

TAR SEEP INVESTIGATION REPORT

North Tonawanda Botanical Gardens 1825 Sweeney Street North Tonawanda, NY 14120 Site #932068

November 30, 2015

BENJAMIN MCPHERSON, REGION 9

Environmental Engineer I

270 Michigan Avenue, Buffalo, NY, 14203 P: (716) 851-7220 | F: (716) 851-7226 | benjamin.mcpherson@dec.ny.gov This page left blank for printing purposes

Table of Contents

1.0	Intro	duction	1
2.0	Back	ground	1
2.1	Site	e History	1
2.2	Pas	st Investigations	2
2	2.2.1	RECRA Research Inc. Analysis	2
2	2.2.2	United States Geological Survey Investigation	2
2	2.2.3	Phase I and Phase II Reports	3
2	2.2.4	NYSDOH Surface Soil Sampling	3
2	2.2.5	Preliminary Site Assessment	3
2	2.2.6	Tar Seep Analytical	4
2.3	Ge	ology	5
3.0	Scop	e of Work	5
4.0	Resu	ılts	6
4.1	Ge	ophysical Surveys	6
4.2	Soi	il Boring Results	6
4.3	Gro	oundwater	9
5.0	Disc	ussion and Recommendations	9
6.0	Cond	clusions	10
7.0	Refe	rences	11

List of Tables and Figures

Tables

Table 1: Boring Descriptions

Table 2: July 2015 Tar Analytical Results

Figures

Figure 1: Site Location

Figure 2: PSA Sampling Locations

Figure 3: Botanical Gardens EM-61 Magnetic Survey

Figure 4: Investigation Results

List of Appendices

Appendix A: Soil Boring Logs

Appendix B: Investigation Photo Log

Appendix C: Nation Weather Service Data
Appendix D: TestAmerica Analytical Report
Appendix E: Ben McPherson Field Notes

Appendix F: Analytical Tables from 1999 PSA

1.0 Introduction

The Botanical Gardens (the Site) is located in a residential area in the eastern part of the City of North Tonawanda. The site is approximately 11 acres in size and is located in the northeast corner of the intersection of Sweeney Street and East Robinson Street. The site location is shown on Figure 1.

An investigation was completed by the New York State Department of Environmental Conservation (NYSDEC) to investigate a tar seep observed in the south western portion of the Site in July 2015. Field work was completed by NYSDEC approved contractors under the supervision of NYSDEC Region 9 staff. Field work was completed in October 2015.

The investigation determined that there is an unregistered underground storage tank (UST) located to the west of the old park shed. There was also a significant amount of black, odiferous, refuse material in the subsurface soil borings that had a distinct sewage smell. It is believed that this material is not directly related to the tar. The investigation was able to locate the origin of the tar seep, but was unable to identify a source area. The tar material on the ground surface was collected for off-site disposal at a permitted facility.

Based on these results the NYSDEC will pursue negotiations with the City of North Tonawanda for the removal and further investigation of the UST. It is also recommended that test pits be completed to locate the source of the tar seep or determine if it was an isolated pocket of material.

2.0 Background

2.1 Site History

During the 1950s the City of North Tonawanda Department of Public Works was granted permission by the New York State Canal Commission to fill a low area along the canal with municipal refuse. Based on historical information, dumping operations were limited to the southern portion of the Site. In 1964, the New York State Department of Health (NYSDOH) reported violations at the Site, including the disposal of putrescible material and that an inadequate amount of material was used to cover the refuse. The City disposed of refuse at this location until approximately 1965. Dumping was discontinued at the Site due to the opening of waste management facilities in the area.

NYSDEC files also indicate that the Durez Division of Hooker Chemical may have disposed of industrial wastes at the Site and the adjacent Holiday Park Site (Site #932033) (NYSDEC, 1983). The waste was reported to include 125 tons of phenolic resins, 500 tons of phenolic

molding compounds, and 500 tons of general rubbish material (Malcom Pirnie, INC., 1999). The wastes were mainly solid materials and were transported to the site in drums.

The Botanical Gardens were developed at the site starting in 1962 by the Colorful Tonawandas Committee, which was largely composed of residents from the Wurlitzer Park area of North Tonawanda (Museum, 2015). The Botanical Gardens started with only a small greenhouse and garden areas but grew due to donations and work by the Colorful Tonawandas Committee. A boat launch was built in the 1960s to allow access to Tonawanda Creek.

In the 1983 concerns over the past dumping at and near the Site prompted the site to be listed to the Registry of Inactive Hazardous Waste Sites (the Registry), which is maintained by the NYSDEC (NYSDEC, 1983). Subsequent investigations completed at the site during the 1980s and 1990s did not document the disposal of hazardous waste at the Site, and it was delisted from the Registry in 2002.

In July 2015 a tar like material was observed seeping from the ground in the southern portion of the Site (NYSDEC, 2015). The NYSDEC was informed by North Tonawanda Parks Department of this seep and collected a sample for chemical analysis. The results indicate that the tar contains several compounds that are typical of the disposal of hazardous substances, and the site was reclassified as a 'potential-site' to be listed on the Registry for tracking purposes. As a result of the discovery of this material the NYSDEC conducted an investigation in 2015 to better characterize the nature and extent of the unknown tar material. The results of this investigation is the subject of this report.

2.2 Past Investigations

2.2.1 RECRA Research Inc. Analysis

RECRA Research Inc. (RECRA) conducted chemical analysis of groundwater samples from both Holiday Park and the Site in 1979 on behalf of the City of North Tonawanda (Engineering Science, INC. and Dames & Moore, 1983). Samples were analyzed for phenols and total halogenated organics to screen for signs hazardous waste. The qualitative analysis identified phenolic compounds, and potentially polychlorinated biphenyls (PCBs) in groundwater.

2.2.2 United States Geological Survey Investigation

The United States Geological Survey (USGS) installed monitoring wells at Holiday Park and the Site in 1979, and collected groundwater samples from the wells. Only two wells were installed on the Site, being designated USGS-1 and USGS-2 (Malcom Pirnie, INC., 1999). Groundwater sampling from 1979 detected total halogenated organics at a concentration of

19.1 parts per billion (ppb) in USGS-1. Other aliphatic, aromatic, and oxygenated hydrocarbons were also detected in the wells at low concentrations. The USGS conducted additional sampling and finalized their report on the sites in 1982. The USGS wells are reported to still be accessible on the Site.

2.2.3 Phase I and Phase II Reports

A Phase I Site Investigation was completed for the NYSDEC in 1983 by Engineering Science, INC (in association with Dames and Moore) (Engineering Science, INC. and Dames & Moore, 1983). The Phase I focused on summarizing the results of the RECRA analysis and USGS investigation. It concluded that a complete Hazard Ranking Score (HRS) could not be determined due to a lack of information, and recommended the completion of a Phase II investigation.

A Phase II Investigation was completed for the NYSDEC in 1985 by Wehran Engineering, P.C. (Wehran Engineering, P.C., 1985). Ambient air sampling for volatile organic compounds (VOCs) was the only activity conducted during the Phase II. VOCs were detected in Site air, but concentrations were consistent with levels observed in background ambient air samples. The report concluded that VOC impacts to ambient air related to the Site did not pose a threat to public health or the environment. The conclusion of the report recommended that additional groundwater and soil sampling be completed to confirm the results of the RECRA and USGS reports and determine if Site contamination is impacting Tonawanda Creek.

2.2.4 NYSDOH Surface Soil Sampling

Four surface soil samples were collected by the NYSDOH in 1992 to characterize the condition of site soils (Malcom Pirnie, INC., 1999). VOCs, semi-volatile organic compounds (SVOCs), pesticides, PCBs, and metals were detected in at least one of the soil samples. Sample S-4, located to the south of the boat launch, had the most detections. All of the detected compounds, with the exception of acetone (a VOC), were present at concentrations below NYSDEC soil cleanup levels.

2.2.5 Preliminary Site Assessment

A joint Preliminary Site Assessment (PSA) for Holiday Park and the Site was completed in 1999 by Malcolm Pirnie, INC. (Malcom Pirnie, INC., 1999) with field oversight from NYSDEC. The PSA collected subsurface soil samples, surface water samples, and groundwater samples for chemical analysis. NYSDEC also collected surface soil samples at this time, and the results were included in the PSA Report. Samples were analyzed for VOCs, SVOCs, pesticides,

PCBs, and metals. Surface soil samples were only analyzed for SVOCs. PCBs were not detected during the PSA in any environmental media.

Nine VOCs and SVOCs were detected in subsurface soil samples, with none exceeding the soil cleanup standards. Several metals were detected in subsurface soil at levels that exceed standards, but were determined to not be indicative of hazardous waste disposal. Several SVOCs were detected in the surface soil samples, but were well below standards.

Two surface water samples were collected, one from a surface depression and the other from the fountain/pond that is part of the Botanical Gardens. Results from the surface depression indicate that phenol, 4-methylphenol, iron, manganese, and sodium are present at levels that exceed standards. Results from the fountain/pond indicated that 1,2-dichloroethene, vinyl chloride, bis(2-ethylhexyl)phthalate, iron, and manganese are present at levels that exceed standards. Surface water was noted as being distinctly rust colored.

Monitoring well sampling results indicated that groundwater is impacted by carbon disulfide, benzene, 4,4-DDT, and several metals at levels that exceed standards.

It was noted on several soil boring logs that refuse material (bed springs, cardboard, plastic, etc.) was encountered in the subsurface, but no buried drums were encountered. A geophysical survey of the Site was also conducted, but was not able to definitively identify buried drums. The PSA concluded that while the Site is impacted by VOCs and unusually high iron concentrations, there was insufficient evidence to support that hazardous waste was disposed of at the Site. The PSA did note that high iron concentrations exfiltrating from groundwater into Tonawanda Creek may be a concern, but would require additional investigation. As a result of this and subsequent investigations, the site was delisted from the Registry dated January 1, 2002.

The PSA sample locations are shown on Figure 2 and analytical tables are provided in Appendix F.

2.2.6 Tar Seep Analytical

In July 2015 a tar like material was observed seeping from the ground in the southern portion of the Site near the adjacent residential property. A sample of the tar was collected by NYSDEC staff and analyzed for VOCs, SVOCs, pesticides, PCBs, and metals (TestAmerica Laboratories, Inc., 2015). Of the detected compounds in the tar, methylene chloride, tetrachloroethene (PCE), gamma-chlordane, copper, and zinc were present at levels exceeding their respective unrestricted soil cleanup objective (SCO). PCBs, barium, cadmium, and lead were present at levels exceeding their respective restricted-residential SCO. These results are summarized in Table 2. The area of the seep was not previously investigated during

the PSA or other investigations (Figure 2). Due to the compounds detected in the tar and its location, NYSDEC began an investigation to determine the source of the material and what future actions are warranted.

2.3 Geology

The overburden at the site is comprised of glaciolacustrine silt and clay deposits with lesser amounts of sand and gravel. These sediments were deposited when the area was covered by a proglacial lake which formed during the retreat of the Wisconsin glacier during the last ice age. In areas of the sites in which fill material was encountered during the boring investigation, the fill appeared to be reworked native material mixed with refuse. Previous investigations of the site indicated that bedrock is at a depth of approximately 25 feet below grade. Bedrock was not encountered during this investigation. The groundwater elevation measurements collected during previous investigations indicate that the water table slopes to the northeast toward the canal/creek at a relatively flat gradient. Historically, the depth to the water table ranges between 6 to 8 feet below grade (Malcom Pirnie, INC., 1999) and is likely in direct contact with the canal/creek waters.

3.0 Scope of Work

The NYSDEC issued callouts to Empire Geoservices, Inc. (NYSDEC Contract #C100908) and TestAmerica Laboratories, Inc. (NYSDEC Contract #C008010) to conduct the investigation of the tar seep observed at the Site.

The investigation is focused on the immediate area surrounding the tar seep, and consisted of the following:

- An electromagnetic and utility survey to identify any potential waste drums, underground storage tanks (USTs), the extent of tar product, and buried utilities;
- The advancement of soil borings using a track mounted GeoProbe up to 16 feet below ground surface (bgs) to delineate the extent of tar in the subsurface;
- Logging and field screening of soil borings by a geologist;
- The collection of soil samples from soil boring intervals exhibiting the greatest contamination;
- The installation of temporary monitoring wells to collect groundwater samples; and
- The analysis of all soil and groundwater samples for VOCs, SVOCs, pesticides, PCBs, and metals at a NYSDOH certified laboratory.

4.0 Results

4.1 Geophysical Surveys

The electromagnetic and utility survey were completed two weeks prior to boring activities by AMEC Foster Wheeler (AMEC) and On The Mark Locating (OTM), respectively. An electromagnetic survey map was generated by AMEC, and is included as Figure 3. Several anomalies were identified by the survey, indicated by the red to yellow areas on the figure. The anomalies to the north of the park shed are believed to be indicative of refuse disposed of at the site in the past. The large anomalies to the west of the park shed were investigated, and are discussed in Section 4.2 below.

4.2 Soil Boring Results

A total of eleven borings were completed using a track mounted GeoProbe equipped with a 2 inch diameter probe. The borings were originally targeted to be completed to 16 feet bgs, but the dense clay and till materials present at the site limited borings to a depth of 12 feet bgs. Several borings were limited in depth due to shallow refusal, poor recoveries, or encountering subsurface features. A summary of the boring descriptions and photoionization detector (PID) readings are presented in Table 1, with the full boring logs attached as Appendix A. Boring locations are shown on Figure 4.

Table 1: Soil Boring Summary

Location (Depth in feet)	Soil Description/Field Indicators	PID (ppm)
B-1 (0-12)	Thin layer of topsoil that grades to a brown/gray clay, followed by a reddish till. No signs of contamination	0
B-2 (0-9.3)	Thin layer of overburden over a layer of black, wet, refuse material. Extremely strong sewage odor. Limited recovery as the probe compressed the refuse material or became plugged. Possible tar globules on tip of the spoon.	4 - 1770
B-3 (0-12)	Similar to B-1, but did not encounter the reddish till unit. No signs of contamination.	0
B-4 (0-12)	Thin layer of overburden over a layer of black, wet, refuse material. Extremely strong sewage odor. Limited recovery. Reddish till encountered at base of boring appeared to be clear of impacts.	40 - 240
B-5 (0-12)	Possible slag material encountered at ~1 ft bgs. Black refuse material present at lower depths, strong sewage odor. Clean brown/gray clay and reddish till encountered at end of boring.	40 -220

Location (Depth in feet)	Soil Description/Field Indicators	PID (ppm)
B-6 (0-1)	Encountered a hollow metal object at ~1 ft bgs. Boring was hand cleared to expose what appears to be an underground storage tank, size unknown.	N/A
B-7 (0-12)	Thin layer of topsoil underlain by brown/gray silt and clay. No signs of contamination.	0
B-8A (0-4)	Encountered black refuse material, but met shallow refusal due to a large woody debris. Some odors. Stepped out boring to avoid refusal.	0 - 32
B-8B (0-2.5)	Limited recovery, gravel stuck in end of probe. Encountered same woody debris causing refusal. Boring abandoned.	N/A
B-9 (0-7)	Partial recovery throughout boring. Some black refuse material in end of boring, some odors. Clean gray clay at base of boring.	4 - 12
B-10 (0-12)	Advanced directly on top of tar seep. Veins of tar material observed in boring, with tar smearing on outside of probe. A mix of tar, water, and air bubbled out of the push rods recovering the final probe. Tar did not exhibit an odor. Clean brown/gray clay and reddish till encountered at base of boring.	0

Borings B-2, B-4, B-5, B-6, B-9, B-10, and to a lesser extent B-8A/B-8B were all advanced in the relatively low 'trough' area that originates near the park shed and runs approximately SE to NW (see Appendix B, Photo 11). These borings were typified by a distinct black, wet, odoriferous refuse material encountered below a thin layer of overburden material. The refuse material had a distinct sewage or septic system smell that persisted in the area throughout the work. The refuse was largely decomposed, but bits of cardboard, wall paper, wood, glass, and plastic could be distinguished in some borings. Many of these boring only had partial recoveries as the refuse material was readily compressed or the probe tip became plugged by debris. While this refuse material is clearly a waste (likely placed while the site was used as a dump) it did not appear to be directly related to the tar based on its physical appearance. The dense native clay and/or till at the base of the borings did not appear to be impacted significantly by the refuse material.

Borings B-5, B-6, and B-7 were completed to investigate the electromagnetic anomalies near the park shed. B-5 was targeted to be on the edge of the large western anomaly identified by the electromagnetic survey. A slug of slag-like material was recovered in the boring, at approximately 1 foot bgs. Slag material is known to exhibit metallic properties in electromagnetic surveys. To confirm that the electromagnetic response was related to slag-

like material B-6 was advanced near the center of the anomaly. B-6 was only completed to approximately 1 foot bgs, where the probe encountered a hollow metal object. The boring was abandoned and the hole expanded using a shovel until it was approximately 1.5 feet in diameter. The metal object appeared to be a small underground storage tank (UST) of unknown size and contents. The majority of the western anomaly is attributed to this UST. B-7 was completed in the smaller north-western anomaly, but did not find any material that would cause such a response. Additional investigation surrounding B-7 was limited by the overhead power lines.

Borings B-9 and B-10 were completed in the immediate vicinity of the surface tar seep, as the previous borings lacked signs of significant tar material. B-9 was located approximately 1 foot NW of the edge of the tar seep. Even this close to the seep no clear tar material was observed. Following the completion of B-9 a shovel was used to hand excavate the soil surrounding the tar seep. The tar was largely restricted to the surface of the soil, not even impacting the thin layer of topsoil. The hand excavation discovered a small 'vein' of tar the extended down near the center of the seep. B-10 was completed directly on top of this vein. Tar material was recovered throughout the boring, but in discrete intervals, suggesting that the vein follows a somewhat sinuous path. The outside of the probe was coated with tar due to smearing. While extracting the 8-12 feet core a mixture of tar, water, and air bubbled up from the push rods. It was not clear if this flow was induced by the probe or if the material was already pressurized in the subsurface. No odors were associated with the tar material.

There were some free tar globules recovered from the probe or boring cores of B-10. At first the tar was highly viscous, almost dense, but did become less viscous after sitting in the sun for several minutes. The tar did not exhibit an odor nor register a PID reading. The bottom of B-10 encountered the same brown/gray clay and reddish till that was observed in the other borings at the site. The clay and till did not exhibit any tar material.

Due to poor soil recoveries and the nature of the refuse material (contained debris chunks and few fines) no analytical samples were collected. Surface soil and boring cuttings that were impacted by the tar or refuse material were containerized in 5 gallon plastic buckets for disposal at a permitted facility. Bore holes were backfilled using clean native material or bentonite chips as needed.

Photographs of the investigation are included in Appendix B.

4.3 Groundwater

A significant amount groundwater was not encountered during the investigation. While the refuse material was highly saturated, the clay or till material underlying it was either dry or only moist. It is likely that the refuse material serves a porous media to store perched rain water on top of the low-permeability clay and till.

Temporary monitoring wells were not installed as part of the investigation due to a lack of groundwater.

5.0 Discussion and Recommendations

The subsurface investigation surrounding the tar seep was unable to locate the source of the tar material. The tar migrated to the ground surface through a thin vein in the soil that was too fine for the GeoProbe to consistently locate. Additional investigation using test pits or hand excavations may provide greater insight into the source of the material. Based on the observed hydrogeology surrounding the seep area it is likely that the tar had accumulated on top of the clay and till layer and was transported to the ground surface on top of rain water that had pooled on the low permeability clay. This theory is supported by precipitation data collected by the National Weather Service, included as Appendix C.

The UST that was discovered in front of the park shed is not a registered tank, and based on its depth not properly installed. It will have to be removed and the surrounding soil investigated to determine if there have been leaks from the tank. Prior to removing the tank the overhead power lines would have to be decommissioned and several limbs of the nearby tree would have to be removed. It should be pointed out, that due to the size of the western electromagnetic anomaly that there may be another tank/metal object near the park shed.

The black refuse material was consistently encountered in borings from the low 'trough' area. The exact thickness of the material is unknown as the probe tended to compress the soft material or become plugged with debris. Based on the cores with better recoveries the refuse material is likely several feet thick. It is recommended that future analytical samples be collected if material of sufficient quality and volume is encountered. When the refuse material was exposed to the atmosphere numerous small bubbles appeared on the surface of the saturated material. It is suspected that this was due to increased aerobic microbial activity.

6.0 Conclusions

The investigation was unsuccessful in locating the source of the tar seep that was observed at the Botanical Gardens in July 2015. Borings identified a thin vein in the subsurface that the tar migrated to the surface through, but did not locate a source area. While a distinct black, odiferous, refuse material is present throughout a low area of the site it is unclear that this material is related to the tar. The refuse material had an extremely strong sewage smell, but did not exhibit any other characteristics that would relate it to hazardous waste disposal. This refuse material is likely tied to the dumping activities conducted at the site during the 1950s and 1960s.

A previously unknown UST was discovered near the park shed. The exact size and contents of the tank are unknown at this time, but based on field observations it is likely relatively small. As this tank is not registered or properly installed it will have to be removed, and the surrounding subsurface investigated for signs leakage from the tank. Concurrent with tank removal activities it is recommended that test pits be completed to fully investigate the remainder of the western electromagnetic anomaly and the area of the tar seep. Any tar material encountered during future site work should be removed for disposal off-site at a permitted facility.

7.0 References

- Engineering Science, INC. and Dames & Moore. (1983). *Phase I Report: Botanical Gardens*. Buffalo, NY: Engineering Science, INC. Retrieved from https://decdocs.dec.state.ny.us/D2/?docbase=DECDOCS&locateId=090261c480696354
- Malcom Pirnie, INC. (1999). *Holiday Park/Botanical Gardens Preliminary Site Assessments*. Buffalo, NY: Malcolm Pirnie, INC. Retrieved September 17, 2015, from https://decdocs.dec.state.ny.us/D2/?docbase=DECDOCS&locateId=090261c480696357
- Museum, N. T. (2015, September 17). *North Tonawanda Botanical Gardens*. Retrieved from North Tonawanda History Museum: http://www.nthistorymuseum.org/Collections/botanicalgarden.html
- NYSDEC. (1983, December 31). Inactive Hazardous Waste Disposal Sites in New York State Annual Report. Albany, New York, United States: New York Department of Environmental Conservation.
- NYSDEC. (2015, August 03). Memo: Proposed "P" site listing for the Botanical Gardens Site. Buffalo, New York, United States: New York Department of Environmental Conservation Region 9.
- TestAmerica Laboratories, Inc. (2015). *Analytical Report NYSDEC- Spill# 1503836*. Amherst, NY. Retrieved from https://decdocs.dec.state.ny.us/D2/?docbase=DECDOCS&locateId=090261c4807ffb91
- Wehran Engineering, P.C. (1985). *Phase II Report: Botanical Gardens*. Middletown, NY: Wehran Engineering, P.C. Retrieved from https://decdocs.dec.state.ny.us/D2/?docbase=DECDOCS&locateId=090261c480696355

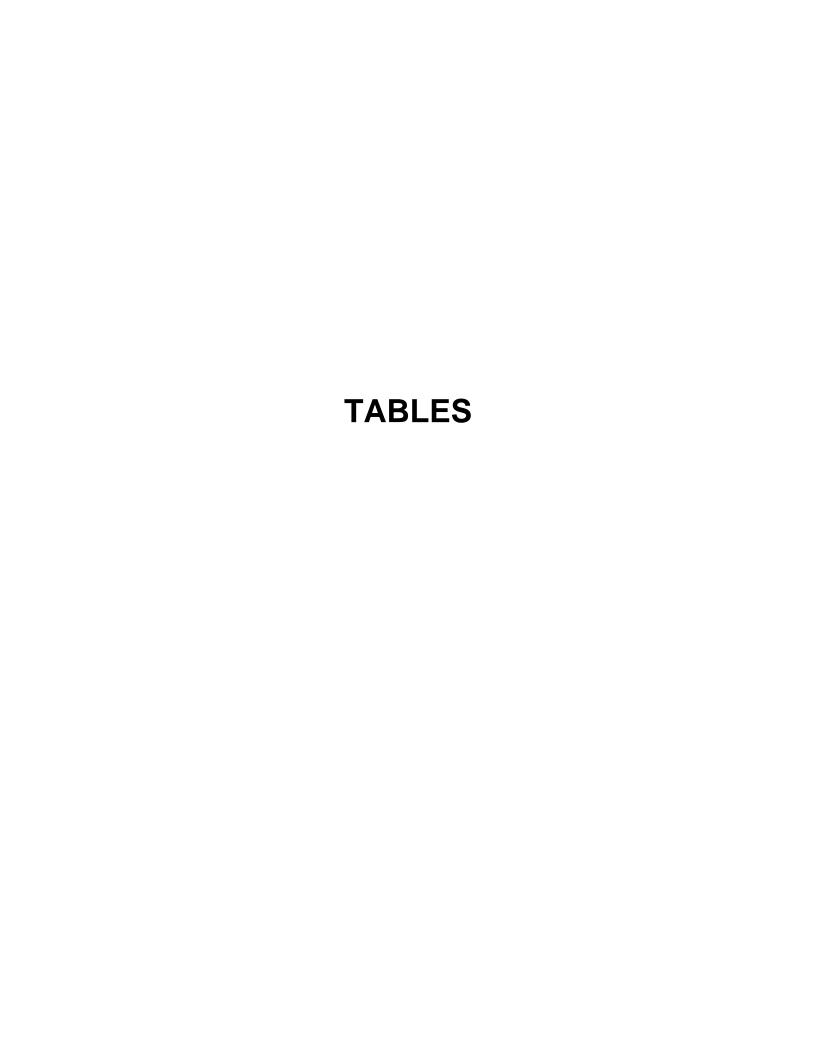
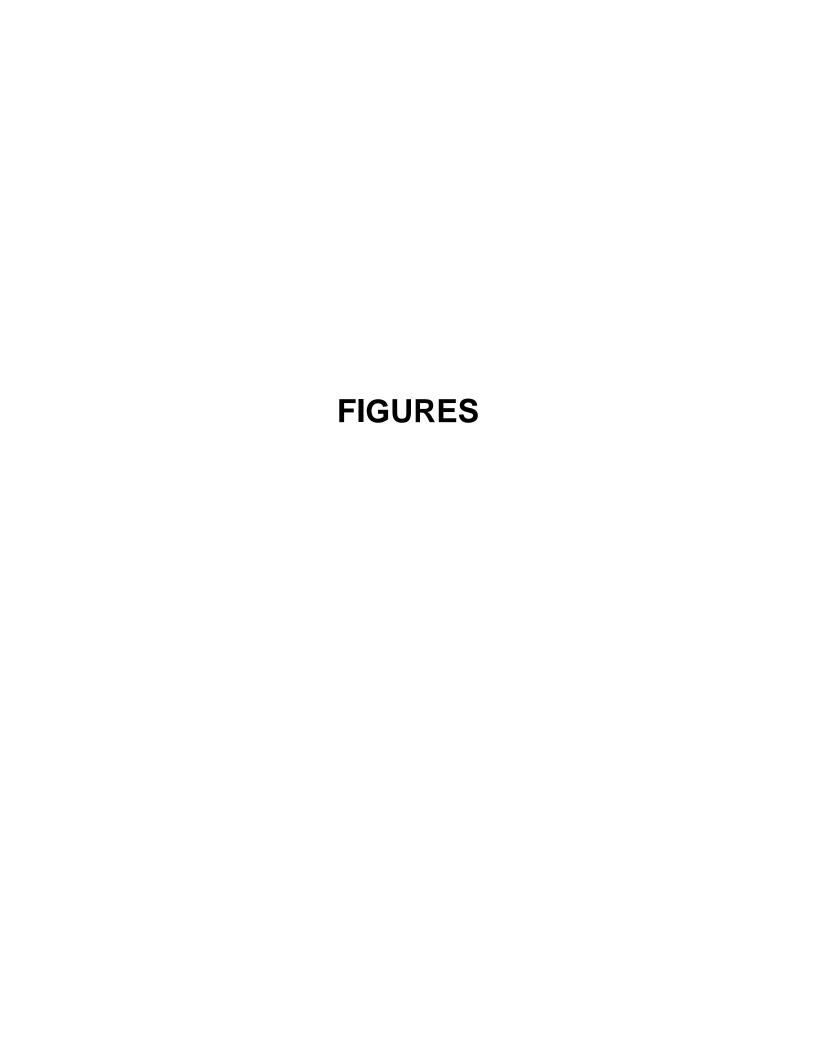
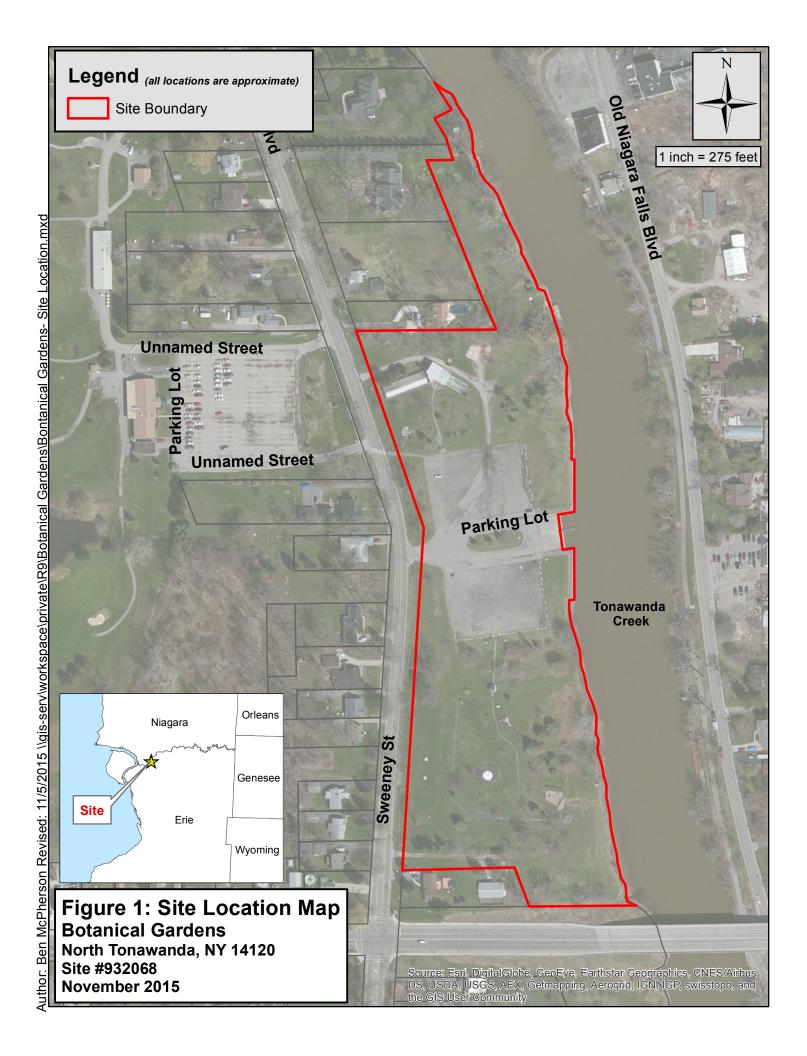


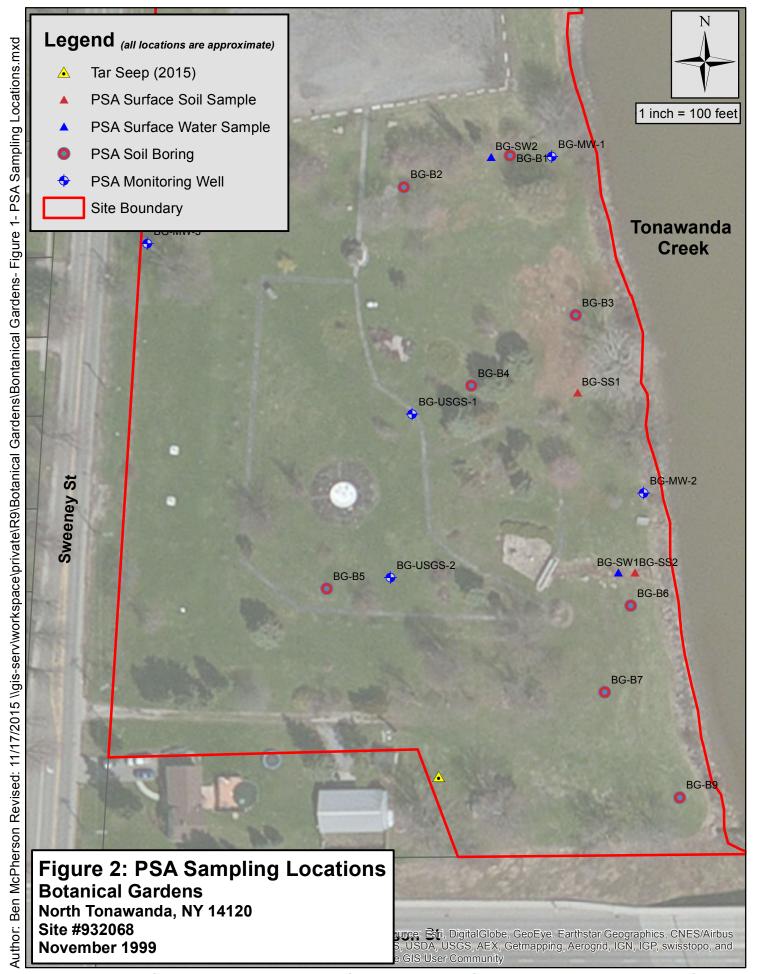
Table 2: July 2015 Tar Analytical Results²

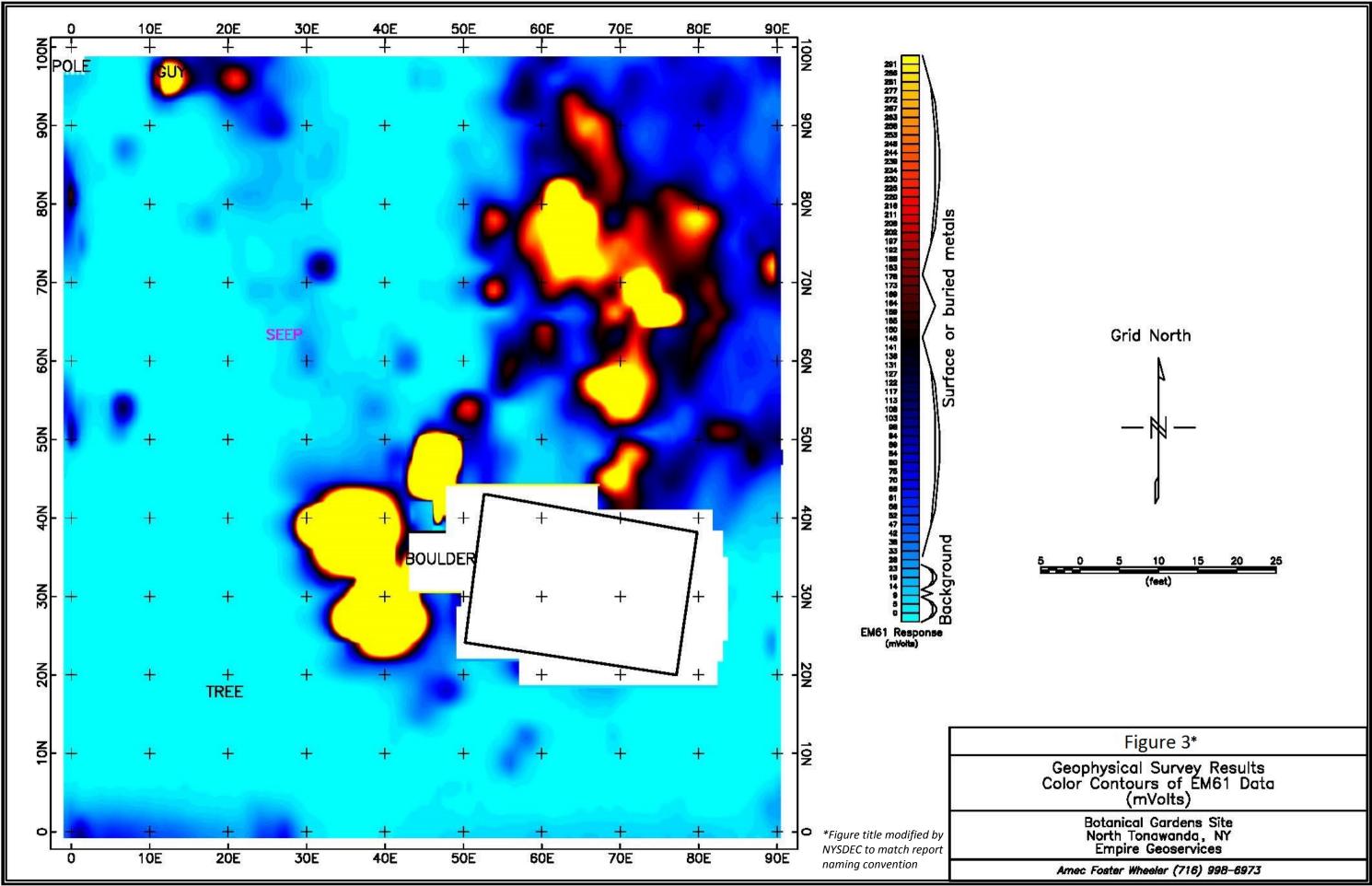
				Part 375 SCOs¹ (mg/kg)		
Compound	Resu	Result Units		Unrestricted	Restricted Residential	
	Volatile C)rgar	nic Compo	ounds (EPA Method	1 8260)	
Methyl acetate	200		mg/kg	-	-	
Methylene chloride	0.81	J	mg/kg	0.05	100	
Tetrachloroethene	3.2		mg/kg	1.3	19	
	Organod	chlori	ine Pestic	ides (EPA Method	8081)	
gamma-Chlordane	1.4	J	mg/kg	0.094	24	
Po	ly Chlorin	ated	Biphenyls	s (PCBs) (EPA Meti	hod 8082)	
PCB-1248	22		mg/kg	-	-	
PCB-1254	8.3		mg/kg	-	-	
PCB-1260	5.3		mg/kg	-	-	
Total PCBs	35.6		mg/kg	0.1	1	
		Ме	etals (EPA	Method 6010)		
Aluminum	158		mg/kg	-	-	
Antimony	0.46	J	mg/kg	-	-	
Arsenic	1.6	J	mg/kg	13	16	
Barium	6940		mg/kg	350	400	
Cadmium	4.8		mg/kg	2.5	4.3	
Calcium	1300	В	mg/kg	-	-	
Chromium	25.3		mg/kg	30	180	
Copper	111		mg/kg	50	270	
Iron	1090		mg/kg	-	-	
Lead	26200		mg/kg	63	400	
Magnesium	66		mg/kg	-	-	
Manganese	12	В	mg/kg	1600	2000	
Nickel	6		mg/kg	30	310	
Potassium	61.4		mg/kg	-	-	
Silver	0.21	J	mg/kg	2	180	
Sodium	446		mg/kg	-	-	
Vanadium	1.1		mg/kg	-	-	
Zinc	914		mg/kg	109	10000	

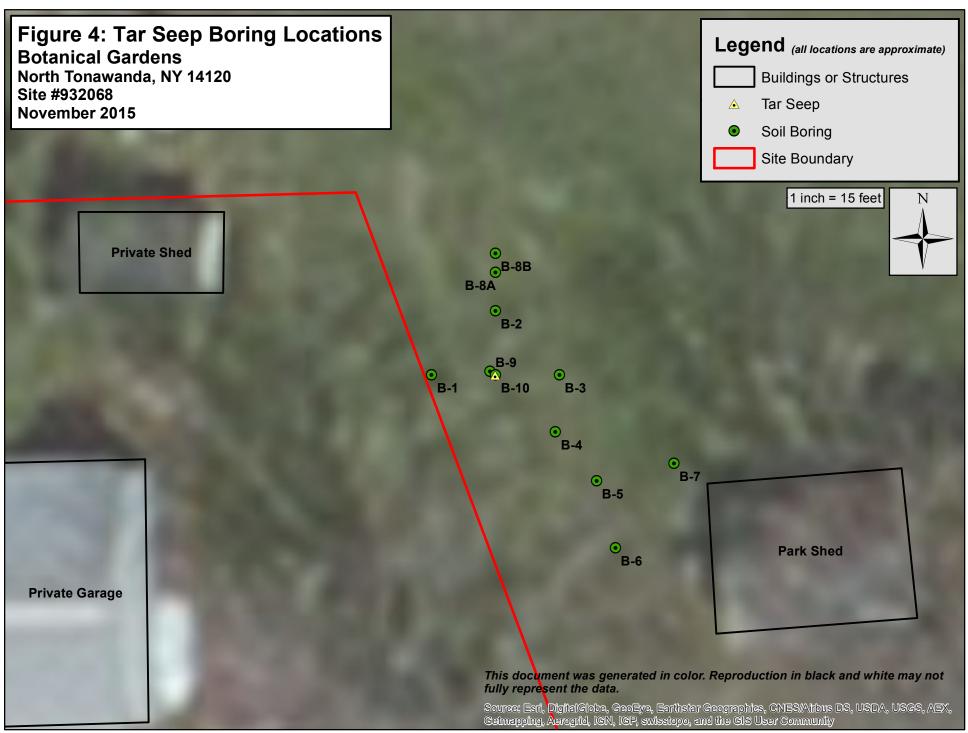
^{1: 6} NYCRR Part 375-6.8 Soil Cleanup Objectives (SCOs)


concentration exceeds unrestricted SCO concentration exceeds restricted residential SCO


^{2 :} only compounds detected over their respective reporting limits are included.


J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.


B: Compound was found in the blank and sample.


[&]quot;-": indicates that a specific SCO for this compound does not exist.

Appendix A: Soil Boring Logs

PROJECT:

 STARTED
 10/19/2015

 FINISHED
 10/19/2015

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

G.W. DEPTH See Notes

SHEET 1 OF 1

BOTANICAL GARDENS LOCATION: OLD FALLS BLVD.

PROJ.	NO.:	BEV-15-050	NORTH TON	IAWANDA, NY
DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION		NOTES
	BG	TOPSOIL 0.5'		PID: Photoionization
1		Brown Silty CLAY, tr.sand (moist, CL)		Detector readings in parts
				per million (ppm)
2		Contains roots at 1.7'		BG: Background PID reading
3				
` -		December Mettled Ten Brown and Cray		
_	Ţ	Becomes Mottled Tan-Brown and Gray		
4				
_	BG			
5				
6				
7				
8	¥			
	BG	Contains little f-c Sand		
9	- 1	Becomes wet at 8.8'		
10				
		Contains Gray f-c Sand, tr.gravel, tr.shell 10.1' - 10.6'		
11		Red-Brown Silty CLAY, little f-c Sand, little f-c Gravel (moist, CL)		
''-		Red-Brown Silly CLAT, IIIIle 1-6 Sand, IIIIle 1-6 Graver (IIIoist, CL)		
	1			
12	*			
13		Boring Complete at 12.0'		Free Standing Water
				recorded at 6.3' at
14				Boring Completion
15				
16				
ILLER:	R. STEIN	IER DRILL RIG TYPE: GEOPROBE 6620 DT	CLASSIFIED BY:	D. STEINER
•		TION: ASTM 6282 - DIRECT PUSH SAMPLING		

 STARTED
 10/19/2015

 FINISHED
 10/19/2015

 SHEET
 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

See Notes

G.W. DEPTH

PROJECT:	BOTANICAL GARDENS	LOCATION: OLD FALLS BLVD.

NORTH TONAWANDA, NY PROJ. NO.: BEV-15-050 SOIL OR ROCK DEPTH NOTES READING **CLASSIFICATION** FT. TOPSOIL 0.3' PID: Photoionization Detector readings in parts BG Brown Silty CLAY, tr.sand (moist, CL-FILL) per million (ppm) ВG BG: Background PID reading BG 5 Contains Black wet seam with Wood and Plastic fragments 3.9' - 7.3' 158 180 water in sampler with septic-type odor 1770 570 Contains Gray-Black Silty Clay, little f-m Sand 160 8 BG 10 Boring Complete with Refusal at 9.3' Free Standing Water recorded at 6.2' at 11 **Boring Completion** 12 13 14 15 16 DRILLER: DRILL RIG TYPE: GEOPROBE 6620 DT CLASSIFIED BY: D. STEINER METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING

STARTED 10/19/2015 **FINISHED** 10/19/2015

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

B-3

1 OF 1 G.W. DEPTH See Notes SHEET LOCATION: OLD FALLS BLVD. PROJECT: BOTANICAL GARDENS

PROJ.	NO.:	BEV-15-050	NORTH TON	IAWANDA, NY
DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION		NOTES
	BG	TOPSOIL 0.4'		PID: Photoionization
1		Brown Silty CLAY, tr.sand (moist, CL-FILL)		Detector readings in parts
]			per million (ppm)
2				BG: Background PID readin
3				
ٽ —				
4	↓			
· —	BG			
5				
ъ —				
6		Becomes Gray and more moist at 6'		
ъ —		becomes dray and more moist at o		
7				
<i>'</i> —				
8	 			
Ŭ <u> </u>	BG	Becomes wet at 8.7'		
9				
				No odor
10		Contains little f-m Sand, tr.shells		No stain
11				
12	 	Red-Brown Silty CLAY, little f-c Sand, tr.gravel (moist, CL)		
13		Boring Complete at 12.0'		Free Standing Water
				recorded at 6.5' at
14				Boring Completion
15				
 16				
ILLER:	R. STEIN	IER DRILL RIG TYPE : GEOPROBE 6620 DT	CLASSIFIED BY:	D. STEINER

10/19/2015 STARTED **FINISHED** 10/19/2015 1 OF 1 SHEET

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO.

B-4

SURF. ELEV	
W DEPTH	See Notes

PROJE	ECT:	BOTANICAL GARDENS LOCATION: OLD FALLS	BLVD.
PROJ.			IAWANDA, NY
DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES
	BG	TOPSOIL 0.5'	PID: Photoionization
1		Brown Silty CLAY, tr.sand (moist, CL-FILL)	Detector readings in parts
			per million (ppm)
2			BG: Background PID reading —
3			
_			_
4	↓		_
_ ' _			_
 5	BG	Black Silty CLAY, little f-c Sand, tr.glass, tr.paper	_
—		Black City CLYT, Itale 1 C Carla, tr.glaco, tr.paper	Water in sampler with
6			septic odor
<u> </u>	240		_
7	1500	Contains shredded Wood and Tar mixed with water	
— <i>'</i> —	178	Contains stredded wood and Fai Hilked with water	_
8	18		_
— ° —			_
9	40		
<u> </u>	130		_
10		Brown-Gray Silty CLAY, little f-m Sand (wet, CL)	_
'`	8	Brown Gray City CENT, indic 1 in Garia (wet, GE)	_
11	BG		_
— ''—	-	— 11.2'	_
12	BG	Becomes Red-Brown, Contains little f-c Sand, little f-c Gravel (moist)	_
13		Boring Complete at 12.0'	Free Standing Water
			recorded at 6.4' at
14			Boring Completion —
			_
15			_
			_
16			
DRILLER:	R. STEIN	ER DRILL RIG TYPE: GEOPROBE 6620 DT CLASSIFIED BY:	D. STEINER
METHOD OF	INVESTIGA	TION: ASTM 6282 - DIRECT PUSH SAMPLING	

STARTED 10/19/2015
FINISHED 10/19/2015

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

OF G.W. DEPTH SHEET See Notes PROJECT: **BOTANICAL GARDENS** LOCATION: OLD FALLS BLVD. NORTH TONAWANDA, NY PROJ. NO.: BEV-15-050 SOIL OR ROCK DEPTH NOTES READING **CLASSIFICATION** FT. TOPSOIL 0.4' BG PID: Photoionization Detector readings in parts SLAG fragments at 0.7' per million (ppm) Tan-Brown Silty CLAY, tr.sand (moist, CL-FILL) BG: Background PID reading BG Brown and Black FILL, Contains Wood, Glass, Plastic, Silty Clay soil BG Septic odor BG 2 40-70 220 Gray and Brown Silty CLAY, tr.sand (moist-wet, CL) BG Contains some f-c Sand, little f-m Gravel 10 BG **—** 10.5' 11 BG Contains Red-Brown Silty CLAY, little f-c Sand, little f-c Gravel Free Standing Water Boring Complete with Refusal at 11.2' 12 recorded at 6.0' at **Boring Completion** 13 14 15 16

DRILLER:	R. STEINER	DRILL RIG TYPE:	GEOPROBE 6620 DT	CLASSIFIED BY:	D. STEINER
METHOD OF	INVESTIGATION:	ASTM 6282 - DIRECT PU	SH SAMPLING		

10/19/2015 STARTED 10/19/2015 **FINISHED** CHEET

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. B-6 SURF. ELEV

SHEET		OF		SERVICES, INC.	G.W. DEPTH See Notes
PROJE	ECT:	BOTANICAL GARDI	I ENS	LOCATION: OLD FALLS	BLVD.
PROJ. NO.: BEV-1		BEV-15-050		NORTH TO	NAWANDA, NY
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION		NOTES
1	BG	Refusal at 1' on Tank			_
2			Boring Complete at 1.0	,	No Free standing Water
3		Exc	cavated by hand with shovel to	verify tank	PID: Photoionization Detector readings in parts per million (ppm)
5					BG: Background PID reading —
6					_
7 <u></u> 					_
9					_
10					_
11					
12 13					_
14					
15					
16					
DRILLER:	R. STEIN	NER DRILL RIG TY	/PE: GEOPROBE 6620 DT	CLASSIFIED BY:	D. STEINER
METHOD OF	INVESTIGA	ASTM 6282 - I	DIRECT PUSH SAMPLING		_

10/19/2015 STARTED 10/19/2015 **FINISHED** 1 OF 1 SHEET

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

G.W. DEPTH See Notes

PROJE		BOTANICAL GARDENS LOCATION: OLD FALLS	
PROJ.	NO.:	BEV-15-050 NORTH TONAWANDA, NY	
DEPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES
	BG	TOPSOIL 0.2'	PID: Photoionization
1		Tan Brown Silty CLAY, tr.sand (moist, CL-FILL)	Detector readings in parts
			per million (ppm)
2			
			BG: Background PID reading —
3			_
_ ` —			_
			_
4	<u> </u>		_
	BG I		_
5			_
6		Becomes Gray and more moist at 6'	_
7			_
8	↓	Becomes Gray-Brown, more Plastic	
	BC		No odor
9		(wet)	No stain
10			_
— ¹⁰ —		Contains little f-m Sand	_
11		Contains little 1-m Sand	_
<u> '' </u>			_
		Contains some f-m Sand	_
12	•		_
			_
13		Boring Complete at 12.0'	Free Standing Water
			recorded at 6.7' at
14			Boring Completion
			_
15			
16			
DRILLER:	R. STEIN	ER DRILL RIG TYPE: GEOPROBE 6620 DT CLASSIFIED BY:	D. STEINER
METHOD OF	INVESTIGA	TION: ASTM 6282 - DIRECT PUSH SAMPLING	
1			•

10/19/2015 STARTED 10/19/2015 **FINISHED**

HOLE NO. SURF. ELEV

SHEET	-	1 OF 1	SERVICES, INC.	G.W. DEPTH See Notes	
PROJECT: BOTANI		BOTANICAL GARDE	LOCATION: OLD FALLS BLVD.		
		BEV-15-050		DNAWANDA, NY	
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION	NOTES	
	BG		TOPSOIL 0.2'	/ PID: Photoionization	
1	I	Brown Silty CL AV tr	sand, tr.gravel (moist, CL-FILL)	Detector readings in parts	
— ' —		Blown Silly CLAT, II.	Sand, tr.graver (moist, OL-1 ILL)	per million (ppm)	
				_	
_ 2				BG: Background PID reading —	
				_	
3	↓			_	
	32	Contains Wood (wet)		_	
4				_	
5			Boring Complete with Refusal at 3.9'	No Free Standing Water	
				Encountered at Completion	
6				· –	
7					
— <i>'</i> —				-	
				_	
8				_	
				_	
9				_	
				_	
10					
11					
12					
<u> </u>					
13					
13				-	
				_	
14				_	
				_	
15					
16					
DRILLER:	R. STEIN	IER DRILL RIG TY	PE: GEOPROBE 6620 DT CLASSIFIED B	Y: D. STEINER	
METHOD OF	INVESTIGA	TION: ASTM 6282 - [DIRECT PUSH SAMPLING		

 STARTED
 10/19/2015

 FINISHED
 10/19/2015

METHOD OF INVESTIGATION:

ASTM 6282 - DIRECT PUSH SAMPLING

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. B-8B SURF. ELEV

1 OF G.W. DEPTH SHEET See Notes PROJECT: **BOTANICAL GARDENS** LOCATION: OLD FALLS BLVD. NORTH TONAWANDA, NY PROJ. NO.: BEV-15-050 SOIL OR ROCK DEPTH NOTES **CLASSIFICATION** READING FT. TOPSOIL 0.2' BG PID: Photoionization Detector readings in parts Brown Silty CLAY, tr.sand, tr.gravel, tr.glass (moist, CL-FILL) per million (ppm) BG: Background PID reading -No Free standing Water Boring Complete with Refusal at 2.5' **Encountered at Completion** 10 11 12 13 14 15 16 DRILLER: R. STEINER DRILL RIG TYPE: GEOPROBE 6620 DT CLASSIFIED BY: D. STEINER

 STARTED
 10/19/2015

 FINISHED
 10/19/2015

 SHEET
 1

 OF
 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

р-9

ONI. LLLV

See Notes

OHLLI		<u> </u>	G.W. BEI III Gee Notes			
PROJECT:		BOTANICAL GARDENS LOCATION: OLD FALLS	BLVD.			
PROJ. NO.:		BEV-15-050 NORTH TOI	NAWANDA, NY			
DEPTH FT. R	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES			
	BG	TOPSOIL 0.3'	PID: Photoionization			
1		Brown Silty CLAY, tr.sand, tr.gravel (moist, CL-FILL)	Detector readings in parts			
			per million (ppm)			
2			BG: Background PID reading —			
3			<u></u>			
			_			
4	+		_			
	BG		_			
5			_			
			_			
6			<u> </u>			
	8		Septic odor			
7	12	Brown and Black Silty CLAY and Wood fragments, tr.sand (wet, FILL)	_			
	5		_			
8	4		_			
_	56		-			
9	8	Gray-Brown Silty CLAY, tr.sand (wet, CL)	_			
			_			
10	BG	Becomes Red-Brown, Contains little f-c Sand, little f-c Gravel	-			
44	BG	Bootines (to Brown, Bornamo maio 1 o Garia, maio 1 o Gravo.	-			
11			_			
12		Boring Complete with Refusal at 10.9'	Free Standing Water			
'		Borning Complete with Nerusal at 10.9	recorded at 6.3' at			
13			Boring Completion			
<u> </u>			_			
14						
15						
_						
16						
DRILLER:	R. STEIN	ER DRILL RIG TYPE: GEOPROBE 6620 DT CLASSIFIED BY:	D. STEINER			
METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING						

10/19/2015 STARTED 10/19/2015 **FINISHED** 1 OF 1 SHFFT

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV B-10

G.W. DEPTH

See Notes

	,					
PROJECT:		BOTANICAL GARDE	ENS LOCATION: OLD FALLS BLVD.			
PROJ. N	10.:	BEV-15-050	<u> </u>	NORTH TON	IAWANDA, NY	
DEPTH FT. F	PID READING		SOIL OR ROCK CLASSIFICATION		NOTES	
	BG	\	TOPSOIL 0.3'	/	PID: Photoionization	
1		Brown Silty CLAY, tr.	sand, occasional Tar (wet, FILL)		Detector readings in parts	
					per million (ppm)	
2						
					BG: Background PID reading —	
3		 Tan-Brown Silty CL A	.Y, tr.sand (moist, CL-FILL)			
			(,)		_	
4	↓				_	
— · — 	BG				_	
5	I				_	
_ ` —					-	
6					_	
$ ^{\circ}$ $-$					-	
					_	
— ⁷ —					-	
		Contains Wood with	Paper at 7.8' - 8'		_	
8	<u> </u>				_	
	BG I				Septic odor	
9					_	
					_	
10		Gray-Brown Silty CL	AY, tr.sand (moist-wet, CL)		_	
					_	
11					_	
		Contains little f-c Sar	nd, little f-c Gravel (moist)		_	
12	*					
_					_	
13			Boring Complete at 12.0'		Free Standing Water	
					recorded at 7.8' at	
14					Boring Completion	
		(Note: Possible PID ma	alfunction screening soils at depths below 7 feet		_	
15		since elevated PID read	dings were associated with the Septic odor in		_	
		other borings)			_	
16						
DRILLER:	R. STEIN	ER DRILL RIG TY	PE: GEOPROBE 6620 DT	CLASSIFIED BY:	D. STEINER	
METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING						

Appendix B: Investigation Photo Log

Photo 1: picture of tar seep area (surrounded by the orange construction fence) before boring work, facing south-east looking towards Robinson Street.

Photo 2: picture of tar seep area (surrounded by the orange construction fence) before boring work, facing south-west looking towards Robinson Street.

Photo 3: picture of B-2 from 4'-8' core. Note high moisture content and black material throughout. Very strong sewage smell. Refuse debris evident in the middle portion of the core.

Photo 4: picture of B-4 from 4'–8' core. Note woody debris mixed with refuse material. Apparent wall paper in the end of the core. Very strong sewage smell. Black discoloration throughout.

Photo 5: picture of hand dug hole surrounding B-6. Reddishorange material in hole is the top of the discovered UST.

Photo 6: close-up picture of hand dug hole surrounding B-6. Reddish-orange material in hole is the top of the discovered UST.

Photo 7: picture of hand dug hole surrounding the tar seep. Note that soil/root layer immediately below the seep does not appear impacted by tar (outlined in red).

Photo 8: picture of hand dug hole surrounding the tar seep, below surface soil. Note that tar impacts are not widespread.

Photo 9: picture of hand dug hole surrounding the tar seep, below surface soil. Note the 'vein' of tar that appears to be the migration pathway to the surface (outlined in red).

Photo 10: picture of a horizontal shovel recovery from under the tar seep. Note the 'vein' of tar that appears to be the migration pathway to the surface (outlined in red).

Photo 11: picture of tar seep area (surrounded by the orange construction fence) after completion of boring work, facing south-east looking towards Robinson Street. Approximate location of the low 'trough' area (outlined in red) that extends past the tar seep towards the park shed.

Photo 12: picture of discovered UST/B-6 location relative to the park shed (stake with pink flag), facing east.

[B. McPherson, 11/03/2015]

Photo 13: picture of discovered UST/B-6 location relative to the park shed (stake with pink flag), facing north.

[B. McPherson, 11/03/2015]

Photo 14: picture of discovered UST/B-6 location relative to the park shed (stake with pink flag), facing north-west. Private shed in background.

[B. McPherson, 11/03/2015]

Appendix C: National Weather Service Data

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

000 CXUS51 KBUF 060049 CLMBUF CLIMATE REPORT NATIONAL WEATHER SERVICE BUFFALO NY 607 PM EDT MON JUN 1 2015 ... THE BUFFALO NY CLIMATE SUMMARY FOR THE MONTH OF MAY 2015... CLIMATE NORMAL PERIOD 1981 TO 2010 CLIMATE RECORD PERIOD 1871 TO 2015 WEATHER OBSERVED NORMAL DEPART LAST YEAR'S VALUE DATE(S) VALUE FROM VALUE DATE(S) NORMAL TEMPERATURE (F) TEMPERATURE (F)
RECORD

HIGH 94 05/22/1911

LOW 25 05/04/1926

HIGHEST 89 05/09 85

LOWEST 34 05/23 37

AVG. MAXIMUM 73.1 66.5 6.6 66.7

AVG. MINIMUM 52.2 47.4 4.8 48.6

MEAN 62.6 56.9 5.7 57.7

DAYS MAX >= 90 0 0.0 0.0 0.0

DAYS MAX <= 32 0 0.0 0.0 0.0

DAYS MIN <= 32 0 0.0 0.0 0.0

DAYS MIN <= 0 0 0.0 0.0 0.0 85 05/13 37 05/05 PRECIPITATION (INCHES) 8.09 2011 0.53 1877 RECORD MUMIXAM MINIMUM TOTALS TOTALS 3.50
DAYS >= .01 9
DAYS >= .10 4
DAYS >= 50 3.46 0.04 3.12 14 8 DAYS >= .50 2 DAYS >= 1.00 1 GREATEST 24 HR. TOTAL 2.44 05/31 TO 05/31 SNOWFALL (INCHES) RECORDS 7.9 1989 TOTAL TOTALS TOTALS 0.0
SINCE 7/1 112.9
SNOWDEPTH AVG. 0
DAYS >= 1.0 0 0.3 -0.3 0.0 94.7 18.2 MM MM 0 0.0 0.0 0

1 of 3 10/30/2015 1:40 PM

GREATEST									
SNOW DEPTH	0	MM						0	MM
24 HR TOTAL	0.0	05/31	TO	05/32	1				
DEGREE_DAYS									
HEATING TOTAL	158			2	72	-114	2	42	
SINCE 7/1	6978			655	53	425	70	97	
COOLING TOTAL	91			2	23	68		23	
SINCE 1/1	91			2	26	65	:	23	
WIND (MPH)									
AVERAGE WIND S				.0.0	_				
HIGHEST WIND S	•						•		
HIGHEST GUST S	PEED/DIRE	CTION	4	1/280)	DATE	05/27		
CILL COLUED									
SKY COVER	TNE (DEDG	T. N. T. N.	2424						
POSSIBLE SUNSH	•	EIN'I')							
NUMBER OF DAYS			20						
NUMBER OF DAYS	_		∠0 7						
NUMBER OF DAYS	CLOODA		/						
AVERAGE RH (PE	DCENT \	64							
AVENACE III (FE.	ICEINI)	OI							
WEATHER CONDIT	IONS. NUM	BER OF	DAY	S WIT	ГН				
THUNDERSTORM		_		IIXED		CIP			0
HEAVY RAIN		3	F	RAIN					4

12

0

0

0

FOG 15 FOG W/VIS <= 1/4 MILE HAZE 6

- INDICATES NEGATIVE NUMBERS.
- R INDICATES RECORD WAS SET OR TIED.
- MM INDICATES DATA IS MISSING.
- T INDICATES TRACE AMOUNT.

&&

LIGHT RAIN

HEAVY SNOW

LIGHT SNOW

LT FREEZING RAIN

...VERY WARM AND DRY MAY...

AFTER A COLD START TO SPRING...AND NEAR NORMAL TEMPERATURES IN APRIL...VERY WARM AIR TEMPERATURES RETURNED TO WESTERN NEW YORK IN MAY. IT WAS ALSO A DRY MONTH WITH MEANINGFUL RAINFALL FALLING ON TWO OCCASIONS THROUGH THE MONTH.

FREEZING RAIN

HAIL

SNOW

SLEET

ABUNDANT SUNNY DAYS...A DRYING GROUND AND A MEAN SOUTHWESTERLY FLOW LED TO THE 5TH WARMEST MAY ON RECORD. THE MEAN TEMPERATURES THIS MONTH WAS 62.6F DEGREES WHICH IS 5.7F DEGREES ABOVE NORMAL. THERE WERE TWO RECORD HIGH TEMPERATURES SET THIS MONTH...FALLING CONSECUTIVELY ON THE 8TH AND 9TH WITH READINGS OF 88F AND 89F RESPECTIVELY. THERE WERE ALSO TWO RECORD WARM MINIMUM TEMPERATURES...ALSO FALLING CONSECUTIVELY ON THE 10TH AND 11TH WITH READINGS OF 67F AND 64F DEGREES RESPECTIVELY. THE 5 CONSECUTIVE DAYS WITHIN THE 80S FROM THE 7TH THROUGH THE 11TH WAS THE EARLIEST STRETCH OF 5 DAYS WITHIN THE 80S FOR BUFFALO.

PRECIPITATION THIS MONTH TOTALED 3.50 INCHES WHICH IS A SHADE ABOVE NORMAL. THOUGH MAY'S PRECIPITATION FINISHED NEAR NORMAL...ALMOST THE ENTIRE MONTH WAS DRY AS MOST OF THE RAIN THIS MONTH FELL OVER TWO

2 of 3 10/30/2015 1:40 PM

OCCASIONS THE 10-11TH (0.59") AND THE LAST 26 HOURS OF THE MONTH (2.67"). THE 2.44 INCHES OF RAIN THAT FELL ON THE LAST DAY OF THE MONTH SET A NEW RECORD FOR THE DATE. THE OLD RECORD WAS 1.30 INCHES SET BACK IN 1889. THIS DAILY EVENT WAS ALSO THE SECOND GREATEST CALENDAR RAINFALL EVENT IN THE MONTH OF MAY...TRAILING ONLY THE 3.41 INCHES THAT FELL MAY 19TH 1986.

MANY OF MAY'S DAILY TEMPERATURES WERE ABOVE NORMAL WITH 23 DAYS AVERAGING ABOVE NORMAL COMPARED TO 8 DAYS AT OR BELOW NORMAL. THESE WARM TEMPERATURES IN CONJUNCTION WITH ALL THE SUNSHINE AND LACK OF RAIN MADE THIS MONTH A VERY PLEASANT MONTH. THERE WERE TWO NOTABLE WEATHER FEATURES THIS MONTH. THE FIRST WAS A LATE FROST/FREEZE ACROSS WESTERN NEW YORK ON THE MORNING OF THE 23RD. FOLLOWING A COOL AND CLOUDY DAY IN THE LOW 60S...SKIES CLEARED WITH EXCELLENT RADIATIONAL COOLING CONDITIONS. TEMPERATURES DROPPED TO 34F DEGREES SATURDAY MORNING THE 23RD WITH WIDESPREAD FROST ACROSS METRO BUFFALO AND FREEZE CONDITIONS TO AREAS WELL SOUTH OF BUFFALO. ONLY 5 OTHER SPRINGS HAVE HAD A TEMPERATURE OF 34F OR COLDER LATER IN THE SEASON.

VEGETATION SPRUNG FORTH IN THE WARM MONTH OF MAY...BUT PROLONGED DRY STRETCHES AND SUNNY DAYS EVENTUALLY STARTED TO DRY THE LOW BRUSH AND GRASSES. THIS DRY PATTERN ENDED ON THE LAST DAY OF THE MONTH WHEN A MOISTURE LADEN SLOW MOVING COLD FRONT MOVED THROUGH THE REGION WITH SIGNIFICANT RAINFALL. SEVERAL WAVES ALONG THIS COLD FRONT BROUGHT OVER TWO INCHES OF RAINFALL THE LAST DAY AND A HALF TO WESTERN NEW YORK...A RAINFALL EVENT THAT WAS WELCOMED EVEN THOUGH THE RAIN FELL ON A WEEKEND. THIS EVENT PRODUCED NO SIGNIFICANT FLOODING AS ANTECEDENT DRY CONDITIONS ALLOWED THE GROUND TO ABSORB A PORTION OF THE RAIN THAT FELL...WITH REMAINING RUNOFF CONTAINED WITHIN ALL CREEKS AND RIVERS.

WINDS WERE PREDOMINATELY SOUTHWEST THIS MONTH AND TAME WITH THE STRONGEST GUST JUST 41 MPH. LAKE ERIE'S WATER TEMPERATURE ROSE FROM 39F AT MONTHS START TO 60F BY THE END OF THE MONTH.

IN ALL A PLEASANT SPRING MONTH FOR WESTERN NEW YORK.

SPRING STATS...

SPRING STARTED COOL...WITH AIR TEMPERATURES IN MARCH WELL BELOW NORMAL. AFTER A NEAR NORMAL MONTH IN APRIL TEMPERATURE-WISE THE MONTH OF MAY BROUGHT SUMMER LIKE WARMTH ACROSS WESTERN NEW YORK. IT WAS A DRY SPRING...WITH THE MONTH OF MARCH THE DRIEST OF THE THREE MONTHS. THE TOTAL PRECIPITATION THIS SPRING WAS CONTRARY TO THE PRIOR TWO SPRINGS...WHICH FINISHED WITH ABOVE NORMAL PRECIPITATION. HERE ARE SOME SPRING STATS FOR METEOROLOGICAL SPRING WHICH IS DEFINED AS THE MONTHS OF MARCH...APRIL AND MAY.

TEMPERATURE...... 45.9F (+0.3)
PRECIPITATION..... 7.64" (-1.70")
SNOW...... 9.9" (-6.0")

&&

THOMAS

3 of 3

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

SNOWDEPTH AVG. 0

000 CXUS51 KBUF 050433 CLMBUF CLIMATE REPORT NATIONAL WEATHER SERVICE BUFFALO NY 149 PM EDT THU JUL 2 2015 ... THE BUFFALO NY CLIMATE SUMMARY FOR THE MONTH OF JUNE 2015... CLIMATE NORMAL PERIOD 1981 TO 2010 CLIMATE RECORD PERIOD 1871 TO 2015 WEATHER OBSERVED NORMAL DEPART LAST YEAR'S VALUE DATE(S) VALUE FROM VALUE DATE(S) NORMAL TEMPERATURE (F) TEMPERATURE

RECORD

HIGH 97 06/29/1933

LOW 36 06/11/1972

HIGHEST 84 06/12

LOWEST 45 06/03

06/01 89 06/28 48 06/06 AVG. MAXIMUM 73.8
AVG. MINIMUM 57.4
MEAN 65.6
DAYS MAX >= 90 0
DAYS MAX <= 32 0
DAYS MIN <= 32 0
DAYS MIN <= 0 0 PRECIPITATION (INCHES) RECORD MAXIMON.
MINIMUM MAXIMUM 9.67 1928 0.11 1955 5.03 TOTALS 3.66 1.37 3.80 DAYS >= .01 16 DAYS >= .10 9 DAYS >= .50 4 10 8 3 DAYS >= 1.00 1 GREATEST 24 HR. TOTAL 1.78 06/27 TO 06/28 SNOWFALL (INCHES) RECORDS TOTAL MM TOTALS 0.0 MM MM 0.0 0.0 0.0 94.7 18.2 MM MM 0 SINCE 7/1 112.9

10/30/2015 1:38 PM 1 of 3

DAYS $>= 1.0$	0		0.0	0.0	0	
GREATEST						
SNOW DEPTH	0	MM			0	MM
24 HR TOTAL	0.0					
DEGREE_DAYS						
HEATING TOTAL	50		64	-14	28	
SINCE 7/1	7028		6617	411	7125	
COOLING TOTAL	76		103	-27	148	
SINCE 1/1	167		129	38	171	
		. .				

WIND (MPH)

AVERAGE WIND SPEED 9.2 HIGHEST WIND SPEED/DIRECTION 33/280

HIGHEST GUST SPEED/DIRECTION 47/280 DATE 06/12

SKY COVER

POSSIBLE SUNSHINE (PERCENT) MM
NUMBER OF DAYS FAIR 2
NUMBER OF DAYS PC 13
NUMBER OF DAYS CLOUDY 15

AVERAGE RH (PERCENT) 72

WEATHER CONDITIONS. NUMBER OF DAYS WITH

THUNDERSTORM	7	MIXED PRECIP	0
HEAVY RAIN	5	RAIN	8
LIGHT RAIN	19	FREEZING RAIN	0
LT FREEZING RAIN	0	HAIL	0
HEAVY SNOW	0	SNOW	0
LIGHT SNOW	0	SLEET	0
FOG	18	FOG W/VIS <= 1/4 MILE	3
HAZE	5		

- INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

&&

...A WET JUNE LACKING ANY PROLONGED HEAT...

ON THE HEELS OF A SOAKING END TO MAY...THE MONTH OF JUNE CONTINUED THE ROUNDS OF SHOWERS AND THUNDERSTORMS. OVER HALF THE DAYS CONTAINED MEASURABLE RAINFALL...AND THIS RAINFALL WAS SPREAD EVENLY THROUGHOUT THE MONTH. THE MAJORITY OF WESTERN NEW YORK FINISHED AN INCH OR MORE ABOVE NORMAL JUNE PRECIPITATION. ALONG WITH THIS RAIN...DAYS WERE CLOUDIER THAN NORMAL AND AIR TEMPERATURES FINISHED THE MONTH SLIGHTLY BELOW NORMAL.

THE AVERAGE TEMPERATURE FOR JUNE FINISHED AT 65.6F DEGREES WHICH IS 0.7 DEGREES BELOW NORMAL. THE WARMEST TEMPERATURE IN JUNE WAS A MERE 84F DEGREES ON THE 12TH. THERE WERE ONLY FIVE DAYS THAT REACHED THE 80S...AND THIS TOTAL WAS THE 7TH FEWEST AMOUNT OF DAYS SINCE OBSERVING RECORDS MOVED TO THE AIRPORT IN 1943. ON THE 28TH THE TEMPERATURE REACHED A HIGH OF ONLY 61F...WHICH WAS THE COOLEST MAXIMUM TEMPERATURE FOR THE DATE...BREAKING A RECORD OF 63F SET BACK IN 2004.

PRECIPITATION TOPPED FIVE INCHES FOR THE 18TH JUNE IN RECORDED

2 of 3 10/30/2015 1:38 PM

HISTORY (RECORDS START 1871). THE 5.03 INCHES WAS AN INCH AND A THIRD ABOVE NORMAL AND CAME ON 16 DAYS OF MEASURABLE PRECIPITATION. OF THE PAST SIX JUNES...THREE HAVE HAD OVER FIVE INCHES OF RAINFALL. THERE WAS ONE RECORD RAINFALL EVENT...WITH THE 1.72 INCHES ON THE 27TH BREAKING THE OLD RECORD OF 1.29 INCHES SET BACK IN 2006. THERE WERE FOUR DAYS THAT RECEIVED A HALF AN INCH OR MORE OF RAINFALL...TWICE THE TYPICAL AMOUNT OF TWO DAYS. EVERY SUNDAY THIS MONTH RECORDED MEASURABLE RAINFALL.

THE RECORD SOAKING RAINFALL OF LATE MAY...THAT ENDED IN THE WEE HOURS OF JUNE WAS JUST A SIGN OF THE PATTERN FOR THE MONTH OF JUNE. A MEAN LONGWAVE TROUGH REMAINED OVER THE GREAT LAKES REGION THIS MONTH...A TROUGH THAT FAVORED STORM DEVELOPMENT OVER THE EASTERN GREAT LAKES REGION. SEVERAL STORM SYSTEMS PRODUCED MODERATE TO HEAVY RAINFALL THROUGH THE MONTH. THE FIRST SIGNIFICANT STORM SYSTEM CAME THROUGH WESTERN NEW YORK ON THE 8TH AND 9TH OF THE MONTH...SPREADING A HALF TO ONE INCH OF RAINFALL...AND ALSO GUSTY THUNDERSTORM WINDS ON THE MORNING OF THE 9TH. MORE WIDESPREAD SEVERE THUNDERSTORMS DROPPED ACROSS THE REGION ON THE 11TH...WITH BOTH THE HEAVIER RAINFALL AND DAMAGE FOUND EAST OF BUFFALO ACROSS THE GENESEE VALLEY AND FINGER LAKES REGION. A BRIEF TORNADO SPUN UP JUST NORTH OF CANANDAIGUA DURING THE LATE EVENING HOURS OF THE 11TH. THE NEXT SYSTEM OF NOTE CAME SEVERAL DAYS LATER WHEN ANOTHER WARM FRONT AND HUMID AIRMASS EDGED INTO WESTERN NEW YORK THROUGH THE EARLY MORNING HOURS OF SUNDAY THE 14TH. ONE SLOW MOVING THUNDERSTORM PRODUCE FLASH FLOODING ACROSS WARSAW IN WYOMING COUNTY LATE SUNDAY AFTERNOON. ADDITIONAL SHOWERS AND DRENCHING THUNDERSTORMS PASSED ACROSS WESTERN NEW YORK LATER SUNDAY NIGHT. ANOTHER COLD FRONT CROSSED THE REGION ON THE 23RD WITH EARLY MORNING HEAVY RAIN SHOWERS AND A FEW SEVERE THUNDERSTORMS DOWNING TREES ACROSS WESTERN NEW YORK. LASTLY ANOTHER SYNOPTIC STORM SYSTEM ROSE NORTHWARD FROM THE SOUTH WITH A LENGTHY PERIOD OF HEAVY RAIN SHOWERS ON THE 27TH-28TH. THIS WEEKEND SOAKING RAINFALL BROUGHT SEVERAL INCHES OF RAIN TO WESTERN NEW YORK AND RUINED MANY OUTDOOR PLANS.

LAKE ERIE'S WATER TEMPERATURE RANGED FROM 55F DEGREES AT MONTH'S BEGINNING TO 65F DEGREES ON THE 26TH. WIND SPEED AVERAGED 9.2 MPH WHICH IS NEAR THE NORMAL OF 9.3 MPH.

IN	ALL	Α	COOL.	AND	VERY	WET	START	TO	SUMMER

&&

THOMAS

3 of 3 10/30/2015 1:38 PM

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

CLIMATE REPORT	000 CXUS51 KBUF 021 CLMBUF	254					
CLIMATE NORMAL PERIOD 1981 TO 2010 CLIMATE RECORD PERIOD 1871 TO 2015 WEATHER OBSERVED VALUE PROM NORMAL VALUE DATE(S) VALUE FROM NORMAL VALUE DATE(S) TEMPERATURE (F) RECORD 197 07/15/1995 07/06/1988 LOW 43 07/11/1945 HIGHEST 91 07/29 86 07/05 AVG. MAXIMUM 79.9 79.9 0.0 76.5 52 07/05 AVG. MINIMUM 62.0 62.3 -0.3 60.6 MEAN 71.0 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 68.6 DAYS MAX >= 32 0 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0 0.0 0.0 0.0 DAYS MIN <= 0 0 0 0 0.0 0.0 DAYS MIN <= 0 0 0 0 0.0 0.0 DAYS MIN <= 0 0 0 0 0.0 0.0 DAYS MIN <= 0 0 0 0 0.0 0.0 DAYS MIN <= 0 0 0 0 0.0 0.0 DAYS MIN <= 0 0 0 0 0.0 DAYS MIN <= 0 0 0 0.0 DAYS MIN CORDEN DAYS SELONDOR DAYS MIN CORDEN DAYS SELONDOR DA	NATIONAL WEATHE			NY			
CLIMATE NORMAL PERIOD 1981 TO 2010 CLIMATE RECORD PERIOD 1871 TO 2015 WEATHER OBSERVET DATE(S) VALUE FROM NORMAL				• •			
MEATHER COBSERVED NORMAL DEPART LAST YEAR'S VALUE DATE(S) VALUE FROM NORMAL	THE BUFFALO	NY CLIMA	TE SUMMARY	FOR THE	MONTH O	F JULY 2	015
NATE DATE NATE FROM NORMAL NORMAL							
TEMPERATURE (F) RECORD HIGH 97 07/15/1995 07/06/1988 LOW 43 07/11/1945 HIGHEST 91 07/29 86 07/01 LOWEST 50 07/03 52 07/05 AVG. MAXIMUM 79.9 79.9 0.0 76.5 AVG. MINIMUM 62.0 62.3 -0.3 60.6 MEAN 71.0 71.1 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 0 DAYS MAX <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 0 0 0 0.0 0.0 1 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 DAYS >= .10 6 DAYS >= .50 1 10 DAYS >= .50 1 10 SAYS >= .50 1 10 SAYS >= .50 0 1 SAYS >= .50 0 1 SAYS >= .50 0 1 SAYS >= .50 0 0 0 0 0 0 0 0 SAYS >= .50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEATHER				FROM		
RECORD HIGH 97 07/15/1995 07/06/1988 LOW 43 07/11/1945 HIGHEST 91 07/29 86 07/01 LOWEST 50 07/03 52 07/05 AVG. MAXIMUM 79.9 79.9 0.0 76.5 AVG. MINIMUM 62.0 62.3 -0.3 60.6 MEAN 71.0 71.1 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 0 DAYS MAX <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 0.0 DAYS MIN <= 0 0 0 0.0 0.0 0.0 0.0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 10 DAYS >= .10 6 9 DAYS >= .50 1 1 5 DAYS >= .10 0 0 10 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0 0.0 0.0 0.0							
HIGH 97 07/15/1995 07/06/1988 LOW 43 07/11/1945 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/29 86 07/01 1985 191 07/20 191 191 191 191 191 191 191 191 191 19							
LOW 43 07/11/1945 HIGHEST 91 07/29 86 07/01 LOWEST 50 07/03 52 07/05 AVG. MAXIMUM 79.9 79.9 0.0 76.5 AVG. MINIMUM 62.0 62.3 -0.3 60.6 MEAN 71.0 71.1 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 0 DAYS MAX <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 0 0 0 0.0 0.0 0.0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 10 DAYS >= .10 6 DAYS >= .50 1 5 DAYS >= 1.00 0 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0		97	07/15/199	5			
LOW 43 07/11/1945 HIGHEST 91 07/29 86 07/01 LOWEST 50 07/03 52 07/05 AVG. MAXIMUM 79.9 79.9 0.0 76.5 AVG. MINIMUM 62.0 62.3 -0.3 60.6 MEAN 71.0 71.1 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 0 DAYS MAX <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 0 0 0.0 0.0 0.0 0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 DAYS >= .10 6 DAYS >= .50 1 DAYS >= 1.00 0 0 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0 0.0	111-011	<i>J</i> 1					
HIGHEST 91 07/29 86 07/01 LOWEST 50 07/03 79.9 0.0 76.5 AVG. MAXIMUM 79.9 79.9 0.0 76.5 AVG. MINIMUM 62.0 62.3 -0.3 60.6 MEAN 71.0 71.1 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 0 DAYS MAX <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 0 0 0.0 0.0 0.0 0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 10 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= .50 1 5 DAYS >= .10 0 6 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0 0.0	LOW	43	- , ,	-			
LOWEST 50 07/03 52 07/05 AVG. MAXIMUM 79.9 79.9 0.0 76.5 AVG. MINIMUM 62.0 62.3 -0.3 60.6 MEAN 71.0 71.1 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 0 DAYS MAX <= 32 0 0.0 0.0 0.0 DAYS MIN <= 32 0 0.0 0.0 0.0 DAYS MIN <= 0 0 0 0.0 0.0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= .50 1 5 DAYS >= .50 0 1 SONOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0 0.0	HIGHEST					86	07/01
AVG. MINIMUM 62.0 62.3 -0.3 60.6 MEAN 71.0 71.1 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 0 DAYS MAX <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 0 0 0.0 0.0 0.0 0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 10 14 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0	LOWEST					52	07/05
MEAN 71.0 71.1 -0.1 68.6 DAYS MAX >= 90 1 1.1 -0.1 0 DAYS MAX <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 0 0 0.0 0.0 0.0 0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 10 14 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0	AVG. MAXIMUM	79.9					
DAYS MAX >= 90	AVG. MINIMUM						
DAYS MAX <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 0 0 0.0 0.0 0.0 0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 10 14 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= .50 1 5 DAYS >= 1.00 0 16 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0						68.6	
DAYS MIN <= 32 0 0.0 0.0 0.0 0 DAYS MIN <= 0 0 0.0 0.0 0.0 0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 14 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= .50 1 5 DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0							
DAYS MIN <= 0 0 0.0 0.0 0.0 PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 14 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= .50 1 5 DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0							
PRECIPITATION (INCHES) RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 14 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0							
RECORD MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 14 DAYS >= .10 6 9 DAYS >= .50 1 55 DAYS >= 1.00 0 11 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0	DAYS MIN <= 0	0		0.0	0.0	0	
MAXIMUM 8.93 1992 MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 14 DAYS >= .10 6 9 DAYS >= .50 1 55 DAYS >= 1.00 0 11 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0	PRECIPITATION (INCHES)					
MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 14 DAYS >= .10 6 9 DAYS >= .50 1 55 DAYS >= 1.00 0 11 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0	RECORD						
MINIMUM 0.15 1933 TOTALS 2.42 3.23 -0.81 5.45 DAYS >= .01 10 14 DAYS >= .10 6 9 DAYS >= .50 1 55 DAYS >= 1.00 0 11 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0	MAXIMUM	8.93	1992				
DAYS >= .01 10 9 DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0		0.15	1933				
DAYS >= .10 6 9 DAYS >= .50 1 5 DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0	TOTALS	2.42		3.23	-0.81	5.45	
DAYS >= .50 1 5 DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0 0.0							
DAYS >= 1.00 0 1 GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0							
GREATEST 24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0							
24 HR. TOTAL 0.65 07/14 TO 07/14 SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0		Ü				1	
SNOWFALL (INCHES) RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0		0 65	07/14 TO	07/14			
RECORDS TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0	24 HR. TOTAL	0.05	07/14 10	07/14			
TOTAL MM MM TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0		S)					
TOTALS 0.0 0.0 0.0 0.0 SINCE 7/1 0.0 0.0 0.0		MM	MM				
SINCE 7/1 0.0 0.0 0.0				0.0	0.0	0.0	
		0		MM	MM	0	

1 of 3

0		0.0	0.0	0	
0	MM			0	MM
0.0	MM				
7		9	-2	10	
7		9	-2	10	
198		197	1	130	
365		326	39	301	
	0 0.0 7 7 7	0 MM 0.0 MM 7 7 7	0 MM 0.0 MM 7 9 7 9 198 197	0 MM 0.0 MM 7 9 -2 7 9 -2 198 197 1	0 MM 0.0 MM 7 9 -2 10 7 9 -2 10 198 197 1 130

WIND (MPH)

AVERAGE WIND SPEED 7.8 HIGHEST WIND SPEED/DIRECTION 29/240

HIGHEST GUST SPEED/DIRECTION 38/250 DATE 07/07

SKY COVER

POSSIBLE SUNSHINE (PERCENT) MM
NUMBER OF DAYS FAIR 7
NUMBER OF DAYS PC 18
NUMBER OF DAYS CLOUDY 6

AVERAGE RH (PERCENT) 66

WEATHER CONDITIONS. NUMBER OF DAYS WITH

THUNDERSTORM	5	MIXED PRECIP	0
HEAVY RAIN	4	RAIN	6
LIGHT RAIN	13	FREEZING RAIN	0
LT FREEZING RAIN	0	HAIL	0
HEAVY SNOW	0	SNOW	0
LIGHT SNOW	0	SLEET	0
FOG	14	FOG W/VIS <= 1/4 MILE	0
HAZE	6		

- INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

&&

...COMFORTABLE MONTH OF JULY...

JULY CONTINUED THE SWINGS OF ABOVE TO BELOW NORMAL TEMPERATURES THROUGH THE MONTH...ENDING WITH A MORE TYPICAL PATTERN REGIME OF HEAT THE LAST FEW DAYS OF THE MONTH. HEAVY RAINS FROM THUNDERSTORMS GENERALLY REMAINED SOUTH OF THE BUFFALO METRO AREA THROUGH THE MONTH.

THE AVERAGE TEMPERATURE FOR JULY WAS 71.0F DEGREES WHICH IS JUST A TENTH OF A DEGREE BELOW NORMAL. NO SINGLE WEATHER PATTERN WAS ABLE TO BE ESTABLISHED OVER THE REGION THIS MONTH...WITH THE LONGEST STRETCH OF ABOVE OR BELOW NORMAL TEMPERATURES BEING JUST 7 DAYS. IN TOTAL THERE WERE 16 DAYS ABOVE NORMAL..AND 15 DAYS BELOW NORMAL. THE WARMEST DAY THIS MONTH WAS A 91 DEGREE READING ON THE 29TH WHICH WAS THE FIRST 90 DEGREE READING FOR BUFFALO SINCE JULY 16TH 2013. OUTSIDE OF THIS TEMPERATURE READING...THE MONTH GENERALLY FINISHED NEAR NORMAL WITH 18 OF THE 31 DAYS FINISHING WITHIN 5 DEGREES OF NORMAL. THERE WERE 17 DAYS THAT REACHED 80F OR GREATER WHICH IS 3 MORE THAN NORMAL.

2 of 3 10/30/2015 1:42 PM

PRECIPITATION FINISHED BELOW NORMAL FOR THE MONTH WITH THE 2.42 INCHES OF RAIN EIGHT TENTHS OF AN INCH BELOW NORMAL. THREE-QUARTERS OF THE RAINFALL THIS MONTH FELL WITHIN THE FIRST TWO WEEKS OF THE MONTH. THE SECOND HALF OF JULY FEATURED JUST FIVE DAYS WITH MEASURABLE RAINFALL...WITH ALL FIVE DAYS MEASURING LESS THAN A QUARTER OF AN INCH.

JULY STARTED PLEASANT ACROSS WESTERN NEW YORK. AFTER A FEW SCATTERED SHOWERS ON THE 1ST...SUNSHINE AND COMFORTABLE HUMIDITY LEVELS RETURNED WITH THE FINE WEATHER CONDITIONS PREVAILING RIGHT THROUGH THE HOLIDAY WEEKEND. A WARM FRONT THEN LIFTED ACROSS THE REGION ON THE 6TH AND 7TH BRINGING AN INCREASE IN HUMIDITY ALONG WITH SCATTERED SHOWERS AND THUNDERSTORMS. FORMING ON LAKE BREEZE BOUNDARIES A FEW THUNDERSTORMS BECAME STRONG DURING THE AFTERNOON HOURS OF THE 7TH...WITH ISOLATED TREE DAMAGE SOUTHEAST OF BUFFALO. MORE SIGNIFICANT THUNDERSTORMS ROLLED THROUGH WESTERN NEW YORK ON THE 14TH WITH THE STORMS PRODUCING FLOODING RAINS ACROSS THE SOUTHERN TIER IN ADDITION TO DOWNING SEVERAL TREES. WHILE OVER A HALF INCH OF RAIN FELL ACROSS THE BUFFALO METRO AREA...THE IMMEDIATE REGION DID ESCAPE THE WORST OF THE DAMAGING RAINS WHICH STAYED JUST TO THE SOUTH OF THE AREA. DEWPOINTS SOARED TO OVER 70F ON THE 18TH MAKING FOR A STICKY START TO THE WEEKEND. A STRONG LAKE BREEZE BLEW ACROSS THE REGION ON THE 19TH...BRINGING SOME RELIEF TO THE HUMIDITY AND FENDING OFF APPROACHING THUNDERSTORMS FROM THE WEST. AFTER A BRIEF COOL SPELL FROM THE 22ND TO THE 24TH...THE WARMEST AIRMASS OF THE SUMMER SEASON REACHED WESTERN NEW YORK. TEMPERATURES ON THE 26TH THROUGH 28TH CLIMBED INTO THE UPPER 80S...WITH A PEAK OF 91F ON THE 29TH. A COOL FRONT CROSSED WESTERN NEW YORK ON THE MORNING HOURS OF THE 30TH WITH JUST A FEW SHOWERS.

WINDS WERE BELOW NORMAL THIS MONTH...AVERAGING 7.8 MPH WHICH IS 1.2 MILES PER HOUR BELOW NORMAL. THE STRONGEST WIND GUST OF 38 MPH CAME ON THE 6TH WITHIN A THUNDERSTORM. LAKE ERIE ROSE FROM 64 DEGREES AT MONTHS BEGINNING TO 75 DEGREES BY MONTHS END.

IN ALL A COMFORTABLE MONTH...WITH LIMITED EXTREME HEAT AND HUMIDITY.

&&

THOMAS

3 of 3 10/30/2015 1:42 PM

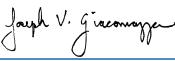
Appendix D: TestAmerica Analytical Results

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600


TestAmerica Job ID: 480-83779-1

Client Project/Site: NYSDEC- Spill# 1503836

For:

New York State D.E.C. 270 Michigan Avenue Buffalo, New York 14203

Attn: Sal Calandra

Authorized for release by: 7/16/2015 4:45:50 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

brian.fischer@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Joe Giacomazza

Project Management Assistant II

7/16/2015 4:45:50 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	7
Client Sample Results	8
Surrogate Summary	13
QC Sample Results	15
QC Association	27
Chronicle	29
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	34

5

_

ð

10

12

13

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Qualifiers

GC/MS VOA

Qualifier Qualifi	er Description

LCS or LCSD is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualitier Description
~	Currogata ia autoida control lim

X Surrogate is outside control limits

* LCS or LCSD is outside acceptance limits.

GC Semi VOA

Qualifier	Qualifier Description

* LCS or LCSD is outside acceptance limits.

X Surrogate is outside control limits

* RPD of the LCS and LCSD exceeds the control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B Compound was found in the blank and sample.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

7/16/2015

Page 4 of 34

3

4

5

6

9

10

12

13

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

Job ID: 480-83779-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-83779-1

Receipt

The sample was received on 7/13/2015 2:50 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 16.5° C.

GC/MS VOA

Method(s) 8260C: The laboratory control sample (LCS) for 480-253504 recovered outside control limits for the following analytes: 1,3-Dichlorobenzene, 1,2-Dichloropropane, 1,4-Dichlorobenzene, cis-1,3-Dichloropropene, Isopropylbenzene. These analytes were biased high in the LCS and were not detected in the associated samples: therefore, the data have been reported. The following sample is impacted: BOT GARDEN TAR (480-83779-1)

Method(s) 8260C: The following sample was analyzed using medium level soil analysis to bring the concentration of target analytes within the calibration range: BOT GARDEN TAR (480-83779-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D; The following samples were diluted due to appearance and viscosity; BOT GARDEN TAR (480-83779-1). As such. surrogate recoveries are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 8270D: The continuing calibration verification (CCV) analyzed in batch 480-253291 was outside the method criteria for the following analytes: 4-Nitroaniline and Benzo[g,h,i]perylene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

Method(s) 8270D: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 480-253202 and analytical batch 480-253291 recovered outside control limits for the following analyte: 4-Methylphenol. This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The laboratory control sample (LCS) and sample duplicate (LCSD) for 253555 recovered outside control limits for several analytes: <AffectedAnalytes>. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8081B: The following samples were diluted due to the extraction color and the nature of the sample matrix: BOT GARDEN TAR (480-83779-1). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 8081B: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 480-253203 recovered outside control limits for the following analyte: Methoxychlor.

Method(s) 8082A: The following sample was diluted due to the nature of the sample matrix: BOT GARDEN TAR (480-83779-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The following sample was diluted for Total Cobalt due to the nature of the sample matrix: BOT GARDEN TAR (480-83779-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Job ID: 480-83779-1

Case Narrative

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Job ID: 480-83779-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3580A: The following sample required a Florisil clean-up, via EPA Method 3620C, to reduce matrix interferences: BOT GARDEN TAR (480-83779-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Л

7

8

4.0

11

13

14

15

Detection Summary

Client: New York State D.E.C.

TestAmerica Job ID: 480-83779-1 Project/Site: NYSDEC- Spill# 1503836

Lab Sample ID: 480-83779-1

Client Sample	ID: BOT	GARDEN	TAR

Analyte Re	sult	Qualifier	RL	MDL	Unit	Dil Fac I	Method	Prep Type
Methyl acetate 20	0000		1000	480	ug/Kg	10	8260C	Total/NA
Methylene Chloride	810	J	1000	200	ug/Kg	10	8260C	Total/NA
Tetrachloroethene	3200		1000	130	ug/Kg	10	8260C	Total/NA
gamma-Chlordane	1.4	J	5.9	0.81	mg/Kg	20	8081B	Total/NA
PCB-1248	22		4.2	4.2	mg/Kg	2	8082A	Total/NA
PCB-1254	8.3		4.2	4.2	mg/Kg	2	8082A	Total/NA
PCB-1260	5.3		4.2	4.2	mg/Kg	2	8082A	Total/NA
Aluminum	158		9.4	4.1	mg/Kg	1	6010C	Total/NA
Antimony	0.46	J	14.1	0.38	mg/Kg	1	6010C	Total/NA
Arsenic	1.6	J	1.9	0.38	mg/Kg	1	6010C	Total/NA
Barium	940		4.7	1.0	mg/Kg	10	6010C	Total/NA
Cadmium	4.8		0.19	0.028	mg/Kg	1	6010C	Total/NA
Calcium	300	В	47.0	3.1	mg/Kg	1	6010C	Total/NA
Chromium	25.3		0.47	0.19	mg/Kg	1	6010C	Total/NA
Copper	111		0.94	0.20	mg/Kg	1	6010C	Total/NA
Iron	090		9.4	3.3	mg/Kg	1	6010C	Total/NA
Lead 2	200		9.4	2.3	mg/Kg	10	6010C	Total/NA
Magnesium	66.0		18.8	0.87	mg/Kg	1	6010C	Total/NA
Manganese	12.0	В	0.19	0.030	mg/Kg	1	6010C	Total/NA
Nickel	6.0		4.7	0.22	mg/Kg	1	6010C	Total/NA
Potassium	61.4		28.2	18.8	mg/Kg	1	6010C	Total/NA
Silver	0.21	J	0.56	0.19	mg/Kg	1	6010C	Total/NA
Sodium	446		131	12.2	mg/Kg	1	6010C	Total/NA
Vanadium	1.1		0.47	0.10	mg/Kg	1	6010C	Total/NA
Zinc	914		1.9	0.60	mg/Kg	1	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Lab Sample ID: 480-83779-1

Matrix: Waste

Client Sample ID: BOT GARDEN TAR

Date Collected: 07/13/15 14:15 Date Received: 07/13/15 14:50

Analyte		unds by GC Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1000	280	ug/Kg		07/15/15 18:34	07/16/15 13:40	10
1,1,2,2-Tetrachloroethane	ND		1000	160	ug/Kg		07/15/15 18:34	07/16/15 13:40	10
1,1,2-Trichloroethane	ND		1000	210	ug/Kg		07/15/15 18:34	07/16/15 13:40	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1000	500	ug/Kg		07/15/15 18:34	07/16/15 13:40	10
1,1-Dichloroethane	ND		1000		ug/Kg		07/15/15 18:34	07/16/15 13:40	10
1,1-Dichloroethene	ND		1000		ug/Kg		07/15/15 18:34	07/16/15 13:40	10
1,2,4-Trichlorobenzene	ND		1000		ug/Kg		07/15/15 18:34	07/16/15 13:40	10
1,2-Dibromo-3-Chloropropane	ND		1000		ug/Kg		07/15/15 18:34	07/16/15 13:40	1
1,2-Dichlorobenzene	ND		1000		ug/Kg		07/15/15 18:34	07/16/15 13:40	1
1,2-Dichloroethane	ND		1000		ug/Kg		07/15/15 18:34	07/16/15 13:40	10
1,2-Dichloropropane		*	1000		ug/Kg			07/16/15 13:40	1
1,3-Dichlorobenzene		*	1000		ug/Kg			07/16/15 13:40	1
1,4-Dichlorobenzene	ND	*	1000		ug/Kg			07/16/15 13:40	1
2-Butanone (MEK)	ND		5000		ug/Kg			07/16/15 13:40	1
2-Hexanone	ND		5000		ug/Kg			07/16/15 13:40	1
4-Methyl-2-pentanone (MIBK)	ND		5000		ug/Kg			07/16/15 13:40	
Acetone	ND		5000		ug/Kg			07/16/15 13:40	1
Benzene	ND		1000		ug/Kg			07/16/15 13:40	1
Bromodichloromethane	ND		1000		ug/Kg			07/16/15 13:40	
Bromoform	ND ND		1000					07/16/15 13:40	1
	ND ND		1000					07/16/15 13:40	1
Bromomethane Carbon disulfide					ug/Kg				
	ND		1000		ug/Kg			07/16/15 13:40	1
Carbon tetrachloride	ND		1000		ug/Kg			07/16/15 13:40	1
Chlorobenzene	ND		1000		ug/Kg			07/16/15 13:40	1
Dibromochloromethane	ND		1000		ug/Kg			07/16/15 13:40	1
Chloroethane	ND		1000		ug/Kg			07/16/15 13:40	1
Chloroform	ND		1000		ug/Kg			07/16/15 13:40	1
Chloromethane	ND		1000		ug/Kg			07/16/15 13:40	1
cis-1,2-Dichloroethene	ND		1000		ug/Kg			07/16/15 13:40	1
cis-1,3-Dichloropropene	ND	*	1000		ug/Kg			07/16/15 13:40	1
Cyclohexane	ND		1000		ug/Kg			07/16/15 13:40	1
Dichlorodifluoromethane	ND		1000		ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Ethylbenzene	ND		1000		ug/Kg			07/16/15 13:40	1
1,2-Dibromoethane	ND		1000		ug/Kg		07/15/15 18:34	07/16/15 13:40	1
sopropylbenzene	ND	*	1000	150	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Methyl acetate	200000		1000	480	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Methyl tert-butyl ether	ND		1000	380	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Methylcyclohexane	ND		1000	470	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Methylene Chloride	810	J	1000	200	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Styrene	ND		1000	240	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Tetrachloroethene	3200		1000	130	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Гoluene	ND		1000	270	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
rans-1,2-Dichloroethene	ND		1000	240	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
rans-1,3-Dichloropropene	ND		1000	98	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Trichloroethene	ND		1000	280	ug/Kg		07/15/15 18:34	07/16/15 13:40	1
Trichlorofluoromethane	ND		1000		ug/Kg			07/16/15 13:40	1
Vinyl chloride	ND		1000		ug/Kg			07/16/15 13:40	1
Xylenes, Total	ND		2000		ug/Kg			07/16/15 13:40	1

TestAmerica Buffalo

7/16/2015

Page 8 of 34

2

3

5

9

11

4 4

15

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Client Sample ID: BOT GARDEN TAR

Lab Sample ID: 480-83779-1

Date Collected: 07/13/15 14:15

Date Received: 07/13/15 14:50

Matrix: Waste

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	50 - 149	07/15/15 18:34	07/16/15 13:40	10
1,2-Dichloroethane-d4 (Surr)	100	53 - 146	07/15/15 18:34	07/16/15 13:40	10
4-Bromofluorobenzene (Surr)	99	49 - 148	07/15/15 18:34	07/16/15 13:40	10
Dibromofluoromethane (Surr)	100	60 - 140	07/15/15 18:34	07/16/15 13:40	10

- - -	700	66 = 7.16					07/10/13 13.40	
Method: 8270D - Semivolatile Analyte	Organic Com Result Q		MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	210000	46000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2,4,6-Trichlorophenol	ND	210000	14000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2,4-Dichlorophenol	ND	210000	11000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2,4-Dimethylphenol	ND	210000	58000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2,4-Dinitrophenol	ND	410000	74000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2,4-Dinitrotoluene	ND	210000	33000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2,6-Dinitrotoluene	ND	210000	51000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2-Chloronaphthalene	ND	210000	14000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2-Chlorophenol	ND	210000	11000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2-Methylnaphthalene	ND	210000	2500	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2-Methylphenol	ND	210000	6500	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2-Nitroaniline	ND	410000	68000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
2-Nitrophenol	ND	210000	9600	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
3,3'-Dichlorobenzidine	ND	210000	190000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
3-Nitroaniline	ND	410000	49000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
4,6-Dinitro-2-methylphenol	ND	410000	73000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
4-Bromophenyl phenyl ether	ND	210000	68000			07/14/15 15:27	07/15/15 10:56	100
4-Chloro-3-methylphenol	ND	210000	8600	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
4-Chloroaniline	ND	210000	63000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
4-Chlorophenyl phenyl ether	ND	210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	100
4-Methylphenol	ND *	410000	12000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
4-Nitroaniline	ND	410000	24000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
4-Nitrophenol	ND	410000	51000			07/14/15 15:27	07/15/15 10:56	100
Acenaphthene	ND	210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	100
Acenaphthylene	ND	210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	100
Acetophenone	ND	210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	100
Anthracene	ND	210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	100
Atrazine	ND	210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	100
Benzaldehyde	ND	210000	24000	ug/Kg		07/14/15 15:27	07/15/15 10:56	100
Benzo[a]anthracene	ND	210000		ug/Kg			07/15/15 10:56	100
Benzo[a]pyrene	ND	210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	100
Benzo[b]fluoranthene	ND	210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	100
Benzo[g,h,i]perylene	ND	210000		ug/Kg			07/15/15 10:56	100
Benzo[k]fluoranthene	ND	210000		ug/Kg			07/15/15 10:56	100
Biphenyl	ND	210000	14000				07/15/15 10:56	100
bis (2-chloroisopropyl) ether	ND	210000	23000	0 0			07/15/15 10:56	100
Bis(2-chloroethoxy)methane	ND	210000	12000				07/15/15 10:56	100
Bis(2-chloroethyl)ether	ND	210000	19000				07/15/15 10:56	100
Bis(2-ethylhexyl) phthalate	ND	210000	68000				07/15/15 10:56	100
Butyl benzyl phthalate	ND	210000	56000				07/15/15 10:56	100
Caprolactam	ND	210000	91000				07/15/15 10:56	100
Carbazole	ND	210000		ug/Kg			07/15/15 10:56	100
	110	210000	2000	∽ອ∵າອ		0.71 17 10 10.21	3.7 13. 10 10.00	100

TestAmerica Buffalo

Page 9 of 34 7/16/2015

2

3

5

6

8

10

10

. .

15

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Lab Sample ID: 480-83779-1

Client Sample ID: BOT GARDEN TAR Date Collected: 07/13/15 14:15 **Matrix: Waste**

Date Received: 07/13/15 14:50

Method: 8270D - Semivolat Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Dibenz(a,h)anthracene	ND		210000	2500	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Dibenzofuran	ND		210000	2300	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Diethyl phthalate	ND		210000	6400	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Dimethyl phthalate	ND		210000	5500	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Di-n-butyl phthalate	ND		210000	73000	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Di-n-octyl phthalate	ND		210000	4900	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Fluoranthene	ND		210000	3000	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Fluorene	ND		210000	4900	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Hexachlorobenzene	ND		210000	11000	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Hexachlorobutadiene	ND		210000	11000	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Hexachlorocyclopentadiene	ND		210000	64000	ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Hexachloroethane	ND		210000	16000			07/14/15 15:27	07/15/15 10:56	10
Indeno[1,2,3-cd]pyrene	ND		210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Isophorone	ND		210000	11000	0 0			07/15/15 10:56	10
Naphthalene	ND		210000		ug/Kg		07/14/15 15:27	07/15/15 10:56	10
Nitrobenzene	ND		210000		ug/Kg			07/15/15 10:56	10
N-Nitrosodi-n-propylamine	ND		210000	16000				07/15/15 10:56	10
N-Nitrosodiphenylamine	ND		210000	12000				07/15/15 10:56	10
Pentachlorophenol	ND		410000	73000				07/15/15 10:56	10
Phenanthrene	ND		210000		ug/Kg			07/15/15 10:56	10
Phenol	ND		210000	23000				07/15/15 10:56	10
Pyrene	ND		210000		ug/Kg			07/15/15 10:56	10
, , , , , , , , , , , , , , , , , , , ,	2				~g/ · ·g		017.10 10.2.	017.107.10 10100	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)		X	39 - 146				07/14/15 15:27	07/15/15 10:56	10
2-Fluorobiphenyl	0	X	37 - 120				07/14/15 15:27	07/15/15 10:56	10
2-Fluorophenol (Surr)	0	X	18 - 120				07/14/15 15:27	07/15/15 10:56	10
Nitrobenzene-d5 (Surr)	0	X	34 - 132				07/14/15 15:27	07/15/15 10:56	10
Phenol-d5 (Surr)	0	X	11 - 120				07/14/15 15:27	07/15/15 10:56	10
p-Terphenyl-d14 (Surr)	0	X	65 - 153				07/14/15 15:27	07/15/15 10:56	10
Method: 8081B - Organoch	lorine Pesticid	les (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4,4'-DDD	ND	*	5.9	1.1	mg/Kg		07/14/15 15:29	07/16/15 07:54	2
4,4'-DDE	ND		5.9	1.6	mg/Kg		07/14/15 15:29	07/16/15 07:54	2
4,4'-DDT	ND		5.9	1.3	mg/Kg		07/14/15 15:29	07/16/15 07:54	2
Aldrin	ND		5.9	0.60	mg/Kg		07/14/15 15:29	07/16/15 07:54	2
alpha-BHC	ND	*	5.9	1.1	mg/Kg		07/14/15 15:29	07/16/15 07:54	2
alpha-Chlordane	ND		5.9		mg/Kg		07/14/15 15:29	07/16/15 07:54	2
beta-BHC	ND	*	5.9		mg/Kg		07/14/15 15:29	07/16/15 07:54	2
delta-BHC	ND	*	5.9		mg/Kg		07/14/15 15:29	07/16/15 07:54	2
Dieldrin	ND		5.9		mg/Kg			07/16/15 07:54	2
Endosulfan I	ND		5.9		mg/Kg			07/16/15 07:54	2
Endosulfan II	ND	*	5.9		mg/Kg			07/16/15 07:54	2
Endosulfan sulfate	ND		5.9		mg/Kg			07/16/15 07:54	2
Endrin	ND		5.9		mg/Kg			07/16/15 07:54	2
Endrin aldehyde	ND	*	5.9		mg/Kg			07/16/15 07:54	2
									2
Endrin ketone	KII Y	*	h u	1 71					
Endrin ketone gamma-BHC (Lindane)	ND ND		5.9 5.9		mg/Kg mg/Kg			07/16/15 07:54 07/16/15 07:54	2

TestAmerica Buffalo

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Lab Sample ID: 480-83779-1

Client Sample ID: BOT GARDEN TAR Date Collected: 07/13/15 14:15 **Matrix: Waste**

Date Received: 07/13/15 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor	ND		5.9	0.92	mg/Kg		07/14/15 15:29	07/16/15 07:54	20
Heptachlor epoxide	ND		5.9	1.5	mg/Kg		07/14/15 15:29	07/16/15 07:54	20
Methoxychlor	ND	*	5.9	1.5	mg/Kg		07/14/15 15:29	07/16/15 07:54	20
Toxaphene	ND		59	34	mg/Kg		07/14/15 15:29	07/16/15 07:54	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl		X	32 - 136				07/14/15 15:29	07/16/15 07:54	20
Tetrachloro-m-xylene	166	X	30 - 124				07/14/15 15:29	07/16/15 07:54	20

-	700 7	^	30 - 124				01/14/13 13.29	01/10/13 01.34	20
Method: 8082A - Polychic	orinated Biphenyl	s (PCBs)	by Gas Chro	matogr	aphy				
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		4.2	4.2	mg/Kg		07/14/15 16:31	07/15/15 22:13	2
PCB-1221	ND		4.2	4.2	mg/Kg		07/14/15 16:31	07/15/15 22:13	2
PCB-1232	ND		4.2	4.2	mg/Kg		07/14/15 16:31	07/15/15 22:13	2
PCB-1242	ND		4.2	4.2	mg/Kg		07/14/15 16:31	07/15/15 22:13	2
PCB-1248	22		4.2	4.2	mg/Kg		07/14/15 16:31	07/15/15 22:13	2
PCB-1254	8.3		4.2	4.2	mg/Kg		07/14/15 16:31	07/15/15 22:13	2
PCB-1260	5.3		4.2	4.2	mg/Kg		07/14/15 16:31	07/15/15 22:13	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87		60 - 154				07/14/15 16:31	07/15/15 22:13	2
DCB Decachlorobiphenyl	137		65 - 174				07/14/15 16:31	07/15/15 22:13	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	158		9.4	4.1	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Antimony	0.46	J	14.1	0.38	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Arsenic	1.6	J	1.9	0.38	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Barium	6940		4.7	1.0	mg/Kg		07/15/15 11:00	07/16/15 15:11	10
Beryllium	ND		0.19	0.026	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Cadmium	4.8		0.19	0.028	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Calcium	1300	В	47.0	3.1	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Chromium	25.3		0.47	0.19	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Cobalt	ND		4.7	0.47	mg/Kg		07/15/15 11:00	07/16/15 15:11	10
Copper	111		0.94	0.20	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Iron	1090		9.4	3.3	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Lead	26200		9.4	2.3	mg/Kg		07/15/15 11:00	07/16/15 15:11	10
Magnesium	66.0		18.8	0.87	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Manganese	12.0	В	0.19	0.030	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Nickel	6.0		4.7	0.22	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Potassium	61.4		28.2	18.8	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Selenium	ND		3.8	0.38	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Silver	0.21	J	0.56	0.19	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Sodium	446		131	12.2	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Thallium	ND		5.6	0.28	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Vanadium	1.1		0.47	0.10	mg/Kg		07/15/15 11:00	07/16/15 14:31	1
Zinc	914		1.9	0.60	mg/Kg		07/15/15 11:00	07/16/15 14:31	1

Method: 7471B - Mercury (CVA	A)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.020	0.0080	mg/Kg		07/15/15 13:35	07/15/15 15:12	1

TestAmerica Buffalo

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

General	Chemistry
	_

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND ND	0.98	0.47 mg/Kg	_	07/15/15 18:00	07/16/15 10:39	1

2

4

6

8

9

a a

12

11

15

TestAmerica Job ID: 480-83779-1

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Waste Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TOL	12DCE	BFB	DBFM
Lab Sample ID	Client Sample ID	(50-149)	(53-146)	(49-148)	(60-140)
480-83779-1	BOT GARDEN TAR	101	100	99	100
LCS 480-253504/1-A	Lab Control Sample	115	119	114	116
MB 480-253504/2-A	Method Blank	99	102	99	97
Surrogate Legend					

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Waste Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Accer	otance Lim
		TBP	FBP	2FP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(11-120)	(65-153)
480-83779-1	BOT GARDEN TAR	0 X	0 X	0 X	0 X	0 X	0 X
LCS 480-253202/2-A	Lab Control Sample	95	82	82	97	84	98
LCSD 480-253202/3-A	Lab Control Sample Dup	93	86	82	99	85	104
MB 480-253202/1-A	Method Blank	90	85	84	103	87	101

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Waste Prep Type: Total/NA

		P			
		DCB2	TCX2		
Lab Sample ID	Client Sample ID	(32-136)	(30-124)		
480-83779-1	BOT GARDEN TAR	0 X	166 X		
LCS 480-253203/2-A	Lab Control Sample	51	52		
LCSD 480-253203/3-A	Lab Control Sample Dup	38	42		
MB 480-253203/1-A	Method Blank	92	81		

Surrogate Legend

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

TestAmerica Buffalo

Surrogate Summary

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Waste Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	DCB1					
Lab Sample ID	Client Sample ID	(60-154)	(65-174)					
480-83779-1	BOT GARDEN TAR	87	137					
LCS 480-253219/2-A	Lab Control Sample	111	152					
LCSD 480-253219/3-A	Lab Control Sample Dup	112	152					
MB 480-253219/1-A	Method Blank	91	140					

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

2

4

5

7

8

11

12

14

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-253504/2-A

Matrix: Waste

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 253504

Analysis Batch: 253606								Prep Type: 10 Prep Batch:	
Analysis Batch. 255000	МВ	MB						r rep baten.	200004
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		99	27	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,1,2,2-Tetrachloroethane	ND		99	16	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,1,2-Trichloroethane	ND		99	21	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		99	50	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,1-Dichloroethane	ND		99	31	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,1-Dichloroethene	ND		99	34	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,2,4-Trichlorobenzene	ND		99	38	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,2-Dibromo-3-Chloropropane	ND		99	50	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,2-Dichlorobenzene	ND		99	25	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,2-Dichloroethane	ND		99	41	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,2-Dichloropropane	ND		99	16	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,3-Dichlorobenzene	ND		99	26	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
1,4-Dichlorobenzene	ND		99	14	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
2-Butanone (MEK)	ND		500	290	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
2-Hexanone	ND		500	200	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
4-Methyl-2-pentanone (MIBK)	ND		500	32	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
Acetone	ND		500	410	ug/Kg		07/15/15 18:34	07/16/15 12:10	1
Benzene	ND		99		ug/Kg		07/15/15 18:34	07/16/15 12:10	1
Bromodichloromethane	ND		99		ug/Kg		07/15/15 18:34	07/16/15 12:10	1
Bromoform	ND		99		ug/Kg			07/16/15 12:10	1
Bromomethane	ND		99		ug/Kg		07/15/15 18:34	07/16/15 12:10	1
Carbon disulfide	ND		99		ug/Kg			07/16/15 12:10	1
Carbon tetrachloride	ND		99		ug/Kg			07/16/15 12:10	1
Chlorobenzene	ND		99		ug/Kg			07/16/15 12:10	1
Dibromochloromethane	ND		99		ug/Kg			07/16/15 12:10	1
Chloroethane	ND		99		ug/Kg			07/16/15 12:10	1
Chloroform	ND		99		ug/Kg			07/16/15 12:10	1
Chloromethane	ND		99		ug/Kg			07/16/15 12:10	1
cis-1,2-Dichloroethene	ND		99		ug/Kg			07/16/15 12:10	1
cis-1,3-Dichloropropene	ND		99		ug/Kg			07/16/15 12:10	1
Cyclohexane	ND		99		ug/Kg			07/16/15 12:10	
Dichlorodifluoromethane	ND		99		ug/Kg			07/16/15 12:10	1
Ethylbenzene	ND		99		ug/Kg			07/16/15 12:10	1
1,2-Dibromoethane	ND		99		ug/Kg			07/16/15 12:10	
Isopropylbenzene	ND		99		ug/Kg			07/16/15 12:10	1
Methyl acetate	ND		99		ug/Kg			07/16/15 12:10	1
Methyl tert-butyl ether	ND		99		ug/Kg			07/16/15 12:10	1
Methylcyclohexane	ND		99		ug/Kg			07/16/15 12:10	1
Methylene Chloride	ND		99		ug/Kg			07/16/15 12:10	1
Styrene	ND		99		ug/Kg			07/16/15 12:10	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	ND		99		ug/Kg			07/16/15 12:10	1
Toluene	ND		99		ug/Kg			07/16/15 12:10	1
trans-1,2-Dichloroethene	ND		99		ug/Kg ug/Kg			07/16/15 12:10	· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND		99		ug/Kg ug/Kg			07/16/15 12:10	1
Trichloroethene	ND		99		ug/Kg ug/Kg			07/16/15 12:10	1
Trichlorofluoromethane	ND		99		ug/Kg ug/Kg			07/16/15 12:10	ا 1
	ND ND		99		ug/Kg ug/Kg			07/16/15 12:10	
Vilona Total									1
Xylenes, Total	ND		200	55	ug/Kg		07/15/15 18:34	07/16/15 12:10	1

TestAmerica Buffalo

Page 15 of 34

7/16/2015

3

4

6

Ö

10

12

14

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	50 - 149	07/15/15 18:34	07/16/15 12:10	1
1,2-Dichloroethane-d4 (Surr)	102	53 - 146	07/15/15 18:34	07/16/15 12:10	1
4-Bromofluorobenzene (Surr)	99	49 - 148	07/15/15 18:34	07/16/15 12:10	1
Dibromofluoromethane (Surr)	97	60 - 140	07/15/15 18:34	07/16/15 12:10	1

Lab Sample ID: LCS 480-253504/1-A

Matrix: Waste
Analysis Batch: 253606

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 253504

Analysis Batch: 253606	Spike	ıcs	LCS				Prep Batch: 25350 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	2490	2830	- Guainiei	ug/Kg		114	
1,1,2,2-Tetrachloroethane	2490	2810		ug/Kg		113	73 - 119
1,1,2-Trichloroethane	2490	2840		ug/Kg		114	81 - 115
1,1,2-Trichloro-1,2,2-trifluoroetha	2490	2630		ug/Kg		106	10 - 179
ne	2100	2000		uging		100	10 - 110
1,1-Dichloroethane	2490	2930		ug/Kg		118	78 ₋ 121
1,1-Dichloroethene	2490	2620		ug/Kg		105	48 - 133
1,2,4-Trichlorobenzene	2490	2880		ug/Kg		116	70 - 140
1,2-Dibromo-3-Chloropropane	2490	2700		ug/Kg		108	56 - 122
1,2-Dichlorobenzene	2490	2900		ug/Kg		116	78 ₋ 125
1,2-Dichloroethane	2490	2730		ug/Kg		110	74 ₋ 127
1,2-Dichloropropane	2490	2960	*	ug/Kg		119	81 ₋ 115
1,3-Dichlorobenzene	2490	2900	*	ug/Kg		117	82 - 114
1,4-Dichlorobenzene	2490	2870	*	ug/Kg		115	81 - 113
2-Butanone (MEK)	12500	14500		ug/Kg		116	54 - 149
2-Hexanone	12500	14800		ug/Kg		119	70 ₋ 127
4-Methyl-2-pentanone (MIBK)	12500	13600		ug/Kg		110	74 - 120
Acetone	12500	10200		ug/Kg		82	47 - 141
Benzene	2490	2960		ug/Kg		119	77 ₋ 125
Bromodichloromethane	2490	2720		ug/Kg		109	71 - 121
Bromoform	2490	2440		ug/Kg		98	48 - 125
Bromomethane	2490	2160		ug/Kg		87	39 - 149
Carbon disulfide	2490	2640		ug/Kg		106	40 - 136
Carbon tetrachloride	2490	2990		ug/Kg		120	54 ₋ 135
Chlorobenzene	2490	2900		ug/Kg		116	76 - 126
Dibromochloromethane	2490	2630		ug/Kg		106	64 - 118
Chloroethane	2490	1650		ug/Kg		66	23 - 164
Chloroform	2490	2850		ug/Kg		115	78 - 118
Chloromethane	2490	2710		ug/Kg		109	61 - 124
cis-1,2-Dichloroethene	2490	3000		ug/Kg		121	79 - 124
cis-1,3-Dichloropropene	2490	3060	*	ug/Kg		123	75 - 121
Cyclohexane	2490	2860		ug/Kg		115	49 - 129
Dichlorodifluoromethane	2490	2610		ug/Kg		105	10 - 150
Ethylbenzene	2490	2910		ug/Kg		117	78 - 124
1.2-Dibromoethane	2490	2870		ug/Kg		115	81 - 119
Isopropylbenzene	2490	2980	*	ug/Kg		120	76 - 119
Methyl acetate	12500	15200		ug/Kg		122	71 - 123
Methyl tert-butyl ether	2490	2790		ug/Kg		112	67 - 137
Methylcyclohexane	2490	3220		ug/Kg ug/Kg		129	50 - 130
Methylene Chloride	2490	2720		ug/Kg		109	75 - 118
Styrene	2490	2970		ug/Kg ug/Kg		119	84 - 119
Tetrachloroethene	2490	3000		ug/Kg ug/Kg		120	73 - 133
Toluene trans-1,2-Dichloroethene	2490 2490	2910 3020		ug/Kg ug/Kg		117 121	75 ₋ 124 74 ₋ 129

TestAmerica Buffalo

Page 16 of 34

7/16/2015

Client: New York State D.E.C.

Vinyl chloride

TestAmerica Job ID: 480-83779-1 Project/Site: NYSDEC- Spill# 1503836

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-253504/1-A **Client Sample ID: Lab Control Sample Matrix: Waste Prep Type: Total/NA** Prep Batch: 253504 **Analysis Batch: 253606** Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit D %Rec Trichloroethene 2490 3000 ug/Kg 121 75 - 131 Trichlorofluoromethane 2490 1950 ug/Kg 78 29 - 158

2790

ug/Kg

112

59 - 124

2490

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	115		50 - 149
1,2-Dichloroethane-d4 (Surr)	119		53 - 146
4-Bromofluorobenzene (Surr)	114		49 - 148
Dibromofluoromethane (Surr)	116		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-253202/1-A Client Sample ID: Method Blank **Matrix: Waste** Prep Type: Total/NA **Analysis Batch: 253291 Prep Batch: 253202**

Analysis Batch: 253291	МВ	МВ						Prep Batch:	253202
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		3400	740	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2,4,6-Trichlorophenol	ND		3400	220	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2,4-Dichlorophenol	ND		3400	180	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2,4-Dimethylphenol	ND		3400	920	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2,4-Dinitrophenol	ND		6600	1200	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2,4-Dinitrotoluene	ND		3400	520	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2,6-Dinitrotoluene	ND		3400	820	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2-Chloronaphthalene	ND		3400	220	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2-Chlorophenol	ND		3400	170	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2-Methylnaphthalene	ND		3400	40	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2-Methylphenol	ND		3400	100	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2-Nitroaniline	ND		6600	1100	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
2-Nitrophenol	ND		3400	150	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
3,3'-Dichlorobenzidine	ND		3400	3000	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
3-Nitroaniline	ND		6600	780	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
4,6-Dinitro-2-methylphenol	ND		6600	1200	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
4-Bromophenyl phenyl ether	ND		3400	1100	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
4-Chloro-3-methylphenol	ND		3400	140	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
4-Chloroaniline	ND		3400	1000	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
4-Chlorophenyl phenyl ether	ND		3400	72	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
4-Methylphenol	ND		6600	190	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
4-Nitroaniline	ND		6600	380	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
4-Nitrophenol	ND		6600	820	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Acenaphthene	ND		3400	40	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Acenaphthylene	ND		3400	28	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Acetophenone	ND		3400	170	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Anthracene	ND		3400	86	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Atrazine	ND		3400	150	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Benzaldehyde	ND		3400	380	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Benzo[a]anthracene	ND		3400	58	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Benzo[a]pyrene	ND		3400	82	ug/Kg		07/14/15 15:27	07/15/15 09:32	1

TestAmerica Buffalo

Client: New York State D.E.C.

Matrix: Waste

Analysis Batch: 253291

2,4,6-Tribromophenol (Surr)

2-Fluorobiphenyl

Phenol-d5 (Surr)

2-Fluorophenol (Surr)

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

Lab Sample ID: MB 480-253202/1-A

Project/Site: NYSDEC- Spill# 1503836

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

90

85

84

103

87

101

TestAmerica Job ID: 480-83779-1

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 253202

Analysis Buton. 200201	МВ	МВ						Trop Baton.	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	ND		3400	66	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Benzo[g,h,i]perylene	ND		3400	40	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Benzo[k]fluoranthene	ND		3400	38	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Biphenyl	ND		3400	220	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
bis (2-chloroisopropyl) ether	ND		3400	360	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Bis(2-chloroethoxy)methane	ND		3400	180	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Bis(2-chloroethyl)ether	ND		3400	300	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Bis(2-ethylhexyl) phthalate	ND		3400	1100	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Butyl benzyl phthalate	ND		3400	900	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Caprolactam	ND		3400	1500	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Carbazole	ND		3400	40	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Chrysene	ND		3400	34	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Dibenz(a,h)anthracene	ND		3400	40	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Dibenzofuran	ND		3400	36	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Diethyl phthalate	ND		3400	100	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Dimethyl phthalate	ND		3400	88	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Di-n-butyl phthalate	ND		3400	1200	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Di-n-octyl phthalate	ND		3400	78	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Fluoranthene	ND		3400	48	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Fluorene	ND		3400	78	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Hexachlorobenzene	ND		3400	170	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Hexachlorobutadiene	ND		3400	170	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Hexachlorocyclopentadiene	ND		3400	1000	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Hexachloroethane	ND		3400	260	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Indeno[1,2,3-cd]pyrene	ND		3400	94	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Isophorone	ND		3400	170	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Naphthalene	ND		3400	56	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Nitrobenzene	ND		3400	150	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
N-Nitrosodi-n-propylamine	ND		3400	260	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
N-Nitrosodiphenylamine	ND		3400	180	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Pentachlorophenol	ND		6600	1200	ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Phenanthrene	ND		3400		ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Phenol	ND		3400		ug/Kg		07/14/15 15:27	07/15/15 09:32	1
Pyrene	ND		3400		ug/Kg		07/14/15 15:27	07/15/15 09:32	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

<u>07/14/15 15:27</u> <u>07/15/15 09:32</u>

07/14/15 15:27 07/15/15 09:32

07/14/15 15:27 07/15/15 09:32

07/14/15 15:27 07/15/15 09:32

07/14/15 15:27 07/15/15 09:32

07/14/15 15:27 07/15/15 09:32

Page 18 of 34

39 - 146

37 - 120

18 - 120

34 - 132

11 - 120

65 - 153

7/16/2015

Spike

Added

500000

500000

500000

1000000

500000

1000000

500000

500000

500000

500000

1000000

500000

500000

893000

419000

531000

TestAmerica Job ID: 480-83779-1

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-253202/2-A

Matrix: Waste

2,4-Dinitrotoluene

4-Chloro-3-methylphenol

Bis(2-ethylhexyl) phthalate

N-Nitrosodi-n-propylamine

2-Chlorophenol

4-Nitrophenol

Acenaphthene

Hexachloroethane

Pentachlorophenol

Atrazine

Fluorene

Phenol

Pyrene

Analyte

Analysis Batch: 253291

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 253202 LCS LCS %Rec. Result Qualifier Unit D %Rec Limits 55 - 125 478000 ug/Kg 96 428000 ug/Kg 86 38 - 120523000 105 ug/Kg 49 - 125 43 - 137 1190000 ug/Kg 119 435000 ug/Kg 87 53 - 120 941000 ug/Kg 94 60 - 164 61 - 133 543000 109 ug/Kg 437000 87 63 - 126 ug/Kg 469000 94 41 - 120 ug/Kg 482000 ug/Kg 96 46 - 120

89

84

106

ug/Kg

ug/Kg

ug/Kg

33 - 136

36 - 120

51 - 133

LCS LCS

Surrogate %Recovery Qualifier Limits 2,4,6-Tribromophenol (Surr) 95 39 - 146 2-Fluorobiphenyl 82 37 - 120 2-Fluorophenol (Surr) 82 18 - 120 Nitrobenzene-d5 (Surr) 97 34 - 132 Phenol-d5 (Surr) 11 - 120 84 p-Terphenyl-d14 (Surr) 98 65 - 153

Lab Sample ID: LCSD 480-253202/3-A

Matrix: Waste

Analysis Batch: 253291

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 253202

/ many one Batom 20020 i										
•	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
2,4-Dinitrotoluene	500000	482000		ug/Kg		96	55 - 125	1	20	
2-Chlorophenol	500000	441000		ug/Kg		88	38 - 120	3	25	
4-Chloro-3-methylphenol	500000	534000		ug/Kg		107	49 - 125	2	27	
4-Nitrophenol	1000000	1190000		ug/Kg		119	43 - 137	0	25	
Acenaphthene	500000	449000		ug/Kg		90	53 - 120	3	35	
Atrazine	1000000	995000		ug/Kg		100	60 - 164	6	20	
Bis(2-ethylhexyl) phthalate	500000	548000		ug/Kg		110	61 - 133	1	15	
Fluorene	500000	454000		ug/Kg		91	63 - 126	4	15	
Hexachloroethane	500000	467000		ug/Kg		93	41 - 120	0	46	
N-Nitrosodi-n-propylamine	500000	489000		ug/Kg		98	46 - 120	1	31	
Pentachlorophenol	1000000	893000		ug/Kg		89	33 - 136	0	35	
Phenol	500000	427000		ug/Kg		85	36 - 120	2	35	
Pyrene	500000	551000		ug/Kg		110	51 - 133	4	35	

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	93		39 - 146
2-Fluorobiphenyl	86		37 - 120
2-Fluorophenol (Surr)	82		18 - 120
Nitrobenzene-d5 (Surr)	99		34 - 132
Phenol-d5 (Surr)	85		11 - 120

TestAmerica Buffalo

Page 19 of 34

Client Sample ID: Method Blank

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-253202/3-A

Matrix: Waste

Analysis Batch: 253291

LCSD LCSD

Surrogate %Recovery Qualifier Limits p-Terphenyl-d14 (Surr) 65 - 153 104

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 253202

Prep Type: Total/NA

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-253203/1-A

Matrix: Waste

nalysis	Batch:	253555		
			MB	М

Analysis Batch: 253555								Prep Batch:	253203
	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.50	0.097	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
4,4'-DDE	ND		0.50	0.14	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
4,4'-DDT	ND		0.50	0.11	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Aldrin	ND		0.50	0.051	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
alpha-BHC	0.138	J	0.50	0.090	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
alpha-Chlordane	ND		0.50	0.25	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
beta-BHC	ND		0.50	0.36	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
delta-BHC	ND		0.50	0.066	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Dieldrin	ND		0.50	0.12	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Endosulfan I	ND		0.50	0.11	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Endosulfan II	ND		0.50	0.090	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Endosulfan sulfate	ND		0.50	0.093	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Endrin	ND		0.50	0.16	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Endrin aldehyde	ND		0.50	0.13	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Endrin ketone	ND		0.50	0.12	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
gamma-BHC (Lindane)	ND		0.50	0.36	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
gamma-Chlordane	ND		0.50	0.069	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Heptachlor	ND		0.50	0.078	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Heptachlor epoxide	ND		0.50	0.13	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Methoxychlor	ND		0.50	0.13	mg/Kg		07/14/15 15:29	07/16/15 08:13	1
Toxaphene	ND		5.0	2.9	mg/Kg		07/14/15 15:29	07/16/15 08:13	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
DCB Decachlorobiphenyl	92		32 - 136	07/14/15 15:29 07/16/15 08:13	1
Tetrachloro-m-xylene	81		30 - 124	07/14/15 15:29 07/16/15 08:13	1

Lab Sample ID: LCS 480-253203/2-A

Matrix: Waste

Analysis Batch: 253555

			Prep Type: Total/NA
			Prep Batch: 253203
			%Rec.
Jnit	D	%Rec	Limits

Client Sample ID: Lab Control Sample

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	5.00	7.95	*	mg/Kg		159	52 - 138	
4,4'-DDE	5.00	4.16		mg/Kg		83	52 - 131	
4,4'-DDT	5.00	5.16		mg/Kg		103	50 - 131	
Aldrin	5.00	3.58		mg/Kg		72	35 - 120	
alpha-BHC	5.00	6.55	*	mg/Kg		131	49 - 120	
alpha-Chlordane	5.00	5.45		mg/Kg		109	40 - 133	
beta-BHC	5.00	10.3	*	mg/Kg		205	52 - 127	

TestAmerica Buffalo

Page 20 of 34

7/16/2015

Client: New York State D.E.C. Project/Site: NYSDEC- Spill# 1503836

Lab Sample ID: LCS 480-253203/2-A

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Client Sample ID: Lab Control Sample

Matrix: Waste									Prep Type: Total/NA
Analysis Batch: 253555			Spike	LCS	LCS				Prep Batch: 253203 %Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
delta-BHC			5.00	8.88	*	mg/Kg		178	45 - 123
Dieldrin			5.00	5.80		mg/Kg		116	50 ₋ 131
Endosulfan I			5.00	4.77		mg/Kg		95	43 - 121
Endosulfan II			5.00	7.66	*	mg/Kg		153	48 - 134
Endosulfan sulfate			5.00	10.3	*	mg/Kg		205	46 - 144
Endrin			5.00	5.51		mg/Kg		110	46 - 134
Endrin aldehyde			5.00	10.9	*	mg/Kg		218	31 - 137
Endrin ketone			5.00	9.42	*	mg/Kg		188	44 - 140
gamma-BHC (Lindane)			5.00	7.52	*	mg/Kg		150	50 - 120
gamma-Chlordane			5.00	5.55		mg/Kg		111	52 - 129
Heptachlor			5.00	4.51		mg/Kg		90	51 ₋ 121
Heptachlor epoxide			5.00	5.26		mg/Kg		105	52 - 129
Methoxychlor			5.00	7.41		mg/Kg		148	50 - 149
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
DCB Decachlorobiphenyl	51		32 - 136						
Tetrachloro-m-xylene	52		30 - 124						

Lab Sample ID: LCSD 480-253203/3-A

Matrix: Waste

Analysis Batch: 253555

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 253203

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	5.00	8.86	*	mg/Kg		177	52 - 138	11	18
4,4'-DDE	5.00	3.93		mg/Kg		79	52 - 131	6	16
4,4'-DDT	5.00	5.29		mg/Kg		106	50 - 131	3	17
Aldrin	5.00	3.13		mg/Kg		63	35 - 120	14	24
alpha-BHC	5.00	7.14	*	mg/Kg		143	49 - 120	9	19
alpha-Chlordane	5.00	5.43		mg/Kg		109	40 - 133	0	13
beta-BHC	5.00	12.1	*	mg/Kg		242	52 - 127	16	17
delta-BHC	5.00	10.2	*	mg/Kg		204	45 - 123	14	14
Dieldrin	5.00	5.93		mg/Kg		119	50 - 131	2	13
Endosulfan I	5.00	4.52		mg/Kg		90	43 - 121	5	16
Endosulfan II	5.00	7.74	*	mg/Kg		155	48 - 134	1	17
Endosulfan sulfate	5.00	12.0	*	mg/Kg		240	46 - 144	16	14
Endrin	5.00	5.51		mg/Kg		110	46 - 134	0	19
Endrin aldehyde	5.00	13.0	*	mg/Kg		261	31 - 137	18	23
Endrin ketone	5.00	10.9	*	mg/Kg		217	44 - 140	14	14
gamma-BHC (Lindane)	5.00	8.17	*	mg/Kg		163	50 - 120	8	20
gamma-Chlordane	5.00	5.84		mg/Kg		117	52 - 129	5	14
Heptachlor	5.00	4.22		mg/Kg		84	51 - 121	7	16
Heptachlor epoxide	5.00	5.62		mg/Kg		112	52 - 129	7	17
Methoxychlor	5.00	9.02	*	mg/Kg		180	50 - 149	20	14

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	38		32 - 136
Tetrachloro-m-xylene	42		30 - 124

TestAmerica Buffalo

Client: New York State D.E.C. Project/Site: NYSDEC- Spill# 1503836

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-253219/1-A **Client Sample ID: Method Blank Matrix: Waste**

Analysis Batch: 253492

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		2.5	2.5	mg/Kg		07/14/15 16:31	07/15/15 19:54	1
PCB-1221	ND		2.5	2.5	mg/Kg		07/14/15 16:31	07/15/15 19:54	1
PCB-1232	ND		2.5	2.5	mg/Kg		07/14/15 16:31	07/15/15 19:54	1
PCB-1242	ND		2.5	2.5	mg/Kg		07/14/15 16:31	07/15/15 19:54	1
PCB-1248	ND		2.5	2.5	mg/Kg		07/14/15 16:31	07/15/15 19:54	1
PCB-1254	ND		2.5	2.5	mg/Kg		07/14/15 16:31	07/15/15 19:54	1
PCB-1260	ND		2.5	2.5	mg/Kg		07/14/15 16:31	07/15/15 19:54	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 91 60 - 154 07/14/15 16:31 07/15/15 19:54 65 - 174 07/14/15 16:31 07/15/15 19:54 DCB Decachlorobiphenyl 140

Lab Sample ID: LCS 480-253219/2-A

PCB-1260

Matrix: Waste							Prep Type: Total/NA
Analysis Batch: 253492							Prep Batch: 253219
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	50.0	62.3		mg/Kg	_	125	51 - 185

71.7

mg/Kg

50.0

LCS LCS %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 111 60 - 154 DCB Decachlorobiphenyl 152 65 - 174

Lab Sample ID: LCSD 480-253219/3-A

Matrix: Waste

Analysis Batch: 253492									53219
_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	50.0	63.2		mg/Kg		126	51 - 185	1	50
PCB-1260	50.0	71.9		mg/Kg		144	61 - 184	0	50

LCSD LCSD Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 112 60 - 154 DCB Decachlorobiphenyl 152 65 - 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-253360/1-A

Matrix: Waste

Analysis Batch: 253764								Prep Batch:	253360
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10.3	4.5	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Antimony	ND		15.4	0.41	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Arsenic	ND		2.1	0.41	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Barium	ND		0.51	0.11	mg/Kg		07/15/15 11:00	07/16/15 13:39	1

TestAmerica Buffalo

Client Sample ID: Lab Control Sample

61 - 184

Prep Type: Total/NA

143

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 253219

Prep Type: Total/NA

Client Sample ID: Method Blank

Client: New York State D.E.C. Project/Site: NYSDEC- Spill# 1503836

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-253360/1-A **Matrix: Waste**

Analysis Batch: 253764

Client Sample ID: Method Blank **Prep Type: Total/NA Prep Batch: 253360**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		0.21	0.029	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Cadmium	ND		0.21	0.031	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Calcium	4.66	J	51.3	3.4	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Chromium	ND		0.51	0.21	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Cobalt	ND		0.51	0.051	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Copper	ND		1.0	0.22	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Iron	ND		10.3	3.6	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Lead	ND		1.0	0.25	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Magnesium	ND		20.5	0.95	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Manganese	0.0554	J	0.21	0.033	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Nickel	ND		5.1	0.24	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Potassium	ND		30.8	20.5	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Selenium	ND		4.1	0.41	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Silver	ND		0.62	0.21	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Sodium	ND		144	13.3	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Thallium	ND		6.2	0.31	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Vanadium	ND		0.51	0.11	mg/Kg		07/15/15 11:00	07/16/15 13:39	1
Zinc	ND		2.1	0.66	mg/Kg		07/15/15 11:00	07/16/15 13:39	1

Lab Sample ID: LCDSRM 480-253360/3-A

Matrix: Waste

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 253764							Prep Ba		53360
	Spike		LCDSRM				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
Aluminum	8100	8201		mg/Kg		101.2		4	20
Antimony	116	94.65		mg/Kg		81.6	5 22.1 - 252. 6	4	20
Arsenic	122	107.7		mg/Kg		88.3	70.0 - 145. 1	2	20
Barium	167	147.1		mg/Kg		88.1	73.1 - 126. 9	2	20
Beryllium	54.3	47.20		mg/Kg		86.9	73.1 - 127. 1	3	20
Cadmium	88.0	77.26		mg/Kg		87.8	73.3 - 127.	5	20
Calcium	5920	5019		mg/Kg		84.8	73.6 - 126.	3	20
Chromium	102	90.10		mg/Kg		88.3	69.4 - 130.	3	20
Cobalt	99.4	94.30		mg/Kg		94.9	74.3 - 125. 8	3	20
Copper	78.0	68.12		mg/Kg		87.3	73.7 - 132.	3	20
Iron	15100	13240		mg/Kg		87.7	37.1 - 162.	6	20
Lead	94.5	93.11		mg/Kg		98.5	70.5 - 129.	7	20
Magnesium	3020	2696		mg/Kg		89.3	65.9 - 133. 8	3	20
Manganese	401	353.3		mg/Kg		88.1	76.1 - <u>123</u> . 9	7	20

TestAmerica Buffalo

Page 23 of 34

Client: New York State D.E.C. Project/Site: NYSDEC- Spill# 1503836 TestAmerica Job ID: 480-83779-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCDSRM 480-253360/3-A Matrix: Waste			(Client Sa	mple	ID: La	b Control : Prep Tyl		
Analysis Batch: 253764							Prep Ba	itch: 2	53360
	Spike	LCDSRM	LCDSRM				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nickel	56.3	53.12		mg/Kg		94.4	69.8 - 130.	2	20
							0		
Potassium	2490	2346		mg/Kg		94.2	60.6 - 139. 4	4	20
Selenium	157	141.0		mg/Kg		89.8	67.5 - 131.	3	20
							8		
Silver	34.2	28.98		mg/Kg		84.7	65.5 - 134. 2	1	20
Sodium	246	227.8		mg/Kg		92.6	32.0 - 168.	3	20
							3		
Thallium	116	110.6		mg/Kg		95.3	67.4 - 132.	4	20
Vanadium	67.1	62.95		m a /1/ a		02.0	8	4	20
variadium	07.1	02.95		mg/Kg		93.6	57.8 - 192.	4	20
Zinc	207	182.4		mg/Kg		88.1	70.0 - 130.		20
	201	102.4		9,119		30.1	7 0.0 - 130. 4	Ü	20

Lab Sample ID: LCSSRM 480-253360/2-A

Matrix: Waste

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 253764 Analyte	Spike Added		LCSSRM Qualifier	Unit	D	%Rec	Prep Batch: 253360 %Rec.
Aluminum	8100	7857		mg/Kg		97.0	39.6 - 160.
Antimony	116	90.86		mg/Kg		78.3	5 22.1 - 252. 6
Arsenic	122	105.3		mg/Kg		86.3	70.0 - 145. 1
Barium	167	143.5		mg/Kg		85.9	73.1 - 126. 9
Beryllium	54.3	45.77		mg/Kg		84.3	73.1 - 127. 1
Cadmium	88.0	73.74		mg/Kg		83.8	73.3 - 127. 3
Calcium	5920	4852		mg/Kg		82.0	73.6 - 126. 4
Chromium	102	87.64		mg/Kg			69.4 - 130. 4
Cobalt	99.4	91.58		mg/Kg			74.3 - 125. 8
Copper	78.0	65.81		mg/Kg			73.7 - 132. 1
Iron	15100	12470		mg/Kg			37.1 - 162. 9
Lead	94.5	86.96		mg/Kg			70.5 - 129. 1
Magnesium	3020	2606		mg/Kg			65.9 ₋ 133. 8
Manganese	401	329.2		mg/Kg			76.1 - 123. 9
Nickel	56.3	52.11		mg/Kg			69.8 - 130. 0
Potassium	2490	2254		mg/Kg		90.5	60.6 - 139.

4

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Prep Batch: 253381

Prep Type: Total/NA

Prep Type: Total/NA

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-253360/2-A **Client Sample ID: Lab Control Sample Matrix: Waste** Prep Type: Total/NA

Analysis Batch: 253764	Spike	LCSSRM	LCSSRM				Prep Batch: 253360 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Selenium	157	136.6	-	mg/Kg		87.0	67.5 - 131.
Silver	34.2	28.65		mg/Kg		83.8	8 65.5 - 134.
O. Alleria		000 5		11111121			2
Sodium	246	220.5		mg/Kg		89.6	32.0 - 168. 3
Thallium	116	106.3		mg/Kg		91.6	67.4 - 132.
Vanadium	67.1	60.71		mg/Kg		00.5	8 57.8 - 192.
variaulum	07.1	00.71		mg/Rg		30.5	3
Zinc	207	177.7		mg/Kg		85.8	70.0 - 130.

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-253381/1-A Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Waste

Analysis Batch: 253573

MB MB

Result Qualifier **Analyte** RL MDL Unit Prepared Analyzed Dil Fac Mercury ND 0.020 0.0079 mg/Kg 07/15/15 13:35 07/15/15 14:51

Lab Sample ID: LCDSRM 480-253381/3-A **Matrix: Waste**

Analysis Batch: 253573							Prep Ba	itch: 25	53381
_	Spike	LCDSRM	LCDSRM				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	3.98	4.06		mg/Kg	_	102.1	51.0 - 149.	0	20
							0		

Lab Sample ID: LCSSRM 480-253381/2-A **Matrix: Waste**

Analysis Batch: 253573

Prep Batch: 253381 Spike LCSSRM LCSSRM %Rec. D %Rec Added **Analyte** Result Qualifier Unit Limits 102.4 51.0 - 149. Mercury 3.98 4.07 mg/Kg

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-253507/1-A **Client Sample ID: Method Blank Matrix: Waste Prep Type: Total/NA Analysis Batch: 253692** Prep Batch: 253507

MR MR

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND	1.0	0.48 mg/Kg		07/15/15 18:00	07/16/15 10:26	1

TestAmerica Buffalo

Client: New York State D.E.C.

Cyanide, Total

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

29 - 122

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: LCS 480-253507/2-A ^5				Cli	ent Sar	mple ID	: Lab Control Sample
Matrix: Waste							Prep Type: Total/NA
Analysis Batch: 253692							Prep Batch: 253507
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

97.68

mg/Kg

101

2

5

4

5

9

1 U

12

1 /

QC Association Summary

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

GC/MS VOA

Prep Batch: 253504

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	5035A	
LCS 480-253504/1-A	Lab Control Sample	Total/NA	Waste	5035A	
MB 480-253504/2-A	Method Blank	Total/NA	Waste	5035A	

Analysis Batch: 253606

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	8260C	253504
LCS 480-253504	/1-A Lab Control Sample	Total/NA	Waste	8260C	253504
MB 480-253504/2	2-A Method Blank	Total/NA	Waste	8260C	253504

GC/MS Semi VOA

Prep Batch: 253202

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	3580A	
LCS 480-253202/2-A	Lab Control Sample	Total/NA	Waste	3580A	
LCSD 480-253202/3-A	Lab Control Sample Dup	Total/NA	Waste	3580A	
MB 480-253202/1-A	Method Blank	Total/NA	Waste	3580A	

Analysis Batch: 253291

Lab Sample ID 480-83779-1	Client Sample ID BOT GARDEN TAR	Prep Type Total/NA	Waste	Method 8270D	Prep Batch 253202
LCS 480-253202/2-A	Lab Control Sample	Total/NA	Waste	8270D	253202
LCSD 480-253202/3-A	Lab Control Sample Dup	Total/NA	Waste	8270D	253202
MB 480-253202/1-A	Method Blank	Total/NA	Waste	8270D	253202

GC Semi VOA

Prep Batch: 253203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	3580A	
LCS 480-253203/2-A	Lab Control Sample	Total/NA	Waste	3580A	
LCSD 480-253203/3-A	Lab Control Sample Dup	Total/NA	Waste	3580A	
MB 480-253203/1-A	Method Blank	Total/NA	Waste	3580A	

Prep Batch: 253219

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	3580A	
LCS 480-253219/2-A	Lab Control Sample	Total/NA	Waste	3580A	
LCSD 480-253219/3-A	Lab Control Sample Dup	Total/NA	Waste	3580A	
MB 480-253219/1-A	Method Blank	Total/NA	Waste	3580A	

Analysis Batch: 253492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	8082A	253219
LCS 480-253219/2-A	Lab Control Sample	Total/NA	Waste	8082A	253219
LCSD 480-253219/3-A	Lab Control Sample Dup	Total/NA	Waste	8082A	253219
MB 480-253219/1-A	Method Blank	Total/NA	Waste	8082A	253219

TestAmerica Buffalo

Page 27 of 34

3

6

8

J

11

13

14

1 5

QC Association Summary

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

GC Semi VOA (Continued)

Analysis Batch: 253555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	8081B	253203
LCS 480-253203/2-A	Lab Control Sample	Total/NA	Waste	8081B	253203
LCSD 480-253203/3-A	Lab Control Sample Dup	Total/NA	Waste	8081B	253203
MB 480-253203/1-A	Method Blank	Total/NA	Waste	8081B	253203

Metals

Prep Batch: 253360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	3050B	<u> </u>
LCDSRM 480-253360/3-A	Lab Control Sample Dup	Total/NA	Waste	3050B	
LCSSRM 480-253360/2-A	Lab Control Sample	Total/NA	Waste	3050B	
MB 480-253360/1-A	Method Blank	Total/NA	Waste	3050B	

Prep Batch: 253381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	7471B	
LCDSRM 480-253381/3-A	Lab Control Sample Dup	Total/NA	Waste	7471B	
LCSSRM 480-253381/2-A	Lab Control Sample	Total/NA	Waste	7471B	
MB 480-253381/1-A	Method Blank	Total/NA	Waste	7471B	

Analysis Batch: 253573

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	7471B	253381
LCDSRM 480-253381/3-A	Lab Control Sample Dup	Total/NA	Waste	7471B	253381
LCSSRM 480-253381/2-A	Lab Control Sample	Total/NA	Waste	7471B	253381
MB 480-253381/1-A	Method Blank	Total/NA	Waste	7471B	253381

Analysis Batch: 253764

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	6010C	253360
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	6010C	253360
LCDSRM 480-253360/3-A	Lab Control Sample Dup	Total/NA	Waste	6010C	253360
LCSSRM 480-253360/2-A	Lab Control Sample	Total/NA	Waste	6010C	253360
MB 480-253360/1-A	Method Blank	Total/NA	Waste	6010C	253360

General Chemistry

Prep Batch: 253507

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	9012B	
LCS 480-253507/2-A ^5	Lab Control Sample	Total/NA	Waste	9012B	
MB 480-253507/1-A	Method Blank	Total/NA	Waste	9012B	

Analysis Batch: 253692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-83779-1	BOT GARDEN TAR	Total/NA	Waste	9012B	253507
LCS 480-253507/2-A ^5	Lab Control Sample	Total/NA	Waste	9012B	253507
MB 480-253507/1-A	Method Blank	Total/NA	Waste	9012B	253507

TestAmerica Buffalo

7/16/2015

Page 28 of 34

2

3

4

6

8

10

11

13

14

Lab Chronicle

Client: New York State D.E.C.

Date Collected: 07/13/15 14:15

Date Received: 07/13/15 14:50

Project/Site: NYSDEC- Spill# 1503836

Client Sample ID: BOT GARDEN TAR

TestAmerica Job ID: 480-83779-1

Lab Sample ID: 480-83779-1

Matrix: Waste

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			253504	07/15/15 18:34	SWO	TAL BUF
Total/NA	Analysis	8260C		10	253606	07/16/15 13:40	LJF	TAL BUF
Total/NA	Prep	3580A			253202	07/14/15 15:27	GVF	TAL BUF
Total/NA	Analysis	8270D		100	253291	07/15/15 10:56	LMW	TAL BUF
Total/NA	Prep	3580A			253203	07/14/15 15:29	GVF	TAL BUF
Total/NA	Analysis	8081B		20	253555	07/16/15 07:54	JRL	TAL BUF
Total/NA	Prep	3580A			253219	07/14/15 16:31	GVF	TAL BUF
Total/NA	Analysis	8082A		2	253492	07/15/15 22:13	KS	TAL BUF
Total/NA	Prep	3050B			253360	07/15/15 11:00	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	253764	07/16/15 14:31	AMH	TAL BUF
Total/NA	Prep	3050B			253360	07/15/15 11:00	KJ1	TAL BUF
Total/NA	Analysis	6010C		10	253764	07/16/15 15:11	AMH	TAL BUF
Total/NA	Prep	7471B			253381	07/15/15 13:35	TAS	TAL BUF
Total/NA	Analysis	7471B		1	253573	07/15/15 15:12	LRK	TAL BUF
Total/NA	Prep	9012B			253507	07/15/15 18:00	CLT	TAL BUF
Total/NA	Analysis	9012B		1	253692	07/16/15 10:39	KMF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
Analysis Method	Prep Method	Matrix	Analyt	е	

3

4

5

_

. .

ш

13

14

Method Summary

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

-

3

4

5

6

0

9

10

11

12

14

Sample Summary

Client: New York State D.E.C.

Project/Site: NYSDEC- Spill# 1503836

TestAmerica Job ID: 480-83779-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-83779-1	BOT GARDEN TAR	Waste	07/13/15 14:15	07/13/15 14:50

2

Δ

6

8

9

11

42

14

Custody Record Chain of

Temperature on Receipt

TestAmeric Drinking Water? Yes□ No□

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) rime Chain of Custody Number 286999 Page Date 480-83779 Chain of Custody Analysis (Attach list if more space is needed) 4 Date OT/1: Months Archive For OC Requirements (Specify \oAnS HOBN Containers & Preservatives Disposal By Lab 1. Received By 3. Received By IOH EONH seudun ☐ Return To Client MI W Other 3047 [A] Sample Disposal 1105 Time Matrix pes Project Manager 4/V Unknown 14014 Date Time Z 🗌 21 Days 2/13/12 Poison B Date 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant ☐ 7 Days || Flammable ☐ 48 Hours Possible Hazard Identification Turn Around Time Required 3. Relinquished By Comments ☐ Non-Hazard 24 Hours TAL-4124 (1007) Page 33 of 34

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-83779-1

Login Number: 83779 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator. Jamish, Carriw		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	same day sampling
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	DEC
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

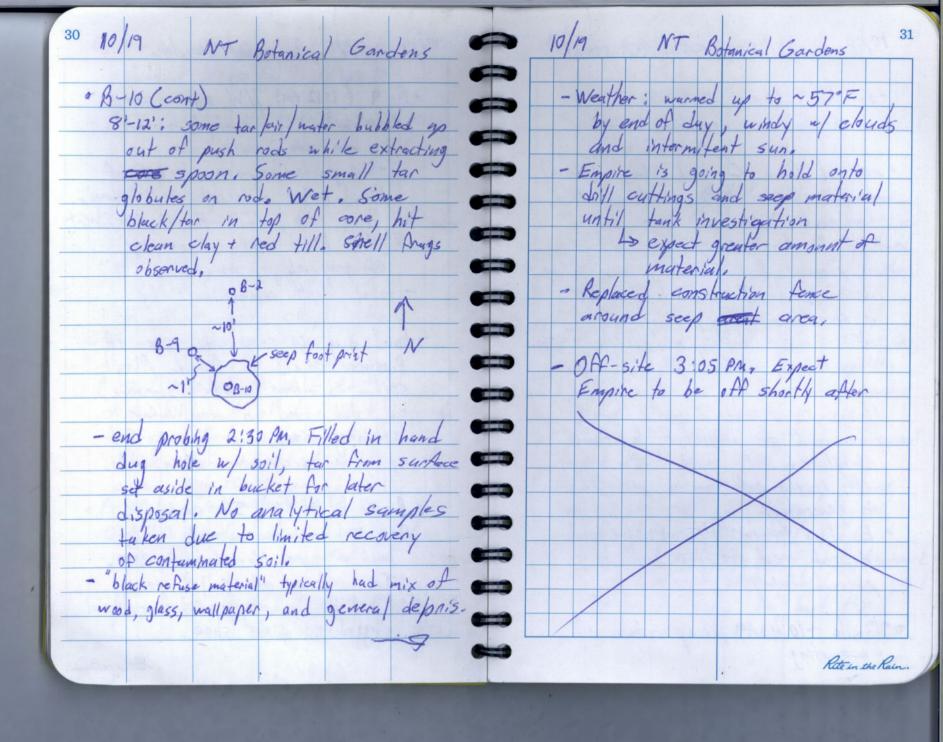
6

8

10

10

13


a i

Appendix E: Benjamin McPherson Field Notes

10/19/15 IVT Botanical Gardens 4 932068 8:26 AM frost avernight pickup and track Stoma (Empire /STB) ~ 8:30 Am. w/ pickup truck apparently native of gray sand/silt Boning terminated soil hardness and lack of contern

Rite in the Rain.

Rite in the Rain

Appendix F: Analytical Tables from 1999 PSA

TABLE 3-7 HOLIDAY PARK/BOTANICAL GARDENS PRELIMINARY SITE ASSESSMENTS

SUMMARY OF ANALYTICAL RESULTS - BOTANICAL GARDENS - SOIL SAMPLES

Sample Location	BG-DEC-SS1*	BG-DEC-SS2*	BG-MW-1	BG-MW-2	BG-MW-3	BG-MW-4	EB-7-2	NYSDEC	Eastern USA
Sampling Depth	0-1	0-1	2-4	10-12	2-4	2-4	Drill Water Blank (2)	TAGM	Background
Collection Date	04/07/1998	04/07/1998	07/01/98	07/01/98	07/02/98	07/02/98	07/02/98	4046 ⁽¹⁾	Concentrations
Volatile Organic Compou	nds (mg/kg)								e e e e e e e e e e e e e e e e e e e
Methylene Chloride	NA	NA			0.011 J			1	-
Acetone	NA	NA	0.110 J		-			0.2	-
Chloroform	NA	NA					0.009 J	0.3	-
2-Butanone	NA	NA	0.025 J					0.3	-
Bromodichloromethane	NA	NA NA					0.004 J	NS	-
Tetrachloroethene	NA	NA			0.001 J			1.4	-
Toluene	NA	NA					0.002 J	1.5	-
Chlorobenzene	NA	NA	0.002 J					1.7	-
Xylene (total)	NA	NA	0.002 J		0.003 J			1.2	-
Semivolatile Organic Com	pounds (mg/kg)			64. (62.)			alla i gantari		100
Phenol							0.001 J	0.03	-
Naphthalene		0.64 J						13	-
Di-n-butylphthalate	1.2 JB	0.47 JB						8.1	-
Fluoranthene	0.43 J			0.044 J				50	-
Pyrene	0.36 J			0.04 J				50	-
bis(2-Ethylhexyl)phthalate	0.92 J	0.36 J		4.8 E	0.2 J	0.086 J	0.006 J	50	-
Pesticides/PCBs (mg/kg)						49 TP 1			
None Detected	NA	NA							**
Tart				***************************************	7 5	1	1	114 4 1 11 14	

Notes:

Blank space denotes analyte was not detected. Only compounds detected in at least one sample included in table.

⁽¹⁾ Soil Cleanup objective from NYSDEC January 24, 1994 TAGM 4046.

²⁾ Drill water blank concentrations in ug/L.

[&]quot;-" - No cleanup objective or background concentration range in TAGM 4046.

J - Reported value is estimated due to variance from quality control limits.

B - Analyte detected in associated blank.

NA - Parameter not included in analysis.

SB - Site Background Concentration,

^{* -} Sample collected and analyzed by NYSDEC.

Shading indicates that concentration exceeds soil cleanup objective, and the background range is used when there is no soil cleanup objective.

TABLE 3-7 HOLIDAY PARK/BOTANICAL GARDENS PRELIMINARY SITE ASSESSMENTS SUMMARY OF ANALYTICAL RESULTS - BOTANICAL GARDENS - SOIL SAMPLES

Sample Location	BG-DEC-SS1*	BG-DEC-SS2*	BG-MW-1	BG-MW-2	BG-MW-3	BG-MW-4	EB-7-2	NYSDEC	Eastern USA
Sampling Depth	0-1	0-1	2-4	10-12	2-4	2-4	Drill Water Blank (2)	TAGM	Background
Collection Date	04/07/1998	04/07/1998	07/01/98	07/01/98	07/02/98	07/02/98	07/02/98	4046 ⁽¹⁾	Concentrations
Metals (mg/kg)			hatesside it	in the	Andrew Co.				
Aluminum	NA	NA	7710	4620	15200	3790	1550 J	SB	33000
Antimony	NA	NA			0.7 B	0.56 B	3.3 B	SB	-
Arsenic	NA	NA	2.7	2.7	5.5	2.8		7.5 or SB	3 - 12
Barium	NA	NA	61.2	56.2	137	30.2 B	49.7 B	300 or SB	15 - 600
Beryllium	NA	NA	0.42 B	0.26 B	0.92 B	0.26 B		.016 or SB	0 - 1.75
Cadmium	NA	NA	0.58 B	0.67 B	1.0 B	0.68 B	3.1 B	1 or SB	0.1 - 1
Calcium	NA	NA	8350	48500	5930	2320	30600	SB	130-35000
Chromium	NA	NA	13.7	9.3	26.7	6.8	2.9 B	10 or SB	1.5 - 40
Cobalt	NA	NA	6.4 B	4.1 B	21.6	7.1 B	1.6 B	30 or SB	2.5 - 60
Copper	NA	NA	18.9	17.3	25.2	11.9	22.1 B	25 or SB	1 - 50
Iron	NA	NA	17200	11000	33900	8310	7980 J	2000 or SB	2000 - 550000
Lead	NA	NA	33.2 J	**************************************	29.9 J	8.2	20.8	SB	4 - 500
Magnesium	NA	NA	6190	14300	6230	1840	9020	SB	100 - 5000
Manganese	NA	NA	331 J	435 J	570 J	574 J	549	SB	50 - 5000
Nickel	NA	NA	20	10.4	36.5	17.3	3.1 B	13 or SB	0.5-25
Selenium	NA	NA			1.4			SB	-
Silver	NA	NA	2.1 J	1.7 J	0.51 J	0.78 J	4.4 J	SB	-
Sodium	NA	NA	180 B	212 B	210 B	90.2 B	6300	SB	6000 - 8000
Vanadium	NA	NA	16	10.2	30.2	9.3	4.8 B	150 or SB	1 - 300
Zinc	NA	NA	83.5 J	59.6 J	128 J	36.6 J	145 J	20 or SB	9 - 50
Cyanide	NA	NA	1.7 B	1.3 B	2.0 B	1.2 B	6.9 B	NS	-

Notes:

J - Reported value is estimated due to variance from quality control limits.

B - Analyte detected in associated blank.

NA - Parameter not included in analysis.

SB - Site Background Concentration.

Shading indicates that concentration exceeds soil cleanup objective, and the background range is used when there is no soil cleanup objective.

Blank space denotes analyte was not detected. Only compounds detected in at least one sample included in table.

⁽¹⁾ Soil Cleanup objective from NYSDEC January 24, 1994 TAGM 4046.

⁽²⁾ Drill water blank concentrations in ug/L.

[&]quot;-" - No cleanup objective or background concentration range in TAGM 4046.

^{* -} Sample collected and analyzed by NYSDEC.

TABLE 3-8

HOLIDAY PARK/BOTANICAL GARDENS

PRELIMINARY SITE ASSESSMENTS

SUMMARY OF ANALYTICAL RESULTS - BOTANICAL GARDENS - GROUNDWATER SAMPLES

Sample Location	BG-B2W	BG-MW-1	BG-MW-2	BG-MW-3	BG-MW-4	BG-USGS-1	BG-USGS-2	Class GA
Collection Date	04/07/1998	07/28/98	07/28/98	07/28/98	07/28/98	07/28/98	07/28/98	WQS (1)
Volatile Organic Compounds (u	yL)	F1 - \$44			SECTION 1	APP COL	Sett 1	14.73 45.
Benzene		5.1						I
Carbon Disulfide	2 J							-
Chlorobenzene		2 J						5
Semivolatile Organic Compound	ls (ug/L)	r ren Swei			127.5	- Hwir		1 27
4-Chloroaniline					2 J			5
bis(2-Ethylhexyl)phthalate	27						ŕ	5
Pesticides/PCBs (ug/L)	496				- F		T. 1969	4.5
4,4-DDT				0.23 J				0.2
Metals (ug/L)			· 中国基础	186.6 12.00	16 - Philip	11		
Aluminum	40100 J	1680	3810	1370	6800	5720	2340	-
Antimony	2.2 B	4.3 B	4.7 B	3.6 B	3 J B		3.1 B	3
Arsenic	18.1			5.3 B	5.9 B	9.2 B	8.8 B	25
Barium	481 J	480	398	72.9 B	220	468	179 B	1000
Beryllium	1.8 B				0.5 B	1.4 B		3 (2)
Cadmium	2.9 B	1.2 B	0.66 B	0.66 B	1.5 B	2.4 B	2.1 B	5
Calcium	136000	160000	159000	203000	174000		120000	-
Chromium	83.8 J	4.5 B	6.6 B	2.4 B	9.8 B	59.6 B	13.2	50
Cobalt	31.4 J	0.5 B	2.8 B	2 B	7.5 B	3.8 B	1.4 B	-
Copper	111.0	5.2 B	6.5 B	2 B	32.8		12.5 B	200
Iron	104000	40500	20600	11600	24600	82000	49400	300
Lead	251 J		4.7 J	7.8 J	22.1	143		25
Magnesium	33400	44700	43900	59700	52300	208000	30700	35000
Manganese	1310 J	871	576	418	582	6870	1330	300
Mercury	0.59 J							0.7
Nickel	76.8 J	3.2 B	5.6 B	4.7 B	17.7 B	24.6 B	12.7 B	100
Potassium	18000	14000	13900	965 B	2690 B	5570	2050 B	-
Silver	7.6 J	2.9 J	1.9 J	1.2 Ј	1.5 J	5.3 J	1.6 J	50
Sodium	17400	24300	27400	34800	5700	£ 57700	13400	20000
Thallium	4.3 B							0.5 (2)
Vanadium	78.9 J	7.9 B	8.3 B	5.6 B	15.9 B	106	6.6 B	-
Zinc	598 J	46.9 J	26.9 J	40.9 J	129	200	52.9 J	2000 ⁽²
Cyanide	3.7 B	0.9 B	0.5 B					200

Notes:

Shading indicates that concentration exceeds Guidance Value.

Blank space denotes analyte was not detected. Only compounds detected in at least one sample included in table.

- B Indicates analyte result is between IDL and CRDL.
- J Reported value is estimated due to variance from quality control limits.

⁽¹⁾ Class GA WQS - NYSDEC Water Quality Standard for Class GA Waters, from NYSDEC June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

⁽²⁾ NYSDEC Water Quality Guideline for Class GA Waters, from NYSDEC June 1998 Ambient Water Quality Standardds and Guidance Values and Groundwater Effluent Limitations.

[&]quot;-" - No Guidance Value or Standard available.

TABLE 3-9

HOLIDAY PARK/BOTANICAL GARDENS PRELIMINARY SITE ASSESSMENTS

SUMMARY OF ANALYTICAL RESULTS

BOTANICAL GARDENS - SURFACE WATER/LEACHATE SAMPLES

Sample Location:	BG-SW1	BG-NYSDEC-SW-1 *	CLASS GA WQS ⁽¹⁾
Site:	Botanical Gardens	Botanical Gardens	
Sample Date:	04/07/1998	04/07/1998	
Volatile Organic Compounds (µg/L)			
Chlorobenzene	4 J		5
1,2-Dichloroethene (total)	8 1		5
Vinyl Chloride	7 J		2
Semivolatile Organic Compounds (µ	ıg/L)		
4-Methylphenol	1 J	97	1
Phenol		15	1
Dibenzofuran			-
bis(2-Ethylhexyl)phthalate	92 EB		5
Pesticides/PCBs (µg/L)			
None detected			
Inorganics (µg/L)			
Aluminum		720	•
Antimony	2.3 B		3
Barium	272 J	490	1000
Calcium	120000	160000	-
Cobalt	0.86 B		-
Copper	1	30	200
Iron	37600	76000	300
Lead		12	25
Magnesium	18000	27000	35000
Manganese	. ~339 J	680	300
Potassium		5600	-
Silver	3.9 J		50
Sodium	163 0 0	35000	20000
Zinc	6 B	70	2000 (2)
Cyanide	2.8 B	NA	200

Notes:

- 1) Class GA NYSDEC WQS NYSDEC Water Quality Standard for Class GA Waters, from NYSDEC June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.
- (2) NYSDEC Water Quality Guideline for Class GA Waters.\, from NYSDEC June 1998 Ambient Water Quality Standards and Guidance Values and Groudwater Effluent Limitations.
- * Sample collected and analyzed by NYSDEC.
- "-" No Guidance Value or standard available.
- Blank space denotes analyte was not detected. Only compounds detected in at least one sample included in table.

Shading indicates that concentration exceeds standard or Guidance Value.

- B Indicates analyte result is between IDL and CRDL.
- J Reported value is estimated due to variance from quality control limits.
 - E Reported value is estimated because of presence of interference.
 - NA Parameter not included in analysis.

TABLE A-4

NEW YORK STATE DEPT. OF HEALTH SOIL ANALYTICAL DATA - 1992

BOTANICAL GARDENS SITE

Parameter:	NYSDEC	S-1.3	S-2	S-3	s S-4
	TAGM Values ⁽ⁱ⁾			W.	
Pesticides/PCBs, mg/Kg					
4,4'-DDE	2.1	0.001		0.001	0.005
4,4'-DDD	2.9	0.001		0.001	0.004
4,4'-DDT	2.1	0.001		0.001	0.004
Aroclor 1016/1242	•	0.01		0.001	
Aroclor 1260	-				0.02
Aroclor 1254	*			0.001	
Inorganic Compounds, mg/K	g				•
Arsenic	7.5 or SB	6.8	11	2.5	3.7
Mercury	0.1 or SB	0.1	0.15	0.04	
Beryllium	1 or SB				0.7
Barium	300 or SB	440	287	244	166
Cadmium	1 or SB		3.3		
Cobalt	30 or SB	6.2	3.8	4.8	6.7
Chromium	10 or SB	24.6	24.5	18	24.9
Copper	25 or SB	52.9	48.8	22.1	31.3
Iron	2000 or SB	132000	115000	38800	21100
Manganese	SB	249	255	191	411
Nickel	13 or SB	18.7	21.7	17.1	23.4
Strontium	-	136	84.7	52.2	56.3
Titanium	-	121	174	127	246
Vanadium	150 or SB	21.8	27.7	20.5	32.7
Zinc	20 or SB	387	267	93	117
Lead	30 or SB	63.3	64.2	38.1	65.3
Aluminum	SB	11700	13400	11100	17800
Calcium_	SB	53200	21800	21200	31000
Potassium	SB	2620	3390	2550	4300
Magnesium	SB	6940	7320	6350	9700
Sodium	SB	281	290		219

Note: (1) Soil Cleanup objective from NYSDEC January 24, 1994 TAGM 4046.

Shading represents concentrations that exceeded the NYSDEC TAGM 046 Values.

Blank cells indicate analyte was not detected.

"-" - NYSDEC TAGM 4046 Value is not available.

SB - Site Background.

J - Indicates an estimated value.

B - Analyte was found in the associated blank.

0266-325/HPBG Page 1 of 2

TABLE A-4 (cont'd) NEW YORK STATE DEPT. OF ENVIRONMENTAL CONSERVATION BOTANICAL GARDENS SITE

New York State Dept. of Health Soil Analytical Data

Parameter	NYSDEC	5 S-1	S-2	*.≣∦[S-3':	- S-4
	TAGM Values(1)		4 G		April 1
Volatile Organic Compounds	, ug/Kg				
Acetone	200	490		230	100
Methylene Chloride	100			20	11
Chloroform	300				46
Semivolatile Organic Compo	unds, ug/Kg	•	_		
4-Methyl Phenol	900				2 J
2,4,5-Trichlorophenol	100				8 J
Acenaphthylene	41,000				6 J
Acenaphthene	50,000			10 J	6 J
Dibenzofuran	6200			15 J	7 J
Fluorene	50,000			27 J	14 J
Pentachlorophenol	1000				39 J
Anthracene	50,000				27 J
Phenanthrene	50,000	160 J		160 J	160 J
Fluoranthene	50,000	350 J		170 J	180 J
Pyrene	50,000	200 J		95 J	100 J
Chrysene	400				14 J
Benzo(b)fluoranthene	1100				9 J
Benzo(k)fluoranthene	1100				6 J
Benzo(a)pyrene	61				8 J
Butyl benzyl phthalate	50,000				6 J
Di-n-butyl phthalate	8100				29 J
bis(2-ethylhexyl)phthalate	50,000	190 ЈВ		320 ЛВ	50 JB

Note: (1) Soil Cleanup objective from NYSDEC January 24, 1994 TAGM 4046.

Shading represents concentrations that exceeded the NYSDEC TAGM 046 Values.

Blank cells indicate analyte was not detected.

"-" - NYSDEC TAGM 4046 Value is not available.

SB - Site Background.

J - Indicates an estimated value.

B - Analyte was found in the associated blank.

0266-325/HPBG Page 2 of 2