Report. hw9320970U2.2005-03-00. Annual Report 2004 Report

2004 Annual Report
Remedial Work Element 2
(Ground water)
Forest Glen Subdivision Site
Niagara Falls, New York

The Goodyear Tire & Rubber Company

March 2005

Report

2004 Annual Report
Remedial Work Element 2
(Ground water)
Forest Glen Subdivision Site
Niagara Falls, New York

The Goodyear Tire & Rubber Company

March 2005

2004 Annual Report

Remedial Work Element 2 (Ground water) Forest Glen Subdivision Site Niagara Falls, New York

The Goodyear Tire & Rubber Company

Swiatoslav W. Kaczmar, Ph.D. Vice President/Chief Scientist

March 2005

Contents

List of Tables	ii
List of Figures	ii
List of Appendices	. iii
List of Exhibits	. iii
	_
1. Introduction	
1.1. General	
1.2. Chronology of events	
1.3. Report organization	2
2. Ground water recovery system components	5
2.1. General	
2.2. Recovery wells	5
2.3. Ground water recovery pumps and controls	6
3. Ground water recovery and discharge	9
3.1. General	
3.2. Ground water volume recovered	9
3.3. Quarterly ground water discharge sampling	9
3.3.1. Volatile organic compounds	
3.3.2. Phosphorus, lead, chromium and nickel	
3.4. Daily ground water discharge sampling	
4. Long-term ground water monitoring	13
4.1. General	
4.2. Quarterly ground water monitoring	13
4.2.1. Ground water level measurements	
4.2.2. Ground water quality sampling	14
4.3. Annual natural attenuation monitoring	
4.4. Assessment of data and trends	
4.4.1. Ground water elevation trends	
4.4.2. Regulator No. 8 activity	
4.4.3. Water quality trends	
5. Recommendations	19

List of Tables

Chronology of benchmark events 1.1 Recovered ground water volumes 3.1 SIU discharge permit self-monitoring summary 3.2 Phosphorus, lead, chromium, and nickel detection limits 3.3 4.1 Ground water elevations Ground water quality data - VOCs 4.2 Ground water quality data - Geochemical 4.3 Ground water quality data - Dissolved Gases 4.4

List of Figures

1	Site location map
2	Site plan
3a	Shallow bedrock ground water contours (February 6, 2004)
3b	Deep bedrock ground water contours (February 6, 2004)
4a	Shallow bedrock ground water contours (May 17, 2004)
4b	Deep bedrock ground water contours (May 17, 2004)
5a	Shallow bedrock ground water contours (July 23, 2004)
5b	Deep bedrock ground water contours (July 23, 2004)
6a	Shallow bedrock ground water contours (August 4, 2004)
6b	Deep bedrock ground water contours (August 4, 2004)
7a	Shallow bedrock ground water contours (November 18, 2004)
7b	Deep bedrock ground water contours (November 18 2004)
8a	Baseline shallow bedrock ground water contours
	(February 14, 2000)
8b	Baseline deep bedrock ground water contours
	(February 14, 2000)
9	Cross-section locations
10	Shallow bedrock ground water elevations cross-section A-A'
11	Shallow bedrock ground water elevations cross-section B-B'
12	Shallow bedrock ground water elevations cross-section C-C'
13	Deep bedrock ground water elevations cross-section A-A'
14	Deep bedrock ground water elevations cross-section B-B'
15	Deep bedrock ground water elevations cross-section C-C'
16a	Shallow ground water elevation trends
16b	Deep ground water elevation trends
17	Ground water quality trends: MW-4
18	Ground water quality trends: MW-5
19	Ground water quality trends: MW-6
20	Ground water quality trends: MW-7
21	Ground water quality trends: MW-8

List of Appendices

- A Contact Information
- B Log of Regulator No. 8 Overflow Periods

List of Exhibits

1. Significant Industrial User (SIU) Discharge Permit

1. Introduction

1.1. General

This document is the 2004 Annual Report for Remedial Work Element 2 (RWE-2) at the Forest Glen Subdivision Superfund Site in Niagara Falls, New York. The report presents a summary of the construction completed in 2003 to address ground water at the Site. This report also presents a summary of the ground water recovery system operations that occurred during the first 14 months of operation from December 19, 2003 (system startup) through January 31, 2005.

The work was completed in compliance with the requirements of the Statement of Work (SOW) included as part of the Consent Decree in the matter of <u>United States v. The Goodyear Tire & Rubber Company</u> (Goodyear) et. ano., Civil Action No. 960CV-07215 S (H). The Consent Decree was entered in the United States District Court for the Western District of New York on June 7, 2001.

The SOW established two remedial work elements for the Site. Remedial Work Element 1 (RWE-1) was established to address soils and sediments on-site, while Remedial Work Element 2 (RWE-2) was established to address ground water.

As presented in the 1999 Record of Decision (ROD), two remedial action objectives (RAOs) were established for RWE-1, including:

- Prevent direct contact with contaminated soils and sediments
- Mitigate the potential for contaminants to migrate from the soil and sediments into the ground water

The RWE-1 actions completed to address these RAOs are presented in the USEPA-approved Remedial Action Report dated April 2004, and are not discussed further herein.

As for RWE-2, the ROD established two RAOs, including:

- Reduce or eliminate the threat to human health and environment posed by ground water contamination by remediating ground water to maximum contaminant levels (MCLs)
- Reduce or eliminate the potential for migration of contaminants to potential receptors

In general, the RWE-2 remedy includes the following measures to accomplish these RAOs:

- Extraction of impacted ground water from the on-site plume. This is being accomplished using two ground water recovery wells (RW-1 and RW-2) that were constructed on-site.
- Transfer of the extracted ground water via sanitary sewer to the City of Niagara Falls Wastewater Treatment Plant. The discharge point permitted by the Niagara Falls Water Board is at sanitary sewer manhole MH-3B.
- Implementation of a Long-Term Ground water Monitoring Program to assess progress toward the remedial goals.

The work conducted to date to achieve these three RAOs is summarized herein.

1.2. Chronology of events

Table 1-1 provides a chronology of benchmark events for RWE-2.

Table 1-1 Chronology of benchmark events.

Remedial Activity	Date Completed				
RI/FS	3/98				
Supplemental Ground Water FS	3/99				
Record of Decision	9/99				
Consent Decree	6/01				
Ground Water Remedial Design	9/03				
Start-Up of Ground Water System	12/03				
Final Inspection	6/04				
Remedy Declared Operational and Functional by EPA	9/04				

1.3. Report organization

Section 2 describes the recovery wells constructed on-site and describes the ground water recovery system including the pumps and controls.

Final: March 21, 2005

Section 3 presents a summary of ground water recovery system operations and discharge monitoring that occurred from December 19, 2003 (system startup) through January 31, 2005.

Section 4 presents a summary of the quarterly ground water monitoring that occurred during the first 14 months of operation, and provides an assessment of the monitoring well data acquired that included monitored natural attenuation parameters.

Section 5 presents recommendations based on the data and observations described herein.

2. Ground water recovery system components

2.1. General

This section describes the construction connected with RWE-2 completed at the Site. In particular, this section describes the recovery wells constructed on-site and describes the ground water recovery system including the pumps and controls.

A final inspection of the RWE-2 components was conducted on June 8, 2004. In attendance were the USEPA Remedial Project Manager, Gloria M. Sosa, the Goodyear Project Manager, Jeffery Sussman, and Goodyear's Consultant, Al Farrell, O'Brien & Gere Engineers, Inc. The ground water extraction system pumps were working properly and the shed that houses the ground water system controls was in good condition.

Based on the field observations associated with full-time construction and remedial action oversight, and the pre-final and final construction inspections conducted by USEPA, it has been determined by the USEPA that the construction activities related to the ground 'water remedial action have been completed. The performed construction activities are consistent with the remedy selected in the ROD. The ground water remedy is now considered by the USEPA to be operational and functional.

2.2. Recovery wells

The RWE-2 remedy included the installation of two ground water recovery wells that were constructed on-site during 2003. The location of each of these wells, one between monitoring well groups MW-4 and MW-5 and the other between monitoring well groups MW-5 and MW-6, is shown on Figure 2.

The two recovery wells were constructed in conformance with the USEPA-approved technical specification for recovery well installation that accompanied an October 30, 2002 letter from O'Brien & Gere. In accordance with the October 30, 2002 letter, the two recovery wells were constructed to a termination depth of approximately 60-ft below the original grade. Noting that the waste embankment placed on the original surface during 2002 ranges in thickness, the recovery well depths were evaluated in the field taking into account the fill thickness above the original surface.

The recovery wells were installed between February 3 and February 13, 2003. SJB Services, Inc. of Buffalo, New York was contracted by Sevenson Environmental Services, Inc. to provide the drilling services for the recovery well installations.

The two recovery wells were installed using conventional hollow stem auger and air rotary drilling methods. Initially, nominal 14-inch diameter boreholes were advanced using 10½-inch inside diameter hollow stem augers at each recovery well location for the purpose of setting permanent 8-inch diameter steel surface casings. Each borehole was advanced to the top of bedrock. Bedrock was encountered at approximately 14 feet below grade (fbg) at the RW-1 location and approximately 15 fbg at the RW-2 location. Air rotary drilling methods were then used to advance a nominal 10-inch diameter socket a minimum of three feet into the bedrock at each recovery well location. After advancement of the rock sockets, the 8-inch diameter steel surface casings were installed and grouted in place. The grout was allowed to cure for a minimum of 24 hours prior to further advancement of each recovery well.

Nominal 8-inch diameter open bedrock boreholes were advanced using air rotary drilling methods to terminal depths of approximately 65 fbg and 65.5 fbg at recovery wells RW-1 and RW-2, respectively. As the bedrock drilling progressed at each recovery well, rock chip samples were collected for descriptive purposes.

After installation, recovery wells RW-1 and RW-2 were developed. Development consisted of surging and pumping to remove fine-grained rock cuttings from fractures within each recovery well. During the development process, pH, temperature, specific conductivity, and turbidity readings were measured after the removal of each well volume. Well development continued until each recovery well yielded sediment free water and the pH, temperature, specific conductivity, and turbidity stabilized within 10 percent after removal of three successive well volumes. Approximately 1,400 gallons, representing approximately 10 well volumes, were removed from both RW-1 and RW-2, respectively.

2.3. Ground water recovery pumps and controls

As described in the Final Design Report for RWE-2 dated September 2003, normally ground water is intended to be recovered from the two recovery wells at a flow rate of approximately 10 gpm, for a combined discharge rate of approximately 20 gpm.

Once recovered, the ground water is discharged to the sanitary sewer for treatment by the Publicly Owned Treatment Works (POTW). The discharge occurs at sanitary sewer manhole MH-3B (Figure 2). This

point is identified as outfall MS#1 on the Significant Industrial User (SIU) discharge permit issued by the Niagara Falls Water Board to Goodyear, as agent for the Forest Glen Site Trust. A copy of the discharge permit is included as Exhibit 1.

In addition to the facilities on-site, the RWE-2 ground water system includes monitoring that occurs at Sewer Regulator No. 8 on Royal Avenue near the intersection of 47th Street in the City of Niagara Falls. At this location, the water level in the sewer is monitored for the occurrence of an overflow, which may occur during storm/thaw events. The Niagara Falls Water Board requires that discharge of ground water from the Forest Glen site be suspended during overflow events at Sewer Regulator No. 8 since this may result in a bypass of the POTW.

To comply with this requirement, a sensing device was installed in Sewer Regulator No. 8 to detect flow over the overflow weir. When such a condition exists, a transmitter located in an electrical enclosure in the public right-of-way near Regulator No. 8 sends a signal to the recovery well pumps control panel located on the Forest Glen Superfund Site. The signal is being transmitted via radio signal from the location of Regulator No. 8 to the Forest Glen Site.

The controls for the two ground water recovery pumps are located in an electrical enclosure located west of the paved area behind the 38,400 square foot building. The location of the electrical enclosure is shown on Figure 2. The enclosure is divided into two halves, with incoming power and distribution panels located on one side, and pump controls and communication devices located on the other side.

The pump control panel is located on the control side of the enclosure. Each recovery well pump is provided a hand-off-auto selector switch that is normally set to the "auto" position. The switch is set to the "hand" position when testing operation of the pump. Each pump is equipped with run status and fault lights above the respective pump switch.

The control panel also includes:

- A display for each recovery well that indicates the ground water level measured above the sensor in each well. The water level sensor in each well is set at an elevation of 535 ft (msl) and is capable of detecting the water level between an elevation of 535 ft and 605 ft, a 70 ft span.
- A display for the ground water flow from each well. A magnehelic flow sensor for each well is located in the small shed located west of manhole MH-3B.

An auto dialer with data logging capabilities is installed inside the control panel. The auto dialer receives signals from each ground water level sensor and flow meter. The auto dialer also receives a signal from the master telemetry unit within the control panel, which receives a signal when an overflow is occurring at Regulator No. 8. The operator is

able to retrieve data by dialing into the auto dialer from a remote computer.

The completed work also includes an automatic refrigerated sampler, as required by the Niagara Falls Water Board. The sampler is used to collect flow-proportioned samples each workday (Monday through Friday) so that on twenty occasions per year samples can be collected for analyses for Soluble Organic Carbon (SOC) and Total Suspended Solids (TSS) by the Niagara Falls Water Board. Goodyear also uses the sampler to collect quarterly flow-proportioned samples for analyses for total phosphorus, lead, chromium, and nickel as required by the SIU Discharge Permit.

3. Ground water recovery and discharge

3.1. General

Construction of the system was completed and operations commenced on December 19, 2003. This section presents a summary of ground water recovery system operations and ground water discharge monitoring that occurred since starting the system, through January 31, 2005. The section documents the volume of ground water recovered and describes the quarterly monitoring. Quarterly monitoring was conducted in accordance with the SIU Discharge Permit issued on November 12, 2003 by the Niagara Falls Water Board. Since startup, the system has operated and the loading to the POTW has been in compliance with the SIU Discharge Permit requirements.

3.2. Ground water volume recovered

Table 3-1 presents a monthly summary of the volume of ground water recovered from the two wells each month through January 2005. When the system has been operating, ground water has been recovered from each of the two wells at a rate of approximately 9 gpm each.

3.3. Quarterly ground water discharge sampling

The SIU discharge permit issued by the Niagara Falls Water Board requires that the operator collect periodic effluent samples from the ground water recovery system. The SIU wastewater discharge permit requires that Goodyear perform self-monitoring on a quarterly basis for volatile organic compounds (VOCs), including vinyl chloride (VC), 1,1-dichloroethylene (1,1-DCE), 1,2-dichloroethylene (1,2-DCE, cis and trans), 1,1-dichloroethane (1-1-DCA), trichloroethylene (TCE), tetrachloroethylene (TCA), and 1,1,1-trichloroethane (1-1-1,TCA), and for total phosphorus, lead, chromium, and nickel. The procedures for collecting the samples are outlined in the RWE-2 Ground Water Systems Operations Plan (O'Brien & Gere, April 2004). The results through the first sampling event during 2005, conducted on January 17-18, are summarized below.

The SIU Discharge Permit also requires Goodyear to inspect the condition of the overflow sensor and test operation of the alarm each quarter. Before January 31, 2005, the sensor was inspected and the alarm tested on four occasions; January 7, May 11, August 31, and November 23. On each occasion, the overflow sensor was observed to be in good condition and the alarms functioned properly.

3.3.1. Volatile organic compounds

During each quarter, four separate grab samples were collected for each recovery well over a period of 24-hours. During the first 14 months of operation, samples were collected on five occasions, as follows: January 13-14, April 19-20, July 19-20, and October 25-26, 2004 and January 17-18, 2005.

On each occasion, the four grab samples collected for each recovery well were combined to create a composite sample for each recovery well. The composite sample for each recovery well was then individually analyzed using USEPA Method 624 by O'Brien & Gere Laboratories, an NYSDEC-certified laboratory.

Using the results of each recovery well sample, the VOC loading to the POTW was calculated based on the volume of ground water recovered from the two respective wells during the report period. To date, five quarterly reports presenting results were provided to the Niagara Falls Water Board, on the following dates: February 18, May 20, August 31, and November 23, 2004 and February 25, 2005. Table 3-2 summarizes the results of the laboratory analyses for each of the five quarters. Table 3-2 also summarizes the calculated average loading to the POTW, based on these results and the volume of ground water recovered during the report period, as presented in the reports to the Niagara Falls Water Board.

3.3.2. Phosphorus, lead, chromium and nickel

During each quarter, a 24-hour flow-proportioned composite sample of effluent was collected and analyzed for total phosphorous using EPA method 365. The flow-proportioned composite sample was also analyzed for total lead, total chromium, and total nickel using EPA method 200.7. During the first 14 months of operation, samples were collected on five occasions, as follows: January 14, April 20, July 20, and October 26, 2004, and January 18, 2005.

On each occasion, the composite sample did not exhibit phosphorus, lead, chromium, or nickel above the detection limits presented in Table 3-3.

Table 3-3. Phosphorus, lead, chromium, and nickel detection limits.

Parameter	Detection limit
Phosphorus	0.1 mg/L
Lead	0.005 mg/L
Chromium	0.01 mg/L
Nickel	0.05 mg/L

Since none of these parameters were detected in the samples, the loading to the POTW was calculated using a concentration value equal to half of the reported detection limit. Table 3-2 summarizes the calculated average loading to the POTW, using half the detection limit and the volume of ground water recovered during the five report periods, as presented in the reports to the Niagara Falls Water Board dated February 18, May 20, August 31, and November 23, 2004 and February 25, 2005. For the first five quarters of operation, the average flow-weighted daily VOC loading to the POTW is calculated to be 0.02 lbs, based on the data presented in Table 3-2.

3.4. Daily ground water discharge sampling

In addition to the sampling identified above, the SIU wastewater discharge permit requires that 24-hour flow-proportioned samples be collected each workday, except Mondays. On Mondays, a 72-hour flow proportioned sample, started on Friday the week before, is collected.

Up to 5 of the "daily" samples collected each quarter are analyzed by the Niagara Falls Water Board for total suspended solids (TSS) and soluble organic carbon (SOC). These samples are collected solely for billing purposes and the results are not typically provided by the POTW. To date, the Niagara Falls Water Board has submitted samples for analyses on the following dates: 2/10, 2/24, 2/26, 3/8, 3/10, 4/1, 4/20, 5/14, 6/7, 6/15, 7/1, 7/7, 8/31, 9/15, 10/15, 10/19, 10/25, 11/4, 12/6, 2004 and 1/4/05.

Annually, the Water Board also collects a sample for verification. A verification sample was collected from the Forest Glen discharge on October 28, 2004, but the results were not provided to Goodyear.

4. Long-term ground water monitoring

4.1. General

This Section summarizes the quarterly ground water sampling and annual natural attenuation monitoring that occurred during the first 14 months of operation in accordance with the *Long-Term Ground Water Monitoring Plan* dated September 2003 (revised March 24, 2004). The Section also provides an assessment of the data and observed trends.

4.2. Quarterly ground water monitoring

4.2.1. Ground water level measurements

Prior to initiating the four ground water monitoring events conducted during 2004, ground water levels were measured in the on-site and offsite monitoring wells. The water levels were measured using an electronic water level probe. The water levels were subsequently converted to ground water elevations. Table 4-1 presents the ground water elevations recorded. Ground water level measurements also were performed on July 23, 2004 independent of the quarterly ground water monitoring events.

Ground water elevation contour maps are presented for shallow bedrock and deep bedrock as Figures 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, and 7B for the February 6, May 17, July 23, August 4, and November 18, 2004 rounds of measurements, respectively. Baseline shallow and deep bedrock ground water contour maps, prepared using data collected on February 14, 2000 are presented as Figures 8A and 8B. The baseline data represents a particular moment in time before construction of the Part 360 cover and ground water recovery system was complete. Cross sections of these five contour map dates are presented as Figures 10-15. Figure 9 presents the locations of the cross sections.

Comparison of the pre-pumping ground water elevation contour map (Figures 8A and 8B), to the 2004 ground water elevation contour maps (Figures 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, and 7B), demonstrate that the ground water recovery system has created an inward hydraulic gradient toward the recovery wells. The cross section figures (Figures 10

through 15) also show the effect the ground water recovery system is having on site ground water elevations.

4.2.2. Ground water quality sampling

Ground water samples were collected for analyses from seventeen monitoring wells on four occasions during the first year of operation; during the weeks of February 2, May 17, August 4, and November 15, 2004. The monitoring wells sampled include: MW-1S, MW-1D, MW-4S, MW-4D, MW-5S, MW-5D, MW-6S, MW-6D, MW-6DD, MW-7S, MW-7D, MW-7DD(2), MW-8S, MW-8D, MW-8DD, MW-10S, and MW-10D.

In accordance with the Long-Term Monitoring Plan, the wells were sampled using low flow purging and sampling methods. The samples were submitted to O'Brien & Gere Laboratories in Syracuse, New York where they were analyzed for Target Compound List (TCL) VOCs using USEPA methods SW5030B/SW8260B. The VOC results for the four quarters of sampling that occurred since system startup on December 19, 2003 are presented on Table 4-2. Table 4-2 also presents historic ground water data for the wells, collected prior to completing construction of the ground water recovery system and the Part 360 cover on-site.

4.3. Annual natural attenuation monitoring

In addition to analyzing samples for VOCs, samples from the November 15, 2004 quarterly monitoring event were analyzed for the following geochemical and dissolved gases parameters:

 methane, ethane, ethene, sulfide, chloride, alkalinity, total organic carbon, sulfate, nitrate, nitrite, dissolved ferrous iron, total dissolved iron, total dissolved manganese.

These data provide an ongoing assessment of the natural attenuation processes that are occurring at the Site. Tables 4-3 and 4-4 present the geochemical and dissolved gases MNA data, respectively.

The November 2004 data documents consistent MNA conditions at the Site. The MNA parameters are generally within the range of values previously observed at the Site. The only parameter that showed a noticeable change was an increase in sulfate in the deep monitoring wells. The 2004 data continues to support the results of the MNA study presented in the Final Design Report for RWE-2 (O'Brien & Gere, 2003). The data indicate that natural processes are attenuating the shallow and deep bedrock CAH contaminant plumes. The contaminant plumes are attenuating both through physical and biological processes.

While ground water elevations fluctuate when the system is on and off, the overall ground water quality response to the recovery system is consistent with model predictions presented in the Final Design for RWE-2.

4.4. Assessment of data and trends

The following is a brief summary of observations during the period. While a semi-qualitative description of trends is provided, changes in observed concentrations over the period are subject to a number of factors, including system response as well as variability related to temporal, sampling, and analytical factors.

4.4.1. Ground water elevation trends

The 2004 ground water elevations reflect the pumping of the ground water recovery system. For 2004, ground water elevations in the wells closest to the two recovery wells show some of the lowest ground water elevations of their record, and noticeably lower elevations in comparison to background wells such as MW-1 and MW-11. The cross section figures (Figures 10 through 15) also show these fluctuations in ground water elevations. These data suggest that the recovery system cone of influence extends to MW-1 and possibly to MW-11. For MW-1 this is consistent with the results observed during the February 2003 aquifer tests, when MW-1 showed response to pumping.

Figures 16A and 16B present trend graphs of the Site ground water elevations for the shallow and deep wells. The trend graphs show that the Site ground water elevations generally fluctuate in a similar manner across the Site. The trend plots suggest that ground water depression due to the recovery system is comparable to the drawdown predicted by the ground water modeling presented in the Final Design Report for RWE-2 (O'Brien & Gere, 2003). The model predicted drawdowns for the central portion of the site range from 0.5 to about 2 ft. The trend plots based on field data suggest that, relative to MW-11 nest, the ground water elevations in many of the wells are lower by 1 to 2 feet. The model simulations were based on an average combined ground water recovery rate of 20 gpm.

4.4.2. Regulator No. 8 activity

As described in Section 2.3, the RWE-2 ground water system includes monitoring that occurs at Sewer Regulator No. 8 on Royal Avenue. At this location, the water level is monitored for the occurrence of an overflow, which may occur during and for a period after storm/thaw events. The Niagara Falls Water Board requires that discharge of ground water from the Forest Glen site be suspended during overflow events at Regulator No. 8 since this may result in a bypass of the POTW. Appendix B presents a summary of the periods during which ground

water recovery operations were suspended since startup through January 31, 2005. Appendix B also includes a summary of periods when the system operated at reduced capacity for maintenance and repair.

The ground water recovery system may have been off-line due to Regulator No. 8 or for maintenance/repair on a number of occasions, as summarized below.

- February 6: During this event, the ground water recovery system was operating, with recovery well RW-1 pumping at approximately 10 gpm and RW-2 pumping at approximately 9.6 gpm. Also, the system had been operating continuously for 18 days prior to when the ground water elevations were measured.
- May 17: On this day the ground water recovery system was operating intermittently, with recovery well RW-1 pumping at approximately 10 gpm and RW-2 pumping at approximately 10 gpm between 9:12 AM and 1:00 PM. Prior to May 17, the system had been operating continuously for 6 days, since May 11. Before May 11 the pumps were off due to an overflow indication at Regulator No. 8 for 14 days.
- July 23: During this event, the ground water recovery system was operating, with recovery well RW-1 pumping at 8.8 gpm and RW-2 pumping at 9.6 gpm. Before July 23, the pumps were off due to an overflow indication at Regulator No. 8 for approximately 2 days. However, before July 20 the system had been operating continuously for 57 days, since May 24.
- August 4: During this event, the ground water recovery system was not operating. The ground water recovery pumps were deactivated on August 3 as a precaution, since on August 1 the pump in RW-1 went off-line and failed to restart in "hand" mode. Prior to August 1, recovery well RW-1 was pumping at approximately 8.8 gpm and RW-2 was pumping at approximately 9.6 gpm. Also, the system had been operating nearly continuously for 66 days, except during a period between July 20 and July 22.
- November 18: During this event, the ground water recovery system was not operating. The ground water recovery pumps were deactivated by the automatic controls due to an overflow condition at Regulator No. 8. During November 16 and 17, the ground water recovery well pumps operated intermittently. The system did recover ground water without interruption between November 11 and November 15. Prior to the ground water sampling event, both recovery wells were pumping at approximately 9 gpm each.

About 6,751,800 gallons of ground water were recovered during 2004. This amounts to a time-weighted average yield of 12.8 gpm for the recovery system. This level and frequency of ground water recovery was sufficient to provide the drawdown and inward hydraulic gradient

Final: March 21, 2005

depicted on Figures 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A and 7B. However, Goodyear recognizes that the uncertainty of conditions at Sewer Regulator No. 8 is not favorable to long term performance. Therefore, Goodyear has proposed to install a low profile air stripper with direct discharge of treated water to East Gill Creek.

4.4.3. Water quality trends

The November 2004 ground water quality data document six monitoring wells with concentrations above New York (NY) State Class-A Ground Water Standards (MW-5S, MW-5D, MW-6S, MW-6D, MW-7D, and MW-8D). The other site monitoring wells are currently below standards. Plots showing concentration trends of TCE, cis-1,2-DCE, and vinyl chloride at monitoring well nests MW-4, MW-5, MW-6, MW-7, and MW-8 are presented as Figures 17 through Figure 21, respectively.

Monitoring well MW-4D, which is currently below NY State Class-A Ground Water Standards, had concentrations of cis-1,2-DCE and VC above standards before remediation was initiated (Figure 17). The remediation appears to have resulted in this well meeting NY State Class-A Ground Water Standards. In addition, concentrations of cis-1,2-DCE and VC in MW-8S appear to have been reduced to below standards following the initiation of remediation (Figure 21).

Of the monitoring wells that are currently above NY State Class GA Ground Water Standards, the deep wells have shown declines in concentrations since initiating remediation. The trend plots for monitoring wells MW-5D, MW-6D, MW-7D, and MW-8D (Figures 18, 19, 20, and 21) show a general decline in concentrations during 2004 and/or the lowest concentrations to date. The trends for MW-5D and MW-7D show the influence of pumping and the Part 360 cap on concentrations the most clearly. The concentration declines in these deep monitoring wells are generally consistent or better than was predicted by the ground water modeling presented in the Final Design Report for RWE-2 (O'Brien & Gere, 2003). Based on the model simulations, concentrations were generally expected to decline by about half circa 500 days from the initiation of ground water recovery and completion of the cap. The documented decline in concentrations in these wells since remediation was initiated is consistent with the model simulations.

Shallow monitoring wells MW-5S and MW-6S have shown mixed results due to the remediation. MW-5S (Figure 18) shows a general declining trend for cis-1,2-DCE and VC since initiating remediation, but TCE concentrations appear to have increased some. For MW-5S the increase in parent compound TCE could be expected since this well is believed to be close to the original source and the increased ground water flow velocities would limit the time for the parent compound to degrade. Less degradation would also reduce the concentrations of the daughter products cis-1,2-DCE and VC.

Monitoring well MW-6S (Figure 19) showed significantly increased concentrations for cis-1,2-DCE and a gradual increase for VC, but no increase for TCE. These trends are not inconsistent with an effective recovery system. The ground water recovery system has changed ground water flow paths at the site and as such contaminant concentrations are expected to change at individual monitoring wells. Some wells may experience an increase in concentrations for some time following the initiation of pumping. This appears to be case at MW-6S. The ground water modeling presented in the Final Design Report for RWE-2 (O'Brien & Gere, 2003) predicted that concentrations of these compounds would increase in MW-6S during the first year of ground water recovery.

Review of the quarterly effluent data reveals that the concentration of VOCs in ground water recovered from RW-1 was higher than the concentrations detected in ground water recovered from RW-2, except during the fourth quarterly event when the concentrations in the two wells were equivalent to one another. In general, the concentration of contaminants in RW-2 has remained nearly constant, except for 1,2-dichloroethylene and 1,1,1-trichloroethane which exhibited slightly elevated levels during the third and fourth quarterly events. Comparatively, the concentrations in RW-1 exhibited greater variability during 2004; but comparison of data from January 2005 to data collected during January 2004 indicates that the concentrations are unchanged or increased.

5. Recommendations

No modification of the annual sampling program described in the Long-Term Ground Water Monitoring Plan dated September 2003 is recommended at present. As in 2004, ground water samples will be collected quarterly during 2005. On each occasion, the ground water samples will be analyzed for TCL VOCs. During the fourth quarter of 2005, circa November, the ground water samples will again be analyzed for natural attenuation parameters. After 2005, ground water samples will be collected on a semi-annual basis for a period of three years (2006 through 2008). On each occasion, the ground water samples will be analyzed for TCL VOCs, and circa November each of these years samples will be analyzed for natural attenuation parameters.

Goodyear does recommend, however, that the ground water treatment system be changed during 2005. The proposed change includes using a low-profile airstripper to treat and discharge the ground water pumped from the two on-site extraction wells. By doing so, Goodyear will be able to eliminate uncertainty regarding the frequency and duration of shutdowns caused by sanitary Sewer Regulator No. 8. Treated ground water from the air stripper would be discharged directly to East Gill Creek in compliance with discharge limits established by the NYSDEC, rather than the sanitary sewer, to allow near continuous operation of the recovery well pumps. As applicable, the system performance would be monitored in accordance with the discharge permit in effect at the time.

TABLE 3-1 RECOVERED GROUNDWATER VOLUMES

2004 ANNUAL REPORT REMEDIAL WORK ELEMENT 2 (GROUNDWATER)

FOREST GLEN SUBDIVISION SITE NIAGARA FALLS, NEW YORK

	Recover			
Period	RW-1 (gals)	RW-2 (gals)	Total (gals)	% uptime
Dec 03 - Jan 04	446,840	498,716	945,556	Note 1
Feb 04	178,926	190,510	369,436	50%
Mar 04	304,920	405,015	709,935	95%
Apr 04	261,591	264,902	526,492	63%
May 04	237,009	240,003	477,012	54%
Jun 04	399,775	420,613	820,389	100%
Jul 04	378,730	408,814	787,544	94%
Aug 04	41,426	140,484	181,910	Note 2
Sep 04	229,473	45,474	274,947	Note 3
Oct 04	345,324	213,985	559,309	Note 4
Nov 04	370,698	361,082	731,780	93%
Dec 04	180,924	186,555	367,479	44%
Jan 05	198,852	205,643	404,495	53%
T-1-11a d-1a	0.574.400	2 504 700	7.450.004	

Total to date = 3,574,488 3,581,796 7,156,284

Notes:

- 1. Not calculated for the startup and testing period.
- 2. RW-1 went off-line for reasons unknown on August 1. As a precautionary measure, RW-2 was also taken off-line on August 2 since an inspection revealed thermal damage to motor starters. The motor starters were replaced on August 23 and the system brought back on-line. However, the RW-1 pump was observed to be drawing excessive amperage at 10 gpm and was shutdown as a precaution. On August 24, the pump for RW-1 was restarted, but throttled to 4 gpm to reduce amperage drawn.
- 3. The groundwater recovery system continued to experience problems associated with apparent failure of one of the two pumps. On 9/3/04 the two pumps were swapped to determine if the problem transferred from one well to the other with exchange of the pumps. The swap of pumps revealed that the amperage problem was resulting from the pump. The failed pump (RW-2) was removed and returned to the manufacturer on 9/16/04. RW-1 continued to operate at a rate of approximately 9 gpm.
- 4. A new pump was installed inside RW-2 on 10/12/04. Since then, both wells have been on-line and recovering groundwater, except during periods when Regulator No. 8 caused the system to shutdown due to sewer overflow.

TABLE 3-2 SIU DISCHARGE PERMIT SELF-MONITORING SUMMARY

2004 ANNUAL REPORT REMEDIAL WORK ELEMENT 2 (GROUNDWATER)

FOREST GLEN SUBDIVISION SITE NIAGARA FALLS, NEW YORK

	Quarter ending February 2004			Quarter ending May 2004			Quarter ending August 2004			Quarte	er ending Nov	ember 2004	Quart	er ending Fet	ruary 2005
Parameter	RW-1 (ug/L)	RW-2 (ug/L)	Loading (lbs/day)	RW-1 (ug/L)	RW-2 (ug/L)	Loading (lbs/day)	RW-1 (ug/L)	RW-2 (ug/L)	Loading (lbs/day)	RW-1 (ug/L)	RW-2 (ug/L)	Loading (lbs/day)	RW-1 (ug/L)	RW-2 (ug/L)	Loading (lbs/day)
Vinyl chloride	34	11	0.0033	34	12	0.0033	15	16	0.0030	10	13	0.0010	40	10	0.0034
1,1-dichloroethylene	1	ND_	0.0001	ND	ND	0.0001	ND	ND	0.0002	ND	ND	0.0000	ND	ND	0.0004
1,2-dichloroethylene	160	13.5	0.0126	220	12	0.0163	40	20	0.0057	16	27	0.0019	320	10	0.0227
1,1-dichloroethane	10	3.8	0.0010	13	4.1	0.0012	7.7	4.2	0.0011	7.8	3.7	0.0006	14	3.5	0.0012
Trichloroethylene	11	ND	0.0008	12	ND	0.0009	4.6	ND	0.0005	ND	ND	0.0000	31	ND	0.0022
Tetrachloroethylene	1.9	1.3	0.0002	5.3	2.1	0.0005	ND	ND	0.0002	ND	ND	0.0000	ND	2.4	0.0005
1,1,1-trichloroethane	20	1.7	0.0016	19	1.4	0.0014	30	5.5	0.0033	6.6	3.7	0.0005	24	1.6	0.0018
Phosphorus		ID	0.0081	N	ID	0.0081	N	ID	0.0081	N	ID	0.0047	N	ID	0.0069
Lead	N	ID	0.0004	N	ID	0.0004		ID	0.0004		ID OIL	0.0002	, N	ID	0.0003
Chromium		ID	0.0008		ID	0.0008		ID	0.0008	N	ID	0.0005	}	ID .	0.0007
Nickel	N	ID	0.0041	N	ID	0.0041	N	D	0.0041	N	ID	0.0023	N	ID	0.0034

Notes: Average VOC loading to the POTW presented above was calculated based on the actual volume of water recovered from each well, and the concentration of the parameter detected in the composite sample representing the particular recovery well.

Average metal loading to the POTW presented above was calculated based on the actual volume of water recovered from the system, and the concentration of the parameter detected in the system composite, following commingling of the recovery well flows. In cases where the parameter was not detected, half the detection value reported was used to calculate the average daily loading.

TABLE 4-1 - GROUND WATER ELEVATIONS

2004 ANNUAL REPORT REMEDIAL WORK ELEMENT 2 (GROUND WATER)

FOREST GLEN SUBDIVISION SITE **NIAGARA FALLS, NEW YORK**

Well I.D.	Top of Casing	Screened Interval		/2000	. 20	2004	3/17	/2004	1 //23	/2004	8/4/	2004	1 11/18	3/2004
	Elevation (ft MSL)	Elevation (ft MSL)	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE
MW-1S	598.15	568.5 - 578.5	16.67	581.48	19.23	578.92	16.61	581.54	18.58	579.57	15.65	582.50	20.77	577.38
MW-1D	598.05	546.7 - 567.5	16.32	581.73	19.03	579.02	16.44	581.61	18.60	579.45	15.56	582.49	20.80	577.25
MW-2S	596.95	567.1 - 577.1	13,47	583.48										
	600.11				24.85	575.26	21.85	578.26	24.53	575.58	20.36	579.75	26.50	573.61
MW-2D	596.98	535.4 - 559.8	15.25	581.73										
	600.21				24.46	575.75	22.12	578.09	24.57	575.64	20.31	579.90	26.45	573.76
MW-3S	597.43	567.3 - 577.3	13.53	583.90				AB	ND					
MW-3D	597.10	545.1 - 564.1	14.22	582.88				AB	ND				i	
MW-4S	595.34	573.6 - 583.6	12.05	583.29										
	593.96			-	18.05	575.91	15.35	578.61	17.74	576.22	14.53	579.43	19.45	574.51
MW-4D	595.44	534.1 - 563.4	13.50	581.94										
	594.11				19.48	574.63	16.93	577.18	19.37	574.74	15.00	579.11	21.45	572.66
MW-5\$	594.25	566.2 - 576.2	12.01	582.24										
	592.85				18.60	574.25	16.21	576.64	18.23	574.62	14.10	578.75	20.48	572.37
MW-5D	594.34	542.7 - 565.4	12.46	581.88										
	593.68				19.29	574.39	16.82	576.86	19.10	574.58	14.87	578.81	21.37	572.31
MW-6S	597.11	568.2 - 578.2	11.56	585.55	21.35	575.76	17.69	579.42	21.03	576.08	16.26	580.85	22.42	574.69
MW-6D	596.73	540.3 - 567.8	14.81	581.92	22.19	574.54	19.93	576.80	22.22	574.51	17.25	579.48	24.43	572.30
MW-6DD	596.02			NI	24.22	571.80	23.55	572.47	25.32	570.70	23.08	572.94	26.93	569.09
MW-7S	596.28	566.3 - 576.3	11.45	584.83	19.93	576.35	17.19	579.09	19.69	576.59	15.88	580.40	21.42	574.86
MW-7D	596.28	543.2 - 563.2	15.42	580.86	21.56	574.72	19.28	577.00	21.34	574.94	16.95	579.33	23.47	572.81
MW-7DD				NI	22.48		20.80		24.10		19.50		24.68	
MW-8S	596.67	564.4 - 574.4	13.70	582.97	16.20	580.47	14.40	582.27	16.41	580.26	13.97	582.70	17,40	579.27
MW-8D	596.86	542.8 - 561.9	16.93	579.93	21.82	575.04	19.80	577.06	21.97	574.89	17.70	579.16	23.84	573.02
MW-8DD				NI	22.85		21.72		23.96	-	20.55		25.72	
4-"Y-9S	595.22	568.2 - 578.2	11.51	583.71										-
	600.98				25.65	575.33	22.18	578.80	25.27	575.71	20.88	580.10	27.34	573.64
v-9D	595.31	538.5 - 567.5	13.22	582.09			-		ì					
	600.77				25.20	575.57	22.74	578.03	24.96	575.81	21.02	579.75	27.17	573.60
MW-10S	595.52	563.7 - 573.7	14.70	580.82	19.02	576.50	16.81	578.71	19.00	576.52	15.18	580.34	20.78	574.74
MW-10D	594.96	543.4 - 563.4	14.53	580.43	18.29	576.67	16.22	578.74	18.26	576.70	14.44	580.52	20.16	574.80
MW-11S	600.54	585.3 - 595.3	12.87	587.67	16.20	584.34	14.24	586.30	16.23	584.31	13.50	587.04	17.90	582.64
MW-11D	600.20	549.2 - 559.2	10.32	589.88	12.18	588.02	10.60	589.60	12.70	587.50	10.20	590.00	13.86	586.34
MW-12S	600.24	582.1 - 592.1	14.71	585.53	19.50	580.74	17.38	582.86	19.33	580.91	16.32	583.92	21.16	579.08
MW-12D	600.36	546.7 - 565.7	14.58	585.78	19.75	580.61	17.50	582.86	19.56	580.80	16.52	583.84	21.40	578.96
MW-13S	597.75	566.8 - 576.8	13.09	584.66	18.05	579.70	15.87	581.88	17.79	579.96	14.75	583,00	19.55	578.20
MW-13D	597.87	545.6 - 565.1	13.46	584.41	18.56	579.31	16.56	581.31	18.03	579.84	15.01	582.86	20.07	577.80
MW-14S	597.18	565.1 - 575.1	15.00	582.18	21.75	575.43	19.32	577.86	21.35	575.83	17.71	579.47	23.67	573.51
MW-14D	596.38	544.7 - 564.7	14.58	581.80	21.74	574.64	19.56	576.82	21.60	574.78	17.30	579.08	23.08	573.30
MW-15S	599.70	566.4 - 576.4	14.03	585.67	18.51	581.19	16.43	583.27	18.34	581.36	15.38	584.32	20.17	579.53
MW-15D	598.37	547.0 - 563.0	13.20	585.17	17.93	580.44	15.94	582.43	17.96	580.41	14.80	583.57	19.65	578.72
RW-1	593.60	526.5 - 574.5		NI				-	1					
· · · · · · · · · · · · · · · · · · ·	593.67					573.90		576.60	—	574.00		578.70	21.65	572.02
RW-2	591.79	523.8 - 570.8		NI										
	591.80	220.0 0.0.0			 	575.60		577.80		575.50		579.90	19.79	572.01

NOTES: MSL - Mean Sea Level DTW - Depth to Water GWE - Ground Water Elevation

NM - Not Measured

NI - Not Installed

Bold - Measure taken from PVC cap (Can't remove PVC)

I:71/5540/34194/5reports/2004 annual report/Table 3-6.xls

Table 4-2 Ground Water Quality Data - VOCs 2004 Annual Report

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

-	Sample ID	NYSDEC Class GA	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D
	Sample Date	GW Standards	09/11/95	11/13/95	07/22/97	09/15/97	02/14/00	08/13/01
•	-	ug/L					N9372	T0226
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	10 U	10 U	10	10	0.5 U	0.5 U
1,1,2-Trichloroethane		1	10 U	10 U	1 U	1 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
1,1-Dichloroethene		5*	10 U	10 U	1 U	1 U	0.1 J	0.5 U
1,2-Dichloroethane		0.6	10 U	10 U	1 U	1 U	0.5 U	0.5 U
1,2-Dichloroethene		5*	10 U	10 U	1 U	1 U		
1,2-Dichloropropane		1	10 U	10 U	1:U	1:U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 UJ	10 U	4 U	4 U	10 U	10 U
2-Hexanone		NS	10 UJ	10 U	2 U	2 Ü	5 U	5 U
4-Methyl-2-pentanone (MIBK)	ratar aran aran ne en	NS	10 U	10 U	2 U	2 U	5 U	5 U
Acetone		50	12 J	10 UJ	2 U	2 U	10 U	10 U
Benzene		1	10 U	10 U	1 U	1 U	0.5 U	0.5 U
Bromodichloromethane		NS	10 U	10 U	10	1:U	0.5 U	0.5 U
Bromoform		NS	10 U	10 U	1 U	1 U	0.5 U	0.5 U
Bromomethane		5*	21	10 U	2 U	2 U	10	មេរ
Carbon disulfide		NS	10 U	10 U	1 U	ΙU	0.5 U	0.5 U
Carbon tetrachloride		5	10 U	10 U	10	i U	0.5 U	0.5 ₩1
Chlorobenzene		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
Chloroethane		5*	10 U	10 U	10	1 U	1 U	נטו
Chloroform		7	10 U	10 U	1 U	1 U	0.5 U	0.5 U
Chloromethane		NS	10 UJ	10 U	10	1 U	1 U	1 U
Dibromochloromethane		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
Ethylbenzene		5*	10 U	10 U	10	1:U	0.5 U	0.5 U
Methylene chloride	•	5*	13 UJ	. 10 U	1 U	1 U	2 U	2 U
Styrene		5*	10 U	10 U	ıu	1 U	0.5 U	0.5 U
Tetrachloroethene		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
l'oluene		5*	10 U	10 U	1 U	1.U	0.5 U	0.5 U
Frichloroethene		5*	10 U	10 U	I U	1 U	0.5 U	0.5 ປ
Vinyl chloride		2	10 U	10 U	1 U	10	เบ	1 U
Xylene (total)		5*	10 U	10 U	1 Ü	1 U	0.5 U	0.5 U
is-1,2-Dichloroethene		5*					0.5 U	0.5 U
cis-1,3-Dichloropropylene		NS	10 U	10 U	1 U	1 U	0.5 U	0.5 ป
rans-1,2-Dichloroethene		5*	<u></u>				0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	· 10 U	10 U	1 U	1 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 1 of 36

File Number: 6510.25561

Table 4-2 Ground Water Quality Data - VOCs 2004 Annual Report Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID Sample Date	NYSDEC Class GA	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D
	Sample Date Units	GW Standards ug/L	09/11/95 ug/L	11/13/95 ug/L	07/22/97 ug/L	09/15/97 ug/L	02/14/00 N9372 ug/L	08/13/01 T0226 ug/L
Compound	•							
						:::::::::::::::::::::::::::::::::::::::		
			-					
							-	
							,	
						,		
NOTES: U - not detected, [] - Exceeds NY	J - estimated, D - dilute 'S Class GA Ground W	d result, R - unusable, NC ater Quality Standard.	- no criteria, Dup - duplic	ate sample.				
Para Bave Box De	MI VEHILENCE.			1			Page 1	of 36 CONTINUED File Number: 6510

Table 4-2 Ground Water Quality Data - VOCs 2004 Annual Report Remedial Work Element 2 (Ground Water)

Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D
	Sample Date	GW Standards	11/26/01	02/25/02	05/13/02	02/03/04	05/18/04	08/05/04
	-	ug/L	T5931	U1080	U6325	B5527	E0073	E4095
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü
1,1,2,2-Tetrachloroethane		5	0.5 UJ	0.5 U	0,5 U	0.5 ป	0.5 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene		5 *	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene	annannan eggeggesstan agama	5 *			**************************************	==>		
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	5 U	5 U	5.U	5:U	5 U	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 UJ	5 U	5 U	5 U
Acetone		50	10 UJ	10 U	10 U	10 U	1 J	10 U
Benzene		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 บ
Вгопюбогт		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ปั
Bromomethane		5*	10	10	I UJ	1 U	1 U	10
Carbon disulfide		NS	0.5 U	0.5 U ·	0.5 U	0.5 U	0.5 U	0.5 บ
Carbon tetrachloride		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 tJ	0.5 U
Chlorobenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	10	I Ü	10	1 U	1.U	1.U
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	10	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene		5 *	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride		2	10	1 U	10	1 U	1 U	10
Xylene (total)		5* .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 ป
cis-1,2-Dichloroethene		5*	0.2 J	0.13	0.1 J	0.5 U	0.1 J	0.5 U
cis-1,3-Dichloropropylene		NS '	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Date Printed: 03/01/05 09:52:26

2 of 36 Page

File Number: 6510.25561

Data have not been validated.

Table 4-2 Ground Water Quality Data - VOCs 2004 Annual Report Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID Sample Date	NYSDEC Class GA GW Standards ug/L	MW-01D 11/26/01 T5931	MW-01D 02/25/02 U1080	MW-01D 05/13/02 U6325	MW-01D 02/03/04 B5527	MW-01D 05/18/04 E0073	MW-01D 08/05/04 E4095
Compound	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
						·		
		·						
				·				
					<u> </u>			
NOTES: U - not det [] - Excee Data have	ected, J - estimated, D - dilute ds NYS Class GA Ground Wa not been validated.	d result, R - unusable, NC - ster Quality Standard.	no criteria, Dup - duplicate sample					of 16 CONTINUED

Page 2 of 36 CONTINUED

File Number: 6510.25561

Table 4-2 Ground Water Quality Data - VOCs 2004 Annual Report

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-01D	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S
	Sample Date	GW Standards ug/L	11/16/04 E9519	09/11/95	11/13/95	07/22/97	09/15/97	02/14/00 N9373
	Units	-6 -	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 U	10 U	10 U	1.0	10	0.5 U
1,1,2-Trichloroethane	,	1	0.5 U	10 U	10 U	1 U	1 U	0.5 U
1,1-Dichloroethane		5*	0.5 U	10 U	10 U	1.U	1 U	0.5 U
1,1-Dichloroethene		5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
1,2-Dichloroethane		0.6	0.5 U	10 U	10 U	1 U	10	0.5 U
1,2-Dichloroethene		5*		10 U	10 U	1 U	1 U	
1,2-Dichloropropane		1	0.5 U	10 U	10 U	1 U	ıu	0.5 U
2-Butanone (MEK)		NS	10 U	10 UJ	10 UJ	4 U	4 U	10 U
2-Hexanone		NS	5 U	10 W	10 UJ	2 U	2 U	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	10 U	10 UJ	2 U	2 U	5 U
Acetone		50	10 U	10 UJ	10 UJ	2 U	2 U	10 U
Benzene		1	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Bromodichloromethane		NS	0.5 U	10 U	10 U	1 U	IU	0.5 U
Bromoform		NS	0.5 U	10 U	10 U	1 U	1 U	0.5 ป
Bromomethane		5*	1 U	1 J	10 U	2 U	2 U	1 U
Carbon disulfide		NS	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Carbon tetrachloride		5	0.5 U	10 U	10 U	រប	1 U	0.5 U
Chlorobenzene		5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Chloroethane		5*	10	10 U	10 UJ	10	1 U	1 U
Chloroform		7	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Chloromethane		NS	10	10 UJ	10 UJ	1 U	1 U	1 U
Dibromochloromethane		5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Ethylbenzene		54	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Methylene chloride		5*	2 U	12 UJ	10 U	1 U	1 U	2 U
Styrene		5*	0.5 U	10 U	10 U	1 U	10	0.5 Ü
Tetrachloroethene		.5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Toluene		5*	0.5 U	10 U	10 U	iU	10	0.5 U
Trichloroethene	ALAK AMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMA	5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Vinyl chloride		2	10	10 U	10 UJ	10	10	IU
Xylene (total)		5 •	0.5 U	10 U	10 U	1 U	1 U	0.5 U
cis-1,2-Dichloroethene		5*	0,5 U	+	4111			0.5 U
cis-1,3-Dichloropropylene		NS	0.5 U	10 U	10 U	1 U	1 U	0.5 U
trans-1,2-Dichloroethene		5*	0.5 U					0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	10 U	10 U	. 1 U	1 U	0.5 U

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Bxceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated. NOTES:

Page 3 of 36

	Sample ID Sample Date	NYSDEC Class GA GW Standards	MW-01D 11/16/04	MW-01S 09/11/95	MW-01S 11/13/95	MW-01S 07/22/97	MW-01S 09/15/97	MW-01S 02/14/00
	Units	ug/L	E9519 ug/L	ug/L	ug/L	ug/L	ug/L	N9373 ug/L
Compound								
-								
		-				· · · · · · · · · · · · · · · · · · ·		
NOTES: U - not dete	ected, J - estimated, D - dilute	d result, R - unusable, NC - n	o criteria, Dup - duplicate samo	le.				
[] - Exceed Data have r	ds NYS Class GA Ground Wa not been validated.	nter Quality Standard	o criteria, Dup - duplicate samp					
te Printed: 03/01/05 09:5:					·		Page 3	of 36 CONTINUED File Number: 6510

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

-	Sample ID	NYSDEC Class GA	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S
	Sample Date	GW Standards	08/13/01	11/26/01	02/25/02	05/13/02	02/03/04	05/18/04
	•	ug/L	T0225	T5929	U1079	U6324	B5529	E0072
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound				•				
1,1,1-Trichloroethane		5*	0.5 U					
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U					
1,1-Dichloroethane		5*	0.5 U	Q.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene		5*	0.5 U					
1,2-Dichloroethane		0.6	0.2 J	0.5 U				
1,2-Dichloroethene		5*						
1,2-Dichloropropane		1	0.5 U					
2-Butanone (MEK)		NS	5 J	10 U				
2-Hexanone		NS	1 J	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 UJ	5 U	5 U
Acetone		50	14 U	10 UJ	10 U	10 U	10 U	l J
Benzene		i	0.5 U					
Bromodichloromethane		NS	0.5 U	0.5 U	0.5:U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U					
Bromomethane		5*	1 UJ	1 U	1 U	1 UJ	1.0	I U
Carbon disulfide		NS	0.5 U					
Carbon tetrachloride		5	0.5 UJ	0.5 U				
Chlorobenzene		5*	0.5 U					
Chloroethane		5*	I UJ	1 U	1 U	1 U	10	1 U
Chloroform		7	0.5 U					
Chloromethane		NS	0.3 J	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane		5*	0.5 U					
Bthylbenzene		5*	0.5 Ŭ	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U ,	0.5 U
Toluene		5*	0.5 U					
Trichloroethene		5*	0.5 U					
Vinyl chloride		2	1 U	1 U	I U	1 U	1 U	10
Xylene (total)		5* .	0.5 U	0.5 U	, 0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U	0.5 U
cis-1,3-Dichloropropylene		NS	0.5 U					
trans-1,2-Dichloroethene		5*	0.5 U	0,5 U				
trans-1,3-Dichloropropene		NS	0.5 U					

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Date Printed: 03/01/05 09:52:26

DBF File: Q:W510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

4 of 36

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

		Sample ID Sample Date	NYSDEC Class GA GW Standards	MW-01S 08/13/01	MW-01S 11/26/01	MW-01S 02/25/02	MW-01S 05/13/02	MW-01S 02/03/04	MW-01S 05/18/04
		Units	ug/L	T0225 ug/L	T5929 ug/L	U1079 ug/L	U6324 ug/L	B5529 ug/L	E0072 ug/L
Compound							_		
									~
	·								
				·					
	,								
NOTES:	U - not detected. J - m	stimated, D - diluted	result, R - unusable, NC - no criter	ia, Dup - duplicate sample.					
	[] - Exceeds NYS Cl Data have not been vi	lass GA Ground War alidated.	ter Quality Standard.						
N	M1.05 00:53:26					-		Page 4 of 30	5 CONTINUED

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

•	Sample ID	NYSDEC Class GA	MW-01S	MW-01S	MW-04D	MW-04D	MW-04D	MW-04D
	Sample Date	GW Standards	08/05/04	11/16/04	09/14/95	11/13/95	07/24/97	09/17/97
	-	ug/L	E4096	E9518				
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	10 U	10 U	1 U	0.3 J
1.1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	10 U	10 U	1 U	1.0
1,1,2-Trichloroethane		1	0.5 U	0.5 U	10 U	10 U	1 U	1 ប
1,1-Dichloroethane		5*	0.5 U	0.5 U	3.1	2 J	3.2	3.5
1,1-Dichloroethene		5*	0.5 U	0.5 U	10 U	10 U	1 U	1 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	10 U	10 U	1 U	10
1,2-Dichloroethene		5*			10 U	10 U	1.1	1.5
1,2-Dichloropropane		1	0.5 U	0.5 U	10 U	10 U	1 U	1 U
2-Butanone (MEK)		NS	10 U	10 U	10 UJ	10 UJ	4 U	4 U
2-Hexanone		NS	5 U	5 Ü	10 UJ	10 UJ	2 U	2 U
4-Methyl-2-pentanone (MIBK)	65444445555555555555555555555555555555	NS	5 U	5 U	10 U	10 UJ	2 U	2 U
Acetone		50	IJ	10 U	10 UJ	10 UJ	2 U	2 U
Benzene		1	0.5 U	0.5 U	10 U	10 U ·	1 U	1 U
Bromodichloromethane		NS	0.5 U	0.5 U	10 U	10 U	1 U	IU
Bromoform		NS	0.5 U	0.5 U	10 U	10 U	1 U	1 U
Bromomethane		5*	1 Ü	i U	10 U	10 U	2:U	2 U
Carbon disulfide		NS	0.5 U	0.5 U	10 U	10 U	1 U	1 U
Carbon tetrachloride		S	0.5 U	0.5 U	10 U	10 U	1.U	10
Chlorobenzene		5*	0.5 U	0.5 U	` 10 U	10 U	1 U	1 U
Chloroethane		5*	1 U	1 U	10 U	10 UJ	1.U	1 Ü
Chloroform	***************************************	7	0.5 U	0.5 U	10 UJ	10 U	1 U	1 U
Chloromethane		NS	10	1 U	10 W	10 UJ	1 U	1 U
Dibromochloromethane	***************************************	5*	0.5 U	0.5 U	10 U	10 U	1 U	1 U
Ethylbenzene		5*	0.5 U	0.5 U	10 U	10 U	1.U	1 Ü
Methylene chloride		5*	2 U	2 U	10 U	10 U	1 U	1 U
Styrene		5*	0.5 U	0.5 U	10 U	10 U	10	iU
Tetrachloroethene		5*	0.5 U	0.5 U	10 U	10 U	1 U	1 U
Toluene		5*	0.5 U	0.5 U	10 U	10 U	1.U	1.0
Trichloroethene	vvvsessesesseseseses	5 *	0.5 U	0.5 U	10 U	10 U	1 U	1 U
Vinyl chloride		2	10	1 U	10 U	10 UJ	[2.4]	[3.1]
Xylene (total)	v.v.sese00000000000000000000000000000000	5 * ·	0.5 U	0.5 U .	10 U	10 U	1 U	î U
cis-1,2-Dichloroethene		5*	0.5 U	0.5 U	***			
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	10 U,	10 U	1 U	1 U
trans-1,2-Dichloroethene		5*	0.5 U	0.5 U			a	
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	10 U	10 U	1 U	1 Ü

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Page 5 of 36

File Number: 6510.25561

Date Printed: 03/01/05 09:52:26

Data have not been validated.

	Sample ID Sample Date	NYSDEC Class GA GW Standards	MW-01S 08/05/04	MW-01S 11/16/04	MW-04D 09/14/95	MW-04D 11/13/95	MW-04D 07/24/97	MW-04D 09/17/97
	Units	ug/L	E4096 ug/L	E9518 ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
			*					
NOTES: U - not detected. [] - Exceeds NY Data have not be	J - estimated, D - diluted 'S Class GA Ground Wa en validated.	result, R - unusable, NC - no ter Quality Standard.	o criteria, Dup - duplicate samp	le.			Page 5	of 36 CONTINUED

	Sample ID	NYSDEC	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D
	Carrella Data	Class GA GW Standards				00 00 00	05/14/02	
	Sample Date	ug/L	02/17/00 N9521	08/15/01 T0334	11/29/01 T6135	02/28/02 U1278	U6512	07/30/03 A9184
	Units	ug/L	ug/L	ug/L	ug/L	· ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	[11]	0.6	2	2	2	0.5 U
1,1,2,2-Tetrachloroethane		5	Ò.5 Ú	0.5 U	0.5 U	0. 5 U	0.5 U	Q.5 U
1,1,2-Trichloroethane	000000000000000000000000000000000000000	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
I,I-Dichloroethane		5*	[30]	4	[14]	[18]	[19]	0.8
1,1-Dichloroethene		5*	0.7	0.5 U	0.2 J	0.2 J	0.2 J	0.5 U
1,2-Dichloroethane		0.6	0.2 J	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-Dichloroethene	ot (5 *	÷					
1,2-Dichloropropane		i	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)	*******************************	NS	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)	************************	NS	5 U	5 U	5 U	5 U	5 UJ	. 5 U
Acetone		50	10 U	10 U	10 U	10 U	10 Ü	IJ
Benzene		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Bromomethane		5*	10	1 U	10	i U	1 U	10
Carbon disulfide		NS	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U
Carbon tetrachloride		5	0.5 U	0.5 UI	0.5 U	0.5 U	0.5 U	0.5 Ŭ
Chlorobenzene		•5•	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	0.5 J	1 UJ	0.4 J	0.5 J	0.5 J	10
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	0.2 J	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U
Toluene		5*	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	0.4 J	0.5 U	0.1 J	0.1 J	0.1 J	0.5 U
Vinyl chloride		2	[20]	1	[5]	[6.J]	[7:]	1
Xylene (total)		5* ·	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	[11]	0.8	2	3	3	0.9
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0,9	0.5 ป	0.3 J	0.3 J	0.3 J	0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Date Printed: 03/01/05 09:52:26

Page 6 of 36

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-04D 02/17/00 N9521 ug/L	MW-04D 08/15/01 T0334 ug/L	MW-04D 11/29/01 T6135 ug/L	MW-04D 02/28/02 U1278 ug/L	MW-04D 05/14/02 U6512 ug/L	MW-04D 07/30/03 A9184 ug/L
Compound		*****			***************************************			
!								
-								
							1	
NOTES: U - not deter	cted. J - estimated. D - dilute	d result. R - unusable. NC -	no criteria, Dup - duplicate sam	ole.				
[] - Exceed Data have no	s NYS Class GA Ground Wa ot been validated.	ater Quality Standard.		,			Page 6	of 36 CONTINUED

Date Printed: 03/01/05 09:52:26

	Sample ID	NYSDEC	MW-04D	MW-04D	MW-04D	MW-04D	MW-04S	MW-04S
	Sample Date	Class GA GW Standards	00/05/04	054004	00/05/04	11/17/04	09/14/95	11/13/95
*	Sample Date	ug/L	02/05/04 B5690	05/19/04 E0081	08/05/04 E4104	E9659	U9/14/93	11/13/93
	Units	ug.c	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
1,1,2,2-Tetrachloroethane		S	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
1,1,2-Trichloroethane		1	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
1,1-Dichloroethane		5*	0.5	0.3 J	0.3 J	0.3 J	10 U	10 U
1,1-Dichloroethene		5*	0.5 ป	0.5 U	0.5 U	0.5 U	10 U	10 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
1,2-Dichloroethene		5 *					10 U	10 U
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
2-Butanone (MEK)	***************************************	NS	10 U	10 Ü	10 U	10 U	10 UJ	10 UJ
2-Hexanone		NS	5 U	5 U	5 U	3 U	10 UJ	10 UJ
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 U	10 U	· 10 UJ
Acetone		50	10 U	10 U	2 J	10 U	10 UJ	10 UJ
Benzene		1	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Bromodichloromethane		NS	0.5 U	0.5 TJ	0.5 U	0.5 U	10 U	10 U
Bromoform	***********	NS	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Bromomethane		5*	1 U	1 U	1 U	1.U	10 U	10 U
Carbon disulfide		NS	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Carbon tetrachloride		5	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Chlorobenzene	************	5*	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Chloroethane		5*	1 Ü	1 U	1 U	1 U	10 U	10 UJ
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5 U	10 UJ	10 U
Chloromethane		NS	I U	1 U	1 U	1 U	10 UJ	10 UJ
Dibromochloromethane	* ****************************	5*	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Ethylbenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	10 U	10 U
Styrene		5*	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10U
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Toluene		5*	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Trichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
Vinyl chloride		2	0.8 J	0.6 J	0,4 J	0.4 J	10 U	10 UJ
Xylene (total)		5 * ·	0.5 U	0.5 U	0.5 Ŭ	0.5 U	10 U	10 U
cis-1,2-Dichloroethene		5•	0.8	0.4 J	0,3 J	0.4J		 -
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U
trans-1,2-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 ป		_
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	0.5 U	0.5 U	10 U	10 U

NOTES:

Date Printed: 03/01/05 09:52:26

Page 7 of 36

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

30000	Sample ID Sample Date	NYSDEC Class GA GW Standards ug/L	MW-04D 02/05/04 B5690	MW-04D 05/19/04 E0081	MW-04D 08/05/04 E4104	MW-04D 11/17/04 E9659	MW-04S 09/14/95	MW-04S 11/13/95
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound			<u> </u>					
					•			
								·
					,			
		·						
NOTES: U - not detecte [] - Exceeds I	ed, J - estimated, D - diluted NYS Class GA Ground Wa been validated.	l result, R - unusable, NC - no ter Quality Standard	criteria, Dup - duplicate samp	le.				
Data have not	peen validated.						Page 7	of 36 CONTINUED

Date Printed: 03/01/05 09:52:26
DBF File:
FXP File: Q:\6510_GOODYBAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Remedial Work Element 2 (Ground Water) **Forest Glen Subdivision Site** Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S
	Sample Date	GW Standards	07/24/97	09/17/97	02/17/00	08/15/01	11/29/01	02/28/02
	•	ug/L			N9522	T0335	T6136	U1279
•	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	1 U	1 U	0.2 J	0.5 U	0.2 J	0.1 J
1,1,2,2-Tetrachloroethane		5	1 U	1.0	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	I U	1 U	0.4 J	0.3 J	0.4 J	0.3 J
1,1-Dichloroethene	************	5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene		5*	1 U	1 U				
1,2-Dichloropropane		1	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 Ŭ
2-Butanone (MEK)		NS	4 Ü	4 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	2 U	2 U	5 U	5 U	5:U	5 U
4-Methyl-2-pentanone (MIBK)		NS	2 U	2 U	5 U	5 U	5 U	5 U
Acetone		50	2.U	2 U	10 U	10 U	10 U	10 U
Benzene		1 .	. 1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Bromomethane		5*	2 U	2 U	1 U	1 U	1.0	เบ
Carbon disulfide		NS	1 U	1 U	0.5 U	0.5 U	0.2 J	0.5 U
Carbon tetrachloride		5	10	10	0.5 U	0.5 UJ	0.5 U	0.5 U
Chlorobenzene		5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	1 U	1 Ü	1 U	1 UJ	1 U	ប
Chloroform		7	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	i U	1 U	1 U	1 U	1 U	IU
Dibromochloromethane		5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	I U	1 U	0.5 U	0.5 U	0.5 U	0,5 U
Methylene chloride		5*	1 U	1 U	2 U	2 U	2 U	2 U
Styrene		5*	1 U	1.U	0.5 U	0.5 U	0.5 U	0.5 UJ
Tetrachloroethene		5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene		5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	1 U	1 Ü .	0.2 J	0.5 U	0.1 J	0,1 J
Vinyl chloride		2	1 U	I Ü	1 U	1 U	10	រយ
Xylene (total)		5• .	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*			0.6 U	0.1 J	0.5 U	0.5 U
cis-1,3-Dichloropropylene		NS	1 U	I U	0.5 U	0.5 U	. 0.5 U	0.5 ป
trans-1,2-Dichloroethene		5*	 -	<u></u>	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	1 U	1 <u>U</u>	0.5 U	0.5 U	0.5 U	0.5 U

NOTES: U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

Page 8 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard. Data have not been validated.

	Sample II Sample D	Class GA	MW-04S 07/24/97	MW-04S 09/17/97	MW-04S 02/17/00	MW-04S 08/15/01	MW-04S 11/29/01	MW-04S 02/28/02
	Units	ug/L	ug/L	ug/L	N9522 ug/L	T0335 ug/L	T6136 ug/L	U1279 ug/L
Compound						•	-6-	-6 -
				300000000000000000000000000000000000000				
	7							
			1					
			-					
					·			
			·					
NOTES								
NOTES: U-	not detected, J - estimated, D - - Exceeds NYS Class GA Grout a have not been validated.	diluted result, R - unusable, NC and Water Quality Standard.	no criteria, Dup - duplicate sam	pie.				
Dec	a nave not occi vanualdi.						Page 8	of 36 CONTINUED

	Sample ID	NYSDEC Class GA	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S
	Sample Date	GW Standards	05/14/02	07/31/03	02/06/04	05/19/04	08/05/04	11/17/04
	•	ug/L	U6511	A9183	B5692	E0082	E4105	E9660
	Units		ug/L	_, ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.2 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 Ü	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	0.5 J	0.2 J	0.1 J	0.5 U	0.2 J	0.2 J
1,1-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene	an an an ang ga ga ga ga ga an	5*						***
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)	***************************************	NS	5 UJ	5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	1.]	13	1.]	10 U	1.1
Benzene		1	0.5 U	0.1 J	0.5 U	0.5 ป	0.5 U	0.1 J
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	0.5 ℧	0.5 U	0.5 U
Bromoform	,	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	1 U	1 U	10	1 U	1 U	iU
Carbon disulfide		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 J
Carbon tetrachloride		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	************	5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	1 U	10	1 Ü	1 U	1 U	1 U
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 U	0.5 U	0.5 ป	0.5 บ	0'5 U	0.5 U
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene		5*	0.5 U	0.6	0.3 J	0.5 U	0.5 U	0.4 J
Trichloroethene		5*	0.2 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride		2	1 U	iU	10	1 U	1 U	10
Xylene (total)		5*	0.5 U	0.5	0.2 J	0.5 U	0.5 U	0.4 J
cis-1,2-Dichloroethene		5*	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	4	5*	0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample. NOTES:

9 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard. Data have not been validated.

Sample ID

Table 4-2 Ground Water Quality Data - VOCs 2004 Annual Report Remedial Work Element 2 (Ground Water) **Forest Glen Subdivision Site**

NYSDEC	MW-04S	MW-04S	MW-04S	MW-04S
		Niagara Falls, I	New York	

	Sample Date Units	Class GA GW Standards ug/L	05/14/02 U6511 ug/L	07/31/03 A9183 ug/L	02/06/04 B5692 ug/L	05/19/04 E0082 ug/L	08/05/04 E4105 ug/L	11/17/04 E9660 ug/L
ompound								· · · · · · · · · · · · · · · · · · ·

MW-04S

MW-04S

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	
,	Sample Date	GW Standards ug/L	09/13/95	11/14/95	07/24/97	09/16/97	02/17/00 N9519	08/14/01 T0269	
i e	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Compound		-							
1,1,1-Trichloroethane		5*	[5 J]	[12]	[17]	[22]	[11]	[8]	
1,1,2,2-Tetrachloroethane		5	10 U	10 U	1 U	1 U	0.5 U	0.5 U	
1,1,2-Trichloroethane		1	10 U	10 U	1 U	1 U	0.5 U	0.5 U	
1,1-Dichloroethane		5*	[8 J]	[13]	[26]	[33]	[20]	[19]	
1,1-Dichloroethene		5*	10 U	10 U	1.1	1.8	0.9	0.4 J	
1,2-Dichloroethane		0.6	10 U	10 U	1 U	1 U	0.5 U	0.5 U	
1,2-Dichloroethene		5*	[21]	[68]	[63.2]	[101.8]			
1,2-Dichloropropane		1	10 U	10 U	1 U	1 U	0.5 U	0.5 U	
2-Butanone (MEK)		NS	10 U	10 UJ	4 U	4 U	10 U	10 U	
2-Hexanone		NS	10 U	10 UJ	2 U	2 U	5 U	5 U	
4-Methyl-2-pentanone (MIBK)		NS	10 U	10 UJ	2 U	2 U	5 U	5 U.	
Acetone		50	10 U	10 UJ	2 U	2 U	10 U	10 U	
Benzene		1	10 U	10 U	1 U -	1 U	0.5 U	0.5 U	
Bromodichloromethane		NS	10 U	10 U	1 U	1 U	0.5 U	0. 3 °U	
Bromoform		NS	10 U	10 U	1 U	· 1 U	0.5 U	0.5 U	
Bromomethane		5*	10 U	10 U	2 U	2 U	1 U	1 U	
Carbon disulfide		NS	10 U	10 U	1 U	1 U	0.5 U	0.5 U	
Carbon tetrachloride		5	10 U	10 U	10	10	0.5 U	0.5 UJ	
Chlorobenzene		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U	
Chloroethane		5*	10 U	10 UJ	1 U	10	0.6 J	0.3 J	
Chloroform		7	10 U	10 U	l U	1 U	0.5 U	0.5 U	
Chloromethane		NS	10 U	10 UJ	10	1 U	1 U	1 U	
Dibromochloromethane		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U	
Ethylbenzene		5*	0.6 J	10 U	i U	1 Ü	0.5 U	0.5 U	
Methylene chloride		5*	10 U	10 U	1 U	i U	ំ2ប	2 U	
Styrene		5*	10 U	10 U	1.0	` IU	0.5 U	0.5 U	
Tetrachloroethene		5*	10 U	10 U	1 U	0.6 J	0.2 J	0.5 U	
Toluene		5*	2 J	10 U	1.0	1 Ü	0.5 U	0.5 U	
Trichloroethene		5*	1 J	4 J	2.7	3.5	2	0.6	
Vinyl chloride		2	[15]	[44 J]	[57]	[84]	[30]	[30]	
Xylene (total)		5* .	3 J	10 U	1 U	1 U	0.5 U	0.5 U	
cis-1,2-Dichloroethene		g•					[37]	[30]	
cis-1,3-Dichloropropylene		NS	10 U	10 U	1 U	1 Ü	0.5 U	0.5 U	consequence delle
trans-1,2-Dichloroethene		5*	-				1	0.3 J	
trans-1,3-Dichloropropene	 	NS	10 U	10 U	1 U	1 U	0.5 U	0.5 U	

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated. NOTES:

Date Printed: 03/01/05 09:52:26

Page 10 of 36

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

Sample Date GW	Class GA Sample Date GW Standards 09/13/95 11/14/95 07/24/97	MW-05D 09/16/97	MW-05D 02/17/00	MW-05D 08/14/01			
	ug/L			,		N9519	T0269 ug/L
Onits		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
				·			
					300000000000000000000000000000000000000		
		00000000000000000000000000000000000000					
	000000000000000000000000000000000000000	* :			***************************************		•••••••••••••••••••••••
l, J - estimated, D - dilute YS Class GA Ground Wa	d result, R – unusable, NC – ster Quality Standard.	no criteria, Dup - duplicate sample.	•				
een validated.			** **			Page 10	of 36 CONTINUED
The contract the contract that the contract that the contract the contract that the contract the contract the contract the contract that the contract tha	Units Units	Sample Date ug/L Units GW Standards ug/L	Sample Date GW Standards 09/13/95 Units ug/L Units ug/L 4. J estimated, D diluted result, R unusable, NC - no criteria, Dup - duplicate sample.	Sample Date GW Standards 09/13/95 11/14/95 ug/L Units ug/L ug/L ug/L 4, J - estimated, D - diluted result, R - unusable, NC - no criteris, Dup - duplicate sample. PYS Class GA Ground water Quality Standard.	Sample Date GW Standards 09/13/95 11/14/95 07/24/97' ug/L Units ug/L ug/L ug/L ug/L 4, J - estrimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample. PISC Glass GA Ground Water Quality Standard.	Sample Date GW Standards 09/13/95 11/14/95 07/24/97' 09/16/97 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Sample Date W Sundards 09/13/95 11/14/95 07/24/97 09/16/97 19/31/9

DBF File: Q:6510_GOODYEAR\\34194_FOREST2004\PROGS\TABLEPR.FXP

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D
	Sample Date	GW Standards	11/29/01	02/27/02	05/15/02	07/30/03	02/06/04	05/19/04
	•	ug/L	T6141	U1223	U6911	A9182	B5691	E0080
	Units		ug/L .	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	[8]	[6]	[5]	3	2	1
1,1,2,2-Tetrachloroethane	4	5	0.5 U					
1,1,2-Trichloroethane		1	0.5 U					
1,1-Dichloroethane		5*	[18]	[17]	[17]	[6]	[5]	3
1,1-Dichloroethene		5*	0.5	. 0.4 J	0.4 J	0.3 J	0.3 J	0.5 U
1,2-Dichloroethane		0.6	0.5 Ü	0.5 U				
1,2-Dichloroethene	***************************************	5*						
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U					
2-Hexanone		NS	5 U	5 Ü	5 U	5 U	5.U	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 U	5 U .	5 U
Acetone		50	10 U	10 U	10 U	1.3	10 U	2 J
Benzene		1	0.5 U					
Bromodichloromethane		NS	0.5 U					
Bromoform		NS	0.5 U					
Bromomethane		5*	1 U	1 U	ี 1 บ	1 U	1 U	l U
Carbon disulfide		NS	0.5 U					
Carbon tetrachloride		5	0.5 🖰	0.5 U				
Chlorobenzene		5*	0.5 U					
Chloroethane		5*	0.4 J	0.4 J	0.4 J	1 U	I U	I U
Chloroform		7	0.5 U					
Chloromethane		NS	1 U	1 U	1 U	1 U	10	1 U
Dibromochloromethane		5 * ·	0.5 U					
Ethylbenzene		5*	0.5 U					
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 U	0,5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	0.5 U					
Toluene		5*	0.5 U	0.5 บ	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	0.7	0.6	0.6	0.3 J	0.3 J	0.2 J
Vinyl chloride		2	[33]	[21]	[20]	[13]	[9.]	(5)
Xylene (total)		5 * .	0.5 U					
cis-1,2-Dichloroethene		5*	[40]	[28]	[24]	[17]	[13]	[7]
cis-1,3-Dichloropropylene	• • • • • • • • • • • • • • • • • • • •	NS	0.5 U					
trans-1,2-Dichloroethene		5*	0.4 J	0.3 J	0.3 J	0.3 J	0.2 J	0.1 J
trans-1,3-Dichloropropene		NS	0.5 U					

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 11 of 36

File Number: 6510.25561

1,4

	Class GA Sample Date GW Standards 11/29/01 02/27/02 05/15/02		MW-05D	MW-05D 02/27/02	MW-05D 05/15/02	MW-05D 07/30/03	MW-05D 02/06/04	MW-05D 05/19/04	
	Units	ug/L	T6141 ug/L	T6141 U1223		U6911 A9182 ug/L ug/L		E0080 ug/L	
Compound					· · · · · · · · · · · · · · · · · · ·				
								, , , , , , , , , , , , , , , , , , , ,	
						•			
		· ·							
							i		
		·							

Table 4-2 Ground Water Quality Data - VOCs 2004 Annual Report Remedial Work Element 2 (Ground Water)

Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-05D	MW-05D	MW-05S	MW-05S	MW-05S	MW-05S
	Sample Date	GW Standards ug/L	08/05/04 E4103	11/17/04 E9662	09/14/95	11/14/95	07/24/97	09/16/97
,	Units	-8 -	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.9	1	[5 J]	[65 J]	. [110]	[88]
1,1,2,2-Tetrachloroethane		5	0.5 Ü	0.5 U	10 U	100 U	1 U	I U
1,1,2-Trichloroethane	***************************************	1	0.5 U	0.5 U	10 U	100 U	1 U	1 U
1,1-Dichloroethane		5*	3	4	[5 J]	[70 J]	[92]	[76]
1,1-Dichloroethene		5*	0.1 J	0.2 J	10 U .	100 U	[16]	1 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	10 U	100 U	1.U	10
1,2-Dichloroethene		5 *	***************************************		[130]	[1300]	[1709.3]	[1400]
1,2-Dichloropropane		1	0.5 U	0.5 U	10 U	100 U	10	i U
2-Butanone (MEK)		NS	10 U	10 U	10 U	100 UJ	4 U	4 U
2-Hexanone		NS	5 U	5 U	10 U	100 UJ	2 U	2 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	10 UJ	100 UJ	2 U	2 U
Acetone		50	4 J	10 U	8 J	100 UJ	2:U	2 U
Benzene		1	0.5 U	0.5 U	10 U	100 U	1 U	1 U
Bromodichloromethane		NS	0.5 U	0.5 U	10 U	100 U	1 U	1 U
Bromoform		NS	0.5 U	0.5 U	10 U	100 U	1 U	1 U
Bromomethane		5*	1 U	1 U	2:J	100 U	2:U	2 U
Carbon disulfide		NS	0.5 U	0.5 U	10 U	100 U	1 U	1 U
Carbon tetrachloride		5	0.5 U	0.5 U	10 U	100 U	1.U	10
Chlorobenzene		5*	0.5 U	0.5 U	10 U	100 U	1 U	1 U
Chloroethane		5*	1 U	1 U	10 U	100 UJ	1 U	I Ü
Chloroform		7	0.5 U	0.5 U	10 U	100 U	1.7	1 U
Chloromethane		NS	10	1 U	10 UJ	100 W	1 U	10
Dibromochloromethane		5*	0.5 Ü	0.5 U	10 U	100 U	1 U	1 U
Ethylbenzene		5*	0.5 U	0.5 U	10 U	100 U	10	10
Methylene chloride		5*	2 U	2 U	10 U	100 U	1 U	1 U
Styrene		5*	0.5 U	0.5 U	10 U	100:U	10	10
Tetrachloroethene		5* .	0.5 U	0.5 U	10 U	100 U	4.2	1 U
Toluene		5*	0.5 U	0.5 U	10 U	100 U	10	I U
Trichloroethene		5*	0.1 J	0.2 \$	[8 1]	[76 J]	[350]	[230]
Vinyl chloride		2	[4]	[5]	[16]	[220 J]	[170]	[240]
Xylene (total)		5* .	0.5 U	0.5 U	10 U	100 U	1 U	1 U
cis-1,2-Dichloroethene		5*	[6]	(8)				
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	10 U	100 U	1 U	1 U
trans-1,2-Dichloroethene		5*	0.1 J	0.5 U				
trans-1,3-Dichloropropene		NS .	0.5 U	0.5 U	10 U	100 U	1 U	1 U

NOTES: U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

12 of 36

Data have not been validated.

	Sample ID	Class GA		MW-05S	MW-05S	MW-05S	MW-05S	
	Sample Date	GW Standards ug/L	08/05/04 E4103	11/17/04 E9662	09/14/95	11/14/95	07/24/97	09/16/97
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
4444444								
400000000000000000000000000000000000000								
						·		
					i.			
					· ·			-
NOTES: U	- not detected, J - estimated, D - dilute	result Ramusable NCan	criteria Dun - duplicate some	ale ·				
()] - Exceeds NYS Class GA Ground Wa sta have not been validated.	ter Quality Standard.	and e-ab - trobusens parit					
Date Printed: 03/01/0							Page 12	of 36 CONTINUED File Number: 6510

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S
	Sample Date	Class GA GW Standards	02/17/00	00/14/01	1100/01	02/27/02	05/15/02	07/30/03
	Sample Date	ug/L	02/17/00 N9520	08/14/01 T0268	11/29/01 T6142	U1222	U6910	A9181
	Units	ug D	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound							•	
1,1,1-Trichloroethane		5*	[90]	[120]	[73]	[57]	[35]	[90]
1,1,2,2-Tetrachloroethane		5	0.5 U	5 U	20 UJ	20 U	20 U	20 U
1,1,2-Trichloroethane	*************	1	0.3 J	5 U	20 U	20 U	20 U	20 U
1,1-Dichloroethane		5*	[100]	[130]	[71]	[55]	[33]	[43]
1,1-Dichloroethene		5*	[13]	[20]	[12 J]	[8 J]	[5 J]	[7.J]
1,2-Dichloroethane		0.6	0.4 J	5 U	20 U	20 U	20 Ü	20 Ú
1,2-Dichloroethene		5*						
1,2-Dichloropropane		1	0.5 U	5 U	20 U	20 U	20 U	20 U
2-Butanone (MEK)		NS	10 U	100 U	400 U	400 U	400 U	400 U
2-Hexanone		NS	5 U	50 U	200 U	200 U	200 U	200 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	50 U	200 U	200 U	200 U	200 U
Acetone		50	10 U	100 U	400 U	400 U	400 U	400 U
Benzene		. 1	0.5 U	5 U	20 U	20 U	20 U	20 U
Bromodichloromethane		NS	0.5 U	5 U	20 U	20 U	20 U	20 U
Bromoform	*******************	NS	0.5 U	5 U	20 U	20 U	20 U	20 U
Bromomethane		5*	1 U	10 UJ	40 U	40 U	40 U	40 U
Carbon disulfide		NS	0.5 U	5 U	20 U	20 U	20 U	20 U
Carbon tetrachloride		5	0.5 U	5 UJ	20 U	20 U	20 U	20 U
Chlorobenzene		5*	0.5 U	5 U	20 U	20 U	20 U	20 U
Chloroethane		5*	1	10 UJ	40 U	40 U	40 U	40 U
Chloroform		7	0.5 U	5 U	20 U	20 U	20 U	20 U
Chloromethane		NS	1 U	10 U	40 U	40 U	40 UJ	40 U
Dibromochloromethane		5•	0.5 U	5 U	20 U	20 U	20 U	20 U
Ethylbenzene		5*	0.5 U	5 U	20 U	20 U	20 U	20 U
Methylene chloride		5*	2 U	20 U	80 U	80 U	80 U	80 U
Styrene		5*	0.5 U	5 U	20 U	20 UJ	20 U	20 U
Tetrachloroethene		5*	0.3 J	5 U	20 U	20 U	20 U	20 U
Toluene		5*	0.5 U	5 Ü	20 U	20 U	20 U	20 U
Trichloroethene		5*	[130]	[55]	[59]	[26]	[17 J]	[31]
Vinyl chloride		2	[210]	[370]	[190]	[140]	[89]	[380]
Xylene (total)		5* .	0.5 U	5 U	20 U	· 20 U	20 U	20 U
cis-1,2-Dichloroethene		5*	[1300]	[2200]	[1100]	[880]	[590]	[1300 D]
cis-1,3-Dichloropropylene		NS	0.5 U	5 U	20 U	20 U	20 U	20 U
trans-1,2-Dichloroethene		5*	[41]	[25]	[11Л]	[8:J]	[6 J]	[11.7]
trans-1,3-Dichloropropene		NS	0.5 U	5 U	20 U	20 U	20 U	20 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

Page 13 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard.
Data have not been validated.

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

· .	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-05S 02/17/00 N9520 ug/L	MW-05S 08/14/01 T0268 ug/L	MW-05\$ 11/29/01 T6142 ug/L	MW-05S 02/27/02 U1222 ug/L	MW-05S 05/15/02 U6910 ug/L	MW-05S 07/30/03 A9181 ug/L
Compound			-					
		•						
								·
NOTES: U-n []- Data	not detected, J - estimated, D - diluted Exceeds NYS Class GA Ground Wa have not been validated.	result, R - unusable, NC - ter Quality Standard.	no criteria, Dup – duplicate sam	ple.			Page 13	of 36 CONTINUED
Printed: 03/01/05 File:	09:52:26			·		·····		File Number: 651

Remedial Work Element 2 (Ground Water) **Forest Glen Subdivision Site** Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-05S	MW-05S	MW-05S	MW-05S	MW-06D	MW-06D
	Sample Date	GW Standards	02/05/04	05/19/04	08/05/04	11/17/04	09/13/95	11/14/95
		ug/L	B5687	E0079	E4102	E9661		• • • • • • • • • • • • • • • • • • • •
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	[43]	[32]	[78]	[110]	10 U	10 U
1,1,2,2-Tetrachloroethane		5	20 U	20 U	10 U	20 Ŭ	10 U	10 U
1,1,2-Trichloroethane		1	20 U	20 U	10 U	20 U	10 U	10 U
1,1-Dichloroethane		5*	[99]	[29]	[15]	[190]	10 U	10 U
1,1-Dichloroethene		5*	[12 J]	[7 J]	4 J	[21]	10 U	10 U
1,2-Dichloroethane		0.6	20 U	20 U	10 U	20 U	10 U	10 U
1,2-Dichloroethene		5*					[6 Л]	[17]
1,2-Dichloropropane		1	20 U	20 U	10 U	20 U	10 U	10 U
2-Butanone (MEK)		NS	400 U	400 U	200 U	400 U	10 UJ	10 UJ
2-Hexanone		NS	200 U	200 U	100 U	200 U	10 UJ	10 U
4-Methyl-2-pentanone (MIBK)		NS	200 U	200 U	100 U	200 U	, 10 U	10 UJ
Acetone		50	400 U	400 U	200 U	400 U	10 UJ	10 UJ
Benzene		į.	20 U	20 U	· 10 U	20 U	10 U	10 U
Bromodichloromethane		NS	20 U	20 U	10 U	20 U	10 U	10 U
Bromoform		NS	20 U	20 U	10 U	20 U	10 U	10 U
Bromomethane		5*	40 U	40 U	20 U	40 U	10 U	10 U
Carbon disulfide		NS	20 U	20 U	10 U	20 U	10 U	10 U
Carbon tetrachloride		5	20 U	20 U	10 U	20 ℧	10 U	10 U
Chlorobenzene		5*	20 U	20 U	10 U	20 U	10 U	10 U
Chloroethane		5*	40 U	40 U	20 U	40 U	10 U	10 U
Chloroform		7	20 U	20 U	10 U	20 U	10 UJ	10 U
Chloromethane		NS	40 U	40 U	20 U	40 U	10 UJ	10 UJ
Dibromochloromethane		5*	20 U	20 U	10 U	20 U	10 U	10 U
Ethylbenzene		5*	20 U	20 U	10 U	20 U	10 U	10 U
Methylene chloride		5*	80 U	[60 Л]	40 U	[6 Л]	10 UJ	10 U
Styrene		5*	20 U	20 U	10 U	20 U	10 U	10 U
Tetrachloroethene		5*	20 U	20 U	4 J	20 U	10 U i	10 U
Toluene		5*	20 U	20 U	10 U	20 U	10 U	100
Trichloroethene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5*	[34]	[35]	[85]	[44]	10 U	10 U
Vinyl chloride		2	[120]	[140]	[53]	[100]	10 U	[51 Л]
Xylene (total)		5 * ·	20 U	20 U	10 U	20 U	10 U	10 U
cis-1,2-Dichloroethene		5*	[740]	[1300]	[460]	[890]		
cis-1,3-Dichloropropylene		NS	20 U	20 U	10 U	20 U	10 U	10 U
trans-1,2-Dichloroethene		5*	[12]]	[11Л]	[5 J]	[167]	-	
trans-1,3-Dichloropropene		NS	20 U	20 U	10 U	20 U	10 U	10 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 14 of 36

		Sample ID NYSDEC Class GA Sample Date GW Standards ug/L	Class GA ple Date			MW-05S MW-05S 08/05/04 11/17/04 E4102 E9661		MW-06D 09/13/95	MW-06D	
	Units	ug	/L	B5687 ug/L	E0079 ug/L	E4102 ug/L	E9661 ug/L	ug/L	ug/L	
Compound										
		3333333333333333333333333		-						
, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					*					
						*				
÷										
NOTES:	U - not detected, J - estimated, I [] - Exceeds NYS Class GA G Data have not been validated.	O - diluted resuround Water Qu	lt, R - unusable, NC - uality Standard.	no criteria, Dup - duplicate sample.				Dogo 14	of 26 CONTINUED	
e Printed: 03/0 F File:	01/05 09:52:26							Page 14	of 36 CONTINUED File Number: 6510	

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D
	Sample Date	GW Standards ug/L	07/28/97	09/17/97	02/15/00 N9418	08/15/01 T0337	11/29/01 T6140	02/27/02 U1224
	Units	- 	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.7 J	1 U	1	0.5 J	0.8	0.9
1,1,2,2-Tetrachloroethane		5	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	[5.8]	3.6	2	2	2	2
1,1-Dichloroethene		5*	1 U	1 U	0.3 J	0.1 J	0.2 J	0.5 U
1,2-Dichloroethane		0.6	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene		5*	[14]	[35]			***	
1,2-Dichloropropane		1	1 U	10	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)	*****	NS	4 U	4 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	2 U	2 U	5:U	5 U	5 Ü	5 U
4-Methyl-2-pentanone (MIBK)		NS	2 U	2 U	5 U	5 U	5 U	5 U
Acetone		50	2 U	2 U	10 U	10 U	10 U	10 U
Benzene		1	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	2 U	2 U	1 U	1 U	រ ប	រេប
Carbon disulfide		NS	1 U	1 U	0.5 U	0.5 U	1	0.5 U
Carbon tetrachloride		5	1 U	iU	0.5 U	0.5 UJ	0.5 U	0.5 U
Chlorobenzene		5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	IU	មេ	1 U	1 UJ	10	មេ
Chloroform		7	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Chioromethane		NS	10	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane		5*	1 U	1 U	0.5 U	0.5 U	0.5 ปี	• 0.5 U
Ethylbenzene		5*	10	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	1 U	1 U	2 U	2 U	2 U	2 U
Styrene		5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Tetrachloroethene		5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene		5*	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	1 U	1 U	0.5	0.2 J	0.3 J	0.3 J
Vinyl chloride		2	[22]	[45]	[44]	[24]	[40]	[39]
Xylene (total)		5* -	ΙÜ	1 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*			[43]	[20]	[34]	[36]
cis-1,3-Dichloropropylene		NS	. 1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	-		2	0.2 J	0.4 J	0.5 J
trans-1,3-Dichloropropene		NS	1 U	1 Ú	. 0.5 U	0.5 U	0.5 U	0.5 ป

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated. NOTES:

Date Printed: 03/01/05 09:52:26

Page 15 of 36

	Sample ID	NYSDEC Class GA	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	
	Sample Date	GW Standards	07/28/97	09/17/97	02/15/00 N9418	08/15/01 T0337	11/29/01 T6140	02/27/02 U1224	
	Units	ug/L	ug/L	ug/L	N9418 ug/L	ug/L	ug/L	ug/L	
mpound			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				<u> </u>	
									000000000000
533333333333333333333333333333333333333									888888888
		·							
:::::::::::::::::::::::::::::::::::::::									s8888488888
		,							
		,							
									98688888888
				•					\$8888888888
	*								20000000000
NOTES: U	not detected, J - estimated, D - diluter	result, R - unusable, NC -	no criteria, Dup - duplicate samp	ole.				<u> </u>	
[] Da	- Exceeds NYS Class GA Ground Wa sta have not been validated.	ter Quality Standard.				•	Dage 15	of 16 CONTRACT	LIED
Printed: 03/01/05		GS\TABLEPR.FXP			·		Page 15	of 36 CONTINU	

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D
	Sample Date	GW Standards	05/15/02	07/29/03	02/04/04	05/18/04	08/05/04	11/16/04
		ug/L	U6913	A9070	B5531	E0077	E4101	E9521
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.8 J	0.6	0.1 J	0.5	0.1 J	0.1 J
1,1,2,2-Tetrachloroethane		5	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	1	1	1	0.7	1	1
1,1-Dichloroethene		5*	0.2 J	0.2 J	0.5 U	0.3 J	0.5 U	0.5 U
1,2-Dichloroethane		0.6	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene		5*						
1,2-Dichloropropane		1	1 U	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	20 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	10 U	5 U	5:U	5 U	5:U	5 ปั
4-Methyl-2-pentanone (MIBK)		NS	10 U	5 U	5 U	5 U	5 U	5 U
Acetone		50	20 U	10 U	10 U	10 U	2 J	10 U
Benzene		1	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	10	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	2 U	1.U	10	1 U	1 U	IÜ
Carbon disulfide		NS	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride		5	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene		5*	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	2 U	1 U	1.U	1 U	10	וט
Chloroform		7	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	2 เม	1 U	10	1 U	1 U	10
Dibromochloromethane		5*	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	4 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	1 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene		5*	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	0.3 J	0.3 J	0.5 U	0.4 J	0.5 U	0.5 U
Vinyl chloride		2	[37]	[24]	[6]	[28]	[6]	[4]
Xylene (total)		5* .	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	[35]	{21 }	[5]	[29]	[5]	4
cis-1,3-Dichloropropylene		NS	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.4 J	0.4 J	0.5 U	0.6	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 16 of 36

	Sample ID	NYSDEC Class GA	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D
	Sample Date Units	GW Standards ug/L	05/15/02 U6913 ug/L	07/29/03 A9070 ug/L	02/04/04 B5531 ug/L	05/18/04 E0077 ug/L	08/05/04 E4101 ug/L	11/16/04 E9521 ug/L
Compound			•		-			
				0.400.000000000000000000000000000000000				
				,				
xxxxxxxxxxxx		*******************************		***********************************	200000000000000000000000000000000000000			
							1	
		,						
NOTES: U - not [] - Ex Data ha	t detected, J - estimated, D - dilute ceeds NYS Class GA Ground Wa ave not been validated.	d result, R - unusable, NC - parter Quality Standard.	io criteria, Dup - duplicate sample	c.	,		Page 16	of 36 CONTINUED
e Printed: 03/01/05 (09:52:26						1450 10	File Number: 6510.

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD
		Class GA	60 - 62 ft.	69 - 70 ft.	80 - 81 ft.		60 - 62 ft.	60 - 62 ft.
•	Sample Date	GW Standards	07/29/03	07/29/03	07/29/03	02/04/04	05/18/04	08/05/04
	Units	ug/L	A9066 ug/L	A9067 ug/L	A9068 ug/L	B5530 ug/L	E0075 ug/L	E4098 ug/L
	Onis		ug/L	ug/L	ug/L	ug/L	ug∕r.	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	· 0.5 U	0.7	[5]	2	[9]
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	•	1	0.5 U	0. 5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	0.1 J	0.5 ป	1	[5]	[5]	[5]
1,1-Dichloroethene		5*	. 0.5 U	0.5 U	0.5 U	0.3 J	0.2 J	0.3 J
1,2-Dichloroethane		0.6	0.5 U					
1,2-Dichloroethene		5*			•••			
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U
2-Butanone (MEK)		NS	10 U					
2-Hexanone		NS	5 U	5 U	5 U	<i>5</i> U	5 U	5 U
4-Methyl-2-pentanone (MIBK)	*************************	NS	5 U	5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	10 U	10 U	4 J	10 U	10 U
Benzene		1	0.5 U					
Bromodichloromethane		NS	0.5 U					
Bromoform	*	NS	0.5 U					
Bromomethane		5*	1 U	I U	10	IÜ	I U	IU
Carbon disulfide		NS	0.5 U					
Carbon tetrachloride		5	0.5 U					
Chlorobenzene		5*	0.5 U					
Chloroethane		5*	1 U	10	1 U	1 U	1.U	I Ü
Chloroform		7	0.5 U					
Chloromethane		NS	1 U	1 U	1 U	1 U	1 U	10
Dibromochloromethane		5*	0.5 U					
Ethylbenzene		5*	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5•	0.5 U					
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 J	0.8	0.6	0.7
Toluene		5•	0.3 J	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U
Trichloroethene		5*	0.5 U	0.5 U	, 0.3 J	2	1	2
Vinyl chloride		2	0.3 J	0.1 J	[5:]	[20]	[14]	[15]
Xylene (total)		5*	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	0.5 J	0.5 ป	[7]	[32]	[12]	[21]
cis-1,3-Dichloropropylene		NS	0.5 U					
trans-1,2-Dichloroethene		5•	0.5 U	0.5 U	0.5 U	0.3 J	0.1 J	0,2 J
trans-1,3-Dichloropropene		NS	0.5 U					

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 17 of 36

Date Printed: 03/01/05 09:52:26 DBF File:
FXP File: Q:\u00f6510_GOODYEAR\\00e34194_FOREST2004\\00e3PROGS\\TABLEPR.FXP

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-06DD 60 - 62 ft. 07/29/03 A9066 ug/L	MW-06DD 69 - 70 ft. 07/29/03 A9067 ug/L	MW-06DD 80 - 81 ft. 07/29/03 A9068 ug/L	MW-06DD 02/04/04 B5530 ug/L	MW-06DD 60 - 62 ft. 05/18/04 E0075 ug/L	MW-06DD 60 - 62 ft. 08/05/04 E4098 ug/L
Compound	U		-8-	-2-	- 	-6-	-6-	-
				-				
	·							
, , , , , , , , , , , , , , , , , , , ,								
NOTES: U-not	detected, J - estimated, D - diluted	result R - unusable NC -	no criteria. Duo - dunlicate samul	2.			······································	
[]- Ex	ceeds NYS Class GA Ground Wa ave not been validated.	ter Quality Standard.		-	•			
	,						Page 17 (of 36 CONTINUED

Date Printed: 03/01/05 09:52:26
DBF File:
FXP File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-06DD 60 - 62 ft.	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S
	Sample Date	GW Standards	11/16/04 E9522	09/14/95	11/14/95	07/23/97	09/17/97	02/15/00 N9417
	Units	ug/L	E9522 ug/L	ug/L	ug/L	ug/L	ug/L	N941 / ug/L
Compound				-	 			
1,1,1-Trichloroethane		5*	0.7	10 U	10 U	1 U	1 U	0.2 J
1,1,2,2-Tetrachloroethane		5	0.5 U	10 Ü	10 U	1.0	1 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U	10 U	10 U	1 U	1 U	0.5 U
1,1-Dichloroethane		5*	[9]	10 U	10 U	1.U	1 Ü	2
1,1-Dichloroethene		5*	0.2 J	10 U	10 U	1 U	1 U	0.5 U
1.2-Dichloroethane		0.6	0.5 U	10 U	10 U	1.U	1 U	0.5 U
1,2-Dichloroethene	******************************	5*		4 J	10 U	3.1	2.6	.
1,2-Dichloropropane	•	1	0.5 U	10 U	10 U	1 U	1 U	0.5 ป
2-Butanone (MEK)	www.uucooooooooooooooo	NS	10 U	10 U	10 U	4 U	4 U	10 U
2-Hexanone		NS	5 U	10 U	10 U	2 U	2 U	5 U
4-Methyl-2-pentanone (MIBK)	100000000000000000000000000000000000000	NS	5 U	10 U	10 U	2 U	2 U	5 U
Acetone		50	10 U	18	10 UJ	2 U	2 U	10 U
Benzene	***********	1	0.2 J	10 U	10 U	1 U	1 U	0.5 U
Bromodichloromethane		NS	0.5 U	10 U	10 U	i U	ΙÜ	0.5 U
Bromoform		NS	0.5 U	10 U	10 UJ	1 U	1 U	0.5 U
Bromomethane		5*	1 U	10 U	10 U	2 U	2 U	10
Carbon disulfide		NS	0.2 J	10 U	10 U	1 U	1 U	0.5 ป
Carbon tetrachloride		5	0.5 U	10 U	10 U	1 U	10	0.5 ป
Chlorobenzene		5*	0.5 U	10 U •	10 U	1 U	1 U	0.5 U
Chloroethane		5*	0.5 J	10 U	10 U	1 U	1 ប	10
Chloroform		7	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Chloromethane		NS	1 U	5.1	10 U	1 U	1 U	i U
Dibromochloromethane		5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Ethylbenzene		5*	0.2 J	10 U	10 U	1:U	1 U	0.5 ひ
Methylene chloride		5*	2 U.	10 U	10 U	1 U	1 U	2 U
Styrene		5*	0.5 U	10 U	10 Ü	1 U	1 U	0.5 U
Tetrachloroethene		5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Toluene		5*	0.5 U	10 U	10 U	1 U	1 U	0.5 U
Trichloroethene		5*	0.6	10 U	10 U	1 U	1 U	0.2 J
Vinyl chloride		2	[12]	10 U	10 U	1 U	1U -	0.3 J
Xylene (total)		5* .	0.9	10 U	10 U	1 U	1 Ü	0.5 ปุ
cis-1,2-Dichloroethene		5 *	[16]				•••	2
cis-1,3-Dichloropropylene		NS	0.5 U	10 U	10 U	1 U	I U	0.5 U
trans-1,2-Dichloroethene		5*	0.3 J					0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	10 U	10 U	1 U	1 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

Page 18 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-06DD 60 - 62 ft. 11/16/04 E9522 ug/L	MW-06S 09/14/95 ug/L	MW-06S 11/14/95 ug/L	MW-06S 07/23/97 ug/L	MW-06S 09/17/97 ug/L	MW-06S 02/15/00 N9417 ug/L
·	Ollis		ugr	ug/L	ugr	ug 2	ug , 2	ug/ C
Compound								
					•			
				·				
				Α				
						·		
NOTES: U - not det [] - Excee Data have	tected, J - estimated, D - dilute eds NYS Class GA Ground Wa not been validated.	i result, R - unusable, NC - ster Quality Standard.	no criteria, Dup – duplicate samp	lc.			Dana 10	of 26 CONTINUED
e Printed: 03/01/05 09:5	2.26	÷ .			· · · · · · · · · · · · · · · · · · ·		Page 18	of 36 CONTINUED File Number: 6510.2

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S
	Sample Date	GW Standards	08/15/01	11/29/01	02/27/02	05/15/02	07/29/03	02/04/04
	· ·	ug/L	T0336	T6139	U1225	U6912	A9069	B5532
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	0.2 J	0.1 J	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U				
1,1,2-Trichloroethane		1	0.5 U	0.5 U				
1,1-Dichloroethane		5*	1	2	1	0.9	0.4 J	0.3 J
1,1-Dichloroethene		5*	0.5 U	0.5 U				
1,2-Dichloroethane		0.6	0.5 U	0.5 U				
1,2-Dichloroethene		5*						
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U	10 U				
2-Hexanone		NS	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	'5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	61				
Benzene		1	0.5 U	0.5 U				
Bromodichloromethane		NS	0.5 U	0.5 U				
Bromoform		NS	0.5 U	0.5 U				
Bromomethane		5*	1 U	1 U	10	1.U	1:U	IU
Carbon disulfide		NS	0.5 U	0.2 Ј				
Carbon tetrachloride		5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene		5*	0.5 U	0.5 U				
Chloroethane		5*	មេរ	1 U	ıu	1 Ü	1 U	1 Ü
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5·U	0.3 J	0.5 U
Chloromethane		NS	1 U	1 U	1 U	1 UJ	1 U	1 U
Dibromochloromethane		5*	0.5 U	0.5 U				
Ethylbenzene		5*	0.5 U	0.5 U				
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U ¹	0.5 U
Toluene		5*	0.5 U	0.5 U				
Trichloroethene		5*	0.5 U	0.2 J	0.5 U	0.5 U	0.2 J	0.1 J
Vinyl chloride		2	0.8 J	0.4 J	0.4 J	0.2 J	0.7 J	0.5 J
Xylene (total)		5* ·	0.5 U	0.5 U				
cis-1,2-Dichloroethene		5*	3	2	1	2	[6]	[5]
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.1 J
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U				

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 19 of 36

	Sample ID	NYSDEC Class GA	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	
ı	Sample Date		08/15/01 T0336	11/29/01 T6139	02/27/02 U1225	05/15/02 U6912	07/29/03 A9069	02/04/04 B5532	
ı	Units	uge	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Compound									_
ı							-		
								,	
								,	
								·	
									8
NOTES:	U - not detected, J - estimated, D - dilu [] - Exceeds NYS Class GA Ground Data have not been validated.	ted result, R - unusable, NC - n Water Quality Standard	o criteria, Dup - duplicate sampl	e					
Jate Printed: 01/	/01/05 09:52:26					·	Page 19	of 36 CONTINUED File Number: 65	

DBF File: FXP File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-06S	MW-06S	MW-06S	MW-07D	MW-07D	MW-07D
	Sample Date	GW Standards	05/18/04 E0078	08/05/04 E4100	11/16/04 E9520	09/21/95	11/14/95	07/23/97
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	0.5 U	10 U	10 U	[5.7]
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	0.5 U	10 U	10 U	ΙÜ
1,1,2-Trichloroethane		· 1	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U
1,1-Dichloroethane		5*	0.2 J	0.3 J	0.4 J	10 U	10 Ü	[8]
1,1-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U
1,2-Dichloroethene		5*				10 U	10 U	[69]
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U
2-Butanone (MEK)		NS	10 U	10 U	10 U	10 UJ	10 U	4 U
2-Hexanone		NS	5 U	5 U	5 U	10 UJ	10 U	2 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	10 U	10 U	2 U
Acetone		50	10 U	10 U	51	17J	10 UJ	2 U
Benzene		1 .	0.5 U	0.5 U	0.5 U	[1 J]	10 U	1 U .
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	10 U	10 U	10
Bromoform		NS	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U
Bromomethane		5*	10	1 U	10	10 U	10 U	2 U
Carbon disulfide		NS	0.5 U	0.5 U	0.4 J	10 U	10 U	1 U
Carbon tetrachloride		5	0.5 U	0.5 U	0.5 U	10 U	10 U	បេ
Chlorobenzene		5*	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U
Chloroethane		5*	IU	1 U	1 U	10 U	10 U	IU
Chloroform		7	0.5 U	0.5 U	0.5 U	10 UJ	10 U	1 U
Chloromethane		NS	1 U	1 U	1 U	10 UJ	10 U	1 U
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U
Bthylbenzene		5*	0.5 U	0.5 U	0.5 U	0.7 J	10 U	10
Methylene chloride		5*	2 U	2 U	2 U	10 UJ	10 U	1 U
Styrene		5*	0.5 U	0.5 U	0.5 U	10 U	10 U	10
Tetrachloroethene		5*	0.1 J	0.1 J	0.5 U	10 U	10 U	1 U
Toluene		5*	0.5 U	0.5 U	0.5 U	2 J	10 U	10
Trichloroethene		5*	0.2 J	0.2 Ј	0.2 J	10 U	10 U	1 U
Vinyl chloride		2	0.4 J	I	0.9 J	10 U	10 U	[26]
Xylene (total)		5* .	0.5 U	0.5 U	0.5 U	3 J	10 U	1 Ü
cis-1,2-Dichloroethene		5*	4	[30]	[14]			
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U
trans-1,2-Dichloroethene		5*	0.1 J	0.3.)	0.2 J			 -
trans-1,3-Dichloropropene	<u> </u>	NS	0.5 U	0.5 U	0.5 U	10 U	10 U	1 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 20 of 36

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-06S 05/18/04 E0078 ug/L	MW-06S 08/05/04 E4100 ug/L	MW-06S 11/16/04 E9520 ug/L	MW-07D 09/21/95 ug/L	MW-07D 11/14/95 ug/L	MW-07D 07/23/97 ug/L
mpound				·				
				,				
							·	
	·							
		,						
OTES: U-no []-E Data l	ot detected, J - estimated, D - dilute Exceeds NYS Class GA Ground Wa have not been validated.	d result, R - unusable, NC - n nter Quality Standard.	o criteria, Dup - duplicate samp	ole.			Page 20	of 36 CONTINUED
Unnied: as no see	09:52:26 YEAR\34194_FOREST2004\PRO	<u> </u>					rage 20	File Number: 6510

Remedial Work Element 2 (Ground Water) **Forest Glen Subdivision Site** Niagara Falls, New York

	Sample ID	NYSDEC Class GA GW Standards ug/L	MW-07D 09/18/97	MW-07D 02/18/00 N9573 ug/L	MW-07D	MW-07D 11/28/01 T6086	MW-07D 02/25/02 U1082	MW-07D
	Sample Date				08/16/01 T0523			05/16/02 U7824
	Units		ug/L		ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	[12]	[34]	[34]	[35]	[33]	[31]
1,1,2,2-Tetrachloroethane		5	ΙŪ	0.5 U	0.5 U	5 UJ	10	5 U
1,1,2-Trichloroethane		1	1 U	0.2 J	0.5 U	5 U	1 U	5 U
1,1-Dichloroethane		5*	[15]	[41]	[35]	[33]	[31]	[29.]
1,1-Dichloroethene	******************************	5*	1.3	. 4	3	3 J	2	3 J
1,2-Dichloroethane		0.6	1 U	0.2 J	0.5 U	5 U	10	5 U
1,2-Dichloroethene	.0000000000000000000000000000000000000	5*	[141]					
1,2-Dichloropropane		1	iu	0.5 U	0.5 U	5 U) U	5 ปี
2-Butanone (MEK)	***************************************	NS	4 U	10 U	10 U	100 U	20 U	100 U
2-Hexanone		NS	2 U	5 U	5 U	50 U	10 U	50 U
4-Methyl-2-pentanone (MIBK)		NS	2 U	5 U	5 U	50 U	10 U	50 U
Acetone		50	2 U	10 U	10 U	100 U	20 U	100 UJ
Benzene		1	1 U	0.5 U	0.5 U	5 U	1 U	5 U
Bromodichloromethane		NS	1 U	0.5 U	0.5 U	5 U	1 U	5 U
Bromoform	2000-00-00-00-00-00-00-00-00-00-00-00-00	NS	1 U	0.5 U	0.5 U	5 U	· 1 U	5 U
Bromomethane		5 °	2 U	1 U	1 UJ	10 U	2 U	10 UJ
Carbon disulfide	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	NS	1 U	0.5 U	0.5 UJ	5 U	1 U	5 U
Carbon tetrachloride		5	10	0.5 U	. 0.5 UJ	5 U	1 Ü	5 U
Chlorobenzene	.XX00000000000000000000000000000000000	5*	1 U	0.5 U	0.5 U	5 U	1 U	5 U
Chloroethane		5*	1 U	0.2 J	1 UJ	10 U	2 U	10 U
Chloroform		7	1 U	0.5 U	0.5 U	5 U	1 U	5 U
Chloromethane		NS	1 U	0.3 J	1 U	10 U	2 U	10 U
Dibromochloromethane	300000000000000000000000000000000000000	5*	1 U	0.5 U	0.5 U	5 U	1 U	5 U
Ethylbenzene		5*	1 U	0.5 U	0.5 U	5 U	10	5 U
Methylene chloride	***************************************	5*	1 U	2 U	2 U	20 U	0.2 J	20 U
Styrene		5*	1 U	0.5 U	0.5 ป	5 U	1 W	5 U
Tetrachloroethene	District of the Control of the Contr	5*	1 Ü	0.5 U	0.5 U	5 U	. 1 U	5 U
Toluene		5*	1 U	0.5 U	0.5 U	5 U	1 U	5 U
Trichloroethene		5*	1 U	2	0.8	5 U	0.8 J	5 U
Vinyl chloride		2	[52]	[79.]	[100]	[160]	[120]	[130]
Xylene (total)		5* ·	1 U	0.5 U	0.5 U	5 U	1 U	5 U
cis-1,2-Dichloroethene		5•		[190]	[220]	[240]	[210]	[220]
cis-1,3-Dichloropropylene	3000ccccccccc	NS	1 U	0.5 U	0.5 U	5 U	1 U	5 U
trans-1,2-Dichloroethene		5•		[18]	3	4.3	3	3]
trans-1,3-Dichloropropene		NS	1 U	0.5 U	0.5 U	5 U	1 U	5 U

NOTES:

Page 21 of 36

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-07D 09/18/97 ug/L	MW-07D 02/18/00 N9573 ug/L	MW-07D 08/16/01 T0523 ug/L	MW-07D 11/28/01 T6086 ug/L	MW-07D 02/25/02 U1082 ug/L	MW-07D 05/16/02 U7824 ug/L
Compound								
				-				
				,				
	·							
		٠						
		·						
				· · · · · · · · · · · · · · · · · · ·				
NOTES:	U - not detected, J - estimated, D - dilute [] - Exceeds NYS Class GA Ground W. Data have not been validated.	d result, R - unusable, NC - p ater Quality Standard.	o criteria, Dup - duplicate sam	ple.	-		Page 21	of 36 CONTINUED

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07DD 53 - 55 ft.
	Sample Date	GW Standards	07/29/03	02/03/04	05/17/04	08/04/04	11/15/04 E9487	07/29/03
	•	ug/L	A9065	B5523	B9956	E4090		A9061
	Units	4	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	<u> </u>	0.8	0.6	0.3 J	0.5	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U	0.5 U				
1,1-Dichloroethane		5*	[7]	[6]	4	0.7	4	0.3 J
1,1-Dichloroethene		5*	0.5 J	0.4 J	0.3 J	. 0.5 U	0.3 J	0.5 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U				
1,2-Dichloroethene		5 *		***				
1,2-Dichleropropane		1	0.5 U	0.5 U				
2-Butanone (MEK)		NS	10 U	10 U				
2-Hexanone		NS	5 U	5 U	5 U	5 Ü	5:U	5 U
4-Methyl-2-pentanone (MIBK)	*****************	NS	5 U	5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	10 U				
Benzene		1	0.5 U	0.5 U	0.5 Ŭ	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	10	ιυ	1.U	1 U	1 U	1.Ü
Carbon disulfide		NS	0.5 U	0.5 U				
Carbon tetrachloride		5	0.5 U	0.5 U				
Chlorobenzene		5*	0.5 U	0.5 U				
Chloroethane		5*	10	1 U	1 U	1 U	1 U	1 U
Chloroform		7	0.5 U	0.5 U				
Chloromethane		NS	10	1 U	1 U	1 U	1 U	i U
Dibromochloromethane		5*	0.5 U	0.5 ป				
Ethylbenzene		5*	0.5 U	0.5 U				
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5•	0.5 U	0.5 U				
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U
Toluene		5*	0.5 U	0.5 U				
Trichloroethene	nananan matatahan matatahan 1966/9666	5*	0.5 U	0.1 J	0.1 J	0.2 Ј	0.1 J	0.5 U
Vinyl chloride		2	[35]	[32]	[24]	[2]	[22]	1.7
Xylene (total)		5*	0.5 U	0.5 U				
cis-1,2-Dichloroethene		5*	[38]	[33.]	[23]	[5]	[23]	0.4 J
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U				
trans-1,2-Dichloroethene		5*	0.4 J	0.43	0.2 J	0:1 J	0.2 J	0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U				

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 22 of 36

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-07D 07/29/03 A9065 ug/L	MW-07D 02/03/04 B5523 ug/L	MW-07D 05/17/04 B9956 ug/L	MW-07D 08/04/04 E4090 ug/L	MW-07D 11/15/04 E9487 ug/L	MW-07DD 53 - 55 ft 07/29/03 A9061 ug/L
Compound								·
							_	
		_						
		· · · · · · · · · · · · · · · · · · ·						
				-				
			-					
		-						
NOTES: U - not dete	cted, J - estimated, D - diluted is NYS Class GA Ground Wa tot been validated.	f result, R - unusable, NC - r tter Quality Standard.	o criteria, Dup - duplicate samp	ile.				
Data have n	ot been validated.						Page 22	of 36 CONTINUED

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falis, New York

	Sample ID	NYSDEC	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD
		Class GA	66 - 68 ft.	82 - 84 ft.		53 - 55 ft.	53 - 55 ft.	53 - 55 ft.
	Sample Date	GW Standards	07/29/03	07/29/03	02/04/04	05/18/04	08/04/04	11/15/04
	V 7-14-	ug/L	A9062	A9063	B5686	E0071	E4089	E9488
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	0.3 J	0.3 J	1	0.2 J	0.5 U	0.1 J
1,1-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene		5*			. •••		***	
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	5 U	5 U	5:U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 U	· 5 U	5 U
Acetone		50	10 U	10 U	10 U	10 U	10.U	10 U
Benzene		1	0.5 U	0.2 J	0.2 J	0.5 U	0.5 U	0.1 J
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	1 U	1 U	1 U	1 U	1 U	10
Carbon disulfide		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride		5	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	IŲ	10	1 U	1 U	1 U	រប
Chloroform		7 .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	1 U	1 U	1 U	1 U	1 U	10
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	0.5 U	0,1 J	0.4 J	0,5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5·U
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U
Toluene		5*	0.5 U	0.3 J	1	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	0.5 U	0.5 U	0.2 J	0.2 J	0.2 J	0.2 J
Vinyl chloride		2	1 J	ij	[9]	0.2 J	0.2 J	0.2 J
Xylene (total)		5* .	0.5 U	1	[5]	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	0.5 j	0.5 J	[7]	0.3 J	0.31	0.4 J
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.5 U	0:5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Date Printed: 03/01/05 09:52:26

Page 23 of 36

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-07DD 66 - 68 ft. 07/29/03 A9062 ug/L	MW-07DD 82 - 84 ft. 07/29/03 A9063 ug/L	MW-07DD 02/04/04 B5686 ug/L	MW-07DD 53 - 55 ft. 05/18/04 E0071 ug/L	MW-07DD 53 - 55 ft. 08/04/04 E4089 ug/L	MW-07DD 53 - 55 ft. 11/15/04 E9488 ug/L
Compound								
				*				
NOTES: U - not detec	ted, J - estimated, D - diluted	result, R - unusable, NC -	po criteria, Dup - duplicate samp	ile.				
Data have no	NYS Class GA Ground Wa t been validated.	en Angus Sements	• .		•		Page 23 o	of 36 CONTINUED

	Sample ID	NYSDEC Class GA	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S
	Sample Date	GW Standards	09/12/95	11/13/95	07/23/97	09/18/97	02/18/00	08/16/01
		ug/L					N9572	T0522
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound						•		
1,1,1-Trichloroethane		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	10 U	10 U	1 U	1 U	0,5 U	0.5 U
1,1,2-Trichloroethane		1 .	10 U	10 U	1 U	1 U	0.5 U	. 0.5 U
1,1-Dichloroethane		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
1,1-Dichloroethene		5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	10 U	10 U	1 U	1 U	0.5 U	0.5 U
1,2-Dichloroethene		5*	10 U	10 U	1 U	1 U		
1,2-Dichloropropane		1	10 U	10 U	1:U	1.0	0.5 U	0.5 U
2-Butanone (MEK)		NS -	10 UJ	10 U	4 U	4 U	10 U	10 U
2-Hexanone		NS	10 UJ	10 U	2 U	2 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)		NS	10 U	10 U	2 U	2 U	5 U	5 U
Acetone		50	10 UJ	10 UJ	2 U	2 U	10 U	10 U
Benzene		1	. 10 U	10 U	-1 U	1 U	0.5 U	0.5 U
Bromodichloromethane		NS	10 U	10 U	1U	1 U	0.5 U	0.5 U
Bromoform		NS	10 U	10 U	1 U	1 U	0.5 U	0.5 U
Bromomethane		5*	10 U	10 U	2 U	2 U	1 U	1 U
Carbon disulfide		NS	10 U	10 U	1 U	1 U	0.5 U	0.5 U
Carbon tetrachloride		5	10 Ü	10 U	1 U	i U	0.5 U	0.5 UJ
Chlorobenzene		5*	10 Ü	10 U	1 U	1 U	0.5 U	0.5 U
Chloroethane		5*	10 U	10 U	1 U	1 U	1 U	1.UJ
Chloroform		7	10 UJ	10 U	1 U	1 U	0.5 U	0.5 U
Chloromethane		NS	10 UJ	10 U	1 U	U I	10	IU
Dibromochloromethane		5*	10 U	10 U	1 U	I U	0.5 U	0.5 U
Ethylbenzene		5*	10 U	10 U	1.U	1 U	0.5 U	0.5 U
Methylene chloride		5*	10 UJ	10 U	1 U	1 U	2 U	2 U
Styrene		5*	10 U	10 U	1 U	1 Ü	0.5 U	0.5 U
Tetrachloroethene		5*	10 U	10 U	1 U	I U	0.5 U	0.1 J
Toluene		5*	10 U	10 U	1 U	10	0.5 U	0.5 U
Trichloroethene	anna i sarti i sang aya sa sa sa	5*	10 U	10 U	1 U	1 U	0.5 U	0.5 U
Vinyl chloride		2	10 U	10 U	10	I Ü	1 U	បេ
Xylene (total)		5* .	10 U	10 U	1 U	1 U	2 U	0.5 Ü
cis-1,2-Dichloroethene		5*					0.5 U	0.5 U
cis-1,3-Dichloropropylene		NS	10 U	10 U	1 U	1 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*					0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	10 U	10 U	1 U	1 ប	0.5 U	0.5 U

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard. NOTES:

Page 24 of 36

Date Printed: 03/01/05 09:52:26

Data have not been validated

	Sample ID	NYSDEC Class GA	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S
	Sample Date	GW Standards ug/L	09/12/95	11/13/95	07/23/97	09/18/97	02/18/00 N9572	08/16/01 T0522
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound				<u>, ,</u>		·		
				·				
					·			
NOTES: U - not detec	cted, J - estimated, D - dilute s NYS Class GA Ground W	ed result, R - unusable, NC - r ater Quality Standard.	no criteria, Dup - duplicate sam	ple.				
Data have no	ot been validated.		•		,		Page 24	of 36 CONTINUED
e Printed: 02/01/05 00:52								File Number 6510 25

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S
	Sample Date	GW Standards	11/28/01 T6085	02/25/02 U1081	05/16/02 U7823	07/29/03 A9064	02/03/04 B5524	05/17/04 B9957
•	Units	ug C	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene		5 *						
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	5 U	5 U	5 U	5:U	5 U	5:U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	10 U	10 U	10 U	10 U	10 U
Benzene		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	1 U	1 U	171	1:U	1 U	1.0
Carbon disulfide	*****************************	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	*****	5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	1 U	1 U	1 U	1:U	1 U	טו
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 Ų	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	0.1 J	0.2 J	0.3 J	0.2 J	0.2 J	0.1 J
Toluene		5*	0.5 U	0.5 U	0.5 U	0.5 [.] U	0.5 U	0.5 U
Trichloroethene		5*	0.5 U	0.5 U	0.5 Ü	0.1 J	0.4 J	0.4 J
Vinyl chloride		2	1 U	ıu	1 U	i U	10	IU
Xylene (total)		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	0,5 U	0.5 U	0.5 U	0.1 J	0.3 J	0.3 J
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 25 of 36

Date Printed: 03/01/05 09:52:26

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-07S 11/28/01 T6085 ug/L	MW-07S 02/25/02 U1081 ug/L	MW-07S 05/16/02 U7823 ug/L	MW-07S 07/29/03 A9064 ug/L	MW-07S 02/03/04 B5524 ug/L	MW-07S 05/17/04 B9957 ug/L
Compound				•				
				-				
				*				
·								
•								
		·						
			-					
NOTES:	U - not detected, J - estimated, D - diluted [] - Exceeds NYS Class GA Ground Wa Data have not been validated.	d result, R - unusable, NC - no o nter Quality Standard.	riteria, Dup - duplicate sample.				Page 25	of 36 CONTINUED

CONTINUED

Remedial Work Element 2 (Ground Water) **Forest Glen Subdivision Site** Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-07S	MW-07S	MW-08D	MW-08D	MW-08D	MW-08D	
	Sample Date	GW Standards	08/04/04 E4091	11/15/04 E9486	09/13/95	11/14/95	07/23/97	09/18/97	
•	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Compound									
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	10 U	10 U	1 U	1 U	
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	10 U	10 U	10	ľŲ	
1,1,2-Trichloroethane		1	0.5 U	0.5 U	10 U	10 U	1 U	1 U	
1,1-Dichloroethane		5*	0.5 U	0.5 U	10 U	10 U	1.7	2	
1,1-Dichloroethene	*** * * * * * * * * * * * * * * * * * *	5*	0.5 U	0.5 U	10 U	10 U	1 U	1 U	
1,2-Dichloroethane		0.6	0.5 U	0.5 U	10 U	10 U	1 U	1 U	
1,2-Dichloroethene		5*	***		10 U	10 U	4.1	[5.3]	2007-1-028-2-0-0
1,2-Dichloropropane		1	0.5 U	0,5 U	10 U	10 U	10	10	
2-Butanone (MEK)		NS	10 U	10 U	10 UJ	10 U	4U -	4 U	
2-Hexanone		NS	5 U	5 U	10 UJ	10 U	2 U	2 U	
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 Ü	10 U	10 U	2 U	2 U	
Acetone		50	10 U	10 U	21 J	10 UJ	2 U	2 U	
Benzene		1	0.5 U	0.5 U	[1 Л]	10 U	1 U	1 U	
Bromodichloromethane		NS	0.5 U	0.5 U	10 U	10 U	1 U	1 U	
Bromoform		NS	0.5 U .	0.5 U	10 U	10 UJ	1 U	1 U	
Bromomethane		5*	1 U	រប	10 U	10 U	2 U	2 U	
Carbon disulfide		NS	0.5 U	0.5 U	10 U	10 U	1 U	1 U	
Carbon tetrachloride		5	0.5 U	0.5 U	10 U	10 U	1 U	10	
Chlorobenzene		5*	0.5 U	0.5 U	10 U	10 U	1 U	1 U	
Chloroethane		5*	10	1 U	10 U	10 U	1 U	10	
Chloroform		7	0.5 U	0.5 U	10 UJ	10 U	1 U	IU	
Chloromethane		NS	1 U	1 U	10 W	10 U	1 U	IU	
Dibromochloromethane		5*	0.5 U	0.5 U	10 U	10 U	1 U	1 U .	
Ethylbenzene		5*	0.5 U	0.5 U	0.8 J	10 U	1 U	1 U	
Methylene chloride		5*	2 U	2 U	10 UJ	10 U	1 U	1 U	annennentele
Styrene		5*	0.5 U	0.5 U	10 U	10 U	1.0	10	
Tetrachloroethene		5*	0.2 J	0.2 Ј	10 U	10 U	1 U	1 U	******
Toluene		5*	0.5 U	0.5 U	3 J	10 U	1 U	រប	
Trichloroethene		5*	0.5	0.6	10 U	10 U	1 U	1 U	enne de mode
Vinyl chloride		2	1 U	1 U	10 U	10 U	[9.1]	[11]	
Xylene (total)		5* ·	0.5 U	0.5 U	[5 J]	10 U	1 Ü	1 U	ananananan
cis-1,2-Dichloroethene		5•	0.4 J	0.5 J			<u></u>		
cis-1,3-Dichloropropylene	Bilika wasan sa sa wasan na na hawa sa	NS	0.5 U	0.5 U	10 U	10 U	1 U	1 U	000000000000
trans-1,2-Dichloroethene		5*	0.5 U	0.5 U			-		
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	10 U	10 Ü	1 U	1 U	

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

Page 26 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard. Data have not been validated.

		ple ID	NYSDEC Class GA	MW-07S	MW-07S	MW-08D	MW-08D	MW-08D	MW-08D
		ple Date	GW Standards ug/L	08/04/04 E4091	11/15/04 E9486	09/13/95	11/14/95	07/23/97	09/18/97
	Units	S		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound				· -					
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
								-	
		500000000000000000000000000000000000000							
NOTES:	U - not detected, J - estimated [] - Exceeds NYS Class GA Data have not been validated.	l, D - diluted : Ground Wate	result, R - unusable, NC - no criteri r Quality Standard	a, Dup - duplicate sample.					
	Data have not been validated.	•						Page 26 of 3	6 CONTINUED

	Sample ID	NYSDEC Class GA	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D
	Sample Date	Class GA GW Standards	02/18/00	08/16/01	11/28/01	02/25/02	05/16/02	07/30/03
	Sample Daw	ug/L	N9575	T0521	T6087	U1085	U7826	A9180
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound							,	
1,1,1-Trichloroethane		5*	0.3 J	0.3 J	0.2 J	0.2 J	0.1 J	0.2 J
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	***************************************	1	0.5 U					
1,1-Dichloroethane		5*	3	3	3	2	2	3
1,1-Dichloroethene		5 *	0.2 J	0.1 J	0.1 J	0.1 J	0.1 J	0.5 U
1,2-Dichloroethane		0.6	0.5 U					
1,2-Dichloroethene		5*						
1,2-Dichloropropane		1	0.5 U					
2-Butanone (MEK)		NS	10 U					
2-Hexanone		NS	5 U	5 U	5 Ü	5 U	5 U	5:U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	i J				
Benzene	***********************	1	0.5 U					
Bromodichloromethane		NS	0.5 U	0.S U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U					
Bromomethane		5*	1 U	1 U	1 U	1 U	1 UJ	1 U
Carbon disulfide		NS	0.5 U					
Carbon tetrachloride		5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	******************************	5*	0.5 U					
Chloroethane		5*	0.9 J	0.5 J	0.7 J	0.7 J	0,7 J	1 U
Chloroform		7 ·	0.5 U					
Chloromethane		NS	1 U	1 U	10	1 U	1 U	1 U
Dibromochloromethane		5*	0.5 U	0.5 ป				
Ethylbenzene		5*	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 ป
Tetrachloroethene		5*	0.5 U	0.5 ป				
Toluene		5*	0.5 U					
Trichloroethene		5*	0.5 U					
Vinyl chloride		2	[24]	[24]	[28]	[25]	[25]	[9]
Xylene (total)		5 * ·	0.5 U					
cis-1,2-Dichloroethene		5*	[14]	[14]	[13]	[12]	[13]	(5.)
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.3 I	0.5 U				
trans-1,3-Dichloropropene		NS	0.5 U					

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 27 of 36

	:	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-08D 02/18/00 N9575 ug/L	MW-08D 08/16/01 T0521 ug/L	MW-08D 11/28/01 T6087 ug/L	MW-08D 02/25/02 U1085 ug/L	MW-08D 05/16/02 U7826 ug/L	MW-08D 07/30/03 A9180 ug/L
Compound	· · · · · · · · · · · · · · · · · · ·								
NOTES:	U - not detected, J - estin	nated, D - diluted GA Ground Wa dated.	l result, R - unusable, NC - no cri ter Quality Standard.	teria, Dup - duplicate sample.				Page 27	of 36 CONTINUED
te Printed: 03/0 3F File:	01/05 09:52:26 _GOODYEAR\34194_FO								File Number: 6510.25

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-08D	MW-08D	MW-08D	MW-08D	MW-08DD 53 - 56 ft.	MW-08DD 69 - 70 ft.
	Sample Date	Class GA GW Standards	02/03/04	05/17/04	08/04/04	11/16/04	53 - 56 π. 07/28/03	69 - 70 n. 07/28/03
	Sample Date	ug/L	B5526	03/17/04 B9954	E4093	E9517	A9012	A9011
	Units	ug/ D	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound		•						
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	AN A	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	2	2	2	2	1	1
1,1-Dichloroethene		5*	0.5 U	0.5 U	0,5 U	0.5 U	0.1 J	0.1 J
1,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene	0,000,000,000,000,000,000,000,000,000	5*		***				
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
2-Butanone (MEK)		NS	10 U	10 U	. 10 U	10 U	10 U	10 U
2-Hexanone		NS	5 Ü	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)	erana a a caractera de la cara	NS	5 U	5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	10 U	1.3	10 U	10 U	10 U
Benzene		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	10	1U	10	1 U	1 U	i U
Carbon disulfide		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	1 Ü	1 U	١U	1 U	טו	I U
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	10	1 U	1 U	1 U	1 U	1 0
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 Ŭ	0.5 Ü	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene		5•	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride		2	[3]	[10]	[5]	[3]	[15]	[14]
Xylene (total)		5 * ·	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	2	4	3	2	[8]	(11)
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - po criteria, Dup - duplicate sample.

Page 28 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard. Data have not been validated.

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-08D 02/03/04 B5526 ug/L	MW-08D 05/17/04 B9954 ug/L	MW-08D 08/04/04 E4093 ug/L	MW-08D 11/16/04 E9517 ug/L	MW-08DD 53 - 56 ft. 07/28/03 A9012 ug/L	MW-08DD 69 - 70 ft. 07/28/03 A9011 ug/L
Compound		·						
			,					
-								
				,				
				*				
		-						
NOTES: U - not detected,	- estimated, D - diluted	f result, R - unusable, NC - n	o criteria, Dup - duplicate sample.	· · · · · · · · · · · · · · · · · · ·	·			· · ·
[] - Exceeds NY: Data have not bee	S Class GA Ground Wa en validated.	ter Quality Standard.		•			Page 28 of	36 CONTINUED

Date Printed: 03/01/05 09:52:26 DBF File: FXP File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08S
		Class GA	80 - 83 ft.		53 - 56 ft.	53 - 56 ft.	53 - 56 ft.	
	Sample Date	GW Standards	07/28/03	02/04/04	05/17/04	08/04/04	11/15/04	09/14/95
,	Units	ug/L	A9010 ug/L	B5685 ug/L	B9955 ug/L	E4092 ug/L	E9489 ug/L	ug/L
Compound			Tr.,	·	-	-	-	-
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
1,1,2-Trichloroethane		1	0.5 U	0.5 U .	0.5 U	0.5 U	0.5 U	10 U
1,1-Dichloroethane		5*	1	0.2 J	1	0.9	1	10 U
1,1-Dichloroethene		5•	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
1.2-Dighloroethane		0.6	0.5 Ŭ	0.5 U	0.5 U	0.5 U	0.5 U	10 U
1,2-Dichloroethene		5*						[13]
1,2-Dichloropropane		1	0.5 ∪	0.5 U	0.5 U	0,5 U	0.5 U	100
2-Butanone (MEK)	000000000000000000000000000000000000000	NS	10 Ų	10 U	10 U	10 U	10 U	10 ŪJ
2-Hexanone		NS	5 U	5 U	5 U	5 U	5.U	10 UJ
4-Methyl-2-pentanone (MIBK)	000000000000000000000000000000000000000	NS	5 U	5 U	5 U	5 U	5 U	10 U
Acetone		50	10 U	10 U	i J	10 U	10 U	tu or
Benzene		1	0.5 U	0.1 J	0.2 J	0.5 U	0.1 J	10 U
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
Bromoform	samma neem men stadder de proposition de production	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U -	10 U
Bromomethane		5*	1 U	1 U	l U	1 U	1.Ü	10 U
Carbon disulfide		NS	0.5 U	0.5 U	0.1 J	0.5 U	0.1 J	10 U
Carbon tetrachloride		S	0.5 ป	0.5 U	0.5 U	0.5 [.] U	0.5 U	10 U
Chlorobenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
Chloroethane		5*	iU	1 U	1 U	ıv	1.U	10 U
Chloroform		7	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U	10 UJ
Chloromethane		NS	1 U	1 U	1 U	1 Ü	1 U	10 UJ
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
Ethylbenzene		5*	0.5 ひ	0,5 U	0.3 J	0,1 J	0.2 J	10 U
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	10 UJ
Styrene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
Tetrachloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
Toluene		5*	0.2 J	0.1 J	0.5	0.3 J	0.1 J	10 U
Trichloroethene		5*	0.5 U	0.1 J	0.5 U	0.5 U	0.1 J	2 J
Vinyl chloride		2	[16]	0.8 J	1	1	[2]	[3.7]
Xylene (total)		5* ·	0.5	0.5	3	1	0.8	10 U
cis-1,2-Dichloroethene		5*	[12]	0.7	0.6	0.7	1	
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U
trans-1,2-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	0.5 ปั	0.5 U	0.5 U	10 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Date Printed: 03/01/05 09:52:26

Page 29 of 36

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-08DD 80 - 83 ft. 07/28/03 A9010 ug/L	MW-08DD 02/04/04 B5685 ug/L	MW-08DD 53 - 56 ft 05/17/04 B9955 ug/L	MW-08DD 53 - 56 ft 08/04/04 E4092 ug/L	MW-08DD 53 - 56 ft. 11/15/04 E9489 ug/L	MW-08S 09/14/95 ug/L
Compound				· ·				
666666666666666666666666666666666666666								
-0000000000000000000000000000000000000								
999400000000000000000000000000000000000								
				3				
		•						
IOTES:	U - not detected, J - estimated, D - dilute [] - Exceeds NYS Class GA Ground Wa Data have not been validated.	d result, R - unusable, NC - ster Quality Standard.	no criteria, Dup - duplicate samp	le.				
	01/05 09:52:26			<u> </u>			Page 29	of 36 CONTINUED File Number: 6510

	Sample ID	NYSDEC	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
	Sample Date	Class GA GW Standards	11/14/95	07/23/97	. 09/18/97	02/18/00	08/16/01	11/28/01
·	ozpic Date	ug/L	11/14/23	01123171	. 05/10/57	N9574	T0520	T6088
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5* .	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		S	10 Ü	1 U	1.0	0.5 U	0.5 U	0.5 UJ
1,1,2-Trichloroethane		1	10 U	1 U	. 1 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	10 U	10	1 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene		5•	10 U	1 U	1 U	0.3 J	0.1 J	0.5 U
1,2-Dichloroethane		0.6	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene	•	5*	[11]	[8.7]	[8.2]			
1,2-Dichloropropane		1	ioU	iU	ĪU	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U	4 U	4 U	10 U	10 U	10 U
2-Hexanone		NS	10 U	2 Ü	2 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)		NS	10 U	2 U	2 U	5 U	5 U	5 U
Acetone		50	10 UJ	2 U	2 U	10 U	10 U	1010
Benzene	sasjanananananyyyi usaacaan	1	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Bromoform	tratatanian parama esta trata utan terta	NS	10 UJ	1 U	ı U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	10 Ü	2 U	2 U	1 U	1 U	1 U
Carbon disulfide		NS	10 U	1 U	1 U	0.5 U	0.5 U	10
Carbon tetrachloride		S	10 Ü	10	ıu	0.5 U	0.5 UJ	0.5 Ü
Chlorobenzene		5*	10 U	ΙŪ	1 U ·	0.5 U	0.5 U	0.5 U
Chloroethane		5*	10 U	1 U	10	ıÜ	1 UJ	10
Chloroform	*************************	7	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	10 U	1 U	1 U	1 U	1 U	I U
Dibromochloromethane		5*	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Bihylbenzene		5*	10 U	IU	1 U	0.5 U	0.5 U	0.5 ป
Methylene chloride		5•	10 U	1 U	1 U	2 U	2 U	2 U
Styrene		5*	10 U	10	10	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	10 U	1 U	1 U	0.5 U	0.5 U	0.2 J
Toluene		5 *	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	2 J	1.7	1.6	3	1	3 `
Vinyl chloride		2	10 U	[2.3]	[2]	[3]	[2]	1
Xylene (total)		5 * ·	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5•	<u></u>	<u></u>	444	[9]	[7]	[5]
cis-1,3-Dichloropropylene		NS	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*				0.5 J	0.1 J	0.1 J
trans-1,3-Dichloropropene		NS	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Date Printed: 03/01/05 09:52:26

DBF File: FXP File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Page 30 of 36

Data have not been validated.

	Sample ID	NYSDEC Class GA	MW-08S	MW-08S	MW-08S	MW-08\$	MW-08S	MW-08S
	Sample Date GW Standards 11/14/95 07/23/97 09/18/97 ug/L		02/18/00 N9574	08/16/01 T0520	11/28/01 T6088			
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound				· · · · · · · · · · · · · · · · · · ·				·
				*				
	•							
				,				
NOTES: U-not	detected, J - estimated, D - dilute	ed result, R - unusable, NC - n	o criteria, Dup - duplicate sam	ple.				<u></u>
[] - Exc Data hav	ceeds NYS Class GA Ground W we not been validated.	ater Quality Standard.				.*		f 14 GOVERN
de Printed: 03/01/05 09	•						Page 30	of 36 CONTINUED File Number: 6510.2

DBF File:
FXP File: Q:6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Remedial Work Element 2 (Ground Water) **Forest Glen Subdivision Site** Niagara Falls, New York

	-	NYSDEC Class GA	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
	Sample Date	GW Standards	02/25/02	05/16/02	07/30/03	02/03/04	05/17/04	08/04/04
		ug/L	U1084	U7825	A9179	B5525	B9953	E4094
	Units		ug/L	ug/L	ug/L	u g/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1 .	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene		5*	0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U
I,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene		5*						
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone		NS	5 U	5 U	5 U	5 U	5 Ü	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	10 U	IJ	10 U	1.7	10 U
Benzene		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	10	1 UJ	1 U	1 U	10	10
Carbon disulfide		NS	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 ป
Carbon tetrachloride		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ŭ	0.5 U
Chloroethane		5*	10	10	10	1 U	1 U	1 Ü
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	ŧu	1 U	1 U	1 U	1 U	10
Dibromochloromethane		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5*	0.5 U	0.5 U	0.5 U	0,5 ป	0.5 U	0.5 U
Methylene chloride	vanananananahahbabbyyyyev	5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	*****************************	5*	0.9	1	· 0.4 J	0.7	0.6	0.7
Toluene		51	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	[6]	[6]	3 	[5]	3	3
Vinyl chloride		2 5*	1	1J	[2]	0.9.J	1	0.3 J
Xylene (total)	201200000000000000000000000000000000000	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5* NG	(5)	4	(5)	[5]	[5]	3
cis-1,3-Dichloropropylene	1200-1000-000-000-000-000-00-0	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5 *	0.5 U	0.11	0.1 J	0.2 J	0.2 J	0.1 J
trans-1,3-Dichloropropene		NS	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U

NOTES: U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

Page 31 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard.

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-08S 02/25/02 U1084 ug/L	MW-08S 05/16/02 U7825 ug/L	MW-08S 07/30/03 A9179 ug/L	MW-08S 02/03/04 B5525 ug/L	MW-08S 05/17/04 B9953 ug/L	MW-08S 08/04/04 E4094 ug/L
Compound			**************************************					
			-					
			-					
·		,						
		-						
		-						
NOTES: U - not detected, J - [] - Exceeds NYS Data have not been	estimated, D - diluted Class GA Ground Wa validated.	result, R - unusable, NC - no ter Quality Standard.	criteria, Dup - duplicate sample.	1			Page 31	of 36 CONTINUED

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-08S	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D
	Sample Date	GW Standards	11/16/04	07/29/97	09/15/97	02/15/00	08/14/01	11/29/01
	•	ug/L	E9516			N9415	T0275	T6138
	Units	-	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 Ü	1 Ü	1 U	0.1 J	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 U	10	1 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U	1 U	1 U	- 0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5*	0.5 U	1 U	1.U	2	0.5	0.5 J
1,1-Dichloroethene		5*	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene		5*		1 U	1 U			
1,2-Dichloropropane		1	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U	4 U	4 U	10 U	10 U	10 U
2-Hexanone		NS	5 Ü	2 U	2 U	5 U	5:U	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	2 U	2 U	5 U	5 U	5 U
Acetone		50	10 U	2 U	2:U	10 U	10 U	10 U
Benzene		1	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	0.5 ป	1.U	1 U	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U .
Bromomethane		5*	1 U	2 U	2 U	ıU	រ បរ	10
Carbon disulfide		NS	0.5 U	1 U	1 U	0.5 U	0.5 UJ	0.5 U
Carbon tetrachloride		5	0.5 U	1 Ü	1.U	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	***********************	5*	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	1 Ü	ĺΰ	1 U	1 U	וט 1	1 U
Chloroform		7	0.5 U	0.3 J	1 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	10	I U	1 U	1 Ü	10	10
Dibromochloromethane		5*	0.5 U	. 1 U	1 U	0.5 U	0.5 U	0.5 U
Bthylbenzene		5*	0.5 U	IU	1 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5*	2 U	. 1 U	1 U	2 U	2 U	2 U
Styrene		5*	0.5 U	10	1 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	0.6	1 U	1 U	0.5 U	0.5 U	0.5 U
Toluene		5*	0.5 U	I U	1 U	0.5 U	0.5 U	0.5 U
Trichloroethene		. 5 *	3	1 U	1 U	0.5 U	0.5 U	0.5 U
Vinyl chloride		2	0.2 J	1 U	1 U	0.8 J	0.7 J	(2)
Xylene (total)		5*	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	4			1 U	0.3 J	0.3 J
cis-1,3-Dichloropropylene		NS	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.2 J	<u></u> -		0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	ΙÜ	1 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 32 of 36

File Number: 6510.25561

Date Printed: 03/01/05 09:52:26

DBF File:
FXP File: Q:6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

		Sample ID	NYSDEC Class GA	MW-08S	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	
		Sample Date	GW Standards ug/L	11/16/04 E9516	07/29/97	09/15/97	02/15/00 N9415	08/14/01 T0275	11/29/01 T6138	
		Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Compound										
									4	
								1	i.	
			·		•					
NOTES:	U - not detected, J - e [] - Exceeds NYS C	stimated, D - diluted	result, R - unusable, NC - no crit ter Quality Standard.	eria, Dup - duplicate sample.		<u> </u>				
	/01/05 09-52-26	anueltti.						Page 32 of 3	6 CONTINUED	

Date Printed: 03/01/05 09:52:26

DBF File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

	Sample ID	NYSDEC Class GA	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D
	Sample Date	GW Standards	02/27/02 U1227	05/15/02 U6915	07/30/03 A9178	02/05/04 B5688	05/18/04 E0076	08/05/04 E4099
	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound			-	_	-			
1,1,1-Trichloroethane		5*	0.5 U					
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 Ü				
1,1,2-Trichloroethane		1	0.5 U					
1,1-Dichloroethane		5*	1	0.3 J	0.1 J	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene		5*	0.5 U					
1,2-Dichloroethane		0.6	0.5 U					
1,2-Dichloroethene		5•						
1,2-Dichloropropane		1	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone (MEK)		NS	10 U					
2-Hexanone		NS	5 ป	5 U	5 U	5 U	5 U	5.U
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 U	5 U	5 U
Acetone		50	10 U	10U	10 U	10 Ü	IJ	10 U
Benzene		1	0.5 U	0.5 ប				
Bromodichloromethane		NS	0.5 U					
Bromoform		NS	0.5 U					
Bromomethane		5*	10	1 U	1.U	1 U	ΙÜ	1 U
Carbon disulfide		NS	0.5 U					
Carbon tetrachloride		5	0.5 U					
Chlorobenzene		5*	0.5 U					
Chloroethane		5*	10	1 U	1.U	1 U	1 U	1 Ü
Chloroform		7	0.5 U	0.5 U	· 0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	1 U	1 UJ	1 U	1 U	ıU	1 U
Dibromochloromethane		5*	0.5 U					
Bthylbenzene		5*	0.5 U					
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U
Styrene		5*	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 Ŭ	0.5 U
Tetrachloroethene		5*	0.5 U	0.5 ปั				
Toluene		5*	0.5 U					
Trichloroethene		5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ü	0.5 U
Vinyl chloride		2	0.5 J	1	0.2 J	1.U	0.1 J	i U
Xylene (total)		5 • ·	0.5 U					
cis-1,2-Dichloroethene		5 •	0.4 J	0.3 J	0.1 J	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropylene		NS	0.5 U					
trans-1,2-Dichloroethene		5*	0.5 U					
trans-1,3-Dichloropropene		NS	0.5 U	0.5 Ü				

NOTES: U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

Page 33 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard.
Data have not been validated.

	Sample I Sample Units	Class GA	MW-10D 02/27/02 U1227 ug/L	MW-10D 05/15/02 U6915 ug/L	MW-10D 07/30/03 A9178 ug/L	MW-10D 02/05/04 B5688 ug/L	MW-10D 05/18/04 E0076 ug/L	MW-10D 08/05/04 E4099 ug/L
Compound				4				
5655555566655555555	0.0000							
							·	
500000000000000000000000000000000000000								
*******************************							***************************************	
			*					
						•		
NOTES:	U - not detected, J - estimated, D [] - Exceeds NYS Class GA Gro Data have not been validated.	- diluted result, R - unusable, NC - ound Water Quality Standard.	no criteria, Dup - duplicate sample				_	
	1/05 09:52:26	·					Page 33	of 36 CONTINUED File Number: 6510

Date Frants: 03/01/05 09:52:26 DBF File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Remedial Work Element 2 (Ground Water) **Forest Glen Subdivision Site** Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-10D	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
	Sample Date	GW Standards	11/17/04	08/01/97	09/15/97	02/15/00	08/14/01	11/29/01
·		ug/L ·	E9658		•	N9416	T0276	T6137
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound								
1,1,1-Trichloroethane		5*	0.5 U	1 U	1 U	0.2 J	0.5 U	0.2 J
1,1,2,2-Tetrachloroethane		5	0.5 U	1.0	1 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane		1	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
I,I-Dichloroethane		5*	0.5 U	i U	1 Ü	2	1	2
1,1-Dichloroethene		5*	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene		5*		1.3	2		***	
1,2-Dichloropropa ne		1	0.5 U	10	1:U	0.5 U	0.5 U	0.5 Ü
2-Butanone (MEK)		NS	10 U	4 U	4 U	10 U	10 U	10 U
2-Hexanone		NS	5 U	2 U	2 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)		NS	5 U	2 U	2 U	5 U	5 U	5 U
Acetone		50	10 U	2 U	2 U	10 U	10 U	10 U
Benzene		1	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		NS	0.5 U	1:U	ΙU	0.5 U	0.5 U	0.5 U
Bromoform		NS	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Bromomethane		5*	10	2 U	2 U	10	l UJ	i U
Carbon disulfide		NS	0.5 U	1 U	1 U	0.5 U	0.5 UJ	0.5 U
Carbon tetrachloride		5	0.5 U	1 U	i U	0.5 U	0.5 UJ	0.5 U
Chlorobenzene		5*	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Chloroethane		5*	ΙÜ	1 U	1 U	1 U	1 UJ	I U
Chloroform		7	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Chloromethane		NS	10	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane		5*	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Ethylbenzene •		5*	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 ป
Methylene chloride		5*	2 U	1 U	1 U	2 U	2 U	2 U
Styrene		5*	0.5 U	1 Ü	1 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5*	0.5 U	1 U	I U	0.5 U	0.5 U	0.5 U
l'oluen e		5*	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
Trichloroethene		5*	0.5 U	1 U	1 U	0.1 J	0.5 U	0.2 J
Vinyl chloride		2	1 U	1.5	1,5	0.3 J	0.2 J	IU
Xylene (total)		5•	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene		5*	0.5 U	<u></u>	<u></u>	1 U	0.9	0.8
cis-1,3-Dichloropropylene		NS	0.5 U	1 U	1 U	. 0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5*	0.5 U		<u></u>	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene		NS	0.5 U	1 U	1 U	0.5 U	0.5 U	0.5 U

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

Page 34 of 36

^{[] -} Exceeds NYS Class GA Ground Water Quality Standard. Data have not been validated.

	Sample ID	NYSDEC Class GA	MW-10D	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
	Sample Date	GW Standards ug/L	11/17/04 E9658	08/01/97	09/15/97	02/15/00 N9416	08/14/01 T0276	11/29/01 T6137
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Compound				<u>-</u>	· · · · · · · · · · · · · · · · · · ·	·	<u></u>	
						M		
					· .			
			· ·					
			,					
·								
					*			
		•						
NOTES:	D and december 1 animated D 400-	describ D. Herradia NC	na mitaria Dun danliana	da.				
NOTES:	U - not detected, J - estimated, D - dilute [] - Exceeds NYS Class GA Ground Will Data have not been validated.	ater Quality Standard.	no crnera, Dup - aupneate sam	rc.				
	Data have not been validated.	*	•				Page 34	of 36 CONTINUED File Number: 6510.

DBF File: Q:6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

	Sample ID	NYSDEC Class GA	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	
	Sample Date	GW Standards	02/27/02	05/15/02	07/30/03	02/05/04	05/18/04	08/05/04	
	-	ug/L	U1226	U6914	A9177	B5689	E0074	E4097	
	Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Compound			<u> </u>					·	
1,1,1-Trichloroethane		5*	0.2 J	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	
1,1,2,2-Tetrachloroethane		5	0.5 U						
1,1,2-Trichloroethane		. 1	0.5 U						
1,1-Dichloroethane		5*	2	13	0.9	0.7	0.7	0.4 J	
1,1-Dichloroethene		5*	0.5 U						
1,2-Dichloroethane		0.6	0.5 U						
1,2-Dichloroethene		5*							
1,2-Dichloropropane		1	0.5 U						
2-Butanone (MEK)		NS	10 U						
2-Hexanone		NS	5 U	5 U	5 U	5 U	5 U	5:U	
4-Methyl-2-pentanone (MIBK)		NS	5 U	5 U	5 U	5 U	5 U	5 U	
Acetone		50	3 J	10 U	10 U	10 U	10 U	2 J	
Benzene		1	∙ 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Bromodichloromethane		NS	0.5 U						
Bromoform		NS	0.5 U						
Bromomethane		5*	1 U	iU	1 U	1 U	ΙU	1 U	
Carbon disulfide		NS	0.5 U						
Carbon tetrachloride		5	0.5 U						
Chlorobenzene		5*	0.5 U	verenyy					
Chloroethane		5*	1 Ü	1 U	1 U	1 U	1.0	1 U	
Chloroform		7	0.5 U						
Chloromethane		NS	10	1 UJ	1 U ·	1 U	1 U	1 U	
Dibromochloromethane		· 5*	0.5 U						
Ethylbenzene		5*	0.5 U						
Methylene chloride		5*	2 U	2 U	2 U	2 U	2 U	2 U	
Styrene		5*	0.5 UJ	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U	
Tetrachloroethene		5*	0.5 U						
Toluene		5*	0.5 U						
Trichloroethene		5*	0.1 J	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	
Vinyl chloride		2	0:1 J	0.1 J	0.9 J	0.4 J	0.6 J	0.4 J	
Xylene (total)		5*	0.5 U						
cis-1,2-Dichloroethene		5*	0.7	0:8 J	2	1	l	1	
cis-1,3-Dichloropropylene		NS	0.5 U	0.5 U	0.5 ป	0.5 U	· 0.5 Ư	0.5 U	
trans-1,2-Dichloroethene		5*	0.5 U						
trans-1,3-Dichloropropene		NS	0.5 U						

NOTES:

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated.

Page 35 of 36

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards ug/L	MW-10S 02/27/02 U1226 ug/L	MW-10S .05/15/02 U6914 ug/L	MW-10S 07/30/03 A9177 ug/L	MW-10S 02/05/04 B5689 ug/L	MW-10S 05/18/04 E0074 ug/L	MW-10S 08/05/04 E4097 ug/L
Compound						•		
								
					1			
•								
		·						
NOTES: U - not detect	ed, J - estimated, D - dilute	result, R - unusable, NC -	no criteria, Dup - duplicate sam	ple.				
Data have not	NYS Class GA Ground Wa been validated.	wa Anguri Standard.			•		Page 35	of 36 CONTINUED

Date Printed: 03/01/05 09:52:26
DBF File:
FXP File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

	Sample ID	NYSDEC	MW-10S	
	Sample ID	Class GA	W.M-102	
	Sample Date	GW Standards	11/17/04	
		ug/L	E9657	
•	Units	-	ug/L	
Compound				
1,1,1-Trichloroethane		5*	0.5 U	
1,1,2,2-Tetrachloroethane		5	0.5 U	
1,1,2-Trichloroethane		1	0.5 U	
1,1-Dichloroethane		5*	0.3 J	
1,1-Dichloroethene		5*	0.5 U	
1,2-Dichloroethane		0.6	0.5 U	
1,2-Dichloroethene	**********************	5*		
1,2-Dichloropropane		1	0.5 U	
2-Butanone (MEK)	**********************	NS	10 U	
2-Hexanone		NS	5 U	
4-Methyl-2-pentanone (MIBK)	***********	NS	5 U	
Acetone		50	10 U	
Benzene		1	0.5 U	
Bromodichloromethane		NS	0.5 U	
Bromoform		NS	0.5 U	
Bromomethane		5*	1 U	
Carbon disulfide		NS	0.5 U	
Carbon tetrachloride		5	0.5 U	
Chlorobenzene		5*	0.5 U	
Chloroethane		5*	1 U	
Chloroform		7	0.5 U	
Chloromethane		NS	1 U	
Dibromochloromethane		5*	0.5 U	
Ethylbenzene		5*	0.5 U	
Methylene chloride		5*	2 U	
Styrene		5*	0.5 U	
Tetrachloroethene		5*	0.5 U	
Toluene		5*	0.5 U	
Trichloroethene	***************************************	5*	0.5 U	
Vinyl chloride		2	0.2 J	
Xylene (total)		5*	0.5 U	
cis-1,2-Dichloroethene		5*	0.5 🖁	
cis-1,3-Dichloropropylene		NS	0.5 U	
trans-1,2-Dichloroethene		5*	0.5 U	
trans-1,3-Dichloropropene		NS	0.5 U	

U - not detected, J - estimated, D - diluted result, R - unusable, NC - no criteria, Dup - duplicate sample.

[] - Exceeds NYS Class GA Ground Water Quality Standard.

Data have not been validated. NOTES:

Page 36 of 36

Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Units	NS 250 10 10 250 0.05 NC NS	02/14/00 mg/L 330 [270-] 0.05 U 0.05 U 0.05 U 240 J 0.2 U 1.U 7.4	08/13/01 mg/L 310 220 0.05 U 0.05 U 170 0.2 U 1	11/26/01 mg/L 340 [260] 0.05 U 0.05 U 0.05 U 1260] 0.2 U 4	02/25/02 mg/L 330 240 0.05 U 0.05 U 0.05 U 230 0.2 U 1 U	05/13/02 mg/L 340 [250:] 0.05 U 0.05 U 0.05 U 190 [0.2.]	11/16/04 mg/L 320 220 0.050 U 0.050 U 0.050 U [260] [0.60 J] 3.6
Compound Alkalinity (as CaCO3) Alboride Sitrate (as N) Sitrite (as N) Sitrite Sitrate nitrogen Sulfate Otal Sulfides Solid organic carbon, filtered	Units	NS 250 10 1 10 250 0.05 NC	330 [270] 0.05 U 0.05 U 0.05 U 240 J 0.2 U	310 220 0.05 U 0.05 U 0.05 U 170 0.2 U	340 [260] 0.05 U 0.05 U 0.05 U [260] 0.2 U	330 240 0.05 U 0.05 U 0.05 U 230 0.2 U	340 [250] 0.05 U 0.05 U 0.05 U 190 [0.2]	320 220 0.050 U 0.050 U 0.050 U [260] [0.60 J] 3.6
Ikalinity (as CaCO3) hloride fitrate (as N) fitrite (as N) fitrite (as N) fitrite-nitrate nitrogen filate fotal Sulfides fotal organic carbon, filtered	•	250 10 1 10 250 0.05 NC	[270.] 0.05 U 0.05 U 0.05 U 240 J 0.2 U 1 U	220 0.05 U 0.05 U 0.05 U 170 0.2 U 1	[260] 0.05 U 0.05 U 0.05 U [260] 0.2 U 4	240 0.05 U 0.05 U 0.05 U 230 0.2 U 1.U	[250] 0.05 U 0.05 U 0.05 U 190 [0.2] i U	220 0.050 U 0.050 U 0.050 U [260] [0.60 J] 3.6
Aloride litrate (as N) litrite (as N) litrite-nitrate nitrogen utfate otal Sulfides otal organic carbon, filtered	•	250 10 1 10 250 0.05 NC	[270.] 0.05 U 0.05 U 0.05 U 240 J 0.2 U 1 U	220 0.05 U 0.05 U 0.05 U 170 0.2 U 1	[260] 0.05 U 0.05 U 0.05 U [260] 0.2 U 4	240 0.05 U 0.05 U 0.05 U 230 0.2 U 1.U	[250] 0.05 U 0.05 U 0.05 U 190 [0.2] i U	220 0.050 U 0.050 U 0.050 U [260] [0.60 J] 3.6
litrate (as N) litrite (as N) litrite-nitrate nitrogen ulfate otal Sulfides lotal organic carbon, filtered		10 	0.05 U 0.05 U 0.05 U 240 J 0.2 U 1 U	0.05 U 0.05 U 0.05 U 170 0.2 U 1	0.05 U 0.05 U 0.05 U [260] 0.2 U 4	0.05 U 0.05 U 0.05 U 230 0.2 U 1.U	0.05 U 0.05 U 0.05 U 190 [0.2] i U	0.050 U 0.050 U 0.050 U [260] [0.60 J] 3.6
litrite (as N) litrite-nitrate nitrogen utfate otal Sulfides otal organic carbon, filtered		1 10 250 0.05 NC	0.05 U 0.05 U 240 J 0.2 U 1 U	0.05 U 0.05 U 170 0.2 U 1	0.05 U 0.05 U [260] 0.2 U 4	0.05 U 0.05 U 230 0.2 U 1 U	0.05 U 0.05 U 190 [0.2] 1 U	0.050 U 0.050 U [260] [0.60 J] 3.6
litrite-nitrate nitrogen ulfate otal Sulfides otal organic carbon, filtered	(10 250 0.05 NC	0.05 U 240 J 0.2 U 1 U	0.05 U 170 0.2 U	0.05 U [260-] 0.2 U 4	0.05 U 230 0.2 U 1 U	0.05 U 190 [0.2] I U	0.050 U [260] [0.60 J] 3.6
utfate Otal Sulfides Otal Organic carbon, filtered	(250 0.05 NC	240 J 0.2 U 1 U	170 0.2 U . 1	[260] 0.2 U 4	230 0.2 U 1 U	190 [0.2] 1 U	[260·] [0.60·J] 3.6
otal Sulfides otal organic carbon, filtered	(0.05 NC	0.2 U 1:U	0.2 U 1	0.2 U 4	0.2 U 1 U	[0.2] 1 U	[0.60 J] 3.6
otal organic carbon, filtered	1	NC	1 U	1	4	1 U	1 U	3.6
							000000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
H	1	NS	7.4					
Y							<	
·								
	400000000000000000000000000000000000000						*	
	000000000000000000000000000000000000000							
NOTES: U- not detected, J - estir	mated, R - unusable, l	NC - no criteria, Dup - de	uplicate sample, FF - field filtere	d.				
[] - Exceeds NYS Class	ss GA Ground Water	Quality Standard.	•			•	Page 1	of 14

DBF File: FXP File: Q:6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S
	Sample Date	GW Standards mg/L	02/14/00	08/13/01	11/26/01	02/25/02	05/13/02	11/16/04
	Units	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound								
Alkalinity (as CaCO3)		NS	250	300	270	260	340	270
hloride		250	[560]	[920]	[670]	[660]	[510]	[1000]
litrate (as N)		10	0.24	0.05 U	0.27	0.08	0.05 U	0.050 U
litrite (as N)		1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0046 J
litrite-nitrate nitrogen	San and the san	10	0.24	0.05 U	0.27	0.08	0.05 U	0.050 U
ulfate		250	[290 J]	[270]	[290]	220	[280]	[360]
otal Sulfides		0.05	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	[0.40 J]
otal organic carbon, filtered		NC	5	6	3	1	2	3.6
H	menene et	NS	7.3		·			
				050000000000000000000000000000000000000	0.0000000000000000000000000000000000000			da
				4.4000.40000000000000000000000000000000	60000.0000.0000006000006000	455555555555555555555555555555555555555		
	000000000000000000000000000000000000000		******************************			445555555555555555555555555555555555555		
	vas vastas appointen en periode en en	* ponnongenerativanennennennennennen						
	and the state of t				\$56650000000000000000000000000000000000	X	\$5555555555555555555555555555555555555	h.c., 400,
	010050000000000000000000000000000000000	000000000000000000000000000000000000000	100000000000000000000000000000000000000	100000000000000000000000000000000000000		N/000000000000000000000000000000000000		
	000000000000000000000000000000000000000							
	nnen-v-v-noodoodooddadadada	xerocoobseesoosseesoosseesoos		sanaabbaananan maasaabaanan maanan maasaanan ma		Standard and a second a second and a second		
				,,,,				
A. (A.L.) A. (A.A.) A. (A.								

NOTES: U- not detected, J-	stimated, R - unusab	le, NC - no criteria, Dup - d	uplicate sample, FF - field filter	ed.				
[] - Exceeds NYS	Class GA Ground Wa	ter Quality Standard.	•					
			•				Page 2	of 14
								- · · · · · · · · · · · · · · · · · · ·

Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report

Remedial Work Element 2 (Ground Water) **Forest Glen Subdivision Site** Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D
,	Sample Date	GW Standards	02/17/00	08/15/01	11/29/01	02/28/02	05/14/02	11/17/04
	Units	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound	•							
Alkalinity (as CaCO3)		NS	300	290	290	270	280	310
Tiloride		250	110	210	240	180	140	[250]
litrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Nitrite (as N)		1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.010 J
Nitrite-nitrate nitrogen		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
iulfate		250	220	180	220	220	170	[360]
Total Sulfides		0.05	0.2 U	[0.4]	0.2 U	0.2 U	[0.2]	[0.80]
l'otal organic carbon, filtered		NC	6	71	5	6	2	3.2
H		NS	7.4		,		***	
				2000.444.000.000.000.000.000.000				
				(2000 -00-00-00-00-00-00-00-00-00-00-00-00	::::::::::::::::::::::::::::::::::::::	0.0.00000000000000000000000000000000000	te description and description of the control of th	
								•
	000000000000000000000000000000000000000	000000000000000000000000000000000000000						
	5555555555666888888888888	000000000000000000000000000000000000000						100000000000000000000000000000000000000
	4							
						8888888		
							ı	
		,						
······································	× 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5							ruu, , , , , , , , , , , , , , , , , , ,
***************************************		***************************************						
NOTES	- estimated, R - unusab	le, NC - no criteria, Dup - d	uplicate sample, FF - field filter	ed.				
NOTES: U- not detected, J								
NOTES: U- not detected, J	Class GA Ground Wa	ster Quality Standard.	•					

Date Printed: 03/01/05 12:04:43
DBF File:
FXP File: Q:6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA GW Standards	MW-04S	MW-04S 08/15/01	MW-04S	MW-04S 02/28/02	MW-04S 05/14/02	MW-04S
	Sample Date	mg/L	02/17/00		11/29/01			
0	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound Alkalinity (as CaCO3)		NS	350	330	370	360	370	350
Chloride		250	150	130	230	200	200	190
Nitrate (as N)		10	0.05 U	0.05 U	0.15	0.05 U	0.05 Ų	0.061
Nitrite (as N)		1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.018 J
Nitrite-nitrate nitrogen		10	0.05 U	0.05 U	0.15	0.05 U	0.05 U	0.079
Sulfate		250	[530]	[300]	[790]	[740]	[700]	[370]
Total Sulfides		0.05	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	[0.40 J]
Total organic carbon, filtered		NC	5	2 J	4	1 U	3	17
pН		NS	7.9					***
6501865000000000000000000000000000000000	5555 555 554 555 555 55	www.www.www.co.co.co.co.co.co.co.co.co.co.co.co.co.	5000000000					
		9899, 988, 988, 988, 988, 988, 988, 988	00,400,000,000,000,0000,0000,0000,0000		000000000000000000000000000000000000000	000000000000000000000000000000000000000		
NOVE 100 000 000 000 000 000 000 000 000 00	000000000000000000000000000000000000000						************************************	
NOTES: U- not detected, J []- Exceeds NY:	- estimated, R - unusal S Class GA Ground W	ble, NC - no criteria, Dup - d ater Quality Standard.	uplicate sample, FF - field filtered	L				
			•		•		Page 4	of 14
ate Printed: 03/01/05 12:04:43								File Number: 6510.2:

	Sample ID	NYSDEC Class GA	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D
	Sample Date	GW Standards mg/L	02/17/00	08/14/01	11/29/01	02/27/02	05/15/02	11/17/04
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound								
Alkalinity (as CaCO3)		NS	260	300	250	240	260	350
Chloride		250	[440]	230	230	140	120	210
Nitrate (as N)		10	0.05 U	0.050 U				
Nitrite (as N)		1	0.05 U	0.010 J				
Nitrite-nitrate nitrogen		10	0.05 Ŭ	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Sulfate		250	240	230	[260]	220	180	[360]
Total Sulfides		0.05	0.2 U	[0.2]	0.2 U	0.2 U	0.2 U	[0.60 J]
Total organic carbon, filtered		NC	4	71	6	2	2	3.5
рН		NS	7.9		***			***

U- not detected, J - estimated, R - unusable, NC - no criteria, Dup - duplicate sample, FF - field filtered.

[] - Exceeds NYS Class GA Ground Water Quality Standard. NOTES: Page 5 of 14 Date Printed: 03/01/05 12:04:43
DBF File: Q:\u00e4510_GOODYEAR\\34194_FOREST2004\PROGS\TABLEPR.FXP File Number: 6510,25561

	Sample ID	NYSDEC Class GA	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S
	Sample Date	GW Standards mg/L	02/17/00	08/14/01	11/29/01	02/27/02	05/15/02	11/17/04
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound								
Alkalinity (as CaCO3)		NS	370	470	340	340	330	400
Thloride		250	240	170	170	97	75	r120
litrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Nitrite (as N)		1	0.05 U	0.05 U	0.05 U	0:05 U	0.05 U	0.011 J
Vitrite-nitrate nitrogen		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.017 J
ulfate		250	[270]	[290]	[270]	[260]	200	[370]
otal Sulfides		0.05	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	[0.60 J]
l'otal organic carbon, filtered		NC	6	2 UJ	9	2	6	5.2
Н		NS	7.1	·		***		
					,			
						•		
						· ·		
				•				
		*						
NOTES: U- not detected, J- [] - Exceeds NYS	estimated, R - unusable Class GA Ground War	le, NC – no criteria, Dup – d ter Quality Standard.	uplicate sample, FF - field filtere	xd.				
							Page 6	of 14
e Printed: 03/01/05 12:04:43					······································			File Number: 65

Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report

Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	
	Sample Date	GW Standards mg/L	02/15/00	08/15/01	11/29/01	02/27/02	05/15/02	11/16/04	
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Compound									
Alkalinity (as CaCO3)		NS	240	250	240	240	250	270	
Chloride		250	140	240	200	120	110	[340]	
Nitrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U	
Vitrite (as N)		ı	0.05 U	0.05 U	0.05 U	0.05 U	0.05 Ü	0.050 U	
Nitrite-nitrate nitrogen	5656	10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U	on town to the
Sulfate		250	240 J	180	220	210	170	[330]	
Total Sulfides		0.05 NC	0.2 U	[0.4] 63	0.2 Ŭ	0.2 U	0.2 U	[0.60 J]	90000000000
Cotal organic carbon, filtered oH		NC NS	5 8.0		6	3	3	3.7	
П		NO	5.U						88888888
									5656668
	500000000000000000000000000000000000000	000.000.000.000.000.000.000.000.000.000.000		Balana ana anakan kataban kanan ang kana				0.48000.0.4600	4000000
	55555444444444	250500000000000000000000000000000000000				000000000000000000000000000000000000000		25000000000000000000000000000000000000	90000000
				^					
	000000000000000000000000000000000000000	555555555555555555555555555555555555555	255000000000000000000000000000000000000		55555555555555555555555555555555555555			######################################	500000000
	x34000000000000000000000000000000000000			4444444	d. 50 (21999)		********************************	udujádága ja jaggungungu játás ert na junestus a saks	000000000
	500000000000000000000000000000000000000		555566555555555555555555555555555	######################################	60000000000000000000000000000000000000	V6000000000000000000000000000000000000		\$2,000,000,000,000,000,000,000,000,000,0	000000077
									statanantee
*			,						
		•							
			.,						
NOTES: U- not detected, J -	estimated, R - unusab	le, NC - no criteria, Dup - d	uplicate sample, FF - field filten	ed.					
[] - Exceeds NYS	Class GA Ground Wa	ter Quality Standard.	•	*			•		
							Page 7	of 14	
							rage /	V- 17	

	Sample ID	NYSDEC Class GA	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S
	Sample Date	GW Standards	02/15/00	08/15/01	11/29/01	02/27/02	05/15/02	11/16/04
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound								
Alkalinity (as CaCO3)		NS	250	270	230	200	230	160
Chloride		250	200	120	90	43	44	52
Nitrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.07	0.050 U
Nitrite (as N)		1	0.05 U	0.0074 J				
Nitrite-nitrate nitrogen		10	0.05 U	0.05 U	0.05 U	0.05 U	0.07	0.050 U
Sulfate		250	220 J	230	200	130	120	[330]
Total Sulfides		0.05	0.2 U	[0.80]				
Total organic carbon, filtered		NC	5	71	8	6	2	5.8
pН		NS	7.4					

NOTES: U- not detected, J - estimated, R - unusable, NC - no criteria, Dup - duplicate sample, FF - field filtered.

[] - Exceeds NYS Class GA Ground Water Quality Standard. 8 of 14 Date Printed: 03/01/05 12:04:43 File Number: 6510,25561 DBF File: Q:\u00f30_GOODYEAR\\04194_FOREST2004\PROGS\TABLEPR.FXP

	Sample ID	NYSDEC Class GA	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D
	Sample Date	GW Standards mg/L	02/18/00	08/16/01	11/28/01	02/25/02	05/16/02	11/15/04
•	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound								
Alkalinity (as CaCO3)		NS	330	330	330	320	330	280
Chloride		250	180	180	180	120	120	97
Nitrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Nitrite (as N)		1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Nitrite-nitrate nitrogen		10 .	0.05 U	0.05 U	0.05 ป	0.05 U	0.05 U	0.050 U
Sulfate		250	[260]	230	[310]	240	210	190
Total Sulfides		0.05	0.2 U	[0.6]	0.2 U	0.2 U	0.2 U	[0.40 Л]
Total organic carbon, filtered		NC	6	8 j	5	3	1 U	5.2
pH		NS	7.9			***		· · · · · · · · · · · · · · · · · · ·
	energijaalijijakiin ileener	0.0.0.0.00.0000.0.000000000000000000000						

						•		
				±.				
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
•		***************************************	•	***************************************				
				***************************************				
			•		· ·			
NOTES: U- not detected, J	- estimated, R - unusab Class GA Ground Wa	le, NC - no criteria, Dup - d	luplicate sample, FF - field filter	ed.				
[ ] - Exceeds NYS	Class UA Urbund Wa	uca Quality Standard.	•			•		
							Page 9	of 14

Date Printed: 03/01/05 12:04:43

File Number: 6510 25561



	Sample ID	NYSDEC Class GA	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S
	Sample Date	rple Date GW Standards mg/L	rds 02/18/00 mg/L	08/16/01 mg/L	11/28/01 mg/L	02/25/02 mg/L	, 05/16/02	11/15/04
	Units						mg/L	mg/L
Compound								
Alkalinity (as CaCO3)		NS	320	370	150	140	150	180
Chloride		250	9	13	6	9	7	53
Nitrate (as N)		10	0.05 U	0.05 U	0.11	0.14	0.10	0.16
Nitrite (as N)		1	0.05 U	0:05 U	0.05 U	0.05 U	0.05 U	0.0068 J
Nitrite-nitrate nitrogen		10	0.05 U	0.05 U	0.11	0.14	0.10	0.17
Sulfate		250	110	95	77	42	32	120
Fotal Sulfides		0.05	0.2 U	[0.2 ]	0.2 U	0.2 U	0.2 U	0.80 U
Fotal organic carbon, filtered		NC	2	2.1	6	1 U	2	10
ρΗ		NS	7.3					

U- not detected, J - estimated, R - unusable, NC - no criteria, Dup - duplicate sample, FF - field filtered.
[ ] - Exceeds NYS Class GA Ground Water Quality Standard. NOTES:

Page 10 of 14

File Number: 6510.25561

Date Printed: 03/01/05 12:04:43
DBF File:
FXP File: Q:\u00bd510_GOODYEAR\\00e44194_FOREST2004\PROGS\\TABLEPR.FXP



### Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site

Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-08D	MW-08D	MW-08D	WW-08D	MW-08D	MW-08D
	Sample Date	GW Standards mg/L	02/18/00	08/16/01	11/28/01	02/25/02	05/16/02	11/16/04
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound					,			
Alkalinity (as CaCO3)		NS	330	300	330	310	310	280
Chloride		250	150	190	190	180	170	[530]
Nitrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Nitrite (as N)		1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0042 J
Nitrite-nitrate nitrogen	0.00000.000000000000000	10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Sulfate		250	[250]	240	[250]	[260]	240	[280]
Total Sulfides	000000000000000000000000000000000000000	0.05 NC	0.2 U	[0.2 ] 7 <b>j</b>	0.2 U 2	0.2 U	0.2 U	[0.40 J]
Fotal organic carbon, filtered oH		NC NS	1 7.2		244.52.400.6600.644.600.600.600.600.600.600.60	3	4	3.7
и	000000000000000000000000000000000000000	149	1.4					
			•					
			_					
						>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		
							4000	Silipando desteden e en en en en en en el control de la control de la control de la control de la control de l
``								
	a v	errene en						
					. A			
***************************************		000000000000000000000000000000000000000	000000000000000000000000000000000000000		**********************************		000000000000000000000000000000000000000	55000000000000000000000000000000000000
NOTES: U- not detected, J-	estimated R - unweek	le. NC - no criteria. Dun - d	uplicate sample, FF - field filtere	xd.		<del></del>		
	Class GA Ground Wa	ter Quality Standard.	aprilation amin'ny s.					
			•			* . *	Page 11	of 14
							tage il	V1 17



### Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report

### Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID Sample Date	NYSDEC Class GA GW Standards	MW-08S 02/18/00	MW-08S 08/16/01	MW-08S 11/28/01	MW-08S 02/25/02	MW-08S 05/16/02	MW-08S
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound			<del></del>	·· <del>····</del>	<del></del>	····•	11-05-00	<del></del>
Alkalinity (as CaCO3)	<del></del>	NS	240	190	190	190	190	190
Alloride		250	19	54	13	13	12	12
Vitrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
litrite (as N)		1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.0072 J
Nitrite-nitrate nitrogen		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Sulfate		250	120	100	110	92	61	130
Total Sulfides		0.05	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	[0.40 J]
otal organic carbon, filtered		NC	2	41	4	2	1	3.4
H	100.000.000.000.000.000.000.000.000.000	NS	7.4		=-+ ::::::::::::::::::::::::::::::::::::			
\$156600000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	50000 C 00 00 00 00 00 00 00 00 00 00 00		000000000000000000000000000000000000000	• •	000000000000000000000000000000000000000	
						, and the second se		
000000000000000000000000000000000000000	Milandoscoppi baccasasasas menere		0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	305600000000000000000000000000000000000	******************************		
						100000000000000000000000000000000000000		
					**************************************	244444		
			_					
NOTES: U- not detected	, J - estimated, R - unusab	le, NC - no criteria, Dup - d	uplicate sample, FF - field filtere	d.				<u> </u>
[ ] - Exceeds N	YS Class GA Ground Wa	ter Quality Standard	•			•		
				•			Page 12	of 14
e Printed: 03/01/05 12:04:43					<del></del>	<del></del>		File Number: 651



### Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report

### Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site

Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	
	Sample Date	GW Standards mg/L	02/15/00	08/14/01	11/29/01	02/27/02	05/15/02	11/17/04	
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Compound									
Alkalinity (as CaCO3)		NS	240	260	270	230	270	270	
Chloride		250	190	220	230	120	230	[370]	
Nitrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U	********
Nitrite (as N)		1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.011 3	
Nitrite-nitrate nitrogen		10	0.05 U	0.05 U	0.05 U	0.05 Ŭ	0.05 U	0.050 U	000000000000
Sulfate		250	190 J	220	210	150	220	[370]	
Total Sulfides	400000000000000000000000000000000000000	0.05	0.2 U	0.2 U	0.2 U	0.2 U	[0.2 ]	{0.60 J}	100000000000000000000000000000000000000
Fotal organic carbon, filtered		NC	5	63	4	4	10	3.3	
э <b>Н</b>	annicoccoccinantesianananana	NS	8.0	noncodolidade concededade de concede concentrario				<del></del>	vousantenante
									8000000
	2000 (000 000 000 000 000 000 000 000 00					1. 1666 666 666 666 666 666 666 666 666			04055500000
									er en
				•					9999999999
	900000000000000000000000000000000000000								
									000000000000000000000000000000000000000
	000000000000000000000000000000000000000	******************************	000000000000000000000000000000000000000			950000000000000000000000000000000000000	******************	:::::::::::::::::::::::::::::::::::::::	80006666666
000000000000000000000000000000000000000	ahandadaaannan eetaatan aan		::::::::::::::::::::::::::::::::::::::	>>anada		5500.000.000.000.000.000.000.000.000.00			
							1		
			•						ay yaran anan a
			***************************************	· · · · · · · · · · · · · · · · · · ·				n en per persona en la la participa de la composition de la composition de la composition de la composition de	unung sung mengentah di Ker
									00000000000
NOTES: U- not detected, J-	estimated R - unusah	le NC - no criteria Dun - d	luplicate sample, FF - field filter		<del></del>	<del></del>	<del></del>		
	Class GA Ground Wa			,					
• • • • • • • • • • • • • • • • • • • •		• •	•		•	•			
**		•					Page 13	of 14	
e Printed: 03/01/05 12:04:43								File Number:	6510.25



### Table 4-3 Ground Water Quality Data - Geochemical 2004 Annual Report

### Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-10S	MW-10S	MW-10S	MW-10S	MW-IOS	MW-10S
	Sample Date	GW Standards mg/L	02/15/00	08/14/01	11/29/01	02/27/02	05/15/02	11/17/04
	Units	•	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Сопроин								
Alkalinity (as CaCO3)		NS	250	260	210	210	230	280
Chloride		250	[370]	130	70	23	14	[270]
Nitrate (as N)		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Nitrite (as N)		1	0.05 U	0.05 U	0.05 U	0.05 U	Q.05 U	0.013 J
Nitrite-nitrate nitrogen		10	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U
Sulfate		250	210 J	150	170	93	57	[380]
Total Sulfides		0.05	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	[0.60 J]
Fotal organic carbon, filtered		NC	5	71	4	5	3	3.9
Н	***************************************	NS	7.3					<del></del> .
			2. 200 . 200 da					. 5
	an en estatuar de como es		eldusada eldada marina na na na decembro da da la composición de la composición dela composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composici	0000000.00.00.0000000000000000000000000	SSSSS CONTRACTOR CONTR		ta	
			-00000000000000000000000000000000000000					
000000000000000000000000000000000000000	4444466	y-000000000000000000000000000000000000	daanaa oo oo oo oo daaqaa ahaa ahaadaa daadaa		44444			
		, c						
		00,000,000						
			•					
NOTES: U- not detected,	- estimated, R - unusab	le, NC - no criteria, Dup - d	uplicate sample, FF - field filtere	xl.				
[ ] - Exceeds NY	S Class GA Ground Wa	ter Quality Standard.						
							Page 14	of 14

Date Printed: 03/01/05 12:04:43



Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D
	Sample Date	GW Standards mg/L	02/14/00 N9372	08/13/01 T0226	11/26/01 T5931	02/25/02 U1080	05/13/02 U6325	11/16/04 E9519
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound								
Ethene	000000000000000000000000000000000000000	NC	0.002 UJ	0.002 U	0.002 U	0.002 U	0.0013 U	0.0044 U
thane Methane		NC NC	0.002 UJ 0.02 J	0.002 U 0.02	0.002 U 0.02	0.002 U 0.03	0.0013 U 0.029	0.0044 U 0.047
Atenique		NC.	0.02 J	0.02	0.02	0.03	0.023	0.047
			000000000000000000000000000000000000000		5556-5555660000000000000000000000000000		60	A
							*****************************	
		*		,				
								_
NOTES: U- not dete	ected, J - estimated, R - unusab ds NYS Class GA Ground Wa	ile, NC - no criteria, Dup - d	uplicate sample.					
[ ] - Excee	us In 13 Class GA Ground Wa	net Annual Principal .					_	
e Printed: 03/01/05 09:5			·				Page 1	of 14 File Number: 6510.25.

File Number: 6510.25561



### Table 4-4 Ground Water Quality Data - Dissolved Gases 2004 Annual Report

## Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards mg/L	MW-01S 02/14/00 N9373 mg/L	MW-01S 08/13/01 T0225 mg/L	MW-01S 11/26/01 T5929 mg/L	MW-01S 02/25/02 U1079 mg/L	MW-01S 05/13/02 U6324 mg/L	MW-01S 11/16/04 E9518 mg/L
Compound								
Ethene		NC	0.002 UJ	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Ethane		NC	0.002 UJ	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Methane		NC	0.006 J	0.008	0.012 U	0.009	0.024	0.0020 U
								,
2005-00-00-00-00-00-00-00-00-00-00-00-00-					No. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20			
000000000000000000000000000000000000000					00.000.000.000.000.000.000.000.000.000.000.000			
				. •				
								*************************************
\$6600000000000000000000000000000000000	000000000000000000000000000000000000000		6.000000000000000000000000000000000000		5500 000 000 000 000 000 000 000 000 00		· · · · · · · · · · · · · · · · · · ·	
		•						
000000000000000000000000000000000000000	*******************************	000000000000000000000000000000000000000			000000000000000000000000000000000000000	\$455566600000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
NOTES: U- not det	ected, J - estimated, R - unusal ds NYS Class GA Ground W	ble, NC - no criteria, Dup - d ater Quality Standard.	uplicate sample.		<u> </u>	·		
					·		Page 2	of 14
e Printed: 03/01/05 09:5	32:35							File Number: 6510.25

DBF File: Q:\6510_GOODYEAR\94\POREST2004\PROGS\TABLEPR.FXP



### Table 4-4 Ground Water Quality Data - Dissolved Gases 2004 Annual Report

### Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D
•	Sample Date	GW Standards mg/L	02/17/00 N9521	08/15/01 T0334	11/29/01 T6135	02/28/02 U1278	05/14/02 U6512	11/17/04 E9659
	Units	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Compound								
Ethene		NC	0.02 U	. 0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
thane		NC NC	0.02 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U 0.028
Methane 		NC	0.06	0.02	0.012 U	0.04	0.041	0.028
						*******************************		
			40.4040.0000.000.0000.0000.0000					
			600000000000000000000000000000000000000					
NOTES: U- not detec	ted, J - estimated, R - unusal	le, NC - no criteria, Dup - d	uplicate sample.					
[ }-Exceed	ted, J - estimated, R - unusab s NYS Class GA Ground Wa	nter Quality Standard.	· · · · ·			•		
	:35						Page 3	of 14



	Sample ID	NYSDEC Class GA	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S
	Sample Date	GW Standards	02/17/00	08/15/01	11/29/01	02/28/02	05/14/02	11/17/04
	Units	mg/L	N9522 mg/L	T0335 mg/L	T6136 mg/L	U1279 mg/L	U6511 mg/L	E9660 mg/L
Compound							•	
Ethene		NC	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Ethane		NC	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Methane		NC	0.002	0.03	0.012 U	0.01	0.0058	0.031
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n duar deale i el control de la control de l	200000000000000000000000000000000000000		00.0.000.0.000.				0.00.00.00.000.000.00.00.000.000.000.000.000.000.000
				•				
NOTES: U- not dete	ected, J - estimated, R - unusab ds NYS Class GA Ground Wa	ole, NC - no criteria, Dup - d	luplicate sample.					
f 1-Exces	de IV 13 Class da Glodiid Wi	and Quality Standard.				•	Page 4	of 14
Date Printed: 03/01/05 09:5	2:15				<u> </u>		Tage 4	File Number: 6510.2556



### Table 4-4 Ground Water Quality Data - Dissolved Gases 2004 Annual Report

### Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D
	Sample Date Units	GW Standards mg/L	02/17/00 N9519 mg/L	08/14/01 T0269 mg/L	11/29/01 T6141 mg/L	02/27/02 U1223 mg/L	05/15/02 U6911 mg/L	11/17/04 E9662 mg/L
Compound						ū	·	• .
Ethene		NC	0.004	0.004	0.002 U	0.002 U	0.0017	0.0022 U
Ethane		NC	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Methane		NC	0.04	0.05	0.03	0.02	0.024	0.057
					-			
	,							
NOTES: U- not detec	ted, J - estimated, R - unusab s NYS Class GA Ground Wa	ole, NC - no criteria, Dup - d ater Quality Standard.	luplicate sample.					
							Page 5	of 14

DBF File: PXP File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP



### Table 4-4 Ground Water Quality Data - Dissolved Gases 2004 Annual Report

## Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID Sample Date Units	NYSDEC Class GA GW Standards mg/L	MW-05S 02/17/00 N9520 mg/L	08/14/01 T0268 mg/L	11/29/01 T6142 mg/L	02/27/02 U1222 mg/L	05/15/02 U6910 mg/L	11/17/04 E9661 mg/L
Compound								
Ethene	200000000000000000000000000000000000000	NC	0.02 U	0.01	0.04 U	0.04 U 0.04 U	0.030 U	0.0044 U
ithane Methane		NC NC	0.02 U 0.3	0.02 U 0.4	0.04 U 0.17	0.04 U 0.1	0.026 U 0.11	0.0044 U 0.10
viemane		NC	0.3	0.4	0.17	0.1	0.11	0.10
			•					
0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000	0.0000000000000000000000000000000000000					14.000.000.000.000.000.000.000.000.000.0		400000000000000000000000000000000000000
	7							
	·							
								*******************************
			•					
NOTES: U- not dete	cted, J - estimated, R - unusal	ole, NC - no criteria, Dup - d	luplicate sample.					
[ ] - Excee	ds NYS Class GA Ground W	ater Quality Standard.		•				
te Printed: 03/01/05 09:5			•				Page 6	of 14 File Number: 6510.



	Sample ID Sample Date Units	NYSDEC Class GA GW Standards mg/L	MW-06D 02/15/00 N9418 mg/L	MW-06D 08/15/01 T0337 mg/L	MW-06D 11/29/01 T6140 mg/L	MW-06D 02/27/02 U1224 mg/L	MW-06D 05/15/02 U6913 mg/L	MW-06D 11/16/04 E9521 mg/L
Compound								
Ethene	*******************	NC	0.002 U	0.001	0.002 U	0.002 U	0.0013 U	0.0022 U
thane		NC	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Methane	000000000000000000000000000000000000000	NC	0.05	0.03	0.05	0.04	0.027	0.029
				<u>,                                    </u>				
						*		
	คองสนาร์กา คากกรรมการสนารสนารสนาร	annon en enter a con un electronomo esta	Managar na arragus arragan arragan esta esta esta esta esta esta esta esta		······································	don unanan sassas un un sassas sassas como como de	Status Moderna on constitution as a constitution of the constituti	
	400400000000000000000000000000000000000					9509460-00-0		
	1440)							
			****************			, Statement control (2000)	85000050505050000000000000000000000000	
	11da:::::::::::::::::::::::::::::::::::		•		190000000000000000000000000000000000000	Va. 22.00.000 20.000 400 400 400 400 400 400 400 400 40		
				• .				
						***************************************		
-								
NOTES: U- not detec	ted, J - estimated, R - unusab NYS Class GA Ground Wa	ole, NC - no criteria, Dup - d oter Quality Standard	luplicate sample.					
( 1- Exceed		me Admirk semident		·				
e Printed: 03/01/05 09:52			•				Page 7	of 14 File Number: 65



	Sample ID	NYSDEC Class GA	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S
	Sample Date	GW Standards mg/L	02/15/00 N9417	08/15/01 T0336	11/29/01 T6139	02/27/02 U1225	05/15/02 U6912	11/16/04 E9520 mg/L
	Units		mg/L	mg/L	mg/L	mg/L	mg/L	
Сотроилд								
Ethene		NC	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Ethane		NC NG	0.002 U	0.002 U	0.002 U	0.002 U 0.005	0.0013 U 0.0015	0.0022 U 0.041
Methane		NC	0.002	0.02	· 0.012 U	0.005	0.0015	0.041
				·				
	-							
NOTES: U- not dete	cted, J - estimated, R - unusab da NYS Class GA Ground Wa	ole, NC - no criteria, Dup - d ster Quality Standard.	lupticate sample.				· <u>-</u>	
•							Page 8	of 14

DBF File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP



	Sample ID Sample Date Units	NYSDEC Class GA GW Standards mg/L	MW-07D 02/18/00 N9573 mg/L	MW-07D 08/16/01 T0523 mg/L	MW-07D 11/28/01 T6086 mg/L	MW-07D 02/25/02 U1082 mg/L	MW-07D 05/16/02 U7824 mg/L	MW-07D 11/15/04 E9487 mg/L
Compound			•	•	-	-		
Ethene		NC	0.02 U	0.0036	0.01 U	0.02 U	0.0052 U	0.0044 U
Ethane		NC	0.02 U	0.02 U	0.01 U	0.02 U	0.0052 U	0.0044 U
Methane		NC	0.1	0.1	0.08	0.1	0.11	0.13
		-						
						,		
					200000000000000000000000000000000000000	***************************************		
								00000000000000000000000000000000000000
-								
						000000000000000000000000000000000000000	00/00/000000000000000000000000000000000	000000000000000000000000000000000000000
							1	
555554555555555555555555555555555555555	6.000.66.00000000000000000000000000000	000000000000000000000000000000000000000		,		Ministration continues and announce		
		•						
NOTES: U- not des	tected, J - estimated, R - unusab eds NYS Class GA Ground Wa	le, NC - no criteria, Dup - d ster Quality Standard	uplicate sample.					
į j-1200	and with broads we		•				Dona O	-6 14
ate Printed: 03/01/05 09:	·				<u> </u>		Page 9	of 14 File Number: 6510.:

DBF File:
FXP File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP



	Sample ID	NYSDEC Class GA	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S
	Sample Date	GW Standards	02/18/00	08/16/01	11/28/01	02/25/02	05/16/02	11/15/04
	Units	mg/L	N9572	T0522	T6085 mg/L	U1081 mg/L	U7823 mg/L	E9486 mg/L
	Units		mg/L	mg/L	mg/L	mg/L	ng/L	mgr
Compound Ethene		NC	0.02 U	0.02 U	0.002 U	0.002 U	0,0013 U	0.0022 U
Sthane Sthane		NC	0.02 U	0.02 UJ	0.002 U	0.002 U	0.0013 U	0.0022 U
Methane		NC	0.4	0.6	0.012 U	0.002 U	0.00070 U	0.0020 U
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		555566666555566656665555555566555666	00.500.00000000000000000000000000000000	*************************************	*************************************	000000000000000000000000000000000000000		
			150000000000000000000000000000000000000	000000000000000000000000000000000000000		200000000000000000000000000000000000000	000000000000000000000000000000000000000	**************************************
NOTES: U- not det	ected, J - estimated, R - unusab eds NYS Class GA Ground Wa	le, NC - no criteria, Dup - o ster Quality Standard.	duplicate sample.					
	,	•		<b>V</b>			Page 10 o	f 14
ite Printed: 03/01/05 09:		GS\TABLEPR.FXP					1 agc 10 0	File Number: 6510



### Table 4-4 Ground Water Quality Data - Dissolved Gases 2004 Annual Report

### Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

• .	Sample ID Sample Date Units	NYSDEC Class GA GW Standards mg/L	MW-08D 02/18/00 N9575 mg/L	MW-08D 08/16/01 T0521 mg/L	MW-08D 11/28/01 T6087 mg/L	MW-08D 02/25/02 U1085 mg/L	MW-08D 05/16/02 U7826 mg/L	MW-08D 11/16/04 E9517 mg/L
Compound								
Ethene	<del></del>	NC	0.02 U	0.0009	0.002 U	0.02 U	0.0052 U	0.0022 U
Ethane		NC	0.02 U	0.01 U	0.002 U	0.02 U	0.0052 U	0.0022 U
Methane		NC	0.1	0.11	0.06	0.1	0.068	0.029
				·				
	Access to the second second second							
200.000.000.000.000.000.000.000.000.000						bekandalalalalan oleh erekinterio delak biran erekinterio delak		55 - 5 to - 5 to - 5 to 5 to 5 to 5 to 5
								•
•								
NOTES: U- not det	tected, J - estimated, R - unusal eds NYS Class GA Ground Wi	ole, NC - no criteria, Dup - o	luplicate sample.					
[ ]-Exco	ous 1413 Class GA Glound Wi	and Anama commond.		•			D 11	of 14
ate Printed: 03/01/05 09:			<u> </u>				Page 11	OI 14 File Number: 6510.25



### Table 4-4 Ground Water Quality Data - Dissolved Gases 2004 Annual Report

### Remedial Work Element 2 (Ground Water) Forest Glen Subdivision Site Niagara Falls, New York

	Sample ID	NYSDEC Class GA	MW-08S	MW-08S	MW-08\$	MW-08S	MW-08S	MW-085
	Sample Date Units	GW Standards mg/L	02/18/00 N9574 mg/L	08/16/01 T0520 mg/L	11/28/01 T6088 mg/L	02/25/02 U1084 mg/L	05/16/02 U7825 mg/L	11/16/04 E9516 mg/L
<b>~</b>	Onis		mg/L	mg L		<del></del>	<b></b>	·· <b>·</b> • -
Compound Ethene		NC .	0.02 U	0.02 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Sthane		NC	0.02 U	0.02 UJ	0.002 U	0.002 U	0.0013 U	0.0022 ปั
Methane		NC	0.04	0.2	0.012	0.02	0.013	0.0020 U
000000000000000000000000000000000000000	×			•				
						•		
						•		
			·					
						***************************************		
NOTES: U- not dete	cted, J - estimated, R - unusal ds NYS Class GA Ground W	ole, NC - no criteria, Dup - o	luplicate sample.			<del> </del>	· · · · · · · · · · · · · · · · · · ·	
[ ] - Exceer	ds NYS Class GA Ground W	ater Quality Standard.				•		•
ate Printed: 02 m Lines 00.5							Page 12	of 14 File Number: 6510.255

Date Printed: 03/01/05 09:52:35
DBF File:
FXP File: Q:6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP

File Number: 6510.25561



	Sample ID Sample Date	NYSDEC Class GA GW Standards mg/L	MW-10D 02/15/00	MW-10D 08/14/01	MW-10D 11/29/01 T6}38	MW-10D 02/27/02 U1227	MW-10D 05/15/02 U6915	MW-10D 11/17/04 E9658
	Units	ng/L	N9415 mg/L	T0275 mg/L	mg/L	mg/L	mg/L	mg/L
Compound								
Ethene		NC	0.002 U	0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.0013 U 0.0013 U	0.0022 U 0.0022 U
Ethane Methane		NC NC	0.002 Ŭ 0.006	0.002 U 0.03	0.002	0.002 G	0.015	0.0022.0
			0.000	0.05	0.00			
				,				,
					·			
		T						
				•				
NOTES: U- not de	tected, J - estimated, R - unusal	le, NC - no criteria, Dup - é	luplicate sample.			<del> </del>		
[ ] - Exce	eds NYS Class GA Ground Wa	ter Quality Standard.	•					
te Printed: 03/01/05 09:					·		Page 13	of 14 File Number: 6510.

Date Printed: 03/01/05 09:52:35
DBF File:
FXP File: Q:\6510_GOODYEAR\34194_FOREST2004\PROGS\TABLEPR.FXP



	Sample ID	NYSDEC Class GA	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
	Sample Date '	GW Standards	02/15/00	08/14/01	11/29/01	02/27/02	05/15/02	11/17/04
	Units	mg/L	N9416 mg/L	T0276 mg/L	T6137 mg/L	U1226 mg/L	U6914 mg/L	E9657 mg/L
	Units		my L	my L	ney c	mg/ L	m <b>g</b> /L	mg/L
Compound				0.005 **	0.000 11	0.000.77	0.0012.11	0.0022.11
Ethene	000000000000000000000000000000000000000	NC NC	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.0013 U 0.0013 U	0.0022 U 0.0022 U
Ethane Methane		NC NC	0.002 0	0.003	0.012 U	0.002 U	0.00070 U	0.023
Mediane		NC	0.001	0.003	0.012 0	0.002 0	0.00070	0.025
	2000.000.0000.0000.0000.0000.0000.00000.0000	190000000000000000000000000000000000000						
	.,,							
	55556765566666655555556666665	000000000000000000000000000000000000000						
	***************************************							
ecciones como contrato de c		000000000000000000000000000000000000000	000000000000000000000000000000000000000					
						//		
							i	
	\$22224622222222222222222222222	000000000000000000000000000000000000000						001000000000000000000000000000000000000

File Number: 6510.25561





FIGURE 1

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

SITE LOCATION MAP



FILE NO. 5540.34194.011 MARCH 2005





FIGURE 2



LEGEND

EXISTING FENCE

UNDERGROUND GAS

EXISTING SANITARY SEWER

WATER SERVICE

- CAS LINE

. ____ ENGINEERED CAP LIMITS

PROPERTY LINE

LIMITS OF EASEMENT

& 5S EXISTING MONITORING WELL

EXISTING WETLAND (FORMER WITHIN CAP LIMITS)

ENDPOINTS OF FENCE REMOVED

·

RECOVERY WELL

FOREST GLEN
SUBDIVISION SITE
NIAGARA COUNTY, NEW YORK

SITE PLAN



FILE NO. 5540.34194.011 MARCH 2005



FIGURE 3A



**LEGEND** 

SWAMP/WETLANDS

FENCE LINE

RAILROAD TRACKS

- EXISTING MONITORING WELL LOCATION
- APPROXIMATE RECOVERY WELL LOCATION

ENGINEERED CAP LIMITS

571— GROUND WATER ELEVATION CONTOURS (DASHED WHERE INFERRED)

(576.50) GROUND WATER ELEVATIONS

### NOTE:

1. THE BACKGROUND GROUND WATER ELEVATION CONTOURS SHOWN REPRESENT CONDITIONS ON FEBRUARY 14, 2000 BEFORE THE PART 360 COVER AND GROUND WATER RECOVERY SYSTEM WAS CONSTRUCTED.

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

SHALLOW BEDROCK GROUND WATER **ELEVATION CONTOURS** (2/6/04)



FILE NO. 5540.34194.001 MARCH: 2005



FIGURE 3B



### LEGEND

FENCE LINE

+- RAILROAD TRACKS

 EXISTING MONITORING WELL LOCATION

✓ APPROXIMATE RECOVERY WELL LOCATION

---- ENGINEERED CAP LIMITS

575— GROUND WATER ELEVATION CONTOURS (DASHED WHERE INFERRED)

(576.67) GROUND WATER ELEVATIONS

### NOTE:

1. THE BACKGROUND GROUND WATER ELEVATION CONTOURS SHOWN REPRESENT CONDITIONS ON FEBRUARY 14, 2000 BEFORE THE PART 360 COVER AND GROUND WATER RECOVERY SYSTEM WAS CONSTRUCTED.

FOREST GLEN
SUBDIVISION SITE
NIAGARA COUNTY, NEW YORK

DEEP BEDROCK
GROUND WATER
ELEVATION CONTOURS
(2/6/04)



FILE NO. 5540.34194.002 MARCH 2005





FIGURE 4B



### LEGEND

- SWAMP/WETLANDS
  - FENCE LINE
- RAILROAD TRACKS
- * EXISTING MONITORING WELL LOCATION
- APPROXIMATE RECOVERY WELL LOCATION
  - ENGINEERED CAP LIMITS
- 577— GROUND WATER ELEVATION CONTOURS (DASHED WHERE INFERRED)

(578.74) GROUND WATER ELEVATIONS

1. THE BACKGROUND GROUND WATER ELEVATION CONTOURS SHOWN REPRESENT CONDITIONS ON FEBRUARY 14, 2000 BEFORE THE PART 360 COVER AND GROUND WATER RECOVERY SYSTEM WAS CONSTRUCTED.

FOREST GLEN
SUBDIVISION SITE
NIAGARA COUNTY, NEW YORK

DEEP BEDROCK
GROUND WATER
ELEVATION CONTOURS
(5/17/04)



FILE NO. 5540.34194.004 MARCH 2005





FEBRUARY 14, 2000 BEFORE THE





FIGURE 5B



<u>LEGEND</u>

SWAMP/WETLANDS

FENCE LINE

RAILROAD TRACKS

- ♦ EXISTING MONITORING WELL LOCATION
- APPROXIMATE RECOVERY
   WELL LOCATION:

- ENGINEERED CAP LIMITS

575— GROUND WATER ELEVATION CONTOURS (DASHED WHERE INFERRED)

(576.70) GROUND WATER ELEVATIONS

### NOTE:

1. THE BACKGROUND GROUND WATER ELEVATION CONTOURS SHOWN REPRESENT CONDITIONS ON FEBRUARY 14, 2000 BEFORE THE PART 360 COVER AND GROUND WATER RECOVERY SYSTEM WAS CONSTRUCTED.

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

DEEP BEDROCK GROUND WATER ELEVATION CONTOURS (7/23/04)



FILE NO. 5540.34194.006 MARCH 2005



FIGURE 6A



### LEGEND

 SWAMP/WETLANDS

- RAILROAD TRACKS

- ♦ EXISTING MONITORING WELL LOCATION
- APPROXIMATE RECOVERY WELL LOCATION

- ENGINEERED CAP LIMITS

581—— GROUND WATER ELEVATION
CONTOURS (DASHED WHERE
INFERRED)

(580.34) GROUND WATER ELEVATIONS

### NOTE:

1. THE BACKGROUND GROUND WATER ELEVATION CONTOURS SHOWN REPRESENT CONDITIONS ON FEBRUARY 14, 2000 BEFORE THE PART 360 COVER AND GROUND WATER RECOVERY SYSTEM WAS CONSTRUCTED.

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

SHALLOW BEDROCK
GROUND WATER
ELEVATION CONTOURS
(8/4/04)



FILE NO. 5540.34194.007 MARCH 2005



FIGURE 6B



### **LEGEND**

■ SWAMP/WETLANDS

FENCE LINE

RAILROAD TRACKS

- ♦ EXISTING MONITORING WELL LOCATION
- APPROXIMATE RECOVERY
   WELL LOCATION

ENGINEERED CAP LIMITS

580— GROUND WATER ELEVATION CONTOURS (DASHED WHERE INFERRED)

(580.52) GROUND WATER ELEVATIONS

### NOTE:

1. THE BACKGROUND GROUND WATER ELEVATION CONTOURS SHOWN REPRESENT CONDITIONS ON FEBRUARY 14, 2000 BEFORE THE PART 360 COVER AND GROUND WATER RECOVERY SYSTEM WAS CONSTRUCTED.

FOREST GLEN
SUBDIVISION SITE
NIAGARA COUNTY, NEW YORK

DEEP BEDROCK
GROUND WATER
ELEVATION CONTOURS
(8/4/04)



FILE NO. 5540.34194.008 MARCH 2005





FIGURE 7A



### LEGEND

SWAMP/WETLANDS

FENCE LINE

RAILROAD TRACKS

- EXISTING MONITORING WELL LOCATION
- APPROXIMATE RECOVERY WELL LOCATION

-ENGINEERED CAP LIMITS

573- GROUND WATER ELEVATION CONTOURS

(572.01) GROUND WATER ELEVATIONS

### NOTE:

1. THE BACKGROUND GROUND WATER **ELEVATION CONTOURS SHOWN** REPRESENT CONDITIONS ON FEBRUARY 14, 2000 BEFORE THE PART 360 COVER AND GROUND WATER RECOVERY SYSTEM WAS CONSTRUCTED.

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

SHALLOW BEDROCK **GROUND WATER ELEVATION CONTOURS** (11/18/04)



FILE NO. 5540.34194.030 MARCH 2005





FIGURE 7B



LEGEND

SWAMP/WETLANDS

FENCE LINE

RAILROAD TRACKS

- EXISTING MONITORING WELL LOCATION
- APPROXIMATE RECOVERY WELL LOCATION

-ENGINEERED CAP LIMITS

573— GROUND WATER ELEVATION CONTOURS (DASHED WHERE INFERRED)

(572.81) GROUND WATER ELEVATIONS

### NOTE:

1. THE BACKGROUND GROUND WATER **ELEVATION CONTOURS SHOWN** REPRESENT CONDITIONS ON FEBRUARY 14, 2000 BEFORE THE PART 360 COVER AND GROUND WATER RECOVERY SYSTEM WAS CONSTRUCTED.

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

DEEP BEDROCK GROUND WATER **ELEVATION CONTOURS** (11/18/04)



FILE NO. 5540.34194.029 MARCH 2005





FIGURE 8A



### LEGEND

- SWAMP/WETLANDS
- FENCE LINE
- RAILROAD TRACKS
- EXISTING MONITORING WELL LOCATION
  - APPROXIMATE RECOVERY WELL LOCATION
  - ENGINEERED CAP LIMITS
- 581— GROUND WATER ELEVATION
  CONTOURS (DASHED WHERE
  INFERRED)

(580.82) GROUND WATER ELEVATIONS

GROUND WATER ELEVATION AT MW-6S APPEARS ANOMALOUS AND WAS NOT USED IN CONTOUR GENERATION.

FOREST GLEN
SUBDIVISION SITE
NIAGARA COUNTY, NEW YORK

BASELINE
SHALLOW BEDROCK
GROUND WATER
ELEVATION CONTOURS
(2/14/00)



FILE NO. 5540.34194.009 MARCH 2005











FIGURE 11

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

SHALLOW BEDROCK
GROUND
WATER ELEVATIONS
CROSS—SECTION B—B'



FILE NO. 5540.34194.015 MARCH 2005





FIGURE 12

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

SHALLOW BEDROCK
GROUND
WATER ELEVATIONS
CROSS—SECTION C—C'



FILE NO. 5540.34194.016 MARCH 2005





FIGURE 13

FOREST GLEN SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

DEEP BEDROCK GROUND WATER ELEVATIONS CROSS-SECTION A-A'



FILE NO. 5540.34194.017 MARCH 2005







DEEP BEDROCK GROUND WATER ELEVATIONS CROSS-SECTION B-B'



FILE NO. 5540.34194.018 MARCH 2005







16A

<u>N</u>0. 2005





SUBDIVISION SITE NIAGARA COUNTY, NEW YORK

SHALLOW GROUND WATER ELEVATION TREND





DEEP GROUND WATER ELEVATION TRENDS



FIGURE 16B



GROUND WATER
QUALITY TRENDS: MW-4

FILE NO. 5540.34194.022 MARCH 2005





GROUND WATER
QUALITY TREND: MW-5

FILE NO. 5540.34194.023 MARCH 2005





GROUND WATER
QUALITY TRENDS: MW-6

FILE NO. 5540.34194.024 MARCH 2005





GROUND WATER
QUALITY TRENDS: MW-7

FILE NO. 5540.34194.025 MARCH 2005





GROUND WATER
QUALITY TRENDS: MW-8

FILE NO. 5540.34194.026 MARCH 2005





## APPENDIX A

**CONTACT INFORMATION** 

#### APPENDIX A - CONTACT INFORMATION

#### 2004 ANNUAL REPORT REMEDIAL WORK ELEMENT 2 (GROUNDWATER)

# FOREST GLEN SUBDIVISION SUPERFUND SITE NIAGARA FALLS, NEW YORK

#### **EPA Project Manager**

Gloria M. Sosa US EPA - Region II 290 Broadway New York, NY 10007-1866

Tel: 212-637-4283 Fax: 212-637-4284 sosa.gloria@epa.gov

#### **NYSDEC Project Manager**

Vivek Nattanmai NYSDEC Bureau of W. Remedial Action Division of Hazardous Waste 625 Broadway, 11th Floor Albany, NY 12233-7017 Tel: 518-402-9671

Fax: 518-402-9679 vrnattan@gw.dec.state.ny.us

#### OCC Project Manager

Jeffery Sussman
The Goodyear Tire & Rubber Co.
1144 East Market St
Department 110F
Akron, OH 44316-0001
Tel: 330-796-0578
Fax: 330-796-6459

jeff sussman@goodyear.com

EPA used TAMS Consultants/Earthtech to provide oversight for the RA.

#### TAMS Consultants/Earthtech Project Manager

Maheyar Bilimoria TAMS/Earthtech 300 Broadacres Drive Bloomfield, NJ 07003 Tel: 973-338-6680

Fax: 973-338-1052

Maheyar.Bilimoria@earthtech.com

Goodyear used O'Brien & Gere as the Engineer for the RA.

#### O'Brien & Gere Project Manager

Al Farrell O'Brien & Gere Engineers, Inc. 5000 Brittonfield Parkway Syracuse, NY 13221-4873 Tel: 315-437-6100 X2316

Fax: 315-463-7554

## APPENDIX B

LOG OF REGULATOR NO. 8 OVERFLOW PERIODS

#### APPENDIX B – LOG OF REGULATOR NO. 8 OVERFLOW PERIODS

#### 2004 ANNUAL REPORT REMEDIAL WORK ELEMENT 2 (GROUNDWATER)

# FOREST GLEN SUBDIVISION SUPERFUND SITE NIAGARA FALLS, NEW YORK

The ground water recovery system operated in "automatic" mode and shutdown due to an overflow indication at Regulator No. 8 during the periods listed below:

- From 3:24 PM on January 11 until 10:40 AM on January 13
- From 2:18 PM on January 14 until 2:08 PM on January 15
- From 5:23 PM on January 15 until 6:28 on January 15
- From 6:55 AM on January 16 until 8:00 AM on January 16
- From 3:30 AM on January 17 until 5:08 AM on January 17
- From 1:15 PM on January 17 until 11:50 AM on January 19
- From 2:20 PM on February 9 until 12:05 AM on February 21
- From 12:35 PM until 1:05 PM on February 24
- From 3:50 AM on February 27 until 2:21PM on March 2
- From 5:06 PM on April 6 until 9:06 PM on April 13
- For approximately one hour on April 18 circa noon
- For approximately 15 minutes on April 21 circa 9:36 PM
- From 11:36 AM on April 27 until 6:12 PM on May 11
- From 10:27 PM on May 16 until 9:12 AM on May 17
- From 1:12 PM on May 17 until 6:57 AM on May 18
- From 1:42 AM on May 19 until 9:27 AM on May 21
- From 5:42 AM on May 24 until 6:12 AM on May 24
- From 3:12 PM on July 20 and 9:27 AM on July 22

In addition to the events listed above, the groundwater recovery system was off-line from August 2 until August 23. The data logger recorded that the pump inside recovery well RW-1 went off-line, for reasons unknown, at approximately 4:00 AM on August 1. During an examination of the electrical circuits for the recovery well pump, it was discovered that the motor starter was damaged due to thermal overload. Similar conditions were observed on the starter for the pump inside recovery well RW-2. As such, as a precautionary measure to prevent further damage, both pumps were taken off-line pending a closer examination as to the cause and pending replacement of the damaged motor starters.

On August 23 the motor starters for both pumps were replaced and the system was restarted. However, the pump in RW-1 draws excessive amperage for reasons unknown. Comparatively, the amperage drawn by the pump in RW-2 is within the range identified on the motor nameplate. As such, the pump in RW-1 was again de-energized as a precaution to prevent damage due to excessive amperage draw.

On August 24 the pump inside RW-1 was restarted, but its flow was throttled down to 4 gpm to induce head loss for the pump and to reduce the amperage drawn to within the range specified on the motor nameplate. The pump inside RW-2 continues to pump at approximately 10 gpm, with its current demand within the motor nameplate specified range.

On August 26 the pump inside RW-1 went off-line from approximately 1:55 AM until 9:40 AM. The pump inside RW-1 also went off-line from approximately 9:25 PM on August 26 until 9:55 AM on August 27. These two shutdown periods were triggered by the low-flow alarm setting, which was subsequently changed to prevent further nuisance shutdowns.

Between August 27 and September 3, the system operated continuously with RW-1 pumping at approximately 4 gpm and RW-2 pumping at approximately 10 gpm. On September 3, the contractor that constructed the system returned to the Site to further assess the condition of the pumps and connected piping. During the fieldwork, the pumps inside the two wells were swapped to determine if the problem transferred from one well to the other with exchange of the pumps. The swap of pumps revealed that the amperage problem was resulting from the pump, versus being associated with the system.

The system was off-line from September 4 until September 14, a portion of time due to indications of overflow from Regulator No. 8 and also pending replacement of peristaltic tubing connected with the automatic sampler and necessary for its operation. On September 14 the system came back on-line, with the pump in RW-1 discharging at approximately 9 gpm and the pump in RW-2 discharging at approximately 3.7 gpm. Operation as so continued until September 16 when the contractor returned to the site and removed the failing pump for assessment and repair by the manufacturer.

From September 16 until October 12, the system operated with only one of the two ground water recovery wells in service. The pump inside RW-1 discharged at a rate of approximately 9 gpm. A new pump was installed inside RW-2 on October 12.

Since October 12, the system was off-line due to an overflow indication inside Regulator No. 8 on the following occasions:

- A period between October 15 and October 18
- Intermittent periods on November 2, 4, 10, 11, 16, 17, 18, 19, 20, and 22.
- Regulator No. 8 permitted ground water to be recovered 44% of the available time during December. Specifically, Regulator No. 8 caused a prolonged period of continuous shutdown between 9:56 PM on December 13 and 7:56 AM on December 19, and also between 9:26 AM on December 25 and 3:41 PM on December 31. Intermittent operation, with the pumps shutting down for several hours on each occasion, was also observed on December 1, 4, 6, 7, and between December 20 and December 25.
- Regulator No. 8 permitted ground water to be recovered 53% of the available time during January. Specifically, Regulator No. 8 caused a prolonged period of continuous shutdown between 12:00 AM on January 22 and January 31. Another long period (approximately 38.5 hours) of shutdown was observed between 9:00 PM on January 11 and 11:30 AM on January 13. Intermittent operation, with the pumps shutting down for several hours on each occasion, was also observed on January 2, 8/9, 16, and 19/20.



### EXHIBIT 1

SIGNIFICANT INDUSTRIAL USER (SIU) DISCHARGE PERMIT



# NIAGARA FALLS WATER BOARD WASTEWATER FACILITIES

1200 Buffalo Avenue, Niagara Falls, New York 14303-1514

November 13, 2003

Mr. Jeffery A. Sussman Project Engineer Goodyear Tire & Rubber Co. Dept. 110F 1144 East Market Street Akron, OH 44316-0001

Dear Mr. Sussman:

Enclosed please find the updated copy of Goodyear Tire & Rubber Company as Agent for the Forest Glen Site Trust Wastewater Discharge Permit No. 61.

If you have any questions, I may be contacted at 716-286-4978.

Sincerely,

NIAGARA FALLS WATER BOARD WASTEWATER FACILITIES

Albert C. Zaepfel

**Industrial Monitoring Coordinator** 

allert C. Zay Hol

Enc.

ACZ: mc

Cc:

FILE: SIU - 61

F:\ADMIN\WINWORD\ZAEPFEL\MEMO 2003\GOODYEAR FOREST GLEN UPDATED PERMIT 11-13-03



# CITY OF NIAGARA FALLS DEPARTMENT OF WASTEWATER FACILITIES SIGNIFICANT INDUSTRIAL USER WASTEWATER DISCHARGE PERMIT

PERMIT NO. 61 THE GOODYEAR TIRE & RUBBER COMPANY, AS AGENT FOR THE FOREST GLEN SITE TRUST

In accordance with all terms and conditions of Chapter 250 of the City of Niagara Falls Municipal Code; Sewer Use Ordinance, as adopted by City Council on July 25, 1983; et seq. and also with all applicable provisions of Federal and State Law or regulation.

Permission is Hereby Granted To: SAME AS ABOVE

Located at: EDGEWOOD DRIVE - NIAGARA FALLS, NY 14304

Classified by SIC No(s): 4953

For the contribution of wastewater into the City of Niagara Falls Publicly-Owned Treatment Works (POTW).

Effective this 30th day of September 2003

To expire this 30th day of September 2008 This Permit modified: 11-12-03

William G. Bolents, Jr.

Acting Director of Wastewater Facilities

Signed this 12th day of November 2003

## DISCHARGE IDENTIFICATION

OUTFALL	DESCRIPTION	LOCATION	RECEIVING
MS #1	#001 8" Site Sanitary to 12" City Sanitary	Manhole MH – 3B Forest Glen Subdivision	Ground Water
		·	·

PAGE 3 OF 12 PERMIT NO. 61

WASTEWATER DISCHARGE PERMIT REQUIREMENTS FOR:			ACTION REQUIRED	REQUIRED DATE OF SUBMISSION
	Α.	Discharges to the City Sewer		
	1.	Identification of all discharges to the City Sewer System on a current plant sewer map certified by a New York State licensed professional engineer.	NONE	SUBMISSION RECEIVED 08-05-03
	2.	Identification of each contributing waste stream to each discharge to the City Sewer System clearly marked on, or referenced to, a current plant sewer map certified by a New York State licensed professional engineer.	NONE	SUBMISSION RECEIVED 08-05-03
	3.	Elimination of all uncontaminated discharges to the City Sewer System. All uncontaminated flows should be clearly identified on a current sewer map certified by a New York State licensed professional engineer.	NONE	SUBMISSION RECEIVED 08-05-03

## B. Wastewater Discharge Management Practices

1. Identification of a responsible person(s) (day to day and in emergencies).

Establishment of a control manhole

accessible for each discharge to the

City Sewer System.

that is continuously and immediately

4.

SUBMISSION 30 DAY S AFTER REQUIRED EFFECTIVE DATE

NONE

OF THE PERMIT
[LOCAL STAFF PERSON]

**SUBMISSION** 

**RECEIVED** 

08-05-03

#### **VASTEWATER DISCHARGE PERMIT** REQUIREMENTS FOR:

#### C. Slug Control Plan**

Pursuant to Section 40 CFR 403.12 (v) of the Federal Pretreatment Standards the City of Niagara Falls will evaluate the permittee, a minimum of once every two years for the need for a "Slug Control Plan." If a plan is required by the City of Niagara Falls then the plan will contain, at a minimum, the following elements:

- a) Description of discharge practices, including non-routine batch discharges;
- b) Description of stored chemicals;
- c) Procedures for immediately notifying the POTW of slug discharges, including any discharge that would violate a prohibition under 40 CFR 403.5 (b), with procedures for follow-up written notification within five days;
- d) If necessary, procedures to prevent adverse impact from accidental spills, including inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site runoff, worker training, building of containment structures or equipment, measures for containing toxic organic pollutants (including solvents), and/or measures and equipment necessary for emergency response.

^{**}This section applies to all pollutants limited by the City of Niagara Falls' SPDES Permit and all prohibited wastewater discharges (See Section 250.5.1-A of the Sewer Use Ordinance).

## D. General Wastewater Discharge Permit Conditions

- 1. Flow monitoring should be performed concurrently with any Wastewater Discharge Permit sampling and should be reported at the same time as analytical results. If it is not feasible to perform flow monitoring, an estimate of flow (method of estimated flow preapproved by the City of Niagara Falls) should be submitted with the analytical results.
- 2. All sampling for billing and pretreatment compliance purposes will be coordinated through the City of Niagara Falls' Industrial Monitoring Coordinator.
- 3. All analysis must be performed by a State certified laboratory using analytical methods consistent with 40 CFR 136 and quality control provisions as required by the City of Niagara Falls' Environmental Chemist. The permittee will report the results as directed in Section G of this permit. Results should be reported using the Method Detection Limit (MDL). Reporting results less than MDL will be indicated in the report by a less than sign (<) followed by the numeric MDL concentration reported by the laboratory. In these cases the pollutant load will be calculated and reported as zero (0). The MDL will be defined as the level at which the analytical procedure referenced is capable of determining with a 99% probability that the substance is present. The value is determined in reagent water. The precision at this level is +/- 100%.
- 4. An estimate of relative production levels for wastewater contributing processes at the time of any pretreatment compliance sampling will be submitted upon request of the Director of Wastewater Facilities.
- 5. All samples will be handled in accordance with EPA approved methods. Chain of Custody records will be submitted with all sampling results.
- 6. All conditions, standards and numeric limitations of Section 250 of the Sewer Use Ordinance are hereby incorporated into this permit by reference. These conditions, standards and numeric limitations must be complied with. Failure to comply with any part of said ordinances constitutes a violation and is subject to enforcement actions(s) described in Section 250.9 of said ordinances, and in the City of Niagara Falls' Pretreatment Administrative Procedure Number Five (5) "Enforcement Response Guide." Violators are subject to all applicable Civil and Criminal penalties. In the event of a violation, including slug discharges or spills, the City of Niagara Falls must be notified immediately by phone and confirmed by letter within five (5) working days.

Any person adjudicated of violating any provision in the Sewer Use Ordinance shall be assessed a fine in the amount of up to \$5,000. This amount is available for each violation, and each day of a violation is a separate incident for which penalties may be sought.

o. The person violating any of the provisions of the Sewer Use Ordinance will be liable to the City for any expense, loss, or damage occasioned by the City by reason of such violation. The expense, loss or damage will be taken to be to the extent determined by the Director.

In addition, any person who knowingly makes any false statements; representation or certification in any application, record, report, plan or other document filed or required to be maintained pursuant to the Sewer Use Ordinance, or Wastewater Discharge Permit, or who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required under the Sewer Use Ordinance will, upon conviction be punished by a fine up to \$5,000. Furthermore, the City of Niagara Falls may recover reasonable attorney's fees, court costs, court reporting fees, and other expenses of litigation by appropriate suit at law against the person found to have violated applicable laws, orders, rules and permits required by the Sewer Use Ordinance.

7. In accordance with Federal Regulation CFR 40, Part 403.12(g), any exceedance of a numeric limitation noted by the SIU must be re-sampled, analyzed and resubmitted to the City of Niagara Falls' Wastewater Facilities (WWF) within 30 days.

Specifically, if any limit that is <u>listed</u> in Section F of this permit is exceeded, then the permittee will undertake a short term monitoring program for that pollutant. Samples will be collected identical to those required for routine monitoring purposes and will be collected on each of at least <u>two (2)</u> operating days and analyzed. Results will be reported in both concentration and mass, and will be submitted within <u>30</u> days of becoming aware of the exceedance.

- 3. Sampling frequency for any permitted compounds may be increased beyond the requirements set forth in Section F and G of this permit. If the permittee monitors (sample and analysis) more frequent than required under this permit, <u>all</u> results of this monitoring must be reported.
- 9. As noted in Section 250.6.2 of the Sewer Use Ordinance, "Personnel as designated by the Director will be permitted at any time for reasonable cause to enter upon all properties served by the City of Niagara Falls WWF for the purpose of, and to carry out, inspection of the premises, observation, measurement, sampling and testing, in accordance with provisions of the Ordinance."
- 10. As noted in Section 250.5.3 of the Sewer Use Ordinance, significant changes in discharge characteristics or volume must be reported immediately to the WWF.
- 11. As noted in Section 250.6.2 of the Sewer Use Ordinance, samples required to be collected via a 24-hour composite sampler must be retained refrigerated for an additional 24 hour plus unrefrigerated an additional 48 hours (total 72 hours).
- 12. As noted in Section 250.5.4 of the Sewer Use Ordinance, all "SIU's will keep on file for a minimum of three (3) years, all records, flow charts, laboratory calculations or any other pertinent data on their discharge to the WWF."

- 13. As noted in Section 250.6.7 of the Sewer Use Ordinance, "Permits are issued to a specific user for a specific monitoring station. A permit will not be reassigned or transferred without the approval of the Director which approval will not be unreasonably withheld. Any succeeding owner or user to which a permit has been transferred and approved will also comply with all the terms and conditions of the existing permit."
- 14. The Annual Average Limitation is equivalent to the specific SIU allocation, and will be defined as the permissible long term average discharge of a particular pollutant. These limitations are listed in Section F of this permit. The computation of the Annual Average will be as follows; for each compound listed in Section G of this permit, the Annual Average will be the average of the present monitoring quarter and three previous quarters' data.
- 15. The Daily Maximum Limitation will be defined as the maximum allowable discharge on anyone day. The Daily Maximum Limitation will allow for periodic short term discharge fluctuations. These specific limitations are listed in Section F of this permit.
- 16. Enforcement of the Annual Average Limitation will be based on the reported average of the last four quarters data vs. the Annual Average Limited listed in Section F of this permit. Enforcement of the Daily Maximum Limitation will be based on individual analysis results vs. the Daily Maximum Limit listed in Section F of this permit. These results may be obtained from self monitoring (Section G), City of Niagara Falls Verification, incident investigation or billing samples.
- 17. The City of Niagara Falls' Administrative Procedure Number 6 "Procedure for Determination and Use of Local Limits" lists all pollutants noted in the City of Niagara Falls WWF SPDES Permit. The limits defined in the procedure are values which are based on the quantity of substances discharged which can be easily related to the Treatment Plant's removal capacity.

The pollutants listed in this procedure which are <u>not</u> specifically listed in Section F and G of this permit may be present in the permittee's wastewater discharge, but at levels which do not require specific permit limitations. Consequently, if any of the limits listed in this procedure, for pollutants <u>not</u> identified in Section F and G of this permit, are exceeded then the permittee will undertake a short-term, high intensity monitoring program for that pollutant. Samples identical to those required for routine monitoring purposes will be collected on each of at least three operating days and analyzed. Results will be expressed in terms of both concentration and mass, and will be submitted no later than the end of the third month following the month when the limit was first exceeded.

If levels higher than the limit are confirmed, the permit may be reopened by the City of Niagara Falls for consideration of revised permit limits.

## E. Specific Wastewater Discharge Permit Conditions

#### 1. Billing Agreement:

- a) The determination of the quantities of TSS and SOC will be made by laboratory analysis at the City's expense and will be based on the collection of five (5) representative 24-hours composite samples from Monitoring Station MS#1.
- b) The determination of the quantity of flow will be based on effluent meter readings obtained from MS#1. The daily readings and total average flow will be recorded on a monthly report. This report will be sent to the City due 15 days after the monitoring month.
- c) "Substances of Concern" charges will be based on pollutant analysis results contained in the permittee's Quarterly Self-Monitoring Report and other appropriate data collected by the City or the permittee.

#### 2. Self Monitoring:

The permittee will collect and analyze samples for pollutant analysis and submit the results as directed in Sections F and G of this permit.

## 3. Regulator 8:

The City maintains several flow regulators throughout the collection system. The purpose of the regulators is to divert excess flow during peak storm events away from the treatment plant. The permittee's discharge passes through regulator 8, which is one of these devices. Therefore, during storm events the potential for this wastewater to bypass the treatment plant exists. Consequently, the permittee must complete the following prior to initiating discharge.

- a) Install an appropriate alarm system to indicate when regulator 8 is overflowing. Such a system will trigger all discharge from the site to cease until such time overflow at regulator 8 ceases.
- b) A log of all such instances will be maintained. The log will be submitted with the Quarterly Self-Monitoring Report.
- c) A check of the alarm system will be conducted quarterly and recorded on the log noted in item E3b.

## **Discharge Limitations & Monitoring Requirements**

During the Period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfall(s) will be limited and monitored by the permittee as specified below.

OUTFALL NUMBER/ EFFLUENT	DISCHARGE LIMITATIONS			MINIMUM MONITORING REQUIREMENTS	
PARAMETER	ANNUAL AVERAGE	DAILY MAXIMUM	UNITS	MEASUREMENT FREQUENCY	SAMPLE TYPE
MS#1 - Flow	0.04	0.06	MGD	Continuous	N/A
MS#1 - Total Suspended Solids	50	100	lbs/d	5/Qrt	7
MS#1 – Soluble Organic Carbon	15	25	lbs/d	5/Qrt	7
MS#1 – T. Phosphorous	5.0	8.0	lbs/d	1/Qrt	3
MS#1 – T. Lead	0.026	0.053	lbs/d	1/Qrt	3
MS#1 – T. Chromium	0.20	0.40	. lbs/d	1/Qrt	3
MS#1 – T. Nickel	0.20	0.40	lbs/d	1/Qrt	3
MS#1 – Vinyl Chloride	0.02	0.03	lbs/d	1/Qrt	2
MS#1 – 1,1 Dichloroethylene	0.005	0.01	lbs/d	1/Qrt	2
MS#1 - *1, 2 Dichloroethylene	0.05	0.1	lbs/d	1/Qrt	2
MS#1 – 1,1 Dichloroethane	0.005	0.01	lbs/d	1/Qrt	2
MS#1 – Trichloroethylene	0.005	0.01	lbs/d	1/Qrt	2
MS#1 – Tetrachloroethylene	0.005	0.01	lbs/d	1/Qrt	2
MS#1 – 1,1,1 Trichloroethane	0.005	0.01	lbs/d	1/Qrt	2
	-				

^{*}total cis and trans

#### F. <u>DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS</u> CONTINUED

#### SAMPLE TYPE FOOTNOTES

- (1) Each sample will consist of four (4) grabs collected spaced throughout the **batch** discharge, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. The four (4) grabs will be **composited in the laboratory** and analyzed as one sample.
- (2) Each sample will consist of four (4) grabs collected spaced over the 24-hour period, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. The four (4) grabs will be composited in the laboratory and analyzed as one sample.
- (3) Each sample will consist of a 24-hour, flow proportioned composite sample collected from the monitoring point.
- (4) Flow will be monitored continuously with the use of a water meter or another acceptable flow metering device.
- (5) Each sample will consist of a 24-hour, time proportioned composite sample collected from the monitoring point.
- (6) Reserved
- (7) Same as (3), however, five (5) samples will be collected per quarter from the monitoring point and analyzed by and at the City of Niagara Falls expense.
- (8) Four (4) grab samples will be collected spaced over the 24-hour period, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. Each grab will be analyzed and reported separately.
- (9) A grab sample is defined as an aliquot collected over a period of not more than 15 minutes.

## G. <u>Discharge Monitoring Reporting Requirements</u>

During the period beginning the effective date of this permit and lasting until its expiration date, discharge monitoring results will be summarized and reported by the permittee; Monthly - 14 days after monitoring period, Quarterly - by the last day of the monitoring period = February 28, May 31, August 31, November 30. Semiannual reports will be submitted on the last day of the monitoring period = February 28, August 31. The annual average for each parameter listed in Section F, will be computed and reported quarterly. The individual sample analysis for present quarter will also be reported quarterly unless directed otherwise in this permit.

OUTFALL NO	PARAMETER	REPORTING FREQUENCY		
MS#1	Flow	Monthly		
MS#1	Regular 8 data, Inspections	Quarterly		
MS#1	Vinyl Chloride	Quarterly		
MS#1	1,1 – Dichloroethylene	Quarterly		
MS#1	1,2 – Dichloroethylene	Quarterly		
MS#1	1,1 - Dichloroethane	Quarterly		
MS#1	Trichloroethylene	Quarterly		
MS#1	Tetrachloroethylene	Quarterly		
MS#1	1,1,1 - Trichloroethane	Quarterly		
MS#1	T. Phosphorous	Quarterly		
MS#1	T. Lead	Quarterly		
MS#1	T. Chromium	Quarterly		
MS#1	T. Nickel	Quarterly		

## H. <u>Comments/Revisions</u>