Charles Gibson Site Site No. 932063 Periodic Review Report Revision

July 21, 2023

TABLE OF CONTENTS

- I. Introduction:
 - Brief Summary, Nature and Extent, Remedial History Effectiveness of Remedial Program Compliance Recommendations
- II. Site Overview: Site Description and Nature/Extent Prior to Remediation Remediation Chronology
- III. Remedy Performance, Effectiveness, and Protectiveness
- IV. IC/EC Plan (not applicable): IC/EC requirements
- V. Monitoring Plan Compliance Report: Components of Monitoring Plan Summary and Comparisons to Remedial Objectives Deficiencies Recommendations for Change
- VI. Operation and Maintenance (O&M) Plan Compliance Report: Components of the O&M Plan O&M Summary Evaluation of Remedial Systems O&M Deficiencies Conclusions
- VII. Overall PRR Conclusions and Recommendations: Compliance with SMP Remedy Effectiveness Future Submittals

ATTACHMENTS

- Attachment A Institutional & Engineering Certification Form
- Attachment B Site Map, Site Boundary, and Slurry Wall
- Attachment C Field Sampling Forms
- **Attachment D Site Inspection Forms**
- Attachment E Historical Detections at Manhole B
- Table 1 Sampling Frequency
- Table 2 Analytical Summary Groundwater
- Table 3 Analytical Summary Manhole B
- Table 4 Analytical Summary Sediments
- Table 5 Groundwater Evaluations Summary
- Table 5B Groundwater Elevations Data
- Table 6 Discharge Volumes
- Table 7 Seasonal Piezometer Data

I. INTRODUCTION

Brief Summary, Nature and Extent, Remedial History:

Construction of the remedy on the Charles Gibson Site concluded in 1990. The remedy consisted of rerouting Cayuga Creek around and away from the waste, installation of a fully circumscribed soil-bentonite slurry wall barrier and installation of a double flexible membrane liner cap with a perimeter collection drain system. The first year of operations and maintenance (O&M) of the containment remedy for the site and the groundwater monitoring program began in 1993. Waters collected in the site perimeter collection drain system are managed by direct discharge to the City of Niagara Falls Wastewater Treatment Facility. The Charles Gibson site is classified as a commercial/small industrial/residential user (CSIRU) and does not require a permit.

Effectiveness of Remedial Program:

Groundwater monitoring indicates there are no increased concentrations of compounds being monitored. Evaluation of the monitor well and sediment analytical results indicate the containment remedy is effective. An evaluation of data from the piezometer pairs at the Site indicates that a materially inward hydraulic gradient has been established in the containment area of the site. The remedial program is achieving the objectives of containing groundwater flow and maintaining groundwater quality standards.

Compliance:

There are no areas of non-compliance.

Recommendations:

No recommendations. Conditions at the Site are stable.

II. SITE OVERVIEW

Site Description and Nature/Extent Prior to Remediation:

The Site as now defined incorporates approximately two acres bounded to the east and north by Cayuga Creek, to the west by Tuscarora Road and to the south by Niagara Mohawk Power Corporation right-of-way and the Auto Zone Incorporated auto parts store and parking lot. The Site cap is slightly mounded with the center of the capped area essentially flat. The capped area is enclosed by a chain link fence. A wooden privacy fence is immediately next to and outside of the chain link fence on portions of the perimeter.

Remediation Chronology:

The Agreement includes a provision in the event that after seven years following the delivery of a Release of Liability (issued December 15, 1992), Olin demonstrates that conditions at the Site are such that the stated frequency or duration of the requirements are no longer necessary to determine whether the remediation is effective, Olin may reduce the frequency and duration of such monitoring or inspections. Olin has submitted annual reports and has conducted the required monitoring for the duration of the remediation.

III. <u>REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS</u>

The work performed for the Site during 2021 was reviewed and found to be in accordance with the approved O&M Manual (Revised 2019), the Site Management Plan approved by NYSDEC on July 17, 2020, as well as the NYSDEC approved reduction in annual sampling dated April 25, 2013. Groundwater monitoring indicates there are no increased concentrations of the Site compounds being monitored. Evaluation of the groundwater data generated during the 2021 monitoring year indicates that the containment remedy is effective. Drawdown in both manholes was effectively maintained.

IV. IC/EC PLAN

IC/EC Requirements:

A fence is in place around the landfill, effectively restricting access.

A clean soil cover is in place on the landfill, restricting infiltration and promoting runoff. No excavations, change of use, or groundwater use occurred during the Certifying Period.

A hydraulic control system is in place, effectively controlling groundwater flow direction. Leachate collected along the inside perimeter of the slurry wall is routed to Manhole A then Manhole B. A submersible sump pump, installed at the bottom of Manhole B, is set to turn on when groundwater reaches 563.32 feet above mean sea level (msl), and turn off when groundwater falls to 560.34 feet above msl.

<u>Certification:</u> Attachment A

V. MONITORING PLAN COMPLIANCE REPORT

Components of Monitoring Plan:

Operation, maintenance, and monitoring activities to be performed are presented in **Table 1** and include:

• Performance of a groundwater monitoring program to monitor ground water quality at the site and to verify the inward hydraulic gradient within the capped area.

• The current groundwater level monitoring system for the Site consists of six piezometers (P-1 through P-6) and two manholes (A and B). Piezometers P-1, P-2 and Manhole A are located in the northeast section of the Site; P-3, P-4, and Manhole B are located in the southeast section; and P-5 and P-6 are located toward the southwest (see *Attachment B*).

• All piezometers are constructed of Schedule 80 PVC and are 2 inches in diameter. Each piezometer has been constructed with 5 feet of screen and was screened at the water table.

• The construction of the piezometer screens at the water table allows for continued monitoring of the water table elevation inside and outside of the containment area during periods of water level fluctuations. Piezometers P-1, P-3, and P-5 are located outside of the

slurry wall that runs along the perimeter of the Site. Piezometers P-2, P-4, and P-6 are inside the slurry wall and paired opposite the three piezometers outside the slurry wall.

• Water level elevations are measured quarterly at the Site in Manholes A and B and piezometers P-1 through P-6. Water level elevations are measured by means of an acoustical sounder or electronic water level probe. The sounder or probe is lowered into the manhole or piezometer until it makes contact with the free water surface. The depth from the top of the piezometer riser pipe or manhole rim to the water surface is measured to an accuracy of 0.01 ft. Depth to water measurements are converted into mean sea level elevations by referring to the surveyed elevation of the top of the piezometer riser pipe or manhole rim provided on the Groundwater Elevation Form. The depth to water measurements for Manholes A and B are checked to see that they are not greater than 14.07 feet and 17.07 feet, respectively to ensure that the automatic sump pump is functioning.

• Monitoring wells are sampled in accordance with the SMP, using a peristaltic pump with dedicated tubing.

Summary and Comparison to Remedial Objectives:

The isolation of groundwater within the capped area has been established and is being maintained by current operation and maintenance activities. The groundwater monitoring and sampling is performed on an annual basis in rotating quarters to help assess seasonal variability with Groundwater Sampling Field Parameters presented in **Attachment C**.

Tables 2 through 4 present analytical results for monitoring wells, manholes, and sediment sampling locations. Results are compared to Groundwater Quality Standards (GWQS) and Sediment Guidance Values (GV) as applicable. Non-detect results are reported as less than the laboratory reporting limits (RLs), which for certain parameters are higher than GWQS or GVs. Future laboratory analysis will be performed to method detection limits (MDLs) below the allowable limits wherever possible.

Currently two locations, immediately upstream and downstream of the Site and the adjacent remediated portion of the Cayuga Creek bed, are sampled once per year, in the Fall or 'low water' period. Beginning with the October 2000 sample event, annual creek sediment samples have been analyzed for hexachlorocyclohexane (BHC) isomers only. Sample collection and analysis of creek sediments are performed annually during the second half of the calendar year. The fall 2021 data appeared to be consistent with historical results. The downstream sediment trap had been disturbed and there was no sample taken from the trap. The fall 2022 data showed no detections in the upstream location **(Table 4)**.

The water elevation data collected from the piezometers and groundwater wells was used to determine whether an inward hydraulic gradient exists. Gradient direction was made by comparing water level measurements within the capped area to those measured outside the capped area. The groundwater elevation data indicates that groundwater within the capped area is consistent with historical data. An evaluation of data from the piezometer pairs at the Site indicates that historically an inward gradient exists during the spring and summer seasons while the fall/winter seasons exhibit conditions that reflect outward gradients. An evaluation

of the seasonal trends from 2008 through 2022 shows that the spring elevations have remained consistent with all piezometers **(Table 7).** The fall data has shown roughly a 3 foot drop among the wells outside the slurry wall while elevations within the slurry wall has remained consistent. This is further evidence that the remedy has remained effective.

Table 5 and Table 5B shows the most recent piezometric data and graphs.

Deficiencies:

None

Recommendations for Changes:

No recommendations. Conditions at the Site are stable.

VI. <u>O&M PLAN COMPLIANCE REPORT</u>

Components of the O&M Plan:

Site remediation requirements have been met by Olin through rerouting of Cayuga Creek around and away from the waste, by constructing a fully circumscribing soil-bentonite slurry wall barrier, and through installing a double flexible membrane liner cap as part of the final cover with a perimeter collection drain system. This O&M Plan safeguards that remedy and provides for monitoring of the Gibson Site in compliance with the Settlement Agreement.

Quarterly inspections of the Gibson Site are conducted to identify any potential problems with physical deterioration of structures, possible malfunctions of the slurry wall or of the perforated chlorinated polyvinyl chloride (CPVC) drain system, and to ensure that all site remedial measures components are operating effectively, in accordance with the Settlement Agreement.

The Environmental Inspector conducts the inspections to ensure that the remedial measures at the Site will remain operative. Additionally, the inspections address the safeguards to control, minimize or eliminate threats to human health and the environment. Operation, maintenance, and monitoring activities are conducted to identify proposed changes to the O&M Manual or site procedures which would provide a safer and/or more efficient and cost-effective operation.

Recordkeeping is conducted for each site visit and inspection.

Operation & Monitoring (O&M) Summary:

The groundwater collection system is inspected for the buildup of hard or soft scale-like deposits. The inspection is performed concurrently with inspection of the capped area. If a component of the groundwater collection system is found to be damaged or malfunctioning, it is repaired or replaced.

The capped area is mowed on a regular basis to prevent establishment of woody vegetation during this reporting period. The capped area functions as designed and complies with the O&M Plan.

Inspections are conducted using the items listed on the Site Inspection Form presented in **Attachment D**. Information to be entered on these forms includes the inspector's name, date, and time of inspection, item inspected and any comments. The inspector indicates on the forms whether the condition of each item was acceptable or unacceptable to ensure that the requirements of this O&M Plan are fulfilled. The scheduled Site monitoring inspections are performed by a qualified individual assigned to inspect the items and systems noted on the Site Inspection Form. The completed Site Inspection Forms are maintained at Olin Environmental Remediation offices in Cleveland, TN. Inspections are performed, at a minimum, on a quarterly basis.

Evaluation of Remedial Systems:

All components are performing as designed. Manhole B sump was online for the entire Certifying Period.

O&M deficiencies:

None. There are no outstanding maintenance items.

Conclusions:

The O&M system is being run and maintained properly and does not require additions or modifications at this time.

VII. OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

Compliance with SMP:

Based on the operations and maintenance documentation listed above, the system requirements are being met. There are no new exposure pathways. Additional plans and modifications are not necessary.

Remedy Effectiveness:

The groundwater elevation data indicates that groundwater within the capped area is consistent with historical data and is being maintained by current operation and maintenance activities.

Review of the groundwater elevation data indicate that inward hydraulic gradients were observed between piezometers within the capped area and piezometers outside of the capped area with previously noted exceptions. Fluctuations of groundwater elevations indicate that minor outward hydraulic gradients historically occur, but typically revert back to inward gradients by the next quarter.

Currently two locations, immediately upstream and downstream of the Site and the adjacent remediated portion of the Cayuga Creek bed, are sampled once per year, in the Fall or 'low water' period. A sample is collected downstream of the Site to monitor changes in levels of contaminants in creek sediments, if any. The other sample, immediately upstream of the Site is used to monitor potential upstream contaminant sources or potential 'backwash' effects caused by the changing level of the Niagara River. Historically, upstream samples show higher concentrations than downstream. Beginning with the October 2000 sample event, annual creek sediment samples have been analyzed for BHC isomers only.

Downstream sample collection amounts were insufficient for analysis and the upstream analysis revealed undetected concentrations of BHC.

Based on the data developed to date, the remedy has been effective in attaining the remedial objectives.

Future Submittals:

Future submittals of this report will continue to be submitted annually, typically on or around March 1 of each year, as dictated by NYSDEC.

<u>Attachment A</u>

Institutional & Engineering Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	Site Details	Box 1		
Sit	e Name Ch	narles Gibson Site			
Site Cit Co Site	e Address: y/Town: Nia unty: Niagar e Acreage:	N.E. Cnr. of Niagara Falls Blvd. & Tuscarora Rd. Zip Code: 14304 agara Falls ra 2.000			
Re	porting Peri	od: January 31, 2021 to January 31, 2022			
			YES	NO	
1.	Is the infor	mation above correct?			
	If NO, inclu	ude handwritten above or on a separate sheet.			
2.	Has some tax map ar	or all of the site property been sold, subdivided, merged, or undergone a mendment during this Reporting Period?			
3.	Has there (see 6NYC	been any change of use at the site during this Reporting Period CRR 375-1.11(d))?		-	
4.	Have any f for or at the	federal, state, and/or local permits (e.g., building, discharge) been issued e property during this Reporting Period?			
	lf you ans that docu	wered YES to questions 2 thru 4, include documentation or evidence mentation has been previously submitted with this certification form.			
5.	Is the site o	currently undergoing development?		B	
			Box 2		
			YES	NO	
6.	Is the curre Closed Lar	ent site use consistent with the use(s) listed below? ndfill			
7.	Are all ICs	in place and functioning as designed?			
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				
AC	Corrective M	leasures Work Plan must be submitted along with this form to address the	ese issı	les.	
Sig	nature of Ow	wner, Remedial Party or Designated Representative Date			

Description of Institutional Controls Institutional Control Parcel Owner Institutional Control 61.05-3-7 OLIN CORPORATION Monitoring Plan O&M Plan Consent Judgement 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Operation and Maintenance Manual; September 30, 2009. Groundwater Quality Monitoring. Leachate Monitoring. Leachate Monitoring. Leachate Monitoring. OLIN CORPORATION Monitoring Plan O&M Plan Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Groundwater Quality Monitoring. Leachate Monitoring. OLIN CORPORATION Monitoring Plan O&M Plan Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Groundwater Quality Monitoring. Leachate Monitoring. Easehate Controls Easehate Collection State Parcel Engineering Controls Engineering Control Parcel Engineering Control Foroundwater Containment Leachate Collection FencingAccess Control Realignment of Cayuga Creek from the waste. Fully draumscribed soil-bentonite slury wall barrier. Dualie flexible membrane liner cap. Permeter chachate Collection FencingAccess Control <td< th=""><th>SITE NO. 932063</th><th></th><th>Box 3</th></td<>	SITE NO. 932063		Box 3
Barcel Owner Institutional Control 61.05-3-7 OLIN CORPORATION Monitoring Plan O&M Plan Consent Judgement 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Operation and Maintenance Manual; September 30, 2009. - Groundwater Quality Monitoring. - - Leachate Monitoring. - - Croundwater Quality Monitoring. - - Creek Sediment Monitoring. - - Croundwater Quality Monitoring. - - Crower System - - Croundwater Quality Monitoring. - - Crower System - - Croundwater Containment - - Back 4 - Description of Engineering Control - - Croundwater Containment - - Leachate Konlection - - Croundwater Containment - - Leachate Collection - - Faning Cover System	Description of Instit	utional Controls	
61.05-3.7 OLIN CORPORATION Monitoring Plan O&M Plan Consent Judgement 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Operation and Maintenance Manual; September 30, 2009. Groundwater Quality Monitoring. - create Sediment Monitoring. Leachate Monitoring. - create Sediment Monitoring. Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Groundwater Quality Monitoring. Leachate Monitoring. Creek Sediment Monitoring. Baco 1 Parcei Globs-3-7 Cover System Groundwater Containment Leachate Collection System with discharge to NFWWTP. Final cover solic cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. Fully circumscribed soil-bentonite stu	Parcel	Owner	Institutional Control
Consent Judgement 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Operation and Maintenance Manual; September 30, 2009. Groundwater Quality Monitoring. Creek Sediment Monitoring. Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Groundwater Quality Monitoring. Coresk Sediment Monitoring. Coresk Sediment Monitoring. Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Groundwater Quality Monitoring. Coresk Sediment Monitoring. Coresk Statement of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter Acian Link and portions of wooden privacy fencing with locked gates. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter Acian Link with portions of wooden privac	161.05-3-7	OLIN CORPORATION	Monitoring Plan O&M Plan
Consent Judgment 3/12/85 including IC stipulations p. 23 Permits and Easements, sections 11-24. Groundwater Quality Monitoring. Leachate Monitoring. Creek Sediment Monitoring. Box 4 Description of Engineering Control Garcel Garcel Gover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry wall. Double flexible membrane liner cap. Perimeter Leachate Collection System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final cover soil cap. Perimeter chain link with portions of wooden privacy fencing with locked gates. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.	Consent Judgement 3/12/8 Operation and Maintenand - Groundwater Quality Mo - Leachate Monitoring. - Creek Sediment Monitori 161.05-5-12	5 including IC stipulations p. 23 Permit ce Manual; September 30, 2009. nitoring. ing. OLIN CORPORATION	ts and Easements, sections 11-24. Monitoring Plan O&M Plan
Parcel Engineering Control I61.05-3-7 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of woden privacy fencing with locked gates. I61.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of woden privacy fencing with locked gates.	- Groundwater Quality Mo - Leachate Monitoring. - Creek Sediment Monitor	nitoring. ing.	Box 4
Parcea Engineering control 161.05-3-7 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. 161.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.	Description of Engli	Engineering Control	
Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. IG1.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap.	Parcel 161.05-3-7	Engineering Control	
Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. I61.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap.	101.03-3-7	Cover System	
Leachate Collection Fencing/Access Control Realignment of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. I61.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap.		Groundwater Containm	ent
Fencing/Access Control Realignment of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. I61.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter leachate collection system with discharge to the NFWWTP.		Leachate Collection	
Realignment of Cayuga Creek from the waste. Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. I61.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.		Fencing/Access Contro	l
 Fully circumscribed soil-bentonite slurry wall barrier. Double flexible membrane liner cap. Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. I61.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates. 	- Realignment of Cayuga C	Creek from the waste.	
Perimeter Leachate Collection System with discharge to NFWWTP. Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. I61.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.	Fully circumscribed soll-b Double flexible membran	entonite siurry waii barrier. e liner can	
 Final cover soil cap. Perimeter chain link and portions of wooden privacy fencing with locked gates. I61.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates. 	- Perimeter Leachate Colle	ection System with discharge to NFWW	/TP.
Perimeter chain link and portions of wooden privacy fencing with locked gates. 161.05-5-12 Cover System Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.	- Final cover soil cap.		
161.05-5-12 Cover System Groundwater Containment Leachate Collection Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.	- Perimeter chain link and	portions of wooden privacy fencing with	n locked gates.
Groundwater Containment Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.	161.05-5-12	Cover System	
Leachate Collection Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.		Groundwater Containm	ent
Fencing/Access Control Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.		Leachate Collection	
Realignment of Cayuga Creek away from the waste. Fully circumscribed soil-bentonite slurry barrier wall. Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.		Fencing/Access Contro	I
 Double flexible membrane liner cap. Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates. 	I - Realignment of Cayuga (Eully circumscribed coil b	Sreek away trom the waste.	
Perimeter leachate collection system with discharge to the NFWWTP. Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.	- Double flexible membran	e liner cap.	
Final soil cover cap. Perimeter chain link with portions of wooden privacy fencing with locked gates.	- Perimeter leachate collec	tion system with discharge to the NFW	/WTP.
Perimeter chain link with portions of wooden privacy fencing with locked gates.	- Final soil cover cap.	. <u>.</u> <u>.</u>	
	- Perimeter chain link with	portions of wooden privacy fencing wit	h locked gates.

	Box 5
	Periodic Review Report (PRR) Certification Statements
١.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted and the information procented is accurate and competen.
	engineering practices, and the mormation presented is accurate and compete. YES NO
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 932063				
	Box 6			
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.				
Adam B Carringerat490 Stuart Road NE, Clev print nameprint business add	eland, TN 37312, ress			
am certifying asOlin Corporation	(Owner or Remedial Party)			
for the Site named in the Site Details Section of this form.				
Signature of Owner, Remedial Party, or Devignated Representative	2/28/2023 Date			
Rendering Certification				

а

¥ 22

EC CERTIFICATIONS				
Qualified Environmental Profe	essional Signature	Box 7		
Qualified Environmental Prov	ssionar orginarare			
I certify that all information in Boxes 4 and 5 are true. I und punishable as a Class "A" misdemeanor, pursuant to Section	erstand that a false s on 210.45 of the Pena	tatement made herein is I Law.		
I Carrie Hunt at 490 Stuart print name print b	Road NE, Clevelar usiness address	nd TN 37312,		
and cartificing on a Qualified Environmental Drefergional for	Ha Olin Corporat	on		
an centrying as a qualitied Environmental Professional for	(Owner or Rem	edial Party)		
$Q_{2} = Q_{2}$		2/28/2023		
Carrie LCC CHMM, 11148				

L

<u>Attachment B</u>

Site Features Map, Site Boundary, and Slurry Wall

Document: P:\Projects\Olin Charles Gibson\4.0_Deliverables\4.5_Databases\GIS\MapDocuments\SMP\SMP_11x17LS.mxd PDF: P:\Projects\Olin Charles Gibson\4.0_Deliverables\4.2_Work_Plans\Site Management Plan\Figures\Figure 1.2 - Site Layout.pdf 03/12/2020 10:22 AM brian.peters

Document: P:\Projects\Olin Charles Gibson\4.0_Deliverables\4.5_Databases\GIS\MapDocuments\SMP\SMp_11x17LS.mxd PDF: P:\Projects\Olin Charles Gibson\4.0_Deliverables\4.2_Work_Plans\Site Management Plan\Figures - update numbers\Figure 3.1 - Eng and Inst Ctrl Boundaries.pdf 03/11/2020 8:57 AM brian.peters

Figure 3.1 Engineering and Institutional Control Boundaries

Site Management Plan Olin Charles Gibson Niagara Falls, New York

<u>Attachment C</u>

Field Sampling Forms

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER SAMPLING FIELD PARAMETERS FIELD INSTRUMENTATION CALIBRATION FORM

DATE: <u>7/20/22</u> SAMPLING E	VENT: <u>Gibson Fall S</u>	ampling
PERSON CALIBRATING METER:	Max Liffton	
INSTRUMENT USED:		
MANUFACTURER:	Max Liffton Horida	
MODEL NUMBER:	U-52	
HGS NUMBER: 5	PPY03FX	
DATE OF MANUFACT	URE: March 2021	
CALIBRATION STANI	DARDS USED:	
STAND	ARD 7.00 METER READ:	
STAND	ARD 4.00 METER READ:	
STAND	ARD 10.00 METER READ:	
CALIBRATION SOLUT	FION EXPIRATION DATE:	
	PRE CALIBRATION READINGS	POST CALIBRATION READINGS
TEMPERATURE (°F or °C):	20.16	20.19
pH:	4.02	4.00
pHmv:		
OX-RED POT (ORPmv):	257	258
CONDUCTIVITY (ms/cm):	4.55	4.50
TURBIDITY (NTU):	0.5	
mg/L DO:	/2.10	10.21
% DO:	150.3	105.9
OTHER CALIBRATION COMMENTS:		
		<u> </u>

	• ليتحصين من ال	Ç* *
GROUN FIELD I	CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 DWATER SAMPLING FIELD PARA INSTRUMENTATION CALIBRATIO	METERS - N FORM
DATE: $\frac{9/29/21}{29}$ SAMPLING E PERSON CALIBRATING METER: INSTRUMENT USED:	WENT: 105 Gibson Fr Max Liffton	all Sampling
MANUFACIURER: _	<u>F101100</u>	
HGS NUMPER: S	NOZEX	
DATE OF MANUFACT	TIRE: March 207/	
CALIBRATION STAN	DARDS USED	
STAND	ARD 7.00 METER READ:	
STAND	ARD 4.00 METER READ:	
STAND	ARD 10.00 METER READ:	
CALIBRATION SOLUT	FION EXPIRATION DATE:	
TEMPERATURE (°F or °C): pH: pHmv: OX-RED POT (ORPmv): CONDUCTIVITY (ms/cm): TURBIDITY (NTU): mg/L DO: % DO:	$ \begin{array}{r} 20.64 \\ 3.94 \\ 154 \\ 268 \\ 4.62 \\ 10.9 \\ 20.06 \\ 225.3 \\ \end{array} $	POST CALIBRATION READINGS 20,79 4.00 154 261 4.48 0.1 9.56 107.9
OTHER CALIBRATION COMMENTS:	۰ <u>ــــــــــــــــــــــــــــــــــــ</u>	
·	···	····
	×	
	<u>```</u>	· · · · · · · · · · · · · · · · · · ·
<u></u>	Jean St. Contraction of the second se	

SAMPLING FIELD FORM			
RECORDED BY: Max Lift:ton	SAMPLE ID: US-1-092122		
SAMPLED BY: Max LIFFAton	SAMPLING EVENT/DATE: 9/21/22		
COMPANY: Sevenson	MONITORING WELL:		
	CONDITION:		
GROUNDWATER PURGE DATA PURGE D	ATE:		
DEPTH TO BOTTOM FROM TOP OF RISER:	NOTE: ALL GIBSON SITE (FT.) MONITORING WELLS ARE		
DEPTH TO WATER FROM TOP OF RISER:	(FT.) 2-INCH DIAMETER STAIN-		
WATER COLUMN:	(FT.) LESS STEEL, WELL DEPTHS:		
2" DIA. WELL CONSTANT:	0.16 MW 1R 12.10'		
ONE WELL VOLUME=	(GALS) MW-2 12.13' MW-A3 11.95'		
PURGE METHOD: BOTTOM OF WELL/SILT BUILDUP: PURGE START TIME: PURGE OBSERVATIONS:	MW-4 13.75' MW-5 15.28' 1E:		
FIELD PARAMETER MEASUREMENTS:	\langle		
SPECIFIC WELL CONDUC VOLUME <u>pH</u> <u>umhos/cm</u> 1	TIVITY TEMP. <u>(C OR F)</u> <u>NOTES:</u>		
2			
3			
4			
5			
TOTAL VOLUME PURGED:			
GROUNDWATER OR SEDIMENT SAMPLING DATA:	SAMPLE DATE: 9/21/22		
MEDIA: GROUNDWATER CREEK SEDIMENT	SAMPLE TIME: 0950		
LOCATION: Upstream sediment Grap			
SAMPLE METHOD: <u>Sediment</u> Erap			
SAMPLING OBSERVATIONS:			
QC SAMPLES TAKEN:			
OTHER OBSERVATIONS/COMMENTS: Trap	cleaned before re-placement		
ìn.	stream.		
Note: specific conductivity formula to 25 degrees Celcius	s: SC(25)= <u>SC measured</u> {{T-25)(0.02)}+1		

CRA 8143 (1) AppD-GwsdForm

· •

SAMPLING I	-IELD FORM
RECORDED BY: Max Lifthan	SAMPLE ID: DS-1-092122
SAMPLED BY: Max Liffton	SAMPLING EVENT/DATE: 9/21/22
COMPANY: Sevenson	MONITORING WELL:
	CONDITION:
GROUNDWATER PURGE DATA PURGE DA	ATE:
DEPTH TO BOTTOM FROM TOP OF RISER:	NOTE: ALL GIBSON SITE (FT.) MONITORING WELLS ARE
DEPTH TO WATER FROM TOP OF RISER:	(FT.) 2-INCH DIAMETER STAIN-
WATER COLUMN:	(FT.) LESS STEEL, WELL DEPTHS:
2" DIA. WELL CONSTANT:	0.16 MW IR 12.10'
ONEWELL VOLUME=	(GALS) MW-2 12.13'
PURGE METHOD: BOTTOM OF WELL/SILT BUILDUP: PURGE START TIME: PURGE OBSERVATIONS:	MW-4 13.75' MW-5 15.28' E:
FIELD PARAMETER MEASUREMENTS:	
SPECIFIC WELL CONDUCT VOLUME pH umhos/cm	TIVITY TEMP.
2	
4	
5	
TOTAL FOLOME FORGED.	
GROUNDWATER OR SEDIMENT SAMPLING DATA:	SAMPLE DATE: 9/21/22
MEDIA: GROUNDWATER CREEK SEDIMENT	SAMPLE TIME: 0900
LOCATION: Downstream sediment Grap	0
SAMPLE METHOD: Sediment Erap	
SAMPLING OBSERVATIONS:	
QC SAMPLES TAKEN: Blind dup taken here	as MS-1-0921-22, Reported time 0845
OTHER OBSERVATIONS/COMMENTS: Trap	cleaned before replacement
	in stream
Note: specific conductivity formula to 25 degrees Calcius	$\frac{\text{SC measured}}{\text{SC(25)}= \frac{1}{1}}$

. .

RECORDED BY: May 11 ft Ame	MPLEID DILLIK 692122	
SAMPLED BY: May 14 Prov	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
COMPANY: SES		
CC		
GROUNDWATER PURGE DATA PURGE DATE	±	
DEPTH TO BOTTOM FROM TOP OF RISER: DEPTH TO WATER FROM TOP OF RISER:	NOTE: ALL GIBSON SITE (FT.) MONITORING WELLS ARE (FT.) 2-INCH DIAMETER STAIN-	
WATER COLUMN:	(FT.) LESS STEEL, WELL DEPTHS:	
2" DIA. WELL CONSTANT:	0.16 MW-1R 12.10'	
ONE WELL VOLUME=	(GALS) MW-2 12.13' MW-A3 11.95'	
PURGE METHOD: BOTTOM OF WELL/SILT BUILDUP: PURGE START TIME: PURGE OBSERVATIONS:	MW-4 13.75' MW-5 15.28'	
FIELD PARAMETER MEASUREMENTS:		
WELL CONDUCTIVI VOLUME pH umhos/cm)	TY TEMP. <u>(CORF) NOTES:</u>	
2		
3		
4		
5		
TOTAL VOLUME PURGED: GROUNDWATER OR SEDIMENT SAMPLING DATA:	SAMPLE DATE: 9/21/22	
MEDIA: GROUNDWATER X D.I. Water CREEK SEDIMENT X D.I. Water	SAMPLE TIME: //3/	
	·	
SAMPLE METHOD: Field blank taken of la	b provided D.I. noter.	
SAMPLING OBSERVATIONS:		
QC SAMPLES TAKEN:		
OTHER OBSERVATIONS/COMMENTS: Sample 1.1	D. FIELD BLANK-092122	
Note: specific conductivity formula to 25 degrees Celcius: S(C(25)= SC measured	

CRA 8143 (1) AppD-GwsdForm

۰

,

SAMPLING FIELD FORM				
RECORDED BY: Max Liffton SAMPI	LE ID: MH-	B-092122		
SAMPLED BY: Max Lifeton SAMPL	LING EVENT/	DATE: 9/21/22		
COMPANY: Surenson MONIT	ORING WELL	<u>. мн-в</u>		
COND	ITION: Goo	d		
GROUNDWATER PURGE DATA PURGE DATE:				
DEPTH TO BOTTOM FROM TOP OF RISER:	(FT.)	MONITORING WELLS ARE		
DEPTH TO WATER FROM TOP OF RISER:	(FT.)	2-INCH DIAMETER STAIN-		
WATER COLUMN:	(FT.)	LESS STEEL. WELL DEPTHS:		
2" DIA. WELL CONST <u>ANT:</u>	0.16	MW-1R 12.10'		
ONE WELL VOLUME=	(GALS)	MW-2 12.13' MW-A3 11.95'		
PURGE METHOD: BOTTOM OF WELL/SILT BUILDUP: PURGE START TIME: PURGE OBSERVATIONS:		MW-4 13.75' MW-5 15.28'		
FIELD PARAMETER MEASUREMENTS:				
WELL CONDUCTIVITY VOLUME pH umhos/cm)	TEMP. <u>(© OR F)</u>	NOTES:		
2				
3				
4				
5				
TOTAL VOLUME PURGED:				
		$\overline{\}$		
GROUNDWATER OR SEDIMENT SAMPLING DATA:	SAMPLE	DATE: 9/21/22		
MEDIA: GROUNDWATER	SAMPLE	TIME: 200 1115		
LOCATION: MH-B	·			
SAMPLE METHOD: <u>Peristallie</u> of dedicated t	abny			
SAMPLING OBSERVATIONS:				
QC SAMPLES TAKEN: MS/MSD Volumes taken here				
OTHER OBSERVATIONS/COMMENTS:				
	SC meas	ured		
Note: specific conductivity formula to 25 degrees Celcius: SC(25)= {{T-25)(0.	02)}+1		

۰.

SAMPLING FIELD	FORM			
RECORDED BY: Max Lifeton SAMI	PLE ID: MW-4-092027			
SAMPLED <u>BY: Max L'Ffton</u> SAMF	PLING EVENT/DATE: 9/20/22			
COMPANY: Sevenson MONITORING WELL: MW-4				
CONI	DITION: Groad			
GROUNDWATER PURGE DATA PURGE DATE:				
	(FT.) MONITORING WELLS ARE			
DEPTH TO WATER FROM TOP OF RISER: <u>X, 09</u>	(FT.) 2-INCH DIAMETER STAIN-			
WATER COLUMN: 5,66	(F1.) LESS STEEL. WELL DEPTHS:			
2" DIA. WELL CONST <u>ANT:</u>	0.16 MW-1R 12.10			
ONE WELL VOLUME= 0.4((GALS) MW-2 12.13' MW-A3 11.95'			
PURGE METHOD: Penstalt.c pump of dedicated BOTTOM OF WELL/SILT BUILDUP: PURGE START TIME: 1425 STOP TIME: 15	tubing <u>MW-4</u> 13.75' MW-5 15.28'			
PURGE OBSERVATIONS:	λιφ			
FIELD PARAMETER MEASUREMENTS:				
SPECIFIC	TEMP			
VOLUME pH umhos/cm)	(C OR F) NOTES:			
0 X 6.70 1.96	21.04 32.4 NTU			
1 1 6.85 1.85	17.91 3.1			
2 & 6.75 1.93	18.18 3.7			
3 Å 6.82 2.11	17.04 46.1			
U & dry				
TOTAL VOLUME PURGED: 3.5 gallons				
GROUNDWATER OR SEDIMENT SAMPLING DATA:	SAMPLE DATE: 9/21/22			
MEDIA: GROUNDWATER CREEK SEDIMENT	SAMPLE TIME: 1205			
LOCATION: MW-4				
SAMPLE METHOD: <u>levistaltic</u> of dedicated tubing				
SAMPLING OBSERVATIONS: Well pumped dry on 9/20, returned 9/21 to sample,				
QC SAMPLES TAKEN: Blind duplicate taken here as MW-7-092122.				
OTHER OBSERVATIONS/COMMENTS: <u>Reported due sample time was 13</u> 00,				
Note: specific conductivity formula to 25 degrees Celcius: SC(2	Note: specific conductivity formula to 25 degrees Celcius: SC(25)= <u>SC measured</u> <u>{</u> {T-25}(0.02)}+1			

. .

.

RECORDED BY: Un I'Ut-	CAMPLE I	D	<u> </u>
RECORDED BT. Max Liftion	SAMPLE	D: MW-	5-042022
SAMPLED BY: Max Litterton	SAMPLING	G EVENT/D	<u>ATE: 4/20/22</u>
COMPANY: Sevenson	ING WELL:	_MW-5	
	CONDITIO	N: Good	
GROUNDWATER PURGE DATA P	PURGE DATE:		
	15-00		NOTE: ALL GIBSON SITE
DEPTH TO BOTTOM FROM TOP OF RISER:	15.28	(FT.)	MONITORING WELLS ARE
DEPTH TO WATER FROM TOP OF RISER:	7.90	(FT.)	2-INCH DIAMETER STAIN-
WATER COLUMN:	7.38	(FT.)	LESS STEEL. WELL DEPTHS:
2" DIA. WELL CONSTA	NT: 0.16		MW-1R 12.10'
ONE WELL VOLUME=	1.18	(GALS)	MW-2 12.13' MW-A3 11.95'
PURGE METHOD: Peristaltiz pump w	dedicated Eubin	y .	MW-4 13.75'
BOTTOM OF WELL/SILT BUILDUP: '	TOP TIME 1621	<	MW-5 15.28'
PURGE OBSERVATIONS:	510F TIME. 1021		
FIELD PARAMETER MEASUREMENTS:			
s	PECIFIC		
WELL C	ONDUCTIVITY	TEMP.	Turb.
	mhos/cm)	(C OR F)	NOTES:
0 7 6.64 (.92	16.87	315 NTO
$\frac{1}{2} \frac{2}{6.90} \frac{1}{10}$.72	16.37	9.9
2 3 6.45 (. 70	<u>[6.75</u>	3.2
3^{4} 6.4^{-1} (,	.72	16.60	1.8
5	·····		
TOTAL VOLUME PURGED: 3.6 gad			
GROUNDWATER OR SEDIMENT SAMPLING	DATA:	SAMPLE D	DATE: 9/20/22
MEDIA: GROUNDWATER		SAMPLE T	IME: 1626
LOCATION: MW-5		<u></u>	
SAMPLE METHOD: Peristation of d	hedicated tibin	γ	
SAMPLING OBSERVATIONS: Turbid	ry ran higher	during	sampling (50 < 100 NTU)
QC SAMPLES TAKEN: None		<u></u>	
OTHER OBSERVATIONS/COMMENTS:	<u> </u>		
Note: specific conductivity formula to 25 degree	es Celcius: SC(25)=	SC measu {{T-25)(0.0	red 2)}+1

· ·

NI/ NYSI	CHARLES GIBSON AGARA FALLS, NE DEC REGISTRY NO	N SITE W YORK O. 9-32-063	
GRO	UNDWATER AND		
RECORDED BY: Max / Afton	SAMFLING FIELD		
SAMPLED BY:	— SAMF	PLING EVENT/	DATE: 9/21/22
COMPANY: Sevenson	— MONI	ITORING WELL	: MW - A3
		DITION: Good	d
GROUNDWATER PURGE DATA	PURGE DATE:		
DEPTH TO BOTTOM EBOM TOP OF RISE	·R·	(FT)	MONITORING WELLS A
DEPTH TOWATER FROM TOP OF RISE	2.	(FT)	2-INCH DIAMETER STAL
WATER COLUMN:	··	(FT)	
8" DIA. WELL CONS	STANT:	0.16	MW-1B 12.10'
ONE WELL VOLUMI	E=	(GALS)	MW-2 12.13'
			MW-A3 11.95'
BOTTOM OF WELL/SILT BUILDUP:			MW-5 15.28'
	STOP TIME:		
PURGE OBSERVATIONS:			
FIELD PARAMETER MEASUREMENTS:	\times		
	SPECIFIC		
WELL VOLUME DH .	CONDUCTIVITY		NOTES
1			
2			<u> </u>
3		i	
4			
5			
			\sim
TOTAL VOLUME PURGED:			
GROUNDWATER OR SEDIMENT SAMPLI	NG DATA:	SAMPLE	DATE:
		SAMDLE	TIME
LOCATION: MW-A3			
SAMPLE METHOD:		· · · · · · · · · · · · · · · · · · ·	
SAMPLING OBSERVATIONS: Well d	in upon ar	rival at 12	2.00 Ft.
	ande takes	n.	
OTHER OBSERVATIONS/COMMENTS:	<u></u>		
OTHER OBSERVATIONS/COMMENTS:			
OTHER OBSERVATIONS/COMMENTS:			ured

CHARLES GIBSON SITE

CRA 8143 (1) AppD-GwsdForm

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 065609

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE / OF /

Charles Gibson-C) in Proje	∽ ^{Project Number} / 283				ANALYSIS REQUESTED (Include Method Number and Container Preservative)																	
roject Manager Adam Carring Pr	Верс	ncc Adam Ca	rringer		PRESERVATIVE O O												1						
ompany/Address Olin Corp			· · ·		ERS		7	7	/	/	/	7	/	/	7	7	/ /	/	-/			Preservat	ive Key
3855 North	Ococe	St.			ONTAIN		/	/	/	/					/	/		/				1. HNO3 2. HNO3 3. H2SO 4. NaOH	4
Cleveland, TI	V 37312	2			R OF CC		200	* *./	200	/		CIAL Tents bei	nents bel		/ /	/ /	/ /	/ /	/ /	/ /		5. Zn. Ac 5. MeOH 7. NaHS	cetate O4
423-836-498 ampler's Signature	39 	ABCarringer	<u>r@Olin</u> r2	com	NUMBE	2000 VC					11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ETALS, COM		/	/	/	./				(1	B. Other	
Maxwell myfins		se SAM	<u>titon</u> PLING			/%%/	<u> </u>	/0%	/ @~ %	/4~%	/ <u>*</u> : <u>3</u>	<u>/ * j</u>	/	[{	/	/			\vdash	<u> </u>	LTERNA	TE DESCR	IPTION
CLIENT SAMPLE ID	ONLY LAB IC	DATE	TIME	MATRIX					~										<u> </u>	• <i>•</i>			
FIELD BLANK-092122		9/21/22	1131	GW	4		2		2										<u> </u>			<u> </u>	
MH-B-092122		9/21/22	1115	GW	12		6		6								-		ļ	MS	/Ms1	D volu	me.
MIN-9-092122		9/21/22	1205	GW	4		2		6						.								
MINI- 7 192122		9/20/22	1020	Cu.	$\frac{7}{U}$		2		2										<u> </u>				
TENP DIANK			1,000	300	٦ ./		-		0											p	:	1.1)
ICPUL BUILDER					/															1700	au	<i>σ</i> γ ι	16
· · · ·																			ł·				
				-	`																		
																	·						<u> </u>
PECIAL INSTRUCTIONS/COMMENTS	<u> </u>						ти	RNAR	OUND	REQU	IREME	NTS		REPC	RT RE	QUIRI	EMENT	s		INV	DICE IN	FORMAT	ION
letais								_ RUSH	I (SURC	HARGE	S APPLY)		_ I. Resu	its Only								
								1 day	2	day	3 day		<u>«</u>	_ II. Rəsi	ılts + Q(Summ	aries		PO #				
							$\overline{\alpha}$	_ 4 day	5	day		. .		(LCS, I	oup, MS	/MSD a:	s require	d)	BILL	то; 🦯			. <u>.</u> .
							<u> </u>	Stanc	iaro (i u i	203/1053	days-No :	SUICHAIG	"[—	_ III. Res Summa	ults + Q aries	C and C	alibratio	n		0	lin		
				•			REQU	ESTED	REPO	rt dat	E		Ì	_ IV. Data	n Validat	ion Repo	ort with f	Raw Dat	ta				
								<u>0</u> , .											1				
										· · ·			1	Edata	a	_Yes		No					
RELINQUISHED BY	REC	EIVED BY	REL	INQUISHED I	3Y				RECEN	/ED BY	,			. <u>.</u>		JISHED	BY				RECEN	/ED BY	
,	UP	S				- 1																	
grature Max Jut to	Signature		Signature				Signatur	re					Signal	ure					Signa	lure			
inted Name Max Liffiton	Printed Name		Printed Name			1	Printed I	Name					Printe	i Name					Printe	d Name			
"Sevenson	Firm	,	Firm	,			-irm						Firm		_				Firm				
ite/Time 9/21/22 1500	Date/Time Date/Time				Date/Time					Date/Time					Date/	Date/Time							

stribution: White - Lab Copy; Yellow - Return to Originator

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 065609

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE / OF /

Charles Gibson-O	1283				ANALYSIS REQUESTED (Include Method Number and Container Preservative)																			
Project Manager Adam Carring fr	Report CC A day Carringer				PRE	SERVA				0														
Company/Address	.					ş		7	/	7	7	\neg			\neg	7			/		7	75	reservati NONE	ve Key
3855 North	Ocoee	St	4			ITAINE		/				/				/					/		. HCL . HNO3 . H2SO4	
Cleveland, TN	J 3731	12				OF CO		000	/ * /	ş/			TAL Pelo	SOLVED		' /	/ /	/ /	/ /	/ /	/ /	/ 4 5 6 7	. NaOH . Zn. Ac . MeOH	etate
Phone # 423-836-498	' ? "	<u>ABC</u>	Carringre	r COlir	cm	MBER				10801 TODE	? 8 ~ / .,			in the second		/						8	. Other_	
Sampler's Signature		iampler's Pr <u>MAX (</u>	vel Lit	Fiton	1	2	\? <u>`</u> \$	<u>\</u>	<u></u>		s/3 §	L'SI I	Les .		<u> </u>	/	\square	<u> </u>			/ <u>^</u>	RE LTERNAT	MARKS/ E DESCRI	PTION
CLIENT SAMPLE ID	FOR OFFICE ONLY LAB	E USE B ID	SAMI DATE	PLING TIME	MATRIX	ļ																		
US-1-092122			9/21/22	0950	SED	2				2														
MS-1-092122			9/21/22	0845	SED	2				S														
DS-1-092122			9/21/22	0900	SED	2				Ν														
TEMP BLANK			·	<u></u>	-	1																		
							1																	
	2. A. S. 2																							
											-													
· · · · ·		1																						
SPECIAL INSTRUCTIONS/COMMENTS Metals	1. Jacobi radionali			J		· · ·		דע 	JRNAR RUSI	OUND H (SURC	REQU HARGE	IREME S APPLY	ints ()		REPC	ORT RI	EQUIR	EMENI	rs		INV	OICE IN	FORMATI	ON
/									1 day	/2	day	3 day	· .	<u>~</u>	_ II, Res (LCS, I	ults + Qi DUP, MS	C Summ S/MSD a	aries s require	xd)	PO #	. <u>.</u>			
									Stan	dard (10	business	days-No :	Surcharg	e)	_ III. Res Summ	ults + C aries	C and C	alibratio	มา	BILL	то: <u>С</u>	Vin		
									UESTER Fal	D REPO	RT DAT	ſE			_ IV. Dat	a Validat	tion Rep	ort with	Raw Da	ta				
See QAPP																•								
STATE WHERE SAMPLES WERE CO	LLECTED		•										_		Edat	a	Yes		No					
RELINQUISHED BY	R. ()	eceived PS	BY	REI	LINQUISHED	BY				RECEI	VED BY	(R	ELINQ	UISHEC	BY				RECEIN	ED BY	
Signature Max total	Signature	- + - ⁻		Signature				Signate	ure					Signat	ure					Signa	ature			
Printed Name Max Liffiton	Printed Name		•	Printed Name				Printed	i Name					Printer	d Name					Printe	ed Name			
Fim Sevenson	Firm			Firm				Firm						Firm						Firm				
Date/Time 9/21/22 /500	Date/Time			Date/Time				Date/T	រំរាe					Date/T	īme					Date	Time			

Distribution: White - Lab Copy; Yellow - Return to Originator

<u>Attachment D</u>

Site Inspection Forms

THIS FORM TO BE USED FOR	QUARTERLY AN	ND ALL OTHER SITE INSPECTIONS]
DATE: 3/16/22	TIME: C	3830	
INSPECTOR: Max Liffton (- Einst com	MPANY SES	
INSPECTOR. Proce Control , C	<u>noj omst</u> ook		
WEATHER: FOGSY/Ch	oudy 40°r	-	
REASON FOR INSPECTION (Q	UARTERLY OR C	OTHER): Sprive W22	
GENERAL SITE CONDITIONS:	U=U	JNACCEPTABLE A=ACCEPTABLE	
(Note: For general sit	e conditions note	existence of bare areas (number,size), cracks,	
and rodent burrows.	For site security,	note absence of locks, gates open or damaged,	
missing signs or evid	ence of vandalism	n. Note any other unusual occurences.)	
,		COMMENTS	
ACCESS ROAD	<u> </u>	Access gate temporarily impeded	(see below)
	<u> </u>	The leave of the	and line (see hold a)
		tree in danger of falling on hearby	power line (see deal)
EROSION (CAP)	<u> </u>		—
EROSION (BANK)	A		—
SECURITY:			
FENCE/LOCKS	A		
PIEZOMETERS/LOCKS	<u> </u>	P-5 lock had seized. Lock was a	cut off to be replaced.
MONITORING WELLS/LOCKS	A		Well cover was
MANHOLES/LIDS/LOCKS	A		- will need replacement
ELECTRICAL PANEL	A		as well.
ADDITIONAL COMMENTS:	A beaver ha	d felled a tree on top of the access	_
gate at the head of H	he driveway.	The tree was able to be removed	
from the gate by han	d, the acces	is gate and road are no longer bl	lodred.
The gate sustained no	significant a	damage .	
The beaver is partially	y through	cutting a tree that is in danger	_
of falling on a nearby	power line.	National Grid was alerted on 3/16/2	2.
J	•		

THIS FORM TO BE	USED FOR (QUARTERL	Y AND ALL	OTHER SI	TE INSPECTIONS
DATE: <u>5/18/202</u>	2	TIME:	1300		
INSPECTOR:	Walker		COMPAN	<u>/:</u>	Sevenson Environmental Services
WEATHER:					
REASON FOR INSP	ECTION (QL	JARTERLY	OR OTHER	R):	2nd Quarter Inspection 2022
GENERAL SITE CO	NDITIONS:		U=UNACC	EPTABLE	A=ACCEPTABLE
(Note: Fo	r general site	e conditions	note existe	nce of bare	areas (number,size), cracks,
subsidence and roder	ce (sinking), nt burrows. F	Ponded wat For site secu	er, stressed uritv. note al	vegetation	, soil discoloration or seeps, ocks. dates open or damaged.
missing s	igns or evide	ence of vanc	alism. Note	any other u	unusual occurences.)
				COMMEN	TS
ACCESS ROAD		A	_		
COVER VEGETATIC	ON	Α	_		
TREES		А	_		
LITTER		А	_		
EROSION (CAP)		Α	_		
EROSION (BANK)		Α	-		
SECURITY:					
FENCE/LOCKS		U	_	South Eas	t portion of fence needs repair.
PIEZOMETERS/LOC	ЖS	А	_		
MONITORING WELL	∟S/LOCKS	Α	_		
MANHOLES/LIDS/LO	JCKS	А	_		
ELECTRICAL PANE	L	Α	-		
ADDITIONAL COMM	IENTS:	Site looked	d good, exce	ept the porti	on of wooden fence and 1 fence
post was damaged b	v rot and pos	sible high w	vinds I calle	d fox Fence	e and Mark Fox met me on site to
poor nuo damagod b	<u>y fot and poo</u>				
look at the damage a	ind start repa	airs.			

THIS FORM TO BE USED FOR QUARTERLY AND ALL C	OTHER SITE INSPECTIONS
date: <u>9/20/2.7 </u>	
INSPECTOR: Maxwell Lifton COMPANY:) e, engor
WEATHER: BLUNN 70°F	
REASON FOR INSPECTION (QUARTERLY OR OTHE <u>R)</u>	Fall 2022 Ins. + Sampling
	v
GENERAL SITE CONDITIONS: U=UNACCEP	TABLE A=ACCEPTABLE
subsidence (sinking), ponded water, stressed v	e of bare areas (number,size), cracks, egetation, soil discoloration or seeps,
and rodent burrows. For site security, note abs missing signs or evidence of vandalism. Note a	ence of locks, gates open or damaged, ny other unusual occurences.)
CC	DMMENTS
ACCESS ROAD	
EROSION (CAP)	
$\frac{\text{EROSION}(\text{BANK})}{\underline{A}}$	
SECURITY:	
FENCE/LOCKS	
PIEZOMETERS/LOCKS A	
MONITORING WELLS/LOCKS A	
MANHOLES/LIDS/LOCKS	
ELECTRICAL PANEL	
ADDITIONAL COMMENTS:	
· · · · · · · · · · · · · · · · · · ·	

Ì

}

THIS FORM TO BE USED FOR		D ALL OTHER SITE INSPECTIONS								
DATE:	_TIME: <u>U7</u>	25								
INSPECTOR GOL GOL	COM									
INSPECTOR. DIE EIN I	0	IPANT								
WEATHER: (Jorby 31.)	-									
REASON FOR INSPECTION (QUARTERLY OR OTHER) (1) ator () (1) ator ()										
LEADENT ON THE LET ON OTHER D. WANTER TANK COMMENCE										
		/								
GENERAL SITE CONDITIONS	1 1-1 1									
(Note: For general site	e conditions note	existence of bare areas (number.size), cracks.								
subsidence (sinking),	ponded water, str	essed vegetation, soil discoloration or seeps,								
and rodent burrows.	For site security, r	note absence of locks, gates open or damaged,								
missing signs of evide	ince of vandalism	. Note any other unusual occurences.)								
		COMMENTS								
ACCESS ROAD	A									
COVER VEGETATION	A									
TREES	A									
LITTER	A									
EROSION (CAP)	A									
EROSION (BANK)	A									
SECURITY:										
FENCE/LOCKS	A									
PIEZOMETERS/LOCKS	A									
MONITORING WELLS/LOCKS	A									
MANHOLES/LIDS/LOCKS	Â									
ELECTRICAL PANEL	A									
ADDITIONAL COMMENTS:										
······································										
<u>Attachment E</u>

Historical Detections at Manhole B

Sample Date	Parameter	Result	Qualifier
4/3/2008	alpha-BHC	0.03	J
4/3/2008	beta-BHC	0.066	
4/3/2008	delta-BHC	0.072	
4/3/2008	gamma-BHC	0.019	J
4/2/2009	alpha-BHC	0.049	
4/2/2009	beta-BHC	0.04	J
4/2/2009	delta-BHC	0.17	
4/2/2009	alpha-BHC	0.038	J
4/2/2009	beta-BHC	0.025	J
4/2/2009	delta-BHC	0.16	
4/19/2011	delta-BHC	1.1	J
9/18/2014	delta-BHC	0.053	J
9/25/2018	beta-BHC	0.062	
9/28/2020	beta-BHC	0.25	
9/28/2020	delta-BHC	2.2	
3/17/2021	beta-BHC	0.13	J
9/21/2022	beta-BHC	0.074	
9/21/2022	delta-BHC	0.15	J
3/15/2023	beta-BHC	0.1	
3/15/2023	delta-BHC	1.1	

Manhole B - Historical Detections

Notes: Concentration in ug/l

J - Estimated value

<u>Tables</u>

TABLE 1 **CHARLES GIBSON SITE** NIAGARA FALLS, NEW YORK

SAMPLING AND ANALYSIS PLAN

Requirement	Element	Frequency
	Fencing, gates, and Site access	
Inspections	Monitoring well integrity	Quarterly
	Landfill Cover System	
	Hydraulic Monitoring	Quarterly
	Manhala B water complex	Annual (BHC Isomers)
Monitoring	Mannole b water samples	Every 5 Years (HBC)
		Annual (BHC Isomers)
	Monitoring wells MVV-A3, MVV-4, MVV-5	Biennial (HBC)
Maintananaa	Pump maintenance	As needed
Waintendille	Landfill cover mowing	Annual
Reporting	Periodic Review Report	Annual

Notes:

BHC = hexachlorocyclohexane HCB = hexachlorobenzene

TABLE 2 CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL SUMMARY GROUND WATER SAMPLING 2016-2022

MONITOR WELL: MW-A3

	GA		2016		2017		2018		2019		2020		2021		2022
Parameter		May	September	May	September	May	September	May	September	May	September	March	September	March	September
Alpha-BHC	0.01	NR	-	0.047U	NR	NR	-	-	NR	NR	-	0.049U	NR	NR	-
Beta-BHC	0.04	NR	-	0.047U	NR	NR	-	-	NR	NR	-	0.049U	NR	NR	-
Gamma-BHC	0.05	NR	-	0.047U	NR	NR	-	-	NR	NR	-	0.049U	NR	NR	-
Delta-BHC	0.04	NR	-	0.047U	NR	NR	-	-	NR	NR	-	0.049U	NR	NR	-
Hexachlorobenzene	0.04	NR	-	NR	NR	NR	-	-	NR	NR	-	NR	NR	NR	-

MONITOR WELL: MW-4

	GA		2016		2017		2018		2019		2020		2021		2022
Parameter		May	September	May	September	May	September	May	September	May	September	March	September	March	September
Alpha-BHC	0.01	NR	0.056U	0.047U	NR	NR	0.047U	0.13	NR	NR	0.047U	0.045U	NR	NR	0.046U
Beta-BHC	0.04	NR	0.056U	0.047U	NR	NR	0.047U	0.047U	NR	NR	0.047U	0.045U	NR	NR	0.046U
Gamma-BHC	0.05	NR	0.056U	0.047U	NR	NR	0.047U	0.48	NR	NR	0.047U	0.045U	NR	NR	0.046U
Delta-BHC	0.04	NR	0.056U	0.047U	NR	NR	0.047U	0.18	NR	NR	0.047U	0.045U	NR	NR	0.046U
Hexachlorobenzene	0.04	NR	10U	NR	NR	NR	9.4U	NR	NR	NR	9.4U	NR	NR	NR	8.8U

MONITOR WELL: MW-5

	GA		2016		2017		2018		2019		2020		2021		2022
Parameter		May	September	May	September	May	September	May	September	May	September	March	September	March	September
Alpha-BHC	0.01	NR	0.056U	0.047U	NR	NR	0.047U	0.1	NR	NR	0.047U	0.050U	NR	NR	0.044U
Beta-BHC	0.04	NR	0.056U	0.047U	NR	NR	0.047U	0.047U	NR	NR	0.047U	0.050U	NR	NR	0.044U
Gamma-BHC	0.05	NR	0.056U	0.047U	NR	NR	0.047U	0.41	NR	NR	0.047U	0.050U	NR	NR	0.044U
Delta-BHC	0.04	NR	0.056U	0.047U	NR	NR	0.047U	0.25	NR	NR	0.047U	0.050U	NR	NR	0.044U
Hexachlorobenzene	0.04	NR	10U	NR	NR	NR	9.4U	NR	NR	NR	9.4U	NR	NR	NR	8.8U

Notes: Concentration in ug/l

- insufficient sample

U Not detected at reported quantitation limit

J Estimated value

NR Not required

Next hexachlorobenzene (HCB) sampling scheduled for fall 2024. GA guidance value for groundwater effluent limitations as established by 6CRR-NY 703.6 Shaded values indicate contaminant present in sample at levels at or above the GA

Table 3 Annual Manhole B Sampling

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK

ANALYTICAL RESULTS SUMMARY ANNUAL LEACHATE SAMPLING

September 21, 2022

	MANHOLE B (MHB)
PARAMETER	
alpha-BHC	0.044U
beta-BHC	0.074
delta-BHC	0.15J
gamma-BHC	0.044U
Hexachlorobenzene	9.3U

Notes:

U - Not detected at reported quantitation limit

J - Estimated value (see data narrative)

NR - Not Required

Concentration in ug/L

Field blank was non-detect for all parameters of interest.

Data has been validated and judged acceptable as qualified.

Next hexachlorobenzene (HCB) sampling scheduled for fall 2025.

TABLE 4 Charles Gibson Site Niagara Falls, New York

ANALYTICAL SUMMARY

Annual Cayuga Creek Sediment Sampling 2011 - 2022

UPSTREAM

	Class A GV	2011	2012	2013	2014	2015	2016	2017	2018	2019	20	20	2021	2022
Parameter		September	May	September	September	September								
Alpha- BHC	NS	200J	17	170J	120	NS	9.7	200	57U	3200	270	32U	150U	66UJ
Beta- BHC	NS	120J	48	190J	280	NS	25	190	57U	1100	350	32U	150U	66U
Gamma- BHC	47	190U	5.5U	28U	49U	NS	5.6U	51U	57U	510U	59U	32U	150U	66UJ
Delta- BHC	NS	140J	23	28U	49U	NS	19	51U	57U	510U	59U	32U	150U	66U

DOWNSTREAM

	Class A GV	2011	2012	2013	2014	2015	2016	2017	2018	2019	202	20	2021	2022
Parameter		September	May	September	September	September								
Alpha- BHC	NS	230J	9.8	29U	55	52U	7	69U	63U	NS	73U	40U	NS	81UJ
Beta- BHC	NS	130J	37	89	100	76	18	87	63U	NS	110	40U	NS	81U
Gamma- BHC	47	220U	5.9U	29U	52U	52U	4.9U	69U	63U	NS	73U	40U	NS	81UJ
Delta- BHC	NS	170J	18	29U	52U	52U	15	69U	63U	NS	73U	40U	NS	81U

Notes:

Concentration in microgram per kilogram (ug/kg)

U Not detected at reported quantitation limit

J Estimated value

NS No sample in trap

GV Guidance value for groundwater effluent limitations as established by 6CRR-NY 703.6

Shaded values indicate contaminant present in sample at levels at or above the GV

Table 5

2022 Quarterly Groundwater Elevations Summary

Piezometer Pair	3/16/2022	Inward gradient	5/18/2022	Inward gradient	9/20/22	Inward gradient	11/17/2022	Inward gradient
P1 outside P2 inside	565.39 565.57	Outward	565.85 565.58	Inward	564.37 565.39	Outward	564.45 565.31	Outward
P3 outside P4 inside	570.00 565.53	Inward	567.36 565.46	Inward	563.76 565.30	Outward	567.26 565.49	Inward
P5 outside P6 inside	569.34 567.66	Inward	568.85 567.58	Inward	566.73 566.68	Inward	568.01 566.99	Inward
		Below 565 ft msl		Below 565 ft msl		Below 565 ft msl		Below 565 ft msl
Manhole A Manhole B	563.04 563.14	Yes Yes	563.02 563.09	Yes Yes	563.18 563.25	Yes Yes	563.01 563.06	Yes Yes

Notes: Measurement units are in feet above MSL.

Piezometers P1, P3, P5 are outside the slurry wall. Piezometers P2, P4, P6 are located within the containment area.

NA – Not Available

Manhole monitoring:

• Maintain water level below 565 feet to prevent hydrostatic pressure buildup under concrete slab.

• Pump Manhole B as required to maintain an inward gradient.

			PI	EZOMETER	1			
DATE	P1	P2	P3	P4	P5	P6	MHA	MHB
MP	572.86	575	574.18	576.4	575.09	578.34	575.27	577.41
2/13/2008	NA	NA	NA	NA	NA	NA	NA	NA
4/3/2008	565.44	565.50	567.55	565.44	569.84	567.99	564.13	564.17
9/11/2008	566.13	565.28	566.31	565.20	568.37	567.39	564.11	564.23
11/5/2008	565.46	565.24	566.52	565.17	568.76	567.43	563.81	563.89
2/13/2009	NA	NA	NA	NA	NA	NA	NA	NA
4/2/2009	565.46	565.43	566.81	565.34	569.11	567.77	563.97	564.03
9/17/2009	566.37	565.42	566.51	565.29	568.60	567.58	563.67	563.74
11/23/2009	565.31	565.29	566.41	565.24	568.70	567.37	563.52	563.61
3/3/2010	565.27	565.42	566.18	565.22	568.83	567.57	563.77	563.84
4/14/2010	565.72	565.46	567.05	565.19	569.45	567.77	564.02	564.09
9/17/2010	566.40	565.20	564.91	565.07	567.23	566.93	564.20	563.68
11/11/2010	564.53	565.16	565.57	565.02	567.40	566.78	563.82	563.88
3/9/2011	565.05	565.49	568 11	565.42	569 75	567.88	563.94	564.03
4/19/2011	565 50	565.48	567 74	565.26	569.46	567.77	564.01	564 15
9/22/2011	565 54	565.28	565 11	565.20	567.27	567.09	563.42	563.46
11/8/2011	565 33	565 /1	567.41	565.28	568 77	567 53	563 32	563.40
2/15/2011	565.26	565 54	569.25	565 24	560.22	567.55	564 21	567.77
5/15/2012	505.50	505.54	508.25	505.54	509.23		504.21	507.27
0/17/2012	500.01	505.50	507.40	505.40	505.01	507.75	503.40	505.45
9/1//2012	504.50	505.20	504.37	202.10	500.//		503.47	503.53
11/9/2012	504.51	505.38	508.28	505.22	508.40	507.25	503.02	503.99
3/6/2013	565.32	505.54	569.56	565.34	569.35	567.83	563.92	564.09
5/13/2013	505.03	505.43	567.74	505.24	508.75	507.03	503.07	503.73
9/18/2013	565.62	505.33	566.04	565.26	567.79	567.24	563.29	563.33
11/6/2013	505.35	565.51	569.11	566.09	569.17	567.70	563.36	563.42
3/18/2014	565.34	565.49	569.24	565.19	569.35	567.76	563.86	563.89
5/9/2014	565.50	565.50	568.44	565.35	569.36	567.82	563.83	563.91
9/18/2014	565.54	566.88	565.37	568.55	567.76	567.17	563.27	563.32
12/8/2014	566.65	565.08	568.15	565.15	568.14	566.86	563.50	563.56
3/11/2015	565.15	564.68	567.45	565.15	568.39	567.07	568.80	563.89
5/2//2015	565.84	565.53	566./1	565.44	568.46	567.49	563.84	563.83
9/1/2015	565.16	565.41	565.17	565.49	567.46	577.07	563.51	563.54
11/10/2015	564.97	565.40	566.11	565.34	568.92	567.07	563.67	563.76
3/8/2016	565.08	565.67	570.39	565.46	569.34	567.67	563.51	563.59
5/27/2016	565.87	565.56	567.24	565.50	568.60	567.88	563.94	563.48
9/8/2016	564.27	565.37	563.95	565.33	566.18	566.53	563.32	563.49
11/11/2016	563.28	565.11	565.17	565.17	565.44	566.13	563.36	563.39
3/7/2017	565.22	565.58	570.75	565.37	568.68	567.07	563.64	563.74
5/30/2017	566.00	566.31	568.71	565.43	569.09	567.63	563.57	563.63
9/6/2017	565.12	565.48	565.88	565.49	566.60	567.33	563.40	563.49
11/21/2017	565.01	565.51	569.92	565.43	569.24	567.60	563.52	563.60
3/13/2018	565.64	565.54	568.64	565.49	568.26	567.77	563.77	563.79
5/24/2018	565.90	565.53	567.21	565.35	568.70	567.57	563.24	563.31
9/25/2018	564.33	565.34	563.86	569.13	566.20	567.12	563.10	563.14
11/18/2018	563.33	565.19	568.91	568.16	568.85	566.57	563.21	563.25
3/7/2019	565.52	565.58	567.96	567.75	569.08	567.67	563.90	563.99
5/21/2019	566.11	565.58	568.87	565.46	569.43	567.88	563.63	563.69
9/24/2019	564.91	565.35	564.71	565.22	567.90	567.17	562.94	563.03
11/6/2019	564.74	565.40	567.51	565.19	568.85	567.36	563.08	563.14
3/19/2020	565.57	566.69	568.44	566.59	569.24	567.78	566.53	566.62
5/18/2020	566.49	565.55	567.55	565.51	568.85	567.58	560.67	560.72
9/22/2020	563.89	565.36	563.63	565.19	566.49	566.62	561.88	561.98
11/12/2020	563.02	565.17	562.54	564.89	565.75	566.16	562.03	562.09
3/17/2021	563.99	570.51	567.72	565.28	568.79	567.12	562.61	562.66
5/12/2021	565.47	565.44	568.11	565.18	568.62	567.15	562.87	562.94
9/20/2021	564.73	565.48	564.28	565.78	567.75	567.13	562.81	562.90
11/8/2021	565.18	565.54	567.7	565.49	569.17	567.68	562.81	562.90
3/16/2022	565.39	565.57	570	565.53	569.34	567.66	563.04	563.14
5/18/2022	565.85	565.58	567.36	565.46	568.85	567.58	563.02	563.09
9/20/2022	564.37	565.39	563.76	565.3	566.73	566.68	563.18	563.25
11/17/2022	564.45	565.31	567.26	565.49	568.01	566.99	563.01	563.06

MP-Measuring Point Elevation NA-Not Available

Table 6 Olin Corp. Gibson Site Discharge Volumes

Summary of Yearly Discharge Volumes	
-------------------------------------	--

Monthly Discharge Volumes 2022

Date	Volume	Month	Volume
	(gallons)		(gallons)
2010	28,118	Jan	3,245
2011	40,625	Feb	12,080
2012	29,623	Mar	6,666
2013	46,766	Apr	3,140
2014	33,564	May	2,900
2015	18,537	Jun	2,831
2016	28,172	Jul	0
2017	35,492	Aug	6
2018	33,837	Sep	2,710
2019	47,182	Oct	0
2020	297,712	Nov	0
2021	43,740	Dec	2,496
2022	36,074		
TOTALS	719,442	TOTALS	36,074

Table 7 - Seasonal Piezometer Data													
			PIEZO	METER - Sp	ring								
DATE	P1	P2	P3	P4	P5	P6	MHA	МНВ					
2/13/2008	NA	NA	NA	NA	NA	NA	NA	NA					
4/3/2008	565.44	565.50	567.55	565.44	569.84	567.99	564.13	564.17					
2/13/2009	NA	NA	NA	NA	NA	NA	NA	NA					
4/2/2009	565.46	565.43	566.81	565.34	569.11	567.77	563.97	564.03					
3/3/2010	565.27	565.42	566.18	565.22	568.83	567.57	563.77	563.84					
4/14/2010	565.72	565.46	567.05	565.19	569.45	567.77	564.02	564.09					
3/9/2011	565.05	565.49	568.11	565.42	569.75	567.88	563.94	564.03					
4/19/2011	565.50	565.48	567.74	565.26	569.46	567.77	564.01	564.15					
3/15/2012	565.36	565.54	568.25	565.34	569.23	567.75	564.21	567.27					
5/22/2012	566.01	565.50	567.40	565.46	569.01	567.75	563.40	563.49					
3/6/2013	565.32	565.54	569.56	565.34	569.35	567.83	563.92	564.09					
5/13/2013	565.63	565.43	567.74	565.24	568.75	567.63	563.67	563.73					
3/18/2014	565.34	565.49	569.24	565.19	569.35	567.76	563.86	563.89					
5/9/2014	565.50	565.50	568.44	565.35	569.36	567.82	563.83	563.91					
3/11/2015	565.15	564.68	567.45	565.15	568.39	567.07	568.80	563.89					
5/27/2015	565.84	565.53	566.71	565.44	568.46	567.49	563.84	563.83					
3/8/2016	565.08	565.67	570.39	565.46	569.34	567.67	563.51	563.59					
5/27/2016	565.87	565.56	567.24	565.50	568.60	567.88	563.94	563.48					
3/7/2017	565.22	565.58	570.75	565.37	568.68	567.07	563.64	563.74					
5/30/2017	566.00	566.31	568.71	565.43	569.09	567.63	563.57	563.63					
3/13/2018	565.64	565.54	568.64	565.49	568.26	567.77	563.77	563.79					
5/24/2018	565.90	565.53	567.21	565.35	568.70	567.57	563.24	563.31					
3/7/2019	565.52	565.58	567.96	567.75	569.08	567.67	563.90	563.99					
5/21/2019	566.11	565.58	568.87	565.46	569.43	567.88	563.63	563.69					
3/19/2020	565.57	566.69	568.44	566.59	569.24	567.78	566.53	566.62					
5/18/2020	566.49	565.55	567.55	565.51	568.85	567.58	560.67	560.72					
3/17/2021	563.99	570.51	567.72	565.28	568.79	567.12	562.61	562.66					
5/12/2021	565.47	565.44	568.11	565.18	568.62	567.15	562.87	562.94					
3/16/2022	565.39	565.57	570	565.53	569.34	567.66	563.04	563.14					
5/18/2022	565.85	565.58	567.36	565.46	568.85	567.58	563.02	563.09					

NA-Not Available

PIEZOMETER - Fall													
DATE	P1	P2	P3	P4	P5	P6	MHA	MHB					
9/11/2008	566.13	565.28	566.31	565.20	568.37	567.39	564.11	564.23					
11/5/2008	565.46	565.24	566.52	565.17	568.76	567.43	563.81	563.89					
9/17/2009	566.37	565.42	566.51	565.29	568.60	567.58	563.67	563.74					
11/23/2009	565.31	565.29	566.41	565.24	568.70	567.37	563.52	563.61					
9/17/2010	566.40	565.20	564.91	565.07	567.23	566.93	564.20	563.68					
11/11/2010	564.53	565.16	565.57	565.02	567.40	566.78	563.82	563.88					
9/22/2011	565.54	565.28	565.11	565.18	567.27	567.09	563.42	563.46					
11/8/2011	565.33	565.41	567.41	565.28	568.77	567.53	563.32	563.40					
9/17/2012	564.50	565.26	564.37	565.16	566.77	566.80	563.47	563.53					
11/9/2012	564.51	565.38	568.28	565.22	568.40	567.25	563.62	563.99					
9/18/2013	565.62	565.33	566.04	565.26	567.79	567.24	563.29	563.33					
11/6/2013	565.35	565.51	569.11	566.09	569.17	567.70	563.36	563.42					
9/18/2014	565.54	566.88	565.37	568.55	567.76	567.17	563.27	563.32					
12/8/2014	566.65	565.08	568.15	565.15	568.14	566.86	563.50	563.56					
9/1/2015	565.16	565.41	565.17	565.49	567.46	577.07	563.51	563.54					
11/10/2015	564.97	565.40	566.11	565.34	568.92	567.07	563.67	563.76					
9/8/2016	564.27	565.37	563.95	565.33	566.18	566.53	563.32	563.49					
11/11/2016	563.28	565.11	565.17	565.17	565.44	566.13	563.36	563.39					
9/6/2017	565.12	565.48	565.88	565.49	566.60	567.33	563.40	563.49					
11/21/2017	565.01	565.51	569.92	565.43	569.24	567.60	563.52	563.60					
9/25/2018	564.33	565.34	563.86	569.13	566.20	567.12	563.10	563.14					
11/18/2018	563.33	565.19	568.91	568.16	568.85	566.57	563.21	563.25					
9/24/2019	564.91	565.35	564.71	565.22	567.90	567.17	562.94	563.03					
11/6/2019	564.74	565.40	567.51	565.19	568.85	567.36	563.08	563.14					
9/22/2020	563.89	565.36	563.63	565.19	566.49	566.62	561.88	561.98					
11/12/2020	563.02	565.17	562.54	564.89	565.75	566.16	562.03	562.09					
9/20/2021	564.73	565.48	564.28	565.78	567.75	567.13	562.81	562.90					
11/8/2021	565.18	565.54	567.7	565.49	569.17	567.68	562.81	562.90					
9/20/2022	564.37	565.39	563.76	565.3	566.73	566.68	563.18	563.25					
11/17/2022	564.45	565.31	567.26	565.49	568.01	566.99	563.01	563.06					

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER ELEVATION FORM

THIS FORM TO BE U	SED FOR ALL QUAR MEASURING EVENT		ER AND MANHOLE G	ROUND-	
DATE: <u>3/16/</u> 2	2	_TIME:OC	100		
Max INSPECTOR: Greg	Ernst		BES		
WEATHER: Logg	/cloudy 40°	'F			
0.0					
PIEZOMETER	(INSIDE CASING)	(FT.)	ER WATER ELEVATION	COMMENTS	
P-1	572.72	7.33	565.39		
P-2 5	574.89	9.32	565.57		n
Р-3	574.16	4.16	570.00	۰ 	
P-4	576.14	18-61	565.53		
P-5	575.05	5.11	569.34		
P-6	578.28	10.62	567.66		
MANHOLE A	575.22	12.18	563.04	4 	
MANHOLE B	577.34	14.20	563.14		
(Note: Manhole A emp Niagara Tuscarora Ro in Manhole B (and by water distance from th (Note: riser elevations	oties into Manhole B by bad sanitary sewer line extension Manhole A) ne manhole rim should (re)surveyed Septemb	y gravity feed and M by a float controlled below an elevation not be <u>less</u> than 12 per, 1999 by Wende	lanhole B is pumped a d sump pump which ma of 565 ft. above mean 2.41 ft. at Manhole B ar el Surveyors)	utomatically to the aintains groundwat sea level. Therefo nd 10.22 ft. at Manl	Town of ter elevations ore, Depth to hole A.
ADDITIONAL COMMI	ENTS/OBSERVATION	S <u>:</u>			
The faulty	well cover on	P-2 was rea	placed. The well	Il lid	
is now secv	re.				
After initial	water level m	easurements,	all levels we	re	
remeasured	to ensure accu	ναεγ.			
			<u></u>		
			<u>_</u>		
· · · · · · · · · · · · · · · · · · ·					

ڪر ت

Niagara Falls, New York

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER ELEVATION FORM

THIS FORM TO BE WATER ELEVATIO	E USED FOR ALL QUAR ON MEASURING EVENTS	TERLY PIEZOMETER / S	AND MANHOLE (GROUND-						
DATE:	5/18/2022	_TIME:	1300							
INSPECTO <u>R:</u>	M. Walker	COMPANY:	Sevenson Envir	Environmental Services						
WEATHER <u>:</u>	Cloudy, 72 F									
PIEZOMETER	RISER ELEVATION (INSIDE CASING)	DEPTH TO WATER (FT.)	WATER ELEVATION	COMMENTS						
P-1	572.72	6.87	565.85	OK						
P-2	574.89	9.31	565.58	OK						
P-3	574.16	6.8	567.36	OK						
P-4	576.14	10.68	565.46	ОК						
P-5	575.05	6.2	568.85	OK						
P-6	578.28	10.7	567.58	OK						
MANHOLE A	575.22	12.2	563.02	ОК						
MANHOLE B	577.34	14.25	563.09	OK						

(Note: Manhole A empties into Manhole B by gravity feed and Manhole B is pumped automatically to the Town of Niagara Tuscarora Road sanitary sewer line by a float controlled sump pump which maintains groundwater elevations in Manhole B (and by extension Manhole A) below an elevation of 565 ft. above mean sea level. Therefore, Depth to water distance from the manhole rim should not be <u>less</u> than 12.41 ft. at Manhole B and 10.22 ft. at Manhole A. (Note: riser elevations (re)surveyed September, 1999 by Wendel Surveyors)

ADDITIONAL COMMENTS/OBSERVATIONS:

All well and manholes in good shaep covers and locks secure.

ment: P:\Projects\Olin Charles @ SMP\SMP_11x17LS.mxd PDF: P:\Projects\Olin Charles Gibson\4.0_Deliverables\4.5_Databases\GIS\Figures\GW_2022\Figure 2 - GW Contours_May.pdf 07/21/2023 1:38 PM nathan.soule

Niagara Falls, New York

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER ELEVATION FORM

THIS FORM TO BE WATER ELEVATION	USED FOR ALL QUAF MEASURING EVENT	RTERLY PIEZ	OMETER	R AND MANHOL	E GROUND-	
date: <u>9/20</u>		1430	٥			
INSPECTOR: Ma	× Liffton	_COMPANY:	Seve	NSon		
WEATHER <u>: Sunn</u>	<u>170°F</u>				<u> </u>	
PIEZOMETER	RISER ELEVATION (INSIDE CASING)	DEPTH TO (FT.)	WATER	WATER ELEVATION	COMMENTS	
P-1	572.72	8.35		<u>564,37</u>		
P-2	574.89	9.50		<u>565,39</u>		
P-3	574.16	10.40		<u>563.76</u>		
P-4	576.14	10.84		<u>565.30</u>	1. 11	. ·
P-5	575.05	8.32-		566.73		
P-6	578.28	11.60		566.68		
MANHOLE A	575.22	12.04		563.18		
MANHOLE B	577.34	14.09		<u>563,25</u>		
(Note: Manhole A em Niagara Tuscarora Re in Manhole B (and by water distance from t (Note: riser elevations	pties into Manhole B b oad sanitary sewer line rextension Manhole A) he manhole rim should s (re)surveyed Septem	y gravity feed ⇒ by a float co ⊢ below an ele I not be <u>less</u> t ber, 1999 by	and Mar entrolled s evation of than 12.4 Wendel S	nhole B is pumpe sump pump which 565 ft. above me 1 ft. at Manhole E Surveyors)	d automatically to n maintains ground ean sea level. The 3 and 10.22 ft. at I	the Town of dwater elevations erefore, Depth to Manhole A.
	LINGODOLIVATION	<u></u>				
			<u> </u>			
			<u></u>			

\

ment: P:\Projects\Olin Charles (SMP\SMP_11x17LS.mxd PDF: P:\Projects\Olin Charles Gibson\4.0_Deliverables\4.5_Databa ses\GIS\Figures\GW_2022\Figure 3 - GW Contours_Sept.pdf 07/21/2023 1:38 PM nathan.soule

Niagara Falls, New York

CHARLES GIBSON SITE NIAGARA FALLS, NEW YORK NYSDEC REGISTRY NO. 9-32-063 GROUNDWATER ELEVATION FORM

THIS FORM TO BE WATER ELEVATIO	USED FOR ALL QUAR	TERLY PIEZOMETER	AND MANHOLE	GROUND-	
date: _ <u>[]]]</u>	22	_TIME:	5		
INSPECTOR: Gre	Ent	COMPANY: Seven	500		
	Say 32°F	<u> </u>			
PIEZOMETER	RISER ELEVATION (INSIDE CASING)	DEPTH TO WATER (FT.)	WATER ELEVATION	COMMENTS	
P-1	572.72	8.27	564.45		
P-2	574.89	M. 58	565.31		
P-3	574.16	6.90	567.26		
P-4	576.14	10.79	565.35		
P-5	575.05	7.04	56801		
P-6	578.28	11.29	566.99		
MANHOLE A	575.22	12.21	563.01		
MANHOLE B	577.34	14.28	563.06		
(Note: Mannole A el Niagara Tuscarora I in Manhole B (and b water distance from (Note: riser elevation ADDITIONAL COMI	mpties into Manhole B by Road sanitary sewer line by extension Manhole A) the manhole rim should ns (re)surveyed Septemb MENTS/OBSERVATION	y gravity feed and Manh by a float controlled su below an elevation of 5 not be <u>less</u> than 12.41 ber, 1999 by Wendel Si S:	nole B is pumped a mp pump which n 65 ft. above mear ft. at Manhole B a urveyors)	automatically to the Town on naintains groundwater elev n sea level. Therefore, De and 10.22 ft. at Manhole A.	of ation oth to
		<u> </u>			
			· · · · · · · · · · · · · · · · · · ·		
				<u> </u>	

Niagara Falls, New York

Service Request No:R2209022

Adam Carringer Olin Corporation 490 Stuart Road Cleveland, TN 37312

Laboratory Results for: Charles Gibson - Olin

Dear Adam,

Enclosed are the results of the sample(s) submitted to our laboratory September 22, 2022 For your reference, these analyses have been assigned our service request number **R2209022**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Mighan tedio

Meghan Pedro Project Manager

CC: Randy Morris

ADDRESS 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 PHONE +1 585 288 5380 FAX +1 585 288 8475 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client: Olin Corporation Project: Charles Gibson - Olin Service Request: R2209022 Date Received: 09/22/2022

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Five water samples were received for analysis at ALS Environmental on 09/22/2022. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

No significant anomalies were noted with this analysis.

Semivoa GC:

Method 8081B, 09/28/2022: The control limits were exceeded for analytes in the Continuing Calibration Verification (CCV). The QC failure was most likely due to the composition of the sample(s) immediately preceding the failing CCV. In order to protect the integrity of the instrument, no further corrective action was taken. Results should be considered estimated.

Approved by

Mighran Hedro

Date

10/14/2022

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
R2209022-001	Field Blank-092122	9/21/2022	1131
R2209022-002	MH-B-092122	9/21/2022	1115
R2209022-003	MW-4-092122	9/21/2022	1205
R2209022-004	MW-5-092022	9/20/2022	1626
R2209022-005	MW-7-092122	9/21/2022	1300

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

065609 1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE / OF /

Charles Gibson-C	2lim l	Project Number 1.283					ANALYSIS REQUESTED (Include Method Number and Container Preservative)																	
Project Manager Adom Carringer		Report CC	dam Ca	rringer		PRE	SERVAT	IVE		0		0												
Company/Address Olin Corp					ERS.		7	/	/	/	7	/	/	7	/	/	/	/		/		reservativ NONE	/e Key	
3855 North	Ocoe.	<u>e S</u>	t.			TAIN		/	/		/	/	/ ,	./.		/	/					$\begin{pmatrix} \frac{1}{2}\\ 3 \end{pmatrix}$. HNO3 . HNO3 . H2SO4	
Cleveland, T.	N 373	12				р СО Ц		8	/ ~ /	 ॢ	/ /		4. Is beg	01) 12 00 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10		/ /	/ /	/ /	/ /	/ /		/ 4 5 6	. NaOH . Zn. Ace . MeOH	etate
Phone 423-836-498	37	Ennail AB	Carrinore	r @Olir		ABER (1010	2010		Cines Cines	88	8 5	Son and Son an	Some								7 8	NaHSC	¹ 4
Sampler's Signature		Sempter's F	well Lif	film	-	ň ž	6560 6560	<i>ૢૺઙૢ૽ૢૢૼ૾ૢ</i>	/ઙૢૻ <i>૾ૢૼ</i>			MEL N	META			/		/	/	/		RE	MARKS/	
CLIENT SAMPLE ID	FOR OFFIC	CE USE AB ID	SAMF DATE	PLING TIME	MATRIX									(<u> </u>				-	(<u> </u>		<u> </u>		C DESCAI	
FIELD BLANK-092122			9/21/22	1131	GW	Ч		2		2														
MH-B-092122			9/21/22	1115	GW	12		6		6											MS	IMST) unles	~~~
MW-4-092122			9/21/22	1205	GW	4		2		2.			·		-						1.3			<u></u>
MW-5-092022	CAN BE		9/20/22	1626	GW	4		2		2						-								
MW-7-092122			9/21/22	1300	GW	Ч		2		2-														
TEMP BLANK					<u> </u>	1													-		Prov	ded	by la	1
																					1100		<u></u>	
	法が決定							1																
	が見め																							
		3.24																						
	1. 1. 2. 2. 2.																							
SPECIAL INSTRUCTIONS/COMMENTS Metals								TUF	RNAR		REQUI		NTS		REPO	ORT RE	QUIRE	EMENT	ſS		INV	DICE INF	ORMATIO	N
																	100 m							
						1 day 2 day 3 day					(LCS, DUP, MS/MSD as required)													
							1	<u> </u>	_ Stand	iard (10	businoss d	lays-No S	Surcharge	e)	_ III, Res	ults + Q	C and C	alibratio	n	BILL	.10: C	Vin		
							REQUESTED REPORT DATE					E	Summaries											
							ľ	54	1.						_ IV. Data	a Validat	ion Repa	ort with I	Raw Dat	a		· · ·		
See QAPP																								
STATE WHERE SAMPLES WERE CO	DLLECTED		,												Edat	8	Yes		No					
REUNQUISHED BY	, t	RECEIVED) BY	REL	INQUISHED I	3Y	ſ			RECEI	VED BY		/		គា	ELINQU	JISHED	BY		1		RECEIV	ed by	
Signature Max totto	Signature	17		Signature	- <u>-</u> .*			Signat	h	Ŕ	Ŵ		11.	Signat	แทษ					Signa	ilur e			
Printed Name Max Liftiton	Printed Name			Printed Name				FR.	Van Vor	10	ESM	erta	n	Printe	d Name				D4	• • •		~~		 _
Firm Sevenson	Firm			Firm		<u> </u>		Firm	4-7	ĂÌ	5			Firm					Olin (Corport	JYU)	22		5
Date/Time 9/21/22 / 500	Date/Time			Date/Time				Date/Tim	109/2	ふ	72	<u> 19</u> 1	45	Date/1	Inte				Charl	ies Gibs	ion - Olir		1 80 11 8 17 8 1	. (1.01 100)
Distribution: White - Lab Copy; Yellow - Retur	n to Originator			•		·	Page	6 of	44			<u>, , , ,</u>		· · ·										a a a

Page 6 of 44

Gibson Fall Ground Water Monitoring and Sampling Narrative

9/20/22

Well MW-A3 was dry upon arrival. No sample taken from this well. Monitoring well MW-4 was pumped dry during purging before sample collection. Well MW-5 was sampled at 1626.

9/21/22

Sevenson returned to site to sample recharge at well MW-4 at 1205. MH-B sampled at 1115, and MS/MSD volumes were taken here. Field Blank sampled were taken at 1131. MW-7 was sampled at 1300.

Creek sediment samples were also taken today, upstream at 0950, midstream at 0845, and downstream at 0900.

This narrative will be sent to ALS along with the sample COCs.

Marshell Mpts 9/21/22
			·.				 R2	209022	"5		
		Coole	r Rei	cein	t and Pr	reservati	Olin Co ; Charles	rporation Gibson - Olin		n oct 1664	
Draiant/C		Venson		P	· unu 1 1						
Project/C		10.		NET	Fold	er Number					
Cooler reco	eived on <u>4/d</u>	2/02	by:_	R	•	COURIE	R: ALS	G UPS FEI	DEX VEL	OCITY CLI	۳NT
1 Were	Custody seals	on outside of coo	oler?	<u> </u>	N	5a Per	chlorat	e samples have	required he	ademana ²	V NI NI
2 Custo	dy papers pro	perly completed	(ink, sig	med)?	YN	5b Did	VOA v	iale Alk or Sul	Edo horro air		I N NA
3 Did all	bottles arrive	in good conditio	n (unbr	oken)	2 PN	6 Wh	ere did t	ha hattles s	nue nave sig	s bubbles?	Y N NA
4 Circle:	(Wet Ice) D	ry Ice Gel nach	(8 Dr	esent		7 0-11		ne boules origi		ALS/ROC	CLIENT
L <u>. (</u>			$\frac{p_1}{p_2}$				VUA n	eceived as:	Bulk En	core 5035	set NA
8. Tempera	ture Readings	Date: <u>// a</u>	d/82	Tin	ie: <u>07.5</u> ン): IR#7	(R#L)	From:	Temp Blank	Sample Bottle
Observed	Temp (°C)	175	T	4,6			<u> </u>	<u> </u>	<u> </u>		
Within 0-6	5°C?		1	TE	N	Y N	+	NV		V N	37.37
lf <0°C, w	ere samples fr	ozen? Y N	1	Ŷ	N	Y N	T Y		N N		Y N
If out of	Temperatur	e, note packing/i	ice con	dition		Ice me	lted	Poorty Packed	(depertied b		<u>Y N</u>
&Client	Approval to	Run Samples:		Sta	inding App	roval Clier	nt aware	at drop-off	(described)	elow) S	ame Day Rule
All sample	s held in stor	age location:	R.1	02	hý 113	on g/m	mat .			ed by:	
5035 samp	oles placed in a	storage location:	<u> </u>		by $\frac{1}{100}$		<u>/0</u> 2. at (<u>0905</u>			
							at	within	48 hours of	sampling?	Y N
Cooler B	reakdown/Pre-	servation Check*	*: Da		9/12/0						
9.	Were all bottle	e labels complete	(<i>i.e.</i> an	alvsis	Dreservatio	$\frac{C}{1}$ Time:	10	4 by	r: <u>AL</u>	·	
10.	Did all bottle l	abels and tags ag	ree wit	h cust	ody papers?	•			NO		
11.	Were correct o	containers used for	or the te	sts inc	licated?			KES)	NO		
12.	were 5035 via	us acceptable (no	extra [abels,	not leaking)?		YES	NO	· /	17.D
DH	T of of test	assettes / Tubes	Intact	<u>Y/N</u>	with MS Y	/N Cani	sters Pre	ssurized 7	Cedlar® Bag	s Inflated	
P	Daper	Reagent	Ver	Nea?	Lot Rece	ived	Exp	Sample ID	Vol.	Lot Added	Final
>12	paper	N2OH	100	1.40	<u> </u>		ļ	Adjusted	Added		pH
<2		HNO	+	+	<u> </u>	<u> </u>	<u> </u>				
<2	†	H-SO.	┿╌──	+	<u> </u>		— <u> </u>				
<4		NoHSO.	╆╌──	┼───	<u> </u>		_]	
5-9		For 608next	+	<u>+</u>	No-Note	6					
Residual	<u> </u>	For CN	┣╴──		NO=Nour	/ for 3day					
Chlorine	ł	Phenol 625	1		$Na_2S_2O_1$ (6	25 608	1				
(-)	}	608nest 522			CN), ascori	bic (phenol).				l	
	<u>.</u>	Na2S2O2	<u> </u>				┥──┤		<u> </u>		
	·	ZnAcetate	<u> </u>	<u> </u>	·		╁──┤	*****	<u> </u>		
		HCI	**	**	<u> </u>	· · · · ·	╂────┨	••• VUAs and 166 Otherwise all ba	4 Not to be tes	sted before analy	sis.
		L <u></u>	l					are checked (not	just representa	pics with chemic tives).	al preservatives

Bottle lot numbers: 050922 - 165 Explain all Discrepancies/ Other Comments: .

.

HPROD BULK HTR FLDT SUB HGFB ALS LL3541

Labels secondary reviewed by: PC Secondary Review:

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r19.doc

03/02/2021

.

Internal Chain of Custody Report

Client: Olin Corporation

Project: Charles Gibson - Olin

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
R2209022-001.01					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-001.02					
	8081B				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-001.03					
	8270D				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-001.04					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.01					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.02					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.03					
	8270D				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.04					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.05					
	8081B				
		9/23/2022	1105	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.06					
		9/23/2022	1105	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	

Internal Chain of Custody Report

Client: Olin Corporation

Project: Charles Gibson - Olin

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
R2209022-002.07					
		9/23/2022	1105	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.08					
		9/23/2022	1105	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.09					
		9/23/2022	1105	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.10					
		9/23/2022	1105	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.11					
		9/23/2022	1105	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-002.12					
		9/23/2022	1105	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-003.01					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-003.02					
	8081B				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-003.03					
	8270D				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-003.04					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	

Internal Chain of Custody Report

Client: Olin Corporation

Project: Charles Gibson - Olin

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
R2209022-004.01					
		0/02/2022	1102		
		9/23/2022	1103	SMO/ ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-004.02					
	8081B				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-004.03					
	8270D				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-004.04					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-005.01					
	8081B				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-005.02					
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-005.03					
	8270D				
		9/23/2022	1103	SMO / ALUGO	
		9/23/2022	1105	R-002 / ALUGO	
R2209022-005.04					
		0/22/2022	1102	SMO / ALLICO	
		9/23/2022	1105		
		9/23/2022	1105	K-002 / ALUGU	

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

NELAP StatesFlorida ID # E87674New Hampshire ID # 2941New York ID # 10145Pennsylvania ID# 68-786Virginia #460167

Non-NELAP StatesConnecticut ID #PH0556Delaware ApprovedMaine ID #NY01587North Carolina #36701North Carolina #676Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

Rochester Lab ID # for State Accreditations¹

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Analyst Summary report

Client:	Olin Corporation	Service Request:	R2209022
Project:	Charles Gibson - Olin/		

Sample Name:	Field Blank-092122	Date Collected: 09/21/22
Lab Code:	R2209022-001	Date Received: 09/22/22
Sample Matrix:	Water	

Analysis Method	Extracted/Digested By	Analyzed By
8081B	JVANHEYNINGEN	AFELSER
8270D	JVANHEYNINGEN	BALLGEIER

Date Collected: 09/21/22 **Date Received:** 09/22/22

Lab Code: R2209022-002 Sample Matrix: Water

MH-B-092122

Analysis Method 8081B 8270D

Sample Name:

Sample Name:	MW-4-092122
Lab Code:	R2209022-003
Sample Matrix:	Water

Analysis Method 8081B

Sample Name:

Sample Matrix:

Analysis Method

Lab Code:

8081B

8270D

8270D

MW-5-092022 R2209022-004 Water

Extracted/Digested By

JVANHEYNINGEN

JVANHEYNINGEN

Date Collected: 09/21/22 **Date Received:** 09/22/22

Extracted/Digested By JVANHEYNINGEN JVANHEYNINGEN Analyzed By AFELSER BALLGEIER

Analyzed By

BALLGEIER

AFELSER

Date Collected: 09/20/22 **Date Received:** 09/22/22

Extracted/Digested By JVANHEYNINGEN JVANHEYNINGEN Analyzed By AFELSER BALLGEIER

Analyst Summary report

Client:Olin CorporationProject:Charles Gibson - Olin/

Service Request: R2209022

Sample Name:MW-7-092122Lab Code:R2209022-005Sample Matrix:Water

Date Collected: 09/21/22 **Date Received:** 09/22/22

Analysis MethodExtracted/Digested ByAnalyzed By8081BJVANHEYNINGENAFELSER8270DJVANHEYNINGENBALLGEIER

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
60204	
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Analytical Method	Preparation				
	Method				
6010C	3050B				
6020A	3050B				
6010C TCLP (1311)	3005A/3010A				
extract					
6010 SPLP (1312) extract	3005A/3010A				
7199	3060A				
300.0 Anions/ 350.1/	DI extraction				
353.2/ SM 2320B/ SM					
5210B/ 9056A Anions					
For analytical methods not listed, the preparation					
method is the same as the analytical method					
reference.					

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:Olin CorporationService Request:R2209022Project:Charles Gibson - OlinDate Collected:09/21/22 11:31Sample Matrix:WaterDate Received:09/22/22 09:45Sample Name:Field Blank-092122Units:ug/LR2209022-001Basis:NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extr	racted	Q
Hexachlorobenzene	ND U	9.3	1	10/03/22 17:57	9/27/2	22	
Surrogate Name		% Rec	Control Lim	its Date A	nalyzed	Q	
2,4,6-Tribromophenol		130	35 - 141	10/03/	22 17:57		
2-Fluorobiphenyl		70	31 - 118	10/03/	22 17:57		
2-Fluorophenol		41	10 - 105	10/03/	22 17:57		
Nitrobenzene-d5		74	31 - 110	10/03/	22 17:57		
Phenol-d6		23	10 - 107	10/03/	22 17:57		
p-Terphenyl-d14		79	10 - 165	10/03/	22 17:57		

Analytical Report

Client:Olin CorporationService Request:R2209022Project:Charles Gibson - OlinDate Collected:09/21/22 11:15Sample Matrix:WaterDate Received:09/22/22 09:45Sample Name:MH-B-092122Units:ug/LBasis:NANA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extra	cted	Q
Hexachlorobenzene	ND U	9.3	1	10/03/22 18:26	9/27/22	2	
Surrogate Name		% Rec	Control Lin	nits Date A	nalyzed	Q	
2,4,6-Tribromophenol		113	35 - 141	10/03/	22 18:26		
2-Fluorobiphenyl		62	31 - 118	10/03/	22 18:26		
2-Fluorophenol		40	10 - 105	10/03/	22 18:26		
Nitrobenzene-d5		71	31 - 110	10/03/	22 18:26		
Phenol-d6		20	10 - 107	10/03/	22 18:26		
p-Terphenyl-d14		60	10 - 165	10/03/	22 18:26		

Analytical Report

Client:Olin CorporationService Request:R2209022Project:Charles Gibson - OlinDate Collected:09/21/22 12:05Sample Matrix:WaterDate Received:09/22/22 09:45Sample Name:MW-4-092122Units:ug/LR209022-003Basis:NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extra	cted	Q
Hexachlorobenzene	ND U	8.8	1	10/03/22 19:52	9/27/22	2	
Surrogate Name		% Rec	Control Lim	its Date A	nalyzed	Q	
2,4,6-Tribromophenol		110	35 - 141	10/03/	22 19:52		
2-Fluorobiphenyl		65	31 - 118	10/03/	22 19:52		
2-Fluorophenol		37	10 - 105	10/03/	22 19:52		
Nitrobenzene-d5		64	31 - 110	10/03/	22 19:52		
Phenol-d6		22	10 - 107	10/03/	22 19:52		
p-Terphenyl-d14		51	10 - 165	10/03/	22 19:52		

Analytical Report

Client:Olin CorporationService Request:R2209022Project:Charles Gibson - OlinDate Collected:09/20/22 16:26Sample Matrix:WaterDate Received:09/22/22 09:45Sample Name:MW-5-092022Units:ug/LR209022-004Basis:NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extr	acted	Q
Hexachlorobenzene	ND U	8.8	1	10/03/22 20:21	9/27/2	22	
Surrogate Name		% Rec	Control Lii	nits Date A	analyzed	Q	
2,4,6-Tribromophenol		117	35 - 141	10/03/	22 20:21		
2-Fluorobiphenyl		65	31 - 118	3 10/03/	22 20:21		
2-Fluorophenol		42	10 - 105	5 10/03/	22 20:21		
Nitrobenzene-d5		73	31 - 110) 10/03/	22 20:21		
Phenol-d6		27	10 - 107	7 10/03/	22 20:21		
p-Terphenyl-d14		45	10 - 165	5 10/03/	22 20:21		

Analytical Report

Client:Olin CorporationService Request:R2209022Project:Charles Gibson - OlinDate Collected:09/21/22 13:00Sample Matrix:WaterDate Received:09/22/22 09:45Sample Name:MW-7-092122Units:ug/LR209022-005Basis:NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extr	racted	Q
Hexachlorobenzene	ND U	8.8	1	10/03/22 20:50	9/27/2	22	
Surrogate Name		% Rec	Control Lir	nits Date A	analyzed	Q	
2,4,6-Tribromophenol		108	35 - 141	10/03/	22 20:50		
2-Fluorobiphenyl		61	31 - 118	3 10/03/	22 20:50		
2-Fluorophenol		38	10 - 105	5 10/03/	22 20:50		
Nitrobenzene-d5		66	31 - 110) 10/03/	22 20:50		
Phenol-d6		21	10 - 107	7 10/03/	22 20:50		
p-Terphenyl-d14		53	10 - 165	5 10/03/	22 20:50		

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report **Client:** Olin Corporation Service Request: R2209022 Date Collected: 09/21/22 11:31 **Project:** Charles Gibson - Olin Sample Matrix: Water Date Received: 09/22/22 09:45 Sample Name: Field Blank-092122 Units: ug/L Lab Code: R2209022-001 Basis: NA

Analysis Method:	8081B
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
alpha-BHC	ND U	0.044	1	09/30/22 17:04	9/28/22	
beta-BHC	ND U	0.044	1	09/30/22 17:04	9/28/22	
delta-BHC	ND U	0.044	1	09/30/22 17:04	9/28/22	
gamma-BHC (Lindane)	ND U	0.044	1	09/30/22 17:04	9/28/22	
Surrogate Name		% Rec	Control Li	mits Date A	analyzed Q	
Decachlorobiphenyl		20	10 - 16	4 09/30/	22 17:04	
Tetrachloro-m-xylene		75	10 - 14	7 09/30/	22 17:04	

Analytical Report **Client:** Olin Corporation Service Request: R2209022 Date Collected: 09/21/22 11:15 **Project:** Charles Gibson - Olin Sample Matrix: Water Date Received: 09/22/22 09:45 Sample Name: MH-B-092122 Units: ug/L Lab Code: R2209022-002 Basis: NA

Analysis Method:	8081B
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracte	ed Q
alpha-BHC	ND U	0.044	1	09/30/22 17:24	9/28/22	
beta-BHC	0.074	0.044	1	09/30/22 17:24	9/28/22	
delta-BHC	0.15 P	0.044	1	09/30/22 17:24	9/28/22	
gamma-BHC (Lindane)	ND U	0.044	1	09/30/22 17:24	9/28/22	
Surrogate Name		% Rec	Control Li	mits Date A	nalyzed	Q
Decachlorobiphenyl		23	10 - 164	4 09/30/	22 17:24	
Tetrachloro-m-xylene		62	10 - 14'	7 09/30/	22 17:24	

Analytical Report **Client:** Olin Corporation Service Request: R2209022 **Date Collected:** 09/21/22 12:05 **Project:** Charles Gibson - Olin Sample Matrix: Water Date Received: 09/22/22 09:45 Sample Name: MW-4-092122 Units: ug/L Lab Code: R2209022-003 Basis: NA

Analysis Method:	8081B
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extrac	cted Q
alpha-BHC	ND U	0.046	1	09/30/22 18:21	9/28/22	
beta-BHC	ND U	0.046	1	09/30/22 18:21	9/28/22	
delta-BHC	ND U	0.046	1	09/30/22 18:21	9/28/22	
gamma-BHC (Lindane)	ND U	0.046	1	09/30/22 18:21	9/28/22	
Surrogate Name		% Rec	Control Lin	nits Date A	nalyzed	Q
Decachlorobiphenyl		24	10 - 164	09/30/	22 18:21	
Tetrachloro-m-xylene		57	10 - 147	09/30/	22 18:21	

Analytical Report **Client:** Olin Corporation Service Request: R2209022 Date Collected: 09/20/22 16:26 **Project:** Charles Gibson - Olin Sample Matrix: Water Date Received: 09/22/22 09:45 Sample Name: MW-5-092022 Units: ug/L Lab Code: R2209022-004 Basis: NA

Analysis Method:	8081B
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
alpha-BHC	ND U	0.044	1	09/28/22 18:19	9/27/22	
beta-BHC	ND U	0.044	1	09/28/22 18:19	9/27/22	
delta-BHC	ND U	0.044	1	09/28/22 18:19	9/27/22	
gamma-BHC (Lindane)	ND U	0.044	1	09/28/22 18:19	9/27/22	
Surrogate Name		% Rec	Control Lin	nits Date A	nalyzed Q	
Decachlorobiphenyl		28	10 - 164	- 09/28/	22 18:19	
Tetrachloro-m-xylene		57	10 - 147	09/28/	22 18:19	

Analytical Report **Client:** Olin Corporation Service Request: R2209022 Date Collected: 09/21/22 13:00 **Project:** Charles Gibson - Olin Sample Matrix: Water Date Received: 09/22/22 09:45 Sample Name: MW-7-092122 Units: ug/L Lab Code: R2209022-005 Basis: NA

Analysis Method:	8081B
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	d Q
alpha-BHC	ND U	0.044	1	09/30/22 18:40	9/28/22	
beta-BHC	ND U	0.044	1	09/30/22 18:40	9/28/22	
delta-BHC	ND U	0.044	1	09/30/22 18:40	9/28/22	
gamma-BHC (Lindane)	ND U	0.044	1	09/30/22 18:40	9/28/22	
Surrogate Name		% Rec	Control Lin	nits Date A	analyzed (2
Decachlorobiphenyl		26	10 - 164	. 09/30/	22 18:40	
Tetrachloro-m-xylene		73	10 - 147	09/30/	22 18:40	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client:Olin CorporationProject:Charles Gibson - OlinSample Matrix:Water

Service Request: R2209022

SURROGATE RECOVERY SUMMARY

Analysis Method:	8270D
Extraction Method:	EPA 3510C

		2,4,6-Tribromophenol	2-Fluorobiphenyl	2-Fluorophenol
Sample Name	Lab Code	35-141	31-118	10-105
Field Blank-092122	R2209022-001	130	70	41
MH-B-092122	R2209022-002	113	62	40
MW-4-092122	R2209022-003	110	65	37
MW-5-092022	R2209022-004	117	65	42
MW-7-092122	R2209022-005	108	61	38
Method Blank	RQ2211663-01	103	55	34
Lab Control Sample	RQ2211663-02	92	63	43
Duplicate Lab Control Sample	RQ2211663-03	103	67	38
MH-B-092122 MS	RQ2211663-04	109	81	54
MH-B-092122 DMS	RQ2211663-05	114	76	53

QA/QC Report

Client:Olin CorporationProject:Charles Gibson - OlinSample Matrix:Water

Service Request: R2209022

SURROGATE RECOVERY SUMMARY

Analysis Method:	8270D
Extraction Method:	EPA 3510C

		Nitrobenzene-d5	Phenol-d6	p-Terphenyl-d14
Sample Name	Lab Code	31-110	10-107	10-165
Field Blank-092122	R2209022-001	74	23	79
MH-B-092122	R2209022-002	71	20	60
MW-4-092122	R2209022-003	64	22	51
MW-5-092022	R2209022-004	73	27	45
MW-7-092122	R2209022-005	66	21	53
Method Blank	RQ2211663-01	67	16	64
Lab Control Sample	RQ2211663-02	59	30	66
Duplicate Lab Control Sample	RQ2211663-03	60	29	71
MH-B-092122 MS	RQ2211663-04	80	36	62
MH-B-092122 DMS	RQ2211663-05	76	37	59

QA/QC Report

Client:	Olin Corporation					Servic	e Request:	R22	09022	
Project:	Charles Gibson - Oli	n				Date (Collected:	09/2	1/22	
Sample Matrix:	Water					Date I	Received:	09/2	2/22	
						Date A	Analyzed:	10/3	/22	
						Date I	Extracted:	09/2	7/22	
			Duplicate M	atrix Spik	e Summar	y				
		Semi	volatile Orga	nic Comp	ounds by C	GC/MS				
Sample Name:	MH-B-092122						Units:	ug/L		
Lab Code:	R2209022-002						Basis:	NA		
Analysis Method:	8270D									
Prep Method:	EPA 3510C									
			Matrix Sp	ike	D	uplicate Mat	rix Spike			
			RQ221166.	3-04		RQ221166	3-05			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Hexachlorobenzene	ND U	63.4	74.1	86	56.3	74.1	76	42-125	12	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client:	Olin Corporation	Service Request:	R2209022
Project:	Charles Gibson - Olin	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	ug/L
Lab Code:	RQ2211663-01	Basis:	NA

Semivolatile Organic Compounds by GC/MS

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extra	acted	Q
Hexachlorobenzene	ND U	10	1	10/03/22 15:34	9/27/2	2	
Surrogate Name		% Rec	Control Lir	nits Date A	nalyzed	Q	
2,4,6-Tribromophenol		103	35 - 141	10/03/	22 15:34		
2-Fluorobiphenyl		55	31 - 118	3 10/03/	22 15:34		
2-Fluorophenol		34	10 - 105	5 10/03/	22 15:34		
Nitrobenzene-d5		67	31 - 110) 10/03/	22 15:34		
Phenol-d6		16	10 - 107	/ 10/03/	22 15:34		
p-Terphenyl-d14		64	10 - 165	5 10/03/	22 15:34		

QA/QC Report

Client:Olin CorporationProject:Charles Gibson - OlinSample Matrix:Water

Service Request: R2209022 **Date Analyzed:** 10/13/22

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

			Lab Control Sample RQ2211663-02		Duplicate Lab RQ22	• Control 8 11663-03	Sample			
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Hexachlorobenzene	8270D	55.9	80.0	70	63.2	80.0	79	53-123	12	30

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client:Olin CorporationProject:Charles Gibson - OlinSample Matrix:Water

SURROGATE RECOVERY SUMMARY

Organochlorine Pesticides by Gas Chromatography

Analysis Method:	8081B
Extraction Method:	EPA 3510C

		Decachlorobiphenyl	Tetrachloro-m-xylene	
Sample Name	Lab Code	10-164	10-147	
Field Blank-092122	R2209022-001	20	75	
MH-B-092122	R2209022-002	23	62	
MW-4-092122	R2209022-003	24	57	
MW-5-092022	R2209022-004	28	57	
MW-7-092122	R2209022-005	26	73	
Method Blank	RQ2211759-08	26	57	
Lab Control Sample	RQ2211759-09	27	60	
Duplicate Lab Control Sample	RQ2211759-10	22	66	
MH-B-092122 MS	RQ2211759-01	23	75	
MH-B-092122 DMS	RQ2211759-02	24	71	
Method Blank	RQ2211660-01	12	54	
Lab Control Sample	RQ2211660-02	17	36	
Duplicate Lab Control Sample	RQ2211660-03	24	54	

QA/QC Report

Client:	Olin Corporation	1				Servi	ce Request	t: R22	09022	
Project:	Charles Gibson -	Olin				Date	Collected:	09/2	21/22	
Sample Matrix:	Water					Date	Received:	09/2	2/22	
						Date	Analyzed:	09/3	80/22	
						Date	Extracted	: 09/2	28/22	
			Duplicate 1	Matrix Spi	ike Summ	ary				
		Organo	ochlorine Pes	sticides by	Gas Chro	matography				
Sample Name:	MH-B-092122						Units:	ug/I		
Lab Code:	R2209022-002						Basis:	NA		
Analysis Method:	8081B									
Prep Method:	EPA 3510C									
			Matrix S	Spike		Duplicate Ma	trix Spike			
			RQ22117	59-01			59-02			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
alpha-BHC	ND U	0.322	0.351	92	0.325	0.357	91	27-154	<1	30
beta-BHC	0.074	0.417	0.351	98	0.408	0.357	93	32-184	2	30
delta-BHC	0.15 P	0.502	0.351	99	0.519	0.357	102	10-182	3	30
gamma-BHC (Lindane) ND U	0.319 P	0.351	91	0.314 P	0.357	88	43-164	1	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

	Analytical R	eport	
Client:	Olin Corporation	Service Request:	R2209022
Project:	Charles Gibson - Olin	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	ug/L
Lab Code:	RQ2211660-01	Basis:	NA

Analysis Method:	8081B
Prep Method:	Method

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extra	acted	Q
alpha-BHC	ND U	0.050	1	09/27/22 18:34	9/27/2	2	
beta-BHC	ND U	0.050	1	09/27/22 18:34	9/27/2	2	
delta-BHC	ND U	0.050	1	09/27/22 18:34	9/27/2	2	
gamma-BHC (Lindane)	ND U	0.050	1	09/27/22 18:34	9/27/2	2	
Surrogate Name		% Rec	Control L	imits Date A	Analyzed	Q	
Decachlorobiphenyl		12	10 - 16	64 09/27	/22 18:34		
Tetrachloro-m-xylene		54	10 - 14	7 09/27	/22 18:34		

		Analytical Report	
Client:	Olin Corporation	Service Request: R	2209022
Project:	Charles Gibson - Olin	Date Collected: N	IA
Sample Matrix:	Water	Date Received: N.	IA
Sample Name:	Method Blank	Units: ug	g/L
Lab Code:	RQ2211759-08	Basis: N	IA

Analysis Method:	8081B
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracte	d Q
alpha-BHC	ND U	0.050	1	09/30/22 16:07	9/28/22	
beta-BHC	ND U	0.050	1	09/30/22 16:07	9/28/22	
delta-BHC	ND U	0.050	1	09/30/22 16:07	9/28/22	
gamma-BHC (Lindane)	ND U	0.050	1	09/30/22 16:07	9/28/22	
Surrogate Name		% Rec	Control Lin	nits Date A	nalyzed	Q
Decachlorobiphenyl		26	10 - 164	09/30/	22 16:07	
Tetrachloro-m-xylene		57	10 - 147	09/30/	22 16:07	

QA/QC Report

Client:Olin CorporationProject:Charles Gibson - OlinSample Matrix:Water

Service Request: R2209022 **Date Analyzed:** 09/27/22

Duplicate Lab Control Sample Summary Organochlorine Pesticides by Gas Chromatography

Units:ug/L Basis:NA

			Lab Control Sample RQ2211660-02		Duplicate Lab Control Sample RQ2211660-03					
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
alpha-BHC	8081B	0.180	0.400	45	0.269	0.400	67	36-151	40*	30
beta-BHC	8081B	0.314	0.400	78	0.311	0.400	78	55-149	<1	30
delta-BHC	8081B	0.271	0.400	68	0.306	0.400	76	29-159	12	30
gamma-BHC (Lindane)	8081B	0.215	0.400	54	0.294	0.400	73	41-149	31*	30
QA/QC Report

Client:Olin CorporationProject:Charles Gibson - OlinSample Matrix:Water

Service Request: R2209022 **Date Analyzed:** 09/30/22

Duplicate Lab Control Sample Summary Organochlorine Pesticides by Gas Chromatography

Units:ug/L Basis:NA

			Lab Co RQ2	ntrol Sam 211759-09	ple	Duplicate Lab RQ2211	Control Sa 759-10	ample		
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike t Amount	% Rec	% Rec Limits	RPD	RPD Limit
alpha-BHC	8081B	0.288	0.400	72	0.286	0.400	72	36-151	<1	30
beta-BHC	8081B	0.318	0.400	80	0.311	0.400	78	55-149	2	30
delta-BHC	8081B	0.339	0.400	85	0.306	0.400	76	29-159	10	30
gamma-BHC (Lindane)	8081B	0.309	0.400	77	0.307	0.400	77	41-149	<1	30

Data Evaluation Narrative Charles Gibson – September 2022 Groundwater and Leachate Sampling Event

SDG: R2209022 – ALS Environmental, Rochester, NY

Deliverables

The data package as submitted to Olin Corporation is complete as stipulated under the Quality Assurance Project Plan (QAPP) for the site. United States Environmental Protection Agency (USEPA) Methods 8270D and 8081B were utilized in laboratory testing of samples.

Sample Integrity

Samples within this sample delivery group (SDG) were submitted to the ALS Environmental Laboratory in Rochester, NY for chlorinated pesticides analysis. The sample cooler temperatures measured 2.8°C and 4.6°C upon arrival at the laboratory. The specified temperature limit is $4^{\circ}C \pm 2^{\circ}C$. The proper bottles were used, the Chain of Custody was properly relinquished, and the correct analytical methods were employed.

Sample Identification

This SDG contains the following water and quality control (QC) samples collected September 20-21, 2022:

SDG R2209022:

Sample ID	Sample ID	Sample ID	Sample ID	Sample ID
Field Blank-092122	MH-B-092122	MW-4-092122	MW-5-092022	MW-7-092122*

* Blind Field Duplicate of MW-4-092122

Chlorinated Pesticides (8081B)

The samples in this SDG were submitted for site-specific chlorinated pesticides (BHCs) analysis by USEPA Method 8081B.

Holding Times:

The extraction and analytical logs indicate that applicable holding times were met for samples submitted for chlorinated pesticide analysis.

Practical Quantitation Limits:

The practical quantitation limits (PQLs) were met for all samples submitted for chlorinated pesticide analysis by USEPA Method 8081B.

Calibration:

The initial and continuing calibration data for this SDG indicates that the applicable calibration criteria were met. The column breakdowns were assessed, and the percent degradation was within QC limits.

Surrogates:

The surrogate recoveries were within applicable QC advisory limits for all samples submitted for chlorinated pesticide analysis.

Blank Summary:

The analytical results of the laboratory method blanks and the field blank indicate that chlorinated pesticides were not detected.

Laboratory Control Sample (LCS) and LCS Duplicate (LCSD):

The relative percent difference (RPD) between the LCS and LCSD spike results for alpha-BHC (40) and gamma-BHC (31) were above the QC control limit of 30. Both LCS and LCSD recoveries for the two compounds were within QC limits; no data qualification for the high RPD values was deemed necessary by professional judgment.

Second Column Confirmation:

The laboratory utilized a second column confirmation for the analysis of chlorinated pesticides. The RPDs were within guidelines for all project and quality control samples except for delta-BHC in sample MH-B-092122 and gamma-BHC in the MS/MSD of MH-B-092122. The delta-BHC detection in MH-B-092122 was qualified as an estimated detection (J) by professional judgment; no data qualification was required for the MS/MSD sample results.

Performance Evaluation Samples (PES):

The results from the PES were within quality control guidelines.

Field Duplicate Sample:

According to the sampler, MW-7-092122 was a blind field duplicate of MW-4-092122. The sample and field duplicate were non-detect for all BHC compounds.

Matrix Spike/Matrix Spike Duplicate (MS/MSD):

MS/MSD analyses were performed on groundwater sample MH-B-092122. All percent recoveries were within control guidelines for both the MS and MSD.

Semi-Volatile Organic Compounds (EPA Method 8270D)

Four groundwater samples and the field blank in this SDG were submitted for Semi-Volatile Organic Compounds (SVOC) analysis of hexachlorobenzene (HCB) by USEPA Method 8270D.

Holding Times:

The extraction and analytical logs indicate that applicable holding times were met for samples submitted for semi-volatiles analysis. The holding times of 7 days for extraction and 40 days for analysis were met.

Practical Quantitation Limits:

The practical quantitation limits (PQLs) were met for the analysis of HCB by USEPA Method 8270D.

Calibration:

The initial and continuing calibration data indicate that applicable initial and continuing calibration criteria were met.

GC/MS Instrument Performance Check:

The GC/MS tuning and mass calibration checks passed the criteria as established by the method.

Blank Summary:

The analytical results of the laboratory method blank and field blank indicated no HCB was detected.

Laboratory Control Sample (LCS) and LCS Duplicate (LCSD):

The LCS and LCSD spike recoveries and RPDs were within applicable QC advisory limits.

Internal Standards and Surrogates:

The internal standard area counts/retention times and surrogate recoveries were within applicable QC advisory limits.

Matrix Spike/Matrix Spike Duplicate (MS/MSD):

MS/MSD analyses were performed on sample MH-B-092122. The percent recoveries and RPD were within OC limits.

Field Duplicate:

According to the sampler, MW-7-092122 was a blind field duplicate of MW-4-092122. The RPD could not be calculated since both samples were non-detect (ND) for HCB.

Overall Site Evaluation and Professional Judgment Flagging Changes

The data within this SDG were compared to site data and an edit to the DQE flags was required based on professional judgment. Monitoring period completeness, which is the percentage of analytical results judged valid, including estimated values, was 100 percent for the September 2022 sampling event. Typically, project objectives are met when completeness is 90 percent or better.

Prepared by: <u>Randy T. Morris</u> Date <u>December 15, 2022</u>

Service Request No:R2209021

Adam Carringer Olin Corporation 490 Stuart Road Cleveland, TN 37312

Laboratory Results for: Charles Gibson - Olin

Dear Adam,

Enclosed are the results of the sample(s) submitted to our laboratory September 22, 2022 For your reference, these analyses have been assigned our service request number **R2209021**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Mighan tedio

Meghan Pedro Project Manager

CC: Randy Morris

ADDRESS 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 PHONE +1 585 288 5380 FAX +1 585 288 8475 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Olin Corporation Client: **Project:** Charles Gibson - Olin Service Request: R2209021 Date Received: 09/22/2022

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier level IV requested by the client.

Sample Receipt:

Three soil samples were received for analysis at ALS Environmental on 09/22/2022. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivoa GC:

Method 8081B, 10/04/2022: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in guestion above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8081B, 10/04/2022: The control limits were exceeded for analytes in the Continuing Calibration Verification (CCV). The QC failure was most likely due to the composition of the sample(s) immediately preceding the failing CCV. In order to protect the integrity of the instrument, no further corrective action was taken. Results should be considered estimated.

Method 8081B, 10/04/2022: The lower control limit for the spike recovery of the Laboratory Control Sample (LCS) was exceeded for one or more analyte. The discrepancy associated with reduced recovery equates to a potential low bias. All samples on prep are scheduled for re-extraction. The analytes affected are flagged in the LCS Summary.

Method 8081B, 10/04/2022: The control limits for matrix spike recovery of one or more of the spiked analytes is not applicable. The analysis of this sample required a dilution such that the added spike concentration was diluted outside of a useable level. Matrix spikes which have been diluted have been flagged with a "D". No further corrective action was required.

Method 8081B: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV) on one detector. All recoveries were acceptable on the secondary detector. Since there were no detections of the analyte(s) above the MRL in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken.

Method 8081B, 10/19/2022: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8081B, 10/19/2022: The control limits were exceeded for analytes in the Continuing Calibration Verification (CCV). The QC failure was most likely due to the composition of the sample(s) immediately preceding the failing CCV. In order to protect the integrity of the instrument, no further corrective action was taken. Results should be considered estimated. Method 8081B:The extraction of one or more sample(s) was initially performed within holding time, but were re-extracted due to a QC failure. Efforts were made to re-extract the samples as soon as possible. The re-extraction was performed past the recommended holding time. The data are flagged to indicate the holding time exceedance.

The RPD between the LCS and the LCSD was greater than the RPD limit. The percent recovery limit was met for both the LCS and the LCSD.

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by

Migran tedio

Page 3 of 36

10/25/2022 Date

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
R2209021-001	US-1-092122	9/21/2022	0950
R2209021-002	MS-1-092122	9/21/2022	0845
R2209021-003	DS-1-092122	9/21/2022	0900

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 065609

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE / OF /

Project Name Charles Gibson - Oli	Dlim Project Number 1283				ANALYSIS REQUESTED (Include Method Number and Container Preservative)																		
Project Manager	Rep	port CC				PRE	SERVA					0			T								· - · · · · · ·
Company/Address		. /< ‹	stam Car	rringer				}		7	┝━━┿	\rightarrow					/		└ <u></u>	\rightarrow		Pro	
Olin Corp						SR			/	/												0.	NONE
3855 North	Ococe	S	<i>t</i>		·	NTAINE		/		/	/	/	/ 3			/	/		/	/		2. 3. 4	HNO3 H2SO4 NaOH
Cleveland, TN 37312					OF CO	/	2	/ z/	S	[]			VOLVEL	' /	/	/ /	/ /	/ /		' /	5. 6. 7.	Zn. Acetate MeOH NaHSO4	
Phone # 423-836-4987	7	AB(Carrinare	reolir	m	ABER		200		800		88/2 88/57		com /								8.	Other
Sampler's Signature	Se	mpler's P	Inted Name	fton		Ň	/ స్త్రీశ్రీ	ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	ૢૢૢૢૺઙૢૢૢ૽ૼઙૢૢૢૢૢ			META List	META List		/ ,	/	/	/			/ AI	REMA	ARKS/
	FOR OFFICE	USE	SAME	PLING											(((
US 1 092122			0 /21 /2 2	0950	SED	2				2													
MS-1-092122			9/21/22	0845	SED	$\frac{4}{2}$	<u> </u>			2													
DS-1-072122			9/21/22	0900	SED	2				2													
TEMP BLANK		8.4		 	-	1																	
															,								
	Service of the servic																				e.		
																							
	经制造额													Ļ			_				 I		
SPECIAL INSTRUCTIONS/COMMENTS Metals								τυ	RNAR	OUND	REQUI	REME	NTS		REPO	ORT R	EQUIR	EMEN.	TS		INVC	ICE INFO	RMATION
				•					RUS	h (Suri	CHARGE	S APPLY	0		I, Results Only								
									1 da	y;	2 day	3 day	,	1.4	CII. Results + QC Summaries PO # ILCS. DUP. MS/MSD as required)								
								$\overline{\alpha}$	4 da Stan	y! dard (10	o day bushiossi	days-No	Surchwg	e)	III. Bes	ults + C	C and C	BILL TO: OL:					
															Summ	aries						· · · ·)	
									estei A	JHEPC		5			_ IV. Dat	a Valida	tion Rep	ort with	Rew Dat	a			
					•				•														
STATE WHERE SAMPLES WERE COLI	LECTED														Edat	a	Yes		No				
RELINQUISHED BY	RE	ECEIVED) BY	RE	LINQUISHED	BY				RECE	IVED BY	/			Ŕ	ELINQ	UISHE) BY				RECEIVED	D BY
		PS																		_			
Signature Max toffeto Si	ignat		MAR	Signature				Signati	ure					Signa	turð					Sign	alurė •		
Printed Name Max Liftion	CIEGON (1,55n	nerlian	Printed Name				Printed	i Name					Printa	d Nama					222	000	124	5
Firm Sevenson Fi	irm	<u>A15</u>		Firm				Firm		<u>.</u>				Firin		<u> </u>				NA A	oration] _	J
Date/Time 9/21/22 1500 Da	late/Time9/2g	2/22	09145	Date/Time				Date/T	inie					Date/	lime -					harles (ibson - (olin 111 - Elis II	
Distribution: White - Lab Copy; Yellow - Return to	o Originator	•					Page	e 6 of	36									•					

Gibson Fall Ground Water Monitoring and Sampling Narrative

9/20/22

Well MW-A3 was dry upon arrival. No sample taken from this well. Monitoring well MW-4 was pumped dry during purging before sample collection. Well MW-5 was sampled at 1626.

9/21/22

Sevenson returned to site to sample recharge at well MW-4 at 1205. MH-B sampled at 1115, and MS/MSD volumes were taken here. Field Blank sampled were taken at 1131. MW-7 was sampled at 1300.

Creek sediment samples were also taken today, upstream at 0950, midstream at 0845, and downstream at 0900.

This narrative will be sent to ALS along with the sample COCs.

Marshell Mpts 9/21/22

											- —		~.	-	
C							F	R220	0902	21	5				
(AL	. S)	Cooler	Rec	eipt	and P	reser	7 a i 8	in Corpor harles Gib	ation son - Olin				i		
Project/Cl	ient_Sev	remson			Fold	ler Nun	nbė.						J		
Cooler recei	ved on <u>9/23</u>	122	by:	R.		COU	RIER	ALS	UPS		EX VE	LOCIT	Y CLIE	ENT	
1 Were C	ustody seals o	n outside of cool	er?		(V N	5a	Perc	lorate	sample	s have r	equired h	ieadspa	ce?	YI	NNA
2 Custody papers properly completed (ink, signed)? (Y N 5b Did VOA vials, Alk, or Sulfide have sig* bubbles? Y N NA										V (NA					
3 Did all bottles arrive in good condition (unbroken)? N 6 Where did the bottles originate?								ALS	ROC	CLIE	ENT				
4 Circle:	Wet Ice Dr	y Ice Gel packs	pre	esent?	(Y)N	7	Soil V	/OA re	ceived a	s: I	Bulk I	Encore	5035	set (1	
3. Temperature Readings Date: 1/22/22 Time: 09.55 ID: IR#7 (IR#11) From: Temp Blank Sample Bottle															
Observed T	emp (°C)	7.8		46	·			•				<u> </u>		í —	
Within 0-6°	°C?	(V) N		$\langle \!\!\! \mathcal{V} \!\!\!\!$	N	Y	N	Y	N	Y	N	Y	N	Y	N
If ⊲0°C, we	re samples fro	zen? Y N		Y	N	Y	N	Y	N	Y	Ν	Y	N	Y	N
If out of	Temperature,	note packing/ie	e conc	lítion	:	I	ce mel	ted I	oorly P	acked (describe	d below	<i>i</i>) 5	Same I	Day Rule
&Client	Approval to F	tun Samples:		Sta	nding Ap	proval	Clien	t aware	at drop	-off (lient not	ified by	/:		-
All samples	held in stora	ge location:	R.M	n	by J7	on	9/25/	22 at /	1:05			- <u></u>		·	
5035 sampl	es placed in st	torage location:			by	on		at		within 4	48 hours	of sam	pling?	Y	N
						· · · · ·									
Cooler Br	eakdown/Pres	ervation Check*	: Dat	e:_0	9/23/	22	Time:_	105	8	by	: AL				
9. 10 1	Were all bottle Did all bottle is	labels complete	(<i>i.e.</i> an	alysis.	preserva	tion, etc.)?		Č	<u>B</u>	NO				
11.	Were correct of	ontainers used fo	r the te	sts inc	licated?	18:			Ğ	¦} }	NO				
12.	Were 5035 via	s acceptable (no	extra l	abels,	not leaki	ng)?			Ŷ	ES	NO		. 1	MAI	
13. <u>/</u>	Air Samples: C	Cassettes / Tubes	Intact	Y/N	with MS	<u>Y/N</u>	Canis	ters Pre	ssurized	<u> </u>	edlar® E	Bags Inf	flated 7	N/A	<u> </u>
pri	paper	Keagen	Yes	No	Lot Re	ceived		Exp	Samp A dius	le ID ted	Vol.		ot Added		Final
≥12	· · · · · · · · · · · · · · · · · · ·	NaOH	<u> </u>	1	†				7 Idjus		Addu	<u>-</u>			ргі
≤2		HNO ₃									1	·			
52		H ₂ SO ₄										-			
<4		NaHSO4			L										
5-9		For 608pest			No=No	tify for 3c	lay								
Chloring		For CN,			If +, cor	tact PM to $(625, 609)$	o add								
		$\frac{1}{608}$	Ì		CN), as	corbic (ph	, moD.								
<u> </u>		No.S.O	<u>-</u> :	<u> </u>											
L	·	7n & cetate		+					****					I]
		HCI	**	-	<u> </u>				Otherwi	s and 160 se, all bo	4 NOT to b ttles of all	e tested b samples :	efore analy with chemi	ysis. ical pres	ervatives
						<u> </u>			are chec	ked (not	just repres	entatives)		
Bottle lot	numbers: 02	0822-1	SR	,											
Explain al	l Discrepancie	s/ Other Comm	ents:	·											
-	-	•													
													•		

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	LL3541

Labels secondary reviewed by:______ PC Secondary Review: ______

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r19.doc

03/02/2021

.

Internal Chain of Custody Report

Client: Olin Corporation

Project: Charles Gibson - Olin/1283

Service Request: R2209021

Bottle ID	Methods	Date	Time	Sample Location / User	Disposed On
R2209021-001.01					
	ALS SOP				
		9/23/2022	1056	SMO / ALUGO	
		9/23/2022	1059	R-002 / ALUGO	
R2209021-001.02					
	8081B,8081B				
		9/23/2022	1059	SMO / ALUGO	
		9/23/2022	1059	R-002 / ALUGO	
		10/6/2022	0915	In Lab / JVANHEYNINGEN	
		10/6/2022	1626	R-002 / JVANHEYNINGEN	
R2209021-002.01					
	ALS SOP				
		9/23/2022	1056	SMO / ALUGO	
		9/23/2022	1059	R-002 / ALUGO	
R2209021-002.02					
	8081B,8081B				
		9/23/2022	1059	SMO / ALUGO	
		9/23/2022	1059	R-002 / ALUGO	
		10/6/2022	0915	In Lab / JVANHEYNINGEN	
		10/6/2022	1627	R-002 / JVANHEYNINGEN	
R2209021-003.01					
	ALS SOP				
		9/23/2022	1056	SMO / ALUGO	
		9/23/2022	1059	R-002 / ALUGO	
R2209021-003.02					
	8081B,8081B				
		9/23/2022	1059	SMO / ALUGO	
		9/23/2022	1059	R-002 / ALUGO	
		10/6/2022	0915	In Lab / JVANHEYNINGEN	
		10/6/2022	1627	R-002 / JVANHEYNINGEN	

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

NELAP StatesFlorida ID # E87674New Hampshire ID # 2941New York ID # 10145Pennsylvania ID# 68-786Virginia #460167

Non-NELAP StatesConnecticut ID #PH0556Delaware ApprovedMaine ID #NY01587North Carolina #36701North Carolina #676Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

Rochester Lab ID # for State Accreditations¹

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.

Client:	Olin Corporation
Project:	Charles Gibson - Olin/1283

Service Request: R2209021

Non-Certified Analytes

Certifying Agency: New York Department of Health

MethodMatrixAnalyteALS SOPSoilTotal Solids

Analyst Summary report

Client:Olin CorporationProject:Charles Gibson - Olin/1283

Soil

US-1-092122

R2209021-001

Sample Name:

Sample Matrix:

Lab Code:

Service Request: R2209021

Date Collected: 09/21/22 **Date Received:** 09/22/22

Analysis Method		Extracted/Digested By	Analyzed By
8081B		JVANHEYNINGEN	AFELSER
ALS SOP			KAWONG
Sample Name:	US-1-092122		Date Collected: 09/21/22
Lab Code:	R2209021-001.R01		Date Received: 09/22/22
Sample Matrix:	Soil		
Analysis Method		Extracted/Digested By	Analyzed By
8081B		JVANHEYNINGEN	AFELSER
Sample Name:	MS-1-092122		Date Collected: 09/21/22
Lab Code:	R2209021-002		Date Received: 09/22/22
Sample Matrix:	Soil		
Analysis Method		Extracted/Digested By	Analyzed By
8081B		JVANHEYNINGEN	AFELSER
ALS SOP			KAWONG
Sample Name:	MS-1-092122		Date Collected: 09/21/22
Lab Code:	R2209021-002.R01		Date Received: 09/22/22
Sample Matrix:	Soil		

Analysis Method 8081B **Extracted/Digested By** JVANHEYNINGEN Analyzed By AFELSER

Analyst Summary report

Client:Olin CorporationProject:Charles Gibson - Olin/1283

Service Request: R2209021

 Sample Name:
 DS-1-092122

 Lab Code:
 R2209021-003

 Sample Matrix:
 Soil

Date Collected: 09/21/22 **Date Received:** 09/22/22

Analysis Method		Extracted/Digested By	Analyzed By
8081B		JVANHEYNINGEN	AFELSER
ALS SOP			KAWONG
Sample Name:	DS-1-092122		Date Collected: 09/21/22
Lab Code:	R2209021-003.R01		Date Received: 09/22/22
Sample Matrix:	Soil		
Analysis Method		Extracted/Digested By	Analyzed By

Analysis Method	Extracted/Digested By	Analyzed B
8081B	JVANHEYNINGEN	AFELSER

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Analytical Method	Preparation			
	Method			
6010C	3050B			
6020A	3050B			
6010C TCLP (1311)	3005A/3010A			
extract				
6010 SPLP (1312) extract	3005A/3010A			
7199	3060A			
300.0 Anions/ 350.1/	DI extraction			
353.2/ SM 2320B/ SM				
5210B/ 9056A Anions				
For analytical methods not listed, the preparation				
method is the same as the analytical method				
reference.				

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report Olin Corporation **Client:** Service Request: R2209021 Date Collected: 09/21/22 09:50 **Project:** Charles Gibson - Olin/1283 Sample Matrix: Soil Date Received: 09/22/22 09:45 Sample Name: US-1-092122 Units: ug/Kg Lab Code: R2209021-001 Basis: Dry

Analysis Method:	8081B
Prep Method:	EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
alpha-BHC	ND U	68	5	10/19/22 20:03	10/6/22	*
beta-BHC	ND U	68	5	10/19/22 20:03	10/6/22	*
delta-BHC	ND U	68	5	10/19/22 20:03	10/6/22	*
gamma-BHC (Lindane)	ND U	68	5	10/19/22 20:03	10/6/22	*
Surrogate Name		% Rec	Control I	Limits Date A	Analyzed Q	
Decachlorobiphenyl		61	10 - 1	45 10/19	/22 20:03	
Tetrachloro-m-xylene		68	10 - 1	23 10/19	/22 20:03	

Analytical Report Olin Corporation **Client:** Service Request: R2209021 Date Collected: 09/21/22 09:50 **Project:** Charles Gibson - Olin/1283 **Sample Matrix:** Soil Date Received: 09/22/22 09:45 Sample Name: US-1-092122 Units: ug/Kg Lab Code: R2209021-001 Basis: Dry

Analysis Method:	8081B
Prep Method:	EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	d Q
alpha-BHC	ND U	66	5	10/04/22 17:14	9/29/22	
beta-BHC	ND U	66	5	10/04/22 17:14	9/29/22	
delta-BHC	ND U	66	5	10/04/22 17:14	9/29/22	
gamma-BHC (Lindane)	ND U	66	5	10/04/22 17:14	9/29/22	
Surrogate Name		% Rec	Control Li	mits Date A	nalyzed (2
Decachlorobiphenyl		34	10 - 14	5 10/04/2	22 17:14	
Tetrachloro-m-xylene		53	10 - 12	3 10/04/2	22 17:14	

Analytical Report **Client:** Service Request: R2209021 **Olin Corporation** Date Collected: 09/21/22 08:45 **Project:** Charles Gibson - Olin/1283 Sample Matrix: Soil Date Received: 09/22/22 09:45 Sample Name: MS-1-092122 Units: ug/Kg Lab Code: R2209021-002 Basis: Dry

Analysis Method:	8081B
Prep Method:	EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
alpha-BHC	ND U	84	5	10/19/22 20:22	10/6/22	*
beta-BHC	ND U	84	5	10/19/22 20:22	10/6/22	*
delta-BHC	ND U	84	5	10/19/22 20:22	10/6/22	*
gamma-BHC (Lindane)	ND U	84	5	10/19/22 20:22	10/6/22	*
Surrogate Name		% Rec	Control I	Limits Date A	analyzed Q	
Decachlorobiphenyl		79	10 - 1	45 10/19/	22 20:22	
Tetrachloro-m-xylene		92	10 - 1	23 10/19/	22 20:22	

Analytical Report Olin Corporation **Client:** Service Request: R2209021 Date Collected: 09/21/22 08:45 **Project:** Charles Gibson - Olin/1283 Sample Matrix: Soil Date Received: 09/22/22 09:45 Sample Name: MS-1-092122 Units: ug/Kg Lab Code: R2209021-002 Basis: Dry

Analysis Method:	8081B
Prep Method:	EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
alpha-BHC	ND U	81	5	10/04/22 18:12	9/29/22	
beta-BHC	ND U	81	5	10/04/22 18:12	9/29/22	
delta-BHC	ND U	81	5	10/04/22 18:12	9/29/22	
gamma-BHC (Lindane)	ND U	81	5	10/04/22 18:12	9/29/22	
Surrogate Name		% Rec	Control Li	mits Date A	nalyzed Q	
Decachlorobiphenyl		43	10 - 14	5 10/04/	22 18:12	
Tetrachloro-m-xylene		73	10 - 123	3 10/04/	22 18:12	

Analytical Report Olin Corporation **Client:** Service Request: R2209021 **Date Collected:** 09/21/22 09:00 **Project:** Charles Gibson - Olin/1283 Sample Matrix: Soil Date Received: 09/22/22 09:45 Sample Name: DS-1-092122 Units: ug/Kg Lab Code: R2209021-003 Basis: Dry

Analysis Method:	8081B
Prep Method:	EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
alpha-BHC	ND U	79	5	10/19/22 20:41	10/6/22	*
beta-BHC	ND U	79	5	10/19/22 20:41	10/6/22	*
delta-BHC	ND U	79	5	10/19/22 20:41	10/6/22	*
gamma-BHC (Lindane)	ND U	79	5	10/19/22 20:41	10/6/22	*
Surrogate Name		% Rec	Control L	imits Date A	analyzed Q	
Decachlorobiphenyl		68	10 - 14	45 10/19/	22 20:41	
Tetrachloro-m-xylene		64	10 - 12	23 10/19/	22 20:41	

Analytical Report Olin Corporation **Client:** Service Request: R2209021 **Date Collected:** 09/21/22 09:00 **Project:** Charles Gibson - Olin/1283 Sample Matrix: Soil Date Received: 09/22/22 09:45 Sample Name: DS-1-092122 Units: ug/Kg Lab Code: R2209021-003 Basis: Dry

Analysis Method:	8081B
Prep Method:	EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
alpha-BHC	ND U	81	5	10/04/22 18:31	9/29/22	
beta-BHC	ND U	81	5	10/04/22 18:31	9/29/22	
delta-BHC	ND U	81	5	10/04/22 18:31	9/29/22	
gamma-BHC (Lindane)	ND U	81	5	10/04/22 18:31	9/29/22	
Surrogate Name		% Rec	Control Li	mits Date A	nalyzed Q	
Decachlorobiphenyl		41	10 - 14	5 10/04/	22 18:31	
Tetrachloro-m-xylene		70	10 - 12	3 10/04/	22 18:31	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:	Olin Corporation	Service Request: R2209021
Project:	Charles Gibson - Olin/1283	Date Collected: 09/21/22 09:50
Sample Matrix:	Soil	Date Received: 09/22/22 09:45
Sample Name:	US-1-092122	Basis: As Received
Lab Code:	R2209021-001	

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Total Solids	ALS SOP	37.3	Percent	-	1	10/03/22 08:15	

Analytical Report

Client:	Olin Corporation	Service Request: R2209021
Project:	Charles Gibson - Olin/1283	Date Collected: 09/21/22 08:45
Sample Matrix:	Soil	Date Received: 09/22/22 09:45
Sample Name:	MS-1-092122	Basis: As Received
Lab Code:	R2209021-002	

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Total Solids	ALS SOP	29.7	Percent	-	1	10/03/22 08:15	

Analytical Report

Client:	Olin Corporation	Service Request: R2209021
Project:	Charles Gibson - Olin/1283	Date Collected: 09/21/22 09:00
Sample Matrix:	Soil	Date Received: 09/22/22 09:45
Sample Name:	DS-1-092122	Basis: As Received
Lab Code:	R2209021-003	

Inorganic Parameters

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Total Solids	ALS SOP	31.1	Percent	-	1	10/03/22 08:15	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Service Request: R2209021

Client:Olin CorporationProject:Charles Gibson - Olin/1283Sample Matrix:Soil

SURROGATE RECOVERY SUMMARY

Analysis Method:	8081B
Extraction Method:	EPA 3546

		Decachlorobiphenyl	Tetrachloro-m-xylene	
Sample Name	Lab Code	10-145	10-123	
US-1-092122	R2209021-001	34	53	
US-1-092122 RE	R2209021-001	61	68	
MS-1-092122	R2209021-002	43	73	
MS-1-092122 RE	R2209021-002	79	92	
DS-1-092122	R2209021-003	41	70	
DS-1-092122 RE	R2209021-003	68	64	
Method Blank	RQ2211875-01	45	24	
Method Blank	RQ2212245-08	107	86	
Lab Control Sample	RQ2211875-02	45	26	
Duplicate Lab Control Sample	RQ2211875-03	44	27	
Lab Control Sample	RQ2212245-09	102	82	
Duplicate Lab Control Sample	RQ2212245-10	78	52	
US-1-092122 MS	RQ2211875-08	35	82	
US-1-092122 DMS	RQ2211875-09	34	77	

QA/QC Report

Client:	Olin Corporation	1				Servi	ice Reques	t: R22	209021	
Project:	Charles Gibson -	Olin/1283				Date Collected: 09/21/22			21/22	
Sample Matrix:	Soil					Date	Received:	09/	22/22	
						Date	Analyzed	: 10/-	4/22	
						Date	Extracted	: 09/2	29/22	
			Duplicate	Matrix Spi	ike Sumn	nary				
	Organoch	lorine Pesti	cides by Gas	Chromato	graphy u	ising Microway	ve Extracti	ion		
Sample Name:	US-1-092122						Units	ug/	Kg	
Lab Code:	R2209021-001						Basis	: Dry	7	
Analysis Method:	8081B							-		
Prep Method:	EPA 3546									
			Matrix S	Spike		Duplicate Ma	trix Spike			
			RQ22118	375-08		RQ22118	75-09			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
alpha-BHC	ND U	ND U	53.4	0 *	43.3 J	51.8	84	10-149	NC	30
beta-BHC	ND U	75.3	53.4	141	70.5	51.8	136	10-162	7	30
delta-BHC	ND U	ND U	53.4	0 *	ND U	51.8	0 *	10-157	NC	30
gamma-BHC (Lindane) ND U	ND U	53.4	0 *	37.4 J	51.8	72	10-170	NC	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.
	An	lytical Report	
Client:	Olin Corporation	Service Request: R2	209021
Project:	Charles Gibson - Olin/1283	Date Collected: NA	L.
Sample Matrix:	Soil	Date Received: NA	Ł
Sample Name:	Method Blank	Units: ug/	Kg
Lab Code:	RQ2211875-01	Basis: Dry	у

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method:	8081B
Prep Method:	EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extrac	cted Q
alpha-BHC	ND U	1.7	1	10/03/22 16:50	9/29/22	
beta-BHC	ND U	1.7	1	10/03/22 16:50	9/29/22	
delta-BHC	ND U	1.7	1	10/03/22 16:50	9/29/22	
gamma-BHC (Lindane)	ND U	1.7	1	10/03/22 16:50	9/29/22	
Surrogate Name		% Rec	Control Lir	nits Date A	analyzed	Q
Decachlorobiphenyl		45	10 - 145	5 10/03/	22 16:50	
Tetrachloro-m-xylene		24	10 - 123	3 10/03/	22 16:50	

	Analytical Re	port
Client:	Olin Corporation	Service Request: R2209021
Project:	Charles Gibson - Olin/1283	Date Collected: NA
Sample Matrix:	Soil	Date Received: NA
Sample Name:	Method Blank	Units: ug/Kg
Lab Code:	RQ2212245-08	Basis: Dry

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method:	8081B
Prep Method:	EPA 3546

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
alpha-BHC	ND U	1.7	1	10/19/22 18:26	10/6/22	
beta-BHC	ND U	1.7	1	10/19/22 18:26	10/6/22	
delta-BHC	ND U	1.7	1	10/19/22 18:26	10/6/22	
gamma-BHC (Lindane)	ND U	1.7	1	10/19/22 18:26	10/6/22	
Surrogate Name		% Rec	Control Lir	nits Date A	analyzed Q	
Decachlorobiphenyl		107	10 - 145	5 10/19/	22 18:26	
Tetrachloro-m-xylene		86	10 - 123	3 10/19/	22 18:26	

QA/QC Report

Client:Olin CorporationProject:Charles Gibson - Olin/1283Sample Matrix:Soil

Service Request: R2209021 **Date Analyzed:** 10/03/22

Duplicate Lab Control Sample Summary Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Units:ug/Kg Basis:Dry

			Lab Control Sample RQ2211875-02		Duplicate Lab Control Sample RQ2211875-03					
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Resul	Spike t Amount	% Rec	% Rec Limits	RPD	RPD Limit
alpha-BHC	8081B	1.51 J	6.58	23 *	1.60 J	6.66	24 *	28-145	6	30
beta-BHC	8081B	2.81	6.58	43	2.81	6.66	42	38-144	<1	30
delta-BHC	8081B	3.39	6.58	52	3.03	6.66	46	30-153	11	30
gamma-BHC (Lindane)	8081B	1.87	6.58	28 *	1.98	6.66	30 *	32-145	6	30

QA/QC Report

Client:Olin CorporationProject:Charles Gibson - Olin/1283Sample Matrix:Soil

Service Request: R2209021 **Date Analyzed:** 10/19/22

Duplicate Lab Control Sample Summary Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Units:ug/Kg Basis:Dry

			Lab Co RQ2	Lab Control Sample RQ2212245-09		Duplicate Lab Control Sample RQ2212245-10				
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike t Amount	% Rec	% Rec Limits	RPD	RPD Limit
alpha-BHC	8081B	5.11	6.66	77	3.44	6.64	52	28-145	39*	30
beta-BHC	8081B	5.76	6.66	87	4.23	6.64	64	38-144	31*	30
delta-BHC	8081B	2.93	6.66	44	3.91	6.64	59	30-153	29	30
gamma-BHC (Lindane)	8081B	5.06	6.66	76	3.68	6.64	56	32-145	31*	30

Data Evaluation Narrative Charles Gibson – September 2022 Sediment Sampling Event

SDG: R2209021 – ALS Environmental, Rochester, NY

Deliverables

The data package as submitted to Olin Corporation is complete as stipulated under the Quality Assurance Project Plan (QAPP) for the site. United States Environmental Protection Agency (USEPA) Method 8081B was utilized in laboratory testing of samples. The ALS Standard Operating Procedure (SOP) was utilized to obtain percent solids of sediment samples to report results on a dry weight basis.

Sample Integrity

Samples within this sample delivery group (SDG) were submitted to the ALS Environmental Laboratory in Rochester, NY for site-specific chlorinated pesticides and percent solids analyses. The sample cooler temperature measured within the specified temperature limits upon arrival at the laboratory. The proper containers were used, the Chain of Custody was properly relinquished, and the correct analytical methods were employed.

Sample Identification

This SDG contains the following sediment samples collected September 21, 2022:

SDG R2209021:

Sample ID	Sample ID	Sample ID
US-1-092122	MS-1-092122*	DS-1-092122

* Blind Field Duplicate of DS-1-092122

Chlorinated Pesticides (8081B)

The samples in this SDG were submitted for site-specific chlorinated pesticides analysis by USEPA Method 8081B.

Holding Times:

The extraction and analytical logs indicate that initial applicable holding times were met for samples submitted for chlorinated pesticide analysis. Samples were re-extracted one day behold hold time due to a QC failure in the Laboratory Control Standard (LCS).

Calibration:

The initial calibration data for this SDG indicates that the applicable calibration criteria were met for samples submitted for chlorinated pesticide analysis. Two associated continuing calibration verification (CCV) samples had recoveries slightly above the upper laboratory control limit for 1 of 4 BHC compounds; since no analytes were detected above the method reporting limit (MRL) no data qualification was deemed necessary by professional judgment. The column breakdowns for Endrin and DDT were assessed, and the percent degradation was within QC limits each day that samples were analyzed.

Surrogate Recoveries:

The surrogate recoveries were within laboratory QC guidelines.

Blank Summary:

The analytical results of the laboratory method blanks indicate that chlorinated pesticides were not detected.

Laboratory Control Sample (LCS) and LCS Duplicate (LCSD):

The LCS and LCSD spike recoveries for alpha-BHC and gamma-BHC were slightly below the laboratory control limits in the original LCS/LCSD results. The relative percent differences (RPDs) for three of the four pesticides were slightly above the laboratory control limit of 30 in the reanalysis LCS/LCSD results; the percent recoveries were within control guidelines.

Second Column Confirmation:

The laboratory utilized a second column confirmation for the analysis of chlorinated pesticides. The confirmation results were within QC guidelines for the LCS/LCSD and performance evaluation mixture (PEM) samples.

Duplicate Sample:

According to the sampler, MS-1-092122 was a blind field duplicate of US-1-092122. All site-specific pesticides were non-detect in the parent sample and field duplicate.

Reporting Limits:

The reporting limits were elevated for all pesticide compounds analyzed since the sample extracts were diluted 5X due to elevated levels of non-target background concentrations.

Matrix Spike/Matrix Spike Duplicate (MS/MSD):

MS/MSD analyses were performed on project sample US-1-092122. The recoveries were below the laboratory control limits in three of the four pesticides for either the MS and/or the MSD. However, the analyses required dilutions such that the added spike concentrations were diluted outside of a useable level. No data qualification based on the spike recoveries was thus warranted by professional judgment.

Accepted Results:

Two sets of data were reported by the laboratory—the original results extracted within hold time and the results from the re-extraction performed beyond hold time. Both sets of data were non-detect (ND) for all pesticides. By professional judgment, the original results were accepted with the added qualifier (UJ) signifying an estimated reporting limit for the two compounds with low LCS recoveries.

Sample ID	Compounds	Final Result
US-1-092122	Alpha-BHC, Gamma-BHC	66 (UJ) µg/Kg
MS-1-092122	Alpha-BHC, Gamma-BHC	81 (UJ) µg/Kg
DS-1-092122	Alpha-BHC, Gamma-BHC	81 (UJ) µg/Kg

Percent Total Solids

The three sediment samples were analyzed for Percent Total Solids by the ALS SOP to report the results on a dry weight basis. The relative percent difference (RPD) for the duplicate pair (DS-1/MS-1) was 4.6.

Overall Site Evaluation and Professional Judgment Flagging Changes

The data within this SDG were compared to site data and edits to the DQE flags were required based on professional judgment as detailed above. Monitoring period completeness, which is the percentage of analytical results judged valid, including estimated values, was 100 percent for the September 2022 sampling event. Typically, project objectives are met when completeness is 90 percent or better.

Prepared by: <u>Randy T. Morris</u>

Date: December 20, 2022