US EPA Contract No. 68-W9-0024

ARGS II

REMEDIAL PLANNING ACTIVITIES AT SELECTED UNCONTROLLED HAZARDOUS SUBSTANCE DISPOSAL SITES WITHIN EPA REGION II (NY, NJ, PR, VI)

CDM Federal Programs Corporation

FINAL REMEDIAL INVESTIGATION REPORT FOREST GLEN SITE NIAGARA FALLS, NEW YORK

VOLUME II

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY REGION II 290 Broadway New York, New York 10007-1866

Prepared by

CDM FEDERAL PROGRAMS CORPORATION 125 Maiden Lane - 5th Floor New York, New York 10038

EPA Work Assignment No. : 053-2L3U

EPA Region : II

Contract No. : 68-W9-0024

CDM Federal Programs

Corporation Document No. : 7720-053-RI-CMBM

Prepared By : CDM Federal
Site Manager : Jeanne Litwin
Telephone Number : (908) 757-9500
Remedial Project : Gloria Sosa
Telephone Number : (212) 637-4283
Date Prepared : December 16, 1996

APPENDIX A QUALITY ASSURANCE/QUALITY CONTROL MEASURES

1.0 OA/QC MEASURES AND DATA QUALITY ASSESSMENT

This section presents aspects of the quality assurance requirements emplaced to assure the useability of the data in order to meet RI objectives.

Documents used to govern the collection of samples and the quality assurance and quality control (QA/QC) of the total project include the CDM Federal Work Plan (WP). December, 1993; the CDM Federal Revised Final Project Operations Plan (POP) including the Quality Assurance Project Plan (QAPP), June 1994; along with the USEPA Region II CERCLA Quality Assurance Manual (CERCLA QA Manual), Revision 1, October 1989, and those agency-approved guidance documents referenced therein. Modifications to the project plans are discussed in Table A-1. The laboratory QA/QC procedures are outlined in the above documents.

1.1 FIELD AND LABORATORY TECHNICAL SYSTEM AUDITS

Per the POP, field technical system audits and internal system audits may be done during the Remedial Investigation (RI) according to the specified and approved QA/QC requirements. One office internal system audit (ISA) and one field technical systems audit (FTSA) was performed. The ISA evaluated the adherence to the applicable QA/QC requirements as specified in the ruling documents such as the WP and the CDM Federal ARCS II QA Management Plan. The FTSA audit evaluated the ARCS II field team's performance during collection, storage, handling, preservation, and packing of the environmental and QC samples, plus other field operations such as equipment calibration, decontamination, field measurements, and documentation. The availability of relevant guidance documents in the field was also recorded by the auditor.

The FTSA was conducted on November 21, 1994. Whereas, a few deviations from the plans and guidance documents were noted by the auditors which required corrective action, these were of a minor nature and did not adversely affect the quality of the collected data. Deficiencies were noted in the following areas.

- · Sample paperwork and Chain-of-Custody missing information.
- · Analyte free data results on site availability.

Corrective actions were taken to address these deficiencies. The predominant findings of the audits were that the field team had been performing RI tasks in conformance with the various controlling plans and guidance documents.

The ISA was conducted on August 26, and 29, 1994. The plans and guidance documents were followed with the exception of minor problems which did not adversely affect the quality of the collected data. Deficiencies were noted in the following areas.

- Marked up draft documents in files
- · Technical review forms missing or incomplete
- · Field logbook documentation missing entries

Corrective action was taken as well as QC measures implemented for future field work. The ARCS II Regional Quality Assurance Coordinator determined that the deficiencies did not affect data quality such that the data should be qualified or rejected.

1.2 DATA QUALITY OBJECTIVES

Data quality objectives (DQOs) were incorporated in the planning of the RI in accordance with EPA guidelines. These DQOs included precision, accuracy, representativeness, completeness, comparability, and sensitivity commonly referred to as the PARCCS parameters. In order to meet these DQOs during the collection of the environmental samples, field and laboratory procedures for sample collection and analysis were followed in accordance with the POP. The PARCCS parameters are as presented in the POP and are discussed below.

1.2.1 PRECISION

Precision quantifies the reproduceability of measurements of the same property under a given set of conditions. Both field sampling precision and analytical precision can be measured (Section 1.4.3 of this appendix). Blind duplicate samples were collected and analyzed as part of the field program to demonstrate the reproducibility of sampling technique. Analytical precision was met by using EPA-approved methods, which specify precision limits for acceptable analyses (i.e., the Contract Laboratory Program (CLP) analytical statements of work for Target Compound List (TCL) organics and Target Analyte List (TAL) inorganics), and laboratories that operate under formalized quality assurance programs with appropriate standard operating procedures and use qualified personnel and equipment.

1.2.2 ACCURACY

Accuracy measures the bias in a measurement system. Analytical accuracy was met by using EPA-approved methods, which specify accuracy limits for acceptable analyses (i.e., the Contract Laboratory Program (CLP) analytical statements of work for Target Compound List (TCL) organics and Target Analyte List (TAL) inorganics), and laboratories that operate under formalized quality assurance programs with appropriate standard operating procedures and use qualified personnel and equipment.

1.2.3 <u>REPRESENTATIVENESS</u>

Representativeness expresses the degree to which the sample portrays the population

characteristics of process or environmental conditions at a given location and point in time. Representativeness is affected by time, location, and sampling technique. An example of the way representativeness was met during the RI was by the employment of EPA-approved standard operating procedures for groundwater, surface and subsurface soil, and surface water and sediment sampling. Representativeness of groundwater samples was achieved by the evacuation of three to five well volumes until indicator parameters of temperature. pH. and specific conductance had stabilized to within a 10 percent variance over two successive well volumes. Samples collected from all media for VOC analysis were collected with minimal agitation and the sample jars were filled to achieve zero headspace for aqueous samples and near zero headspace samples for solid samples. Non-VOC analyses soil samples were collected from an aliquot of media that had been homogenized by the EPA Region II required coning and quartering method.

This DQO was also achieved by performing appropriate equipment and personnel decontamination procedures and using dedicated sampling equipment and personnel clothing (i.e., disposable gloves). Correct equipment calibration field check procedures (HNu) contribute to the representativeness of the field screening techniques. As referenced above, the correct performance of these procedures was observed and documented during the field technical system audit.

Representativeness of potential contamination is also achieved through an appropriate sampling rationale that adequately establishes sampling points to represent the study area in question. The representativeness of the geophysical survey was enhanced by the use of the systematic survey grid that provided coverage of the entire site. Sample points for various media were determined as follows: surficial soil samples were determined by field observation (visible signs of contamination or disturbance); subsurface soil samples (collected from test pits and soil borings) were determined by the above criteria in addition to the results of the initial site characterization electromagnetic (EM) surveys (test pits were installed in the areas where the EM surveys showed geophysical anomalies, such as buried waste); monitoring well and screen placement for groundwater samples were based on regional groundwater flow direction and in areas where illegal landfilling reportedly occurred; surface water and sediments locations were selected to best represent the distribution of any contaminants that may have been present (an upstream sample was collected to indicate background concentrations; two mid point samples and one downstream sample was collected to represent site and off site conditions).

1.2.4 <u>COMPLETENESS</u>

Completeness is defined as the percentage of all measurements made whose results are judged to be valid using accepted standardized data validation procedures, such as the current revisions of HW-6 for organics and HW-2 for inorganics. An objective of at least 95 percent completeness for laboratory analytical results had been established in the POP. One indicator of completeness is that less than four percent of all laboratory analytical results were rejected. Therefore, the DQO of at least 95 percent completeness has been achieved. Table A-2 presents the results of

the data validation. An explanation of data with less than 95% completeness is discussed in Section 1.3.1.

1.2.5 COMPARABILITY

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. The environmental data has been generated during the Rl and presented in a manner that assures comparability. Standardized sampling and analytical procedures were followed and the analytical results have been reported in consistent format and standard units of measurement, such as micrograms per liter for compounds in water and millisiemens per meter for EM survey data. The data comparability is assessed under field duplicates.

1.2.6 SENSITIVITY

The requirements for sensitivity were established in the POP and were met in accordance with each applicable analytical method. Sensitivity is defined by the method detection limits. For the TCL organics and TAL inorganics, these limits are referred to as the contract required quantitation limits and the contract required detection limits, respectively, as identified in the related CLP analytical statements of work. The detection limits for other parameters are as per the related analytical method.

1.3 DATA VALIDATION

Data validation was performed for the targeted semi-volatiles and the water quality parameters by CDM Federal EPA Region II - certified data validators following, where applicable, current versions of EPA's functional guidelines for evaluating organics (Standard Operating Procedure HW-6), and inorganics (Standard Operating Procedure HW-2). The metals and cyanide, volatile organics, semi-volatiles and pesticides/polyvinyl biphenols (PCBs) (CLP data) were validated by the EPA.

Table A-2 shows the percent of usable data (i.e., not rejected) by analytical method, based on the results of the data validation. The results of data validation appear as "qualifiers" on the data results and wherever data is discussed in the text. Table 1-2 provides a summary of data validation qualifiers and their meaning.

1.3.1 GENERAL DATA TRENDS

Organics were mainly estimated (18 % overall) for calibration exceedance, internal standard, holding time and surrogate. Elevated cooler temperatures resulted in estimated data in one sample delivery group (SDG). Other criteria such as blank contamination also resulted in the estimating of the data as well. PCBs and Pesticides were rejected or estimated mainly due to discrepancies in the sample concentrations determined on two separate analytical columns.

<u>Inorganics</u>: Field blank results, serial dilution and furnace criteria exceedance resulted in 3% (overall) sample rejection. Inorganic analytes were estimated mainly due to poor yields in the matrix spike, CRDL and calibration standards analysis; serial dilution recovery and field duplicate precision.

Overall the wet chemistry parameters were rejected at a 3% rate, however, there were problems with two individual analytes. Nitrate/Nitrite (NO₃/NO₂) data was rejected at a rate of 16% due to holding time exceedance and 10% for field blank contamination. The overall nitrate-nitrite rejection rate was 26%. Chemical Oxygen Demand (COD) data was rejected for holding time exceedance (7% overall).

Physical data are completely useable. Some grain size data were estimated because the laboratory did not optimize the sample pH to allow maximum particle dispersion, and also due to poor laboratory duplicate results.

1.4 QUALITY CONTROL SAMPLES

To meet QA objectives, various QC measures are performed. These QC measures include the collection, preparation and analysis of QC samples such as trip blanks, field blanks, and environmental duplicates. These QC samples measure possible factors that could influence the results reported for the environmental samples. Each type of QC sample and associated results will be discussed in the following text.

1.4.1 TRIP BLANKS

Trip blanks for aqueous volatile organic compound (VOC) samples were collected during the RI. Trip blanks are collected to measure possible volatile organic contamination that may have been introduced to environmental samples via on site atmospheric contaminants or cross-contamination during shipment or storage. These blanks are prepared with demonstrated analyte-free water (based on TCL analytical results below the CRDLs) at the start of each day of sampling for aqueous samples to be submitted for analysis for VOCs. It should be noted that regional EPA QA requirements do not require the collection of trip blanks when collecting soil samples for VOC analysis.

A total of twelve trip blanks were collected in association with aqueous environmental samples that were submitted for VOC analysis. Bromomethane, methylene chloride, chloroform and bromodichloromethane were the only VOCs detected in the trip blanks. Review of the analytical data for these trip blanks shows that most of these detections were flagged as "estimated". These data were used to qualify environmental samples for potential blank contamination. Out of the four compounds detected in the trip blanks, bromomethane was the only compound detected in the associated environmental samples. It was detected in one Round 1 sample at an estimated value. The other trip blank contaminants, chloroform, bromomethane and bromodichloromethane were not detected in the associated environmental samples. Therefore,

these compounds are not of concern with regard to the data quality in terms of sample shipment and handling. Appendix K contains the full analytical results for the QC samples.

1.4.2 <u>FIELD BLANKS</u>

Field blanks are collected as a measure of any cross-contamination introduced to environmental samples due to inadequately performed decontamination of sampling apparatus. Field blanks also measure any possible contamination introduced to the sample media due to the decontamination procedure itself, in particular, the use of acids and solvents such as nitric acid and acetone. Field blanks consist of demonstrated analyte-free water poured over decontaminated equipment following each decontamination event and prior to use of the lot of sampling equipment.

RI field blank data (Appendix K) and their associated environmental samples were reviewed. The presence of contaminants in the field blanks was evaluated during data validation. The unit of measurement for the field blanks is in micrograms per liter, as compared to soil results which are reported in units of milligrams per kilogram. The difference in weights, volumes and any dilution factor was considered during evaluation of the field blank results. Results which were considered as being a result of contamination from handling and/or analysis were rejected (flagged "R" for inorganics) or considered a non-detect value (flagged "U" for organics). Therefore, since all the inorganic and organic sampling results for this RI were validated, the data reported in Appendix K are all useable for data interpretation.

The field blank results are as follows. In the volatiles analyses, chloromethane, chloroethane, methylene chloride, acetone, carbon disulfide, chloroform, 2-butanone, bromodichloromethane and trichloroethene were detected in the field blanks. Again, most of these results were below the reporting limit and were estimated, except for chloroform (23 ug/l - 47 ug/l). In the field data, methylene chloride, acetone, carbon disulfide, 2-butanone, and trichloroethene were detected.

In semi-volatile Round 1 data, phthalate blank contamination was seen at low levels (below reporting limit of 10 ug/l) with the exception of FB09 (160 ug/l). Very low levels of PAHs (0.9 - 1.0 ug/l) were reported as estimated in one field blank, FB12. No hits were detected in the semi-volatile analyses of field blanks for Round 2.

A few occurancies of pesticide/PCB show up in the Round 2 field blank results. The results are all less than the reporting limits. There were no hits in the round 2 environmental sample results.

Although several analytes were found at values below the CRDL in the metals analyses, the field blank results do not appear to have affected the value of detections found in either the soil or water samples except for some surface soil samples. As a result, chromium, nickel, potassium and Sodium results in surface soil samples SS01 through SS18 were rejected.

There were no detection of any targeted organic compounds in the field blank analyses.

In the water chemistry analyses, high levels of nitrate/nitrite contamination was detected in the field blank associated with the Round 2, November 13, 1995 sampling event. This resulted in five associated samples being rejected since their results were up to five times the field blank level. The contamination source is unknown since sulfuric acid is used as the preservative and the field blank was collected prior to sample collection. Laboratory contamination is suspected in the samples that were not rejected since the level of NO₃/NO₂ is exceptionally high and Round 1 results were non-detects or close to the detection limit.

1.4.3 <u>FIELD DUPLICATES</u>

The Table A-4 shows the field duplicate pairs collected and their results.

It should be noted that several of the compounds showing poor precision are detected below the sample detection limit. There is inherent uncertainty in values just above or below the detection limits.

The field duplicate results did not eliminate any data, all were useable.

Page 1 of 8

Document/Section	Modification
1. Revised Final Project Operations Plan (POP)/Section 5.13.3, Page 5-45, Surface Water Flow Measurements	The POP stated that flow velocity will be measured in East Gill Creek during both sampling rounds. Modification Due to low flow conditions in East Gill Creek, flow velocity measurements were only collected during Round 2.
2. Revised Final POP/Section 5.13.3, Page 5-45, No. 1 Surface Water Flow Measurements	The POP states that the stream will be partitioned into sections and flow measurements will be collected at each section. Modification Due to narrowness of East Gill Creek and the minimal flow conditions, measurement was made at select sampling locations during Round Two.
3. Revised Final POP/Section 5.4.1.2, Shallow Electromagnetic Survey - Procedures	The POP states that measurement stations would be located at each node and at 5-foot increments between the nodes. Modification After the completion of several test line segments, it was determined that a 5-foot station spacing was not appropriate for this site due to its large size. Readings were taken at 10-foot intervals and every 5 feet in areas of particular interest. The instrument was left on between stations to ensure that no small-scale anomalies were missed. One of the advantages of the EM31-D is that the instrument can be read continuously.
4. Revised Final POP/Section 5.4.2, Deep Electromagnetic Survey	The POP states that the deep electromagnetic survey would be conducted with an EM34-3 terrain conductivity instrument operated in the horizontal dipole mode. Modification One of the main purposes of performing the EM34-3 was to provide relative estimates of depth to bedrock and to investigate the potential existence of bedrock fracture zones. For this reason, it was determined that both horizontal and vertical dipole measurements should be collected, rather than just horizontal dipole readings as stated in the POP.
5. Revised Final POP/Section 5.4.2.2, Deep Electromagnetic Survey - Procedures	The POP states that measurement stations would be located at each node and at 5-foot increments between the nodes. Modification Readings were taken at 25-foot intervals and at every 12.5 feet in areas of particular interest. Measurements at 5-foot intervals using the EM34-3 would be very time-consuming given the size of the site.

Page 2 of 8

De	ocument/Section	Modification
	Revised Final POP/Section 5.4.2.2, Deep Electromagnetic	The POP states that three measurements, one at each of the predetermined intercoil spacing 10 meters, 20 meters, and 40 meters would be made at each measurement station.
	Survey - Procedures	Modification
		The 10-meter coil spacing readings were not collected. The effective exploration depths of the 10-meter coil spacing are 24.6 and 49.2 feet for the horizontal and vertical dipole modes, respectively. The 24.6-foot depth investigation is covered by the vertical dipole measurement collected from the EM31-D instrument while the 49.5-foot depth investigation is covered by the 20-meter coil spacing in the horizontal mode.
		The 20-meter and 40-meter horizontal and vertical dipole readings were collected along all grid lines, not just the coarser grid specified in Figure 4-2 of the POP. This ensured greater density of geophysical coverage.
		The 40-meter readings could not be obtained from east-west lines at the northernmost edge of the north grid. The grid lines at this location are only 150 feet long. Thus, measurements were collected at grid nodal points only.
7.	Revised Final POP/Section 5.4.3.2, Seismic Refraction Survey	The POP states that geophone cables will be laid out and connected end to end along each grid line to the ground.
	Procedures	Modification
		All spreads could not be completed along grid lines defined in the POP. Field conditions were such that spreads had to be laid down around obstacles such as mobile homes, fences, concrete/asphalt, trees/bushes, etc. In addition, at the time of the survey, standing water was observed at the southern end of the South Grid, near the grid line starting at grid node 1.0, 0.0 and running west. Thus, geophones could not be seated in the ground in this general area. The actual coverage of the seismic refraction survey is indicated by the thick lines in Figure 2-2 of the RI Report.
8.	Revised Final POP/Section 5.8.3.1, Page 5-22, No. 3, Deep Bedrock Monitoring Well Installation	The POP states that eight-inch ID Schedule 5 stainless steel surface casing will be sealed in the lodgement till with emplacement of 2.5 feet of pellets added to a level equal to or above the lodgement till. Following the emplacement of the bentonite footing, the remaining annular space will be backfilled with cement bentonite grout.
		Modification
		The bentonite seal was not used since the casing was seated directly in the bedrock.

Page 3 of 8

Doc	cument/Section	Modification	
9. 1	Revised Final POP/Section 5.8.3.1, Page 5-22, No. 4, Deep Bedrock Monitoring Well	The POP states that the bedrock section of the borehole will be logged via the acquisition of NX gauge cores and that the cores will be retrieved in five foot sections.	
· 1	Installation	Modification	
		The bedrock section of the borehole was logged through the eight-inch casing via the acquisition of HQ (four-inch nominal diameter) gauge cores. The use of HQ gauge cores allowed for the creation a four-inch open borehole and thereby eliminated the need to redrill the proposed two-inch, NQ gauge hole with four-inch diameter air rotary. In an effort to expedite the drilling process, the cores were retrieved in up to ten foot sections instead of the proposed five foot sections.	
10.	Revised Final POP/ Section 5.8.3.1, Page 5- 24, No. 9, Deep Bedrock	The POP states that the borehole will be reamed to a minimum diameter of four inches, and will be completed as an open borehole.	
	Monitoring Well Installation	<u>Modification</u>	
		Since the borehole was cored using a four-inch diameter HQ core, the need to ream the open hole using air rotary was eliminated.	
11.	Revised Final POP/ Section 5.8.3.2, Page 5- 24, No. 1, Shallow Bedrock Monitoring Well Installation	Same as Deep 1	
12.	Revised Final POP/ Section 5.8.3.2, Page 5- 24, No. 3, Shallow Bedrock Monitoring Well Installation	Same as Deep 3	
13.	Revised Final POP/ Section 5.8.3.1, 5-22, No. 1, Deep Bedrock Monitoring Well Installation	The POP states that the overburden borehole will be advanced with an air rotary drilling rig. A 12-inch inner diameter (ID) temporary steel casing will be advanced to and sealed in the lodgement till. Modification	
		The overburden borehole was advanced with 10.25-inch ID hollow stem augers to refusal on the top of bedrock which eliminated the need for 12-inch ID temporary steel casing.	
14.	Revised Final POP/Section 5.8.3.3, Page 5-26, No. 2,	The POP states that four-inch diameter Schedule 5 stainless steel casing and ten feet of stainless steel screen will be inserted into the borehole.	
Overburden Monitoring Modification		Modification	
	Well Installation	Five-feet of screen was used in both the overburden and perched water well due to the shallow and thin nature of the monitoring zones	

Page 4 of 8

Doc	cument/Section	Modification	
15.	Revised Final POP/ Sections 5.10, Page 5- 30, Continuous Water Level Measurements	The POP states that continuous water level measurements will be collected from the three East Gill Creek staff gauge locations and two well clusters. Modification Continuous water level measurements were not collected from the three staff gauge locations due to low flow conditions in East Gill Creek. Additionally, water level measurements were collected from three monitoring well clusters since East Gill Creek was not monitored.	
16.	Revised Final POP/Section 4.0, Table 4-3, Quality Assurance Sample Table	Table 4-3 in the POP indicates that field blanks would be collected from the drive-point sampling apparatus. Modification It was determined, with EPA approval, that field blanks were not necessary since sample data would be used for screening purposes only.	
17.	Section 4.0, Figure 4-3, Proposed Drive-Point Locations	Figure 4-3 in the POP indicates that locations DP-033 and DP-034 were located in the northern aspect. Modification Locations DP-033 and DP-034 were relocated from the northern aspect to the subdivision in an effort to further delineate the suspected source area. DP-033 and DP-034 are now located at the grid nodes located to the north of locations DP-017 and DP-018, respectively.	

Page 5 of 8

Doc	cument/Section	Modification	
	Revised Final POP/Sections 5.5.3 and 5.5.4 Drive-Point Subsurface Soil Sampling and Drive Point Shallow Groundwater Sampling	The POP states that one subsurface soil sample will be collected from the 2-foot interval above the water table (approximately 10 feet BGS). Additionally, the F states that continuous split-spoon samples will be collected to the top of the till. Modification	
19.	Revised Final POP/Section 5.5.4, Drive-Point Shallow Groundwater Sampling	The POP states that shallow groundwater samples will be collected by advancing the drive-point sampling apparatus approximately two feet in advance of the borehole. Modification CDM Federal attempted to collect a groundwater sample via the drive-point sampling method at location DP-007. Due to the overburden conditions	
20		encountered onsite, generally tight clay formations, the CDM Federal hydrogeologist determined that overburden groundwater flow was unlikely. Therefore, CDM Federal made no further attempts to sample the overburden groundwater using the drive-point method.	
20.	Technical Memo/Section 5.2, Page 5-2	The Technical Memorandum states that the boring installed in the berm would be advanced to the top of the clay till layer. Modification	
		Due to the thickness of the fill material in the berm and the limitations of the all terrain vehicle that was used, borings were only advanced two feet into the naturally occurring clay layer.	

Page 6 of 8

Doc	cument/Section	Modification		
	Technical Memo/Section 5.2, Page 5-2	The Technical Memorandum proposed that only one subsurface soil sample be collected from each berm boring location.		
		Modification		
		CDM Federal collected one additional subsurface soil samples from boring locations BERM 2 and BERM 3 where visual contamination was noted in the soil column.		
22.	Technical Memo/Section 5.2, Page 5-2	The Technical Memorandum stated that three borings would be installed in the northern aspect where distinct high conductivity electromagnetic anomalies were noted during the geophysical survey.		
		Modification		
		One of the three borings (SB-01) was completed in its proposed location while the other two borings (SB-02, SB-03) were relocated to delineate the horizontal and vertical extent of the fill material encountered during test pit activities.		
23.	Technical Memo/Section 5.2, Page 5-2	The Technical Memorandum stated that 16 borings would be installed in the wooded lots north and south of Edgewood Drive and that a surface and subsurface soil would be collected from each location.		
		Modification		
		Borings SB-EXP, SB Center were added to assist in the delineation effort. One additional subsurface soil sample was collected from location SB-14, where visual contamination was noted in the soil column.		
24.	Technical Memo/Section 5.1, Page 5-1.	The Technical Memorandum stated that six surface soil samples would be collected from the two covered waste piles on Carrie Drive.		
		Modification		
		CDM Federal collected only four of the six proposed samples. Two samples located in the northern soil pile were not collected since its cover was intact and CDM Federal did not want to compromise the material's integrity.		
25.	Technical Memo/Section 51, Page 5-1	The Technical Memorandum stated that three surface soils would be collected from the small trash mound located on a grassy area east of T Mark Drive, south of its intersection with Edgewood Drive.		
		Modification		
		During field activities, CDM Federal determined that the trash mound was generally composed of bagged tyvek and grass cuttings. Analytical samples were therefore not collected from the proposed locations in this area. The origin of this disposal remains unknown.		

Page 7 of 8

Dog	cument/Section	Modification			
	Technical Memo/Section 5.1, Page 5-1	The Technical Memorandum stated that the surface soil background samples would be collected from Expressway Village.			
		Modification			
		Due to problems in obtaining access to Expressway Village, CDM Federal collected the background samples from an area south of the site, on the Forest Glen property, and north of Expressway Village. The soil in this area was similar to site soils and was reportedly unimpacted by site activities.			
27.	Technical Memo/Section 5.3, Page 5-3	The Technical Memorandum stated that 10 test pits would be excavated in the northern aspect to characterize anomalous areas that were identified during the electromagnetic surveys.			
		Modification			
		CDM Federal excavated two additional test pits (TP-EXP, TP-EXP2) to further delineate the nature and extent of the detected fill material.			
28.	POP Addendum No. 2./Section 5.16.3.2, No.	The Technical Memorandum stated that each test pit would be excavated to the of the clay fill.			
	3, Page 4	<u>Modification</u>			
		CDM Federal, based on field observations, determined that the native clay encountered during trenching activities was competent and undisturbed. It was therefore unnecessary to excavate to the top of the clay till. Additionally, at those locations where visual contamination or waste material was noted, the test pit was excavated only two feet into the clay to minimize the potential for the vertical migration of contaminants.			
29.	POP Addendum No. 2 Section 5.16.3.2, No. 6, Page 1	The Revised POP Addendum No. 2 stated that a disturbed sample would be collected directly from the backhoe bucket using a decontaminated stainless steel trowel and bowl.			
		<u>Modification</u>			
		At test pit locations where waste or fill material was encountered, CDM Federal collected the required sample volume from both the backhoe bucket and the excavated soil pile. This was done in an effort to collect a more representative sample.			

Page 8 of 8

Dog	cument/Section	Modification
Section 5.12.1, No. 5, pri		The POP stated that three to five well volumes would be purged from each well prior to sampling.
	Page 5-35	Modification
		Due to low water levels in wells MW-30B during both sampling rounds and MW-3PW during Round One sampling, CDM Federal was unable to purge the wells of the minimum required three volumes. In an effort to obtain analytical information, the wells were purged to dryness with decontaminated Teflon baiters. Excavated water was collected in sample bottles designated for targeted organics, TAL metals and TCL volatile organic compounds.
POP/Section 5.14,		The POP states that two types of aquifer tests be conducted at the site, slug tests and a long-term pump test.
	Aquifer Testing	Modification
		As no overburden water table was encountered during the initial site characterization, it was determined that aquifer testing would not be required for the study.
		The POP states that the delineation follow methodologies stated in the 1989 Federal manual for identifying Delineating Jurisdictional Wetlands.
		Modification
		The wetland delineation methodology followed was from the 1987 Corps of Engineers Wetland Delineation Manual (Environmental Laboratory, 1987), as currently recommended by EPA.

TABLE A-2 RESULTS OF DATA VALIDATION FOREST GLEN SITE NIAGARA FALLS, NEW YORK

ANALYSIS	NUMBER OF SAMPLES*	PERCENT USABLE
TAL/Metals and Cyanide	208	97
TCL/Volatile Organics	214	100
TCL/Semi-volatiles	206	98
TCL/Pesticides	206	97
TCL/PCBs	206	99
Targeted Semivolatiles	327	86**
Alkalinity	12	100
рН	161/158	100
Ammonia	33	100
Total Solids	181	100
Total Dissolved Solids	51	100
Total Kjeldahl Nitrogen	41	100
Chemical Oxygen Demand	42	93
Biological Oxygen Demand	39	100
Total Organic Carbon	217	100
Acid Sulfide	32	100
Nitrate/Nitrite	33	74
Grain Size	1425	100
Hardness	12	100

^{*} Totals include Round 1 and Round 2

^{** -} Although 16% of the data was rejected, 12% of the rejected data was due to unavailability of standards for 2 (3H)Benzothiazole and 2 (3H) Benzothialzolethione which resulted in zero response for these compounds in the calibration. Therefore, the actual rejection rate for targeted semivolatiles is 4%. The analysis of targeted semivolatiles met the 95% completion goal for the analysis.

TABLE A-3 DATA VALIDATION QUALIFIERS FOREST GLEN SITE NIAGARA FALLS, NEW YORK

Organic Qualifiers:

Organic Qual	ifiers:		
U -	Compound was analyzed for but not detected. The associated numerical value is the sample quantitation.		
J -	Estimated data due to exceeded quality control criteria.		
N -	Presumptive evidence of a compound.		
P -	The difference for detected concentration of a pesticide/Aroclor target analyte is greater than 25% between the two Gas Chromatagraph (GC) columns.		
C -	Identification of pesticide results was confirmed by GC/Mass Spectrometer (MS).		
В -	Analyte is found in the associated blank and in the sample.		
E -	Compound concentration exceeds the calibration range of the GC/MS instrument for that specific analysis.		
D -	Compound is identified at a secondary dilution factor.		
A -	Tentatively Identified Compound (TIC) is suspected aldol - condensation product.		
R -	Data is rejected due to exceeded quality control criteria.		
Inorganic Qua	Inorganic Qualifiers:		
В -	Reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).		
U -	Analyte was analyzed for but not detected.		
E -	The reported value is estimated because of the presence of interference.		
M -	Duplicate injection precision not met.		
N -	Sample recovery is not within control limits.		
S -	The reported value was determined by the Method of Standard Additions (MSA).		
S - W -			

Duplicate analysis not within control limits.

Correlation coefficient for the MSA is less than 0.995.

Media	Field Duplicate ID	Analytes Showing Poor Precision	Action
Surface Soils	DP036-DP026-SS	Few targeted semivolatiles analytes Pesticide alpha-chlordane Potassium	Data estimated
	DP037-DP032-SS	Heptachlor Manganese and Cobalt	Data estimated
	SB20 - SB07-SS	The CLP semivolatile*1 and a few compounds in the targeted SV*2	None taken
	SB23 - SB15-SS	Pyrene %D 133	Data estimated
Subsurface Soils	MW11 - MW1	Lead	none taken, RPD below critical value (<100%)
	DP035 - DP033S	All semivolatiles hits Pyrene - TSVOCs Cadmium, mercury and zinc	Data estimated
Test Pit Samples	TP-11 - TP-06; TP-12 - TP08	2 detects in TP-12 are non-detects in TP-08	Data estimated
East Gill Creek Rounds 1 and 2	GCSW5 - GCSW3; GCSD5 - GCSD3	Zinc above 50% RPD	none taken, RPD below critical value (<100%)
Sediment	WTSD11-WTSD10	None	none required

 $^{^{*2}}$ Semivolatile (SV) compounds pyrene, perylene and acenapthene RPD > 100

APPENDIX B GEOPHYSICAL SURVEYS

APPENDIX - GEOPHYSICAL SURVEY

1.0 GEOPHYSICAL SURVEY PROCEDURES

CDM Federal conducted geophysical survey activities at the Forest Glen site from June 6 through June 22, 1994 and from November 14 through November 18, 1994. The purpose of the geophysical investigation was to gain initial information on the subsurface geology and to detect and identify buried drums and waste, if any.

CDM Federal determined that electromagnetic and seismic refraction surveys would achieve the objectives of the initial site characterization. Electromagnetic surveys (shallow and deep) were conducted over the North Grid where minimal interference was anticipated. Seismic refraction was used in the South Grid because of the presence of the mobile homes, fences, and utilities, which create excessive anomalous interference for the electromagnetic surveys.

1.1 ELECTROMAGNETIC SURVEYS

1.1.1 Discussion

The electromagnetic (EM) method provides a means of measuring the electrical conductivity of subsurface soil, rock, and groundwater. Electrical conductivity is a function of the type of soil and rock, its porosity, its permeability, and the types of fluids that fill the pore space. Geologic materials are characterized by their electrical characteristics. As such, lateral and vertical variations in conductivity generally indicate a change in subsurface conditions. The Niagara Falls area generally contains a relatively conductive (clay-rich) overburden overlying a resistive (low porosity) dolomite. Vertical fractures in the dolomite that are filled with water and clay appear as vertical, sheet-like conductors.

The EM data interpretation is generally subjective; that is, measured EM values are contoured or profiled to identify high- or low-conductivity areas. Conductivity values obtained by an EM survey are relative values and depth estimates to conductive surfaces or bodies are best accomplished with onsite calibration against known ground conditions.

Because the EM technique measures the electrical properties of the subsurface, measurements are subject to interference from buried waste and metallic objects such as drums and utility lines.

The principle behind the EM method is described in detail in Geonics Technical Notes TN-5 and TN-6 (McNeill 1980a, 1980b). To summarize, a transmitter coil energized with an alternating current at an audio frequency is placed on the ground surface and a receiver coil is located a short distance away in the same plane as the transmitter. The transmitter causes a time-varying magnetic field, which induces small electrical currents in the subsurface. These currents in turn generate a secondary magnetic field, which is sensed by the receiver coil. This secondary magnetic field is a function of the intercoil spacing, the operating frequency,

and the ground conductivity. The ratio of the secondary field generated to the primary magnetic field is mathematically proportional to the terrain conductivity; thus, a direct reading of conductivity is obtained.

At the Forest Glen site, two types of electromagnetic surveys were applied: EM34-3 and EM31-D. The EM34-3 instrument has two flexibility connected coils and requires two people to operate it. The intercoil spacing is measured electronically so that the receiver operator reads a meter to accurately set the coils at the correct spacing. The coils can be carried with their planes vertical (horizontal dipole mode) or with their planes horizontal (vertical dipole mode).

EM34-3 can be operated at three fixed coil spacings (10, 20, and 40 meters) with both coils in either the vertical or horizontal position. The depth of exploration varies with intercoil spacing as shown below:

Intercoil Spacing	Exploration Depth (ft)	
(m)	Horizontal Dipoles	Vertical Dipoles
10	24.6	49.2
20	49.2	98.4
40	98.4	196.8

For the purpose of this report, intercoil spacing will be presented in metric units, as the instrument operating manuals use metric terms. Exploration depths are provided in English units for ease of reference.

To measure terrain conductivity, the transmitter operator stops at the measurement station. The receiver operator moves the receiver coil backward or forward until a meter reading indicates correct intercoil spacing. The terrain conductivity is then read off a second meter. Readings are made in millisiemens per meter (ms/m).

The EM31-D instrument has a fixed intercoil spacing of 3.6 meters, which yields an effective depth of exploration of about 19.7 feet in the vertical dipole mode and 32.5 feet in the horizontal dipole mode. This single unit can be operated by one person and can be used to collect data on a station-by-station basis or in a continuous mode.

The approach used at the Forest Glen site is identical to that used in a joint USGS/EPA study (Yager and Kappel 1987), which showed that electromagnetic anomalies in the Niagara Falls area can be mapped and delineated using EM instrumentation. The study focused on detecting fractures in the Lockport Dolomite.

1.1.2 Field Procedures

The electromagnetic survey was conducted in the North Grid of the site (Figure 1-1). The grid nodes served as reference starting points for all of the geophysical surveys completed at the site.

Generally, the procedures described in the Forest Glen Revised Final Project Operations Plan (POP) (June 1994), were implemented for both the EM34-3 and the EM31-D methods. Field conditions encountered during surveying suggested that some of the procedures described in the POP could be improved for better data collection and/or to reduce the time required to collect data while maintaining data integrity and fulfilling survey objectives.

1.1.2.1 Modification to EM31-D Survey

• After the completion of several test line segments, it was determined that a 10-foot station spacing was appropriate for this site. Readings were taken at 10-foot intervals and at every 5 feet in areas of particular interest. The instrument was left on between stations to ensure that no small-scale anomalies were missed. One of the advantages of the EM31-D is that the instrument can be read continuously.

1.1.2.2 Modifications to EM34-3 Survey

- The 10-meter coil spacing readings were not collected. The effective exploration depths of the 10-meter coil spacing are 24.6 and 49.2 feet for the horizontal and vertical dipole modes, respectively. The 24.6-foot depth investigation is covered by the vertical dipole measurements collected from the EM31-D instrument (effective depth 19.7 feet), while the 49.5-foot depth investigation is covered by the 20-meter coil spacing in the horizontal mode (effective depth 49.2 feet).
- One of the objectives of the EM34-3 survey was to identify the potential existence of bedrock fracture zones. For this reason, it was determined that both horizontal and vertical dipole measurements should be collected, rather than just horizontal dipole readings, as stated in the POP.
- Readings were taken at 25-foot intervals and every 12.5 feet in areas of particular interest. Measurements at 5-foot intervals using the EM34-3 would be very timeconsuming, given the size of the site.
- The EM34-3 20-meter and 40-meter horizontal and vertical dipole readings were collected along all grid lines, not just along the coarser grid, as specified in Figure 1-2 of the POP.
- The 40-meter readings could not be obtained from east-west lines at the northernmost edge of the North Grid. The grid lines at this location are only 150 feet long while the cable length on a 40-meter survey is 131.23 feet long. Thus, measurements were

collected at grid nodal points only.

It should be noted that almost all of the data collected were stored in the field using an electronic data logger. All data were also recorded in the field logbook. At the end of each grid line, the data were reviewed for completeness and the locations of any anomalies were marked in the field with pinflags. The data were periodically transferred to electronic spreadsheets on laptop computers.

During data interpretation, the New York State Plane coordinate of each grid node was obtained from the surveyor's site plan. The State Plane coordinates for each measurement station were then determined by interpolation between the known grid node coordinates.

1.2 SEISMIC REFRACTION SURVEY

1.2.1 Discussion

The seismic refraction technique is commonly used on hazardous waste sites. In the refraction method, the travel times of refracted acoustic waves traveling through various geologic materials are measured. Most geologic materials possess the ability to transmit sound waves. The speed at which a material transmits sound waves is known as the material's seismic velocity. The field data consist of measured distances and seismic travel times. The interpretation of seismic refraction data may provide information on depths and changes in lithology, geologic structures, and water saturation (water table).

Ranges of seismic velocities for different types of geologic materials are well defined in literature (Benson et al. 1982; Dobrin 1988). The geology of the Forest Glen Site consists of lacustrine clays and silts overlying a clay till, which in turn overlies the Lockport Dolomite. The seismic velocity of dolomite is generally higher than that of till, which in turn has a higher seismic velocity than unconsolidated clay and silt. In theory, this geologic setting is suited for exploration via seismic refraction. Barring the presence of geologic conditions adverse to refraction surveys, refraction data are generally accurate to within 5 to 10 percent of actual depth.

1.2.2 Field Procedures

The locations of the seismic survey lines are presented in Figure 1-2. This configuration allows for correlation between the borehole logs and the intervening seismic refraction profiles. A 24-channel seismograph (StrataViewTM model) and twenty-four 10-Hz geophones were used for this survey. Linear 12-geophone or 24-geophone arrays were completed, depending on coverage requirements.

The seismic refraction field procedures generally used during this survey are fully detailed in the POP. These procedures correspond directly with those presented in the Geometrics manual (1993). Modifications to the procedures described in the POP are listed on Table 2-1 and are fully explained below:

• All spreads could not be completed along grid lines defined in the POP. Field conditions were such that spreads had to be laid down around obstacles such as mobile homes, fences, concrete/asphalt, trees/bushes, etc. In addition, at the time of the survey, standing water was observed at the southern end of the South Grid, near the grid line starting at grid node 1.0,0.0 and running west. Thus, geophones could not be seated in the ground in this general area.

A typical 24-geophone spread, with shot point locations, is shown in Figure 1-2. The location of each geophone with reference to the closest grid node point was noted in the field log book. The locations of geophone number 1, the seismic line midpoint, and geophone number 24 were marked in the field with orange pinflags.

A sledge hammer and a steel shock plate were used to generate the seismic sound wave. Forward, reverse, and central shots were generated to allow for the interpretation of refractor dip angles and directions during the data analysis. For the forward and reverse shots, the shot point was located approximately 10 feet off the end of the line. Often, more than one shot point was used at the end points of the geophone spread.

The shot point for the center shots was located approximately midway between geophones 12 and 13. For each shot (forward, center, and reverse) an initial shock wave was generated and the resulting refracted wave was viewed on the seismograph screen. The shot was then repeated and the resulting data was stacked to increase the signal-to-noise ratio according to the procedures described in Geometrics (1993). The data were stacked until the first arrival times at each geophone were relatively clear and background noise was minimized to the extent possible. The data were plotted on the seismograph's field printer and saved on the hard drive of the seismograph's on-board computer. At the end of each field day, all data were copied from the StrataViewTM hard drive to back-up diskettes.

2.0 GEOPHYSICAL SURVEY RESULTS

2.1 ELECTROMAGNETIC SURVEYS

2.1.2 **EM31-D Survey**

Terrain conductivity values measured in the field are presented in this Appendix for the horizontal and vertical dipole modes, respectively.

Because of the limited depth of penetration of the EM31-D instrument, readings are primarily of the overburden in the North Grid. The northern aspect can be divided into two portions based on instrument response: a higher conductivity area in the northwestern portion of the North Grid and a lower conductivity area in the south-central portion of the North Grid. The higher conductivity area appears to be associated with a berm located along the western perimeter of the North Grid. A railroad yard is located west of the North Grid. The higher conductivity values measured are most likely associated with debris and fill material. Walking

across the north end of the grid, the EM operators noted pieces of concrete at the surface along with small metal pipes and other debris. Thus, the higher conductivity values are not interpreted to be caused by an increasing overburden thickness, a more clay-rich soil, or other natural features.

Within the higher conductivity area, small-scale conductivity anomalies were observed close to the berm. These anomalies were confirmed by sudden, small in-phase reversals on the EM31-D instrument. The in-phase component is a measure of the ratio of the induced magnetic field (caused by the EM-31D instrument) to the primary magnetic field. The in-phase component is significantly more sensitive to large metallic objects (such as drums) than the quad-phase component used for ground conductivity measurements. In-phase reversals commonly occur over metallic objects. Because no large-scale anomalies were noted, the potential for buried drums or other large metallic objects is considered low. More likely, the observed anomalies were caused by smaller metallic objects such as the cut pieces of pipes and concrete rebar observed at the surface during the survey.

The broad, lower conductivity area in the south-central portion of the North Grid is likely to be representative of natural overburden conditions, and may be caused by a lower clay content within the soils, reduced moisture content, or reduced overburden thickness. Near the southwestern corner of the grid, three larger, low-conductivity anomalies appear. The easternmost of these is explained by the presence of a soil pile; the other two may represent areas with buried metal. Because they are near the chainlink fence, the extent of these anomalies were obscured and could not be delineated during this survey. Other large negative anomalies appear near a large signpost located near grid nodes 3.0,0.0 and 3.5,-0.5. These anomalies are associated with a soil pile and observed metallic objects on the ground, respectively. The eastern portion of the North Grid contains several old fence post structures left in the ground.

Other anomalies are caused by the chainlink fence and an east-west trending pipeline just north of East Gill Creek, as well as the fence along East Gill Creek.

Line profiles of conductivity for the north-south trending grid lines are presented in this Appendix.

2.1.2 <u>EM34-3 Survey</u>

The EM34-3 instrument was used in the horizontal dipole mode to map lateral changes in near-surface material conductivity and thickness, and in the vertical dipole mode to detect and map potential fracture patterns and zones in the Lockport Dolomite within the North Grid. The site contains a relatively conductive (clay-rich) overburden overlying a resistive (low-porosity) dolomite. Vertical fractures in the dolomite that are filled with water (and/or clay) will behave and appear as sheet-like, vertical conductors. A generalized vertical section of the EM34-3 target, electrically conductive fractures, along with the theoretical response expected from such a feature, are presented in Figure 2-1.

Generally, no linear conductive zones can be discerned from the geophysical data. Two alternate conclusions could be drawn:

- 1. Large-scale fracture patterns are not present beneath the North Grid.
- 2. A station spacing of 25 feet is too large to detect fracture patterns.

The former conclusion, which is the more likely explanation for the lack of obvious linear features, was tested in the field by periodically shortening the station interval to 12.5 feet across suspected anomalies.

The 20-meter results, particularly the horizontal dipole survey (less depth penetration), confirm results obtained with the EM31-D instrument. In the vertical mode, overburden effects are lost because greater depth penetration measures the more resistive bedrock. In both 20-meter surveys, a single conductivity-high occurs immediately north of the chainlink fence, near grid node 1.5,0.0. Its cause is unknown, and it cannot be correlated with any other highs on other survey lines.

Although causes for low-conductivity anomalies to the southwest are unknown, they may represent buried metal in the overburden.

Forty-meter horizontal dipole mode results confirm the EM31-D results. In the 40-meter vertical mode, overburden effects are lost. Also, a higher conductivity area appears in the south-central portion of the North Grid. This may be associated with higher conductivity bedrock at a greater depth; however, this cannot be confirmed without test borings. Causes for the low-conductivity anomalies observed to the southwest remain unknown.

Reliable 40-meter results could not be obtained south of the chainlink fence because of interference effects.

Line profiles of conductivity for the north-south trending grid lines are presented in this Appendix. While no large-scale fracture patterns were identified in the line profiles, potential iocations of vertical fractures are indicated by the arrow locations on the figures presented in this Appendix.

2.2 SEISMIC REFRACTION SURVEY

A total of 4,320 feet of seismic refraction profiling was completed during this study. Seismograms obtained during the field study were plotted, processed, and interpreted using the Seismic Interpretation Program Two (SIPT-2 TM) processing package. SIPT-2 was originally developed by Scott et al. (1972). It uses a two-dimensional modeling process in which the time delay method is used to obtain an initial approximation of the model layers. Iterative ray tracing is then used to refine the model. This procedure compares field-measured travel times against computed ray travel times for the model. In turn, this comparison is done iteratively to minimize discrepancies between the measured and computed times.

The input to SIPT-2 included shot location and elevation, geophone location and elevation, and first arrival times with their representative layers. Given that the site topography is generally flat, elevation corrections were not made to the shotpoint and geophone locations. The arrival times of refracted waves were selected by visual inspection of the data on the computer screen using SIPT-2's graphic enhancement capabilities. Seismic velocities were calculated using the inverse slope of a line connecting points representing the same layer. The output of SIPT-2 includes velocity data, ray tracing data, and the depth to each layer below each geophone. Also included in the output is a geological cross-section of the seismic profile.

Seismograph records printed in the field as well as survey interpretation results and associated profiles are presented at the end of this Appendix.

The seismic refraction survey indicates that three seismic layers were identified beneath the subdivision based on known regional geology and observed seismic velocities. These layers are identified in the following table.

Seismic Velocity (ft/sec)	Approx. Depth (ft)	Description
<1000-2000	0-10	shallow, dry lacustrine clay
3000-9000	5-30	dense till, partially to fully saturated
7000-18000	15-40	bedrock (dolomite)

The overlap of depths to the various geologic layers shown in the table is due to varying depths to the different contacts across the subdivision.

3.0 GEOPHYSICAL SURVEY LIMITATIONS

3.1 ELECTROMAGNETIC SURVEYS

The following interference effects were noted during the electromagnetic surveys.

1. The chainlink fence near the southern end of the North Grid caused interference in electromagnetic response. Large interferences were encountered near the fence, but diminished at a distance of 50 feet. Readings appeared to be relatively unaffected at distances greater than 75 feet from the fence. For this reason, readings were not collected close to the fence on all lines surveyed, and interpreted contour values closest to the fence should be regarded with caution. The interference generally appeared most pronounced for the vertical dipole measurements.

- 2. The interference effects of power lines were observed on EM readings taken along the eastern end of the North Grid. The power lines are associated with two large advertisement signs on the property. The power lines had a relatively small effect on the magnitude of EM readings; however, there was a distinct qualitative effect on the instrumentation. This was evidenced by fluctuations in the meter readings over time at the 40-meter coil spacing with the EM34-3 instrument. Forty-meter values obtained along the eastern end of the North Grid, therefore, represent averages over a specified time interval. A field check was performed for instrument overloading by reducing the sensitivity switch by one position (i.e., going to the next highest conductivity range). In all instances, readings were the same, indicating overload did not occur.
- 3. Interference was also noted from the major highway (Route 190), which runs along the eastern edge of the grid. The slope and culverts associated with the highway affected readings in the northern portion of the grid.

3.2 SEISMIC REFRACTION SURVEY

The seismic survey was a limited success in terms of defining accurately the depth to bedrock beneath the site. Interpretation of data was complicated by three main factors:

- 1. The quality of the data along a number of line-spreads is poor because of background noise from onsite structures such as fences, mobile homes, and underground pipes. Almost all spreads were affected by noise to some degree. In some instances, noise levels could be reduced by filtering data and stacking seismic records. The noise problem was also partly overcome by waiting for the right moment to collect the data. This was accomplished by observing the noise monitoring capabilities built into the seismograph. In other instances, the noise levels could not be avoided or reduced, making the data less accurate and interpretation more difficult.
- 2. Good correlation between observed depths to bedrock from the soil borings and the seismic profiles (within 10 ft) exists at some locations, while at other locations there is a poor relationship between observed and calculated depths. During the soil boring program, bedrock was generally encountered at approximately 20 feet below grade. Some line-spreads suggest that bedrock contact is closer to 30 to 40-foot depth feet. Along some line-spreads, calculated velocities suggest that the interpreted depth to layer 3 (bedrock) is not the real depth to bedrock, but rather depth to a deeper, more competent bedrock. It is possible that a shallow, weathered, clay-filled bedrock may exist with lower velocities than true "weathered" bedrock. An insufficient velocity contrast between the till and weathered bedrock would, therefore, mask the true depth to bedrock.
- 3. Under ideal conditions, the emergent ray paths shown on the seismic profiles in this Appendix should lie on the line depicting each refraction event. In some of the profiles, emergent ray paths are scattered off the second refraction. This lends some

uncertainty to the results. Interpretations are complicated by the fact that first break picks of arrival times do not fall on perfectly straight lines. The most likely cause of this feature is that the subsurface exhibits significant seismic velocity changes, laterally and vertically. Such velocity changes are expected in a clay and till setting, given the heterogeneous nature of these lithologies.

FOREST GLEN SITE NIAGARA FALLS, NEW YORK WORK ASSIGNMENT 053-2L3U

SURVEY EM34-3 EXPECTED RESPONSE FROM VERTICALLY CONDUCTIVE FRACTURES

CDM FEDERAL PROGRAMS CORPORATION

a subsidiary of Camp Dresser & McKee Inc.

FIGURE 2-1

ELECTROMAGNETIC SURVEY CONDUCTIVITY PROFILES

SEISMIC RETRACTION PROFILES

AND

SEISMOGRAPH PRINT-OUTS

VELOCITY ANALYSIS TABLES for TY00-1.SIP yer 1 Velocity from direct arrivals for TY00-1.SIP Spread A SP Geo DD V Avg V No points Override Velocity assigned to Layer 1 Spread ' 1000 Layer 2 Velocity computed by regression for TY00-1.SIP Spread A V Geos <-SP-> Geos Ti Avq V Avq Ti Pts Тi ------ - -----A 1 6 -0.5 2273 -0.5 6 2273 2.1 2418 2.1 7 12 B 2418 6 Avg = 2343 for 12 Pts Layer 2 Velocity computed by Hobson-Overton method for TY00-1.SIP Not enough points. Wtd Avg Velocity computed for Layer 2 = 2343 Layer 3 Velocity computed by regression for TY00-1.SIP

Spread		_		_					
V	Ti	Geos	<-SP->	Geos	Ti	V	Avg V	Avg Ti	Pts
			A	7 12	22.3	8526	8526	22.3	6
7920	20.5	1 6	В				7920	20.5	6
						Avg =	8212	for	12 Pts

Layer 3 Velocity computed by Hobson-Overton method for TY00-1.SIP

Not enough points.

Wtd Avg Velocity computed for Layer 3 = 8212

VELOCITY ANALYSIS TABLES for TY00A-3.SIP

yer 1 Velocity from direct arrivals for TY00A-3.SIP

SP	Geo	DD	V	Avg V
C	24	5.0	571	571

Wtd Avg Velocity computed for Layer 1 = 571

Layer 2 Velocity computed by regression for TY00A-3.SIP

Spread	A								
- v	\mathtt{Ti}	Geos	<-SP->	Geos	\mathtt{Ti}	V	Avg V	Avg Ti	Pts
			A	1 5	4.6	2462	2462	4.6	5
4155	8.1	6 12	В	13 18	6.8	2961	3275	7.4	9
3398	6.5	18 23	С				3398	6.5	6
						Avg =	3056	for	20 Pts

Layer 2 Velocity computed by Hobson-Overton method for TY00A-3.SIP

Not enough points.

W+d Avg Velocity computed for Layer 2 = 3056

Layer 3 Velocity computed by regression for TY00A-3.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts	
			 А	6 12	21.8	14976	14976	21.8	3	
9302	18.2	1 5	В				8820	17.9	11	
8591	18.6	13 17	С				8591	18.6	5	
						Avg =	9362	for	19 Pts	

Layer 3 Velocity computed by Hobson-Overton method for TY00A-3.SIP

Not enough points.

Wtd Avg Velocity computed for Layer 3 = 9362

VELOCITY ANALYSIS TABLES for TY00B-2.SIP

yer 1 Velocity from direct arrivals for TY00B-2.S	yer	1	Velocity	/ from	direct	arrivals	for	TY00B-2.SI
---	-----	---	----------	--------	--------	----------	-----	------------

Spread A	SP	Geo	DD	v	Avg V
					-
	Α	1	5.0	714	
					714
	В	12	10.0	833	
					833
	- 				

Wtd Avg Velocity computed for Layer 1 = 774

Layer 2 Velocity computed by regression for TY00B-2.SIP

Spread V	A Ti	Geos	<-SP->	Ge	os	Ti	v	Ava V	Avg Ti	Pts
								5	5	
			Α	2	4	5.9	2759	2759	5.9	3 .
2049	7.4	10 11	В					2049	7.4	2
							Avg	= 2423	for	5 Pts

Layer 2 Velocity computed by Hobson-Overton method for TY00B-2.SIP

Not enough points.

i Avg Velocity computed for Layer 2 = 2423

Layer 3 Velocity computed by regression for TY00B-2.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
9315	19.4	1 9	 А В	5 12	13.0	6805	6805 9315	13.0 19.4	8 9
						Avg =	7938	for	 17 Pts

Layer 3 Velocity computed by Hobson-Overton method for TY00B-2.SIP

Spr	read	Α		Avg	Std Err	4 Hi	ghest	Std Er:	r at	geophone	es		
SPs	Ge	os	v	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
АВ	5	9	7675	-3.7	0.771	-1.366	7	0.816	5	0.542	9	0.278	8
	7	~	7675	for	E Dec								

Avg = 7675 for 5 Pts

Wtd Avg Velocity computed for Layer 3 = 7840

VELOCITY ANALYSIS TABLES for TY00C-2.SIP

yer 1 Velocity from direct arrivals for TY00C-2.SIP

Spread	A SI	9 Geo	DD	V	Avg V
	 I	1	5.0	635	
					635
	E	3 12	5.0	548	
	E	3 13	5.0	784	
•					666

Wtd Avg Velocity computed for Layer 1 = 656

Layer 2 Velocity computed by regression for TY00C-2.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
				-					
			Α	24	8.6	1538	1538	8.6	3
2073	11.2	8 11	В	14 16	7.6	1702	1896	9.4	7
2684	7.0	19 24	С				2684	7.0	6
						Avg =	2031	for	16 Pts

Layer 2 Velocity computed by Hobson-Overton method for TY00C-2.SIP

Not enough points.

What has Wallasita commuted for Louis 2 2001

Wtd Avg Velocity computed for Layer 2 = 2031

Layer 3 Velocity computed by regression for TY00C-2.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	5 12	27.1	6434	6434	27.1	8
6311	27.4	1 7	В	17 24	24.5	6014	6149	25.9	15
4998	16.9	13 18	С				4998	16.9	6
						Avg =	5938	for	29 Pts

Layer 3 Velocity computed by Hobson-Overton method for TY00C-2.SIP

Spread A SPs Geos		_	Std Err Overall	•	-				Err	Geo
A B 5 7 B C 17 18			0.676 0.000				-0.478	5		
3	5000	5	5 Dt -							

Avg = 5023 for 5 Pts

.......

VELOCITY ANALYSIS TABLES for TY10-4.SIP

yer 1 Velocity from direct arrivals for TY10-4.SIP

Avg V	v	DD	Geo	SP	Spread A
	942	10.0	12	В	
942					
7.2	1031	10.0	24	С	
1031					

Wtd Avg Velocity computed for Layer 1 = 986

Layer 2 Velocity computed by regression for TY10-4.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	1 4	7.4	3601	3601	7.4	4
3802	11.1	10 11	В	13 15	9.2	2621	2993	10.2	5
3263	11.8	21 23	C				3263	11.8	3
						Avg =	3243	for	12 Pts

Layer 2 Velocity computed by Hobson-Overton method for TY10-4.SIP

Not enough points.

...d Avg Velocity computed for Layer 2 = 3243

Layer 3 Velocity computed by regression for TY10-4.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	5 24	15.5	12160	12160	15.5	18
20765	18.2	19	В	16 24	20.1	15102	17148	19.2	16
19397	24.4	1 20	С				19397	24.4	18
						Avg =	15563	for	52 Pts

Layer 3 Velocity computed by Hobson-Overton method for TY10-4.SIP

Sp	Spread A Avg Std Err					4 Hi	ghest	Std Er	r at	geophones			
SPs	Ge	eos	V	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
A B	5	9	21577	-0.2	0.607	0.825	6	-0.618	5	-0.206	9		
A C	5	20	14204	-4.7	0.495	0.920	14	0.712	6	-0.632	9	0.620	5
ВС	16	20	13803	-3.2	0.247	-0.397	19	0.274	20	0.251	17	-0.078	18

Avg = 15118 for 22 Pts

VELOCITY ANALYSIS TABLES for TY10B-4.SIP

yer 1 Velocity from direct arrivals for TY10B-4.SIP

SP	Geo	DD	v	Avg V
			-	
A	1	10.0	942	
				942
В	12	10.0	1096	
В	13	10.0	1053	
В	14	20.0	1081	
				1077
C	24	10.0	964	
				964
	A B B	A 1 B 12 B 13 B 14	A 1 10.0 B 12 10.0 B 13 10.0 B 14 20.0	A 1 10.0 942 B 12 10.0 1096 B 13 10.0 1053 B 14 20.0 1081

Wtd Avg Velocity computed for Layer 1 = 1027

Layer 2 Velocity computed by regression for TY10B-4.SIP

Spread	A								
v	\mathtt{Ti}	Geos	<-SP->	Geos	\mathtt{Ti}	V	Avg V	Avg Ti	Pts
			Α	2 11	13.8	4712	4712	13.8	10
2396	10.1	8 11	В	15 16	5.6	1570	2039	7.9	6
3688	10.9	18 23	С				3688	10.9	6
						Avg =	3287	for	22 Pts

yer 2 Velocity computed by Hobson-Overton method for TY10B-4.SIP

Spr	read A		Avg	Std Err	4 Hi	ghest	Std Er	r at	geophone	es		
SPs	Geos	V	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
A B	8 11	3472	-8.7	0.985	-1.212	9	1.049	8	0.886	11	-0.723	10

Avg = 3472 for 4 Pts

Layer 3 Velocity computed by regression for TY10B-4.SIP

Spread	A								
V	\mathtt{Ti}	Geos	<-SP->	Geos	\mathtt{Ti}	V	Avg V	Avg Ti	Pts
			Α	12 24	35.1	34392	34392	35.1	13
27723	30.9	1 7	В	17 24	28.9	8808	12922	29.9	15
27680	29.1	1 17	C				27680	29.1	17
						Avg =	20902	for	45 Pts

Lay	er 3 Ve.	locity	compute	ed by Hol	oson-Ov	erton	method	for	TY10B-4	.SIP		
_	read A Geos	v		Std Err Overall					geophon Err		Err	Geo
A C	12 17	17144	4.0	0.448	-0.928	15	0.416	16	0.369	14	0.119	17
	Avg =	17144	for	6 Pts								
Wtd	Avg Vel	locity o	compute	ed for La	ayer 3	= 20	 111 					

VELOCITY ANALYSIS TABLES for TY20A-6.SIP

Tayer 1 Velocity from direct arrivals for TY20A-6.SIP

Spread A	SP	Geo	DD	v	Avg V
	В	12	10.0	1143	
	В	13	10.0	1159	
					1151
	С	24	10.0	1538	
					1538

Wtd Avg Velocity computed for Layer 1 = 1280

Layer 2 Velocity computed by regression for TY20A-6.SIP

Spread		G	. (7)	G	m.	**	3 17	3 Mi	D+
V	Ti	Geos	<-SP->	Geos	11	V	Avg v	Avg Ti	Pts
			Α	1 7	10.7	4600	4600	10.7	7
3838	6.0	4 11	В	14 21	10.1	4747	4215	8.0	15
4757	7.5	15 23	C				4757	7.5	8
						Avg =	4436	for	30 Pts

Layer 2 Velocity computed by Hobson-Overton method for TY20A-6.SIP

	Sp:	read	Α£		Avg	Std Err	4 Hi	ghest	Std Er	r at	geophone	es		
	S	G	eos	V	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
	-													
7	A B	4	7	3790	1.6	0.814	-0.886	6	0.837	7	0.788	4	-0.739	5
I	3 C	15	21	5095	2.6	1.031	-1.780	19	1.366	16	0.999	21	-0.579	15

Avg = 4573 for 10 Pts

Layer 3 Velocity computed by regression for TY20A-6.SIP

Spread	Α								
V	\mathtt{Ti}	Geos	<-SP->	Geos	Тi	V	Avg V	Avg Ti	Pts
			A	8 24	24.7	14404	14404	24.7	16
17699	27.2	1 3	В	22 24	21.7	10486	13170	24.5	6
12860	23.6	1 14	C				12860	23.6	14
						Avg =	13559	for	36 Pts

Layer 3 Velocity computed by Hobson-Overton method for TY20A-6.SIP

Spr	ead A		Avg	Std Err	4 Hig	ghest	Std Er	r at	geophones			
ൂട	Geos	V	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
									·		- -	
A C	8 14	13274	0.1	0.453	0.854	12	-0.597	14	0.331	13	-0.269	11
	Δνα =	13274	for	7 Dtg								

VELOCITY ANALYSIS TABLES for TY20B-1.SIP Tayer 1 Velocity from direct arrivals for TY20B-1.SIP DD Spread A SP Geo V Avq V -- ---No points Override Velocity assigned to Layer 1 Spread - - - - -1000 Layer 2 Velocity computed by regression for TY20B-1.SIP Spread A Ti V \mathtt{Ti} <-SP-> Geos v Avg V Avg Ti Geos Pts - - -----**- - - - -**-----1 3 2.9 3 Α 1799 1799 2.9 1937 5.9 8 12 В 13 18 6.2 2455 2166 6.1 10 1843 1.9 20 24 C 1843 1.9 4 - - ------Avg = 2011 for 17 Pts Layer 2 Velocity computed by Hobson-Overton method for TY20B-1.SIP Not enough points. -----Wtd Avg Velocity computed for Layer 2 = 2011 Layer 3 Velocity computed by regression for TY20B-1.SIP Spread A Geos <-SP-> Geos V Ti Ti V Avg V Avg Ti Pts - - - - -- - - -- - ---------------Α 4 24 24.7 6301 6301 24.7 18 7224 26.4 1 7 В 19 24 28.3 27.4 8044 7545 12 6871 26.5 1 19 18 6871 26.5 - - -Avg = 6792 for 48 Pts

Geos			Std Err Overall				Err	Geo
4 7 4 19			0.179 1.285				0.027	
Avg =	6167	for 1	18 Pts					

VELOCITY ANALYSIS TABLES for TY30A-5.SIP

Tayer 1 Velocity from direct arrivals for TY30A-5.SIP

Avg '	v	DD	Geo	SP	Spread A
	920	10.0	1	A	
92					
J	988	10.0	12	В	
	842	10.0	13	В	
91.					
	1039	10.0	24	С	
103					

Wtd Avg Velocity computed for Layer 1 = 947

Layer 2 Velocity computed by regression for TY30A-5.SIP

Spread	A								
- v	\mathtt{Ti}	Geos	<-SP->	Geos	\mathtt{Ti}	V	Avg V	Avg Ti	Pts
			Α	2 6	10.7	5800	5800	10.7	5
4794	9.9	8 11	В	14 19	11.1	6239	5568	10.5	10
5266	10.2	19 23	С				5266	10.2	5
						Avg =	5544	for	20 Pts

Layer 2 Velocity computed by Hobson-Overton method for TY30A-5.SIP

Not enough points.

Wtd Avg Velocity computed for Layer 2 = 5544

Layer 3 Velocity computed by regression for TY30A-5.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	7 24	18.1	16436	16436	18.1	18
12733	15.9	1 7	В	20 24	19.0	21053	15243	17.4	12
11146	15.6	1 18	C				11146	15.6	18
						Avg =	13725	for	48 Pts

		v		Std Err Overall							Err	Geo
A C	7 18	12932	-1.2	0.845	1.499	11	-1.315	7	0.923	17	0.916	10
	Avg =	12932	for 1	l2 Pts								
 ₩+∂	Ava Ve	locity (ed for La	ver 3	 - 13.	 460					

VELOCITY ANALYSIS TABLES for TY30B-3.SIP

yer 1 Velocity from direct arrivals for TY30B-3.SIP

Spread A	SP	Geo	DD	V	Avg V
	A	1	10.0	1013	
	В	12	10.0	1111	1013
	В	13	10.0	1159	1135
	С	24	10.0	988	988

Wtd Avg Velocity computed for Layer 1 = 1068

Layer 2 Velocity computed by regression for TY30B-3.SIP

Spread	A								
v	Ti	Geos	<-SP->	Geos	Ti	V	Avg V	Avg Ti	Pts
			A	2 4	6.2	2857	2857	6.2	3
4938	8.5	7 11	В	14 17	9.0	4651	4806	8.7	9
4 098	10.6	21 23	C				4098	10.6	3
						Avg =	4105	for	15 Pts

Layer 2 Velocity computed by Hobson-Overton method for TY30B-3.SIP

Not enough points.

Layer 3 Velocity computed by regression for TY30B-3.SIP

Spread	Α								
v	\mathtt{Ti}	Geos	<-SP->	Geos	\mathtt{Ti}	V	Avg V	Avg Ti	Pts
			A	5 24	17.2	13323	13323	17.2	20
18286	17.6	1 6	В	18 24	18.3	19458	18899	18.0	13
13491	18.8	1 20	С				13491	18.8	20
						Avg =	14435	for	53 Pts

Layer 3 Velocity computed by Hobson-Overton method for TY30B-3.SIP

			Avg	Std Err	r 4 Highest Std Err at							
San	Geos	V	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
								-	·			
A B	5 6	11364	2.3	0.000	-0.000	5	-0.000	6				
A C	5 20	14324	-1.6	0.738	1.569	20	-1.330	15	-1.304	14	-1.038	13
ВС	18 20	10638	-2.3	0.118	-0.167	19	0.083	20	0.083	18		
	Ava =	13515	for 2	21 Pts								

VELOCITY ANALYSIS TABLES for TY30C-5.SIP

yer 1 Velocity from direct arrivals for TY30C-5.SIP

Spread A	SP	Geo	DD	v	Avg V
	В	12	10.0	1290	
	В	13	10.0	1096	
					1102

1193

Wtd Avg Velocity computed for Layer 1 = 1193

Layer 2 Velocity computed by regression for TY30C-5.SIP

Sr	r	۵	_	a	Α
3 L	1	ᆮ	a	а	A

Sproad										
v	Ti	Geos	<-SP->	Geos	\mathtt{Ti}	v	Avg V	Avg Ti	Pts	
			A	1 6	6.7	3373	3373	6.7	6	
3419	7.0	7 11	В	14 18	7.5	3225		7.3		
3153	8.0	19 24	С				3153	8.0	6	
						Avg =	3286	for	22 Pt	s

Layer 2 Velocity computed by Hobson-Overton method for TY30C-5.SIP

Not enough points.

Wtd Avg Velocity computed for Layer 2 = 3286

Layer 3 Velocity computed by regression for TY30C-5.SIP

Spread A

	Ti					V	_	Avg Ti	
			A	7 24	21.4	16749	16749	21.4	18
8929	19.3	16	В	19 24	24.0	15597	11356	21.6	12
14741	25.6	1 18	С				14741	25.6	18
						Avg =	14318	for	48 Pts

Layer 3 Velocity computed by Hobson-Overton method for TY30C-5.SIP

Spr	ead A		Avg	Std Err	4 Hi	ghest	Std Er:	r at	geophon	es		
SPs	Geos	v	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
A C	7 18	13887	-5.4	0.553	-1.319	14	0.801	18	0.533	7	-0.498	13

Avg = 13887 for 12 Pts

VELOCITY ANALYSIS TABLES for TX00A-5.SIP

'ayer 1 Velocity from direct arrivals for TX00A-5.SIP

Spread A	SP	Geo	DD	V	Avg V
	A	1	10.0	1026	
	В	12	10.0	1013	1026
	В	13	10.0	930	971
,	С	24	12.0	1143	1143

Wtd Avg Velocity computed for Layer 1 = 1028

Layer 2 Velocity computed by regression for TX00A-5.SIP

Spread . V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			Α	2 9	8.7	4396	4396	8.7	7
4455	8.8	5 11	В	14 24	10.6	5928	5218	9.7	17
4445	6.7	15 23	С				4445	6.7	8
						Avq =	4812	for	32 Pts

Layer 2 Velocity computed by Hobson-Overton method for TX00A-5.SIP

_pread A		Avg	Std Err	4 Hi	ghest	Std Er	r at	geophon	es		
SPs Geos	V	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
AB 5 9	4495	0.3	0.303	-0.426	9	0.403	8	-0.250	5	0.222	7
B C 15 23	5172	0.5	0.873	-1.332	20	1.050	21	1.022	18	1.010	17

 $Avg = 4911 \text{ for} \cdot 13 \text{ Pts}$

Wtd Avg Velocity computed for Laver 2 = 4856

Layer 3 Velocity computed by regression for TX00A-5.SIP

Spread V	A Ti	Coog	<-SP->	Coog	m:	77	Arm V	Avg Ti	Pts
V	11	Ge0 s	<-SP->	Geos	11	V	Avg v	Avg	PLS
			A	10 24	21.6	13159	13159	21.6	14
13793	22.5	1 4	В				13793	22.5	3
17530	26.1	1 14	C				17530	26.1	13
						Avg =	14829	for	30 Pts

Layer 3 Velocity computed by Hobson-Overton method for TX00A-5.SIP

Spread A											
ຕາs Geos	v	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
·											
A C 10 14	20040	-2.2	0.581	0.967	12	-0.657	10	-0.519	13	0.225	11
Avg =	20040	for	5 Pts								
Wtd Avg Vel	locity o	compute	ed for La	yer 3 =	= 163	132					

VELOCITY ANALYSIS TABLES for TX20A-3.SIP

ver 1 Velocity from direct arrivals for TX20A-3.SIP

pread A	SP	Geo	DD	V	Avg V
	В	11	20.0	1000	
	В	12	10.0	988	
	В	13	10.0	800	
					929
	С	24	10.0	702	5-25
	•		20.0	, , ,	702
					, 02

Wtd Avg Velocity computed for Layer 1 = 872

Layer 2 Velocity computed by regression for TX20A-3.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	1 13	11.1	5067	5067	11.1	13
3633	17.2	5 10	В	16 17	-2.0	1379	2579	7.6	8
3279	11.0	17 23	С				3279	11.0	7
-						Avg =	3589	for	28 Pts

Layer 2 Velocity computed by Hobson-Overton method for TX20A-3.SIP

		read A Geos	v		Std Err Overall							Err	Geo
	· -												
7	A B	5 10	4434	-9.7	0.383	0.772	7	-0.359	8	-0.337	6	-0.130	10
		Avg =	4434	for	6 Pts								

Layer 3 Velocity computed by regression for TX20A-3.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	16 24	31.1	18479	18479	31.1	9
20000	36.5	1 4	В	18 24	31.3	10712	12888	33.9	11
206 27	32.2	1 16	С				20627	32.2	14
						Avg =	16838	for	34 Pts

Layer 3 Velocity computed by Hobson-Overton method for TX20A-3.SIP Not enough points.

VELOCITY ANALYSIS TABLES for TX30A-5.SIP

'ayer 1 Velocity from direct arrivals for TX30A-5.SIP

Avg V	V	DD	Geo	SP	Spread A	
	1143	10.0	1	 A		
1143						
	769	5.0	10	В		
	440	5.0	11	В		
604						
	1026	10.0	20	С	,	
1026					•	

Wtd Avg Velocity computed for Layer 1 = 844

Layer 2 Velocity computed by regression for TX30A-5.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	2 8	9.5	2514	2514	9.5	7
1905	11.0	6 9	В	12 15	10.9	1600	1739	11.0	8
2089	8.6	15 19	C				2089	8.6	5
									-
						Avg =	2046	for	20 Pts

Layer 2 Velocity computed by Hobson-Overton method for TX30A-5.SIP

	read				Std Err								
sد	Ge	os	V	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo ·	Err	Geo
A B	6	8	2442	-7.1	0.146	-0.207	 7	0.103	6	0.103	8		
	Ū						·		·	0,100	•		

Avg = 2442 for 3 Pts

Wed Box Valority computed for Joseph 2

Layer 3 Velocity computed by regression for TX30A-5.SIP

Spread V	Ti	Geo s	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	9 20	33.8	11372	11372	33.8	12
6452	29.4	1 5	В	16 20	36.6	11601	8292	33.0	10
10099	34.6	1 14	С				10099	34.6	14
						Avg =	9870	for	36 Pts

Layer 3 Velocity computed by Hobson-Overton method for TX30A-5.SIP

Spread A		Avg	Std Err	4 Highest		Std Err at		geophones				
`S	Geos	v	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
-					-					- -		
С	9 14	7492	-3.2	0.708	-1.147	11	1.062	9	-0.598	10	0.394	13
	Avg =	7492	for	6 Pts								

FILE TX50A-2.SIP FOREST GLEN SEISMIC REFRACTION SURVEY X=5.0A

VELOCITY ANALYSIS TABLES for TX50A-2.SIP

'yer 1 Velocity from direct arrivals for TX50A-2.SIP

pread A	SP	Geo	D,D	v	Avg V
	A	1	10.0	784	704
	B B	12 13	13.0	1285	784
	Б	13	10.0	800	1042

Wtd Avg Velocity computed for Layer 1 = 956

Layer 2 Velocity computed by regression for TX50A-2.SIP

Spread	A								
v	Ti	Geos	<-SP->	Geos	Ti	V	Avg V	Avg Ti	Pts
			A	2 8	12.1	3162	3162	12.1	7
2472	3.5	9 11	В	14 16	7.7	2417	2444	5.6	6
1563	1.0	19 23	C				1563	1.0	5
								-	
						Avg =	2288	for	18 Pts

Layer 2 Velocity computed by Hobson-Overton method for TX50A-2.SIP

Not enough points.

i Avg Velocity computed for Layer 2 = 2288

Layer 3 Velocity computed by regression for TX50A-2.SIP

Spread V	A Ti	Geos	<-SP->	Geos	Ti	v	Avg V	Avg Ti	Pts
			A	9 23	30.1	7263	7263	30.1	15
6126	23.0	1 8	В	17 23	29.9	8581	7070	26.5	15
6725	24.8	1 18	С				6725	24.8	18
						Avg =	6994	for	48 Pts

Layer 3 Velocity computed by Hobson-Overton method for TX50A-2.SIP

Spr	read A		Avg	Std Err	4 Hi	ghest	Std Er	r at	geophon	es		
SPs	Geos	v	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
												
A C	9 18	6425	4.1	1.017	1.935	12	-1.386	11	-1.311	18	1.025	13
вС	17 18	17857	2.1	0.000	-0.000	17						

Avg = 8330 for 12 Pts

VELOCITY ANALYSIS TABLES for TX60A-4.SIP

yer 1 Velocity from direct arrivals for TX60A-4.SIP

pread A	SP	Geo	DD	v	Avg V
	A	1	10.0	762	762
	В	12	10.0	952	
	C	23	20.0	1135 1026	952
					1080

Wtd Avg Velocity computed for Layer 1 = 969

Layer 2 Velocity computed by regression for TX60A-4.SIP

S	Spread	A									
	v	Ti	Geos	<-SP->	Geos	Ti	V	Avg V	Avg Ti	Pts	
-		- -									
				Α	2 8	10.9	3014	3014	10.9	6	
	2859	7. 5	4 11	В	13 18	4.5	2141	2476	6.0	13	
	3333	18.2	20 22	С				3333	18.2	3	
-											
							Avg =	2702	for	22	Pts

Layer 2 Velocity computed by Hobson-Overton method for TX60A-4.SIP

ρr	read A		Avg	Std Err	4 Hi	ghest	Std Er	r at	geophone	es		
s نہ	Geos	v	TdSP	Overall	Err	Geo	Err	Geo	Err	Geo	Err	Geo
												- -
A B	4 8	3457	1.6	0.568	0.874	7	-0.672	8	-0.268	4	0.066	5
	3	2455	£	4 Dt -								

Avg = 3457 for 4 Pts

Wtd Avg Velocity computed for Layer 2 = 2903

Layer 3 Velocity computed by regression for TX60A-4.SIP

Spread	A								
· v	Ti	Geos	<-SP->	Geos	Ti	V	Avg V	Avg Ti	Pts
			A	9	24.9	6729	6729	24.9	16
10000	31.5	1 3	В	19	24.3	6306	7192	27.9	9
7211	27.3	1 19	C				7211	27.3	18
						Avg =	7020	for	43 Pts

Layer 3 Velocity	computed by Hol	bson-Overton	method for	TX60A-4.SIP						
Spread A	Avg Std Err TdSP Overall	4 Highest Err Geo	Std Err at Err Geo	geophones Err Geo	Err Geo					
C 9 19 6315 Avg = 6315		-2.606 9	1.727 10		-1.525 15					
Avg = 6315 for 11 Pts Wtd Avg Velocity computed for Layer 3 = 6781										

- Y-00 From -

S.

Lee vet of

Transfer

Line VEG IF

F. 7.36

Tarmed Crot -110 Y=0.00

LINE Y=0.0C

MIULTOT

LARE YELLS

1 = Y=0.50

Line y=10

EG&G GEOMETRICS StrataView SAVED AS 8822.DAT 13:36 15/JUN/1994 LINE HUMBER 88-88 SHOT LOC 250.80 SAMPLE INTERVAL GROUP INTERVAL 18.88 PHONE 1 LOC 8.88 RECORD LEN 192 MS PHONE 24 LOC 248.88 DELAY -18 MS SAMPLE INTERVAL 125 uS ACQ FILT HI CUT 250HZ OUT DISP FILT HI CUT 250HZ OUT STACKS & 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 57 57 54 60 63 63 57 57 60 60 57 60 60 48 54 51 54 57 60 60 54

ie in fin

1-135

Line Ville

Form it Trat

1.0e y-10t

U1 2 31 34

Lie y=1.0A

Lie in the

Formard Snot

11 1 17 Lie ,- 100

- 2 V= 3.0B

FOUL # 1.4.

Lie 1-30A

1 1 12th

- 12 Y=2.013

30 3 . . 2 to 2 5 3 5 C

Remove shat

Found rat Loc X=5.0/4

A Joint A

\$200 LE 11 ET

Line Your b

Y=6.0A

- NE X = U OA

Re x = 31 st X = 60+

Fine of

Shot I'm you

middlet y = ==

: 21 = 3.0 F

Livery - 3, 6 B. Forward Sussit

1.12:22 Short Lnc Y=3 st

Processon

Y-300 Town 15 at

1 10 1 st -12 y= 3,00

1=3.0+ Record Stal

TO M 1 2 2 3 F

-ne X=2.0A

Park a Smot

L.02 x 200

Last 1 = 4 of

 $X = \{ (\tilde{x} - \tilde{x}) \mid \tilde{x} \in \mathcal{X} \}$

Line - 100

La X=0 010 To 200 d 1 25

Line Xxx 2 of a

mudul ct

APPENDIX C MONITORING WELL DIAGRAMS

Well NameMW-1S	Drilling Company_SJB, Inc.
Job Number 7720-053	Drill Method 12" Hollow Stem Auger & 8" Air Rotary
Project Forest Glen RI/FS	Total Depth_28.0 ft below ground surface
Location Niagara Falls, N.Y	Surface Elevation 594.8 ft mean sea level
Date Installed 7/20/95	Top of Casing Elevation 597.63 ft mean sea level
Geologist Michael Valentino	Depth to Water_16.85 ft below TOC - 12/28/95
deviogist	

Well NameMW-2S	Drilling Company SJB, Inc.
Job Number 7720-053	Drill Method 12" Hollow Stem Auger & 8" Air Rotary
ProjectForest Glen RI/FS	Total Depth_28.0 ft below ground surface
Location Niagara Falls, N.Y.	Surface Elevation_594.1 ft mean sea level
Date Installed 7/31/95	Top of Casing Elevation 596.44 ft mean sea level
Geologist Brain Mende	Depth to Water 16.0 ft below TOC - 12/28/95
Deologist	Depth to note:

Well NameMW-3S	Drilling Company SJB, Inc.
Job Number 7720-053	Drill Method 12" Hollow Stem Auger & 8" Air Rotary
ProjectForest Glen RI/FS	Total Depth_28.0 ft below ground surface
LocationNiagara Falls, N.Y.	Surface Elevation 594.3 ft mean sea level
Date Installed 8/3/95	Top of Casing Elevation 596.93 ft mean sea level
Geologist Michael Valentino	Depth to Water 16.5 ft below TOC - 12/28/95
	Depth to note:

Well NameMW-30	Drilling Comp
Job Number 7720-053	Drill Method.
ProjectForest Glen RI/FS	Total Depth
Location Niagara Falls, N.Y.	Surface Ele
Date Installed 8/3/95	Top of Casi
Geologist Michael Valentino	Depth to Wa

Drilling Company SJB, Inc.

Drill Method 12" Hollow Stem Auger

Total Depth 15.8 ft below ground surface

Surface Elevation 593.8 ft mean sea level

Top of Casing Elevation 595.91 ft mean sea level

Depth to Water 14.15 ft below TOC - 12/28/95

Well Name_MW-3P	
Job Number 7720-053	
Project Forest Glen RI/FS	
Location Niagara Falls, N.Y.	
Date Installed 8/1/95	
Geologist Michael Valentino	

Drilling Company SJB, Inc.

Drill Method 12" Hollow Stem Auger

Total Depth 8.5 ft below ground surface

Surface Elevation 594.2 ft mean sea level

Top of Casing Elevation 595.99 ft mean sea level

Depth to Water 7.53 ft below TOC - 12/28/95

Well NameMW-4S	
Job Number 7720-053	
Project Forest Glen RI/FS	_
Location NIAGARA FALLS, N.Y.	
Date Installed 7/11/95	
Geologist Michael Valentino	

Drilling Company SJB, Inc.

Drill Method 12" Hollow Stem Auger & 8" Air Rotary

Total Depth 20.0 ft below ground surface

Surface Elevation 592.8 ft mean sea level

Top of Casing Elevation 594.8 ft mean sea level

Depth to Water 13.92 ft below TOC - 12/28/95

Well NameMW-5S	
Job Number7720-053	
Project Forest Gien RI/FS	
Location Niagara Falls, N.Y.	
Date Installed 7/26/95	
Geologist Michael Valentino	

Drilling Company SJB, Inc.

Drill Method 12" Hollow Stem Auger & 8" Air Rotary

Total Depth 26.0 ft below ground surface

Surface Elevation 591.2 ft mean sea level

Top of Casing Elevation 593.75 ft mean sea level

Depth to Water 13.85 ft below TOC - 12/28/95

MONITORING WELL COMP	ONENTS	DEPTH INTERVAL
	PROTECTIVE CASING	+2.5' - 2.5'
	GROUND SURFACE/CONCRETE PAD	+0.5' - 0.0'
	CEMENT BENTONITE GROUT	+1.0' - 12.0'
	8" DIAMETER STEEL CASING	+1.0' - 15.5
	-OUTER CEMENT BENTONITE GROUT	0.0' - 15.5
	BENTONITE SEAL	12.0' - 14.0'
	─4" DIAMETER STAINLESS STEEL CASING	+2.0' - 16.0'
	—GRAVEL PACK	14.0' - 27.0'
	-4" DIAMETER STAINLESS STEEL 0.010 SLOT SCREEN	16.0' - 26.0'

Well NameMW-6S	Drilling Company SJB, Inc.
Job Number 7720-053	Drill Method 12" Hollow Stem Auger & 8" Air Rotary
Project Forest Glen RI/FS	Total Depth_27.0 ft below ground surface
Location Niagara Falls, N.Y.	Surface Elevation_594.2 ft mean sea level
Date Installed 7/21/95	Top of Casing Elevation 596.46 ft mean sea level
Geologist Michael Valentino	Depth to Water_15.63 ft below TOC - 12/28/95
•	

Well NameMW-7S	
Job Number7720-053	
Project Forest Glen RI/FS	
Location Niagara Falls, N.Y.	
Date Installed 8/9/95	
Geologist Michael Valentino	

Drilling Company SJB Inc.

Drill Method 12" Hollow Stem Auger & 8" Air Rotary

Total Depth 28.0 ft below ground surface

Surface Elevation 593.3 ft mean sea level

Top of Casing Elevation 595.76 ft mean sea level

Depth to Water 9.7 ft below TOC - 12/28/95

Well Name MW-8S	
Job Number 7720-053	
ProjectForest Glen RI/FS	
LocationNiagara Falls, N.Y.	<u> </u>
Date Installed 08/10/95	
Geologist Michael Valentino	

Drilling Company SJB, Inc.

Drill Method 12" Hollow Stem Auger & 8" Air Rotary

Total Depth 30.9 ft below ground surface

Surface Elevation 593.8 ft mean sea level

Top of Casing Elevation 598.32 ft mean sea level

Depth to Water 15.48 ft below TOC - 12/28/95

MONITORING WELL COMP	PONENTS	DEPTH INTERVAL
	PROTECTIVE CASING	+2.5' - 2.5'
	GROUND SURFACE/CONCRETE PAD	+0.5' - 0.0'
	CEMENT BENTONITE GROUT	+1.0' - 14.5'
		+1.0' - 15.6'
	OUTER CEMENT BENTONITE GROUT	0.0' - 15.8'
	BENTONITE SEAL	14.5' - 17.5'
	─4" DIAMETER STAINLESS STEEL CASING	+2.0' - 20.9'
	GRAVEL PACK	17.5' - 31.9'
	4" DIAMETER STAINLESS STEEL 0.010 SLOT SCREEN	20.9' - 30.9'

Well NameMW-9S	
Job Number7720-053	
ProjectForest Glen	
LocationNiagara Falls, N.Y.	
Date Installed 7/31/95	
Geologist Michael Valentino	

Drilling Company_SJB, Inc
Drill Method 12" Hollow Stem Auger & 8" Air Rotary
Total Depth_25.0 ft below ground surface
Surface Elevation 592.2 ft mean sea level
Top of Casing Elevation 594.80 ft mean sea level
Depth to Water 14.05 ft below TOC - 12/28/95
Depth to water

Well NameMW-1D	Drilling Company SJB, Inc.
Job Number 7720-053	Drill Method HQ Core, 12" HSA & 8" Air Rotary
ProjectForest Glen RI/FS	Total Depth_49.2 ft below ground surface
Location Niagara Falls, N.Y.	Surface Elevation_594.9 ft mean sea level
Date Installed 7/20/95	Top of Casing Elevation 597.05 ft mean sea level
Geologist Michael Valentino	Depth to Water_16.92 ft below TOC - 12/28/95

Well NameMW-2D	Drilling Company SJB, Inc
Job Number 7720-053	Drill Method HQ Conventional Core, 12" & 8" Air Rotary
ProjectForest Glen RI/FS	Total Depth_59.6 ft below ground surface
Location Niagara Falls, N.Y	Surface Elevation_594.0 ft mean sea level
Date Installed 7/31/95	Top of Casing Elevation 595.98 ft mean sea level
GeologistBrain Mende	Depth to Water_16.75 ft below TOC - 12/28/95
50010 g.00 (<u></u>	

Well NameMW-3D	Drilling Company_SJB, Inc.
Job Number 7720-053	Drill Method HQ Conventional Core, 12" & 8" Air Rotary
Project Forest Glen RI/FS	Total Depth_ 49.7 ft below ground surface
LocationNiagara Falls, N.Y.	Surface Elevation_594.1 ft mean sea level
Date Installed 8/3/95	Top of Casing Elevation_596.1 ft mean sea level
Geologist Michael Valentino	Depth to Water_16.39 ft below TOC - 12/28/95

Well NameMW-4D	Drilling Company_SJB, Inc
Job Number7720-053	Drill Method HQ Conventional Core, 12" & 8" Air Rotary
ProjectForest Glen RI/FS	Total Depth 59.3 ft below ground surface
LocationNIAGARA FALLS, N.Y.	Surface Elevation 592.4 ft mean sea level
Date Installed 7/11/95	Top of Casing Elevation 594.44 ft mean sea level
Geologist Michael Valentino	Depth to Water_ 15.17 ft below TOC - 12/28/95

Well NameMW-5D	Drilling Company_SJB,Inc.				
Job Number7720-053	Drill Method HQ Conventional Core, 12" & 8" Air Rotary				
ProjectForest Glen RI/FS	Total Depth_ 49.7 ft below ground surface				
Location Niagara Falls, N.Y.	Surface Elevation_591.4 ft mean sea level				
Date Installed 7/26/95	Top of Casing Elevation 593.34 ft mean sea level				
Geologist Michael Valentino	Depth to Water 14.15 ft below TOC - 12/28/95				

Well Name MW-6D	Drilling
Job Number 7720-053	Drill Me
ProjectForest Glen RI/FS	Total
Location Niagara Falls, N.Y.	Surfac
Date Installed 7/21/95	Top of
Geologist Michael Valentino	Depth

Drilling Company SJB, Inc.

Drill Method HG Conventional Core, 12" & 8" Air Rotary

Total Depth 54.5 ft below ground surface

Surface Elevation 593.8 ft mean sea level

Top of Casing Elevation 595.73 ft mean sea level

Depth to Water 16.5 ft below TOC - 12/28/95

MONITORING W	DEPTH INTERVAL		
		-GROUND SURFACE/CONCRETE PAD -CEMENT BENTONITE GROUT	+2.5' - 2.5' +0.5' - 0.0' 0.0' - 17.2' +1.0' - 17.2'
	\mathcal{N}	-CEMENT BENTONITE GROUT -4" DIAMETER STAINLESS STEEL CASING	+1.0' - 25.0' +2.0 - 27.0'
		BENTONITE SEAL	25.0' - 27.0'
•		−4" DIAMETER OPEN BOREHOLE	27.0' - 54.5'
		-BOTTOM OF WELL	54.5'

Well NameMW-7D	Drilling Company SJB Inc.
Job Number 7720-053	Drill Method HQ Conventional Core, 12" & 8" Air Rotary
Project Forest Glen RI/FS	Total Depth_51.0 ft below ground surface
Location Niagara Falls, N.Y.	Surface Elevation_593.2 ft mean sea level
Date Installed 8/9/95	Top of Casing Elevation 595.78 ft mean sea level
Geologist Michael Valentino	Depth to Water_ 16.18 ft below TOC - 12/28/95

Well NameMW-8D	Drilling Company SJB, Inc.
Job Number 7720-053	Drill Method HQ Conventional Core, 12" & 8" Air Rotary
Project Forest Glen RI/FS	Total Depth_50 ft below ground surface
Location Niagara Falls, N.Y.	Surface Elevation 593.8 ft mean sea level
Date Installed 08/10/95	Top of Casing Elevation 595.86 ft mean sea level
Geologist Michael Valentino	Depth to Water_18.46 ft below TOC - 12/28/95

Well NameMW-9D	C
Job Number	С
Project Forest Glen	T
LocationNiagara Falls, N.Y	S
Date Installed 7/31/95	T
Geologist Michael Valentino	C

Drilling Company SJB, Inc

Drill Method HG Conventional Core, 12" & 8" Air Rotary

Total Depth 54.3 ft below ground surface

Surface Elevation 592.5 ft mean sea level

Top of Casing Elevation 594.31 ft mean sea level

Depth to Water 14.7 ft below TOC - 12/28/95

APPENDIX D CORE LOGS

Well Name MW-1D		<u>. </u>	S IR	Inc	
Nell Nolle	153		Drilling Company SJB, Inc.		
oob itamber			Drill Method HQ Conventional Core, 12" & 8" Air Rotary		
		-	Total Depth 49.17 ft below ground surface (BGS) Surface Elevation 594.9 ft Mean Sealevel (MSL)		
Location Niagara F Date Drilled 7/20/9		·			
			Top of Casing Elevatio Depth to Water 16.92	ft belo	w top of casing
eologist Michael V	<u> </u>		Depth to water	11 0010	· top of casing
Depth (ft) (ft) (RCOVETY (X)	(%) Lithology	Description		Fractures	Notes
10-		Overburden to 14.2'BGS.			_
9.6/10 81		Run #1 14.2' to 24.2' BGS 14.2' to 18.1' dark gray dolomite brokel 14.6', High angle vertical break betwee From 18.1'to 19.4' increased vertical ar fracturing/breaking. 19.4' to 21.4', solicheracteristics and few vertical surfaction otherwise competent - At 21.4' brokel gravels. Vertical fracture from 21.4'to	en 15.5'to 16.1'. Ind horizontal Ime vuggy Ince fractures, In fine to medium		B" stainless steel casing to 14.2' BGS. Drilling was soft at 18' for 0.5 ft for 0.5 ft at 21' for 0.5 ft.
9.0/9.0 70.5		is slightly vuggy with a horizonal brea Run #2 24.2' to 33.2' BGS Core is slightly vuggy with apparent h 26.0'. 26.9 to 31.1 Core is more compe of vuggy appearance. 31 to 33 Seven breaks/fractures.	k at 22.3'. porizontal facture at elent with absence		Water loss at 26' to 26.5'. Water returned at 28'. 4" Stainless steel casing set to 28.4'BGS. Lost water again at 29'.
10.1/10.5 66.7		Run #3 33.2' to 38.9' BGS Dolomite becomes fine grained at 33.2 competent except for a few horizonta			Run started at 29.5' due to offset of core barrel in hole.
10/10 68.5		Run #4 38.9' to 49.17' BGS Dark to medium gray with numerous ho core is much more vuggy in appearant run. Extensive voids (solution channe 41.8' to 45.7'- Horizontal fractures be at 45.7'to 47.3' with broken rock between the vertical void starting at ~46'	ce than previous els) at 41.5' to 41.8'. ecoming more vuggy veen 45.7'to 46.4'		
50-	11	Bottom of hole 49.2' BGS (545.7 ft M	SL).		· -
60-					-
			LEGEND		LOCKPORT DOLOMITE
CDM FEDER CORE LOG	AL PR	OGRAMS CORPORATION	OVERBURDEN		LOCKPORT DOLOMITE WITH VUGS
			CLAY LAYER		SHALE LAYER

.

Well Name MW-3D Drilling Company SJB, Inc.						
						Core, 12" & 8" Air Rotary
Project Forest Glen RI/FS Total Depth 49.7 ft below						
Location Niagara Falls, N.Y. Surface Elevation 594.1 ft Mean Sealevel (MSL)						
Date Drilled_	8/3/95		·	Top of Casing Elevation	on 596	.i rt MSL
eologist Michael Valentino Depth to Water 16.39 ft below top of casing					w top of casing	
Depth (ft) Recovery (x)	R0D (*)	Lithology	Description		Fractures	Notes
10	-	/////////////////////////////////////	Overburden to 16' BGS.			8" stainles steel casing set to 16.0' BGS
20-7.6/7.6	72.4		Run #1 16' to 23.6' BGS. Dark Gray Dolomite. Very vuggy with from 16' to 17.8' then fine grained dole breaks are horizontal and spaced even 21.4' - One closed nearly vertical bre 20.4' - highly broken vuggy dolomite	omite to 21.4' – ery 1' to 1.5' until ak from 19.8' to		- Water loss at 22.0'
30-10/10	85 		breaks every 2" to 3". Run #2 23.6'to 33.6' BGS. Dark Gray Dolomite. Vuggy and broke 25.8' vugs continue to 28.3' with fine layer containing a series of 3 parallel breaks from 26.8' to 27.2' - Fairly co to 29.0' then broken horizontally & very Fairly competent - 1' to 1.5' spaced by 33.6'. Series of 2"-3" spaced breaks	grained dolomite I high angle closed mpetent from 25.8' ertically to 30.8 - breaks from 30.8' to		4" stainless steel casing set to 31.0' BGS Water loss at 36.0'
40-9.3/9.3	45		Run #3 33.6' to 35.6' BGS. Broken dolomite along horizontal frac competent from 34.'5 to 35.6' Run #4 35.6' to 44.9' BGS. Dark Gray Dolomite High angle fracture between 38.0 to 39.5 some vertical fractures.	re (horizontal) racturing observed		-
5.1/5.1	28 ↓		at 38.0°. Horizontal fracture at 35.9 to 36.3 appears to be assoc. with water loss. Calcification observed at 39.6 & 40.4 assoc. with horizontal fractures. Highly fractured (1-2 pieces larger than 4") between 41.4° and 44.9 thin shale seams near base of core between 42 & 44.9.			· •
			Run #5 44.9' to 50.0' BGS. Dark Gray Dolomite. Highly fractured pieces larger than 5"-6". Bottom of core at 50.0' BGS. (546.1'			
60-						-
-				LECEND		LOCKPORT DOLOMITE
CDM F CORE		L PR	OGRAMS CORPORATION	LEGEND		LOCKPORT DOLOMITE WITH VUGS
				CLAY LAYER		SHALE LAYER

Well Name MW-4D		Drilling Company SJB, Inc.			
Job Number 7720-053			Drill Method HQ Conventional Core, 12" & 8" Air Rotary		
Project Forest Glen RI/FS			Total Depth 60.0 ft below ground surface (BGS)		
Location NIAGARA F	I.Y	Surface Elevation 59			
Date Drilled			Top of Casing Elevation	n 594	.44 ft MSL
`eologist Michael Va		Depth to Water 15.17	ft below	top of casing	
		<u>-</u>			
Depth (ft) (R) (X) (X) RGD RGD (X)	Lithology	Description		Fractures	Notes
10-		Overburden to 9.0'. Run #1 9 to 22.7 BGS. Highly broken and weathered Dark Gra	ay Dolomite.		8" stainless steel casing set to 9.0' BGS Trouble coring in interval from 9' to 22.7' – due to weatherd and broken nature of rock.
7.2/7.7 72.7		Run #2 22.7' to 30.0' BGS. Broken pieces of dark gray dolomite solution precipitate from 22.7' - 25.5' rock from 25.5' to 28.1 - vuggy & prec 27.2. Numerous horizontal breaks from	- Then competent cipitate from 25.5 to		- -
3.85/4.3 55.8		competent to 30' less vuggy horizonts Run #3 30.0' to 34.3' BGS. Dark Gray Dolomite from 30-32 then of bottom of core (for 2.4 feet) - No way fractures.	competent rock to		4" stainless steel casing set to 30.0' BGS
40- 10/10 59		Run #4 34.3' to 44.3' BGS. Dark gray dolomite numerous horizontal horizontally factured pieces from 37.5 breaks form 41.8 to 43.8 - breaks cosand - breaks are low angle breaks - vuggy & more precipitate toward bott	5 - 39.5 numerous ated with clay & · O to 20 degrees -		-Water loss at 42.0°
50- 10/10 100		crystals in break at 42'. Run #5 44.3' to 54.1' BGS. Competent dark gray dolomite some v from 49.6 - 52.1.			- -
4.7/5.0 94		Run #6 54.3' to 60.0' BGS. Dark gray competent dolomite – some & styolites.	precipitate – vugs		
		Bottom of core at 60.0' BGS. (532.4	1' MSL).		
CDM EEDED :		OCDANC CORRORATION	LEGEND	'	LOCKPORT DOLOMITE
	AL PR	OGRAMS CORPORATION	OVERBURDEN		LOCKPORT DOLOMITE WITH VUGS
CORE LOG					E-I CHAIG LAYED
			CLAY LAYER		SHALE LAYER

	Well Name MW-5D Drilling Company SJB,Inc.					10-10-10-10-10-1	
Job Number 7720-053 Project Forest Glen RI/FS			Drill Method HQ Conventional Core, 12" & 8" Air Rotary				
No. of Sales May					Total Depth 49.7 ft below ground surface (BGS) Surface Elevation 591.4 ft Mean Sealevel (MSL)		
Location Niagara Falls, N.Y. Date Drilled 7/26/95			Top of Casing Elevation				
enlogie	st Mi	chael Va	lentino		Depth to Water 14.15	ft belo	w top of casing
Depth (ft)	Recovery (%)	RGD (%)	Lithology	Description		Fractures	Notes
10-		↑		Overburden to 15.3' BGS. Run #1 15.3' to 19.6' BGS.			8" stainless steel casing set to 15.3' bgs.
20-1	1.8/2.1	72.1 76.2 100		Dark Gray Dolomite. High angle fractu Vuggy to 16.3' then fine grained dolom angle break at 16.9' - Very broken wit mud at 17.5; - Vugs and precipitate be High angle break at 17.7' - Vertical bro	ite to 17.4' - High h precipitate and gin again at 17.4' -		Water loss at 17.5'.
30-	35/7.8	83.9		Run #2 19.6' to 21.7' BGS. Gray dolomite with tan precipitate in vithroughout horizontal to low angle breading to the sevident coal like material in both Run #3 21.7' to 23.7' BGS. Same as above except more competent breading to 21.8' and 21.8' and 22.7'	aks every 3'-5' - preak at 20.2.		4" stainless steel casing set to 27.0' bgs.
40-9.	.7/10.0	61		break at 21.8' - styolite at 22.7'. Run #4 23.7 to 27.0 BGS. Dark Gray Dolomite. Began at 23.7' - rock - vugs end at ~ 24.4 then gray of Run #5 27.0' to 34.7' BGS. Fine grained dark gray dolomite - fairly breaks every 1.0 - 1.5' - One broken 2 29.7' - breaks every 0.3' - some vugs	ly competent with one from 28.6' to at 30' slightly		Water loss at 34.7°.
50-	↑ .0/5.0 ↓	100 ↓		broken at 34.7'-Precipitate and pitted and 33.1'. Run #6 34.7' to 45.0' BGS. Very broken from 36.7' to 39.7' then b becomes vuggy at 38.7'. Big #7 45.0' to 40.7'BGS			-
				Run #7 45.0' to 49.7'BGS. Very competent dark gray dolomite — Styolite at 4.3' — less vuggy toward be break at 49.3 has black precipitate & Bottom of core at 49.7' BGS. (543.6)	ottom - Horizontal pitted on surface		
60-							
				000,000	LEGEND		LOCKPORT DOLOMITE
	OM FE ORE L		L PR	OGRAMS CORPORATION	OVERBURDEN		LOCKPORT DOLOMITE WITH VUGS
					CLAY LAYER		SHALE LAYER

Projec	umber	W-6D 7720-05 est Glen F	RI/FS		Total Depth 54.5 ft be	Company_SJB, Inc. ethod_HG Conventional Core, 12" & 8" Air Rotary Depth_54.5 ft below ground surface (BGS) e Elevation_593.8 ft Mean Sealevel (MSL)			
Locati	···	gara Fal 7/21/95	IS, N.T.		Surface Elevation 593. Top of Casing Elevation.				
oloe	gist <u>Mi</u>	chael <u>V</u> al	entino		Depth to Water 16.5 ft	below	top of casing		
Depth (ft)	Recovery (X)	RQD (%)	Lithology	Description		Fractures	Notes		
10-			//////////////////////////////////////	Overburden to 17.2 BGS.			8" stainless steel casing set to 17.2' BGS.		
20-	6.1/6.1	60.6		Run #1 17.2' to 23.3' BGS. Dark gray dolomite ~ At 18.2' contains replacement crystals/ fossils/very vu from 19.5' - 21.3'. Competent to 23.3'.	ggy – highly broken		Water loss at 19.3°.		
30-	10/10 NA	82.5 NA		Run #2 23.3' to 33.3' BGS. Dark Gary Dolomite. Competent rock 27.0' bgs, fossiliferous zone continues fossiliferous zone from 27.7' - 28.7' fi from 25.8' and especially after 28.7'. breaks after 27' - high angle breaks 31.0', and 32.0'.	to 25.8'. Another ne grained dolomite Dolomite has 13		4" stainless steel casing set to 27.0' BGS. Run #3 began at 27.2 due to hole offset - 27.2 to 33.5 described during Run #2.		
40-	10/10	61	Run #3 33.3' to 34.5' BGS. Dark Gary Dolomite. Highly broken from 33.5' to 34.5'. Run #4 34.5' to 44.5' BGS. Gray dolomite with horizontal breaks every 3"-5" from 34.5 to 38.3' then fairly competent - 3 horizontal to low angle breaks from 38.3 to 41.8 then numerous breaks every 1" to 3" from 41.8 to 44 - vuggy from 44 to 44.5 - crystal filled breaks from 44 to 44.5. One high angle				-		
50-	9.2/10	87 		closed fracture at 44.3'. Run #5 44.5' to 54.5' BGS. Dark Gray dolomite - long closed vert 44.8' to 48' then closed high angle br 50.5. Another vertical break from 51.5' addition to the vertical breaks - horiz throughout the run spaced by 1' to 1.5' spacings from 50.7 to 51.7'.	ical break from eak from 50 to 0 to 53.3. In contal breaks occur		Water loss and hit a void from 46.1' to 46.6' BGS.		
60-				Bottom of core at 54.5' BGS (541.23	MSL).		-		
	DM FI		L PRO	OGRAMS CORPORATION	LEGEND OVERBURDEN CLAY LAYER	·	LOCKPORT DOLOMITE LOCKPORT DOLOMITE WITH VUGS SHALE LAYER		

Well N	ameM	wi-7D			Drilling Company SJB	Inc.	
Job Ni	u	7720-05			Drill Method HQ Conve	entional	Core, 12" & 8" Air Rotary
Projec	``	est Glen I			Total Depth 51.0 ft b		
Locati	· · · · · · · · · · · · · · · · · · ·	gara Fal	ls, N.Y.	_	Surface Elevation 59		
	Orilled	chael Val	entino		Top of Casing Elevation Depth to Water 16.18	ft below	y top of casing
`eolog	gist	Cliaci Vai	entino		Depth to Water 10.10	It belov	top or casing
Depth (ft)	Recovery (%)	RGD (%)	Lithology	Description		Fractures	Notes
10-	1.1/1.1 1.2/1.4 6.9/7.6	86.4		Overburden to 12.5' BGS. Run #1 12.5' to 13.6' BGS. Gray vuggy dolomite high angle fraction of the grained Run #2 13.6' to 15.0' BGS. Dark Gray Dolomite. Slightly vuggy colosed vertical fractures to 14.8'. Run #3 15.0' to 22.6' BGS. Gray Dolomite Vertical closed fracture then broken zone from 15.9 to 16.9 — 16.9' — 17.1' then competent rock some	es continue to 15.9' A 2" clay seam at e vugs to 22.6' –		8" stainless steel casing set to 12.5' BGS.
30-	9.45/9.5	99.5		closed high angle fracture 19'-20' fille precipitate. Run #4 22.6' to 32.1' BGS. Gray dolomite - vuggy & competent -	ed with white		- 4" stainless steel casing set to 31.0' BGS.
40-	7.05/8	67.5		Run #5 32.2' to 39.0' BGS. Dark Gray Dolomite. Set casing - so 39' fine grained dolomite with horizon 0.5' to 1.0' - More broken zones at 31 and at 39' - High angle closed fractic competent pieces from 32' to 34.2' at Breaks after 34' are pitted and coat precipitate.	cored from 31' to tal breaks every 1.5-32.0, 34.1 to 35', ures noticed in nd 36.4' to 37.8'.		Water loss at 39.0'.
50-	7.9/7.9	100		Run #6 39.0' to 43.1' BGS. Highly broken dolomite from 39 to 41 smaller then 1" - 2" - from 41 - 43.1. order of 3" - 4" - Vuggy from 42' to fracture from 42.7 to 43.1. Run #7 43.1' to 51.0' BGS. Dark Gray Dolomite. Slightly vuggy at 43.1 to 44.2' then 3 breaks to 45.9' - at 45.1 - From 45.9' to 51' very components.	Pieces more on the 42.7 - Vertical Ind competent from High angle break		-
60-				breaks (horizontal) at 47.5 and 49.6. Bottom of core at 51 BGS (544.78 M			_
_					LEGEND		LOCKPORT DOLOMITE
	DM FE		L PR	OGRAMS CORPORATION	OVERBURDEN		LOCKPORT DOLOMITE WITH VUGS
					CLAY LAYER		SHALE LAYER

.

Well No	J	W-8D 7720-05	3		Drilling CompanySJB, Inc. Drill Method_HQ Conventional Core, 12" & 8" Air Rotary				
Projec		est Glen			Total Depth 50 ft be				
Locati	·	agara Fa			Surface Elevation 59				
		08/10/9	5		Top of Casing Elevation				
eolog	gist <u>Mi</u>	chael Va	lentino		Depth to Water 18.46	ft belo	w top of casing		
Depth (ft)	Recovery (%)	RGD (%)	🖹	Description		Fractures	Notes		
10-			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Overburden to 16.2'BGS.					
20-	7.75/8.5	91 ↓		Run #116.2' to 24.0' BGS. Medium gray dolomite - very compete except for horizontal breaks/fracture 22'. Small amount of vuggy appearan	es at 16.6', 21.5' &		8" stainless steel casing set to 16.2' BGS.		
30-	9.7/10	94		Run #2 24.0' to 33.8' BGS. Very competent dolomite with slight v 29'. Horizontal breaks at 30'seem to at this depth.			Water loss at 30.0'.		
	*	+		Run #3 33.8' to 38.8' BGS.			4" stainless steel casing set to 32.9' BGS.		
40-	5.1/6	33.3		Gray Dolomite. Highly broken from 34 fracture from 34.2 to 34.9 then horize breaks every 2' - 3' to bottom.			Water loss at 33.5' Water loss at 35.8'.		
	6.2/6.2	90.3		Run #4 38.8' to 45.0' BGS. Gray Dolomite. 38.8 Small broken piecto 39.8'. then more competent to 45' to 1.5' - crystal filled vugs for last 2	- Breaks every 0.7				
50-	7.0/7.0	75.7 		Run #5 45.0' to 52.0' BGS. Gray Dolomite. Competent to 46.1 the 46.6' 1' to 2' pieces then competent to broken from 49.1 to 50.9' A 2" seam o (possibly gypsum) observed at 50.0'.	o 49.1 - Highly		-		
	*	₩		Bottom of core at 52.0' BGS (543.86	S' MSL).				
60-									
00-									
					LEGEND		LOCKPORT DOLOMITE		
	DM FE ORE L		L PR	OGRAMS CORPORATION	OVERBURDEN CLAY LAYER		LOCKPORT DOLOMITE WITH VUGS		

Well Na	ameM	₩-9D			Drilling CompanySJB, Inc			
Job No	umber	7720-05	3		Drill Method HQ Conve	<u>entional</u>	Core, 12" & 8" Air Rotary	
Projec	`	est Glen			Total Depth <u>55.0 ft t</u>	below gr	ound surface (BGS)	
Locati	·	gara Fal	ls, N.Y.		Surface Elevation 59			
Date (7/31/95		·	Top of Casing Elevation	on 594	1.31 ft MSL	
olog	gist <u>Mi</u>	chael Val	lentino		Depth to Water 14.7	rt below	top or casing	
Depth (ft)	Recovery (x)	RGD (%)	🖹	Description		Fractures	Notes	
10-	1.3/1.3	80.8		Overburden to 12.5'. Run #1 12.5' to 13.8' BGS.			8" stainless steel casing set to 12.5' BGS.	
	10/10	91		Gray dolomite-competent-one horiz then competent to 13.8' - styolite no Run #2 13.8' to 23.8' BGS.	ear break at 12.8'.			
20-	10/10	91 		Very competent gray dolomite with g and vuggy from 15.3' to 15.6' - break competent form 18.7' to 21.0'- Black break at 21.0' - vuggy form 21.0' to grained dolomite with styolites to 23	or see that the se		Water loss at 19.0'.	
	5.0/5.0	79 ↓		area from 21.0 to 23.1' many vugs filling precipitate. Breaks are all horizonts. Run #3 23.8' to 28.8' BGS.			4" stainless steel casing set to 26.0' BGS.	
30~	↑ 3.9/3.9 ↓	20.5		Horizontal breaks at 25.1', 26.9' & 27 in this area - becomes more vuggy to 26.6 bgs to bottom of core - large	with precipitate at		-	
	7.5/7.5	76.6		highly broken from 27.7 to 28.3 horiz breaks - precipitate filled closed ve at 27.8 & continue to bottom of core	ertical fractures begin			
40-	X	X		Run #4 28.8'to 32.5' BGS. Highly broken gray dolomite - vuggy Precipitate of gypsum and yellow min			-	
	7.2/7.2 	61.8 		Run #5 32.5' to 40.01' BGS. Highly broken from 32.5 to 33.5' the vuggy at 36.4' minor amounts of vug clear crystal filled vug at 37.8' horiz	s after 36.4 one		-	
		*		2'-3' from 39.2 to 40.0.			Water loss at 48 0'	
50-	7.1/7.8	78.2		Run #6 40.01' to 47.21' BGS. Gray Dolomite. Highly broken from 4 breaks every 0.5 - 1.0' to 44'. One fracture from 43.3' to 44.0'. Verticato continue through highly broken ar	closed vertical al fracture appears		Water loss at 48.0'. Driller noted a void from 47.2' to 48.0' BGS.	
-	•	V		horizontal to low angle breaks every brownish yellow precipitate in vertice 45.1–45.3.	/ 3'-5' to 47.2,	•	Bottom of core at 55.0' BGS (537.5' MSL).	
60-				Run #7 47.2' to 55.0' BGS. Gray Dolomite. Highly broken and vice competent rock from 48.5 to 55', high 50.9', 52.1' & 53.5, one horizontal breather.	gh angle breaks at			
					LEGEND		LOCKPORT DOLOMITE	
1			L PRO	OGRAMS CORPORATION	OVERBURDEN		LOCKPORT DOLOMITE WITH VUGS	
	ORE L	-06			CLAY LAYER		SHALE LAYER	

APPENDIX E DRIVE-POINT BORING LOGS

Proje Loca Date Geolo	ctFo tionh Drilled_ paist	DP-Corest Gloving Street Gloving Str	en RI/F Falls, N 94 Valentii	. <u>Y</u> .				Surface Elevation 591.3 ft Mean Sealevel (MSL Total Depth 15.6 ft Below Ground Surface (BGS X-Location 388804.34 Y-Location 1133637.10 Depth To Water Not Encountered Organic Vapor Instrument HNu	Y-Location1133637.10 Depth To WaterNot Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1	1 3 3 4 5	0-2	1'/2'	bkg bkg		///	Top 6" - Asphalt and concrete then gray brown clay with traces of silt - slightly moist and plastic. 2.5'			
4	SS-3	6 10 14 7 19	4-6	5,15,	bkg			Red Brown CLAY - stiff and dry at 2.5 feet. Same as above - laminated.			
6	SS-4	23 26 25 20 18	6-8	5.15.	bkg			Same as above - a few 1/4" diameter drop stones.			
8-	SS-5	23 5 16 19	8-10	5./5.	bkg			CLAY with fine sand partings, becoming moist, some pebbles.			
10		8 14 18 24	10-12	1'/2'	bkg			Red Brown CLAY, some pebbles, moist.	DP-001		
14-	SS-7 SS-8	9 17 19 28 8	12-14	1.3'/2'	bkg bkg			fine-medium-coarse (f-m-c) sand. One 2" diameter pebble at approximately 13.0".			
16-		11 36 50/2"					7,7	Gray rock - fractured pieces, some clay - weathered Lockport formation. Bottom of Boring @ 15.8' BGS (576.2' MSL).			
18 -											
	EDERA BORING		L RAMS C	ORPORA	TION			EGEND FILL BLACK STAINED CLAY CLAY WITH SAND AND G CLAY WITH SAND AND G SURFACE SOIL SAMPLE	RAVEL		
1	Backg No Rec						_	CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geold	tionh Drilled.	DP-Corest Gle diagara 11/15/ Michael od Ho	en RI/F Falls, N 94 Valentir	.Y. no				Surface Elevation 592.8 ft Mean Sealevel (MSL Total Depth 14.3 ft Below Ground Surface (BGS X-Location 388641.27 Y-Location 1133631.17 Depth To Water 8.85 ft BGS Organic Vapor Instrument HNu	Y-Location1133631.17 Depth To Water8.85 ft BGS			
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
2-	SS-1 SS-2	3 4 6 11 7	0-2	1.6/2	bkg bkg		1/1	Top 6" - Top soil with organic material then Gray Brown SILTY CLAY, some organics and trace of gravel, dry. Brown CLAY, some organics, stiff dry and laminated.				
4-	SS-3	12 18 20 8 14	4-6	1.7/2	bkg			Same as above.				
6-	SS-4	18 26 40 42 40	6-8	2/2	bkg			Same as above but with some gray clay mottling.				
8-	SS-5	35 6 7 12	8-10	1.8/2	bkg			9.1'	DP-002 Water came up to 8.85			
10 -	SS-6	15 6 8 10	10-12	1.5/2	bkg			Gray S1LT AND CLAY with trace of fine sand and	below ground surface (bgs) after penetrating			
12-	SS-7	30 25 23 25 50/2"	12-14	1.8/2	bkg			trace of pebbles and large rock fragments, moist.	bedrock.			
14-	5.1 0	50/4"	14-16	1/2	bkg		7.7	Fine to medium SAND, some gravel and fractured pieces of gray rock. Bottom of Boring @ 14.3' BGS (577.7' MSL).				
18-												
1	EDERA BORING	L PROGI	RAMS C	ORPORA	T ION		L	EGEND CLAY WITH SAND AND G	RAVEL			
							Ľ	BLACK STAINED CLAY SURFACE SOIL SAMPLE				
	· Backg No Rec						[CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE				

Proje Loca Date	tionh Drilled_	rest Gl liagara 11/16/	en RI/F Falls, N	.Y.				Total Depth 9.5 ft Below Ground Surface (BGS) X-Location 1133632.06	Total Depth 9.5 ft Below Ground Surface (BGS) X-Location 388486.00			
	ig Metho		llow Ste									
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
	SS-1	3 7 11	0-2	.8/1.5	5		1/1	Augered 6" then split spooned. Gray Brown SILTY CLAY with rootlets, slightly moist				
2-	SS-2	16 25 38 40	2-4	1.5/2	bkg			Brown CLAY, laminated, some gray clay mottling, stiff and dry.				
4-	SS-3	12 23 36 39	4-6	2/2	bkg			Same as above, then becoming more red brown after 1.4', stiff and dry.				
6-	SS-4	33 39 49	6-8	2/2	bkg			Brown CLAY, laminated, stiff and dry.				
8-	SS-5	42 7 12 18	8-9.5	2/2	bkg			Same as above until 9.0 feet. 9.0' CLAY with some pebbles (1-2" diameter); moist, hit	DP-003			
10-		50/1"				_		rock at 9.5 feet - possibly a boulder. Bottom of Boring @ 9.5' BGS.	Took a 2" diameter spoon at 9.5 feet but got little recovery.			
14-												
16-												
18-												
CDM F	EDERA	L PROGI	RAMS CO	ORPORA	TION		L	EGEND TO CLAY WITH SAND AND GO	RAVEI			
SOIL	BOR1NG	LOG					[EGEND CLAY WITH SAND AND GE				
N I:-	Dealer						_	BLACK STAINED CLAY SURFACE SOIL SAMPLE				
	Backgo No Reco						_	SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE				

Borin	g Name	DP-C						Surface Elevation 593.6 ft Mean Sealevel (MSL) Total Depth 16.4 ft Below Ground Surface (BGS)				
		rest Gie							Total Depth16.4 ft Below Ground Surface (BGS) X-Location388383.98			
Loca		liagara		. 1 .				X-Location				
		11/1 <u>6/</u> Michael	Valentii	20				Y-Location 1133630.55 Depth To Water Not Encountered				
Dellin				m Auger				Depth To WaterNot Encountered Organic Vapor InstrumentHNu				
Urillin	y Metho							Organic Vapor Instrument				
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
	SS-1	4 12 14 18	0-2	1.8/2	bkg			Top 6" - Dark brown organic rich top soil then Yellow Brown CLAY with some silt; dry and stiff.				
2-	SS-2	14 30 30	2-4	1.4/2	bkg			Brown CLAY with trace of silt - organic rich, many rootlets; dry, and laminated.				
4-	SS-3	14 18 36 37	4-6	2/2	bkg			Brown CLAY with dessicated clay layers, laminated and dry.				
6-	SS-4	45 48 50/3"	6-8	1.25/2	bkg			Red Brown CLAY, stiff, silt partings, laminated and dry.				
8-	SS-5	6 12 14 21	8-10	2/2	bkg			Same as above.				
10-	SS-6	5 9 11	10-12	2/2	bkg			Same as above	DP-004			
12-	SS-7	6 9 10	12-14	1.1/2	bkg			Brown CLAY, some gravel; moist. Brown CLAY with some gravel and medium to coarse (m-c) sand, large pebble (2" diam.) toward bottom:				
14~	\$S-8	1 2 10 20	14-16	.7/2	bkg			Same as above - more rock fragments; clay and rock fragments effervesce when exposed to hydrochloric				
16-	SS-9	50/4"	16-18	.3/2	bkg		2,2	Rock fragments at bottom and in nose cone - wet. Water level probe sent down but no water located.				
18-								Bottom of Boring @ 16.4' BGS.				
I	EDERA BORING		RAMS C	ORPORA	TION			FILL CLAY WITH SAND AND G	RAVEL			
	Backg						<u>.</u>	BLACK STAINED CLAY SURFACE SOIL SAMPLE CLAY SOIL SAMPLE				
NR -	No Rec	overy			_		Ľ	SILTY CLAY GROUNDWATER SAMPLE				

Borin	g Name	DP-0						Surface Elevation 591.5 ft Mean Sealevel (MSL)			
Proje	• •	rest Gle						Total Depth 13 ft Below Ground Surface (BGS)			
Loca		liagara		Υ				X-Location388812.05			
		11/18/	94 Valootis			_		Y-Location 1133802.95 Depth To Water Not Encountered			
	/g.5 (Michael				_		Depth to water			
Drillin	g Metho	od <u>no</u>	IOW SIE	m Auger				Organic Vapor Instrument HNU	-		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	5 10 8	0-2	1.7/2	bkg		///	Top soil then Yellow Brown SILTY CLAY with gray clay mottling, some rootlets; moist.			
2-	SS-2	16 22 24	2-4	1.5/2	bkg			Brown CLAY laminated, some dessicated clay sections, dry; stiff.			
4-	SS-3	41 12 24 50/3"	4-6	2/2	bkg			Red Brown CLAY laminated, numerous zones of crystals in clay, crystals effervesce			
6-											
8-	SS-4	7 11 15 22	7-9	2/2	bkg			Some more crystals then Brown CLAY, laminated with silt partings, stiff, slightly moist.			
10~	SS-5	6 6 12	9-11	2/2	bkg			Red Brown CLAY laminated, stiff, slightly moist until 10.2 feet.	DP-004		
12-	SS-6	20 6 8 8 14	11-13	1.2/2	bkg		7 7	Red Brown CLAY some fine sand, gravel, and rounded pebbles, moist. Same as above with rock in nose cone.			
14-								Bottom of boring @ 13.0' BGS.			
16-											
18-											
	FEDERA BORING		RAMS C	ORPORA	TION		_	EGEND CLAY WITH SAND AND G	RAVEL		
								BLACK STAINED CLAY BLACK STAINED CLAY SURFACE SOIL SAMPLE	LOCKPORT DOLOMITE SURFACE SOIL SAMPLE		
	- Backg No Rec						[CLAY SOIL SAMPLE			
							[SILTY CLAY	GROUNDWATER SAMPLE		

Pro je	·	rest Gl	006 en RI/FS Falls, N.					Total Depth 14.25 ft Below Ground Surface (BG	Surface Elevation 592.4 ft Mean Sealevel (MSL) Total Depth 14.25 ft Below Ground Surface (BGS) X-Location 388585.63			
Loca		44.44.7.4		1			_	X-Location 388585.63 Y-Location 1133808.20				
	Drilled_		Valentin	10				Depth To Water Not Encountered				
Geolo			llow Ste					Organic Vapor Instrument HNu				
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
	SS-1	2	0-2	1.9/2	5		77/	Dark Brown organic-rich top soil becoming very				
2-	SS-2	4 6 12 10	2-4	1/2	bkg		1/1	clayey toward bottom; moist. 2.0				
		18 20 30						Brown CLAY, laminated, with rootlets and some silt, slightly moist.				
4	S S-3	82 15 22 24	4-6	2/2	bkg			Same as above except sand size crystals found in the silt partings zone from 5.0-6.8 feet.				
6-	SS-4	50 50 50/4"	6-8	.9/2	bkg			Brown CLAY, laminated, stiff and dry, rootlets.				
8-	SS-5	11 31 37 43	8-10	2/2	bkg			Same as above.				
10-	SS-8	1 5 9	10-12	2/2	bkg			Same as above.				
12-	SS-7	10 11	12-14	2/2	bkg		00	Same as above until 13.0 feet. 13 Red Brown CLAY, some pebbles, gravel, and fine sand,	DP-006 -			
14-	55-8	13 50/3"	14-14.25	.5/2	bkg		9 7	moist. 14 Broken rock in tip.				
16-								Bottom of Boring € 14.25' BGS.				
18-												
CDM F	FEDERA	L PROG	RAMS CO	DRPORA	TION		ι	LEGEND CLAY WITH SAND AND G	RAVEL			
SOIL	BORING	LOG					r	هـــّـا				
								FILL LOCKPORT DOLOMITE				
								BLACK STAINED CLAY SURFACE SOIL SAMPLE				
bkg -	Backg	round					ı	ZICIAY				
	No Rec							CLAY SOIL SAMPLE				
			_		_			SILTY CLAY GROUNDWATER SAMPLE				

Proje Loca Date Geolo	tion^ Drilled_ paist	orest Gle Niagara 11/17/ Michael	en RI/F Falls, N. 94 Valentir	.Y				Surface Elevation 591.6 ft Mean Sealevel (MSL Total Depth 10.0 ft Below Ground Surface (BGS X-Location 388506.25 Y-Location 1133804.95 Depth To Water 6.57 ft BGS Organic Vapor Instrument HNu	Y-Location1133804.95 Depth To Water6.57 ft BGS			
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
-	SS-1	4 6 10	0-2	1.25/2	bkg		///	Top 5" - Dark brown topsoil then Brown SILTY CLAY with rootlets, slightly moist.				
2-	SS-2	11 11 18 15	2-4	1.1/2	bkg		///	Trace of small pebbles; dry.	-			
4-	SS-3	30 11 19 32	4-6	2/2	bkg			Brown clay, laminated, silt partings, stiff and dry.	<u>-</u>			
6-	SS-4	35 32 35 36	6-8	2/2	bkg			Same as above but no silt partings, stiff and dry, some gray clay mottling.	<u>-</u>			
8-	SS-5	36 7 11	8-10	2/2	bkg			Same as above until 9.6'.	OP-007 -			
10-		13					5.	9.6 Becomes more moist.	DP-007-GW Hydropunch			
•								Bottom of Boring @ 10.0' BGS.	driven from 9.5' to 12.5' bgs into rock like material.			
12-									Water came up in augers to 6.57' bgs.			
14									-			
16-									-			
18-									-			
CDM F	EDERA	L PROGI	RAMS CO	ORPORAT	TION		L	EGEND OCLAY WITH SAND AND G	RAVEI			
SOIL	BORING	LOG					ſ	FILL CLAY WITH SAND AND G				
							Ľ	BLACK STAINED CLAY SURFACE SOIL SAMPLE				
	Backg						_	CLAY SOIL SAMPLE				
NR -	No Rec	overy						SILTY CLAY GROUNDWATER SAMPLE				

Proje Loca Date	tion <u> </u>	rest <u>G</u> Niagara 11/16-	en RI/F: Falls, N -17/94 Valentin	Υ.				X-Location388386.54 Y-Location1133818.32	Total Depth 15.25 ft Below Ground Surface (BGS) X-Location 388386.54			
Geold Drillin	gist g Metho		llow Ste		r			Organic Vapor Instrument HNu	bepin to hater			
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
	SS-1	2 5 11 13	0-2	1.5/2	bkg		///	Top 0.5'-Drown organic rich top soil with roots then Brown SILTY CLAY with rootlets, slightly moist.				
2-	SS-2	11 17 25 38	2-4	1.7/2	bkg			Brown CLAY, laminated, stiff and dry, some rootlets.				
4-	SS-3	18 20 46	4-6	2/2	bkg			Red Brown CLAY, laminated, dry and stiff.				
6-	SS-4	47 34 21 32	6-8	2/2	bkg			Brown CLAY, laminated, sitty clay from 6,9'-7,4', dry and stiff.				
8-	SS-5	32 7 10	8-10	2/2	bkg			Same as above until 9.1'.	DP-008			
10 -	SS-6	23 12 11 12	10-12	1/2	bkg			Red Brown CLAY some gravel, medium to coarse sand, and pebbles, moist. Same as above except more 1/2" diameter rounded pebbles, very moist.				
12-	SS-7	13 8 12 12	12-14	1/2	bkg			Same as above.				
14-	SS-8	13 20 32 50/4"	14-15.25	.5/2	bkg			Fractured gray rock. Same as above - rock in tip.	-			
16~									-			
18-												
ì			RAMS CO	DRPORA	TJON		L	EGEND CLAY WITH SAND AND GR	AVEL			
SOIL	BORING	LOG						FILL DOCKPORT DOLOMITE				
								BLACK STAINED CLAY SURFACE SOIL SAMPLE				
-	Backg No Rec						Ľ	CLAY SOIL SAMPLE				
								SILTY CLAY				

Boring NameDP-009 ProjectForest Glen RI/FS LocationNiagara Falls, N.Y								Total Depth 12 ft Below Ground Surface (BGS) X-Location 388814.56	Surface Elevation 592 ft Mean Sealevel (MSL) Total Depth 12 ft Below Ground Surface (BGS) X-Location 388814.56	
Date Drilled 11/18/94								Y-Location 1133945.69	Y-Location1133945.69	
Geologist Michael Valentino								Depth To Water Not Encountered		
Drilling Method Hollow Stem Auger								Organic Vapor Instrument HNu		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments	
,	SS-1	3 3 7 14	0-2	1.2/2	NR			Brown CLAY with some roots; moist.		
2-		4 7 11 13	2-4	1.5/2	NR			Brown CLAY, laminated, stiff and dry.		
4-		11 21 28 31	4-6	2/2	NR			Red Brown CLAY, laminated, gray clay seams, some organic pieces, stiff and dry.		
6-	SS-4	4 8 7 9	6-8	2/2	NR			Same as above.		
8-	SS-5	4 9 9	8-10	2/2	NR			Same as above until 9.7. 9.7	DP-009	
10-	SS-6	1 4 6 7	10-12	.9/2	NR			T		
12-								Bottom of Boring @ 12.0° BGS.		
. 1										
14-										
-										
16-										
18-										
	CDM FEDERAL PROGRAMS CORPORATION LEGEND							EGEND O CLAY WITH SAND AND E	RAVEL	
SOIL BORING LOG								FILL DOCKPORT DOLOMITE	<u></u>	
bkg - Background								BLACK STAINED CLAY SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	
							E	CLAY SOIL SAMPLE		
NR - No Recovery							_	SILTY CLAY GROUNDWATER SAMPLE	GROUNDWATER SAMPLE	

	g Name	DP-0						Surface Elevation 593.2 ft Mean Sealevel (MSI	.)
Pro je		orest Glo						Total Depth 13 ft Below Ground Surface (BGS)	
Loca		liaga <u>ra</u>						X-Location 388666.09	
		11/21/ Michael	Valentir			_		Y-Location1133958.88	
	·9.5			m Augei					
Drillin	g Metho	oa <u>110</u>		ııı Aüge				Organic Vapor Instrument HNU	
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
	SS-1	1	0-2	1.6/2	NR		17/	Top soil then Yellow Brown SILTY CLAY, slightly moist.	
2-	SS-2	2 8 14 12 16	2-4	0/2	NR		111	No sample.	-
4-		28 28							
	SS-3	15 23 40 50	4-6	2/2	NR			Brown CLAY, laminated, stiff and dry.	
6-	00.4								
8-	SS-4	16 18 19	7-9	2/2	NR			Red Brown CLAY, laminated, silt partings, some gray clay mottling, stiff and dry.	
	SS-5	24 7 9	9-11	2/2	NR			Same as above except more moist at bottom.	
10-	SS-6	9 8 7	11-13	2/2	NR				DP-010
12-		8 8 7					000	Red Brown CLAY, some pebbles, gravels, and trace of fine sand; very moist.	
14-								Bottom of Boring @ 13.0' BGS.	
16-									
								·	
18									
l	EDERA		RAMS CO	ORPORA	TION		EGEND CLAY WITH SAND AND G	RAVEL	
	FILL LOCKPORT DOLOMITE								
bkg -	Backg	round	BLACK STAINED CLAY SURFACE SOIL SAMPLE CLAY SOIL SAMPLE						
NR -	No Rec	overy							
							l	SILTY CLAY GROUNDWATER SAMPLE	

Proje Loca Date Geolo	ct <u>Fo</u> tion <u>h</u> Drilled_	liagara 11/21/ Michael	en RI/F Falls, N 94 Valentii	.Υ.				Surface Elevation 592.1 ft Mean Sealevel (MSL) Total Depth 12 ft Below Ground Surface (BGS) X-Location 388524.64 Y-Location 1133956.37 Depth To Water Not Encountered Organic Vapor Instrument HNu	Y-Location 1133956,37 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2- 4- 6- 8-	SS-5	4 4 6 8 14 22 30 35 16 24 28 32 40 40 45 43 12 14 14 13 6 5 6	0-2 2-4 4-6 6-8 8-10	1.6/2 1.5/2 2/2 2/2 2/2	bkg bkg NR NR			Top soil then Brown SILTY CLAY, stiff and dry. 2.0' Brown CLAY, stiff and dry. Red Brown CLAY, laminated with silt partings, stiff and dry. Same as above Same as above	DP-011		
12-		6						Red Brown CLAY, some pebbles, gravel, and fine sand, very moist. Bottom of Boring @ 13.0'.			
SOIL	EDERA BORING Backg No Rec	LOG round	RAMS C	ORPORA	TION			CLAY WITH SAND AND G FILL BLACK STAINED CLAY CLAY SURFACE SOIL SAMPLE SOIL SAMPLE GROUNDWATER SAMPLE	RAVEL		

Proje Loca	tion	orest Gl Niagara	en RI/F Falls, N					Total Depth 8.25 ft Below Ground Surface (B X-Location 388818.55	X-Location388818.55		
Date	Drilled.	11/22	/94					Y~Location1134123.95			
Geolo			Valenti					Depth To Water Not Encountered			
Drillin	ig Methi	od Ho	llow Ste	m Augei				Organic Vapor Instrument HNu			
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	2 4 6 12 12 14 23	2-4	1.3/2	bkg bkg			Top soil mixed with Black coal-like FILL material for first 0.5' - small piece of black, formed, plastic like material. 0.5' Yellow Brown SILTY CLAY, dry.			
4-	SS-3	26 12 20 38 26	4-6	2/2	bkg			Brown CLAY, laminated, silt partings; stiff and dry. Red Brown CLAY, laminated, stiff and dry.			
6-		50 45 38 42	6-8	1.65/2	bkg			7.55	DP-012		
8-	SS-5	50/4"	8-8.25	.25/2	bkg		00	Red CLAY, some pebbles, gravel, and fine sand; moist. Bottom of Boring @ 8.25' BGS.			
10-											
12-											
14-											
16-								•			
18-											
CDM F	EDERA	L PROG	RAMS C	ORPORA	TION		1	EGEND TO CLAY HITH SAND AND			
1	BORING			2			·	EGEND CLAY WITH SAND AND	UHA VEL		
301	5011110						F	FILL CKPORT DOLOMITE			
								BLACK STAINED CLAY SURFACE SOIL SAMPLI	ī		
bkg -	Backg	round					_	CLAY SOIL SAMPLE			
NR -	No Rec	overy						2			
							[SILTY CLAY	i .		

Proje Loca Date Geolo	tion	liagara 11/22/ Michael	en RI/F Falls, N. 94 Valentir	.Y				Surface Elevation 594.1 ft Mean Sealevel (MSL Total Depth 13.0 ft Below Ground Surface (BG: X-Location 388674.00 Y-Location 1134134.86 Depth To Water 5.7 ft BGS Organic Vapor Instrument HNu	Y-Location1134134.86 Depth To Water5.7 ft BGS			
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
	SS-1	5	0-2	1.5/2	bkg		٠.٠.	Top soil mixed with black coal-like FILL.				
2-	SS-2	4 5 4 6 3	2-4	1.7/2	bkg			Black coal-like FILL, some fine sand and clay and pieces of solid black plastic-like material, moist.	DP-013B			
4-	SS-3	4 5 3 2	4-6	1.35/2	bkg			Same as above; wet				
6-	SS-4	3 6 7 7	6-8	1.4/2	bkg			7.0'	DP-013-GW Perched water at 5.7 feet, hole open to			
8-		7						Black SILTY CLAY, moist, becoming more clay at bottom - organics and roots in this zone.	7.4 feet.			
10-	SS-5	5 10 24	9-11	2/2	bkg			9.3' Becoming Brown CLAY, stiff and dry at 9.3 feet.				
12-	SS-6	38 22 23 27	11-13	2/2	bkg			Same as above except silt partings, laminated – some fine sand in silt partings, stiff and dry.	DP-013			
14-		30					1/1/	Bottom of Boring @ 13.0° BGS.				
16-												
18-												
			RAMS CO	DRPORA1	TION		- 1	EGEND CLAY WITH SAND AND G	RAVEL			
SOIL BORING LOG												
BLACK STAINED CLAY SURFACE SOIL SAMPLE												
bkg -												
1414 -	No Rec	SILTY CLAY SOIL SAMPLE GROUNDWATER SAMPLE										

Proje Loca Date Geolo	tiont Drilled.	DP-Corest Gleviagara 11/22/ Michael	en RI/F Falls, N '94 Valentir	Υ.				Surface Elevation 592.3 ft Mean Sealevel (MSL) Total Depth 12.0 ft Below Ground Surface (BGS) X-Location 388546.74 Y-Location 1134130.74 Depth To Water Not Encountered Organic Vapor Instrument HNu		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description		Analytical Sample Number/Comments
2-	SS-1	26 45 48	0-2	1/2	bkg		Fir	st 0.5' – asphalt – then gray sandy gravel FILL.		
	SS-2	50/4"	2-4	.5/2	bkg		T T	me gravel FILL - large piece of wood in nose cone poor recovery.		
4-	SS-3	9 4 6 9	4-6	1.5/2	bkg		sha	LL; plastic mixed with black fine sand and metallic avings, dry.		
6-	SS-4	14 16 20	6-8	2/2	bkg			ay Black SILTY CLAY, rootlets, minor amounts of ite powder from 6.6' to 6.8', dry.		
8-	SS-5	25 7 17 24	8-10	2/2	bkg			-8.25' - black plastic-like pieces mixed with dark own sand and pebbles		
10-	SS-6	7 11 15	10-12	2/2	bkg			own CLAY, laminated, stiff and dry, d Brown CLAY; laminated,		DP-014
12-		14						d brown clay with gravel, pebbles, and sand; very ist. ttom of Boring @ 12.0' BGS.		
14-										
16-										
18-										
1	FEDERA BORING	L PROG	RAMS C	ORPORA	TION		LEGEN	CLAY WITH SAND A	ND G	RAVEL
3011	DOMING	, 100					FIL	4		
	- Backg No Rec						∭ °	CK STAINED CLAY SURFACE SOIL SAMPLE	-11 LE	
		,					SIL	TY CLAY GROUNDWATER SAN	4PLE	

Proje Loca Date Geold	tiont	orest Gle Niagara 11/23/ Michael	en RI/F Falls, N /94 Valentin	.Y.				Surface Elevation 592.3 ft Mean Sealevel (MSL Total Depth 11.0 ft Below Ground Surface (BGS X-Location 388392.12 Y-Location 1134120.13 Depth To Water Not Encountered Organic Vapor Instrument HNu	Y-Location 1134120.13 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	6 7 10 12	0-2	1/2	NR		///	Top soil, then Red Brown SILTY CLAY with roots.			
2-	SS-2	15 26 43 43	2-4	1.5/2	NR 			Brown CLAY with silt partings, dry and stiff.			
4-	SS-3	35 50/4"	4-6	1/2	NR			Same as above.			
6-	SS-4	26	7-9	2/2	NR			Same as above			
8-		32 32 16 26	9-11	2/2	NR				DP-015		
10-	SS-5	17 35 10	9-11	2/2	NR 			10.65	DF-015		
12-								Red Brown CLAY, some pebbles, gravel, and fine sand, very moist.			
14-								Bottom of Boring @ 12.0° BGS.			
16-											
18-											
1	FEDERA BORING	L PROG	RAMS C	ORPORA	TION			EGEND CLAY WITH SAND AND G	RAVEL		
bkg -	Backg	round						BLACK STAINED CLAY SURFACE SOIL SAMPLE			
1	No Rec						_	CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

	g Name	DP-0	016 en RI/F					Surface Elevation 590.9 ft Mean Sealevel (MSL) Total Depth 8 ft Below Ground Surface (BGS)		
Proje	· · · ·		Falls, N					200000 50		
Loca		11/22					_	X-Location 388820.53 Y-Location 1134277.30		
		Michael	Valentin	<u> </u>				Depth To Water Not Encountered		
	3 .5.			m Auge				Beptil 10 Mater		
Urillin	g Metho) <u>a</u>		Augu				Organic Vapor Instrument HNU		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments	
2-	SS-1 SS-2	25 15 40 15	0-2	.5/2 1.3/2	NR 5		7,7	First 0.5' - asphalt - then gray sandy gravel FILL, dry.		
		24 30 25						Red Brown CLAY, laminated, dry and stiff.		
4-	SS-3	21 36 31 33	4-6	2/2	bkg			Same as above.		
6-	SS-4	23 20 23	6-8	2/2	bkg 			7.5'	DP-016	
8		33						Red Brown CLAY, some gravel, pebbles, and sand, very moist.		
10-								Bottom of Boring @ 8.0' BGS.		
12-										
14-										
16-										
18-										
1			RAMS C	DRPORA	NOIT		L	EGEND CLAY WITH SAND AND GI	RAVEL	
SOIL	BORING	LOG								
							-	FILL DOCKPORT DOLOMITE		
bkg -	Backg	round					_	BLACK STAINED CLAY SURFACE SOIL SAMPLE		
1	No Rec						ł	CLAY SOIL SAMPLE		
								SILTY CLAY GROUNDWATER SAMPLE		

Proje Loca Date Geok	tion^ Drilled_	rest Gle liagara 11/28/ Michael	en RI/F Falls, N /94 Valentii	.Y					X-Location388682.50 Y-Location1134292.45 Depth To Water6.0 ft BGS		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	4 13 8 8	0-2	1.5/2	bkg			Top soil changing to black coal-like FILL, some fine sand and black plastic-like material, dry.			
2-	SS-2	43 38 24 18	2-4	1.7/2	bkg			Same as above.	DP-017B		
4-	SS-3	6 4 4 6	4-6	1.5/2	bkg			Same as above.			
6-	SS-4	10 12 14	6-8	1.6/2	bkg			Same as above except wet. 6.9' Brown SILTY CLAY with roots; moist.	Some perched water at 6', not enough for sample.		
8-	SS-5	4	9-11	1.7/2	bkg			8.0' Red Brown CLAY, some gray clay mottling, silt partings, stiff and dry.	-		
10-		16 12 11						11.0'	DP-017		
12-								Bottom of Boring @ 11.0' BGS.			
14-											
16-											
18-											
			RAMS C	ORPORA	TION		L	EGEND CLAY WITH SAND AND	GRAVEL		
SOIL	BORING	LOG						FILL ELOCKPORT DOLOMITE			
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	· Backg No Rec						2	CLAY SOIL SAMPLE			
					_			SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geold	tion^ Drilled_	rest Gli liagara 11/28, Michael	en RI/F Falls, N /94 Valentii	.Y.				Total Depth 12.0 ft Below Ground Surface (BG X-Location 388581.57 Y-Location 1134266.28 Depth To Water Not Encountered	X-Location388581.57 Y-Location1134266.28		
	- Heine										
Depth Ft (bgs)	Sample	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	8 .7 10	0-2	.5/2	bkg			First 0.5' - asphalt - then gray sandy gravel FILL, dry.			
2-	SS-2	20 16 19	2-4	1.5/2	bkg			Gray silty clay and fine sand FILL mixed with granules of white powder AT 2.6'. Black coal-like FILL, moist from 2.8' to 4.6'.	DP-018b		
4-	SS-3	19 4 7 13	4-6	1.8/2	bkg			4.6' Brown CLAY, stiff and dry.			
6-	SS-4	16 21 26 42	6-8	2/2	bkg			Red Brown CLAY, laminated with silt partings, stiff and dry, a few pebbles at bottom.			
8-	SS-5	20 12 25 30 30	8-10	2/2	bkg			Same as above except no pebbles.			
10	SS-6	31 20 33 30	10-12	2/2	bkg			Same as above except more moist toward bottom.	DP-018		
12-							7,7	Bottom of Boring @ 12.0' BGS.	1		
14-											
16-											
18-											
CDM F	EDERA	L PROG	RAMS C	ORPORA	TION]	L	EGEND THE SAND AND	GRAVEL		
SOIL	BORING	LOG					[FILL CCKPORT DOLOMITE			
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	· Backg No Rec						F	CLAY SOIL SAMPLE			
NN 3	HU NEC	over y					-	SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca	ct <u>Fo</u> tion <u> </u>	liagara 11/28	en RI/F Falls, N /94	.Y				Total Depth 12.0 ft Below Ground Surface (B X-Location 388436.32 Y-Location 1134280.55	Y-Location 1134280.55		
Geolo	aist	Michael	Valenti	no m Auger	,	_		Depth To Water Not Encountered Organic Vapor Instrument HNu			
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1	12 14 20 22 9	0-2	1.5/2	bkg			Brown SILT AND CLAY FILL, organics, some pebbles and black coal-like pieces at bottom half foot. Brown SILTY CLAY FILL with black coal-like pieces			
4-	SS-3	9 11 13 13	4-6	1.0/2	bkg			and black staining - pieces of wood. Brown CLAY FILL with pieces of black plastic-like material.			
6-	SS-4	11 10 4 6 9	6-8	1.0/2	bkg			6.0' Red Brown CLAY, laminated, stiff and dry.			
8-	SS-5	13 8 11 10	8-10	1.0/2	bkg			9.4'			
10-	SS-6	6 10 33 31	10-12	1.5/2	bkg			Red brown clay with pebbles, gravel, and sand; moist. Same as above but with large pebbles (2-3" diameter), less moist than above.	DP-019		
14-								Bottom of Boring @ 12.0' BGS.			
16-											
18-											
	EDERA		RAMS C	ORPORA	TION		LI	GEND CLAY WITH SAND AND	GRAVEL		
								FILL LOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPL	E		
	Backgi No Reci						1 2 13	CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPL			

Proje Loca Date Geolo	tionN	rest Gle liagara 11/23/ Michael	en RI/FS Falls, N.	Y. 10					Total Depth 10.0 ft Below Ground Surface (BGS) X-Location 388824.04 Y-Location 1134436.10 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	5 4 3	0-2	.5/2	bkg			Top soil mixed with 1" of black silty sand, possibly stained then Brown CLAY, stiff. Piece of black plastic-like material observed.			
2-	SS-2	5 3 2 3	2-4	.5/2	bkg			Brown CLAY, some black staining	-		
4	SS-3	3 3 4 7	4-6	2/2	bkg			Gray-brown SILTY CLAY, very soft and moist - organics and pea-sized gravel in clay partings.	-		
6-	SS-4	12 11 15 14	6-8	2/2	bkg			6.6' Brown CLAY, laminated - stiff and hard.	_		
8-	SS-5	26 8 14 14	8-10	2/2	bkg			Red Brown CLAY, laminated	DP-020 -		
10-		14					<u> </u>	Red Brown CLAY some pebbles, gravel, and sand; very moist.	_		
12-								Bottom of Boring @ 10.0'.	_		
14-									-		
16-									-		
18-											
	EDERA BORING		RAMS CO	DRPORA	T ION		_	LEGEND CLAY WITH SAND AND G	RAVEL		
	· Backgi No Rec						[BLACK STAINED CLAY SURFACE SOIL SAMPLE CLAY SOIL SAMPLE GROUNDWATER SAMPLE			

	g Name	DP-C)21	•				Surface Elevation 594.3 ft Mean Sealevel (MSL Total Depth 12 ft Below Ground Surface (BGS))
Proje		liagara							
Loca									
Date	Drilled.	11/29/	V214:					Y-Location 1134896.63	
	ogist		valentii	no			_	Depth To Water Not Encountered	· ·
Drillin	g Metho	odHo	llow Ste	m Auge	<u>r</u>			Organic Vapor InstrumentHNu	
l	_		1		T	_			
Depth Ft (bgs)	Sample	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
	SS-1	4	0-2	1.8/2	bkg		1777	Brown SILTY CLAY, some roots, moist.	DP-021-SS
2-		7 11 18 20 23	2-4	1.9/2	bkg		///	2.0' Red Brown CLAY, laminated, with brown mottling, some roots, dry.	· -
		33 38							
4-	SS-3	11 20 25	4-6	2/2	bkg			Same as above except silt partings, dry and stiff.	•
6-	SS- 4	47 35 40 38	6-8	2/2	bkg			Same as above, becoming brown toward bottom.	
8-	SS-5	46 8 10 12	8-10	2/2	bkg			Becoming more moist at bottom – some fine sand and a pebble at bottom.	
10-	SS-6	14 5 6 14	10-12	2/2	bkg			11.5	DP-021
12-		16					6	Red brown CLAY some pebbles, gravel, and fine sand, very moist.	
								Bottom of Boring @ 12.0° BGS.	
14-									
16-									
18-									
l .	FEDERA BORING		RAMS C	ORPORA	TION		L	EGEND CLAY WITH SAND AND G	RAVEL
JOIL	SONING	. 100					_	FILL CKPORT DOLOMITE	
								BLACK STAINED CLAY SURFACE SOIL SAMPLE	
bkg -	Backg	round					_	-	
	No Rec						Ł	CLAY SOIL SAMPLE	
								SILTY CLAY GROUNDWATER SAMPLE	

Borin Proje	g Name	DP-C	022 en RI/F	s _				Surface Elevation 595.1 ft Mean Sealevel (MSL) Total Depth 10 ft Below Ground Surface (BGS)			
Loca		liagara	Falls, N	.Y				X~Location388623.75			
1	Drilled_	11/29-	-30/9 <u>4</u>					Y-Location1134887.85			
Geolo	gist	Micha <u>el</u>	Valentii	no				Depth To Water Not Encountered			
Drillin	g Metho	od Ho	llow Ste	m Auge	<u> </u>			Organic Vapor Instrument HNu			
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	4	0-2	1.6/2	bkg		7.77	Top soil then Yellow Brown SILTY CLAY, some roots,	DP-022-SS		
		6					1//	soft and moist.			
1		12				$\ \cdot\ $	1///				
١ ,		8						2.0'			
2-	SS-2	5	2-4	1.6/2	bkg			Red Brown CLAY, laminated, stiff and dry.			
		7				}	1//				
[]		11	1				1///				
4-		14	١.,	1	.	ļ	1//	Consideration and the continue			
"	SS-3	15	4-6	2/2	bkg		1/1/	Same as above except silt partings.			
\ .		25 40	}	}	}	ļ	1//				
		53					1//				
6-	SS-4	7	6-8	2/2	bkg	1	1//	Same as above.			
	33 7	11		""	ong		1//	Same as above.			
-		19	1	1	l l		1//				
		22					44	7.6			
8-	SS-5	16	8-10	1.3/2	bkg		00	Red Brown CLAY becoming soft and moist at 7.6' -	DP-022		
		22					0 00	some fine sand in nose cone.			
] -		31	ļ				P O U	TRED Brown CLAY some nebbles gravel and fine			
1		24		}	1		6 6	medium to coarse (f-m-c) sand; moist - some gray			
10-			Į	1			00	rock fragments in bottom and in tip.			
				1	}		1	Bottom of Boring @ 10.0'			
1	1				l		1				
						1					
12-											
			ł .		}		1				
1	1										
1,4			ļ				1				
14-				ì							
Ι.						l	1				
16-											
				}	ì		1				
.											
18-											
		1			I						
COM	FEDERA	L PROG	RAMS C	ORPORA	TION		l	EGEND CLAY WITH SAND AND GI	RAVEL		
SOIL	BORING	LOG						-			
								FILL CCKPORT DOLOMITE			
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
bkg -	Backg	round						CLAY SOIL SAMPLE			
NR -	No Rec	overy					l	<u> </u>			
								SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date	tion <u>h</u> Drilled	rest Gladiagara 11/30	en RI/F Falls, N	.Y				Surface Elevation 594.5 ff Mean Sealevel (MSL) Total Depth 12 ft Below Ground Surface (BGS) X-Location 388472.85 Y-Location 1134896.51 Depth To Water Not Encountered			
Drillin	g Metho	d Ho	llow Ste	m Auge	<u> </u>	_		Organic Vapor Instrument HNu	·		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SŞ-1	3 9 12 20	0-2	1.5/2	bkg		7/1	Brown SILTY CLAY, some organics, moist.	DP-023-SS		
2-	SS-2	9 9 11 15	2-4	1/2	bkg			Brown CLAY, stiff and dry, silt partings and gray clay mottling — laminated.			
4-	SS-3	12 19 26	4-6	2/2	bkg			Same as above, more red brown.			
6-	SS-4	38 40 35 35	6-8	2/2	bkg			Same as above, except some fine sand partings — moist in partings.			
8-	SS-5	36 10 17 24	8-10	1.3/2	bkg			Red brown CLAY - moist layer at 9.8', then moist to wet in tip.			
10-	SS-6	40 6 24 25	10-12	1/2	bkg			10.0' Red Brown CLAY, some pebbles, gravel, and f-m-c sand, very moist.	DP-023		
12-		22					000	10.01			
14-											
16~						l.					
18-											
l			RAMS CO	ORPORA	TION		L	EGEND CLAY WITH SAND AND G	RAVEL		
SOIL	BORING	LOG						FILL CKPORT DOLOMITE			
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	Backgi No Reci						[CLAY SOIL SAMPLE			
		,						SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date	tion^ Drilled_	rest Gle liagara 12/1/9 Michael	en RI/F Falls, N 94 Valentir	.Y				Surface Elevation 597.7 ft Mean Sealevel (MSL) Total Depth 8 ft Below Ground Surface (BGS) X-Location 388764.91 Y-Location 1135189.33 Depth To Water Not Encountered		
Drillin	g Metho	odHo	llow Ste	m Augei	<u> </u>			Organic Vapor Instrument HNu		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments	
	SS-1	6 7 11 12	0-2	1.2/2	bkg			Brown SILTY CLAY becoming all CLAY at bottom, slightly moist. 2.0'	DP-024-SS	
2-	SS-2	5 7 9	2-4	1/2	bkg			Brown CLAY, laminated, stiff and dry, becoming red brown at bottom.		
4-	SS-3	14 18 20	4-6	2/2	bkg			Red Brown CLAY, laminated, with silt partings stiff and dry.		
6-	SS-4	21 21 22 23	6-8	2/2	bkg			Same as above. 7.1 Red Brown CLAY, some pebbles, gravel, and f-m-c	DP-024	
8-		23					00	sand, very moist. Bottom of Boring @ 8.0' BGS.		
10-										
12-										
14-										
16-										
18-										
1	EDERA		RAMS CO	ORPORA	T10N			EGEND CLAY WITH SAND AND G	RAVEL	
						,	Ų.	FILL LOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE		
1	Backgi No Reci						_	CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE		

Proje Loca Date Geold	ct <u>Fo</u> tion <u>h</u> Drilled_	11/30 Michael	en RI/F Falls, N /94 Valentir	.Y <u>.</u>				Surface Elevation 595.7 ft Mean Sealevel (MS) Total Depth 8 ft Below Ground Surface (BGS) X-Location 388626.20 Y-Location 1135041.44 Depth To Water Not Encountered Organic Vapor Instrument HNu	Y-Location1135041.44 Depth To WaterNot Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	3 5	0-2	1.7/2	bkg	П	///	Brown SILTY CLAY becoming all CLAY at bottom; slightly moist.	DP-025-SS		
2-	SS-2	8 15 6 7 9	2-4	1.6/2	bkg			2.0' Red Brown CLAY with silt partings, stiff and dry.			
4-	SS-3	15 16 20 30	4-6	2/2	bkg			Same as above, some sand in bottom			
6-	SS-4	50/1" 21 24 24	6-8	1.7/2	bkg		000	6.0° Red Brown CLAY, some pebbles, gravel, and f-m-c sand; moist.	DP-025		
8		26					000	Bottom of Boring @ 8.0' BGS.			
10-											
12-											
14-											
16~											
18											
CDM F	EDERA	L PROG	RAMS C	DRPORA	TION		L	EGEND CLAY WITH SAND AND C	SRAVEL		
SOIL	BORING	LOG					[FILL DOCKPORT DOLOMITE			
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	Backg No Rec							CLAY SOIL SAMPLE			
							[SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geold	tionh Drilled_	rest Gle liagara 11/30, Michael	en RI/F Falls, N	Y. 10				Surface Elevation 595.5 ft Mean Sealevel (MSL Total Depth 11 ft Below Ground Surface (BGS) X-Location 388475.55 Y-Location 1135042.24 Depth To Water Not Encountered Organic Vapor Instrument HNu	X-Location 388475.55 Y-Location 1135042.24 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2- 4- 6- 10- 12- 14- 18-	SS-3	3 6 10 9 8 11 15 15 7 23 25 23 11 16 17 19 12 16 22 17	0-2 2-4 4-6 7-9	1.7/2 1.8/2 1.6/2	bkg bkg bkg			Brown SILTY CLAY, roots, becoming all CLAY at bottom; dry. 2.0' Brown CLAY, laminated, silt partings; stiff and dry, drop stone noted. Same as above except more red brown at bottom. Same as above, parting at 7.9' contains f-m sand; moist. Red Brown CLAY, some pebbles, gravel, and f-m-c sand; very moist. Bottom of Boring @ 11.0' BGS.	DP-026		
SOIL	FEDERA BORING - Backg No Rec	S LOG	RAMS C	ORPORA	TION			EGEND CLAY WITH SAND AND G CLAY WITH SAND AND G LOCKPORT DOLOMITE SURFACE SOIL SAMPLE CLAY SOIL SAMPLE GROUNDWATER SAMPLE	RAVEL		

Borin	g Name	DP-0	027					Surface Elevation 597.7 ft Mean Sealevel (MSL)
Proje	ctF	rest Gl	en RI/F	<u>S</u>				Total Depth 8 ft Below Ground Surface (BGS)	
Loca	tion	liagara	Falls, N	<u>.Υ.</u>				X-Location388779.49	
Date	Drilled_	12/1/8	94					Y-Location 1135333.01	
Geolo	ogist	<u>Michael</u>	Valentin	10	_			Depth To WaterNot Encountered	• .
Drillin	g Metho	od <u>Ho</u>	llow Ste	m Auger	<u>r </u>			Organic Vapor Instrument HNu	
	_			т —		1			I
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
, .	SS-1	4 8 11	0-2	1.7/2	bkg		///	Brown SILTY CLAY, becoming all clay at bottom; slightly moist.	DP-027-SS
2-	SS-2	17 5	2-4	1.6/2	bkg		7.4	2.0	٠.
		10 10 15						Brown CLAY, laminated, stiff and dry.	
4-	SS-3	12 24 28	4-6	2/2	bkg			Same as above except more red brown - moist area at 5.7'.	
6	SS-4	32 28 36 32	6-8	2/2	bkg			Same as above.	DP-027
8-		28						Red brown CLAY, some pebbles, gravel, and f-m-c sand; very moist.	
10								Bollom of Boring @ 8.0' BGS.	
12-									
.									
14-									
16-									
18-									
1	EDERA BORING		RAMS CO	ORPORA	TION			EGEND CLAY WITH SAND AND G	RAVEL
							_	FILL COCKPORT DOLOMITE	
	Desi							BLACK STAINED CLAY SURFACE SOIL SAMPLE	
	Backgi No Reci						2	CLAY SOIL SAMPLE	
								SILTY CLAY GROUNDWATER SAMPLE	

Proje	· —	rest Gl	en RI/F					Total Depth 8 ft Below Ground Surface (BGS)			
Loca			Falls, N.	.τ							
	Drilled_	12/1/8	Valentie					Y-Location 1135191.56 Depth To Water Not Encountered			
1	/g.v		Valentir		 _	_					
Drillin	g Metho	od no	IIOW Ste	m Auge				Organic Vapor Instrument HNU			
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	4 7 12	0-2	1.6/2	bkg			Brown SILTY CLAY becoming brown gray CLAY at bottom, slightly moist.	DP-028-\$S		
2-	SS-2	20 7 13	2-4	1/2	bkg			2.0: Red Brown CLAY, laminated, stiff and dry.			
4-	SS-3	15 17 13 18	4-6	2/2	bkg			Same as above except moist in two silt partings.			
6-	SS-4	27 27 21 21	6-8	2/2	bkg			Same as above.	DP-028		
8-		36 36					000	Red Brown CLAY, some pebbles, gravel, and f-m-c sand, very moist. Bottom of Boring @ 8.0' BGS.			
10-								Bottom of Boring e 6.0 Bos.			
12-											
14-											
16-											
18-											
10-											
			RAMS C	ORPORA	TION		L	EGEND CLAY WITH SAND AND G	RAVEL		
SOIL	BORING	LOG					_	FILL DOCKPORT DOLOMITE			
bk a	. Oach	round						BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	- Backg No Rec						[CLAY SOIL SAMPLE			
								SILTY CLAY GROUNDWATER SAMPLE			

Project Local Date	tion^ Drilled_	orest Gli Niagara 12/1-: Michael	en RI/F Falls, N 2/94 Valentir	Y. 10_			-	Surface Elevation 595.8 ft Mean Sealevel (MSL Total Depth 8 ft Below Ground Surface (BGS) X-Location 388485.03 Y-Location 1135197.11 Depth To Water Not Encountered Organic Vapor Instrument HNu	
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
	\$S-1	2 8	0-2	1.5/2	bkg	\prod	///	Gray organic SILTY CLAY with rootlets.	DP-029-SS
	1	10						Yellow Brown CLAY, moist.	
2-	SS-2	12 4 7 10	2-4	1/2	bkg			Drown CLAY, laminated, silt partings, stiff and dry.	
4-	\$S-3	12 18 30 37	4-6	2/2	bkg			Same as above.	
6-	SS-4	33 30 30 31	6-8	2/2	bkg			Same as above.	DP-029
8-		23					6	7.6' Red Brown CLAY, some pebbles, gravel, and f-m-c sand, very moist.	
10-								Bottom of Boring @ 8.0' BGS.	
12-									
14-									
16-									
18-									
1	FEDERA BORING		RAMS CO	ORPORA	1 JON		L	EGEND CLAY WITH SAND AND G	RAVEL
							•	FILL LOCKPORT DOLOMITE	
								BLACK STAINED CLAY SURFACE SOIL SAMPLE	
	- Backgi No Reci							CLAY SOIL SAMPLE	
								SILTY CLAY GROUNDWATER SAMPLE	

Proje Loca Date Geold	tion <u>t</u> Drilled	liagara 12/1-2 Michael	en RI/F Falls, N. 2/94 Valentir	.Y	r			Total Depth 8 ft Below Ground Surface (BGS) X-Location 388777.70 Y-Location 1135035.67 Depth To Water Not Encountered	X-Location388777.70 Y-Location1135035.67 Depth To WaterNot Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1	5 8 11 13 5 9	0-2	1.5/2	bkg		//. //. //. ///.	Dark brown SILTY CLAY becoming brown CLAY; slightly moist for last 0.5'. 2.0' Brown CLAY, laminated, silt partings, stiff and dry.	DP-030-SS		
4-	SS-3	15 20 30 45	4-6	2/2	bkg			Same as above except more red brown - some gray clay mottling.			
6	SS-4	50 33 28 26	6-8	2/2	bkg			Same as above, some fine sand partings at bottom.	DP-030		
8-	SS-5	21 13 25 30 25	8-10	.4/2	bkg		000		-		
12-									• •		
16-											
18-									· -		
	EDERA	L PROGF	RAMS CO	RPORA	TION		[EGEND CLAY WITH SAND AND GO FILL DOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE	RAVEL		
	Backgr No Reco						}	CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca	ct <u>Fo</u> tion <u>h</u>	DP-(prest Glo liagara	en RI/F Falls, N					Total Depth 12 ft Below Ground Surface (BGS) X-Location 388628.58	Surface Elevation 597.4 ft Mean Sealevel (MSL) Total Depth 12 ft Below Ground Surface (BGS) X-Location 388628.58 Y-Location 1135338.58		
Date	Drilled_	12/1/8	Valentir					70 Not 5 4			
Geold	ogist o Metho	Michael od Ho	llow Ste	m Auge				Depth To Water			
D111111	y metric	, G									
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	2 6 9 15	0-2	1.9/2	bkg			Top soil then Yellow Brown SILTY CLAY, more clay-like at bottom. 2.0'	DP-031-SS		
2-	SS-2	5 7 10	2-4	1.6/2	bkg			Gray Brown CLAY, laminated, stiff and dry.			
4-	SS-3	9 20 27	4-6	2/2	bkg			Same as above.			
6-	SS-4	31 37 53 53	6-8	2/2	bkg			Becoming Red Brown CLAY, silt partings, slightly moist.			
8-	SS-5	45 10 12 15	8-10	2/2	bkg	- - - -		Same as above except with sand, silt and a pebble in nose cone, wet.	DP-031-GW - Water came up to 7'10" bgs.		
10-	SS-6	27 15 22 45 50/3"	10-12	2/2	bkg		000	Red Brown CLAY with pebbles (some rounded some angular), gravel, f-m-c sand; wet. Water in hole. Gray fine grained rock fragment in nose cone.	DP-031		
12								Bottom of Boring @ 12.0° BGS.	1		
-			1					• • • • • • • • • • • • • • • • • • • •			
14-											
16-											
18-											
	EDERA	L PROGI	RAMS C	ORPORA	TION		Lf	EGEND CLAY WITH SAND AND C	FRAVEL		
							[FILL DOCKPORT DOLOMITE			
p. i	Doot						_	BLACK STAINED CLAY SURFACE SOIL SAMPLE			
1	· Backg No Rec						E	CLAY SOIL SAMPLE			
	. TO NEC				_		_	SILTY CLAY GROUNDWATER SAMPLE			

Borin	g Name.	DP-0	32					Surface Elevation 596.7 ft Mean Sealevel (MSL)		
Proje	ct_Fo	rest Gie	en RI/F	S				Total Depth 10 ft Below Ground Surface (BGS)		
Loca	tion^	liagara	Falls, N.	Υ.				X-Location 388528.70		
Date	Drilled_	12/2/9	Valentir					Y-Location 1135346.09 Depth To Water Not Encountered		
Geold	gist	Hol	llow Ste	m Auger				Depth To Water Not Encountered Organic Vapor Instrument HNu		
	y Metric							Organic Vapor Instrument		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments	
	SS-1	3	0-2	1.2/2	bkg		177	Brown organic SILTY CLAY with roots, moist.	DP-032-SS	
2-	SS-2	5 12 19 5 9	2-4	1/2	bkg			2.0' Brown CLAY, laminated, with silt partings, stiff and dry.	•	
4-	SS-3	11 12 18 30	4-6	2/2	bkg			Same as above.		
6-	SS-4	31 45 45 45	6-8	2/2	bkg			Becoming Red Brown CLAY.		
8-	SS-5	35 8 10 11	8-10	2/2	bkg			Same as above except f-m-c sand in nose cone; moist.	DP-032 -	
10-		14					6			
								Bottom of Boring @ 10.0' BGS.		
12-										
14-										
16-										
18-										
1			RAMS C	DRPORA	TION			EGEND CLAY WITH SAND AND G	RAVEL	
SOIL	BORING	106						FILL DOCKPORT DOLOMITE		
								BLACK STAINED CLAY SURFACE SOIL SAMPLE		
	Backg							CLAY SOIL SAMPLE		
NA -	No Rec	overy						SILTY CLAY GROUNDWATER SAMPLE		

Proje Loca Date Geolo	tionN Drilled_	liagara 11/29/ Michael	en RI/F Falls, N /94 Valentir	.Y.				Surface Elevation 593.2 ft Mean Sealevel (MSL Total Depth 12 ft Below Ground Surface (BGS) X-Location 388683.60 Y-Location 1134443.32 Depth To Water Not Encountered Organic Vapor Instrument HNu	X-Location 388683.60 Y-Location 1134443.32 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	3 4 4 9	0-2	1.2/2	bkg bkg			Top soil then Brown SILTY CLAY with pieces of black coal-like material and white granules, slightly moist and soft. Same as above, very soft but with less black material	DP-033-SS		
4-	SS-3	15 20 25 20 26 40	4-6	2/2	bkg			and white granules - change at 3'. 3.0' Red Brown CLAY, stiff and dry. Same as above, some rootlets, two black pebbles at bottom, laminated, stiff and dry.			
6-	SS-4	50 45 50 58 54	6-8	2/2	bkg			Same as above.			
10-	SS-5	13 12 15 18 10 12	8-10	1.4/2	bkg bkg			Same as above then change at 11.1'. 11.1' Red Brown CLAY some pebbles gravel, and fine sand,	DP-033		
12-		17					00	very soft and moist. Bottom of Boring @ 12.0' BGS.			
16-				l							
18-											
SOIL	FEDERA BORING Backg	S LOG	RAMS C	ORPORA	TION			EGEND CLAY WITH SAND AND G CLAY WITH SAND AND G LOCKPORT DOLOMITE SURFACE SOIL SAMPLE CLAY SOIL SAMPLE	RAVEL		
,,,,		- · • · y					[SILTY CLAY GROUNDWATER SAMPLE			

Borin Proje	g Name)34 en RI/F					Surface Elevation 593.0 ft Mean Sealevel (MSL) Total Depth 10 ft Below Ground Surface (BGS)				
1	· · · · · · · · · · · · · · · · · · ·		Falls, N					X-Location 388559.55				
Date	Drilled_							Y-Location1134444.53				
Geolo	gist	Michael	Valenti	no				Depth To WaterNot Encountered				
Drillin	g Metho	d_ Ho	llow Ste	m Augei	<u> </u>			Organic Vapor Instrument HNu				
				1 -								
Depth Ft (bgs)	Sample	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
	SS-1	30 60	0-2	1/2	bkg			First 0.5'- asphalt then Gray SAND and SILT with pebbles; dry.	DP-034-SS			
2-	\$ S-2	50 45 35 26	2-4	0.5/2	bkg			Same as above but mixed with some white and yellow powder and black coal-like material; dry – not enough for sample – pieces of wood and large rock in nose				
4-	SS-3	20 11 9	4-6	1.5/2	bkg			Same as above.	DP-034B			
6-	SS-4	12 20 25	6-8	2/2	bkg		11.	Change to Gray SILTY CLAY, Brown CLAY mottling; soft and moist - organic looking.				
	33 4	35 33			DNG			Brown Gray CLAY; stiff and dry.				
8-	SS- 5	35 12 17	8-10	2/2	bkg			Red Brown CLAY.	DP-034			
10-		19 40					00	9.3 Red Brown CLAY, some pebbles, gravel, and fine sand, very soft and moist.				
								Bottom of Boring @ 10.0' BGS.				
12-												
14-												
16-												
18-												
CDM FEDERAL PROGRAMS CORPORATION LEGEND SOIL BORING LOG												
FILL COCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE												
1	Backg No Rec						1	CLAY SOIL SAMPLE				
								SILTY CLAY GROUNDWATER SAMPLE				

APPENDIX F SOIL BORING LOGS

													
Boring NameBerm-1 Surface Elevation 608.1 ft Mean Sealevel (MSL) ProjectFOREST_GLEN_RI/FS Total Depth18 ft Below Ground Surface (BGS)													
Proje	ct_F	DREST (SLEN RI	/FS				Total Depth 16 ft Below Ground Surface (BGS					
Loca	tion	NIAGARA	FALLS	, NEW Y	ORK			X-Location388422.21					
Date	Drilled_							Y-Location 1135739.58					
Geolo		Mike Va						Depth To Water Not Encountered					
Drillin	g Metho	od Ho	llow Ste	m Augei	r 3" Spo	ons		Organic Vapor Instrument HNu					
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments				
	SS-1	2 2	0-2	1.4/2	bkg		///	Reddish Brown Silty Clay FILL; dry.					
2-	SS-2	3 4 9 7 11	2-4	1.6/2	bkg			Same FILL; more gray clay infilling.					
4-	SS-3	7 4 5 8	4-6	1.8/2	bkg		///	4.0' Brown silty clay FILL; some coal-like pieces possibly waste, small pieces of orange resin.					
6-	SS- 4	7 5 6 8	6-8	1.1/2	bkg			Same FILL; pieces of black material, decomposing wood and white chalky substance.					
8-	SS-5	7 3 2 3	8-10	0.9/2	bkg			Same FILL; less black pieces, wood fragments.	-				
10-	SS-6	3 1 1 2	10-12	NR	bkg			Burnt wood chips in tip.	-				
12-	SS-7	2 4	12-14	1.8/2	bkg		7//	12.0' Reddish Brown and Gray CLAY; stiff.	-				
		6 8 8						necessar brown and ordy bear, ourn.					
14-	SS-8	6 11	14-16	1.8/2	bkg			Reddish Brown CLAY; some gray clay infilling; dry $\&$ stiff.	Berm-1				
16-		16					1/1	16.0*					
								Bottom of Boring @ 16.0' BGS (592.1' MSL).	1				
18-													
CDM F	EDERA	L PROGE	RAMS CO	RPORAT	TION		· I	EGEND FINE CLAY HITH SAND AND					
	BORING			•			_	O CLAY WITH SAND AND C	SKAVEL				
								FILL LOCKPORT DOLOMITE					
kl: -	0							BLACK STAINED CLAY SURFACE SOIL SAMPLE					
	Backgr						F	CLAY SOIL SAMPLE					
NK -	No Reco	overy					_	SILTY CLAY					

Proje Loca Date Geolo	tion^ Drilled_	OREST (NIAGAR/ 06/19 Mike Va	GLEN RI A FALLS 1/95 Ientino	, NEW Y	ORK 3" Spo	ons		Surface Elevation 608.4 ft Mean Sealevel (MSL Total Depth 18 ft Below Ground Surface (BGS) X-Location 388417.37 Y-Location 1135471.96 Depth To Water Not Encountered Organic Vapor Instrument HNu	Total Depth 18 ft Below Ground Surface (BGS) X-Location 388417.37 Y-Location 1135471.96 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	3 4 2 3 5	0-2	1.1/2	bkg bkg			Brown Silty Clay FILL; some organics; dry. Same; FILL.			
4-	SS-3	8 11 4 5	4-6	1.2/2	bkg			Dark Brown Silt and Clay FILL with black pieces, yellow and white powder. Same; FILL, yellow & white staining dry.	Berm-2A		
6-	SS-4	24 7 20 22 10	6-8	NR	bkg			Same: FILL, rock in tip.			
8-	SS-5	5 5 7 7	8-10	1.6/2	bkg			Black stained Silty Clay FILL, numerous black pieces and white powder – moist.	Berm-2		
10-	SS-6 SS-7	6 11 10 10 6	10-12		bkg bkg			Same as above. Black FILL; wet - some perched water - black stained			
14-	SS-8	6 9 9 3	14-16	0.4/2	bkg		7///	clay & reddish brown clay at bottom – some black pieces. 14.0' Brown CLAY; moist.			
16-	SS-9	6 11 17 11	16-18	1/2	bkg			Reddish Brown CLAY; moist.			
18-		12 14						Bottom of Boring @ 18.0' (590.4' MSL).			
	EDERA BORING	L PROG	EGEND CLAY WITH SAND AND GI FILL LOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE	RAVEL							
	· Backg No Rec							CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date		REST G IIAGARA 06/20	LEN RI FALLS 0/95	/FS , NEW Y	ORK			Surface Elevation	Total Depth 18 ft Below Ground Surface (BGS) X-Location 388418.91 Y-Location 1135228.29		
Drillin	g Metho	odHo	llow Ste	m Auger	3" Spo	ons		Organic Vapor Instrument			
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
•	SS-1	3 2 5 5	0-2	1.2/2	bkg			Brown Silty Clay FILL; dry.			
2-	SS-2	4 8 8 12	2-4	1.4/2	bkg			Same; FILL.			
4-	SS-3	8 10 10 9	4-6	1/2	bkg			4.5' Same; FILL - mixed with black pieces and white powder.			
6-	SS-4	7 7 7 8	6-8	0.6/2	bkg			Same; FILL, yellow resin piece.			
8	SS-5	7 5 8 8	8-10	0.4/2	bkg			Same; FILL, pebbles, mostly black stained for last 3".			
10-	SS-6	N/A	10-12	1.6/2	bkg			Same; FILL, black pieces & rock fragments; dry.	Berm - 3A		
12-	SS-7	8 9 11	12-14	0.4/2	bkg			Same; FILL, poor recovery.			
14	SS-8	19 11 15 21	14-16	1.6/2	bkg			14.5' Brown SILTY CLAY; dry, stiff.			
16-	SS-9	30 32 43	16-18	2/2	bkg			Becoming Reddish Brown CLAY with gray infilling dry; stiff.	Berm-3		
18-		41					; / ; /	Bottom of Boring @ 18.0' BGS (590.0' MSL).			
	FEDERA BORING		RAMS C	ORPORA	TION			EGEND CLAY WITH SAND AND G	RAVEL		
							•	FILL DOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	- Backg No Rec						<u>-</u> 2	CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca	tion <u>h</u> Drilled_	OREST O NIAGARA 06/20	SLEN RI A FALLS D/95	/FS , NEW Y	ORK		•	Total Depth 18 ft Below Ground Surface (BGS) X-Location 388413.60 Y-Location 1134981.00	Total Depth 16 ft Below Ground Surface (BGS) X-Location 388413.60 Y-Location 1134981.00		
	ogist ig Metho	Mike Va od Ho		m Augei	3" Spo	ons		Depth To WaterNot Encountered Organic Vapor InstrumentHNu			
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	2 3 3 2 3 3 4 3	0-2 2-4	1.3/2	bkg			Brown SILTY CLAY FILL, some fine gravel - dry. Same; FILL, higher percentage of reddish brown clay.			
4-	SS-3	13 7 7 6	4-6	1.5/2	bkg			4.0' Brown SILTY CLAY FILL with gray mottling – dry.			
6-	SS-4	6 6 9	6-8	0.9/2	bkg			Brown silty clay with decomposed wood pieces some black staining & fine gravel - soft.			
8-	SS-5	9 3 5 8	8-10	1.7/2	bkg			Same; FILL for 1st 0.5' then black pieces & staining to bottom — large diameter pebbles.			
10-	SS-6	11 4 5 8	10-12	1.8/2	bkg			Brown SILTY CLAY FILL, black staining 1st 0.3' then black stained clay w/black pieces to bottom - slightly moist.			
12-	SS-7	6 9 9 13	12-14	2/2	bkg			12.5' Becoming Dark Brown SILT AND CLAY, organics — slightly moist.	Berm-4		
14-	SS-8	16 6 8 9 12	14-16	1.8/2	bkg			Reddish Brown CLAY with gray mottling – slightly moist.			
18-								Bottom of Boring @ 16.0' BGS (591.1' MSL).			
.0											
CDM FEDERAL PROGRAMS CORPORATION SOIL BORING LOG FILL BLACK STAINED CLAY CLAY WITH SAND AND GRAVEL CLAY WITH SAND AND GRAVEL SURFACE SOIL SAMPLE											
-	- Backg No Rec							CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Locas Date Geolo	tionN Drilled_	Berm DREST G NIAGARA 06/20 Mike Val	SLEN RI A FALLS D/95 entino	, NEW Y		ons		Surface Elevation 599.9 ft Mean Sealevel (MS Total Depth 10 ft Below Ground Surface (BGS X-Location 388411.14 Y-Location 1134741.38 Depth To Water Not Encountered Organic Vapor Instrument HNu			
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	4 5 5 6 5	0-2	1.1/2	bkg bkg		// // //	Brown SILT AND CLAY FILL, some fine gravel & brick pieces, dry. 2.0'			
	55-2	7 7 9	2-4	1.4/2	DKG			Brown SILTY CLAY FILL, organics & iron staining, some black staining at bottom, dry.			
4-	SS-3	6 9 7	4-6	1.4/2	bkg			Same; FILL.			
6-	SS-4	8 8 8	6-8	1.6/2	bkg		// // //	Reddish Brown CLAY; gray clay mottling, soft, dry. Same; some organic rootlets in tip.			
8-	SS-5	11 10 13 20 22	8-10	2/2	bkg			Reddish Brown SILTY CLAY, gray clay infilling, dry & stiff.	Berm-5		
10-								Bottom of Boring @ 10.0' BGS (589.9' MSL).			
12											
14-									-		
16-									-		
18-											
-											
CDM FEDERAL PROGRAMS CORPORATION LEGEND CLAY WITH SAND AND GRAV											
SOIL	BORING	LOG						FILL DOCKPORT DOLOMITE			
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	Backgi No Reco							CLAY SOIL SAMPLE			
	.o neol	,					[SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geold	tionN Drilled_	OREST O IIAGARA 06/20 Mike Va	SLEN RI A FALLS D/95 Jentino	/FS , NEW Y				Surface Elevation 594.4 ft Mean Sealevel (MSL Total Depth 10.2 ft Below Ground Surface (BGS) X-Location 388561.60 Y-Location 1134857.02 Depth To Water Not Encountered Organic Vapor Instrument HNu	Y-Location1134857.02 Depth To WaterNot Encountered		
Oepth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	3 5 8 8 3 5	0-2	1.6/2	bkg bkg			Brown CLAY,iron staining, stiff & dry. 2.5'	SB-01SS		
4-	SS-3	7 8 6 10	4-6	2/2	bkg			Becoming Reddish Brown SILTY CLAY. Reddish Brown SILTY CLAY, numerous silt partings toward bottom.			
6-	SS-4	15 10 20 18 19	6-8	2/2	bkg		1/1	Same; softer and more moist specially in tip.			
8	SS-5	6 9 11	8-10	2/2	bkg		000	8.5' Red Brown CLAY, SILT AND SAND, some gravel, wet. 10.2'	SB-01		
10-	SS-6	.2/50	10-12	0.2/2	bkg			Hit rock at 10.2' no water. Bottom of Boring @ 10.2' BGS (584.2' MSL).			
12-											
14-											
16-											
18-											
CDM FEDERAL PROGRAMS CORPORATION SOIL BORING LOG LEGEND CLAY WITH SAND AND GRAVEL CLAY WITH SAND AND GRAVEL LOCKPORT DOLOMITE											
	· Backgi No Reco						-	BLACK STAINED CLAY SURFACE SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geok	tionh	OREST (NIAGAR) 06/2 Mike Va	GLEN RI A FALLS 1/95 Ientino	/FS S, NEW Y		oons			Total Depth 15.6 ft Below Ground Surface (BGS) X-Location 388458.46 Y-Location 1135600.83 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	6 9 10 7 4 7	2-4	0.5/2	bkg bkg			Brown SILTY CLAY, some pebbles, dry. Reddish Brown SILTY CLAY, some gray clay mottling, dry.	SB-02SS COMPOSITE 0-4'		
4-	SS-3	8 10 3 2 3	4-6	0.2/2	bkg			Same.			
6-	SS-4	3 3 3 7	6-8	0.5/2	bkg			6.0' Wet cardboard mixed with FILL - cardboard caught in tip reducing recovery. Moist	Perched Water at 4.7		
8-	SS-5	10 3 4 6	8-10	0.4/2	bkg			Wet cardboard blocking tip, water coming in.			
10-	SS-6	9 3 3 4	10-12	0.4/2	bkg			Same as above wet.	Driller felt change to harder material at		
12-	SS-7	3 4 6 8	12-14	NR	bkg			Rock in tip.	9.5'.		
14-	SS-8	6 8 10 12 .1/50	14-16	0.6/2	bkg			14.0' Red Brown CLAY, SILT, SAND, AND GRAVEL, wet.			
16-								Bottom of Boring @ 16.0' BGS (582.5' MSL).			
18-											
1	FEDERA BORING		RAMS C	ORPORA	TION			FILL CLAY WITH SAND AND G FILL COCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE	RAVEL		
	· Backgo No Reco							CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geole	Drilled_ paist	OREST ON NIAGARA 06/21 Mike Va	SLEN RI A FALLS 1/95 Ientino	/FS S, NEW Y	r 3" Spc	pons		Surface Elevation 598.6 ft Mean Sealevel (MSL Total Depth 14 ft Below Ground Surface (BGS) X-Location 388479.85 Y-Location 1135811.91 Depth To Water Not Encountered Organic Vapor Instrument HNu	X-Location388479.85 Y-Location1135811.91 Depth To WaterNot Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	4 7 6 6 5 4	0-2	1.6/2	bkg bkg			Brown SILTY CLAY. 2.0' Black stained FILL, clayey.	SB-03SS		
4-	SS-3	6 2 2 4 8	4-6	1.1/2	bkg			Same; FILL, except more black pieces (cork) 3" of cardboard in tip, some burnt.			
6-	SS-4	4 5 7	6-8	0.4/2	bkg			FILL, Cardboard, wet, some burnt.			
8-	SS-5	5 4 5 8	8-10	1.0/2	bkg			Same; FILL.			
10-	SS-6	12 7 8 5	10-12	0.6/2	bkg			11.5'			
12-	SS-7	12 9 15 27	12-14	1.1/2	bkg		000	Reddish Brown SILTY CLAY.	SB-03		
14-		33					0.0	matrix = 1 to 1 to 1 to 1			
16-											
18											
CDM FEDERAL PROGRAMS CORPORATION LEGEND SOIL BORING LOG											
SOIL	BORING	LOG					[FILL CCKPORT DOLOMITE			
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	Backgr						,	CLAY SOIL SAMPLE			
NK -	No Reco	overy						SILTY CLAY GROUNDWATER SAMPLE			

. `

Proje Loca Date Geolo	Drilled_	OREST O NIAGARA 06/21 Mike Va	FALLS /95 lentino	, NEW Y	_			Surface Elevation 592.5 ft Mean Sealevel (MSL) Total Depth 12 ft Below Ground Surface (BGS) X-Location 388874.77 Y-Location 1134432.26 Depth To Water Not Encountered Organic Vapor Instrument HNu	X-Location388874.77 Y-Location1134432.26 Depth To WaterNot Encountered		
Depth Ft (bgs)	Sample	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
6-	SS-4 SS-5	3 6 5 4 4 5 5 5 12 12 14 17 25 24 15 12 18 21	0-2 2-4 4-6 6-8 8-10	2/2 1.0/2 1.8/2 2/2 1.2/2	bkg bkg bkg bkg			Brown silty clay. 1.6' Black stained FILL. Black stained CLAY FILL, black plastic like pieces, Brown clay in tip. 4.0' Reddish Brown CLAY, organics, slightly moist. Brown CLAY, slightly moist, some silt partings. Reddish brown clay with gray clay infilling slightly moist. 0.5" wet area at ~9.6' - trace of gravel. 11.7' Reddish Brown CLAY, some Fine Sand and Gravel, moist. Bottom of Boring @ 12.0' BGS (580.5' MSL).	SB-04SS		
CDM I	FEDERA	L PROG	RAMS C	DRPORA	TION			EGEND FIGURY WITH SAND AND G	2.115		
	BORING							FILL CLAY WITH SAND AND GI	MA YEL		
	- Backg No Rec						[CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geolo	ct <u>FC</u> tion <u>N</u> Drilled_ paist	06/22 Mike Val	SLEN RI N FALLS 2/95 Jentino	/FS i, NEW Y			,	Surface Elevation 590.9 ft Mean Sealevel (MSL Total Depth 8 ft Below Ground Surface (BGS) X-Location 388950.23 Y-Location 1134410.72 Depth To Water Not Encountered Organic Vapor Instrument HNu	X-Location388950.23 Y-Location1134410.72 Depth To WaterNot Encountered			
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
2	SS-1 SS-2	3 5 9 11 1 7	0-2	1.8/2	bkg bkg			Brown SILTY CLAY; dry, some organics. Same as above	SB-05SS			
4-	SS-3	11 4 4 13	4-6	2.0/2	bkg			4.0' Reddish Brown CLAY with some drop stones & silt partings.				
6	SS-4	15 9 14 14 7	6-8	1.5/2	bkg			Same as above with moist fine to medium sand in tip.	SB-05			
8-							0/6 2	Bottom of Boring @ 8.0' BGS (582.9' MSL).				
12-												
14-												
16-												
18												
	CDM FEDERAL PROGRAMS CORPORATION SOIL BORING LOG CLAY WITH SAND AND GRAVEL LOCKPORT DOLOMITE											
	· Backg No Rec					·		BLACK STAINED CLAY SURFACE SOIL SAMPLE CLAY SOIL SAMPLE GROUNDWATER SAMPLE				

				_							
Borio	g Name	SB-	06					Surface Elevation 591.6 ft Mean Sealevel (MSL)			
Proje	ctFC	REST	SLEN RI	/FS_				Total Depth 10 ft Below Ground Surface (BGS)			
Loca	tion N	IAGARA	FALLS	, NEW Y	ORK			X-Location389030.54			
Date	Drilled_	06/2	2/95					Y-Location 1134418.83			
Gent	ogist	Mike Va	lentino					Depth To Water Not Encountered			
Drillin	o Metho	nd Ho	llow Ste	m Auger	- 3" S	plit Spo	oon	Organic Vapor Instrument HNu			
					_		_				
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	4 5 7	0-2	2/2	bkg		///	Dark Brown topsoil then Brown SILTY CLAY, dry.	SB-06SS		
2-	SS-2	9 3 5 8	2-4	1.6/2	bkg			Brown to Reddish Brown SILTY CLAY; dry.			
4-	SS-3	12 10 17	4-6	2.0/2	bkg			Same as above except numerous silt partings.			
6-	SS-4	20 33 10 12 14	6-8	1.6/2	bkg			Same as above except Fine Sand & Pebbles in tip, moist.			
8-	SS-5	17 10 13	8-10	1.6/2	bkg		00	8.0' Reddish Brown CLAY with large rock fragments, silty	SB-06		
10-		14 18						sand, & gravel.			
								Bottom of Boring @ 10.0' BGS (581.6' MSL).			
12-											
14-											
16-								•			
								·			
18-											
CDM (EDED.	PDOG	BVMc U		TION			EGEND			
CDM FEDERAL PROGRAMS CORPORATION SOIL BORING LOG FILL CLAY WITH SAND AND GRAVEL CLAY WITH SAND AND GRAVEL											
							_	BLACK STAINED CLAY SURFACE SOIL SAMPLE			
bkg -	- Backg	round					_				
NR -	No Rec	overy					-				
								SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geolo	tionN Drilled_	DREST (IIAGAR/ 06/2: Mike Va	SLEN RI A FALLS 2/95 Ientino	/FS i, NEW Y		plit Spe	oon	Surface Elevation 592.2 ft Mean Sealevel (MSL) Total Depth 11.7 ft Below Ground Surface (BGS) X-Location 388863.61 Y-Location 1134336.90 Depth To Water Not Encountered Organic Vapor Instrument HNu		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description		Analytical Sample Number/Comments
2- 4 6- 10- 12- 14- 16-	SS-3 SS-4	4 7 15 7 2 2 3 7 7 15 16 15 12 17 20 24 6 7 7 7 24 26 50/.3	0-2 2-4 4-6 6-8 8-10	2/2 1.8/2 0.4/2 0.5/2 0.4/1.3	bkg bkg bkg		Blac dry Sami 4.0' Brow 9.6' Piec 11.7.	k stained FILL with pieces e as above then Brown CL on CLAY, soft & dry. e as above. dish Brown CLAY AND SILT d & fine Gravel ; moist. es of dark gray rock in sp om of Boring @ 11.7' BGS (, some fine to coarse	SB-07SS SB-20 Dup
SOIL bkg -	FEDERA BORING - Backgi No Reco	LOG round	RAMS C	ORPORA	TION		LEGEND FILL BLACK CLAY	(STAINEO CLAY	CLAY WITH SAND AND G LOCKPORT DOLOMITE SURFACE SOIL SAMPLE SOIL SAMPLE	RAVEL

Proje Loca Date Geold	tionN	OREST (NIAGAR/ 06/2: Mike Va	SLEN RI A FALLS 2/95	, NEW Y				Surface Elevation 591.9 ft Mean Sealevel (MSL) Total Depth 10 ft Below Ground Surface (BGS) X-Location 388932.92 Y-Location 1134330.80 Depth To Water Not Encountered Organic Vapor Instrument HNu	
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
2-	SS-1 SS-2	6 7 8 10 15	0-2	1.8/2	bkg bkg		7/1	Brown SILTY CLAY, dry. Reddish Brown SILTY CLAY; dry, stiff.	SB-08SS
4-	SS-3	25 24 29 5	4-6	2/2	bkg			Same as above, few rounded drop stones.	
6-	SS-4	18 27 19 20 23	6-8	2/2	bkg			Same as above.	
8-	SS-5	24 4 5 7 9	8-10	2/2	bkg			9.3'	SB-08
10-							00	Reddish Brown CLAY, SILT, FINE TO COARSE SAND, AND GRAVEL. Bottom of Boring @ 10.0' BGS (581.9' MSL).	
12-									
14-									
18-									
-									
	EDERA BORING		RAMS CO	ORPORA	TION		[EGEND CLAY WITH SAND AND GR FILL DOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE	AVEL
	Backgr No Reco						E	BLACK STAINED CLAY SURFACE SOIL SAMPLE SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE	

Proje Loca Date Geolo	tion^ Drilled_ paist	OREST O IIAGAR/ 06/22 Mike Va	SLEN RI A FALLS 2/95 Ientino	S, NEW Y	ORK r - 3" S	plit Spo	oon	Surface Elevation 592.6 ft Mean Sealevel (MSL Total Depth 9.5 ft Below Ground Surface (BGS X-Location 389013.01 Y-Location 1134337.34 Depth To Water Not Encountered Organic Vapor Instrument HNu	Y-Location1134337.34 Depth To WaterNot Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	4 5 9 7 4 6	0-2	1.9/2	bkg bkg			Dark Brown topsoil 1st 4" then Brown SILTY CLAY, dry. Brown SILTY CLAY, dry.	SB-09SS		
4-	SS-3	5 7 9 14 16	4-6	2/2	bkg			Brown SILTY CLAY, silt partings; dry.			
6-	SS-4	25 4 6 9	6-8	2/2	bkg			Same as above except more fine to coarse sand and trace of gravel in tip; moist.			
8-	SS-5	14 10 18	8-10	1.4/2	bkg		0000		SB-09		
12-								Bottom of Boring @ 10.0' BGS (582.6' MSL).			
14-											
16-											
18-											
CDM FEDERAL PROGRAMS CORPORATION SOIL BORING LOG FILL CLAY WITH SAND AND GRAVEL LOCKPORT DOLOMITE											
	· Backg No Rec						[BLACK STAINED CLAY SURFACE SOIL SAMPLE SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geolo	ng Name ect FC htion N Drilled ogist Metho	OREST O NIAGARA 06/20 Mike Va	SLEN RI A FALLS 6/95 Ientino	, NEW Y				Surface Elevation 593.0 ft Mean Sealevel (MS Total Depth 8 ft Below Ground Surface (BGS) X-Location 388876.12 Y-Location 1134215.44 Depth To Water Not Encountered Organic Vapor Instrument HNu	
Depth Ft (bgs)	Sample	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
2-		5 7 6 6 3 4 8 7	2-4	1/2	bkg bkg			tst 6" Brown top soil the Black stained FILL. Same as above.	SB-10SS
		8 7 5 9	4-6	1.2/2	bkg			5.5'	_
8-		9 10 16 21	6-8	1.5/2	bkg		111. 11.	Stained organic SILTY CLAY. Brown SILTY CLAY; dry. Bottom of Boring @ 8.0' BGS (585.0' MSL).	SB-10
10-									
12-									
14-									
16-									
18-									
SOIL	FEDERA BORING	6 L0G	RAMS C	ORPORA	TION			EGEND CLAY WITH SAND AND CLAY WITH SAND AND CLAY WITH SAND AND CLAY FILL BLACK STAINED CLAY SURFACE SOIL SAMPLE	
	- Backg No Rec							CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE	

Proje Local Date Geolo	ct <u>FC</u> tion <u>N</u> Drilled_	06/26 Mike Val	FALLS 6/95 entino	, NEW Y		olit Spo	oon	Surface Elevation 591.3 ft Mean Sealevel (MSL Total Depth 8 ft Below Ground Surface (BGS) X-Location 389027.66 Y-Location 1134214.39 Depth To Water Not Encountered Organic Vapor Instrument HNu	X-Location 389027.66 Y-Location 1134214.39 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	3 6 9 12 3	0-2	1.8/2	bkg bkg			Top 6" Brown top soil then Brown SILTY CLAY, dry. Same as above with gray clay infilling, dry.	SB-11SS		
4-	SS-3	12 18 8 12 17	4-6	2/2	bkg			Same as above, some gravel sized drop stones, dry.	- -		
6-	SS-4	24 10 11 12 12	6-8	1.9/2	bkg			Same as above. 7.1' Reddish Brown CLAY AND SILT, some fine to coarse	-		
8-								sand & gravel, moist. Bottom of Boring @ 8.0' BGS (583.3' MSL).	-		
12-									- -		
14-									-		
16-											
	BORING		RAMS C	ORPORA	TION			EGEND CLAY WITH SAND AND G	RAVEL		
bka -	- Backg	round						BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	No Rec							CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geok	tion tion Drilled_ ogist	06/27 Mike Val	FALLS 7/95 entino	/FS i, NEW Y				Surface Elevation 589.6 ft Mean Sealevel (MS) Total Depth 7 ft Below Ground Surface (BGS) X-Location 389108.10 Y-Location 1134196.76 Depth To Water Not Encountered Organic Vapor Instrument HNu	X-Location389108.10 Y-Location1134196.76 Depth To WaterNot Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1 SS-2	1 1 3 4 2	0-2	1.6/2	bkg bkg			Dark brown marsh deposits 1st 4" then Brown Gray CLAY with organics; moist. Reddish brown CLAY with gray clay infilling; dry.	SB-12SS		
4-	SS-3	4 4 7 3 7	4-6	2.0/2	bkg			Same as above.			
6-	SS-4	9 10 10 160 50/0	6-8	1/2	bkg		000	6.4' CLAY AND SILT, some fine to coarse Sand & Gravel; moist.	SB-12		
8-							00	Bottom of Boring @ 8.0' BGS (581.6' MSL).			
12-											
14-											
16-											
	EDERA	I PROGE	PAMS CI	DRPORA	LION			EGEND			
SOIL BORING LOG LEGEND CLAY WITH SAND AND GRAV FILL BLACK STAINED CLAY SURFACE SOIL SAMPLE											
	Backgi No Reco							CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE			

Proje Local Date Geolo	ct <u>FC</u> tion <u>N</u> Drilled_ paist	06/26 Mike Val	SLEN RI A FALLS B/95 Jentino	/FS 5, NEW Y		plit Spo	oon	Surface Elevation 594 ft Mean Sealevel (MSL) Total Depth 8 ft Below Ground Surface (BGS) X-Location 388882.5 Y-Location 1134145.02 Depth To Water Not Encountered Organic Vapor Instrument HNu	
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading	Sample Type	Lithology	Description	Analytical Sample Number/Comments
2-	SS-1 SS-2	13 14 17 8 3 4	0-2	1.5/2	bkg bkg			Black Stained FILL, piece of brick in middle, dry. Same as above - some rusty material in tip, dry.	SB-13SS
4-	SS-3	1 4 10 9	4-6	1.8/2	bkg			5.7'	
6-	SS-4	10 10 13 14 14	6-8	1.8/2	bkg			Black stained organic rich CLAY, roots, moist. 6.0' Brown SILTY CLAY, dry. Bottom of Boring @ 8.0' BGS (586.0' MSL).	SB-13 ·
10-									
12-									
14-									
16-									
18-									
1	EDERA BORING		RAMS C	ORPORA	TION		[EGEND CLAY WITH SAND AND G FILL DOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE	RAVEL
	Backg No Rec						[CLAY SOIL SAMPLE GROUNDWATER SAMPLE	

Proje Loca Date Geok	tionN Drilled_	DREST G IIAGARA 06/26 Mike Va	SLEN RI A FALLS B/95 Jentino	/FS i, NEW Y		plit Sp	oon	Surface Elevation 594.4 ft Mean Sealevel (MSL) Total Depth 8 ft Below Ground Surface (BGS) X-Location 388978.33 Y-Location 1134144.44 Depth To Water Not Encountered Organic Vapor Instrument HNu			
Depth Ft (bgs)	Sample	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description .	Analytical Sample Number/Comments		
	SS-1	3 6 6	0-2	1.6/2	bkg			Black stained FILL; dry.	SB-14SS		
2-	SS-2	7 2 2 2	2-4	0.4/2	bkg			Same as above except 2" layer of white powder; dry.			
4-	SS-3	5 4 4	4-6	1.6/2	bkg			5.0'	SB-14A		
6-	SS-4	4 7 8 11	6-8	2/2	bkg			black stained CLAY with organics (roots) & wood pieces; moist.	SB14		
8-		13 15						7.5 Reddish Brown SILTY CLAY, some organics & gray clay infilling; moist.			
10-								Bottom of Boring @ 8.0' BGS (586.4' MSL).			
12-											
٠.											
14-											
16-											
18-											
CDM	FEDERA	I PROG	BAMS C	ORPORA	TION			EGEND POLICY WITH SAND AND GO			
	BORING		17HJ 6	on ona	. 1011			EGEND CLAY WITH SAND AND GF	RAVEL		
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	- Backg No Rec							CLAY SOIL SAMPLE			
								SILTY CLAY			

Proje Loca Date Geole	tionh Drilled_ paist	OREST G NIAGARA 06/27 Mike Val	SLEN RI A FALLS 7/95 Jentino	6, NEW Y				Total Depth 8 ft Below Ground Surface (BGS) X-Location 389123.44 Y-Location 1134162.08 Depth To Water Not Encountered	Total Depth 8 ft Below Ground Surface (BGS) X-Location 389123.44 Y-Location 1134162.08 Depth To Water Not Encountered		
Orillin	g Metho	od Ho	llow Ste	m Augei	r - 3" S	plit Spo	oon_	Organic Vapor Instrument HNu			
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
-	SS-1	WOH 3 4	0-2	2.0/2	bkg		111	1st 1' Dark Brown organic rich SILTY CLAY, very soft & moist then Brown SILTY CLAY, moist.	SB-15SS SB-23		
2-	SS-2	7 3 8 8	2-4	1.8/2	bkg			Reddish Brown SILTY CLAY, dry.			
4-	SS-3	12 5 13 18	4-6	2.0/2	bkg			Same as above.			
6-	SS-4	23 15 13 14	6-8	2/2	bkg				SB-15		
8-		15					3 /	CLAY AND SILT, SOME fine to coarse sand & gravel, moist.			
10-								Bottom of Boring @ 8.0' BGS (582.9' MSL).			
12-											
14-											
16-											
18-											
רטאיי	EDED.	I PPOC	DAME C	ORPORA	TION			EGEND FILE CLAY WITH SAND AND G			
	BORING		1073 U	oni ona	1014			EGEND CLAY WITH SAND AND G	RAVEL		
							-	BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	Backgi No Reco						_	CLAY SOIL SAMPLE			
							[SILTY CLAY GROUNDWATER SAMPLE			

Borin	g Name	SB-1	6					Surface Elevation 592.2 ft Mean Sealevel (MSL)				
Proje	ctFC	REST	SLEN RI	/FS				Total Depth 10 ft Below Ground Surface (BGS)				
				, NEW Y	ORK			X-Location389013.45				
	Drilled_	06/23	3/95					Y-Location1134028.10				
1		Mike Val	lentino		_			Depth To Water Not Encountered				
1	ig Metho			m Auger	- 3" S	plit Spo	oon	Organic Vapor Instrument HNu				
0,,,,,,	g Metric	,u										
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments			
	SS-1	2 4 7	0-2	2.0/2	bkg		111	1st 1' Dark Brown organic rich SILTY CLAY, very soft & moist then brown SILTY CLAY, moist.	SB-16SS			
2-	SS-2	9 4 6 14	2-4	1.4/2	bkg			Same as above.				
4-	SS-3	16 8 7 6	4-6	2.0/2	bkg		//, //, //,	Reddish Brown SILTY CLAY with silt partings.				
6-	SS-4	8 4 6 7	6-8	2/2	bkg			Same as above.				
8-	SS-5	8 4 7 9	8-10	2/2	bkg		00	8.0' Reddish Brown CLAY AND SILT, some fine to coarse sand & gravel, moist.	SB-16			
10-		11					0 0	Bottom of Boring @ 10.0' BGS (582.2' MSL).				
12-												
14-												
16-												
18-												
1	FEDERA BORING		RAMS C	ORPORA	TION			LEGEND CLAY WITH SAND AND G	RAVEL			
								FILL LOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE				
bka -	- Dacka	round										
	- Backg No Rec							CLAY SOIL SAMPLE				
		o rei y						SILTY CLAY GROUNDWATER SAMPLE				

Proje Loca Date Geold	tionN	OREST OF A STATE OF A	SLEN RI A FALLS 3/95 Ientino	, NEW Y	ORK	plit Spo	oon	Surface Elevation 592.7 ft Mean Sealevel (MSL) Total Depth 12 ft Below Ground Surface (BGS) X-Location 389150.07 Y-Location 1134033.25 Depth To Water Not Encountered Organic Vapor Instrument HNu	Total Depth 12 ft Below Ground Surface (BGS) X-Location 389150.07 Y-Location 1134033.25 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 8 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
	SS-1	6 .8 10	0-2	1.8/2	bkg		77. 77.	Yellow Brown top soil then Brown SILTY CLAY, dry.	SB-17SS		
2-	SS-2	4 7 11	2-4	1.0/2	bkg		//. //. //.	Brown SILTY CLAY, dry, stiff.			
4-	SS-3	14	4-6	2.0/2	bkg		//. //. //.	Shelby tube of clay.			
6-	SS-4	9 10 9	6-8	2/2	bkg		//. //. //.	Reddish Brown SILTY CLAY, dry, stiff.			
8-	SS-5	14 8 6 9	8-10	2/2	bkg			Same as above.			
10	SS-6	8 4 8	10-12	1.2/2	bkg		//	11.0'	SB-17		
12-		5 4						Reddish Brown CLAY AND SILT, some sand and gravel, moist. Bottom of Boring @ 12.0' BGS (580.7' MSL).			
14-											
16-											
18-											
CDM F	EDERA	L PROG	RAMS C	ORPORA	TION			EGEND FIGURE WITH SAND AND GE			
1	BORING							EGEND CLAY WITH SAND AND GR	on val		
								BLACK STAINED CLAY SURFACE SOIL SAMPLE			
	· Backgi No Reci							CLAY SOIL SAMPLE			
	.10 11601	y						SILTY CLAY GROUNDWATER SAMPLE			

Proje Loca Date Geolo	g Name ect tion Drilled_ ogist ig Metho	OREST O IJAGARA 06/21 Mike Va	SLEN RI A FALLS 1/95 Jentino	, NEW Y	ORK	plit Spo		Surface Elevation 599.2 ft Mean Sealevel (MSL Total Depth 14 ft Below Ground Surface (BGS) X-Location 388451.90 Y-Location 1135887.96 Depth To Water Not Encountered Organic Vapor Instrument HNu	
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
2-	SS-1 SS-2	12 12 15 7 3	0-2	1.6/2	bkg bkg		///	Gray Brown SILTY CLAY, trace of gravel, dry. Brown SILTY CLAY, trace of gravel, dry. Some iron staining.	SB-18SS
4-	SS-3	4 4 9 12	4-6	1/2	bkg			Reddish Brown CLAY with gray clay infilling, dry.	
6-	SS-4	17 14 23 34	6-8	2/2	bkg			Brown CLAY, trace of fine gravel, dry.	
8-	SS-5	40 9 11 14	8-10	2/2	bkg			Same as above.	
10-	SS-6	15 4 5 6	10-12	1/2	bkg			Same as above except more moist.	
12-	SS-7	10 10 10 13	12-14	1.8/2	bkg		00	12.7' Brown CLAY, SILT, AND Fine SAND, some coarse sand	SB-18
14-		12					0 00	& gravel. Bottom of Boring @ 14.0' BGS (585.2' MSL).	
16-						,			
18-									
	FEDERA BORING		RAMS C	ORPORA	TION		[EGEND CLAY WITH SAND AND G FILL CKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE	RAVEL
	- Backg No Rec						[CLAY SOIL SAMPLE SILTY CLAY GROUNDWATER SAMPLE	

Proje Loca Date Geok	Drilled_ paist	OREST G IIAGARA 06/26 Mike Val	GLEN RI A FALLS 6/95 Jentino	/FS_ 6, NEW Y		plit Spe	00n	Surface Elevation 594.2 ft Mean Sealevel (MSL) Total Depth 6 ft Below Ground Surface (BGS) X-Location 388938.34 Y-Location 1134169.41 Depth To Water Not Encountered Organic Vapor Instrument HNu	
Depth Ft (bgs)	Sample	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
2-	SS-1 SS-2	5 6 7 6 2 3 3	0-2	1.9/2	bkg bkg			Black stained FILL, brick piece, dry. Black stained FILL, organics & clay at bottom.	SB-Center SS
6-		4 3 2 14	4-6	2.0/2	bkg		77	5.7' Brown SILTY CLAY, dry. Bottom of Boring @ 6.0' BGS (588.2' MSL).	SB-Center
10-									•
14-									-
18-									-
SOIL	BORING Backg	LOG round	RAMS C	ORPORA	TION			CLAY WITH SAND AND GR FILL BLACK STAINED CLAY CLAY SOIL SAMPLE SOIL SAMPLE	RAVEL
NR -	No Rec	overy						SILTY CLAY GROUNDWATER SAMPLE	

Proje Loca Date Geok	g Name. ect tion Drilled_ ogist ag Metho	IAGARA 06/22 Mike Val	FALLS 2/95 entino	NEW Y	ORK			Surface Elevation 591.2 ft Mean Sealevel (MSI Total Depth 2 ft Below Ground Surface (BGS) X-Location 388892.84 Y-Location 1134337.68 Depth To Water Not Encountered Organic Vapor Instrument HNu	Y-Location 1134337.68 Depth To Water Not Encountered		
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments		
2-	SS-1	5 8 11 12	0-2	2/2	bkg			Brown SILTY CLAY.	-		
4-								Bottom of Boring @ 2.0' BGS (589.2' MSL).	-		
6-											
8-											
10-									-		
14-									-		
16-									-		
18-											
Į.	FEDERA BORING		RAMS CO	ORPORA	TION		[EGEND CLAY WITH SAND AND FILL LOCKPORT DOLOMITE BLACK STAINED CLAY SURFACE SOIL SAMPLE			
1	- Backg No Rec						[CLAY SOIL SAMPLE GROUNDWATER SAMPLE			

Proje Local Date Geolo	tionN Drilled_	IAGARA 08/22 Mike Val	SLEN RI. A FALLS 2/95	, NEW Y	ORK			Surface Elevation 592.2 ft Mean Sealevel Total Depth 2 ft Below Ground Surface (B X-Location 388880.00 Y-Location 1134336.02 Depth To Water Not Encountered Organic Vapor Instrument HNu	(MSL) GS)
Depth Ft (bgs)	Sample Name	Blow Counts Per 6 in.	Sample Interval	Recovery	HNu Reading ppm	Sample Type	Lithology	Description	Analytical Sample Number/Comments
2- 4- 6-	SS-1	5 5 6 8	0-2	1.9/2	bkg		7.7	Black FILL, carbon like. 1.7' Brown SILTY CLAY. Bottom of Boring @ 2.0' (590.2' MSL).	SB-07
8-									
10-									
14-									
16-									
18-									
SOIL	BORING Backg No Rec	i LOG	RAMS CO	ORPORA	TION			EGEND CLAY WITH SAND A LOCKPORT DOLOMI BLACK STAINED CLAY SURFACE SOIL SAN CLAY SOIL SAMPLE	TE

APPENDIX G SHELBY TUBE RESULTS

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Laboratory Test Report

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

DATE: AUGUST 18, 1995 PROJECT NO.: SJB-D474

REPORT NO.: LTR-1

PAGE 1 OF 2

SAMPLE INFORMATION:

Sample No. 95-414 was collected from the project site by SJB Services, Inc. on June 26, 1995. Sample is described as a shelby tube of undisturbed material. Tube was identified as SH-2.

ASTM D 4318: Test Method for Liquid Limit, Plastic limit, and Plasticity Index of Soils

Liquid	Plastic	Plasticity
Limit	Limit	Index
51	25	26

Sieve	Percent					
Size	Passing					
#10	100.0					
#20	99.8	CO	MPONENT	PERCENTAGE		
#40	99.3	GRAVEL	SAND	SILT	CLAY	
#100	97.5	0.0 %	4.0 %	33.6 %	62.4	%
#200	96.0					

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Laboratory Test Report

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

DATE: AUGUST 18, 1995 PROJECT NO.: SJB-D474

REPORT NO.: LTR-1

PAGE 2 OF 2

ASTM D-5084 : Measurement of Hydraulic Conductivity of Saturated

Porous Materials Using a flexible Wall Permeameter

Coefficient of Permeability : 1.2×10^{-8}

ASTM D-2937 : Density of Soil in Place by the Drive-Cylinder

Method

Dry Density : 99.4 pcf Moisture Content : 25.7 %

SJB Services, Inc.

Paul C. Gregorczyk Laboratory Manager

Ray J. Kron

Testing Services Manager

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Laboratory Test Report

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

DATE: AUGUST 18, 1995 PROJECT NO.: SJB-D474

REPORT NO.: LTR-1

PAGE 1 OF 2

SAMPLE INFORMATION:

Sample No. 95-414 was collected from the project site by SJB Services, Inc. on June 26, 1995. Sample is described as a shelby tube of undisturbed material. Tube was identified as SH-2.

ASTM D 4318 : Test Method for Liquid Limit, Plastic limit, and Plasticity Index of Soils

Liquid	Plastic	Plasticity
Limit	Limit	Index
51	25	26

Sieve Size	Percent Passing					
#10	100.0					
#20	99.8	co	MPONENT	PERCENTAGE		
#40	99.3	GRAVEL	SAND	SILT	CLAY	
#100	97.5	0.0 %	4.0 %	33.6 %	62.4	%
#200	96.0					

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (71.7) 354-7389 Fax: (717) 354-7619

Laboratory Test Report

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

DATE: AUGUST 18, 1995 PROJECT NO.: SJB-D474

REPORT NO.: LTR-1

PAGE 2 OF 2

ASTM D-5084 : Measurement of Hydraulic Conductivity of Saturated

Porous Materials Using a flexible Wall Permeameter

Coefficient of Permeability: 1.2 x 10-8

ASTM D-2937 : Density of Soil in Place by the Drive-Cylinder

Method

Dry Density : 99.4 pcf Moisture Content : 25.7 %

SJB Services, Inc.

Ray J. Kron

Testing Services Manager

Laboratory Manager

Paul C. Gregorczyk

1951-1 Hamburg Tumpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Laboratory Test Report

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

DATE: AUGUST 18, 1995 PROJECT NO.: SJB-D474

REPORT NO.: LTR-2

PAGE 1 OF 2

SAMPLE INFORMATION:

Sample No. 95-415 was collected from the project site by SJB Services, Inc. on June 26, 1995. Sample is described as a shelby tube of undisturbed material. Tube was identified as SB-17.

ASTM D 4318: Test Method for Liquid Limit, Plastic limit, and Plasticity Index of Soils

Liquid	Plastic	Plasticity
Limit	Limit	Index
49	25	24

Sieve	Percent					
Size	Passing					
#10	100.0					
#20	99.0	CO	MPONENT	PERCENTAGE		
#40	98.0	GRAVEL	SAND	SILT	CLAY	
#100	96.0	0.0 %	5.0 %	35.7 %	59.3	%
#200	95.0					

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Laboratory Test Report

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

DATE: AUGUST 18, 1995 PROJECT NO.: SJB-D474

REPORT NO.: LTR-2

PAGE 2 OF 2

ASTM D-5084 : Measurement of Hydraulic Conductivity of Saturated

Porous Materials Using a flexible Wall Permeameter

Coefficient of Permeability: 1.0 x 10-8

ASTM D-2937 : Density of Soil in Place by the Drive-Cylinder

Method

Dry Density : 96.0 pcf Moisture Content : 26.1 %

SJB Services, Inc.

Paul C. Gregorczyk

Laboratory Manager

Ray J. Kron

Testing Services Manager

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Permeability Test Results

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

PROJECT NO.: SJB-D474 REPORT NO.: LTR-2

ASTM D-5084: Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a flexible Wall Permeameter

SAMPLE NO.: 95-415 **DATE SAMPLED**: 6/26/95

LOCATION : Shelby Tube SB-17

MPLE PARAMETERS	_ INITIAL	FINAL	TEST PARAMETERS
Height (in	2.63	2.59	Test Type : UNDISTURBED
Diameter (in	2.82	2.85	FALLING HEAD
Wet Density (pcf) 121.1	123.2	Head Pressure (psi) 84.6
Moisture Content (%) 26.1	28.4	Back Pressure (psi) 80.2
Optimum Moisture Content (%) na	na	Chamber Pressure (psi) 88
Dry Density (pcf.	96.0	94.0	Fluid DEAIRED WATER
Percent Compaction (%) na		Permeation Time (days) 4
saturation (%	97.0		

TEST RESULTS
Coefficient of Permeability, $K = 1.0 \times 10^{-8}$

COEFFICIENTS Output Output Coefficients Output Coefficients Output O	SIEVE	PERI	CENT FINER	SIEVE	PERC	ENT FINER	Sample information:
GRAIN SIZE Deo D30 D10 Remarks:		•			•		● SB-17
D ₆₀ D ₃₀ D ₁₀ Remarks:				10	100.0		
D ₆₀ D ₃₀ D ₁₀ Remarks:							
0e0 030 010							
De0 D30 D10]			
D ₁₀ Remarks:	$\geq <$	GF	RAIN SIZE	」 Ⅰ .			
D ₁₀ Remarks:	D ₆₀]			
10 HAR TO NO : 05-574	OE						Remarks:
COEFFICIENTS LAS 10 NO.: 95-671	10			ا ا			
	$>\!\!<$	COE	FFICIENTS	11			LAB 10 NO.: 95-6/1
	C _C				l 1		11

MALCOLM PIRNIE INC. Project No.: 2078-00-3

Project: FOREST GLEN

Date: 8-15-95

Data Sheet No.

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Laboratory Test Report

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

DATE: AUGUST 18, 1995 PROJECT NO.: SJB-D474

REPORT NO.: LTR-2

PAGE 1 OF 2

SAMPLE INFORMATION:

Sample No. 95-415 was collected from the project site by SJB Services, Inc. on June 26, 1995. Sample is described as a shelby tube of undisturbed material. Tube was identified as SB-17.

ASTM D 4318 : Test Method for Liquid Limit, Plastic limit, and Plasticity Index of Soils

Liquid	Plastic	Plasticity
Limit	Limit	Index
49	25	24

Sieve Size	Percent Passing					
#10	100.0					
#20	99.0	CO	MPONENT	PERCENTAGE	2	
#40	98.0	GRAVEL	SAND	SILT	CLAY	
#100	96.0	0.0 %	5.0 %	35.7 %	59.3	કૃ
#200	95.0					

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Laboratory Test Report

FOREST GLEN SUPERFUND - PHASE II PROJECT :

CDM FEDERAL PROGRAMS CLIENT :

DATE : AUGUST 18, 1995 PROJECT NO.: SJB-D474

REPORT NO.: LTR-2

PAGE 2 OF 2

ASTM D-5084 : Measurement of Hydraulic Conductivity of Saturated

Porous Materials Using a flexible Wall Permeameter

Coefficient of Permeability: 1.0×10^{-8}

ASTM D-2937 : Density of Soil in Place by the Drive-Cylinder

Method

Dry Density : 96.0 pcf Moisture Content: 26.1 %

SJB Services, Inc.

Paul C. Gregorczyk

Laboratory Manager

Ray J. Kron

Testing Services Manager

1951-1 Hamburg Turnpike Buffalo, NY 14218

P.O. BOX 515 New Holland, PA 17557 Phone: (716) 821-5911 Fax: (716) 821-0163

Phone: (717) 354-7389 Fax: (717) 354-7619

Permeability Test Results

PROJECT: FOREST GLEN SUPERFUND - PHASE II

CLIENT : CDM FEDERAL PROGRAMS

PROJECT NO.: SJB-D474 REPORT NO.: LTR-2

ASTM D-5084 : Measurement of Hydraulic Conductivity of Saturated

Porous Materials Using a flexible Wall Permeameter

SAMPLE NO.: 95-415 **DATE SAMPLED:** 6/26/95

LOCATION : Shelby Tube SB-17

MPLE PARAMETERS	INITIAL	FINAL	TEST PARAMETERS
Height (in)	2.63	2.59	Test Type : UNDISTURBED
Diameter (in)	2.82	2.85	FALLING HEAD
Wet Density (pcf)	121.1	123.2	Head Pressure (psi) 84.6
Moisture Content (%)	26.1	28.4	Back Pressure (psi) 80.2
Optimum Moisture Content (%)	na	na	Chamber Pressure (psi) 88
Dry Density (pcf)	96.0	94.0	Fluid DEAIRED WATER
Percent Compaction (%)	na		Permeation Time (days) 4
Saturation (%)	97.0		- ·

TEST RESULTS
Coefficient of Permeability, $K = 1.0 \times 10^{-8}$

SIEVE	PERCENT FINER		
inches 9128	•		
			,
1			
\geq	GR	AIN SI	ZE
Deo			
030			
D 10			
$>\!\!<$	COE	FFICIE	STN
ου ς υ	<u>.</u>		
Cu			

1	SIEVE	PERCENT FINER		
	number	•		
	10	100.0		
			,	

Remarks:

LAB ID NO .: 95-671

MALCOLM PIRNIE INC. Project No.: 2078-00-3 Project: FDREST GLEN

Date: 8-15-95

Data Sheat No.

APPENDIX H TEST PIT LOGS

TEST PIT LOG Test Pit No. TP01				
Depth (in feet)	Description	HNU Readings (ppm)		
0	Brown top soil to 3 feet BGS.	Background readind at 1ppm		
2				
	Black stained moist greyish green clay mixed staining with	NRAB		
4	cardboard black plastic/coal like pieces, wire, construction debris, asphalt fiber board			
	to 5 feet BGS. Perched water encountered @ 5 feet BGS.	NRAB		
6	Bottom of Test Pit @ 5 feet BGS.			
8				
10				
Date: Field Sup	6/12/95 ervisor: M. Valentino/P. Philip	<u>.</u>		
_	epth:			
	tification: BGX 25/MBTF 25			
_	escription: Moist black stained clay			
	t Pit Configuration & Depth: 50' long by 5 feet (deepest point) in depth.			
	ohs (See photograph log for additional information): See logbook			
Groundwa	ater Encountered:? 10 to 15 feet			

Additional Notes: Waste material noted first 35 feet of horizontal extent. Last of horizontal extent appears to

be "clean". Perched clay water encountered in test pit.

TEST PIT LOG Test Pit No. <u>TP02</u>			
Depth (in feet)	Description	HNU Readings (ppm)	
0	Brown top soil to 1 feet BGS.	Background 1ppm	
2	Reddish brown clay to 5 feet BGS.	NRAB	
4			
	Bottom of Test Pit @ 5 feet BGS.	NRAB	
6			
8			
10			
	Time: 6/12/95		
	ervisor: M. Valentino/P. Philip epth: ~0-5' BGS		
_	tification: BG x 26/MBTF 25		
	escription: Reddish brown clay		
	Pit Configuration & Depth: 50' long by 5' (deepest point) in depth.		
	ohs (See photograph log for additional information): See logbook.		
Groundwa	ater Encountered:? No		

Additional Notes: No visible signs of waste/fill - entire horizontal extent appeared "clean".

	TEST PIT LOG Test Pit No. TP03	
Depth (in feet)	Description	HNU Readings (ppm)
0	Brown top soil to 2 feet BGS	Background reading at 1ppm
2	Reddish brown clay to 5 feet BGS	NRAB
4		
	Reddish Brown Clay moist to 6 feet	NRAB
6	Fill material consisting of cardboard, wire, burnt boxes food service boxes, styrofoam, and plastic. Stained wet clay with grayish black staining. Perched water noted at 6.5 feet BGS.	
	Bottom of Test Pit @ 6.5 feet BGS.	NRAB
8	·	
10		

Date:
Field Supervisor: M. Valentino/P. Philip
Sample Depth: 5-5' - 6.0' BGS
CLP Identification: BGX 27/MBTF 27
Sample Description: Stained Clay
Final Test Pit Configuration & Depth: 50' long 6.5' (deepest point) in depth
Photographs (See photograph log for additional information): See logbook.
Groundwater Encountered:? Perched Water encountered
Additional Notes: Fill mater encountered throughout horizontal length of test pit. Fill mateiral encountered
under approximately at 5' of clay. Did not determine vertical extent of fill. Appeared to contain newer
waste material than waste material observed in TP01. Waste in TP03 to be less decayed.

ARCS II WA 053 Disk 3 3019.PP

	TEST PIT LOG Test Pit NoTP04	
Depth (in feet)	Description	HNU Readings (ppm)
0	Sandy top soil - Brick fragments to 2 feet BGS.	Background reading at 1ppm
2	Reddish brown, dry stiff clay to 8 feet BGS.	NRAB
4		
6		
8	Reddish brown laminated clay - Bottom of Test Pit @ 8 feet BGS.	NRAB
10		
Sample De CLP Ident Sample De Final Test Photograp Groundwa	ayisor: M. Valentino epth: At 4-6' BGS ification: BGX 29/MBTF 29 escription: Reddish Brown Dry Clay Pit Configuration & Depth: 50' long by 8' (deepest point) in depth this (See photograph log for additional information): See logbook ter Encountered:? No Notes: No visible signs of waste/fill - entire horizontal extent appeared "clean".	

	TEST PIT LOG Test Pit No. <u>TP05</u>	
Depth (in feet)	Description	HNU Readings (ppm)
0	"Clean" brown top soil to 1 feet BGS.	Background reading at 1ppm
	Grayish clay to 2 feet BGS.	NRAB
2	Reddish brown dry clay to 6 feet BGS.	NRAB
4		
6	Bottom of Test Pit @ 6 feet BGS.	NRAB
8		
10		
Sample De CLP Ident Sample De Final Test Photograpl Groundwa	rvisor: M. Valentino/P. Philip pth: 0-6' BGS ification: BGX/MBTF 30 scription: Mixture of grayish/brown reddish clay brown top soil Pit Configuration & Depth: 50' long by at 6' (deepest point) in depth. In See photograph log for additional information): See logbook. Iter Encountered:? No Notes: No visible signs of waste/fill. Entire horizontal extent appeared "clean".	

ARCS II WA 053 Disk 3 3019.PP

	TEST PIT LOG Test Pit No. TP06	
Depth (in feet)	Description	HNU Readings (ppm)
0	Top soil brown to 2 feet BGS.	Background reading at 1ppm
2	Grayish clay to 4 feet BGS.	NRAB
4	Reddish brown clay to 6 feet BGS.	NRAB
6	Bottom of Test Pit @ 6 feet BGS.	NRAB
8		
10		
Sample Dep CLP Identification Sample Description Test P Photographs Groundwate	/95 //sor: M. Valentino/P. Philip th: 2-5' BGS //cation: BFX 31/MBTF 31 //cription: Mix of red and gray clay it Configuration & Depth: 50' long by 6' (deepest point) in depth (See photograph log for additional information): See logbook or Encountered:? No No visible signs of waste/fill. Entire horizonatal extent appeared "clean".	

ARCS II WA 053 Disk 3 3019.PP

	TEST PIT LOG Test Pit No. TP07	
Depth (in feet)	Description	HNU Readings (ppm)
0	Top soil brown to 2 feet BGS.	Background reading at 1 ppm.
2	Gray clay to 3 feet BGS.	NRAB
	Reddish brown clay to 6 feet BGS.	
4		
6	Bottom of Test Pit @ 6 feet BGS.	NRAB
8		
10		
Sample De CLP Identi Sample De Final Test Photograph Groundwat	A/95 rvisor: M. Valentino/P. Philip pth: 0-6' BGS fication: BGX/MBTF 33 scription: Mix of gray and red clay some top soil brown. Pit Configuration & Depth: 50' long by 6' (deepest point) in depth. as (See photograph log for additional information): See logbook. er Encountered:? No Notes: No visible signs of waste/fill entire horizontal entent appeared "cle	

TEST PIT LOG Test Pit No. <u>TP08</u>				
Depth (in feet)	Description	HNU Readings (ppm)		
0	Brown topsoil with metal pieces to 2 feet BGS then.	NRAB		
	·			
2	Gray clay mixed with brown clay to 4 feet BGS.	NRAB		
4	Red clay at bottom stiff & dry to 6 feet BGS.	NRAB		
6	Bottomm of Test Pit @ 6 feet BGS.	NRAB		
8				
10				
Field Supe	rvisor: M. Valentino/P. Philip pth: 0-4' BGS			
-	ification: BGX 34/MBFT 34 (Dup) BGX 35/MBTF 35			
	scription: Red and gray clay mixed with small black pieces & some staining.			
Final Test	Pit Configuration & Depth: 50' long - 6' (deepest point) in depth.			
	ns (See photograph log for additional information): <u>See logbook.</u>	•		
	Notes: 1st 10' of horizontal extent noted to contain construction material, scrap			
	concrete. Remaining at 40' noted to contain little fill material			

	TEST PIT LOG Test Pit NoTP09	
Depth (in feet)	Description	HNU Readings
0 .	Brown topsoil with some black stained soil mixed with black plastic like pieces	Background Reading at 1 ppm
	to 2 feet BGS.	
2	Reddish brown clay to 5 feet BGS.	NRAB
4		
5	Cobble with reddish brown clay at 5 feet BGS.	NRAB
6	Bedrock at 6 feet BGS. Bottom of Test Pit @ 6 feet BGS.	NRAB
8		
0		
10		
	ervisor: M. Valentino/P. Phillip	
-	epth: <u>0-2' BGS</u> ification: <u>BGX 36/NBFT 36</u>	
-	escription: Brown topsoil black stained clay.	
	Pit Configuration & Depth: 50' long by 6' (deepest point) in depth.	
rnotograp.	hs (See photograph log for additional information): <u>See logbook.</u>	

Additional Notes: Black staining/pieces limited to surface soil (upper 1 feet) in last 10' of excavation (towards northern

Groundwater Encountered:? No

end). Bedrock encountered at 6 feet BGS.

	TEST PIT LOG Test Pit NoTP-10		
Depth (in feet)	Description	HNU Reading	
0	Brown top soil mixed with few black pieces to 2 feet BGS.	NRAB	
2	Reddish brown clay to 5 feet BGS.	NRAB	
4			
	Bedrock encountered between 5 and 6 feet BGS.	NRAB	
6	Bottom of Test Pit @ 6 feet BGS.	NRAB	
8			
10			
10			
Date: <u>6/15</u> Field Super	visor: M. Valentino/P. Philip		
	th: <u>0-4' BGS</u> fication: <u>BGX 37/MBFT 37</u>		
	cription: Brown topsoil mixed with red brown clay and some black plastic like p	ieces.	
-	it Configuration & Depth: 50' long by 6' (deepest point) in depth		
	s (See photograph log for additional information): See logbook.		
	er Encountered:? No	_	
	Notes: Limited black pieces noted in surface soil - Horizontal extent of test pit		
noted to be	ciean .		

	TEST PIT LOG Test Pit NoTPEXP	
Depth (in feet)	Description	HNU Readings (ppm)
0	Black stained topsoil and brown clay to 2 feet BGS.	Background reading at 1 ppm
2	Brown clay mixed with gray clay to 6 feet BGS.	NRAB
4		
		-
6	Reddish brown clay. Bottom of Test Pit @ 6 feet BGS.	NRAB
8		
10		
Sample Dep CLP Identification Sample Des Final Test In Photograph Groundwate Additional	visor: M. Valentino/P. Philip oth: 0-4' BGS fication: BGX 38/MBFT 38 scription: Dark brown stained top soil mixed with black plastic like pieces. Pit Configuration & Depth: 50' long by 6' (deepest point) in depth.	

Depth (in feet)	Description	HNU Readings (ppm)
0	Brown top soil with some black staining noted in top 0.5' mixed with black plastic	Background
	- like pieces to 2 feet BGS.	reading at 1 ppm
2	Brown clay to 4.5 feet BGS.	NRAB
4		
	Red brown clay - Bottom of Test Pit @ 4.5 feet BGS.	NRAB
6		
8		
10		
Field Supe Sample De CLP Ident Sample De Final Test Photograp Groundwa Additional	rvisor: M. Valentino/P. Philip pth: No Sample taken. ification: No sample taken. escription: Pit Configuration & Depth: 50' long by 4.5' (deep point) in depth. hs (See photograph log for additional information): See logbook. ter Encountered:? No Notes: Black staining and black plastic pieces noted 20' from starting point - Locali lack pieces noted in test pit 50' from starting point (southern end).	zed

ARCS II WA 053 Disk 3 3019.PP

APPENDIX I WELL SAMPLING SHEETS

FOREST GLEN

WELL NUMBER: MW-15 DEPTH OF WELL (TD): 29.45

DEPTH TO WATER (DTW): /9. 2 ′ CASING DIAMETER: リ"

PURGE METHOD: Sub. pump

SAMPLE DATE: 9/11/75
SAMPLERS: R. Sav. 11, J. Igbinewe ka
WEATHER CONDITIONS: Sunny, 75%
PUMP RATE: 4gpm
WELL CONDITION: Good

HNU READINGS: Ippm (b/kg).

 $TD(29.45) - DTW(19.2) \times 0.66* = 6.894 - 70$ ONE WELL VOLUME

ONE WELL VOLUME X THREE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1202	8	Clear	5.83	4000 Umiles	13°C	
1204	16	Clear	6.23	3600 Um Hos	1100	
206	24	Clear	6.52		110€	
1208	32	Clear	6.66	3300 Um HOS	11°C	
1210	40	Clear	6.72	3200 NnHas	110 C	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

NOTES:

Targeted Organics_____ 3 12 BODTCL VOCs TKN 2 Hone TCL Extractables 4 12 TAL Metals_ TAL Cyanide____ IL HN03 TOC 250ml Hespy

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 9/11/95
WELL NUMBER: MW-1D	SAMPLERS: RSavilly J. Tahan
DEPTH OF WELL (TD): 5 / 2	WEATHER CONDITIONS: 80°F
DEPTH TO WATER (DTW): 19.15	PUMP RATE: 4gpz 1807
CASING DIAMETER: 9"	WELL CONDITION: On and
PURGE METHOD: SUG. PUMP	HNU READINGS: 3.5 pp in
$TD(S/2) - DTW((9.15) \times 0.66* = 2/$	L VOLUME
$\frac{2}{2} \frac{1}{2} \frac{2}{2} = \frac{1}{2}$	63.5
ONE WELL VOLUME THREE VOLUMES *	*PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1445	424	Clegi	7.30	2600 UMHOS	13.500	
145/	48	Clear	7-07	1400 UmHos	17.00C	
1457	72	Clear	7.02	1400 Um fo	11.500	
	•					

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite_
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: MW-25

DEPTH OF WELL (TD): 29.65 '

DEPTH TO WATER (DTW): 18.55'

CASING DIAMETER: 4"

PURGE METHOD: Bailes

SAMPLE DATE: 9/11/95

SAMPLERS: Mark Klitzke Sharon Buandy WEATHER CONDITIONS: CHarsky 75°F PUMP RATE:

WELL CONDITION: Excellent
HNU READINGS: 0.0 ppm above Bkyod of 1.2 ppm.

 $TD(29.65) - DTW(18.55) \times 0.66* = \frac{7.32}{ONE WELL VOLUME}$

7.33

₌ 21.99

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
) 440	Zejlbes	Silty gray water	6.60	In unks	12.6°C	
1454		Slightly slity water		1,000 undis	11.2°C	
1505	15gallow	clear nater	6.62	1,000 unhos	10.6°C	
	T	clear water	6.59	1 sou unhas	10.5°C	
						Danpled@ 1525

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics_ TCL VOCs ➤

TAL Metals <u></u>

TAL Cyanide >

TOC \

Ammonia

Nitrate/Nitrite COD

TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 9 / 12/95
WELL NUMBER: MW-JP	CAMDIEDO P C 1/1:
DEPTH OF WELL (TD): 6/28'	WEATHER CONDITIONS: Sun 70°C
DEPTH TO WATER (DTW): /8.7	PUMP RATE: 5 9Pm
CASING DIAMETER: 4"	WELL CONDITION: gus
PURGE METHOD: 506 frof	HNU READINGS: //pm at mag///
$TD(G/.G') - DTW(B.9') \times 0.66* = \frac{27}{ONE WELL}$	WEATHER CONDITIONS: Sun-70°C PUMP RATE: 5 9 pm WELL CONDITION: gwd HNU READINGS: /pm at ne//hard 3 gal L VOLUME Perforator
28.39al x 3 =	85 gal
ONE WELL VOLUME THREE VOLUMES *	*PURGE_VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
0836	30	Slightly Cloudy	6.30	1250 Um/fos	110c	Phrolodor
0842	60	1 / 1		1250 Un Has	100 0	Prerol odos
0848	90			1250 UmHos		phenolodos

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 9/13/95
WELL NUMBER: NW-35 DEPTH OF WELL (TD): 30.0	SAMPLERS: (C.) Z
DEPTH OF WELL (TD): 30.0	WEATHER CONDITIONS: Sun John PUMP RATE: 39/m WELL CONDITION: 400/
DEPTH TO WATER (DTW): 19.0	PUMP RATE: 39fm
CASING DIAMETER: 4	WELL CONDITION: Food
PURGE METHOD: 506 - PUMP	HNU READINGS: / 2 pm
$TD(30.0) - DTW(19.0') \times 0.66* = 7.20$	Ag / LL VOLUME
ONE WEL	1
ONE WELL VOLUME THREE VOLUMES = *	*PURGE *OLUMES
ONE WELLY OLDINE THREE VOLUMES .	FURGE #ULUMES

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1348	9,	Clear	5.77	1075 realtos 1100 Um Hos	13.00	5
1351	18	Clear	5.71	1100 UmHos	12.500	
1354	27	Clear	5.70	1150 Unitor	12.750	
		/				

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN WELL NUMBER: MW-3D DEPTH OF WELL (TD): 51.7 DEPTH TO WATER (DTW): 18 75 CASING DIAMETER: 4" PURGE METHOD: 51.4 from 1	SAMPLE DATE: 9/13/95 SAMPLERS: LS, JJ WEATHER CONDITIONS: PC/10/4, 1011, 70°, PUMP RATE: Sgpm WELL CONDITION: 910 HNU READINGS: 1-2 pfm
$TD(5/7) - DTW(1875) \times 0.66* = \frac{2}{ONE WEI}$	7901

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1145	25	Clear	<-67	1000 Um/hos	12.0°C	
1150	50	1/001	5.71	1106 /m408	12.000	
1155	75		C. 70	1100 lim 408	12.0°C	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

WELL NUMBER: (MW-30 DEPTH OF WELL (TD): 17.88 DEPTH TO WATER (DTW): 16.75 CASING DIAMETER: 4" PURGE METHOD: \www.lex	SAMPLE DATE: 9/13/95 SAMPLERS: Shown burney Mark Klitzke WEATHER CONDITIONS: Scattered Successor PUMP RATE: WELL CONDITION: 9000 HNU READINGS: Background
TD(17.5%) - DTW((6.75) X $0.66* = \frac{0.75}{\text{ONE WEI}}$	LL VOLUME
ONE WELL VOLUME THREE VOLUMES	ე.მ5 **PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
0442	1	Slightly Silty	8.43	2420 MHOS	14.5°C	1 gallon was purged for sample.
				<i>,</i>		Well burked only
						\frac{1}{2}

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics \	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS
NOTES: 0910	semple MW 30 collected

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN WELL NUMBER: かん・3 P DEPTH OF WELL (TD): 10,25', DEPTH TO WATER (DTW): 7,95 CASING DIAMETER: 4' PURGE METHOD: かむしゃ	SAMPLE DATE: 9/13/95 SAMPLERS: Shanon Budiay / Mark Klitzke WEATHER CONDITIONS: Suttered diament PUMP RATE: WELL CONDITION: 9200 HNU READINGS: Guckey and
$TD(10,25) - DTW(7.55) \times 0.66* = 1.56$	2
ONE WEL	L VOLUME
$\frac{1.52}{\text{ONE WELL VOLUME}} \times \frac{3}{\text{THREE VOLUMES}} = \frac{3}{4}$	+.56 *PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments	
0925	2,5	5itty Grey	6.88	1370 pmHos	15,7°C		
0935	3.5	sity buy	7.97	1450 JUHAS	15,8%	well is drying up	
				,		well balled dry	
						at 3.5 yallons	
						Dlus Igallon for	imple

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics TCL VOCs	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals__	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES: 09 10 Sample MW 3p collected

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: MW-45

DEPTH OF WELL (TD): סהוג וסי

DEPTH TO WATER (DTW): 16.63

CASING DIAMETER: 4"

PURGE METHOD: Biles

SAMPLE DATE: 9/12/95

SAMPLERS: Simon Budney/ Mark Klitzke

WEATHER CONDITIONS: mostly clean Breezey top abo

PUMP RATE: ~

WELL CONDITION: 900

HNU READINGS: On pom which is background

TD($2\70$) - DTW($16\90$) X $0.66* = \frac{3.35}{\text{ONE WELL VOLUME}}$

3,35

 $\frac{3.35}{\text{ONE WELL VOLUME}} \times \frac{3}{\text{THREE VOLUMES}} = \frac{10.05}{\text{**PURGE VOLUMES}}$

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
0823	١	Very Turvio Brown	7.36	1340 mm Hos	126°C	
0829	3.5	Very who	7.33	1280 nm HOS	11.8%	
0837	7.0	Very Tribia	7.32	1220 hmH0S		Recharge is slow.
as53	jò,5	Vary Turbid	7.27	1210 MHHOS	11.8°C	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics

TCL Extractables

TAL Metals > TAL Cyanide \

TOC ∖

BOD

TKN ∨

Ammonia Nitrate/Nitrite >

COD ∨

TDS `

NOTES:

Sample timeo 900

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 9/12
WELL NUMBER: MW-40	SAMPLERS: PS-JI
DEPTH OF WELL (TD): 6/08	WEATHER CONDITIONS: (Un 75)
DEPTH TO WATER (DTW): 12/	PLIMP RATE: W & FM
CASING DIAMETER: 4"	WELL CONDITION: 9/1/
PURGE METHOD: Sol. from f	WELL CONDITION: 911 HNU READINGS: /pg/matham/
$TD((/ y)) - DTW(/7, /) \times 0.66* = $	1.5 ga 1 LL VØLUME
ONE WELL VOLUME X THREE VOLUMES =	**PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1555	30	11201	4,53	1100 flmires.	12.00 00	
, (1.1	65	Hen		1100/llm 40s		,
/ - / (-	a	Mear	654	1:00 Luntis	12.000	
					_	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: M心っちら

DEPTH OF WELL (TD): 27.40 '

DEPTH TO WATER (DTW): 16.13 '

CASING DIAMETER: 1;

PURGE METHOD: bule

SAMPLE DATE: 9/12/95

SAMPLERS: Francis Budney Mark Klitcher WEATHER CONDITIONS: Clock Temp 20°F

PUMP RATE: -

WELL CONDITION: 4000 HNU READINGS: 1.0 ppm of wellhood

1.7 ppm background

TD(27.90) - DTW(16.13) X 0.66* = 7.77

ONE WELL VOLUME

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1035	1,5	Sugutty sitty	7.48	1280 MMH05	13,400	
1047	7.5	Silting yary	7.48	1280 LH165	13.0°L	
11 04	6,5	Sitty gruy		1250 juntos	13,000	
1150	24	SIFWHY SITZ,	7.19	1180 Juntos	12.8°(

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics _\ TCL VOCs

TCL Extractables

TAL Metals 🕆

TAL Cyanide TOC \

Ammonia \

Nitrate/Nitrite

COD \

TDS \setminus

NOTES:

Sample allected 1130

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: MW-52

DEPTH OF WELL (TD): 51,45

DEPTH TO WATER (DTW): 14,21

CASING DIAMETER: 4"

PURGE METHOD: PUMP

51,451 TD(54) - DTW(16,2) X 0.66* = 23,23

ONE WELL VOLUME

 $\frac{23.23}{\text{ONE WELL VOLUME}} \times \frac{3}{\text{THREE VOLUMES}} = \frac{(9.69)}{\text{**PURGE VOLUMES}}$

SAMPLE DATE: 9/13/95

WELL CONDITION: Sw HNU READINGS: Backgrund

SAMPLERS: Sharon Burney/Mark Mitzke

PUMPRATE: 4.3 gailors / minure

WEATHER CONDITIONS: Cloudy Toup GS &

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1102	9	gightly stity	9.04	BBO & MHOS	11.7%	
1104	73	Daring	8,95	1220 JUNIOS	11.40	
1111	47	Clean	8,91	1230 UMAOS		
1117	70	Chaus	5.87	1220 , MHUS		

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics TCL VOCs TCL Extractables > TAL Metals \

TAL Cyanide \

TOC \

BOD ➤

TKN \ Ammonia

Nitrate/Nitrite

COD ∖

TDS >

NOTES:

MS msD for CLP Parameters Collected Souple at 11:35

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN MW-65
WELL NUMBER:
DEPTH OF WELL (TD): 24,000
DEPTH TO WATER (DTW): 18.
CASING DIAMETER: ↓"
PURGE METHOD: Tailer

SAMPLERS: Some Brown Mark Klitzke WEATHER CONDITIONS: Party cloudy Temp 75° (PUMP RATE:— WELL CONDITION: Open HNU READINGS: Bucky Yourd

TD(29.00) - DTW(18.15) $\times 0.66* = \frac{6.765}{\text{ONE WELL VOLUME}}$ ONE WELL VOLUME

THREE VOLUMES

**PURGE VOLUME

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1340	2	grey tsilly	11.07	775 umbos	13.10	
1354	7	I I	11-01	650 morhos	12.000	
1408	14	clear	10.34	600 makes	12.4.0	
1430	2/	clear.	9.76	600 L	11.700	
						1450 1430 eaple to

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics BOD TCL VOCs TKN Ammonia Nitrate/Nitrite TAL Cyanide COD TOC TDS TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 9/18/95
WELL NUMBER: MW-6D DEPTH OF WELL (TD): 55.65	SAMPLERS: Show Bud ney! MW WEATHER CONDITIONS: Portly Clos PUMP RATE: 6 gpm Temp 20° f
DEPTH OF WELL (TD): 55.65	WEATHER CONDITIONS: Potly Clo
DEPTH TO WATER (DTW): 18.54	
DEPTH TO WATER (DTW): 18.54 CASING DIAMETER: 4"	WELL CONDITION: GOOD
PURGE METHOD: 2" PUMP	HNU READINGS: Buckground (0.
$TD(55.65) - DTW(18.56) \times 0.66* = \frac{24.0}{0000}$	•
· ·	- 1.1
x <u></u>	= 73,44
ONE WELL VOLUME THREE VOLUMES	**PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1417	10	Silty	9.04	\$ 1150 pMAOS	B.6°C	
1420	25	Slightly Slty	9.04	1070 mHOS	12.76	
1424	50	Clearing	8,99	1110 mm HOS	11.9°C	
1429	15	Clean	896	1100 µMHDS	11.9°C	
1452 9	utoff	permp.		· · ·		

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD_~
TCL VOCs	TKN
TCL Extractables	Ammonia <u>~</u>
TAL Metals	Nitrate/Nitrite \
TAL Cyanide	COD
TOC	TDS

NOTES:

1500 collected MW-60 and Duplicate MW-105

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 9/12/95 SAMPLERS: R. Sau: 11, J. Ig Sihewake WEATHER CONDITIONS: Sun, 75
WELL NUMBER: MW-75	SAMPLERS: R. Savill, J. Ig Sinewake
DEPTH OF WELL (TD): 28-8	WEATHER CONDITIONS: 500, 75
DEPTH TO WATER (DTW): 12.3	PUMP RATE S 9 PM
CASING DIAMETER: Y"	WELL CONDITION: Good HNU READINGS: 2-3 At You
PURGE METHOD: Sof Por	HNU READINGS: 2-3 At Son !
$TD(28.8) - DTW(14.3) \times 0.66* = $	9211
ONE WEL	L VOLUME
ONE WELL VOLUME THREE VOLUMES = *	33 ga / *PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1039	12	Clear	6.13	650 MAHOS	13.5°C	
1013	24	Clea.	6.26	650 Um/405	13.500	
1077	36	Clear & Con	6-32	650 jum/tos	14.0°C	
		,		.,		

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite_
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 9/12/95
WELL NUMBER: M V-07D	SAMPLERS: R. Sa. 11; J. Igbineweker WEATHER CONDITIONS: P. Clardy, 73%
DEPTH OF WELL (TD): \$ 3.0	WEATHER CONDITIONS: P. Clardy, 73 /
DEPTH TO WATER (DTW): / 9. 0	PUMP RATE: 5 9 Pm WELL CONDITION: 900
CASING DIAMETER: 4'	WELL CONDITION:
PURGE METHOD: 506 PomP	HNU READINGS:
TD(≤ 3.0) - DTW(19 0) X $0.66* = \frac{20.4}{\text{ONE WEL}}$	L VOLUME
$\frac{1}{2} \frac{1}{2} \frac{4 \sqrt{\alpha}}{\sqrt{\alpha}} \frac{1}{2} = \frac{1}{2}$	*PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1220	2,	Cloudy	6-96	1250 LEM 1405	1300	
1225	50	Cloudy	6.2	1200 Mm 1	12500	
1333	75	Shehin Condy	6.61	1200 lin 41	はつのこ	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

				-		
DEPTH OF WELL (TD): 32.60 DEPTH TO WATER (DTW): 15 70 CASING DIAMETER: 4 PURGE METHOD: 5-6 P-6			WEATHER PUMP RAT WELL CON HNU REAI	SAMPLE DATE: 9/15/95 SAMPLERS: RS. JI WEATHER CONDITIONS: Ra. 7-70 F PUMP RATE: 39/m WELL CONDITION: 200 A HNU READINGS: 1-2 pm		
TD(32 4) - DTW(15.7) $\times 0.66* = \frac{\sqrt{9}}{\text{ONE WELL VOLUME}}$,,	
ONE WELL VOLUME THREE VOLUMES ***PURGE/VOLUMES						
Time	Gallons Purged	Purge Water Description	На	Conductivity	Temp.	Comments

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
0329	12	Clear	6-38	525 Unites	12.7500	
2833	24	Clear	6.01	525 Umitos	12.7500	
0837	36	Shirth L'endy				

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

The second secon
SAMPLE DATE: 9/13/95
SAMPLERS: RS, JJ
WEATHER CONDITIONS: P. Clouds - 700 pt PUMP RATE: Sypan WELL CONDITION: Good HNU READINGS: 1-2 pg
PUMP RATE: 54Pm
WELL CONDITION: Good
HNU READINGS: /-2 645
LI VOLUME
**PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1300	25	Slightly County	5.55	1200 Mm/405	12.000	
1305	50	Alighin Chudy.				
1010	75	Slighly Woody.	556	1200 Min/105	12.000	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS
	,

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: MW 45

DEPTH OF WELL (TD): 27.06

DEPTH TO WATER (DTW): 10.25'

CASING DIAMETER: ↓"

PURGE METHOD: Builer

SAMPLE DATE: 9/11/95

SAMPLERS: S Bud ney + Mark klitzkt

WEATHER CONDITIONS: CIEM - Temp 70 9

PUMP RATE:

WELL CONDITION: good HNU READINGS: Bookground

 $TD(27.00') - DTW(10.25') \times 0.66* =$ 11,055

ONE WELL VOLUME

11:055

_ 33.165

ONE WELL VOLUME THREE VOLUMES

**PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
11:38	2	Turbia - very	7.14	740 pMHUS	11.8°C	
11:57	11	Slightly Turbld	6.32	780 _H M405	11.6°C	
12:33	22	Slightly Torbid	6.30	800 jumitios	11.300	
12:38	33	Clean	6.34	800 juntos	11.50	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics

TCL VOCs \

TCL Extractables

TAL Metals

TAL Cyanide

TOC 🥆

BOD

TKN

Ammonia

Nitrate/Nitrite

COD >

TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

CDM FEDERAL PROGRAMS CORPORATION									
FOREST GLEN WELL NUMBER: M4-9D DEPTH OF WELL (TD): 56-3 DEPTH TO WATER (DTW): 17.08' CASING DIAMETER: 9'' PURGE METHOD: 566 forp SAMPLE DATE: 9/1/95 SAMPLERS: R. Sav. 1/; Jos. Inductor WEATHER CONDITIONS: 5vn, 80° F WELL CONDITION: 900 d HNU READINGS: 5 ppm									
TD($S(3')$) - DTW($/709'$) X $0.66* = \frac{26 \text{ ga}}{\text{ONE WELL VOLUME}}$ ONE WELL VOLUME THREE VOLUMES ***PURGE**OLUMES									
Time	Gallons Purge Water Time Purged Description pH Conductivity Temp. Comments								
1636	30	Clear-sl.closs	7.80	1150 MmHos	11° C	Odor			
1642	160	Clearst days	7. 7 0	1150 Um Hus	01ء	odor			
1648	90	Close Cl ch	1763	1150 UmHos	100 0	2/2/			

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

Rose =

CDM FEDERAL PROGRAMS CORPORATION

FOREST GLEN	N
-------------	---

WELL NUMBER: MW 15

DEPTH OF WELL (TD): 30.5

DEPTH TO WATER (DTW): 17.2

CASING DIAMETER: 4"

PURGE METHOD: Subnersable pump

SAMPLE DATE: 11/13/95-

SAMPLERS: Jim Romic Seatt Kirchen WEATHER CONDITIONS: Overrost, Florries, brown

PUMP RATE: 24.5 gal
WELL CONDITION: good
HNU READINGS: none taken

TD(
$$3\omega.5^{-}$$
) - DTW($/7.2$) X $0.66* = \frac{\text{C.S}}{\text{ONE WELL VOLUME}}$

$$\frac{4.4}{\text{ONE WELL VOLUME}} \times \frac{4}{\text{THREE VOLUMES}} = \frac{35.2}{\text{**PURGE VOLUMES}}$$

Time	Gallons Purged	Purge Water Description	₩ ;;# pH	Conductivity	Temp.	Comments
1102	8.8	clark		1800	110	
1105	17.6	Claroly		1900	11°C	
1104	26.4	Charer sil.		1600	13'C	
1111	35.2	Clearer sola		1600	13.5°C	<u> </u>

WELL SAMPLED FOR:

BOD____ TKN___ Ammonia____ Targeted Organics / TCL VOCs__/ TCL Extractables Nitrate/Nitrite____ TAL Metals _____
TAL Cyanide ____ COD_/ TDS__ TOC /

NOTES:

Used I down for perze water

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: MW-ID

DEPTH OF WELL (TD): 53.5

DEPTH TO WATER (DTW): 13.2

CASING DIAMETER: 4"

PURGE METHOD: Submersable pump

SAMPLE DATE: 11/13/45

SAMPLERS: Scott Kirchaer, Jimfomic

WEATHER CONDITIONS: overcast, Flurics, bring

PUMP RATE: ≈ 49al/nin WELL CONDITION: Good

HNU READINGS: None token

TD(
$$53.5$$
) - DTW(13.2) X $0.66* = \frac{26.5}{\text{ONE WELL VOLUME}}$

$$\frac{26.5}{\text{ONE WELL VOLUME}}$$
 X $\frac{3}{\text{THREE VOLUMES}}$ = $\frac{79.5}{\text{**PURGE VOLUMES}}$

Time	Gallons Purged	Purge Water Description	pH	Conductivity	Temp.	Comments
210	30	Clear 1.5 days		1200	12°C	
213	55	Claur 1.8 salial		1200	12°C	
217	85	Claus 1. This.m		1200	12 6	
·						

¹⁺x fH meter net functioning

WELL SAMPLED FOR:

NOTES:

Usal 2 Droms for purge water.

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

	FOREST GLEN WELL NUMBER: MW-25 DEPTH OF WELL (TD): 30.0' DEPTH TO WATER (DTW): 12.22' CASING DIAMETER: PURGE METHOD: TD(30.0') - DTW(12.22') X 0.66* = 11.73 gal ONE WELL VOLUME									
	ONE WELL VOLUME 11,73 gal x 3 = 35, 2 gal									
	Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments			
•	1051	11,73	Turpid	7.5		9.0				
•	161	35.2 58.6	Okar	7.51 7.16		2,9 9,4	Svolymes 1	were		
				-		,	ought ben	useof		
	*Conversi	on factor f	or four inch diame	ter wells	- 0.66 gallons o	New f water in	l linear foot of wa	to the mo		
**A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.								radin		
WELL SAMPLED FOR:										
	WELL SAMPLED FOR: Targeted Organics BOD TCL VOCs TKN TCL Extractables Ammonia TAL Metals Nitrate/Nitrite TAL Cyanide COD									

FOREST GLEN WELL NUMBER: MW 2D DEPTH OF WELL (TD): 61.6' DEPTH TO WATER (DTW): 12.75' CASING DIAMETER: PURGE METHOD:	SAMPLE DATE: 11/15/95 SAMPLERS: AH 4-SM WEATHER CONDITIONS: STOWY 32°F PUMP RATE: WELL CONDITION: HNU READINGS:					
$TD(61.6') - DTW(12.75') \times 0.66* = \frac{32.24 \text{ gas}}{\text{ONE WELL VOLUME}}$						
32.24 gal x 3 = one well volume three volumes	96.72 gol **PURGE VOLUMES					
	· · · · · · · · · · · · · · · · · · ·					

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1313	8	art Rump				
1319	3224	Cloudy suffin	7.13	990	8.7	
1325	64.48	/4 Color	6.96	1020	9.0	
1.331	96.72	at.	6.95	1000	8.8	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

				•				
	JMBER: / F WELL (O WATER DIAMETE	MM 33 TD): 30,01 R(DTW): 12.45	,'	WE. PUN WE	ATHER MP RAT	E: IDITION:	14/95 SM ONS: CKO	ir 32°
TD(30,0	ý) - DTW((13.95) X 0.66* =	ONE W	1.25 ÆLL VO	gal DLUME			
//, ONE WEI	25gal L VÓLUI	X 3 ME THREE VOL	UMES	= <u>**PU</u>	33.7. RGE VO	<u>NU</u> DLUMES		
	Gallons	Purge Water						

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
0921	0	Fart Pump	7.79	600 94		
0923	11,25	clear	7.46 M	600	9,5	
0935	22.50	И	7.46	600	10,2	
0938	33.75	4	7.30	610	9.9	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES: Stopped pumping in between first and Geond volumes due to problems with generator MW3S was also sampled as 105 for a duplicate sampling.

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: ////LA SAMPLERS: AH + SA
WELL NUMBER: MW 3D	SAMPLERS: AH +SA
DEPTH OF WELL (TD): 5,7'	WEATHER CONDITION
DEPTH TO WATER (DTW): 12,63'	PUMP RATE:
CASING DIAMETER:	WELL CONDITION:
PURGE METHOD:	HNU READINGS:
TD(5/,7') - DTW(/2,83') X 0.66* =	25.65 gal
01	TE WELL MALLE HE

ONE WELL VOLUME

ONE WELL VOLUME THREE VOLUMES = 75.96 gal ***PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	Temp	Conductivity	PH Tempshi	Comments
0954	08/	art Pump				
0458	I	twist promyell		650	7.10	
		cloudy	1010	600	7.05	
	75.96	<i>"</i> '	10.2	700	7.02	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs TCL Extractables	TKN Ammonia /
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS/_

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN WELL NUMBER: MW 3P DEPTH OF WELL (TD): 10.5 DEPTH TO WATER (DTW): 1749.61 CASING DIAMETER: 45 PURGE METHOD: Hand Bailed	SAMPLE DATE: 11/16/97 SAMPLERS: Scott Kirchen Jin Ronig WEATHER CONDITIONS: Ourrest / saming PUMP RATE: — WELL CONDITION: Good HNU READINGS: None
TD(10.5) - DTW(17.4) X 0.66* =	L VOLUME
$\frac{4.81.12}{\text{ONE WELL VOLUME}} \times \frac{3}{\text{THREE VOLUMES}} = \frac{3}{1.12}$	*PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
No	Read	liga takon	j-51	purged	3 va	lunes o
Same	hel si			purchal		nell
0						

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs/_	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES:

Foke Took 3 will volume, and sample

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 11/15/75
WELL NUMBER: MW 30	SAMPLERS: Scott Kircher
DEPTH OF WELL (TD): 17.8	WEATHER CONDITIONS: Ourseast Swary
DEPTH TO WATER (DTW): 13.6	PUMP RATE: —
CASING DIAMETER: 4"	WELL CONDITION: Good
PURGE METHOD: 4 Sabarate surp	HNU READINGS: None
$TD(17.4) - DTW(13.4) \times 0.66* = 2.7$	<u>77</u>
ONE WEL	L VOLUME
277 X 3 = *	*PURGE VOLUMES

Time	Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1350	Sumplet	Clear	No	+ Tak	14	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS
	_

NOTES: Sampled well shought it would be I day . Samples falcon wotestactor remained in well - bailed dry approximatly 8 gallons.

Del not take any ready was not expectly to be pergig well.

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

WELL NUMBER: MW 308 DEPTH OF WELL (TD): 17.9 DEPTH TO WATER (DTW): 15-9 SAMPLE DATE: 11/12 PUMP RATE:						Kirchner, Jim Romis
PURGE N		hand Bailed			•	Vone
TD() - DTW() X 0.66*	$= \frac{5\pi}{\text{ONE V}}$	vell VOLUME	Ē	
ONE WE	LL VOLUI	XXTHREE VO	LUMES	= <u>See</u> **PURGE V	olumes	
			_			
Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1):0	not	purge	, (0	Nected 1	- ha-	342
			-			
*Convers	ion factor f	or four inch diame	eter well	s - 0.66 gallons o	of water in	1 linear foot of water.
		ee well volumes wercent or five well	_			ue until readings
WELL SA	AMPLED F	FOR:				
Targeted (TCL VOC	Organics			BOD TKN	-	,
ΓCL Extra ΓAL Meta	actables	_		Ammonia_ Nitrate/Nit		
TAL Cyaı TOC	nide			COD TDS	-	
NOTES:						

went Back to sample TCL/TAL, and not rechard enough to sample for all prometers

ΓN	D	EST	EN
			 4 17 4 1

WELL NUMBER: MW-4-5

DEPTH OF WELL (TD): 22-01

DEPTH TO WATER (DTW): 11.20'

CASING DIAMETER: 4"

PURGE METHOD: Submersible Pump

SAMPLE DATE: 11/13/95 SAMPLERS: OPH, SM

WEATHER CONDITIONS: Cloudy, cold 35°F

PUMP RATE:

WELL CONDITION:

HNU READINGS:

$$TD(22.0) - DTW(11.20) \times 0.66* = \frac{7.13 \text{ gal}}{ONE \text{ WELL VOLUME}}$$

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1200	7501	Brown , turbid	6-82	1300 unhos	10.3	
1215	14841	// //	6.93	_	1	
1230	23 gal	11 11	6.82	1500	10-3	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics BOD V TCL VOCs Ammonia //
Nitrate/Nitrite TCL Extractables TAL Metals \checkmark TAL Cyanide COD TOC 🗸

NOTES:

Collected sample at 1300

ross pulcy will

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: MW-4D

DEPTH OF WELL (TD): 61.3

DEPTH TO WATER (DTW): 11.90

CASING DIAMETER: 4"

PURGE METHOD: Submors. pump

SAMPLE DATE: 11/13/95

SAMPLERS: AH, SM

WEATHER CONDITIONS: Cloudy cold 35°F

PUMP RATE:

WELL CONDITION:

HNU READINGS:

 $TD(61.30') - DTW(11.90) \times 0.66* = \frac{32.6}{ONE WELL VOLUME}$

32.6 X 97 = 97.8 gallons
ONE WELL VOLUME THREE VOLUMES **PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1527	32	turbed their	6.78	1000	9.9	
1533 1540	32_	"	6.81	900	8.5	
1540	32	Λ	6.78	990	9.5	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics TCL VOCs____ TCL Extractables \checkmark TAL Metals TAL Cyanide

Ammonia 🗸 Nitrate/Nitrite

COD TDS ~

BOD

NOTES:

TOC \sim

Collected sample at 1555

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 11/14/92
WELL NUMBER: MW-55	SAMPLE DATE: 1//19/93 SAMPLERS: A-H , SM
DEPTH OF WELL (TD): 28	WEATHER CONDITIONS
DEPTH TO WATER (DTW): 10.39' CASING DIAMETER: 4"	PUMP RATE:
CASING DIAMETER: 4"	WELL CONDITION:
PURGE METHOD: Submorable Pump	HNU READINGS:
TD(28') - DTW(10.39) X $0.66* = \frac{1}{ON}$	// - 6 gol IE WELL VOLUME
ONE WELL VOLUME THREE VOLUM	= 34.8 gal
ONE WEEE TOPONE THICK TOPON	IES I CROE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
0912	1	Clear	7.15	800	10.3	
0924	2	C160 r	6-75	890	10.8	
092 <u>4</u> 0933	3	C/60r	6.51	870	10.4	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES:

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: 11/14/17
WELL NUMBER: MW-5D DEPTH OF WELL (TD): 51.7' DEPTH TO WATER (DTW): 10.77'	SAMPLE DATE: 11/14/95 SAMPLERS: AH, SM
DEPTH OF WELL (TD): 51./	WEATHER CONDITIONS:
DEPTH TO WATER (DTW): 10-77	PUMP RATE:
CASING DIAMETER: 4"	WELL CONDITION:
PURGE METHOD: Submon Pump	HNU READINGS:
TD(51-7) - DTW(10.77) X 0.66* = _	27.05.0 NE WELL VOLUME
C	NE WELL VOLUME

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
0448		Clear	662	i pi		
0953	/	Cleur	6-62	l _	10.3	
1006	2	C160r	6.60	950	10.1	
1012	3	C/605	6.62	940	10.2	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES:

Stort

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

	•
FOREST GLEN WELL NUMBER: MW-65	SAMPLE DATE: 11/14/95 SAMPLERS: AH +SM
DEPTH OF WELL (TD): 39.0 '	WEATHER CONDITIONS: rainy 35° E
DEPTH OF WELL (TD): 39.0 ' DEPTH TO WATER (DTW): 12,41'	PUMP RATE:
CASING DIAMETER:	WELL CONDITION:
PURGE METHOD:	HNU READINGS:
TD(\mathcal{P} , \mathcal{O}) - DTW(\mathcal{P} , \mathcal{U}) X 0.66* =	10.95 gal

TD(
$$29.0$$
) - DTW(12.41) X $0.66* = \frac{10.95}{\text{ONE WELL VOLUME}}$

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1214		Started Pur	up			
1216	10:95	· ·	7,28	<i>3</i> 00	10.1	
	4.90	,,	7.20	400	10,5	
1220	32.85	<i>II</i>	7.15	500	9.6	
1225	13.70	<i>J</i> .	7.10	500	9,9	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES:

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN MW- WELL NUMBER: 6D DEPTH OF WELL (TD): 56.5 DEPTH TO WATER (DTW): 13,14 CASING DIAMETER: PURGE METHOD:	SAMPLE DATE: 1/14/95 SAMPLERS: AH & SM SM NAMY 37 WEATHER CONDITIONS: Clear NAMY 37 PUMP RATE: WELL CONDITION: HNU READINGS:
	L VOLUME
	85.85 gal *PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1415	J	Part Parge				
1429	28.62	Cloudy "	7,13	890	10.2	
1425	57.24	A ! ! !	6.84	87D	9.8	
1431	<i>85.8</i> 5	11	6.7	870	98.8	
					8914 11/14/05	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES:

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

WELL NUMBER: mw75 DEPTH OF WELL (TD): 29.8

DEPTH TO WATER (DTW): 6.7

CASING DIAMETER: 47
PURGE METHOD: Sobresable

SAMPLE DATE: 11/13/95

SAMPLERS: Jin famic, South Kincher

WEATHER CONDITIONS: OVEREST, BETTER, flores

PUMP RATE: 5 gal/min WELL CONDITION: Good HNU READINGS: Non Taken

$$TD(29.4) - DTW(6.7) \times 0.66* = \frac{15.2}{ONE WELL VOLUME}$$

$$\frac{15.2}{\text{ONE WELL VOLUME}} \times \frac{3}{\text{THREE VOLUMES}} = \frac{45.6}{\text{**PURGE VOLUMES}}$$

Time	Gallons Purged	Purge Water Description	pΗ̈́	Conductivity	Temp.	Comments
1602	15.2	Clour led and		252'	120	
1605	30.4	Clear Institut		300	13°C	
1604	45.6	clear 1.4 Ledent		300	13°C	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

NOTES:

Used I draw for page water.

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: MW7D

DEPTH OF WELL (TD): 54.7

DEPTH TO WATER (DTW): 12,6

CASING DIAMETER: "4"

PURGE METHOD: Submersable well

SAMPLE DATE: 11/14/95

SAMPLERS: Scott Kirchar & Jim Romig WEATHER CONDITIONS: over cost, rainy (mosy)

PUMP RATE: 25 gallarin

WELL CONDITION: Guel HNU READINGS: No Ruel, "O"

TD(
$$54.7$$
) - DTW(12.6) X $0.66* = \frac{27.7}{\text{ONE WELL VOLUME}}$

$$\frac{27.7}{\text{ONE WELL VOLUME}} \times \frac{3}{\text{THREE VOLUMES}} = \frac{3.1}{\text{**PURGE VOLUMES}}$$

Time	Gallons Purged	Purge Water Description	pH	Conductivity	Temp.	Comments
912	27	Set Comments		1000	100	Slighty
917	55			1000	11'C	Elearer
124	83	Į Į		1000	11'C	Clear

XXX No PH meter

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES: USE 2 Drum, les purge water Sliph Solfer smell

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN

WELL NUMBER: MW83 DEPTH OF WELL (TD): 34.1

DEPTH TO WATER (DTW): 12.2

CASING DIAMETER: 4"

PURGE METHOD: Submissible pump

SAMPLE DATE: 11/14/75
SAMPLERS: South Reinchar, Jim Romis
WEATHER CONDITIONS: Owners to rainy

PUMP RATE: 5 gal/min WELL CONDITION: Gad

WELL CONDITION: Good HNU READINGS: 13.5 (barbagears 4.3)

TD(34.1) - DTW(12.2)
$$\times 0.66* = \frac{14.5}{\text{ONE WELL VOLUME}}$$

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1126	14.5	Clear	463	400	11.6	MS/MSD
1142	29	51. gly	\$ 10	420	11.2	
1216	43.5	SI Shily clarks	8.05	450	11.	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics TCL VOCs / Ammonia__/
Nitrate/Nitrite__/ TCL Extractables TAL Metals / TAL Cyanide TOC___

NOTES: 1) MS/MSD taken at This well.

2) Used 1 Drum for purge water

3) Could not get pump for enough lown well had to

Dail to 3rd well volume.

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FO	D	FST	Γ	I	ΓN

WELL NUMBER: MW & D
DEPTH OF WELL (TD): 56.5

DEPTH TO WATER (DTW): 14.4

CASING DIAMETER: "4"

PURGE METHOD: Submorable pump

SAMPLE DATE: 11/14/95

SAMPLERS: Set Firehore, Jim Roming

WEATHER CONDITIONS: overces 7, raing PUMP RATE: 5 galfores 5 tgalforin se virilg-

WELL CONDITION: Goe

HNU READINGS: "つ"

$$TD(5Z.5) - DTW(14.8) \times 0.66* = \frac{27.5}{ONE WELL VOLUME}$$

$$\frac{27.5}{\text{ONE WELL VOLUME}} \times \frac{3}{\text{THREE VOLUMES}} = \frac{82.5}{\text{**PURGE VOLUMES}}$$

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1503	27.5	clark	8.26	1000	10.4	
1508	55	Clearer	7.91	980	11.4	
1513	82.5	Clearer	7,47	1050	11.0	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

NOTES: Used 20 rums for perge water
Strong Salher type smell to well and drom No HNV readily

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN	SAMPLE DATE: ///s/75
WELL NUMBER: MW 95	SAMPLERS: Scott Kirchner, Jim Rome
DEPTH OF WELL (TD): 27.0	WEATHER CONDITIONS: Overcust snowing
DEPTH TO WATER (DTW): 10.6	
CASING DIAMETER: 4°	PUMP RATE: 4 get/min 6"+ WELL CONDITION: Good
PURGE METHOD: 5,5 mm 966 pcmp	HNU READINGS: Nenz poor weather
•	
$TD(27.0) - DTW(10.6) \times 0.66* =$	10.8
ONF	WELL VOLUME

10.9	X	4	=	43.2
ONE WELL VOLUME	TH	REE VOLUMES	•	**PURGE VOLUMES

Time	Gallons Purged	Purge Water Description	pН	Conductivity	Temp.	Comments
1154	12	Stightly Clark	685	650	10.5	
1157	24	Same	656	700	90	
: 200	36	Clearer	6.49	800	90	
1263	48	(1141	643	800	9.0	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals	Nitrate/Nitrite
TAL Cyanide	COD
TOC	TDS

NOTES: PH indicated low buttery
'V Sted I drum for purge water

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

FOREST GLEN
WELL NUMBER: MW 9 D
DEPTH OF WELL (TD): 56.3
DEPTH TO WATER (DTW): 10.8
CASING DIAMETER: 4"
PURGE METHOD: Submersuble po
•

	SAMI EL DATE. III 1817
	SAMPLERS: Scatt Kirchner, Jim Roming
	WEATHER CONDITIONS: Overcaste snow 6"+
.8	PUMP RATE: 5 gal/min
	WELL CONDITION: Good
pump	HNU READINGS: None Buil weather

SAMPLE DATE: 11/18/95

TD(56.3) - DTW(
$$10.4$$
) X 0.66 * = 30.0
ONE WELL VOLUME

 $\frac{30.0}{\text{ONE WELL VOLUME}} \times \frac{3}{\text{THREE VOLUMES}} = \frac{90}{\text{**PURGE VOLUMES}}$

Time	Gallons Purged	Purge Water Description	рН	Conductivity	Temp.	Comments
1075	930	States Gland	992	900	11.0	
1050	60	Same	646	880	11.0	
1055	90	Claures	643	820	11.0	

^{*}Conversion factor for four inch diameter wells - 0.66 gallons of water in 1 linear foot of water.

WELL SAMPLED FOR:

Targeted Organics	BOD
TCL VOCs	TKN
TCL Extractables	Ammonia
TAL Metals /	Nitrate/Nitrite
TAL Cyanide /	COD
TOC	TDS

NOTES: Used 2 Diens for Page mater

^{**}A minimum of three well volumes will be purged. Purging will continue until readings stabilize within 10 percent or five well volumes have been removed.

APPENDIX J WETLAND DELINEATION DATA

WA Name/No. For as Site Location No. O Date 4 25 95	st Glen 1053-2130 pera falls, NY	Community Type meadow	Affeld Rosiu
	VEGETAT List 3 dominant species per stratt		
<u>Stratum</u>	Common Name/Scientific Name		tor Status
Herbs	Red Osier dogwood	Cornus stolonife	m Anult
	Late goldenrod/	Solidago giganti	ra Daul
	Wild Strawberry/	Fragaria canade	STACK FACK
	- TO TOOTAL		_ •
	Oxege daisy/Ch	Fragarica canade fled to genus and sp rysanthemum leveo	Not given
	, , ,	leveo	unthemum FAC
		onale >50% OBL, FAC	W, and/or FAC
Approximate Depth	SOIL. Munsell Chart Value/Ch		
0-1'	5 Gy 4/1 mas	trix & gley	
. 44 1)	5 GY 6/1 mi	other) \sim (
1一什"	10 YR 5/6 mo		
Soil types, as mapped by	MR4/2 matrix 10 41 SCS Chesen (0-200 sl	25/4 mottle, IQR	4/8 mottle
On hydric soil list?	atemont 15	trix chroma of 2	, ,
Is the hydric soil criterio		nottled soils	OF 1835 IX
	HYDROL	OGY C	
Is ground surface inundated Depth to saturated soil_		at Surface	
Field evidence of surface Is the wetland hydrology	inundation/soil saturation criterion met? Yes Rational	e Saturated withh	12 inches
COMMENTS Polye	strone broad-leaved	decidoous scrub	shrub
Is the plant community a	wetland? Yes		

WA Name/No. To Site Location Nice Date 4/25/	agara falls, NY	Community Type 11)00	dland gmont + Cornell Rosiu
	VEGETAT List 3 dominant species per stratt		
Stratum Trees	Common Name/Scientific Name Blackash/ Fraxinus nigra	·	Indicator Status
Sapling/Shrubs- Herbs-	Black ash/Fraxinus rush-gartic/Allium moneywort/Lysimac	sibiricum F	ACW AC
	large-leaved avens/Gen		OBL FACW
		onale 750% of do	minants FAC, FACW,
Approximate Depth	SOIL. Munsell Chart Value/Ch	roma <u>Descript</u>	
0-17"	Gleyed N3/0 10 VR 3/1 matr (10 YR4/2 mott	Organia ik mottled leats	c A horizon 1 +gleyed
On hydric soil list?	d by SCS Odessa (0-270 Hes in Lakemont is Iterion met? <u>Yes</u> Rationale <u>Mod</u>	slope) w/possible bix chroma of a mottled soil	in depressions 2 or less in
Depth to saturated: Field evidence of su		ed nearby - withing ur-stained leaves.	in meandering stream) some drift lines Vin 12 inches
COMMENTS 1	Palustrine forested	broad-leaved	deciduous wetland
Is the plant commu	nity a wetland? Yes 3 coteria are me	t	

Site Location	Forest Glen/053-2L	Sample Location 5 Community Type 1	Loodland Lygmont & Comell Rosiu
	VEGET. List 3 dominant species per str		ata.
Stratum Trees	Common Name/Scientific Nam Big Shellbark hickory/C White Oak/Quercus Black asla (Family)	anya laciniosa	Indicator Status FACU
Shribs herbs	Black ash / Fraxinus Black ash / Fraxinus Purple-fruited chokeben Gray dogwood/Corne The Moneywort/Lysim	nigra 4/aronia atro	FACW Purpurea FACW
	s that are OBL, FACW, and/or FAC 7 c vegetation criterion met? Yes Ra	85% Other indicato	n
	54R 3/2 mate 7.5 4R 5/3 mate pped by SCS Cassa W/ Late st? Lake month 3 slopes)	ix mot	ted / no gleying in drainages
Is ground surface Depth to saturate Field evidence of	HYDRO inundated/saturated (depth)? 4es d soil 35 inches surface inundation/soil saturation for the surface inundation met? 4es Ration	nearby (wlin 5%	oils 7:) all sides (Varies—inches) Dears to have draininge in 12 inches Partin
Is the plant comm	munity a wetland? Yes	ave met	

WA Name/No. Site Location Date	rost Glen (053-2130) ngara Falls, NY	Sample Location 7 Community Type Was Samplers Naucy Zy	adland gmont & Cannell Rosiu
	VEGETAT List 3 dominant species per stratt		1.
Stratum	Common Name/Scientific Name		Indicator Status
Trees	american beech	Fagus grandifolio	a FACU
	White Oak Ove	rrus all	FACU-
~	black ash/Fraxin	1US pins	EA(II)
Shrubs	orple-truited chaken	100000	Tricw
	red maple/acer	ivbrima a	mopurpured FACW
	- Deech/Fac	gus grandifolia	FAC
herbs	11001 1114/ Eruthronic	m americanum	FAC
Percent of species the ls the hydrophytic ve	nat are OBL. FACW, and/or FAC_>6	Other indicators	vatus FAC shallow roots-beecher FACW, and/or FAC red.
D . I	SOILS		
Approximate Depth	Munsell Chart Value/Ch		nic A horizon
2-14"	10 YR 4/2	7	
14-18"	10 4R6/2 mad	trix mott	te/no gleying
	10 4R 618 mot	tle	7)
On hydric soil list?	d by SCS () dessa (0-2% sk	•	
Is the hydric soil crit	erion met? <u>Yes</u> Rationale Ma	trix chroma of nottled soils	2 or less in
Depth to saturated s Field evidence of sur	face inundation/soil saturation	a water win 30	A radius in small pocket
COMMENTS	Palustrine forested	broad-leaved	deciduous wetland
Is the plant commun	uity a wetland? Yes		

WA Name/No. Forest Glen / 053-2130 Site Location Ninografalls, Ny Date 4/25/95	Sample Location 8 Community Type Weadow field 15/5 Samplers Nowcy Zymont
VEGETAT List 3 dominant species per strate	
Stratum Common Name/Scientific Name	Indicator Status
hnotes Gray dogwood/Comus	s <u>racemosa</u> FAC
erbs Knapweed (black or) (Ce Bird's-foot trefoil / Le	ntauroa (nigra or
Bird's-foot trefoil/L	otus comiculatus FACU-
Yellow avens / Geum	aleppicum var. strictom FAC
moss - not identified i	OH COLORS
	oy genus +species Not given
Percent of species that are OBL, FACW, and/or FAC 8 Is the hydrophytic vegetation criterion met? 400 Ratio	0% Other indicatorsonale >50% OBL, FACW, and for FAC
SOILS	
Approximate Depth Munsell Chart Value/Ch	roma <u>Description</u> Organic A horizon
1/2-4" 104R 4/1 mat	nix
10 4R 5/6 mot	- \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
4-19" 104R4/2 street	
Soil types, as mapped by SCS Odessa (0-270; On hydric soil list? Lakemont is	
Is the hydric soil criterion met? 409 Rationale No	in mottled soils
HYDROL	
Is ground surface inundated/saturated (depth)? Not a Depth to saturated soil 6 INCAS Field evidence of surface inundation/soil saturation Is the wetland hydrology criterion met? 405 Rational	t surface
comments Palustrine broad-lea	ved decidences scrub-shrub
Is the plant community a wetland? Yes Rationale Old 3 United are me	

Site Location	ovest Glen 1053-2130 19am Falls, NY 195	Community Type (1)	odland gmont & Cornell Rosi
	VEGETA List 3 dominant species per stra		ı.
Stratum	Common Name/Scientific Name		Indicator Status
Trees	American beech/Fa	gus grandifolia	FACU
	Blackash / Fraxing Red Maple / Acer	15 Mina	FACW
Shribs	Black ash / Fraxinis	keberny /aronia	
Herbs	American beech/ Fa Meadow buttercup/	Romunculus acris	a FACU FAC+
•	that are OBL, FACW, and/or FAC > vegetation criterion met? Yes Ration		
Approximate Depti	SOIL Munsell Chart Value/Cl		ation
0-13"	Manson Chart Value C		nic A horizon
13-17"	2.54 3/2 m 10 4R 5/8 m	atrix mot	ted w/no gleying
On hydric soil list?	iterion met? Yes Rationale Ma	slope) Wpossible L depres trix chroma of thed soils	sions/drainages
Depth to saturated Field evidence of su	ology criterion met? <u>Ye.5</u> Rationa	ng water in de Mount of Matrix charmes Saturated with	pressions/drainages beech and maple of 2 or less in m
Is the plant commu		et	

WA Name/No. From Site Location Nico. Date 4/24	gen falls, NY	Sample Location Community Type Wo) (new) cod land Zygmont + Comell Rosiu
	VEGETAT List 3 dominant species per strate		ta.
<u>Stratum</u>	Common Name/Scientific Name		Indicator Status
Trees	Black ash/Fraxinus	niara	FACW
	Green ash/Fraxinus	semosulus ni -	FACW
	neu mapie/ nier n	brim	FAC.
	Hop hombean Ostra	10 Vivainain	
ulso shrub _	- riner rean beech / Fa	agus amadici	FACU-
Solutos	PUTPIE - TY OFFER CHOKOLOW	$\alpha \sqrt{\lambda} = 1$	TACU
_	Red maple / Acer rub Black ash / Fraxinus ni	rum	FAC
Perment of species th	Hop hombeam ostrualist are OBL, FACW, and or FAC	Yivain iona Virainiona Other indicator	FACW
Is the hydrophytic ve	egetation criterion met? 4cs Ratio	onale $>50\%$ OBL	
Approximate Depth	SOIL: Munsell Chart Value/Ch	roma Descri	-
0-6"		org	anic Ahorizon
6-18"	7.5 YR 4/1 mat 10 YR 4/8 mot	rix mott	ed w/no gleying
Soil types, as mappe	by scs <u>Cdessa (0-2% s</u>	lopes) woossibl	e Lakemont inclusions
On hydric soil list?_ Is the hydric soil ont	Lakemontis		2 or less in motted soils
Depth to saturated s Field evidence of sur	HYDROL ndated/saturated (depth)? Standin oil 7 inches face inundation/soil saturation Rational	g water Win 8 f	eet in small depressions approx. Linch
COMMENTS	alustrine forested 1	proad-leaved	deciduous wetland
is the plant commun Rationale OM	uity a wetland? <u>4e5</u> 3 criteria are me	t.,	

	ROUTINE ONSITE WETLAND DET	TERMINATION D	ATA FORM	175A. Nof 56
	Grest Glan 1053-2130 Liagara Falls, NY 124 195	Sample Location_ Community Type_ Samplers_No.00	Woodlaw	+ 100 ft. E of mark Dr d + Connell Rosiu
	VEGETAT List 3 dominant species per stratt		2 strata.	
Stratum	Common Name/Scientific Name		Indicator	<u>Status</u>
res	Chestnut Cak/Quer	cus prinu	s FAC	
	Big shellbark hickor Red maple / Acer	y/Canua 1	aciniosa FAC	FAC
inbs	Pumple-Frited Chokeberry Red maple / Acer rubru Black ash / Fraxinus	/Aronia		FACW
terbs	Mellow avens /Germ	aleppicum	FAC	
•	that are OBL. FACW, and/or FAC	~ 		nd/or FAC
Annana Dani	SOILS th Munsell Chart Value/Ch		Daga-intin-	
Approximate Dept	in viunsen Chart value/Ch		Description A	hod .
2-17"	7.5 4124/1 mat	nx le	Organic A mottled i	U/no gleying
On hydric soil list	ped by SCS (dessa (0-27c) Lakemont 13 ntenon met? yes Rationale Mar			semont inclusions in mottled soil
Depth to saturated Field evidence of s	HYDROLO nundated/saturated (depth)? Stown dime soil 7 inches urface inundation/soil saturation rology criterion met? Yes Rational	water Win	,	out Linchdeep
COMMENTS	Palustrine broad we for	prested bro	ad-leaved	deciduous wetland
Is the plant comm	unity a wetland? Yes			

WA Name/No. Tore: Site Location Niac Date 4/24/	st Glen 1053 -213 zara Falls, NY 15	Sample Location 12 (Community Type (1)0000 Samplers Naucy Zu	(new) Hand Jamont + Cornell Rosi
	VEGETA List 3 dominant species per str		
<u>Stratum</u>	Common Name/Scientific Name		ndicator Status
Tizes	American beech	Fagus grandifilia	FA(1)
•	Dasswood /-	Tilia americana	FAC
•	Ironwand / n		
	Big shellbark Hic	kmul Capia lasinia	WIQ PAC
	Big shellbark Hic Green ash / Fraxi	MUS Demosityanis	SQ FAC
Shribs T	o Pic I to led a move	1/10/00/11 //1	
T	Purple-fruited choke Bigshellbark hickory	Wonia aro	pupurea FACW
7	Black ash /Fraxin	Il carcia jaciniosa	EAQU)
Ĺ	op hombeam/	Ostrua virginia	a FACU
Percent of species that	op hombean merican beech at OBL. FACW, and or FAC E	2003 Standiffications	
Is the hydrophytic veget	ation criterion met? Yes Ra	tionale > 50% OBL	FACW, and/or FAC
	sor		
Approximate Depth	Munsell Chart Value/C		
Kep. 1 14-18"	25 4R 3/21	natrix mottle	c A horizon
	2.5 4R 5/4 n		Www No gleying
Rep. 2 0-14"	10 4R 9/2 ma		c A horizon
14-18"	10 4R 3/1 170		/no gleying
	scs Odersa (0-2 slo akemont 12		,
Is the hydric soil criterio	on met? <u>Yo -</u> Rationale Mc	ottled soils	or less in
Depth to saturated soil_	inundation/soil saturation	ing water in depro	ssions nearby (~1 inch
COMMENTS PO	Justine forested	broad-leaved de	riduous wethind
Is the plant community Rationale		ret	

	Forest Glen 1053-2130 Niagara Falls, NY 5195	Sample Location_ Community Type_ Samplers_Name	
	VEGETAT List 3 dominant species per stratu		strata.
Stratum Profess NZ erbs	Common Name/Scientific Name Gray dogwood/Comus Blue (or false) vervain/V moss-not identified Queene annes lace/I Frag Wild Strawberry/	by genus.	+ species Not given
Approximate D	SOILS	onale > 50% 0	BL, FACW, and/or FAC
On hydric soil	10 4R4/1 mat 10 4R 5/6 mot 10 4R 4/2 street 10 4R 4/2 street 10 4R 4/2 street 10 4R 4/2 street 10 4R 4/1 mat 10 4R 4/2 street 10 4R 4	rix He aked clay bpe) w/poss	of 2 or less in
Depth to satura Field evidence	HYDROL tee inundated/saturated (depth)? Not of ated soil 7 in Ches of surface inundation/soil saturation nydrology criterion met? Yes Rational Palustrine broad-lead wetland	Surface Satirate	d with 12 inches
Is the plant cor Rationale	mmunity a wetland? Yes 2113 Contenia are met	,	

WA Name/No. Fores Site Location Niaa Date 4/25/95	ara Falls, NY	Sample Location Community Type Samplers Nam	75	Comell Rosiu
	VEGETAT List 3 dominant species per stratu		2 strata.	
<u>Stratum</u>	Common Name/Scientific Name	,	Indicator St.	atus
Herbs	Red Osier dogwood	Cornus	stolonifen	FACIN)+
K	napweed ()	autona.	nigna)	
31	ve (or false) vervai	eriavrea (or jaceal	+ACL
γr	ve (or false) vervais	Verber	ia hastata	FACW+
W	noss-not identified	ed by gen	US+species	Not given
	oild strawberry/Fr	agarice c	canadensis	FACU
	e OBL, FACW, and/or FAC 7.			and/or FAC
Annanimate Death	SOILS		Danadation	
Approximate Depth	Munsell Chart Value/Ch		Description	
C-19	5 GY 4/1 matr 10 YR 4/4 mot	the Sconcre	etions	
15-19"	104R4/2 matr	<u> </u>	Hling, no gle	ing
Soil types, as mapped by S	10 R 4/6 mottle	<u>ب</u>	7	nont inclusion
On hydric soil list? Is the hydric soil criterion	exemontis		n of 2 or	
		in mottle		16.50
Is ground surface inundate Depth to saturated soil Field evidence of surface i		water in	draingewas approx! 1/2 is	
Is the wetland hydrology		Saturate	d within le	2 inches
COMMENTS Palve	trine broad-leaved	deciduo	es serub-sh	rub wetland
Is the plant community a	wetland? Mes			

WA Name/No. Forest Glen /053-213 Site Location Niagara Falls, NY Date 4/25/95	Sample Location 15 (new) Community Type meadow/field Samplers Nancy Zygmont + Cornell Poslu
	ETATION r stratum - 5 if only 1 or 2 strata.
Stratum Common Name/Scientific N	Name Indicator Status
Blue (or false) ven	Mus racemosa FAC Ventaurea (nigra) FAC od/Solidago canadensis FACU vain/Verbena hastata FACW+ rysauthemum leucanthemum FAC
Percent of species that are OBL, FACW, and/or FAC Is the hydrophytic vegetation criterion met? <u>Yes</u>	Rationale >50% OBL FACW, and for FACSOILS
D-3" 564 4/1 0 104R 5/6	jley matrix mottle (slight)
On hydric soil list? Lakemont is	atrix 2 Concretions offle Sychessa (0-200 slope) Wposible Lakemont inclusions Matrix chrome of 2 or less in mottled soils
Is ground surface inundated/saturated (depth)? No Depth to saturated soil 6 inundation/soil saturation 7	eaved deciduous scrub-shrub
Is the plant community a wetland? 4e5 Rationale All 3 avidence over m	not

WA Name/No. For Site Location No. Date 4/25/		Sample Location_ Community Type Samplers	16 (new) meadow / file of y Zygmont + Comel Rosiu
	VEGETAT List 3 dominant species per stratu		2 strata.
Stratum	Common Name/Scientific Name		Indicator Status
Herbs	Gray dogwood/Co	mus race	mosa FAC
	Late application / c	Salidaa- a	
	Bladder campion grass-not identify	/Silene	Cusubalus FAC
	Bladder campion grass-not identif Wild strawberry/F	fied by o	COCODAIOS PAC
	Wild strawberry /-	ind by ge	anus aspecies
	Wild strawberry/F	ragania	<u>Canadensis</u> FACU
Percent of species that Is the hydrophytic veg	t are OBL, FACW, and/or FAC 75 etation criterion met? 405 Ratio	Other inc	licators
Approximate Depth	SOILS Munsell Chart Value/Ch	-	Description
0-1"			rganic A horizon
1-10"	10 4R 4/1 mas	trix	9
10-15"	104R 4/2 (no		
On hydric soil list?	accument 15		ible Lakemont inclusions
Is the hydric soil crite	rion met? Yes Rationale Ma	mottled &	of 2 or less in
Is ground surface inun- Depth to saturated so	HYDROLO dated/saturated (depth)? Notes	ogy at surface	Se
Field evidence of surfa	nce inundation/soil saturation regy criterion met? Y \(\varphi \) Rational	6 1 1	d within 12 inches
- D I	ustrine broad-leaved		
wettand	with the total tawar		
Is the plant communit	y a wetland? Yos		

WA Name/No. Forest Glen/053-213U Sample Location Soil Doring loc. 5B-13 Approximately 125ft. 5 of Edge wood Drive + Site Location Approx. 50ft. E of T Mark Drive Community Type Forested
Date Recompiled 4/2/96 Samplers N. Zygmont, C. Rosiu
VEGETATION
1. Type of Alteration: legetation removed for placement of fill material
2. Effect on vegetation: Appearance of early successional and upland species
3. Previous Vegetation: No information on Previous Vegetation at this location. aevial photo from 1966 shows area cleared. 4. Hydrophytic vegetation? Yes No 1
SOILS
1. Type of alteration: Original soil replaced by about 6 feet of fill material
2. Effect on soils: Criginal soil removed
3. Previous soils: No information for previous soils at this location
4. Hydric soils? Yes No
HYDROLOGY
1. Type of alteration: Approximately 6 feet of fill placed in area where executated original soils were
soil surface (by 1-2 feet) excavate
3. Previous hydrology: No information on previous hydrology for this location
4. Wetland hydrology? Yes No

WA Name/No. Forest Glen /053-213U Sample Location Soil boring loc. 5B-14 Approximately 125A. 5 of Edgewood Drive Site Location and 175 A. E of T Mark Drive Community Type Forested
Date Recompiled 4/2/96 Samplers N. Zygmont, C. Rosiv
VEGETATION
1. Type of Alteration: Vegetation removed for placement of fill material
2. Effect on vegetation: Appearance of early successional and upland species
3. Previous Vegetation: No information on previous vegetation at this location. aerial photo from 1966 shows area cleared.
4. Hydrophytic Vegetation: Tes
SOILS
1. Type of alteration: Original soil replaced by about 5 feet of fill material
2. Effect on soils: Original soil removed
3. Previous soils: No information for previous soils at this location
4. Hydric soils? Yes No
HYDROLOGY
1. Type of alteration: Approximately 5 feet of fill placed in area of excavated original soils
2. Effect on hydrology: Area is slightly raised over adjacent soil surface (by 1-2 feet)
3. Previous hydrology: No information on previous hydrology for this location
4. Wetland hydrology? Yes No,

WA Name/No. Forest Glew 1053-2130 Sample Location Soil boring loc, 58-10
Site Location Approx. 50 ft E of T Mark Drive Community Type Forester and 50 ft. 5 of Edgewood Drive
Date Recompiled 4/2/96 Samplers N. Zygmont, C. Rosiv
VEGETATION
1. Type of Alteration: Vegetation removed for placement of fill material
2. Effect on vegetation: Appearance of early successional and upland species
3. Previous Vegetation: No information on previous Vegetation at this location, aerial photo from 1966 shows 4. Hydrophytic vegetation? YesNo area deared
SOILS
1. Type of alteration: Original soil replaced by about 6 feet of fill material
2. Effect on soils: Original soil removed
3. Previous soils: No information for previous soils at this location
4. Hydric soils? YesNo
HYDROLOGY
1. Type of alteration: Approximately 6 feet of fill placed in area of excavated original soils
2. Effect on hydrology: Area is slightly raised over adjacent Scil surface (by 1-25.1)
3. Previous hydrology: No information on previous hydrology for 4. Wetland hydrology? Yes No >
4. Wetland hydrology? Yes No

	Ecological Location #6 Sample Location Soil boring Location SBCENTER
WA Name/No. Forest Glen/053-213U	Sample Location Soil boring Location SBCENTER
Site Location 120 ft. E of T Mark Drive	Community Type Forested
Date Recompiled 4/2/96	Samplers N. Zygmont, C. Rosiu
VEGETA	TION
1. Type of Alteration: Vegetation remo material at local	oved By placement of fill
2. Effect on vegetation: Appearance of upland species	early successional and
3. Previous Vegetation: No information this location.	on previous vegetation at Jerial photo from 1966 shows area cleared.
4. Hydrophytic vegetation? Yes No No	
SOIL	.s
1. Type of alteration: Original soil repl material	aced by about 6 feet of fill
2. Effect on soils: Original soil rem	ored
3. Previous soils: No information for	previous soils at this location
4. Hydric soils? Yes No_\	
HYDROL	LOGY
1. Type of alteration: Approximately of excavated of	o feet of fill placed in area
	ed slightly (1-2 feet) over the surface (to soit south of location)
3. Previous hydrology: No information this location	on previous hydrology for
4. Wetland hydrology? Yes No	

WA Name/No. Forest Glen/053-2L3U Sample Location Soil boring loc. Bern-1
Site Location Approx. 250 A. Nof Berm-2 Community Type Scrub-Shrub
Date Recompiled 4/2/96 Samplers N. Zygmont, C. Rosiu
VEGETATION
1. Type of Alteration: Vegetation removed or covered by placement of fill
2. Effect on vegetation: Appearance of early successional and upland species
upland species 3. Previous Vegetation: In 1966 aerial photograph, previous vegetation appears to be field species (forbs) repossibly small shrubs) NT
4. Hydrophytic vegetation? Yes No
SOILS
1. Type of alteration: Approximately 12 feet of fill (Fill appears to be mixed with some native soil)
2. Effect on soils: Original soil buried
3. Previous soils: Original Soil encountered at approximately 12 feet below current soil surface
4. Hydric soils? Yes No
HYDROLOGY
1. Type of alteration: 12 feet of fill material placed on original soil
2. Effect on hydrology: Area no longer Saturated
3. Previous hydrology: Hanz Berm not present in 1966 aerial photograph. In that photo, berm area appears
4. Wetland bydrology? YesNo_\righty flat (as rest of the northern aspect)

WA Name/No. Forest Glen /053-213U Sample Location Soil boring loc. Berm
Site Location Approx. 250 ft. Nof Berm-3 Community Type Scrub-Shrub
Date Recompiled 4/2/96 Samplers N. Zygmont, C. Rosiv
VEGETATION
1. Type of Alteration: Vegetation removed or covered by placement of fill
2. Effect on vegetation: Appearances of early successional and upland species
3. Previous Vegetation: In 1966 aerial photograph, previous vegetation appears to consist of storbs
4. Hydrophytic vegetation? Yes No V
SOILS
1. Type of alteration: Approx. 14 feet of fill (Fill appears to be mixed with some native soil)
2. Effect on soils: Original Soil buried
3. Previous soils: Original soil encountered at approximately 14 feet below current soil surface.
4. Hydric soils? Yes No
HYDROLOGY
1. Type of alteration: 14 feet of fill material placed on original soil.
2. Effect on hydrology: Area rio longer Saturated
3. Previous bydrology: In 1966 aerial photograph (prior to berm construction) location appears to be flat
4. Wetland bydrology? YesNo (like the rest of the northern aspect)

WA Name/No. Forest Glen/053-213U Sample Location Soil boring loc. Berm-3
Site Location Approx. 250ft. Nof Bern-7 Community Type Scrub-shrub
Site Location Approx. 250ft. Nof Bern-7 Community Type Scrub-shrub location Date Recompiled 4/2/96 Samplers N. Zygmont, C. Rosiu
VEGETATION
1. Type of Alteration: Vegetation removed or covered by placement of fill
2. Effect on vegetation: Appearance of early successional and upland species
3. Previous Vegetation: In 1966 aerial photograph, previous vegetation appears to consist of forbs
4. Hydrophytic vegetation? Yes No
SOILS
1. Type of alteration: Approximately 14 feet of fill (Fill from Oto 5 feet appears to be mixed with some 2. Effect on soils: native soil)
3. Previous soils: Cricinal soil encountered at approximately 14 Feet below current soil surface
4. Hydric soils? YesNo\
1. Type of alteration: 14 feet of fill material placed on original soil
2. Effect on hydrology: Area no longer saturated
3. Previous bydrology: In 1966 aerial photograph (prior to berm construction) location appears flat (as
4. Wetland hydrology? YesNo the rest of the northern aspect)

WA Name/No. Forest Gtm 1053-2L3U Sample Location Soil boring location Berm-
Site Location Approx. 250 ft. Nof Berm-5 Community Type Scrub-Shrub
Date Recompiled 4/2/96 Samplers N. Zygmont, C. Rosiu
VEGETATION
1. Type of Alteration: Vegetation removed or covered by placement of
2. Effect on vegetation: Appearance of early successional and upland species
3. Previous Vegetation: In 1966 aerial photograph, previous vegetation appears to consist of forbs
4. Hydrophytic vegetation? YesNo
SOILS
1. Type of alteration: Approximately 13 feet of fill (Fill appears to be mixed with some native soil)
2. Effect on soils: Original Soil buried
3. Previous soils: Original soil encountered at approximately 14 Peet below current soil surface
4. Hydric soils? Yes No Y
HYDROLOGY
1. Type of alteration: Feet of fill material placed on original soil
2. Effect on hydrology: Area no longer saturated
3. Previous hydrology: In 1966 aerial photograph (prior to berm construction) location appears flat (as the 4. Wetland hydrology? Yes No V
4. Wetland hydrology? Yes No No

ATYPICAL SITUATION DATA FORM

WA Name/No. Forest Glen/053-2L3U Sample Location Soil boning location Ben Western border of site + Site Location Approx. 175 H. N of E Gill Creek Community Type Scrub-shrub
Date Recompiled 4/2/96 Samplers N. Zygmont, C. Rosiv
VEGETATION
1. Type of Alteration: Vegetation removed or covered by placement of fill
2. Effect on vegetation: Appearance of early successional and upland species
3. Previous Vegetation: In PKG6 aerial photograph, previous vegetation appears to consist of forbs
4. Hydrophytic vegetation? YesNo
SOILS
1. Type of alteration: Approximately 5 feet of fill. (Fill appears to have some native soil mixed in with it)
2. Effect on soils: Original soil buried
3. Previous soils: Original soil encountered at approximately 5 feet below sourrent soil surface
4. Hydric soils? YesNo
HYDROLOGY
1. Type of alteration: 5 feet of fill material placed on original soil surface
2. Effect on hydrology: Arece no longer saturated
3. Previous hydrology: In a 1966 aerial photograph (prior to berm construction) location appears flat (as the rest of the northern aspect) 4. Welland hydrology? YesNoNo
4. Wetland hydrology? Yes No

APPENDIX K FULL ANALYTICAL DATA RESULTS

SAMPLE ANALYSIS QUALIFIERS

Organic Qualifiers:

- U Compound was analyzed for but not detected. The associated numerical value is the sample quantitation.
- J Estimated data due to exceeded quality control criteria.
- N Presumptive evidence of a compound.
- P The difference for detected concentration of a pesticide/Aroclor target analyte is greater than 25% between the two GC columns.
- C Identification of pesticide results was confirmed by GC/MS.
- B Analyte is found in the associated blank and in the sample.
- E Compound concentration exceeds the calibration range of the GC/MS instrument for that specific analysis.
- D Compound is identified at a secondary dilution factor.
- A TIC is suspected aldol condensation product.
- R Data is rejected due to exceeded quality control criteria.

Inorganic Qualifiers:

- B Reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).
- U Analyte was analyzed for but not detected.
- E The reported value is estimated because of the presence of interference.
- M Duplicate injection precision not met.
- N Sample recovery is not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- W Post-digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- R Data is rejected.
- * Duplicate analysis not within control limits.
- + Correlation coefficient for the MSA is less than 0.995.

AOC1 - BERM SUBSURFACE SOIL DATA

forest Glen Site AOC 1 - Berm - Subsurface Soil Conventional Parameters

SAMPLE DATE		BERM1 06/19/95	BERM2 06/19/95	BERM2A 06/19/95	BERM3 06/20/95	BERM3A 06/20/95	BERN4 06/20/95
SAMPLE DEPTH		14.00 - 16.00	8.00 - 10.00	4.00 - 6.00	16.00 - 18.00	10.00 - 12.00	12.00 - 14.00
Conventinal Parameters	1		•	6	1		4
SULFIDE	ma/ka	8 .50	06.7	08.7	08.7	0 0	8.10
TOTAL ORGANIC CARBON	mg/kg	12,400.00	95,800.00	16,300.00	13,900.00	56,200.00	00.005,04
TOTAL SOLIDS	×	83.60	85.50	86.20	82.20	84.60	79.70
TOTAL SOILDS (EXTENDED)	×	•					
ALKALINITY	J/Bw						
AMMONIA	l/Gm						
009	-/2						
83)/bw						
TOTAL DISSOLVO SOLIDS	8						
HARDNESS	1/00						
NITRATE/WITRITE	J/Gw						
TOTAL KJELDAHL NITROGEN) / Bu						

SAMPLE NAME		BERMS
SAMPLE DATE		06/20/95
TEXT 001 SAMPLE DEPTH		6.00 - 8.00'
Conventinal Parameters		
T	ار ا	8.30
SULFIDE	mg/kg	
TOTAL ORGANIC CARBON	mg/kg	42,700.00
TOTAL SOLIDS	**	79.30
TOTAL SOILDS (EXTENDED)	×	
ALKALINITY)/ 6 w	
AMMONIA)/Bu	
80	1/bw	
93	mg/t	
TOTAL DISSOLVO SOLIDS) / Bag	
HARDNESS	J/Gw	
NITRATE/NITRITE	1/6m	
TOTAL KJELDAHL NITROGEN	1/6m	

forest Glen Site AOC 1 - Berm - Subsurface Soil Grain Size Analysis

SAMPLE DATE		BERN1 06/19/95	BERM2 06/19/95	BERM2A 06/19/95	BERN3 06/20/95	BERM3A 06/20/95	BERN4 06/20/95
SAMPLE DEPTH		14.00 - 16.00'	8.00 - 10.00	4.00 - 6.00*	16.00 - 18.00	10.00 - 12.00	12.00 - 14.00
Grain Analysis						:	
GRAVEL	×	o.00 J	14.00 J	F 07.9	1.10	12.60 J	7.10 J
SAND (A) COARSE	×	0.30	10.10	8.30	0.70	22.20	2.60
SAND (B) MEDIUM	×	. 07.0	5.00	3.60	0.20	11.60	1.20
SAND (C) FINE	×	1.40 J	11.80 J	9.30 J	0.70 J	13.80 J	r 00.4
SAND (D) FINE	×	f 09.0	3.00 1	2.50 J	0.30 J	1.10 J	1.60 J
SILTS/CLAYS (<0.075 MM)	*						
S1LT (A)	×	20.60 J	19.10 J	12.70 J	0.00	0.00	1.30 J
S1LT (8)	×	12.80	14.80	12.40	12.40	5.8	20.70
CLAY	×	20.80	11.00	3.10	16.00	8.10	17.60
COLLOIDS	×	43.20 J	11.10 J	41.80 J	61.50 J	24.70 J	43.90 J
TOTALS FOR GROUP	ı	100.10	06.90	100.10	92.90	100.00	100.00

SAMPLE DATE		BERM1 06/19/95	BERM2 06/19/95	BERM2A 06/19/95	BERM3 06/20/95	BERM3A 06/20/95	BERM4 06/20/95
SAMPLE DEPTH		14.00 - 16.00'	8.00 - 10.00	100'9 - 00'7	16.00 - 18.00	10.00 - 12.00	12.00 - 14.00
Targeted SemiVolatiles							
CYANATE	/kg	240.0 U	~	1100.0 J	240.0 U	1200.0 U	250.0 U
	/kg	240.0 U	3100.0 J	11000.0	240.0 U	2500.0	0.004
OTHIAZOLE	/kg	240.0 U	30000.0	1100000.0	270.0 J	or 0.00069	1700.0 J
	/kg	240.0 U	39000.0	960000.0 D	° 0.06	140000.0 JD	dr 0.0074
	/kg '	240.0 U	1400.0 J	3800.0 J	240.0 U	1200.0 UJ	3100.0 J
	/kg	240.0 U	~	1200.0 UJ	240.0 U	1200.0 u	250.0 U
ENYL-1,4-BENZENEDIAMIN	/kg	240.0 U	28000.0 DJ	210000.0 D	240.0 U	18000.0 JD	51000.0 JD
	/kg	240.0 U	1900.0 J	f 0.0097	240.0 U	1800.0	r 0.09
BENZOTHIAZOLE Ug/	ug/kg	240.0 U	14000.0	150000.0 D	240.0 U	14000.0	410.0

SAMPLE NAME		\$ 20 m	
SAMPLE DATE		96/50/98	
SAMPLE DEPTH		6.00 · 8.00¹	
Targeted Semivolatiles			
PHENYL ISOTHIOCYANATE	03/kg	250.0 u	
DIPHENYLANINE	01/60	250.0 u	
2-MERCAPTOBENZOTHIAZOLE	04/60	250.0 U	
2-ANIL INOBENZOTHIAZOLE	09/kg	250.0 u	
PERYLENE	03/kg	. 250.0 u.	
ANILINE	03/kg	rn 0.082	
N,N-DIPHENYL-1,4-BENZENEDIAMIN	N 59/kg	250.0 uJ	
PHENOTHIAZINE	03/kg	250.0 u	
BENZOTHIAZOLE	00/kg	250.0 u	

forest Glen Site AOC 1 - Berm - Subsurface Soil Organic Compounds

SAMPLE NAME		BERM1	BERM2	BERMZA	BERM3	BERM3A	PERM.
SAMPLE DATE		06/19/95	06/19/95	06/19/95	06/20/95	06/50/95	06/20/95
SAMPLE DEPTH		14.00 · 16.00	8.00 - 10.00	4.00 - 6.00	16.00 - 18.001	10.00 - 12.00	12.00 - 14.00
Volatiles							
CHLOROMETHANE	ug/ko	12.00 U	13.00 U	12.00 U	13.00 U	10.00 u	10.00
BROMOMETHANE	09/kg		13.00 U	12.00 U	13.00 0	10.00	10.00 u
VINYL CHLORIDE	09/kg	12.00 U	13.00 U	12.00 U	13.00 U	10.00	10.00 u
CHLOROETHANE	og/ko		13.00 U	12.00 U	13.00 U	10.00	10.00
METHYLENE CHLORIDE	00/kg		24.00 U	21.00 U	13.00 0	16.00 U	10.00 u
ACETONE	00/kg		11.00 J	10.00	13.00 01	_	_
CARBON DISULFIDE	09/kg	12.00 U	13.00 U	12.00 U	13.00 U	10.00 U	10.00 U
1,1-DICHLOROETHENE	04/65		13.00 U	12.00 U	13.00 U	_	_
1,1-DICHLOROETHANE	09/kg	12.00 U		3.00 J	13.00 U	_	
1,2-DICHLOROETHENE (total)	09/kg	12.00 U	•	10.00	13.00 U	_	10.00 U
CHLOROFORM	09/kg		•	12.00 U	13.00 u	10.00 u	10.00 U
1, 2-DICHLOROETHANE	09/kg	12.00 U	13.00 U	12.00 U		10.00 u	10.00 u
2-BUTANONE	04/60		•	12.00 U		_	8 00 L
1,1,1-TRICHLOROETHANE	09/kg			8	13.00 UJ		10.00 UJ
CARBON TETRACHLORIDE	04/ 6 0		8	8		_	10.00 UJ
BROMOD I CHLOROME THANE	59/kg		8	12.00 U	_	_	10.00 U
1, 2-DICHLOROPROPANE	09/kg			8	13.00 U	10.00 U	10.00 U
C18 1, 3-DICHLOROPROPENE	01/05	12.00 U	13.00 U	12.00 U	13.00 U	10.00 U	10.00 u
DIBOMOCHI DOMETHANE	7	200.5		3.00	00.5	0.00	0.00
1 1 2-TRICHIOROFIHANE	1			12.00.0	- 00.51 - 00.51	2000	9.6
BENZENE	ud/ka	12.00		12.00	13.00		
trans 1,3-DICHLOROPROPENE	ug/ka	12.00 03		12.00 UJ	13.00 U	10.00 u	10.00
BROMOFORM	ug/kg	12.00 U	8	12.00 U	13.00 U	10.00 U	10.00 u
4-METHYL-2-PENTANONE	ug/kg	12.00 U	8	12.00 U	13.00 U	10.00 U	10.00 0
2-HEXANONE	ug/kg	12.00 U		12.00 U	13.00 U	10.00 U	10.00 U
TETRACHLOROETHENE	ug/kg	12.00 U		۲۰00 ۲	13.00 U	10.00 U	10.00 U
1,1,2,2-TETRACHLOROETHANE	ug/kg		8	12.00 U	13.00 U	10.00 u	
TOLUENE	ug/kg			12.00 U	13.00 U	10.00 u	10.00 u
CHLOROBENZENE	ug/kg	12.00 U		12.00 U	13.00 U	10.00 0	
ETHYLBENZENE	ug/kg			12.00 U	13.00 U	10.00 U	10.00 0
STYRENE	ug/kg	12.00 U		12.00 U	13.00 U	10.00 U	10.00
XTLENES (total)	ug/kg	12.00 U		12.00 U	13.00 U	0.00.01	10.00

Forest Glen Site AOC 1 - Berm - Subsurface Soil Organic Compounds

SAMPLE DATE SAMPLE DATE SAMPLE DATE SAMPLE DATE COLORGETHANE SAMPLE DATE COLORGETHANE SAMPLE DATE SAM				
6.00 - 8.00* 4.0/kg 4.0/kg 10.00 U	SAMPLE NAME		BERMS 04,20,05	
4,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00	TEXT 001			
49/49 10.00 U 49/49 10.00 U 49/49 10.00 U 49/49 10.00 U 49/49 10.00 U	SAMPLE DEPTH		6.00 - 8.00'	
10.00 U 10.00 U	Volatiles			
USYKS 10.00 U	CHLOROMETHANE	ug/kg	10.00 U	
USYKS 10.00 U	BROMOMETHANE	09/kg	10.00 U	
USA/KS 73.00 U USA/KS 73.00 U USA/KS 10.00 U	VINYL CHLORIDE	9/kg	10.00 U	
13.00 U 14.00 I 15.00 U 15.00 U	CHLOROETHANE	ug/kg	n 00°01	
150.00 J J J J J J J J J J J J J J J J J J	METHYLENE CHLORIDE	og/ka	7.00.52	
10.00 U	ACETONE	00/kg	. r 00-051	
10.00 U	CARBON DISULFIDE	04/kg	7 00-01	
10.00 U	1, 1-DICHLOROETHENE	ug/kg		
USA/KS 10.00 U U USA/KS 10.00 U U USA/KS 10.00 U U U USA/KS 10.00 U U U U U U U U U U U U U U U U U U	1, 1-DICHLOROETHANE	04/kg		
US/Kg 10.00 U U U U U U U U U U U U U U U U U U	1,2-DICHLOROETHENE (total)	og/kg		
US/Kg 10.00 U U US/Kg 10.00 U	CHLOROFORM	og/kg		
UG/Kg 10.00 UJ UG/Kg 10.00 UJ UG/Kg 10.00 UJ UG/Kg 10.00 UJ UG/Kg 10.00 U	1,2-DICHLOROETHANE	og/kg		
ug/kg 10.00 UJ ug/kg 10.00 UJ ug/kg 10.00 U	2-BUTANONE	04/kg	10·00 n	
ug/kg 10.00 UJ ug/kg 10.00 U	1,1,1-TRICHLOROETHANE	ug/kg	10.00 U	
ug/kg 10.00 U	CARBON TETRACHLORIDE	ug/kg	10.00 ሀ	
ug/kg 10.00 U	BROMOD I CHLOROMET HANE	ug/kg		
US/KS 10.00 U	1,2-DICHLOROPROPANE	ug/kg		
ug/kg 10.00 U	cis 1,3-DICHLOROPROPENE	ug/kg		
ug/kg 10.00 U	TRICHLOROETHENE	ug/kg		
US/Kg 10.00 U	D.I. BROMOCHLOROMETHANE	og/kg		
US/Kg 10.00 U	1,1,2-TRICHLOROETHANE	ug/kg		
ug/kg 10.00 U	BENZENE	ug/kg		
UG/kg 10.00 U	trans 1,3-DICHLOROPROPENE	ug/kg	5	
UG/kg 10.00 U	BROMOFORM	ug/kg	5	
DETHENE Ug/kg 10.00 U TRACHLOROETHANE Ug/kg 10.00 U Ug/kg 10.00 U ENE Ug/kg 10.00 U NE Ug/kg 10.00 U NE Ug/kg 10.00 U NE Ug/kg 10.00 U NE Ug/kg 10.00 U Ug/kg 10.00 U	4-METHYL-2-PENTANONE	ug/kg	5	
ug/kg 10.00 U	2-HEXANONE	ug/kg	5	
ug/kg 10.00 U	TETRACHLOROETHENE	ug/kg	5	
ug/kg 10.00 ug/kg 10.00 ug/kg 10.00 ug/kg 10.00 ug/kg 10.00	1,1,2,2-TETRACHLOROETHANE	ug/kg	5	
ug/kg 10.00 ug/kg 10.00 ug/kg 10.00 (1) ug/kg 10.00	TOLUENE	ug/kg		
ug/kg 10.00 ug/kg 10.00 al) ug/kg 10.00	CHLOROBENZENE	ug/kg		
ug/kg 10.00 (total) ug/kg 10.00	ETHYLBENZENE	ug/kg		
ug/kg 10.00	STYRENE	ug/kg		
	XYLENES (total)	ug/kg		

forest Glen Site AOC 1 - Berm - Subsurface Soil Organic Compounds

SAMPLE DEPTH	SALE SALES		1					
14,00 - 16,00 - 10,00 - 10,00 - 10,00 - 16,00 - 18,00 - 10,00 - 12,00 - 10,00 - 12,0	SAMPLE DATE		06/19/95	06/19/95	06/19/05	06/20/05	BERMSA 04/20/05	BERM4
## 1, 100 - 16, 00 - 10, 00 -	TEXT 001					64 63 60	60/60/60	54/07/00
FINER WAYES 190,00 J 4, 100,00 UJ 5, 800,00 UJ 420,00 UJ	SAMPLE DEPTH		14.00 - 16.00			•	10.00 - 12.00	12.00 - 14.00
ETHER 1974 1970 10 J 4,300 10 J 5,800 10 J 4,20 10 U 4,2	١.							
ETHER 1974 590 00 U. 1, 300 00		oo/ka	330.00	F 00.002.6	2,800,00	11 00 027	3 400 00	1 00 027
FULLETHER UG/FG 1990.00 UJ 4,300.00 UJ 5,800.00 UJ 4,200.00 UJ 4,2	BIS(2-CHLOROETHYL)ETHER	03/kg	390.00	4, 300, 00 UJ	3,800,00	750.00		6 00:037 }
FILE WORLD WAS STORED	2-CHLOROPHENOL	00/10		71 00 001 7		11 00 027		00 007
FULLETINE UGYNG 1990 00 1 4,300.00 11 5,800.00 11 4,20.00 1 4,20.0	1, 3-DICHLOROBENZENE	04/kg		_		00.027	20.000	7,000
PTLAMINE USA'NG 150:00 UJ 4,300:00 UJ 5,800:00 UJ 4,20:00 UJ 6,80:00 UJ 5,00:00 UJ 4,00:00 UJ 4,00:	1 4-DICHIORORENZENE	1/9		2		20.007	00.007	20000
PTLAMINE UG/15 170.00 JJ (200.00 LJ (200.00	1.2-DICHIOROBENZENE	2/07				0 00 027	200.00	0.00.00
PTLANINE UG/15 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 UJ 420.00 UJ 4,800.00 UJ 4,300.00	2-METHYLPHEMOL	04/00	120.00			00.027	780 00 787	
PYLAMINE USYLE 370:00 U. 4,300:00 U. 3,800:00 U. 4,20:00 U. 680:00 U. 3,800:00 U. 4,20:00 U. 4,20:0	BISC2-CHLOROISOPROPYL JETHER	00/00	100.000	700.002.7		750.00	20.000	00.007.2
PPLAMINE US/NG 390.00 UJ 4,300.00 UJ 3,800.00 UJ 4,20.00 U 4,20.00 U 4,20.00 U 4,20.00 U 4,20.00 UJ 4,300.00 UJ 4,300.00 UJ 4,300.00 UJ 4,300.00 UJ 4,200.00 UJ 4,20.00 UJ 4,20.	4-METHYLPHENOL	20/kg	130.00	920.00 J		00.027	20.089	2,00.00
UNIVERSIDENCE UN	N-NITROSO-DI-N-PROPYLAMINE	oo/ko		_		750.00	22 00 089	1 00 007 }
UNITAME UNITAGE 390.00 UJ 4,300.00 UJ 3,800.00 UJ 4,20.00 U 4,20.00 U 4,20.00 U 4,20.00 U 4,20.00 U 4,300.00 UJ 4,300.00 UJ 4,300.00 UJ 4,300.00 UJ 4,20.00 UJ 4,20.0	HEXACHLOROE THANE	00/kg		_	_	420.00 U	00 089	3,400,00
US/KG 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3,800.00 UJ 420.00 U 680.00 U 3,800.00 UJ 4,200.00 UJ 4,	NITROBENZENE	oo/ko		_		420.00 U	00.089	1 00 007 2
JHETHANE UG/Kg 370:00 UJ 4,300:00 UJ 3,800:00 UJ 420:00 U 680:00 UJ 3,800:00 UJ 420:00 UJ 680:00 UJ 3,800:00 UJ 420:00 UJ 680:00 UJ 4,300:00 UJ 4,20:00 UJ 4,20:00 UJ 4,300:00 UJ 4,20:00 UJ 4,20:0	ISOPHORONE	64/kg		_		420.00 U	680.00 U	3,400.00
JMETHANE UGJ/Kg 150.00 J 1,400.00 J 3,800.00 UJ 420.00 U 680.00 U 3,700.00 UJ 4,700.00 UJ	2-NITROPHENOL	og/kg		_		420.00 U	680.00 U	3,400.00 U
JHETHANE UG/Kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3,800.00 UJ 4,20.00 U	2,4-DIMETHYLPHENOL	09/k 9	150.00 J	1,400.00 J		420.00 U	00.089	3,400.00 U
ZENE UNG/Kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3,700.00 UJ 4,200.00 UJ 4,	BIS(2-CHLOROETHOXY)METHANE	9/kg		_		420.00 U	680.00 U	3,400.00 U
ZENE UG/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 680.00 U 3,800.00 UJ 420.00 U 680.00 U 3,800.00 UJ 420.00 UJ 420.00 UJ 680.00 UJ 420.00 UJ 42	2,4-DICHLOROPHENOL	09/kg		_		420.00 U	680.00 U	3,400.00 U
USYNG 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3,800.00 UJ 4,20.00 U 680.00 UJ 4,20.00 UJ 4,20.0	1,2,4-TRICHLOROBENZENE	09/kg		_		420.00 U	680.00 U	3,400.00 U
LUGYKG 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3,400.00 UJ 4,20.00 U 680.00 U 3,400.00 UJ 4,20.00 U 680.00 UJ 4,20.00 UJ	NAPHTHALENE	09/kg		00.076		420.00 U	680.00 U	3,400.00 U
E UG/Kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3,800.00 UJ 4,20.00 U 680.00 U 3,800.00 UJ 4,20.00 U 680.00 U 3,800.00 UJ 4,20.00 U 680.00 UJ 4,20.00 UJ 4,20.	4-CHLOROANILINE	09/kg		_		420.00 U	680.00 U	3,400.00 U
HENOL UG/Kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, World Ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 4,20.00 U 680.00 U 3, World Ug/kg 390.00 UJ 4,300.00 UJ 4,300.00 UJ 4,20.00 U 680.00 UJ 3,800.00 UJ 4,20.00 U 680.00 UJ 3,800.00 UJ 4,20.00 U 1,700.00 UJ 4,300.00 UJ 4,20.00 UJ 4,20.00 UJ 4,20.00 UJ 6,600.00 UJ 1,000.00 UJ 1,000.00 UJ 1,000.00 UJ 1,000.00 UJ 1,000.00 UJ 4,20.00 UJ 4	HEXACHLOROBUTAD I ENE	50/kg		_		420.00 U	680.00 u	3,400.00 U
FE UG/Kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, WOL UG/Kg 390.00 UJ 3,800.00 UJ 4,20.00 U 680.00 UJ 3, WOL UG/Kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 4,20.00 U 680.00 UJ 3, WOL UG/Kg 390.00 UJ 1,000.00 UJ 1,00	4-CHLORO-3-METHYLPHENOL	09/kg		_		420.00 U	00.089	3,400.00 U
TADIENE Ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 UJ 3,800.00 UJ 4,20.00 U 680.00 UJ 3,800.00 UJ 4,20.00 U 680.00 UJ 3,800.00 UJ 1,000.00 UJ 1,000.0	2-METHYLNAPHTHALENE	09/k g		_		420.00 U	680.00 U	3,400.00 U
NOL ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, WOL ug/kg 990.00 UJ 11,000.00 UJ 9,600.00 UJ 1,000.00 UJ 1,700.00 U 8, WOL ug/kg 990.00 UJ 11,000.00 UJ 9,600.00 UJ 1,000.00 UJ 1,700.00 UJ 1,700	HEXACHLOROCYCLOPENTADIENE	09/kg		_		420.00 U	680.00 UJ	3,400.00 UJ
MOL ug/kg 990.00 UJ 11,000.00 UJ 9,600.00 UJ 1,000.00 U 1,700.00 U 8, 20.00 UJ 4,500.00 UJ 3,800.00 UJ 4,20.00 UJ 4,20.00 UJ 4,300.00 UJ 1,000.00 UJ 1,000.00 UJ 1,000.00 UJ 1,000.00 UJ 1,000.00 UJ 4,300.00 UJ 4,000.00 UJ 4,000.00 UJ 1,000.00 UJ 1	2,4,6-TRICHLOROPHENOL	69/kg		_		420.00 U	680.00 U	3.400.00 U
E ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, 4300.00 UJ 1,000.00 UJ 1,700.00 UJ 8, 4300.00 UJ 1,000.00 UJ 1,	2,4,5-TRICHLOROPHENOL	ug/kg		_		1,000.00 U	1,700.00 U	8,500.00 U
ug/kg 990.00 UJ 11,000.00 UJ 9,600.00 UJ 1,000.00 UJ 1,700.00 UJ 8, 4300.00 UJ 3,800.00 UJ 420.00 UJ 680.00 UJ 3,800.00 UJ 420.00 UJ 680.00 UJ 3,800.00 UJ 420.00 UJ 420.00 UJ 420.00 UJ 420.00 UJ 420.00 UJ 3,800.00 UJ 3,800.00 UJ 1,000.00 UJ 1,000	2-CHLORONAPHTHALENE	ug/kg		_		420.00 U	00 089	3 400 00 U
ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, ug/kg 990.00 UJ 1,000.00 UJ 9,600.00 UJ 1,000.00 UJ 1,700.00 UJ 8, ug/kg 390.00 UJ 11,000.00 UJ 3,800.00 UJ 420.00 UJ 680.00 UJ 3,	2-NITROANILINE	ug/kg		_			_	8,500.00 UJ
ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, ug/kg 990.00 UJ 11,000.00 UJ 9,600.00 UJ 1,000.00 UJ 1,700.00 UJ 8, ug/kg 390.00 UJ 790.00 J 3,800.00 UJ 420.00 U 680.00 U 3,	DIMETHYLPHTHALALTE	og/kg		_			680.00 U	3,400.00 U
ug/kg 390.00 UJ 4,300.00 UJ 3,800.00 UJ 420.00 U 680.00 U 3, ug/kg 990.00 UJ 11,000.00 UJ 9,600.00 UJ 1,000.00 UJ 1,700.00 UJ 8, ug/kg 390.00 UJ 790.00 J 3,800.00 UJ 420.00 U 680.00 U 3,	ACENAPHTHYLENE	ug/kg				420.00 U	680.00 U	3,400.00 U
ug/kg 990.00 UJ 11,000.00 UJ 9,600.00 UJ 1,000.00 UJ 1,700.00 UJ 8, ug/kg 390.00 UJ 790.00 J 3,800.00 UJ 420.00 U 680.00 U 3,	2,6-DINITROTOLUENE	ug/kg				420.00 U	680.00 U	3,400.00 U
ug/kg 390.00 UJ 790.00 J 3,800.00 UJ 420.00 U 680.00 U 3,	3-NITROANILINE	ug/kg		11,000.00 UJ		1,000.00 UJ	1,700.00 UJ	8,500.00 UJ
	ACENAPHTHENE	ug/kg	390.00 UJ	790.00		420.00 U	680.00 U	3,400.00 U

	·
	·
BERMS 06/20/95 - 8.00	
790	
	- Page 1 HYL)ETHER NZENE NZENE NZENE OPROPYL)ETHER OPROPYLAMINE NE ENOL HOXY)METHANE ENOL OBENZENE E OPENZENE AALENE OPHENOL OPHENOL ALENE ALTE
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH	Semivolatiles · Page 1 PHENOL BIS(2-CHLOROETHYL)ETHER 2-CHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 2-METHYLPHENOL BIS(2-CHLOROBENZENE 1,2-CHLOROBENZENE 1SOPHOROME 2-MITROSC-DI-N-PROPYLAMINE HEXACHLOROETHANE NITROSENZENE 2,4-DIMETHYLPHENOL 2,4-DIMETHYLPHENOL 2,4-DIMETHYLPHENOL 2,4-DIMETHYLPHENOL 2,4-DIMETHYLPHENOL 2,4-DIMETHYLPHENOL 2,4-S-TRICHLOROBENZENE HEXACHLOROBUTADIENE 4-CHLOROANILINE CHLORO-3-METHYLPHENOL 2,4-G-TRICHOROPHENOL 2,4-G

Forest Glen Site AOC 1 - Berm - Subsurface Soil Organic Compounds

SAMPLE NAME SAMPLE DATE		BERM1 06/19/95	BERM2 06/19/95	BERM2A 06/19/95	BERM3 06/20/95	BERM3A 06/20/95	BERH4 06/20/95
SAMPLE DEPTH		14.00 - 16.001	8.00 - 10.00	4.00 - 6.00'	16.00 - 18.00	10.00 - 12.00	12.00 - 14.00
Semivolatiles - Page 2							
2,4-DINITROPHENOL	ug/kg	990.00 UJ	11,000.00 UJ	6,600.00 UJ	1,000.00 U	1,700.00	8,500.00 U
4-NITROPHENOL	ug/kg	00.006 00.006	11,000.00 UJ	6,600.00 UJ	1,000.00 U	1,700.00 U	8,500.00 U
DIBENZOFURAN	og∕kg	390.00 UJ	470.00 J	3,800.00 UJ	420.00 U	680.00 U	3,400.00 U
2,4-DINITROTOLUENE	ug/kg	390.00 UJ	4,300.00 UJ	3,800.00 UJ	420.00 U	680.00 U	3,400.00 U
DIETHYLPHTHALATE	ug/kg	390.00 UJ	2 000.00 J	3.800.00	420.00 U	80.00 J	3,400.00 U
4-CHLOROPHENYL - PHENYLETHER	ug/kg		4,300.00 UJ	3,800.00 UJ	420.00 U	00.089	3,400.00 0
FLUORENE	54/kg		550.00	3,800.00 UJ	420.00 U	00.089	3,400,00 U
4-NITROANILINE	ug/kg		11,000.00 UJ	6,600.00 UJ	1,000.00 UJ	1,700.00	8,500.00
4,6-DINITRO-2-METHYLPHENOL	09/kg	00.006 01	11,000.00 UJ	9,600.00 UJ	1,000.00 U	1,700.00 U	8,500.00 U
N-NITROSODIPHENYLAMINE	ca/kg	390.00	13,000.00	4,100.00 J	420.00 U	620.00 J	2.900.00
4-BROMOPHENYL-PHENYLETHER	54/kg		4,300.00 UJ	3,800.00 UJ	420.00 U	0.0099	3,400.00 U
HEXACHLOROBENZENE	ug/kg		4,300.00 UJ	3,800.00	420.00 U	00.089	3.400.00 U
PENTACHLOROPHENOL	ug/kg		11,000.00 UJ	6,600.00 UJ	1,000.00 U	1,700.00 U	8,500.00 U
PHENANTHRENE	og∕kg	390.00	3,900.00	1,200.00	420.00 U	160.00 J	1,100.00
ANTHRACENE	ug/kg		1,400.00	f 00.007	420.00 U	74.00 7	340.00 J
CARBAZOLE	ug/kg	390.00 UJ	920.00 J	1,100.00 J	420.00 U	080.00 U	3,400.00 U
DI-N-BUTYLPHTHALATE	ug/kg		7,300.00 UJ	3,800.00 ul	420.00 U	080.00 U	370.00 J
FLUORANTHENE	ug/kg		6,700.00	1,800.00	420.00 U	320.00 J	1,600.00 J
PYRENE	ug/kg		5,300.00	1,600.00	420.00 U	220.00 J	1,400.00 J
BUTYLBENZYLPHTHALATE	ug/kg		7,300.00 UJ	3,800.00 UJ	420.00 UJ	680.00 UJ	3,400.00 UJ
3,3'-DICHLOROBENZIDINE	ug/kg	_	7, 300.00 UJ	3,800.00 UJ	420.00 UJ	00.089	3,400.00 UJ
BENZO(A)ANTHRACENE	ug/kg		6,600.00 J	1,600.00	420.00 U	200.00 J	1,400.00
CHRYSENE	og/kg	390.00	2,000.00	1,400.00	420.00 U	520.00 J	1,400.00
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	f 00.09	23,000.00	28,000.00	420.00 UJ	2,300.00	61,000.00
DI-N-OCTYLPHTHALATE	ug/kg		4,300.00 UJ	3,800.00 UJ	420.00 U	320.00 J	3,400.00 U
BENZO(B)FLUORANTHENE	ug/kg		10,000.00	2,600.00 J	420.00 U	200.00 xJ	2,200.00 xJ
BENZO(K) FLUORANTHENE	ug/kg		11,000.00	2,600.00 J	420.00 U	200.00 xJ	2,200.00 xJ
BENZO(A)PYRENE	ug/kg	390.00 UJ	3,800.00 J	1,300.00	420.00 U	210.00 J	1,100.00 J
INDENO(1,2,3-CD)PYRENE	ug/kg		1,300.00	720.00 J	420.00 U	100.001	290 00 J
DIBENZO(A, H)ANTHRACENE	ug/kg		7, 300.00 UJ	3,800.00 uu	420.00 U	680.00 U	3,400.00 U
BENZU(6, H, I)PERTLENE	ug/kg	390.00	1,400.00	1,000.00	420.00 0	, 00.0v	580.00 J

BERM5 06/20/95 6.00 - 8.00	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH	Semivolatiles - Page 2 2,4-DINITROPHENOL 4,NITROPHENOL 6,NITROPHENOL DIBENZOFURAN 2,4-DINITROFOLUENE DIETHYLPHTHALATE 4,-CHLOROPHENYL-PHENYLETHER FLUCRENE 4,6-DINITRO-2-METHYLPHENOL M-NITROSODIPHENYLETHER HEXACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE CARBAZOLE DI-N-BUTYLPHTHALATE FLUCRANTHENE PYRENE BUTYLBENZYLPHTHALATE S,3-DICHLOROBENZIOINE BENZO(A)ANTHRACENE CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE BIS(2-ETHYLHEXYL)PHTHALATE BENZO(A)ANTHRACENE BENZO(A)ANTHRENE BENZO(A)ANTHRENE BENZO(A)PRENE INDENO(1,2,3-CD)PYRENE DIBENZO(A,H)ANTHRACENE BENZO(A,H)ANTHRACENE BENZO(A,H)ANTHRACENE

Forest Glen Site AOC 1 - Berm - Subsurface Soil Organic Compounds

SAMPLE DATE SAMPLE DATE		BERM1 06/19/95	BERM2 06/19/95	BERM2A 06/19/95	BERN3 06/20/95	BERM3A 06/20/95	BERM4 06/20/95
SAMPLE DEPTH		14.00 - 16.00	8.00 - 10.00	4.00 - 6.00'	16.00 - 18.00	10.00 - 12.00	12.00 - 14.00
Pesticides/PCBs							
ALPHA-BHC	ug/kg	2.00 U	2.30 U		2.20 U	1.80 U	1.70 U
BETA-BHC	04/kg	2.00 U	2.30 U		2.20 U	1.80 U	1.70 U
DELTA-BHC	09/kg	2.00 U	2.30 U		2.20 U	1.80 U	1.70 U
gamma-BHC (Lindane)	04/kg	2.00 U	~		2.20 U	1.80 U	1.70 U
HEPTACHLOR	ug/kg	2.00 UJ	2.30 UJ	LU 09.9	2.20 UJ	1.80 U	1.70 U
ALDRIN	09/kg	0.21 کا	2.30 U		2.20 U	1.80 U	1.70 U
HEPTACHLOR EPOXIDE	ug/kg	2.00 U	2.30 U		2.20 U	1.80 U	1.70 U
ENDOSULFAN 1	09/kg	2.00 U	2.30 U	~	2.20 U	1.80 U	. 00
DIELDRIN	09/kg	D 00.7	07.7	12.00 NJ	4.20 U	3.40 U	3.40 U
4,4.·DDE	09/kg	D 00.4	0 07.7	۲۰۶۵ ر	4.20 U	3.40 U	3.40 U
ENDRIN	09/kg	7 · 00 · 0	1.40 J	19.00 U	4.20 U	3.40 U	3.40 U
ENDOSULFAN 11	09/kg	D 00.4	~	36.00 U	4.20 U	2.00 J	3.40 U
4,4000	09/kg	J 00.7	0 07.7	19.00 U	4.20 U	3.40 U	~
ENDOSULFAN SULFATE	ug/kg	~	8.80 J	œ	4.20 U	œ	3.40 U
100.,7,7	09/kg	~	~	~	4.20 U	~	~
METHOXYCHLOR	09/kg	20.00 u	23.00 U	LN 06.6	22.00 U	18.00 U	33.00 NJ
ENDRIN KETONE	09/kg	n 00·7	2.40 NJ		4.20 U	3.40 U	~
ENDRIN ALDENYDE	09/kg		n 07.7	19.00 U	4.20 U	3.40 U	3.40 U
ALPHA-CHLORDANE	09/kg		œ		2.20 U	1.80 U	1.70 U
GAMMA - CHLORDANE	09/kg	2.00 U	œ		2.20 U	1.80 U	1.70 U
2	ug/kg	200.00 u	230.00 U		220.00 u	180.00 U	
_	ug/kg		00.44		45.00 U		
_	ug/kg			390.00 U	85.00 U	70.00 U	00.69
_	ug/kg				45.00 U		
AROCLOR 1242	ug/kg	n 00.07	74.00 U		45.00 U		
_	ug/kg				45.00 U	34.00 U	
•	ug/kg	70.00 U	74.00 U		45.00 U	34.00 U	
AROCLOR 1260	ug/kg	70.00 U	74.00 U	190.00 U	42.00 U	34.00 U	34.00 U

SAMPLE NAME		BERMS	
SAMPLE DATE		06/20/95	
SAMPLE DEPTH		6.00 - 8.00	
Pesticides/PCBs			
ALPHA-BHC	ua/ka	•	
BETA-BHC	00/kg	1.70 U	
DELTA-BHC	ua/ka	1.70 U	
gamma-BHC (Lindane)	00/kg	1.70 U	
HEPTACHLOR	og/ka	0.13	
ALDRIM	og/ka	1.70 U	
HEPTACHLOR EPOXIDE	og/ka	1.70 U	
	00/kg	1.70 U	
DIELDRIN	00/kg	3.40 U	
4,4'-DDE	ug/kg	3.40 U	
ENDRIN	og/kg	3.40 U	
ENDOSULFAN 11	ug/kg	3.40 U	
000-,7'7	19/kg	3.40 U	
ENDOSUL FAN SUL FATE	69/kg	3.40 U	
4,4'-DDT	09/kg	3.40 u	
METHOXYCHLOR	09/kg	17.00 U	
ENDRIN KETONE	ug/kg	3.40 U	
ENDRIN ALDENYDE	ug/kg	3.40 U	
ALPHA-CHLORDANE	ug/kg	1.70 u	
GAMMA - CHLORDANE	09/kg	1.70 U	
TOXAPHENE	09/kg	170.00 u	
AROCLOR 1016	ug/kg	34.00 U	
•	ug/kg	0 00.69	
_	ug/kg	34.00 U	
AROCLOR 1242	ug/kg	34.00 U	
•	ug/kg	34.00 U	
AROCLOR 1254	ug/kg	34.00 U	
AROCLOR 1260	ug/kg	34.00 U	

forest Glen Site AOC 1 - Berm - Subsurface Soil Inorganic Analytes

SAMPLE NAME		BERMI	BERM2	BERH2A	BERM3	BERM3A	BERMA
TEXT ON		06/14/52	06/14/95	06/19/95	06/20/95	06/20/95	06/20/95
SAMPLE DEPTH		14.00 - 16.00	8.00 - 10.00	4.00 - 6.001	16.00 - 18.00	10.00 - 12.00	12.00 - 14.00'
Inorganic Analytes							
ALUMINUM	mg/kg	15,400.00	11,900.00 *	18,000.00	16,900.00 *		14.500.00 *
ANTIMONY	mg/kg	4.20 UNJ	4.30 UNJ	5.50 BNJ	4.40 UNJ	3	CNU 04.4
ARSENIC	mg/kg	8.7	6.80	5.70	2.30 B		9.90
BARIUM	mg/kg	111.00	96.50	174.00	82.80		96.50
BERYLLIUM	mg/kg	9 97.0	0.40 B	0.58 B	0.56 8		0.50 8
CADMIUM	mg/kg	0.25 U	0.25 U	0.26 U	0.26 U	_	0.26 U
CALCIUM	mg/kg	\$0,300.00	42.200.00	31,000.00	63.100.00		9.090.00
CHROMIUM	mg/kg	21.40	91.50	31.10	23.20		97.50
COBALT	mg/kg	15.30	21.40	30.70	15.30		16.60
COPPER	mg/kg	38.20	185.00	108.00	26.80		52.40
IRON	mg/kg	25,000.00 *	19,700.00 *	30,600.00	26,200.00 *	•	25,200.00 *
LEAD	mg/kg	8.60	73.60	27.20	8.90		20.40
MAGNESIUM	mg/kg	13,500.00	21,000.00 *	10,200.00	13,400.00 *	•	5,430.00 *
MANGANESE	mg/kg	636.00	561.00	2,580.00	662.00	576.00	377.00
MERCURY	mg/kg	0.06 U	1.70	13.50	0.06 U		0.19
NICKEL	mg/kg	29.60	45.30	74.80	31.30		29.70
POTASSIUM	mg/kg	2,450.00	1,610.00	2,410.00	2,530.00		1,250.00
SELENIUM	mg/kg	0.56 U	0.57 U	0.59 U		-	0.59 U
SILVER	mg/kg	1.50 8.1	2.70 J	2.60 J	0.97 BJ	8	1.20 BJ
SOUTUM	mg/kg	221.00 B	519.00 B	240.00 B		80	180.00 8
THALLIUM	mg/kg	1.20 B	1.60 B	2.10 B	1.20 U	-	1.20 U
VANADIUM	mg/kg	28.10 J	28.70 J	35.30 J	29.10 J	7	35.60 J
ZINC	mg/kg	64.80	198.00	142.00	9.69		93.00
CYANIDE	mg/kg	0.60 U	0.59 U	0.58 U	0.57 U	_	0.61 U
CYANIDE	mg/kg	0.60 U	0.59 U	0.58 U	0.57 U		0.57 U

SAMPLE NAME		BERMS	
SAMPLE DATE		96/50/95	
SAMPLE DEPTH		6.00 - 8.001	
Inordanic Analytes			
ALUMINUM	mg/kg	22,000.00	
ANTIMONY	mg/kg	TND 07.7	
ARSENIC	ma/ka	9.00	
BARIUM	mg/kg	126.00	
BERYLLIUM	mg/kg	9.00	
CADMIUM	ma/ka	0.26 U	
CALCTUM	ma/ka	3 440.00	
CHROMETER	mo/ka	15.10	
CORALT	ma/ka	25.60	
COOPED	04/0	8	
	24/2	20.00	
E081	A 1 / Su	20.000,00	
LEAD	mg/kg	R.3	
MAGNESTUM	mg/kg	8, 250.00	
MANGANESE	mg/kg	630.00	
MERCURY	mg/kg	D.06 U	
NICKEL	mg/kg	33.30	
POTASSIUM	mg/kg	2,220.00	
SELENIUM	mg/kg	0.59 U	
SILVER	ma/ka	1.40 8.1	
THE COS	mo/ko	8 00 90	
707	04/04	1 20 1	
מארר וכם	A v / fall	0 09	
VANADIUM	mg/kg	38.70	
ZINC	mg/kg	77.80	
CYANIDE	mg/kg	0.61 U	

AOC2 - NORTHERN ASPECT SURFACE SOIL DATA

SAMPLE NAME		DP021-55	0P022-SS 11/29/94	DP023-SS 11/30/94	DP024-55 12/01/94	DP025-SS 11/30/94	DP026-SS 11/30/94
TEXT 001 SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Conventinal Parameters pH	515	7.70	7.10	7.20	7.60	7.30	7.10
SULFIDE TOTAL ORGANIC CARBON	mg/kg mg/kg	10,500.00	14,700.00	4,240.00	12,400.00	6,000.00	3,280.00
TOTAL SOLIDS TOTAL SOLIDS (EXTENDED)	××	. 60.30	82.10	76.20	82.40	78.80	77.10
ALKALINITY	1/6w						
008	7/2						
98	1/ 6 w						
TOTAL DISSOLVO SOLIDS	1/6m						
HARDNESS	l/gm						
NITRATE/NITRITE	1/6						
TOTAL KJELDAHL MITROGEN	1/6m						

			fores AOC 2 - Norther Convent	forest Glen Site AOC 2 · Northern Aspect · Surface Soil Conventional Parameters	=		02/21/1996 5:34 PM Page 2
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		0P036 11/30/94 0up of DP026-SS 0.00 - 2.00	0.00 - 2.00	DP028-SS 12/01/94 0.00 - 2.00	DP029-SS 12/01/94 0.00 - 2.00	0P030-SS 12/02/94 0.00 - 2.00	0.00 - 2.001
Conventinal Parameters pH	5 5	7.10	7.60	7.60	7.80	7.00	7.50
SULFIDE TOTAL ORGANIC CARBON TOTAL SOLIDS	mg/kg mg/kg	6,550.00	43,800.00	7,130.00 J 83.20	12,200.00 J 69.30	5,680.00 79.00	7,470.00 J 80.20
ALKALINITY AMONIA	, gg (
COD TOTAL DISSOLVO SOLIDS	řř						
HARDNESS NITRATE/NITRITE TOTAL KJELDAHL NITROGEN)						

Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Conventional Parameters

CANDI C NAME		00/12.00	21000	22.1082	29.2082	CB04-50	, ab
SAMPLE DATE		12/02/94	12/02/94	06/20/95	06/20/95	06/21/95	06/21/95
SAMPLE DEPTH		0.00 - 2.00	Dup of DP032-SS 0.00 - 2.00'	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Conventinal Parameters							
F	sits	7.00	8.00	7.70	7.40	7.70	8.90
SULFIDE TOTAL ORGANIC CARBON	mg/kg mg/kg	2,900.00	24,900.00	2,890.00 J	8,770.00	8,160.00	24,900.00
TOTAL SOLIDS	×	80.00	80.00	89.60	81.40	89.50	87.20
TOTAL SOILDS (EXTENDED)	×						
ALKALINITY	1/6w						
AMMONIA	mg/l						
88	mg/l						
83	mg/l						
TOTAL DISSOLVO SOLIDS	Mg/l						
HARDNESS	mg/l						
NITRATE/NITRITE	1/64						
TOTAL KJELDAHL NITROGEN	1/6						

Forest Glen Site AOC 2 - Morthern Aspect - Surface Soil Conventional Parameters

SAMPLE NAME		\$0.50	20SS	
TEXT ON		64/80/43	00/06/73	
SAMPLE DEPTH		0.00 - 0.50	0.00 · 0.50	
Conventinal Parameters				
ž	5	7.20	7.70	
SULFIDE	mo/ko			
TOTAL ORGANIC CARBON	mg/kg	38,900.00	38.200.00	
TOTAL SOLIDS	×	87.00	79.00	
TOTAL SOILDS (EXTENDED)	×			
ALKALINITY	1/04			
AMMONIA	l/om			
800	1/Gm			
83	Mg/1			
TOTAL DISSOLVO SOLIDS	l/gm			
HARDNESS				
NITRATE/NITRITE	I/6m			
TOTAL KJELDAHL NITROGEN	J/6w			

			fores AOC 2 - Northern Grain 5	Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Grain Size Analysis			02/21/1996 5:44 PH Page 1
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		DP021-5S 11/29/94 0.00 - 2.00'	DP022-SS 11/29/94 0.00 - 2.00	DP023-SS 11/30/94 0.00 - 2.00	DP024-SS 12/01/94 0.00 - 2.00	DP025-SS 11/30/94 0.00 - 2.00*	DP026-\$S 11/30/94 0.00 - 2.00
Grain Analysis GRAVEL SAND (A) COARSE SAND (B) MEDIUM SAND (C) FINE SAND (C) FINE SILTS/CLAYS (<0.075 MM) SILT (A) SILT (B) CLAY	***************************************	0.00 0.20 0.20 0.20 0.20 13.50 13.50 14.50 15.50 15.50	2.50 0.50 0.50 0.50 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0.00 0.10 0.10 0.80 0.50 0.50 15.20 1.80 1.80	4.50 J 1.60 J 1.60 J 1.80 J 1.80 J 1.80 J 16.30 J 15.70 J 36.30 J	0.00 J 0.60 J 0.70 J 2.50 J 1.10 J 15.10 J 16.40 J	0.00 J 0.30 J 0.50 J 1.10 J 0.40 J 27.90 J 53.80 J
TOTALS FOR GROUP		100.00	100.00	100.00	93.20	98.90	100.00

			foresi AOC 2 - Northern Grain 5	Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Grain Size Analysis	•	·	02/21/1996 5:44 PM Page 2
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		0P036 11/30/94 0.00 of 0P026-SS 0.00 - 2.00	0P027-55 12/01/94 0.00 - 2.00	DP028-SS 12/01/94 0.00 - 2.00'	0P029-SS 12/01/94 0.00 - 2.00	02030-55 12/02/94 0.00 - 2.00'	0.00 - 2.00
Grain Analysis GRAVEL SAND (A) COARSE SAND (B) HEDIUM SAND (C) FINE SAND (D) FINE SILTS/CLAYS (<0.075 MH) SILT (A) SILT (A) CLAY	***********	0.00 J 0.20 0.20 0.20 0.70 0.30 J 7.10 10.30 J 57.80 J	0.00 J 0.10 0.20 0.90 0.30 24.00 13.70 J 21.30 J	0.00 J 0.90 J 2.90 J 1.50 J 1.50 J 2.01 J 19.20 J 47.90 J	0.00 0.00 7.00 65.00 17.00	0.00 J 0.50 J 2.50 J 1.00 J 1.00 J 20.90 J 43.90 J	0.00 J 0.30 0.30 1.70 0.70 7.70 17.80 J 26.80 J
TOTALS FOR GROUP		09.60	99.90	99.10	100.00	05.66	100.00

forest Glen Site AOC 2 - Northern Aspect - Surface Soil Grain Size Analysis

SAMPLE NAME		0P032-SS	12,027	SB01-SS 06/20/05	\$802-5\$ 06720795	SB03-SS	SB18-SS
TEXT 001			Dup of DP032-SS	2 12 120	27 (27 (20	20/11/20	2012/00
SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00	0.00 · 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Grain Analysis							
GRAVEL	×	0.50 J	0.00 J	r 00.0	0.70	5.20	18.60
SAND (A) COARSE	×	0.50	0.20 J	2.30	2.20 J	3.40 J	13.50 J
SAND (B) MEDIUM	×	0.30	0.30 J	0.60	1.10	1.80	6.60
SAND (C) FINE	×	Z.00 J	1.00.1	2.80 J	3.70 J	5.70 J	13.00 J
SAND (D) FINE	×	0.00	09.0	0.80	1.50 J	2.00 J	2.50 J
SILTS/CLAYS (<0.075 MM)	×						
SILT (A)	×	12.10 J	7.10 J	19.80 J	22.60 J	19.00 J	15.80 J
S1LT (B)	×	18.20	20.50	19.90	17.50 J	14.70 J	11.20 J
CLAY	×	22.80 J	76.20 J	14.40	20.90	17.60	12.90
COLLOIDS	×	42.70 J	43.70 J	39.40 J	29.80 J	30.60 J	6.00 ک
TOTALS FOR GROUP		100.00	09.66	100.00	100.00	100.00	100.10

\$6/80/90 20 SS	0.00 - 0.50		9.20	4.20	1.60	5.20	2.00		20.10	15.80	14.30	24.40	96.80
\$501 06/08/95	0.00 · 0.50		3.40	5.60	3.10	8.00	2.70		21.30	20.70	17.30	12.70	94.80
			×	×	×	×	×	×	×	×	×	×	
	SAMPLE DEPTH	/sis	GRAVEL	COARSE	MED I UM	FINE	FINE	rs (<0.075 MH)				COLLOIDS	TOTALS FOR GROUP

Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Targeted Organic Compounds

SAMPLE NAME SAMPLE DATE		DP021-SS 11/29/94	DP022-SS 11/29/94	DP023-SS 11/30/94	0P024-SS 12/01/94	0P025-SS 11/30/94	DP026-SS 11/30/94
SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Targeted SemiVolatiles							
CYANATE		200.00 U					
		200.00 U					
ш		200.00 UJ	200.00 UJ	200.00 U	200.00 u	200.00 UJ	200.002
2-ANILINOBENZOTHIAZOLE Ug/kg	-	200.00 u					
PERYLENE U9/		200.00 u	200.00 U	200.00 UJ	200.00 U	200.00 u	200.00 U
ANILINE US/		200.00 U					
N,N-DIPHENYL-1,4-BENZENEDIAMIN Ug/		200.00 U	200.00 U	200.00 UJ	200.00 u	200.00 u	200.00 U
PHENOTHIAZINE U9/		200.00 U					
BENZOTHIAZOLE Ug/	ug/kg	200.00 U					

Forest Glen Site
AOC 2 - Northern Aspect - Surface Soil
Targeted Organic Compounds

SAMPLE NAME		00036	DP027-55	DP028-55	SS-62040	DP030-SS	DP031-SS
SAMPLE DATE		11/30/94	12/01/94	12/01/94	12/01/94	12/02/94	12/01/94
1EXT 001		Dup of DP026-SS					
SAMPLE DEPTH		0.00 · 2.00	0.00 · 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Targeted Semivolatiles							
PHENYL ISOTHIOCYANATE UG/	/kg	200.00 u	200.00 u	200.00 U	200.00 U	200.00 U	200.00 U
DIPHENYLAMINE UG/	,ko	200.00 u	200.00 u	200.00 U	200.00 U	200.00 U	200.00 U
2-MERCAPTOBENZOTHIAZOLE UG/	,ko	500.00 UJ	200.00 U	200.00 UJ	200.00 UJ	200.00 UJ	200.00
2-ANILINOBENZOTHIAZOLE ug/kg	, 6	\$0.00 J	200.00 U	200.00 U	80.00 J	200.00 U	200.00 U
PERYLENE UG/1	64/	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
ANILINE 09/1	, kg	200.00 UJ	200.00 u				
N,N-DIPHENYL-1,4-BENZENEDIAMIN UG/	, E	200.00 u	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
PHENOTHIAZINE US/kg	/kg	200.00 U	200.00 U	200.00 U	200.00 U	200.00 UJ	200.00 U
BENZOTH1AZOLE UG/	,kg	200.00 u	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U

			Foresi AOC 2 - Northern Targeted O	Forest Glen Site - Northern Aspect - Surface Soil Targeted Organic Compounds			02/21/1996 5:49 PM Page 3
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		DP032-SS 12/02/94 0.00 - 2.00	Dup of DP037 12/02/94 Dup of DP032-58 0.00 - 2.00	\$801.55 06/20/95 0.00 - 2.00	\$802-\$\$ 06/20/95 0.00 - 2.00	\$803-\$\$ 06/21/95 0.00 - 2.00	\$818-\$\$ 06/21/95 0.00 - 2.00
Targeted Semivolatiles	4/4	200 000	00	1 00 076	1 00 036	00 000	17 00 020
DIDHENYI AMINE	1/6	200.002	00.002	00.042	250.00	220.00	230.00
2-MERCAPTOBENZOTHIAZOLE UG/kg	04/kg	200.00 200.00	200.00	240.00 U	250.00	250.00 UJ	230.00 U
2-ANILINOBENZOTHIAZOLE	cg/kg	200.00 U	200.00 U	240.00 U	250.00 U	220.00 U	230.00 U
PERYLENE	09/kg	200.00 u	200.00 u	240.00 UJ	250.00 U	220.00 U	230.00 U
ANILINE	6 9/kg	200.00 U	200.00 u	240.00 UJ	250.00 UJ	220.00 UJ	230.00 UJ
N.N-DIPHENYL-1,4-BENZENEDIAMIN	og/kg	200.00 U	200.00 U	240.00 UJ	250.00 U	220.00 U	230.00 UJ
PHENOTHIAZINE	og/kg	200.00 U	200.00 U	240.00 U	250.00 U	220.00 U	230.00 U
BENZOTHIAZOLE	ug/kg	200.00 u	200.00 U	240.00 U	250.00 U	220.00 U	230.00 U

SANTE DATE		11/29/94	11/29/94	11/30/94	0P024-SS 12/01/94	11/30/94	0P026-SS 11/30/94
SAMPLE DEPTH		0.00 · 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Voletiles	24/61	= 00 21	12 00 51	1 00 21	1 00 51	11 00 11	14 00 11
	09/kg	13.00 U	12.00 U	13.00 U	12.00 U	13.00 U	13.00 U
06	ug/kg	13.00 U	12.00 U	8	12.00 U	2	13.00 u
	ug/kg .	13.00 U		8	12.00 U	2	13.00 U
WE CHLORIDE	ug/kg		13.00 UJ	13.00 U	12.00 U	2	13.00 U
	08/kg	20.00 nj		8	12.00 U	2	13.00 U
	ug/kg	13.00 U		8	12.00 U	13.00 U	13.00 U
	ug/kg	13.00 U		8	12.00 U	13.00 U	13.00 U
	ug/kg	13.00 U		13.00 U	12.00 U	2	13.00 U
OETHENE (total)	ug/kg	13.00 U		13.00 U	12.00 U	2	13.00 U
	ug/kg	13.00 U	12.00 U	13.00 U	12.00 U	2	13.00 U
ROETHANE	ug/kg	13.00 U		8	12.00 U	2	13.00 U
	ug/kg	13.00 U		8	12.00 U	2	13.00 U
ш	ug/kg	13.00 U		8	12.00 U	2	13.00 U
	ug/kg	13.00 U		8	2	2	13.00 U
w	ug/kg	13.00 U		8	12.00 U	2	13.00 U
	ug/kg	13.00 U		8	12.00 U	2	13.00 U
PROPENE	ug/kg	13.00 U		13.00 U	12.00 U	2	13.00 U
	ug/kg	13.00 U		8	12.00 U	2	13.00 U
	ug/kg	13.00 U	12.00 U	8	12.00 U	2	13.00 U
RICHLOROETHANE	ug/kg	13.00 U		88	12.00 0	2 9	13.00 0
	ug/kg	13.00 0		38	12.00 0	2.00 0	13.00 0
-UICHLOROFKOPENE	63/KB	0.00.00		38	0.20	2 2	
	09/kg	15.00 0		38	38	2 9	0000
- PENTANONE	ug/kg	15.00 0		38	3	2 2	13.00 0
	ug/kg	13.00 U	12.00 U	8	12.00 U	2	13.00 U
	ug/kg	13.00 U		8	8	2	13.00 0
TETRACHLOROETHANE	ug/kg	13.00 U		13.00 U	12.00 U	2	
	ug/kg	13.00 U		8	12.00 U	13.00 U	
ш	ug/kg	13.00 U	12.00 U	8	12.00 U	13.00 U	13.00 U
NZENE	ug/kg	13.00 U	12.00 U	13.00 U	12.00 0	13.00 0	13.00 0
	ug/kg	13.00 U	12.00 U	88	12.00 U	13.00 0	13.00 0
XYLENES (total)	ug/kg	0 00.81	12.00 0	13.00 0	12.00 0	13.00	13.00 0

Forest Glen Site AOC 2 - Worthern Aspect - Surface Soil Organic Compounds

SAMPLE NAME SAMPLE DATE		DP036 11/30/94	DP027-55 12/01/94	DP028-SS 12/01/94	DP029-SS 12/01/94	DP030-55	DP031-SS 12/01/94
TEXT 001		Dup of DP026-SS					27 110 12:
SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Volatiles							
CHLOROMETHANE	ug/kg	13.00 U	13.00 U	12.00 U	13.00 U	12.00 U	12.00 U
BROMOMETHANE	09/kg	13.00 U	8	12.00 U	13.00 U	12.00 U	12.00 U
VINYL CHLORIDE	ug/kg	13.00 U	8	12.00 U	2	12.00 U	12.00 U
CHLOROETHANE	ug/kg	13.00 U	8	12.00 U	13.00 U	12.00 U	12.00 U
METHYLENE CHLORIDE	ug/kg	21.00 U	13.00 U	12.00 U		22.00	12.00 U
ACETONE	ug/ko	27.00 U	8	12.00 U	13.00 U	12.00 1	12.00.1
CARBON DISULFIDE	09/kg	13.00 U	_	12.00 U	13.00 U	12.00 U	12.00 U
1,1-DICHLOROETHENE	09/kg	13.00 U	8	12.00 U		12.00 U	
1,1-DICHLOROETHANE	ug/kg	13.00 U	8	12.00 U	13.00 U	12.00 U	12.00 U
1,2-DICHLOROETHENE (total)	ug/kg	13.00 U	8	12.00 U		12.00 U	
CHLOROFORM	09/kg	13.00 U	8	12.00 U	13.00 U	12.00 U	
1,2-DICHLOROETHANE	ug/kg	13.00 U	13.00 U	12.00 U	13.00 U	12.00 U	
2-BUTANONE	ug/ka	13.00 U	8	12.00 U	13.00 U	12.00 U	
1,1,1-TRICHLOROETHANE	ug/kg	13.00 U	13.00 U	2		12.00 U	12.00 U
CARBON TETRACHLORIDE	09/kg	13.00 U	8	2	13.00 U	12.00 U	
BROHOD I CHLOROMET HANE	ug/kg	13.00 U	_	12.00 U	13.00 U	12.00 U	
1, 2-DICHLOROPROPANE	ug/kg		8	2	13.00 U	12.00 u	12.00 U
CIS 1, 3-DICHLOROPROPENE	09/kg	13.00 U	8	2	13.00 U	12.00 U	12.00 U
TRICHLOROETHENE	09/kg	13.00 U	8	12.00 U	•	12.00 U	12.00 U
D I BROMOCHLOROME I HANE	09/kg	13.00 U	13.00 U	12.00 U	13.00 U	12.00 U	12.00 U
1, 1, Z-IKICHLOKOE I HANE	64/ 6 0	13.00 0	38	12.00 U	13.00 U	12.00 0	_
BENZENE FILL 1 7 DICHI OROBICHI	6 /60	3.00 0		2 2	13.00 0	12.00 0	12.00 U
BOOMOROOM	09/E0	00.5	2.00 0	0 00 2	13.00 0	0 00 2	
מיייים	7			2 :	15.00	33	
4-METHTL-Z-PENTANONE	ug/kg	13.00 03		2	13.00 UJ	12.00 03	
Z-HEXANONE	ug/kg			12.00 U	13.00 0	8	
TETRACHLOROETHENE	ug/kg		13.00 U	2	13.00 U	8	12.00 U
1, 1, 2, 2-TETRACHLOROETHANE	ug/kg			12.00 U	13.00 U	8	
TOLUENE	ug/kg			2	13.00 U	8	
CHLOROBENZENE	ug/kg	13.00 U	13.00 U	12.00 U	13.00 U	12.00 U	12.00 U
EINTLBENZENE	09/kg	13.00 0		0 00.21	13.00 0	12.00 0	12.00 U
STATEME CANADA	ug/kg	13.00 0		12.00 0	13.00 U	12.00 0	12.00 U
VILENES (TOTAL)	ug/kg	13.00 0	13.00 0	0 00.21	13.00 0	12.00 0	12.00 0

Forest Glen Site AOC 2 - Worthern Aspect - Surface Soil Organic Compounds

SAMPLE NAME		DP032-SS	DP037	SB01-SS	SB02-SS	SB03-SS	SB18-SS
SAMPLE DATE		12/02/94		06/20/95	06/50/95	06/21/95	06/21/95
SAMPLE DEPTH		0.00 - 2.00	58.	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00'	0.00 - 2.00
Volatiles							
CHLOROMETHANE	ug/kg	12.00 U	12.00 U	11.00 U	16.00 U	12.00 U	_
BROMOMETHANE	ug/kg	12.00 U	12.00 U	11.00 U	16.00 U	12.00 U	_
VINYL CHLORIDE	19/kg	12.00 U	12.00 U	11.00 U	16.00 U	12.00 U	10.00 UJ
CHLOROETHANE	ug/kg	12.00 U	8	11.00 U	16.00 U	12.00 U	_
METHYLENE CHLORIDE	09/kg	12.00 U			32.00 U	28.00 U	_
ACETONE	09/kg	12.00 U		110.00 8J	2	47.00 UJ	_
CARBON DISULFIDE	09/kg	12.00 U	12.00 U		16.00 U	12.00 U	_
1,1-DICHLOROETHENE	09/kg	12.00 U		11.00 U	2	12.00 U	10.00 u
1,1-DICHLOROETHANE	09/kg	_	12.00 U	11.00 U	2	12.00 U	10.00 u
1,2-DICHLOROETHENE (total)	og/kg	12.00 U	_	11.00 U	2	12.00 U	10.00 u
CHLOROFORM	ug/kg	_	_	11.00 U	2	12.00 U	10.00 u
1,2-DICHLOROETHANE	oo/ko	_	12.00 U	11.00 U	16.00 U	12.00 U	10.00 u
2-BUTANONE	09/kg	_	12.00 U		2		10.00 U
1,1,1-TRICHLOROETHANE	ug/kg	_	12.00 U	11.00 UJ	16.00 UJ	12.00 UJ	10.00 01
CARBON TETRACHLORIDE	09/kg	12.00 U			2		10.00 U
BROHOD I CHLOROME THANE	09/kg		12.00 U	11.00 ∪	2		10.00 U
1,2-DICHLOROPROPANE	09/kg			11.00 U	2		10.00 U
cis 1,3-DICHLOROPROPENE	ug/kg			11.00 U	2		10.00 U
TRICHLOROETHENE	ug/kg		_	11.00 U	16.00 U	12.00 U	10.00 U
DIBROMOCHLOROMETHANE	ug/kg		12.00 U	11.00 U	16.00 ∪	12.00 U	10.00 U
1,1,2-TRICHLOROETHANE	ug/kg	_	12.00 U	11.00 U	16.00 U	12.00 U	10.00 U
BENZENE	ug/kg		12.00 U	11.00 U	16.00 U	12.00 U	10.00 U
trans 1,3-DICHLOROPROPENE	ug/kg		12.00 U	11.00 U	16.00 U	12.00 U	10.00 U
BROMOFORM	ug/kg		12.00 U	11.00 U	16.00 U		10.00 U
4-HETHYL-2-PENTANONE	ug/kg		12.00 UJ	11.00 U	16.00 U	12.00 U	10.00 U
2-HEXANONE	ug/kg			11.00 U	16.00 U		10.00 U
TETRACHLOROETHENE	ug/kg	12.00 U		11.00 u	16.00 u	12.00 U	10.00 U
1,1,2,2-TETRACHLOROETHANE	ug/kg	12.00 u	12.00 U	11.00 U	16.00 U	12.00 U	
TOLUENE	ug/kg		12.00 U	11.00 U	16.00 U	12.00 U	
CHLOROBENZENE	ug/kg		12.00 U	11.00 U	16.00 U	12.00 U	10.00 C
ETHYLBENZENE	ug/kg	12.00 U	12.00 U	11.00 U	16.00 U	12.00 U	10.00 U
STYRENE	ug/kg	12.00 U	12.00 U	11.00 u	16.00 U	12.00 U	10.00 U
XYLENES (total)	ug/kg	12.00 U	12.00 U	11.00 U	16.00 U	12.00 U	10.00 U

Forest Glen Site AOC 2 - Worthern Aspect - Surface Soil Organic Compounds

CAMPIFE		1050	2033	
SAMPLE DATE		\$6/80/90	\$6/80/90 7055	
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	
Volatiles				
CHLOROMETHANE	09/kg	11.00 u	12.00 U	
BROMOMETHANE	cg/kg	11.00 ∪	12.00 U	
VINYL CHLORIDE	59/kg	. 0 0.11		
CHLOROETHANE	50/kg	11.00 U	_	
METHYLENE CHLORIDE	00/kg	00.99		
ACETONE	64/kg	11.00 U		
CARBON DISULFIDE	ca/ka	11.00 U	12.00 u	
1.1-DICHLOROETHENE	00/kg	11.00 U		
1.1-DICHLOROETHANE	ua/ka	11.00 U	_	
1.2-DICHLOROETHENE (total)	ua/ka	11.00 U	12.00 U	
CHLOROFORM	ua/ko	11.00 U	12.00 U	
1.2-DICHLOROETHANE	co/ko	11.00 U	12.00 U	
2-BUTANONE	ug/ka	11.00 U	12.00 U	
1,1,1-TRICHLOROETHANE	ug/kg	11.00 U	12.00 U	
CARBON TETRACHLORIDE	ug/kg	11.00 u		
BROMOD I CHLOROME THANE	ug/kg	11.00 U	12.00 U	
1,2-DICHLOROPROPANE	ug/kg	11.00 U		
cis 1,3-DICHLOROPROPENE	ug/kg	11.00 u		
TRICHLOROETHENE	ug/kg	11.00 u		
DIBROMOCHLOROMETHANE	ug/kg	11.00 u		
1,1,2-TRICHLOROETHANE	ug/kg	11.00 u	12.00 U	
BENZENE	ug/kg	11.00 U		
trans 1,3-DICHLOROPROPENE	ug/kg	11.00 U		
BROMOFORM	ug/kg	11.00 UJ		
4-METHYL-2-PENTANONE	09/kg	11.00 u		
2-HEXANONE	ug/kg	11.00 U		
TETRACHLOROETHENE	ug/kg	11.00 U		
1,1,2,2-TETRACHLOROETHANE	ug/kg	11.00 U	12.00 U	
TOLUENE	ug/kg	11.00 u		
CHLOROBENZENE	ug/kg	11.00 u		
ETHYLBENZENE	ug/kg	11.00 U		
STYRENE	ug/kg	11.00 U	12.00 U	
XYLENES (total)	ug/kg	11.00 U	12.00 U	

			Organ	Organic Compounds			Page 1
SAMPLE NAME SAMPLE DATE TEXT 001		0P021-SS 11/29/94	0P022-SS 11/29/94	DP023-SS 11/30/94	DP024-SS 12/01/94	DP025-SS 11/30/94	0P026-SS 11/30/94
SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00'	0.00 - 2.00
Semivolatiles - Page 1	4/4/	11 00 027		11 00 027			
BIS(2-CHLOROETHYL)ETHER	2/67	420.00 U	00.007	430.00 0	410.00	0.00.057	0 00.057
2-CHLOROPHENOL	00/kg	_	400.00 U	430.00 U	710.00	20.057	0 00 057
1,3-DICHLOROBENZENE	9/kg		00.007	430.00 U	410.00 U	430.00 U	730.00 U
1,4-DICHLOROBENZENE	ug/kg		700.00 U	430.00 U	410.00 U	430.00 U	430.00 U
1, Z-DICHLOROBENZENE	09/kg		400.00 U	430.00 U	410.00 U	430.00 U	430.00 U
BISC2-CHLOROISOPROPYLIFTHER		0 00 027	00.007	430.00 0	410.00 0	430.00 U	430.00 U
4-METHYLPHENOL	2/60		7 00:007	730.00	20.007	0 00 057	0 00 067
N-NITROSO-DI-N-PROPYLAMINE	09/kg	420.00 U	0 00.007	430.00 U	410.00 U	430.00 U	00.054
HEXACHLOROETHANE	09/kg		700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
MITROBENZENE	ug/kg		700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
ISOPHORONE	09/kg	_	700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
Z-NITROPHENOL	69/kg		700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
PIECO CHI OGGET HONDE	00/kg		400.00 U	430.00 U	410.00 U	430.00 U	430.00 U
BIS(2-CHLOROETHUXT)METHANE	64/65		700.00	430.00 0	410.00 U	430.00 U	430.00 U
1.2 4-DICHLOROPHENDL	64/6	0 00 027	0 00.007	430.00 0	0 00 00	430.00 0	430.00 U
NAPHTHALENE	2 /kg	0 00 025	00.007	730.00	70.00	0.00.027	0 00 027
4-CHLOROANILINE	ug/kg	420.00 U	700.007	430.00 U	410.00 U	430.00 U	430.00 U
HEXACHLOROBUTAD I ENE	09/kg		700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
4-CHLORO-3-METHYLPHENOL	09/kg		700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
Z-MEINTLNAPHINALENE	09/kg		7.00.00 n	430.00 U	410.00 U	430.00 U	430.00 U
HEXACHLOROCYCLOPENTADIENE	ug/kg		700.00 n	430.00 U	410.00 u	430.00 U	430.00 U
2,4,0-IRICALOROPHENOL	09/kg	1 000 00 1	00.004	430.00 U	410.00 U	730.00 n	430.00 U
2-CHIODOMADHTHAI ENE	97/67	20.00.	200	00.000	0.000,	0 00 000	0,000,1
2-NITROANILINE	ug/kg	1 000 000 1	0.00.00	430.00	1 000 00 1	1 000 00 1	430.00 n
DIMETHYLPHTHALALTE	09/kg		400.00 U	430.00 U	410.00 U	430.00 U	730.00 0
ACENAPHTHYLENE	ug/kg		400.00 U	430.00 U	410.00 U	430.00 U	430.00 U
2,6-DINITROTOLUENE	ug/kg	420.00 U	400.00 U	430.00 u	410.00 U	730.00 U	430.00 U
3-NITROANILINE ACENAPHTHENE	ug/kg	1,000.00 U	00.086	1,000.00 U	1,000.00 U	1,000.00 U	1,000.00 U
	6: 16-			2 221251	2 22121	2 22:25	20.00

SAMPLE NAME SAMPLE DATE		0P036 11/30/94	DP027-SS 12701794	0P028-SS	0P029-SS 12701704	0P030-SS 12/02/94	DP031-SS
TEXT 001		0.00 of 0P026-SS	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	100.5 - 00.0
					- 1	J	
Semivolatiles - Page 1							
PHENOL	09/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
BIS(2-CHLOROETHYL)ETHER	64/65 64/65		450.00 U	410.00 0	450.00 U	4 10.00 U	410.00 U
Z-CHLOROPHENOL	09/kg		750.00 U	_ 8	420.00 U	410.00 U	410.00 U
1,3-DICHLOROBENZENE	ug/kg	, 420.00 U	450.00 U	410.00 U	420.00 U	410.00 U	410.00 U
1,4-DICHLOROBENZENE	ug/kg	420.00 U	420.00 U	8	420.00 U	410.00 U	410.00 U
1,2-DICHLOROBENZENE	ug/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
2-METHYLPHENOL	ug/kg	420.00 u	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	420.00 UJ	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
4-METHYLPHENOL	ug/kg	8	8	410.00 U	420.00 U	410.00 U	410.00 U
N-NITROSO-DI-N-PROPYLAMINE	ug/kg	420.00 U	750.00 n	410.00 U	420.00 U	410.00 U	410.00 U
HEXACHLOROETHANE	ug/kg	420.00 U	450.00 U	410.00 U	420.00 U	410.00 U	410.00 U
NITROBENZENE	ug/kg	750.00 U	8	_	420.00 U	410.00 U	410.00 U
ISOPHORONE	ug/kg	750.00 U	8	410.00 U	420.00 U	410.00 U	410.00 U
2-NITROPHENOL	ug/kg	750.00 n	8	410.00 U	750.00 U	410.00 U	410.00 U
2,4-DIMETHYLPHENOL	09/kg	420.00 U	8	8	420.00 U	410.00 U	410.00 U
BIS(2-CHLOROETHOXY)METHANE	ug/kg	750.00 n	420.00 U	410.00 U	750.00 n	410.00 U	410.00 U
2,4-DICHLOROPHENOL	09/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
1,2,4-TRICHLOROBENZENE	09/kg	420.00 U	420.00 U	410.00 U	420.00 0	410.00 U	410.00 U
NAPHINALENE	63/K9	750.00 f	420.00 U	410.00 0	420.00 0	410.00 U	410.00
4-CHLOROANILINE	08/kg	420.00 0	420.00 0	410.00 U	420.00 0	410.00 U	410.00 U
MEXACHLOROBOLADIENE	00/Kg	0 00.024	20.00.0	410.00 O	0 00.027	0.00.4	0 00.014
2-CALCACO-3-MEINTLYMENOL	U9/Kg	0 00 027	00.024	0.00	730.00	00.00	10.00
	2,4	0 00 027	0 00 007		0 00 027	20.00	
2 4 4-TRICHIOPOPHENDI	24/5	50:035	00.027	210.00	20.034	410.00	10.00
2 / C. TO I CUI OBOBUCAO!	27/07				200000	- 00	
2,4,3 - IRICALOROPAEROL	09/Kg	. 00.00.		0.00	00.000,	00.064	0,000.00
2-UTTBOANTINE	9/Kg	0 00 000	000000	0.00	00.000	00.004	200.00
A THE PROPERTY OF THE	00/Kg		. 00.000,	0.000	. 00.000,		0.000.1
DIMETATION	U9/K9	0 00.027	20.00 0	410.00 0	0 00 00	10.00 0	410.00 0
ALENAPHINITENE	09/Kg	0 00.024	0 00.02*	0.00.01	0 00.024	00.014	0 00.014
Z,O-DINIIKOIOLUENE	09/kg	0.00.024	0.00.024	0.00.00	0.00.024	0.00.00	410.00 0
S-NITROANILINE	09/kg	1,000.00	1,000.00	0.000	1,000.00 U	00.099 30.099	1,000.00 U
ACEMAPRIMENE	U9/ K 9	450.00	420.00	410.00 0	450.00	10.00	410.00

forest Glen Site AOC 2 - Worthern Aspect - Surface Soil Organic Compounds

SAMPLE NAME		DP032-5\$	00037	SB01-5S	SB02-SS	\$803-55	SB18-SS
TEXT 001		170771	Dup of DP032-SS	74 /03 /00	64/63/60	64/13/90	06/17/00
SAMPLE DEPTH		0.00 - 2.00	8	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00'	0.00 - 2.00
Semivolatiles - Page 1							
PHENOL	69/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
BIS(2-CHLOROETHYL)ETHER	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2-CHLOROPHENOL	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
1,3-DICHLOROBENZENE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
1,4-DICHLOROBENZENE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
1,2-DICHLOROBENZENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2-METHYLPHENOL	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	410.00 U	410.00 U	350.00 UJ	530.00 U	390.00 U	330.00 U
4-METHYLPHENOL	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
N-NITROSO-DI-N-PROPYLAMINE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
HEXACHLOROE THANE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
NITROBENZENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
ISOPHORONE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2-NITROPHENOL	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2,4-DIMETHYLPHENOL	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
BIS(2-CHLOROETHOXY)METHANE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2,4-DICHLOROPHENOL	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
1,2,4-TRICHLOROBENZENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
NAPHTHALENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
4-CHLOROANILINE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
HEXACHLOROBUTAD I ENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
4-CHLORO-3-METHYLPHENOL	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2-METHYLNAPHTHALENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
HEXACHLOROCYCLOPENTADIENE	ug/kg	410.00 U	410.00 U	350.00 UJ	530.00 U	390.00 U	330.00 U
2,4,6-TRICHLOROPHENOL	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2,4,5-TRICHLOROPHENOL	ug/kg	1,000.00 u	990.00 U	880.00 U	1,300.00 U	00.000 U	830.00 U
2-CHLORONAPHTHALENE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2-NITROANILINE	ug/kg	1,000.00 U	00.000 n	880.00 UJ	1,300.00 U	00.066	830.00 U
DIMETHYLPHTHALALTE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
ACENAPHTHYLENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2,6-DINITROTOLUENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
3-NITROANILINE	ug/kg	1,000.00 U	00.0%	880.00 UJ	1,300.00 U	990.00 U	830.00 U
ACENAPHTHENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U

Forest Glen Site AOC 2 - Worthern Aspect - Surface Soil Organic Compounds

06/08/95 8 - Page 1 9 - O 00 - O 50' 10 - O 00 - O 50' 10 - O 00 - O 50' 10 - O 0 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O	CAMDI E NAME		1000	6000	
THER UG/Kg 360.00 U U U UG/Kg 360.00 U U U U U UG/Kg 360.00 U U U U U U UG/Kg 360.00 U U U U U UG/Kg 360.00 U U U U U UG/Kg 360.00 U U U U U U U UG/Kg 360.00 U U U U U U U U U U U U U U U U U U	IPLE DATE		56/80/90	\$6/80/90 \$6/80/90	
LUGYKG 360.00 U 410.00	(T DOT UPLE DEPTH		0.00 - 0.50	0.00 - 0.50	
THER UG/Kg 360.00 U 410.00 UG/Kg 360.00 U 1,000.00 UG/Kg 100.00 U	ivolatiles - Page 1				
THER UG/Kg 360.00 U 410.00 UG/Kg 360.00 U 1,000.00 UG/Kg 1000.00		ua/ka	360.00 U	00.017	
THER UG/Kg 360.00 U 410.00	(2-CHLOROETHYL)ETHER	ca/ka	360.00 U	410.00 U	
THER LUG/kg 360.00 U 410.00	HLOROPHENOL	oa/ka	360.00 u	710.00	
THER UG/Kg 360.00 U 410.00	-DICHLOROBENZENE	oa/ka	360.00 U	00.017	
THER UG/Kg 360.00 U 410.00 UG/Kg 360.00 U 1,000.00 UG/Kg 160.00 U	-DICHLOROBENZENE	oa/ka	360.00 U	410.00 U	
THER UG/Kg 360.00 U 410.00 UG/Kg 360.00 U 1,000.00 UG/Kg 160.00 UG/Kg 1	-DICHIOROSENZENE	od/ka	360.00	00.017	
THER UGYKg 360.00 U 410.00 UG/kg 360.00 U 1,000.00 UG/kg 160.00 UG	ETHYLPHENOL	5/kg	360.00 u	410.00 U	
ME UG/Kg 360.00 U 410.00 UG/Kg 360.00 U 1,000.00	SC2-CHLOROI SOPROPYL SETHER	ua/ka	360.00 u	10.00 0	
INE	ETHYLPHENOL	ca/ka	360.00 U	710.00 0	
AME LUG/Kg 360.00 U 410.00 LUG/Kg 360.00 U 1,000.00 LUG/Kg 10.00 LUG/	ITROSO-DI-N-PROPYLAMINE	ua/ka	360.00 u	410.00 U	
ME UG/Kg 360.00 UJ 410.00 UG/Kg 360.00 U 1,000.00	ACHLOROE THANE	04/kg	360.00 U	410.00 U	
AME	ROBENZENE	26/kg			
AME UG/kg 360.00 U 410.00 UG/kg 360.00 U 1,000.00	PHORONE	09/kg			•
AME	ITROPHENOL	64/kg	360.00 U		
AME	-DIMETHYLPHENOL	00/kg	360.00 U	410.00 U	
UUS/Kg 360.00 U 410.00 UUS/Kg 360.00 U 1,000.00	(2-CHLOROETHOXY)METHANE	ca/kg	360.00 U	410.00 U	
UUG/kg 360.00 U 410.00 UUG/kg 360.00 U 1,000.00 UUG/kg 360.00 U 1,000.00 UUG/kg 360.00 U 1,000.00 UUG/kg 360.00 U 1,000.00	-DICHLOROPHENOL	09/kg	360.00 u	410.00 U	
UG/kg 360.00 U 410.00	.4-TRICHLOROBENZENE	09/kg	360.00 U	410.00 U	
UG/kg 360.00 U 410.00 UG/kg 920.00 U 1,000.00 UG/kg 920.00 U 410.00 UG/kg 920.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00	HTHALENE	ca/kg	360.00 U	410.00 U	
UG/kg 360.00 U 410.00 UG/kg 920.00 U 1,000.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00	HLOROANILINE	09/kg	360.00 U	410.00 U	
ME UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 920.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 360.00 U 410.00	ACHLOROBUTAD1ENE	ug/kg	360.00 U	410.00 U	
E Ug/kg 360.00 U 410.00 TADIENE Ug/kg 360.00 U 410.00 NOL Ug/kg 360.00 U 410.00 E Ug/kg 360.00 U 410.00	HLORO-3-METHYLPHENOL	ug/kg	360.00 U	410.00 U	
TADIENE ug/kg 360.00 U 410.00 NOL ug/kg 360.00 U 410.00 NOL ug/kg 360.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00	ETHYLNAPHTHALENE	09/kg	360.00 U	410.00 U	
MOL ug/kg 360.00 U 410.00 NOL ug/kg 920.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00	ACHLOROCYCLOPENTADIENE	ug/kg	360.00 U	410.00 U	
MOL ug/kg 920.00 U 1,000.00 E ug/kg 360.00 U 410.00	.6-TRICHLOROPHENOL	ua/ka	360.00 U	410.00 U	
E ug/kg 360.00 U (10.00 ug/kg 920.00 UJ 1,000.00 ug/kg 360.00 U (10.00 ug/kg 360.00 U (10.00 ug/kg 360.00 U (10.00 ug/kg 920.00 U	S-TRICHLOROPHENOL	09/kg	920.00 U	1,000,00 U	
ug/kg 920.00 UJ 1,000.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 920.00 U 1,000.00	MI ORONAPHTHALENE	uo/ka	360.00 U	00.017	
ug/kg 360.00 U (10.00 ug/kg 360.00 U (10.00 ug/kg 360.00 U (10.00 ug/kg 920.00 ug/kg 920.00 U (10.00 ug/kg 920.00 ug/kg 920.00 U (10.00 ug/kg 920.00 ug/kg	ITROANILINE	ua/ka	920.00 UJ		
ug/kg 360.00 U ug/kg 360.00 U ug/kg 920.00 U 1,	ETHYLPHTHALALTE	ua/ka	360.00 U		
JENE ug/kg 360.00 U 1,	NAPHTHYLENE	ua/ka	360.00 0	410.00 U	
ug/kg 920.00 u 1,	-DINITROTOLUENE	ug/ka	360.00 U	410.00 U	
11 00 07E	TROANILINE	ua/ka	920.00 u	1 000 00 u	
70 00 000	ACENAPHTHENE	ua/ka	360.00	rn 00 017	

Forest Glen Site
AOC 2 - Northern Aspect - Surface Soil
Organic Compounds

SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		20 10000	33 66040		33 /6044	30 30000	
SAMPLE DEPTH		11/29/94	11/29/94	0P023-SS 11/30/94	12/01/94	0P025-55 11/30/94	DP026-SS 11/30/94
		0.00 - 2.00	0.00 - 2.00'	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Semivolatiles - Page 2							
-	ug/kg	1,000.00 UJ	980.00 UJ	1,000.00 u	1,000.00 U	1,000.00 U	1,000.00 U
	ug/kg	1,000.00 U	980.00 U	1,000.00 u	1,000.00 U	1,000.00 U	1,000.00 U
	ug/kg	420.00 U	00.00¢	430.00 U	410.00 U	430.00 U	430.00 U
	ug/kg	450.00 U	700.00 n	430.00 U	8	430.00 U	430.00 U
	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
4-CHLOROPHENYL-PHENYLETHER US	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
FLUORENE	ug/kg	420.00 U	700.00 U	430.00 U	410.00 U	430.00 U	430.00 U
	ug/kg	1,000.00 U	980.00 U	1,000.00 u	1,000.00 U	1,000.00 U	1,000.00 U
4,6-DINITRO-2-METHYLPHENOL US	ug/kg	1,000.00 U	980.00 U	1,000.00 U	1,000.00 U	1,000.00 U	1,000.00 U
	ug/kg	420.00 U	00.00¢	430.00 U	410.00 U	430.00 U	430.00 U
4-BROMOPHENYL-PHENYLETHER US	ug/kg	420.00 U	700.00 U	430.00 U	410.00 U	430.00 U	430.00 U
HEXACHLOROBENZENE UG	ug/kg	450.00 U	700.00 U	430.00 U	410.00 U	430.00 U	430.00 U
HENOL	ug/kg	1,000.00 U	980.00 U	1,000.00 U	1,000.00 U	1,000.00 U	1,000.00 ∪
PHENANTHRENE	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	22.00 J	430.00 U
w	ug/kg	420.00 U	7 00 °00	430.00 U	410.00 U	430.00 U	430.00 U
CARBAZOLE	ug/kg	420.00 U	700.00 U	430.00 U	410.00 U	730.00 U	430.00 U
THALATE	ug/kg	420.00 U	00.007	430.00 U	410.00 U	430.00 U	430.00 U
NTHENE	ug/kg	420.00 U	700.00 U	430.00 U	410.00 U	42.00 J	430.00 U
	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	30.00	430.00 U
	ug/kg	420.00 U	700.00 n	730.00 n	410.00 U	430.00 U	430.00 U
DINE	ug/kg	420.00 U	00.007	730.00 n	410.00 U	430.00 U	430.00 U
BENZO(A)ANTHRACENE US	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
CHRYSENE	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	30.00	430.00 U
BIS(2-ETHYLHEXYL)PHTHALATE US	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
DI-N-OCTYLPHTHALATE US	ug/kg	420.00 U	700.00 n	430.00 u	8	430.00 U	430.00 U
BENZO(B)FLUORANTHENE US	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	36.00 J	730 00 n
BENZO(K)FLUORANTHENE US	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	430.00 U	430.00 U
	ug/kg	420.00 U	700.00 n	430.00 U	410.00 U	. 27.00 J	430.00 U
	ug/kg	420.00 U	700.00 n	41.00 J	410.00 U	2 9. 00 J	430.00 U
¥	ug/kg	420.00 U	700.00 U	\$0.00 J	410.00 U	25.00 J	430.00 U
	ug/kg	420.00 U	700.00 U	31.00 J	410.00 U	28.00 J	430.00 U

Forest Glen Site AOC 2 - Worthern Aspect - Surface Soil Organic Compounds

SAMPLE NAME		11/10/02	DP027-SS	DP028-SS	DP029-SS	0P030-SS	00031-55
TEXT OO1		Pt /05 / 11	\$4/10/31	74/10/21	**/10/71	12/02/94	12/01/24
SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00'	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Semivolatiles - Page 2							
	09/kg	1,000.00 U	1,000.00 U	00.0%	1.000.00 U	00°066	1,000,00 U
4-NITROPHENOL	09/kg	1,000.00	1,000.00 U	00.006	1,000,00 U	00.066	1,000,00
DIBENZOFURAN	09/kg	750.00 n	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
2,4-DINITROTOLUENE	09/kg	750.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
DIETHYLPHTHALATE	04/kg	750.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 u
4-CHLOROPHENYL-PHENYLETHER	09/kg	750.00 u	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
FLUORENE	og/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
4-NITROANILINE	09/kg	1,000.00 U	1,000.00 U	00.066	1,000.00 U	00.066	1,000.00 U
4,6-DINITRO-2-METHYLPHENOL	09/kg	1,000.00 u	1,000.00 U	990.00 U	1,000.00 U	00.000	1,000.00 U
N-NITROSODIPHENYLAMINE	ug/kg	750.00 U	750.00 U	410.00 U	420.00 U	410.00 U	410.00 U
4-BROMOPHENYL-PHENYLETHER	ug/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
HEXACHLOROBENZENE	ug/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
PENTACHLOROPHENOL	ug/kg	1,000.00 U	1,000.00 U	00.0%	1,000.00 U	00.000 U	1,000.00 U
PHENANTHRENE	09/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
ANTHRACENE	ug/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
CARBAZOLE	09/kg		420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
DI-N-BUTYLPHTHALATE	09/kg	420.00 U	750.00 U	410.00 U	420.00 U	410.00 U	410.00 U
FLUORANTHENE	09/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
PYRENE	09/kg	450.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
BUTYLBENZYLPHTHALATE	ug/kg	750.00 u	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
3,3'-DICHLOROBENZIDINE	ug/kg	750.00 u	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
BENZO(A)ANTHRACENE	ug/kg	750.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
CHRYSENE	ug/kg	750.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	750.00 U	420.00 U		420.00 U	410.00 U	410.00 U
DI-N-OCTYLPHTHALATE	ug/kg	420.00 U	420.00 U		420.00 U	410.00 U	410.00 U
BENZO(B) FLUORANTHENE	ug/kg	420.00 U	420.00 UJ	410.00 U		410.00 U	410.00 U
BENZO(K)FLUORANTHENE	ug/kg	420.00 U	420.00 U		420.00 U	410.00 U	410.00 U
BENZO(A)PYRENE	ug/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
INDENO(1,2,3-CD)PYRENE	ug/kg	420.00 U	420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
DIBENZO(A, H)ANTHRACENE	ug/kg		420.00 U	410.00 U	420.00 U	410.00 U	410.00 U
BENZO(G, H, I)PERYLENE	ug/kg	420.00 U	450.00 U	410.00 U	420.00 U	410.00 U	410.00 U

Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Organic Compounds

SAMPLE NAME SAMPLE DATE		DP032-SS 12/02/94	0P037 12/02/94	SB01-SS 06/20/95	\$802-\$\$ 06/20/95	\$803-\$\$ 06/21/95	\$818-\$\$ 06/21/95
TEXT 001 SAMPLE DEPTH		0.00 - 2.00	Dup of DP032-SS 0.00 - 2.00'	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.001
Semivolatiles - Page 2							
ENOL	ug/kg	1,000.00 U	fn 00.066	880.00 U	1,300.00 U	00°066	830.00 U
4-NITROPHENOL	09/kg	1,000.00 U	00.064	880.00 U	1,300.00 U	990.00 U	830.00 U
DIBENZOFURAN	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
2,4-DINITROTOLUENE	09/kg	, 410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
DIETHYLPHTHALATE	64/kg	410.00 U	410.00 U	350.00 U	530.00 U	100 001	1100 011
4-CHLOROPHENYL-PHENYLETHER	04/kg	410.00 U	410.00 0	350.00 U	530.00 U	390.00	330.00
FLUORENE	04/kg	410.00 U	410.00 U	350.00 U	530.00 u	390.00	330.00 1
4-NITROANILINE	09/kg	1,000.00 U	00.00€	880.00 UJ	1.300.00 U	0.000	830.00 U
4,6-DINITRO-2-METHYLPHENOL	04/kg	1,000.00 U	00.000 UJ	880.00 U	1, 300, 00 U	n 00 066	830.00 ti
N-NITROSCOIPHENYLAMINE	04/kg	410.00 U	410.00 U	350.00 U	530.00 0	390.00	330.00 ti
4-BROMOPHENYL-PHENYLETHER	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
HEXACHLOROBENZENE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
PENTACHLOROPHENOL	09/kg	1,000.00 U	50.00 na	880.00 U	1,300.00 U	0 00 066	830.00 U
PHENANTHRENE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	r 00.95
ANTHRACENE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
CARBAZOLE	09/kg	410.00 u	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
DI-N-BUTYLPHTHALATE	ug/kg	410.00 u	410.00 U	350.00 U	530.00 U	390.00 U	330.00 U
FLUORANTHENE	ug/kg	410.00 U	410.00 U	350.00 u	530.00 u	390.00 U	3°.00
PYRENE	09/kg	410.00 u	410.00 UJ	350.00 u	530.00 uJ	390.00 UJ	84.00 J
BUTYLBENZYLPHTHALATE	09/kg	410.00 U	410.00 U	350.00 UJ	530.00 U	390.00 U	330.00 U
3,3'-DICHLOROBENZIDINE	0g/kg	410.00 U	410.00 U	350.00 UJ	530.00 UJ	390.00 UJ	330.00 U
BENZO(A)ANTHRACENE	∪g/kg	410.00 u	410.00 U	350.00 U	530.00 U		38.00 J
CHRYSENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	f 00.74
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	410.00 U	410.00 U	350.00 UJ	240.00 J	120.00 J	860.00
DI-N-OCTYLPHTHALATE	Ug/kg	410.00 U	28.00 J	_	530.00 U	390.00 U	330.00 U
BENZO(B) FLUORANTHENE	Ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	82.00 xJ
BENZO(K) FLUORANTHENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00	81.00 XJ
BENZO(A)PYRENE	ug/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	32.00
INDENO(1,2,3-CD)PYRENE	09/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	18.00
DIBENZO(A, H)ANTHRACENE	ug/kg	410.00 U	410.00 U	350.00 u	530.00 U	390.00 U	330.00 U
BENZO(G,H,I)PERYLENE	∪g/kg	410.00 U	410.00 U	350.00 U	530.00 U	390.00 U	18.00 J

## 0.00 - 0.50' 0.00 ## 0.00 - 0.50' 0.00 ## 0.00 - 0.50' 0.00 ## 0.00 - 0.50' 0.00 ## 0.00 - 0.50' 0.00 ## 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SAMPLE NAME		\$501	2088	
US/kg 920.00 UJ 1, ug/kg 920.00 UJ 1, ug/kg 920.00 UJ 1, ug/kg 360.00	SAMPLE DATE		06/08/95	06/08/95	
ug/kg 920.00 UJ 1,000.00 ug/kg 360.00 UJ 1,000.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 1,000.00 ug/kg 36	SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	
ug/kg 920.00 UJ 1,000.00 ug/kg 360.00 UJ 1,000.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 1,000.00 ug/kg 920.00 UJ 1,000.00 ug/	- Page				
ug/kg 350.00 UJ 1,000.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 1,000.00 ug/kg 560.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 360.0		ug/kg	920.00 UJ		
ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 1,000.00 ug/kg 360.00	4-NITROPHENOL	ug/kg			
ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 360.00 U 1,000.00 ug/kg 360.	DIBENZOFURAN	ug/kg	360.00 ∪		
ug/kg 360.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 920.00 U 1,000.00 ug/kg 920.00 U 1,000.00 ug/kg 920.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 920.00 U 1,000.00 ug/kg	2.4-DINITROTOLUENE	04/kg	360.00 U		
ug/kg 360.00 U 410.00 ug/kg 920.00 U 1,000.00 ug/kg 920.00 U 1,000.00 ug/kg 920.00 U 1,000.00 ug/kg 360.00 U 410.00 ug/kg 920.00 U 1,000.00 ug/kg 260.00 U 410.00 ug/kg 260.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 560.00 U 410.00 ug/kg 560.00 U 410.00 ug/kg 180.00 U 500.00 ug/kg 180.00 U	DIETHYLPHTHALATE	ug/kg	360.00 ∪		
ug/kg 360.00 U 1,000.00 ug/kg 920.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 260.00 U 1,000.00 ug/kg 260.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 560.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg	4-CHLOROPHENYL-PHENYLETHER	ug/kg	8		
ug/kg 920.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg	FLUORENE	ug/kg	8		
ug/kg 360.00 UJ 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 220.00 U 1,000.00 ug/kg 220.00 U 1,000.00 ug/kg 220.00 U 1,000.00 ug/kg 220.00 U 1,000.00 ug/kg 360.00 U 1,000.00 ug/kg 1,000.00 ug	4-NITROANILINE	09/kg	8		
ug/kg 360.00 U 410.00 ug/kg 360.00 U 410.00 ug/kg 560.00 U 1,000.00 ug/kg 560.00 U 1,000.00 ug/kg 560.00 U 1,000.00 ug/kg 560.00 U 410.00	4.6-DINITRO-2-METHYLPHENOL	09/kg	8		
LETHER UG/kg 360.00 U 410.00 UG/kg 260.00 U 1,000.00 UG/kg 260.00 U 1,000.00 UG/kg 260.00 U 410.00 UG/kg 360.00 U 410.00 UG/kg 560.00 U 290.00 UG/kg 260.00 U 290.00 UG/kg 260.00 U 290.00 UG/kg 260.00 U 1,000.00 ENE UG/kg 360.00 U 1,000.00 ENE UG/kg 360.00 U 1,000.00 ENE UG/kg 360.00 U 1,000.00 UG/kg 1,000.0	N-NITROSODIPHENYLAMINE	ug/kg	8		
100 10 10 10 10 10 10 10 10 10 10 10 10	4-BROMOPHENYL-PHENYLETHER	ug/kg	8		
LALATE LUG/KG 360.00 U U U U U U U U U U U U U U U U U U	HEXACHLOROBENZENE	og/kg	2	410.00 U	
E CONTRACTOR OF	PENTACHLOROPHENOL	ug/kg	8	1,000.00 U	
LALATE LIGHT STOOL OL	PHENANTHRENE	ug/kg	8	180.00 J	
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ANTHRACENE	ug/kg	360.00 U	410.00 U	
E US/K9 \$60.00 U US/K9 \$60.00 U US/K9 \$60.00 J INE US/K9 \$60.00 J INE US/K9 \$20.00 J INE US/K9 \$20.00 J INE US/K9 \$50.00 J E US/K9 \$50.00 J E US/K9 \$50.00 U E US/K9 \$50.00 U E US/K9 \$50.00 U ENE US/K9 \$60.00 U	CARBAZOLE	ug/kg	360.00 U	410.00 U	
E US/Kg \$50.00 INE US/Kg \$60.00 UJ INE US/Kg \$60.00 UJ US/Kg \$20.00 UJ US/Kg \$20.00 UJ US/Kg \$20.00 UJ E US/Kg \$50.00 UJ ENE US/Kg \$50.00 UJ ENE US/Kg \$50.00 UJ ENE US/Kg \$60.00 UJ ENE US/Kg \$60.00 UJ	DI-N-BUTYLPHTHALATE	ug/kg	360.00 U	410.00 U	
E US/Kg \$40.00 J INE US/Kg \$40.00 J INE US/Kg \$40.00 J US/Kg \$20.00 J US/Kg \$70.00 J INALATE US/Kg \$50.00 J E US/Kg \$50.00 J ENE US/Kg \$50.00 J ENE US/Kg \$50.00 J ENE US/Kg \$50.00 J ENE US/Kg \$60.00 J	FLUORANTHENE	ug/kg	240.00	300.00	
INE UG/kg 360.00 UJ US/kg 360.00 UJ UG/kg 260.00 J UG/kg 290.00 J UG/kg 180.00 J E UG/kg 520.00 E UG/kg 560.00 U ENE UG/kg 360.00 U ENE UG/kg 360.00 U	PYRENE	ug/kg	780.00 J	290.00 J	
INE UG/kg 360.00 UJ US/kg 250.00 J US/kg 290.00 J THALATE UG/kg 180.00 J E UG/kg 520.00 E UG/kg 520.00 ENE UG/kg 360.00 U ENE UG/kg 360.00 U	BUTYLBENZYLPHTHALATE	ug/kg		410.00 UJ	
LALATE US/Kg 220.00 J US/Kg 200.00 J US/Kg 200.00 J US/Kg 360.00 J E US/Kg 520.00 E US/Kg 510.00 ENE US/Kg 360.00 U ENE US/Kg 360.00 U	3,3'-DICHLOROBENZIDINE	ug/kg		410.00 UJ	
LALATE Ug/kg 290.00 J HALATE Ug/kg 180.00 J E Ug/kg 360.00 U ENE Ug/kg 360.00 U ENE Ug/kg 360.00 U ENE Ug/kg 360.00 U	BENZO(A)ANTHRACENE	ug/kg	Z20.00 J	160.00 J	
THALATE Ug/kg 180.00 J E Ug/kg 550.00 E Ug/kg 510.00 ENE Ug/kg 360.00 U ENE Ug/kg 360.00 U	CHRYSENE	ug/kg	Z90.00 J	180.00 J	
E Ug/kg 360.00 UJ E Ug/kg 520.00 E Ug/kg 500.00 ENE Ug/kg 360.00 U ENE Ug/kg 360.00 U	BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	180.00 J	180.00 J	
E ug/kg 520.00 E ug/kg 510.00 ENE ug/kg 360.00 U ENE ug/kg 360.00 U	DI-N-OCTYLPHTHALATE	ug/kg		410.00 UJ	
NTHENE UG/kg 510.00 UG/kg 260.00 J D)PYRENE UG/kg 360.00 U RYLENE UG/kg 360.00 U	BENZO(B) FLUORANTHENE	ug/kg	520.00	320.00 J	
D)PYRENE Ug/kg 260.00 J 1977ENE Ug/kg 360.00 U THRACENE Ug/kg 360.00 U RYLENE Ug/kg 360.00 U	BENZOCK) FLUORANTHENE	ug/kg	510.00	320.00 J	
D)PYRENE ug/kg 360.00 U THRACENE ug/kg 360.00 U RYLENE ug/kg 360.00 U	BENZO(A)PYRENE	ug/kg	Z60.00 J	210.00 J	
ug/kg 360.00 U ug/kg 360.00 U	INDENO(1,2,3-CD)PYRENE	ug/kg	360.00 U	410.00 U	
ug/kg 360.00 U	DIBENZO(A, H) ANTHRACENE	ug/kg	360.00 U	410.00 U	
	BENZO(G. H. I)PERYLENE	ua/ka	360.00 U	410.00 U	

Forest Glen Site
AOC 2 - Northern Aspect - Surface Soil
Organic Compounds

SAMPLE NAME SAMPLE DATE		DP021-SS 11/29/94	0P022-SS 11/29/94	DP023-SS 11/30/94	0P024-SS 12/01/94	DP025-SS 11/30/94	DP026-SS 11/30/94
SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00'	0.00 - 2.00	0.00 - 2.00
Pesticides/PCBs							
ALPHA-BHC	09/kg	2 .20 U	2.10 U	2.20 U	2.10 U	2.20 U	2.20 U
BETA-BHC	ug/kg	2 .20 U	2.10 U	2.20 UJ	2.10 UJ	2.20 UJ	2.20 UJ
DELTA-BHC	ug/kg	2.20 U	2.10 U	2.20 U	2.10 U	2.20 U	2.20 U
gamma-BHC (Lindane)	09/kg	2.20 U	2.10 U	2.20 U	2.10 U	2.20 U	2.20 U
HEPTACHLOR	09/kg	2.20 U	2.10 U	2.20 U	2.10 U	2.20 U	2.20 U
ALDRIM	09/kg	2.20 U	2.10 U	2.20 U	2.10 U	2.20 U	2.20 U
HEPTACHLOR EPOXIDE	09/kg	•	2.10 U	2.20 U	2.10 U	2.20 U	2.20 U
ENDOSUL FAN I	og/kg	٠	2.10 U	2.20 U	2.10 U	2.20 U	2.20 U
DIELDRIN	09/kg	4.20 U	7.00 U	4.30 U	4.10 U	4.30 U	4.30 U
4,4'-DOE	.09/kg	4.20 U	0 00.7	4.30 U	4.10 U	4.30 U	4.30 U
ENDRIN	09/kg	4.20 U	7.00 U	4.30 U	4.10 U	4.30 U	4.30 U
ENDOSULFAN 11	04/kg	4.20 U	7.00 U	4.30 U	4.10 U	4.30 U	4.30 U
000-,7,7	69/kg	4.20 U	7.00 U	4.30 U	4.10 U	4.30 U	4.30 U
ENDOSULFAN SULFATE	09/kg	4.20 U	7.00 U	4.30 U	4.10 U	4.30 U	
100-,7,7	100/kg	4.20 UJ	4.00 UJ	4.30 U	4.10 U	4.30 U	
METHOXYCHLOR	100/kg	22.00 U	21.00 U	22.00 U	21.00 U	22.00 U	22.00 U
ENDRIN KETONE	19/kg	4.20 U	7 · 00 · 0	4.30 U	4.10 U	4.30 U	
ENDRIN ALDENYDE	ug/kg	4.20 U	7·00 n		4.10 U	4.30 U	4.30 U
ALPHA-CHLORDANE	09/kg	2.20 U	2.10 U	2.20 U	2.10 U	2.20 U	9.30
GAMMA-CHLORDANE	ug/kg	2 .20 U	2.10 U		2.10 U		2.20 U
TOXAPHENE	ug/kg	220.00 U	210.00 U		210.00 U		220.00 U
AROCLOR 1016	ug/kg	42.00 U	70.00 U	43.00 U	41.00 U	_	43 .00 U
AROCLOR 1221	ug/kg	86.00 U	82.00 U	87.00 U	84.00 U	87.00 U	88.00 U
AROCLOR 1232	ug/kg	45.00 U	70.00 U	43.00 U	41.00 U	43.00 U	43.00 U
AROCLOR 1242	ug/kg	45.00 U	70.00 U	43.00 U	41.00 U	43.00 U	43.00 U
AROCLOR 1248	09/kg	45.00 U	70.00 U	43.00 U	41.00 U	73.00 U	43.00 U
_	ug/kg	45.00 U	70.00 U	43 .00 U	41.00 U	43.00 U	43.00 U
ARDCLOR 1260	u 9/kg	42.00 U	0.00,	43.00 U	41.00 U	43.00 U	43.00 U

		DP036	DP027-SS	DP028-SS	DP029-SS	0P030-SS	060
SAMPLE DATE		11/30/94	12/01/94	12/01/94	12/01/94	12/02/94	12/01/94
SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00	0.00 · 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Pesticides/PCBs							
ALPHA-BHC	ca/ka	2.00 U	2.20 U	2.10 U	2.20 U	2.10 U	2.10
BETA-BHC	co/kg		2.20 UJ	2.10 UJ	2.20 UJ	2.10 UJ	2.10
DELTA-BHC	ca/kg		2.20 U	2.10 U	2.20 U	2.10 U	2.10
oamma-BHC (Lindane)	og/kg	2.20 U	2.20 U	2.10 U	2.20 U	2.10 U	2.10
HEPTACHLOR	ca/kg	2.20 U	2.20 U	2.10 U	2.20 U	2.10 U	2.10
ALDRIM	ca/kg	2.20 U	2.20 U	2.10 U	2.20 U	2.10 U	2.10
HEPTACHLOR EPOXIDE	ug/kg	2.20 U	2.20 U	2.10 U	2.20 U	2.10 U	2.10
ENDOSUL FAN 1	ug/kg	2.20 U	2.20 U	2.10 U	2.20 U	2.10 U	2.10
DIELDRIM	ug/kg	4.20 U	7 OZ 7	4.10 U	4.20 U	4.10 U	4.10
4.4DDE	og/kg	4.20 U	7.20 U	4.10 U	4.20 U	4.10 U	4.10
ENDRIN	ug/kg	4.20 U	4.20 U	4.10 U	4.20 U	4.10 U	4.10
ENDOSUL FAN 11	og/kg	4.20 U	4.20 U	4.10 U	4.20 U	4.10 U	4.10
0007"	g/kg	4.20 U	4.20 U	4.10 U	4.20 U	4.10 U	4.10
ENDOSULFAN SULFATE	og/kg	4.20 U	4.20 U	4.10 U	4.20 U	4.10 U	4.10
4,4DDT	g/kg	4.20 U	4.20 U	4.10 U	4.20 U	4.10 U	4.10
METHOXYCHLOR	ug/kg	22.00 U	22.00 U	21.00 U	22.00 U	21.00 U	21.00
ENDRIN KETONE	ug/kg	4.20 U	4.20 U	4.10 U	4.20 U	4.10 U	4.10
ENDRIN ALDEHYDE	ug/kg	4.20 U	4.20 U	4.10 U	4.20 U	4.10 U	4.10
ALPHA-CHLORDANE	ug/kg	2.20 U		2.10 U	2.20 U	2.10 U	2.10
GAMMA - CHLORDANE	04/kg	2.20 U		2.10 U	2.20 U	2.10 U	2.10
TOXAPHENE	09/kg	220.00 U		210.00 U	220.00 U	210.00 U	210.00
AROCLOR 1016	09/kg	45.00 U		41.00 U	45.00 U	41.00 U	41.00
AROCLOR 1221	ug/kg	86.00 U	85.00 U	83.00 U	86.00 U	83.00 U	84.00
_	ug/ka	42.00 U			42.00 U	41.00 U	41.00
_	09/kg				42.00 U	41.00 U	41.00
_	09/kg			41.00 U	42.00 U	41.00 U	41.00
AROCLOR 1254	UQ/ka	42.00 U			45.00 U	41.00 U	41.00
•		- 60 67	11 00 67	_	11 00 67	11 00 17	71 00

forest Glen Site AOC 2 - Northern Aspect - Surface Soil Organic Compounds

SAMPLE NAME SAMPLE DATE		DP032-SS 12/02/94	0P037 12/02/94	SB01-SS 06/20/95	SB02-SS 06/20/95	SB03-SS 06/21/95	SB1B-SS 06/21/95
TEXT 001 SAMPLE DEPTH		0.00 - 2.00	Dup of DP032-SS 0.00 - 2.001	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Pesticides/PCBs							
ALPHA-BHC	ug/kg	2	2.10 U	1.80 U	2.70 U	23.00 J	0.24 J
BETA-BHC	ug/kg	2	2.10 UJ	1.80 U	2.70 U	110.00 D	0.65 J
DELTA-BHC	ug/kg	2.10 U	2.10 U	1.80 U	0.37 J	00.4	0.38 J
gamma-8HC (Lindane)	ug/kg	2.10 U	2.10 U	1.80 u	2.70 U	2.40 J	1.70 U
HEPTACHLOR	ug/kg	2.10 U	3.50	1.80 U	2.70 UJ		1.70 UJ
ALDRIN	ug/kg	2.10 U	2.10 U	1.80 U	2.70 U		1, 70 U
HEPTACHLOR EPOXIDE	ug/kg	2.10 U	2.10 U	1.80 U	2.70 U		1,70 u
ENDOSUL FAN 1	ug/kg	2.10 U	2.10 U	1.80 U	2.70 U		1.70 U
DIELORIN	og/ko	4.10 U	4.10 U	3.50 U	F 25 0		15.0
4.4DDE	ua/ka	. 10 U	4.10 U	3.50 U	0.00.5		1 70 1
ENDRIN	ug/kg	4.10 U	7.10 0	3.50 U	5.30 U		3.30
ENDOSULFAN 11	ug/kg	4.10 U	4.10 U	3.50 U	5.30 U		3.30 U
000-,5'5	ug/kg	4.10 U	4.10 U	3.50 U	5.30 U	3.90 U	0.26 J
ENDOSULFAN SULFATE	ug/kg	4.10 U	4.10 U	3.50 U	0.19 J		3.30 U
4,41-001	09/kg	4.10 U	_	3.50 U	5.30 U		3.30 U
METHOXYCHLOR	ug/kg	21.00 u	21.00 U	1.60 MJ	27.00 U		17.00 U
ENDRIN KETONE	ug/kg	4.10 U		_	ಜ		3.30 U
ENDRIM ALDEHYDE	ug/kg			3.50 U	ž		
ALPHA-CHLORDANE	ug/kg			1.80 U	2		
GANNA-CHLORDANE	ug/kg			1.80 u	2		
₹	ug/kg			180.00 u	2		170.00 U
_	ug/kg			35.00 U	8		33.00 U
	ug/kg		83.00 U	71.00 u	110.00 u		0.79
	ug/kg	41.00 U		35.00 U	8		33.00 U
	ug/kg			35.00 u	8		33.00 U
AROCLOR 1248	ug/kg			35.00 U	8		. 23.00 J
	ug/kg	41.00 U		35.00 U	8	47.00	33.00 u
AROCLOR 1260	ug/kg	41.00 U		35.00 U	53.00 U	39.00 u	33.00 U

Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Organic Compounds

SAMPLE NAME		5501	2802	
SAMPLE DATE		06/08/95	06/08/95	
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50*	
Pesticides/PCBs				
ALPHA-BHC	ug/kg	1.90 U	2.10 U	
BETA-BHC	ug/kg	1.90 ∪	2.10 U	
DELTA-BHC	ug/kg	7.00	2.10 U	
gamma-BHC (Lindane)	ug/kg	1.90 ∪	2.10 U	
HEPTACHLOR	ug/kg	1.90 U	2.10 U	
ALDRIN	ua/ka	1.90 U	2.10 U	
HEPTACHLOR EPOXIDE	ug/ka	5.50	1.10	
ENDOSULFAN I	ug/kg	1.80 □	2.10 U	
DIELDRIN	ua/ka	r 00.7	1.50 1	
4,4'-DDE	ug/kg	3.60 U	8.30 J	
ENDRIN	ug/kg	3.60 U	4,10 U	
ENDOSULFAN 11	ug/kg	3.60 U	4.10 U	
000-17'7	ug/kg	3.60 U	4.10 U	
ENDOSULFAN SULFATE	ug/kg	3.60 U	4.10 U	
4,4'-DDT	ug/kg	19.00	~	
METHOXYCHLOR	ug/kg	19.00 U	21.00 U	
ENDRIN KETONE	ug/kg	3.60 U	4.10 U	
ENDRIN ALDEHYDE	ug/kg	3.60 U	7.30	
ALPHA-CHLORDANE	ug/kg	25.00	3.70	
GAMMA-CHLORDANE	og∕kg	15.00 J	4.10 U	
TOXAPHENE	ug/kg	190.00 U	210.00 U	
AROCLOR 1016	ua/ka	36.00 U	41.00 U	
	ug/kg	74.00 U	83,00 U	
	ua/ka	36.00 U	n 00 17	
	ua/ka	36.00 U	00 17	
AROCLOR 1248	ua/ka	36.00 U	71.00 U	
	od/ka	1 00 72	1 00 17	
	9/kg	26.06	0 00:17	
	n (n			

Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Inorganic Analytes

SAMPLE NAME SAMPLE DATE		0P021-SS 11/29/94	DP022-SS 11/29/94	DP023-SS 11/30/94	DP024-SS 12/01/94	0P025-SS 11/30/94	DP026-SS 11/30/94
TEXT 001 SAMPLE DEPTH		0.00 - 2.001	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Inorganic Analytes							
ALUMINUM	mg/kg	26,700.00	27,500.00	40,000.00	29,600.00 EJ	22,500.00 EJ	35,200,00 EJ
ANTIMONY	mg/kg	1.20 U	1.20 U	1.30 U	1.30 U	1.20 U	1.30 U
ARSENIC	ma/ka	3.40 1	3.90 J	7.20 J	6.50	6.70	4.30
BARIUM	mg/kg	169.00	158.00	278.00	147.00	154.00	232.00
BERYLLIUM	mg/kg	0.25 U	0.40 8	1.50	0.25 U	0.25 U	0.63 B
CADMIUM	mg/kg	0.50 U	0.47 U	0.54 U	0.51 U	0.50 0	0.53 U
CALCIUM	ma/ka	81,900.00	1, 730, 00	5.070.00	4.360.00	7 000 00	9.830.00
CHROMIUM	mg/kg	35.90	37.40	52.00	60.90	33.20	76.00
COBALT	mg/kg	17.40	40.60	20.30	15.20 J	14.60 J	15.20 J
COPPER	mg/kg	32.30	22.90	41.40	26.50 J	30.50 J	35.40 J
IRON	mg/kg	32,600.00	35,600.00	49,500.00	42,400.00	38,200.00	44,800.00
LEAD	mg/kg	14.40	20.60	21.70	18.70	19.00	17.20
MAGNESIUM	mg/kg	13,100.00	7,390.00	10,400.00	10,000.00	8,310.00	9,500.00
MANGANESE	mg/kg	1,010.00	710.00	889.00	427.00	863.00	00.609
MERCURY	mg/kg	0.12 U	0.12 U	0.13 U	0.13 U	0.12 U	0.13 ∪
MICKEL	mg/kg	36.90	31.70	49.70	34.60	33.40	43.10
POTASSIUM	mg/kg	7,570.00 EJ	4,170.00 EJ	6,690.00 EJ	5,050.00 J	4,280.00 J	5.500.00 J
SELENIUM	mg/kg	1.20 U	1.20 U	8	1.30 UJ	1.20 UJ	1.30 UJ
SILVER	mg/kg	0.75 UNJ	0.70 UNJ	0.81 UNJ	0.76 U	0.75 U	0.80 U
SODIUM	mg/kg	558.00 BE	227.00 BE	264.00 BE	340.00 BE	245.00 BE	242.00 BE
THALLIUM	mg/kg	1.70 U	1.60 U	2.40 B	1.80 U	1.70 U	1.90 ∪
VANADIUM	mg/kg	45.60	51.20	63.30	76.80	42.70	55.70
ZINC	mg/kg	68.90	76.10	104.00	86.90	78.70	93.20
CYANIDE	mg/kg	1.20 U	1.20 U	1.30 U	1.30 U	1.20 U	1.30 U
	1						

Forest Glen Site AOC 2 - Worthern Aspect - Surface Soil Inorganic Analytes

SAMPLE NAME SAMPLE DATE		0P036	DP027-SS 12/01/94	DP028-SS 12/01/94	0P029-SS 12/01/94	0P030-SS 12/02/94	DP031-SS 12/01/94
TEXT 001		Dup of DP026-SS					1660
SAMPLE DEPTH		0.00 - 2.00.	0.00 - 2.00	0.00 - 2.00'	0.00 - 2.00'	0.00 - 2.00	0.00 - 2.00'
Inorganic Analytes							
ALUMINUM	mg/kg	35,700.00 EJ	36,500.00 EJ	29,300.00 EJ	28,300.00 EJ	19,300.00	31,300.00 EJ
ANTIMONY	mg/kg	1.30 U	1.30 U	1.30 U	1.30 U	1.30 U	1.30 U
ARSENIC	mg/kg	9.90	7.50	5.70	8.10	8.50 J	6.90
BARIUM	mg/kg	. 230.00	211.00	159.00	158.00	138.00	189.00
BERYLLIUM	mg/kg	0.26 U	0.26 U	0.48 8	0.27 U	0.25 U	0.25 U
CADMIUM	mg/kg	0.52 U	0.52 U	0.51 U	0.54 U	0.51 U	0.51 U
CALCIUM	mg/kg	19,300.00	24,600.00	7,400.00	3,750.00	3,190.00	6,050.00
CHROMIUM	mg/kg	76.80	47.20	39.10	41.80	33.70	74.50
COBALT	mg/kg	21.10 J	18.90 J	25.00 J	15.40 J	30.50	17.90 J
COPPER	mg/kg	35.30 J	32.70 J	23.20 J	27.70 J	18.60	31.10 J
IRON	mg/kg	45,400.00	48,800.00	42,700.00	76,400.00	40,200.00	76,400.00
LEAD	mg/kg	17.90	18.30	22.80	21.80	34.80	19.60
MAGNESIUM	mg/kg	10,700.00	14,300.00	9,070.00	7,670.00	5,850.00	10,900.00
MANGANESE	mg/kg	1,090.00	593.00	1,070.00	691.00	2,800.00	718.00
MERCURY	mg/kg	0.13 U	0.13 u	0.13 U	0.13 U	0.30	0.13 U
NICKEL	mg/kg	45.20	41.70	36.10	34.40	29.00	39.10
POTASSIUM	mg/kg	7,990.00 J	8,990.00	4,190.00 J	4,710.00 ا	1,790.00 J	5,120.00 J
SELENIUM	mg/kg	1.30 UJ	1.30 0.1	1.30 UJ	1.30 U	1.30 U	1.30 UJ
SILVER	mg/kg	0.78 U	0.78 U	0.77 U	0.81 U	0.76 U	0.76 U
NO I ON	mg/kg	332.00 BE	421.00 BE	241.00 BE	238.00 BE	226.00 8	311.00 BE
THALLIUM	mg/kg	1.80 U	1.90 8J	1.80 U	1.90 8	1.80 U	1.80 ∪
VANADIUM	mg/kg	58.80	62.90	79.80	53.50	09.77	24.60
ZINC	mg/kg	83.50	81.50	88.90	90.30	95.10	90.00
CYANIDE	mg/kg	1.30 U	1.30 U	1.30 U	1.30 U	1.30 U	1.30 U

Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Inorganic Analytes

SAMPLE NAME		0P032-SS	DP037	SB01-SS	SB02-SS	SB03-SS	SB18-SS
TEXT ON		12/02/34	#4/20/21	64/07/90	06/57/90	06/17/90	06/21/93
SAMPLE DEPTH		0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00	0.00 - 2.00
Inorganic Analytes							
ALUMINUM	mg/kg	23,600.00 EJ	27,800.00 EJ	19,800.00 *	15,200.00	10,700.00	17,400.00
ANTIMONY	mg/kg	1.30 U	1.30 U	5.90 BNJ	3.10 UNJ	2.90 UNJ	3.00 UKJ
ARSENIC	mg/kg	2.70	7.80	6.40	5.70	9.40	5.20
BARIUM	mg/kg	, 162.00	144.00	119.00	141.00	133.00	114.00
BERYLLIUM	mg/kg	0.26 8	0.69 B	0.82 B	0.66 B	0.69 B	0.49 B
CADMIUM	mg/kg	0.51 U	0.52 U	0.26 U	0.60 B	0.54 B	0.52 B
CALCIUM	mg/kg	7,430.00	6,390.00	2,460.00	48,800.00	50,100.00	72,300.00
CHROMIUM	mg/kg	31.10	33.70	23.80	21.10	13.10	803.00
COBALT	mg/kg	11.80 8.1	80.00 J	12.70	10.70 B	8 07.6	13.00 J
COPPER	mg/kg	27.10 J	30.70 J	13.20	22.80 J	21.20 J	26.30 J
IRON	mg/kg	34,200.00	38, 100.00	36,700.00 *	25,000.00	18,900.00	21,000.00
LEAD	mg/kg	13.90	20.70	15.20	07.6	17.70	26.00
MAGNESIUM	mg/kg	6,880.00	6,760.00	4,850.00 *	13,400.00	18,600.00	24,100.00
MANGANESE	mg/kg	419.00 J	1,630.00 J	794.00	474.00	00.009	588.00
MERCURY	mg/kg	0.13 U	0.13 U	0.06 U	0.06 U	0.06 u	1.50
NICKEL	mg/kg	31.20	32.90	19.50	25.00	18.70	24.00
POTASSIUM	mg/kg	3,170.00 J	3,310.00 J	1,880.00	2,380.00	1,400.00	2,060.00
SELENIUM	mg/kg	1.30 U	1.30 U	0.58 U	0.57 U	0.54 U	0.56 U
SILVER	mg/kg	0.76 U	0.77 U	1.90 B	0.62 U	0.58 U	0.60 U
W0100S	mg/kg	242.00 BE	180.00 BE	65.70 B	151.00 B	282.00 B	562.00 B
THALLIUM	mg/kg	1.80 U	1.80 U	1.70 B	1.40 B	1.20 B	1.20 U
VANADIUM	mg/kg	39.10	45.80	36.10 J	28.70 J	21.20 J	38.50 J
ZINC	mg/kg	99.00	72.40	64.60	73.00 NJ	UN 00.76	88.70 NJ
CYANIDE	mg/kg	1.30 U	1.30 U	0.54 U	0.57 U	0.55 U	0.57 U
	,						

Forest Glen Site AOC 2 - Northern Aspect - Surface Soil Inorganic Analytes

SAMPLE NAME		\$501	2058	
SAMPLE DATE		96/08/92	06/08/95	
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	
Inorganic Analytes				
ALUMINUM	mg/kg	17,900.00	19.000.00	
ANT IMONY	mg/kg	11.80 UNJ	12.80 UNJ	
ARSENIC	mo/ka	5.10	2.50 1	
BARIUM	mo/ka	134.00	13,50	
BERYLLIUM	mg/kg	0.868	8 88 0	
CADMIUM	mg/kg	1.00 8	0.08	
CALCIUM	ma/kg	16.700.00 *	15.700.00 *	-
CHROMIUM		a		
COBALT		11.20	11.20 8	
COPPER		30.30 *1	28.30 *J	
IRON		25,200.00	26,700.00	
LEAD		102.00 *J	103.00 *J	
MAGNESIUM		10,100.00 EJ	9,780.00 EJ	
MANGANESE		656.00	267.00	
MERCURY		0.17.NJ	0.36 NJ	
NICKEL		œ	~	
POTASSIUM		~	œ	
SELENIUM	mg/kg	0.70 UJ	0.83 UJ	
SILVER	mg/kg	1.50 UJ	1.60 UJ	
SODIUM	mq/kg	œ	~	
THALLIUM	mg/kg	0.95 UM	1.10 UV	
VANADIUM	mg/kg	37.60	38.30	
ZINC	mg/kg	215.00	150.00	
CYANIDE	mg/kg	0.57 U	0.63 U	

AOC2 - NORTHERN ASPECT SUBSURFACE SOIL DATA

03/04/1996 1:04 PM	Page 1
Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil	Conventional Parameters

SAMPLE NAME		DP021	DP022	DP023	DP024	DP025	00026
SAMPLE DATE		11/29/94	11/30/94	11/30/94	12/01/94	11/30/94	11/30/94
TEXT 001							
SAMPLE DEPTH		10.00 - 12.00	8.00 - 10.00	10.00 - 12.00	9.00 - 8.00	6. 00 - 8 .001	9.00 - 11.00
Conventinal Parameters							
₹ <u></u>	Sits	7.60	7.10	2.40	2.60	7.30	7.20
SULFIDE	mg/kg						
TOTAL ORGANIC CARBON	mg/kg	17,200.00	18,200.00	6,520.00	13,600.00	3.030.00	6.760.00
TOTAL SOLIDS	*	81.40	88.80	76.70	79.20	80.60	76.30
TOTAL SOILDS (EXTENDED)	×						
ALKALINITY]/ 6 w						
AMMONIA	1/6m						
88	1/ 6 m						
83	J/GIII						
TOTAL DISSOLVD SOLIDS	1/ 6 m						
HARDNESS	1/ 6 w						
MITRATE/NITRITE	J/Bm						
TOTAL KJELDAHL NITROGEN	1/5						•
	•						

Forest Glen Site
AOC 2 - Northern Aspect - Subsurface Soil
Conventional Parameters

SAMPLE NAME SAMPLE DATE		0P027 12/01/94	0P028 12/01/94	0P029 12/02/94	0P030 12/02/94	DP031 12/01/94	0P032 12/02/94
SAMPLE DEPTH		6.00 - 8.001	6.00 - 8.00	6.00 - 8.00	6.00 - 8.00	10.00 - 12.00	8.00 - 10.00
Conventinal Parameters pH	units	7.70	7.70	7.00	8.00	7.60	7.00
SULFIDE TOTAL ORGANIC CARBON TOTAL SOLIDS	mg/kg mg/kg	10,200.00	19,200.00	23,900.00	6,470.00	28,700.00 J 76.00	39,800.00
TOTAL SOILDS (EXTENDED) ALKALINITY	mg/l						
AMMONIA BOD	mg/l						
TOTAL DISSOLVO SOLIDS	- 1/6w						
NITRATE/NITRITE TOTAL KJELDAHL NITROGEN)/6m 1/6m						

			Fores AOC 2 - Northern Conventi	Forest Glen Site Northern Aspect - Subsurface Soil Conventional Parameters	03/04/1996 1:04 PH Page 3
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		\$801 06/20/95 8.00 - 10.00	\$803 06/21/95 12.00 - 14.00'	\$818 06/21/95 12.00 - 14.00'	
Conventinal Parameters pH SULFIDE TOTAL ORGANIC CARBON TOTAL SOLIDS TOTAL SOLIDS TOTAL SOLIDS TOTAL NITY AMMONIA BOD COD TOTAL DISSOLVD SOLIDS HARDNESS NITRATE/NITRITE TOTAL KJELDAHL NITROGEN	Coits	8.20 16,300.00	67.40	7.90 8,100.00 85.10	

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Grain Size Analysis

SAMPLE NAME SAMPLE DATE		DP021 11/29/94	0P022 11/30/94	0P023 11/30/94	0P024 12/01/94	0P025 11/30/94	0P026 11/30/94
SAMPLE DEPTH		10.00 - 12.00	8.00 - 10.00	10.00 - 12.00	6.00 - 8.00	6.00 - 8.00	9.00 - 11.00
Grain Analysis	,		:	1			
GRAVEL	×	1.00 J	12.70 J	7.50 J	۲.40 ک	6.60 J	0.00
SAND (A) COARSE	×	1.50	07.6	2.70 J	3.40 J	11.20	0.30 J
SAND (B) MEDIUM	×	1.10	3.30	1.30 J	1.10 J	7.00	0.30 J
SAND (C) FINE	×	3.80	11.60	4.10 J	r 09.7	14.20	1.00 1
SAND (D) FINE	×	1.30	2.10	1.60 J	2.60 J	9.40	0.50 J
SILTS/CLAYS (<0.075 MM)	×						
SILT (A)	×	32.30	35.10	17.10 J	26.80 J	29.00	4.10 J
SILT (B)	×	9.80	15.60 J	11.90	20.10	14.50 J	21.80
CLAY	×	15.80 J	3.90 1	17.40 J	14.10 J	5.20 J	29.80 J
COLLOIDS	×	33.20 J	۲.50 کا	36.10 J	18.40 J	۲.40 ک	41.30 J
TOTALS FOR GROUP	I	99.80	98.20	99.70	95.50	98.50	99.10

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Grain Size Analysis

SAMPLE NAME SAMPLE DATE SAMPLE DATE		12/01/94	12/01/94	12/02/94	12/02/94	12/01/94	12/02/94
SAMPLE DEPTH		6.00 - 8.00	6.00 - 8.00	0.00 - 8.00'	0.00 - 0.00	10.00 - 12.00.	.00.01 - 00.0
Grain Analysis							
GRAVEL	×	o.00 J	0.30 J	1.00.1	0.10 J	7.90 J	0.00 J
SAND (A) COARSE	×	07.0	0.50 J	2.90 J	0.30 J	8.10 J	0.20 J
SAND (B) MEDIUM	×	0,40	0.70	1.20 J	0.20 J	3.30 J	0.10 J
SAND (C) FINE	×	1.40	3.70 J	7 00.7	0.90 J	10.60 J	0.40 J
SAND (D) FINE	×	0.70	1.40 J	0.00 J	0.50 J	5.50 J	0.20 J
SILTS/CLAYS (<0.075 MM)	×						
SILT (A)	×	9.60	11.00 J	19.20 J	6.70 J	25.80 J	10.10
SILT (B)	×	19.30 J	21.20	23.20	17.10	18.80	14.70
CLAY	×	22.80 J	19.50 J	21.10 J	26.40 J	8.80 J	24.50 J
COLLOIDS	×	45.10 J	41.40 J	24.30 J	₹3.90 Л	12.60 J	48.80 J
TOTALS FOR GROUP	l	99.70	99.70	97.80	96.10	98.40	00.99

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Grain Size Analysis

SAMPLE NAME SAMPLE DATE		SB01 06/20/95	SB03 06/21/95	SB18 06/21/95
SAMPLE DEPTH		8.00 - 10.00	12.00 - 14.00	12.00 - 14.00
Grain Analysis				
GRAVEL	×	13.10 J		10.00
SAND (A) COARSE	×	10.00		12.70 J
SAND (B) MEDIUM	×	3.20		4.30
SAND (C) FINE	×	٠ 80.6		14.40 J
SAND (D) FINE	×	7 80 7		F 07.5
SILTS/CLAYS (<0.075 MM)	×			
SILT (A)	×	34.60 J		28.20 J
SILT (B)	×	21.40		18.70 J
CLAY	×	3.10		6.20
COLLOIDS	: *	0.00		r 00.0
TOTALS FOR GROUP	[100.00	0.00	99.90

AOC2 - NORTHERN ASPECT SUBSURFACE SOIL DATA

		Fores AOC 2 - Northern Targeted O	Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Targeted Organic Compounds) it	·	03/04/1996 1:03 PM Page 1
SAMPLE NAME SAMPLE DATE TEXT ON!	DP021 11/29/94	0P022 11/30/94	DP023 11/30/94	0P024 12/01/94	0P025 11/30/94	DP026 11/30/94
SAMPLE DEPTH	10.00 - 12.00	8.00 - 10.00	10.00 - 12.00	6.00 - 8.00	6.00 - 8.00	9.00 - 11.00
/olatiles DCYANATE		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
		200.00 U	200.00 U	200.00 U	200.00 U	200.00 u
2-MERCAPTOBENZOTHIAZOLE ug/kg	200.00	200.00	200.00 UJ	200.00 U	200.00 UJ	200.00 UJ
2-ANILINOBENZOTHIAZOLE ug/k	-	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
PERYLENE ug/k		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
ANILINE ug/k		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
N'N-DIPHENYL-1,4-BENZENEDIAMIN UG/K		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
PHENOTHIAZINE Ug/k		200.00 U	200.00 U	200.00 UJ	200.00 U	200.00 U
BENZOTHIAZOLE ug/k	-	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U

03/04/1996 1:03 PM Page 2

Forest Glen Site AOC 2 - Worthern Aspect - Subsurface Soil Targeted Organic Compounds

SAMPLE NAME	00027	00028	0P029	DP030	00031	DP032
SAMPLE DATE	12/01/94	12/01/94	12/02/94	12/02/94	12/01/94	12/02/94
SAMPLE DEPTH	6.00 - 8.00	6.00 - 8.00	6.00 - 8.00	6.00 - 8.001	10.00 - 12.00	8.00 - 10.00
Targeted Semivolatiles						
		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
		200.00 U	200.00 UJ	200.00 UJ	200,00 UJ	200.00 UJ
2-ANILINOBENZOTHIAZOLE UA/ka	-	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
ANTLINE US/kg		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
NYL-1.4-BENZENEDIAMIN		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
PHENOTHIAZINE US/kg		200.00 U	200.00 U	200.00 U	200.00 U	200.00 U
BENZOTHIAZOLE U9/kg	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U	200.00 U

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Targeted Organic Compounds

SAMPLE DATE		SB01 06/20/95	SB03 06/21/95	SB18 06/21/95	
SAMPLE DEPTH		8.00 - 10.00	12.00 - 14.00'	12.00 - 14.00'	
s,	,				
	/kg	230.00 U	300.00	240.00 U	
	I/kg	230.00 U	300.00 u	240.00 U	
2-MERCAPTOBENZOTHIAZOLE UG/	l/kg	230.00 U	300.00 UJ	240.00 U	
	/kg	230.00 U	130.00 J	240.00 U	
	/kg	230.00 UJ	300.00 U	240.00 U	
	/kg	230.00 UJ	300.00 UJ	240.00 uJ	
ENYL-1,4-BENZENEDIAMIN	/kg	230.00 UJ	300.00 U	240.00 u	
PHENOTHIAZINE UG/	/kg	230.00 U	300.00 U	240.00 u	
BENZOTH1AZOLE UG/	ug/kg	230.00 U	300.00 U	240.00 U	

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE NAME		DP021	DP022	DP023	DP024	DP025	0P026
TEXT 001		46/67/11	11/30/94	11/30/94	12/01/94	11/30/94	11/30/94
SAMPLE DEPTH		10.00 - 12.00	8.00 - 10.00	10.00 - 12.00	6.00 - 8.00	6.00 - 8.00	9.00 - 11.00
Volatiles							
CHLOROMETHANE	ug/kg	13.00 U	11.00	12.00 U	12.00 U	11.00 U	13.00 U
VINYL CHLORIDE	09/kg	13.00 U	11.00 c	12.90 U	12.00 U	1.00	13.00 u
CHLOROETHANE	ug/kg	, 13.00 u	11.00 U	12.00 U	12.00 U	11.00 U	13.00 U
METHYLENE CHLORIDE	ug/kg		16.00 U	12.00 U	12.00 U	17.00 U	17.00 U
CARBON DISHIFTOF	29/kg	13.00 03	21.00 1	12.00 U	12.00 U	18.00 U	13.00 U
1.1-DICHLOROETHENE	00/kg	13.00	200	12.00.0	12.00 1	56	13.00 0
1,1-DICHLOROETHANE		13.00 0	11.00 u	12.00 U	12.00 U	1.00 0	13.00 u
1,2-DICHLOROETHENE (total)	ug/kg	13.00 U	11.00 U	12.00 U	12.00 U	11.00 U	13.00 U
CHLOROFORM	ug/kg	13.00 u	11.00 u	12.00 U	12.00 U	11.00 U	13.00 0
1,2-DICHLOROETHANE	ug/kg	13.00 u	11.00 u	12.00 U	12.00 U	11.00 U	13.00 U
2-BUTANONE	ug/kg	13.00 U	11.00 U	12.00 U	12.00 U	11.00 U	13.00 U
1,1,1-TRICHLOROETHANE	ug/kg	13.00 u	11.00 U	12.00 U	12.00 U	11.00 U	13.00 U
CARBON TETRACHLORIDE	ug/kg	13.00 U	11.00 U	12.00 U	12.00 U	11.00 U	13.00 U
BROMOD I CHLOROMETHANE	ug/kg	13.00 U	11.00 U	12.00 U	12.00 U	11.00 U	13.00 U
1, Z-DICHLOROPROPANE	ug/kg	13.00 U	11.00 U	12.00 U	12.00 U	11.00 U	13.00 U
TOTAL DOCETHENE	ug/kg	13.00 0	0.00.11	12.00 U	12.00 U	11.00 U	13.00 U
DIRECTION OF THE ME	09/kg	13.00		12.00 0	12.00 0	0 00 00	13.00 0
1.1.2-TRICHLOROETHANE	ug/kg	13.00	2001	12.00.0	12.00 0		12.00 0
BENZENE	ug/kg	13.00 U	11.00 U	12.00 U	12.00 U	11.00 u	13.00 1
trans 1,3-DICHLOROPROPENE	ug/kg	13.00 U	11.00 U	12.00 U	12.00 U	11.00 U	13.00 0
BROMOFORM	ug/kg	13.00 u	11.00 UJ	12.00 U	12.00 U	11.00 UJ	
4-METHYL-2-PENTANONE	ug/kg		11.00 UJ	12.00 U	12.00 U	11.00 UJ	13.00 UJ
2-HEXANONE	ug/kg		11.00 U	12.00 U	12.00 U	11.00 u	
TETRACHLOROETHENE	ug/kg		11.00 U	12.00 U	12.00 U	_	
1,1,2,2-TETRACHLOROETHANE	ug/kg		11.00 UJ	12.00 U	12.00 U	11.00 UJ	
TOLUENE	ug/kg		11.00 U	12.00 U	12.00 U	11.00 U	
CHLOROBENZENE	ug/kg		11.00 U	12.00 U	12.00 U	11.00 u	13.00 U
CIVENCENE	09/kg	13.00 0	1.00 0	12.00 0	12.00 U	0 00.11	
XYI ENES (total)	ug/kg	13.00	36	12.00	12.00 0	3.5	
(100.00)	84 /85	0 00:51	999		0 00:31	0 00:	0 00.5

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

Color Colo	SAKOL MANOR		75090	80000	00000	02000	12000	2,000
6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6.00 - 8.00° 6	SAMPLE DATE		12/01/54	12/01/94	12/02/94	12/02/94	12/01/94	12/02/94
4,44 12.00	SAMPLE DEPTH		6.00 - 8.00	6.00 - 8.00	6.00 - 8.00	6.00 - 8.00	10.00 - 12,00	8.00 - 10.00
May 1 12.00 <th< th=""><th>Volatiles</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Volatiles							
9/45 12.00	CHLOROMETHANE	ug/kg	12.00 U	12.00 U	8	12.00 U	12.00 U	12.00 U
9/45 12.00	BROMOMETHANE	ug/kg	12.00 U	12.00 U	8	12.00 U	12.00 U	12.00 U
ug/kg 12.00 12.00 12.00 12.00 12.00 ug/kg 12.00 12.00 <	VINYL CHLORIDE	ug/kg	12.00 U	12.00 U	8	12.00 U	12.00 U	12.00 U
ug/kg 12.00 22.00 22.00 22.00 ug/kg 12.00 12.00 12.00 12.00 12.00 ug/kg	CHLOROETHANE	ug/kg	12.00 U	12.00 U	8	12.00 U	12.00 U	12.00 U
ug/kg 12.00 U 12.00 U 12.00 U 15.00 U	METHYLENE CHLORIDE	ug/kg	12.00 U	29.00	21.00	22.00	2.00 J	12.00 U
ug/kg 12.00 u	ACETONE	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	15.00 U	3.00 1
ug/kg 12.00 U	CARBON DISULFIDE	ug/kg	12.00 U	12.00 U				
USANA 12.00 U	1,1-DICHLOROETHENE	ug/kg	12.00 U	_				
Umay kg 12.00 U 12.00 U <t< th=""><th>1,1-DICHLOROETHANE</th><th>ug/kg</th><th>12.00 U</th><th>12.00 U</th><th>12.00 U</th><th>12.00 U</th><th>12.00 U</th><th>_</th></t<>	1,1-DICHLOROETHANE	ug/kg	12.00 U	_				
ug/kg 12.00 U	1,2-DICHLOROETHENE (total)	ug/kg	12.00 U					
ug/kg 12.00 U	CHLOROFORM	ug/kg	12.00 U					
ug/kg 12.00 U	1,2-DICHLOROETHANE	ug/kg	12.00 U					
ug/kg 12.00 U	2-BUTANONE	ug/kg	12.00 U	_	12.00 U	12.00 U	12.00 U	_
ug/kg 12.00 U	1,1,1-TRICHLOROETHANE	ug/kg	12.00 U	_	12.00 U	12.00 U	12.00 U	
ug/kg 12.00 U	CARBON TETRACHLORIDE	ug/kg	12.00 U	_	12.00 U	12.00 U	_	
ug/kg 12.00 U	BROMOD I CHLOROMETHANE	ug/kg	12.00 U	_	12.00 u	12.00 u	_	_
ug/kg 12.00 U	1,2-DICHLOROPROPANE	ug/kg	12.00 U	_	12.00 U	12.00 U	12.00 U	12.00 U
ug/kg 12.00 U	cis 1,3-DICHLOROPROPENE	ug/kg	12.00 U	_	12.00 U	12.00 U	12.00 U	12.00 U
ug/kg 12.00 U	TRICHLOROETHENE	ug/kg	12.00 U	12.00 U				
ug/kg 12.00 U	DIBROMOCHLOROMETHANE	ug/kg	12.00 U					
ug/kg 12.00 U	1,1,2-TRICHLOROETHANE	ug/kg	12.00 U					
ug/kg 12.00 U	BENZENE	ug/kg	12.00 U					
ug/kg 12.00 U	trans 1,3-DICHLOROPROPENE	ug/kg	12.00 U					
ug/kg 12.00 U 12.00 UJ 12.00 U	BROMOFORM	ug/kg	12.00 U		8	12.00 U	12.00 U	
THENE US/Kg 12.00 U 12	4-METHYL-2-PENTANONE	ug/kg	12.00 U		8	12.00 UJ	12.00 U	_
THENE UG/kg 12.00 U	2-HEXANONE	ug/kg			8	12.00 U	12.00 U	_
ACHLOROETHANE ug/kg 12:00 U 12	TETRACHLOROETHENE	ug/kg			8	12.00 U	12.00 U	12.00 U
E ug/kg 12.00 U 12.00	1,1,2,2-TETRACHLOROETHANE	ug/kg	12.00 U		8	12.00 U	12.00 U	12.00 U
E ug/kg 12.00 U	TOLUENE	ug/kg	12.00 U		8	12.00 U	12.00 U	12.00 U
ug/kg 12.00 U	CHLOROBENZENE	ug/kg	12.00 U	12.00 U	8	12.00 U	12.00 U	12.00 U
ug/kg 12.00 U	ETHYLBENZENE	ug/kg	12.00 U	12.00 U				
ug/kg 12.00 U 12.00 U 12.00 U 12.00 U 12.00 U	STYRENE	ug/kg	12.00 U	12.00 U				
	XYLENES (total)	ug/kg	12.00 U	12.00 U				

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE DATE		\$801 06/20/95	\$803 06/21/95	\$B18 06/21/95	
TEXT 001 SAMPLE DEPTH		8.00 - 10.00	12.00 - 14.00	12.00 - 14.00	
Volatiles					
CHLOROMETHANE	ug/kg	10.00	11.00 U	12.00 UJ	
BROMOMETHANE	ug/kg	10.00 U	11.00 U	12.00 U	
VINYL CHLORIDE	ug/kg	10.00 U	11.00 U	12.00 UJ	
CHLOROETHANE	ug/kg	10.00 U	11.00 U	12.00 U	
METHYLENE CHLORIDE	ug/kg	23.00 U	14.00 U	12.00 U	
ACETONE	ug/kg	22.00 UJ	18.00 UJ	12.00 UJ	
CARBON DISULFIDE	ug/kg	10.00 U	3.00 J	12.00 U	
1.1-DICHLOROETHENE	ua/ka	10.00	11,00 U	12.00 U	
1,1-DICHLOROETHANE	ua/ka	10.00 U	11.00 U	12.00 U	
1,2-DICHLOROETHENE (total)	ua/kg	10.00 U	11.00 U	12.00 U	
CHLOROFORM	ua/ka		11.00 U	12.00 U	
1.2-DICHLOROETHANE	ua/ka		11.00	12 00 1	
2-BUTANOME	ua/ka	10.00 tu		12 00 1	
1.1.1-TRICHLOROETHANE	ua/ka	tu 00.01		12.00 11	•
CARBON TETRACHLORIDE	Ua/ka			12.00 U	
BROMOD I CHLOROMETHANE	ug/kg	10.00 U	11.00 u	12.00 U	
1.2-DICHLOROPROPANE	ua/ka			12.00 U	
cis 1,3-DICHLOROPROPENE	ug/kg	10.00 U	11.00 U	12.00 U	
TRICHLOROETHENE	ug/kg	10.00 U	11.00 U	12.00 U	
DIBROMOCHLOROMETHANE	ug/kg	10.00 U	11.00 U	12.00 U	
1,1,2-TRICHLOROETHANE	ug/kg	10.00 u	11.00 U	12.00 u	
BENZENE	ug/kg		11.00 U	12.00 U	
trans 1,3-DICHLOROPROPENE	ug/kg	10.00 U	11.00 U	12.00 U	
BROMOFORM	ug/kg	10.00 U	11.00 U	12.00 U	
4-METHYL-2-PENTANONE	ug/kg	10.00 U	11.00 U	12.00 U	
2-HEXANONE	ug/kg	10.00 U	11.00 U	12.00 U	
TETRACHLOROETHENE	ug/kg	10.00 U	11.00 U	12.00 U	
1,1,2,2-TETRACHLOROETHANE	ug/kg		11.00 U	12.00 U	
TOLUENE	ug/kg	10.00 U	11.00 U	12.00 U	
CHLOROBENZENE	ug/kg	10.00 U	11.00 U	12.00 U	
ETHYLBENZENE	ug/kg	10.00 U	11.00 U	12.00 U	
STYRENE	ug/kg	10.00 U	11.00 U	12.00 U	
XYLENES (total)	ug/kg	10.00 U	11.00 U	12.00 U	

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE NAME SAMPLE DATE TEXT ON1		0P021 11/29/94	DP022 11/30/94	DP023 11/30/94	0P024 12/01/94	DP025 11/30/94	0P026 11/30/94
SAMPLE DEPTH		10.00 - 12.00'	8.00 - 10.00	10.00 - 12.00	6.00 - 8.00	6.00 - 8.00	9.00 - 11.00
Semivolatiles - Page 1							
PHENOL	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420-00 U
BIS(2-CHLOROETHYL)ETHER	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2-CHLOROPHENOL	ug/kg	430.00 U	370.00 U	410.00 U	390.00 u	370.00 U	420.00 0
1,3-DICHLOROBENZENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
1,4-DICHLOROBENZENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
1,2-D1CHLOROBENZENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00	370.00 U	420 00 n
2-METHYLPHENOL	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 0
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	430.00 U	370.00 UJ	410.00 U	390.00 U	370.00 UJ	420.00 U
4-METHYLPHENOL	ug/kg	430.00 U	_	410.00 U	390.00 U	370.00 U	420.00 U
N-NITROSO-DI-N-PROPYLAMINE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 u	370.00 U	420.00 U
HEXACHLOROETHANE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
NITROBENZENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 u	370.00 U	420.00 U
ISOPHORONE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2-NITROPHENOL	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2,4-DIMETHYLPHENOL	ug/kg	730.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
BIS(2-CHLOROETHOXY)METHANE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2,4-DICHLOROPHENOL	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
1,2,4-TRICHLOROBENZENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
NAPHTHALENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 u	370.00 U	420.00 U
4-CHLOROANILINE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
HEXACHLOROBUTAD I ENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
4-CHLORO-3-METHYLPHENOL	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2-METHYLNAPHTHALENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
HEXACHLOROCYCLOPENTAD1ENE	ug/kg	430.00 UJ	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2,4,6-TRICHLOROPHENOL	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2,4,5-TRICHLOROPHENOL	ug/kg	1,000.00 U	890.00 U	00.066	950.00 U	00.006	1,000.00 U
2-CHLORONAPHTHALENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2-NITROANILINE	ug/kg	1,000.00 U	890.00 UJ	00.066	950.00 U	900.00 UJ	1,000,00 U
DIMETHYLPHTHALALTE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 u	370.00 U	420.00 U
ACENAPHTHYLENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2,6-DINITROTOLUENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
3-NITROANILINE	ug/kg	1,000.00 U	890.00 U	0.000 U	950.00 U	00.00g	1,000.00 U
ACENAPHTHENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U

forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE DATE		0P027 12/01/94	0P028 12/01/94	0P029 12/02/94	0P030 12/02/94	0P031 12/01/94	0P032 12/02/94
SAMPLE DEPTH		6.00 - 8.00'	6.00 - 8.00	6.00 - 8.00	6.00 - 8.00	10.00 - 12.00	8.00 - 10.00
Semivolatiles - Page 1							
PHENOL	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
BIS(2-CHLOROETHYL)ETHER	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
2-CHLOROPHENOL	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
1,3-DICHLOROBENZENE	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
1,4-DICHLOROBENZENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
1,2-DICHLOROBENZENE	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
2-METHYLPHENOL	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
4-METHYLPHENOL	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
N-NITROSO-DI-N-PROPYLAMINE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
HEXACHLOROETHANE	ug/kg	390.00 U	•	700.00 n	410.00 U	410.00 U	700.00 U
MITROBENZENE	ug/kg	390.00 U	•	8	410.00 U	410.00 U	700.00 U
I SOP HORONE	ug/kg	390.00 U	•	700.00 n	410.00 U	410.00 U	700.00 U
2-WITROPHENOL	19/k 0	390.00 U	•	8	410.00 U	410.00 U	0 00.004
2,4-DIMETHYLPHENOL	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
BIS(2-CHLOROETHOXY)METHANE	ug/kg	390.00 U	•	700.00 n	410.00 U	410.00 U	700.00 U
2,4-DICHLOROPHENOL	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
1,2,4-TRICHLOROBENZENE	09/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
NAPHTHALENE	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
4-CHLOROANILINE	U 9/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	00.00 U
HEXACHLOROBUTADIENE	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	00.004
4-CHLORO-3-METHYLPHENOL	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
Z-MEIHTLNAPHIHALENE	g/kg	390.00 U	410.00 0	400.00 U	410.00 0	410.00 0	0 00.004
HEXACHLOROCYCLOPENTAD I ENE	ug/kg	390.00 U	410.00 U	400.00 U	410.00 0	410.00 0	00.004
2,4,6-TRICHLOROPHENOL	ug/kg	390.00	410.00 U	700.00 N	410.00 0	410.00 0	700.00
2,4,5-TRICHLOROPHENOL	ug/kg	950.00 U	00.099	960.00 U	0.00°	1,000.00 U	0.00.086
2-CHLORONAPHTHALENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
2-NITROANILINE	ug/kg	950.00 U	00.069		00.000 U	1,000.00 U	080.00 U
DIMETHYLPHTHALALTE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
ACENAPHTHYLENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
2,6-DINITROTOLUENE	ug/kg	390.00 U	410.00 U	700.00 n	410.00 U	410.00 U	700.00 U
3-NITROANILINE	ug/kg	950.00 U	990.00 U	0.009 0.096	0 00.066	1,000.00 U	080.00 U
ACENAPHTHENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SB18 06/21/95	12.00 - 14.001		380.00 U	380.00 U	180 00	2000	280.00	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	380.00 ∪	380.00 U	380.00 U	380.00 U	380.00 U	380.00 U	00.096	380.00 U	960.00 U	380.00 U	11 00 082	00.00
\$803 06/21/95	12.00 - 14.00		380.00 U	380.00 U	180 00 11		280.00 0	380.00 U	380.00 U	380.00 U	380.00 U	_									380.00 U	380.00 U	380.00 U	380.00 U		380.00 U	380.00 U	380.00 U	950.00 U		950.00 U	380.00 U	180 00 11	
SB01 06/20/95	8.00 - 10.00		340.00 U	340.00 U	1 00 072			_	340.00 U	340.00 U	340.00 UJ	340.00 U	340.00 U	340.00 U	340.00 u	340.00 U	340.00 0	340.00 U	340.00 U	340.00 ∪	340.00 U	340.00 U	340.00 U	340.00 U	340.00 U	340.00 U	340.00 UJ	340.00 U	850.00 U	340.00 U	850.00 UJ	340.00 U	340.00 U	
			ua/ka	ua/ka	2/4	2 / 2	09/Kg	09/k 9	ug/kg	ug/kg	ug/kg	ua/ka	ua/ka	ua/ka	ua/ka	ua/ka	ua/ka	ug/ka	ug/kg	ug/kg	09/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	∪a/ka	•
SAMPLE NAME SAMPLE DATE	SAMPLE DEPTH	Semivolatiles - Page 1	PHENOL	BISC2-CHLOROETHYL)ETHER	2-CHI OBOBHENOI	1 2 of Cut Opposition	I, 5 - DICHLOROBENZENE	1,4-DICHLOROBENZENE	1,2-DICHLOROBENZENE	2-METHYLPHENOL	BIS(2-CHLOROISOPROPYL)ETHER	4-METHYLPHENOL	N-NITROSO-01-N-PROPYLAMINE	HEXACHLOROETHANE	NITROBENZENE	ISOPHORONE	2-NITROPHENOL	2.4-DIMETHYLPHENOL	BIS(2-CHLOROETHOXY)METHANE	2,4-DICHLOROPHENOL	1,2,4-TRICHLOROBENZENE	NAPHTHALENE	4-CHLOROANILINE	HEXACHLOROBUTAD I ENE	4-CHLORO-3-METHYLPHENOL	2-METHYLNAPHTHALENE	HEXACHLOROCYCLOPENTADIENE	2,4,6-TRICHLOROPHENOL	2,4,5-TRICHLOROPHENOL	2-CHLORONAPHTHALENE	2-NITROANILINE	DIMETHYLPHTHALALTE	ACENAPHTHYLENE	

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE NAME SAMPLE DATE		DP021 11/29/94	DP022 11/30/94	DP023 11/30/94	DP024 12/01/94	DP025 11/30/94	DP026 11/30/94
SAMPLE DEPTH		10.00 - 12.00	8.00 - 10.00	10.00 - 12.00	6.00 - 8.00	6.00 - 8.00	9.00 - 11.00
Semivolatiles - Page 2							
	ug/kg	1,000.00 UJ	890.00 U	990.00 U	950.00 U	00.009	1.000.00 U
4-NITROPHENOL	ug/kg	1,000.00 U	890.00 UJ	990.00 U	950.00 U	500.00 na	1,000.00
DIBENZOFURAN	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
2,4-DINITROTOLUENE	ug/kg	, 430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
DIETHYLPHTHALATE	ug/kg	430.00 U	370.00 U	410.00 U	390.00	370.00 U	420.00 U
4-CHLOROPHENYL-PHENYLETHER	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
FLUORENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	
4-NITROANILINE	ug/kg	1,000.00 U	890.00 U	00.066	950.00 U	900.00 U	1,000.00 U
4,6-DINITRO-2-METHYLPHENOL	ug/kg	1,000.00	890.00 U	00.000 U	950.00 U	900.00 U	1,000.00 U
N-NITROSODIPHENYLAMINE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	
4-BROMOPHENYL-PHENYLETHER	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	
HEXACHLOROBENZENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
PENTACHLOROPHENOL	ug/kg	1,000.00 U	890.00 U	990.00 U	950.00 U	0 00.00¢	1,000.00 U
PHENANTHRENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
ANTHRACENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
CARBAZOLE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
DI-N-BUTYLPHTHALATE	ug/kg	430.00 U	370.00 U	21.00 J	390.00 U	370.00 U	45.00 J
FLUORANTHENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
PYRENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
BUTYLBENZYLPHTHALATE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420.00 U
S,S'-DICHLOROBENZIDINE	ug/kg	430.00 0	370.00 U	410.00 0	390.00 U	370.00 U	750.00 U
BENZO(A)ANTHRACENE	ug/kg	430.00 U	370.00 0	410.00 U	390.00 0	370.00 U	420.00 U
DISCO-FILE DESCRIPTURE ATE	9/ Kg	00.06	2000	00.00	200.002	330.00	0 00.02*
BIS(Z-EINTLHEATL)PHINALAIE	09/kg	450.00 0	3/0.00 0	0.00.00	390.00	370.00 0	0 00.024
DI-N-OCITEPHINALAIE	ug/kg	430.00 0	370.00 U	410.00 0	390.00 03	3/0.00 0	420.00 0
BENZO(B) FLOOKAN I HENE	ug/kg	450.00 0	570.00 0	70.00	390.00	370.00 0	0 00 027
BENZO(K) PLUORANTHENE	ug/kg	450.00 0	370.00 U	410.00 0	390.00 U	370.00 U	420.00 0
BENZO(A)PTRENE	09/kg	450.00	570.00 0	410.00 0	390.00	370.00	450.00 0
INDENO(1, Z, S-CD)PYRENE	ug/kg	430.00 U	370.00 U	410.00 U	390.00 U	370.00 U	420-00 N
DIBENZO(A, H)ANTHRACENE BENZO(C, H, 1)BEDVIENE	ug/kg	430.00 U	370.00 U	790.00	390.00	370.00 U	420.00 U
DEMESO, W, I, FERILENE	84/80	430.00	0.00.075		370.00	370.00	450.00

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE NAME		DP027	DP028	0P029	DP030	DP031	DP032
3577 LE 701 L		***/10/71	*4/10/71	** /70/71	** /20/21	***/10/21	** /20/21
SAMPLE DEPTH		6.00 - 8.00	6.00 - 8.00'	6.00 - 8.00	6.00 - 8.00	10.00 - 12.00	8.00 - 10.00
Semivolatiles - Page 2							
2,4-DINITROPHENOL	ug/kg	950.00 U	0.00°	00.096	00.066	1,000.00 u	980.00 UJ
4-NITROPHENOL	ug/kg	950.00 U	990.00 U	960.00 U	00.066	1,000.00 U	980.00 U
DIBENZOFURAN	ug/kg	390.00 U	410.00 U	400.00 U	410.00 U	410.00 U	700.00 U
2,4-DINITROTOLUENE	ug/kg		410.00 U	700.00 U	410.00 U	410.00 U	700.00 n
DIETHYLPHTHALATE	ug/kg		410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
4-CHLOROPHENYL-PHENYLETHER	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
FLUORENE	ug/kg		410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
4-HITROANILINE	ug/kg		990.00 U		990.00 U	1,000.00 U	980.00 U
4,6-DINITRO-2-METHYLPHENOL	ug/kg	950.00 U	0.00°		990.00 UJ	1,000.00 U	980.00 UJ
N-NITROSODIPHENYLAMINE	ug/kg	390.00 U	410.00 U		410.00 U	410.00 U	700.00 U
4-BROMOPHENYL-PHENYLETHER	ug/kg	390.00 U	410.00 U	400.00 U	410.00 U	410.00 U	700.00 U
HEXACHLOROBENZENE	ug/kg		410.00 U		410.00 U	410.00 U	700.00 u
PENTACHLOROPHENOL	ug/kg		0.006 0.000	00.096	00.0%	1,000.00 U	980.00 UJ
PHENANTHRENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
ANTHRACENE	ug/kg		410.00 U		410.00 U	410.00 U	700.00 U
CARBAZOLE	ug/kg		410.00 U		410.00 U	410.00 U	700.00 U
DI-N-BUTYLPHTHALATE	ug/kg	390.00 U	410.00 U	23.00 J	410.00 U	410.00 U	700.00
FLUORANTHENE	ug/kg	390.00 U	710.00 n		410.00 U	410.00 U	700.00 n
PYRENE	ug/kg	390.00 U	4.10.00 U		410.00 UJ	410.00 U	400.00 UJ
BUTYLBENZYLPHTHALATE	ug/kg		710.00 n	700.00 n	410.00 U	410.00 U	700.00 n
3,3'-DICHLOROBENZIDINE	ug/kg	390.00 U	410.00 U		410.00 U	410.00 U	700.00 U
BENZO(A)ANTHRACENE	ug/kg	390.00 U	410.00 U		410.00 U	410.00 U	700.00 n
CHRYSENE	ug/kg	390.00 0	410.00 0	700.00	410.00 0	410.00 0	700.00
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
DI-N-OCTYLPHTHALATE	ug/kg	390.00	410.00 UJ	700.00 U	410.00 U	410.00 UJ	700.00 U
BENZO(B)FLUORANTHENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
BENZO(K) FLUORANTHENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
BENZO(A)PYRENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
INDENO(1,2,3-CD)PYRENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 n
DIBENZO(A, H)ANTHRACENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 U
BENZO(G, H, I)PERYLENE	ug/kg	390.00 U	410.00 U	700.00 U	410.00 U	410.00 U	700.00 n

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE DATE TEXT 001 SAMPLE DEPTH Semivolatiles - Page 2					
- Page 2		06/50/95	06/21/95	06/21/95	
- Page 2		8.00 - 10.00	12.00 - 14.00	12.00 - 14.00'	
	uo/ka	850.00 U	950.00 U	11 00 096	
	no/ka	850.00.11	11 00 050	00 000	
	sylva Novika	00 072	280.00	380.00	
	B 1 1 1				
.	. 64/60		380.00 0	380.00	
	ug/kg	340.00 0	380.00 0	380.00 U	
4-CHLOROPHENYL-PHENYLETHER	ug/kg	340.00 U	380.00 U	380.00 U	
	uo/ka	340.00 U	380.00 U	380.00	
4-NITROANILINE	uo/ka	850.00 11.1	00 000	00 090	
METUVI BUENO	64/5	00 00 11	00.000	1 00 070	
	64/80		730.00 0	900.00	
N-NITROSODIPHENYLAMINE L	ug/kg	340.00 U	380.00 U	380.00 U	
4-BROMOPHENYL-PHENYLETHER	ug/kg	340.00 U	380.00 U	380.00 U	
	04/p	11 00 072	180 00 11	180 001	
	D 1/0		- 00.000	0.000	
	64/65 64/65		730.00	700.00	
	ug/kg	340.00 U	380.00 U	380.00 U	•
,	ug/kg	340.00 U	380.00 U	380.00 U	
	ua/ka	340.00 U	380.00 11	380.00.11	
DI -N-BIITYI PHTHAI ATE	64/5	1 00 0%	180 00	100.085	
	9 (1)	2000	20.00	- 00.00%	
	5 / S	0.000		300.00	
	19/kg	340.00 U		380.00 U	
	ug/kg	340.00 UJ	230.00 J	380.00 U	
3,3'-DICHLOROBENZIDINE	ug/kg	340.00 UJ	380.00 UJ	380.00 U	
	ua/ka	340.00 11		380 00 11	
	19/kg	_		380 00 11	
	2				
INALAIE	ug/kg		430.00	380.00 0	
DI-N-OCTYLPHTHALATE	ug/kg	340.00 U	380.00 U	380.00 U	
BENZO(B)FLUORANTHENE	ua/ka	340.00 U	380.00 U	380.00 U	
	24/61		180 00 11	1 00 082	
	5 / S		200.00	0.000	
	09/kg	240.00	380.00	380.00	
	ug/kg	340.00 U	380.00 U	380.00 U	
_	ug/ka	340.00 U	380.00 U	380.00 U	
	ia/ka	340.00.11	380 00 11	380 00 11	

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE DATE		DP021 11/29/94	DP022 11/30/94	DP023 11/30/94	DP024 12/01/94	DP025 11/30/94	DP026 11/30/94
SAMPLE DEPTH		10.00 - 12.00	8.00 - 10.00	10.00 - 12.00'	6.00 - 8.00	6.00 - 8.00	9.00 - 11.00
Pesticides/PCBs							
ALPHA-8HC	ug/kg	2.20 U	1.90 U	2.10 U		1.90 U	
BETA-BHC	ug/kg	2.20 U	1.90 UJ	2.10 UJ		1.90 UJ	_
DELTA-BHC	ug/kg	2.20 U	1.90 U	2.10 U		1.90 U	_
gamma-BHC (Lindane)	ug/kg	2.20 U	1.90 U	2.10 U		1.90 U	2.20 U
HEPTACHLOR	ug/kg	2.20 U	1.90 U	2.10 U		1.90 U	_
ALDRIN	ug/kg	2.20 U	1.90 U	2.10 U		1.90 U	_
HEPTACHLOR EPOXIDE	ug/kg	2.20 U	1.90 U	2.10 U		1.90 U	
ENDOSUL FAN I	ug/kg	2.20 U	1.90 U	2.10 U		1.90 U	2.20 U
DIELDRIN	ug/kg	4.30 U	3.70 U	4-10 u		3.70 U	0.02.7
4,4'-DDE	ug/kg	4.30 U	3.70 U	4.10 U		3.70 U	0.27
ENDRIN	ug/kg	4.30 U	3.70 U	4.10 U		3.70 U	4.20 U
ENDOSUL FAN 11	ug/kg	4.30 U	3.70 U	4.10 U		3.70 U	4.20 U
7,4'-DDD	ug/kg	4.30 U	3.70 U	4.10 U		3.70 U	4.20 U
ENDOSULFAN SULFATE	ug/kg	4.30 U	3.70 U	4.10 U		3.70 U	4.20 U
4,4'-DDT	ug/kg	4.30 UJ	3.70 U	4.10 U		3.70 U	4.20 U
METHOXYCHLOR	ug/kg	22.00 U	19.00 U	21.00 U		19.00 U	22.00 U
ENDRIN KETONE	ug/kg	4.30 U	3.70 U	4.10 U		3.70 U	4.20 U
ENDRIN ALDEHYDE	ug/kg	4.30 U	3.70 U	4.10 U		3.70 U	4.20 U
ALPHA-CHLORDANE	ug/kg	2.20 U	1.90 U	2.10 U		1.90 U	
GAMMA-CHLORDANE	ug/kg	2.20 U	1.90 U	2.10 U		1.90 u	
TOXAPHENE	ug/kg	220.00 U	190.00 U	210.00 U		190.00 U	220.00 U
AROCLOR 1016	ug/kg	43.00 U	37.00 U	41.00 U		37.00 U	
AROCLOR 1221	ug/kg	88.00 U	74.00 U	83.00 U		75.00 U	
_	Ua/ka	73.00 U	37,00 U	41.00 U		37.00 11	
AROCLOR 1242	ug/kg	43.00 U	37.00 U	41.00 U		37.00 U	
_	ug/kg	43.00 U	37.00 U	41.00 U		37.00 U	42.00 U
-	ua/ka	43.00 U	37.00 U	41.00 U		37.00 U	75.00 U
_	ug/kg	43.00 U	37.00 U	41.00 U	39.00 03	37.00 U	42.00 U

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SAMPLE NAME SAMPLE DATE		0P027 12/01/94	DP028 12/01/94	0P029 12/02/94	DP030 12702794	DP031	DP032
TEXT 001				12/22/21	12021	15/01/21	12/02/74
SAMPLE DEPTH		6.00 - 8.00	6.00 - 8.00	6.00 - 8.00	6.00 - 8.00	10.00 - 12.00	8.00 - 10.00
Pesticides/PCBs							
ALPHA-BHC	ug/kg	2.00 U	2.10 UJ	_	2.10 U	~	2.10 U
BETA-BHC	ug/kg	2.00 UJ	2.10 UJ	_	2.10 UJ	: c c	2,10 UJ
DEL TA-BHC	ug/kg	2.00 U	2.10 0.3	_	2.10 U	: 04	2,10 0
gamma-BHC (Lindane)	ug/kg	2.00 U	2.10 UJ	2.00 0	2.10 U	: ox	2.10 U
HEPTACHLOR	ug/kg	2.00 U	2.10 UJ	_	2.10 U	•	2.10 0
ALDRIN	ug/kg	2.00 U	2.10 UJ	_	2.10 U	: 02	2.10 0
HEPTACHLOR EPOXIDE	ug/kg	2.00 U	2.10 UJ	_	2.10 U	: 04	2.10 U
ENDOSULF AN 1	ug/kg	2.00 U	2.10 UJ	_	2.10 U	: 04	2,10 U
DIELORIN	ug/kg	3.90 U	4.10 03	7.00 0	4.10 U	: 04	0 00.7
7'4DDE	ug/kg	3.90 U	4.10 UJ	7.00 U	4.10 U	: 00	7.00 0
ENDRIN	ug/kg	3.90 U	4.10 UJ	7.00 U	4.10 U	· 02	7.00 U
ENDOSULFAN 11	ug/kg	3.90 U	4.10 UJ	7.00 U	4.10 U	: œ	0 00.7
7,4000	ug/kg	3.90 U	4.10 UJ		4-10 U	~	4.00 U
ENDOSULFAN SULFATE	ug/kg	3.90 U	4.10 UJ		4.10 U	~	0 00.4
7,4'-DDT	ug/kg	3.90 ∪	4.10 UJ	7.00 U		~	7.00 U
METHOXYCHLOR	ug/kg	20.00 U	21.00 UJ			~	21.00 U
ENDRIN KETONE	ug/kg	3.90 U	4.10 UJ			~	4.00 U
ENDRIN ALDEHYDE	ug/kg	3.90 U	4.10 UJ		4.10 U	~	7.00 U
ALPHA-CHLORDANE	ug/kg	2.00 U				~	2.10 U
GAMMA-CHLORDANE	ug/kg	2.00 U				~	2.10 U
TOXAPHENE	ug/kg	200.00 U	210.00 UJ		210.00 U	~	210.00 U
-	ug/kg	39.00 U			41.00 U	~	70.00 U
AROCLOR 1221	ug/kg	80.00 U			83.00 U	~	82.00 U
AROCLOR 1232	ug/kg	39.00 U			41.00 U	œ	0 00 07
٠.	ug/kg	39.00 U	41.00 UJ		41.00 U	: c c	70.00
AROCLOR 1248	Ua/ka	39.00 U			41.00 U	~	0 00 07
AROCLOR 1254	ug/kg	39.00 U			41.00 U	: 00	70.00
-	ug/kg	39.00 u		00.04	41.00 U	: œ	0 00.07
1	,					•	

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Organic Compounds

SB18 06/21/95 12.00 - 14.00		2.00 0	2.00 ú	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	3.80 U	3.80 U	3.80 ∪	3.80 U	3.80 ∪	3.80 ∪	3.80 u	20.00 U	3.80 ∪	3.80 ∪	2.00 U	2.00 ∪	200.00 u	38.00 U	78.00 u	38.00 U	38.00 U	38.00 u	38.00 U	38.00 U
SB03 06/21/95 12.00 - 14.00		0.60		1.90 U							3.80 U	3.80 U	œ	œ	3.80 U	19.00 U	3.80 ∪	3.80 ⊔	1.90 u	0.14 J	190.00 U	38.00 U	77.00 u	38.00 U	38.00 U	38.00 U	38.00 U	38.00 0
SB01 06/20/95 8.00 - 10.00*		08.6	0.08.1	1.80 U	1.80 U	1.80 U	1.80 U	1.80 U	3.40 U	3.40 ∪	3.40 U		3.40 U	0.72 J	3.40 U	18.00 U	3.40 U	3.40 U	1.80 U	1.80 U	180.00 U	34.00 U	0 00.69	34.00 U	34.00 U	34.00 U	34.00 U	34.00 U
		U9/kg	09/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH	Pesticides/PCBs	ALPHA-BHC RFTA-BHC	DELTA-BHC	ganma-BHC (Lindane)	HEPTACHLOR	ALDRIN	HEPTACHLOR EPOXIDE	ENDOSULFAN 1	DIELDRIN	4,4DDE	ENDRIN	ENDOSULFAN 11	7,4'-000	ENDOSULFAN SULFATE	7,4'-007	METHOXYCHLOR	ENDRIN KETONE	ENDRIN ALDENYDE	ALPHA-CHLORDANE	GAMMA-CHLORDANE	TOXAPHENE	AROCLOR 1016	_	AROCLOR 1232	AROCLOR 1242	AROCLOR 1248	-	_

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Inorganic Analytes

SAMPLE NAME SAMPLE DATE		DP021 11/29/94	0P022 11/30/94	DP023 11/30/94	DP024 12/01/94	DP025 11/30/94	DP026 11/30/94
SAMPLE DEPTH		10.00 - 12.00	8.00 - 10.00	10.00 - 12.00	6.00 - 8.00	6.00 - 8.00	9.00 - 11.00
Inorganic Analytes							
ALUMINUM	mg/kg	22,000.00	7,900.00	20,100.00	8,190.00 EJ	4,990.00 EJ	22,500.00 EJ
ANTIMONY	mg/kg	1.20 U	1.10 U	1.30 U	1.20 U	1.30 U	1.30 U
ARSENIC	mg/kg	5.30 J	2.00 BJ	5.90 J	3.00	2.20 8	5.00
BARIUM	mg/kg	131.00	35.70 8	325.00	63.70	29.10 B	156.00
BERYLLIUM	mg/kg	0.25 8	0.23 U	0.29 8	0.24 U	0.26 U	0.26 U
CADMIUM	mg/kg	0.49 U	0.45 U	0.51 U	0.47 U	0.52 U	0.53 U
CALCTUR	mo/ka	46.300.00	80.000.00	61,600,00	70,900,00	110,000,00	37, 700, 00
CHROMIUM	ma/ka	31.90	7.30	28.80	11.20	7.30	31.60
COBALT	mo/ka	14.40	8 00 7	12.70 B	5.60 B	3.70 8	13.50 J
COPPER	ma/ka	28.20	16.10	32.30	20.50	19.70	26.10 J
IRON	mg/kg	31,300.00	9.890.00	31,800.00	14,000,00	10.800.00	39, 200, 00
LEAD	mg/kg	13.00	18.40	14.50	12.20	16.70	12.20
MAGNESIUM	mg/kg	13,300.00	26,700.00	16,500.00	26,400.00	65,900.00	12,400.00
MANGANESE	mg/kg	577.00		572.00	530.00	745.00	613.00
MERCURY	mg/kg	0.12·U	0.11 U	0.13 U	0.12 U	0.13 u	0.13 U
NICKEL	mg/kg	31.80	8.30 8	29.40	14.00	8.60 8	33.60
POTASSIUM	mg/kg	6,560.00 EJ	1,580.00 EJ	5,650.00 EJ	2,710.00 J	1,610.00 J	5,900.00
SELENTUM	mg/kg	1.20 U	1.10 U		1.20 UJ	1.30 UJ	1.30 UJ
SILVER	mg/kg	0.73 UNJ	0.68 UNJ		0.71 U	0.78 U	0.79 U
SODIUM	mg/kg		260.00 BE	366.00 BE	316.00 BE	334.00 BE	356.00 BE
THALLIUM	mg/kg	1.70 U	1.60 U		1.60 U	1.80 u	1.80 U
VANADIUM	mg/kg	39.90	۶.	37.70	16.30	11.20 8	39.90
ZINC	mg/kg	83.40	237.00	96.30	237.00	269.00	83.50
CYANIDE	mg/kg	1.20 U	1.10 U	1.30 U	1.20 U	1.30 U	1.30 U

Forest Glen Site AOC 2 - Northern Aspect - Subsurface Soil Inorganic Analytes

SAMPLE DATE		DP027 12/01/94	DP028 12/01/94	DP029 12/02/94	DP030 12/02/94	DP031 12/01/94	0P032 12/02/94
SAMPLE DEPTH		.00.8 - 00.9	6.00 - 8.00	6.00 - 8.00	6.00 - 8.001	10.00 - 12.00	8.00 - 10.00
Inorganic Analytes							
ALUMINUM	mg/kg	18,600.00 EJ	5,550.00 EJ	11,500.00 EJ	23,000.00	8,450.00 EJ	24,800.00 EJ
ANTIMONY	mg/kg	1.30 U	1.10 U	1.20 U	1.30 U	1.20 U	1.30 U
ARSENIC	mg/kg	2.90	2.90	2.40	6.10 J	1.70 U	5.40
BARIUM	mg/kg	. 107.00	33.30 8	80.70	121.00	90.50	135.00
BERYLLIUM	mg/kg	0.26 U	0.22 U	0.24 U	0.26 U	0.24 U	0.29 8
CADMIUM	mg/kg	0.52 U	0.45 U	0.47 U	0.52 U	0.48 U	0.52 U
CALCIUM	mg/kg	55,600.00	86,900.00	56.200.00	48.800.00	92.600.00	36.200.00
CHROMIUM	mg/kg	26.00	7.40	16.90	33.90	11.90	34.70
COBALT	mg/kg	13.90 J	4.70 8	10.70 8	14.20	6.10 B	16.30
COPPER	mg/kg	23.30 J	17.30 J	25.00 J	33.30	18.20	34.40
IRON	mg/kg	31,900.00	10,600.00	22,800.00	37,600.00	15.300.00	40,200.00
LEAD	mg/kg	11.20	22.20	11.30	13.10	17.00	15.30
MAGNESIUM	mg/kg	12,300.00	35,700.00	15,500.00	13,000.00	37,700.00	15,000.00
MANGANESE	mg/kg	00.669	626.00	661.00	591.00	200.00	537.00
MERCURY	mg/kg	0.13.U	0.11 u	0.12 U	0.13 U	0.12 U	0.13 U
NICKEL	mg/kg	29.40	8.90 8	20.40	36.90	13.20	37.30
POTASSIUM	mg/kg	2,090.00 J	1,840.00 J	3,030.00 J	5,090.00 J	2,930.00 J	6,560.00 J
SELENIUM	mg/kg	1.30 UJ	1.10 C	1.20 U	1.30 U	1.20 U	1.30 U
SILVER	mg/kg	0.78 U	U 29.0	0.71 U	0.78 U	0.73 U	0.78 U
NO 10M	mg/kg	328.00 BE	296.00 BE	322.00 BE	372.00 B	362.00 BE	450.00 BE
THALLIUM	mg/kg	1.80 U	1.60 U	1.70 u	1.80 U	1.70 U	1.80 U
VANADIUM	mg/kg	34.10	11.80	25.20	07.07	17.50	43.50
Z1NC	mg/kg	69.70	230.00	82.40	84.90	215.00	82.60
CYANIDE	mg/kg	1.30 U	1.10 U	1.20 U	1.30 U	1.20 U	1.30 U

03/04/1996 1:02 PM Page 3

SAMPLE NAME		\$801	SB03	SB18	
SAMPLE DATE		06/20/95	06/21/95	06/21/95	
TEXT 001 SAMPLE DEPTH		8.00 - 10.00'	12.00 - 14.001	12.00 - 14.00'	
Ingranic Analytes					
ALUMINUM	mg/kg	4.770.00	8.680.00	2.600.00	
ANTIMONY	ma/ka	4.20 UNJ	3.20 UNJ	LMII 00 C	
ARSENIC	ma/ka	2.50	2.80	3.30	
BARIUM	mg/kg	43.30 8	150.00	57.80	
BERYLLIUM	mg/kg	0.26 8	0.92 8	0.83 8	
CADHIUM	mg/kg	0.28 8	0.48 B	0.35 8	
CALCIUM	mg/kg	68, 100.00	65,700.00	49,700.00	
CHROMIUM	mg/kg	6.20	12.60	00.6	
COBALT	mg/kg	8 06.7	7.00 B	6.30 B	
COPPER	mg/kg	16.80	17.20 J	18.80 J	
IRON	mg/kg	9,880.00	14,100.00	10,900.00	
LEAD	mg/kg	12.40	00.99	6.20	
MAGNESIUM	mg/kg	25,100.00	28,000.00	12,400.00	
MANGANESE	mg/kg	611.00	548.00	477.00	
MERCURY	mg/kg	0.05-U	0.07 8	0.06 U	
NICKEL	mg/kg	9.50	14.10	11.50	
POTASSIUM	mg/kg	770.00 8	1,520.00	898.00 B	
SELENIUM	mg/kg	0.56 U	0.59 U	0.54 U	
SILVER	mg/kg	0.48 8	0.64 U	0.58 U	
SODIUM	mg/kg	107.00 8	386.00 B	148.00 B	
THALLIUM	mg/kg	1.20 U	1.20 U	1.10 U	
VANADIUM	mg/kg	10.00 8	16.60 J	11.20 J	
ZINC	mg/kg	214.00	135.00 NJ	149.00 NJ	
CYANIDE	mg/kg	0.52 U	0.59 U	0.57 U	

AOC2 - NORTHERN ASPECT TEST PIT DATA

Forest Glen Site AOC 2 - Morthern Aspect - Test Pit Conventional Parameters

SAMPLE NAME SAMPLE DATE		1P01 06/12/95	1P02 06/12/95	TP03 06/13/95	1904 06/13/95	1P05 06/13/95	1P06 06/14/95
SAMPLE DEPTH		0.00 - 4.00	0.00 - 5.00	5.50 - 6.00	4.00 - 6.00'	0.00 - 6.00	0.00 - 6.00
Conventinal Parameters		7.20	7 80	1 09 2	7 80 .1	- 60	ري د
SULFIDE	mg/kg	2	2				
TOTAL ORGANIC CARBON	mg/kg	19,500.00	17,400.00	14,600.00	10,640.00 83.30	18, 200.00	17,900.00
TOTAL SOILDS (EXTENDED)	×	-					
ALKALINITY	1/64						
800	1/0						
8	1/6						
TOTAL DISSOLVO SOLIDS HARDMESS) (B						
NITRATE/WITRITE)/6W						
TOTAL KJELDAHL MITROGEN	mg/l						

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Conventional Parameters

		TP11 06/14/95	1907 06/14/95	1P08 06/14/95	1912 06/14/95	1P09 06/15/95	1P10 06/15/95
TEXT 001 SAMPLE DEPTH		Dup of TP06 0.00 - 6.00'	0.00 - 6.00	0.00 - 6.00	Dup of TP08 0.00 - 6.00	0.00 - 2.00	0.00 - 4.00
Conventinal Parameters	şiğ	S. 80	w w	0 2. &	<u>«</u>	07 2	07.2
SULFIDE	ma/ka	3				?	?
TOTAL ORGANIC CARBON	mg/kg	10,700.00 J	2,990.00	26,900.00 85.20	5,850.00 J	34,900.00	5,720.00
TOTAL SOILDS (EXTENDED)	t >4	3	2		3		
ALKALINITY	mg/t						
AMMONIA	1/Bu						
900	1/0						
COD TOTAL DISSOLVO SOLIDS) / GE						
HARDNESS)/E						
NITRATE/NITRITE	l/Bm						

SAMPLE NAME SAMPLE DATE TEXT ON		TPEXP 06/14/95	
SAMPLE DEPTH		0.00 - 6.00'	- a whiteness
Conventinal Parameters	1	V7 L	
SULFIDE	mg/kg		
TOTAL ORGANIC CARBON	mg/kg	kg 36,000.00	
TOTAL SOLIDS (EXTENDED)	4 14	03:00	
ALKALINITY	mg/l		
AMONIA BOD	mg/l		
88)/Bw		
TOTAL DISSOLVO SOLIDS	l/gm		
HARDNESS	J/Bw		
NITRATE/NITRITE	mg/l		
TOTAL KJELDAML NITROGEN	J/Bw		

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Grain Size Analysis

SAMPLE NAME		1001	1902	1903	70dI	TPOS	1P06
SAMPLE DAIE		06/12/95	C6/71/90	6/11/90	06/13/95	06/13/95	06/14/95
SAMPLE DEPTH		0.00 - 4.00	0.00 - 5.00	5.50 - 6.00	4.00 - 6.00	0.00 - 6.00	0.00 - 6.00
Grain Analysis							
GRAVEL	×	9.20	0.30	5.00	0.70	0.00	2.00 J
SAND (A) COARSE	×	6.60	1.50	3.00	0.70	0.40	1.30
SAND (B) MEDIUM	×	3.00	0.0	1.30	0.40	0.30	0.50
SAND (C) FINE	×	7.10	2.10	7.90	1.80	0.80	1.60 J
SAND (D) FINE	×	2.20	0.00	4.10	0.70	0.30	0.50
S1LTS/CLAYS (<0.075 MM)	×				1		
SILT (A)	×	15.20	17.40	13.30	0.90	0.00	17.70 J
SILT (B)	×	15.30	19.50	21.60	15.20	7.00	18.10
CLAY	×	18.00	20.30	15.70	21.80	26.50	23.50
COLLOIDS	×	23.40	37.20	31.20	57.90	09.69	34.80 J
TOTALS FOR GROUP	J	100.00	100.10	100.10	100.10	101.90	100.00

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Grain Size Analysis

SAMPLE NAME		1141	1907	1008	TP12	1009	TP10
SAMPLE DATE		06/14/95	06/14/95	06/14/95	06/14/95	06/15/95	06/15/95
TEXT 001		Dup of TP06			Dup of TP08		
SAMPLE DEPTH		0.00 - 6.00	0.00 - 6.00	0.00 - 6.00	0.00 - 6.00	0.00 - 2.00	0.00 - 4.00
Grain Analysis							
GRAVEL	×	2.20 J	2.40 J	8.90 J	r 06.4	1.50 J	0.20 J
SAND (A) COARSE	×	1.20 J	1.20	9.30	8.90 J	2.90	0.00
SAND (B) MEDIUM	×	C 07.0	0,0	2.10	1.90 J	1.10	1.00
SAND (C) FINE	×	1.40 J	2.50 J	۲.60 ک	r 07.7	3.50 J	2.80 J
SAND (D) FINE	×	0.50 J	r 06.0	2.10 J	2.00 J	1.20 J	1, 10
SILTS/CLAYS (<0.075 MM)	×) !
SILT (A)	×	17.40 J	19.20 J	19.50 J	18.80 J	11.30 J	0.00 J
S1LT (8)	×	17.40	21.70	17.80	20.50	19.20	14. 70
CLAY	×	24.30	22.80	16.90	15.70	20.30	20.00
COLLOIDS	×	35.10 J	. 28.60 J	18.70 J	22.90 J	38.90 J	65.20 J
TOTALS FOR GROUP	1	99.90	06.66	99.90	100.00	99.90	105.90

	t Pit	
	Les	s
Forest Glen Site	Northern Aspect -	Grain Size Analysis
	٠	
	~	
	ğ	

SAMPLE NAME SAMPLE DATE		TPEXP 06/14/95	
SAMPLE DEPTH		0.00 - 6.00'	
Grain Analysis			
GRAVEL	× ;	4.10 J	
SAND (A) COARSE	×	09.6	
SAND (8) MEDIUM	×	5.60	
SAND (C) FINE	×	, 12.70 J	
SAND (D) FINE	×	2.40 J	
SILTS/CLAYS (<0.075 HM)	×		
SILT (A)	×	0.00	
SILT (B)	×	15.60	
CLAY	×	13.10	
COLLOIDS	×	43.20 J	
4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	10, 10	
LOIALS FOR GROOP		100.30	

			Fores AOC 2 - Norther Targeted Or	Forest Glen Site AOC 2 - Northern Aspect - Test Pit Targeted Organic Compounds			03/05/1996 3:00 PM Page 1
SAMPLE NAME SAMPLE DATE		1P01 06/12/95	1P02 06/12/95	TP03 06/13/95	1P04 06/13/95	1P05 06/13/95	1P06 06/14/95
SAMPLE DEPTH		0.00 - 4.00	0.00 - 5.00	5.50 - 6.00'	4.00 - 6.001	0.00 - 6.00'	0.00 - 6.00
Targeted SemiVolatiles PHENYL ISOTHIOCYANATE	va/ka	2.500.00 U	240.00 U	250.00 U	240.00 U	250.00 U	240.00 U
	6 /k	2,500.00 U	240.00 U	250.00 u	240.00 U	250.00 U	240.00 U
ш	09/kg	2,500.00 u	240.00 U	250.00 U	240.00 U	250.00 U	240.00 U
2-ANILINOBENZOTHIAZOLE	ug/kg	, 250.00 u	240.00 U	250.00 U	240.00 U	250.00 U	240.00 U
PERYLENE	ug/kg	130.00	240.00 uJ	410.00 J	240.00 UJ	250.00 UJ	240.00 UJ
ANILINE	09/kg	250.00 U	240.00 U	250.00 U	240.00 U	250.00 U	240.00 U
N,N-DIPHENYL-1,4-BENZENEDIAMIN	09/kg	250.00 UJ	240.00 uJ	250.00 UJ	240.00 UJ	250.00 UJ	240.00 UJ
PHENOTHIAZINE	09/kg	2,500.00 U	240.00 U	250.00 U	240.00 U	250.00 U	240.00 U
BENZOTHIAZOLE	100/kg	2,500.00 U	240.00 U	250.00 U	240.00 U	250.00 U	240.00 U

			Forest AOC 2 - Norther Targeted Or	Forest Glen Site 2 - Northern Aspect - Test Pit Targeted Organic Compounds			03/05/1996 3:00 PH Page 2
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		1P11 06/14/95 Dup of TP06 0.00 - 6.001	7907 06/14/95 0.00 - 6.00	1P08 06/14/95 0.00 - 6.00	1912 06/14/95 Dup of 1908 0.00 - 6.00	TP09 06/15/95 0.00 - 2.00	1P10 06/15/95 0.00 - 4.00¹
Targeted Semivolatiles PHENYL ISOTHIOCYANATE DIPHENYLAMINE 2-MERCAPTOBENZOTHIAZOLE PEANILINOBENZOTHIAZOLE ON N. N-DIPHENYL-1,4-BENZENEDIAMIN UPHENOTHIAZOLE ON N. N-DIPHENYL-1,4-BENZENEDIAMIN UPHENOTHIAZINE	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U	240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U	230.00 U 230.00 U 230.00 U 230.00 U 230.00 U 230.00 U 230.00 U	230.00 U 230.00 U 230.00 U 230.00 U 230.00 U 230.00 U 230.00 U	240.00 U 320.00 24,000.00 D 27,000.00 D 280.00 U 130.00 J 470.00 2,200.00	240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U 240.00 U

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Targeted Organic Compounds

TPEXP 06/14/95 0.00 - 6.00'	470.00 U 330.00 J 3,200.00 J 15,000.00 J 260.00 J 1,500.00 J 3,200.00 J
SAWPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH	Targeted Semivolatiles PHENYL ISOTHIOCYANATE DIPHENYLAMINE C-MERCAPTOBENZOTHIAZOLE C-ANILINOBENZOTHIAZOLE C-ANILINOBENZOTHIAZOLE C-ANILINE C-ANILINE ANILINE N,N-DIPHENYL-1,4-BENZENEDIAMIN ug/kg PHENOTHIAZINE Ug/kg

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

SAMPLE NAME SAMPLE DATE		TP01 06/12/95	1P02 06/12/95	TP03 06/13/95	1P04 06/13/95	TP05 06/13/95	TP06 06/14/95
TEXT 001 SAMPLE DEPTH		0.00 - 4.00	0.00 - 5.00	5.50 - 6.001	4.00 - 6.00!	0.00 - 6.00	0.00 - 6.00
Volatiles		:					
CHLOROME I HANE	09/kg	12.00 0	12.00 0	13.00 U	12.00 U	12.00 U	12.90 0
	1 / S			0.00	0.00.21	0 00.21	
CHIODOFTHANE	09/R9	2.00 0	12.00 0	13.00	12.00 0	13.00 0	
METHYLENE CHIODINE	64/67	12.00		200.21	200.5	00.31	
ACETONE CALCALDE	69/kg	25.00 ×		38		7.00.41	
CARBON DISULFIDE	ug/ka	12.00 U	12.00 U	13.00 U	12.00 U	12.00 u	
1,1-DICHLOROETHENE	04/kg	12.00 U	12.00 U	8	_	12.00 U	_
1,1-DICHLOROETHANE	ug/kg	12.00 U	12.00 U	8	_	12.00 U	_
1,2-DICHLOROETHENE (total)	ug/kg	12.00 U	12.00 U	13.00 U	_	12.00 U	_
CHLOROFORM	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	12.00 U	12.00 U
1,2-DICHLOROETHANE	ug/kg	12.00 U	12.00 u	13.00 U	12.00 U	12.00 U	12.00 U
2-BUTANONE	ug/kg	12.00 U	12.00 U	13.00 U	_	12.00 U	12.00 U
1,1,1-TRICHLOROETHANE	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	12.00 U	12.00 U
CARBON TETRACHLORIDE	ug/kg	12.00 U	12.00 U	13.00 U		12.00 U	12.00 U
BROMOD I CHLOROME THANE	ug/kg	12.00 U	12.00 U	13.00 U		12.00 U	12.00 U
1, 2-DICHLOROPROPANE	ug/kg	12.00 U	12.00 U	13.00 U		12.00 U	12.00 U
cis 1,3-DICHLOROPROPENE	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	12.00 U	12.00 U
TRICHLOROETHENE	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	12.00 U	12.00 U
DIBROMOCHLOROME I HANE	ug/kg	12.00 0	12.00 0	13.00 U	12.00 U	12.00 U	12.00 U
DENJENE	09/kg	0.00.5	0.00.21	2.00	0 00.21	12.00 0	2.00
PENZENE trans 1 3.DICHIOROPROPENE	09/Kg	12.00	12.00	2.00.51	12.00 0	12.00	12.00 0
BROMOFORM	uo/ka	12.00	12.00	13.00 11		12.00.51	12.00 1
4-METHYL-2-PENTANONE	ua/ka	12.00 U	12.00 U	13.00 U		8	12.00 U
2-HEXANONE	ua/ka	12.00 U	12.00 U	13.00 U		8	12.00 U
TETRACHLOROETHENE	ua/ka	12.00 U	12.00 U	13.00 U		8	12.00 U
1,1,2,2-TETRACHLOROETHANE	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	12.00 U	12.00 U
TOLUENE	ug/kg	12.00 U	12.00 U	13.00 U		8	12.00 U
CHLOROBENZENE	ug/kg	12.00 U	12.00 U	13.00 U		8	12.00 U
ETHYLBENZENE	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	8	12.00 U
STYRENE	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	8	12.00 U
XYLENES (total)	ug/kg	12.00 U	12.00 U	13.00 U	12.00 U	12.00 U	12.00 U

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

SAMPLE NAME SAMPLE DATE		1611 06/14/95	1P07 06/14/95	1P08 06/14/95	1P12 06/14/95	TP09 06/15/95	7P10 06/15/95
SAMPLE DEPTH		0.00 - 6.00	0.00 - 6.00	0.00 - 6.00	0.00 - 6.00	0.00 - 2.00'	0.00 - 4.00
Volatiles							
CHLOROMETHANE	ug/kg	12.00 U	12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
BRUTUME I HANE	09/Kg	12.00 0	12.00 0	0 00.11	0.00.	10.00	10.00 0
CHICOCETANE	24/82 B 64/	25.00	12.00 0	9.6	8.5	0.00	00.00
METHYLENE CHIORIDE	2 /kg	2002	12.00.1	90.0	36.4		2000
ACETONE	84/80 100/kg	12.00.11	12.00 11.	11:00:11	565	38	
CARBON DISULFIDE	ca/ka		12.00 U	11.00 U	11.00 U	10.00	10.00 n
1.1-DICHLOROETHENE	ua/ka	12.00 U	12.00 U	11,00 U	1 00 11	8	00.01
1,1-DICHLOROETHANE	ug/kg	12.00 U	12.00 0	11.00 U	11.00 U	8	10.00
1,2-DICHLOROETHENE (total)	ug/kg	12.00 U	12.00 U	11.00 U	11.00 U	8	10.00 U
CHLOROFORM	ug/kg	12.00 U	12.00 U	11.00 U	11.00 U	8	10.00 U
1,2-DICHLOROETHANE	ug/kg		12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
2-BUTANONE	ug/kg	12.00 U	12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
1,1,1-TRICHLOROETHANE	ug/kg	12.00 U	12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
CARBON TETRACHLORIDE	ug/kg	_	12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
BROMOD I CHLOROME THANE	ug/kg	_	12.00 U	11.00 u	11.00 U	10.00 U	10.00 U
1, 2-DICHLOROPROPANE	ug/kg	_	12.00 u	11.00 U	11.00 U	10.00 U	10.00 U
cis 1,3-DICHLOROPROPENE	ug/kg	_	12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
TRICHLOROETHENE	ug/kg	_	12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
DIBROMOCHLOROMETHANE	ug/kg	_	12.00 U	11.00 U	11.00 U	10.00 u	10.00 U
1,1,2-TRICHLOROETHANE	ug/kg		12.00 U	11.00 U	11.00 U	10.00	10.00
BENZENE	ug/kg		12.00 U	11.00 U	3.00	10.00	10.00
DECEMBER 1, 3-DICALOROPROPENE	04/60 04/00	12.00 0	12.00 0	999	99.5	0.00.0	0.00
	B 1/60		0.00.21	300	0.00.	0.00	0.00
2-HEVANONE	09/kg	12.00 0	12.00 0		9.1.	10.00 0	0.00
TITES CUI DOOLTURAL	ug/kg		0 00.21	0 00.11	3.5	10.00	0.00
I E I KACHLOKUE I NENE	09/kg		0 00.21	0.11	0 00.11	0.00	0.00
1,1,2,2-TETRACHLOROETHANE	ug/kg	12.00 U	12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
TOLUENE	ug/kg		12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
CHLOROBENZENE	ug/kg		12.00 U	11.00 U	11.00 ∪	10.00 U	10.00 U
ETHYLBENZENE	ug/kg		12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
STYRENE	ug/kg	12.00 U	12.00 U	11.00 U	11.00 U	10.00 U	10.00 U
XYLENES (total)	ug/kg	12.00 U	12.00 U	11.00 u	11.00 U	10.00 U	10.00 U

SAMPLE NAME		TPEXP	
SAMPLE DATE		06/14/95	
SAMPLE DEPTH		0.00 - 6.00	
Volatiles			
CHLOROMETHANE	ug/kg	0.00 0	
VINY CHIODINE	19/kg		
CHLOROETHANE	, 64/kg	10:00 n	
METHYLENE CHLORIDE	ug/kg	23.00 U	
ACETONE	ug/kg	10.00 UJ	
CARBON DISULFIDE	ug/kg	10.00 U	
1,1-DICHLOROETHENE	ug/kg		
1,1-DICHLOROETHANE	ug/kg	10.00 U	
1,2-DICHLOROETHENE (total)	ug/kg		
CHLOROFORM	ug/kg		
1,2-DICHLOROETHANE	ug/kg	_	
2-BUTANONE	ug/kg		
1,1,1-TRICHLOROETHANE	ug/kg	10.00 U	
CARBON TETRACHLORIDE	ug/kg		
BROMOD I CHLOROMETHANE	ug/kg	_	
1, 2-DICHLOROPROPANE	ug/kg	10.00 u	
cis 1,3-DICHLOROPROPENE	ug/kg	10.00 U	
TRICHLOROETHENE	ug/kg	10.00 U	
DIBROMOCHLOROMETHANE	ug/kg	10.00	
1,1,2-TRICHLOROETHANE	ug/kg	0.00.01	
trans 1 3-DICHIODODDODENE	09/kg		
BROMOFORM	ua/ka	10.00 U	
4-METHYL-2-PENTANONE	ua/ka	10.00	
2-HEXANONE	ug/kg		
TETRACHI OROFTHENE	ua/ka		
1.1.2.2-TETRACHLOROETHANE	Ua/ka		
TOLUENE	ug/kg	10.00 U	
CHLOROBENZENE	ug/kg	10.00 U	
ETHYLBENZENE	ug/kg	10.00 U	
	ug/kg	10.00 U	
XYLENES (total)	ug/kg	10.00 U	

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

BENZENE UG/kg DL BENZENE UG/kg								
ug/kg 200.00 J 390.00 U 420.00 U ug/kg 410.00 U 390.00 U 420.00 U <td< th=""><th></th><th></th><th>1701 06/12/95</th><th>1P02 06/12/95</th><th>1P03 06/13/95</th><th>TP04 06/13/95</th><th>TP05 06/13/95</th><th>1PUS 06/14/95</th></td<>			1701 06/12/95	1P02 06/12/95	1P03 06/13/95	TP04 06/13/95	TP05 06/13/95	1PUS 06/14/95
ug/kg 410.00 1 380.00 1 420.00 1 380.00 <t< th=""><th>SAMPLE DEPTH</th><th></th><th>0.00 - 4.00</th><th>0.00 - 5.00</th><th>5.50 - 6.00</th><th>4.00 - 6.00</th><th>0.00 - 6.001</th><th>0.00 - 6.00</th></t<>	SAMPLE DEPTH		0.00 - 4.00	0.00 - 5.00	5.50 - 6.00	4.00 - 6.00	0.00 - 6.001	0.00 - 6.00
ug/kg 200.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J ug/kg 410.00 J 380.00 J 420.00 J 380.00 J	Semivolatiles - Page 1							
1976 1970 <td< th=""><th>PHENOL</th><th>ug/kg</th><th>200.00</th><th>390.00 u</th><th>420.00 U</th><th>380.00 U</th><th>410.00 U</th><th>0.004</th></td<>	PHENOL	ug/kg	200.00	390.00 u	420.00 U	380.00 U	410.00 U	0.004
100,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 10,000 390,000 1,20,000 380,000 <td< th=""><th>BISC2-CHLOROETHTL)ETHER</th><th>8 /8°</th><th>0.00.014</th><th>380.00</th><th>420.00 0</th><th>380.00 0</th><th>410.00 0</th><th>,00.00 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;</th></td<>	BISC2-CHLOROETHTL)ETHER	8 /8°	0.00.014	380.00	420.00 0	380.00 0	410.00 0	,00.00 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u ug/kg 410.00 u 390.00 u 420.00 u 380.00 u	2-CHLOROPHENOL	19/kg		390.00	420.00 0	380.00 0	410.00 0	00.007
UNIVERSITY OF THE PROPERTY OF	1 4-DICHIODORENZENE	2/0	_	300.00	00.027	380.00	210.00	00.007
ug/kg 410.00 U 390.00 U 420.00 U 380.00 ug/kg </th <th>1.2-DICHLOROBENZENE</th> <th>, oo</th> <th>_</th> <th>390.00 n</th> <th>420.00 U</th> <th>380.00 U</th> <th>410.00 U</th> <th>400.00 U</th>	1.2-DICHLOROBENZENE	, oo	_	390.00 n	420.00 U	380.00 U	410.00 U	400.00 U
ug/kg 410.00 U 390.00 U 420.00 U 380.00 ug/kg 1,000.00 U 390.00 U 420.00 U 380.00 ug/kg	2-METHYLPHENOL	09/kg	_	390.00 U	420.00 U	380.00 U	410.00 U	700.00 n
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U	BIS(2-CHLOROISOPROPYL)ETHER	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	00.004
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U	4-METHYLPHENOL	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
USYNG 410.00 U 3590.00 U 420.00 U 380.00 U 420.00 U 380.00 U 420.00 U 420.00 U 420.0	N-NITROSO-DI-N-PROPYLAMINE	ug/kg	410.00 U	390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
USYNG 410.00 U 350.00 U 420.00 U 380.00 U 420.00 U 420.00 U 380.00 U 420.00 U 420.00 U 380.00 U 420.00	HEXACHLOROETHANE	ug/kg	_	390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
USYKS 410.00 U 350.00 U 420.00 U 380.00 U 420.00	NITROBENZENE	ug/kg	_	390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
THANE UG/Kg 410.00 U 350.00 U 420.00 U 380.00 U 420.00 U	ISOPHORONE	ug/kg	_	390.00 U	420.00 U	380.00 U	410.00 U	700.00 n
THANE UG/Kg 410.00 U 350.00 U 420.00 U 380.00 U 420.00 U	2-NITROPHENOL	ug/kg		390.00	420.00 0	380.00 0	410.00 0	400.00 n
Figure 19/kg 410.00 1 390.00 1 420.00 1 380.00 1 420.00 1 420.00 1 380.00 1 420.00 1	2,4-DIMETHYLPHENOL	ug/kg		390.00	420.00 0	380.00 0	410.00 0	400.00
E ug/kg 410.00 U 390.00 U 420.00 U 380.00 1	BIS(Z-CHLOROE I HOXT) ME I HANE	09/kg		390.00	420.00 0	380.00	0 00.014	0 00.00*
USYRS 4.5.00 J 350.00 J 420.00 J 380.00 J 420.00 J 420.00 J 380.00 J 420.00 J 420.00 J 380.00 J 420.00	2,4-DICHLOROPHENOL		410.00 0	380.00	730.00 0	380.00	00.00	0.007
US/Kg 410.00 U 390.00 U 420.00 U 380.00 U 420.00 U 420.00 U 380.00 U 420.00 U 420.00 U 380.00 U 420.00	NAPHTHAL FINE	2 / S	73.00	300.06	420.00	380.00	20.00	00.007
UG/kg 410.00 U 390.00 U 420.00 UJ 380.00 U 420.00 UJ 380.00 UJ 390.00 U 420.00 UJ 380.00 UJ 420.00 UJ 420.	4-CHLOROANILINE	uo/ka		390.00	420.00 U	380.00	410.00 U	400.00 U
OL	HEXACHLOROBUTAD I ENE	ug/kg		390.00 U	420.00 UJ	380.00 UJ	410.00 U	400.00 U
US/kg 410.00 U 399.00 U 420.00 U 380.00 U 380.00 U 380.00 U 380.00 U 380.00 U 420.00 U 380.00 U 380.00 U 420.00 U 380.00 U 380.00 U 420.00 U 380.00	4-CHLORO-3-METHYLPHENOL	ug/kg	_	390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
IENE	2-METHYLNAPHTHALENE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 980.00 U 990.00 U 960.00 U 990.00 U 990.00 U 990.00 U 990.00 U 420.00 U 980.00 U 980.00 U 990.00 U 420.00 U 980.00 U 420.00 U 980.00 U 420.00 U 980.00 U 990.00 U 420.00 U 980.00 U 990.00	HEXACHLOROCYCLOPENTADIENE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	700.00 n
ug/kg 1,000.00 U 590.00 U 1,000.00 U 560.00 U 380.00 U 380.00 U 420.00 U 380.00 U 380.00 U 420.00 U 380.00 U 380.00 U 420.00 U 380.00 U 38	2,4,6-TRICHLOROPHENOL	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U ug/kg 1,000.00 U 990.00 U 1,000.00 UJ 960.00 UJ 960.00 UJ 960.00 UJ 960.00 UJ 960.00 UJ 420.00 UJ 960.00 UJ 420.00 UJ 380.00 UJ/kg 410.00 UJ 390.00 UJ/kg 1,000.00 UJ 390.00 UJ/kg 1,000.00 U	2,4,5-TRICHLOROPHENOL	ug/kg	_	00.009	1,000.00 U	00.099	1,000.00 U	00.0%
ug/kg 1,000.00 U 990.00 U 1,000.00 UJ 960.00 UJ ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 380.00 U 380	2-CHLORONAPHTHALENE	ug/kg	410.00 U	390.00 U	420.00 U	380.00 U	410.00 U	400.00 U
ug/kg 410.00 U 390.00 U 420.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 420.00 U ug/kg 1,000.00 U 390.00 U 1,000.00 U 300.00 U 1,000.00 U 300.00 U 1,000.00 U	2-NITROANILINE	ug/kg		00.066 ∩	1,000.00		1,000.00 U	00.099
ug/kg 410.00 U 390.00 U 420.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 420.00 U 1,000.00 U 390.00 U 1,000.00 U	DIMETHYLPHTHALALTE	ug/kg	410.00 U	390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
ug/kg 1,000.00 390.00 U 420.00 U ug/kg 1,000.00 U 990.00 U 1,000.00 U 200.00 U 1,000.00 U	ACENAPHTHYLENE	ug/kg	410.00 U	390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
NE ug/kg 1,000.00 U 990.00 U 1,000.00 U	2,6-DINITROTOLUENE	ug/kg	410.00 U	390.00 U	420.00 U	380.00 U	410.00 U	700.00 U
11 00 067	3-NITROANILINE	ug/kg	1,000.00 U	00.00 n	1,000.00 U	960.00 U	1,000.00	00.000
UB/Kg 450.00 0	ACENAPHTHENE	ug/kg	410.00 U	390.00 U	420.00 U	380.00 U	410.00 U	400.00

03/05/1996 2:57 PM Page 2

SAMPLE NAME SAMPLE DATE		1P11 06/14/95	TP07 06/14/95	1P08 06/14/95	1P12 06/14/95	1P09 06/15/95	1P10 06/15/95
SAMPLE DEPTH		Dup of TP06 0.00 - 6.001	0.00 - 0.00	0.00 - 6.00	Dup of TP08 0.00 - 6.00	0.00 - 2.00	0.00 - 4.00
Semivolatiles - Page 1					: 00	•	
PHENOL	09/kg	390.00		_	370.00 U	×	340.00
BIS(2-CHLOROETHYL)ETHER	09/kg	390.00 U			370.00 U	~	340.00 U
2-CHLOROPHENOL	ug/kg	390.00 U			370.00 U	~	340.00 U
1.3-DICHLOROBENZENE	09/kg	390.00 U		_	370.00 U	~	340.00 U
1.4-DICHLOROBENZENE	og/ka	390.00 U			370.00 U	~	340.00 U
1.2-DICHLOROBENZENE	04/kg			380.00	370.00 U	: 00	340.00 U
2-METHYLPHENOL	y ko				370.00 U	œ	340.00 U
BISC2-CHLOROISOPROPYL JETHER	ug/kg	390.00 U	700.00°		370.00 U	· œ	340.00 U
4-METHYLPHENOL	ug/kg	390.00 U			370.00 U	~	340.00 U
N-NITROSO-DI-N-PROPYLAMINE	ug/kg			_	370.00 U	~	340.00 U
HEXACHLOROETHANE	ug/kg			380.00 UJ	370.00 U	~	340.00 U
NITROBENZENE	ug/kg	390.00 U		_	370.00 U	~	340.00 U
ISOPHORONE	og/kg	390.00 U		_	370.00 U	~	340.00 U
2-NITROPHENOL	ug/kg	390.00 U		_	370.00 U	~	340.00 U
2,4-DIMETHYLPHENOL	ug/kg	390.00 U		380.00 UJ	370.00 U	~	340.00 U
BIS(2-CHLOROETHOXY)METHANE	09/kg	390.00 ⊔	700.00 n	380.00 UJ	370.00 U	œ	340.00 U
2,4-DICHLOROPHENOL	09/kg	390.00 U		380.00 UJ	370.00 U	œ	340.00 U
1,2,4-TRICHLOROBENZENE	ug/kg				370.00 U	œ	340.00 U
NAPHTHALENE	ug/kg	390.00 U			370.00 U	œ	340.00 U
4-CHLOROANILINE	ug/kg	390.00 U	rn 00.007	_	370.00 U	œ	340.00 U
HEXACHLOROBUTAD IENE	ug/kg	390.00 U	700.00 n	380.00 UJ	370.00 U	œ	340.00 U
4-CHLORO-3-METHYLPHENOL	ug/kg	390.00 U	700.00 n	_	370.00 U	œ	340.00 U
2-METHYLNAPHTHALENE	ug/kg	390.00 U		_	370.00 U	œ	340.00 U
HEXACHLOROCYCLOPENTADIENE	ug/kg	390.00 U		_	370.00 U	œ	340.00 U
2,4,6-TRICHLOROPHENOL	ug/kg	390.00 U		380.00 UJ	370.00 U	œ	340.00 U
2,4,5-TRICHLOROPHENOL	ug/kg	990.00 U		950.00 UJ	930.00 U	œ	860.00 U
2-CHLORONAPHTHALENE	ug/kg	390.00 U		380.00 UJ	370.00 U	œ	340.00 U
2-NITROANILINE	ug/kg	00.066	1,000.00 UJ	950.00 UJ	930.00 U	œ	860.00 U
DIMETHYLPHTHALALTE	ug/kg	390.00 U		380.00 UJ	370.00 U	œ	340.00 U
ACENAPHTHYLENE	ug/kg	390.00 U		380.00 UJ	370.00 U	œ	340.00 U
2,6-DINITROTOLUENE	ug/kg	390.00 U	700.00 UJ	380.00 UJ	370.00 U	œ	340.00 U
3-NITROANILINE	ug/kg	990.00 U		_	930.00 U	œ	860.00 U
ACENAPHTHENE	ug/kg	390.00 u		_	370.00 U	~	340.00 U

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

## 0.00 - 6 es - Page 1 oethyl) Ether	CANDI E NAME		TOEVD	
THER US/KB U	SAMPLE DATE		06/14/95	
THER UG/Kg 340.00	SAMPLE DEPTH		0.00 - 6.00	
THER US/Kg 340.00	۱.			
NE US/KS 340.00 18/KS 340.00	PHENOL	ug/kg		
ANINE US/Kg 340.00 LUS/Kg 340.00	BIS(2-CHLOROETHYL)ETHER	ug/kg		
JETHER US/Kg 340.00 JETHER US/Kg 340.00 MAINE US/KG 340.00 MAIN	2-CHLOROPHENOL	ug/kg		
JETHER US/Kg 340.00 JETHER US/Kg 340.00 JETHER US/Kg 340.00	1,3-DICHLOROBENZENE	ug/kg		
JETHER UG/Kg 340.00 JETHER UG/Kg 340.00 ANINE UG/Kg 340.00	1,4-DICHLOROBENZENE	ug/kg		
JETHER US/Kg 340.00 AMINE US/Kg 340.00	1,2-DICHLOROBENZENE	ug/kg		
JETHER UG/Kg 340.00 ANINE UG/Kg 340.00 UG/Kg 850.00 UG/Kg 850.00 UG/Kg 850.00 UG/Kg 850.00 UG/Kg 850.00 UG/Kg 860.00	2-METHYLPHENOL	ug/kg		
AMINE UG/Kg 340.00 UG/Kg 850.00 UG/Kg 850.00 UG/Kg 850.00 UG/Kg 850.00 UG/Kg 850.00 UG/Kg 850.00	BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	340.00 UJ	
ANINE U9/kg 340.00 U9/kg 850.00	4-METHYLPHENOL	ug/kg	340.00 U	
LUSYKG 340.00	N-NITROSO-DI-N-PROPYLANINE	09/kg	340.00 U	
140 16 16 16 16 16 16 16 16 16 16 16 16 16	HEXACHLOROETHANE	ug/kg	340.00 U	
US/KG 340.00 US/KG 340.00 US/KG 340.00 E US/KG 340.00	NITROBENZENE	ug/kg		
THANE US/Kg 340.00 E US/Kg 340.00 E US/Kg 340.00 US/Kg 850.00	ISOPHORONE	ug/kg	340.00 U	
THANE UG/Kg 340.00 E UG/Kg 340.00 E UG/Kg 340.00	2-NITROPHENOL	ug/kg	340.00 U	
ITHANE Ug/kg 340.00 E Ug/kg 340.00	2,4-DIMETHYLPHENOL	ug/kg	340.00 ∙∪	
E ug/kg 340.00	BIS(2-CHLOROETHOXY)METHANE	ug/kg	340.00 U	
E US/Kg 340.00 US/Kg 350.00 US/Kg 340.00 US/Kg 850.00 US/Kg 850.00 US/Kg 850.00 US/Kg 850.00	2,4-DICHLOROPHENOL	ug/kg		
19/Kg 350.00 19/Kg 340.00 16 19/Kg 340.00 16 19/Kg 340.00 19/Kg 340.00 19/Kg 850.00	1,2,4-TRICHLOROBENZENE	ug/kg		
00. 09/kg 340.00 00.00 09/kg 340.00 00.00 09/kg 340.00 09/kg 850.00 09/kg 850.00 09/kg 860.00 09/kg 860.00	NAPHTHALENE	ug/kg	350.00	
00. 09/kg 340.00 09/kg 850.00 09/kg 850.00 09/kg 850.00 09/kg 860.00 09/kg 860.00	4-CHLOROANILINE	ug/kg		
00. ug/kg 340.00 1ENE ug/kg 340.00 ug/kg 340.00 ug/kg 340.00 ug/kg 850.00 ug/kg 340.00 ug/kg 340.00 ug/kg 340.00 ug/kg 340.00 ug/kg 340.00	HEXACHLOROBUTAD I ENE	ug/kg		
1ENE UG/Kg 340.00	4-CHLORO-S-METHYLPHENOL	ug/kg		
16NE Ug/kg 340.00 Ug/kg 340.00 Ug/kg 850.00 Ug/kg 850.00 Ug/kg 340.00 Ug/kg 340.00 Ug/kg 340.00 Ug/kg 850.00	Z-MEINTLNAPHINALENE	09/Kg		
ug/kg 340.00 ug/kg 850.00 ug/kg 340.00 ug/kg 340.00 ug/kg 340.00 ug/kg 340.00 ug/kg 340.00 ug/kg 850.00	HEXACHLOROCYCLOPENTADIENE	ug/kg		
ug/kg 850.00 ug/kg 340.00 ug/kg 850.00 ug/kg 340.00 ug/kg 340.00 ug/kg 340.00	2,4,6-TRICHLOROPHENOL	ug/kg		
ug/kg 340.00 ug/kg 850.00 ug/kg 340.00 ug/kg 340.00 ug/kg 340.00 ug/kg 850.00	2,4,5-TRICHLOROPHENOL	ug/kg		
ALTE UG/kg 850.00 UG/kg 340.00 UG/kg 340.00 UG/kg 340.00 UG/kg 850.00 UG/kg 680.00	2-CHLORONAPHTHALENE	ug/kg		
ALTE ug/kg 340.00 ug/kg 340.00 ug/kg 340.00 ug/kg 850.00 ug/kg 680.00	2-NITROANILINE	ug/kg	850.00 U	
ug/kg 340.00 ug/kg 340.00 ug/kg 850.00 ug/kg 680.00	DIMETHYLPHTHALALTE	ug/kg		
ug/kg 340.00 ug/kg 850.00 ug/kg 680.00	ACENAPHTHYLENE	ug/kg		
ug/kg ug/kg	2,6-DINITROTOLUENE	ug/kg		
U9/kg	3-NITROANILINE	ug/kg	850.00 U	
	ACENAPHTHENE	ug/kg	680.00 J	

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

2	SAMPLE NAME		1001	1P02	1903	1P04 20, 11, 20	1005	1006	
ug/kg 1,000.00 U 990.00 U 1,000.00 U 900.00 U 1,000.00 U	TEXT 001		06/15/73	CA /31 /00	08/13/33	06/13/73	06/13/93	06/14/93	
1,000,001 1,000,001 880,000 1,000,000 1,000,001 1,000,000 1,000,000 1,000,000 1,000,001 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000	SAMPLE DEPTH			0.00 - 5.00	5.50 - 6.00	4.00 - 6.001	0.00 - 6.00	0.00 - 6.00	
ug/kg 1,000.000 U 990.00 U 1,000.00 U <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ι.</th>									Ι.
Weight 1,000.00 990.00 4,20.00 1,000.00 Weight 4,10.00 1,000.00 1,000.00 1,000.00 1,000.00 Weight 4,10.00 1,000.00 1,000.00 1,000.00 1,000.00 1,000.00 Weight 4,10.00 1,00	•	ua/ka	1.000.00 U	0.00 n	1,000,00 U	n 00'096	1,000,00	rn 00'066	
100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 100000 390.00 420.00 380.00 410.00 10000 390.00 420.00 380.00 410.00 1000 390.00 420.00 380.00 </th <th>4-NITROPHENOL</th> <th>ug/kg</th> <th>1,000.00 u</th> <th>0.000</th> <th>~</th> <th>~</th> <th>1 000 00 1</th> <th>00.006</th> <th></th>	4-NITROPHENOL	ug/kg	1,000.00 u	0.000	~	~	1 000 00 1	00.006	
ug/kg 410.00 U 399.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 400.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 400.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.	DIBENZOFURAN	ug/kg	410.00 U	390.00 U	420.00 U	380.00 U	410.00 U	700 00 n	
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 400.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 400.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 420.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 420.00 U 420.00 U 420.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.	2.4-DINITROTOLUENE	ua/ka		390.00 U	420.00 U	380.00 U	410.00 U	n 00 007	
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 1,000.00 U 390.00 U 1,000.00 U 380.00 U 410.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,00.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,00.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,00.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,00.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U	DIETHYLPHTHALATE	ua/ka		390.00 U	420.00 U	380.00 0	410.00 U	00.007	
ug/kg 410.00 u 390.00 u 1,200.00 u 380.00 u 1,000.00 u ug/kg 1,000.00 u 990.00 u 1,000.00 u 990.00 u 1,000.00	4-CHLOROPHENYL-PHENYLETHER	ug/ka		390.00 U	420.00 U	380.00 U	410.00 U	700 n	
ug/kg 1,000.00 u 990.00 u 1,000.00 u 960.00 u 1,000.00 u	FLUORENE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	700.00 n	
ug/kg 1,000.00 U 590.00 U 1,000.00 U 560.00 U 1,000.00 U ug/kg 4,10.00 U 390.00 U 420.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 420.00 U 420.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U 380.00 U 4,10.00 U ug/kg 4,10.00 U 390.00 U 4,20.00 U	4-NITROANILINE	ug/kg		00.006	1,000.00 U	960.00 U	1,000,00	00°066	
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 400.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.	4,6-DINITRO-2-METHYLPHENOL	ug/kg		00.006	1,000.00	00.096	1,000.00 U	00.006	
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 1,000.00 U 390.00 U 420.00 U 400.00 U 410.00 U ug/kg 47.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 460.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410	N-NITROSODIPHENYLAMINE	ug/kg	410.00 U	390.00 U	420.00 U	380.00 U	410.00 U	400.00 U	
ug/kg 410.00 U 390.00 U 1,000.00 U 280.00 U 1,000.00 U ug/kg 1,000.00 U 390.00 U 1,000.00 U 410.00 U 410.00 U ug/kg 47.00 J 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 400.00 J 380.00 U 410.00 U 410.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 410.00 U 420.00 U 380.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U <	4-BROMOPHENYL-PHENYLETHER	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	400.00 U	
ug/kg 1,000.00 U 990.00 U 1,000.00 U 1,000.00 U ug/kg 240.00 J 380.00 U 410.00 U 410.00 U ug/kg 410.00 U 380.00 U 420.00 U 410.00 U ug/kg 410.00 U 380.00 U 420.00 U 410.00 U ug/kg 410.00 U 380.00 U 420.00 U 410.00 U ug/kg 410.00 U 380.00 U 410.00 U 410.00 U ug/kg 410.00 U 380.00 U 410.00 U 410.00 U ug/kg 410.00 U 380.00 U 410.00 U 410.00 U ug/kg 410.00 U 380.00 U 410.00 U 410.00 U ug/kg 410.00 U 380.00 U 410.00 U 410.00 U ug/kg 410.00 U 380.00 U 420.00 U 420.00 U 420.00 U ug/kg 410.00 U 380.00 U 420.00 U 420.00 U 420.00 U 420.00 U ug/kg 410.00 U 380.00 U 420.00 U 420.00 U 420.00 U 420.00 U 420.00 U	HEXACHLOROBENZENE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	400.00 U	
ug/kg 240.00 J 390.00 U 470.00 J 410.00 U 410.00 U <t< th=""><th>PENTACHLOROPHENOL</th><th>ug/kg</th><th></th><th>0.00°0</th><th>1,000.00 U</th><th>960.00 U</th><th>1,000,00 U</th><th>00.000</th><th></th></t<>	PENTACHLOROPHENOL	ug/kg		0.00°0	1,000.00 U	960.00 U	1,000,00 U	00.000	
ug/kg 47.00 J 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 J 380.00 U 410.00 U ug/kg 460.00 J 390.00 U 420.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.0	PHENANTHRENE	ug/kg		390.00 U	57.00 J	380.00 U	410.00 U	400.00 U	
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 460.00 390.00 U 160.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 650.00 J 390.00 U 120.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 120.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00	ANTHRACENE	ug/kg		390.00 ∪	420.00 U	380.00 u	410.00 U	700.00 U	
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 460.00 390.00 U 150.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 650.00 U 390.00 U 120.00 U 380.00 U 410.00 U ug/kg 650.00 U 390.00 U 120.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 780.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 40.00	CARBAZOLE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	700.00 U	
ug/kg 460.00 390.00 U 150.00 J 380.00 U 410.00 U 410.00 U 420.00 J 380.00 U 410.00 U 420.00 J 380.00 U 410.00 U 420.00 U 420.00 U 420.00 U 420.00 U 420.00 U 410.00 U 410.00 U 420.00 U	DI-N-BUTYLPHTHALATE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	400.00 U	
ug/kg 340.00 J 390.00 U 160.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 400.00 J 390.00 U 87.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.00 U ug/kg 63.00 J 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 630.00 J 390.00 U 120.00 J 380.00 U 410.00 U ug/kg 630.00 J 390.00 U 78.00 J 380.00 U 410.00 U ug/kg 120.00 J 390.00 U 78.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 410.00 U	FLUORANTHENE	ug/kg	00.097	390.00 U	150.00 J	380.00 U	410.00 U	700.00 U	
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U 420.00 U 420.00 U 380.00 U 410.00 U 420.00 U 420.00 U 380.00 U 410.00 U 420.00 U 420.00 U 380.00 U 410.00 U 410.00 U 420.00 U 380.00 U 410.00 U 410.00 U 420.00 U 420.00 U 420.00 U 420.00 U 410.00 U 410.00 U 410.00 U 420.00 U 420.00 U 420.00 U 420.00 U 410.00 U 410.00 U 420.00	PYRENE	ug/kg	340.00 J	390.00 U	160.00 ا	380.00 u	410.00 U	700.00 n	
ug/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 400.00 J 390.00 U 91.00 J 380.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 U 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 410.00 U 410.00 U ug/kg 650.00 390.00 U 150.00 J 380.00 U 410.00 U ug/kg 630.00 390.00 U 120.00 J 380.00 U 410.00 U ug/kg 120.00 J 390.00 U 780.00 J 380.00 U 410.00 U ug/kg 410.00 J 390.00 U 420.00 J 380.00 U 410.00 U ug/kg 410.00 J 390.00 U 420.00 J 380.00 U 410.00 U ug/kg 410.00 U 390.00 U 420.00 U 420.00 U 420.00 U	BUTYLBENZYLPHTHALATE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	700.00 U	
ug/kg 290.00 J 390.00 U 91.00 J 380.00 U 410.00 U ug/kg 400.00 J 390.00 U 420.00 J 380.00 U 410.00 U 420.00 U 420.00 U 380.00 U 410.00 U 420.00 U 380.00 U 410.00 U 420.00 U 380.00 U 410.00 U 410.00 U 150.00 J 380.00 U 410.00 U 410.00 U 120.00 J 380.00 UJ 410.00 U 410.00 U 420.00 UJ 410.00 UJ 410	3,3'-DICHLOROBENZIDINE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 U	700.00 U	
ug/kg 400.00 J 390.00 U 87.00 J 380.00 U 410.00 U 410.00 U 420.00 U 380.00 U 410.00 U 410.00 U 420.00 U 380.00 U 410.00 U 410.00 U 420.00 U 420.00 U 420.00 U 420.00 U 410.00 U 420.00	BENZO(A)ANTHRACENE	ug/kg		390.00 U	91.00 ب	380.00 U	410.00 U	700.00 U	
ug/kg 63.00 J 390.00 U 420.00 U 380.00 U 410.00 U 410.00 U 420.00 U 380.00 U 410.00 U 420.00 U 380.00 U 410.00 U 410.00 U 420.00 U 380.00 U 410.00 UJ 410.00 UJ 420.00 UJ 420.00 UJ 420.00 UJ 410.00	CHRYSENE	ug/kg		390.00 U	87.00 J	380.00 U	410.00 U	700.00 U	
E UG/kg 410.00 U 390.00 U 420.00 U 380.00 U 410.00 UJ E UG/kg 650.00 390.00 U 150.00 J 380.00 U 410.00 UJ E UG/kg 290.00 J 390.00 U 78.00 J 380.00 UJ 410.00 U ENE UG/kg 120.00 J 390.00 U 57.00 J 380.00 UJ 410.00 U ENE UG/kg 410.00 U 390.00 U 390.00 UJ 410.00 UJ ENE UG/kg 410.00 U 390.00 UJ 410.00 UJ ENE UG/kg 410.00 UJ 390.00 UJ 410.00 UJ	BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	63.00 J	390.00 U	420.00 U	380.00 U	410.00 U	700.00 U	
ug/kg 650.00 390.00 U 150.00 J 380.00 U 410.00 U ug/kg 630.00 J 390.00 U 120.00 J 380.00 UJ 410.00 U 120.00 J 380.00 UJ 410.00 U 78.00 J 380.00 UJ 410.00 U 120.00 J 380.00 UJ 410.00 U 390.00 UJ 420.00 UJ 380.00 UJ 410.00 UJ 420.00 UJ 380.00 UJ 410.00 UJ 380.00 UJ 410.00 UJ 420.00 UJ 380.00 UJ 410.00 UJ 420.00 UJ 42	DI-N-OCTYLPHTHALATE	ug/kg		390.00 U	420.00 U	380.00 U	410.00 UJ	8	
ug/kg 630.00 390.00 U 120.00 J 380.00 UJ 410.00 U ug/kg 290.00 J 380.00 U 78.00 J 380.00 U 410.00 U 78.00 J 380.00 U 410.00 U 57.00 J 380.00 UJ 410.00 U 390.00 U 390.00 UJ 380.00 UJ 410.00 U 100.00 UJ 380.00 UJ 410.00 U	BENZO(B) FLUORANTHENE	ug/kg	650.00	390.00 U	150.00 J	380.00 U	410.00 U	400.00 U	
ug/kg 290.00 J 390.00 U 78.00 J 380.00 U 410.00 U 109/kg 120.00 J 380.00 U 57.00 J 380.00 UJ 410.00 U 109/kg 410.00 U 390.00 UJ 580.00 UJ 580.00 UJ 410.00 U 109/kg 140.00 U 230.00 UJ 380.00 UJ 410.00 U 109/kg 140.00 U 23.00 UJ 410.00 U	BENZO(K)FLUORANTHENE	ug/kg	630.00	390.00 U	120.00 J	380.00 UJ	410.00 U	8	
ug/kg 120.00 J 390.00 U 57.00 J 380.00 UJ 410.00 U ug/kg 410.00 U 390.00 UJ 420.00 UJ 380.00 UJ 410.00 U ug/kg 140.00 U 390.00 UJ 43.00 UJ 43.00 UJ 440.00 U	BENZO(A)PYRENE	ug/kg	290.00 J	390.00 U	Z8.00 J	380.00 U	410.00 U	400.00 U	
ug/kg 410,00 U 390,00 U 420,00 UJ 380,00 UJ 410,00 U	INDENO(1,2,3-CD)PYRENE	ug/kg	120.00 J	390.00 U	57.00 J	_	410.00 U	700.00 U	
1, 00 01.1 1, 00 05. L. 00 54. L. 00 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	DIBENZO(A, H)ANTHRACENE	ug/kg	410.00 U	390.00 U	420.00 UJ	_	410.00 U	700.00 U	
	BENZO(G, H, I)PERYLENE	ug/kg	140.00 J	390.00 U	43.00 J	_	410.00 U	400.00 U	

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

SAMPLE NATE		1911 06/14/95	1P07 06/14/95	1P08 06/14/95	TP12 06/14/95	1P09 06/15/95	TP10 06/15/95
TEXT 001		Dup of TP06			Dup of TP08		
SAMPLE DEPTH		0.00 - 0.00	0.00 - 6.00	0.00 - 6.00	0.00 - 6.00	0.00 - 2.00	0.00 - 4.00
Semivolatiles - Page 2							
2,4-DINITROPHENOL	og/ka	50°00'0	1,000,00 UJ		930.00 UJ	a	
4-NITROPHENOL	og/ka	_			930.00 U	: a	
DIBENZOFURAN	ca/ka	390.00 U			370.00 U	: a	
2,4-DINITROTOLUENE	ca/ka	390.00 U	8		370.00 U	c ox	
DIETHYLPHTHALATE	ug/ka	390.00 U	8		370-00 U	: ax	00.075
4-CHLOROPHENYL-PHENYLETHER	ca/ka	390.00 U	8		370.00 U	cox	
FLUORENE	ca/ka	390.00 U	8		370.00 U	: œ	00 075
4-NITROANILINE	ug/kg	990.00 U	8		930.00 U	: 04	860.00 U
4,6-DINITRO-2-METHYLPHENOL	ug/ka	00.0%	8		030.00	: ca	860.00 11.1
N-NITROSODIPHENYLAMINE	og/ka	390.00 0	8		370.00 U	ć Cz	1 00 075
4 - BROMOPHENYL - PHENYLETHER	ug/ka	390.00	8		370.00	۵ ۵	1 00 072
HEXACHLOROBENZENE	ua/ka	390.00	8		11 00 021	۵ ۵	1 00 072
PENTACHLOROPHENOL	ug/kg	0.000	1,000,00	950.00 UJ	930.00 U	: 04	860.00 U
PHENANTHRENE	ug/kg	390.00 U	8		370.00 U	100.001	340.00 u
ANTHRACENE	ug/kg	390.00 U	8		370.00 U	~	340.00 U
CARBAZOLE	ug/kg	390.00 U	8		370.00 U	: 04	340.00 U
DI-N-BUTYLPHTHALATE	ug/kg	390.00 U	8		370.00 U	· œ	340.00 U
FLUORANTHENE	ug/kg	390.00 U	8		72.00 1	200.00 J	340.00 U
PYRENE	ug/kg	390.00 U	8		48.00 J	220.00 J	340.00 U
BUTYLBENZYLPHTHALATE	ug/kg	390.00 U	8		370.00 U	~	340.00 U
3,3'-DICHLOROBENZIDINE	ug/kg	390.00 U	8		370.00 U	~	340.00 U
BENZO(A)ANTHRACENE	ug/kg	390.00 U	8		41.00 J	130.00 J	340.00 U
CHRYSENE	ug/kg	390.00 U	8		48.00 J	200.00 J	340.00 U
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	390.00 U	8		370.00 U	59.00 J	340.00 U
DI-N-OCTYLPHTHALATE	ug/kg	390.00 UJ	8		370.00 UJ	~	340.00 U
BENZO(B)FLUORANTHENE	ug/kg	390.00 U	8		80.00 xJ	220.00 J	340.00 U
BENZO(K)FLUORANTHENE	ug/kg	390.00 U	8		74.00 XJ	75.00 J	340.00 U
BENZO(A)PYRENE	ug/kg	390.00 U	8		38.00 J	180.00	340.00 U
INDENO(1,2,3-CD)PYRENE	ug/kg	390.00 U	8		19.00 J	57.00 J	340.00 U
DIBENZO(A, H)ANTHRACENE	ug/kg	390.00 U	8		370.00 U	~	340.00 U
BENZO(G, H, I)PERYLENE	ug/kg	390.00 U	8	63.00 J	370.00 U	œ	340.00 U

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

SAMPLE NAME			TPEXP
SAMPLE DATE TEXT 001		/90	06/14/95
SAMPLE DEPTH		0.00	0.00 - 6.00'
ivolatiles - Page 2			
2,4-DINITROPHENOL	ug/kg	850.00 UJ	rn ou
4-NITROPHENOL	ug/kg	~	
DIBENZOFURAN	ug/kg	170.00	
2.4-DINITROTOLUENE	uq/kg	340.00	n 0:
DIETHYLPHTHALATE	ug/kg		7 O
4-CHLOROPHENYL-PHENYLETHER	ug/kg	340.00	n oc
FLUORENE	ug/ka	330.00	7 O
4-NITROANILINE	ug/kg	850.00	n oc
4.6-DINITRO-2-METHYLPHENOL	ug/kg	850.00	rn o
N-NITROSODIPHENYLAMINE	ug/kg	220.00	ר 0,0
4-BROMOPHENYL-PHENYLETHER	ug/kg	340.00	rn 00
HEXACHLOROBENZENE	ug/kg	340.00	rn ou
PENTACHLOROPHENOL	ug/kg	850.00	n oc
PHENANTHRENE	ug/kg	2,300.00	00
ANTHRACENE	ug/kg	670.00	70.
CARBAZOLE	ug/kg	670.00	00
DI-N-BUTYLPHTHALATE	ug/kg	340.00	n ou
FLUORANTHENE	ug/kg	2,200.00	00
PYRENE	ug/kg	7,800.00	0.00
BUTYLBENZYLPHTHALATE	ug/kg	340.00	rn 00
3,3'-DICHLOROBENZIDINE	ug/kg	340.00	n oc
BENZO(A)ANTHRACENE	ug/kg	7,700.00	0 00
CHRYSENE	ug/kg	2,700.00	00
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	800.00	ר 0,0
DI-N-OCTYLPHTHALATE	ug/kg	63.00	ר 100
BENZO(B) FLUORANTHENE	ug/kg	12,000.00	0 00
BENZO(K) FLUORANTHENE	ug/kg	12,000.00	0 00
BENZO(A)PYRENE	uq/kg	2,600.00	00
ENO(1,2,3-CD)PYRENE	ug/kg	770.00	00
DIBENZO(A, H)ANTHRACENE	ug/kg	330.00	ר 00
BENZO(G.H.I)PERYLENE	ug/kg	700.00	00

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

SAMPLE NAME SAMPLE DATE		1P01 06/17/95	TP02 04.12.05	1P03	1P04	1P05	1P06
TEXT 001		67 (F) (C)	67 (2) (00	64 (51 (60	C4 (C) (C)	54/51/50	C4 /41 /00
SAMPLE DEPTH		0.00 - 4.00	0.00 - 5.00	5.50 - 6.00	4.00 - 6.00	0.00 - 6.00	0.00 - 6.00
Pesticides/PCBs							
ALPHA-8HC	ug/kg	4.30 J	2.00 U	4.30	2.00 U	2.10 U	2.00 U
BETA-BHC	og/kg	~	2.00 U	19.00	2.00 u	2.10 11	100.2
DELTA-BHC	04/kg	2.10 u	2.00 U	56.00 p	2.00.2	2 10 1	= 90 2
gamma-BHC (Lindane)	ua/ka		2.00 U	F 07.7	2,00 U	2, 10 u	200.2
	ug/kg	2.10 U	2.00 0	2.10 UJ	2.00 UJ	2.10 U	2.00 U
ALDRIM	og/kg	2.10 U	2.00 U	2.10 U	2.00 u	2.10 U	= 60.2
HEPTACHLOR EPOXIDE	ug/kg	2.10 U	2.00 U	2.10 U	2.00 U	2.10 U	2.00 u
ENDOSULFAN 1	og/ka	07.6	2.00 U	2.10 U	2-00 n	2.10 U	1 00 2
DIELDRIN	og/kg	•	00.7	4.10 U	1 06 E	7 10 0	3 00 7 3 00 7
4,4DDE	og/kg	3.80 .	7.00 U	4.10 U	n 06.8	0.14.1	1 00 7
ENDRIN	ug/kg	4.10 U	4.00 U	4.10 U		4.10 U	0 00.7
ENDOSUL FAN 11	ug/kg	4.10 U	4.00 U	4.10 U	3.90 U	4.10 U	0 00.7
7,4000	ug/kg	4.10 U	4.00 U	4.10 U		4.10 U	0 00 7
ENDOSULFAN SULFATE	ug/kg	4.10 U	4.00 U	4.10 U		4.10 U	7.00 0
7,4007	ug/kg	4.10 U	4.00 U	4.10 U		4.10 U	7.00 U
METHOXYCHLOR	ug/kg		20.00 u	21.00 u		21.00 U	20.00 U
ENDRIN KETONE	ug/kg		4.00 U	4.10 U		4.10 U	7.00 U
ENDRIN ALDENYDE	ug/kg	4.10 U	4.00 u	4.10 U		4.10 U	7.00 U
ALPHA-CHLORDANE	ug/kg	13.00	2.00 u	2.10 U		2.10 U	2.00 U
GAMMA - CHLORDANE	ug/kg	œ	2.00 U	2.10 U		2.10 U	2.00 U
TOXAPHENE	ug/kg	210.00 U	200.00 U	210.00 U		210.00 U	200.00 U
AROCLOR 1016	ug/kg	41.00 U	70.00 U	41.00 U		41.00 U	70.00 U
AROCLOR 1221	ug/kg	83.00 U	80.00 U	84.00 U		82.00 U	81.00 U
AROCLOR 1232	ug/kg	41.00 U	70.00 U	41.00 U		41.00 U	70 00 n
AROCLOR 1242	ug/kg		40.00 U	41.00 U		41.00 U	40.00 U
•	ug/kg	41.00 U	40.00 U	140.00		41.00 U	00.04
_	ug/kg		40.00 U	41.00 U		41.00 U	00.07
_	ug/kg		00.07	41.00 U	39.00 u	41.00 U	70.00 U

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Organic Compounds

SAMPLE NAME SAMPLE DATE		1P11 06/14/95	TP07 06/14/95	1P08 06/14/95	1P12 06/14/95	1P09 06/15/95	1P10 06/15/95
TEXT 001 SAMPLE DEPTH		Dup of TP06 0.00 - 6.001	100.9 - 00.0	0.00 - 6.00	Dup of TP08 0.00 - 6.00	0.00 - 2.00	0.00 - 4.00
Pesticides/PC8s							
ALPHA-BHC	ug/kg	2.00 U	2.00 U		1.90 U	0.23 J	1.80 U
BETA-BHC	ug/kg	2.00 U	2.00 U		1.90 U	1.70 U	1.80 U
DELTA-BHC	ua/ka	2.00 U	2,00 1		= 6	= 02 1	- 08
gamma-BHC (Lindane)	ng/ka	0000	= 00.2		26		5 6
HEDTACHI OR	- 04/G						
ALDE IN	04/kg	2000	=======================================		200	77.0	
HEPTACHLOR EPOXIDE	ug/ka	2.00 2	= 00.2		= 26	202-	8.6
ENDOSUL FAN 1	- 110/kg	1 00 2	= 00.0	= 00.2	= 06	= 02:-	
DIELDRIN	na/ka	00.7	00.7	200.1	102.4	- 02 2	- 07
4.4-DDE	na/ka	00.7	1007	200	25.4) - -	0.07
ENDRIN	ug/ka	4.00 U	0 00.7	3.80 U	3.70 U	3.30 0	3.40 U
ENDOSUL FAN 11	ug/kg	0 00.4	4.00 U	3.80 U		3.30 U	3.40 U
000-17'7	ug/kg	4.00 U	7.00 U	3.80 U	3.70 U	3.30 U	3.40 0
ENDOSULFAN SULFATE	ug/kg	7.00 U	7.00 U	3.80 ∪		3.30 ∪	3.40 ∪
7,4'-DDT	ug/kg	7.00 U	4.00 U	0.81 JN		3.30 U	3.40 U
METHOXYCHLOR	ug/kg	20.00 U	20.00 U	20.00 U		17.00 U	18.00 U
ENDRIN KETONE	ug/kg	7.00 U	4.00 U	3.80 U		3.30 U	3.40 ∪
ENDRIN ALDEHYDE	ug/kg	7.00 U	4.00 U	3.80 U	3.70 U	3.30 U	~
ALPHA-CHLORDANE	ug/kg	2.00 U	2.00 U	2.00 U	1.90 U	1.70 U	1.80 U
GAMMA-CHLORDANE	ug/kg	2.00 U	2.00 U	2.00 U	1.90 U	1.70 ∪	
	ug/kg	200.00 U	200.00 U	200.00 U	190.00 U	170.00 U	
AROCLOR 1016	ug/kg	70.00 U	40.00 U	38.00 U	37.00 U	33.00 U	8
AROCLOR 1221	ug/kg	81.00 U	80.00 U	77.00 U	76.00 U	0.00 V	8
_	ug/kg	40.00 U	70.00 U	38.00 U	37.00 U	33.00 U	8
AROCLOR 1242	ug/kg	40.00 U	40.00 U	38.00 U	37.00 U	33.00 U	8
_	ug/kg	40.00 U	70.00 U	38.00 U	37.00 U	33.00 U	34.00 U
•	ug/kg	40.00 U	40.00 U	38.00 U	37.00 U	33.00 U	8
AROCLOR 1260	ug/kg	40.00 U	70.00 n	38.00 U	37.00 U	33.00 U	34.00 U

Forest Glen Site AOC 2 - Worthern Aspect - Test Pit Organic Compounds

SAMPLE NAME		TPEXP	
TEXT 001		64 (5) (50	
SAMPLE DEPTH		0.00 - 6.00	
Pesticides/PCBs			
ALPHA-BHC	ug/kg	1.80 U	
BETA-BHC	19/kg	1.80 ∪	
DELTA-BHC	09/kg	1.80 U	
gamma-BHC (Lindane)	09/kg	1.80 U	
HEPTACHLOR	09/kg	1.80 U	
ALDRIN	09/kg	1.80 U	
HEPTACHLOR EPOXIDE	09/kg	1.80 U	
ENDOSUL FAN 1	09/kg	1.80 U	
DIELDRIN	09/kg	3.40 U	
7.4'-DDE	09/kg	3.40 U	
ENDRIN	09/kg	~	
ENDOSULFAN 11	ug/kg	3.40 U	
000-17'7	09/kg	3.40 U	
ENDOSULFAN SULFATE	19/kg	œ	
4,400T	ug/kg	2.20 J	
METHOXYCHLOR	ug/kg	18.00 U	
ENDRIN KETONE	69/kg	10.00	
ENDRIN ALDEHYDE	09/kg	3.40 U	
ALPHA-CHLORDANE	ug/kg	1.80 U	
GAMMA - CHLORDANE	ug/kg	1.80 U	
TOXAPHENE	ug/kg	180.00 U	
AROCLOR 1016	ug/kg	34.00 U	
•	09/kg	69.00 U	
•	100/kg	00 75	
•	ng/ka	34.00 U	
•	ua/ka	37.00 U	
•	24/61	11 00 72	
ABOCI OF 1240	24/55	200.75	
	B4 /B5	2 22 - 1	

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Inorganic Analytes

SAMPLE NAME		1001	TP02	TP03	70dI 70dI	TP05	1000
TEXT 001		64/31/00	66/31/00	64/61/90	64/61/90	64 /61 /80	64/21/00
SAMPLE DEPTH		0.00 - 4.00	0.00 - 5.00	5.50 - 6.00	4.00 - 6.001	0.00 - 6.00	0.00 - 6.00
Inorganic Analytes							
ALUMINUM	mg/kg	12,100.00	15,400.00	16,500.00	13,700.00	17,000.00	16,500.00
ANTIMONY	mg/kg	0.96 BNJ	0.53 BN	0.51 BNJ	0.45 UNJ	CNU 95-0	O.47 UNJ
ARSENIC	mg/kg	5.80	4.20 کا	3.60	3.30	3.60	3.30
BARIUM	ma/ka	161.00	125.00	129.00	96.20	133.00	120.00
BERYLLIUM	mg/kg	0.70 8	0.818	0.84 8	0.718	0.84 8	0.73 B
CADMIUM	mg/kg	0.198	0.418	8 07·0	0.38 8	0.418	0.36 B
CALCIUM	mg/kg	30,400.00 *	39,700.00	18,400.00 *	41,400.00 *	47,100.00 *	48.800.00
CHROMIUM	mg/kg	~	e c	a c	~	a	~
COBALT	mg/kg	7.90	13.50	12.70 B	11.30 B	15.50	10.80 B
COPPER	mg/kg	59.60 N*J	22.80 N*J	24.50 N*J	23.40 N*J	24.10 N*J	21.60 N*J
IRON	mg/kg	21,600.00	27,300.00	27,200.00	24,000.00	26,800.00	24,800.00
LEAD	mg/kg	183.00 N*J	11.90 N*J	14.60 N*J	8.30 N*J	11.60 N*J	F*N 07.6
MAGNESIUM	mg/kg	9,320.00 *	10,600.00	8,980.00 *	9,920.00	11,100.00 *	11,400.00 *
MANGANESE	mg/kg	~	• •	a c	∝	∝	∝
MERCURY	mg/kg	0.33 *	0.13 U*	0.13 U*	0.12 U*	0.12 U*	0.12 U*
NICKEL	mg/kg	23.70	28.70	28.50	25.90	29.90	25.20
POTASSIUM	mg/kg	2,320.00 EJ	2,430.00 EJ	1,930.00 EJ	2,370.00 EJ	2,970.00 EJ	3,570.00 EJ
SELENIUM	mg/kg	1.40 J	1.90	2.30	1.50	2.10	2.00
SILVER	mg/kg	0.13 UJ	0.75 83	0.13 UJ	0.12 UJ	0.12 UJ	0.12 UJ
MU100S	mg/kg	485.00 8	268.00 B	275.00 B	240.00 B	264.00 B	373.00 B
THALLIUM	mg/kg	1.20 U	1.10 U	1.20 U	1.10 U	1.10 U	1.10 U
VANAD I UM	mg/kg	26.60	30.60	33.40	26.60	33.40	31.60
ZINC	mg/kg	224.00 •	• 07.89	82.70 *	73.20 *	63.20 *	61.90 *
CYANIDE	mg/kg	0.66 U	0.63 U	0.64 U	0.60 U	0.60 U	0.61 U

Forest Glen Site AOC 2 - Northern Aspect - Test Pit Inorganic Analytes

SAMPLE NAME		1141	1001	1908	TP12	1001	1910
SAMPLE DATE		_	06/14/95	06/14/95	06/14/95	06/15/95	06/15/95
SAMPLE DEPTH		0.00 - 6.00°	0.00 - 6.00	0.00 - 6.00	0.00 - 6.00°	0.00 - 2.00	0.00 - 4.00
Inorganic Analytes							
ALUMINUM	mg/kg	16,000.00	13,200.00	13,400.00	12,300.00	17,800.00	20,500.00
ANTIMONY	mg/kg	0.46 UNJ	0.46 UNJ	0.47 UNJ	0.44 UNJ	0.47 UNJ	0.50 BNJ
ARSENIC	mg/kg	3.40	5.00	3.50	3.40	4.70	4.50
BARIUM	mg/kg	114.00	67.60	85.30	88.20	155.00	106.00
BERYLLIUM	mg/kg	0.76 B	0.69 8	0.68 8	0.59 B	0.76 B	1.20 B
CADHIUM	ma/ka	0.37 B	0.30 B	0.58 8	0.55 8	0.47 B	0.20 8
CALCTUM	mg/kg	45, 200, 00 *	24, 700, 00 +	53,300,00 *	50,100.00	* 00.008.7	1.410.00 *
CHROMIUM	mg/kg	<u>a</u>	~	~	e	~	~
COBALT	mg/kg	11.10 B	10.00 8	11.80 B	9.10 B	16.00	21.80
COPPER	mg/kg	25.40 N*J	24.70 N*J	21.60 N*J	18.80 N*J	36.80 N*J	20.00 N*J
IRON	mg/kg	24,300,00	24.900.00	22,700.00	19,600.00	25,000.00	32,100.00
LEAD	mg/kg	8.60 N*J	10.40 N*J	30.70 N*J	31.40 N*J	51.90 N*J	14.30 N*J
MAGNESTUM	mg/kg	10,900.00	11,800.00 *	20,100.00 *	18,400.00 *	5,160.00 *	6,240.00 *
MANGANESE	mg/kg	~	~	~	~	~	~
MERCURY	mg/kg	0.12 U*	0.12 U*	0.12 U*	0.12 U*	2.80 *	0.12 U*
NICKEL	mg/kg	25.20	24.90	23.60	19.80	27.10	27.40
POTASSIUM	mg/kg	3,850.00 EJ	2,420.00 EJ	2,090.00 EJ	1,880.00 EJ	2,450.00 EJ	1,790.00 EJ
SELENIUM	mg/kg	1.50	1.60	1.70	1.90	2.60	2.50
SILVER	mg/kg	0.12 UJ	0.12 UJ	0.12 UJ	0.12 UJ	0.12 UJ	0.12 UJ
SODIUM	mg/kg	423.00 B	325.00 B	249.00 B	266.00 B	174.00 B	173.00 B
THALLIUM	mg/kg	1.10 U	1.10 U	1.10 u	1.00 U	1.10 U	1,10 U
VANADIUM	mg/kg	31.00	28.10	26.60	24.80	38.10	36.50
Z1NC	mg/kg	29.40	* 06.79	122.00 *	132.00 *	127.00 *	72.90 *
CYANIDE	mg/kg	0.61 U	0.61 U	0.61 U	0.58 U	0.62 U	0.60 U

TPEXP 06/14/95	0.00 - 6.00	00 000 21	1, 200 US, 21	07.6	, 102.00	0.71 8	0.77 8	44,800.00	<u>«</u>	29.60	251.00 N*J	24,200.00	€*N 09.66	11,800.00	~	1.40 *	55.50	2,300.00 EJ	2.30	0.21 BJ	564.00 B	1.10 U	20.40	186.00 •	11 07 0
		1,7	mg/kg mg/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka
SAMPLE NAME SAMPLE DATE	SAMPLE DEPTH	Inorganic Analytes	ANTIMONY	ARSENIC	BARIUM	BERYLLIUM	CADMIUM	CALCIUM	CHROMIUM	COBALT	COPPER	IRON	LEAD	MAGNESIUM	MANGANESE	MERCURY	NICKEL	POTASSIUM	SELENIUM	SILVER	SODIUM	THALLIUM	VANADIUM	ZINC	24470

AOC3 - WOODED WETLAND SEDIMENT DATA

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Conventional Parameters

SAMPLE NAME		WTSD01	WTSD02	WTSD03	WTSD04	WTSD05	WTSD06
SAMPLE DATE		06/20/95	06/20/95	06/20/95	06/20/95	06/21/95	06/21/95
TEXT 001							
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50
Conventinal Parameters							
7	units	7.70	7.30	6.80	8.00	7.90	7.70
SULFIDE	mg/kg	20.50	22.20	18.80	21.30	22.20	36.50
TOTAL ORGANIC CARBON	mg/kg	72,400.00	102,000.00	87,900.00	68,000.00	151,000.00	00,007,06
TOTAL SOLIDS	*	67.30	69.50	67.40	61.40	60.50	24.90
TOTAL SOILDS (EXTENDED)	×				58.40	61.30	58.20
ALKALINITY	l/gm						
AMMON I A	J/Bm						
88	mg/l						
8	1/BIII						
TOTAL DISSOLVO SOLIDS	J/6m						
HARDNESS	J/gm						
NITRATE/NITRITE	J/BIII						
TOTAL KJELDAHL NITROGEN	l/gm						

Forest Glen Site
AOC 3 - Wooded Wetland - Sediment
Conventional Parameters

SAMPLE DATE SAMPLE DATE FEXT OCCUPANTIAL SAMPLE DEPTH UTSD07 06/21/95 06/21/95 06/21/95 06/21/95 06/21/95 06/21/95 000 - 0.50¹ UTSD10 0.00								
units 7.30 7.40 7.40 11.20 11.20 x 4.40 7.40 11.20 x 56.80 59.10 59.10 59.10 61.80 87.40 11.20 mg/t mg/t mg/t mg/t mg/t mg/t mg/t mg/t	SAMPLE NAME SAMPLE DATE		WTS007 06/21/95	WTSD08 06/21/95	WTSD09 06/21/95	WTSD10 06/21/95	WTSD11 06/21/95	
units 7.30 7.20 7.40 mg/kg 9.82 11.90 11.20 11.20 mg/kg 79,700.00 60,000.00 104,000.00 99,000.00 X 56.80 59.00 59.00 63.20 X 52.30 59.10 57.60 61.80 mg/t mg/t mg/t mg/t mg/t mg/t mg/t mg/t	SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	
May May	Conventinal Parameters		:	:				
mg/tg 79,700.00 60,000.00 104,000.00 99,000.00 X 56.80 59.00 59.00 57.60 61.80 mg/t mg/t mg/t mg/t mg/t mg/t mg/t mg/t	- T	Sits Sits	7.30	1.30	11.20	2,71	7.40 8 25	
x 56.80 59.00 56.60 63.20 x 52.30 59.10 57.60 61.80 mg/t mg/t mg/t mg/t mg/t mg/t mg/t	TOTAL ORGANIC CARBON		70.00		104,000,00	00.000.66	83,300,00	
x 52.30 59.10 57.60 61.80 mg/l mg/l mg/l mg/l mg/l mg/l	TOTAL SOLIDS	×	56.80		56.60	63.20	61.90	
mg/l mg/l mg/l mg/l mg/l	TOTAL SOILDS (EXTENDED)	×	52.30	59.10	57.60	61.80	63.90	
	ALKALINITY	mg/l						
	AMMONIA	mg/t						
	008	J/Gm						
	903	l/gm						
	TOTAL DISSOLVO SOLIDS	J/Gm						
	HARDNESS	l/gm						
	NITRATE/NITRITE	l/gm						
	TOTAL KJELDAHL NITROGEN	mg/l						

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Grain Size Analysis

SAMPLE NAME SAMPLE DATE		WTSD01 06/20/95	UTSD02 06/20/95	WTSD03 06/20/95	WTSD04 06/20/95	WTSD05 06/21/95	WTSD06 06/21/95
TEXT 001 SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50
Grain Analysis							
GRAVEL	×	0.00	0.00	0.00	0.00	0.00	0.00
SAND (A) COARSE	×	0.50 J	r 07.0	0.40	1.00 1	0.20	70.70
SAND (8) MEDIUM	×	1.50	1.40	1.70	1.80	2.10	2.00
SAND (C) FINE	×	1.8	3.50	2.30	07.7	3.70	2.90
SAND (D) FINE	×	09.0	1.70	0.50	1.30	7.00	7 02 0
SILTS/CLAYS (<0.075 MM)	×				1	•	•
SILT (A)	×	0.00 J	5.60 J	8.90 J	22.70 J	18.10	0.00
S1LT (B)	×	12.10	27.20	14.30	14.20 J	23.10 J	5.80 J
CLAY	×	24.70	22.90	29.20	29.00	22.20	7.40
COLLOIDS	×	63.20 J	37.40 J	45.60 J	25.60 J	28.80	86.40
TOTALS FOR GROUP	l	104.50	100.10	06.90	100.00	99.20	105.90

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Grain Size Analysis

SAMPLE NAME SAMPLE DATE		UTSD07 06/21/95	WTSD08 06/21/95	WTSD09 06/21/95	UTSD10 06/21/95	WISD11 06/21/95
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50
Grein Anelysis						
GRAVEL	×	0.00	0.00	0.00	0.00	0.00
SAND (A) COARSE	×	0.00	0.10 J	0.20	0.50	1.30 J
SAND (B) MEDIUM	×	2.00	3.30	2.70	07.7	07.7
SAND (C) FINE	×	5.30	6.30	6.90	6.00	8.70
SAND (D) FINE	×	1.20 J	1.00 J	1.30 J	1.60 J	0.90 J
SILTS/CLAYS (<0.075 NM)	×					
SILT (A)	×	14.90	22.00	18.00	36.00	8.20
SILT (B)	×	16.80 J	15.70 J	17.80 J	20.90 J	22,20 J
CLAY	×	31.20	28.60	30.20	23.90	33.40
COLLOIDS	×	28.50	22.90	23.00	6.70	21.00
TOTALS FOR GROUP	ļ	99.90	98.90	100.10	100.00	100.10

Forest Glen Site
AOC 3 - Wooded Wetland · Sediment
Targeted Organic Compounds

SAMPLE NAME SAMPLE DATE	WISD01 06/20/95	001 WTSD02 795 06/20/95	WISD03 06/20/95	WTSD04 06/20/95	WTSD05 06/21/95	WTSD06 06/21/95
SAMPLE DEPTH	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50
Targeted SemiVolatiles						
		290.00 U	300.00 U	340.00 U	330.00 U	340.00 U
		290.00 u	300.00 U	340.00 U	330.00 U	340.00 U
OTHIAZOLE		290.00 U	300.00 U	340.00 U	330.00 U	340.00 U
2-ANILINOBENZOTHIAZOLE US/Kg	kg 300.00 U	290.00 U	300.00 U	340.00 U	330.00 U	340.00 U
	-	210.00 J	120.00 J	140.00 J	180.00 J	200.00 J
		290.00 UJ	300.00 UJ	340.00 UJ	330.00 UJ	340.00 UJ
IENYL - 1, 4 - BENZENEDIAMIN		290.00 UJ	300.00 UJ	340.00 UJ	_	340.00 UJ
PHENOTHIAZINE US/kg		290.00 U	300.00 U	340.00 U	330.00 U	340.00 U
	-	290.00 U	300.00 U	340.00 U	330.00 U	340.00 U

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Jargeted Organic Compounds

			Targeted Or	Targeted Organic Compounds			Page 2
SAMPLE NAME SAMPLE DATE		WTSD07 06/21/95	WTSD08 06/21/95	WTSD09 06/21/95	WTSD10 06/21/95	WISD11 06/21/95	
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	
	g/kg	380.00 U	340.00 U	350.00 U	320.00 U	310.00 U	
DIPHENYLAMINE	9/kg	380.00 U	340.00 U	350.00 U	320.00 U	310.00 U	
ш	ug/kg	380.00 U	340.00 U	350.00 U	320.00 U	310.00 U	
2-ANILINOBENZOTHIAZOLE US	9/kg .	380.00 U	340.00 U	350.00 U	320.00 U	310.00 U	
	9/kg	170.00 J	190.00 J	170.00 J	250.00 J	180.00 J	
ANILINE	9/kg	380.00 UJ	340.00 UJ	350.00 UJ	320.00 UJ	310.00 UJ	
1,4-BENZENEDIAMIN	9/kg	380.00 UJ	340.00 UJ	350.00 UJ	320.00 UJ	310.00 UJ	
PHENOTH1AZINE US	9/kg	380.00 U	340.00 U	350.00 U	320.00 U	310.00 U	
BENZOTH1AZOLE US	ug/kg	380.00 U	340.00 U	350.00 U	320.00 U	310.00 U	

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Organic Compounds

Depth Dept	SAMPLE NAME		WTSD01	WTSD02	WTSD03	WTSD04	WTSD05	WTSD06
4, 12, 12, 12, 13, 10, 10, 13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	SAMPLE DATE		06/20/95	06/50/95	06/20/95	06/50/95	06/21/95	06/21/95
## 13.00 U 15.00 U 15.	SAMPLE DEPTH		•	0 00 0	105 0 - 00 0	0.00 . 0.50	0.00 - 0.50	
## ## ## ## ## ## ## ## ## ## ## ## ##	Swire Derin		.	0.0	0.0	0000	00.0	
## 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U 16.	Volatiles							
## 13.00 U	CHLOROMETHANE	ug/kg		15.00 U	16.00 U	12.00 U	2	_
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	BROMOMETHANE	ug/kg		15.00 U	16.00 U	12.00 U	2	_
ug/kg 13.00 U 15.00 U 15.00 U 16.00 U	VINYL CHLORIDE	ug/kg	13.00 U	15.00 U	16.00 U	12.00 U	2	_
ug/kg 13.00 U 16.00 U 17.00 U 17.00 U 16.00 U	CHLOROETHANE	ug/kg	13.00 U	15.00 U	16.00 U	12.00 U	2	_
ug/kg 2,00 uJ 19,00 uJ 16,00 uJ 12,00 uJ 16,00 uJ 15,00 uJ 16,00 uJ 15,00 uJ 16,00 uJ 15,00 uJ 16,00 uJ 15,00 uJ 16,00 uJ <th< th=""><th>METHYLENE CHLORIDE</th><th>ug/kg</th><th></th><th>16.00 U</th><th>17.00 U</th><th>8</th><th>2</th><th>_</th></th<>	METHYLENE CHLORIDE	ug/kg		16.00 U	17.00 U	8	2	_
1,000 1,00	ACETONE	ua/ko		19.00 UJ	16.00 UJ	8	2	_
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	CARBON DISULFIDE	ug/kg		15.00 U	16.00 U	8	2	_
#1) #### 13.00 U 15.00 U 16.00 U 17.00 U 16.00 U 17.00 U 16.00 U 17.00 U 16.00 U 16.00 U 17.00 U 17.00 U 16.00 U 17.00	1.1-DICHLOROETHENE	ua/ka	13.00 U	15.00 U	16.00 U	8	2	_
13.00 U 15.00 U 15.00 U 16.00 U 12.00 U 16.00 U 16.0	1,1-DICHLOROETHANE	ua/ka	13.00 U	15.00 U	16.00 U	8	2	_
13.00 U 15.00 U 15.00 U 16.00 U 17.00 U 16.00 U 16.	1,2-DICHLOROETHENE (total)	ug/kg		15.00 U	16.00 U	12.00 U	2	_
13.00 U 15.00 U 15.00 U 15.00 U 16.00 U 16.0	CHLOROFORM	ug/kg		15.00 U	16.00 U	12.00 U	2	_
13.00 UJ 15.00 UJ 15.00 UJ 16.00 UJ 12.00 U 16.00 UJ	1.2-DICHLOROETHANE	ug/ka	_	15.00 U	16.00 U	12.00 U	2	16.00 U
ug/kg 13.00 UJ 15.00 UJ 16.00 UJ 12.00 U 16.00 UJ ug/kg 13.00 UJ 15.00 UJ 16.00 UJ 12.00 UJ 16.00 UJ ug/kg 13.00 UJ 15.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 15.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 15.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 15.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 15.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 15.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ ug/kg 13.00 UJ 16.00 UJ 16.00 UJ 16.00 UJ 16.00	2-BUTANONE	ug/ka		15.00 UJ	8	12.00 U	2	16.00 U
Lag/kg 13.00 UJ 15.00 UJ 16.00 UJ 12.00 U 16.00 UJ 16.00	1,1,1-TRICHLOROETHANE	ug/kg		2.00 J	8	12.00 U	8	16.00 UJ
ug/kg 13.00 U 15.00 U 16.00 U	CARBON TETRACHLORIDE	ug/kg		15.00 UJ	8	12.00 U	2	16.00 U
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U ug/kg 13.00 U 16.00 U 12.00 U 16.00 U 16.00 U ug/kg	BROMOD I CHLOROME THANE	ug/kg		15.00 U	8	12.00 U	2	16.00 U
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	1,2-DICHLOROPROPANE	ug/kg		15.00 U	16.00 U	12.00 U	8	16.00 U
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	cis 1,3-DICHLOROPROPENE	ug/kg		15.00 U	16.00 U	12.00 U	8	16.00 U
E UG/Kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00	TRICHLOROETHENE	ug/kg		15.00 U	16.00 U	12.00 u	16.00 U	16.00 U
RICHLOROETHANE Ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U 1	DIBROMOCHLOROMETHANE	ug/kg		15.00 U	16.00 U	12.00 U	16.00 U	16.00 U
3-DICHLOROPROPENE Ug/kg 13.00 U 15.00 U 16.00	1,1,2-TRICHLOROETHANE	ug/kg		15.00 U	16.00 U	12.00 u	16.00 U	16.00 U
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U 12.00 U 16.00 U 15.00 U 16.00 U 15.00 U 16.00 U 15.00 U 16.00 U 15.00 U 16.00 U	BENZENE	ug/kg		15.00 U	16.00 U	12.00 U	16.00 U	16.00 U
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U 16.00 U 17.00 U 16.00 U 17.00 U 16.00 U 17.00 U	trans 1,3-DICHLOROPROPENE	ug/kg		15.00 U	16.00 U	12.00 U	16.00 U	16.00 U
ug/kg 13.00 U 15.00 U 16.00 U 12.00 UJ 16.00 U 12.00 UJ 16.00 U 15.00 UJ 16.00 UJ 15.00 UJ 15	BROMOFORM	ug/kg		15.00 U	16.00 U	12.00 U	16.00 U	16.00 U
THENE UG/Kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U 16	4-METHYL-2-PENTANONE	ug/kg	13.00 U	15.00 U	16.00 U	8	16.00 u	16.00 U
THENE UG/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U 16	2-HEXANONE	ug/kg	13.00 U	15.00 U	16.00 U	8	16.00 U	16.00 U
ACHLOROETHANE ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	TETRACHLOROETHENE	ug/kg	13.00 U	15.00 U	16.00 U	8	16.00 U	16.00 U
E ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	1,1,2,2-TETRACHLOROETHANE	ug/kg	13.00 U	15.00 U	16.00 U	8	16.00 U	16.00 U
E ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	TOLUENE	ug/kg	13.00 U	15.00 U	16.00 U	12.00 U	16.00 U	16.00 U
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	CHLOROBENZENE	ug/kg	13.00 U	15.00 U	16.00 U	12.00 U	16.00 U	16.00 U
ug/kg 13.00 U 15.00 U 12.00 U 16.00 U 16.00 U 16.00 U (total) ug/kg 13.00 U 15.00 U 16.00 U 16.00 U 16.00 U	ETHYLBENZENE	ug/kg	13.00 U	15.00 U	16.00 U	12.00 U	16.00 U	16.00 U
ug/kg 13.00 U 15.00 U 16.00 U 12.00 U 16.00 U	STYRENE	ug/kg	13.00 U	15.00 U	16.00 U	12.00 U	16.00 U	16.00 U
	XYLENES (total)	ug/kg	13.00 U	15.00 U	16.00 U	12.00 U	16.00 U	16.00 U

	Sediment	
e	•	ő
ŭ	_	ς
ū	٤	
c	2	₽
ĭ	Wooded Wetland -	ত্
3	š	u
·	ъ	<u>-2</u>
S,	¥	Srgani
Ĕ	ŏ	ã
2	ŝ	ŏ
	_	
	ğ	
	<	

SAMPLE DATE		VTSD07 06/21/95	WTSD08 06/21/95	WTSD09 06/21/95	WTSD10 06/21/95	WTSD11 06/21/95	
TEXT 001						Dup of WISD10	
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	
Volatiles							
CHLOROMETHANE	ug/kg	16.00 UJ	8			_	
BROMOMETHANE	ug/kg	16.00 U	8			_	
VINYL CHLORIDE	ug/kg	16.00 UJ	8			_	
CHLOROETHANE	ug/kg	16.00 U	8			_	
METHYLENE CHLORIDE	ca/ka	16.00 U	8			_	
ACETONE	og/ka	16.00 UJ	8			_	
CARBON DISULFIDE	09/kg	16.00 U					
1,1-DICHLOROETHENE	09/kg	16.00 U	8			_	
1,1-DICHLOROETHANE	ug/kg	16.00 ս	8			_	
1,2-DICHLOROETHENE (total)	ug/kg	16.00 U	8			_	
CHLOROFORM	ug/kg	16.00 U	16.00 U			_	
1,2-DICHLOROETHANE	ug/kg	16.00 บ	16.00 U			16.00 U	
2-BUTANONE	ug/kg	16.00 U	16.00 U			16.00 UJ	
1,1,1-TRICHLOROETHANE	ug/kg	_	3.00 J			16.00 J	
CARBON TETRACHLORIDE	ug/kg	16.00 U	16.00 U			16.00 U	
BROMOD I CHLOROMETHANE	ug/kg	_	16.00 U	16.00 U	16.00 U	16.00 u	
1, 2-DICHLOROPROPANE	ug/kg	_	16.00 U			16.00 U	
cis 1,3-DICHLOROPROPENE	ug/kg	_	16.00 U			16.00 U	
TRICHLOROETHENE	ug/kg		16.00 U	16.00 U		16.00 U	
D I BROMOCHLOROMETHANE	ug/kg	_	16.00 U			16.00 U	
1, 1, 2-TRICHLOROETHANE	ug/kg	_	16.00 U			16.00 U	
BENZENE	ug/kg		16.00 U			16.00 U	
trans 1,3-DICHLOROPROPENE	ug/kg		16.00 U		16.00 U	16.00 U	
BROMOFORM	ug/kg		8		16.00 U	16.00 U	
4-METHYL-2-PENTANONE	ug/kg		8			16.00 u	
2-HEXANONE	ug/kg		8	16.00 U		16.00 U	
TETRACHLOROETHENE	ug/kg	16.00 U	8			16.00 u	
1,1,2,2-TETRACHLOROETHANE	ug/kg		16.00 U	16.00 U	16.00 U	16.00 u	
TOLUENE	ug/kg		8	16.00 U		16.00 U	
CHLOROBENZENE	ug/kg	16.00 U	16.00 U	16.00 U		16.00 u	
ETHYLBENZENE	ug/kg	16.00 U	16.00 U	16.00 U		16.00 U	
STYRENE	ug/kg	16.00 U	16.00 U	16.00 U		16.00 u	
XYLENES (total)	ua/ka	16.00 U	14.00	1,00 1		1, 00 1,	

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Organic Compounds

SAMPLE NAME		VTS001 06/20/95	WTSD02 06/20/95	WTSD03	VTSD04	WTSD05	WTSD06
TEXT 001			64 (02 (00	6/ 103 100	57 (57 (55	60/13/00	64/13/00
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50
Semivolatiles - Page 1							
PHENOL	ug/kg	420.00 U	7490.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 U
BIS(2-CHLOROETHYL)ETHER	ug/kg	420.00 U	490.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 0
2-CHLOROPHENOL	09/kg	420.00 U	490.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 U
1,3-DICHLOROBENZENE	ug/kg	420.00 U	490.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 U
1,4-DICHLOROBENZENE	ug/kg	420.00 U	8	510.00 UJ	410.00 U	240.00 U	530.00 U
1,2-DICHLOROBENZENE	og/kg	420.00 U	780.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 0
2-METHYLPHENOL	09/kg	750.00 U	8	510.00 01	410.00 U	540.00 U	530.00 0
BIS(2-CHLOROISOPROPYL)ETHER	04/kg	420.00 UJ			410.00 UJ	240.00	530.00
4-METHYLPHENOL	09/kg	750.00 U	70.00 n	510.00 UJ	2	540.00 U	530.00 U
N-NITROSO-DI-N-PROPYLAMINE	04/kg	420.00 U		510.00 UJ	410.00 U	540.00 U	530.00 U
HEXACHLOROE THANE	09/kg	420.00 U	f0 00.067	510.00 UJ	410.00 U	540.00 U	530.00 U
NITROBENZENE	09/kg	420.00 U		510.00 UJ	410.00 U	540.00 U	530.00 U
I SOPHORONE	04/kg	420.00 U		510.00 UJ	410.00 U	540.00 U	530.00 U
2-NITROPHENOL	ug/kg	420.00 U		_	410.00 U	540.00 U	530.00 0
2,4-DIMETHYLPHENOL	109/kg	420.00 U	780.00 na	510.00 UJ	410.00 U	540.00 U	530.00 U
BIS(2-CHLOROETHOXY)METHANE	ug/kg	750.00 U	70.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 U
2,4-DICHLOROPHENOL	109/kg	750.00 U	8		410.00 U	540.00 U	530.00 U
1,2,4-TRICHLOROBENZENE	ug/kg	750.00 U	8		410.00 U	540.00 U	530.00 U
NAPHTHALENE	ug/kg	420.00 U			410.00 U	540.00 U	530.00 U
4 - CHLOROANILINE	09/kg	420.00 U	_	510.00 UJ	410.00 U	540.00 U	530.00 U
HEXACHLOROBUTAD I ENE	ug/kg	420.00 U	70.00 na	510.00 UJ	410.00 U	540.00 U	530.00 U
4 - CHLORO - 3 - METHY LPHENOL	ug/kg	420.00 U		_	410.00 U	540.00 U	530.00 U
2-METHYLNAPHTHALENE	ug/kg	420.00 U		510.00 UJ	410.00 U	540.00 U	530.00 U
HEXACHLOROCYCLOPENTAD I ENE	ug/kg	420.00 UJ		510.00 UJ	410.00 UJ	540.00 UJ	530.00 UJ
2,4,6-TRICHLOROPHENOL	ug/kg	420.00 U	8			540.00 U	530.00 U
2,4,5-TRICHLOROPHENOL	ug/kg	1,000.00 U		1,300.00 UJ	1,000.00 U	1,400.00 U	1.300.00 U
2-CHLORONAPHTHALENE	Uq/ka	420.00 U			410.00 11	240 00 U	530 00 11
2-NITROANILINE	ug/kg	1,000.00		1,300.00	1,000,00	1,400,00	1,300,00
DIMETHYLPHTHALALTE	ug/kg	420.00 U		510.00 UJ		540.00 U	530.00 U
ACENAPHTHYLENE	ug/kg	420.00 U		_	410.00 U	240.00 U	530.00 U
2,6-DINITROTOLUENE	ug/kg	420.00 U	490.00 UJ	_	410.00 U	540.00 U	530.00 U
3-NITROANILINE	ug/kg	1,000.00 UJ	1, 200.00 UJ	1,300.00	1,000.00 UJ	1,400.00	1,300.00
ACENAPHTHENE	ug/kg	420.00 U	55.00 J	510.00 UJ	410.00 U	71.00	66.00 J

Forest Glen Site AOC 3 - Wooded Wetland · Sediment Organic Compounds

WISD11 06/21/95	0.00 - 0.50		530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 UJ	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 UJ	530.00 U	1,300.00 U	530.00 U	1,300.00 UJ	530.00 U	530.00 U	530.00 U	1,300.00 UJ	0 00.000
WTSD10 06/21/95	0.00 - 0.50		540.00 U	540.00 U	240.00 U	240.00 U	240.00 U	240.00 U	240.00 U	540.00 UJ	240.00 U	240.00 U	240.00 U	540.00 U	240.00 U	240.00 U	240.00 U	240.00 U	540.00 U	240.00 U	540.00 U	240.00 U	540.00 U	240.00 U	240.00 0	540.00 UJ	540.00 U	1,400.00 U	240.00 U	1,400.00 UJ	240.00 U	240.00 U	540.00 U	1,400.00 UJ	20.00
WTSD09 06/21/95	0.00 - 0.50		530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 UJ	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 U	530.00 u	530.00 U	530.00 U	530.00 U	530.00 U	530.00 0	530.00 UJ	530.00 U	1,300.00 U	530.00 U	1,300.00 UJ	530.00 U	530.00 U	530.00 U	1,300.00 UJ	,
WTSD08 06/21/95	0.00 - 0.50		540.00 U	240.00 U	240.00 U	240.00 U	540.00 U	540.00 U	240.00 U	540.00 UJ	240.00 U	540.00 U	240.00 U	240.00 U	540.00 U	240.00 U	540.00 U	240.00 U	540.00 U	240.00 U	240.00 U	540.00 U	540.00 U	540.00 U	240.00 0	540.00 UJ	240.00 U	1,400.00 U	540.00 U	1,400.00	540.00 U	540.00 U	540.00 U	1,400.00 UJ	2000
WTSD07 06/21/95	0.00 - 0.50		540.00 U	240.00 U	540.00 U	540.00 U														240.00 U	240.00 U	240.00 U	540.00 U	540.00 U		540.00 UJ	540.00 U	1,300.00 U	_	1,300.00 UJ	540.00 U	240.00 U	240.00 U	1,300.00 UJ	•
			ug/kg	ug/kg	ug/kg	og/kg	ug/kg	ug/kg	ug/kg	ug/kg		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	מו ומ
SAMPLE NAME SAMPLE DATE TEXT 001	SAMPLE DEPTH	Semivolatiles - Page 1	PHENOL	BIS(2-CHLOROETHYL)ETHER	2-CHLOROPHENOL	1,3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	1, 2-DICHLOROBENZENE	Z-METHYLPHENOL	BIS(2-CHLOROISOPROPYL)ETHER	4-METHYLPHENOL	N-NITROSO-DI-N-PROPYLAMINE	HEXACHLOROETHANE	NITROBENZENE	ISOPHORONE	Z-NITROPHENOL	2,4-DIMETHYLPHENOL	BIS(2-CHLOROETHOXY)METHANE	2,4-DICHLOROPHENOL	1, 2, 4-TRICHLOROBENZENE	NAPHTHALENE	4-CHLOROANILINE	HEXACHLOROBUTADIENE	4-CHLORO-3-METHYLPHENOL	C-REINTLMAPHINALENE	HEXACHLOROCYCLOPENTADIENE	2,4,6-TRICHLOROPHENOL	2,4,5-TRICHLOROPHENOL	2-CHLORONAPHTHALENE	2-NITROANILINE	DIMETHYLPHTHALALTE	ACENAPHTHYLENE	2,6-DINITROTOLUENE	3-NITROANILINE ACENAPHIHENE	

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Organic Compounds

SAMPLE NAME SAMPLE DATE		UTSD01 06/20/95	WTSD02 06/20/95	WTSD03 06/20/95	WTSD04 06/20/95	WTSD05 06/21/95	WTSD06 06/21/95
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50
Semivolatiles - Page 2							
×	ug/kg	1,000.00 U	1,200.00 UJ	1,300.00 UJ	1,000.00	1.400.00 U	1.300.00 U
4-NITROPHENOL	ug/kg	1,000.00 U	1,200.00 UJ	1,300.00 UJ	1,000.00	1,400.00 U	1,300,00 U
DIBENZOFURAN	09/kg	, 420.00 U	750.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 U
2,4-DINITROTOLUENE	09/kg	, 420.00 U	490.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 U
DIETHYLPHTHALATE	09/kg	420.00 U	rn 00.067	510.00 UJ	410.00 U	540.00 U	530.00 U
4-CHLOROPHENYL-PHENYLETHER	09/kg	420.00 U	rn 00.067	510.00 UJ	410.00 U	540.00 U	530.00 U
FLUORENE	ug/kg	420.00 U	490.00 UJ	510.00 UJ	410.00 U	540.00 U	530.00 U
4-NITROANILINE	ug/kg	1,000.00 1		1,300.00 UJ	1,000.00	1,400.00	1,300.00 UJ
4,6-DINITRO-2-METHYLPHENOL	ug/kg	1,000.00 U	1,200.00	1,300.00 UJ	1,000.00	1,400.00 U	1,300.00 U
N-NITROSODIPHENYLAMINE	ug/kg	420.00 U		510.00 UJ	410.00 U	540.00 U	530.00 U
4-BROMOPHENYL-PHENYLETHER	ug/kg	420.00 U		510.00 UJ	410.00 U	540.00 U	530.00 U
HEXACHLOROBENZENE	ug/kg	420.00 U	_	_	410.00 U	540.00 U	530.00 U
PENTACHLOROPHENOL	ug/kg	1,000.00 U	_	1,300.00 UJ	1,000.00	1,400.00 U	1,300.00 U
PHENANTHRENE	ug/kg	230.00 J	340.00 J	190.00	240.00 J	420.00 J	430.00 J
ANTHRACENE	ug/kg	420.00.U	29.00 J	32.00 J	43.00 J	65.00 J	67.00 J
CARBAZOLE	ug/kg	420.00 U	53.00 J	510.00 UJ	45.00 J	86.00 J	87.00 J
DI-N-BUTYLPHTHALATE	ug/kg	58.00 J	70°067	510.00 UJ	r 00.74	r 00.67	75.00 J
FLUORANTHENE	ug/kg	500.00	780.00 J	300.00 J	450.00	890.00	920.00
PYRENE	ug/kg	360.00 J	F 00.065	370.00 J	320.00 J	640.00	670.00
BUTYLBENZYLPHTHALATE	ug/kg	F 00.95	740.00 UJ	510.00 UJ		130.00 J	70.00 J
3,3'-DICHLOROBENZIDINE	ug/kg	420.00 UJ	490.00 UJ	510.00 UJ	410.00 UJ	540.00 UJ	530.00 UJ
BENZO(A)ANTHRACENE	ug/kg	310.00 J	310.00 J	160.00	260.00 J	510.00 J	510.00 J
CHRYSENE	ug/kg	450.00 J	410.00 J	310.00 J	370.00 J	620.00	680.00
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	240.00 J	410.00 J	720.00 J	410.00 UJ	160.00 J	150.00 J
DI-N-OCTYLPHTHALATE	ug/kg	420.00 U	rn 00.067	510.00 UJ	410.00 U	540.00 U	530.00 U
BENZO(B) FLUORANTHENE	ug/kg	× 00.066	810.00 J	620.00 J	750.00 ×	1,300.00 x	1,400.00 x
BENZO(K) FLUORANTHENE	ug/kg	980.00 x	850.00 J	640.00 J	740.00 x	1,300.00 x	1,400.00 x
BENZO(A)PYRENE	ug/kg	330.00 J	390.00 J	260.00 J	300.00	740.00 J	530.00 J
INDENO(1,2,3-CD)PYRENE	ug/kg	270.00 J	240.00 J	180.00 J	150.00 J	S90.00 J	240.00 J
DIBENZO(A, H)ANTHRACENE	ug/kg	450.00 U	80.00	52.00 J	410.00 U	540.00 U	530.00 u
BENZO(G, H, I)PERYLENE	ug/kg	240.00 J	Z60.00 J	220.00 J	160.00 J	280.00 J	390.00 J

Forest Glen Site AOC 3 • Wooded Wetland • Sediment Organic Compounds

SAMPLE NAME		WTSD07 06/21/95	WTS008 06/21/95	WTSD09	WTSD10	WTSD11 06/21/95	
TEXT 001		67 (13 (00	6/113/00	6/12/00	67 (13/00	Orin of Urshin	
SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	105.0 - 00.0	
Semivolatiles - Page 2							
, S	ug/kg	1.300.00 U	1.400.00	1.300.00 U	1,400,00 UJ	1.300.00 UJ	
4-NITROPHENOL	ug/kg	1.300.00 U	1,400.00 U	1,300.00 U	1,400.00 U	1,300.00	
DIBENZOFURAN	ug/kg	540.00 U	540.00 U	530.00 U	540.00 U	530.00 U	
2.4-DINITROTOLUENE	ua/ka	240.00 U	540.00 U	530.00 U	540.00 U	530.00 u	
DIETHYLPHTHALATE	og/ka	540.00 U	540.00 U	530.00 U	540.00 U	530.00 1	
4-CHLOROPHENYL-PHENYLETHER	ug/kg	540.00 U	540.00 u	530.00 0	540.00 U	530.00 U	
FLUORENE	ug/kg	540.00 U	540.00 U	530.00 U	540.00 U	530.00 U	
4-NITROANILINE	ug/kg	1,300.00 UJ	1,400.00 UJ	1,300.00 UJ	1,400.00 UJ	1,300.00 UJ	
4,6-DINITRO-2-METHYLPHENOL	ug/kg	1,300.00 U	1,400.00 U	1,300.00 U	1,400.00 U	1,300.00 U	
N-NITROSODIPHENYLAMINE	ug/kg	540.00 U	540.00 U	530.00 U	540.00 U	530.00 U	
4-BROMOPHENYL-PHENYLETHER	ug/kg	540.00 U	540.00 U	530.00 U	540.00 U	530.00 U	
HEXACHLOROBENZENE	ug/kg	540.00 U	540.00 U	530.00 U	540.00 U	530.00 U	
PENTACHLOROPHENOL	ug/kg	1,300.00 U	1,400.00 U	1,300.00 U	1,400.00 U	1,300.00 U	
PHENANTHRENE	ug/kg	290.00 J	310.00 J	270.00 J	240.00 J	250.00 J	
ANTHRACENE	ug/kg	540.00 U	57.00 J	530.00 U	67.00 J	530.00 U	
CARBAZOLE	ug/kg	240.00 u	540.00 U	62.00 J	540.00 U	530.00 U	
DI-N-BUTYLPHTHALATE	ug/kg	240.00 u	540.00 U	530.00 u	540.00 U	530.00 U	
FLUORANTHENE	ug/kg	620.00	670.00	570.00	720.00 J	450.00 J	
PYRENE	ug/kg	7 00.097	70.00 J	700.00 J	380.00 J	340.00 J	
BUTYLBENZYLPHTHALATE	ug/kg		540.00 UJ	530.00 UJ	540.00 UJ	530.00 UJ	
3,3'-DICHLOROBENZIDINE	ug/kg	240.00 UJ	240.00 U	530.00 UJ	540.00 U	530.00 U	
BENZO(A)ANTHRACENE	ug/kg	330.00 J	350.00 J	310.00 J	310.00 J	260.00 J	
CHRYSENE	ug/kg	760.00	550.00	740.00 J	380.00 J	310.00 J	
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	130.00 J	380.00 J	160.00 J	540.00 U	530.00 U	
DI-N-OCTYLPHTHALATE	ug/kg	240.00 U	240.00 U	530.00 U	540.00 U	530.00 U	
BENZO(B) FLUORANTHENE	ug/kg	× 00.066	1,000.00 x	930.00 x	570.00 x	520.00 xJ	
BENZO(K)FLUORANTHENE	ug/kg	× 00.086	1,100.00 x	920.00 x	620.00 x	260.00 x	
BENZO(A)PYRENE	ug/kg	360.00 J	500.00 J	370.00 J	330.00 J	280.00 J	
INDENO(1,2,3-CD)PYRENE	ug/kg	270.00 J	260.00 J	170.00 J	220.00 J	190.00 J	
DIBENZO(A, H) ANTHRACENE	ug/kg	540.00 U	540.00 U	530.00 u	540.00 U	530.00 u	
BENZO(G, H, I)PERYLENE	ug/kg	270.00 J	320.00 J	250.00 J	250.00 J	230.00 J	

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Organic Compounds

SAMPLE NAME SAMPLE DATE		WTSD01 06/20/95	UT SD 02 06/20/95	WTSD03 06/20/95	WTSD04 06/20/95	WTSD05 06/21/95	WTSD06 06/21/95
TEXT 001 SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50
Pesticides/PCBs							
ALPHA-BHC	ug/kg	۲.40 ک	4.60 J	5.50 J	U.47 NJ	2.80	4.50
BETA-BHC	ug/kg	2.10 U	2.10 J	8.10 NJ		a	~
DELTA-BHC	ug/kg	2.10 U	~	~		~	æ
gamma-BHC (Lindane)	ug/kg	~	~	2.70 UJ		2.80 U	2.80 U
HEPTACHLOR	ug/kg	2.10 U	2.50 UJ	2.70 UJ	2.10 UJ	2.80 03	2.80 03
ALDRIN	ug/kg	2.10 U	2.50 UJ	2.70 UJ		2.80 U	2.80 U
HEPTACHLOR EPOXIDE	ug/kg	2.10 U	2.50 U	0.36		79.0	2.80 U
ENDOSULFAN 1	ug/kg	2.10 U	2.50 UJ	2.70 UJ		2.80 U	e
DIELDRIN	ug/kg	4.10 U		5.20 U		5.40 U	5.40 U
4,4'-DDE	ug/kg	7.60		12.00 J		4.50 J	7.60
ENDRIN	ug/kg	4.10 U	7.90 UJ	5.20 UJ	4.10 UJ	5.40 U	5.40 U
ENDOSUL FAN 11	ug/kg	4.10 ∪		1.90 J	4.10 UJ	5.40 U	5.40 U
0007'7	ug/kg	4.10 U		~		5.40 U	5.40 U
ENDOSULFAN SULFATE	ug/kg	œ		ಜ		5.40 U	1.20 J
100-17'7	ug/kg	4.10 U		8		5.40 U	5.40 U
METHOXYCHLOR	ug/kg	~		27.00 UJ	21.00 UJ	28.00 U	28.00 U
ENDRIN KETONE	ug/kg	αc	CN 06.0	ಜ		0.77 NJ	1.70 J
ENDRIN ALDEHYDE	ug/kg	œ				5.40 U	2.40 U
ALPHA-CHLORDANE	ug/kg	0.69 J				0.46 J	~
GAMMA-CHLORDANE	ug/kg	2.10 U				2.80 U	2.80 U
TOXAPHENE	ug/kg	210.00 U				280.00 U	280.00 U
AROCLOR 1016	ug/kg	41.00 U				54.00 U	54.00 U
•	ug/kg	84.00 U				110.00 U	110.00 U
AROCLOR 1232	ug/kg	41.00 U				54.00 U	54.00 U
AROCLOR 1242	ug/kg	41.00 U	79.00 UJ	52.00 UJ	41.00 UJ	54.00 U	54.00 U
•	ug/kg	41.00 U				54.00 U	54.00 U
AROCLOR 1254	ug/kg	68.00 J				ر 1.00	110.00 J
ARÓCLOR 1260	ug/kg	41.00 U				54.00 U	54.00 U

forest Glen Site AOC 3 - Wooded Wetland - Sediment Organic Compounds

	2.70 J 3.90 NJ 2.80 U 8.48 J 0.48 J 0.49 NJ 8.40 U 7.70 J	3.10 J 8.30 J 8.30 J 8.20 UJ 1.30 J	0.00 - 0.50 s 2.50 J 3.50 J 2.70 U	0.00 - 0.50° 1.90 J 3.10 NJ 2.80 U 8.36 J	Dup of WTSD10 0.00 - 0.50 1.80 J R. 2.70 UJ R. 0.50 J 0.50 J	
CBS Ug/kg		3.10 J 6.30 J 8.30 J 2.80 UJ	2.50 J 3.50 J 2.70 U 2.70 UJ	1.90 J 3.10 J 2.80 U 8.36 J	1.80 J 2.70 UJ R 0.50 J 0.36 NJ	
100x1DE		3.10 J 6.30 J 2.80 UJ	2.50 J 3.50 J 2.70 U 2.70 U	2.80 C. 80 C	1.80 J R. 2.70 UJ R. 8 J 0.50 J 0.36 NJ	
Indane) Ug/kg		6.30 J 8.80 UJ 1.30 J	8.50 J 2.70 U 2.70 U	78.23.00.00	2.70 UJ R R 0.50 J 0.36 NJ	
indane) ug/kg		6.30 J R R 2.80 UJ 1.30 J	3.50 J 2.70 U 2.70 U	2.10 2.80 0.36 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	2.70 UJ R R 0.50 J 0.36 NJ	
Indane)		2.80 UJ	2.70 U 2.70 U	2.80 U 0.36 J	R R 0.50 J 0.36 NJ	
POXIDE US/kg	87.00 C 87.70	2.80 UJ 1.30 J	2.70 UJ	0.36	0.50 J 0.36 NJ	
POXIDE U9/kg	0.48 J 0.49 NJ 7.70 U	2.80 UJ 1.30 J	2.70 UJ R	0.36 J	0.50 J 0.36 NJ	
POXIDE	0.49 NJ 8.40 U 7.70 J	1.30 J		20 00	0.36 NJ	
1 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg 19/kg	7.70 J	~	~	- N		
1	5.40 U R R R			1 20 1	~	
1 US/kg US/kg US/kg US/kg US/kg US/kg US/kg US/kg US/kg US/kg US/kg	7.70 J R	æ	2.10 NJ	25.03.	1.40 NJ	
1 Ug/kg Ug/kg Ug/kg Ug/kg NE Ug/kg Ug/kg Ug/kg Ug/kg Ug/kg	~ ~	5.40 U	2	5.00 N	LN 09.4	
1 US/kg US/kg US/kg US/kg US/kg US/kg US/kg US/kg US/kg US/kg	~	~	· 00	2	2	
US/kg		~	· 00	: 00	: 00	
ULFATE US/kg	~	œ	e	· 04	: 04	
L L L L L L L L L L L L L L L L L L L	~	2.80 J	~	œ	~ ~	
E U9/kg		~	5.30 03	~	~	
18/48 18/48 18/48 18/48 18/48 18/48 18/48	~	œ	~	œ	: a c	
48/kg 48/kg 48/kg 48/kg 68/kg	~	5.40 UJ	~	œ	~	
49/kg 49/kg 49/kg 69/kg	2.40 U	œ	5.30 UJ	~	~	
ANE ug/kg ug/kg ug/kg ug/kg	0.81	0.94 ا	0.58 J	œ	~	
ug/kg ug/kg ug/kg ug/kg	2.80 U	0.23 NJ	0.21 NJ	œ	~	
	~	œ	œ	~	~	
	~	~	~	· œ	•	
1232	~	~	œ	œ	: c c	
	~	~	œ	œ	~	
	~	œ	œ	œ	· 0x	
	~	œ	~	œ	~	
1254	~	110.00	œ	~	~	
AROCLOR 1260 ug/kg R	~	~	œ	~	~	

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Inorganic Analytes

Market M								
Analytes mg/kg 22,900.00* 18,100.00* 25,700.00* 222,400.00* 19,000.00 mg/kg 22,900.00* 18,100.00* 25,700.00* 222,400.00* 15,500.00 mg/kg 1,500.00 150.00 160.00 165.00 mg/kg 1,100 10 150.00 165.00 mg/kg 1,100 10 150.00 165.00 mg/kg 2,500.00 150.00 155.00 mg/kg 1,100 10 150.00 155.00 mg/kg 2,500.00 150.00 150.00 155.00 mg/kg 2,500.00 150.00 150.00 150.00 mg/kg 2,500.00 150.00 150.00 150.00 mg/kg 2,500.00 150.00 150.00 150.00 mg/kg 1,000 10 150.00 mg/k	SAMPLE NAME SAMPLE DATE		WTSD01 06/20/95	WTSD02 06/20/95	WTSD03 06/20/95	WTSD04 06/20/95	WTSD05 06/21/95	WTSD06 06/21/95
Analytes mg/kg 22,900.00 * 18,100.00 * 25,700.00 * 19,000.00 * 19,000.00 mg/kg 5.20 UNJ 7.60 UNJ 5.70 UNJ 5.80 UNJ 4.50 UNJ	TEXT 001 SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50
maykg 22,900.00 * 18,100.00 * 25,700.00 * 19,000.00 maykg 5.20 UNJ 7.60 UNJ 5.70 UNJ 5.80 UNJ 4.50 UNJ maykg 182.00 170.00 180.00 180.00 170.00 maykg 182.00 1.76 B 0.76 B 0.78 B 1.70 B maykg 5,900.00 4,800.00 5,120.00 5,220.00 5,200.00 maykg 5,900.00 4,800.00 5,120.00 5,200.00 5,200.00 maykg 1,00 25,500.00 33,500.00 28,000.00 25,200 5,200.00 maykg 1,00 25,500.00 33,500.00 28,000.00 25,700.00 25,000.00 maykg 2,000.00 5,010.00 7,930.00 6,980.00 25,000.00 25,000.00 maykg 2,000.00 1,810.00 7,930.00 6,980.00 2,570.00 25,000.00 maykg 2,800.00 1,810.00 3,360.00 2,550.00 2,570.00 2,570.00 2,570.00 maykg	Inorganic Analytes							
mg/kg 5.20 UNJ 4.60 UNJ 5.70 UNJ 5.80 UNJ 4.50 UNJ mg/kg 180.00 180.00 165.00 170.00 mg/kg 180.00 180.00 180.00 165.00 170.00 mg/kg 180.00 4,850.00 4,850.00 5,120.00 5,200.00 42.90 mg/kg 5,960.00 4,850.00 5,120.00 5,220 45.90 42.90 mg/kg 16.00 25,20 35,20 45.90 45.90 45.90 mg/kg 16.00 25,20 35,20 45.90 45.90 45.90 mg/kg 20,600.00 25,200 33,500.00 28,600.00 25,890.00 mg/kg 1,600 5,610.00 7,930.00 28,600.00 5,890.00 mg/kg 27,600 61.00 7,930.00 25,200 290.00 25,200 mg/kg 2,800.00 3,500.00 3,500.00 25,200 290.00 25,200 mg/kg 1,200 1,000 25,200	ALUMINUM	mg/kg	22,900.00	18,100.00 *	25,700.00 *	22,400.00 *	19,000.00	21,100.00
mg/kg 5.10 7.60 6.30 6.20 5.90 mg/kg 182.00 180.00 180.00 170.00 mg/kg 0.77 B 0.27 U 0.34 U 17.0 B mg/kg 5,960.00 4,850.00 5,120.00 5,200.00 5,200.00 mg/kg 5,960.00 4,850.00 5,120.00 5,200.00 4,500.00 5,200.00 mg/kg 16.00 25,200.00 33,500.00 46.90 5,200.00 4,600.00 5,200.00 4,600.00 5,200.00 15.20 B 4,600.00 5,200.00 15.20 B 15.20 B 4,600.00 2,200.00 15.20 B 4,600.00 2,200.00 15.20 B	INTIMONY	mg/kg	5.20 UNJ	CNU 09.7	5.70 UNJ	5.80 UNJ	4.50 UNJ	CNU 09.4
Mark	RSENIC	mg/kg	5.10	2.60	6.30	6.20	5.90	7.70
mg/kg 0.77 B 0.77 B </th <th>SARIUM</th> <th>ma/ka</th> <td>182.00</td> <td>150.00</td> <td>180.00</td> <td>165.00</td> <td>170.00</td> <td>180.00</td>	SARIUM	ma/ka	182.00	150.00	180.00	165.00	170.00	180.00
Majkg 5,960.00 4,850.00 5,120.00 5,020.00 5,200.00 majkg 5,960.00 4,850.00 5,120.00 5,020.00 6,20 majkg 5,960.00 15,00 15,00 16,30 15,20 15,20 majkg 16,00 29,20 33,500.00 16,30 16,30 15,20 majkg 29,660.00 29,500.00 29,500.00 23,900.00 majkg 7,860.00 5,610.00 7,930.00 6,980.00 25,900.00 majkg 7,860.00 5,610.00 7,930.00 6,980.00 25,900.00 majkg 2,800.00 1,810.00 3,360.00 2,650.00 2,570.00 majkg 1,20 1,30 2,00 1,40 1,30 8 400.00 majkg 4,35.00 8 307.00 8 4,220 1,60 1,60 1,70 1,70 1,70 majkg 4,35.00 4,10 1,90 1,90 8 4,010 3,760 1,70	ERYLLIUM	mg/kg	0.77 8	0.76 8	0.96 8	0.74 8	1.30 8	1.40 B
Market 5,960.00 4,850.00 5,120.00 5,020.00 5,200.00 market 52.20 36.70 53.20 45.90 42.90 market 16.90 29.20 43.80 40.90 43.00 market 29,600.00 29.20 43.80 43.00 43.00 43.00 43.00 43.00 market 29,600.00 25,500.00 25,500.00 25,000.00 25,000.00 market 2860.00 5,610.00 7,930.00 6,980.00 25,900.00 market 276.00 6,610.00 7,930.00 6,980.00 25,900.00 market 276.00 1,810.00 3,360.00 2,650.00 2,270.00 market 435.00 1,810.00 1,30 8,40.00 1,30 8,30.00 market 435.00 1,90 1,40 1,50 8,40.00 1,60 1,50 1,60 1,70 1,60 1,60 1,70 1,60 1,60 1,70 1,60 1,60 1,60 1,70 1,60 1,60 1,70 1,60 1,60 1,70 1,60 1,7	ADMIUM	mg/kg	1,10 8	0.27 U	0.33 U	0.34 U	1.40 B	1.40 B
Mag/kg 52.20 36.70 53.20 45.90 42.90 mag/kg 46.00 25,500.00 25,500.00 26,600.0	ALCIUM	mg/kg	5.960.00	4.850.00	5.120.00	5.020.00	5,200.00	6.340.00
Majkg 16.00	HROHIUM	ma/ka	52.20	36.70	53.20	45.90	42.90	65.00
Majkg 1,6,90 29,20 43,80 40,90 48,60 J majkg 29,600.00	OBALT	mg/kg	16.00	15.90	15.40	16.30	15.20 B	16.50 8
mg/kg 29,600.00 * 25,500.00 * 33,500.00 * 28,600.00 * 23,900.00 mg/kg	OPPER	mg/kg	06.99	29.20	43.80	40.90	f 09.87	43.70 J
mg/kg 109:00 96:80 104:00 91:00 100:00 mg/kg 7,860:00 * 5,610:00 * 7,930:00 * 6,980:00 * 5,890:00 mg/kg 274:00 616:00 252:00 290:00 259:00 mg/kg 37:90 30:50 39:20 259:00 259:00 mg/kg 2,800:00 1,810:00 3,360:00 2,650:00 2,270:00 mg/kg 435:00 1,20 B 1,30 B 2,00 B 4,00:00 B 390:00 B mg/kg 435:00 B 307:00 B 442:00 B 400:00 B 370:00 B mg/kg 41:10 J 35:40 J 47:20 J 40:10 J 37:00 J mg/kg 41:10 J 35:40 J 47:20 J 40:10 J 37:00 J mg/kg 0.69 U 0.62 U 0.73 U 0.79 U 0.82 U	ROM	mg/kg	29,600.00	25,500.00	33,500.00 *	28,600.00	23,900.00	28,100.00
mg/kg 7,860.00 * 5,610.00 * 7,930.00 * 6,980.00 * 5,890.00 mg/kg 274.00 616.00 252.00 290.00 259.00 mg/kg 37,90 30.50 39.20 36.70 31.10 mg/kg 2,800.00 1,810.00 3,560.00 2,650.00 2,270.00 mg/kg 1,20 B 1,30 B 2,00 B 4,270.00 8 90.75 U 0.82 U mg/kg 435.00 B 307.00 B 442.00 B 400.00 B 390.00 B mg/kg 4,110 J 35.40 J 47.20 J 40.10 J 37.00 J mg/kg 4,110 J 35.40 J 47.20 J 40.10 J 374.00 J mg/kg 0.69 U 0.62 U 0.73 U 0.79 U 0.82 U	EAD	mg/kg	109.00	96.80	104.00	91.00	100.00	114.00
mg/kg 274.00 616.00 252.00 290.00 259.00 mg/kg 0.55 0.63 97.7 0.82 0.76 mg/kg 2,800.00 1,810.00 3,360.00 2,650.00 2,270.00 mg/kg 1,20 B 1,30 B 2,00 B 4,270.00 2,870.00 2,870.00 mg/kg 435.00 B 307.00 B 442.00 B 400.00 B 390.00 B mg/kg 41.10 J 35.00 B 37.00 J 47.20 J 40.10 J 37.00 J mg/kg 41.10 J 35.00 B 374.00 J 374.00 J 374.00 J mg/kg 40.10 J 374.00 J 374.00 J 374.00 J 374.00 J	AGNESIUM	mg/kg	7,860.00	5,610.00 *	7,930.00 *	6,980.00	5,890.00	6,670.00
mg/kg 0.55 0.63 0.71 0.82 0.76 mg/kg 2,800 37.90 36.70 31.10 31.10 mg/kg 2,800 0.64 1,810.00 3,36.00 2,650.00 2,270.00 mg/kg 4.20 0.75 0 0.77 0 0.82 0 mg/kg 435.00 8 307.00 8 442.00 8 400.00 8 390.00 8 mg/kg 41.10 35.40 47.20 47.20 40.10 37.00 1.70	ANGANESE	mg/kg	274.00	616.00	252.00	290.00	259.00	319.00
mg/kg 2,800.00 1,810.00 3,36.70 3,5.70 31.10 mg/kg 2,800.00 1,810.00 3,36.70 2,570.00 mg/kg 1,268 1.308 2.00 1,810.00 mg/kg 435.008 307.008 442.008 1.308 0.89 U mg/kg 41.10 1 35.40 1 47.20 1 40.00 8 374.00 NJ mg/kg 343.00 214.00 288.00 250.00 374.00 NJ	ERCURY	mg/kg	0.55	0.63	0.71	0.82	0.76	0.93
mg/kg 2,800.00 1,810.00 3,360.00 2,650.00 2,270.00 mg/kg 0.68 U 0.61 U 0.75 U 0.77 U 0.82 U 0.82 U 0.77 U 0.82 U 0.82 U 0.75 U 0.77 U 0.82 U 0.89 U	ICKEL	mg/kg	37.90	30.50	39.20	36.70	31.10	34.90
mg/kg 0.68 U 0.61 U 0.75 U 0.77 U 0.82 U 0.82 U 0.77 U 0.82 U 0.82 U 0.82 U 0.82 U 0.82 U 0.83 U 0.84 U 0.85 U 0.89 U 0.8	OTASSIUM	mg/kg	2,800.00	1,810.00	3,360.00	2,650.00	2,270.00	2,600.00
mg/kg 1.20 B 1.30 B 2.00 B 1.30 B 0.89 U mg/kg 435.00 B 307.00 B 442.00 B 400.00 B 390.00 B 390.00 B 1.40 U 1.90 B 1.60 B 1.60 U 1.70 U 1.60 U 1.70 U 1.60 U 1.70 U 1.60 U 1.70 U 1.70 U 1.60 U 1.70 U 1.60 U 1.70 U 1.70 U 1.60 U 1.70 U	ELENIUM	mg/kg	0.68 U	0.61 U	0.3C	0.77 U	0.82 U	0.84 ∪
mg/kg 435.00 8 307.00 B 442.00 B 400.00 B 390.00 B 1.70 U 1.60 B 1.60 U 1.70 U 1.70 U 1.60 B 1.70 U	ILVER	mg/kg	1.20 8	1.30 B	2.00 8	1.30 B	0.89 U	0.90 u
mg/kg 1.40 U 1.90 B 1.60 U 1.70 U mg/kg 41.10 J 35.40 J 47.20 J 40.10 J 37.60 J mg/kg 343.00 214.00 288.00 250.00 374.00 NJ mg/kg 0.69 U 0.62 U 0.73 U 0.79 U 0.82 U	W100	mg/kg	435.00 B	307.00 B	442.00 B	400.00 B	390.00 B	397.00 B
mg/kg 41.10 J 35.40 J 47.20 J 40.10 J mg/kg 343.00 214.00 288.00 250.00 mg/kg 0.69 0.62 U 0.73 U 0.79 U	HALLIUM	mg/kg	1.40 U	8	1.60 B	1.60 u	1.70 U	1.70 U
mg/kg 343.00 214.00 288.00 250.00 mg/kg 0.69 0.62 0 0.73 u 0.79 u	ANADIUM	mg/kg	41.10 J	35.40 J	47.20 J	40.10 J	37.60 J	41.20 J
mg/kg 0.69 0.62 U 0.73 U 0.79 U	INC	mg/kg	343.00	214.00	288.00	250.00	374.00 NJ	313.00 NJ
	YANIDE	mg/kg	0.69 U	0.62 U	0.73 U	0.79 U	0.82 U	0.84 U

Forest Glen Site AOC 3 - Wooded Wetland - Sediment Inorganic Analytes

SAMPLE NAME SAMPLE DATE		W1SD07 06/21/95	WTSD08 06/21/95	WTSD09 06/21/95	WTSD10 06/21/95	WTSD11 06/21/95	
TEXT 001 SAMPLE DEPTH		0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	0.00 - 0.50	Dup of WTSD10 0.00 - 0.50	
Inorganic Analytes							
ALUMINUM	mq/kg	23,400.00	23,300,00	25,300.00	20.300.00	20.400.00	
ANTIMONY	mg/kg	5.10 UNJ	4.60 UNJ	4.80 UNJ	4.30 UNJ	4.20 UNJ	
ARSENIC	mg/kg	5.60	5.60	7.60	5.40	6.30	
BARIUM	mg/kg	185.00	189.00	192.00	154.00	154.00	
BERYLLIUM	mg/kg	1.50 8	1.40 B	1.50 B	1.30 8	1.30 B	
CADMIUM	ma/ka	1.20 B	1.50 B	1.20 B	1.30 8	1.00 8	
CALCIUM	mg/kg	5.600.00	5.710.00	5, 750,00	7.450.00	7.640.00	
CHROM TUM	mg/kg	53.50	53.20	49.30	40.70	41.90	
COBALT	mg/kg	15.80 B	16.70 B	16.40 B	14.70 B	14.80 B	
COPPER	mg/kg	51.90 J	f 00.65	39.80	37.00 J	37.20 J	
IRON	mg/kg	26.800.00	26.300.00	28.500.00	24, 200, 00	24.800.00	
LEAD	ma/ka	111.00		86.90	•	85.20	
MAGNESTUM	mg/ka	7,100,00	7,030,00	7, 280, 00	6.290.00	6.290.00	
MANGANESE	ma/ka	226.00	232.00	215.00	251.00	250.00	
MERCURY	mg/kg	0.72	0.93	1.50	0.81	0.77	
NICKEL	mg/kg	36.70	37.00	36.30	33.30	32.70	
POTASSIUM	mg/kg	2.870.00	3,090.00	3,330.00	2,240.00	2,340.00	
SELENIUM	mg/kg	0.94 U	0.84 U	0.89 ∪	0.79 ∪	0.77 U	
SILVER	mg/kg	1.00 U	0.91 U	0.96 U	0.85 U	0.83 U	
S001UH	mg/kg	8 00 897	484.00 B	405.00 B	314.00 B	308.00 B	
THALLIUM	mg/kg	1.90 U	1.70 U	1.90 U	1.60 U	1.60 U	
VANADIUM	mg/kg	43.30 J	43.80 J	44.70 J	38.80 J	39.00 J	
ZINC	mg/kg	284.00 NJ	314.00 NJ	332.00 NJ	227.00 NJ	230.00 NJ	
CYANIDE	mg/kg	0.91 U	0.83 U	0.90 U	0.80 U	0.76 U	

AOC4 - EAST GILL CREEK SURFACE WATER DATA

			Fores AOC 4 - East Gil Conventi	Forest Glen Site AOC 4 - East Gill Creek - Surface Water Conventional Parameters	Le		02/20/1996 3:09 PM Page 1
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		GCSW1 08/25/95 BACKGROUND Round 1	GCSW2 08/24/95 Round 1	GCSW3 08/24/95 Round 1	GCSW5 08/24/95 Dup of GCSW3 Round 1	GCSW4 08/24/95 Round 1	
Conventinal Parameters PH SULFIDE TOTAL ORGANIC CARBON TOTAL SOLIDS	units mg/kg mg/kg						
TOTAL SOILDS (EXTENDED) ALKALINITY AMMONIA BOD	× 1/0°E	270.00	165.00	171.00	173.00	163.00	
COD TOTAL DISSOLVD SOLIDS HARDNESS NITRATE/NITRITE TOTAL KJELDAHL NITROGEN WET	1/6 1/6 1/6 1/6	1,400.00 1,480.00 J	1,760.00 540.00 J	1,850.00 672.00 J	1,740.00 680.00 J	878.00 480.00 J	

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Targeted Organic Compounds

SAMPLE NAME			GCSW1	GCSW2	£AS39	CCSNS	CCSW4
SAMPLE DATE			08/55/95	08/54/95	08/54/95	08/24/95	08/24/95
SAMPLE DEPTH		2	BACKGROUND Round 1	Round 1	Round 1	Dup of GCSN3 Round 1	Round 1
Targeted Semivolatiles							
PHENYL ISOTHIOCYANATE	1/60	•	n 00.	0.00 €	6.00 U	5.00 U	5.00 u
DIPHENYLAMINE	3	•	n 00.	6.00 U	6.00 U	5.00 U	5.00 U
2-MERCAPTOBENZOTHIAZOLE	7	•	n 00.	6.00 U	6.00 U	5.00 U	5.00 U
2-ANILINOBENZOTHIAZOLE	- - - -	•	n 06	6.00 U	6.00 U	5.00 U	5.00 u
PERYLENE	3	•	n 00.	0.00 €	6.00 U	5.00 U	2.00 U
ANILINE	7/85	•	n 00.	6.00 U	6.00 U	5.00 U	5.00 U
N.N-DIPHENYL-1,4-BENZENEDIAMIN US/	1/60 NI	•	n 00.	6.00 U	6.00 U	5.00 U	5.00 u
PHENOTHIAZINE) 60	•	n 00.	6.00 U	6.00 U	5.00 U	5.00 u
BENZOTHIAZOLE	1/60	•	6.00 U	0 00.9	0 00.9	5.00 U	5.00 U

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Organic Compounds

SAMPLE DEPTH VOLATILES CHLOROMETHANE BROMOMETHANE		08/25/95	08/54/95	08/24/95		08/24/95	
VOI at i Les CHLOROMETHANE BROMOMETHANE		Round 1	Round 1	Round 1	Round 1	Round 1	
CHLOROMETHANE							
BROMOMETHANE	1/60	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	
	1/60	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	
VINYL CHLORIDE	1/60	10.00 U	10.00 U		10.00 U	10.00 U	
CHLOROETHANE	1/60	_	10.00 U	10.00 U	10.00 U	10.00 U	
METHYLENE CHLORIDE	1/8	10.00 U	10.00 U		10.00 U	10.00 U	
ACETONE	1/5		15.00 U	15.00 U	10.00 U	10.00 U	
CARBON DISULFIDE	1/60	_	10.00 U	3.00 J	7.00 J	10.00 U	
1,1-DICHLOROETHENE	1/60		10.00 U	10.00 U	10.00 U	10.00 U	
1,1-DICHLOROETHANE	1/6n	10.00 u	10.00 U	10.00 U	10.00 U	10.00 U	
1,2-DICHLOROETHENE (total)	1/60		10.00 U	10.00 U		10.00 U	
CHLOROFORM	1/60	10.00 u	10.00 U		10.00 U	10.00 U	
1,2-DICHLOROETHANE	1/60	10.00 u	10.00 U			10.00 U	
2-BUTANONE	1/60	10.00 U	10.00 U			10.00 U	
1,1,1-TRICHLOROETHANE	1/60	10.00 u	10.00 U	10.00 U		10.00 U	
CARBON TETRACHLORIDE	1/60	10.00 u	10.00 U			10.00 U	
BROMOD I CHLOROMETHANE	1/60	_	10.00 U			10.00 U	
1,2-DICHLOROPROPANE	1/60	10.00 U	10.00 u			10.00 U	
cis 1,3-DICHLOROPROPENE	1/60	_	10.00 U	_		10.00 U	
TRICHLOROETHENE	1/60	10.00 U	10.00 U			1.00 1	
DIBROMOCHLOROMETHANE	1/60	_	10.00 U			10.00 U	
1,1,2-TRICHLOROETHANE	1/60		10.00 U			10.00 U	
BENZENE	J/gn	10.00 U	10.00 U			10.00 U	
trans 1,3-DICHLOROPROPENE	1/60	_	10.00 U		10.00 U	10.00 U	
BROMOFORM	1/60		10.00 ⊔			10.00 U	
4-METHYL-2-PENTANONE	1/6n	10.00 u	10.00 U			10.00 U	
2-HEXANONE	1/60	10.00 U	10.00 U	10.00 U		10.00 U	
TETRACHLOROETHENE	J/gn	10.00 U	10.00 U	10.00 U		f 00.7	
1,1,2,2-TETRACHLOROETHANE	1/gn	10.00 U	10.00 u	10.00 U		10.00 U	
TOLUENE	ng/l	10.00 U	10.00 u	10.00 U		10.00 U	
CHLOROBENZENE	J/gn	10.00 U	10.00 U	10.00 u		10.00 U	
ETHYLBENZENE	ng/l	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	
STYRENE	J/Bn	10.00 U	10.00 U	10.00 U		10.00 U	
XYLENES (total)	1/gn	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Organic Compounds

SAMPLE NAME		GCSU1	CUSUS	SCSU3	9CSU5	37S29
2440		30/36/00	30776780	70/76/00	20/76/80	30/ 76/ 80
TEXT ON		CA/CZ/00	64/43/90	09/54/73		76/54/50
15X1 001		BALKGKUUND		•	DUP OF GLOWS	
SAMPLE DEPTH		Round 1	Round 1	Round 1	Round 1	Round 1
Semivolatiles - Page 1						
DARMO I	7	1000	11 00 01	10001	10 00 11	10.00
DISCO-CHI COCTUVI VETUED	3	9		=======================================	= 00.01	1000
DISCE-CHEMOCINIC/CINER	3	:				
2-CHLOROPHENOL	1/60	10.00		10.00	10.00	0.00
1,3-DICHLOROBENZENE	1/60	œ		10.00 U	10.00 U	10.00 U
1.4-DICHLOROBENZENE	1/80	~		10.00 U	10.00 U	10.00 U
1 2-DICHIORORENZENE	7,01	· œ		10.01	10.00	10.00 u
2-METHYL DARKOL	/ P	100 01		= 00 01	= 00 01	
BICCO-CUI DOOLGOOBOOKI VETUEB						
פו פל ב- רער האסו פה אחר ור זבו עבא	3					
4-METHYLPHENOL	1/6	10.00 U		0 00 0	10.00	
N-NITROSO-DI-N-PROPYLAMINE	7/85	~		10.00 ∪	10.00 u	
HEXACHLOROETHANE	1/85	œ		10.00 U	10.00 U	
MITROBENZEME	7/97	œ		10.00 U	10.00 U	
I SOBIORONE	/6	. •		100.01	10.00	
2. NI TROBLENO		5 5		28		
2 / PINCHEROL	3			3 8		
2,4-DIMETHYLPHENOL	5	10.00		3		
BIS(2-CHLOROETHOXY)METHANE	1/60	œ		10.00 U	10.00 U	
2,4-DICHLOROPHENOL	1/60	10.00 U		8		
1.2.4-TRICHLOROBENZENE	1/8	œ		8		
NAPHTHALENE	7/9	œ		8		
4-CHLOROANILINE	7/8	~		8		
HEXACHLOROBUTAD LENE	1/90	•		8		
4-CHLORO-3-METHYL PHENDI	[/Bn	10.00 U		10.00 U	10.00 U	
2-METHYL NAPHTHALENE	1/60		10.00	0		10.00 u
HEXACHI OROCYCI OPENTAD I FUE	1/61	: 04		8		
2 4 A-TRICHIOPOPHENOI	· / 6	10001		1000	100.01	
2 / 5 TB ICHI OBODIENO	, i	25.00		2 2		
C, 4, J-IRICALCACTACACL		0.00.0		38		
2-CHLORONAPHTHALENE	1/6n	~		2		
2-NITROANILINE	1/gn	œ		8		
DIMETHYLPHTHALALTE	1/6n	~		8	10.00 U	
ACENAPHTHYLENE	1/60	œ		8		
2,6-DINITROTOLUENE	J/bn	~	10.00 UJ	10.00 ∪	10.00 U	10.00 u
3-NITROANILINE	1/60	~		8	25.00 U	25.00 U
ACENADATHENE	1/61	: •		2	10.00	10.00 u
		4		9		

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Organic Compounds

SAMPLE NAME		GCSW1	GCSW2	SUS GC SUS	\$USD8	77325	
SAMPLE DATE		08/25/95	08/24/95	08/24/95	08/26/05	08/27/05	
TEXT 001		BACKGROUND		20124	00 CT CT CT CT CT CT CT CT	C4 (\$3 (00	
SAMPLE DEPTH		Round 1	Round 1	Round 1	Round 1	Round 1	
Semivolatiles - Page 2							
	3	11 00 50	8	5	. 00	: 80	
	3	2.00.00	38	3	0 00.53	0.00.0	
_	1/60	0 00.62	8	8	25.00 U	25.00 U	
	1/80	œ	8	8	10.00 u	10.00 u	
2.4-DINITROTOLUENE	1/00	~	٤	2	= 000		
	1/00/	· ca	88	88	200		
UCNVI CTUED	, ,	: 0	38	2		200-0	
	3	¥ (38	3	0.00	0.00	
		*	3	9	10.00	10.00 U	
	1/60	œ	8	8	25.00 U	25.00 U	
NOL	- 1/85	25.00 U	8	8	25.00 U	25.00 11	
	7	~	8	2	= 00 01	= 60.01	
FE	1/91	: 0	88	2	-		
		٠.	38	2	2000	0.00	
	3	:	38	3	0.00	0.00	
HENOL	1/6n	25.00 0	8	2	25.00 U	25.00 U	
¥	ug/l	1.00.1	8	8	10.00 U	10.00 U	
ш	ug/t	~	8	8	10.00 U	10.00 U	
CARBAZOLE	l/gu	~	8	8	10.00 1	10.00	
DI-N-BUTYLPHTHALATE	1/60	~	8	2	. T		
FLUORANTHENE	1/60	3.00 J	8	2	10.00	1000	
PYRENE	1/60	2.00 J	8	2	2000	= 00 01	
BUTYLBENZYLPHTHALATE	1/80		8	2	20001	= 00 01	
DINE	1/60	~	8	2	30.01	= 00 01	
	1/00/	. ~	8	2		= 0000	
)/gn	1.00 1	10.00	= 00:01		- 00:01	
HY! HEXY! SOUTHA! ATE	,	10000	8	2			
	7	20.0	38	2 2	10.00	0.00.0	
	- 6	¥ (3	2	0.00.0	0.00	
	ng/l	5.00 J	8	8	10.00 u	10.00 U	
NTHENE	1/6n	1.00 1	8	8	10.00 U	10.00 U	
	1/bn	1.00 J	8	2	10.00 u	10.00	
INDENO(1,2,3-CD)PYRENE	l/bn	~	8	2	10.00 u	10.00 u	
	1/60	•	8	2	10001	= 60 0	
	1/61	: 0	38	2	2000	200	
	. /6.	•	3	2	0.00		

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Organic Compounds

SAMPLE NAME		GCSW1	GCSW2	6CSH3	SUST	54SD5	
SAMPLE DATE		08/25/95	50/7/80	50/77/0	56/76/0	78/24/05	
TEXT 001		BACKGROUND			Dun of GCSU3		
SAMPLE DEPTH		Round 1	Round 1	Round 1	Round 1	Round 1	
Destinited/PCBs							
A101A-010	, .						
	3		7	20.0		2	
מבוץ מוני	3	CK (0.0	71.0	61.0			
DELTA-BHC)/ 6 0	0.05 U	0.05 U	0.05 U	0.05 U	0.05 u	
gamma-8KC (Lindane)	1/60	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
HEPTACHLOR	/85	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
ALDRIN	1/95	0.05 U	0.05 U	0.05 U	0.05 U	0.05	
HEPTACHI OR FPOXIDE	/01	1 50 0	= 50	= 50 0	= 50	= 50	
	•	- 100	2000		-	-	
ENDOSOLIAN	8	0.00	0.00	0.00	0.03	0.00	
DIELDRIN	- - - - - - - - - - - - - - - - - - -	0.10 ∪	0.10 U	0.10 U	0.10 U	0.10 U	
7.4'-DDE	7/65	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	
ENDRIN	1/60	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	
ENDOSULFAN 11	1/60	0.01	0.10 u	0.10 U	0.10 0	0.10 u	
000-17-7	1/67	2 01 0	01.0	= 000	200	2010	
ENDOCH FAN SHI FATE	7/61	- 200	=======================================	=======================================	= = = = = = = = = = = = = = = = = = = =	= =====================================	
/ / - DOT	, i		-				
100 + 4	1/6n	× (0.10 0	0.10 0	_	0.10 0	
METHOXYCHLOR	1/6n	0.50 U	0.50 U	0.50 U	_	0.50 U	
ENDRIN KETONE)/ 6 0	0.10 U	0.10 U	0.10 ∪	0.10 U	0.10 u	
ENDRIN ALDEHYDE)/ 6 0	0.10 U	0.10 U	0.10 U	_	0.10 U	
ALPHA-CHLORDANE	1/6n	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
GAMMA-CHLORDANE	1/60	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
TOXAPHENE	1/60	5.00 U	2.00 U	00.5	5.00 U	S.00 U	
AROCLOR 1016	1/01		1,00 1	1.00 1		1.00 U	
	1/01	1 00 2	100 6	= 00 2	= 00 2	- 00 -	
	, (A)						
_ •	1/6n	0.00.	0.00.	0.00.0	0.00.	0.00.	
_)/6n		J.00 L	1.00 U	1.00 U	1.00 U	
•	1/6n	1.00 U	1.00 ∪	1.00 U	1.00 U	1.00 U	
_	1/6n	1.00 U	1.00 U	1.00 ∪	1.00 U	1.00 U	
ARGCLOR 1260	J/Bn	1.00 U	1.00 U	1.00 u	1.00 U	1.00 U	

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Inorganic Analytes

SAMPLE NAME		10CSD1	SUSUS	GCSW3	SCSWS	5/NS35	
SAMPLE DATE		08/25/95	08/24/95	08/24/95	08/24/95	08/24/95	
TEXT 001		BACKGROUND			Dup of GCSW3		
SAMPLE DEPTH		Round 1	Round 1	Round 1	Round 1	Round 1	
Inorganic Analytes							
ALUMINUM	1/80	143,000.00	72,500.00	22,400.00	38,300.00	4,380.00	
ANTIMONY	1/80	17.60 BNJ	15.70 BNJ	12.80 UNJ	12.80 UNJ	12.80 UNJ	
ARSENIC	3	38.40	13.90	6.10 8	8.90 B	3.80 U	
BARIUM	1/80	1.140.00 EJ	599.00 EJ	254.00 EJ	386.00 EJ	89.00 BE	
BERYLLIUM	1/80	f 06.9	3.30 BJ	1.00 BJ	1.80 BJ	0.40 U	
CADMIUM	1/85	9.50 J	4.90 UJ		4.90 UJ	4.90 UJ	
CALCIUM	3	538,000,00 EJ	297,000.00 EJ		210,000.00 EJ	106,000.00 EJ	
CHROMIUM	7/85	1,250.00			156.00	59.90	
COBALT	3	90.20	44.50 B	15.60 B	27.80 8	5,90 U	
COPPER	3	428.00 EJ	130.00 EJ	42.20 EJ	75.20 EJ	10.70 BE	
IRON	3	179,000,00 EJ	90,700.00 EJ	27,300.00 EJ	48,100.00 EJ	4,810.00 EJ	
LEAD	7/95	1,250.00	190.00	59.00	112.00	7.80 J	
MAGNESIUM	7	191,000,00 EJ	85.600.00 EJ	52,000.00 EJ	63,100.00 EJ	25,100.00 EJ	
MANGANESE	7/8	3.970.00	1,710.00	•	1,220.00	418.00	
MERCURY	3	5,50	1.00	0.42	0.63	0.20 U	
NICKEL	1/60	271.00 J	102.00 J	35.10 8	58.60	9.50 U	
POTASSIUM	1/65	29,000.00 EJ	18,500.00 EJ	9,140.00 EJ	12,400.00 EJ	4,430.00 BE	
SELENIUM) S	10.50 J	4.20 B	3.60 U	5 00 B	3.60 U	
SILVER	3	2.50 U	2.50 U	2.50 U	2.50 U	2.50 U	
SODIUM	1/65	490,000,004	410,000.00 E*J	384,000.00 E*J	410,000.00 E*J	154,000.00 E*J	
THALLIUM	1/60	4.70 U	4.70 U	4.70 U	4.70 U	4.70 U	
VANADIUM	1/60	294.00 EJ	133.00 EJ	43.30 BE	73.20 EJ	11.30 BE	
ZINC	1/gn	7,530.00	1,820.00	580.00	1,050.00	113.00	
CYANIDE	1/6n	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	

			Forest G AOC 4 - East Gill C Targeted Orga	Forest Glen Site • - East Gill Creek - Surface Water Targeted Organic Compounds	,		02/28/1996 4:10 PM Page 1
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		GCSW1-B 11/10/95 BACKGROUND Round 2	GCSW2-B 11/10/95 Round 2	GCSW3-B 11/09/95 Round 2	GCSN5-B 11/09/95 Dup of GCSN3-B Round 2	GCSW4-B 11/09/95 Round 2	GCSW6-B 11/09/95 Round 2
Targeted Semivolatiles PHENYL ISOTHIOCYANATE DIPHENYLAMINE 2-MERCAPTOBENZOTHIAZOLE 4-ANILINOBENZOTHIAZOLE UG/1 PERYLENE N, N-DIPHENYL-1,4-BENZENEDIAMIN UG/1 PHENOTHIAZINE UG/1 BENZOTHIAZOLE UG/1	-	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	0.000.0	888888888 988888888 988888888	0.000.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

02/28/1996 4:06 РМ Раде 1

SAMPLE NAME SAMPLE DATE		GCSW1-8 11/10/95	GCSW2-B 11/10/95	GCSW3-B 11/09/95	-;	GCSW4-B 11/09/95	GCSW6-B 11/09/95
SAMPLE DEPTH		Round 2	Round 2	Round 2	Round 2	Round 2	Round 2
Volatiles							
BROMOMETHANE	5 5	10.00	00.01	0.00	0.00	10.00	0.00
VINYI CHIORIDE	/ 0	1000					
CHLOROETHANE	7/85	10.00 U			10.00 n	10.00	10.00 u
METHYLENE CHLORIDE	1/60						10.00 U
ACETONE	7	10.00 UJ			10.00 U	10.00 U	10.00 U
CARBON DISULFIDE	ر گ	10.00 U			10.00 U	10.00 U	10.00 U
1, 1-DICHLOROETHENE	1/65			10.00 U	10.00 U	10.00 U	10.00 U
	1/8			10.00 U	10.00 U	10.00 U	10.00 U
1,2-DICHLOROETHENE (total)	5			10.00 U	10.00 U	10.00 U	10.00 U
CHLOROFORM	3			10.00 U	10.00 u	10.00 U	10.00 u
1, 2-DICHLOROETHANE	7			10.00 U	10.00 u	10.00 U	10.00 U
Z-BUTANONE	<u>ار</u>			10.00 U	_	10.00 U	10.00 U
1,1,1,1-TRICHLOROETHANE	7			10.00 U	10.00 U	10.00 U	10.00 U
CARBON TETRACHLORIDE	7/85	10.00 U		10.00 U	10.00 u	10.00 U	10.00 U
BROMOD I CHLOROME THANE	1/65		10.00 U	10.00 U		10.00 U	10.00 U
1, 2-DICHLOROPROPANE	1/65	10.00 U		10.00 U	10.00 u	10.00 U	10.00 U
CIS 1,3-DICHLOROPROPENE	7	10.00 u	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
TRICHLOROETHENE	7/8		10.00 U	10.00 U	10.00 u	10.00 U	10.00 U
DIBROMOCHLOROMETHANE	7	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 0
1,1,2-TRICHLOROETHANE	7		10.00 U	10.00 U		10.00 u	10.00 U
BENZENE + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1/60	10.00	0.00.01	0.00.00		0.00	10.00 0
DECAMOROPH	5			0.00	0.00	90.00	0.00
2-METHYL -2-PENTANONE	3					999	
2-HEVANONE	,			5			
TETOACHIODOETHENE	7					0.00	
1 + 2 2-TETBACH OBOCTUANE	7		0.00	5.00.2	5.00.2	F 00.4	7 00.0
1, 1, 2, 2 - IE I RACHLUKUE I HANE	1/60			0.00.01	0.00.0	0.00	0 00 01
CHIOCHE	1/60		0.00	00.00	0.00	0.00	0.00
ETAYI BENJENE	7	50.00		200			200
CINICACAC	7			9			
XYI FNES (total)	7/95	0.00	2000	9.5	2000	2000	20.00
			2 22:21	2 22:21	2 22:21	2 2012	5 55:51

			Forest AOC 4 - East Gill Organic	forest Glen Site t Gill Creek - Surface Water Organic Compounds			02/28/1996 4:07 PM Page 1
SAMPLE NAME SAMPLE DATE TEXT 001 SAMPLE DEPTH		GCSW1-8 11/10/95 BACKGROUND Round 2	GCSW2-B 11/10/95 Round 2	GCSN3-B 11/09/95 Round 2	GCSU5-8 11/09/95 Dup of GCSU3-8 Round 2	GCSW4-8 11/09/95 Round 2	GCSW6-8 11/09/95 Round 2
Semivolatiles - Page 1 PHENOL RISCA-CHIORDETHYLYETHER	1/6n	0.4	3.90 U	3.90 U	0.00.7	0 07.7	0.75 0.00.7
2-CHLOROPHENOL 1,3-DICHLOROBENZENE	7/85	0.74 0.00.74	3.90 U	3.90 U	00.7	0 07.7	0 00.7
1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	7/65			3.80 0	0 00.7	0 07.7	7 00 n
2-METHYLPHENOL BIS(2-CHLOROISOPROPYL)ETHER	7 5		3.90 U 3.90 U	3.90 U 3.90 U	0 00. 7	0 07.7 0 07.7	88
4-METHYLPHENOL N-NITROSO-DI-N-PROPYLAMINE	7 7 8 8	¬ ¬ 00.7	3.90 U	3.90 U 3.90 U	n 00.7	0 07.7 0 07.7	n 00.7
HEXACHLOROETHANE NITROBENZENE	7/5		3.90 U		00.4 00.4	n 07.7	
I SOPHORONE 2 - NI TROPHENOL	7 7 8 8 8 8 8 8 8	D D :	n n :			0 07.7 0 07.7	
2,4-DIMEINTLPHENOL BIS(2-CHLOROETHOXY)METHANE 2,4-DICHLOROPHENOL	7 / S	900	3.88 3.88 3.88	3.90 U	0.44	0 04.4 0 04.4 0 04.4	0 00.4 0 00.7 0 00.7
1,2,4-TRICHLOROBENZENE NAPHTHALENE	1/65	00.7	3.90 n 0.00 n 0.00 n	3.90 u		U 04.4	
4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL	7 6 60		3.80 3.80 3.80 0	3.90 u 3.90 u 3.90 u	0 00.7 0 00.7 0 0 0.7	n n n o o o o o o o o o o o o o o o o o	n n n 00.4 7 00.4
2-METHYLNAPHTHALENE HEXACHLOROCYCLOPENTADIENE	1/6n 1/6n					35.00 U	4.00 U 32.00 U
2,4,5-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHIODONADHINALENE	1/6n	0.44	3.90 0	3.50 c	00.4	0 04.4	00.4
2-NITROANILINE DIMETHYLPHTHALALTE)/6n		3.90 u	3.30 c. s.		0 0 0 7 . 7 4 . 7	7.00 c
ACENAPHTYLENE 2,6-DINITROTOLUENE 3-NITROANILINE	1/6n 1/6n	0.7 0.00.7 0.00.7	3.90 u	3.90 U		n 07.7	n 00.7
ACENAPHTHENE	ng/l	0 00.7	3.90 U	3.90 U	7.00 0	7.40 0	7.00 U

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Organic Compounds

SAMPLE NAME SAMPLE DATE		GCSW1-B 11/10/95	GCSW2-8 11/10/95	GCSW3-B 11/09/95	GCSW5-B 11/09/95	GCSW4-B 11/09/95	GCSW6-B 11/09/95
SAMPLE DEPTH		Round 2	Round 2	Round 2	Dup of GCSW3-B Round 2	Round 2	Round 2
Semivolatiles - Page 2							
2,4-DINITROPHENOL	1/6n	32.00 U	31.00 U	31.00 U	32.00 U	35.00 U	32.00 U
4-NITROPHENOL	1/gn	7.00 U	3.90 ∪	3.90 U	7.00 U	0 07.7	4.00 U
DIBENZOFURAN	1/60	7.00 U	3.90 U	3.90 U	4.00 U	4.40 U	00.7
2,4-DINITROTOLUENE	1/60	7.00 U	3.90 ∪	3.90 U	4.00 U	0 07.7	00.7
DIETHYLPHTHALATE	1/60		3.90 U	3.90 ∪	7.00 U	0 07.7	0 00.4
4-CHLOROPHENYL-PHENYLETHER	1/55		3.90 U	3.90 U	7.00 U	0 07.7	4.00 U
FLUORENE	1/6n		3.90 ∪		7.00 U	0 07.7	4.00 U
4-NITROANILINE	7/55		3.90 U		7.00 U	4.40 U	4.00 U
4,6-DINITRO-2-METHYLPHENOL	1/60		31.00 U		32.00 U	35.00 U	32.00 U
H-NITROSODIPHENYLAMINE	1/60		3.90 U		7.00 U	0 07.7	4.00 U
4-BROMOPHENYL-PHENYLETHER	1/6n	4.00 U	3.90 U	3.90 U	7.00 U	7.40 n	4.00 U
HEXACHLOROBENZENE	1/60		3.90 U		0 00.4	0 05°5	4.00 U
PENTACHLOROPHENOL	1/60		7.80 U		7.90 U	8.70 U	8.10 U
PHENANTHRENE	1/6n		3.90 U	3.90 U	7.00 U	0 07.7	7.00 U
ANTHRACENE	1/6n	7.00 U	3.90 u	3.90 ⊔	4.00 U	0 07.7	00.4
CARBAZOLE	1/60	4 2	YX	4 2	¥N	¥.	¥
DI-N-BUTYLPHTHALATE	1/6n		3.90 U	3.90 ∪	7.00 U	0 05.7	7.00 u
FLUORANTHENE	1/6n		3.90 U	3.90 ∪	7.00 U	0.20 J	7.00 U
PYRENE	1/6n		3.90 U	3.90 U	7.00 U	0 07.7	4.00 U
BUTYLBENZYLPHTHALATE	1/gn	7.00 U	3.% □	3.90 ∪	0.20 J	7.40 U	7.00 U
3,3'-DICHLOROBENZIDINE	1/6n	¥	4 2	YN	¥	¥.	¥
BENZO(A)ANTHRACENE	ng/l		3.90 U	3.90 U	7.00 U	0 05.7	7.00 U
CHRYSENE	1/6n		3.90 ∪	3.90 ∪	7.00 U	7.40 U	7.00 U
BIS(2-ETHYLHEXYL)PHTHALATE	1/6n		3.90 U	3.90 ∪	7.00 U	0 05.7	7.00 u
DI-N-OCTYLPHTHALATE	1/60		3.90 U	3.90 U	7.00 U	0 07.7	7.00 U
BENZO(B)FLUORANTHENE	1/gn		3.90 U	3.90 U	7.00 U	0.20 J	7.00 U
BENZO(K)FLUORANTHENE	1/6n	7.00 U	3.90 U	3.90 U	7.00 U	0 07.7	7.00 U
BENZO(A)PYRENE	1/6n		3.90 ∪	3.90 ∪	7.00 U	0 07.7	7.00 U
INDENO(1,2,3-CD)PYRENE	J/gn		3.90 U	3.90 U	4.00 U	4.40 U	00.4
DIBENZO(A, H) ANTHRACENE	1/60		3.90 U	3.90 ∪	7.00 U	7.40 U	7.00 U
BENZO(G, H, 1) PERYLENE	1/6n	7.00 U	3.90 u	3.90 u	7.00 U	7.40 U	7.00 U

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Organic Compounds

SAMPLE NAME		GCSW1-B	GCSW2-8	GCSW3-B	GCSW5-8	GCSW4-B	GCSW6-B
TEXT 001		BACKGROUND	11/10/75	11/09/73	Oup of GCSW3-B	C Puriod	11/04/73
אחרוב טבריה		אמשות כ	S DIMON	Z DAIDON	2 Puncu	Z DIMON	2 DUDON
Pesticides/PCBs							
ALPHA-BHC	1/6n	0.10 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
BETA-BHC	1/60	0.10 u	0.11 J	0.10 J	0.12 J	0.07 J	0.06
DELTA-BHC	1/60	0.10 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
gamma-BHC (Lindane)	1/60	0.10 u	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
HEPTACHLOR	1/60	0.10 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
ALDRIN	1/60	0.10 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
HEPTACHLOR EPOXIDE	1/60	0.10 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
ENDOSUL FAN 1	1/60	0.10 ∪	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
DIELDRIN	1/60	0.20 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
4,4'-DDE	1/60	0.20 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
ENDRIN	1/60	0.20 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
ENDOSULFAN 11	1/60	0.20 U	0.10 U	0.10 U	0.10 U	0.10 U	
000-17'7	1/gn		0.10 U	0.10 U	_	0.10 U	2
ENDOSULFAN SULFATE	J/gn		0.10 U	2	_	0.10 U	2
4,4'-DDT	J/6n		0.10 u	0.10 ∪	0.10 U	0.10 U	2
METHOXYCHLOR	1/60	1.00 U	0.50 U	ន	_	0.50 U	0.50 U
ENDRIN KETONE	1/60		0.10 U	0.10 U	0.10 U	0.10 U	2
ENDRIN ALDEHYDE	J/gn		0.10 U	0.10 U	2	0.10 U	0.10 U
ALPHA-CHLORDANE	J/6n	0.10 U	0.05 U	0.05 U	_	0.05 U	_
GAMMA-CHLORDANE	1/6n		0.05 U	0.05 U		0.05 U	8
TOXAPHENE	l/gu		5.00 U	5.00 U	_		_
AROCLOR 1016	1/gn	0.40 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
AROCLOR 1221	1/6n		0.40 U	0.40 U	_		_
-	1/60		0.20 U	0.20 U	0.20 U		
	1/60	_	0.20 U	0.20 U	0.20 U		0.20 U
	1/60	0.40 U	0.20 U	0.20 U	0.20 U		0.20 U
	-/s	0.40 U	0.20 U		0.20 U	0.20 U	
	1/6n	0.40	0.20 U		0.20 0	0.20	

Forest Glen Site AOC 4 - East Gill Creek - Surface Water Inorganic Analytes

SAMPLE NAME		GCSW1-B	GCSW2-8	GCSW3-B	8-SNS25	GCSW4-B	8-9MS29
SAMPLE DATE		11/10/95	11/10/95	11/09/95	11/09/95	11/09/95	11/09/95
SAMPLE DEPTH		Round 2	Round 2	Round 2	Round 2	Round 2	Round 2
Inorganic Analytes							
ALUMINUM	J/gn	291.0	309.0	205.0	220.0	1650.0	539.0
ANTIMONY)/gu	0.09	0.09 0.09	0.09 0.09	0.09	0.00 U	0.09
ARSENIC	1/6n	10.0 U	10.0	10.0 0	10.0 0	10.0	10.0 0
BARIUM)/go	, 200.0 U	200.0 0	200.0 0	200.0 U	200.0	200.0 U
BERYLLIUM	1/ 6 n	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CADMIUM)/6n	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CALCTUM)/gn	105000.0	103000.0	103000.0	100000.0	0.000%	1114000.0
CHROMIUM	1/Bn	27.0	11.0	12.0	10.0 U	13.0	139.0
COBALT	7/85	50.0 U	50.0 U	50.0 U	50.0 U	50.0 U	50.0 U
COPPER	1/60	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U
IRON	l/gu	492.0	566.0	347.0	366.0	2710.0	836.0
LEAD	1/60	3.0 ∪	3.0 U	3.0 U	3.0 ∪	8.5	3.0 U
MAGNESIUM	1/6n	35000.0	36000.0	35000.0	34000.0	32000.0	30000.0
MANGANESE	1/6n	35.0	0.95	36.0	36.0	171.0	0.44
MERCURY	1/6n	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
NICKEL	1/60	0.04	70.07	0.04	0.04	40.0 U	70.0 U
POTASSIUM	1/6n	5000.0 U	5000.0 U	5000.0 U	2000.0 U	2000.0 u	2000.0 U
SELENIUM	1/6n	4.8	8.1	8.7	8.2	9.0	9.1
SILVER	1/6n	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
SOUTUM	1/6n	162000.0	133000.0	128000.0	126000.0	0.0006	102000.0
THALLIUM	1/6n	10.0 U	10.0 u	10.0 ∪	10.0 U	10.0 U	10.0 U
VANADIUM	1/60	50.0 U	50.0 U	50.0 U	50.0 U	50.0 U	50.0 U
ZINC	1/5	54.0	48.0	42.0	42.0	79.0	48.0
CYANIDE)/Bn	10.3	10.0 U	12.0	10.9	10.0 U	13.6
	i						

SURFACE WATER ALKALINITY, HARDNESS, AND TOTAL DISSOLVED SOLIDS FOREST GLEN SITE NIAGARA FALLS, NEW YORK

	≺	Alkalinity	Har	Hardness ¹	Total Disso	Total Dissolved Solids
Sample Location				(mg/l)	/mg/	(mg/l)(%)
	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
Surface Water						
GCSW2	165	200	540 J	388	1760	867
GCSW3	171	200	672 J	340	1850	753
GCSW4	163	170	480 J	376	878	809
GCSW52	173	161	680	352	1740	729
GCSW6	,	140		364	•	165
Background		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
GCSWI	270	210	1480 J	384	1400	903
Maximum Value	173	200	680	388	1850	867
Minimum Value	163	140	480 J	352	878	591
Arithmetic Mean'	191	176	565 J	369	1478	702

Measured as calcium carbonate.
 Duplicate of GCSW3. Averaged value used for the calculation of the mean.
 Not including background location value.
 Not analyzed or sampled not collected.

AOC4 - EAST GILL CREEK SEDIMENT DATA

Forest Glen Site AOC 4 - East Gill Creek - Sediment Conventional Parameters

SAMPLE NAME		60501	GCSD2	\$0SD3	SCSD5	70809	
SAMPLE DATE		08/25/95	08/24/95	08/24/95	08/24/95	08/24/95	
TEXT 001		BACKGROUND	•		Dup of GCSD3		
SAMPLE DEPTH		0-0.5' Round 1					
Conventinal Parameters							
舌	S) ts	6.80	9.90	6.90	6.70	6.80	
SULFIDE	mo/ka	828.00	00'277	24.40	30.50	35.70	
TOTAL ORGANIC CARBON	mg/kg	118,000.00	00.009.99	34,600.00	41.800.00	00.500.00	
TOTAL SOLIDS	**	24.40	•	55.10	56.00	56.10	
TOTAL SOILDS (EXTENDED)	×	27.80	38.10	57.70	54.00	57.90	
ALKALINITY	الم						
AMMONIA	1/00						
800	1/6m						
83	1/00	-					
TOTAL DISSOLVD SOLIDS	1/61						
HARDNESS)/ <u>b</u> m						
NITRATE/WITRITE	1/6						
TOTAL KJELDAHL NITROGEN	1/6m						

Forest Glen Site AOC 4 - East Gill Creek - Sediment Grain Size Analysis

SAMPLE NAME SAMPLE DATE		6CSD1 08/25/95	GCSD2 08/24/95	GCSD3 08/24/95	GCSD5 08/24/95	6CSD4 08/24/95	
SAMPLE DEPTH		BACKGROUND 0-0.5' Round 1	0.0.5' Round 1	0-0.5' Round 1	Dup of GCSD3 0-0.5' Round 1	0-0.5' Round 1	
Grain Analysis		_					
GRAVEL	×	4.20 J	0.00	15.50 J	10.60 J	0.00 J	
SAND (A) COARSE	×	5.80	0.20	4.20	5.70	0,0	
SAND (8) MEDIUM	×	2.80	0.10	1.80	3.10	2.20	
SAND (C) FINE	×	4.20	8.0	6.20	7.10	15.70	
SAND (D) FINE	×	0.00	0.30	1.10	1.30	3.80	
SILTS/CLAYS (<0.075 NM)	×						
SILT (A)	×	27.40	15.10	22.10	21.40	16.30	
S1LT (B)	×	16.50	19.00	10.70	6.90	15.40	
CLAY	×	17.10	28.70	14.10	18.90	17.80	
COLLOIDS	×	15.80	35.60	25.80	27.60	28.30	
TOTALS FOR GROUP	ı	94.70	8.%	101.50	105.60	100.10	

Forest Glen Site AOC 4 - East Gill Creek - Sediment Targeted Organic Compounds

SAMPLE NAME	10000	CCSD2	CCSD3	\$0SD9	70SD9	
SAMPLE DATE	08/25/95	08/54/95	08/54/95	08/54/95	08/54/95	
TEXT 001	BACKGROUND			Dup of GCSD3		
SAMPLE DEPTH	U-U.S' KOUNG 1	U-U.5' Kound 1	0-0.5' Round 1	U-U-3' KOUNG 1	0-0.5' Kound I	
Targeted SemiVolatiles						
PHENYL ISOTHIOCYANATE UG/kg	600.009	400.00 UJ	300.00 U	300.00 U	300.00 U	
DIPHENYLAMINE Ug/kg	600.00 UJ	400.00 UJ	300.00 U	300.00 U	300.00 U	
2-MERCAPTOBENZOTHIAZOLE Ug/kg	600.00 UJ	400.00 UJ	300.00 u	300.00 U	2,000.00 J	
2-ANILINOBENZOTHIAZOLE ug/kg	, 600.00 UJ	f0 00.00†	800.00	300.00 U	6,000.00 pJ	
PERYLENE Ug/kg	r 00 007	400.00 UJ	300.00	300.00	200.00 J	
	600.009	700.00 M	300.00 u	300.00 U	300.00 U	
N,N-DIPHENYL-1,4-BENZENEDIAMIN Ug/kg	600.00 UJ	700.00 UJ	300.00	600.00 J	300.00	
PHENOTHIAZINE Ug/kg	600.00 UJ	400.00 UJ	300.00 U	300.00 U	300.00 U	
BENZOTHIAZOLE ug/kg	F0 00.009	700.00 UJ	300.00 U	300.00 U	700.00	

Forest Glen Site AOC 4 - East Gill Creek - Sediment Organic Compounds

SAMPLE NAME		GCSD1	GCSD2	GCSD3	GCSD5	9CSD4	
SAMPLE DATE		08/25/95	08/54/95	08/54/95	08/24/95	08/24/95	
SAMPLE DEPTH		BACKGROUND 0-0.5' Round 1	0-0.5' Round 1	0-0.5' Round 1	Dup of GCSD3 0-0.5' Round 1	0-0.5' Round 1	
Valatilas							
VOI BE LIES	•						
CHLOROMETHANE	09/kg		31.00 UJ	18.00 U	16.00 U	20.00 U	
BKCHONE I HAME	03/80 03/80			18.00 U	16.00 U	20.00 U	
VINYL CHLORIDE	09/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
CHLOROETHANE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
METHYLEME CHLORIDE	la/ka		8	100 81	100 41	= 00 00	
ACETONE	2//5	100.00	38	200	500.72	2000	
CAPRON DISHIFTDE	2/6	20.00		200	14:00	20.00	
1 1-DICH COCTUENE	4/5		38	200		200.00	
1 1-01CH OBOCTHANE	3		3 8	200	0.00.7	00.00	
1, 1 of the Carolinane)			0.00	0.00.0	0 00.07	
1,2-DICHLORUEIMENE (TOTAL)	5 × 5	58.00 03		18.00 0	16.00 U	Z0.00 U	
CHLOROFORM	09/kg			18.00 U	16.00 U	20.00 U	
1,2-DICHLOROETHANE	09/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
2-BUTANONE	69/kg	37.00 J		18.00 U	16.00 J	7.00	
1,1,1-TRICHLOROETHANE	09/kg	38.00 01		18.00 U	16.00 U	20.00 U	
CARBON TETRACHLORIDE	69/kg	38.00 UJ		18.00 ∪	16.00 U	20.00 U	
BROMOD I CHLOROMETHANE	19/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
1,2-DICHLOROPROPANE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
cis 1,3-DICHLOROPROPENE	69/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
TRICHLOROETHENE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
DIBROMOCHLOROMETHANE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
1,1,2-TRICHLOROETHANE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
BENZENE	ug/kg	38.00 UJ		18.00 ∪	16.00 U	20.00 U	
trans 1,3-DICHLOROPROPENE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
BROMOFORM	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
4-METHYL-2-PENTANONE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
2-HEXANONE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
TETRACHLOROETHENE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
1,1,2,2-TETRACHLOROETHANE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
TOLUENE	ug/kg	38.00 UJ		18.00 ∪	16.00 U	20.00 U	
CHLOROBENZENE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
ETHYLBENZENE	ug/kg	38.00 UJ	31.00 UJ	18.00 U	16.00 U	20.00 U	
STYRENE	ug/kg	38.00 UJ		18.00 U	16.00 U	20.00 U	
XYLENES (total)	ug/kg	38.00 uJ		18.00 U	16.00 U	20.00 U	

Forest Glen Site AOC 4 · East Gill Creek · Sediment Organic Compounds

SAMPLE DATE		08/25/95	98/24/95 08/24/95	GCSD3 08/24/95	8	CCSD4 08/54/95	
SAMPLE DEPTH		0-0.5' Round 1	0-0.5' Round 1	0.0.5' Round 1	0-0.5' Round 1	0-0.5' Round 1	
Semivolatiles - Page 1							
PHENOL	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	910.00	
BIS(2-CHLOROETHYL)ETHER	ug/kg	1,300.00 UJ	1,000.00	590.00 U	520.00 U	650.00 U	
2-CHLOROPHENOL	ug/kg	1,300.00 UJ	1,000.00 1	590.00 U	520.00 U	650.00 U	
1, 3-DICHLOROBENZENE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
1,4-DICHLOROBENZENE	ug/kg	1,300.00 UJ	1,000.00	590.00 U	520.00 U	650.00 U	
1,2-DICHLOROBENZENE	ug/kg	1,300.00 UJ	1,000.00	590.00 U	520.00 U	650.00 U	
2-METHYLPHENOL	ug/kg	1,300.00 UJ	_	590.00 U	520.00 U	650.00 U	
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	1,300.00 UJ	1,000.00	590.00 0	520.00 U	650.00 U	
4-METHYLPHENOL	ug/kg	1,300.00 UJ		590.00 U	520.00 U	430.00 J	
N-NITROSO-DI-N-PROPYLAMINE	ug/kg	1,300.00 UJ	_	590.00 U	520.00 U	650.00 U	
HEXACHLOROETHANE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
NITROBENZENE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
I SOPHORONE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
2-NITROPHENOL	ug/kg	1,300.00 UJ	1,000.00	590.00 U	520.00 U	650.00 U	
2,4-DIMETHYLPHENOL	ug/kg	1,300.00 UJ		590.00 U	520.00 U	f 00.007	
BIS(2-CHLOROETHOXY)METHANE	ug/kg	1,300.00 UJ		590.00 U	520.00 U	650.00 U	
2,4-DICHLOROPHENOL	ug/kg	1,300.00 UJ		590.00 U	520.00 U	650.00 U	
1,2,4-TRICHLOROBENZENE	ug/kg	1,300.00 UJ		590.00 U	520.00 U	650.00 u	
NAPHTHALENE	ug/kg	1,300.00 UJ		590.00 U	520.00 U	650.00 U	
4-CHLOROANILINE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
HEXACHLOROBUTAD I ENE	ug/kg	1,300.00 UJ	_	590.00 U	520.00 U	650.00 U	
4-CHLORO-3-METHYLPHENOL	ug/kg	1,300.00 UJ		590.00 U	520.00 U	650.00 U	
2-METHYLNAPHTHALENE	ug/kg	1,300.00 UJ		590.00 U	520.00 U	650.00 U	
HEXACHLOROCYCLOPENTADIENE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
2,4,6-TRICHLOROPHENOL	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
2,4,5-TRICHLOROPHENOL	ug/kg	3,200.00 UJ	2,600.00 UJ	1,500.00 U	1,300.00 U	1,600.00 U	
2-CHLORONAPHTHALENE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
2-NITROANILINE	ug/kg	_	_	1,500.00 U	1,300.00 U	1,600.00 U	
DIMETHYLPHTHALALTE	ug/kg	_	1,000.00	590.00 U	520.00 U	650.00 U	
ACENAPHTHYLENE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	650.00 U	
2,6-DINITROTOLUENE	ug/kg		1,000.00 UJ	590.00 U	520.00 U	650.00 U	
3-NITROANILINE	ug/kg	3,200.00 UJ	2,600.00 UJ	1,500.00 U	1,300.00 U	1,600.00 U	
ACENAPHTHENE	ug/kg	1,300.00 UJ	1,000.00 UJ	590.00 U	520.00 U	260.00 J	

Forest Glen Site AOC 4 - East Gill Creek - Sediment Organic Compounds

		1					
SAMPLE NAME		GCSD1	CCS05	6CSD3	60505	\$C.SD	
TEXT 001		BACKGBCHND	64/43/90	64/47/00	C4/47/00	00/54/43	
SAMPLE DEPTH		0-0.5' Round 1					
Semivolatiles - Page 2							
NO.	og/ko	3.200.00	2,600,00 UJ	1,500,00 U	1.300.00 U	1.600.00 U	
M-MITPOPHENOI	2//	111 00 000 %		1 500 003,1	200.002,		
DIBENZOFURAN	04/kg		1,000,00	20.005	520.00	110.00	
2 4-DINITENT	4/5			20000	20.00	. 00 037	
DIETHYI DUTHAL ATE	24/6			200.003	00.026	0.00.00	
A-rui Obobutati - butavi etura			50,000,	390.00	0 00.025	0 00.000	
CLINDENE	2	200.00	_	0.00.06	220.00 U	650.00 0	
LOOKENE .	3		3	0.00.0	0.00.0	140.00	
4-NITROANILINE	00/kg		_	1,500.00 U	1,300.00 U	1,600.00 U	
4,6-DINITRO-2-METHYLPHENOL	og/kg		2,600.00 UJ	1,500.00 U	1,300.00 U	1,600.00 U	
N-NITROSODIPHENYLAMINE	ug/kg	1,300.00 uJ	_	590.00 U	520.00 U	00.006	
4-BROMOPHENYL-PHENYLETHER	ug/kg	1,300.00 UJ		590.00 U	520.00 U	650.00 U	
HEXACHLOROBENZENE	ca/kg	1,300.00 UJ	_	590.00 U	520.00 U	650.00 U	
PENTACHLOROPHENOL	cg/kg	3,200.00	8	1,500.00 U	1.300.00 U	1.600.00 U	
PHENANTHRENE	og/kg	700.096	8	140.00 J	160.00	1,200.00	
ANTHRACENE	ug/kg	190.00	1,000.00 1	590.00 U	520.00 U	350.00 J	
CARBAZOLE	ug/kg	160.00 J		590.00 U	520.00 U	220.00 J	
DI-N-BUTYLPHTHALATE	09/kg	1,300.00 UJ	_	590.00 u	84.00 J	93.00 J	
FLUORANTHENE	ug/kg	2,400.00 J	1,400.00 J	370.00 J	360.00 J	1,900.00	
PYRENE	64/6 0	1,700.00 J	780.00 P	250.00 J	270.00 J	1,500.00	
BUTYLBENZYLPHTHALATE	9/kg	1, 300.00 UJ	1,000.00	590.00 u	520.00 U	650.00 U	
3,3'-DICHLOROBENZIDINE	ug/kg	1,300.00	1,000.00	590.00 u	520.00 U	650.00 U	
BENZO(A)ANTHRACENE	ug/kg	820.00 J	70.007	140.00 J	150.00 J	1,000.00	
CHRYSENE	ug/kg	1,400.00 J	930.00 J	230.00 J	230.00 J	1,200.00	
BIS(2-ETHYLHEXYL)PHTHALATE	ug/kg	700.00	410.00 J	140.00 J	180.00 J	370.00 J	
DI-N-OCTYLPHTHALATE	ug/kg	1,300.00 UJ	1,000.00 1	590.00 U	520.00 U	650.00 U	
BENZO(8) FLUORANTHENE	ug/kg	1,600.00	1,200.00	290.00	300.00	1,200.00	
BENZO(K)FLUORANTHENE	ug/kg	1,200.00	750.00 J	190.00 J	190.00 J	710.00	
BENZO(A)PYRENE	ug/kg	1,100.00	750.00 J	200.00	Z00.00 J	1,000.00	
INDENO(1,2,3-CD)PYRENE	ug/kg	680.00 J	510.00 J	120.00 J	160.00 J	540.00 J	
D1BENZO(A, H)ANTHRACENE	ug/kg	300.00	230.00 J	62.00 J	83.00 J	360.00 J	
BENZO(G, H, I)PERYLENE	ug/kg	650.00 J	480.00 J	120.00 J	160.00 J	540.00 J	
מבשלסומ'ם' זונבצורבשב	U9/ F9	2 00.000	* 00.00*	L 00.031	100.00		7.00.00

Forest Glen Site AOC 4 - East Gill Creek - Sediment Organic Compounds

SAMPLE NAME		GCSD1	GCSD2	GCSD3	GCSD5	40SD9	
SAMPLE DATE		08/25/95	08/24/95	08/54/95	08/24/95	08/54/95	
TEXT 001		BACKGROUND			Dup of GCSD3		
SAMPLE DEPTH		0-0.5' Round 1					
Pesticides/PCBs							
ALPHA-BHC	ug/kg	3.20 J	1.90 J	1.40 J	~	~	
BETA-BHC	ug/kg	41.00 1	10.00	10.00		15.00 J	
DELTA-BHC	og/kg	6.50 UJ				3.30 UJ	
gamma-BHC (Lindane)	og/kg	6.50 01				3.30 UJ	
HEPTACHLOR	ug/kg	6.50 UJ	5.30 0.1	3.00 03	2.70 UJ	3.30 0.3	
ALDRIN	ca/kg	6.50 01				3.30 UJ	
HEPTACHLOR EPOXIDE	ug/kg	6.50 UJ				2	
ENDOSUL FAN 1	ug/kg					3.30 UJ	
DIELDRIN	ug/kg						
4.4'-DDE	ug/ka						
ENDRIN	ug/kg	13.00 UJ				6.40 UJ	
ENDOSUL FAM 11	ug/kg				1.80 J		
4,4'-000	ug/kg	13.00 UJ					
ENDOSULFAN SULFATE	09/kg	13.00 J			3.30 J		
4,4'-DDT	ug/kg	, ~	3.30 J				
METHOXYCHLOR	ug/kg	65.00 UJ		30.00 UJ			
ENDRIN KETONE	ug/kg	13.00 UJ			5.20 03		
ENDRIN ALDEHYDE	ug/kg	13.00 UJ					
ALPHA-CHLORDANE	09/kg	~					
GAMMA-CHLORDANE	ug/kg	5.20 J		~	~		
TOXAPHENE	ug/kg	650.00 UJ		300.00			
AROCLOR 1016	ug/kg	130.00 UJ		59.00 UJ			
AROCLOR 1221	ug/kg	260.00 UJ		120.00 UJ			
AROCLOR 1232	ug/kg	130.00		59.00 UJ			
AROCLOR 1242	ug/kg			59.00 UJ			
AROCLOR 1248	ug/kg			59.00 UJ			
•	ug/kg		100.00 UJ	59.00 UJ	52.00 UJ	64.00 UJ	
ARGCLOR 1260	ug/kg	130.00 UJ		59.00 UJ			

Forest Glen Site AOC 4 - East Gill Creek - Sediment Inorganic Analytes

SAMPLE NAME		GCSD 1	CCS02	£0SD3	90009	70SD9	
SAMPLE DATE		08/25/95	08/54/95	08/54/95	08/54/95	08/54/95	
TEXT 001		BACKGROUND			Dup of GCSD3		
SAMPLE DEPTH		0-0.5' Round 1	0-0.5' Round 1	0-0.5' Round 1	0-0.5' Round 1	0-0.5' Round 1	
Inorganic Analytes							
ALUMINUM	ma/ka	17, 200, 00 F.J	15 100 00 E.I	21 800 00 E	18 000 000 81	15 400 00 E I	
AUTIMON			200	51,000,11	2000,00	12,000.00 E3	
THOUSE INCHES	BY/Bu	CMO 0001		U. 72. UNJ	CNO 79.0	U.65 UNJ	
ARSENIC	mg/kg	5.50 83	6.00 J	5.90 J	7.40 J	6.30 J	
BARIUM	mg/kg	129.00 BEJ	112.00 BEJ	137.00 EJ	127.00 EJ	127.00 EJ	
BERYLLIUM	mg/kg	0.718J	0.63 8J	0.92 B	0.79 8	0.73 8	
CADMIUM	mg/kg	6.40	3.70 J	7.40	3.90	3.60	
CALCIUM	mg/kg	60.400.00 EJ	38, 700,00 EJ	24.500.00 EJ	46.800.00 EJ	20.500.00 EJ	
CHROMIUM	mg/kg	122.00 J	62.70	29.60	46.10	F 02:07	
COBALT	mg/kg	11.40 83	11.40 8.1	18.40 B	15.40 8	17.30	
COPPER	mg/kg	64.10	35.30 J	33.20 J	27.80 J	35.30	
IRON	mg/kg	25,600.00 J	22.200.00 J	30,700.00	27,800,00	25.500.00	
LEAD	mg/kg	134.00 J	•	54.20			
MAGNESIUM	mg/kg	20,500.00 EJ	11,300.00 EJ	12,700.00 EJ	20,300.00 EJ		
MANGANESE	mg/kg	386.00 EJ	375.00 EJ	498.00 EJ	491.00 EJ	877.00 EJ	
MERCURY	mg/kg	0.67 NJ	CN 07.0	0.29 NJ	0.24 NJ	0.32 NJ	
NICKEL	mg/kg	~	25.90 J	~	~	2	
POTASSIUM	mg/kg	3,160.00 BEJ	2,540.00 BEJ	3.760.00 EJ	3,130,00 EJ	2,130,00 EJ	
SELENTUM	mg/kg	2.80 UJ		1.40 U	1.30 UJ		
SILVER	mg/kg	1.90 UJ		0.94 U	0.89 U	0.86 U	
SODIUM	mg/kg	1,760.00 BEJ	1,590.00 BEJ	1.250.00 BE	1.050.00 BE	466.00 BE	
THALLIUM	mg/kg	3.60 UJ		1.80 U	1.70 U	1.60 U	
VANADIUM	mg/kg	33.50 8J	26.70 BJ	38.20	32.80	30.90	
ZINC	mg/kg	1,240.00 J	f 00.764	406.00	319.00	379.00	
CYANIDE	mg/kg	1.90 UJ	1.40 01	0.88 U	0.84 ∪	0.83 U	

	Forest Glen Site AOC 4 - East Gill Creek - Sediment Targeted Organic Compounds	len Site Creek - Sediment nic Compounds			02/28/1996 3:21 PM Page 1	
8-10359	R-50235	8-50235	8-5055	8-70SJ9	8-90SJ5	

SAMPLE NAME	GCSD 1 - B	GCSD2-B	GCSD3-B	8-50SDD	8-70SD9	8-90SDD
SAMPLE DATE	11/10/95 BACKGROUND	-	11/09/95	11/09/95 Dup of GCSD3-B	11/09/95	11/09/95
SAMPLE DEPTH	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2
Targeted SemiVolatiles						
		370.00 UJ	260.00 U	240.00 U	290.00 U	290.00 U
		370.00 UJ	260.00 U	240.00 U	150.00 J	3,000.00
COTHIAZOLE		370.00 UJ	260.00 U	240.00 U	3,600.00 J	290.00 U
	-	00.06	170.00 J	700.00	19,000.00 D	2,800.00
		160.00 J	260.00 U	240.00 UJ	310.00 J	850.00
		370.00 UJ	260.00 U	240.00 U	290.00 U	290.00 U
HENYL-1,4-BENZENEDIAMIN	560.00 UJ	370.00 UJ	260.00 UJ	240.00 UJ	1,000.00	81,000.00 p
_		370.00 UJ	260.00 U	240.00 U	430.00	290.00 u
BENZOTHIAZOLE ug/		370.00 UJ	260.00 U	240.00 U	1,500.00	140.00 J

	Sediment	
ilen Site	Creek -	Company
Forest Glen	East Gill (Organic
	. 7 O	
	ğ	

02/28/1996 3:15 PM Page 1

SAMPLE DATE SAMPLE DATE		GCSD1-B 11/10/95	GCSD2-B 11/10/95	GCSD3-B 11/09/95	,	GCSD4-B 11/09/95	GCSD6-8 11/09/95
SAMPLE DEPTH		0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2
Volatiles							
CHLOROMETHANE	09/kg	29.00 UJ		16.00 U	15.00 U	17.00 U	17.00 U
BRUMEI HANE	00/kg			16.00 U	15.00 U	17.00 u	17.00 U
CUI ODOCTUANE	0 / Kg	29.00 07		16.00 U	15.00 U	17.00 U	17.00 U
METHYLENE CHLORIDE	20/kg	20.00	10.00.02	200.00	0.00.51	12.00	0.5
ACETONE	oo/ka			,	2	00.05	2
CARBON DISULFIDE	ug/kg	3.00 J		16.00 U	15.00 U	17.00 U	17.00 U
1,1-DICHLOROETHENE	ug/kg			16.00 U	15.00 U	17.00 U	17.00 U
	09/kg			16.00 U	15.00 U	17.00 U	17.00 U
1,2-DICHLOROETHENE (total)	ug/kg			16.00 U	15.00 u	_	17.00 U
CHLOROFORM	ug/kg			16.00 ∪	15.00 u	17.00 U	17.00 U
1,2-DICHLOROETHANE	ug/kg			16.00 U	15.00 U	17.00 U	17.00 U
2-BUTANONE	ug/kg			16.00 UJ	15.00 UJ		17.00 UJ
1,1,1-TRICHLOROETHANE	ug/kg			16.00 U	15.00 u	17.00 u	_
CARBON TETRACHLORIDE	ug/kg			16.00 U	15.00 u		_
BROMOD I CHLOROME THANE	09/kg			16.00 U	15.00 U	_	_
1, 2-DICHLOROPROPANE	09/kg			16.00 U	15.00 U	_	_
COS 1, S-DICHLOROPROPENE	09/kg			16.00 U	15.00 U	_	
PRICHLOROE I HENE	09/Kg			16.00 U	15.00 U	_	_
1 1 2-TDICHIODOFTHANE	00/kg	29.00 DJ		16.00 0	15.00 U	17.00 U	17.00 U
BENZENE	ug/ka			- 6.51	15.00		
trans 1,3-DICHLOROPROPENE	ug/kg			16.00 U	15.00 U	_	_
BROMOFORM	ug/kg			16.00 U	15.00 U		17.00 U
4-METHYL-2-PENTANONE	ug/kg				15.00 UJ		
Z-HEXANONE	ug/kg	29.00 UJ			15.00 UJ		
TETRACHLOROETHENE	ug/kg			16.00 U	15.00 U	17.00 U	17.00 U
1,1,2,2-TETRACHLOROETHANE	ug/kg				15.00 U		
TOLUENE	ug/kg				15.00 U		
CHLOROBENZENE	ug/kg	29.00 07	25.00 UJ	16.00 U	15.00 U	17.00 U	17.00 U
CIVILBENE	9/80 64/60			16.00 0	0.51		17.00 0
XYIEWES (total)	og/kg			16.00 0	0.00.51		12.00
	n (8)			0.00	20.0	0 00.	3.

Forest Glen Site AOC 4 - East Gill Creek - Sediment Organic Compounds

SAMPLE NAME SAMPLE DATE		GCSD1-B 11/10/95	GCSD2-B 11/10/95	GCSD3 · B 11/09/95	GCSD5-B 11/09/95	GCSD4-B 11/09/95	GCSD6-B 11/09/95
TEXT 001		BACKGROUND			Dup of GCSD3-B		
SAMPLE DEPTH		0-0.5' Round 2	0.0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2
Semivolatiles - Page 1							
PHENOL	ug/kg	1,100.00 U	790.00 U	600.00 U	530.00 U	5,500.00	610.00 J
BIS(2-CHLOROETHYL)ETHER	ug/kg	1, 100.00 U	790.00 U	600.00 U	530.00 U	00.009	640.00 U
2-CHLOROPHENOL	09/kg	1, 100.00 U	790.00 U	00.009	530.00 U	00.009	640.00 U
1,3-DICHLOROBENZENE	ug/kg	1, 100.00 U	790.00 U	2	530.00 U	00.009	640.00 U
1,4-DICHLOROBENZENE	co/kg	1,100.00 U	790.00 U	00.009	530.00 U	00.009	640.00 U
1,2-DICHLOROBENZENE	ug/kg	1,100.00 U	790.00 U	600.00 U	530.00 U	00.009	640.00 U
2-METHYLPHENOL	9/kg	1,100.00 U	790.00 U	00.009	1,300.00	52.00 J	280.00 J
BIS(2-CHLOROISOPROPYL)ETHER	ug/kg	1,100.00 U	790.00 U	8	530.00 U	00.009	640.00 U
4-METHYLPHENOL	9/kg	00.09	790.00 U	ი 00.009	530.00 U	f 00.084	640.00 U
N-NITROSO-DI-N-PROPYLAMINE	ug/kg	1,100.00 U	790.00 U	8	530.00 U	00.009	640.00 U
HEXACHLOROETHANE	ug/kg	1,100.00 U	790.00 u	600.00 U	530.00 U	00.009	640.00 U
NITROBENZENE	ug/kg	1, 100.00 U	790.00 U	8	530.00 U	00.009	640.00 U
I SOPHORONE	09/kg	1, 100.00 U	790.00 U	2	530.00 U	110.00	640.00 U
2-NITROPHENOL	ug/kg	1,100.00 U	790.00 U	00.009	530.00 U	0 00.009	640.00 U
2,4-DIMETHYLPHENOL	ug/kg	1,100.00 U	790.00 U	2	530.00 U	85.00 J	640.00 U
BIS(2-CHLORDETHOXY)METHANE	ug/kg	1,100.00 U	790.00 U	2	530.00 U	00.009	640.00 U
2,4-DICHLOROPHENOL	cg/kg	1,100.00 U	790.00 U	ᇊ	530.00 U	00.009 0.009	640.00 U
1,2,4-TRICHLOROBENZENE	ug/kg	1,100.00 U	790.00 U	600.00 U	530.00 U	31.00 J	640.00 U
NAPHTHALENE	ug/kg	1, 100.00 U	790.00 U	2	530.00 0	140.00	640.00 0
4-CHLOROANILINE	09/kg	1, 100.00 U	790.00 U	600.00 U	530.00 U	600.00	640.00 U
HEXACHLOROBUTAD I ENE	ug/kg	1,100.00 U	790.00	600.00	530.00 U	600.00 0	640.00 0
4-CHLORO-3-METHYLPHENOL	ug/kg	1,100.00 U	790.00	600.00	530.00 0	900.00	0.000
Z-METHYLNAPHTHALENE	og/kg	5.00.002	0.00.06	3	550.00	500.097	0.00.00
HEXACHLOROCYCLOPENTAD I ENE	ug/kg	2, 300.00 U	0.000,1	1,200.00 0	1, 100.00	1,200.00	1,500.00
2,4,6-TRICHLOROPHENOL	og/kg	1, 100.00 U	790.00	88	550.00 0	600.00	640.00 U
2,4,5-TRICHLOROPHENOL	ug/kg	1,100.00	790.00	2	250.00 0	900.00	0.00
2-CHLORONAPHTHALENE	ug/kg	1,100.00 U	790.00 U	600.00 U	530.00 U	600.00 U	640.00 U
2-NITROANILINE	ug/kg	1, 100.00 U	790.00	00.00	530.00 0	600.00	0,000,000
DIMETHYLPHTHALALTE	ug/kg	1, 100.00 U	790.00	88.00	62.00	7,00	640.00 U
ACENAPHTHYLENE	ug/kg	110.00	790.00 U	600.00 U	530.00 0	30.00	140.00
2,6-DINITROTOLUENE	ug/kg	1,100.00 U	790.00 U	600.00 U	530.00 U	600.00	640.00 U
3-NITROANILINE	ug/kg	1,100.00 u	790.00 U	000.00	530.00 U	600.00	0.00.0
ACEMAPHINEME	09/kg	6 00.01	0 00.06	000.000	0 00.055	. 00:00	20.00

Forest Glen Site AOC 4 - East Gill Creek - Sediment Organic Compounds

SAMPLE NAME SAMPLE DATE		GCSD1-B 11/10/95	GCSD2-B 11/10/95	GCSD3-B 11/09/95	GCSD5-B 11/09/95	GCSD4-B 11/09/95	GCSD6-B 11/09/95
TEXT 001 SAMPLE DEPTH		BACKGROUND 0-0.5' Round 2	0.0.5' Round 2	0-0.5' Round 2	Dup of GCSD3-B 0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2
Pesticides/PCBs							
ALPHA-BHC	ug/kg	4.60 U	3.40 U	2.40 U	2.60 U	2.70 U	2.60 U
BETA-BHC	ug/kg	7.60 U	3.40 U	2.40 U	2.60 U	2.70 U	2.60 U
DELTA-BHC	ug/kg	7.60 U	3.40 U	2.40 U	2.60 U	2.70 U	2.60 U
gemme-BHC (Lindane)	ug/kg	0 09.7	3.40 U	2.40 U	2.60 U	2.70 U	2.60 U
HEPTACHLOR	ua/ka	n 09.7	3.40 U	2.40 U	2.60 U	2.70 U	2.60 U
ALDRIN	ua/ka	0 09.7	3.40 U	2.40 U	2.60 U	2.70 U	2.60 U
HEPTACHLOR EPOXIDE	ua/ka	0 09.7	3.40 0	2.40 U	2.60 U	2.70 U	2.60 U
ENDOSULFAN 1	ua/ka	0 09.7	3.40 U	2.40 U	2.60 U	2.70 U	2.60 U
DIELORIN	ua/ka	8.90 U	6.60 U	7.60 U	5.00 U	5.30 U	5.00 U
4.4'-DDE	ua/ka	06.8	6.60 U	0 09.4	5.00 U	5.30 U	5.00 0
ENDRIN	ug/kg	8.90 U	6.60 U	7.60 U	5.00 U	5.30 U	5.00 U
ENDOSUL FAN 11	ug/kg	8.90 U	6.60 U	7.60 U	5.00 U	5.30 U	5.00 U
000-,7,7	ug/kg	8.90 U	6.60 U	4.60 U	5.00 U	17.50 J	5.00 U
ENDOSUL FAN SUL FATE	ug/kg	8.90 U	9.60 U	4.60 U	5.00 U	5.30 U	5.00 U
4,4'-DDT	ug/kg	8,90 U	0.60 U	7.60 U	5.00 U		5.00 U
METHOXYCHLOR	ug/kg	76.00 U	34.00 U	24.00 U	26.00 U		26.00 U
ENDRIN KETONE	ug/kg		0.60 U	7.60 U	5.00 U	5.30 U	5.00 U
ENDRIN ALDEHYDE	ug/kg	8.90 U	09.9	7.60 U	5.00 U		5.00 U
ALPHA-CHLORDANE	ug/kg	7.60 U	3.40 U	2.40 U	2.60 U		2.60 U
GAMMA-CHLORDANE	ug/kg	7.60 U	3.40 U	2.40 U	2.60 U	2.70 U	2.60 U
TOXAPHENE	ug/kg	728.00 U	340.00 U	238.00 U	255.00 U	272.00 U	255.00 U
AROCLOR 1016	ug/kg	89.00 U	00.99	76.00 U	50.00 U	53.00 U	50.00 U
AROCLOR 1221	ug/kg		134.00 U	94.00 U	101.00 U	107.00 U	101.00 U
_	og/ka	89.00 U	00.99	76.00 U	50.00 U	53.00 U	50.00 U
•	09/kg		0 00.99	76.00 U	50.00 U	53.00 U	50.00 U
_	ug/kg		0 00.99	76.00 U	50.00 U	53.00 U	0 00°05
_	ug/kg	89.00 U	00.99	76.00 U	50.00 U	53.00 U	50.00 U
AROCLOR 1260	ug/kg	89.00 U	0 00.99	0 00.97	20.00 U	53.00 U	50.00 U

Forest Glen Site AOC 4 · East Gill Creek - Sediment Inorganic Analytes

SAMPLE NAME		6CSD1-B	GCSD2-8	GCSD3-8	GCSD5-B	8-70SD5	g-90SD5
TEXT 001		BACKGROUND	CK /01/11	CK/ K 0/11	Due of GCSD3-B	CV/V0/11	CW/W0/11
SAMPLE DEPTH		0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2	0-0.5' Round 2
Inorganic Analytes							
ALUMINUM	mg/kg	12, 100.00	17,400.00	19,900.00	23,800.00	14,800.00	8,220.00
ANTIMONY	mg/kg	19.00 U	13.00 U	9.00 U	9.00 U	10.00 u	11.00 U
ARSENIC	mg/kg	5.20 J	26.80 J	5.20	7.60	5.40	23.90 J
BARIUM	mg/kg	134.00	140.00	145.00	192.00	128.00	97.00
BERYLLIUM	mg/kg	1.60 U	1.10 U	0.70 U	0.90	0.90 U	0.00 U
CADMIUM	mg/kg	1.80	1.10 U	0.70 U	0.80 U	0.90 U	0.90 U
CALCIUM	ma/ka	61.000.00	43,100,00	19.600.00	27.400.00	25.800.00	128.000.00
CHROMIUM	mg/kg	123.00	82.00	37.00	49.00	42.00	100.00
COBALT	mg/kg	16.00 U	14.00	16.00	18.00	21.00	9.00 U
COPPER	mg/kg	90.69	45.00	28.00	29.00	39,00	30.00
IRON	mg/kg	20,300.00	32,500.00	35,100.00	39,100.00	29,000.00	13,900.00
LEAD	mg/kg	282.00	65.00	32.00	30.00	39.00	50.00
MAGNESTUM	mg/kg	18,700.00	12,900.00	11,100.00	17,900.00	8,720.00	55,200.00
MANGANESE	mg/kg	388.00	557.00	832.00	869.00	1,290.00	260.00
MERCURY	mg/kg	1.50.1	0.57 J	0.33	0.24	0.29	07.0
NICKEL	mg/kg	27.00	30.00	31.00	33.00	29.00	17.00
POTASSIUM	mg/kg	1,590.00 U	2,180.00	2,440.00	3,430.00	1,740.00	1,270.00
SELENIUM	mg/kg	1.60 U	1.10 U	0.70 U	0.80 U	0.90 U	0.90 ∪
SILVER	mg/kg	3.20 U	2.20 U	1.50 U	1.60 U	1.70 u	1.80 U
SOUTH	mg/kg	1,590.00 U	1,080.00 U	739.00 U	791.00 U	863.00 U	897.00 U
THALLIUM	mg/kg	3.20 U	2.20 U	1.50 U	1.60 U	1.70 U	1.80 U
VANADIUM	mg/kg	28.00	35.00	37.00	74.00	33.00	16.00
ZINC	mg/kg	77.00	394.00	129.00	125.00	199.00	340.00
CYANIDE	mg/kg	1.59 U	1.08 U	0.74 U	0.79 U	0.86 U	0.90 U

APPENDIX K CONTINUED IN VOLUME III