLIN CORPORATION ASP 2000- METHOD 8081 BHC'S WATER SURROGATE RECOVERY

Lab Name: <u>TestAmerica</u>	<u>Laboratories Inc.</u>	Contract:	
Lab Code: <u>RECNY</u>	Case No.:	SAS No.: SD	G No.:
GC Column(1): RTX-CLPI	ID: <u>0.53</u> (mm)	GC Column(2): RTX-CLPII	ID.: <u>0.53</u> (mm)

	Client Sample ID	Lab Sample ID			1	TCMX 2 %REC #					TOT
	=======================================		======	======	======	======	======	======	======	======	===
1	FIELD BLANK-091108	A8B13007	64	41	74	68					
2	Matrix Spike Blank	A8B2221301	65	63	75	73					اما
3	Method Blank	A8B2221303	62	100	73	71					اما
4	MW-1R-091108	A8813002	97	63	71	68					اما
5	MW-2-091108	A8B13001	87	62	80	76					اما
6	MW-2-091108	A8B13001MS	85	60	66	63					0
7	MW-2-091108	A8B13001SD	. 81	63	72	68					o
8	MW-4-091108	A8B13005	61	37	68	58					0
9	MW-5-091108	A8B13004	53	34	64	63					0
10	MW-7-091108	A8B13003	86	59	66	61					ol
11	MW-A3-091108	A8B13006	88	58	70	65					0

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(15-139) (30-139)

Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

OLIN CORPORATION OLIN CORPORATION ASP 2000 - METHOD 8081 BHC'S SOIL SURROGATE RECOVERY

Lab Name: <u>TestAmerica</u>	<u>Laboratories Inc.</u>	Contract:	
Lab Code: RECNY	Case No.:	SAS No.:	SDG No.:
GC Column(1): RTX-CLPI	<u>I</u> ID: <u>0.53</u> (mm)	GC Column(2): RTX-CLI	1D.: <u>0.53</u> (mm)
Level (low/med): LOW			

	Client Sample ID	Lab Sample ID	DCBP %REC		DCBP %REC		TCMX %REC	- 1	TCMX %RFC	2					TOT
;	=======================================	========	=====	==	=====	==	====	==	=====	==	======	======	======	======	===
1 1	DS-1-091108	A8B13010	0	D	0	D	0	D	0	D					ا م
2 1	Matrix Spike Blank	A8B2225401	68		110		103		90	-					ō
3	Matrix Spike Blk Dup	A8B2225402	62		116		80		75						o
4 1	Method Blank	A8B2225403	71		125		104		97						0
	MS-1-091108	A8B13009	0	D	0	D	0	D	0	D					0
6 1	US-1-091108	A8B13008	225	*	274	*	98		128	1					2

QC LIMITS

(DCBP) = Decachlorobiphenyl (TCMX) = Tetrachloro-m-xylene

(42-146) (37-135)

Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

OLIN CORPORATION OLIN CORPORATION ASP 2000- METHOD 8081 BHC'S WATER MATRIX SPIKE BLANK RECOVERY

Lab Name:	<u>TestAmeric</u>	ca Laboratories Inc.	Contract:	Lab Samp	ID: <u>A8B2221303</u>
Lab Code:	RECNY	Case No.:	SAS No.:	SDG 1	Wo.:
Matrix Spr	ike - Clier	nt Sample No.: <u>Method Bla</u>	enk		

COMPOUND	SPIKE ADDED UG/L	MSB CONCENTRATION UG/L	MSB % REC #	QC LIMITS REC.	+
gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	0.500 0.500 0.500 0.500	0.466 0.447 0.475 0.470	93 89 95 94	68 - 120 39 - 121 39 - 138 40 - 121	

[#] Column to be used to flag recovery and RPD values with an asterisk

Spike recovery:0 out of4 outside limits	
Comments:	

^{*} Values outside of QC limits

OLIN CORPORATION OLIN CORPORATION

ASP 2000 - METHOD 8081 BHC'S

SOIL MATRIX SPIKE BLANK/MATRIX SPIKE BLANK DUPLICATE RECOVERY

Lab Name: <u>TestAmerica Labo</u>	ratories Inc.	Contract:		Lab S	amp ID	: <u>A8B222540</u>	<u>3</u>
Lab Code: <u>RECNY</u> Case N	o.:	SAS No.:		SI	ος No.	:	
Matrix Spike - Client Samp	le No.: <u>Method B</u>	lank 1	Level:(lo	w/med)]	LOW		
COMPOUND	SPIKE ADDED UG/KG	MSB CONCENTRATION UG/KG	MSB % REC #	QC LIMITS REC.	+		
gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	16.2 16.2 16.2 16.2	15.9 15.9 16.4 16.3	98 97 101 99	50 - 120 49 - 120 56 - 120 45 - 123			
COMPOUND	SPIKE ADDED UG/KG	MSBD CONCENTRATION UG/KG	MSBD % REC #	% RPD #	RPD	C LIMITS REC.	+
garma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	16.4 16.4 16.4 16.4 16.4	13.0 13.1 14.2 14.0	79 79 79 87 84	21 20 15 16	50 50 50 50 50	50 - 120 49 - 120 56 - 120 45 - 123	=
# Column to be used to flag * Values outside of QC lim		PD values with ar	n asteris	k			
RPD: 0 out of 4 out Spike recovery: 0 out of		limits					

OLIN CORPORATION OLIN CORPORATION

ASP 2000- METHOD 8081 BHC'S

WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Labor	ratories Inc.	Contract:		Lab Samp ID: <u>A8B13001</u>			
Lab Code: <u>RECNY</u> Case N	o.:	SAS No.:		٤	EDG No.	<u> </u>	
Matrix Spike - Client Samp	le No.: <u>MW-2-091</u>	108					
COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	MS CONCENTA UG/	RATION	MS % REC #	QC LIMITS REC.	+
gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	0.476 0.476 0.476 0.476	0 0 0 0 0	(0.375 0.360 0.407 0.423	79 76 86 89	68 - 120 39 - 121 39 - 138 40 - 121	=
COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #		RPD	C LIMITS REC.	1+
gamma-BHC (Lindane) alpha-BHC beta-BHC delta-BHC	0.476 0.476 0.476 0.476	0.398 0.385 0.426 0.447	84 81 90 94	6 6 4 5	50 50 50 50 50	68 - 120 39 - 121 39 - 138 40 - 121	
# Column to be used to flact * Values outside of QC limit RPD:0 out of4 out Spike recovery:0 out of	ts side limits		ı asterisk	C			1
Comments:							

OLIN CORPORATION OLIN CORPORATION ASP 2000- METHOD 8081 BHC'S METHOD BLANK SUMMARY

Client No.

orat Cont	ract:		Method Blank	
			OG No.:	
			135.TX0	_
<u>:R</u>	Extra	ction:	SEPF	
	Date	Extracted:	09/12/2008	`
2008	Date	Analyzed (2)	: 09/27/2008	
	Time	Analyzed (2)	: 18:56	
-6	Instr	ument ID (2)	: <u>HP6890-6</u>	_
Dia: <u>0.53</u> (mm) GC Co	lumn (2): <u>RT</u>	K-CLPI Dia:	<u>0.53</u> (mm)
K APPLIES TO	THE FOLL	OWING SAMPLES	S, MS AND MSD	· :
SAMP	LE ID	DATE ANALYZED 1	DATE ANALYZED 2	
1108 A8B1 A8B2 A8B1 A8B1 A8B1 A8B1 A8B1 A8B1 A8B1	3007 221301 3002 3001 3001MS 3001SD 3005 3004 3003	09/28/2008 09/27/2008 09/27/2008 09/27/2008 09/27/2008 09/27/2008 09/28/2008 09/28/2008 09/28/2008	09/28/2008 09/27/2008 09/27/2008 09/27/2008 09/27/2008 09/27/2008 09/28/2008 09/28/2008 09/28/2008	
	Dia: 0.53 (mm K APPLIES TO L SAMP 1108 Plank	SAS No.: Lab F	SAS No.: SI	Lab File ID: 6B22135.TX0 Extraction: SEPF Date Extracted: 09/12/2008 Date Analyzed (2): 09/27/2008 Time Analyzed (2): 18:56 Instrument ID (2): HP6890-6 Dia: 0.53 (mm) GC Column (2): RTX-CLPI Dia: K APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD LAB SAMPLE ID ANALYZED 1 ANALYZED 2 LAB SAMPLE ID ANALYZED 1 ANALYZED 2 A8B13007 09/28/2008 09/27/2008 A8B13001 09/27/2008 09/27/2008 A8B13001 09/27/2008 09/27/2008 A8B13001 09/27/2008 09/27/2008 A8B13001 09/27/2008 09/27/2008 A8B13001SD 09/27/2008 09/27/2008 A8B13005 09/28/2008 09/28/2008 A8B13004 09/28/2008 09/28/2008 A8B13004 09/28/2008 09/28/2008 A8B13004 09/28/2008 09/28/2008 A8B13004 09/28/2008 09/28/2008

Comments:

Lab Name: TestAmerica Laboratories Contract:		Method Blank
Lab Code: RECNY Case No.: SAS No.: SD	OG No.:	
Matrix: (soil/water) WATER L	ab Sample ID:	<u>A8B2221303</u>
Sample wt/vol: 1000.00 (g/mL) $\underline{\text{ML}}$	ab File ID:	6B22135.TX0
% Moisture: decanted: (Y/N) N D	Date Samp/Recv:	
Extraction: (SepF/Cont/Sonc/Soxh): SEPF D	Date Extracted:	09/12/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	09/27/2008
Injection Volume: 1.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: 5.00	Wulfur Cleanup:	(Y/N) . <u>N</u>
CAS NO. COMPOUND CONCENTRATION (ug/L or ug,	N UNITS: g/Kg) <u>UG/L</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	0.050 0.050 0.050 0.050	U U U

OLIN CORPORATION OLIN CORPORATION ASP 2000 - METHOD 8081 BHC'S METHOD BLANK SUMMARY

Client No.

T - l- NT	Manta and an Talanca to	G a standard		Method Blank			
Lab Name:	<u>TestAmerica Laborat</u>	Contract:					
Lab Code:	RECNY Case No.:	SAS No.	: SI	OG No.:	_		
Lab Sample ID: <u>A8B2225403</u> Lab File ID: <u>5B17187.TX0</u>							
Matrix: (soil/water) <u>SOIL</u> Extraction: <u>SONC</u>							
Sulfur Cle	eanup: (Y/N): <u>N</u>	Date	Extracted:	09/13/2008			
Date Analyzed (1): 09/29/2008 Date Analyzed (2): 09/29/2008							
Time Analy	Time Analyzed (1): 13:39 Time Analyzed (2): 13:39						
Instrument	ID (1): <u>HP6890-5</u>	Inst	cument ID (2)	<u> HP6890-5</u>	-		
GC Column	(1): RTX-CLPII Dia: 0.	.53 (mm) GC Co	olumn (2): <u>RTX</u>	K-CLPI Dia:	<u>0.53</u> (mm)		
	THIS METHOD BLANK APPLIE	ES TO THE FOLI	LOWING SAMPLES	G, MS AND MSD:			
į	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED 1	DATE ANALYZED 2			
1 2 3 4 5	DS-1-091108 Matrix Spike Blank Matrix Spike Blk Dup MS-1-091108 US-1-091108	A8B13010 A8B2225401	09/29/2008	09/29/2008 09/29/2008			
•							

Comments:

Lab Name: TestAmerica Laboratories Contract:		Method Blank
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	A8B2225403
Sample wt/vol:30.35 (g/mL) <u>G</u>	Lab File ID:	5B17187.TX0
% Moisture: decanted: (Y/N) N	Date Samp/Recv:	
Extraction: (SepF/Cont/Sonc/Soxh): <u>SONC</u>	Date Extracted:	09/13/2008
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	09/29/2008
Injection Volume: 1.00 (uL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N) N pH: _	Sulfur Cleanup:	(Y/N) <u>N</u>
	CION UNITS: ug/Kg) <u>UG/KG</u>	Q
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane)	1.6 1.6 1.6 1.6	u u u

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

			SAMPI	ED	RECEIVI	ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A8B13010	DS-1-091108	SOIL			09/11/2008	
A8B13007	FIELD BLANK-091108	WATER			09/11/2008	
A8B13009	MS-1-091108	SOIL			09/11/2008	
A8B13002	MW-1R-091108	WATER			09/11/2008	
A8B13001	MW-2-091108	WATER			09/11/2008	
A8B13001MS	MW-2-091108	WATER			09/11/2008	
A8B13001SD	MW-2-091108	WATER			09/11/2008	
A8B13005	MW-4-091108	WATER	09/11/2008	13:40	09/11/2008	16:15
A8B13004	MW-5-091108	WATER			09/11/2008	
A8B13003	MW-7-091108	WATER			09/11/2008	
A8B13006	MW-A3-091108	WATER			09/11/2008	
A8B13008	US-1-091108	SOIL	09/11/2008	15:30	09/11/2008	16:15

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

METHODS SUMMARY

Job#: A08-B130

Project#: NY3A9025

Site Name: Olin Corporation

	AN	ALYTICAL
PARAMETER		METHOD
ASP 2000 - METHOD 8081 BHC'S	ASP00	8081
ASP 2000- METHOD 8081 BHC'S	ASP00	8081

References:

ASP00

"Analytical Services Protocol", New York State Department of Environmental Conservation, June 2000.

The results presented in this report relate only to the analytical testing and conditions of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain of Custody Record

TestAmerica

47/442 2-MW Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) - ms/mso ime Time Chain of Custody Number 389941 ō Page_ Date Analysis (Attach list if more space is needed) Date | 5| 08 ab Number 0 Months 8 W ☐ Disposal By Lab ☐ Archive For OC Requirements (Specify) HEXACHIONOPERENE N 0 N 7 2 N 2 BHC ン 7 \oAn\ HO&N Lab Contact

RIAN FISCHER Containers & Preservatives HOEN 1. Received By Received By 3. Received By ЮH Telephone Number (Area Code)/Fax Number EONH +SSO+ D səıdun BELLOTTI 7 7 5 7 <u>~</u> 7 5 7 Return To Client STANDARD STANDARD Sample Disposal lio2 Time Time MIKE WALKER Carrier/Waybill Number Matrix 'pas X K Project Manager MIKE R Y X R V X X 413/08 Site Contact 416 Unknown 1540 1505 Date 0830 1135 1310 0141 Time 1035 1035 900 1035 21 Days 21878 27312 Poison B Date STREET 13 of ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) OLIN- CHARLES GIBSON 5 TTE Skin Irritant 3855 NORTH OCOEL State OLIN CORPORATION ☐ 7 Days MW-2-040308 MSD MANHOLE B - 040308 MW-2-340308 ms MW - 1R - 040308 MM - A3 - 04030\$ 3e20h0 -My -2 - 040308 PW-7-040308 MW-5-040308 ☐ Flammable Contract/Purchase Order/Quote No. 8020he - h - MW Project Name and Location (State) 48 Hours Possible Hazard Identification Turn Around Time Required CHARLAND Relinquished By 1. Relinquished By 3. Relinquished By TAL-4142 (0907) Client Non-Hazard 8-35 24 Hours Comments

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample; PINK - Field Copy

Chain of Custody Record

Temperature on Receipt

Drinking Water? Yes \ No K.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

39/503 Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) ŏ Chain of Custody Number Time Page Date Analysis (Attach list if more space is needed) Date 9/11/08 Lab Number Months Archive For つったた SHC 7 ナ N QC Requirements (Specify) BLAN FISCHER \oAnS HOBN Containers & Preservatives K Disposal By Lab HOPN Received By 3. Received By ЮH €О№Н Stuck ¢0SZH 135 - 328 - 4587 В 8 b B Telephone Number (Area Code) Betum To Client DISTRIBUTION: WHITE - Returned to Client with Report, CANARY - Stays with the Sample; PINK - Field Copy MIKE WALKER A Other STANDARD Sample Disposal 8 <u>jios</u> X X Carrier/Waybill Number Time Matrix MIKE Date 11/5/8 Project Manager 8 8 snoanby ß 8 8 b 3 Site Contact πA Unknown 1230 0521 1340 1540 1430 530 1140 200 1030 1500 Time Date ☐ 21 Days 80/11/6 Poison B Date 37312 OLIN - CHANLES (JUSSIN SITE Contract/Purchase Order/Quote No. 3955 NOW OCHE STREET ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant ATTO: MIKE BELLOTTI 12 FIELD PLANK-ORIIOS MW- A3-091108 M5-1-091108 ☐ 7 Days 801160 - L- MM 801160 -Pollpo-18-091108 091168 45-1-091108 MW-2-09(108 MW-4-091108 OLIN COR | Flammable Project Name and Location (State) ☐ 48 Hours Possible Hazard Identification -1-50 CLEVELAND Turn Around Time Required 18 - S 3. Relinquished By Non-Hazard TAL-4124 (1007) Client 24 Hours Comments Address 1. Relig Š

APPENDIX B

Field Logs

Semiannual Groundwater Monitoring and Annual Sediment Sampling and Quarterly Inspections

2008

CHARLES GIBSON SITE

(PINE AND TUSCARORA SITE)

NIAGARA FALLS, NEW YORK

NYSDEC Registry No. 9-32-063

DATE: <u>2/12/2008</u>	TIME:	800	
INSPECTOR: Walker		_COMPANY:	Sevenson
WEATHER:			
REASON FOR INSPECTION (QUARTERLY	OR OTHER):	Drive by inspection, noticed damag
subsidence (sinking and rodent burrows.	ite condition), ponded wa For site sed	s note existence of ster, stressed veget curity, note absence	BLE A=ACCEPTABLE bare areas (number,size), cracks, tation, soil discoloration or seeps, e of locks, gates open or damaged, other unusual occurences.)
		COM	MENTS
ACCESS ROAD	Α		
COVER VEGETATION	Α		
TREES	<u>A</u>		
LITTER	Α		
EROSION (CAP)	<u>A</u>		
EROSION (BANK)	Α		
SECURITY:			
FENCE/LOCKS	U		
PIEZOMETERS/LOCKS	<u>A</u>		
MONITORING WELLS/LOCKS	<u>A</u>		
MANHOLES/LIDS/LOCKS	<u>A</u>	_	
ELECTRICAL PANEL	Α		Note that the second of the se
ADDITIONAL COMMENTS:	During a	outine drive by, I n	oticed the wodden fence facing
Tuscorora Rd. had sustained so	me damage	. most likely due to	a wind storm the previuos 2 days.
ulu a quick site walk to make s	ure no other	damage was evide	ent and then erected a temporary
safety fence as a barrier until Fo	οχ Fence coι	ıld come out an do	a permanent repair.
MW 4hrs.			•
VIVV 4III5.			

THIS FORM TO BE USED FOR	QUARTER	LY AND ALL OTHER S	SITE INSPECTIONS
DATE: <u>2/13/2008</u>	TIME:	930	
INSPECTOR: Walker		_COMPANY:	Sevenson
WEATHER:			
REASON FOR INSPECTION (Q	UARTERLY	OR OTHER <u>):</u>	Fence repair follow up
subsidence (sinking) and rodent burrows.	, ponded wa For site sec	ter, stressed vegetatio	e areas (number, size), cracks, n, soil discoloration or seeps, locks, gates open or damaged,
		COMMEN	NTS
ACCESS ROAD	<u>A</u>	*****	
COVER VEGETATION	<u>A</u>		
TREES	<u>A</u>	<u> </u>	V-14-14-14-14-14-14-14-14-14-14-14-14-14-
LITTER	<u>A</u>		
EROSION (CAP)	A		
EROSION (BANK)	<u>A</u>		
SECURITY:			
FENCE/LOCKS	<u>A</u>	_	
PIEZOMETERS/LOCKS	Α		
MONITORING WELLS/LOCKS	Α		
MANHOLES/LIDS/LOCKS	Α		
ELECTRICAL PANEL	Α		
ADDITIONAL COMMENTS:	Met on si	te with the crew from F	ox Fence to supervise
Repairs to the wind damaged fer	nce . Explair	ned how the steel fence	e posts should be drilled into the
bases of the former wooden pos	ts, and then	the wooden fence sho	uld be affixed to the steel posts.
This would eliminate the need to	dig new pos	st holes and possibly d	amage the cap cover or liner.
This procedure has worked in th	e past, and	has worked again this	time, see attached pictures.
MW 2			

DATE:	4/3/2008	_TIME:	730		
INSPECTO	R: C.Jones		_COMPANY:	Sevenson	
WEATHER:					
REASON FO	OR INSPECTION (Q	UARTERLY	OR OTHER <u>):</u>	Qtrly. Insp. a	and spring sample even
(5	subsidence (sinking), and rodent burrows.	ponded wa For site sed	s note existence eter, stressed vecurity, note abse	TABLE A=ACCEPTA of bare areas (number getation, soil discolors nce of locks, gates of y other unusual occur	er,size), cracks, ation or seeps, pen or damaged,
			С	DMMENTS	
ACCESS RO		<u>A</u>	Tentonian Tentonian		
COVER VE	GETATION	<u>A</u>			
TREES LITTER		<u>A</u>		skad up same treeb bl	lowing ground
EROSION (CAD)	<u>A</u>	<u>p</u> ı	ked up some trash bl	lowing around
EROSION (<u>А</u> А	_		
SECURITY:	·				-
FENCE/LOG	CKS	A	F	nce on NW side need	ds minor maintenance
	ERS/LOCKS	A		1100 011 1111 0100 11000	Thirtor Hairteriano
	NG WELLS/LOCKS	A	_		
	S/LIDS/LOCKS	A	_		
ELECTRICA		A			
ADDITIONA	L COMMENTS:				
ADDITIONA	L COMMENTS.	Automotivation			
			· · · · · · · · · · · · · · · · · · ·		
	Halling		and the state of t		
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

DATE: <u>9/11/2008</u>	TIME:	1500	
INSPECTOR: C	Jones	COMPANY:	Sevenson
WEATHER:			
REASON FOR INSPEC ⁻	ΓΙΟΝ (QUARTERI	LY OR OTHER <u>):</u>	Fall 08
subsidence (s and rodent bu	eneral site conditio sinking), ponded v urrows. For site se	ns note existence of vater, stressed veget ecurity, note absence	BLE A=ACCEPTABLE bare areas (number, size), cracks, ation, soil discoloration or seeps, e of locks, gates open or damaged, ther unusual occurences.)
		СОМІ	MENTS
ACCESS ROAD COVER VEGETATION	<u>A</u>		
TREES	<u>A</u> A		
LITTER	A	few pl	lastic bags were thrown out
EROSION (CAP)	<u>/                                    </u>		
EROSION (BANK)	А		
SECURITY:			
FENCE/LOCKS	А		
PIEZOMETERS/LOCKS	A	—— ————— P-3 ha	as settled 2 inches
MONITORING WELLS/L	OCKS A		
MANHOLES/LIDS/LOCK	(S A		
ELECTRICAL PANEL	Α		
ADDITIONAL COMMEN	TS:		
		transfer success	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

DATE: <u>11/5/2008</u>		TIME:	900		
INSPECTOR:	M. Walker		COMPANY:	***************************************	Sevenson
WEATHER:	Sunny 60 F	:			
REASON FOR INSPEC	TION (OL	IADTEDIV	OB OTHERN		Fourth Ougster Ingrestion
NEAGON FOR INGILE	711011 (Q0	ANTLINET	ON OTTIEN <u>).</u>	***************************************	Fourth Quarter Inspection
GENERAL SITE CONE		aanditiana			A=ACCEPTABLE areas (number,size), cracks,
subsidence and rodent	(sinking), բ burrows․ F	onded wat or site sec	er, stressed ve urity, note abse	getation, nce of lo	soil discoloration or seeps, cks, gates open or damaged, nusual occurences.)
ACCESS ROAD		Α	·		
COVER VEGETATION		Α			
TREES		Α			
LITTER		Α	-		
EROSION (CAP)		Α	<u> </u>		
EROSION (BANK)		Α			
SECURITY:					
FENCE/LOCKS		Α			
PIEZOMETERS/LOCK	S	A			
MONITORING WELLS	,	A	<u> </u>		
MANHOLES/LIDS/LOC		A	-		
ELECTRICAL PANEL	•	A	-		
ADDITIONAL COMMEI	NTS:				
			***************************************		
		THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	***************************************		
			***************************************	****	

#### CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

#### NYSDEC REGISTRY NO. 9-32-063

### GROUNDWATER SAMPLING FIELD PARAMETERS FIELD INSTRUMENTATION CALIBRATION FORM

DATE: 4/3/2008	3	SEMI-ANN	IUAL SAMP	LING EVE	N <u>T:</u>	Sprin	g 2008
PERSON CALIBRAT	ING METERS	3:	C. Jones				
pH METER USED:	MANUFAC ⁻	TURER:	Oakton				
	MODEL:		pH tester 3				
	IDENTIFICA	ATION/CO	NTROL NUI	MBER:	e-941		
	CALIBRATI	ON STANI	DARDS USI	ED:			
		STANDAR	D 7.00 MET	ER READ	:		7.00
		STANDAR	D 4.00 MET	TER READ	:		4.01
METER C	ALIBRATION		D 10.00 ME NTS:	TER REAL	D <u>:</u>		10.09
SPECIFIC CONDUC			0-14		A - 1		***************************************
	MANUFACT				Vieter		
	MODEL: _ IDENTIFICA				e-706		
					0 700		
	CALIBRATI						
		STANDAR	D 0 READ:				\4/4.TED\
		OT A NID A D					WATER)
			D				444
METER			D		_ READ:	***************************************	
WETER C	ALIBRATION	1 COMME	VIS.				
THERMOMETER US	FD·	TYPF:	Digital				
THERMOMETER			TURER:	Fischer So	cientific		
			ATION/COI				9
							REE WITH
		SPECIFIC	CONDUCT	IVITY MET	ER TEMF	PERATU	IRE ?)
	OTHER:						·
OTHER INSTRUMEN							
		MANUFAC	TURER: :ATION/COI	NTDOL NI	IMPED		
	CALIBRATI	ONS PER	FORMED:		·		
						<del></del>	
OTHER CALIBRATIC	N COMMEN	1S:			·*·		

#### CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER AND SEDIMENT SAMPLING FIELD FORM

RECORDED BY:	C. Jones	SAMPLING	SAMPLE ID:	MW-1R-0	40308 & MW7-040308
SAMPLED BY:	C.Jones	<del></del>	SAMPLING EVENT		
COMPANY:	Sevenson	<del></del>	MONITORING WEI	***************************************	
		_	CONDITION:	OK	
GROUNDWATER F	URGE DATA	PURGE DA			
	M FROM TOP OF RISE		12.1 (FT.)	NOTE: AL	LL GIBSON SITE RING WELLS ARE
DEPTH TO WATER	FROM TOP OF RISER	•	4.01 (FT.)	2-INCH D	IAMETER STAIN-
	WATER COLUMN:		8.09 (FT.)	LESS ST	EEL. WELL DEPTHS:
	2" DIA. WELL CONS	T <u>ANT:</u>	0.16	MW-1R	12.10'
	ONE WELL VOLUME	Ξ=	1.29 (GALS)	MW-2 MW-A3	12.13' 11.95'
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVA ⁻	/SILT BUILDUP: IE: 1110	pump w/dec none STOP TIM	dicated tubing	MW-4 MW-5	13.75' 15.28'
FIELD PARAMETER	R MEASUREMENTS:				
WELL VOLUME	pH	SPECIFIC CONDUCT umhos/cm		<u>-</u>	NOTES:
1	8.01	962	-	7.9	Clear
2	7.88	975	-	7.8	Clear
3	7.87	983	-	7.7	Clear
<u>4</u> 5	7.85	989		7.8	Clear
TOTAL VOLUME PU	JRGED: 3.8	8 gallons	SAMPLI	E DATE:	4/3/2008
				· · · · · · · · · · · · · · · · · · ·	
	DWATER X SEDIMENT		SAMPLI	= T <u>IME:</u> "MW-7"	1135 830
LOCATION:	Tuscarora Rd.				
SAMPLE METHOD:	P/Pump w/ dedicated	tubing.			
SAMPLING OBSER	VATIONS: Clear , No	Order		the market was a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the	·
QC SAMPLES TAKE	EN: Blind Duc	okicate taken	and labeled "MW-7	for QC.	
OTHER OBSERVAT	TIONS/COMMENTS:	8-1liter am	ber bottles taken.		
Note: specific condu	ctivity formula to 25 deg	rees Celcius	SC mea : SC(25)= {{T-25)(0		-

RECORDED BY:	C. Jones		SAMPLE ID:	MW5-040	0308
SAMPLED BY:	C.Jones		SAMPLING EVENT/	DATE:	4/3/2008
COMPANY:	Sevenson		MONITORING WELL	:	MW-5
			CONDITION:	OK	
GROUNDWATER F	PURGE DATA	PURGE D	ATE: 4/3/2008		
DEDTU TO DOTTO			45.00 (ST.)		LL GIBSON SITE
	M FROM TOP OF RIS		15.28 (FT.)		RING WELLS ARE
DEPTH TO WATER	R FROM TOP OF RISE		7.5 (FT.)		DIAMETER STAIN-
	WATER COLUMN		7.78 (FT.)		EEL. WELL DEPTHS:
	2" DIA. WELL CON	*****************************	0.16	MW-1R	12.10'
	ONE WELL VOLU	ME=	1.24 (GALS)	MW-2 MW-A3	12.13'
PURGE METHOD:	Perista	tic pump w/de	dicated tubing	MW-4	11.95' 13.75'
BOTTOM OF WELL		none		MW-5	15.28'
PURGE START TIN PURGE OBSERVA		STOP TIM	M 1305		
TORGE OBGERVA	TIONO. Laibia a	Joicai			
FIELD PARAMETE	R MEASUREMENTS:				
) A / - 1   1		SPECIFIC			
WELL VOLUME	рН	CONDUC umhos/cm			NOTES:
1	6.73	1751	·····	_	Slightly turbid
2	6.71	1867	7 8.	 7	Clear
3	6.69	1861	1 8.	7	Clear
4	6.68	1869	8.	7	Clear
5					
TOTAL VOLUME P	URGED: 3	.73 gallons			
GROUNDWATER (	OR SEDIMENT SAMP	LING DATA:	SAMPLE	DATE:	4/3/2008
	DWATER X SEDIMENT		SAMPLE	T <u>IME:</u>	1310
LOCATION:	MW-5, in field past	MW-4			
SAMPLE METHOD	: P/Pump w/ dedicat	ed tubing.			
SAMPLING OBSER	RVATIONS: Clear, I	No Odor			***************************************
QC SAMPLES TAK	EN: none		100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T 100 T		
OTHER OBSERVA	TIONS/COMMENTS:	4-1liter am	nber bottles	······································	<del></del>
Note: specific condu	uctivity formula to 25 d	egrees Celcius	SC measures: SC(25)= {{T-25)(0.4)		

RECORDED BY:	C. Jones			SAMPLE I	ID:		
SAMPLED BY:	C.Jones		_	SAMPLING	G EVENT/D	ATE:	
COMPANY:	Sevensor	1	_	MONITOR	ING WELL	:	Manhole B
			-	CONDITIC	ON:	OK	
GROUNDWATER I	PURGE DAT.	 А	PURGE DA	ATE:	4/3/2008	3	
						NOTE: AI	LL GIBSON SITE
DEPTH TO BOTTO	AMPLED BY: C.Jones OMPANY: Sevenson  ROUNDWATER PURGE DATA  EPTH TO BOTTOM FROM TOP OF RISE EPTH TO WATER FROM TOP OF RISE WATER COLUMN: 2" DIA. WELL CONS ONE WELL VOLUMI  URGE METHOD: OTTOM OF WELL/SILT BUILDUP: URGE START TIME: URGE OBSERVATIONS: IELD PARAMETER MEASUREMENTS:  VELL OLUME pH 1 2 3 4 5  OTAL VOLUME PURGED:  ROUNDWATER OR SEDIMENT SAMPLI  EDIA: GROUNDWATER X CREEK SEDIMENT  DCATION: Manhole B	P OF RISEF	₹:		(FT.)	MONITO	RING WELLS ARE
DEPTH TO BOTTOM FROM TO WATER 2" DIA. NONE WE BOTTOM OF WELL/SILT BUILD PURGE START TIME: PURGE OBSERVATIONS:  FIELD PARAMETER MEASURED 1  1 2 3 4 5  FOTAL VOLUME PURGED:  FROUNDWATER OR SEDIME  MEDIA: GROUNDWATER	R FROM TOP	OF RISER:			_(FT.)	2-INCH D	NAMETER STAIN-
	WATER (	COLUMN:			(FT.)	LESS ST	EEL. WELL DEPTHS:
	2" DIA. W	ELL CONST	ANT:	0.16	<u>;</u>	MW-1R	12.10'
PURGE METHOD:	ONE WEL	_L VOLUME	=		(GALS)	MW-2 MW-A3 MW-4	11.95'
BOTTOM OF WELL PURGE START TIM	ΛE:	UP:	STOP TIM	E:		MW-5	
FIELD PARAMETE	R MEASURE	MENTS:					
WELL VOLUME 1	рН	_	SPECIFIC CONDUCT umhos/cm)		TEMP. (C OR F)	_	NOTES: Grab sample
· · · · · · · · · · · · · · · · · · ·		,	***************************************		***************************************		Gran sample
					<del></del>		
		***************************************					·
		0					
GROUNDWATER O	OR SEDIMEN	IT SAMPLIN	IG DATA:		SAMPLE	DATE:	<del></del>
		X	<del>-</del> -		SAMPLE -	Γ <u>IME:</u>	
LOCATION:	Manhole I	В					
SAMPLE METHOD:	•		a franchista				
SAMPLING OBSER	RVATIONS:	NOT SAMI	PLED THIS	ROUND			
QC SAMPLES TAK	EN:	no					
OTHER OBSERVAT	TIONS/COMI	MENTS:					
Note: specific condu	uctivity formul	la to 25 degr	ees Celcius	: SC(25)=	SC measu {{T-25}(0.0		

RECORDED BY:	C. Jones		SAMPLE ID:	MW_8	
SAMPLED BY:	C.Jones	s	SAMPLING EVENT/D	ATE:	4/3/2008
COMPANY:	Sevenson		ONITORING WELL	:	Field Blank
		C	CONDITION:	OK	
GROUNDWATER F	PURGE DATA	PURGE DAT	TE:		
DEPTH TO BOTTO	M FROM TOP OF RIS	ER:			LL GIBSON SITE RING WELLS ARE
SAMPLED BY: C.Jones COMPANY: Sevenson  GROUNDWATER PURGE DATA  DEPTH TO BOTTOM FROM TOP OF RISER: DEPTH TO WATER FROM TOP OF RISER: WATER COLUMN: 2" DIA. WELL CONSTA ONE WELL VOLUME= PURGE METHOD: BOTTOM OF WELL/SILT BUILDUP: PURGE START TIME PURGE OBSERVATIONS: FIELD PARAMETER MEASUREMENTS:  WELL VOLUME  1 2 3 4 5  FOTAL VOLUME PURGED:  GROUNDWATER OR SEDIMENT SAMPLING MEDIA: GROUNDWATER CREEK SEDIMENT  LOCATION: "MW-8" Field Blank  SAMPLE METHOD:  GRAMPLING OBSERVATIONS:  DC SAMPLES TAKEN: Field Blank	₹:	(FT.)	2-INCH E	DIAMETER STAIN-	
			(FT.)		EEL. WELL DEPTHS:
		STANT:	,	MW-1R	12.10'
	ONE WELL VOLUM	IE=	(GALS)	MW-2 MW-A3 MW-4 MW-5	
PURGE START TIN	ΛE:	STOP TIM			13.75' 15.28'
FIELD PARAMETE	R MEASUREMENTS:				
WELL VOLUME	рН	SPECIFIC CONDUCTIV umhos/cm)	/ITY TEMP. (C OR F)		NOTES:
5					
TOTAL VOLUME P	URGED:	gallons			
GROUNDWATER (	OR SEDIMENT SAMPL	ING DATA:	SAMPLE	DATE:	4/3/2008
		<del></del>	SAMPLE	T <u>IME:</u>	1540
LOCATION:	"MW-8" Field Blank				
SAMPLE METHOD	•		MANUARI II. M.		
SAMPLING OBSER	RVATIONS:	***************************************	***************************************		
QC SAMPLES TAK	EN: Field Bla	nk			
OTHER OBSERVA	TIONS/COMMENTS:	4-1liter ambe	er bottles taken.		
Note: specific condu	uctivity formula to 25 de	grees Celcius: S	SC measu SC(25)= {{T-25)(0.0		

RECORDED BY:	C. Jones	SAMPLE	ID:	MW4-040	308
SAMPLED BY:	C.Jones	SAMPLIN	G EVENT/D	ATE:	4/3/2008
COMPANY <u>:</u>	Sevenson	MONITOR	RING WELL:		MW-4
		CONDITI	ON:	OK	
GROUNDWATER P	URGE DATA	PURGE DATE:	4/3/2008		
DEPTH TO BOTTO	M FROM TOP OF RISE	R: 13.7:	5 (FT.)		L GIBSON SITE RING WELLS ARE
DEPTH TO WATER	ONE WELL VOLUM  JRGE METHOD: Peristalt  DTTOM OF WELL/SILT BUILDUP:  JRGE START TIME: 1335  JRGE OBSERVATIONS: turbid w  ELD PARAMETER MEASUREMENTS:  ELL  DLUME pH  1 7.91  2 7.68  3 7.66  4 7.65  5		9 (FT.)	2-INCH D	IAMETER STAIN-
			6 (FT.)		EEL. WELL DEPTHS:
	2" DIA. WELL CONS		• •	MW-1R	12.10'
	ONE WELL VOLUME		- 6 (GALS)	MW-2	12.13'
PURGE START TIM	/SILT BUILDUP: IE: 1335	pump w/dedicated tub yes STOP TIM 1400 black flakesthen clearin	)	MW-A3 MW-4 MW-5	11.95' 13.75' 15.28'
FIELD PARAMETER	R MEASUREMENTS:				
WELL VOLUME	рН	SPECIFIC CONDUCTIVITY umhos/cm)	TEMP. (C OR F)		NOTES:
1	7.91	1416	9.1	-	Orange, turbid
2	7.68	1590	8.5		Orange, turbid
3	7.66	1602	8.3		Slightly turbid
······································	7.65	1611	8.3		Clear
TOTAL VOLUME PU	JRGED: 3.48	3 gallons	- North Market		
GROUNDWATER C	R SEDIMENT SAMPLI	NG DATA:	SAMPLE D	ATE:	4/3/2008
	OWATER X SEDIMENT	_ _	SAMPLE T	IME:	1410
LOCATION:	MW-4, On Autozone	property, east of bldg.			
SAMPLE METHOD:	P/Pump w/ dedicated	tubing.			
SAMPLING OBSER	VATIONS: Clear, No	Odor			
QC SAMPLES TAKE	EN: none				
OTHER OBSERVAT	TIONS/COMMENTS:	4-1liter amber bottles	taken.	MANAGEMENT OF THE STREET	
Note: specific condu	ctivity formula to 25 deg	rees Celcius: SC(25)=	SC measur {{T-25)(0.0		-

RECORDED BY:	C. Jones	SA	MPLE ID:	MW-A3-0	)40308	
SAMPLED BY:	C.Jones	SA	MPLING EVENT/D	ATE:	4/3/2008	
COMPANY:	Sevenson	 MC	ONITORING WELL		MW-A3	
		cc	NDITION:	ОК		
GROUNDWATER F	PURGE DATA	PURGE DATE	E: 4/3/2008	3		
				NOTE: ALL GIBSON SITE		
DEPTH ТО ВОТТО	M FROM TOP OF RIS	ER:	11.95 (FT.)	MONITO	RING WELLS ARE	
DEPTH TO WATER	FROM TOP OF RISE	R:	5.38 (FT.)	2-INCH E	DIAMETER STAIN-	
	WATER COLUMN:		6.57 (FT.)	LESS ST	EEL. WELL DEPTHS:	
	2" DIA. WELL CON	ST <u>ANT:</u>	0.16	MW-1R	12.10'	
	ONE WELL VOLUM	1E=	1.05 (GALS)	MW-2	12.13'	
PURGE METHOD: BOTTOM OF WELL		ic pump w/dedica no	ted tubing	MW-A3 MW-4 MW-5	11.95' 13.75' 15.28'	
PURGE START TIM PURGE OBSERVA	1E: 1435	STOP TIM	1500	10100-5	13.20	
FIELD PARAMETER	R MEASUREMENTS:					
		SPECIFIC				
WELL		CONDUCTIVI				
VOLUME	<u>pH</u>	umhos/cm)	(C OR F)	<del>_</del>	NOTES:	
1	7.61	468	8.7		Clear	
2	7.45	435	8.5		Clear	
4	7.44 7.42	439 433	8.4 8.3		Clear Clear	
5	1.42	400	0.0	)	Cleal	
TOTAL VOLUME PI		15 gallons				
GROUNDWATER C	OR SEDIMENT SAMPL	.ING DATA:	SAMPLE	DATE:	4/3/2008	
	DWATER X SEDIMENT	<u> </u>	SAMPLE	T <u>IME:</u>	1505	
LOCATION:	MW-A3, behind Nia	gara Falls Hotel			<u> </u>	
SAMPLE METHOD:	P/Pump w/ dedicate	ed tubing.		station and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st		
SAMPLING OBSER	VATIONS: Clear, N	o Odor	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
QC SAMPLES TAKI	EN: none	4-4	····			
OTHER OBSERVAT	FIONS/COMMENTS:	4-1liter amber	bottles taken.			
Note: specific condu	ctivity formula to 25 de	grees Celcius: S0	SC measu C(25)= {{T-25}(0.0			

## CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063

# GROUNDWATER SAMPLING FIELD PARAMETERS FIELD INSTRUMENTATION CALIBRATION FORM

DATE:	9/11/2008		SEMI-ANI	NUAL SAMPLIN	G EVEN <u>T:</u>	Fall 2	.008
PERSON	CALIBRATIN	IG METERS	3:	C. Jones	***************************************		1
рН МЕТЕ	METER CALIB PECIFIC CONDUCTIVIT MAI MO IDE CAL  METER CALIB ————————————————————————————————————			Double Junction pH tester 30	n		
		IDENTIFICA	ATION/CC	NTROL NUMBE	ER: <u>1220</u>	)148	
		CALIBRATI	ON STAN	IDARDS USED:			
			STANDA	RD 7.00 METER	READ:		
				RD 4.00 METER			4.01
	METER CA			RD 10.00 METER NTS:	R READ:		10.03
SPECIFIC							
				Oakton Condu	ctivity Meter		
		_		WD 35607-10 ONTROL NUMBI	ER: e-706	***	
				IDARDS USED:			
			2 I ANDAI	RD 0 READ: (STANDARD (	USED:	AIR.	WATER)
			STANDAI	RD	447		444
				RD	8974		8981
	METER CA	ALIBRATION	N COMME	NTS:			
THEDMA	METER LICE	D:	TVDE:	Digital			
THEKIVIO	IVIE I EK USE			<u>Digital</u> CTURER: Fis	cher Scientific		· · · · · · · · · · · · · · · · · · ·
				CATION/CONTE			15741
				THERMOMETE			
		OTHER:	SPECIFIC	CONDUCTIVIT	TY METER TEN	MPERATU	RE ?) <u>yes</u>
רבוובה יי	METER CA  METER CA  PECIFIC CONDUCTI  METER CA  HERMOMETER USE  THER INSTRUMENT	•	TVDE:				
OTHER II	NO I KUMEN			CTURER:	1		
				CATION/CONTR	ROL NUMBER:		
		CALIBRAT	IONS PEF	RFORMED:			
		<u> </u>					
OTHER C	CALIBRATION	A COMMEN	ITS:				
						And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	

RECORDED BY:	C. Jones		SAMPLE	ID:	MW5-091	108
SAMPLED BY:	C.Jones	_	SAMPLING	G EVENT/D	ATE:	9/11/2008
COMPANY:	Sevenson		MONITOR	RING WELL:		MW-5
		-	CONDITIO	ON:	ОК	
GROUNDWATER PL	JRGE DATA	PURGE DA	ATE:	9/11/2008		
					NOTE: AL	L GIBSON SITE
DEPTH TO BOTTOM	I FROM TOP OF RISEF	₹:	15.28	(FT.)	MONITOR	RING WELLS ARE
DEPTH TO WATER I	FROM TOP OF RISER:		7.8	(FT.)	2-INCH DI	AMETER STAIN-
	WATER COLUMN:		7.48	(FT.)	LESS STE	EL. WELL DEPTHS:
	2" DIA. WELL CONST	ANT:	0.16	<u>i</u>	MW-1R	12.10'
	ONE WELL VOLUME:	=	1.20	(GALS)	MW-2 MW-A3	12.13' 11.95'
PURGE METHOD: BOTTOM OF WELL/S PURGE START TIME PURGE OBSERVAT	SILT BUILDUP: E: 1200	pump w/ded none STOP TIM ear		Ŭ	MW-4 MW-5	13.75' 15.28'
FIELD PARAMETER	MEASUREMENTS:					
		SPECIFIC				
WELL		CONDUCT		TEMP.		
VOLUME	pH	umhos/cm)	•	(C OR F)	-	NOTES:
1	6.52	532		16.4		Slightly turbid
2	6.53	490		16.1		Clear
3 4	6.54 6.53	481 478		16.2		Clear
5	0.33	410		16.2		Clear
TOTAL VOLUME PU	RGED: 3.59	gallons		SAMPLE [	)ATE:	0/44/2009
GROUNDWATER OF	C SEDIMENT SAMPLIN	G DATA.		SAMPLEL	AIC.	9/11/2008
MEDIA: GROUND CREEK S	WATER X EDIMENT			SAMPLE T	IME:	1250
LOCATION:	MW-5, in field past MV	V-4				·
SAMPLE METHOD:	P/Pump w/ dedicated t	ubing.		***************************************		
SAMPLING OBSERV	ATIONS: Clear, No C	Odor	***************************************			
QC SAMPLES TAKE	N: none					
OTHER OBSERVATI	ONS/COMMENTS:	2-1liter amb	per bottles.	Sampled fo	r BHC	<del></del>
Note: specific conduc	tivity formula to 25 degre	ees Celcius:	SC(25)=	SC measur {{T-25}(0.0		•

RECORDED BY:	C. Jones	SAN	IPLE ID:	MW-1R-0	91108 & MW7-091108
SAMPLED BY:	C.Jones	_ SAM	IPLING EVENT/	ATE:	9/11/2008
COMPANY:	Sevenson		NITORING WELL		MW-1R
		CON	IDITION:	ок	
GROUNDWATER P	PURGE DATA	PURGE DATE:	9/11/2008	_	
		_			L GIBSON SITE
	M FROM TOP OF RISE		12.1 (FT.)		RING WELLS ARE
DEPTH TO WATER	FROM TOP OF RISER	<u> </u>	6.65 (FT.)	2-INCH D	NAMETER STAIN-
	WATER COLUMN:		5.45 (FT.)		EEL. WELL DEPTHS:
	2" DIA. WELL CONS	TANT:	0.16	MW-1R	12.10'
	ONE WELL VOLUM	Ξ=	0.87 (GALS)	MW-2	
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVA	/SILT BUILDUP: IE: 1100	pump w/dedicate none STOP TIM	d tubing 1130	MW-A3 MW-4 MW-5	
FIELD PARAMETER	R MEASUREMENTS:				
WELL	-11	SPECIFIC CONDUCTIVIT			NOTES.
VOLUME 1	<u>рН</u> 7.53	umhos/cm) 802	(C OR F)	 1	NOTES: Clear
2	7.49	823			Clear
3	7.45	830	17.		Clear
4	7.43	835	1		Clear
5					
TOTAL VOLUME PU	JRGED: 2.6  DR SEDIMENT SAMPLI	2 gallons  NG DATA:	SAMPLE	DATE:	9/11/2008
	DWATER X SEDIMENT	<u> </u>	SAMPLE	1 <u>IME:</u> "MW-7"	1140 1230
LOCATION:	Tuscarora Rd.				
SAMPLE METHOD:	P/Pump w/ dedicated	tubing.			
SAMPLING OBSER	VATIONS: Clear , No	o Order			
QC SAMPLES TAKI	EN: Blind Du	plicate taken and I	abeled "MW-7" fo	or QC.	
OTHER OBSERVAT	FIONS/COMMENTS:	4-1liter amber b	ottles taken. Sam	pled for Bl	<del>I</del> C
Note: specific condu	ectivity formula to 25 dec	grees Celcius: SC(	SC measo 25)= {{T-25)(0.		

RECORDED BY:	C. Jones			SAMPLE	D:	MW4-091	108	
SAMPLED BY:	C.Jones			SAMPLING	3 EVENT/C	ATE:	9/11/2008	
COMPANY:	Sevenson			MONITOR	ING WELL	:	MW-4	
				CONDITIC	N:	OK		
GROUNDWATER F	PURGE DATA	F	PURGE DA	ATE:	9/11/2008			
							L GIBSON SITE	
DEPTH ТО ВОТТО					(FT.)		RING WELLS ARE	
DEPTH TO WATER					_(FT.)		IAMETER STAIN-	
	WATER C				(FT.)		EEL. WELL DEPTHS:	
	2" DIA. WE	LL CONST <u>A</u>	NT:	0.16	_	MW-1R	12.10'	
	ONE WELI	_ VOLUME=		1.09	(GALS)	MW-2	12.13'	
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVA	_/SILT BUILDU ME: 1310	S	one STOP TIM	1335		MW-A3 MW-4 MW-5	11.95' 13.75' 15.28'	
FIELD PARAMETE			on nanoon	orr orodring	, ongrit odd	•		
			SPECIFIC					
WELL		C	CONDUCT		TEMP.			
VOLUME_	рН	<u>u</u>	imhos/cm)		(C OR F)	_	NOTES:	
1	7.31		1178		16.6		Orange, turbid	
2	7.37		1060		16.4		slightly turbid	
3	7.34		1035		16.3		Slightly turbid	
<u>4</u> 5	7.36		1026		16.3	3	Clear	
TOTAL VOLUME P		3.26 g			SAMPLE	DATE:	9/11/2008	
	DWATER SEDIMENT	X			SAMPLE T	T <u>IME:</u>	1340	
LOCATION:	MW-4, On	Autozone pro	perty, eas	t of bldg.				
SAMPLE METHOD	: P/Pump w/	dedicated tu	bing.					
SAMPLING OBSER	RVATIONS:	Clear, No Oc	dor					
QC SAMPLES TAK	EN <u>:</u>	none						
OTHER OBSERVA	TIONS/COMM	ENTS: 2	-1liter amb	per bottles t	aken.		-	
Note: specific condu	uctivity formula	to 25 dearee	es Celcius:	SC(25)=	SC measu {{T-25}(0.0			

RECORDED BY:	C. Jones	-	SAMPLE	D:	MW-A3-09	)1108
SAMPLED BY:	C.Jones	_	SAMPLING	S EVENT/D	ATE:	9/11/2008
COMPANY:	Sevenson	_	MONITOR	ING WELL:		MW-A3
			CONDITIO	N:	ОК	
GROUNDWATER P	URGE DATA	PURGE DA	ATE:	9/11/2008		
DEPTH TO BOTTOM	M FROM TOP OF RISEF	₹:	11.95	(FT.)		L GIBSON SITE RING WELLS ARE
DEPTH TO WATER	FROM TOP OF RISER:		6.95	(FT.)	2-INCH DI	AMETER STAIN-
	WATER COLUMN:			(FT.)		EL. WELL DEPTHS:
	2" DIA. WELL CONST	ANT:	0.16	'	MW-1R	
	ONE WELL VOLUME			(GALS)	MW-2 MW-A3	12.13' 11.95'
PURGE METHOD: BOTTOM OF WELL/ PURGE START TIM PURGE OBSERVAT	SILT BUILDUP: E 1400	pump w/ded no STOP TIM		g	MW-4 MW-5	13.75' 15.28'
FIELD PARAMETER	MEASUREMENTS:					
WELL VOLUME	рН	SPECIFIC CONDUCT umhos/cm)		TEMP. (C OR F)		NOTES:
1	7.67	579	•	16.8	-	Clear
2	7.48	510		16.7		Clear
3	7.31	495		16.7		Clear
4	7.25	489		16.8		Clear
5						
TOTAL VOLUME PL		gallons				
GROUNDWATER O	R SEDIMENT SAMPLIN	G DATA:		SAMPLE D	ATE:	9/11/2008
MEDIA: GROUNE CREEK S	DWATER X SEDIMENT	·		SAMPLE T	IME:	1430
LOCATION:	MW-A3, behind Niaga	ra Falls Hote	el			
SAMPLE METHOD:	P/Pump w/ dedicated t	ubing.				
SAMPLING OBSER\	/ATIONS: Clear, No C	Odor	mana.	W WOOD HILL		
QC SAMPLES TAKE	N: none					
OTHER OBSERVAT	IONS/COMMENTS:	2-1liter amb	per bottles t	aken. Samp	oled for BH0	<u> </u>
Note: specific conduc	ctivity formula to 25 degre	ees Celcius:		SC measur {{T-25)(0.0		•

RECORDED BY:	C. Jones		SAMPLE	D:	MW2-0911	108
SAMPLED BY:	C.Jones	_	SAMPLING	G EVENT/C	ATE:	9/11/2008
COMPANY:	Sevenson	_	MONITOR	RING WELL:		MW-2
			CONDITIO	)N:	ОК	
GROUNDWATER P	URGE DATA	PURGE D	ATE:	9/11/2008	}	
						L GIBSON SITE
<b>DEPTH TO BOTTO</b>	M FROM TOP OF RISE	.R:	12.13	3 (FT.)	MONITOF	RING WELLS ARE
DEPTH TO WATER	R FROM TOP OF RISER	· ·	5.42	?_(FT.)	2-INCH DI	IAMETER STAIN-
	WATER COLUMN:		6.71	(FT.)	LESS STE	EEL. WELL DEPTHS:
	2" DIA. WELL CONS	TANT:	0.16	<u>'</u>	MW-1R	12.10'
	ONE WELL VOLUME			(GALS)	MW-2 MW-A3	
PURGE METHOD: BOTTOM OF WELL PURGE START TIM PURGE OBSERVAT	/SILT BUILDUP:	c pump w/dec none STOP TIM clear		Ü	MW-4 MW-5	13.75' 15.28'
FIELD PARAMETER	R MEASUREMENTS:					
WELL		SPECIFIC CONDUCT	TIVITY	TEMP.		
VOLUME	<u>pH</u>	umhos/cm)		(C OR F)	<b>-</b>	NOTES:
1	7.46	356		17.2		cloudy
3	7.3	529 540		17.3		Clear
4	7.33 7.35	540 551		17.2 17.4		Clear Clear
5	1.00			11т		Clear
TOTAL VOLUME PU		2 gallons				
GROUNDWATER O	OR SEDIMENT SAMPLI	NG DATA:		SAMPLE D	)ATE:	9/11/2008
	DWATER X SEDIMENT			SAMPLE T	IME:	1030
LOCATION <u>:</u>	MW-2 behind autozor	ne next to du	ımpsters			
SAMPLE METHOD:	P/Pump w/ dedicated	I tubing.			V V V V V V V V V V V V V V V V V V V	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
SAMPLING OBSER	VATIONS: Clear, slig	jht odor				A CONTRACTOR OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF TH
QC SAMPLES TAKE	EN: MS/MSD					<del></del>
OTHER OBSERVAT	TONS/COMMENTS:	4- 1 liter an	mber bottles	taken.		
Note: specific condu	ctivity formula to 25 deg	rees Celcius		SC measur {{T-25}(0.0		<del></del>

RECORDED BY:	C. Jones		SAMPLE ID:		field blanl	k-091108		
SAMPLED <u>BY:</u>	C.Jones		SAMPLING E	VENT/D	ATE:	9/11/2008		
COMPANY:	Sevenson		MONITORING	3 WELL:		Field Blank		
			CONDITION:		OK			
GROUNDWATER I	PURGE DATA	PURGE DA	ATE:					
DEDTIL TO BOTTO	MPLED BY: C.Jones  DMPANY: Sevenson  ROUNDWATER PURGE DATA  EPTH TO BOTTOM FROM TOP OF RISE WATER COLUMN: 2" DIA. WELL CONS ONE WELL VOLUM  DRGE METHOD: DITTOM OF WELL/SILT BUILDUP: DRGE START TIME DRGE OBSERVATIONS: ELD PARAMETER MEASUREMENTS: ELL DLUME pH  1 2 3 4 5 DITAL VOLUME PURGED:  ROUNDWATER OR SEDIMENT SAMPL EDIA: GROUNDWATER CREEK SEDIMENT  CATION: Field Blank  MPLE METHOD: MPLING OBSERVATIONS:  C. SAMPLES TAKEN: Field Blank		,	<del>-</del> \	NOTE: ALL GIBSON SITE			
	MPLED BY: C.Jones  DMPANY: Sevenson  ROUNDWATER PURGE DATA  EPTH TO BOTTOM FROM TOP OF RISER: EPTH TO WATER FROM TOP OF RISER: WATER COLUMN: 2" DIA. WELL CONSTAN ONE WELL VOLUME=  URGE METHOD: DITTOM OF WELL/SILT BUILDUP: URGE START TIME STURGE OBSERVATIONS: ELD PARAMETER MEASUREMENTS: ELL COLUME PH ur  1 2 3 4 5  DITAL VOLUME PURGED: gas  ROUNDWATER OR SEDIMENT SAMPLING EDIA: GROUNDWATER CREEK SEDIMENT  DICATION: Field Blank		`	T.)		MONITORING WELLS ARE		
WATER COLUMN:  2" DIA. WELL CONSTAIL  ONE WELL VOLUME=  PURGE METHOD:  FOURGE START TIME:  FOURGE OBSERVATIONS:  SELL START SELL START SELL SELL SELL SELL SELL SELL SELL SEL	ER:	(F ⁻	T.)	2-INCH DIAMETER STAIN-				
			(F	T.)	LESS ST	EEL. WELL DEPTH	IS:	
	2" DIA. WELL CON	IST <u>ANT:</u>			MW-1R	12.10'		
	ONE WELL VOLU	ME=	(G	ALS)	MW-2	12.13'		
PURGE START TIM	L/SILT BUILDUP: ME:	STOP TIM			MW-A3 MW-4 MW-5	11.95' 13.75' 15.28'		
FIELD PARAMETE	R MEASUREMENTS:							
WELL VOLUME	pH 、	SPECIFIC CONDUCT umhos/cm)		MP. OR F)	-	NOTES:		
		,						
		<b>94</b>						
				*****				
	***************************************	-			<del></del>			
TOTAL VOLUME P	URGED:	gallons						
GROUNDWATER (	OR SEDIMENT SAMP	LING DATA:	SA	MPLE [	DATE:	9/11/2008		
			SA	MPLE 1	Γ <u>ΙΜΕ:</u>	1500		
LOCATION:	Field Blank							
SAMPLE METHOD	:					-		
SAMPLING OBSEF	RVATIONS:							
QC SAMPLES TAK	EN: Field Bl	ank						
			er bottles take	en. Samı	pled for BH	1C		
Note: specific condu	uctivity formula to 25 do	earees Celcius:		measu -25)(0.0				

# CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER ELEVATION FORM

NSPECTOR:	DATE: 4/3/2008		_TIME:800	0	
RISER ELEVATION   DEPTH TO WATER   WATER   COMMENTS	INSPECTOR:	C. Jones	COMPANY:	Sevenson	
PIEZOMETER         (INSIDE CASING)         (FT.)         ELEVATION           P-1         572.72         7.28         565.44         OK           P-2         574.89         9.39         565.5         OK           P-3         574.16         6.61         567.55         OK           P-4         576.14         10.7         565.44         OK           P-5         575.05         5.21         569.84         OK           P-6         578.28         10.29         567.99         OK           MANHOLE A         575.22         11.09         564.13         OK           (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	WEATHER <u>:</u>	40 F Sunny			
P-2 574.89 9.39 565.5 OK  P-3 574.16 6.61 567.55 OK  P-4 576.14 10.7 565.44 OK  P-5 575.05 5.21 569.84 OK  P-6 578.28 10.29 567.99 OK  MANHOLE A 575.22 11.09 564.13 OK  MANHOLE B 577.34 13.17 564.17 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	PIEZOMETER				COMMENTS
P-3 574.16 6.61 567.55 OK  P-4 576.14 10.7 565.44 OK  P-5 575.05 5.21 569.84 OK  MANHOLE A 575.22 11.09 564.13 OK  MANHOLE B 577.34 13.17 564.17 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-1	572.72	7.28	565.44	ОК
P-4 576.14 10.7 565.44 OK  P-5 575.05 5.21 569.84 OK  P-6 578.28 10.29 567.99 OK  MANHOLE A 575.22 11.09 564.13 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-2	574.89	9.39	565.5	OK
P-5 575.05 5.21 569.84 OK  P-6 578.28 10.29 567.99 OK  MANHOLE A 575.22 11.09 564.13 OK  MANHOLE B 577.34 13.17 564.17 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-3	574.16	6.61	567.55	ОК
P-6 578.28 10.29 567.99 OK  MANHOLE A 575.22 11.09 564.13 OK  MANHOLE B 577.34 13.17 564.17 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-4	576.14	10.7	565.44	ОК
MANHOLE A 575.22 11.09 564.13 OK  MANHOLE B 577.34 13.17 564.17 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-5	575.05	5.21	569.84	ОК
(Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-6	578.28	10.29	567.99	ОК
(Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	MANHOLE A	575.22	11.09	564.13	ОК
Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be <u>less</u> than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	MANHOLE B	577.34	13.17	564.17	ОК
		d by extension Manhole A)	below an elevation of 5	665 ft. above mean	sea level. There
	water distance fro (Note: riser eleva	tions (re)surveyed Septemb	per, 1999 by Wendel Su		nd 10.22 π. at Ma
	water distance fro (Note: riser eleva	tions (re)surveyed Septemb	per, 1999 by Wendel Su		nd 10.22 π. at Ma
	water distance fro (Note: riser eleva	tions (re)surveyed Septemb	per, 1999 by Wendel Su		nd 10.22 π. at Ma
	water distance fro (Note: riser eleva	tions (re)surveyed Septemb	per, 1999 by Wendel Su		nd 10.22 π. at Ma

## CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER ELEVATION FORM

P-1 572.72 6.59 566.13 OK  P-2 574.89 9.61 565.28 OK  P-3 574.16 7.85 566.31 casing settled  P-4 576.14 10.94 565.2 OK  P-5 575.05 6.68 568.37 OK  P-6 578.28 10.89 567.39 OK  MANHOLE A 575.22 11.11 564.11 OK  MANHOLE B 577.34 13.11 564.23 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater eleving Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, Dewater distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	DATE:	9/11/2008	3	TIME:93	0	
RISER ELEVATION   DEPTH TO WATER   WATER   COMMENTS	INSPECTO	DR:	C. Jones	_COMPANY:	Sevenson	
PIEZOMETER         (INSIDE CASING)         (FT.)         ELEVATION           P-1         572.72         6.59         566.13         OK           P-2         574.89         9.61         565.28         OK           P-3         574.16         7.85         566.31         casing settled           P-4         576.14         10.94         565.2         OK           P-5         575.05         6.68         568.37         OK           P-6         578.28         10.89         567.39         OK           MANHOLE A         575.22         11.11         564.11         OK           MANHOLE B         577.34         13.11         564.23         OK           (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater eleing Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, Dewater distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	WEATHEF	₹:	60 F Sunny			
P-2 574.89 9.61 565.28 OK  P-3 574.16 7.85 566.31 casing settled  P-4 576.14 10.94 565.2 OK  P-5 575.05 6.68 568.37 OK  P-6 578.28 10.89 567.39 OK  MANHOLE A 575.22 11.11 564.11 OK  MANHOLE B 577.34 13.11 564.23 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater elevin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, Dewater distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	PIEZOME ⁻	TER				COMMENTS
P-3 574.16 7.85 566.31 casing settled  P-4 576.14 10.94 565.2 OK  P-5 575.05 6.68 568.37 OK  P-6 578.28 10.89 567.39 OK  MANHOLE A 575.22 11.11 564.11 OK  MANHOLE B 577.34 13.11 564.23 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater ele in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, De water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-1		572.72	6.59	566.13	OK
P-4 576.14 10.94 565.2 OK  P-5 575.05 6.68 568.37 OK  P-6 578.28 10.89 567.39 OK  MANHOLE A 575.22 11.11 564.11 OK  MANHOLE B 577.34 13.11 564.23 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater ele in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, Dewater distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-2		574.89	9.61	565.28	OK
P-5 575.05 6.68 568.37 OK  P-6 578.28 10.89 567.39 OK  MANHOLE A 575.22 11.11 564.11 OK  MANHOLE B 577.34 13.11 564.23 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater eler in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, De water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-3		574.16	7.85	566.31	casing settled
P-6 578.28 10.89 567.39 OK  MANHOLE A 575.22 11.11 564.11 OK  MANHOLE B 577.34 13.11 564.23 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater elevin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, De water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A. (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-4		576.14	10.94	565.2	ОК
MANHOLE A 575.22 11.11 564.11 OK  MANHOLE B 577.34 13.11 564.23 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater elevin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, De water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A. (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-5		575.05	6.68	568.37	ОК
MANHOLE B 577.34 13.11 564.23 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater elevin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, De water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A. (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-6		578.28	10.89	567.39	ОК
(Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater elevin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, Dewater distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A. (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	MANHOLE	ΕA	575.22	<u> 11.11</u>	564.11	ОК
Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater elevin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, Dewater distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A. (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)						
	MANHOLE (Note: Man	ihole A emp	oties into Manhole B by	gravity feed and Manh	nole B is pumped a	utomatically to the Town
	MANHOLE (Note: Man Niagara Tu in Manhole water dista (Note: riser	hole A empliscarora Ro B (and by nce from the elevations	pties into Manhole B by pad sanitary sewer line extension Manhole A) l ne manhole rim should i s (re)surveyed Septemb	gravity feed and Manh by a float controlled su below an elevation of 5 not be less than 12.41 per, 1999 by Wendel Su	nole B is pumped a imp pump which m i65 ft. above mean ft. at Manhole B ar	automatically to the Town aintains groundwater elevelse a level. Therefore, De
	MANHOLE (Note: Man Niagara Tu in Manhole water dista (Note: riser	hole A empliscarora Ro B (and by nce from the elevations	pties into Manhole B by pad sanitary sewer line extension Manhole A) l ne manhole rim should i s (re)surveyed Septemb	gravity feed and Manh by a float controlled su below an elevation of 5 not be less than 12.41 per, 1999 by Wendel Su	nole B is pumped a imp pump which m i65 ft. above mean ft. at Manhole B ar	automatically to the Town aintains groundwater elevelse a level. Therefore, De
	MANHOLE (Note: Man Niagara Tu in Manhole water dista (Note: riser	hole A empliscarora Ro B (and by nce from the elevations	pties into Manhole B by pad sanitary sewer line extension Manhole A) l ne manhole rim should i s (re)surveyed Septemb	gravity feed and Manh by a float controlled su below an elevation of 5 not be less than 12.41 per, 1999 by Wendel Su	nole B is pumped a imp pump which m i65 ft. above mean ft. at Manhole B ar	automatically to the Town aintains groundwater elevelse a level. Therefore, De
	MANHOLE (Note: Man Niagara Tu in Manhole water dista (Note: riser	hole A empliscarora Ro B (and by nce from the elevations	pties into Manhole B by pad sanitary sewer line extension Manhole A) l ne manhole rim should i s (re)surveyed Septemb	gravity feed and Manh by a float controlled su below an elevation of 5 not be less than 12.41 per, 1999 by Wendel Su	nole B is pumped a imp pump which m i65 ft. above mean ft. at Manhole B ar	automatically to the Towr aintains groundwater ele sea level. Therefore, D

# CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER ELEVATION FORM

NESPECTOR: M. Walker   COMPANY: Sevenson	DATE: <u>11/5/</u>	2008	_TIME: 90	0	
RISER ELEVATION DEPTH TO WATER WATER ELEVATION P-1 572.72 7.26 565.46 OK P-2 574.89 9.65 565.24 OK P-3 574.16 7.64 566.52 OK P-4 576.14 10.97 565.17 OK P-5 575.05 6.29 568.76 OK P-6 578.28 10.85 567.43 OK MANHOLE A 575.22 11.41 563.81 OK MANHOLE B 577.34 13.45 563.89 OK (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	INSPECTOR:	M. Walker	_COMPANY:	Sevenson	
PEZOMETER (INSIDE CASING) (FT.) ELEVATION  P-1 572.72 7.26 565.46 OK  P-2 574.89 9.65 565.24 OK  P-3 574.16 7.64 566.52 OK  P-4 576.14 10.97 565.17 OK  P-5 575.05 6.29 568.76 OK  P-6 578.28 10.85 567.43 OK  MANHOLE A 575.22 11.41 563.81 OK  MANHOLE B 577.34 13.45 563.89 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	WEATHER <u>:</u>	60 F sunny			
P-2 574.89 9.65 565.24 OK  P-3 574.16 7.64 566.52 OK  P-4 576.14 10.97 565.17 OK  P-5 575.05 6.29 568.76 OK  P-6 578.28 10.85 567.43 OK  MANHOLE A 575.22 11.41 563.81 OK  MANHOLE B 577.34 13.45 563.89 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwin Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	PIEZOMETER				COMMENTS
P-3 574.16 7.64 566.52 OK  P-4 576.14 10.97 565.17 OK  P-5 575.05 6.29 568.76 OK  MANHOLE A 575.22 11.41 563.81 OK  MANHOLE B 577.34 13.45 563.89 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-1	572.72	7.26	565.46	ОК
P-4 576.14 10.97 565.17 OK  P-5 575.05 6.29 568.76 OK  MANHOLE A 575.22 11.41 563.81 OK  MANHOLE B 577.34 13.45 563.89 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-2	574.89	9.65	565.24	OK
P-5 575.05 6.29 568.76 OK  P-6 578.28 10.85 567.43 OK  MANHOLE A 575.22 11.41 563.81 OK  MANHOLE B 577.34 13.45 563.89 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-3	574.16	7.64	566.52	OK
P-6 578.28 10.85 567.43 OK  MANHOLE A 575.22 11.41 563.81 OK  MANHOLE B 577.34 13.45 563.89 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-4	576.14	10.97	565.17	OK
MANHOLE A 575.22 11.41 563.81 OK  MANHOLE B 577.34 13.45 563.89 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-5	575.05	6.29	568.76	OK
MANHOLE B 577.34 13.45 563.89 OK  (Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	P-6	578.28	10.85	567.43	ОК
(Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to th Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be less than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	MANHOLE A	575.22	11.41	563.81	OK
Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundw in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. There water distance from the manhole rim should not be <u>less</u> than 12.41 ft. at Manhole B and 10.22 ft. at Ma (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)	MANHOLE B	577.34	13.45	563.89	ОК
	(Note: Manhole A	empties into Manhole B by	gravity feed and Manl	nole B is pumped a	utomatically to th
	Niagara Tuscaron in Manhole B (and water distance fro (Note: riser elevat	a Road sanitary sewer line by extension Manhole A) m the manhole rim should ions (re)surveyed Septemb	by a float controlled subelow an elevation of 5 not be less than 12.41 per, 1999 by Wendel S	imp pump which m 665 ft. above mean ft. at Manhole B ai	aintains groundw sea level. There
	Niagara Tuscaron in Manhole B (and water distance fro (Note: riser elevat	a Road sanitary sewer line by extension Manhole A) m the manhole rim should ions (re)surveyed Septemb	by a float controlled subelow an elevation of 5 not be less than 12.41 per, 1999 by Wendel S	imp pump which m 665 ft. above mean ft. at Manhole B ai	aintains groundw sea level. There
	Niagara Tuscaron in Manhole B (and water distance fro (Note: riser elevat	a Road sanitary sewer line by extension Manhole A) m the manhole rim should ions (re)surveyed Septemb	by a float controlled subelow an elevation of 5 not be less than 12.41 per, 1999 by Wendel S	imp pump which m 665 ft. above mean ft. at Manhole B ai	aintains groundw sea level. There