Report

Phase II Investigation One-Acre Site

City of Niagara Falls Niagara Falls, New York

October 1996

REPORT

Phase II Investigation One-Acre Site

City of Niagara Falls Niagara Falls, New York

James T. Mickam, C.P.G., Vice President

Karen L. Moran, P.E., Vice President

October 1996

O'Brien & Gere Engineers, Inc. 5000 Brittonfield Parkway Syracuse, New York 13221

Prepared by:

Peter Bogardus, Project Hydrogeologist Karen Faiso, Data Management Chawn O'Dell, Hydrogeologist Deborah Wright, Managing Hydrogeologist

Reviewed by:

Christin Gachowski, Sr. Project Hydrogeologist

Contents

1.	Introduction
	1.1. Site description
	1.2. Previous investigations
	1.3. Report organization
2.	Investigation
	2.1. Background information review
	2.2. Previous investigation results
	2.3. Field methods
	2.3.1. Surface soil
	2.3.2. Subsurface soil sampling
	2.3.2. Subsurface soil sampling
3.	Investigation results
	3.1. Site geology/hydrogeology
	3.2. Data usability
	3.3. Analytical results
	3.3.1. Surface soils
	3.3.2. Subsurface soil samples
	3.3.3. Ground water
	3.3.4. TCLP Analyses
4.	Summary
	4.1. Summary
	4.2. Conclusions
Re	ferences

Phase II Investigation - One-Acre Site						

Tables

- 1 Surface Soil Descriptions
- 2 Surface Soils Semivolatile Organic Compounds
- 3 Surface Soils Pesticides/PCBs
- 4 Surface Soils Inorganics
- 5 Surface And Subsurface Soil Lead and Chromium Concentrations
- 6 Subsurface Soil-volatile Organic Compounds
- 7 Subsurface Soil Semivolatile Organic Compounds
- 8 Subsurface Soil-PCB/Pesticides
- 9 Subsurface Soil Inorganics
- 10 Ground Water Volatile Organic Compounds
- 11 Ground Water Semivolatile Organic Compounds
- 12 Ground Water PCB/Pesticides
- 13 Ground Water Inorganics
- 14 TCLP Analysis

Figures

- 1 Location Map
- 2 One-Acre Site Dimensions
- 3 Previous Sample Locations
- 4 Soil Sample Location Map and Lead Concentrations
- 5 Subsurface Soil Location And Chemical Concentration Map

Appendices

- A Soil Boring Logs and Monitoring Well Completion Diagrams
- B Purge Water and Decontamination Fluids Laboratory Characterization
- C Niagara Falls Background Concentrations (letter from NCHD to NYSDEC dated 1987)
- D NYSDEC S-Area and Buffalo Avenue Analytical Tables

Phase II Investigation - One-Acre Site		

1. Introduction

O'Brien & Gere Engineers, Inc. (O'Brien & Gere) was retained by the City of Niagara Falls to complete a Phase II Investigation of the One-Acre parcel. The One-Acre parcel, now referred to as the One-Acre site, is located within the City of Niagara Falls Corporate Limits immediately south of Buffalo Avenue and adjacent to the eastern border of the existing City of Niagara Falls Water Treatment Plant (WTP) (See Figure 1). The north, south and eastern side of the site is surrounded by the de-listed portion of the Buffalo Avenue site which is the location of the new City of Niagara Falls WTP currently under construction (see Figure 2). The Occidental Petroleum Corporation S-Area is located approximately 1000 ft west of the site.

The One-Acre site was originally a portion of the de-listed Buffalo Avenue Site (Former site #932080B). The One-Acre site was not de-listed as elevated concentrations of lead and chlorinated benzene compounds were detected in subsurface soils and ground water. Coincident with the de-listing of the Buffalo Avenue Site, the One-Acre site was annexed to the Eastern Area of the City of Niagara Falls WTP Site which is currently a Class 2a in the New York State Department of Environmental Conservation (NYSDEC) Registry of In-Active Hazardous Waste Sites (site code #932080A). This classification signifies that sufficient data does not exist to allow the NYSDEC to properly classify the site.

1.1. Site description

The topography of the site is generally flat with surface elevations of approximately 573 ft above mean sea level. Presently, the site is a vacant field surrounded by chain link fence. Access to the site is limited to authorized personnel only.

The site is part of a former low lying area that was filled. Miscellaneous fill material was reportedly placed at the site between the 1930's and 1950's to reclaim land to facilitate construction in the area. The miscellaneous fill material reportedly consists of construction debris and potentially incinerator refuse. Between 1958 and 1963, "shot rock," which consists of gravel size

angular dolostone in a matrix of reddish brown sand, was placed atop the miscellaneous fill. This "shot rock" was associated with the construction of the NYPA power project.

1.2. Previous investigations

Malcolm-Pirnie and Dames & Moore were retained by the City of Niagara Falls to complete preliminary and Phase II investigations at the former Buffalo Avenue site which included the One-Acre site. As part of the preliminary site investigation, Malcolm-Pirnie completed three soil borings designated as BH-4, BH-5 and BH-6 at the One-Acre site. As part of the Phase II investigation, monitoring wells MW-7S and MW-7D were installed and ground water samples were collected and analyzed from these wells.

The majority of investigatory activities completed at the One-Acre site were completed by O'Brien & Gere in 1991 as part of the Buffalo Avenue Site Investigation (O'Brien & Gere, 1991). The investigatory tasks completed include:

- Sampling and analysis of ground water from monitoring wells MW-7S and MW-7D.
- Surface soil sampling and analyses at two locations (SS-20 and SS-23).
- Subsurface soil sampling and analysis at nine locations(SB-27, SB-28, SB-29, SB-33, SB-33A, SB-33B, SB-33C, SB-33D and SB-33E).

1.3. Report organization

This Phase II Report is divided into four sections. The contents of each section of this report are summarized below.

- Section 1 includes the introduction, site description, previous investigations, and the report organization.
- Section 2 describes background data, previous investigation results, and the field methods utilized in this investigation.

- Section 3 discusses site geology and hydrogeology, and discusses the results of surface and subsurface soil analyses.
- Section 4 presents a summary of the results as well as conclusions.

2. Investigation

2.1. Background information review

Background information was reviewed to evaluate historic disposal procedures at the site. The origin of the waste is an important factor in establishing if the solid waste has the potential of being listed as a hazardous waste under 6 NYCRR Part 371. Documents reviewed as part of this investigation were obtained from the City of Niagara Falls and are listed in the references section of this report. In summary, the previous investigations documented that the fill in the area likely progressed in three distinct phases as summarized below:

- Miscellaneous waste which includes refuse, incinerator residue and miscellaneous debris were alleged to be disposed of on-site from the 1930's to the 1950's.
- 2. Dredged material from the construction of the Niagara River Ice Canal was allegedly disposed on the property by the NYPA.
- Soil, rock (i.e. "shot rock") and other materials excavated by the NYPA during construction of the Niagara Power Project conduits were placed onsite from 1958 to 1963.

Additional information about the origin of fill material specifically placed within the boundaries of the One-Acre site was not found during this information review.

2.2. Previous investigation results

As previously mentioned, Malcolm-Pirnie and Dames & Moore were retained by the City of Niagara Falls to complete preliminary and Phase II investigations, respectively. Additional information about the One-Acre site was obtained during the Buffalo Avenue Site Investigation completed by O'Brien & Gere and is summarized below:

- Two surface soils samples designated as SS-20 and SS-23 were collected
 at the One-Acre site during the Buffalo Avenue Site Investigation (see
 Figure 3). The primary concern in surface soil were the elevated
 concentrations of lead and chromium at SS-20 in the northern portion of
 the site. A complete discussion of the analytical results are presented in
 Section 3.3.1.
- Subsurface soils samples were collected at nine locations at the One-Acre site as part of the Buffalo Avenue Site Investigation. A complete discussion of the compounds detected in the subsurface soil is presented in section 3.3.2 of this report. In summary the One-Acre site was not delisted as elevated lead concentrations were detected in the subsurface soil at SB-33, located in the northern portion of the site
- A second reason that the One-Acre site was not de-listed was that chlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene, which are considered indicators parameters of S-Area materials, were detected in the ground water at monitoring wells MW-7S and MW-7D. The concentration of individual compounds ranged between 2.7 and 7 μg/L. Data from soils collected between 5 and 13.5 ft bgs at soil boring SB-27, located approximately 20 ft south of MW-7S also contained 1,3-dichlorobenzene, 1,4-dichlorobenzene and 1,2,4-trichlorobenzene at concentrations ranging from 730 μg/Kg to 2,300 μg/Kg.

It is speculated that the ground water quality in this area was affected by soils in the vicinity of the monitoring well and therefore are localized in extent and are not migrating.

2.3. Field methods

The field methods utilized during this Phase II Investigation were completed in accordance with the protocols presented in the New Water Treatment Plant Site Suitability Assessment Work Plan and the New Water Treatment Site Acquisition Investigation Work Plan prepared by O'Brien & Gere in 1991. These work plans were approved by the NYSDEC.

The laboratory data completed as part of this investigation contained sufficient documentation and QA/QC samples to allow for the completion of a data

useability assessment. The results of the data useability assessment are summarized in section 3.2.

2.3.1. Surface soil

As part of the Phase II investigation, six surface soil samples were collected at the One-Acre site in the immediate vicinity of SB-33 to evaluate the concentration of lead in the surface soils.

Surface soil sampling locations were selected based on previous analytical results which indicated elevated levels of lead in the subsurface at SB-33 and to the west of SB-33. Samples designated SB-33F, SB-33G, SB-33I, SB-33J, and SB-33K were collected at approximately 25-foot intervals away from SB-33 to the south, southwest, northwest, north and east (see Figure 4). The sample SB-33H was collected 75 ft west of SB-33 to assess the western extent of elevated lead concentrations. Soil descriptions are presented on Table 1.

Surface soil samples SB-33F through SB-33K were collected from a depth of 0 to 2 feet by driving a split-spoon sampler. The samples were analyzed for total lead and leacheable lead using TCLP analyses. The samples were submitted to O'Brien & Gere Laboratories, Inc. for laboratory analysis. Samples were not analyzed for EPTOX lead as was originally proposed based on discussions with Mr. Glenn May, the on-site NYSDEC representative. Surface soil results collected as part of this investigation, as well as surface results collected in 1991 as part of the Buffalo Avenue Site Investigation, are presented on Tables 2 through 5 and illustrated on Figure 4.

Each split spoon was cleaned using an alconox wash, methanol rinse and a final distilled water rinse. Samples were immediately transferred to coolers packed with ice. Proper chain of custody documentation was maintained.

2.3.2. Subsurface soil sampling

Five soil borings, designated SB-7A through SB-7E, were completed as part of the Phase II Investigation at the One-Acre site to evaluate the lateral extent of chlorinated benzene compounds previously identified at monitoring well MW-7S and soil boring SB-27. Locations of the soil borings designated as SB-7A through SB-7E are illustrated on Figure 5.

Additionally, one soil boring designated as SB-7F was completed adjacent to MW-7S (See Figure 5). A subsurface soil sample from the boring was analyzed using TCLP analyses to assess if the fill material present in the One-Acre site is characteristic of hazardous waste as defined in 40 CFR Part 261.

The soil borings were completed using hollow stem auger drilling methods. Continuous split-spoon soil samples were collected from the ground surface to the base of the fill material, in accordance with ASTM method D-1586-84. The soil samples were described by the on-site O'Brien & Gere hydrogeologist. The soil description included moisture content, color, density, and grain size distribution. A portion of each soil sample was placed in a glass jar and covered with aluminum foil. Each sample was allowed to equilibrate at a temperature of 70°F. A photoionization detector (PID) with a 10.2 eV lamp was then used to monitor the headspace of each sample. Samples for analyses were selected based on PID readings and visual inspection. Subsequent to completion, the boreholes were grouted to the ground surface. Soil descriptions and PID readings are described on the soil boring logs contained in Appendix A.

Subsurface samples from soil boring SB-7A through SB-7E were submitted to O'Brien & Gere Laboratories, Inc. for analyses using NYSDEC ASP with Superfund deliverables. The following analyses were completed:

- VOCs via NYSDEC ASP method 91-1
- SVOCs via NYSDEC ASP method 91-2
- PCB/Pesticides via NYSDEC ASP method 91-3.
- Chromium and lead via ASP methodologies.

Four additional parameters were also quantified with the SVOC analyses and included: 1,3,5-trichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4,5-tetrachlorobenzene and 1,2,3,4-tetrachlorobenzene. Samples could not be analyzed for 1,2,3,5-trichlorobenzene as planned. This compound coeluted and could not be distinguished from other compounds. Analytical results are presented in Tables 5 through 9.

QA\QC samples collected included a field duplicate, equipment blank, matrix spike and matrix spike duplicate. A laboratory trip blank was also included in each cooler that contained samples for VOC analyses.

A subsurface sample from soil boring SB-7F was submitted to O'Brien & Gere Laboratories, Inc. for analysis according to the constituents outlined in 40 CFR Part 261. The following analyses were completed:

- TCLP VOCs via USEPA method 8240
- TCLP SVOCs via USEPA method 8270
- TCLP Pesticides via USEPA method 8080
- TCLP Inorganics via USEPA 6000-7000 series

NYS category B deliverables were provided by the laboratory for validation purposes of the SB-7F subsurface fill samples. QA/QC samples included a matrix spike, matrix spike duplicate and a blind duplicate. A trip blank was deemed not necessary given the higher detection limits associated with the TCLP methods. The analytical results are presented on Table 14.

Drilling equipment was decontaminated prior to initiating activities, between each boring location, and at the completion of the field program. The split-spoon was decontaminated between each location using an alconox wash, methanol rinse and a final distilled water rinse. Decontamination fluids, drill cuttings and purge water generated during installation, sampling, and development were placed in labeled New York State Department of Transportation (NYSDOT) approved 55-gallon drums, and were temporarily stored at a designated location at the WTP. Samples of the drums of were collected for characterization. Laboratory results are presented in Appendix B. The water was subsequently discharged to the City of Niagara Falls Waste Water Treatment Plant (WWTP) in accordance with applicable regulations. The drill cuttings will be placed in the near by S-Area landfill.

3. Investigation results

3.1. Site geology/hydrogeology

The unconsolidated deposits identified at the One-Acre site in descending order from the ground surface are "shot rock", miscellaneous fill lacustrine clay and glacial till. Beneath the till, dolostone bedrock is present (O'Brien & Gere, 1991c).

"Shot rock" is present immediately below the surface and typically extends to approximately 5 ft below the ground surface. The miscellaneous fill is also approximately 5 ft thick and extends to a depth of 10 ft below ground surface. The total thickness of the miscellaneous fill material and "shot rock" are illustrated on Figure 6. Beneath the miscellaneous fill material a lacustrine clay was encountered that extends to 28 ft below the ground surface at MW-7D. The till at MW-7D was 6.5 ft thick and extended to 34.5 ft below the ground surface, where bedrock is encountered. The bedrock is dolostone from the Silurian Lockport Group.

Ground water was encountered approximately 10 ft below the ground surface at MW-7S in July 1991 (O'Brien & Gere, 1991c). The overburden ground water flow direction in the area is generally to the south-southwest towards the Niagara River.

3.2. Data usability

A data usability assessment was performed in accordance with Guidance for Data Usability in Risk Assessment (USEPA Office of Emergency and Remedial Response 1992). The data usability assessment summarizes the results of both the Eastern Area and the One-Acre site. A data useability assessment was not completed for each separate site. The overall goal of this assessment was to evaluate the potential cumulative effects of data quality issues on the final data generated by the laboratory. Additionally, an assessment of the need for a complete data validation was performed.

The data usability assessment was performed on the samples collected during this investigation. The data were collected according to the scope of work specified in the Work Plan. The analytical methods specified in the scope of work were performed according to method criteria.

Additional questions that were answered during the data usability assessment involved various factors that could potentially impact the data quality. Chain of custody was maintained and field and analytical laboratory records were complete. The laboratory performed a typical level of review for this type of data package deliverable.

The laboratory method detection limits met method criteria; however, not all laboratory detection limits met regulatory standards.

The parameters that had detection limits greater than the regulatory limits are as follows:

Analyte	Regulatory Standard ($\mu g/L$)	Method Detection Limit (μg/L)
hexachlorobenzene	0.35	0.71
pentachlorophenol	1	4.02
benzo(a)anthracene	0.002	1.13
chrysene	0.002	0.58
benzo(b)fluoranthene	0.002	1.14
indeno(1,2,3-cd)pyrene	0.002	0.63

It should be noted, however, that the regulatory limits identified are guidance values. While the laboratory detection limits do not meet regulatory standards, they did meet the sensitivity requirements of the analytical methods. This may affect the ability to interpret results with respect to standards and criteria; however, this deviation does not represent a significant impact to overall data quality and does not, in itself, necessitate a complete data validation.

Data quality with respect to *precision* was evaluated through the analysis of field and laboratory duplicate samples. Relative percent differences were calculated for field and laboratory duplicates and, for this investigation, the data were 100% usable with respect to precision.

Data quality with respect to accuracy is indicated by matrix spikes, laboratory control samples, and surrogate recoveries. The acid fraction of one subsurface soil for SVOCs analyses was determined to be unusable based on matrix spike recoveries less than 10 %. The results for two PCB/pesticides analytes were determined to be unusable in one surface soil sample based on matrix spike recoveries less than 10 %. Therefore, data usability with respect to accuracy was 99% for SVOC analyses and greater than 99% for PCB/pesticides.

The calculations for data usability are presented below:

Total # analytes per SVOC analyses = 88 Total # SVOC analyses = 17 samples Total # of SVOC analytes analyzed = 1496

Rejected SVOC compounds(acid fraction in one sample) = 14 Data Usability Calculation =

$$1496 - \frac{14}{1496} \times 100 = 99.06\%$$

Total # analytes per PCB/pesticide analyses = 28 Total # PCB/pesticide analyses = 17 samples Total # of PCB/pesticide analytes analyzed = 476

Total of rejected PCB/pesticides = 2
Data Usability Calculation =

$$476 - \frac{2}{476} \times 100 = 99.57\%$$

Data Usability Calculation = Holding times, sample preservation, and blank sample results are indicators of the representativeness of the analytical data. Data usability with respect to representativeness was unaffected by low level blank contamination detected in some blanks associated with these samples and for this investigation, the data were 100% usable with respect to representativeness.

Comparability is maintained provided that the analytical methods remained the same over time. A major component of comparability is the use of standard reference materials for calibration and QC. These standards are compared to other unknowns to verify their concentrations. Since standard analytical methods and reporting procedures as specified in the Work Plan were consistently used by the laboratory, the data usability with respect to comparability was not affected.

Data usability with respect to *completeness* is the percentage of sample results that have been determined to be usable during the data evaluation process. Data usability with respect to completeness was greater than 99% overall.

Data completeness is calculated as follows for each individual method:

% Completeness = <u>Total Number of sample Results "Usable" for</u>

<u>Qualitative and Quantitative Purposes</u>

Total number of Results Reported for the Individual Method

(Number of total sample results = number of analytes per sample X number of samples)

Based on the results of the usability assessment, a further complete data validation is not needed for these samples to be used as part of this investigation.

3.3. Analytical results

As stated in Section 1.1 of this document, the site is located approximately 1000 ft. east of Occidental Petroleum Corporation S -Area. Compounds identified by the NYSDEC to be indicators of S-Area materials include:

VOCs: vinyl chloride, 1,2-dichloroethene, trichloroethene, benzene, tetrachloroethene, and chlorobenzene.

SVOCs: 1,3 -dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, hexachlorobutadiene, hexachlorocyclopentadiene, 2,4,5-trichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, 1,2,3,4-tetrachlorobenzene, and octachlorocyclopentene.

In the discussions of the analytical results which follow, the VOCs and SVOCs have been subdivided into groups. For VOCs, the S-Area indicator compounds are discussed separately from the other VOCs detected. The SVOCs have been subdivided into three groups for clearer presentation of the results: S-Area indicator compounds, polynuclear aromatic hydrocarbons (PAHs), and other SVOCs.

Appendix D contains historical analytical data collected at Buffalo Avenue.

3.3.1. Surface soils

Two surface soils samples designated as SS-20 and SS-23 were collected at the One-Acre site during the Buffalo Avenue Site Investigation (see Figure 3). In addition, six surface soil samples designated as SB-33F through SB-33K were collected as part of the Phase II Investigation. The laboratory data collected from the One-Acre site during the Buffalo Avenue Site Investigation as well as the Phase II Investigation are presented on Tables 2 through 5.

Volatile organic compounds

Surface Soils SS-20 and SS-23 were not analyzed for VOCs.

Semivolatile organic compounds

S-Area SVOCs

The only S-Area SVOC detected in surface soils was hexachlorobenzene in sample SS-20 at 210 μ g/Kg (see Table 2). This concentration is below the 350 μ g/kg detected at SS-22 located at the de-listed Buffalo Avenue site. No S-Area SVOCs were detected at SS-23 located in the southern portion of the site.

PAHs

PAHs which can be due to asphalt or asphalt like material were detected in each sample. The following PAHs were detected in the surface soil at the site: naphthalene, 2-methylnaphthalene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, ideno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene.

The data indicate that concentrations of PAHs ranged between 9,474 μ g/Kg at SS-20 in the northern portion of the site to 1048 μ g/Kg at SS-23 in the southern portion of the site. The concentrations of PAHs detected are typical of Niagara Falls surface soils (NCHD, 1987).

Other SVOCs.

Three other SVOC compounds were detected in the surface soil. Dinbutylphthalate and bis(2ethylhexyl)phthalate which are common plasticizers and are commonly found is Niagara Falls surface soils were detected at concentrations ranging between 300 and 4,000 μ g/Kg. The only other SVOC compound detected was dibenzofuran at 65 μ g/Kg at SS-20 located in the northern portion of the site.

PCBs/pesticides

No PCBs were detected in the two surface samples and low concentrations of only two pesticide compounds were detected at SS-20 (see Table 3). The pesticides detected at SS-20 were 4.4'-DDE at 28 μ g/Kg and heptachlor epoxide at 2.1 μ g/Kg. 4,4'-DDE was not detected at the de-listed Buffalo Avenue Site; while the maximum concentration of heptachlor epoxide detected at the de-listed Buffalo Avenue site was 59 μ g/Kg. No pesticides were detected at SS-23 located in the southern portion of the site.

Inorganics

With respect to inorganics seven constituents were detected at concentrations greater than typical surface soil concentrations presented in several articles (Shacklette et al(1971 and 1984), Bowen (1979), and Walsh (1981) (see Table 4). Of the constituents detected only lead at SS-20 located in the northern portion of the site was elevated with respect to other surface soils in the area. Additional surface soil samples designated as SB-33F through SB-33 K were collected at 50 ft intervals around SS-20 during the Phase II Investigation. The samples were analyzed for only lead and TCLP lead as agreed upon with the NYSDEC (see Table 5). The lead, TCLP and EPTOX lead data collected as part of previous investigations as well as this Phase II Investigation are illustrated on Figure 4.

The results indicate that elevated lead concentrations in the surface soil are limited to a small area in the vicinity of SS-20. The maximum concentration of total lead detected in the surface soil at the de-listed Buffalo Avenue site was 449 mg/Kg at location SS-5 (O'Brien & Gere, 1991a). The concentrations of lead detected in the surface soil at the SS-20 area were below the maximum concentration noted at Buffalo Avenue with the exception of SB-33J, where 527 mg/Kg of lead was detected. Total lead concentrations at other locations ranged from 33 mg/Kg at SS-23 to 318 mg/Kg at SB-33I. In general, high concentrations of lead concentrations are found north and west of SB-33, and lower concentrations are found south and east of SB-33 (see Figure 4).

Samples were also analyzed for TCLP lead to evaluate the leaching potential of lead from the soils. A soil sample with a TCLP lead concentration greater than 5 mg/L exhibits the characteristics of hazardous waste as set forth by 40 CFR Part 261. The data indicate that only the surface soil sample collected at SB-33G where TCLP lead was detected at 21 mg/Kg exceeded the 5 mg/L criteria (see Table 5). The remaining TCLP lead concentrations ranged from non-detect at two locations (SB-33I and SB-33K) to 2 mg/L at SB-33H. The variations in concentrations are due to the heterogeneous nature of the fill material at the One-Acre site.

3.3.2. Subsurface soil samples

Soil borings designated as SB-27, SB-28, SB-29 and SB-33 were completed in the One -Acre Parcel during the Buffalo Avenue Site Investigation. The analytical data are presented on Tables 5 through 9 and are illustrated on Figures 4 and 5. The results of previous investigations indicated elevated concentrations of chlorobenzene components in the vicinity of SB-27. Based on this information, five soil borings designated as SB-7A through SB-7E were completed during the Phase II Investigation. Subsurface samples collected during the Phase II Investigation were analyzed for VOCs, SVOCs, PCB/pesticides, and inorganics (lead and chromium only) in accordance with NYSDEC ASP procedures.

Results from SB-33 located in the northern portion of the site indicated that elevated concentrations of lead were noted in the subsurface soil samples. Five additional soil borings designated as SB-33A through SB-33E were completed in October 1991 to evaluate the lateral extent of lead contamination in subsurface soils in the northern portion of the site. The results of these samples are discussed below as they were not discussed in Buffalo Avenue Site Investigation Report. The lead data is summarized on Table 5 and illustrated on Figure 4.

Volatile organic compounds

The results of the VOC analyses are presented on Table 6. Methylene chloride, acetone and 2-butanone were detected in each sample during the Phase II Investigation. These compounds are usually associated with laboratory interferences and, therefore, will not be discussed further.

S-Area VOCs

In general, low concentrations of S-Area VOCs were detected at the One-Acre site. No S-Area VOCs were detected in six of thirteen samples collected. At other locations, the concentrations ranged from 0.3 μ g/Kg at SB-33(SR) to 170 μ g/Kg at SB-7E. The data indicate that the highest concentrations of S-

Area VOCs are found in the south and southwestern portions of the site (see Figure 5).

The concentrations of individual parameters were generally similar to those detected at the de-listed Buffalo Avenue Site with the exception of SB-7C and SB-7E(dup). At SB-7C, benzene was detected at 74 μ g/Kg, whereas the highest concentration detected at the de-listed Buffalo Avenue site was 1.0 μ g/Kg. At SB-7E(dup), chlorobenzene was detected at 160 μ g/Kg which is higher than 8 μ g/Kg detected at the de-listed Buffalo Avenue Site. However the sample collected from SB-7E contained only 12 μ g/Kg of chlorobenzene, which marginally exceeds the highest concentration detected at de-listed Buffalo Avenue site. This variation is likely due to the heterogeneous nature of the soil and the distribution of compounds within the fill.

Other VOCs

Other VOCs detected in the subsurface soils at the One-Acre site included carbon disulfide, chloroform, 1,1,1-trichloroethane, trans-1,3-dichloropropene, toluene, ethylbenzene, styrene and xylene. No other VOCs were detected in six samples: SB-7A, SB-27SR, SB-28W, SB-29SR, SB-29W, and SB-33W. Low concentrations of other VOCs were detected at concentrations ranging from 1 to 13 μ g/Kg at SB-7B, SB-7D, SB-27W, SB-28SR, SB-33SR. Similar to the S-Area VOCs, the highest total concentrations of other VOCs were detected at SB-7C (357 μ g/Kg) and SB-7E (61 μ g/Kg).

At SB-7C, petroleum related compounds including toluene, ethylbenzene, and xylene were detected at individual concentrations ranging from 170 μ g/Kg to 18 μ g/Kg. These concentrations are greater than those detected at the de-listed Buffalo Avenue Site. In addition, styrene and trans-1,3-dichloropropene were detected at 23 and 2 μ g/Kg, respectively. These compounds were not detected at the de-listed Buffalo Avenue site.

At SB-7E and SB-7E(dup), the total concentrations of "other VOCs" were 53 μ g/Kg and 61 μ g/Kg. The concentrations of most compounds were similar in these two samples with the exception of carbon disulfide and chloroform. Chloroform was detected in SB-7E and the associated duplicate sample (SB-7E (dups) at concentrations of 45 μ g/Kg and 8 μ g/Kg. Similarly, carbon disulfide was detected at 38 μ g/Kg at SB-7E (dup) and at 2 μ g/Kg at SB-7E.

Additional other VOCs detected at these locations were either below or marginally above the maximum concentrations detected at the de-listed Buffalo Avenue Site.

18

Semivolatile organic compounds

The results of the SVOC analyses are presented on Tables 7 and are illustrated on Figure 5. The data indicated that primarily S-Area SVOCs and PAHs were detected.

S-Area SVOCs

No S-Area SVOCs were detected in eight of the thirteen samples collected. In general, the data indicate relatively low levels of S-Area SVOCs are found in the south and south western portion of the One-Acre site (Figure 5). Furthermore, the highest concentrations were detected in the deeper samples collected from the miscellaneous waste fill material, as compared to concentrations observed in the shallow samples collected from the "shot rock".

S-Area compounds were not detected at soil boring SB-7A, SB-7B and SB-7C, SB-29 and SB-33 which are located southeast and north of MW-7S. At soil boring SB-27 and SB-28 samples were collected from both the "shot rock" and miscellaneous waste fill material. The samples collected from the "shot rock" at these locations did not contain any S-Area SVOCs. However S-Area SVOCs at SB-27 and SB-28 were detected in the deeper samples, collected from the miscellaneous waste fill with total concentrations ranging from 4310 to 870 μ g/Kg. The total concentrations of S-Area SVOCs from the miscellaneous waste material at SB-7D and SB-7E were 3400 and 4280 μ g/kg, respectively. The highest total concentration of these compounds detected at the de-listed Buffalo Avenue site was 1580 μ g/Kg at SB-22 (O'Brien & Gere, 1991d).

PAHs

PAHs which can be due to asphalt or asphalt like material were detected in twelve of thirteen samples. The following PAHs were detected at the site: naphthalene, 2-methylnaphthalene, 2-chloronaphthalene, acenaphthalene, acenaphthene, fluorene, phenenathrene, anthracene, fluoranthene, pyrene, benzo(a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, ideno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene.

The maximum concentration of total PAHs detected at the de-listed Buffalo Avenue site was 142,500 μ g/Kg at SB-15 (O'Brien & Gere, 1991c). The total PAH concentration in each sample collected from the One- Acre site was below the maximum total PAH concentration detected at the de-listed Buffalo Site, with the exception of SB-7D and SB-33W. At SB-7D, located in the southern portion of the site, the total PAH concentration was 934,200 μ g/Kg. At SB-33W, located in the northern portion of the site, the total PAH concentration was 323,620 μ g/Kg. Given the location of these samples at near

opposite ends of the site, and the presence of significantly lower concentrations of PAHs between the samples, it appears that the elevated concentrations are localized and are due to the heterogenous nature of the fill material.

Other SVOCs

Other SVOCs that were detected in the subsurface soils at the site include: phenol, 2-methylphenol, 4-methylphenol, 2,4-methylphenol, 4-chloroaniline, dibenzofuran, carbazole, di-n-butylphthalte, bis(2-ethylhexyl)phthalate, and 3,3'-dichlorobenzidine. The total concentration of other SVOCs ranged from non-detect at SB-27 to 122,800 μ g/kg at SB-7D.

In general, the data indicate that the highest concentrations of other SVOCs are primarily found in the south and southwest portions of the One-Acre site. The majority of these compounds were not detected at the de-listed Buffalo Site.

At SB-7D, the majority of other SVOC concentrations are due to 3,3'-dichlorobenzidine and carbazole which were detected at 91,000 μ g/Kg and 27,000 μ g/Kg. The phenolic based compounds including phenol, 2-methylphenol, 4-methylphenol, 2,4-methylphenol were only detected at SB-7C located in southern portion of the site and at SB-33 located in the northern portion of the site. The distribution of these compounds is highly variable and is likely due to the heterogenous nature of the fill material.

Other compounds detected in most samples were bis(2-ethyhexyl) phthalate and di-n-butyphthalate, which are common plasticizers. The compounds are commonly found in Niagara Falls surface soils or may be due to sampling and/or laboratory contamination. Dibenzofuran was detected in soil borings SB-7A through SB-7E, SB-27W, SB-28W, SB-29SR, and SB-33W at concentrations ranging from 28 to 6000 μ g/Kg. Dibenzofuran was not detected at the de-listed Buffalo Avenue Site.

PCB/Pesticides

Data collected from the One-Acre in 1991 as part of the Buffalo Avenue Site Investigation as well as data collected during the Phase II Investigation are summarized below and on Table 8. The data indicate that no PCB compounds were detected at any of the subsurface sample locations with the exception of 2200 μ g/Kg of Aroclor 1242 at SB-27W (5 - 13.5 ft bgs).

Pesticides were detected in eight of thirteen subsurface sample collected during this investigation. The highest total pesticide concentration from the de-listed

Buffalo Avenue site was 69 μ g/Kg with individual compounds not exceeding 24 μ g/Kg.

The total concentration of pesticides at most locations was below the maximum total concentration detected at the de-listed Buffalo Avenue site with the exception of three samples SB-29SR, SB-28 W, and SB-7E located in the central portion of the site. At these locations the pesticides detected at the highest concentrations were delta-BHC and beta-BHC, with concentrations ranging from $6.8 \mu g/Kg$ to $2900 \mu g/Kg$.

A duplicate sample at SB-7E contained concentrations of pesticides 2 to 10 times lower for each individual parameter. The variability of pesticide concentrations illustrates the hetrogeonous nature of the fill material.

Inorganics

Data collected from the One-Acre site in 1991 as part of the Buffalo Avenue Site Investigation as well as data collected during the Phase II Investigation are summarized below.

The analytical data from SB-27, SB-28, SB-29 and SB-33 are presented on Table 9. The data indicate that six elements were detected slightly above typical background concentrations (Shacklette, et. al). However, concentrations of lead, chromium and mercury at several locations appeared to be anomalous. Therefore, selected samples were analyzed for TCLP and EPTOX lead, chromium and mercury. As previously discussed, the analytical data indicate that all samples were below regulatory criteria with the exception of SB-33 which had an EPTOX lead concentration of was 39.1 mg/L. However, the TLCP lead result for this sample was only 0.66 mg/L.

Based on the elevated EPTOX concentration at SB-33, five additional subsurface soils samples were collected at 50-ft intervals away from SB-33 and a sample was collected adjacent to SB-33 in October 1991. The results indicated that the concentrations of lead in the subsurface soils ranged from 32 mg/Kg at SB-33B to 330 mg/Kg at SB-33D located to the west. Only the sample from SB-33 (4 to 7 ft) exhibited characteristics of hazardous waste per EPTOX analyses. Samples collected from SB-33A through SB-33E did not exhibit characteristics of hazardous waste per TCLP criteria.

As part of the Phase II Investigation completed in 1995, soil samples from SB-7A through SB-7E completed in southern portion of the site were analyzed for lead and chromium. Chromium and lead were detected in each of the subsurface soil sample as indicated on Table 2. Chromium was below the typical concentration detected in soil, with the exception of SB-7D where 42.6

mg/Kg was detected. However, this concentration is below the maximum concentration detected at the de-listed Buffalo Avenue Site. Lead levels ranged from 19.9 mg/Kg at SB-7A to 292 mg/Kg at SB-7D. These concentrations are above typical concentration in soils, but below the maximum concentration detected at the Buffalo Avenue Site.

3.3.3. Ground water

Monitoring wells MW-7S and MW-7D were installed at the One- Acre Site by Dames & Moore in 1987. Monitoring well MW-7S was installed in fill material to a depth of 11.8 ft bgs. Monitoring well MW-7D was installed in bedrock was completed at a depth of 44.3 ft bgs. As part of the Buffalo Avenue Site investigation completed in 1991 these monitoring wells were sampled on two occasions. The results of the 1991 analyses are summarized on tables 10 through 13 and are discussed below.

Volatile organic compounds

The results of the VOCs analyses are presented on Table 10.

S-Area VOCs

Chlorobenzene was the only VOC detected in the ground water at the One-Acre site. The New York Site Class GA standard for chlorobenzene is 5 μ g/L. In June 1991 chlorobenzene was detected at 5 μ g/L at MW-7D, but was not detected in a duplicate sample collected. Chlorobenzene was also not detected in the ground water sample collected from MW-7S in June 1991.

Chlorobenzene was detected during the September 1991 sampling event in both wells. The concentration of chlorobenzene at MW-7S was 6 μ g/L and the concentration at MW-7D was 2.7 μ g/L. In summary, the data indicate low levels of VOCs in ground water at the One-Acre site.

Other VOCs

No other VOCs were detected in the ground water at MW-7S and MW-7D.

Semivolatile organic compounds

The results of the SVOC analyses are summarized on Table 11. SVOC analyses were completed on one occasion as part the Buffalo Avenue Site Investigation.

S-Area SVOCs

S-Area SVOCs were detected at low concentrations at MW-7S. The compounds detected were 1,3 dichlorobenzene, and 1,4-dichlorobenzene at

individual concentrations of 6 μ g/L. The concentrations detected slightly exceed the NYS Class GA standard of 5 μ g/L for 1,2- dichlorobenzene and 4.7 μ g/l for 1,4-dichlorobenzene. S-Area SVOCs were not detected at monitoring well MW-7D. The data indicate that SVOCs have not migrated into bedrock.

PAHs

No PAHs were detected in ground water at the site.

Other SVOCs

No Other SVOCs were detected in ground water at the site.

PCB/Pesticides

The results of the PCB/Pesticide ground water analyses are presented on Table 12. The data indicate that no PCBs were detected in the ground water. In summary, low concentrations of several pesticides were detected in shallow and deep ground water.

The pesticides detected in shallow well MW-7S include aldrin, Alpha-BHC, Beta-BHC, Delta-BHC, endosulfan I, endrin, and heptachlor epoxide at concentrations ranging between 0.008 μ g/L and 0.81 μ g/L. Total pesticide concentrations have ranged between 0.064 and 1.046 μ g/L.

The ground water data collected from the shallow zone is similar to the other media in that the concentrations in a given sample can vary. A duplicate sample was collected at MW-7S during the June sampling event, indicated similar concentrations of most pesticides with the exception of Alpha-BHC. Alpha-BHC concentrations varied from 0.81 μ g/L to 0.089 μ g/L in a duplicate sample.

The only pesticide detected at MW-7D installed in bedrock was gamma-BHC at $0.16~\mu g/L$; however gamma-BHC was not detected in a duplicate sample collected. The concentration of gamma-BHC detected marginally exceeds the highest concentration of $0.12~\mu g/L$ detected at the de-listed Buffalo Avenue site.

Inorganics

Ground water samples for inorganics were collected for both total(unfiltered) and soluble (filtered) analyses. Results of these analyses are presented on Table 13. Filtered samples were collected from each well since the ground water exhibited turbidity values greater than 50 NTU at each location. Ground water samples which exhibit elevated NTU readings generally contain suspended sediment, which in turn contains inorganics. As required by the

analytical procedures, ground water samples are preserved with nitric acid. In samples with sediment, the preservation causes inorganics from the sediment to solubilize into the water. In our opinion samples for inorganic analyses collected from monitoring wells with a high turbidity are not considered representative of those inorganics which migrate with the ground water system. Filtered samples where the sediment is removed prior to preservation, are more likely to provide representative results of inorganics in solution.

In general, the data indicate that higher concentrations of inorganics in total (unfiltered) samples when compared to soluble (filtered) samples. Furthermore, lower concentrations of inorganics were detected at MW-7D installed in bedrock as compared to monitoring well MW-7S installed in fill material. The results of the total (unfiltered) analyses from MW-7D indicate that iron, magnesium, sodium, chromium, lead and manganese were detected at concentrations above NYS Class GA standards. In the filtered samples only sodium exceeded NYS Class GA Standards. It is likely that sodium detected at MW-7D is naturally occurring as other bedrock monitoring wells at the delisted Buffalo Avenue site contained similar concentrations of sodium. The results of the total (unfiltered) analyses from MW-7S indicate that antimony, chromium, iron, lead, manganese mercury, sodium and zinc were detected at concentrations above NYS Class GA Standards. The results of the soluble (filtered) analyses indicate that antimony, iron, lead, manganese and sodium were detected at concentrations marginally exceeding NYS Class GA standards.

3.3.4. TCLP Analyses

A subsurface sample was collected from soil boring SB-7F, located in the southern portion of the site in February 1996. The sample was analyzed to assess if the material is characteristic of hazardous waste using TCLP in accordance with 40 CFR part 261. The results of the analyses are summarized on Table 14.

In summary, based on the results of the VOC, SVOC and PCB/Pesticide analyses, the fill material is not characteristic of hazardous waste as defined by 40CFR Part 261

The data indicate that no metals were detected with the exception of lead at 11 mg/L. The concentration of lead detected exceeds the regulatory limit of 5 mg/L, therefore the sample exhibits characteristics of hazardous waste as set forth by 40 CFR Part 261. As a result of the elevated TCLP lead concentrations the sample was also analyzed for total lead. A total lead concentration of 3100 mg/Kg was detected.

3. Investigation results

In summary, with the exception of lead, the fill material at the One-Acre site is not characteristic of hazardous waste.

26

4. Summary

4.1. Summary

The One-Acre site is located immediately south of Buffalo Avenue. The north, south and western portions of the site are surrounded by the de-listed portion of the Buffalo Avenue Site, which is the location of the new City of Niagara Falls WTP currently under construction. The western portion of the site is bordered by the City of Niagara Falls - Eastern Area which is a Class 2A inactive hazardous waste site in the NYSDEC registry of inactive hazardous sites.

The overburden materials at the One-Acre site, in descending order from the ground surface are shot rock, miscellaneous fill, lacustrine clay, glacial till and bedrock. Background information reviewed documented that the fill in the area proceeded in three distinct phases as summarized below:

- Miscellaneous waste material which included incinerator refuse and other debris were alleged to be disposed of on-site from the 1930's to the 1950's.
- Dredged material from the construction of the Niagara River Ice Canal was allegedly disposed on the property by the NYPA.
- Shot rock and other material excavated by the NYPA during construction of the Niagara Power projects conduits were placed on-site from 1958 until 1963.

Ground water is generally encountered approximately 10 ft below the ground surface and flows to the south-southwest towards the Niagara River.

The analytical data indicate that the distribution of contaminants in surface soil and subsurface soil are highly variable across the site. The variability of contaminants at the site is indicative of the heterogenous nature of the fill material present at the site. Based on data from the previous investigations the primary concern was elevated lead concentrations noted in several samples

collected from the northern portion of the site, and the presence of organic compounds, primarily S-Area indicator compounds, in subsurface soils and ground water in the southern portion of the site. The sampling and subsequent analyses of samples collected during the Phase II investigation were focused on addressing these concerns.

The following discusses in more details the distribution of VOCs, SVOCs, inorganics and pesticides/PCBs in the media sampled. Analytical results for VOCs and SVOCs were divided into groups of compounds including, S- Area indicator parameters where they were identified to be present. S- Area indicator compounds are those associated with the Occidental Petroleum Corporation S-Area which is located approximately 1000 ft west of the site.

Volatile Organic Compounds

VOCs were detected in ground water and subsurface soil samples. Surface soil samples were not analyzed for VOCs. Monitoring wells MW-7S, installed in fill material, and MW-7D, installed in bedrock, were sampled on two occasions. The data indicate that the only VOC detected in the ground water was chlorobenzene, an S- Area indicator parameter. At MW-7S the concentration of chlorobenzene ranged between non-detect and 5 ug/L, and at MW-7D the concentration ranged between non-detect and 6 ug/L. When detected these concentrations were slightly above the New York State Class GA Standards of 5 ug/L. No other VOCs were detected in either the shallow or deep ground water.

In subsurface soils, S-Area VOCs were primarily detected sporadically in the south and southwestern portions of the site. The concentration of S-Area VOCs at 11 of the 13 subsurface samples were similar to the de-listed Buffalo Avenue site. At locations SB-7C and SB-7E benzene and chlorobenzene were detected at concentrations slightly above those detected at the de-listed Buffalo Avenue Site. However, a duplicate sample collected at SB-7E contained significantly lower concentrations of chlorobenzene. The variability of concentrations in a given sample is indicative of the heterogenous nature of the fill. Other VOCs were detected at low concentrations in the southern portion of the site. The concentrations of most compounds were similar to those observed at the de-listed Buffalo Avenue Site.

Semivolatile Organic Compounds

SVOCs were detected in ground water, surface soil and subsurface soil. The identified compounds were divided into 3 groups for discussion: PAHs, other SVOCs and "S" Area SVOCs.

In the surface soil samples, PAH compounds, which are typical of asphalt or asphalt like materials were detected in each of the two samples analyzed. The concentrations of PAHs detected are typical of Niagara Falls surface soils. In subsurface soil samples, only 2 of the 13 samples collected exceeded the concentrations detected at the de-listed Buffalo Avenue Site. The locations where exceedances were noted were at opposite ends of the site which indicates that PAHs are sporadically distributed and are related to the heterogenous nature of the site. PAHs were not detected in the ground water at the site, which indicates that PAHs from soils are not migrating into the ground water.

Other SVOCs that were common to both surface soils and subsurface soil included di-n-butyphthalate and bis-(2ethylhexyl)phthalate and dibenzofuran. The phthalate compounds are plasticizers which are commonly found in soils in the Niagara Falls Area. In subsurface soils phenolic based compounds were only detected at two locations; SB-33 in the northern portion of the site and SB-7C located in the southern portion of the site. Additionally in the southern portion of the site at SB-7D, 3,3'-dichlorobenzidine and carbazole were detected at elevated concentrations. The distribution of other SVOCs in subsurface soil is highly variable as a result of the heterogenous nature of the fill material present. No other SVOCs were detected in the ground water at the site.

In surface soil, S- Area SVOCs were detected at concentration below the maximum detected at the de-listed Buffalo Avenue Site. With respect to subsurface soils, S- Area SVOCs were detected in five of the thirteen samples collected. The data indicate that only two samples designated as SB-7D and SB-7E, located in the southern portion of the site contained total S-Area SVOCs at concentrations greater than the maximum total concentration detected at the de-listed Buffalo Avenue site. In ground water S-Area SVOCs were detected at monitoring well MW-7S screened in the fill material The compounds detected were 1,3 dichlorobenzene and 1,4- dichlorobenzene at concentrations slightly exceeding the NYS Class GA standards. S- Area SVOCs were not detected at MW-7D screened in bedrock.

Pesticide/PCBs

No PCBs were detected in ground water or surface soil samples collected at the site. PCB(Aroclor 1242) was only detected in one of the thirteen subsurface soil samples collected at 2,200 ug/Kg.

Pesticides were detected in surface soil, subsurface soil and ground water sample at low concentrations. In surface soil sample SS-20, located in the northern portion of the site the total pesticide concentration was 30.1 ug/Kg. No pesticides were detected in surface soils at SS-23, located in the southern portion of the site. In subsurface samples only 3 of the 13 samples analyzed for pesticides contained concentrations greater than the maximum total concentration detected at the de-listed Buffalo Avenue Site. The samples were located in the central portion of the One- Acre site.

In ground water higher concentrations of pesticides were detected in the shallow well than the deep well. The total pesticide concentration at MW-7S ranged between 0.064 and 1.046 ug/L. This variation is likely due to the heterogenous nature of the fill material placed at the site. At MW-7D only gamma-BHC was detected at 0.016 ug/L which marginally exceeds the 0.012 ug/L detected at the de-listed Buffalo Avenue Site.

Inorganics

In summary the primary concern at the site is elevated levels of lead in surface and subsurface soil that are sporadically distributed. The concentrations of total lead detected in seven of the eight surface soil samples were below the maximum detected at the de-listed Buffalo Avenue Site. In subsurface soils total lead concentrations detected were below the maximum detected at the delisted Buffalo Avenue site with the exception of SB-7F located in the southern portion of the site.

For ground water both total (unfiltered) and soluble (filtered) samples were collected and analyzed. Due to the elevated turbidity of the samples collected only the filtered samples were considered representative of inorganics migrating in the ground water. In the deep zone only sodium, was detected above NYS Class GA Standards; however it is x likely that sodium detected at MW-7D is naturally occurring as other bedrock monitoring wells at the delisted Buffalo Avenue site contained similar concentrations. The results of the filtered analyses at MW-7S indicate that antimony, iron, lead, manganese and sodium were detected at concentrations marginally exceeding NYS Class GA standards. The concentrations are likely related to the fill material present at the site.

TCLP Analyses

Based on the elevated lead concentrations noted in surface soil and subsurface soils selected samples were analyzed to evaluate the leaching potential of lead from soil using EPTOX and/or TCLP methods. Only one of the eight surface soil samples analyzed for lead exceeded the TCLP criteria of 5 mg/L.

In the northern portion of the site a sample collected at SB-33 (4 to 7 ft) was analyzed for both TCLP and EPTOX lead. The data indicate that the TCLP lead concentration was 0.66 mg/L which is below regulatory criteria, however the EPTOX lead concentration detected was 39.1 mg/L which exceeds regulatory criteria. Five additional subsurface soil samples were collected around the SB-33 area, and none of the samples exceeded the regulatory limit of 5 mg/L.

In 1996 sample of the fill material from the southern portion of the site was analyzed for the VOCs, SVOCs, pesticides and metals. The results indicated that with respect to VOCs, SVOCs and pesticides that the fill material was not considered characteristic of hazardous waste per 40 CFR part 261. The data indicated that no metals were detected with exception of lead at 11 mg/L. The concentration of lead detected exceed the regulatory limit of 5 mg/L, therefore the sample exhibits characteristics of hazardous waste as set forth by 40 CFR Part 261.

In summary three samples (one surface and two subsurface soils samples) from a total of eighteen samples collected and analyzed for EPTOX and/or TCLP lead exceeded regulatory limits.

4.2. Conclusions

Part 371.1 of 6 NYCRR identifies which solid wastes are subject to regulation as hazardous wastes under Parts 370 through 373, 375 and 376 of 6 NYCRR. Under Part 371, *Identification And Listing Of Hazardous Wastes*, criteria for identifying the characteristics of hazardous waste are presented. These criteria include characteristics of waste, and origin of wastes. Therefore, to evaluate whether the fill material in the One- Acre site is a hazardous waste, analytical laboratory testing was performed and background review was completed.

Analyses were completed on the surface soil and fill material for TCLP as defined in part 6 NYCRR Part 371.3 and 40 CFR Part 261. The results of these analyses indicate that with respect to VOCs, SVOCs, pesticides/PCBs and inorganics that the fill material at the One-Acre site is below the regulatory levels listed in Part 371.3. and 40 CFR Part 261 with the exception of lead. The data indicate that at most locations the concentrations of leachable lead are below the regulatory levels listed in part 371.3. One surface

soil sample and two subsurface soil samples from a total of 18 samples collected and analyzed for leachable lead exceeded the regulatory criteria of 5 mg/L. The data indicate that the distribution of lead is highly variable and is due to the heterogenous nature of the fill material.

Background review offered little insight into the origin and disposal practices at the One- Acre Site although the NYSDEC listing information for the site in the *Inactive Hazardous Waste Sites* listing document indicates that municipal incinerator ash was placed on the site. However, as listed in Part 371.1, incinerator ash is exempt from listing as a hazardous waste when the waste incinerated is a form of household waste. Household waste is defined as any waste material derived from households, (including single and multiple residences, hotels and motels, bunkhouses, ranger stations, crew quarters, campgrounds, picnic grounds and day use recreation areas) including garbage, trash and sanitary wastes in septic tanks. Therefore, One-Acre site is not listed under Part 371.4 as a non-specific source by origin.

VOCs, SVOCs, pesticides and inorganics were detected in ground water on at least one occasion at concentrations slightly exceeding NYS Class GA standards. Based on information presented in the Buffalo Avenue Site Investigation and the recently completed Phase II Investigation for the Eastern Area the data does not indicates that these constituents are migrating away from the One-Acre site. The constituents detected are due to the characteristics of the fill material

References

- Bowen, JH., 1979, Environmental Chemistry of Elements, Academic Press, New York.
- Clayton Environmental Consultants, Inc., 1983, Ground Water Investigation for City of Niagara Falls at the City Water Treatment Plant and Surrounding Area.
- Johnston, R.H., 1964, Ground Water in the Niagara Falls Area, New York, New York State Water Resources Commission Bulletin GW-53.
- Malcolm Pirnie, Inc., 1989, Alternate Water Treatment Plant Site Investigation, Prepared for the City of Niagara Falls, Project No. 0337-19-1.
- New York Department of Environmental Conservation Division of Hazardous Waste, April 1994 Inactive Hazardous Waste Site in New York State, Volume 9, pgs. 363-365.
- Niagara County Health Department, 1987, Letter form Michael E. Hopkins (NCHD) to Amar Nagi (NYSDEC) dated December 4, 1987, 3 pgs.
- O'Brien & Gere Engineers, Inc., 1995, Preliminary Investigation Water Treatment Plant Eastern Area, Prepared for the City of Niagara Falls.
- O'Brien & Gere Engineers, Inc., 1991a, New Water Treatment Plant Site Suitability Assessment Work Plan - NYPA 10 Acres Buffalo Avenue Site, Prepared for the City of Niagara of Falls.
- O'Brien & Gere Engineers, Inc., 1991b, New Water Treatment Plant Site Acquisition Investigation Work Plan - NYPA Buffalo Avenue Site, Prepared for the City of Niagara of Falls.
- O'Brien & Gere Engineers, Inc., 1991c, Buffalo Avenue Site Investigation Report.
- O'Brien & Gere Engineers, Inc., 1996 Phase II Investigation, Water Treatment Plant Eastern Areas.

- Shacklette, H.T., Hamilton, J.C., Boerngen, J.G., Bowles, J.M., 1971. Elemental Composition of Surficial Materials in the Conterminous United States, United States Geological Survey Professional Paper 574-D, Vol. 713-715A, 71 pgs.
- State Of New York, 1995, Official Compilation of Codes, Rules and Regulations, 6 Conservation (A-2A), Lawyers Cooperative Publishing, pgs. 6043 6100.
- United States District Court, 1983, Stipulation And Judgement Approving Settlement Agreement (S-Area Landfill).
- Walsh, L.M., Sumner, M.W., and Keeney, D.R., 1977, Occurrence and Distribution of Arsenic in Soils and Plants, Environmental Health Prospectives, Vol. 19, pgs 67-71.

Table 1

Phase II Investigation Water Treatment Plant - One Acre Parcel Niagara Falls, New York

Surface Soil Descriptions

Sample #	Blow Counts/ 6 Inches	Description
One Acre Parcel		
SB-33G	9-13-14-24	Damp, med. brown, med. dense SILT, some very fine sand, little clay, little fine to med. angular gravel.
SB-33F	8-8-9-8	Damp, dark brown, med. dense SILT, some very fine sand, little fine angular gravel.
SB-33H	7-16-9-6	Dry, brown to gray, med. dense SILT, some very fine sand, some fine to med. angular gravel, little fine to coarse sand.
SB-33I	3-18-26-20	Dry to damp, brown to black, denseSILT, some fine sand, little fine to coarse angular grvael, trace cinders, trace clay.
SB-33J	3-5-9-10	Dry, brown to black, med. dense SILT, some very fine sand, little fine to coarse angular gravel, trace white ash, trace cinders, trace orange brick.
SB-33K	3-6-17-17	Dry to damp, gray to brown, med. dense SILT some fine to coarse gravel, little fine to med. sand trace clay.

		tanai:-
		National Co.
		-
		_
		•
		Sidentick
		Manage
		- Lague
		energe.
		Without Co.
		90000
		Sentime:
		Section 2
		CONTRACT
		Control Contro

Table 2
Phase II - Investigation
One-Acre Site - Buffalo Avenue
Surface Soils - Semivolatile Organic Compounds

	SS-20 5/91	SS-23 5/91
Phenol	810 u	720
bis(2-chloroethyl) ether	810 u	730 u 730 u
2-Chlorophenol	810 u	730 u
1,3 - Dichlorobenzene	810 u	730 u
1,4 - Dichlorobenzene	810 u	730 u
Benzyl alcohol	810 u	730 u
1,2-Dichlorobenzene	810 u	730 u
2-Methylphenol	810 u	730 u
bis(2-chloroisoprpyl)ether	810 u	730 u
4- methylphenol	810 u	730 u
N-Nitroso-di-n-propylamine	810 u	730 u
Hexachloroethane	810 u	730 u
Nitrobenzene	810 u	730 u
Isophorone	810 u	730 u
2-Nitrophenol	810 u	730 u
2,4-Dimethylphenol	810 u	730 u
Benzoic Acid	4000 u	3500 u
Bis(2-chloroethoxy)methane	810 u	730 u
2,4-Dichlorophenol	810 u	730 u
1,2,4-Trichlorobenzene*	810 u	730 u
Naphthalene**	120 j	730 u
4-Chloroaniline	810 u	730 u
Hexachlorobutadiene*	810 u	730 u
4-Chloro-3-methylphenol	810 u	730 u
2-methylnaphthalene**	120 j	730 u
Hexachlorocyclopentadiene*	810 u	730 u
2,4,6 - Trichlorophenol	810 u	730 u
2,4,5 - Trichlorophenol*	4000 u	3500 u
2 - Chloronaphthalene**	810 u	730 u
2-Nitroaniline	4000 u	3500 u
Dimethylphthalate	810 u	730 u
Acenaphthylene**	810 u	730 u
2,6-Dinitrotoluene	810 u	730 u
3-Nitroaniline	4000 u	3500 u
Acenaphthene**	810 u	730 u
2,4-Dinitrophenol	4000 u	3500 u
4-Nitrophenol Dibenzofuran	4000 u	3500 u
2,4-Dinitrotoluene	65 j 810 u	730 u
Diethylphthalate	810 u	730 u 730 u
4-Chlorophenol-phenylether	810 u	
Flourene*	810 u	730 u 730 u
4-Nitroaniline	4000 u	3500 u
4,6-Dinitro-2-methylphenol	4000 u	3500 u
N-Nitorosodiphenylamine	810 u	730 u
4-Bromophenyl-phenylether	810 u	730 u
Hexachlorobenzene*	210 j	730 u
	210]	, 50 u

		White steel
		State of the state
		topo
		tape.
		Since
		Name of the latest of the late
		Market

		Volume
		-
		was.

Table 2
Phase II - Investigation
One-Acre Site - Buffalo Avenue
Surface Soils - Semivolatile Organic Compounds

	SS-20 5/91	SS-23 5/91
Pentachlorophenol	4000 u	3500 u
Phenanthrene**	930	67 j
Anthracene**	200 j	730 u
Di-n-butylphthalate	300 j	730 u
Fluoranthene**	1500	730 u
Pyrene**	1400	730 j
Butylbenzylphthalate	810 u	730 u
3,3-Dichlorobenzidine	1600 u	1500 u
Benzo(a) anthracene**	920	75 j
Chrysene**	980	730 u
Bis(2ethylhexyl)phthalate	4000	2000
Di-n-octylphthalate	810 u	730 u
Benzo(b)fluoranthene**	1200	110 j
Benzo(k)fluoranthene**	590 j	730 u
Benzo(a)pyrene**	670 j	66 j
Indeno(1,2,3-cd)pyrene**	420 j	730 u
Dibenz(a,h)anthracene**	94 j	730 u
Benzo(g,h,i)perylene**	330 ј	730 u
S-Area SVOCs	210	ND
PAHs	9,474	1,048
Other SVOCs	4,365	2,000

All Values (ug/kg)

u- Compound analyzed but not detected

j- Estimated value

	·
	Valuable

	Table.
	Manufac
	Magazi.
	·
	Name :
	_
	-
	-
	-
	Manufac
	Names-
	differentias
	•
	Wage.

Table 3 Phase II - Investigation One-Acre Site - Buffalo Avenue Surface Soils - Pesticide/PCBs

	SS-20 5/91	SS-23 5/91
Aldrin	20 u	18 u
Alpha- BHC	20 u	18 u
Beta- BHC	20 u	18 u
Delta- BHC	20 u	18 u
Gamma-BHC	20 u	18 u
Chlordane	200 u	180 u
4,4-DDD	40 u	36 u
4,4-DDE	28 j	18 u
4,4-DDT	40 u	36 u
Dieldrin	40 u	36 u
Endosulfan I	20 u	18 u
Endosulfan II	40 u	36 u
Endosulfan sulfate	40 u	36 u
Endrin	40 u	36 u
Heptachlor	20 u	18 u
Heptachlor epoxide	2.1 j	18 u
Endrin Ketone	40 u	36 u
Methoxychlor	200 u	18 u
Aroclor-1016	200 u	18 u
Aroclor-1016	200 u	18 u
Aroclor-1221	200 u	18 u
Aroclor-1232	200 u	18 u
Aroclor-1242	200 u	18 u
Aroclor-1248	200 u	18 u
Aroclor-1254	400 u	36 u
Aroclor-1260	400 u	36 u
Toxaphene	400 u	36 u
Total Pesticides	30.1	ND

All Values (ug/Kg) u- Compound analyzed but not detected

j- Estimated value

ND - Not detected

		Temás
		·
		Man isio
		Managa
		**** ********************************
		Marie
		Canada
		Milipadas
		•
		Magna
		territing.

		•

Table 4
Phase II Investigation
One-Acre Site - Buffalo Avenue
Surface Soil

	TYPICAL		
	RANGE **	SS-20	SS-23
ALUMINUM	1000-25,000	9,140.0	8,590.0
ANTIMONY	*******	1.2 UJ	1.1 UJ
ARSENIC	3-12	5.4 J	2.4 J
BARIUM	15-600	113.0 J	69.7 J
BERYLLIUM	0-1.75	1.2 UJ	1.1 UJ
CADMIUM	0.01-2	1.2 UJ	1.1 UJ
CALCIUM	130-35,000	110,000.0	127,000.0
CHROMIUM	1.5-40	75.0 J	19.1 J
COBALT	2.5-60	9.3 J	7.4 J
COPPER	<1-15	37.3 J	15.1 J
IRON	17,500-25,000	13,100.0	14,900.0
LEAD	1-12.5	120.0 J	33.0
MAGNESIUM	2,500-6,000	58,600.0	58,200.0
MANGANESE	50-5,000	554.0 R	574.0 R
MERCURY	0.042-0.066	1.7 J	3.0 J
NICKEL	0.5-25	21.4 J	21.4 J
POTASSIUM	8,500-43,000	1,750.0	3,220.0
SELENIUM	<1-0.125	1.2 R	1.1 R
SILVER		1.5 UJ	1.3 UJ
SODIUM	6,000-8,000	443.0 U	350.0 U
THALLIUM		1.2 UJ	1.1 UJ
VANADIUM	25-60	23.8 J	21.5 U
ZINC	37-60	220.0 J	150.0 J
CYANIDE	P-500-0-	1.2 U	1.1 U

Notes: All values reported in mg/kg (ppm).

- U Indicates element was analyzed for but not detected.
- B Indicates a value greater than or equal to the instrument detection limit, but less than the contract required detection limit.
- NA Not analyzed.
- R Reinjected by data validator.
- J Indicates an estimated value.

		(***
		energy).

		Vince
		-
		*
		Man

Table 5
Phase II Investigation
One-Acre Site - Buffalo Avenue
Surface and Subsurface Soil - Inorganics

		SB-29SR 5/91 4.7	175 0.079 0.885			
u		SB-28W 5/91 5-11'	371 0.16 0.225			
SS-23 5/91 0-2	R A A	SB-27W 5/91 5-13.5	179 0.223 1.87			
SS-20 5/91 0-2	120 0.018 0.26	SB-7F 2/96 Comp	3100 11 NA	SB-7E BLD DUP 2/10/95 8-10'	29.3 132	66.7
SB-33K 2/10/95 0-2	115 0.5 U NA	SB-33E 10/14/91 4-8'	320 0.5 U 0.5 U	SB-7E 2/10/95 8-10'	14.2 77.2	74.1
SB-33J 2/10/95 0-2	527 0.7 NA	SB-33D 10/14/91 4-8'	330 1.6 0.5 U	SB-7D 2/10/95 8-10'	42.8 292	81.2
SB-331 BLD DUP 2/10/95 0-2′	318 0.8 NA	SB-33C 10/14/91 6-10'	36 0.5 U 0.5 U	SB-7C 2/10/95 8-10′	16.1 246	78.2
SB-33I 2/10/95 0-2	302 0.5 U NA	SB-33B 10/14/91 4-8'	32 0.5 U 0.5 U	SB-7B 2/9/95 10-12	10.3 40.7	79.0
SB-33H 2/10/95 0-2	294 NA	SB-33A 10/14/91 4-7	41 0.5 U 0.5 U	SB-7A 2/9/95 10-12	13.4 19.1	80.4
SB-33G 2/10/95 0-2	151 P. A. A.	SB-33 5/15/91 4-7	1510 0.66 39.1	Typical	Range 1.5 - 40 1 - 12.5	
SB-33F 2/10/95 0-2	52.7 0.5 NA	SB-33 5/15/91 2-4*	121 0.018 0.16	Max. Conc. from	Buffalo Ave. Site 708 928	
Surface Soils Location: Date Collected: Depth:	Lead (mg/Kg) TCLP Lead (mg/L) EPTOX Lead (mg/L)	Subsurface Soils Location: Date Collected: Depth:	Lead (mg/Kg) TCLP Lead (mg/L) EPTOX Lead (mg/L)	Location: Date Collected: Depth;	Chromium (mg/Kg) Lead (mg/Kg)	% Total Solids

Notes: U - Not Detected NA - Not Analyzed

		Waltergriss
		Was ar,
		A SECTION ASSESSMENT
		Vineta ce
		Walker Company
		White
		*
		_

		this control of the c
	•	*Naganak
		nall see
		Whose is

Subsurface Soil Semivolatile Organic Compound One-Acre Site - Buffalo Avenue Niagara Falls, New York Phase II Investigation Table 9

	Location: Date Collected: Depth:	SB-27SR 5/91 (2-5)	SB-27W 5/91 (5-13.5)	SB-28SR 5/91 (2-5)	SB-28W 5/91 (5-11)	SB-29SR 5/91 (4-7)	SB-29W 5/91 (7-11)	SB-33SR 5/91 (2-4)	SB-33W 5/91 (4-7)
	Typical								
Aluminum	1000-25000	4620	4610	7880	3850	11200	11000	4960	3880
Antimony	ł	1.1	135 J	1.1 U	22.0 J	4.3 ا	1.1 UJ	2.1 J	8.8 J
Arsenic	3 - 12	4.1 J	7.5 J	4.7 J	6.3 J	5.8 J	3.4 J	3.4 J	10.9 ل
Barium	15 - 600	49.7	38.2	86.5	76.0	107	93.1	118	1240
Beryllium	0 - 1.75	1.1 U	1.3 U	1.1 U	1.4 U	1.2 U	1.3	1.1 U	1.3 U
Cadmium	0.01 - 2.0	1.1 U	1.3 U	1.1 U	1.7 U	1.4 U	1.1 U	1.1 U	1.3 U
Calcium	130 - 35000	129000 J	55800 J	1720 J	35600	72900	56400	1250 J	57700
Chromium	1.5 - 40	13.0	26.7	29.4 J	408	57.0 J	13.9 J	126 J	26.4 J
Cobalt	2.5 - 60	4.3 ∪	5.3 ∪	11.3 UJ	14.5 UJ	11.9 UJ	11.2 UJ	10.6 UJ	13.1 UJ
Copper	<1 - 15	11.5	87.2	22.9	87.1	69.5	28.9	32.0	164
Iron	17500 - 25000	9200 J	7500 J	14100	77200	19000	10500	9920	32000
Lead	1 - 12.5	47.3	179	88.1	371 J	175 J	14.1	121 J	1510 J
Magnesium	2500 - 6000	Pee00 1	1470 J	50200	7630	24100	9440	78900	0009
Manganese	20 - 5000	676 J	44.7 J	486	244 J	456	322 J	546	293 J
Mercury	0.042 - 0.066	0.62	3.6	0.67	5.1	2.8	0.10 U	0.40	0.85
Nickel	0.5 - 25	15.1	62.2	19.3	56.9	29.7	37.8	14.7	20.0
Potassium	8500 - 43000	852	145	1270	999	1680	435	931	421
Selenium	<0.1 - 0.125	1.1 R	1.3 R	1.1 R	1.4 R	1.1 R	1.1 R	10.5 R	1.3 R
Silver		1.3 U	1.6 U	1.4 U	1.7 U	1.4 U	1.3 U	1.3 U	1.6 U
Sodium	9000 - 8000	195 U	269 U	678 U	873 U	1320 U	O 029	635 U	784 U
Thallium	!	1.1	1.3 U	1.1 0	1.4 U	1.1 U	1.1	1.0 U	1.3 U
Vanadium	25 - 60	10.0	29.5	24.9 J	33.3 J	29.7 J	38.0 J	33.9	23.5 J
Zinc	37 - 60	65.7 J	111 J	179 ا	449 ∫	175 J	37.0 J	222 J	394 J
Cyanide	I	1.15 U	9.87	1.1 U	1.4 U	9.8 8	1.1 U	1.1 U	1.3 U
Leachability Testing (mg/L)	Requiatory Limit								
TCLP Lead	5	¥	0.223	Ν Α	0.16	0.079	A	0.018	99.0
EP TOX Lead	5	¥	1.87	Ϋ́	0.225	0.885	Ϋ́	0.16	39.1
TCLP Chromium	2	₹	ΑN	¥	0.024	Ϋ́	Ϋ́	0.017	Ϋ́
EPTOX Chromium	2	Ϋ́	Ϋ́	Ϋ́	0.024	٩	ΑΝ	0.01	Ϋ́
TCLP Mercury	0.5	∢ s Z Z	A Z	∀	0.0002	∢	∀	∢ ŏ	₹ Z
	;	<u> </u>	<u> </u>	Ş	0.00	<u> </u>		<u> </u>	<u> </u>

Notes:

All concentrations reported in mg/kg (ppm), except as noted.
** - Referenced from Bowen (1979), Shacklette et al (1984), Shacklette et al (1971), Walsh et al (1977).

- Indicates element was analyzed for but not detected.

B - Indicates a value greater than or equal to the instrument detection limit but less than the contract required detection limit.

J - Indicates an estimated value. (GC/MS only).

TCLP and Eptox results in mg/L (ppm).

		PK.
		ga.
	_	in s
		ins.
	nicon	ist e

	_	
	****	ختن
	·	
	-	=
		100
	-	•
	•	
	West	
	•	4
	•	
	_	-

Table 10
Phase II Investigation
One-Acre Site - Buffalo Avenue
Ground Water Volatile Organic Data

	MW-7S 6/91	MW-7S 9/91	MW-7D 6/91	BL Dup MW-7D 6/91	MW- 7D 9/91
CHLOROMETHANE	10 u	0.4 u	10 u	10 u	0.4 u
BROMOMETHANE	10 u	0.4 u	10 u	10 u	0.4 u
VINYL CHLORIDE*	10 u	0.4 u	10 u	10 u	0.4 u
CHLOROETHANE	10 u	0.4 u	10 u	10 u	0.4 u
METHYLENE CHLORIDE	5 u	0.2 u	5 u	5 u	0.2 u
ACETONE	10 u		10 u	10 u	
CARBON DISULFIDE	5 u		5 u	5 u	
1,1-DICHLOROETHENE	5 u	0.2 u	5 u	5 u	0.2 u
1,1-DICHLOROETHANE	5 u	0.2 u	5 u	5 u	0.2 u
1,2-DICHLOROETHENE (TOTAL)*	5 u	0.2 u	5 u	5 u	0.2 u
CHLOROFORM	5 u	0.2 u	5 u	5 u	0.2 u
1,2-DICHLOROETHANE	5 u	0.2 u	5 u	5 u	0.2 u
2-BUTANONE	10 u		10 u	10 u	
1,1,1-TRICHLOROETHANE	5 u	0.2 u	5 u	5 u	0.2 u
CARBON TETRACHLORIDE	5 u	0.2 u	5 u	5 u	0.2 u
VINYL ACETATE	. 5 u		5 u	5 u	
BROMODICHLOROMETHANE	5 u	0.2 u	5 u	5 u	0.2 u
1,2-DICHLOROPROPANE	5 u	0.2 u	5 u	5 u	0.2 u
CIS-1,3-DICHLOROPROPANE	5 u	0.2 u	5 u	5 u	0.2 u
TRICHLOROETHENE*	5 u	0.2 u	5 u	5 u	0.2 u
DIBROMOCHLOROMETHANE	5 u	0.2 u	5 u	5 u	0.2 u
1,1,2-TRICHLOROETHANE	5 u	0.2 u	5 u	5 u	0.2 u
BENZENE*	0.8 u	0.2 u	5 u	5 u	0.2 u
TRANS-1,3-DICHLOROPROPANE	5 u	0.2 u	5 u	5 u	0.2 u
BROMOFORM	5 u	1 u	5 u	5 u	1 u
4-METHYL-2-PENTANONE	10 u		10 u	10 u	
2-HEXANONE	10 u		10 u	10 u	
TETRACHLOROETHENE*	5 u	0.2 u	5 u	5 u	0.2 u
1,1,2,2-TETRACHLOROETHENE	5 u	0.2 u	5 u	5 u	0.2 u
TOLUENE	5 u	0.2 u	5 u	5 u	0.2 u
CHLOROBENZENE*	5 u	6 j	5	5 u	2.7
ETHYLBENZENE	5 u	0.2 u	5 u	5 u	0.2 u
STYRENE	5 u	0.0	5 u	5 u	0.0
TOTAL XYLENES	5 u	0.2 u	<u>5 u</u> 5	5 u	0.2 u
Total S-Area VOCs	ND	6		ND	2.7
Other VOCs	ND	ND	ND	ND	ND

Notes: Data from Buffalo Avenue Site Investigation Report;

O'Brien & Gere Engineers, Inc.; 1991C

Results presented in ug/kg (ppb)

U - Compound Analyzed but not detected

J - Indicates an estimated value (GC/MS only)

B - Analyte is found in the associated blank as well as in the sample.

RE - Sample reanalyzed due to quality control assurances.

* - "S" Area Indicator

~~
b eniga
**maji
givgs.
غيت

_

•••

-
Mana
•
No.
·

Table 11 Phase II Investigation One-Acre Site - Buffalo Avenue Ground Water - Semivolatile Organic Compounds

	MW-7D 6/91	BL Dup MW-7D 6/91	MW-7S 6/91
Phenol	12 u	12 u	12 u
bis(2-chloroethyl) ether	12 u	12 u	12 u
2-Chlorophenol	12 u	12 u	12 u
1,3 - Dichlorobenzene*	12 u	12 u	6 j
1,4 - Dichlorobenzene*	12 u	12 u	6 j
Benzyl alcohol	12 u	12 u	12 u
1,2-Dichlorobenzene*	12 u	12 u	12 u
2-Methylphenol	12 u	12 u	12 u
bis(2-chloroisoprpyl)ether	12 u	12 u	12 u
4- methylphenol	12 u	12 u	12 u
N-Nitroso-di-n-propylamine	12 u	12 u	12 u
Hexachloroethane	12 u	12 u	12 u
Nitrobenzene	12 u	12 u	12 u
Isophorone	12 u 12 u	12 u 12 u	12 u 12 u
•			
2-Nitrophenol	12 u	12 u	12 u
2,4-Dimethylphenol	12 u	12 u	12 u
Benzoic Acid	62 u	62 u	62 u
Bis(2-chloroethoxy)methane	12 u	12 u	12 u
2,4-Dichlorophenol	12 u	12 u	12 u
1,2,4-Trichlorobenzene*	12 u	12 u	12 u
Naphthalene**	12 u	12 u	12 u
4-Chloroaniline	12 u	12 u	12 u
Hexachlorobutadiene*	12 u	12 u	12 u
4-Chloro-3-methylphenol	12 u	12 u	12 u
2-methylnaphthalene**	12 u	12 u	12 u
Hexachlorocyclopentadiene.*	12 u	12 u	12 u
2,4,6 - Trichlorophenol	12 u	12 u	12 u
2,4,5 - Trichlorophenol*	62 u	62 u	62 u
2 - Chloronaphthalene*	12 u	12 u	12 u
2-Nitroaniline	62 u	62 u	62 u
Dimethylphthalate	12 u	12 u	12 u
Acenaphthylene*	12 u	12 u	12 u
2,6-Dinitrotoluene	12 u	12 u	12 u
3-Nitroaniline	62 u	62 u	62 u
Acenaphthene*	12 u	12 u	12 u
2,4-Dinitrophenol	62 u	62 u	62 u
4-Nitrophenol	62 u	62 u	62 u
Dibenzofuran	12 u	12 u	12 u
2,4-Dinitrotoluene	12 u	12 u	12 u
Diethylphthalate	12 u	12 u	12 u
4-Chlorophenol-phenylether	12 u	12 u	12 u
Fluorene**	12 u	12 u	12 u
4-Nitroaniline	62 u	62 u	62 u
4,6-Dinitro-2-methylphenol	62 u	62 u	62 u
N-Nitorosodiphenylamine	12 u	12 u	12 u
4-Bromophenyl-phenylether	12 u	12 u	12 u
Hexachlorobenzene*	12 u	12 u	12 u

			maq
			terna
			-
			_
			-
			•
			_
		•	***
			_
			ועניים מ
			-
			•
			r _{ju} a
			-
			-

Table 11 Phase II Investigation One-Acre Site - Buffalo Avenue Ground Water - Semivolatile Organic Compounds

	MW-7D 6/91	BL Dup MW-7D 6/91	MW-7S 6/91
Buttellandend	22		20
Pentachlorophenol	62 u	62 u	62 u
Phenanthrene**	12 u	12 u	12 u
Anthracene**	12 u	12 u	12 u
Di-n-butylphthalate	12 u	12 u	12 u
Fluoranthene**	12 u	12 u	12 u
Pyrene**	12 u	12 u	12 u
Butylbenzylphthalate	12 u	12 u	12 u
3,3-Dichlorobenzidine	25 u	25 u	25 u
Benzo(a) anthracene**	12 u	12 u	12 u
Chrysene**	12 u	12 u	12 u
Bis(2ethylhexyl)phthalate	12 u	12 u	12 u
Di-n-octylphthalate	12 u	12 u	12 u
Benzo(b)fluoranthene**	12 u	12 u	12 u
Benzo(k)fluoranthene**	12 u	12 u	12 u
Benzo(a)pyrene**	12 u	12 u	12 u
Indeno(1,2,3-cd)pyrene**	12 u	12 u	12 u
Dibenz(a,h)anthracene**	12 u	12 u	12 u
Benzo(g,h,i)perylene**	12 u	12 u	12 u
Belizo(g,ii,i)per yielle	12 u	12 u	12 u
Total S-Area SVOCs	ND	ND	12
PAHs	ND	ND	ND
Other SVOCs	ND	ND	ND

All Values (ug/L) u- Compound analyzed but not detected

j- Estimated value

			- ·
			y ikizio.
			All parties of the second seco
			Mainte
			Warman,
			Valent h
			Washer)
			-

			•
			•••
			-

Table 12 Phase II Investigation One-Acre Site - Buffalo Avenue Site Ground Water - Pesticides/PCBs

			BL DUP		BL DUP
	MW-7S	MW-7S	MW-7S	MW-7D	MW-7D
	6/91	9/91	9/91	6/91	6/91
Aldrin	0.07 u	0.071	0.067	0.07 u	0.07 u
Alpha- BHC	0.064 j	0.81	0.089	0.07 u	0.07 u
Beta- BHC	0.07 u	0.093	0.016	0.07 u	0.07 u
Delta- BHC	0.07 u	0.017	0.004	0.07 u	0.07 u
Gamma-BHC	0.33 u	0.004 u	0.004 u	0.07 u	0.16 u
Chlordane	0.07 u	0.007 u	0.07 u	0.07 u	0.07 u
4,4-DDD	0.2 u	0.001 u	0.01 u	0.2 u	0.2 u
4,4-DDE	0.2 u	0.001 u	0.01 u	0.2 u	0.2 u
4,4-DDT	0.2 u	0.001 u	0.01 u	0.2 u	0.2 u
Dieldrin	0.2 u	0.001 u	0.01 u	0.2 u	0.2 u
Endosulfan I	0.07 u	0.034	0.046	0.07 u	0.07 u
Endosulfan II	0.2 u	0.001 u	0.01 u	0.2 u	0.2 u
Endosulfan sulfate	0.2 u	0.001 u	0.01 u	0.2 u	0.2 u
Endrin	0.2 u	0.013	0.014	0.2 u	0.2 u
Endrin Aldehyde	0.2 u			0.2 u	0.2 u
Endrin Ketone	0.2 u	0.02 u	0.02 u	0.2 u	0.2 u
Heptachlor	0.07 u	0.004 u	0.004 u	0.07 u	0.07 u
Heptachlor epoxide	0.07 u	0.008	0.008	0.07 u	0.07 u
Methoxychlor	0.7 u	0.02 u	0.02 u	0.7 u	0.7 u
Aroclor-1016	0.7 u			0.7 u	0.7 u
Aroclor-1016	0.7 u			0.7 u	0.7 u
Aroclor-1221	0.7 u			0.7 u	0.7 u
Aroclor-1232	0.7 u			0.7 u	0.7 u
Aroclor-1242	0.7 u			0.7 u	0.7 u
Aroclor-1248	0.7 u			0.7 u	0.7 u
Aroclor-1254	2 u			2 u	2 u
Aroclor-1260	2 u			2 u	2 u
Toxaphene	2 u			2 u	2 u
Total Pesticides	0.064	1.046	0.24	ND	0.16

All Values (ug/L)
u- Compound analyzed but not detected

j- Estimated value

ND- Not detected

		MANGE
		Water Control
		ethouse,
		1976
		-
		·
		V ec
		Taxas Taxas
		_
		Tables

		Volume
		~~
		•
		digase.

Table 13
Phase II Investigation
One-Acre Site - Buffalo Avenue
Ground Water - Inorganic Analyses

MW-7D SOLUBLE 9/91	0.05 U 0.005 U 0.005 U 0.03 U 0.005 U 521 0.01 UJ	0.02 U 0.0328 0.0328 0.007 J 182 0.002 U 0.002 U 0.005 U 230 0.006 U 230 0.006 U 230 0.006 U 0.006 U 0.006 U
BL DUP MW-7D SOLUBLE 6/91	0.05 U 0.005 U 0.005 U 0.003 U 0.005 U 521 UJ 0.01 UJ	0.02 U 0.017 J 0.0328 U 0.007 J 182 U 0.007 U 0.002 U 0.005 U 0.006 U 0.006 U 0.005 U
MW-7D SOLUBLE 6/91	0.05 U 0.005 U 0.005 U 0.03 U 0.005 U 427	0.02 U 0.035 0.035 0.004 144 0.017 0.002 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U
MW-7D TOTAL 9/91	0.005 R 0.026 0.01 UJ	0.022 0.286 0.0002 U
BL DUP MW-7D TOTAL 6/91	13.4 J 0.005 U 0.006 0.0934 0.005 U 586 0.0676 J	0.02 U 20.2 J 20.2 J 0.089 J 180 0.087 J 0.002 U 0.0412 11.3 0.005 U 0.006 U 235 0.005 U 0.03 U 0.03 U 0.03 U
MW-7D TOTAL 6/91	3.171 J 0.005 U 0.005 U 0.03 U 0.005 U 514	0.02 U 0.057 U 4.66 J 0.0169 J 0.0157 J 0.022 U 0.002 U 0.006 U 230 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.007 U 0.007 U 0.008 U 0.008 U
BL DUP MW-7S SOLUBLE 9/91	0.01 UU UU UU	0.005 U 0.372 J 0.0002 U
MW-7S SOLUBLE 9/91	0.022 R 0.01	0.003
MW-7S SOLUBLE 6/91	0.05 U 0.07 0.005 U 0.046 0.005 U 0.005 U 136	0.02 U 0.01 U 12.03 0.004 20.3 0.415 0.002 U 0.002 U 0.006 U 28 0.005 U 0.005 U 0.003 U 0.003 U 0.003 U 0.003 U
BL DUP MW-7S TOTAL 9/91	0.15 R 3.46 J 0.054 J	2.4 J 0.749 0.0208
MW-7S TOTAL 9/91	0.075 R 1.94 J 0.068 J	0.979 L 10.1
MW-7S TOTAL 6/91	10.4 J 0.34 0.012 0.339 0.005 U 202 1.12 J	0.0002 U 0.182 29 J 1.04 J 30.5 0.05 J 0.005 U 0.005 U
DRINKING WATER STANDARDS*	0.05 0.005	0.3 0.05 0.002 0.01 0.05 NL
NYS CLASS GA STANDARDS	NE 0.003 # 0.003 # 0.01 NE 0.05	NE 0.25 0.25 0.025 3.5 # 0.002 NE NE 0.05 0.05 0.05 0.05 0.05
2	ALUMINUM ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CHROMIUM CHROMIUM HEXAVALENT	COBALT COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM SELENIUM SELENIUM SILVER SODIUM THALLIUM VANADIUM ZINC CYANIDE PH CONDUCTIVITY TURBIDITY

E - Indicates a value estimated or not reported due to the presence of interference N - Indicates entire sample recovers is not within control limits.

N - Indicates spike sample recovery is not within control limits
W - Post digestion spike for Furnance AA analysis is out of control limits

VV - rost algestion spike for runarioe AA ahalysis is out of control innits (85-115%), while sample absorbance is less than 50% of spike absorbance

- Indicates duplicate analysis is not within control limits

B - Indicates a value greater than or equal to the instrument detection limit but less than the contract required detection limit

U - Indicates element was analyzed for but not detected J - Indicates an estimated value (GC/MS only)

- Guidance value
NL - No designated limit
** - NYCRR 10, Subpart 5

All other values reported in mg/l (ppm)

Conductivity measured in umho/cm Turbidity measured in NTUs

Notes:

		•
		استياره
		-
		-

		-

		V ices
		·
		•••
		We.
		•

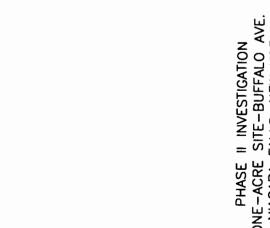
		•••
		•
		14
		•

Table 14

Phase II Investigation Water Treatment Plant - One Acre Site Niagara Falls, New York

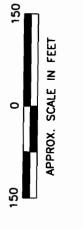
TCLP Analysis

Location:	Maximum				
	Concentration	SB-7F			
Date Collected:	Per Part 261 *	2/19/96			
	· · ·				
Pyridine	5.0	0.085 U			
1,4-Dichlorobenzene	7.5	0.008 U			
2-Methylphenol		0.007 J			
3&4-Methylphenol		0.018			
Hexachloroethane	0.13	0.008 U			
Nitrobenzene	2.0	0.008 U			
Hexachlorobutadiene	0.5	0.008 U			
2,4,6-Trichlorophenol	2.0	0.008 U			
2,4,5-Trichlorophenol	400.0	0.008 U			
2,4-Dinitrotoluene	0.13	0.008 U			
Hexachlorobenzene	0.13	0.008 U			
Pentachlorophenol		0.004 U			
Vinyl chloride	0.2	<.002			
1,1-Dichloroethene	0.7	<.001			
Chlorobenzene	100.0	<.001			
1,2-Dichloroethane	0.5	<.001			
Chloroform	6.0	<.001			
Benzene	0.5	<.001			
Trichloroethene	0.5	<.001			
2-Butanone		<.001			
Tetrachloroethene	0.7	<.001			
Carbon tetrachloride	0.5	<.001			
Arsenic	5.0	<5.0			
Barium	100.0	<10			
Cadmium	1.0	<1			
Chromium	5.0	<5			
Lead	5.0	11			
Mercury	0.2	<.0005			
Selenium	1.0	<.1			
Silver	5.0	<.5			
Lindane	0.4	< 00025			
	0.4	<.00025			
Heptachlor	0.008	<.00025			
Heptachlor epoxide		<.00025			
Endrin	0.02	<.00050			
Methoxychlor	10.0	<.0025			
Chlordane	0.03	<.0025			
Toxaphene	0.5	<.0025			


Notes: Results reported in mg/L (ppm)

J - Estimated value.

U - Not detected.


* - 40CFR Part 261 Identification and Listing of Hazardous Waste.

		•
		•
		•
		•
		•
		•
		•
		•
		1

PHASE II INVESTIGATION ONE-ACRE SITE-BUFFALO AVE. NIAGARA FALLS, NEW YORK

PREVIOUS SAMPLE LOCATIONS

09=1 125 \9914000\9004\2140\X

F/0815/MOTECIS/1328038/080/UCP 28: 1=40

*

OZ. 61,

4

Table 8
Phase II Investigation
One-Acre Site - Buffalo Avenue
Subsurface Soil - PCB/Pecticides
Niagara Falls, New York

SB-33W 5/91 4-7'		110 U	110 U	35 J	110 U	110 U	110 U	110 U	110 U	320 U	320 U	320 U	320 U	320 U	320 U	320 U	1100 U	320 U	AN	1100 U	1100 U	2200 U	1100 U	1100 U	1100 U	1100 U	1100 U	2200 U	2200 U	35
SB-33SR 5/91 2-4'		17 U	17 U	17 U	17 U	17 U	7.5 J	17 U	21	34 ∪	34 ∪	7.5 J	10 J	34 ∪	34 ∪	34 ∪	170 U	34 U	Ą	170 U	170 U	340 U	170 U	170 U	170 U	170 U	170 U	340 U	340 U	46
SB-29W 5/91 7-11'		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 ∩	40 U	40 U	40 U	40 U	40 U	40 U	40 U	200 U	40 U	ΑN	200 U	200 U	400 U	200 U	200 U	200 U	200 U	200 U	400 U	400 U	Q
SB-29SR 5/91 4-7'		19 U	2200 J	6.8 Ј	16 J	19	22	19 U	19 U	37 U	27 J	37 J	37 U	37 U	37 U	37 U	190 U	37 U	ΑN	190 U	190 U	370 U	190 U	190 U	190 U	190 U	190 U	370 U	370 U	2263.8
SB-28W 5/91 5-11'		23 U	2900 J	30 J	120	16 J	23 U	23 U	23 U	99	45 U	92	45 U	45 U	45 U	99	230 U	45 U	Ϋ́	230 U	230 U	450 U	230 U	230 U	230 U	230 U	230 U	450 U	450 U	3273
SB-28SR 5/91 2-5'		18 U	18 U	18 U	18 U	18 U	5 J	18 U	18 U	36 U	36 U	36 U	36 U	17 J			180 U		Ā	180 U	180 U	360 U	180 U	180 U	180 U	180 U	180 U	360 U	360 ∪	22
SB-27W 5/91 5-13.5'		98 U	88 U	98 U	88 U	88 U	88 U	88 U	88 N	180 U	180 U	180 U	180 U	180 U	180 U	180 U	880 U	180 U	Ϋ́	880 U	880 U	1800 U	880 U	880 U	880 U	2200	880 U	1800 U	1800 U	Q
SB-27SR 5/91 2-5'		19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	38 U	38 U	38 U	38 U	38 U	38 U	38 U	190 U	38 U	ΑN	190 U	190 U	380 U	190 U	190 U	190 U	190 U	190 U	380 U	380 U	Q
SB-7E BLD DUP 2/10/95 8-10'			2.5 U								5 UB			4.8 BJP							2.5 U					20 U	20 U	20 N	50 U	13.3
SB-7E DL 2/10/95 8-10'		23 U	23 U	110	20 JP	23 UB	23 U	23 U	23 U	21 JP	36 JP	45 U	56 BP	42 J	45 UB	22 BJ	230 UB	45 UB	45 U	23 UB	23 U	2300 U	450 U	∩ 006	450 U	241				
SB-7E 2/10/95 8-10'		2.3 U	2.3 U	63 EP	24 B	2.3 UB	2.3 U	2.3 U	2.3 U	15 P	26 BP	4.5 U	39 BP	29 B	13 BP	4.5 UB	23 U	4.5 UB	4.5 UB	2.3 UB	12 P	230 U	45 U	∩ 06	45 U	241				
SB-7D 2/10/95 8-10'			2.1 U																			210 U	41 U	82 U	41 U	4.31				
SB-7C 2/10/95 8-10'		2.1 U	2.1 U	2.1 U	2.1 UB	2.3 BP	2.1 U	2.1 U	0.78 JP	1.2 JP	4.3 UB	4.3 ∪	4.3 UB	1 BJ	4.3 UB	1.6 BJP	28 P	4.3 UB	4.3 UB	2.1 UB	2.1 U	210 U	43 U	85 U	43 U	29.98				
SB-7B 2/9/95 10-12'		0.38 JP	2.1 U	2.1 U	2.1 U	0.038 BJP	2.1 U	0.075 JP	2.1 U	0.077 JP	4.2 UB	4.2 U	0.43 BJP	0.074 BJP	4.2 UB	1.1 BJP	21 U	4.2 UB	4.2 UB	2.1 UB	2.1 U	210 U	45 U	84 U	45 U	45 U	45 U	45 U	42 U	0.532
SB-7A 2/9/95 10-12'		0.19 JP	2.1 U	2.1 U	2.1 U	2.1 UB	2.1 U	2.1 U	2.1 U	4.2 U	4.2 U	4.2 U	4.2 UB	4.2 U	4.2 UB	4.2 UB	21 UB	4.2 UB	4.2 U	1.6 BJP	2.1 U	210 U	42 U	83 U	42 U	0.19				
Location: Date Collected: Depth:	Max Conc. from Buffalo Ave. Site		23.0	Q	22.0	6.7	11.0	24.0	Q	11.0	19.0	Q	Q	16.0	7.0	21.0	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	
		alpha-BHC	beta-BHC	delta-BHC	Lindane	Heptachlor	Aldrin	Heptachlor epoxide	Endosulfan i	Dieldrin	4,4'-DDE	Endrin	Endosulfan II	4,4'-DDD	Endosulfan sulfate	4,4'-DDT	Methoxychlor	Endrin ketone	Endrin aldehyde	A-Chlordane	G-Chlordane	Toxaphene	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Total

Notes: Concentration units in ug/kg (ppb).

J - Estimated value.
U - Not detected.
N - Spiked sample recovery not within control limits.
B - Analyte is found in the associated blank as well as in the sample.
P - Analyzed by ICP techniques.
E - The flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
ND - Not detected.
NA - Not Analyzed
DL - Dilution.
Maximum Concentration Detected at De-listed Buffalo Avenue Site.
(O'Brien & Gere 1991a)

Table 7
Phase II Investigation
One-Acre Site - Buffalo Avenue
Subsurface Soil Semivolatile Organic Compound
Niagara Falls, New York

	Location:	SB-27SR	SB-27W	SB-27W	SB-28SR	SB-28SR	SB-28W	SB-29SR	SB-29W	SB-33SR	SB-33W	SB-33W
	Date	5/91	5/91	5/91	5/91	5/91	5/91	5/91	5/91	5/91	5/91	5/91
	Depth:	(2-5)	(5-13.5)	(5-13.5) DL	(2-5)	(2-5) DL	(5-11)	(4-7)	(7-11)	(2-4)	(4-7)	(4-7) DL
Phenanthrene (**)		740 U	14000	I. 0064	250 .1	7500 11	4700	3900	460.1	410 1	53000	37000
/ **/ **/ V		17 072	1000	- 002	7 032	2 0032			1 7		7,000	
Antiliacene ()		0 04/	000	5 00/	0 00/	0 000/	1200	920	0.067	81 7	14000	8300 J
Carbazole		ΑN	Ϋ́	N A	Y Y	ΑΝ	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Ą
Di-n-butylphthalate		740 U	850 U	8700 R	130 J	7500 U	920 U	740 U	110 J	110 J	1700 U	8400 U
Fluoranthene (**)		740 U	15000 J	£ 0029	310 J	7500 U	5400	4200	490 J	630 J	62000 J	43000
Pyrene (**)		740 U	10000	£600 J	280 J	7500 U	4200	3600	410 J	500 J	£ 00025	39000
Butylbenzylphthalate		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	680 U	1700 U	8400 U
3,3-Dichlorobenzidine		1500 U	1700 U	17000 R	1500 U	15000 U	1800 U	1500 U	1600 U	1400 U	3400 U	17000 U
Benzo(a)anthracene (**)		740 U	0009	3000 J	200 J	7500 U	2800	2500	250 J	370 J	36000 J	22000
Chrysene (**)		740 U	4600	8700 R	190 J	7500 U	3000	2200	250 J	380	31000 J	22000
bis(2-Ethylhexyl)phthalate	0	400 J	430 J	20000 J	32000 J	39000	200 J	260 J	290 J	130 J	610 J	360 J
Di-n-octylphthalate		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 0	1700 U	8400 U
Benzo(b)fluoranthene (**)	_	740 U	0009	2800 J	230 J	7500 U	3500	3000	260 J	440 J	£0000	27000
Benzo(k)fluoranthene (**)		740 U	2200	1400 J	120 J	7500 U	1800	1600	110 J	220 J	17000	12000
Benzo(a)pyrene (**)		740 U	4200	2300 J	130 J	7500 U	2300	510 J	170 J	300 J	32000 J	21000
Indeno(1,2,3-cd)pyrene (**)	î.	740 U	1400	8700 R	750 U	7500 U	740 J	670 J	790 U	6 J	13000	14000
Dibenzo(a,h)anthracene (**)	£	740 U	250 J	8700 R	750 U	7500 U	260 J	160 J	790 U	089 0	290 J	2000 J
Benzo(g,h,i)perylene (**)		740 U	1000	8700 R	750 U	7500 U	610 J	390 J	790 U	089 N	8600	11000
Total "O" Area CV/O		2	7310	7540	2	2	870	000	2	2	Č	2
Total o Alea SVOCS		2	25	22	2	2	0/0	200	2	2	S	S
Total PAHs		2	20700	20700	1788	1788	32657	26050	2516	3463	323620	323620
Other SVOCs		Ω	21150	21150	39130	39130	700	1170	400	257	6692	6692

Notes: Concentration units in ug/kg (ppb).
J - Estimated value.
U - Not detected.
R * - "S" Area Indicator
** - PAH Compound

Table 7
Phase II Investigation
One-Acre Site - Buffalo Avenue
Subsurface Soil Semivolatile Organic Compound
Niagara Falls, New York

Loc	Location:	SB-27SR	SB-27W	SB-27W	SB-28SR	SB-28SR	SB-28W	SB-29SR	SB-29W	SB-33SR	SB-33W	SB-33W
	Date	5/91	5/91	5/91	5/91	5/91	5/91	5/91	5/91	5/91	5/91	5/91
	Depth:	(2-5)	(5-13.5)	(5-13.5) DL	(2-5)	(2-5) DL	(5-11)	(4-7)	(7-11)	(2-4)	(4-7)	(4-7) DL
Phenol		740 U	850 R	8700 R	750 U	7500 U	920 U	740 U	790 U	17 J	1700 U	8400 U
bis(2-Chloroethyl)ether		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 N	1700 U	8400 U
2-Chlorophenol		740 U	850 R	8700 R	750 U	7500 U	920 U	740 U	790 U	089 N	1700 U	8400 U
1,3-Dichlorobenzene		740 U	730 J	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
1,4-Dichlorobenzene		740 U	2300	8700 R	750 U	7500 U	390 J	120 J	790 U	089 O	1700 U	8400 U
1,2-Dichlorobenzene		740 U	380 J	8700 R	750 U	7500 U	200 J	740 U	790 U	089 O	1700 U	8400 U
2-Methylphenol		740 U	850 R	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
4-Methylphenol		740 U	850 R	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	82 J	8400 U
N-Nitroso-di-n-propyłamine		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 N	1700 U	8400 U
Hexachloroethane		740 U	820 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
Nitrobenzene		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
Isophorone		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
2-Nitrophenol		740 U		8700 R	750 U	7500 U	920 U	740 U	790 U	089	1700 U	8400 U
2,4-Dimethylphenol		740 U		8700 R	750 U	7500 U	920 U	740 U	790 U	089 N	1700 U	8400 U
bis(2-Chloroethoxy)methane		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
2,4-Dichlorophenol		740 U	850 R	8700 R	750 U	7500 U	920 U	740 U	790 U	680 U	1700 U	8400 U
1,2,4-Trichlorobenzene(*)		740 U	006	8700 R	750 U	7500 U	280 J	140 J	790 U	089 O	1700 U	8400 U
Naphthalene(**)		740 U	1100	8700 R	750 U	7500 U	580 J	740 J	ر 69 ا	089 O	15000	8700
4-Chloroaniline		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 0	1700 U	8400 U
Hexachlorobutadiene (*)		740 U	820 N	8700 R	750 U	7500 U	920 U	740 U	790 U	089 N	1700 U	8400 U
4-Chloro-3-Methylphenol		740 U	850 R	8700 R	750 U	7500 U	920 U	740 U	790 U	089 N	1700 U	8400 U
2-Methylnaphthalene (**)		740 U	260 J	8700 R	78 J	7500 U	170 ك	370 J	47 J	089 O	17000	9200
Hexachlorocyclopentadiene (*)	_	740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
2,4,6-Trichlorophenol		740 U	850 R	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
2,4,5-Trichlorophenol (*)		3600 U		42000 R	3600 U	36000 U	4500 U	3600 U	3900 U	3300 U	8100 U	41000 U
2-Chloronaphthalene (**)		740 U		8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
2-Nitroaniline		3600 U		42000 R	3600 U	36000 U	4500 U	3600 U	3900 U	3300 U	8100 U	41000 U
Dimethyl phthalate		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
Acenaphthylene (**)		740 U	320 J	8700 R	750 U	7500 U	97 J	200 J	790 U	089 O	620 J	8400 U
2,6-Dinitrotoluene		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
3-Nitroaniline		3600 U	4100 U	42000 R	3600 U	36000 U	4500 U	3600 U	3900 U	3300 U	8100 U	41000 U
Acenaphthene (*)		740 U	-	8700 R	750 U	7500 U	550 J	330 Л	790 U	36 J	11000	6300 J
2,4-Nitrophenol		3600 U		42000 R	3600 U	36000 U	4500 U	3600 ∪	3900 U	3300 U	8100 U	41000 U
4-Nitrophenol		3600 U	4100 R	42000 R	3600 U	36000 U	4500 U	3600 U	3900 U	3300 U	8100 U	41000 U
Dibenzofuran		740 U	1500	460 J	750 U	7500 U	500 J	610 J	790 U	089 N	0009	3000
2,4-Dinitrotoluene			850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
Diethylphthalate		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	O89	1700 U	8400 U
4-Chlorophenyl-phenylether		740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	O89	1700 U	8400 U
Fluorene (**)		740 U	2000	8700 R	750 U	7500 U	750 J	290	790 U	O89	11000	6200 J
4-Nitroaniline		3600 U	4100 U	42000 R	3600 U	36000 U	4500 U	3600 U	3900 U	3300 U	8100 U	41000 U
4,6-Dinitro-2-methylphenol		3600 U	4100 R	42000 R	3600 U	36000 U	4500 U	3600 U	3900 ח	3300 U	8100 U	41000 U
N-Nitrosodiphenyłamine		740 U	820 N	8700 R	750 U	7500 U	920 U	740 U	790 U	089 O	1700 U	8400 U
4-Bromophenyl-phenylether		740 U	820 U		750 U	7500 U	920 U	740 U	790 U	O89	1700 U	8400 U
Hexachlorobenzene (*)	,	740 U	850 U	8700 R	750 U	7500 U	920 U	740 U	790 U	O 089	1700 U	8400 U
Pentachlorophenol		3600 U	4100 R	42000 R	3600 U	36000 U	4500 U	3600 U	3900 U	3300 U	8100 U	41000 U

Table 7
Phase II Investigation
One-Acre Site - Buffalo Avenue
Subsurface Soil Semivolatile Organic Compounds
Niagara Falls, New York

<u>پ</u> ا پ			z
BLD DUP RE 2/10/95 8-10'	1000 1000 190 BJ 500 U 910 930 950 550 U	500 U 32 J 500 U 500 U 500 U 13798 982	1700 J 30000 BJN
BLD DUP 2/10/95 8-10'	1600 500 1200 1400 1400 500 U	500 U 32 J 500 U 500 U 3202 14039 1265	30000 BJN ate failer,
SB-7E DL 2/10/9 5 8-10'	1900 JD 2000 JD 4500 U 4500 U 2800 JD 1700 JD 1300 JD 4500 U 1000 JD	4500 U 280 J 4500 U 4500 U 4280 28020 3140	JN 130000 J 57100 JN 30000 BJN 30000 BJN 30000 BJN 30000 BJN 500000 BJN 30000 ND - Not detected. DL - Dilution RE - The sample was reanalyzed due to a surrogate failer, yielding the same results as the first analysis. TICs - Tentatively Identified Compounds. (*) - "S" Area indicator Parameters. (*) - Polynuclear Aromatic Hydrocarbons.
SB-7E 2/10/95 8-10'	3300 3600 450 U 450 U 3000 2800 450 U 450 U	450 U 350 J 90 J 200 J 4280 28020 3140	57100 JN 30000 BJN as reanalyzed me results as Jentified Comp tor Parameters omatic Hydroc
SB-7D DL 2/10/95 8-10'	77000 JD 80000 JD 120000 U 78000 JD 78000 JD 93000 JD 120000 U 35000 JD	120000 U 120000 U 120000 U 120000 U 3400 934200 122800	JN 130000 J 57100 JN 30000 BJN 50000 BJN 50000 ND - Not detected. DL - Dilution RE - The sample was reanalyzed due to a yielding the same results as the first TICs - Tentatively Identified Compounds. (*) - "S" Area indicator Parameters. (*) - Polynuclear Aromatic Hydrocarbons.
SB-7D 2/10/95 8-10'	140000 E 140000 E 5400 BJ 120000 U 93000 130000 E 120000 E 60000 120000 U	120000 U 120000 U 120000 U 120000 U 3400 934200 122800	338900 JN 20000 BJN ND - DL - I RE - TICs (**) - "*
SB-7C RE 2/10/95 8-10'	12000 J 9400 J 3200 BJ 13000 U 13000 U 13000 U 13000 U	13000 U 13000 U 13000 U 13000 U 13000 U 23100	40000 BJN 30000 BJN 20000 BJN 20000 BJN 20000 JN 300000 JN 30000 BJN 20000 BJN 20000 BJN 20000 BJN 20000 BJN 20000 BJN 20000 BJN oncentration units in ug/kg (ppb). - Estimated value Not detected Spiked sample recovery not within control limits Analyte is found in the associated blank as well as in the sample Identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis Identifies all compounds indentified in an analysis at a secondary dilution factor.
SB-7C 2/10/95 8-10'	15000 13000 13000 13000 13000 13000 13000 13000 13000	13000 U 13000 U 13000 U 13000 U 125600 39700	266000 JN 20000 BJN sample. calibration rang
SB-7B RE 2/9/95 10-12'	73 J 96 J 240 BJ 420 U 420 U 420 U 420 U	420 U 420 U 420 U 420 U 420 U 728 728	8200 JN 20000 BJN Llimits. Is well as in the
SB-7B 2/9/95 10-12'	110 J 140 J 140 J 420 U 420 U 420 U 420 U 420 U	420 U 420 U 420 U 420 U 420 U 759 38	3000 J 30000 BJN ppb). t within contro ociated blank a se concentratio ic analysis. identified in an
SB-7A RE 2/9/95 10-12'	190 J 190 J 130 BJ 260 J 250 J 250 J 420 U 420 U	420 U 420 U 420 U 420 U 720 U 82241 55	700 J 500 J 3800 J 8200 JN 266000 JN 30000 8JN 20000 BJN
SB-7A 2/9/95 10-12'	260 J 290 J 150 BJ 410 U 410 U 410 U 410 U	420 U 420 U 420 U 420 U 420 U 1733 292	700 J 40000 BJN 300 Concentration units J - Estimated value. U - Not detected. N - Spiked sample r B - Analyte is found E - Identifies compoinstrument for instrument for
Location: Date Collected: Depth:	Benzo(a)anthracene(**) Chrysene(**) bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene(**) Benzo(k)fluoranthene(**) Benzo(a)pyrene(**) Indeno(1,2,3-cd)pyrene(**) Dibenz(a,h)anthracene(**)	1,3,5-Trichlorobenzene 1,2,3-Trichlorobenzene(*) 1,2,4,5-Tetrachlorobenzene(*) 1,2,3,4-Tetrachlorobenzene(*) Total "S" Area Indicator Parameters. Total PAHs Other VOCs	Total TICs in Blanks Notes: (

CPO:ers/div12/5_notes&d/18cpotb

Table 7
Phase II Investigation
One-Acre Site - Buffalo Avenue
Subsurface Soil Semivolatile Organic Compounds
Niagara Falls, New York

bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene(*) 410 U 1,4-Dichlorobenzene(*) 410 U 1,2-Dichlorobenzene(*) 410 U 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine 410 U Hexachloroethane Nitrobenzene 410 U Sophorone 2-Nitrophenol 410 U		420 U	0 07*		11 111177.	1,71,11,11	1.76.86.81	000			
e) 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				13000 U	120000 U	120000 U	450 U	4500 U		200 C
e) 0 0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	420 420 420 420 420 420 420 420 420 420		420 U	13000 U	13000 U 13000 U	120000 U 2400 J	120000 U	450 U 450 U	4500 U	∩ ∩ 200 200	200 200 200
e) 014 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	420 420 420 420 420 420 420 420 420				13000 U		120000 U		1600 JD	870	550
e)	4 2 0 2 4 4 2 0 4 2 0 4 4 2 0 4		420 O	3700 J	13000 U	120000 U	120000 U	450 U	4500 U	500 11	1500
4 4 4 4 4 4 4 0 0 1 0 1 0 0 0	420 420 420 420 420 420	_	_		13000 U	120000 U	120000 U		4500 U	200 O	200 n
4 4 4 4 4 4 0 0 0 0 0 0 0	420 420 420 420 420	_			5600 J		120000 U		4500 U		500 U
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 4 4 2 0 0 0	0 024	13000 0	13000 0	120000 0	120000 0	450 U	4500 U	000	200
	420 420 420	420 O	420 O		13000 U	120000 U	120000 U	450 U	4500 U	000	2000
		_	_		13000 U	120000 U	120000 U		4500 U		200 C
_	420 N	420 U	420 U	13000 U	13000 U	120000 U	120000 U		4500 U	500 U	500 U
2 !		_			5800 J	120000 U	120000 U		4500 U		200 U
bis(2-Chloroethoxy)methane 410 U	420 O	420 O		13000 U	13000 U	120000 U	120000 U	450 U	4500 U	200 C	200 C
	420 0	420 O	420 0	13000	13000	120000	120000 0	940 0	0 006	000	200 O
5.00	46 46				3100 .	11000	6400 JD	560		- 66 66	0.2 J
410 U	4	420 U	420 U		13000 U	120000 U	ر (450 U		200 C	21 J
Hexachlorobutadiene(*) 410 U	420 U	420 U	420 U	13000 U	13000 U	120000 U	120000 U	450 U	4500 U	500 U	500 U
4		420 U	420 U	13000 U	13000 U	120000 U	120000 U	450 U	4500 U	500 U	500 U
63	48	120 J	•	7700 J	5500 J	4300 J	120000 U	520	350 JD	500 U	38 1
adiene(*) 410		420 U	420 U	13000 U	13000 U	120000 U	120000 U	450 U	4500 U	500 U	500 U
2,4,6-1 richlorophenol 410 U	0 0001	1100	1100 1	32000 0	32000 0	310000	310000 0	450 U	11000	1200	200 O
410		420 0	_	13000 U	13000 1	120000 1	120000 1	720	4500 1	500	500 0
1000	_	1100 U	_	32000 U	32000 U	310000 U	310000 U	1100 U	11000 U	1200 U	1200 U
		420 U	420 U	13000 U	13000 U	120000 U	120000 U	450 U	4500 U	500 U	500 U
Acenaphthylene(**) 410 U		420 U	420 U	7200 J	5700 J	120000 U	120000 U		150 JD	140 J	f 06
	420	_	_		13000 U	120000 U	120000 U		4500 U	500 U	500 U
	1000				32000 U	310000 U	_		11000 U	1200 U	1200 U
	420				13000 U	9600 J	6500 JD		4500 U	200 N	50 J
	1000				32000 U		310000 U		11000 U	1200 U	1200 U
1000 0	0000	000-	0007	32000 0	32000 0	310000	310000 0	330 0	1000	0 0071	0 0071
	7	420 5	420 0		13000	120000	120000 0		4500 11	2005	200
	420	_	_		13000 U		120000 U		4500 U	200 O	200 O
4-Chlorophenyl-phenylether 410 U	420 U	420 U	420 U	13000 U	13000 U	120000 U	120000 U	450 U	4500 U	200 U	500 U
	420 U	420 U	420 U	13000 U	13000 U	8300 J	120000 U	450 U	4500 U	200 U	85 J
1000	1000	_	_		32000 U		310000 U	1100 U	11000 U	1200 U	1200 U
1000 lor	1000	_	_		32000 U		310000 U	1100 U	11000 U	1200 U	1200 U
410	420	_			13000 U		120000 U	450 U	4500 U	200 N	200 N
ether 410	420				13000 U		120000 U	450 U	4500 U	000	200 O
e(") 410	420				13000		120000 U	450 U	4500 U	0000	0000
Pentachiorophenol 1000 U	_	1100 0	0 - 00 1	32000 0	32000 0	310000		0 0011		1200 U	7200 0
270		200	2051	74000	41000	00006	1000 JD	2800		- 000	- 000
C - 7 F		2.007	7.00	14000	0001	2000	16000 JD	- 0.70	25 Oct	2007	7007
	420 42		47 -		13000 5	120000	-	450 1		- 06- - 00-	30 5
	240 .1				12000		150000			2400	1400
	360 J	180 J	160 J	17000	18000		OF 00066	6200 E		3000	4800
	420 U	420 U	420 U	13000 U	13000 U	120000 U	120000 U			500 U	500 U
Φ	420 U	420 U	420 U		3600 J	91000	G8000 JD	2500		1000	520

Phase II Investigation
One-Acre Site - Buffalo Avenue
Subsurface Soil - Volatile Organic Compounds
Niagara Falls, New York Table 6

Location: SB-7A Date Collected: 2/9/95 Depth: 10-12'	7A SB-7B SB-7C 95 2/9/95 2/10/95 12' 10-12' 8-10'	SB-7D 2/10/95 8-10'	SB-7E 2/10/95 8-10'	SB-7E BLD DUP C 2/10/95 8-10'	QCTRPB 2/10/95 	SB-27S 5/91 2-4'	SB-27W 5/91 5-6'	SB-28S SE 5/91 4 2-4'	SB-28W SB 5/91 5/ 6-8' 4	SB-29SR SE 5/91 5 4-6'	SB-29W 85/91	SB-29W 5/91 5/91 7-8' RE	SB-33SR S 5/91 2-4'	SB-33SR S 5/91 2-4'	SB-33W 5/91 4-6'
	-	-		:	-	3	=	:	=	:		:	:	;	;
13 0 13 0 12		ວ ;		ນ ກຸ) ()	o :	13.0	o :	0 2 5) 	19 19 19	14 03	; c	; c	4 ∶
ND 12 U 13 U 13 U 12 U 13 U	· >=	5 6	_	15.0	5 5	= = = ==	5 £	= =	2 5	= t	3 5	1 2	: t	: t	5 5 5 =
12 0 13 0 13 0 12 0	· - =	<u>.</u>	-	15.0		: =	13 0	= =	12 = 2	= =		12	= = =	= =	5 4
2 BJ 5 BJ 3 J 2	8	က) ¬	. 4	5 5) ⊃ : ⁹)) !	2 0)	2 0		_	. r.	- v:	2 2
19 36 58 34		39		150	10 U	1	33 U	11 U	63 U	62 U	39 U.S	42 UU	12 U	13 0	92 O
12 U	7 J 2	7	7	38	10 U	O 9	7 U	5 U	0 9	2 N	_	_	5 U	5 U	7 0
12 U 13 U 13 U 12 U	_	13	⊃	15 U	10 U	0 9	7 U	5 U	0 9	2 O		8 U	5 U	5 U	7 0
12 U 13 U 13 U 12 U 1	_	13	_	15 U		n 9	7 U	5 U	Ω9	2 N			5 U	5 U	7 0
12 U 13 U 13 U 12 U	>	7	_	2 J	10 U	∩ 9	7 U	5 C	O 9	5 U		_	2 ∩	2 ∩	7 0
12 U 0.7 J 13 U 1 J	آ	45		-		∩ 9	0.8 J	5 U	∩ 9	2 2		8 C	5 U	2 N	7 0
12 U 13 U 13 U 12 U 13	U 13		\neg	15 U		n 9	7 U	5 U	0 9	5 U	_	8 U	5 U	2 N	7 U
4 BJ 0.8 BJ 11 BJ 9 BJ 8	BJ 8		B		10 U	11 O	13 U	_	12 U	11 U	_	17 UJ	11 U	11 U	14 U
12 U 2 J 13 U 1 J 13	13		\supset			∩ 9	7 0	_	n 9	5 U	_	8 U		2 Ω	7 U
12 U 13 U 12 U	- :	13	- :			∩ : 9) 	2 C	∩ : 9	_	_	8	2 0	2 N	7 U
12 U 13 U 13 U 12 U 1) 	5 5	-	15 0		⊃ : ຶ) 	ر د د) 9	ე : ე :	3 :	8		ე: : ი) -
ND 12 0 13 0 13 0 12 0 13 0 ND 12 0 13 (o =	5 6	-	15 0 4	5 5	ာ =) = \	ວ <u>=</u>)) (4)	က က က	3 =	S = 8	ر د د د د))
12 0 13 0 13 0 12 0 1	· > =	2 6	· –	5 ~) = 0 @	0 =	ט בי) <u>-</u>	_	3 =			ם ב	o = ~ ^
12 0 13 0 13 0 12 0	· > >	13	, <u> </u>	15 U	5 5)) (9	2 0)) ()	0 0	2 0	_	6 8 8		2 5	0 0
12 U 13 U 13 U 1	ے ۔	13	\supset	15 U		O 9		5 U	n 9	2 0	_			2 0	7
12 U 13 U 74 0.9 J 1	_	÷	3 U	ر د	10 U	0 9					_			5 U	7 U
12 U 13 U 2 J 12	ا	13	-		10 U	_	7 U	5 U		2 O			5 U	5 U	
12 U 13 U 13 U 12 U	` _	13	_	15 U							_			2 Ω	7 U
12 U 13 U 13 U 12 U	· 	13	_	15 U		11 O		1 0	12 U		16 UJ	_	11 U	1	14 U
12 U 13 U 13 U 12	` _	13	\supset			_					_	_	11 O	11 O	14 U
12 U 13 U 13 U 12 U	· ⊃	18				O 9					% C)	_	0.3 J	-	2 J
12 U 13 U 13 U 12 U 1	_	13	\supset			∩ 9	7 U	5 U	O 9		% 0	_	5 U	2 N	7 0
12 U 4 J 140 2 J	-	က	_	ر 9		∩ 9	_		_	_	8 C	_	ا د	2 J	7 0
12 0 13 0 6 1 5 1	٠ ٦	12	_	160		O 9	19	5 U	∩ 9		8 0	8 U3	5 U	5 U	7 U
12 U 13 U 18 12 U	<u> </u>	13 (_	15 U		O 9		5 U	O 9		∞	_	5 U	5 U	7 U
ND 12 U 13 U 23 12 U 13 U	_	13 U		15 U	10 U	N 9	7 U	5 U	n 9		8 U	8 U	5 U	5	7 O
12 U 13 U 170	2) 6)	ر 9		ი ნ	10 U	0 9		0.1 کا	n 9	_	8 U	_	5 U	ر د	7 0
80 5.9		42		170	Q		19				Q	Q	0.3	0.3	2
9.7 357 13 53		53		9 61	9 9	9 9	2.8	~ ·	2	9	2 9	2 :	- (က	9
437 18.9 460 IN 60 IN	2	S 2		231	2 2		۶. ۲. ۲. ۲.				2 2	2 2	د. ت	3.3	2 2
NIC DO NIC DCI	5	Š					2				2	2	2	2	2

Notes: Concentration units in ug/kg (ppb).

J - Estimated value.

U - Not detected.

N - Spiked sample recovery not within control limits.

B - Analyte is found in the associated blank as well as in the sample.

ND - Not detected.

ND - Not detected.

ND - Not detected.

SB-27 through SB-29 and SB-33 collected as part of the Buffalo Avenue Site Investigation.

Appendix A

Soil Boring Logs and Monitoring Well Completion Diagrams

BRIE	en &	GERE EN	NGINEERS.	INC.		TEST BORING LOG	PAGE 1 OF 1	SORING SB	-27	
CUENT	•	City of N	iagara Falls			SAMPLER Split Spoon 2" HAMMER: 140 lbs. FALL: 30"	LOCATION:	N500 E1100		
TE NO		CATION: 1736.046	Buffalo Av	e. Site		ANALYTICAL SAMPLES DEPTH ID # ANALYSIS 2-4' SB-27SR TCL VOC	START DATE: END DATE:	5/14/91 5/14/91		
	AN:	Jim Laneir	•	f, Inc.	_	5-6' SB-27W TCL VOC 2-5' SB-27SR TCL Para. 5-13.5' SB-27W TCL Para.	LEGEND:	Grout Sand Pac Pellets	_	Screen Riser
BG GE	000	G181:	John Mason	T -	<u> </u>	GROUND ELEVATION: 572.1'	STRATUM		BEID.	TESTING
DEPTH BELOW RADE	NO.	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	*N* VALUE	SAMPLE DESCRIPTION	CHANGE GENERAL DESCRIPT	EQUIPMENT INSTALLED		HEAD-
0								1		
	_	0.41		2011 51					١.	
2	1	2-4'	6-6-6-6	2'/1.5'	12	Dry, red brown, fine to very fine SAND, some angular medium gravel, some medium	SHOT ROCK		0	0
3						sand, little silt				
4		4.41	1000							
4	2	4–6'	6-5-5-3	5,/5,	10	(4-5") Same as above			0	0
						(5-6') Moist, black, medium SAND, some fine	5'			
					_	sand, white lime (reacts w/HCL) and purple				
6	3	6–8'	4-3-7-6	2'/1'	10	zones	MISC FILL		0	0
7		•				Same as above, moist to wet, possible ash	'			
8	4	8-10'	9-6-5-12	5./5.	11	Same as above, concoidally-fractured black			0	0
9						glass-like particles, reddish clasts, very fine gravel, white zone, ~1" thick near too			l	
			-			graver, writte zone, ~ 1 unck near top				
10	5	10-12'	16-12-	2'/0.5'	22	Wet, black to red to purple, medium to coarse			0	0
11			108			SAND, some fine gravel				
12	6	12-14'	12-4-6-6	2'/2'	10	(12-13.5') Same as above			٥	0
13										
						(13.5-14') Laminated CLAY and SILT	13.5'			
14						Bottom of Fill 13.5 ft.	NATIVE	2000	1	
- 15						Bottom of Boring 14.0 ft.	CLAY			
- 13										
16										
1.7										
17										
18										
19										
20										

ND and Headspace analysis values reported in ppm using HNU model PI-101.

						TEST BORING LOG	REPORT OF E	SORING SB	-28	
O'BRIE	N&	GEREE	IGINEERS,	INC.			PAGE 1 OF 1			
						SAMPLER Split Spoon 2"	1			
CLIENT	:	City of N	iagara Fails			HAMMER: 140 lbs.	LOCATION:	N600.E1100		
990 IE	TIO	CATION:	Buffalo Ave	Site		ANALYTICAL SAMPLES	START DATE:	E/1 E/01		
rhwa	,, L	CATION.	Dullalo Ave	. OILU		DEPTH ID# ANALYSIS	END DATE:	5/15/91		
FILE NO).:	1736.046	3			2-4' SB-28Siì TCL VOC				
						6-8' SB-28W TCL VOC	LEGEND:	Grout	-	Screen
BORING			Parratt-Wolff	, Inc.		2-5' SB-28SR TCL Para.		Sand Pac	* _	Riser
OBG GE		Jim Lensir Quet:	ig John Mason			5-11' SB-28W TCL Para. GROUND ELEVATION: 573.0'	1	Pellets		
OBG GE		1	SOUTH MESON			GROUND ELEVATION5/3.0	STRATUM		FIELD.	TESTING
DEPTH	1	ļ			ļ		CHANGE]		
BELOW		DEPTH	BLOWS	PENETR	"N"	SAMPLE DESCRIPTION	GENERAL	EQUIPMENT	PID	HEAD-
GRADE	NO.	(FEET)	/6"	RECOVERY	VALUE		DESCRIPT	INSTALLED		SPACE
<u> </u>	_						}			' '
	 		-				1			1
1			-							l
	1	2-4'	8-8-10-8	2'/1.5'	10		SHOT BOOK		0	0
	<u> </u>	2-4	1 0-0-10-8	271.5	18	Dry, red/brown to olive green, very fine to fine SAND, some fine to medium angular.	SHOT ROCK		U	١ ٠
3	-					dark gray dolomite gravel, little silt and	1			
	-					medium sand, trace clay	1			1
4	2	4-6'	6-6-6-5	2./1.	12	Same as above	'		0	0
<u> </u>	-				12		1			1
5	-		-			Changing to dry, black to red/brown, fine to	5'			1
				:		medium SAND, little coarse and very fine sand.	1			1
6	3	6-8'	6-5-3-3	3./3.	8	trace silt	MISC FILL		0	١٥
						Same as above, black sand with white specs,	,		_	-
7						trace black glass-like clasts	· .			1
							1			
8	4	8-10'	6-3-5-4	2./2.	8	Same as above	1		0	0
										1
9							l			
							ļ			1
10	5	10-12'	3-4-5-6	2'/1'	9	Same as above, wet	ļ		0	0
	_									l
11						Changing to damp, olive green to brown,	11"			
10	-	10 111	0.0.10.11			silty CLAY	NATIVE			
12	6	12-14'	9-8-13-14	2./1.	21	Moist, red/brown to olive green, silty CLAY,	CLAY		0	0
13						trace fine gravel	l			
	_				 					
14						Bottom of fill 11.0 ft.	1			
						Bottom of Boring 14.0 ft.				
15										
16										
17										
						·				
18										
19	-									
20	-									
20										L
PID and	Head	ispace anai	yeis values rep	orted in ppm	using Hi	NU model PI-101.				

_

-

_

L

CLIENT: City of Niagara Falls)'BRIE	N&	GERE EN	IGINEERS.	INC.		TEST BORING LOG	REPORT OF E	ORING SB-	-29	
PANALYTICAL SAMPLES START DATE: 91591	es M	sales -			4 1 .			\ · · · · ·		N600 E1200		
DEPTH D.P ANALYSIS A-6 SB-938 TCL VOC T-2 TCL VOC T-2		100 IEC	710	CATION:	Buffalo Ave	a Sita			CTART DATE:	El1EI01		
Correction Parath-Wolff, Inc. 4-7 S8-29W TCL LOC 4-7 S8-29W TCL Lora. Forestant: John Mason GROUND ELEVATION: S73.1' S8-29W TCL Para. S8-30P Parath-Wolff, Inc. Forestant: John Mason GROUND ELEVATION: S73.1' S8-29W TCL Para. S8-29W TCL Par	-1404					o. O.lo		DEPTH ID# ANALYSIS				
Poster P						Line		7-8' SB-29W TCL VOC	LEGEND:			Screen
DEPTH BLOWS PENETRY No. SAMPLE DESCRIPTION CHANGE GENERAL DESCRIPT NSTALLED PENETRY PECOVERY VALUE SAMPLE DESCRIPTION CHANGE GENERAL DESCRIPT NSTALLED PID HEAT SAMD SAM		FOREM/	AN:	Jim Lansin	9	i, inc.		7-11' SB-29W TCL Para.		200000	K	Hiser
BELOW GFET) BLOWS PENETRY No recovery No. RECOVERY VALUE SAMPLE DESCRIPTION GENERAL EQUIPMENT PID HEAD SPACE NO. FEET) Recovery No. Recovery Recovery Recovery No. R		OBG GE	OLO	SIST:	John Mason			GROUND ELEVATION: 573.1'	STRATUM		FIELD	ESTING
Care According to				DEMA	8: 0:40				CHANGE			
1			NO.					SAMPLE DESCRIPTION			PID	SPACE
2 1 2-4' 6-6-5-8 2'/0 11 No recovery Auger: Dry, red/brown, fine SAND, some silt, trace gravel 4 2 4-6' 9-10- 2'/1' 20 Same as above Auger: trace black graphite-like chipe 6 3 6-8' 10-13- 2'/2' 25 (6-7') Same as above 7 (7-8') Dry to moist, black (shiny), medium to coarree SAND, little fine gravel, graphite-like chipe 11-5 Moiet, black to light green, medium SAND, little gravel and fine sand 10 5 10-12' 2-2-4-5 2'/2' 6 (10-11') Same as above, wet 11 (11-12') Dry to moist, brown to clive green, fine SAND, some very fine sand, black spots Dry to moist, red/brown to clive green slity CLAY 13 Bottom of Fill 11.0 ft. Bottom of Boring 14.0 ft.	- Marian	0										
2 1 2-4' 6-6-5-8 2'/0 11 No recovery Auger: Dry, red/brown, fine SAND, some silt, trace gravel 4 2 4-6' 9-10- 2'/1' 20 Same as above Auger: trace black graphite-like chipe 6 3 6-8' 10-13- 2'/2' 25 (6-7') Same as above 7 (7-8') Dry to moist, black (shiny), medium to coarree SAND, little fine gravel, graphite-like chipe 11-5 Moiet, black to light green, medium SAND, little gravel and fine sand 10 5 10-12' 2-2-4-5 2'/2' 6 (10-11') Same as above, wet 11 (11-12') Dry to moist, brown to clive green, fine SAND, some very fine sand, black spots Dry to moist, red/brown to clive green slity CLAY 13 Bottom of Fill 11.0 ft. Bottom of Boring 14.0 ft.		1							}			
Auger: Dry, red/brown, fine SAND, some silt, trace gravel				_								
3	Night Service	2	1	2-4'	6-6-5-8	2'/0	11	· ·			-	-
4 2 4-6' 9-10- 2'/1' 20 Same as above Auger: trace black graphite-like chips 6 3 6-8' 10-13- 2'/2' 26 (e-7) Same as above 7 (7-8') Dry to molet, black (shiny), medium to coarse SAND, little fine gravel, graphite-like chips 8 4 8-10' 15-16- 2'/1' 27 like classs Molet, black to light green, medium SAND, little gravel and fine sand 10 5 10-12' 2-2-4-5 2'/2' 6 (10-11') Same as above, wet 11		3						(- ·	SHOT ROCK			
10	MANUFACT.							one, used graver				
S		4	2	4-6'		2'/1'	20		1		0	0
6 3 6-8' 10-13- 2'/2' 26 (8-7') Same as above 13-14 (7-8') Dry to moist, black (shiny), medium to coarse SAND, little fine gravel, graphite— 11-5 Moist, black to light green, medium SAND, little gravel and fine sand 10 5 10-12' 2-2-4-5 2'/2' 6 (10-11') Same as above, wet 11 (11-12') Dry to moist, brown to olive green, 5 ne SAND, some very fine sand, black apote 12 6 12-14' 12-13- 2'/1' 31 Dry to moist, red/brown to olive green 13 Selection of Fill 11.0 ft. Bottom of Boring 14.0 ft. 16 Selection of Boring 14.0 ft. 18 Selection of Boring 14.0 ft.			-	<u> </u>	10-11			Auger: trace black graphite—like chips				
13-14	NAME OF TAXABLE PARTY.					-						1
7 '		6	3	6–8'		2,/2,	26	(6-7') Same as above			0	0
to coarse SAND, little fine gravel, graphite— 8 4 8-10 15-16— 2'/1' 27 like clasts Misc Fill Mis	iggu-	7		,	13-14			7 93 Santa and a block (abind and in				
10 5 10-12' 2-2-4-5 2'/1' 31 13 13 15 15 15 15 15			-					()				
10 5 10-12' 2-2-4-5 2'/2' 6 (10-11') Same as above, wet		8	4	8-10'	15-16-	2'/1'	27	i	MISC FILL		0	0
10 5 10-12' 2-2-4-5 2'/2' 6 (10-11') Same as above, wet 11	MANY	0			11-5							1
11		,	_			 		little gravel and fine sand	1			
12 6 12-14' 12-13- 2'/1' 31 Dry to moist, red/brown to olive green 13	HUY	10	5	10–12'	2-2-4-5	2./2,	6	(10-11") Same as above, wet			0	0
12 6 12-14' 12-13- 2'/1' 31 Dry to moist, red/brown to olive green slity CLAY 13 Bottom of Fill 11.0 ft. 15 Bottom of Boring 14.0 ft. 16 17 18 18 19		11						(11-12') Dry to moist, brown to olive green,	11'			
13 Bottom of Fill 11.0 ft. Bottom of Boring 14.0 ft. 15 16 17 18 19 19 19 19 19 19 19 10 10	er.	12	_	10 141	10.10	0.44		•	NATIVE			
13 Bottom of Fill 11.0 ft. 14 Bottom of Boring 14.0 ft. 15 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19		12	0	12-14		27/1	31				0	0
15 Bottom of Boring 14.0 ft. 16 17 18 19		13										
15 Bottom of Boring 14.0 ft. 16 17 18 19	•	14							-			
15 16 17 18 19 19 19 19 19 19 19												
17 18 19	,	15						2				
17 18 19		16								}		
18												
19		17								}		
19		18	-									
												1
20		19										
		20										
PID and Headspace analysis values reported in ppm using HNU model PI-101.			Uaa-									

2 8						TEST BORING LOG	REPORT OF		-33	_
O'BRIE	N &	GERE E	IGINEERS,	INC.		SAMPLER Split Spoon 2"	PAGE 1 OF 1			
CLIENT:		City of N	iagara Falis			HAMMER: 140 lbs.	LOCATION:	N700 E1100		
PROJEC		CATION: 1736.046	Buffalo Ave	e. Site		ANALYTICAL SAMPLES DEPTH ID # ANALYSIS 2-4' SB-33SR TCL VOC	START DATE: END DATE:			
BORING	COM	IPANY: Jim Laneir	Parratt-Wolf	f, inc.		4-6' SB-33W TCL VOC 2-4' SB-33SR TCL Para. 4-7' SB-33W TCL Para.	LEGEND:	Grout Sand Pac Pellets		Screen
OBG GE	OLO	3181:	John Mason			GROUND ELEVATION: 573.1'	STRATUM		FFI D	TESTING
DEPTH BELOW GRADE	NO.	DEPTH (FEET)	BLOWS	PENETR/ RECOVERY	'N'	SAMPLE DESCRIPTION	CHANGE GENERAL DESCRIPT	EQUIPMENT INSTALLED		HEAD-
0										٠.
1	1	2-4'	15-12-	2'/1'	21	Dry, red/brown to brown, fine SAND, some	SHOT ROCK		0	
3	_		9-9	271	21	silt and very fine sand, little angular dark gray dolomite fine gravel	Shot hook			
4	2	4-6'	5-5-4-3	2'/2'	9	Moist, black, medium to coarse SAND, some	4'		0	0
- 5						fine sand, little graphite, trace green lime and glass	MISC FILL			
-						and grass				1
6	3	6-8'	4-3-3-2	5.15.	6	(6-7") Same as above	,		0	0
7	Ţ					(7-8") Moist to wet, olive green to brown/orange	7			
						clayey SILT, some very fine sand	NATIVE			
8						Bottom of Fill 7.0 ft.	SILTY			
9						Bottom of Boring 8.0 ft.	SAND			
10										
- 11										
12										
13										1
14										1
15										1
16										
17										
18										
19										
			1							
20										

) Income

Manager

ikintees

- Programme

Pinner

-

	***************************************						TEST BORING LOG	REPO	RT OF	BOR	NG
	(e)/E)[IEN	<u>ः</u> लेखा	TELEVIO	से।शबद्धाः				SB-7A		
1	Cilent	:		Niagara			Sampler: 2"Split Spoon	Page 1 o			
1	Proj. L	001		xo Sito i a Fails, i	investigatio NY	חי	Hammer: 140 lbs.	Location			
ı	Proj. L	. 00.	Magar	u , a.i.e,			1.0		e: 2/9/95		
١	File No	o.:	1736.07		- Inc		Fail: 30"	End Date	2/9/95	Grou	
	Boring Forem	-	прапу:	Ken Sv	rvices inc. vinnich			Riser			ι Pack
	OBG G		gist:	Chawn	O'Dell					Bento	onite
								Stratum			
	Depth Below		Depth	Blows	Penetr/	"N"	Sample Description	Change General	Equip.	HS	sting
•	Grade		1	/6"	Recovery			Descript	<u>Instal</u> led	(ppm)	
	0	1	0-2	34-13	2.0/1.3	25	Dry, brown, medium dense, SILT, some very			0.9	
ł	1			12-10			fine to fine sand, little fine angular gravel, trace organics (plant roots).				
Ì							, , , , , , , , , , , , , , , , , , , ,				
٠	2	2	2-4	9-9-7-7	2.0/1.5	16	Damp, brown, medium dense, SILT, some very fine to fine sand, little fine angular			0.8	
ł	3						gravel.				
Ì											
۲	4	3	4-6	7-8-5-6	2.0/1.3	13	Damp, medium brown to olive, medium dense SILT and fine sand, little clay.		·	0.3	
1	5						OLI aru ime saru, mue ciay.				
_]										_	
1	6	4	6-8	4-5-4-4	2.0/1.2	9	Damp, medium brown to clive, loose SILT and fine SAND, some clay to 7.5 ft., then black			0.7	
ł	7						cinders and white ash.		j		
-	8	5	8-10	10-14	2.0/1.4	22					
1	-	-	8-10	9-8	2.0/1.4	23	SILT, some clay, an ash and cinder layer at			0.2	
	9						9.0-9.5 ft., then organics (plant stalks).				
*	10	6	10-12	8-10	2.0/1.5	22	Damp to wet, brown to olive green, medium			2.1	
1				12-13			dense, SILT, some fine sand, some clay,				
_	11						little cinders, trace angular gravel.				
ł	12	7	12-14	6-7-3-2	2.0/1.7	10	Saturated, dark olive green, medium dense,			0.7	
	- 10						very fine SAND and SILT.				
-	13										
ţ	14										
	15										
1											
- T	16										
1	17			 		<u> </u>		!!			
ı								ł			
	18					·	•				
Ī	19										
•	20										
							•	1 1			
ĺ	21							1			
	22							l i	.		
Ī	,										
	23				·				1	- 1	
	The bore	ehole v	was groute	ed to the s	Urface.	ļ <u>.</u>		·			

TEST BORING LOG REPORT OF BORING orașier (& Gereendinears) inc SB-7B City of Niagara Falls Sampler: 2°Split Spoon Page 1 of 1 ient: One Acre Site investigation Location: Hammer: 140 lbs. Niagara Falls, NY Prol. Loc: Start Date: 2/9/95 1736.078 Fall: 30" End Date: 2/9/95 e No.: \ Grout ring Company: SJB Services inc. Screen Riser Sand Pack Ken Swinnich Foreman: **Bentonite** Chawn O'Dell ORG Geologist: Field Stratum Change Testing oopth Equip. Depth Blows Penetr/ "N" Sample Description General HS Below Descript installed (feet) /6" Recovery Value (ppm) ide No. 0-2 14-13 2.0/1.0 Dry, brown to gray, medium dense, medium to 1.3 23 10-8 coarse GRAVEL, little silt, trace fine to medium sand, trace fine gravel. 0.4 2-4 35-18 2.0/1.3 32 Dry to damp, reddish brown to brown, dense, 14-13 fine SAND, some silt, some fine to coarse gravel, little clay. 4-6 3-4-3-3 2.0/1.2 Damp to wet, brown, loose, SILT and fine 0.0 3 SAND, little clay, trace fine angular gravel. 4-3-4-5 2.0/1.5 0.3 6 6-8 Same as above. Saturated, black, very loose CINDER and ASH, 8 8-10 5-2-1-1 2.0/0.3 3 1.0 little recovery. 1.5 10-12 5-6-6-4 2.0/1.5 Saturated, brown to black, medium dense, SILT 10 12 and very fine SAND, some cinders, little fine angular gravel, trace clay. 12 0.8 12-14 4-5-5-10 2.0/1.4 10 Saturated, olive green to brown, medium dense, very fine SAND, some silt (olive) laminations, turning to brown clay, little sitt at 13.5 ft. 17 18 30 _oie was grouted to the surface.

						IEST BORING LOG	HEPC	OF OF	BOK	NG
************				HINEENS			20-1	SB-7C		
Cilent: Proj. L		One Ad	Niagare ere Site a Falls,	investigatio	n	Sampler: 2*Split Spoon Hammer: 140 lbs.	Page 1 o Location			
File No	-	1736.0				Fall: 30"		e: 2/10/9 : 2/10/9		
Boring	Con		SJB Se	rvices inc.			Screen		Grou	
Forem		alet:		laddox O'Dell			Riser		Sand Bento	
OBG		gi ot.					Stratum		Fie	eld
Depth			Blows	Penetr/	-N-	Sample Description	Change General	Equip.	HS	sting
Below Grade			/6°	Recovery				Installed		ĺ
0	1	0-2	2-4	2.0/1.5	18	Dry to damp, medium brown to gray, medium			0.6	
			14-13			dense, SILT, some clay, little very fine sand to 1.5 ft., then coarse gravel.				
1						is to it, and course grave.				Ì
2	2	2-4	7-9-7-6	2.0/1.4	16	Damp, medium brown, medium dense, SILT,			0.2	
3						some clay, little very fine to fine sand.				
4	3	4-6	7 -9-8 -12	2.0/0.5	17	Dry, brownish gray, medium dense, medium to coarse, angular GRAVEL, little silt, little			0.9	
5						very fine sand.				
					- 12					
6	4	6-8	10-8-8-7	2.0/0.7	16	Damp, dark brown to black, medium dense, fine to medium SAND, some cinders, little white			0.5	
7						ash, little silt, trace coarse gravel.				l
8	5	8-10	2-3-5-5	2.0/1.2	8	Wet, black, loose CINDERS, some silt, little			1.1	
	<u> </u>	51.5	2000	2.0/1.2		orange brick, little fine angular gravel,			[
9						little fine to coarse sand.				
10	6	10-12	7-3-4-4	2.0/1.8	7	Saturated, olive green, loose, fine SAND,			0.3	
						some silt, little medium sand.				
11										
12	7	12-14	4-5-7-5	2.0/2.0	12	Same as above, to 13.5 ft., then medium		ļ	0.0	
13		_				brown, medium dense, CLAY, some silt, trace horizontally and vertically bedded organics				
						(plants).				
14										
15			_							1
4.6										
16			 -					1		
17										
18				 						
19		_	-							
20										
21										
<u> </u>				 						
22										
23										
9 7.										
HS - He			ed to the	surface.						
										_

!

!

Į

	X					TEST BORING LOG	REPO	RT OF	BOR	NG
(e)(E)[iE)			enveries	IIIe			SB-7D		
Client	:	City of	Niagara	Falls		Sampler: 2°Split Spoon	Page 1 o			
Proj. L	òć.		re Site i a Falls, i	investigatio NY	n	Hammer: 140 lbs.	Location			
F10j. L	.00.						Start Dat			
File No	0.:	1736.0		rvices inc.		Fall: 30"	End Date	2/10/9	5 Grout	
Forem	-	прапу:	Dave M				Riser			Pack
OBG C		gist:	Chawn	O'Dell					Bento	
Depth	1						Stratum Change			eld sting
Below		Depth	Blows	Penetr/	"N"	Sample Description	General	Equip.	нв	
Grade	_		/6" 3-4-4-5	2.0/1.7	Value 8	Dry, medium brown, loose, SILT, some very	Descript	Installed	(ppm) 0.1	
0	1	0-2	344-5	2.0/1.7	-	fine to fine sand, little fine to medium			0.1	
1						angular gravel, trace cinders.				
2	2	2-4	4-6	2.0/1.0	17	Dry, light to medium brown, medium dense,			0.9	
-		-24	11-11	2.0/1.0		fine SAND, some silt, some fine to coarse				
3						angular gravel, little medium sand, trace			·	
-	3	4-6	3-8-7-6	2.0/0.8	15	coarse sand. Damp, medium brown, medium dense, SILT,			0.1	
<u> </u>	Ť					some very fine sand, little clay, trace fine				
5						angular gravel.				
6	4	6-8	6-6-8-6	2.0/1.0	14	Damp to wet, brown to black medium dense,			0.4	
						fine SAND, some silt, little cinders, little				
						fine to medium angular gravel, trace orange brick.				
8	5	8-10	3-6	1.2/1.1	87	Wet, black, loose SILT, some fine to coarse			1.8	
			81/0.2			sand, little black cinders, little fine angular gravel to 9.0 ft., then very dense				
	<u> </u>	,				gravel/cobbie, (spoon refusal).				
10						Auger/spoon refusel at 9.2 ft. Apparent				
11		<u> </u>				large piece of shot rock. Boring terminated at 9.2 ft.	1			
12							}			
12	-						ì			
13										
14	├									
						·				
15						-				
16										
17							}			
18										
19										
<u>20</u>										
21										
22										
23										
he bor	ehole v	was groute	ed to the s	urface.						-
HS - He										

						TEST BORING LOG	REPO	ORT OF	BOR	NG
(ME):	įΕij			<u>साराबद्धाः</u>				SB-7E		-
Client		City of	Niegeri	n Falls Investigatio	on -	Sampler: 2*Split Spoon	Page 1 o			
Proj. L	.oc:		a Falls,			Hammer: 140 lbs.		_		
File No	o.:	1736.0	78			Fail: 30"	Start Date	e: 2/10/9 e: 2/10/9		
Boring	Con	npany:		rvices inc. laddox			Screen Riser	= \	Grou	Pack
Forem OBG 0		gist:	Chawn				11.55.		Bento	nite
Danth							Stratum Change			eld eting
Depth Below			Blows	Penetr/	-N-	Sample Description	General	Equip.	нв	9
Grade	No.	(feet)	/6°	2.0/0.5	Value 24	Damp, dark brown, medium dense, SILT, little	Descript	Installed	(ppm) 0.3	
		0-2	12-14	2.0/0.0		very fine sand, little fine gravel, trace			0.0	
1						clay.				
2	2	2-4	10-11	2.0/0	20	No recovery.			-	
3			9-9							
			44.11							
4	3	4-6	14-14	2.0/1.3	24	Damp, white, medium dense, ASH, some brown sitt, little fine to medium angular gravel,			1.1	
5						trace sand, trace cinder (moderate odor).				
6	4	6-8	11-11	2.0/1.5	16	Damp, brown to black, medium dense,			0.3	
7			5-5			CINDER and SILT, little gravel, little white				
	_					abil.				
8	5	8-10	8-4 7-13	2.0/2.0	11	Damp to wet, white, brown, black, medium dense, SILT, CINDERS and ASH, little fine			3.5	
9						gravel, trace orange brick (moderate odor).				
10	6	10-12	6-5-5-5	2.0/1.5	10	Wet, brown to black, medium dense SILT, some			2.9	
						black cinders, little white ash, little fine				
11						angular gravel, little fine to coarse sand.	}			
12	7	12-14	3-3-5-8	2.0/1.8	8	Wet, clive green to brown, loose, fine SAND and SILT to 13.0 ft., then CLAY, some silt.			0.0	
13						and Sier to 13.3 fe, then ober, some sile				
14			<u> </u>							
15										
16										
17										
18										
19										
20										
21										
22										
*										
23										
and de		vas groute	d to the s	urface.						
HS - He	auspac	; •								

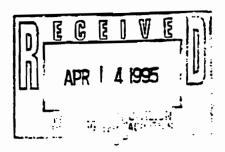
PAGE 1 OF 2 NYPA, BUFFALO AVE. JOB # 13796-002 CLIENT: MW-7D BORING 573.03 SURFACE ELEVATION (FT) TOP OF CASING ELEVATION (FT) 575.18 11/17/87 DATE STARTED: 11/19/87 BLOW COUNT (PER 6") DATE FINISHED: 14.15 14.2 14.0 DEPTH TO WATER (FT) 12/8/87 12/10/87 DATE 12/2/87 AS BUILT DIAGRAM **DESCRIPTIONS** DK BR-GRAY TOPSOIL, LITTLE ORG MATTER 17 3/11 . DIAMETER GUARD PIPE WITH 14/16 LOCIONG CAP FILL, LT BR-BR RED SILTY-GRAVEL, LITTLE ROCK FONT, TR CLAY, TR ORG MATTER 7/5 7/8 LITTLE CLAY EMENT BENTONITE GROUT 13 6/7 17/16 DK BLK-GRAY CINDER, TRACE ASH 23/9 LITTLE GRAVEL, TRACE SLAG 5/3 3/4 14 54/6 GRIGGRY SELT: TR'ORG' MATTER: TR'ROCK 19 3/3 FOMT, TRACE CLAY 4/6 DK BLK CINDER, LITTLE ORG MATTER, TRACE 16 GRY FINE SAND, TRACE SILT ... 8/12 RED-BR CLAY, TR ORG MATTER (LAKE BED 24 2/4 6/6 a WR 24 WR 24 10 WRWH WH/1 20 11 WR/WR WR/WR 24 WHAWH 24 14 24 WR/WR HHVHH 15 12 TILL, RED-BR SILTY-GRAVEL, LITTLE ROCK 1/.1.8 19/37 16/26 12 ML 32/45 SENTONITE PELLET SEAL 7/40 12 42/66 31/55 Z' DIAMETER PVC WELL SCREEN, GRY-GRAVEL (DOLOMITE), SOME SILT, TRACE 0:010": WELL: SLOT SIZE 100:5

NYPA, BUFFALO AVE. 13796-002 CLIENT: **MW-7S BORING** 573.52 SURFACE ELEVATION (FT) 575.86 TOP OF CASING ELEVATION (FT) DATE STARTED: 11/18/87 BLOW COUNT (PER 6") 11/18/87 DATE FINISHED: RECOVERY (INCHES) 10.8 10.63 10.5 DEPTH TO WATER (FT) 12/10/87 12/2/87 12/8/87 DATE AS BUILT DIAGRAM DESCRIPTIONS C DIAMETER GUARD PIPE WITH LOCKING CAP 17/19 18 DK BR-BLK TOPSOIL, LITTLE ORG MATTER, CEMENT BENTONITE GROUT 1678 TRACE PINE BAND, TRACE ROCK FONT 2" DIAMETER PVC RISER PIPE MLL, RED-BR. GRAVELLY. SILT, LITTLE ROCK 13 2 6/17 POMT, TR ORG MATTER, TR CLAY .58. FILL BENTONITE PELLET SEAL .7.5-3" 13 LIGHT BROWN 12/5 7/11 27 DIAMETER PVC. WELL SCREEN, BLK CINDER, TR GRAPHETE ROOS, TR SLAG 5/22 2 0.010" WELL SLOT SIZE 27/21 12 3/3 RED BRIBR SLAG, TR WHETE PUSED PEBBLES 9/9 TR GLASS, ORANGE RESIDUE (INCINERATOR WASTE 14 4/6 BLK CINDER, LITTLE SELT, TR PAPER 4/4 DK GRY SILT, LITTLE CLAY, TR CINDER 24 3/6 α CLAY BLK-BR, LITTLE SILT, ILAKE BED 9/12 CLAY 15 MOST PROSABLE CONSTITUTE SASED UPON HITERPRETATION OF PRESENTLY AVAILABLE DATA. VARIATIONS PROSE THESE CONSTITUTES MAY OCCUR. **DAMES & MOORE**

TEST BORING LOG REPORT OF BORING ाञ्चाचप्रश्रास्त्रहाचराचाराचाराः । । । । । OBG SB-7SF. City of Niagara Falls Client: Sampler: 2" Split Barrel Page 1 of 1 **One Acre Site** Location: Approx. 10 ft South -Niagara Falls, New York Hammer: 140 lbs. Southeast of MW-7S Proj. Loc: Start Date: 2/7/96 Fall: 30" **End Date:** 2/7/96 1736.078 File No.: SJB Services, Inc. Boring Company: Screen Grout Foreman: Jeff Leavell Riser Sand Pack Chawn O'Dell **OBG Geologist:** Bentonite Stratum Field Depth Change **Testing** Depth Blows "N" Penetr/ Sample Description General Equip. HNU **Below Descript** UV No. (feet) /6" Recovery Value Installed Grade ppm 2'/2' Pale brown (5YR 5/2), damp (frozen), 0 0-2 27-52 0.1 30-20 extremely dense, fine to medium SAND some slit, little coarse sand, little fine to coarse angular gravel, trace organics (plant roots) 2 14-12 2'/1.5' 0.3 2 2-4 26 Moderate brown (5YR 4/4), damp, 14-8 medium dense, fine to medium SAND, some SILT little clay, trace subangular 3 to angular coarse sand and fine to coarse gravel 3 2'/0.2' 9 Moderate brown (5YR 4/4), moist, 4 4-6 3-3 1.4 6-8 loose, very fine SAND, some silt, little clay, trace medium to coarse sand, 5 trace fine angular gravel 6 4 6-8 3-4 2'/0.2' 8 Moderate brown (5YR 4/4), moist, 1.9 4-5 loose, very fine SAND, some silt, little clay, trace medium to coarse sand 7 trace fine angular gravel 8-10 3-5 2'/1.2' 12 Black (N1), saturated, medium dense 8 5 4.1 7-10 CINDERS and fine to medium angular **GRAVEL** 9 Olive gray (5Y 4/1), saturated, loose, 10 6 10-12 2'/1.1' 7 3.2 5-3 4-7 fine SAND, some medium sand, little silt, trace organics to approximately 11.5 ft, then light brownish gray (5YR 6/1), moist, medium dense, SILT, some clay trace organics The borehole was backfilled to the surface with a mixture of cuttings and cement/bentonite grout.

CPO:ers/sb-7sf

Appendix B


Purge Water and Decontamination Fluids Laboratory Characterization

April 13, 1995

Mr. Al Zaepfel
Industrial Monitoring Coordinator
City of Niagara Falls
Wastewater Treatment Plant
P. O. Box 69
Niagara Falls, New York 14302

Re: City of Niagara Falls

Eastern Area

File: 1736.078

Dear Al:

In accordance with our recent conversations, enclosed are the results of the laboratory analysis performed on a composite water sample obtained from five 55-gallon drums located at the City of Niagara Falls Water Treatment Plant. The sample was composited from a grab from each one of the drums. As requested, the sample was analyzed for metals, PCB's, organics, pH, and SOC.

These drums contain water collected during ground water sampling activities at the one-acre Eastern Area adjacent to the construction site for the City's new water treatment plant. On behalf of the City of Niagara Falls Water Treatment Plant, we are requesting permission to discharge approximately 275 gallons of water to the Niagara Falls Wastewater Treatment Plant via a sanitary sewer in Buffalo Avenue.

If you have any questions or require additional information, please do not hesitate to contact me.

Very truly yours,

O'BRIEN & GERE ENGINEERS_INC.

Robert P. Lannon, Jr., P.E.

Managing Engineer

RPL:bk

cc: Mr. Robert E. Game, City of Niagara Falls

Mr. Richard R. Roll, City of Niagara Falls

Ms. Karen L. Moran, O'Brien & Gere Engineers, Inc.

Ms. Deborah Y. Wright, O'Brien & Gere Engineers, Inc.

ACTS TESTING LABS, INC

っていっていりた

25 Anderson Roa Buffalo, NY 14225-492 Tei (716) 897-330 Fax (716) 897-087

April 4, 1995 Page 1 of 4

Technical Report #5B-1679E R
Project # 1736.076
Project Name City Niagara Falls Water T. Plant
REVISED

Mr. Robert P. Lannon, Jr.
O'BRIEN & GERE ENGINEERS, INC.

SUBJECT:

Analysis of one (1) water sample for various parameters. The sample was received on March 13, 1995.

RESULTS:

See Pages Two and Three.

EXPERIMENTAL:

Organochlorine Pesticides in water were determined according to United States Environmental Protection Agency Method 608: Organochlorine Pesticides and PCBs.

Polychlorinated Biphenyls (PCBs) in water were determined according to United States Environmental Protection Agency Method 60& Organochlorine Pesticides and PCBs.

Priority Pollutant Purgeables in Water were determined according to United States Environmental Protection Agency Method 624: Purgeables.

Priority Pollutant Semi-volatile compounds in water were determined according to United States Environmental Protection Agency Method 625: Base/Neutrals and Acids.

The analyses were determined according to procedures listed in "Standard Methods for the Examination of Water and Wastewater," 17th Edition, 1989.

April 4, 1995 Technical Report #5B-1679ER Page 4 of 4

EPA 625

	ACTS #5B-1679E
	COMPOSITE DRUM #123,45
2-Chlorophenol	< 1
1,3-Dichlorobenzene	< 1
1,4-Dichlorobenzene	< 1
1.2-Dichlorobenzene	< 1
2,4-Dichlorophenol	< 10
1,2,4-Trichlorobenzene	< 1
Naphthalene	< 1
Heachlorobutadiene	< <u>1</u>
4-Chloro-3-methylphenol	< 1
Heachlorocyclopentadiene	< 1
2,4,6-Trichlorophenol	< 1
Dimethyphthalate	< 1
Acenaphthene	< 1
N-Nitrosodiphenylamine	< 1
Heachlorobenzene	< 1
Phenanthrene	< 1
Dibutylphthalate	< 1
Fluoranthene	< 1
Pyrene	< 1
Butyl Benzyl Phthalate	< 1
Benzo(a)anthracene	< 1
Chrysene	< 1
Dichlorotoluene	< 1°
Trichlorotoluene	< 1°
Tetrachlorobenzene	< 1°
Dichlorobenzotrifloride	< 1°
EPA 608	
Heptachlor	< 0.05
Endosulfan sulfate	< 0.05
PCB 1016	< 0.25
PCB 1221	< 0.25
PCB 1232	< 0.25
PCB 1242	< 0.25
PCB 1248	< 0.25
PCB 1254	< 0.25
PCB 1260	< 0.25
\ C	410

< 0.10

< 1.0

Mirex

Dechlorane

Estimated Values

April 4, 1995 Technical Report #SB-1679ER Page 3 of 4

RESULTS:

	ACTS #5B-1679E
	COMPOSITE DRUM #1.23.45
Cadmium, Total	< 0.005
Chromium, Total	< 0.01
Copper, Total	< 0.01
Cyanide, Total	< 0.003
Lead, Total	< 0.03
Nickel, Total	< 0.01
Phenois, Total	0.044 . 6001
Phosphorus, Total	< 0.05
pH, Total	9.10
Mercury, Total	< 0.0002
Zinc, Total	1.03
Total Suspended Soli	ds 48.0 (68.0)*
Soluble Organic Cart	` ,

Results are reported as milligrams per liter (mg/L). *Duplicate

ACIS #5B-1679E

EPA 624	COMPOSITE DRUM #1.23.45
Benzene	0.5 0
Toluene	< 0.5
Ethylbenzene	< 0 <i>.</i> 5
M.P-Xylenes	< 1
O-Xylene	< 0 <i>.</i> 5
Vinyl Chlorine	< 0.5
1,1-Dichloroethene	< 0.5
Methylene Chloride	43B °
Trans 1,2-Dichloroethene	ک د د
Chloroform	0.6
1,1,1-Trichloroethane	<i>ک</i> .0 >
Carbon Tetrachloride	< 0.5
Trichloroethene	< 0.5
Bromodichloromethane	< 0.5
trans 1,3 Dichloropropen	e < 0.5
cis 1,3-Dichloropropene	< 0.5
1,1,2-Trichloroethene	< 0.5
Tetrachloroethane	ک ۷ >
Dibromochloromethane	< 0.5
Chlorobenzene	12 °
Bromoform	< 0.5
1,1,2,2, Tetrachloroethan	< 0.5
2-Chlorotoluene	< 0.5
4-Chlorotoluene	کـ0 >
B-Found in method blank	
Results are reported as n	nicrograms per liter (ug/L).

April 4, 1995 Technical Report #5B-1679ER Page 2 of 4

ACTS TESTING LABS, INC.

Chali E. Hetter

Charles E. Hartke Manager, Chemistry Laboratory

αпc

ACTS TESTING LABS, INC.

Elizabeth R. Hausler, Supervisor Gas Chromatography Laboratory

ACIS TESTING LABS, INC.

Lisa M. Clerici, Supervisor Wet Chemistry Laboratory

Appendix C

Niagara Falls Background Concentrations (letter from NCHD to NYSDEC dated 1987)

HEALTH DEPARTMENT
HUMAN RESOURCES BUILDING
MAIN POST OFFICE BOX 428
10th AND EAST FALLS STREET
NIAGARA FALLS, NEW YORK 14302

December 4, 1987

New York State IEC 50 Wolf Road Room 222 Albany, New York 12233

Attention: Mr. Amar Nagi

Dear Mr. Nagi:

This letter is a response to your request for information on background concentrations of various substances in Niagara Falls area soil. As we discussed, this department has access to the results of thousands of soil sample analyses from the Niagara Falls area. We have compiled background profiles for arsenic, chromium, copper, lead and zinc. That information was previously provided to you. While we have not formally compiled background profiles for other compounds, we have observed fairly consistent patterns of occurrence for the following parameters:

- 1) BHC/HCCH We have observed that one or more isomers occur in concentrations of up to 1 ppm each in about one sample in ten of soils from the Mizgara Falls area. The occurrence seems to be sporatic, without pattern and in both surface and subsurface soils. The occurrence of this substance seems to be distributed throughout the area and we have no scenario as to what the source of this substance is.
- 2) <u>DDT/DDE/DDD</u>: These compounds are detected in about one sample in ten to twenty in concentrations of up to 0.5 ppm for DDT and 0.3 ppm for DDE and DDD. When they are detected the concentrations are typically in a ratio of about 3:2:1 (DDT: DDE: DDD). The compound have rarely been reported in samples collected at depths exceeding 12 inches in the Niagara Falls area. It appears that when these compounds are detected that they are remanents of historic DDT pesticide application.

少:

- Other Pesticides: Other pesticide compounds are occassionally detected in area soil samples in small concentrations. Our policy has been to regard such detections as background if they occur in less than 10% of the samples, in concentrations less than .5 ppm and where the compound cannot be attributed to any specific source.
- PAH and Related Commounds: One or more of these compounds in concentrations up to 10 ppm each are commonly reported in nearly all surface (less than 12 inches) soil samples from the Niagara Falls area. These compounds are also reported in 10% of the deeper samples at concentrations up to 1 ppm each. Concentrations are higher when ash or asphalt pieces are present in the sample. Phthlate compounds are common in all area soil samples. We assume these compounds have been deposited as airborne particles from combustion sources, vehicle emission, industrial processes, etc. and they seem to be present throughout the Niagara Falls area.
- 65) Chlorobenzene Commounds: Various chlorobenzene compounds are detected in area soils occassionally in concentrations less than 0.1 ppm. We have noted a trend that these compounds are detected fairly commonly in the less than 1 ppb range when detection limits are adequately low. Several scenarios have been suggested as to the possible source of these contaminants.
- 6) Phenol: 5 to 10% of the general soil samples taken in this area report phenol in the 0.5 to 1 ppm range. Total recoverable phenolies are reported in about 75% of the samples in detectable quantities.
- 7) Other Semi-volatile Compounds: Other semi-volatile compounds occur only occassionally (less than 5% of the samples), in particular, other acid extractable semi-volatile compounds occur only rarely in quantities over 2 to 3 times detection limits.
- 8) Methylene Chloride/Acetone: These compounds have been reported in most soil samples from the Miagara Falls area in concentrations up to 0.15ppm and occassionally much higher These "detections" have often been attributed to the laboratory error or sampling problems but their is still some controversy as to whether or not this is completely correct. It probably was a more substantial factor in older analyses where these compounds were even more predominate. Reports of the occurrence of these compounds is equally common in both shallow and deep soils.
- 9) Toulene/Benzene Toulene is reported inabout 20% of area soil samples and benzene in about 10%, both in concentrations up to about 20 to 30 ppb. Petroleum product use may be responsible for some of this substance.

- 10) Other Volatiles: Other volatile compounds are rarely observed as "background".
- provided. In addition to these we note that antimony is reported in about 10% of samples, usually less than 2 to 3 times the detection limits. Cadmium is detected in 30 to 50% of soil samples, with an average concentration of about 1 ppm (using non-dectactable reports as zero for averaging). We would typically consider cadmium over 10 ppm as elevated. Mercury is detected in about 50% of soil samples. We have previously used 0.1 to 0.2 ppm as a typical background range for mercury.

The above guidelines should be considered flexible and not yet fully documented, but we have compared data from several area studies (USCS "Preliminary Evaluation of Chemical Migration to Groundwater and Niagara River..." 1984; NUS, Investigation of eighteen sites in LaSalle Area, Niagara Falls, 1986: Woodward Clyde, Soil sampling from proposed Texas Brine Corporation ROW, 1986; NCHD, Investigation of surface soil contamination at Gratwick Park, 1986) and there seems to be a general agreement of these data sets and the guidelines given above. The above data sets comprise over 500 individual soil samples from the area.

Please note that reference to background in the above discussion refers to both naturally occurring substances and man-made substances which are typically present across a wide area and not apparently related to a localized source such as a particular disposal site or industrial process.

I hope that you find the above ghidelines useful. Feel free to contact me with any questions at 716-284-3128.

Sincerely,

Michael E. Hopkins Ass't. Public Health Engineer

MEH:1j

cc: Hessrs. Vaughan & Devald

Mr. Tygert - DEC - Buffalo

Ms. L. Rusin -NYSDOH - Buffalo

Mr. R. Tranzntano - NYSDOH - Albany

Appendix D

NYSDEC - S-Area and Buffalo Avenue Analytical Tables

TABLE I S-AREA SITE SPECIFIC PARAMETERS
Vinyl Chloride
1,2-dichloroethene, Total
Trichloroethylene
Tetrachloroethylene
Benzene
Chlorobenzene
1,2-dichlorobenzene
1,3-dichlorobenzene
1,4-dichlorobenzene
1,2,3-trichlorobenzene
1,2,4-trichlorobenzene
1,2,3,4-tetrachlorobenzene
1,2,4,5-tetrachlorobenzene
Hexachlorobutadiene
Octachlorocyclopentene
Total Organic Halides (TOX)
Hexachlorocyclopentadiene
Hexachlorobexzene
2,4,5-Trichlorophenol

:ers/div12/5notes&d/table1

		3		SUMMAR	BUFFALO A	TABLE 2 BUFFALO AVENUE SITE, 932080A RY OF COMPOUNDS DETECTED IN SOIL SAMPLES	932080A ED IN SOIL SA	AMPLES						
Borehole/Well Number Date Sampled Sample Depth Sample Depth Sample Depth to Native Deposits	B-2 1963 • 15-17 Native 12.0	B-3 1983 * 20-22 Native 9.0	B-6 1983 * 20'-22 Native 12.0	B-7 1983 * 30-32 Native 15.0	B-8 1983 • 5-7 Ashes	B-8 1983 • 10-12 Native 8.0	B-9 1983 * 10-12 Native 8.0	B-10 1983 * 25-27 Native 0.0	B-11 1983 • 5-7 Native 0.0	B-12 1983 * 30-32 Native 16.0	SB-38 5/16/91 2-6 Ashes N/A	SB-39 5/16/91 2-11' Ashes N/A	SB-40 \$/17/91 2-5 Shot Rock N/A	SB-40 5/17/91 5-12 Ashes N/A
Parameter	Sy/Sin	ay/an	gy/gu	ay/gu	By@n	ug/kg	By/an	ug/kg	gy/dn	By/Bn	ng/kg	ay/sn	8x/8n	Stystn
					S.Are	S.Area SSPL Volatiles	ĸ				9		0	
1,2-Dichloroethene (Total) Trichloroethene Tetrachloroethane	888	8 8 8	888	888	ND CN 27	888	888	888	888	888	ON ON II	ON ON 30	ON ON 10	51 13 30
					O.	Other TCL Volatiles								
Toluene	N ON	ND	CIN	QN	QN	ND	ND	ON	ND	ND	ND	ND	ON	0.13
			W 200 1		8-Area	S-Area SSPL Semivolatiles	tiles							
1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobenzene Hexachlorobenzene	5555	5555	5555	5555	2222	5555	5555	5555	5555	5555	88888	55555	ND 491 3500 18000J	681 551 3400 1900 1600
					Other	Other TCL Semivolatifes	II :I		:					
Hexachloroethane	QN	QV	GN	QN	QN	QV	QN.	QN.	M	QV	Q.	ĘS.	3103	CN
						Phthalates								
Bis(2-ethylheryl)phthalate Di-n-octylphthalate Di-n-butylphthalate Butylbenzylphthalate	0.6 0.3 ON ON	0.5 CM CM CM CM	0.7 C	6.5 & & & & & & & & & & & & & & & & & & &	5555	<u> </u>	9: E E E	99 S S	0 K K K	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	610J ND ND 210J	1017 CM 1011 DA	1400 ND 1101 DO 0	200J ND 140J CD
					Polyaro	Polyaromatic Hydrocarbona	suox							
2-Methynaphthalene Acenaphthene Anthracene Benzo(a)antracene Benzo(b)iluoranthene Benzo(k)filuoranthene Benzo(a)pryene Benzo(g,h,j)perylene	₹ 9999999	₹ £ £ £ £ £ £	¥	¥ 8888888	¥	₹ ₽₽₽₽₽₽	₹ 9999999	₹ 999999	¥	₹ 9999999	ND 62J ND 410J 490J 260J 370J	160J 41J 99J 310J 380J 180J 260J 120J	5555555 555555	5555555

				SUMMAR	BUFFALO #	TABLE 2 AVENUE SITE INDS DETECT	TABLE 2 BUFFALO AVENUE SITE, 932080A RY OF COMPOUNDS DETECTED IN SOIL SAMPLES	AMPLES						
Borehole/Well Number Date Sampled Sample Depth Sample Depth Sample Deposits	B-2 1983 * 15-17 Native 12.0	B-3 1983 * 20-22 Native 9.0	B-6 1983 • 20-22 Native 12.0	B-7 1983 ¢ 30-32 Native 15.0	B-8 1983 • 5-7 Ashesi N/A	B-8 1983 * 10-12 Nativa 8.0	B.9 1983 * 10-12 Native 8.0	B-10 1983 • 25-27 Native 0.0	B-11 1983 * 5-7 Native	B-12 1983 • 30-32 Native 16.0	SB-38 5/16/91 2-6 Astes N/A	SB-39 5/16/91 2-11' Ashes	SB-40 5/17/91 2-5' Shot Rock N/A	3B-40 5/17/91 5-12 Ashes N/A
Parameter	ug/kg	ug/kg	ug/kg	ng/kg	ag/kg	ug/kg	gy/gu	ug/kg	. Sy/Sin	ug/kg	g/gu	ug/kg	g/gu	ug/kg
				i i	Polyaromatic	Polyaromatic Hydrocarbons (Continued)	Continued)		Sec.	; ;				5 X 80 7 5
Chrysene	Ð.	Ę	Ą	Ð	Ð	ă	Ð	Ð	N S	Ð	3601	3201	1001	Ð
Dibenzofuan Fluorene	₹ 8	A S	A S	¥ g	A S	¥ Q	¥ 2	¥ Q	A S	¥ Q	₽8	<u>8</u>	22	<u> </u>
Fluoranthene Narbithalene	25	25	99	29	₽ €	25	29	25	99	25	920	6701	<u>150</u>	2 2
Phenanthrene Pyrene	288	222	222	999	222	999	999	222	999	299	780J 640J	5701 4901	673 130J	299
			,		S-Are	S-Area SSPL Pesticides	les							
Beta-BHC Delta-BHC Garnna-BHC	555	888	888	888	8 8 8 8 8 8	888	888	888	8 8 8 8 8 8	888	ON 12.7 1001	8 8 8 8 8 8	34J ND ND	888
					1 1	Other TCL Pesticides	ĸ							
44-DDE 44-DDE 44-DDT	8889	9999	9999	9999	888	9999	9999	222	9999	2229	8 2 2 S	885	2700 GN 2200	8 E E
Audrin Heptachlor Epoxide Endosulfan 1 Endosulfan 11 Endosulfan Sulfate	2 2 2 2 2 £ 	22222	99999	999999	299999	299999	29999	299999	299999	29999	999989	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22555
H Balty						Inorganic Compounds								2
Lead Mercury	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	164000J 910	212000J 2100	434000J ND	52000J 1700
ug/kg Micrograms/kilograms or parts per billion (ppb) ND Non-detect J Estimated concentration N/A Not analyzed Exact sampling date not known	r billion (ppb)													

			THE C	ONE ACRE BU	TABLE 3 THE ONE ACRE BUFFALO AVENUE SITE, 932080B SUMMAARY OF COMPOUNDS DETECTED IN SOIL SAMPLES	E SITE, 93208 ED IN SOIL SA	OB MPLES			·		
Borehole/Well Number Date Sampled Sample Depth Sample Description	SB-27 5/14/91 2-5' Shot Rock	SB-27 \$1(4/9) \$-13.5' Ashes	SB-28 5/15/91 7-5' Shot Rock	SB-28 5/15/91 5'-11' Asbest	SB-29 5/15/91 4.7 Shot Rock	SB-29 5/15/91 7-11' Ashes	SB-30 5/15/91 2-11.5 Shot Rock	SB-30 5/15/91 11.5-12 Ashes	SB-32 5/15/91 2-4" Shot Rock	SB-33 5/15/91 2-4 Shot Rock	SB-33 5/15/91 4.7 Ashes	MW-6D 11/2087 1:-3' Native
Parameter	gy/gu	ng/kg	gy/gu	83/8n	ng/kg	gs/gn	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
				S-Ar	S-Area SSPL Volatiles	\$2						
Benzene Chlorobenzene Trichloroethene Terachloroethane	2555	<u> </u>	8888	8888	5555	2555	₽ ₽₽₽	6.0 E 6.0 E	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5552	2. 5 5 8 8.6
				,, ,	Other TCL Volatiles				**			
2-Butanone Carbon Disulfide Chloroform	222	5 5 8 8 5 8	888	222	999	222	222	¥ 25 §	888	999	555	2 8 € €
Toluene Total Xylenes Styrene Vinyl Acetate	9999	22 G G G	0.81 0.13 ON ON	2222	9999	8 8 8 8	2555	21 ND ND ND	= <u>6</u> 6 6	22 21 O O	5555	5.9 3.31 5.4 ND
				S-Area	S.Area SSPL Semivolatiles	iles						
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	8888	380J 730J 2300 900	2222	200J ND 390J 280J	ND ND 1203	5555	5555	9999	2222	5555	5555	9999
				Other	Other TCL Semivolatiles	18						
Phenol	QN	Ø.	QN	Ω	Ð.	Ð	Z	4700	QN.	171	QN	£
					Phthalates							
Bis(2-ethylhexyl)phthalate Di-n-butylphthalate Di-n-octylphthalate	400 N O	430J ND ND	32000J 130J ND	2007 CD CD	% O O	290J 110J ND	650J 370J ND	290J 240J ND	360J 130J ND	130J 110J ND	610J ND ND	300 CD CD
				Polyar	Polyaromatic Hydrocarbons	pons						
2-Methynaphthalene 4-Methylphenol Aoenaphthene Aoenaphthylene	8888	\$60J ND 340J 320J	28 & & & & & & & & & & & & & & & & & & &	107.1 CIN 105.2 17.9	370J ND 330J 200J	£ & & &	<u> </u>	£ & & &	# 8 8 8 # 8 8 8 8	S S S S S S S S S S S S S S S S S S S	17000 82J 11000 620J	5555
				Polyarom	Polyszomstic Hadrocschons (Cont.)	(Cont.)						

			THE C SUMMARY	NE ACRE BU	TABLE 3 THE ONE ACRE BUFFALO AVENUB SITE, 932080B SUMMARY OF COMPOUNDS DETECTED IN SOIL SAMPLES	JE SITE, 93206 SD IN SOIL SA	IOB LMPLES	i '				
Borehole/Well Number Date Sampled Sample Depth Sample Description	SB-27 5/14/91 2-5 Sbot Rock	SB-27 5/14/91 5/13.5 Ashes	SB-28 5/15/91 2'-5' Shot Rock	SB-28 5/15/91 5-11' Ashes	SB-29 5/15/91 4:7 Shot Rock	SB-29 5/15/91 7-11' Ashes	SB-30 5/15/91 2-11.5 Shot Rock	SB-30 \$/15/91 11.5-12' Ashes	SB-32 5/15/91 Z-4 Shot Rock	SB-33 \$/15/91 2-4 Shot Rock	SB-33 5/15/91 4'-7 Ashes	MW-6D 11/20/87 1'-3' Native
Parameter	87/8n	By/8n	ug/kg	ug/kg	· úg/kg	ug/kg	ug/kg	ug/kg	ug/kg	So/Sin	mg/kg	By/Sh
Anthracene Benzo(a lanthracene	99	1800	N COS	1200	920	ND 2501	433	160.7	Q 5	813	14000	99
Benzo(b)fluoranthene Benzo(k)fluoranthene	28	2200	230J 120J	3500 1800	3000	260J	1403	3801	5 5	440J	\$00001 17000	<u> </u>
Benzo(a)pryene Benzo(a,hi)perylene	99	1000	130J	2300	\$10J	10 E	≅ €	3901	2 5	<u>300</u>	32000J	99
Chrysene	99	4600	<u>8</u>	3000	2200	2503	<u>4</u>	5901	2 9	380	31000J	2 9 9
Dibenzofuran	2 8	1500	2 8	2001 2007	6100	2 2	28	683	2 2	28	2907	2 2
Fluorene Fluoranthene	<u> </u>	2000 15000J	310 <u>.</u>	750J 5400	4200	5 §	₽ 82 8	<u>5</u> 5	₹ 5	ON 1059	11000	2 5
Indeno(1,2,3-cd)pyrene	29	1400	25	740]	6701	28	2	4307	2	3 8 9	13000	29
Phenanthrene Premanthrene	299	140001	250	4700 4700	3900	460J	3101	1301 7301	1001 1001	A101	15000 52000J	229
				S-Are	S-Area SSPL Pesticides	11 11			200	7	Property of	
Beta-BHC	Q.	Q.	Q.	10062	22001	Q	Ą	ξ	<u>8</u>	Ð	Ą	£
Delta-BHC Gamma-BHC	Q Q	99	99	30J 120	6.8J 16J	<u> </u>	₽ ₽	<u> </u>	<u> </u>	<u> </u>	35J ND	<u>8</u> .8
				O	Other TCL Pesticides	V 1						
4,4'-DDD	QN	Q.	171	QN	Ð	Q.	Ð	133	S S	Ð	Ą	Ð
4,4-DDE 4,4-DDT	<u> </u>	99	99	€ %	£ 5	2 2	99	99	22	2 2	22	99
Aldrin Dieldrin	₽ ₽	99	25 S	€ %	22	2 2	99	3.61	3.61	12.5 E	2 5	9 9
Heptachlor Endosulfan I	2 5	99	25	19 E	≏ €	2 2	<u>-</u>	2 5	<u>8</u> 8	2 5	29	29
Endosulfan II	9 !	9.	<u> </u>	29	2 9 !	2 9	2 2 :	2 2 3	£ 8	101	2 2	2 2
Endrin	2 2	₽ ₽	<u> </u>	£ 8	37.1	<u> </u>	₽ ₽	26J	<u> </u>	ON 7.51	<u>8</u> 8	<u> </u>
					TCL PCBs							
Aroclor-1242	Ð	2200	Ę	QN	Ð	QX	Q.	QX	QN	Q	9	£
										1		

					THE C SUMMAR!	NE ACRE BUT	TABLE 3 THE ONE ACRE BUFFALO AVENUE SITE, 932080B SUMMAARY OF COMPOUNDS DETECTED IN SOIL SAMPLES	JE SITE, 93200 ED IN SOIL SA	80B AMPLES				: 1	
Borchole/Well Nur Date Sampled Sample Depth Sample Description	Borchole/Well Number Date Sampled Sample Depth Sample Description		SB-27 5/14/91 2'-5' Shot Rock	SB-27 5/14/91 5-13.5 Ashes	SB-28 5/15/91 2'-5' Shot Rock	SB-28 5/15/91 5-11' Ashes	SB-29 5/15/91 4-7 Shot Rock	SB-29 5/15/91 7-11 Ashes	SB-30 5/15/91 2-11.5 Shot Rock	SB-30 5/15/91 11.5-12 Ashes	SB-32 5/15/91 2-4 Shot Rock	SB-33 \$/15/91 2-4" Shot Rock	SB-33 5/15/91 4:.7 Ashes	MW-6D 11/20/87 1-3 Native
Parameter			ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	By/8n	ug/kg	ug/kg	ug/kg	ug/kg
						Inori	Inorganic Compounds	3 2						
Lead Mercury			47300 620	179000	88100 670	371000J 5100	175000J 2800	14100J ND	63400	N/A 1200	76000 ND	121000J 400	1510000J 850	DNU
ug/kg ND J DNU	Micrograms/kilograms or Non-detect Estimated concentration Data not useable due to (Micrograms/kilograms or parts per billion (ppb) Non-detect Estimated concentration Data not useable due to QA/QC problems	billion (ppb)											

	· ·	SU	THE ONE AC	TABLE 3 THE ONE ACRE BUFFALO AVENUE SITE, 932080B SUMMARY OF COMPOUNDS DETECTED IN SOIL SAMPLES	E 3 AVENUE SITE ETECTED IN S	2, 932080B SOIL SAMPLE					
Borehole-Well Number Date Sampled Sample Depth Sample Description	MW-8D 11/20/87 5'-6 Native	MW-6D 11/20/87 14-16 Native	MW-7S 11/18/87 8-10 Ashes	MW-75 11/18/87 10-12' Cinders	MW-7D 11/17/87 1-3' Misc. Fill	MW-7D 11/17/87 7-8' Ashes	MW-7D 11/17/87 15-17 Native	MW-8D 11/16/87 0-6 Misc. Fill	MW-8D 11/16/87 9-16 Native	MW-8D 11/16/87 22-26 Native	MW-8D 11/16/87 29-33' Native
Parameter Communication of the	8y/8n	83/ <i>8</i> n	81/8n	8y/8n	83/8n	8y/8n	84/8n	ฮิรุ/ฮิก	By/Bn	83/8n	By/8n
				S-Area SSPL Volatiles	Volatiles		2				
Benzene Chlorobenzene Trichloroethene Tetrachloroethane	8888	8 8 8 8 8 8	ND SI SI ON ON	8888	1.3 G G G OS	1.6J ON ON ON ON	1.4 G G G	L4J ND ND ND ND	2.43 ND ND ND ND	LT.11 CIN CIN CIN	1.4 CM CM CM CM
				Other TCL Volatiles	Volatiles		x 25 x 22 x				
2-Butanone Carbon Disulfide Chloroform Toluene Total Xyrenes Styrene	222222	1.81 ND 4.81 ND ND ND	ND 6.11 3.61 ND ND ND	222222	2222222	<u> </u>	ND ND ND 1.81 ND ND ND	222222	2222222	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 5 5 5 5 5 5 6 8
				S-Area SSPL Semivolatiles	emivolatiles		; : 		*		
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	2222	8888	8888	8888	8 8 <u>10</u> 8	5 5 5 5	8888	8888	5555	<u> </u>	8888
				Other TCL Semivolatiles	mivolatiles						
Phenol	Ø	N Q	QN	ND	79.1	ND	ND	ON	Ŋ	MD	ND
				Phthalates	atos	:					
Bis(2-ethylhexyl)phthalate Di-n-butylphthalate Di-n-octylphthalate	888	888	888	888	350J 870B 100J	800 110JB 270J	98 S S	474.SJ 1158.1B ND	440J 41000B ND	989 CIN CIN	1000 1401B ND
				Polyaromatic Hydrocarbons	lydrocarbons						
2-Methynaphthalene 4-Methylphenol Accnaphthene Accnaphthylene	2222	2555	8888	8 8 8 8 8 8	510J ND 1600 ND	260J ND ND ND	8888	8888	8888	요요요요	8888
			Polve	Polvamentic Hydrocarbone (Continued)	whome (Continue	φ.					

		AUS.	THE ONE AC	TABLE 3 THE ONE ACRE BUFFALO AVENUB SITE, 932080B MARY OF COMPOUNDS DETECTED IN SOIL SAMI	E 3 AVENUE SITE	TABLE 3 THE ONE ACRE BUFFALO AVENUB SITE, 932080B SUMMARY OF COMPOUNDS DETECTED IN SOIL SAMPLES					:
Borchole Well Number Date Sampled Sample Depth Sample Description	MW-6D 11/20/87 5-6 Native	MW-6D 11/20/87 14-16 Native	MW-75 11/18/87 8-10 Ashes	MW-75 11/18/87 10-12 Cinders	MW-7D 11/17/87 1:3' Misc. Fill	CT-WW. 11/17/87 7-8' 7-8'	MW-7D 11/17/87 15-17 Native	MW-8D 11/16/87 0-6 Misc Fill	MW-8D 11/16/87 9-16	MW-8D 11/16/87 22-26 Native	MW-8D 11/16/87 29-33
Parameter	Sy/Bn	g/ga	ng/kg	ng/kg	ug/kg	gy/kg	res/kg	ug/kg	gy/gu	87/8h	ug/kg
Anthracene Benzo(a)anthracene Benzo(b)fluoranthene	888	222	3300J CN CN CN	222	4200 6100 4300	2800 3000 2800	ON ON 19	555	ON 1411 1403	222	222
Benzo(k,filuoranthene Benzo(s,faryene Benzo(g,h,l)perylene	9999	9999	2229	9999	2000 4400B 2700	1200 2400B 1600	999	999	5 g 5 g	9999	999
Curysone Dibenzo(a,h)anthracene Dibenzofuran	222	2999	268	9999	1300	450J	<u> </u>	999	999	299	222
Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene	222	299	222	299	6800 2800	2400 1500	280 NO 02	299	32 5	299	299
Naphthalene Phenanthrene Pyrene	요 요 요	<u> </u>	<u> </u>	<u> </u>	1800 9400 7600	690 7800 5600	3903 3103	<u> </u>	ND 170J 68J	<u> </u>	<u> </u>
		×		S-Area SSPL Pesticides	Pesticides						
Beta-BHC Delta-BHC Gamma-BHC	888	888	222	222	888	222	888	888	222	255	999
				Other TCL Pesticides	esticides				:		
44'DDD 44'DDE 44'DDT Aldrin	8888	5555	2222	9999	2222	9999	2222	292 ND ND ND ON	2222	9999	2222
Dieldrin Heptachlor Endosulfan I Endosulfan II Endosulfan Sulfate Endosulfan Sulfate	22222	22222	22222	999999	999999	999999	999999	999999	299999	5	22222
				TCL PCBs	CBs						
Aroclor-1242	QN	Ŋ.	QN	QN	QN	Q.	QN	Q.	QN	ND	Ð

			SUA	THE ONE AC	TABLE 3 RE BUFFALO AV	TABLE 3 THE ONE ACRE BUFFALO AVENUB SITE, 932080B MARY OF COMPOUNDS DETECTED IN SOIL SAME	TABLE 3 THE ONE ACRE BUFFALO AVENUB SITE, 932080B SUMMARY OF COMPOUNDS DETECTED IN SOIL SAMPLES					
Barchole/Well Nurr Date Sampled Sample Depth Sample Description	Barchole/Well Number Date Sampled Sample Depth Sample Description	MW-6D 11/20/87 5'-6 Native	MW-6D 11/20/87 14-16 Native	MW-75 11/18/87 8'-10' Ashes	MW-75 11/18/87 10-12' Cinders	MW-7D 11/17/87 1:3 Misc. Fill	MW-7D 11/17/87 7-8 Ashes	MW-7D 11/17/87 15-17 Native	MW-8D 11/16/87 0-6 Misc. Fill	MW-8D 11/16/87 9-16 Native	MW-8D 11/16/87 22-26 Native	MW-8D 11/16/87 29-33' Native
Parameter		ng/kg	gy/gu	ug/kg	ug/kg	ng/kg	gy/gu	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg
					Inorganic Compounds	mpounds						
Lead Mercury		DNU	DNU	DNU 8.8	DNU 5.6	DNU	DNU	DNU	DNU	DNU	DNU	DNU
ug/kg ND J J DNU	Micrograms/kilograms or parts per billion (ppb) Non-detect Estimated concentration Data not useable due to QA/QC problems	billion (ppb) oblems										

		W ADJACI SUMMARY	ATER TREA ENT TO THE OF COMPO	TABLE 4 TMENT PLAI BUFFALO A	TABLE 4 WATER TREATMENT PLANT PROPERTY ADJACENT TO THE BUFFALO AVENUE SITE, 932080A SUMMARY OF COMPOUNDS DETECTED IN SOIL SAMPLES	Y 932080A L SAMPLES			
Borehole/Well Number Date Sampled Sample Depth Sample Description	280 5/13/87 4'-8' Native	281 5/7/87 4'-8' Native	284 6/1/87 6'-8' Native	285 5/11/87 4'-8' Misc Fill	286 5/13/87 4'-8' Slag/Misc	287 6/5/87 6'-20.8' Ash/Misc	291 6/18/87 2'-19.8' Ash/Slag	294 5/27/87 12'-30' Ashes	294 5/27/87 30'-32' Native
Parameter	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ng/kg	ug/kg	ug/kg	ug/kg
	· :.		S-Are	S-Area SSPL Volatiles	es				
Chlorobenzene	ND	ND	ND	24	ND	39	33	81	ND
			S-Area S	S-Area SSPL Semivolatiles	ıtiles				
Trichlorobenzene, Total	ND	QN	ND	ND	201	ND	1400	333	ND
Tetrachlorobenzene, Total	ON S	ON S	<u>S</u> 5	Q s	580	QN 1	1190	5360	158
Octachlorocyclopentene	Q Q	2 Q	2 2	S Q	ND	ND ND	ND ND	8430 971	ON ON
Hexachlorocyclodecane, Total	<u>Q</u> Q	N N	ON ON	<u>Q</u> Q	267 ND	ON ON	ON ON	13200 633	291 ND
Perchloropentacyclodecane									
			Miscel	Miscellaneous Analyses	ses	:			
Total Organic Carbon Total Organic Halides	ND ND	N ON ON	ON ON	N ON	ND 200	\$9000 300	ND 200	46000 25000	ND 100
ug/kg Micrograms/kilograms or parts per billion (ppb) ND Non-detect Note: Samples were only analyzed for S-Area Site Specific Parameters.	s or parts per b alyzed for S-A ₁	illion (ppb) rea Site Specifi	ic Parameters.						

		i i e	SUMIX	SUMMARY OF COM	BUFFALO POUNDS DET	TABLE 5 BUFFALO AVENUE SITE, 932080A UNDS DETECTED IN SHALLOW GI	, 932080A ALLOW GROU	TABLE 5 BUFFALO AVENUE SITE, 932080A APOUNDS DETECTED IN SHALLOW GROUNDWATER SAMPLES	MPLES					
Well Number Date Sampled Screened Interval	B-1 127/82, 1/26/83 29.0-34.0	B-2 12/7/82, 1/26/83 19.0-24.0	B-3 127/82, 1/26/83 26,5-31.5	B-4 12/782, 1/26/83 29.0-34.0	B-5 12/782, 1/26/83 5.0-10.0	B-6 12/7/82, 1/26/83 17.0-22.0	B-7 12/7/82, 1726/83 31.5-36.5	B-8 12/7/82, 1/26/83 29.0-34.0	B-9 12/7/82 1/26/83 7.0-12.0	B-10 12/7/82 1/26/83 28.0-33.0	B-11 127782, 1726/83 5.0-10.0	B-12 12/7/82 1/26/83 31.0-36.0	MW-168 9/19/91 5.0-15.0	Ground.* Water Standard
Material Mecenica Parameter	nauve ug/l	native ug/l	rianve ug/t	Native ug/l	Native Ug/l	Native ug/l	Native ug/l	Native ug/l	Natiwe ug/t	Native ug/l	Native ug/l	Native ug/l	Ash/Native ug/l	l/an
		, i.				S-Area SSPL Volatiles	[:: [7 a.				
Benzene	11	111	16	QN.	100	QN	QN	QN	29	QN	QN	QN	QN	Ð
					TC	TCL Semivolatiles								j j
2.Methylpaniane 4.Hydroxyl-4-Methyl-2-Pentanone Hexanoic Acid Octanoic Acid Caprolactam Phenol	2	- 6 6 6 6 a	S S S S S S S S S S S S S S S S S S S	222222	55558	55555	ON ON ON 00 400 800 87	5 6 6 6 8 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	2	A Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	SS SS -
						Phthalates								
Bis(2-etrylhexyl)phthalate Di-n-butylphthalate	8 Z	22	100 15	300 ND	43 GN	ND 12	100	310 15	8 B	00 QN	07 CIN	S S	S S	50 50
					S-An	S-Area SSPL Pesticides	25							
Alpha-BHC Beta-BHC	88	0.05 ND	88	<u>8</u> 8	0.07 CIN	₽ ₽	₽ <u>8</u>	88	88	2 2	2 2	<u> </u>	0.008 0.051J	8 8
					₽ P	Other TCL Pesticides								
Heptachlor Epoxide Endosulfan	99	22	2 8	₽ 9	0.07 CIN	₽ ₽	88	8 8	ND 0.29	2 2	<u>8</u> 8	2 2	<u>8</u> 8	ON SN
					Inor	Inorganic Compounds	şş							
Lead Mercury	ON 98	400 140	120 72	₽ ₽	ND 510	ND 53	ND 310	ND 021	ND 220	₩ 0.80	ND 3	S 82	640J 7.6	25
					Misc	Miscellaneous Analyses	13							
Total Organic Carbon Total Organic Halides	40600	74600 139	58800 21	₽ ₽	110000	16200	36400	65200 16	203000	10300	41800	10600	N/A N/A	NS NS
Ambient Water Quality Standards and Guidance Values. Standards or guidance values are for Class GA waters. NS No standard.	ds and Guidance V	alues. Standard	or guidance val	ues are for Class	GA waters.		ug/l N J E	Micrograms/liter or parts per billion (ppb) Estimated concentration	or parts per bill	(qdd) uoj		ON AN	Non-detect Not analyzed	

Well Number Date Sampled	MW-6S 12/10/87	.MW-6S 6/91	MW-7S 12/10/87	MW-7S 6/91	MW-7S 9/91	MW-8S 12/9/87	MW-8S 6/91	MW-8S 9/91	Ground
Screened Interval Material Screened	1	-8.0 vium		5.0-12.0 Ash/Cinders			11.0-21.0 Alluvium		Water Standar
Parameter	ug/!	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
			S-Area SSPI	L Volatiles					
Benzene Chlorobenzene	ND ND	ND ND	1.7JB ND	0.8J N/A	ND 6	ND ND	ND ND	ND ND	ND 5
Choroceleene	ND_	ND	S-Area SSPL S		0	ND	ND	ND	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	ND ND	ND ND	6J 6J	N/A N/A	ND ND	ND ND	N/A N/A	5 47
1,-Didilotoonia.io	1.0		Other TCL'Se		TWA .		110	IV/A	47
Benzoic Acid	ND	ND	1200	ND	N/A	ND	ND	N/A	NS
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>		Phthal	ates	<u>, </u>	-			
Bis(2-ethylhexyl)phthalate	2700B	ND	2200B	ND	N/A	410B	ND	N/A	50
			S-Area SSPL	Pesticides					
Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC	7D 7D 7D 7D	ND 0.09 ND 0.046J	ND ND 2.76 ND	0.064J ND ND ND	0.81 0.093 0.017 ND	92 92 93 94	ND ND ND 0.049J	ND ND ND ND	ND ND ND ND
	·, ·		Other TCL 1	Pesticides					
Aldrin Heptschlor Epoxide Endosulfan I Endrin	ND ND 0.01J ND	ND ND ND ND	1.67 0.12 4.38 ND	ND ND ND ND	0.071 0.008 0.034 0.013	ND ND ND ND	ND ND ND ND	ND ND ND ND	NS ND NS ND
			Inorganic Co	ompounds					
.ead Mercury	DNU ND	78J ND	8861 50.6	1040J 0.6	979 N/A	DNU 2.1	4J 0.5	N/A N/A	25 2
Ambient Water Quality Standards a 18/1 Micrograms/liter or parts per billion NOn-detect NS No standard Compound detected in blank Estimated concentration NO tanalyzed		tues. Standards	or guidance valu	es are for Class	GA waters.				

				SUMMA	TABLE 1 WATER TREATMENT PLANT PROPERTY ADJACENT TO THE BUFFALO AVENUE SITE, 932080A SUMMARY OF COMPOUNDS DETECTED IN SHALLOW GROUNDWATER SAMPLES	TABLE 1 WATER TREATMENT PLANT PROPERTY ENT TO THE BUFFALO AVENUE SITE, 9 COUNDS DETECTED IN SHALLOW GROU	TABLE 1 MENT PLANT UFFALO AVEN	TABLE 1 WATER TREATMENT PLANT PROPERTY ADJACENT TO THE BUFFALO AVENUE SITE, 932080A	080A XWATER SAM	PLES					
Well Number Date Sampled Screened Interval Material Screened		CW-11A 3/3/88 11,0-26,0 F/A/C	CW-13A 3/8/88 1.5-16.5 Fill	OW-261 4/22/8 22,8-27.8 Alluvium	OW-262 4/19/88 27.4-32.4 Alluvium	OW-263 4/22/88 21.0-26.0 Alluvium	OW-280 3/25/88 4.1-9.1 A/C	OW-281 3/22/88 4.0-9.0 Clay	OW-284 3/22/88 4.0-9.0 F/A/C	OW-285 3/23/88 5.3-10.3 F/A/C	OW-286 3/23/88 6.2-11.2 F/A/C	OW-287 3/25/88 9.8-20.8 F/A	OW-291 3/24/88 8.3-20.5 F/A/C	OW-294 3/9/88 25.0-30.0 Alluvium	Ground.* Weter Standard
Parameter		ug/l	l/gu	ug/l	l/gπ	l/8n	l/gu	l/gn	ug/l	l/8h	l/8n	l/gu	∫⁄gu .	l/gu	l/an
						S-Are	S-Area SSPL Volatiles	ıı		:.					
Chlorobenzene		QN	QV	Q	Q	QN	QN	Ð	QN	QN	ND	Ð	11	Ø	\$
			100			S-Area	S-Area SSPL Semivolatiles	iles							
Trichlorobenzene, Total Tetrachlorobenzene, Total] ital	S S	£ £	22	8 S	S S	ON ON	88	8 8	O ON	¥ 0	Ø 5	180	S S	5 5
			,			Misc	Miscellandous Analyses	8							
Total Organic Carbon Total Organic Halides		ON 0061	ON 100	ND 300	£ £	ON 009	Ø 81	S S	24000 ND	Ð Ð.	Ø 86	₽ 80 00	Š 8	99	NS NS
Ambient Water Qu ug/l Micrograms/fiter or ND Notan-detect NS No standard F/AC Fill/Alluvium/Clay F/A Fill/Alluvium A/C Alluvium/Clay Note: Samples were only	Ambient Water Quality Standards and Guidance Values. Standards or guidance values are for Class GA waters. Micrograms/liter or parts per billion (ppb) Non-detect. Nos standard Fill/Alluvium/Clay Fill/Alluvium/Clay Alluvium/Clay Samples were only analyzed for S-Area Site Specific Parameters.	and Guidance Vi n (ppb)	ilues. Standard:	i or guidance val	ues are for Class	GA waters.									

	SUMM			TABLE 8 UFFALO AVE ECTED IN BEI		:080B NDWATER SA	AMPLES			
Weil Number Date Sampled	MW-6D 12/10/87	MW-6D 6/91	MW-6D 9/91	MW-7D 12/10/87	MW-7D 6/91	MW-7D 9/91	MW-8D 12/10/87	MW-8D 6/91	MW-8D 9/91	Ground-* Water
Screened Interval Material Screened		32.0-42.0 Till/Bedrock			34.0-44.0 Till/Bedrock			35.0-45.0 Bedrock		Standard
Parameter	ug/l	ug/l	ug/l	<u>ug/l</u>	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i
			<u>S-A</u>	rea SSPL Volai	iles					
Benzene Chlorobenzene Trichloroethene	1.5JB ND ND	ND ND ND	ND ND ND	1.5J ND 1.2J	ND 5 ND	ND 2.7 ND	1.2J ND ND	ND 3J ND	ND 3.3 ND	ND 5 5
				Phthalates			·			
Bis(2-ethylhexyl)phthalate Di-n-butylphthalate	65B 25	ND ND	N/A N/A	95B ND	ND ND	N/A N/A	74B ND	ND ND	· N/A N/A	50 NS
S-Area SSPL Pesticides S-Area SSPL Pestici										
Gamma-BHC	ND	0.086	ND	ND	0.16	N/A	ND	0.045	N/A	ND
	· · ·	·	Ot	her TCL Pestici	des				·	
Heptachlor Epoxide	1.8J	ND	ND	ND	ND	ND	ND	ND	ND	ND
			Inc	rganic Compou	nds					
Lead Mercury	DNU ND	12J ND	N/A N/A	DNU 0.2	16.9J ND	22.0 N/A	DNU 0.3	132J ND	N/A N/A	2 5 2
Ambient Water Quality Standar ug/l Micrograms/liter or parts per bil ND Non-detect NS No standard J Estimated concentration B Compound detected in blank N/A Not analyzed DNU Data not useable do to QA/QC p	lion (ppb)	Values. Standar	rds or guidance	values are for Cl	ass GA waters.					

	S	JMMARY O	WAT ADJACENT SUMMARY OF COMPOUN	TABLE 9 WATER TREATMENT PLANT PROPERTY ENT TO THE BUFFALO AVENUE SITE, 9:	TABLE 9 AENT PLANT FFALO AVE) FED IN BEDR	TABLE 9 ER TREATMENT PLANT PROPERTY TO THE BUFFALO AVENUE SITE, 932080A JOS DETECTED IN BEDROCK GROUNDWATER SAMPLES	2080A JDWATER S	AMPLES			
Well Number Date Sampled Screened Interval Material Screened	OW-200 8/26/87 30.6-46.2 Bedrock	OW-200 9/1/87 46.2-61.0 Bedrock	OW-201 10/8/87 31.5-46.3 Bedrock	OW-201 10/9/87 46.3-61.3 Bedrock	OW-202 10/27/87 37.0-52.0 Bedrock	OW-202 10/28/87 52.0-67.0 Bedrock	OW-215 12/9/87 37.7-55.6 Bedrock	OW-215 12/10/87 55.6-70.6 Bedrock	OW-216 1/21/88 30.8-45.8 Bedrock	OW-216 1/26/88 45.8-60.8 Bedrock	Ground-* Water Standard
Parameter	l/gu	l/gn	l/gn	l/gn	Ngu	l/gu	l/gn	l/gn	l/gu	Ngu	l/gn
				S-Area	S-Area SSPL Volatiles	1 .					
Chlorobenzene	QN	ND	ND	ND	ON	ND	ND	ND	ND	0859	5
				S-Area S	S-Area SSPL Semivolatiles	tiles					
Trichlorobenzene, Total Tetrachlorobenzene, Total	<u>8</u> 8	<u>8</u> 8	ON ON	ON ON	ON ON	ON ON	ON ON	S S	S S	3880 3230	\$ \$
Hexachlorobutadiene Hexachlorobenzene Octachlorocyclopentene	<u> </u>	S S S	N N N N N	S S S		<u> </u>	<u> </u>	ND ND ND	<u> </u>	216 50 246	5 0.35 NS
		, , , , , , , , , , , , , , , , , , ,		S-Area	S-Area SSPL Pesticides	les					. V
Total BHC	ND	QN	QN	QN	QN	QN	QN.	QN.	QN	282	ND
				Miscell	Miscellaneous Analyses	ses					
Total Organic Carbon Total Organic Halides	ON ON	QN QN	ON ON	ON ON	ON ON	ON ON	ND 400	ON ON	ON ON	ND 37000	NS NS
 Ambient Water Quality Standards and Guidance Values. Standards or guidance values are for Class GA waters ug/l Micrograms/liter or parts per billion (ppb) ND Non-detect NS No standard Note: Samples were only analyzed for S-Area Site Specific Parameters. 	Standards and s per billion (p	Guidance Val ppb) a Site Specific	ues. Standard	ls or guidance	values are for	Class GA wa	iers.				

()				
Paradit				
Sainthill				
COMMENT				
-				
-				
فيبيية				
ulipings.				
enterent de				
-				
فسيدون				
National Inc.				
ÇIŞER				
distant.				
(Sindalahi				
\\				