OBG

2017 ANNUAL REPORT

Remedial Work Element 2 (Groundwater) Forest Glen Superfund Site Niagara Falls, New York

The Goodyear Tire & Rubber Company Akron, Ohio

March 2018

2017 Annual Report Remedial Work Element 2 (Groundwater) Forest Glen Superfund Site

Niagara Falls, New York

Prepared for: The Goodyear Tire & Rubber Company Akron, Ohio

DOUGLAS M. CRAWFORD, P.E., VICE PRESIDENT

O'BRIEN & GERE ENGINEERS, INC.

TABLE OF CONTENTS

List of Tables	ii
List of TablesList of Figures	ii
List of Appendices	ii
Executive Summary	. iii
1. Introduction	1
1.1 General	1
1.2 Background	1
2. Groundwater Recovery and Discharge	3
2.1 General	3
2.2 Quarterly Groundwater Discharge Sampling	3
2.3 Groundwater Recovery System Improvements	4
2.3.1 System Preventive Maintenance and Improvements	4
3. Groundwater Monitoring	5
3.1 General	5
3.1.1 Groundwater level measurements	5
3.1.2. Groundwater quality sampling	5
3.2 Assessment of Groundwater Quality Data and Trends	6
3.2.1 Volatile Organic Compound Trends	6
3.2.2 Geochemical and Dissolved Gas Data Trends	8
3.2.3 Conclusion	8
References	.10

LIST OF TABLES

- 1 Monthly Operation Summary (in text)
- 2 Groundwater Elevations
- 3 Groundwater Quality Data VOCs (2015 2017)
- 4 Groundwater Quality Data VOCs (1995 2017)
- 5 Groundwater Quality Data Geochemical
- 6 Groundwater Quality Data Dissolved Gases

LIST OF FIGURES

- 1 Site Location Map
- 2 Site Plan
- 3 Monitoring Well Locations
- 4 Shallow Bedrock Groundwater Elevation Contours (4/10/2017)
- 5 Deep Bedrock Groundwater Elevation Contours (4/10/2017)
- 6 Shallow Bedrock Groundwater Elevation Contours (6/26/2017)
- 7 Deep Bedrock Groundwater Elevation Contours (6/26/2017)
- 8 Shallow Bedrock Groundwater Elevation Contours (9/11/2017)
- 9 Deep Bedrock Groundwater Elevation Contours (9/11/2017)
- 10 Shallow Bedrock Groundwater Elevation Contours (12/19/2017)
- Deep Bedrock Groundwater Elevation Contours (12/19/2017)
- 12 Baseline Shallow Bedrock Groundwater Elevation Contours (2/14/00)
- 13 Baseline Deep Bedrock Groundwater Elevation Contours (2/14/00)

LIST OF APPENDICES

- A Effluent Monitoring Reports
- B Significant Industrial User (SIU) Discharge Permit 61
- C Groundwater Monitoring Laboratory Reports
- D Groundwater VOC Concentration Trends
- E CAHs Mass Trends

FINAL | II

EXECUTIVE SUMMARY

This document is the 2017 Annual Report for Remedial Work Element 2 (groundwater) (RWE-2) for the Forest Glen Superfund Site in Niagara Falls, New York. The Record of Decision (ROD; USEPA, 1999) established two remedial action objectives (RAOs) for RWE-2, specifically:

- Reduce or eliminate the threat to human health and the environment posed by groundwater contamination by remediating groundwater to maximum contaminant levels (MCLs)
- Reduce or eliminate the potential for migration of contaminants to potential receptors.

To achieve these RAOs, the USEPA selected a two-part approach for RWE-2. The first component includes extraction of contaminated groundwater from the on-property plume using groundwater recovery wells RW-1 and RW-2, and transfer of the extracted groundwater via sanitary sewer to the City of Niagara Falls Wastewater Treatment Plant. The second component for RWE-2 includes natural attenuation of the off-property VOC plume. The RWE-2 remedy was completed to complement the Remedial Work Element 1 (Soil) (RWE-1) remedy selected by the USEPA for Operable Unit 2 (soil) which consisted of construction of a 6 NYCRR Part 360 low-permeability geomembrane cap over the suspected source of volatile organic compounds (VOCs) in overburden soil. The construction of both RWE-1 and RWE-2 was completed, and operation of the groundwater recovery system including RW-1 and RW-2 started, during 2003. A third groundwater recovery well, RW-3, was completed and operations began on August 27, 2014 to augment contaminant capture and further minimize the potential for contaminant migration off-property. Combined, these wells recovered 9,836,590 gallons of groundwater for treatment at the Niagara Falls Wastewater Treatment Plant during 2017. The groundwater recovery system was on-line 100% of the year and actively pumped for nearly 95% of the period.

Groundwater monitoring data are compared to regulatory criteria, which include federal maximum contaminant levels (MCLs) and New York State Class GA groundwater standards. It should be noted that for the contaminants of concern (COC), which are TCE, cis-1,2-DCE, and vinyl chloride, the federal MCLs and the Class GA groundwater standards are the same for TCE and vinyl chloride at $5 \mu g/L$ and $2 \mu g/L$, respectively; however, the federal MCL for cis-1,2-DCE is $70 \mu g/L$ compared to the Class GA groundwater standard of $5 \mu g/L$.

Off-property monitoring well nests MW-7 and MW-8 continued to be monitored during the year to evaluate conditions and progress toward the RAOs for the Site COCs including TCE, cis-1,2-DCE, and vinyl chloride. Since March 2015 there have been no COCs detected above the MCLs in the off-property wells, an indication that the RAOs have been achieved west of the Property.

On-property, groundwater samples from MW-5S, which is believed to be in the likely COC source area, continue to exhibit COCs at concentrations above the MCLs. Concentrations of COCs in MW-5D were also above the MCLs prior to completion of RWE-1 and startup of the groundwater recovery system, but since 2013 have generally been non-detect. MW-6D has also shown a reduction of COCs to below MCLs or non-detect, which is an indication of progress toward achievement of RAOs within the deep bedrock zone at these locations. The deeper bedrock zone represented by MW-6DD however does exhibit concentrations of cis-1,2-DCE above the Class GA groundwater standard and vinyl chloride above the MCL. In MW-6DD, the concentration of vinyl chloride has declined, while the concentration of cis-1,2-DCE fluctuates within its historic range of values.

Continued monitoring and operation of the groundwater recovery system is also warranted due to the concentration of COCs present in MW-5S, MW-6S and MW-10S. Historically, COCs above the MCLs have been detected at MW-5S. At MW-6S, cis-1,2-DCE has been detected above the Class GA groundwater standard, and vinyl chloride has been above the MCL between March 2014 and September 2017. The concentration of vinyl chloride in MW-6S showed an increase since starting operation of RW-3, but appears to be declining since March 2016.

Other observations coincident to the construction of RW-3 include a reduction in cis-1,2-DCE and vinyl chloride concentrations in MW-6D, and reduction of vinyl chloride concentrations in MW-6DD and MW-8D.

REMEDIAL WORK ELEMENT 2 - FOREST GLEN SUPERFUND SITE | 2017 ANNUAL REPORT

Concentrations of cis-1,2-DCE and vinyl chloride at MW-10S, which historically were below MCLs and Class GA groundwater standards from August 1997 through March 2016, have periodically been detected above the cis-1,2-DCE Class GA groundwater standard and vinyl chloride MCL since. Cis-1,2-DCE was detected at concentrations above the MCL during the second, third, and fourth quarters of 2016 and the third quarter of 2017. Vinyl chloride was detected at concentrations above the MCL during the second and third quarters of 2016 and the third quarter of 2017.

In summary, during 2017 chlorinated aliphatic hydrocarbon (CAHs) including TCE, cis-1,2-DCE, and vinyl chloride were the compounds detected at concentrations exceeding MCLs and/or Class GA groundwater standards. The groundwater quality data generated to date indicates that the highest concentrations of CAHs in the shallow and deep bedrock on-Site have consistently been detected in the MW-5S/D well nest. To the south of MW-5S/D, CAHs at well nest MW-6S/D/DD have been, in general, above MCLs but their concentrations were approximately an order of magnitude lower than those observed in MW-5S, except vinyl chloride at MW-6S and MW-6DD.

1. INTRODUCTION

1.1 GENERAL

This document is the 2017 Annual Report for RWE-2 at the Forest Glen Subdivision Superfund Site in Niagara Falls, New York (**Figure 1**). The report presents a summary of the groundwater recovery and monitoring that occurred during 2017.

This Section presents background information regarding the remedial work elements established by the United States Environmental Protection Agency (USEPA) for the Site. Section 2 provides a summary of groundwater recovery system operations and discharge monitoring that occurred, Section 3 presents a summary of modifications made to the groundwater remediation system, and Section 4 provides a summary of groundwater monitoring.

1.2 BACKGROUND

The Site is located in Niagara County, New York, partly in the City of Niagara Falls and partly in the Town of Niagara (**Figure 1**). It lies in the northwest quadrant of the intersection of Interstate Highway 190 and Porter Road, and is accessed from Service Road, off Porter Road. The Site is approximately 29 acres. The boundary between the City and Town runs north and south through the Site, with the City on the west and the Town on the east. There are approximately 21.5 acres in the City and 7.5 acres in the Town.

The Site is bounded to the north by property owned by the New York Central Lines LLC/Conrail Niagara Junction Railway Company (a wholly owned subsidiary of Consolidated Rail Corporation, whose parent company is CSX Transportation, Inc.), to the east by Interstate 190, to the south by property owned by Peter Certo Corp., Expressway Village, Military Manor, and Candella, et al., and to the west by the land of the New York State Department of Transportation and the Conrail Foote Railroad Yard

The groundwater recovery system was constructed on site as required by the Statement of Work (SOW) included as part of the Consent Decree in the matter of <u>United States v. The Goodyear Tire & Rubber Company (Goodyear) et. ano.</u>, Civil Action No. 960CV-07215 S (H). The SOW established two remedial work elements for the Site.

- RWE-1 was established to address soils and sediments on-site
- RWE-2 was established to address groundwater.

The RWE-1 actions, which included construction of a 6 NYCRR Part 360 low-permeability geomembrane cap, were completed in 2003 as presented in the USEPA-approved *Remedial Action Report* dated April 2004 (O'Brien & Gere (OBG), 2004a). Operation and monitoring (O&M) requirements associated with RWE-1 are described in the RWE-1 O&M Manual dated April 2004 (OBG, 2004b), and Cherokee Niagara, LLC is responsible for implementing the O&M program for RWE-1 and separately reports the findings to USEPA. As such, RWE-1 is not discussed further herein.

The remedial action objectives (RAOs) for RWE-2 include:

- Reduce or eliminate the threat to human health and environment posed by groundwater contamination by remediating groundwater to maximum contaminant levels (MCLs)
- Reduce or eliminate the potential for migration of contaminants to potential receptors.

The RWE-2 remedy includes the following measures to accomplish these RAOs:

Extraction of impacted groundwater from the on-site VOC plume. Since December 2003 this has been accomplished using two on-property groundwater recovery wells (RW-1 and RW-2), and a third

REMEDIAL WORK ELEMENT 2 - FOREST GLEN SUPERFUND SITE | 2017 ANNUAL REPORT

groundwater recovery well, RW-3, was placed into operation on August 27, 2014 to augment the system. The locations of the recovery wells and other site features are shown on **Figure 2**.

- Transfer of the extracted groundwater via sanitary sewer to the City of Niagara Falls Wastewater Treatment Plant. The discharge point permitted by the Niagara Falls Water Board (NFWB) is at sanitary sewer manhole MH-3B for RW-1 and RW-2, and manhole MH-3C for RW-3 (Figure 2).
- Implementation of a long-term groundwater monitoring program to assess progress toward the RAOs. The monitoring program includes periodic VOC analyses, and through 2013 also included analysis of natural attenuation indicators which exhibited consistent concentrations comparing them to the historic results.

During September 2017, the USEPA completed its Fifth Five-Year Review Report for the Site and concluded that the remedy currently protects human health and the environment based upon reviews of the 1998 and 1999 Records of Decision, Remedial Action Reports, Quarterly Groundwater Sampling Results, Annual Reports, and Site Inspection Reports since the last five-year review, as well as a site visit conducted by the USEPA on May 31, 2017.

2. GROUNDWATER RECOVERY AND DISCHARGE

2.1 GENERAL

A total of 9,836,590 gallons of groundwater were recovered during 2017. **Table 1** below presents a summary of the volumes recovered each month.

Month	RW-1 volume (gallons)	Table RW-2 volume (gallons)	e 1. Monthly Si RW-3 volume (gallons)	ummary Total volume (gallons)	Remarks
January	200,785	182,633	385,785	769,203	90% operation permitted by Regulator No. 6C.
February	163,653	153,269	259,893	576,815	88% operation permitted by Regulator No. 6C.
March	167,475	164,716	256,365	588,556	88% operation permitted by Regulator No. 6C.
April	140,016	132,344	226,487	498,847	84% operation permitted by Regulator No. 6C.
May	123,780	126,427	193,910	444,117	86% operation permitted by Regulator No. 6C.
June	301,965	335,130	177,031	814,126	89% operation permitted by Regulator No. 6C.
July	256,819	326,694	215,298	798,811	90% operation permitted by Regulator No. 6C.
August	415,517	440,625	195,329	1,051,471	90% operation permitted by Regulator No. 6C.
September	419,778	420,837	208,372	1,048,987	93% operation permitted by Regulator No. 6C.
October	430,054	430,028	252,219	1,112,301	96% operation permitted by Regulator No. 6C.
November	406,282	408,685	228,790	1,043,757	95% operation permitted by Regulator No. 6C.
December	448,257	422,057	219,285	1,089,599	99% operation permitted by Regulator No. 6C.
2017 Total	3,474,393	3,543,435	2,818,762	9,836,590	
					Source: OBG

2.2 QUARTERLY GROUNDWATER DISCHARGE SAMPLING

In accordance with the Significant Industrial User (SIU) permit, effluent samples were collected for analyses of VOCs including vinyl chloride (VC), 1,1-dichloroethylene (1,1-DCE), 1,2-dichloroethylene (1,2-DCE, cis and trans), 1,1-dichloroethane (1-1-DCA), trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-trichloroethane (1-1-TCA) from the recovery wells in operation at the time for the following quarters:

REMEDIAL WORK ELEMENT 2 - FOREST GLEN SUPERFUND SITE | 2017 ANNUAL REPORT

- December 1, 2016 to February 28, 2017: RW-1, RW-2 and RW-3 sampled on December 19 and 20, 2016.
- March 1, 2017 to May 31, 2017: RW-1, RW-2 and RW-3 sampled on April 10 and 11, 2017.
- June 1, 2017 to August 31, 2017: RW-1, RW-2 and RW-3 sampled on June 26 and 27, 2017.
- September 1, 2017 to November 30, 2017: RW-1, RW-2 and RW-3 sampled on September 12, 2017.

The self-monitoring laboratory reports for 2017 are provided as **Appendix A**.

The effluent sample results for each quarter demonstrate that the groundwater recovery system operated in accordance with the discharge limits established by the SIU permit (**Appendix B**).

2.3 GROUNDWATER RECOVERY SYSTEM IMPROVEMENTS

2.3.1 System Preventive Maintenance and Improvements

May 31, 2017: In the second quarter of 2017 a decrease in the groundwater recovery rates at RW-1 and RW-2 was observed. The pumping rates at both RW-1 and RW-2 had diminished down to approximately 3 gallons per minute (GPM) each. Both pumps were removed and mechanically cleaned before being set back in the well and returned to service. Following the cleaning process, the recovery rate at RW-1 and RW-2 increased to approximately 9 and 10 GPM, respectively.

Week of July 10, 2017: A release of untreated groundwater occurred at the site when a valve to the refrigerated sampler was inadvertently left open allowing water to discharge onto the floor of the RW-1/RW-2 enclosure. As follow up to the incident, the following action(s) and system improvements have been made to reduce the likelihood of the incident occurring again.

- The refrigerated sampler was disconnected from the groundwater recovery system and a plug was installed downstream of the valve that once isolated the refrigerated sampler from the system. This will prevent a release of groundwater in event the valve is opened.
- The Standard Operating Procedure (SOP) for the discharge monitoring sampling was updated and a hardcopy was posted at the RW-1, RW-2 and RW-3 enclosures. In addition, on-site refresher training on the sampling SOPs was conducted with field sampling personnel.
- Goodyear assessed the potential installation of a perimeter curb within the RW-1 and RW-2 shed to provide secondary containment and leak detection.

August 3, 2017: The original/problematic flow transmitters for RW-1 and RW-2 were replaced with new flow transmitters. Proper operation of flow transmitters and local displays was verified.

August 4, 2017: The existing analog autodialer was replaced with a Sensaphone SCADA 3000 cellular autodialer system capable of being accessed via the internet. The Sensaphone system replaced the analog autodialer software which required an analog land line (telephone) for access and data download. The upgrade of the system provides better ability to monitor the system remotely in addition to the weekly site inspections. The upgraded Sensaphone sentinel communicates via integral cellular modem and only requires MS Internet Explorer to access the unit. Therefore, real time data and historical data on recovery well flows and system status can be accessed via the internet.

December 4-6, 2017: Maintenance personal installed a secondary containment curb around the perimeter of the RW-1 and RW-2 enclosure. A 6-inch concrete curb was formed and poured on all four sides of the existing enclosure walls. A level switch alarm was installed within the secondary containment that detects water collecting in the curb area. The level switch alarm was connected to the cellular autodialer which will provide notification to system operators in event of water accumulating in the curbed area. In Spring 2018, a concrete coating will be applied along the floor and interior side of the curb.

3. GROUNDWATER MONITORING

3.1 GENERAL

Groundwater samples were collected from monitoring wells MW-1S, MW-1D, MW-4S, MW-4D, MW-5S, MW-5D, MW-6S, MW-6D, MW-6DD, MW-7S, MW-7DD, MW-7DD, MW-8S, MW-8DD, MW-10S and MW-10D (**Figure 3**) on four occasions (April, June, September and December 2017) to represent the 2017 period. During each monitoring event, groundwater levels were also measured prior to initiating the groundwater sampling.

3.1.1 Groundwater level measurements

Groundwater levels were measured in the Site monitoring wells using an electronic water level probe prior to sampling. The water levels were subsequently converted to groundwater elevations as presented in **Table 2**. **Table 2** also presents the baseline groundwater elevations recorded during February 2000 prior to groundwater extraction starting at the Site in 2003.

Groundwater elevation contour maps of the shallow bedrock and deep bedrock groundwater elevations are shown on **Figures 4 and 5** for April 2017, respectively; **Figures 6 and 7** for June 2017, respectively; **Figures 8 and 9** for September 2017, respectively; and **Figures 10 and 11** for December 2017, respectively. Baseline shallow and deep bedrock groundwater contour maps, prepared using data collected on February 14, 2000 are presented as **Figures 12 and 13**. The baseline data represent groundwater elevations before construction of the Part 360 cover and groundwater recovery system were complete.

Comparison of the baseline shallow and deep bedrock groundwater elevation contour maps (**Figures 12 and 13**) to the April, June, September and December 2017 shallow and deep bedrock groundwater elevation contour maps (**Figures 4 through 11**) demonstrates that the current on-Site groundwater recovery system (RW-1, RW-2 and RW-3) creates inward hydraulic gradients toward the recovery wells.

3.1.2. Groundwater quality sampling

Groundwater samples were collected for VOC analyses from 17 monitoring wells including: MW-1S, MW-1D, MW-4S, MW-4D, MW-5S, MW-5D, MW-6S, MW-6D, MW-6DD, MW-7S, MW-7D, MW-7DD, MW-8S, MW-8D, MW-8DD, MW-10S, and MW-10D on four occasions (April, June, September, and December 2017) to represent 2017. In accordance with the Long-Term Groundwater Monitoring Plan (OBG, 2004c), the wells were sampled using low flow purging and sampling methods.

The samples were submitted to Test America Laboratories, Inc. in Amherst, New York for Target Compound List (TCL) VOC analysis using USEPA methods SW5030B/SW8260B, and the laboratory reports are provided in **Appendix C**. The VOC results for the sampling performed between 2015 and 2017 are presented in **Table 3**, and between system startup on December 19, 2003 and 2017 on **Table 4**. **Table 4** also presents historic groundwater data for the wells, collected prior to completing construction of the groundwater recovery system and the Part 360 cover on-site.

In addition to the VOC analyses, samples were analyzed for geochemical and dissolved gas parameters (methane, ethane, ethene, sulfide, chloride, alkalinity, total organic carbon, sulfate, nitrate, nitrite, dissolved ferrous iron, total dissolved iron, and total dissolved manganese) during 2017 (April and September). Previously, these geochemical and dissolved gas parameters were analyzed on an annual basis through 2010, a quarterly basis during 2011 and 2014, and on three occasions during 2012 and 2013 to evaluate if favorable conditions exist for natural attenuation. **Tables 5** and **6** present the geochemical and dissolved gas data, respectively.

Groundwater monitoring data are compared to regulatory criteria, which include federal maximum contaminant levels (MCLs) and New York State Class GA groundwater standards. It should be noted that for the COCs, which are TCE, cis-1,2-DCE, and vinyl chloride, the federal MCLs and the Class GA groundwater standards are the same for TCE and vinyl chloride at 5 μ g/L and 2 μ g/L, respectively; however, the federal MCL for cis-1,2-DCE is 70 μ g/L compared to the Class GA groundwater standard of 5 μ g/L.

3.2 ASSESSMENT OF GROUNDWATER QUALITY DATA AND TRENDS

Below is an assessment of groundwater quality data summarized in **Tables 3 and 4**, and of concentration trends depicted in **Appendix D**. While a description of apparent trends is provided, changes in observed concentrations over the period are subject to several factors, including variability related to temporal, sampling, and analytical factors.

3.2.1 Volatile Organic Compound Trends

Of the VOCs detected in the shallow and deep bedrock groundwater (**Table 4**), CAH compounds have consistently been detected at the highest concentrations. The CAHs detected at the Site include trichloroethene (TCE), tetrachloroethene (PCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,2-dichloroethane (1,2-DCA), 1,1-dichloroethane (1,1-DCA), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), 1,1 dichloroethene (1,1-DCE), chloroethane, and vinyl chloride (VC). Of these CAHs, TCE and vinyl chloride are the compounds that have consistently been detected at concentrations exceeding MCLs and cis-1,2-DCE has consistently been detected above its Class GA groundwater standard. The groundwater quality data indicate that the highest concentrations of CAHs in the shallow and deep bedrock on-Site have consistently been detected in the MW-5S/D well nest. Since 2014 cis-1,2-DCE and VC concentrations show decreasing trends in MW-6D, and concentrations for these parameters appear to be stable in MW-6DD, where previously there were increasing concentration trends for cis-1,2-DCE and VC for these wells.

Prior to the initiation of pumping within the bedrock during 2003, CAH concentrations (TCE, cis-1,2-DCE, VC, 1,1,1-TCA, and 1,1-DCA) declined laterally and downgradient from the MW-5S/D well nest. The spatial relationship between the MW-5S/D well nest and the other on-site and off-Property monitoring well is shown on **Figure 3**.

- To the east of MW-5S/D, CAHs were not detected above MCLs and Class GA groundwater standards at wells MW-1S/D, MW-2S, MW-9S, and MW-3S prior to the initiation of pumping in 2003. Since the initiation of pumping in 2003, CAHs have not been detected above MCLs and Class GA groundwater standards in the MW-1S/D nest, the only remaining monitoring wells sampled to the east of MW-5S/D nest.
- To the south of MW-5S/D, at monitoring well nest MW-6S/D/DD, TCE concentrations have been below the MCL, and generally not detected, in the shallow, deep, and deeper bedrock since the initiation of groundwater monitoring. Concentrations of cis-1,2-DCE in the shallow bedrock (MW-6S) were generally below the Class GA groundwater standard prior to pumping in 2003 and during the period between January 2010 and April 2013 when a trial shutdown of the groundwater extraction system was conducted. During pumping periods, cis-1,2-DCE concentrations have been generally above the Class GA groundwater standard at MW-6S; however, concentrations have generally declined since the initiation of pumping at RW-3. Concentrations of VC were typically below the MCL, but showed a short-term increase between the initiation of pumping from RW-3 (August 2014) until March 2016, after which concentrations have been declining. In the deep bedrock at MW-6D, concentrations of cis-1,2-DCE has been below the Class GA groundwater standards since March 2014 and vinyl chloride has been below the MCL since March 2015. Concentrations of cis-1,2-DCE at MW-6DD have declined to typical historic levels, and concentrations of VC have declined to some of the lowest levels to date, reversing a period of increasing concentrations of each from the second quarter 2010 through the fourth quarter 2013. The declining concentrations of cis-1,2-DCE and VC in the deep bedrock (MW-6D and MW-6DD) is consistent with the re-starting of recovery wells RW-1 and RW-2 and initiation of pumping of recovery well RW-3.

Further to the south, at MW-10D, CAH concentrations have remained below MCLs and Class GA groundwater standards. Also, at monitoring well MW-10S TCE has remained below the MCL. Concentrations of cis-1,2-DCE in MW-10S increased to levels above the Class GA groundwater standard during the second, third, and fourth quarters of 2016, then declined to concentrations below the Class GA groundwater standard during the first and second quarters of 2017, which was followed by an increase to the highest concentration detected during the third quarter 2017 and a subsequent decline to a concentration below the Class GA groundwater standard during the fourth quarter of 2017.

- To the north of MW-5S/D, CAH concentrations at MW-4S/4D have remained non-detected or below MCLs and Class GA groundwater standards, since pumping was initiated in 2003.
- Off-property to the west of MW-5S/D, the distribution of CAH concentrations at MW-7S/7D and MW-8S/8D has been variable, but generally the concentrations have been at least an order of magnitude lower than the CAH concentrations at the MW-5S/D well nest. CAHs have not been detected in the shallow bedrock (MW-7S) above MCLs or Class GA groundwater standards since 1995, or in the deeper bedrock monitored by MW-7DD since pumping was initiated in 2003. In the deep bedrock, monitored by MW-7D, concentrations of cis-1,2-DCE and VC were above MCLs and Class GA groundwater standards until pumping was initiated in 2003. These CAH concentrations were up to an order of magnitude lower than concentrations at the MW-5S/D well nest. Since the initiation of pumping in 2003, concentrations have declined to below standards. At MW-8S/D/DD, located to the west-southwest of MW-5S/D, CAH concentrations declined from above MCLs for TCE and vinyl chloride and Class GA groundwater standards for cis-1,2-DCE to below these standards and have generally remained below standards since 2004, except for VC in well MW-8D. VC in well MW-8D was consistently above the MCL prior to 2015. VC concentrations have remained below the MCL since 2015. The declining concentrations of VC in the deep bedrock MW-8D is consistent with the initiation of pumping of recovery well RW-3. Pumping at RW-3 has effectively cut-off residual impacts in the MW 6 cluster area from further contributing to impacts toward the MW-8 cluster.

Degradation processes can cause concentrations of individual CAHs to vary and make it difficult to evaluate plume attenuation based solely on individual CAH concentrations. By converting the CAH concentrations to micromole (μ mol) concentrations and then adding the CAH micromole concentrations (mass), the combined CAH mass at each monitoring location within a plume can be compared. Because TCE, 1,2-DCE, and vinyl chloride are the predominant CAH compounds at the site, these CAH concentrations have been converted to μ mol concentrations for mass comparisons.

Appendix E presents the CAH mass trends and are described below:

- MW-4S/D nest the CAH mass at MW-4S has been very low (i.e. 0.001 μmols/l) since the initiation of sampling, while the CAH mass at MW-4D has declined to very low (i.e. 0.001 μmols/l) concentrations since pumping was initiated in 2003.
- MW-5S/D nest the CAH mass in MW-5S dominates the mass distribution at this well nest and represents the highest CAH mass in the site monitoring wells. With the initiation of pumping in 2003 the CAH mass has declined from about 15 μmols/l to below 5 μmols/l. The combined CAH mass in this well nest declined during pumping and then began to increase following the trial cessation of pumping between November 2010 and April 2013. Since the re-start of the extraction system, the combined CAH mass decreased and continued to be at its lowest historical levels during each quarter of 2017.
- MW-6S/D/DD nest the CAH mass at this well nest had increased since the initiation of pumping in 2003. MW-6S had stable low CAH mass prior to the initiation of pumping in 2003 and showed a similar pattern after the pumping was shut down between November 2010 and April 2013. During the pumping shutdown, CAH mass in this well was more variable and showed a slight increase, as shown during June 2014 and March 2016. CAH mass then decreased during the next three quarters in 2016 and remained at concentrations of 0.2 to 0.3 μmols/l. CAH mass in MW-6D increased by up to a factor of two since the initiation of pumping in 2003 until 2013. A sharp decrease in CAH mass was observed during each quarter of 2014 and 2015, and continued at low levels throughout 2016 and 2017. CAH mass in MW-6DD, which was installed when the pumping wells were installed, remained relatively constant since monitoring began. The combined CAH mass in this well nest increased since the initiation of pumping in 2003 until 2013. During 2016 and 2017, the combined CAH mass showed a more stable trend. The decrease of CAH mass at the MW-6 nest appears to be consistent with the initiation of RW-3 pumping.
- MW-7S/D/DD nest the CAH mass in MW-7S and MW-7DD has consistently been very low (*i.e.* 0.001 μmols/l). The CAH mass at this well nest has been dominated by MW-7D which showed about an order of magnitude decline in CAH mass since the initiation of pumping in 2003. Because of the dominance of MW-7D,

the combined CAH mass in this well nest also showed about an order of magnitude concentration decline since the initiation of pumping in 2003. CAH mass remained low during the trial pumping shutdown test between November 2010 and April 2013. CAH mass continued to remain low through 2017.

- MW-8S/D/DD nest CAH mass in MW-8S and MW-8DD declined following the initiation of pumping in 2003. CAH mass slightly increased in MW-8S following the trial cessation of pumping between November 2010 and April 2013, but has shown a decline since the initiation of pumping at RW-3. CAH mass in MW-8D does not appear to have changed since the initiation of pumping in 2003; however, the data has become less variable and shows a decreased trend since 2014. These data suggest that RW-3 is effectively minimizing contaminant migration toward the MW-8 well nest.
- MW-10S/D nest There has been no detectable CAH mass in MW-10D since 2003. CAH mass in MW-10S was on the order of 0.03 μmols/l before and after initiation of pumping in 2003. Subsequent to the initiation of pumping from RW-3, an increasing trend in CAH mass in MW-10S was observed during 2016, but declined to more typical historic levels during the first, second, and fourth quarters of 2017.

3.2.2 Geochemical and Dissolved Gas Data Trends

An MNA evaluation was conducted based on data obtained during 2013 and earlier and presented in the MNA Report (OBG, 2014). The overall conclusion of the MNA evaluation, as presented in the MNA Report, is that evidence exists which indicates that natural processes are attenuating CAH in the shallow and deep bedrock. The contaminant plumes are attenuating both through physical and biological processes. The physical processes include advection, dispersion, sorption, and volatilization. The biological processes involve the transformation of higher chlorinated CAHs to less chlorinated CAHs (daughter products) via reductive dechlorination.

Evidence of microbially-mediated degradation is supported by the presence of daughter products. TCE concentrations in the source area have shown decreasing trends, and cis-1,2-DCE and vinyl chloride are present at downgradient locations. In addition, there is evidence that substantial reductions in total CAH mass has occurred within the suspected source area between July 1997 and May 2002.

Geochemical evidence also indicates that subsurface conditions are amenable for microbially-mediated degradation, including the following:

- An abundance of dissolved TOC that can be utilized as a carbon source (electron donor) by microbes
- The presence of methane that suggest highly reducing conditions and microbial degradation
- Anaerobic conditions that sustain reductive dechlorination
- Groundwater pH ranges that are suitable for microbial populations

3.2.3 Conclusion

CAHs in both the on-Site and off-Property shallow and deep bedrock groundwater plumes have been undergoing natural attenuation. The strongest chemical evidence has been the presence of cis-1,2-DCE and vinyl chloride in groundwater in the vicinity of the source, the accumulation of vinyl chloride at the downgradient monitoring wells, and the declining total CAH mass concentrations in the vicinity of the source. In addition, the high ratios of cis-1,2-DCE to trans-1,2-DCE within the CAH plume have also been indicative of biologically mediated degradation. Geochemical conditions at the Site have been amenable to biologically mediated degradation. The dissolved oxygen, Fe(II), ORP, and methane data indicate that anaerobic conditions have predominated within the CAH plume. These anaerobic conditions provide an environment conducive to reductive dechlorination.

As presented in the MNA Report (OBG, 2014), the CAH mass concentration declines observed at site monitoring well nests MW-5S/D and MW-4S/D following the initiation of pumping in 2003 are consistent with the effects of groundwater pumping. Groundwater pumping increasingly draws groundwater from further away to the pumping well. This causes groundwater with little or no CAHs to be drawn to and mixed with the CAH plume groundwater at the pumping well. The result of this process is the decline in CAH mass concentrations in the

REMEDIAL WORK ELEMENT 2 – FOREST GLEN SUPERFUND SITE | 2017 ANNUAL REPORT

vicinity of the pumping well. The continued presence of CAH mass at the MW-5S/D well nest indicates that there is a residual source of CAHs in vicinity of this well nest; however, the CAH mass has continued to decline.

The decline in CAH mass observed at the MW-7S/D/DD well nest is an expected downgradient response to the groundwater pumping at the extraction wells. The extraction wells separate the Site from the MW-7S/D/DD well nest and the extraction well pumping has effectively controlled the migration of CAHs from the residual source to the MW-7S/D/DD well nest. With no continued migration of CAHs to the MW-7S/D/DD well nest, natural attenuation processes caused the CAH mass to decline to below MCLs and Class GA groundwater standards and remain below these standards.

The continued presence of CAH mass at the MW-6S/D/DD and MW-8S/D/DD well nests suggest that there is a residual CAH source in vicinity of the MW-6S/D/DD nest. The dissolved CAH plume from this source did not appear to be intercepted by extraction wells RW-1 and RW-2, and RW-3 was constructed at the Site to address this observation. Groundwater from wells MW-6S/D/DD and MW-8S/D/DD has been collected during 14 sampling events (between September 2014 and December 2017) after the installation and start of RW-3 in 2014. Analytical data results from these 14 events indicate that the presence of CAH mass at the MW-6S/D/DD and MW-8S/D/DD well nest has, in general, decreased. CAH mass at MW-6D and MW-8D continue to remain at, or near, their lowest levels recorded.

REMEDIAL WORK ELEMENT 2 - FOREST GLEN SUPERFUND SITE | 2017 ANNUAL REPORT

REFERENCES

OBG, 2004a. Remedial Action Summary Report, Forest Glen Subdivision Site, Niagara Falls, New York, April 2004

OBG, 2004b. RWE-1 Operation and Maintenance Manual, Forest Glen Superfund Site, Niagara Falls, New York, April 2004

OBG, 2004c. *RWE-2 Groundwater Systems Operations Plan*, April 2004 (includes Long-Term Groundwater Monitoring Plan as an appendix)

OBG, 2013. Work Plan for Installation and Testing of Recovery Well RW-3, Forest Glen Subdivision Superfund Site, Niagara Falls, NY, September 2103

OBG, 2014a. Monitored Natural Attenuation (MNA) Report, Forest Glen Subdivision Site, Niagara Falls, New York, January 2014

OBG, 2014b. Recovery Well RW-3 Installation and Step-Test Summary Report, Forest Glen Subdivision Site, Niagara Falls, New York, January 2014

OBG, 2015. Recovery Well RW-3 Start-up Aquifer Response Monitoring Report, Forest Glen Subdivision Site, Niagara Falls, New York, February 2015

USEPA, 1999. Record of Decision, Forest Glen Subdivision Site, Town of Niagara and City of Niagara Falls, Niagara County, New York, United States Environmental Protection Agency Region II.

Property		Top of Casing	Screened Interval	8/1/	1997	2/14	/2000	7/13	/2001	8/13	/2001	11/26	/2001	2/25/	/2002	5/13	/2002	7/28	/2003	2/6/	/2004	5/17	/2004	7/23	/2004	8/4/	2004	11/18	3/2004	2/16	5/2005	4/18	/2005
March Marc	Well I.D.	Elevation (ft MSL)	Elevation (ft MSL)	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE
March Marc	MW 10	E00 1E	E40 E E70 E	10 04	E70 21	16.67	E01 / 0	16 21	E01 Q4	10 77	E70 20	16.06	E01 20	12.45	EQE 70	12.02	EOE 22	10 71	E70.44	10.22	E70 02	16.61	E01 E4	10 50	E70 E7	15.65	E02 E0	20.77	E77 20	12.00	EQ4 16	15.06	E92 10
March Marc	-																														_		+
West																		10.70	377.27	17.03	377.02	10.11	301.01	10.00	37 7.13	13.50	302.17	20.00	377.23	15.00	301.13	10.11	301.71
Property		607.04																30.63	576.41														
Month Mont		600.11																		24.85	575.26	21.85	578.26	24.53	575.58	20.36	579.75	26.50	573.61	17.10	583.01	20.71	579.40
Model Mode	MW-2D	596.98	535.4 - 559.8	18.41	578.57	15.25	581.73	15.99	580.99	17.76	579.22	15.41	581.57	11.87	585.11	12.50	584.48																
March Marc		607.02																30.75	576.27														
98719																					575.75							26.45	573.76	18.62	581.59	21.74	578.47
March Marc																																	
95424 99439 99449	-																	ABND	ABND	ABND	ABND	ABND	ABND	ABND	ABND	ABND	ABND				1		
Section Sect	MW-4S		573.6 - 583.6	15.86	579.48	12.05	583.29	13.76	581.58	15.55	579.79	12.97	582.37	9.16	586.18	8.94	586.40	10.66	F7(F7														
West State	- 1																	19.66	5/6.5/	10.05	F7F 01	15.25	F70.61	17.74	F76 22	14 52	E70.42	10.45	E74 E1	12.60	E00.26	14.45	E70 E1
	MW-4D		534.1 - 563.4	16.90	578 54	13.50	591 94	14.40	581.04	16.24	579 20	13.95	501 50	10.23	585 21	10.94	584.50			16.05	3/3.91	15.55	370.01	17.74	3/0.22	14.33	3/9.43	19.45	3/4.31	13.00	360.36	14.45	3/9.31
Section Sect	MW-4D		334.1 - 303.4	10.70	370.34	13.30	301.74	17.70	301.04	10.24	37 7.20	13.03	301.37	10.23	303.21	10.74	304.30	20.73	575 49												+		
Section Sect																		20.75	0,0.17	19.48	574.63	16.93	577.18	19.37	574.74	15.00	579.11	21.45	572.66	13.53	580.58	16.66	577.45
Property	MW-5S		566.2 - 576.2	15.60	578.65	12.01	582.24	13.25	581.00	14.99	579.26	12.14	582.11	8.77	585.48	9.40	584.85				2. 1100		2110	23.07	J		2. 2.21		2.2.00	23.00	223.00	23.00	2.7.13
No. 50																		21.14	575.38												+		
Symbol S																				18.60	574.25	16.21	576.64	18.23	574.62	14.10	578.75	20.48	572.37	12.72	580.13	15.81	577.04
Section Sect	MW-5D	594.34	542.7 - 565.4	15.83	578.51	12.46	581.88	13.48	580.86	15.19	579.15	12.80	581.54	9.15	585.19	9.85	584.49																
Marke Mark		596.68																21.32	575.36														
March Marc		593.68																		19.29	574.39	16.82	576.86	19.10	574.58	14.87	578.81	21.37	572.31	13.14	580.54	16.5	577.18
No.	MW-6S	597.11	568.2 - 578.2	18.04	579.07	11.56	585.55	15.72	581.39	17.57	579.54	11.23	585.88	10.08	587.03	9.35	587.76	20.19	576.92	21.35	575.76	17.69	579.42	21.03	576.08	16.26	580.85	22.42	574.69	18.54	578.57	15.95	581.16
No.	MW-6D	596.73	540.3 - 567.8	18.17	578.56	14.81	581.92	15.84	580.89	17.55	579.18	15.11	581.62	11.55	585.18	12.23	584.50	21.27	575.46	22.19	574.54	19.93	576.80	22.22	574.51	17.25	579.48	24.43	572.30	16.23	580.50	19.5	577.23
98-28	MW-6DD	596.02	506.8 - 539.8	NI	NI	NI	NI	NI	NI	NI	NI		NI	NI	NI	NI	NI	23.10		24.22	571.80	23.55	572.47	25.32	570.70	23.08	572.94	26.93	569.09	22.14	573.88	23.97	572.05
Marker September Septemb	_																														_		
9%68		596.28																	575.66		574.72		577.00		574.94		579.33		572.81		580.76		577.54
Marker M	-																																
MAY-NO																																	_
MW-95 S9522 S602 - S702 S602 - S702 S602 S602 - S702 S703	-	596.86																	5/5./6		575.04		577.06		574.89		579.16		573.02		580.40		577.51
60528		EQE 22																21.40		22.85		21./2		23.96		20.55		25.72	-	19.50	+	22.05	
May	IVI VV = 93		300.2 - 370.2	10.00	379.10	11.31	303.71	13.03	301.37	13.34	37 9.00	11.03	303.37	0.07	360.33	7.13	360.07	28 43	576.85												+		
MW-90 S95.31 S38.5-\$67.5 S67.5 S67.5	-																	20.13	370.03	25.65	575 33	22.18	578.80	25 27	575 71	20.88	580 10	27 34	573 64	18 16	582.82	20.55	580 43
60.535	MW-9D		538.5 - 567.5	16.52	578.79	13.22	582.09	14.16	581.15	15.91	579.40	13.57	581.74	9.91	585.40	10.68	584.63			20.00	070.00	22.10	570.00	20.27	0,0,,1	20.00	000.10	27.01	0,0.01	10.10	002.02	20.00	550.15
MW-105 S53.7-573.7 1.79 S75.5 1.70 S80.82 1.71 S80.81 1.70 S78.51 1.70 S80.82 1.70 S78.51 1.70 S80.82 1.70 S78.51 1.70 S80.82 1.70 S78.51 1.70 S78.51 1.70 S78.51 1.70 S78.51 1.70 S80.82 1.70 S78.51 1.70					0.0													29.15	576.20												\vdash		
MW-110 594.96 543.4 - 563.4 17.4 577.5 14.53 580.43 14.78 580.18 16.63 578.33 14.64 580.32 11.20 583.76 11.48 583.48 18.07 578.69 18.29 576.70 16.22 578.74 18.26 576.70 14.44 580.52 20.16 578.80 12.60 582.36 16.56 578.40 18.00 18.		600.77																		25.20	575.57	22.74	578.03	24.96	575.81	21.02	579.75	27.17	573.60	19.33	581.44	22.24	578.53
MW-11S 600.54 585.3-595.3 15.13 585.4 18.87 585.6 15.37 585.6 15.37 585.7 14.9 586.5 10.0 590.52 10.9 580.5 10.0 590.52 10.9 587.5 11.9 586.5 10.0 590.52 10.9 587.5 11.9 586.5 10.0 590.52 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.5 10.0 590.0	MW-10S	595.52	563.7 - 573.7	17.97	577.55	14.70	580.82	15.18	580.34	17.01	578.51	14.91	580.61	11.35	584.17	11.86	583.66	18.88	576.64	19.02	576.50	16.81	578.71	19.00	576.52	15.18	580.34	20.78	574.74	12.91	582.61	16.44	579.08
MW-11D 600.2 549.2-559.2 12.48 587.7 10.3 589.8 10.5 589.5 12.6 58	MW-10D	594.96	543.4 - 563.4	17.44	577.52	14.53	580.43	14.78	580.18	16.63	578.33	14.64	580.32	11.20	583.76	11.48	583.48	18.07	576.89	18.29	576.67	16.22	578.74	18.26	576.70	14.44	580.52	20.16	574.80	12.60	582.36	16.56	578.40
MW-12S 600.24 582.1-592.1 17.9 582.3 14.71 585.3 15.6 584.68 17.3 582.9 14.58 585.70 15.81 584.5 17.47 582.89 14.58 583.70 15.81 584.5 17.47 582.89 14.58 583.70 15.81 584.5 17.47 582.89 14.58 583.80 14.58 583.70 15.81 584.5 17.47 582.89 14.58 583.70 15.81 584.5 17.47 582.89 14.58 583.80 14.58 583.80 14.58 597.5 566.8-576.8 15.89 584.66 13.09 584.60 13.09 584.66 13.09 584.60 13.00 582.80 13.00	MW-11S	600.54	585.3 - 595.3	15.13	585.41	18.87	581.67	13.65	586.89	15.37	585.17	14.19	586.35	10.02	590.52	10.93	589.61	16.45	584.09	16.20	584.34	14.24	586.30	16.23	584.31	13.50	587.04	17.90	582.64	12.08	588.46	13.32	587.22
MW-12D 600.36 546.7-565.7 18.07 582.9 14.58 585.8 15.81 584.5 585.8 15.81 584.5 585.8 15.81 584.5 585.8 15.81 584.5 585.8 15.81 585.8 583.9 15.81 584.5 583.9 15.81 583.24 18.81 583.24 18.81 589.5 597.5 566.8-576.8 15.89 585.8 15.89 581.8 15.89 58		600.20	549.2 - 559.2	12.48	587.72	10.32	589.88	10.95	589.25	12.69	587.51	11.30	588.90		592.44	8.71	591.49	12.85	587.35	12.18	588.02	10.60	589.60	12.70	587.50	10.20	590.00	13.86	586.34	8.04	592.16	9.82	
MW-135 597.5 566.8-568. 15.89 581.86 13.09 584.66 13.85 583.0 13.45 583.0 13.45 583.0 13.45 583.0 14.67 583.0 14.6																													-		_		
MW-13D 597.87 545.6-565.1 16.10 581.77 13.46 58.41 14.29 583.58 15.09 581.91 15.03 582.84 10.26 587.61 11.23 586.64 18.09 579.78 18.56 579.31 16.56 581.31 18.03 579.84 15.01 582.86 20.07 577.80 14.67 583.20 15.41 582.46 MW-14S 597.18 5651-575.1 18.60 578.52 14.58 581.80 15.04 582.18 16.05 581.13 17.77 579.41 15.52 581.66 11.70 585.48 12.57 584.61 12.57 5														_																	_		
MW-148 597.18 5651-575.1 18.0 578.8 15.0 582.18 15.0 582.18 16.0 582.18 17.7 579.41 15.52 581.66 11.70 582.41 11.70 578.41 11.70 579.41 15.52 581.66 11.70 582.41 11.70 582.41 11.70 582.41 11.70 582.41 11.70 582.41 11.70 579.40 12.50 581.60 11.70 582.41 11.70 582.41 11.70 579.40 12.50 582.40 12.50 582.40 12.50 582.40 12.50 582.40 12.50 582.40 12.50 582.40 12.50 582.40 12.50 582.40 12.50 582.40 12.50 582.40 12.50 582.40 11.80 582.70 12.50 582.40 11.80 582.70 11.80 582.70 11.80 582.70 11.80 582.70 11.80 582.70 11.80 582.70 11.80 582.70 11.80 582.70 11.80 582																																	
MR-140 596.38 544.7-564.7 17.86 578.5 14.58 581.80 15.54 580.84 17.28 581.80 15.54 580.84 17.28 579.10 14.81 581.57 11.29 581.04 18.85 581.57 11.29 581.04 18.85 581.04 18.95 581.04 18.85 581.04 18.95																														14.67	583.20		
MV-15 59.70 566.4 576.4 17.0 582.6 14.03 585.6 14.03 585.6 14.03 585.6 14.03 585.6 14.03 585.6 14.03 585.0 14.03 5																															++		_
MW-15D 598.37 5470563.0 16.02 582.35 13.20 585.1 13.																															++		_
RW-1 593.60 526.5-574.5 NI																														1	\vdash		
593.67																				17.73	J00.44	13.74	304.43	17.90	300.41	14.00	303.37	19.00	3/0./2		++	13.00	303.37
RW-2 591.79 523.8-570.8 NI	1444-1		320.3 - 3/4.3	141	141	141	141	141	141	141	141	141	111	141	141	141	171	10.30	313.44	38 70	554 97	NM	NM	ŊM	NM	NM	NM	21.65	572.02	NΔ	NΔ		565 90
591.80 40.30 551.50 NM NM NM NM NM NM 19.79 572.01 NA NA 570.30	RW-2		523.8 - 570.8	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NM	NM	30.70	JJ 1.77	11171	14141	14141	14171	14141	14141	21.03	3,2.02	11/1	11/1		303.70
	2		525.5 570.0		.,,	.11	.11	.,,,	.11	.11	.11	.11	.,,	.,,	. 41	.11	.11			40.30	551.50	NM	NM	NM	NM	NM	NM	19.79	572.01	NA	NA		570.30
	RW-3	595.65	505 - 582.5	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI

NOTES: MSL - Mean Sea Level DTW - Depth to Water

GWE - Ground Water Elevation

NM - Not Measured

	Top of Casing	Screened Interval	9/6/	/2005	11/14	4/2005	4/25	/2006	11/13	/2006	5/1/	2007	10/2	9/07	05/2	1/08	11/1	7/08	10/1	19/09	05/1	7/10	11/18	/2010	1/17	/2011	4/18	/2011	7/25	/2011	10/24	/2011
Well I.D.	Elevation (ft MSL)	Elevation (ft MSL)	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE
MW-1S	598.15	568.5 - 578.5	18.79	579.36	17.22	580.93	16.99	581.16	17.86	580.29	15.19	582.96	20.75	577.40	19.18	578.97	18.20	579.95	19.63	578.52	17.28	580.87	19.2	578.95	18.4	579.75	13.6	584.55	20.25	577.90	17.34	580.81
MW-1D	598.05	546.7 - 567.5	18.84	579.21	17.18	580.87	16.82	581.23	17.78	580.27	15.25	582.80	20.50	577.55	19.21	578.84	18.02	580.03	19.69	578.36	17.25	580.80	19.16	578.89	18.48	579.57	13.46	584.59	20.23	577.81	17.26	580.79
MW-2S	596.95	567.1 - 577.1	10.04	37 7.21	17.10	300.07	10.02	301.23	17.70	300.27	13.23	302.00	20.30	377.33	17.21	370.04	10.02	300.03	17.07	370.30	17.23	300.00	17.10	370.07	10.40	37 7.37	13.40	304.37	20.24	377.01	17.20	300.7 7
MW 25	607.04	307.1 377.1																														
	600.11		23.71	576.40	21.45	578.66	21.06	579.05	23	577.11	19.58	580.53	25.76	574.35	23.93	576.18	22.82	577.29	24.82	575.29	21.04	579.07	24.65	575.46	22.35	577.76	16.7	583.41	25.37	574.74	21.55	578.56
MW-2D	596.98	535.4 - 559.8	20.71	070.10	21.10	070.00	21.00	57 3.00	20	0,,,11	17.00	550.55	20.70	07 1.00	20170	070.10	22.02	077127	21.02	070.27	21.01	077.07	21.00	070.10	22.00	0,,,,,	10.7	555.11	20.07	07 117 1	21.00	070.00
	607.02																															
	600.21		23.58	576.63	21.91	578.30	22.02	578.19	23.6	576.61	11.84	588.37	25.96	574.25	24.82	575.39	22.90	577.31	24.86	575.35	22.24	577.97	24.5	575.71	23.08	577.13	17.34	582.87	24.03	576.18	21.04	579.17
MW-3S	597.43	567.3 - 577.3																														
MW-3D	597.10	545.1 - 564.1																													-	
MW-4S	595.34	573.6 - 583.6																														
	596.23																															
	593.96		17.58	576.38	15.53	578.43	15.67	578.29	16.58	577.38	13.77	580.19	19.44	574.52	17.36	576.60	17.81	576.15	18.14	575.82	15.40	578.56	18.86	575.10	16.06	577.90	11.62	582.34	18.27	575.69	16.25	577.71
MW-4D	595.44	534.1 - 563.4																														
	596.22																															
	594.11		18.3	575.81	16.58	577.53	16.86	577.25	18.52	575.59	15.7	578.41	20.80	573.31	19.72	574.39	18.18	575.93	20.00	574.11	17.10	577.01	19.8	574.31	17.92	576.19	13.14	580.97	20.45	573.66	16.8	577.31
MW-5S	594.25	566.2 - 576.2																														
	596.52																															
	592.85		17.33	575.52	15.53	577.32	15.81	577.04	17.6	575.25	14.71	578.14	19.72	573.13	18.72	574.13	17.31	575.54	19.16	573.69	16.30	576.55	19	573.85	16.9	575.95	12.08	580.77	19.54	573.31	15.82	577.03
MW-5D	594.34	542.7 - 565.4																														
	596.68																														·	
	593.68		18.06	575.62	16.34	577.34	16.65	577.03	18.37	575.31	15.54	578.14	20.82	572.86	19.56	574.12	18.35	575.33	19.86	573.82	16.96	576.72	19.68	574.00	17.68	576.00	12.9	580.78	20.3	573.38	16.62	577.06
MW-6S	597.11	568.2 - 578.2	20.18	576.93	17.33	579.78	14.43	582.68	18.44	578.67	12.02	585.09	22.47	574.64	19.70	577.41	18.15	578.96	20.94	576.17	14.40	582.71	20.35	576.76	17.78	579.33	7.28	589.83	21.41	575.70	17.95	579.16
MW-6D	596.73	540.3 - 567.8	21.04	575.69	19.36	577.37	19.74	576.99	21.44	575.29	18.5	578.23	23.78	572.95	22.46	574.27	20.85	575.88	22.82	573.91	19.92	576.81	22.6	574.13	20.72	576.01	15.86	580.87	23.28	573.45	19.64	577.09
MW-6DD	596.02	506.8 - 539.8	24.3	571.72	24.32	571.70	24.05	571.97	26.42	569.6	23.89	572.13	26.43	569.59	25.98	570.04	26.25	569.77	25.80	570.22	24.58	571.44	26.72	569.30	25.06	570.96	21.3	574.72	26.9	569.12	25.04	570.98
MW-7S	596.28	566.3 - 576.3	18.81	577.47	16.62	579.66	15.88	580.4	17.98	578.3	15.0	581.28	19.76	576.52	19.45	576.83	16.38	579.90	19.05	577.23	13.44	582.84	15.62	580.66	17.45	578.83	10.2	586.08	20	576.28	15.28	581.00
MW-7D	596.28	543.2 - 563.2	20.38	575.90	18.83	577.45	17.79	578.49	20.78	575.5	17.72	578.56	22.95	573.33	21.75	574.53	20.05	576.23	21.94	574.34	19.08	577.20	21.65	574.63	19.96	576.32	15.18	581.10	22.6	573.68	18.82	577.46
MW-7DD	50//5	508.2 - 543.2	21.17	F04.42	19.82	502.45	19.61	502.26	21.95	500.05	18.52	F02.05	22.97	500.26	22.23	F70.00	20.78	504.00	22.07	550.00	19.12	F04.00	21.36	500.25	19.96	F77.67	15.46	-15.46	23.39	-23.39	19.85	-19.85
MW-8S	596.67	564.4 - 574.4	15.54	581.13 575.69	14.2	582.47	14.31	582.36	15.8	580.87	13.6	583.07 578.41	16.31	580.36	16.78 22.35	579.89	14.85	581.82	17.78	578.89	14.74	581.93	16.4	580.27	19	577.67	13.2	583.47 580.71	19.92 23.26	576.75	16.12	580.55 577.08
MW-8DD	596.86	542.8 - 561.9 506.8 - 542.8	21.17	5/5.69	19.61 22.52	577.25	19.66 22.57	577.2	21.25 24.85	575.61	18.45 22.6	5/8.41	23.51 26.05	573.35	25.18	574.51	20.88	575.98	22.55 25.22	574.31	19.86 23.90	577.00	22.4 26.18	574.46	20.95	575.91	16.15 19.94	-19.94	26.18	573.60 -26.18	19.78 24.15	-24.15
MW-9S	595.22	568.2 - 578.2	43.43		22.32		22.37		24.05		22.0		20.03		23.10		25.07		25.22		23.90		20.10		24.2		19.94	-19.94	20.10	-20.10	24.15	-24.15
IVI VV = 93	605.28	308.2 - 378.2																														
	600.98		24.31	576.67	21.66	579.32	21.57	579.41	21.68	579.3	19.2	581.78	26.60	574.38	22.58	578.40	22.96	578.02	23.92	577.06	21.04	579.94	23.7	577.28	21.18	579.80	16.92	584.06	24.22	576.76	22.02	578.96
MW-9D	595.31	538.5 - 567.5	24.51	370.07	21.00	377.32	21.37	37 7.41	21.00	37 7.3	17.2	301.70	20.00	374.30	22.30	370.40	22.70	370.02	25.72	377.00	21.04	377.74	25.7	377.20	21.10	37 7.00	10.72	304.00	24.22	370.70	22.02	370.70
1.111 715	605.35	330.3 307.3																														
	600.77		24.11	576.66	22.36	578.41	22.49	578.28	23.93	576.84	21.1	579.67	26.56	574.21	25.08	575.69	23.76	577.01	25.35	575.42	22.54	578.23	25.3	575.47	23.32	577.45	18.6	582.17	25.75	575.02	22.42	578.35
MW-10S	595.52	563.7 - 573.7	18.73	576.79	16.86	578.66	16.29	579.23	18.16	577.36	14.91	580.61	20.52	575.00	19.20	576.32	17.65	577.87	19.72	575.80	16.50	579.02	19.34	576.18	17.97	577.55	11.98	583.54	20.18	575.34	16.9	578.62
MW-10D	594.96	543.4 - 563.4	18.08	576.88	16.34	578.62	16.14	578.82	17.82	577.14	14.99	579.97	19.76	575.20	18.88	576.08	17.16	577.80	19.20	575.76	16.60	578.36	18.65	576.31	18.04	576.92	12.84	582.12	19.78	575.18	16.52	578.44
MW-11S	600.54	585.3 - 595.3	16.44	584.10	14.63	585.91	14.5	586.04	14.95	585.59	12.91	587.63	17.96	582.58	16.13	584.41	15.57	584.97	16.70	583.84	14.45	586.09	17	583.54	15.22	585.32	11.56	588.98	17.4	583.14	14.8	585.74
MW-11D	600.20	549.2 - 559.2	13.17	587.03	11.25	588.95	10.89	589.31	11.05	589.15	9.65	590.55	14.33	585.87	12.26	587.94	11.55	588.65	12.96	587.24	10.94	589.26	12.9	587.30	11.75	588.45	8.15	592.05	13.52	586.68	11.22	588.98
MW-12S	600.24	582.1 - 592.1	19.32	580.92	17.6	582.64	17.74	582.5	18.45	581.79	15.98	584.26	21.20	579.04	19.42	580.82	19.25	580.99	19.82	580.42	17.50	582.74	20.5	579.74	18.16	582.08	14.66	585.58	20.65	579.59	17.88	582.36
MW-12D	600.36	546.7 - 565.7	19.47	580.89	17.78	582.58	17.92	582.44	18.64	581.72	16.16	584.20	21.52	578.84	19.62	580.74	19.38	580.98	20.02	580.34	17.66	582.70	20.7	579.66	18.34	582.02	14.85	585.51	20.84	579.52	18.02	582.34
MW-13S	597.75	566.8 - 576.8	17.71	580.04	15.99	581.76	16.09	581.66	16.9	580.85	14.24	583.51	19.93	577.82	17.86	579.89	17.80	579.95	18.18	579.57	15.82	581.93	19.12	578.63	16.52	581.23	13	584.75	19.08	578.67	16.32	581.43
MW-13D	597.87	545.6 - 565.1	18.16	579.71	16.57	581.30	16.76	581.11	17.65	580.22	14.86	583.01	12.12	585.75	18.50	579.37	18.42	579.45	18.73	579.14	16.46	581.41	19.64	578.23	17.03	580.84	13.65	584.22	19.72	578.15	16.8	581.07
MW-14S	597.18	565.1 - 575.1				577.89																		574.38				581.33		573.86		
MW-14D	596.38	544.7 - 564.7	20.15	576.23	19.18	577.20	19.14	577.24	20.87	575.51	18.0	578.38	23.14	573.24	22.10	574.28	20.44	575.94	22.35	574.03	19.46	576.92	22.18	574.20	20.16	576.22	15.48	580.90	22.8	573.58	19.8	576.58
MW-15S	599.70	566.4 - 576.4	18.41	581.29	16.65	583.05	16.76	582.94	17.44	582.26	15.0	584.70	20.38	579.32	18.51	581.19	18.12	581.58	18.98	580.72	16.52	583.18	19.52	580.18	17.3	582.40	13.62	586.08	19.7	580.00	16.95	582.75
MW-15D	598.37	547.0 - 563.0	17.76	580.61	16.02	582.35	16.11	582.26	16.9	581.47	14.44	583.93	19.81	578.56	18.00	580.37	17.50	580.87	18.44	579.93	15.95	582.42	18.92	579.45	16.7	581.67	12.97	585.40	19.16	579.21	16.3	582.07
RW-1	593.60	526.5 - 574.5																														
	593.67		18.18	575.49	16.36	577.31	16.68	576.99	18.44	575.23	15.45	578.22	21.15	572.52	20.10	573.57	18.09	575.58	20.52	573.15	17.28	576.39	20.42	573.25	17.78	575.89	12.9	580.77	20.23	573.44	16.72	576.95
RW-2	591.79	523.8 - 570.8																														
	591.80		16.63	575.17	14.87	576.93	15.38	576.42	17.04	574.76	14.35	577.45	19.58	572.22	17.80	574.00	16.38	575.42	18.50	573.30	15.72	576.08	18.36	573.44	16.08	575.72	11.55	580.25	18.85	572.95	15.27	576.53
RW-3	595.65	505 - 582.5	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
	NOTES:	·							·																					·		

NOTES: MSL - Mean Sea Level DTW - Depth to Water

GWE - Ground Water Elevation

NM - Not Measured

	Top of Casing	Screened Interval	3/19	/2012	8/6	/2012	12/17	7/2012	5/20/	/2013	8/19	/2013	12/16	5/2013	3/12	/2014	6/9/	2014	9/22	2/2014	12/8	/2014	3/16	/2015	5/7/	/2015	6/23	/2015	9/21	/2015	1/11	/2016
Well I.D.	Elevation (ft MSL)	Elevation (ft MSL)	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE										
MIN AC	F00.1F	E () E E E E E	46.75	F04.40	10.04	EE0.24	45.55	F00.60	40.25	FE0.00	10.06	F00.00	45.05	F00.00	42.06	504.40	47.00	F00.22	24.20	F74.07	20.0	555.05	14.02	502.22	10.60	FEO. 4.6	10.07	F00.00	10.6	F70 FF	10.24	F70.04
MW-1S MW-1D	598.15 598.05	568.5 - 578.5 546.7 - 567.5	16.75 16.78	581.40 581.27	19.84 19.74	578.31 578.31	17.55 17.51	580.60 580.54	18.35 18.42	579.80 579.63	18.06 18.22	580.09 579.83	17.27 17.35	580.88 580.70	13.96 13.9	584.19 584.15	17.93 17.9	580.22 580.15	21.28 21.25	576.87 576.80	20.9 20.86	577.25 577.19	14.92 14.52	583.23 583.53	18.69 18.77	579.46 579.28	18.07 18.08	580.08 579.97	19.6 19.63	578.55 578.42	18.34 17.97	579.81 580.08
MW-2S	596.95	567.1 - 577.1	10.76	301.27	19.74	3/0.31	17.51	360.34	10.42	3/9.03	10.22	3/9.03	17.33	360.70	13.9	304.13	17.9	360.13	21.23	370.00	20.00	3/7.19	14.52	303.33	10.//	3/9.20	10.00	3/9.9/	19.03	370.42	17.97	360.06
IVI VV -2.3	607.04	307.1 - 377.1																														
	600.11		20.18	579.93	24.7	575.41	21.1	579.01	23.2	576.91	23.37	576.74	19.98	580.13	19.92	580.19	24.94	575.17	26.4	573.71	26.35	573.76	22.68	577.43	25.2	574.91	25.07	575.04	26.02	574.09	25.08	575.03
MW-2D	596.98	535.4 - 559.8	20.10	37 7.73	21.7	373.11	21.1	37 7.01	23.2	370.71	23.57	37 0.7 1	17.70	300.13	17.72	300.17	21.71	373.17	20.1	373.71	20.55	373.70	22.00	377.13	25.2	37 1.71	23.07	373.01	20.02	37 1.07	25.00	373.03
	607.02																															
	600.21		20.92	579.29	23.63	576.58	21.1	579.11	22.48	577.73	22.5	577.71	21.9	578.31	18.38	581.83	22.75	577.46	25.75	574.46	25.26	574.95	18.4	581.81	23.38	576.83	22.75	577.46	24.42	575.79	22.34	577.87
MW-3S	597.43	567.3 - 577.3																														
MW-3D	597.10	545.1 - 564.1																														
MW-4S	595.34	573.6 - 583.6																														
	596.23																															
	593.96		13.96	580.00	18.14	575.82	14.52	579.44	16.54	577.42	16.52	577.44	14.78	579.18	13.17	580.79	17.53	576.43	20.12	573.84	20	573.96	17.02	576.94	17.3	576.66	17.82	576.14	19.58	574.38	19.02	574.94
MW-4D	595.44	534.1 - 563.4																														
	596.22																															
	594.11		16.18	577.93	19.17	574.94	15.98	578.13	18.7	575.41	18.42	575.69	16.58	577.53	14.66	579.45	19.98	574.13	23.11	571.00	22.65	571.46	16.14	577.97	20.31	573.80	20.27	573.84	21.58	572.53	20.15	573.96
MW-5S	594.25	566.2 - 576.2																												<u> </u>		
	596.52																															
MULED	592.85	E42 E E6E 4	15.2	577.65	18.26	574.59	14.97	577.88	17.8	575.05	17.57	575.28	15.52	577.33	13.76	579.09	19.24	573.61	22	570.85	21.86	570.99	15.6	577.25	19.51	573.34	19.55	573.30	20.9	571.95	19.42	573.43
MW-5D	594.34	542.7 - 565.4																														
	596.68 593.68		16.02	577.66	18.94	574.74	15.74	577.94	18.52	575.16	18.28	575.40	16.3	577.38	14.55	579.13	19.9	573.78	23.12	570.56	22.72	570.96	16.1	577.58	20.25	573.43	20.26	573.42	21.58	572.10	20.15	573.53
MW-6S	597.11	568.2 - 578.2	13.2	583.91	21.02	576.09	16.23	580.88	18.04	579.07	18.35	578.76	17.05	580.06	18.7	578.41	22.18	574.93	23.12	573.27	23.62	573.49	20.98	576.13	21.97	575.14	22.52	574.59	23.72	573.39	22.2	574.91
MW-6D	596.73	540.3 - 567.8	19.08	577.65	21.96	574.77	18.78	577.95	21.53	575.20	21.28	575.45	19.36	577.37	18.12	578.61	23.56	573.17	26.55	570.18	26.22	570.51	19.6	577.13	23.84	572.89	23.98	572.75	25.72	571.63	23.62	573.11
MW-6DD	596.02	506.8 - 539.8	26.09	569.93	25.46	570.56	24.43	571.59	24.7	571.32	25.04	570.98	25.74	570.28	19.15	576.87	24.2	571.82	27.08	568.94	27.04	568.98	20.86	575.16	25.4	570.62	25.68	570.34	26.5	569.52	24.88	571.14
MW-7S	596.28	566.3 - 576.3	15.05	581.23	18.14	578.14	15.65	580.63	18.48	577.80	18.02	578.26	15.6	580.68	10.8	585.48	14.1	582.18	21.44	574.84	23.78	572.50	10.92	585.36	19.13	577.15	19.45	576.83	19.86	576.42	17.1	579.18
MW-7D	596.28	543.2 - 563.2	18.32	577.96	21.16	575.12	18.11	578.17	20.77	575.51	20.56	575.72	18.78	577.50	16.76	579.52	21.9	574.38	24.82	571.46	24.7	571.58	18.12	578.16	22.45	573.83	22.47	573.81	23.66	572.62	22.35	573.93
MW-7DD		508.2 - 543.2	16.66	-16.66	21.15				20.88		20.96																22.9		23.7		22.24	
MW-8S	596.67	564.4 - 574.4	16.27	580.40	18.08	578.59	16.55	580.12	19.1	577.57	18.62	578.05	17.5	579.17	14.35	582.32	17.92	578.75	21.1	575.57	20.05	576.62	15.34	581.33	19.65	577.02	19.43	577.24	19.75	576.92	16.6	580.07
MW-8D	596.86	542.8 - 561.9	19.34	577.52	22.12	574.74	19.22	577.64	21.54	575.32	21.43	575.43	19.9	576.96	17.5	579.36	22.5	574.36	25.55	571.31	25	571.86	18.92	577.94	23.06	573.80	22.87	573.99	24.03	572.83	23.02	573.84
MW-8DD		506.8 - 542.8	24.95	-24.95	24.63				24.28		24.58																25.6					
MW-9S	595.22	568.2 - 578.2																														
	605.28																															
	600.98		19.93	581.05	23.8	577.18	21.06	579.92	22.02	578.96	22.32	578.66	21.12	579.86	19.34	581.64	22.9	578.08	27.24	573.74	27.17	573.81	20.4	580.58	24.25	576.73	24.7	576.28	26.65	574.33	24.52	576.46
MW-9D	595.31	538.5 - 567.5																														
	605.35																															
	600.77		19.7	581.07	24.76	576.01	21.7	579.07	24.02	576.75	23.75	577.02	22.14	578.63	19.82	580.95	25.05	575.72	28.14	572.63	27.66	573.11	NM	NM	25.32	575.45	25.21	575.56	26.7	574.07	25.32	575.45
MW-10S	595.52	563.7 - 573.7	15.65	579.87	19.45	576.07	16.35	579.17	18.1	577.42	18.08	577.44	16.75		14.5	581.02	19.88	575.64	22.3	573.22	21.9	573.62	16.7	578.82	20.41	575.11	20.21	575.31	21.37	574.15	19.04	576.48
MW-10D	594.96	543.4 - 563.4	16.33	578.63	18.83	576.13	16.48	578.48	18.35	576.61	18.25	576.71	16.94	578.02	14.05	580.91	18.62	576.34	22.3	572.66	21.28	573.68	14.66	580.30	19.42	575.54	18.88	576.08	20.38	574.58	18.42	576.54
MW-11S MW-11D	600.54 600.20	585.3 - 595.3 549.2 - 559.2	13.75 10.28	586.79 589.92	17.08 13.38	583.46 586.82	14.25 11.12	586.29 589.08	15.92 12.16	584.62 588.04	15.64 12.12	584.90 588.08	14.55 11.22	585.99 588.98	12.35 9.05	588.19 591.15	15.84 11.7	584.70 588.50	18.75 14.4	581.79 585.80	17.98 13.75	582.56 586.45	13.35 9.36	587.19 590.84	16.05 12.14	584.49 588.06	15.95 12.04	584.59 588.16	17.45 13.64	583.09 586.56	16.45 12.13	584.09 588.07
MW-11D MW-12S	600.24	549.2 - 559.2 582.1 - 592.1	16.62	589.92	20.2	580.04	16.85	589.08	18.98	588.04	18.6	588.08	17.27	588.98	15.06	585.18	19.52	588.50	22.38	577.86	21.65	578.59	16.85	590.84	19.66	580.58	19.47	588.16	20.89	579.35	20.25	579.99
MW-125	600.24	546.7 - 565.7	16.62	583.62	20.2	580.04	16.85	583.39	19.16	581.26	18.78	581.54	17.43	582.97	15.06	585.18	19.52	580.72	22.58	577.78	21.85	578.59	17.05	583.39	19.66	580.58	19.47	580.77	20.89	579.35	20.23	579.99
MW-13S	597.75	566.8 - 576.8	14.83	582.92	18.64	579.11	15.05	582.70	17.35	580.40	16.96	580.79	15.54	582.21	13.4	584.35	18.05	579.70	21.2	576.55	20.45	577.30	15.6	582.15	18.33	579.42	18.11	579.64	19.63	578.12	19.09	578.66
MW-13D	597.87					578.72																										
MW-14S	597.18	565.1 - 575.1	19.02			575.04																571.43						573.86		572.48		573.83
MW-14D	596.38	544.7 - 564.7	18.56			574.86														_				577.92				573.68		572.40		573.73
MW-15S	599.70	566.4 - 576.4	15.63			580.47		583.78		581.70		582.00		583.35				581.30		578.28		579.00		583.86				581.15		579.71		580.50
MW-15D	598.37	547.0 - 563.0	15.1	583.27	-		15.29		17.44					582.65	13.55	584.82	17.92			577.42		578.12	15.16	583.21	18.2	+					18.71	-
RW-1	593.60	526.5 - 574.5																														
	593.67		16.12	577.55	19.05	574.62	15.8	577.87	18.74	574.93	18.45	575.22	16.3	577.37	14.58	579.09	20.82	572.85	23.54	570.13	23.32	570.35	16.42	577.25	20.65	573.02	27.3	566.37	20.05	573.62	20.55	573.12
RW-2	591.79	523.8 - 570.8																														
	591.80		14.78	577.02	17.55	574.25	14.3	577.50	17.45	574.35	17.02	574.78	14.86	576.94	12.82	578.98	18.62	573.18	21.76	570.04	21.4	570.40	14.7	577.10	18.88	572.92	18.69	573.11	22.06	569.74	18.8	573.00
RW-3	595.65	505 - 582.5	NI	NI	18.22	577.43	23.67	571.98	26.8	568.85	24.25	571.40	20.32	575.33	23.39	572.26	25.2	570.45	26.4	569.25	21.4	574.25										
	NOTES:																															

NOTES: MSL - Mean Sea Level DTW - Depth to Water

GWE - Ground Water Elevation

NM - Not Measured

	Top of Casing	Screened Interval	3/28	/2016	6/20,	/2016	9/19	/2016	12/19	0/2016	4/10	/2017	6/26	/2017	9/11	/2017	12/19	/2017
Well I.D.	Elevation (ft MSL)	Elevation (ft MSL)	DTW	GWE														
MW-1S	598.15	568.5 - 578.5	14.1	584.05	21.07	577.08	21.06	577.09	21.63	576.52	10.96	587.19	18.94	579.21	19.51	578.64	19.8	578.35
MW-1D	598.05	546.7 - 567.5	13.95	584.10	20.9	577.15	20.93	577.12	21.34	576.71	10.7	587.35	18.6	579.45	19.32	578.73	19.75	578.30
MW-2S	596.95	567.1 - 577.1																
	607.04																	
	600.11		21.46	578.65	26.19	573.92	26.74	573.37	26.43	573.68	17.3	582.81	25.83	574.28	26	574.11	25.72	574.39
MW-2D	596.98	535.4 - 559.8																
	607.02																	
	600.21		18.1	582.11	25.15	575.06	24.9	575.31	25.45	574.76	14.68	585.53	23.03	577.18	24.22	575.99	24.25	575.96
MW-3S	597.43	567.3 - 577.3																
MW-3D	597.10	545.1 - 564.1																
MW-4S	595.34	573.6 - 583.6																
	596.23																	
	593.96		14.22	579.74	19.05	574.91	20.02	573.94	20.18	573.78	10.84	583.12	18.74	575.22	18.96	575.00	18.6	575.36
MW-4D	595.44	534.1 - 563.4																
	596.22																	
	594.11		15.78	578.33	22.35	571.76	22.38	571.73	23.25	570.86	12.13	581.98	20.74	573.37	21.43	572.68	22	572.11
MW-5S	594.25	566.2 - 576.2																
	596.52																	
	592.85		15.05	577.80	21.56	571.29	21.75	571.10	21.35	571.50	11.11	581.74	20.23	572.62	20.82	572.03	21.24	571.61
MW-5D	594.34	542.7 - 565.4																
	596.68																	
	593.68		15.8	577.88	22.32	571.36	22.3	571.38	23.27	570.41	12.05	581.63	20.75	572.93	21.44	572.24	22.06	571.62
MW-6S	597.11	568.2 - 578.2	21	576.11	23.42	573.69	24	573.11	23.86	573.25	16.85	580.26	23.35	573.76	23.24	573.87	23.93	573.18
MW-6D	596.73	540.3 - 567.8	19.46	577.27	25.92	570.81	25.78	570.95	26.76	569.97	15.8	580.93	24.65	572.08	25.12	571.61	26.6	570.13
MW-6DD	596.02	506.8 - 539.8	21.92	574.10	27.63	568.39	27.46	568.56	28.84	567.18	19.12	576.90	28.11	567.91	27.4	568.62	29.34	566.68
MW-7S	596.28	566.3 - 576.3	9.91	586.37	19.6	576.68	19.22	577.06	19.12	577.16	10.41	585.87	17.42	578.86	18.88	577.40	16.73	579.55
MW-7D	596.28	543.2 - 563.2	18.11	578.17	24.32	571.96	24.42	571.86	25.5	570.78	14.33	581.95	22.58	573.70	23.48	572.80	23.9	572.38
MW-7DD		508.2 - 543.2	17.85		23.84	-23.84	23.9											
MW-8S	596.67	564.4 - 574.4	14.52	582.15	20.42	576.25	19.34	577.33	20.35	576.32	12.79	583.88	17.82	578.85	18.71	577.96	18.16	578.51
MW-8D	596.86	542.8 - 561.9	18.76	578.10	24.78	572.08	25.04	571.82	25.92	570.94	15.31	581.55	23.53	573.33	24.16	572.70	24.57	572.29
MW-8DD		506.8 - 542.8			27.38		27.5											
MW-9S	595.22	568.2 - 578.2																
	605.28																	
	600.98		21.35	579.63	26.6	574.38	26.98	574.00	27.25	573.73	17.45	583.53	25.09	575.89	24.85	576.13	24.55	576.43
MW-9D	595.31	538.5 - 567.5																
	605.35																	
	600.77		20.92	579.85	27.35	573.42	27.44	573.33	28.16	572.61	17.46	583.31	25.81	574.96	26.49	574.28	24.3	576.47
MW-10S	595.52	563.7 - 573.7	16.36	579.16	21.4	574.12	21.95	573.57	22.16	573.36	11.68	583.84	20.58	574.94	20.82	574.70	20.2	575.32
MW-10D	594.96	543.4 - 563.4	14.45	580.51	21.11	573.85	21.08	573.88	21.74	573.22	11.36	583.60	19.47	575.49	20.02	574.94	19.72	575.24
MW-11S	600.54	585.3 - 595.3	12.74	587.80	17.86	582.68	18.5	582.04	18.76	581.78	9.85	590.69	16.83	583.71	17.28	583.26	16.94	583.60
MW-11D	600.20	549.2 - 559.2	9.21	590.99	13.9	586.30	14.3	585.90	14.52	585.68	6.89	593.31	12.7	587.50	13.3	586.90	12.42	587.78
MW-12S	600.24	582.1 - 592.1	16.03	584.21	21.54	578.70	22.24	578.00	22.73	577.51	12.69	587.55	20.72	579.52	21.11	579.13	21	579.24
MW-12D	600.36	546.7 - 565.7	16.3	584.06	21.72	578.64	22.36	578.00	22.97	577.39	12.96	587.40	21	579.36	21.38	578.98	21.24	579.12
MW-13S	597.75	566.8 - 576.8	14.64	583.11	20.26	577.49	21.1	576.65	21.79	575.96	11.2	586.55	19.68	578.07	19.97	577.78	19.81	577.94
MW-13D	597.87	545.6 - 565.1	15.28	582.59	28.8	569.07	21.69	576.18	22.26	575.61	11.73	586.14	20.35	577.52	20.56	577.31	20.58	577.29
MW-14S	597.18	565.1 - 575.1	18.98	578.20	25.14	572.04	25.4	571.78	26.55	570.63	15.17	582.01	23.64	573.54	24.4	572.78	24.87	572.31
MW-14D	596.38	544.7 - 564.7	18.33	578.05	24.58	571.80	24.88	571.50	25.8	570.58	14.57	581.81	23.08	573.30	23.95	572.43	24.4	571.98
MW-15S	599.70	566.4 - 576.4	15.04	584.66	20.5	579.20	21.26	578.44	21.69	578.01	11.83	587.87	19.65	580.05	20.08	579.62	19.95	579.75
MW-15D	598.37	547.0 - 563.0	14.54	583.83	20.05	578.32	20.06	578.31	21.26	577.11	11.34	587.03	19.16	579.21	19.67	578.70	19.51	578.86
RW-1	593.60	526.5 - 574.5																
	593.67		15.85	577.82	22.4	571.27	22.4	571.27	23.68	569.99	11.95	581.72	20.96	572.71	21.48	572.19	22.7	570.97
RW-2	591.79	523.8 - 570.8																
	591.80		14.5	577.30	20.97	570.83	20.65	571.15	21.8	570.00	10.52	581.28	19.71	572.09	20.2	571.60	20.56	571.24
RW-3	595.65	505 - 582.5	20.85	574.80	21.94	573.71	NM	NM	23.88	571.77	18.0	577.65	27.3	568.37	21.68	573.97	21.9	573.75
	NOTES:								-						_	_	_	

NOTES: MSL - Mean Sea Level DTW - Depth to Water

GWE - Ground Water Elevation

NM - Not Measured

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-1D	X-1	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D
		Depth Interval										
		Sample Date	1/12/2016	1/12/2016	3/28/2016	6/21/2016	9/20/2016	12/20/2016	4/11/2017	6/28/2017	9/12/2017	12/19/2017
	Class GA	Sample ID	MW1D 011216	MW1D 011216	MW1D 032816	MW1D 062116	MW1D 092016	MW1D 122016	MW1D 04112017	MW1D 062817	MW1D 091217	MW1D 121917
	GW Stds		ug/l	ug/l	ug/l	ug/l						
Chemical Name	(ug.l)											
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5											
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U *	10 U *	10 U	10 U	10 U	10 U				
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	0.22 J	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U						
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

⁻ instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

^{[] -} Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3 Groundwater Quality Data - VOCs (2015-2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-1S	MW-1S	MW-1S	X-1	MW-1S	MW-1S	MW-1S	X-1	MW-1S	MW-1S	MW-1S
		Depth Interval											
		Sample Date	1/12/2016	3/28/2016	6/21/2016	6/21/2016	9/20/2016	12/20/2016	4/11/2017	4/11/2017	6/28/2017	9/12/2017	12/19/2017
	Class GA	Sample ID	MW1S 011216	MW1S 032816	MW1S 062116	MW1S 062116	MW1S 092016	MW1S 122016	MW1S 04112017	MW1S 04112017	MW1S 062817	MW1S 091217	MW1S 121917
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l						
Chemical Name	(ug.l)												
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5												
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U *	10 U	10 U	10 U	10 U	10 U					
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U						
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U

NOTES:

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

- unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

- instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4S
		Depth Interval	100									
		Sample Date	1/12/2016	3/30/2016				4/13/2017	6/28/2017		12/21/2017	9/23/2015
	Class GA	Sample ID	MW4D 011216	MW-4D-033016	MW-4D-062116	MW-4D-092016	MW-4D-122116	MW-4D-041317	MW-4D-062817	MW-4D-091417	MW-4D-122117	MW4S 092315
	GW Stds		ug/l									ug/l
Chemical Name	(ug.l)											
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5											
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		10 U *	10 U*	10 U	10 U						
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U
Chloroform	7		1 U				1 U	1 U	1 U		1 U	
cis-1,2-Dichloroethene	5		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl ethyl ketone	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene trans-1,2-Dichloroethene	5 5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
			2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Xylenes, Total	5		2.0	20	2.0	2.0	2.0	2.0	2.0	20	2.0	20

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

^ - instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S
		Depth Interval									
		Sample Date	1/13/2016	3/30/2016				4/13/2017	6/28/2017	9/14/2017	12/21/2017
	Class GA	Sample ID	MW4S 011316	MW-4S-033016	MW-4S-062116	MW-4S-092116	MW-4S-122116	MW-4S-041317	MW-4S-062817	MW-4S-091417	MW-4S-122117
	GW Stds										
Chemical Name	(ug.l)										
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5										
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		10 U *	10 U*	10 U	10 U	10 U	10 U	3.5 J	10 U	10 U
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U *	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

^ - instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D
		Depth Interval										
		Sample Date	1/13/2016	3/30/2016	6/21/2016	9/20/2016	12/21/2016	4/12/2017	6/27/2017	6/27/2017	9/14/2017	12/21/2017
		Sample ID	MW5D 011316	MW-5D-033016	MW-5D-062116	MW-5D-092016	MW-5D-122116	MW-5D-041217	MW-5D-062717	MW-5D-062717	MW-5D-091417	MW-5D-122117
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	Standards (ug/l)											
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		0.6 J	0.6 J	0.58 J	0.58 J	0.5 J	0.56 J	0.46 J	0.51 J	0.51 J	0.42 J
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5											
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		10 U *	10 U*	10 U							
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		0.92 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 3 Groundwater Quality Data - VOCs (2015-2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S
		Depth Interval									
		Sample Date	1/13/2016	3/30/2016	6/21/2016	9/20/2016	12/20/2016	4/12/2017	6/27/2017	9/14/2017	12/21/2017
		Sample ID	MW5S 011316	MW-5S-033016	MW-5S-062116	MW-5S-092016	MW-5S-122016	MW-5S-041217	MW-5S-062717	MW-5S-091417	MW-5S-122117
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	Standards (ug/l)										
1,1,1-Trichloroethane	5		[7.9]	2.8	[15]	[15]	[22]	1.2	3.1	12	13
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		[27]	[8.9]	[43]	[33]	[38]	[6]	0.84 J	[92]	[86]
1,1-Dichloroethene	5		1.7	0.83 J	2.2	2.8	2	0.45 J	0.57 J	[5.8]	[8.2]
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5										
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		10 U *	10 U*	6 J	3.5 J	10 U				
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		1 U	1 U	0.41 J	0.19 J	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		[38]	[16]	[97]	[58]	[180] F1	[5.6]	3.8	[88]	[76]
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		0.71 J	1 U	1 U	1 U	0.7 J	1 U	1 U	0.51 J	0.49 J
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5		1.4	1 U	0.94 Ј	1 U	2.2	1 U	1 U	3.2	4
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5		[12]	[8.7]	[22]	[20]	[92]	2.2	[6.7]	[33]	[26]
Vinyl chloride	2		1 U	1 U	[7.3]	[4.9]	1 U	1 U	1 U	2.1	1 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

- unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

- instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-6DD								
		Depth Interval									
		Sample Date	1/12/2016	3/29/2016	6/21/2016	9/20/2016	12/20/2016	4/11/2017	6/28/2017	9/12/2017	12/20/2017
		Sample ID	MW6DD 011216	MW6DD 032916	MW6DD 062116	MW6DD 092016	MW6DD 122016	MW6DD 041117	MW6DD 062817	MW6DD 091217	MW6DD 122017
	Class GA GW		ug/l								
Chemical Name	Standards (ug/l)										
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5		0.43 J	1 U	0.71 J	0.62 J	0.55 J	1 U	1 U	0.6 J	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5										
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U *	10 U							
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		[17]	[19]	[20]	[10]	[8.6]	[13]	[24]	[22]	[17]
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U								
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Tetrachloroethene	5		1 U	1 U	0.52 J	1 U	1 U	1 U	1 U	1 U	1.0 U
Toluene	5		1 U	1 U	1 U	1.5	1 U	1 U	1 U	1 U	1.0 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Trichloroethene	5		1 U	0.69 J	1 U	1 U	1 U	0.69 J	1 U	1 U	1.0 U
Vinyl chloride	2		[3.2]	1.5	[5.3]	[4.5]	[4]	1 U	[4.5]	[5.3]	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U
			NOTES:								

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

^ - instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-6D	MW-6S	MW-6S	MW-6S							
		Depth Interval											
		Sample Date	3/29/2016	6/21/2016	9/20/2016	12/20/2016	4/11/2017	6/27/2017	9/12/2017	12/20/217	1/12/2016	3/29/2016	6/21/2016
		Sample ID	MW6D 032916	MW6D 062116	MW6D 092016	MW6D 122016	MW6D 041117	MW6D 062717	MW6D 091217	MW6D 122017	MW6S 011216	MW6S 032916	MW6S 062116
	Class GA GW		ug/l										
hemical Name	Standards (ug/l)												
1,1-Trichloroethane	5	İ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
1-Dichloroethane	5		0.56 J	0.61 J	0.66 J	0.59 J	0.71 J	0.51 J	0.6 J	0.56 J	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5 U	5 U	5 U
cetone	50		10 U	10 U *	10 U	10 U							
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U*	1 U
nlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
nloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1.5	1.5	1.4	1.3	1.1	1.3	1.4	1.3	[10]	[52]	[5]
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
ibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
thylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U										
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
etrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
luene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U*	1 U
richloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	0.8 J	1 U
inyl chloride	2		1.2	1.3	1.4	1.4	1.2	1.4	1.4	1.3	[5.7]	[16]	1 U
ylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U	2 U	2 U	2 U

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

^ - instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-6S	MW-6S	MW-6S	MW-6S	X-1	MW-6S	MW-6S
		Depth Interval							
		Sample Date	9/20/2016	12/20/2016	4/11/2017	6/28/2017	6/28/2017	9/14/2017	12/20/2017
		Sample ID	MW6S 092016	MW6S 122016	MW6S 041117	MW6S 062817	MW6S 062817	MW6S 091417	MW6S 122017
	Class GA GW		ug/l						
Chemical Name	Standards (ug/l)								
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5								
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U	3.3 J	10 U				
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		[7.9]	[6.9]	[17]	[15]	[14]	[10]	4.7
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U						
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Γetrachloroethene	5		1 U	1 U	1 U	0.39 J	1 U	1 U	1.0 U
oluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
rans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
rans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Γrichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Vinyl chloride	2		[11]	[6.2]	[8.7]	[9.1]	[8.9]	[3.8]	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2.0 U

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

^ - instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-7DD	MW-7D								
		Depth Interval	-	-	-	-	-	-	-	-	-	
		Sample Date	1/13/2016	3/29/2016	6/22/2016	9/21/2016	12/20/2016	4/12/2017	6/28/2017	9/13/2017	12/20/2017	1/13/2016
		Sample ID	MW7DD 011316	MW7DD 032916	MW7DD 062216	MW7DD 092116	MW7DD 122016	MW7DD 041217	MW7DD 062817	MW7DD 091317	MW7DD 122017	MW7D 011316
	Class GA GW		ug/l									
Chemical Name	Standards (ug/l)											
1,1,1-Trichloroethane	5		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
1,1,2-Trichloroethane	1		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
1,1-Dichloroethene	5		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
1,2-Dichloroethene (Total)	5											
1,2-Dichloropropane	1		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5 U
Acetone	50		10 U *	10 U	10 U *							
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Bromodichloromethane	50		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Bromoform	50		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Carbon tetrachloride	5		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Chlorobenzene	5		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
cis-1,2-Dichloroethene	5		0.92 J	1 U	1 U	1 U	1 U	1 U	1 U	1.2	1.0 U	1 U
cis-1,3-Dichloropropene	0.4		1 U	1 -	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Dibromochloromethane	50		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Methyl ethyl ketone	50		10 U									
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Tetrachloroethene	5		1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Toluene	5		1 U	1 U	1 U	0.59 J	1 U	1 U	1 U	1 U	1.0 U	1 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
trans-1,3-Dichloropropene	0.4		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Trichloroethene	5		1 U	1 UF	0.6 Ј	1 U	1 U	0.78 J	0.5 J	1 U	1.0 U	0.85 J
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U
Xylenes, Total	5		2 U	2 UF	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U	2 U

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

⁻ unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

^{` -} instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

^{[] -} Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-7D	MW-7S	MW-7S	X-1	MW-7S						
		Depth Interval											
		Sample Date	3/29/2016	6/22/2016	12/21/2016	4/12/2017	6/28/2017	9/13/2017	12/20/2017	1/13/2016	3/29/2016	3/29/2016	6/2/2016
		Sample ID	MW7D 032916	MW7D 062216	MW7D 122116	MW7D 041217	MW7D 062817	MW7D 091317	MW7D 122017	MW7S 011216	MW7S 032916	MW7S 032916	MW7S 062216
	Class GA GW		ug/l										
Chemical Name	Standards (ug/l)												
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5												
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5 U	5 U	5 U	5 U
Acetone	50		10 U	10 U *	10 U	10 U	10 U						
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		1 U*	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U*	1 U*	1 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		1 U	1.1	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 U	10 U	10 U *	10 U							
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	0.61 J	0.36 J	1 U	1 U	1 U	1 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4		1 U*	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U*	1 U*	1 U
Trichloroethene	5		0.58 J	0.53 J	1.1	1.1	0.99 J	1.6	1.1	0.78 Ј	1 U	1 U	0.62 J
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2.0 U	2 U	2 U	2 U	2 U
• •			NOTES:										

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

- unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

- instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S
		Depth Interval						
		Sample Date	9/21/2016	12/21/2016	4/12/2017	6/28/2017	9/13/2017	12/20/2017
		Sample ID	MW7S 092116	MW7S 122116	MW7S 041217	MW7S 062817	MW7S 091317	MW7S 122017
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	Standards (ug/l)							
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5							
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U					
Benzene	1		1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		2.6	1 U	1 U	1 U	1 U	1.0 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U					
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1.0 U
Tetrachloroethene	5		0.46 J	0.53 J	1 U	1 U	0.66 J	1.0 U
Toluene	5		1	1 U	1 U	1 U	1 U	1.0 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1.0 U
Trichloroethene	5		2.4	1.4	1	1	1.8	1.1
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2.0 U
		N	IOTES:					

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

- instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3 Groundwater Quality Data - VOCs (2015-2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-8DD	X-1	MW-8D	MW-8D							
		Depth Interval											
		Sample Date	3/30/2016	3/30/2016	6/22/2016	12/21/2016	4/13/2017	6/28/2017	9/13/2017	12/20/217	12/20/217	1/13/2016	3/30/2016
	Class GA	Sample ID	MW-8DD-033016	MW-8DD-033016	MW-8DD-062216	MW-8DD-122116	MW-8DD-041317	MW-8DD-062817	MW-8DD-062817	MW-8DD-122017	MW-8DD-122017	MW8D 011316	MW-8D-033016
	GW Stds		ug/l	ug/l	ug/l								
hemical Name	(ug/l)												
,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	0.99 J	0.83 J
,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
,2-Dichloroethene (Total)	5												
,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5.0 U	5 U	5 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5.0 U	5 U	5 U
cetone	50		10 U*	10 U*	10 U	10 U *	10 U*						
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
romodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
romoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
hlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
hloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
hloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
is-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
is-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
ibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
thylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
lethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
lethyl ethyl ketone	50		10 U	10 U	10 U	10 U *	10 U	10 U	10 U				
lethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
tyrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
etrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
oluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
richloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	1 U	1 U
inyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	0.9 J	1 U
ylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U	2.0 U	2 U	2 U

NOTES:

J - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

^ - instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8S	MW-8S	MW-8S	MW-8S	MW-8S
		Depth Interval											
		Sample Date	6/22/2016	12/21/2016	4/13/2017	6/28/2017	9/13/2017	12/20/2017	1/13/2016	3/29/2016	6/22/2016	9/21/206	12/21/206
	Class GA	Sample ID	MW-8D-062216	MW-8D-122116	MW-8D-041317	MW-8D-062817	MW-8D-091317	MW-8D-122017	MW8S 011316	MW8S 032916	MW8S 062216	MW8S 092116	MW8S 122116
	GW Stds						ug/l	ug/l				ug/l	ug/l
nemical Name	(ug/l)												
1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		0.94 J	0.86 J	0.66 J	0.62 J	0.75 J	0.89 J	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5.0 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5.0 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U *	10 U	10 U	10 U	10 U					
enzene	1		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	0.24 J	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U*	1 U	1 U	1 U
nlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
nloroform	7		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	2.2	2.4	2.7	1 U	2.1
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U *	10 U 10 U	10 U	10 U	10 U *					
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	0.73 J	0.89 J	0.72 J	1 U	0.55 J
oluene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U*	1 U	1 U	1 U
ichloroethene	5		1 U	1 U	1 U	1 U	1 U	1.0 U	3.5	4.5	3.1	1.1	2.4
nyl chloride	2		1 U	1 U	1.6	0.96 J	1 U	1.0 U	1 U	1 U	1 U	1 U	1 U
rlenes, Total	5		2 U	2 U	2 U	2 U	2 U	2.0 U	2 U	2 U	2 U	2 U	2 U

U - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

- instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW-8S	MW-8S	MW-8S	MW-8S
		Depth Interval				
		Sample Date	4/12/2017	6/28/2017	9/13/2017	12/20/217
	Class GA	Sample ID	MW8S 041217	MW8S 062817	MW8S 091317	MW8S 122017
	GW Stds		ug/l	ug/l	ug/l	ug/l
Chemical Name	(ug/l)					
,1,1-Trichloroethane	5	Ī	1 U	1 U	1 U	1.0 U
,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U F1	1.0 U
,1,2-Trichloroethane	1		1 U	1 U	1 U F1	1.0 U
,1-Dichloroethane	5		1 U	1 U	1 U F1	1.0 U
,1-Dichloroethene	5		1 U	1 U	1 U	1.0 U
,2-Dichloroethane	0.6		1 U	1 U	1 U F1	1.0 U
,2-Dichloroethene (Total)	5					
1,2-Dichloropropane	1		1 U	1 U	1 U F1	1.0 U
2-Hexanone	50		5 U	5 U	5 U F1	5.0 U
I-Methyl-2-pentanone	NS		5 U	5 U	5 U F1	5.0 U
cetone	50		10 U	10 U	10 U	10 U
Benzene	1		1 U	1 U	1 U F1	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U F1	1.0 U
romoform	50		1 U	1 U	1 U	1.0 U
romomethane	5		1 U	1 U	1 U	1.0 U
arbon disulfide	60		1 U	1 U	1 U	1.0 U
arbon tetrachloride	5		1 U	1 U	1 U	1.0 U
hlorobenzene	5		1 U	1 U	1 U F1	1.0 U
hloroethane	5		1 U	1 U	1 U	1.0 U
hloroform	7		1 U	1 U	1 U	1.0 U
is-1,2-Dichloroethene	5		2.1	2.1	3	1.0 U
is-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1.0 U
ibromochloromethane	50		1 U	1 U	1 U F1	1.0 U
thylbenzene	5		1 U	1 U	1 U F1	1.0 U
1ethyl chloride	5		1 U	1 U	1 U F1	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U
1ethylene chloride	5		1 U	1 U	1 U	1.0 U
tyrene	5		1 U	1 U	1 U F1	1.0 U
etrachloroethene	5		0.61 J	0.58 J	0.74 J	0.86 Ј
oluene	5		1 U	1 U	1 U F1	1.0 U
rans-1,2-Dichloroethene	5		1 U	1 U	1 U	1.0 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U F1	1.0 U
richloroethene	5		3.5	3.1	3	3.3
nyl chloride	2		1 U	1 U	1 U	1.0 U
ylenes, Total	5		2 U	2 U	2 U F1	2.0 U
		N	IOTES:			
		U	- not detected, J - estimated	d, B - compound found in the b	olank and sample, D - Diluted R	esult, H - Holding time exceeded
		R	- unusable, NS - no standar	d, Dup - duplicate sample, * - I	LCS or LCSD exceeds control lin	nits, ' Not Analyzed
		^	- instrument QC exceeds co	ntrol limits, F - MS and/or MSD	recovery exceeds the control l	mits
		Į.] - Exceeds NYS Class GA Gr	ound Water Qaulity Standard		
		т	rip Blank associated with san	nples collected on 10/29/07 cor	ntained Acetone and Methylene	Chloride.

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3
Groundwater Quality Data - VOCs (2015-2017)
Forest Glen Superfund Site
Niagara Falls, New York

		Location ID	MW 10D	MW 10D	MW 10D	MW 10D	MW-10D	MW 10D	MW 10D	MW-10D	MW-10D	MW-10S
		Depth Interval	MW-10D -	MW-10D -	MW-10D -	MW-10D -	- -	MW-10D -	MW-10D -	- MW-10D	- MW-10D	- MW-105
		Sample Date	1/12/2016	3/29/2016	6/21/2016	9/20/2016	12/20/2016	- 4/12/2017	- 6/27/2017	- 9/12/2017	- 12/21/2017	1/12/2016
	Class GA	Sample ID	1/12/2016 MW10D 011216	MW10D 032916	MW10D 062116	MW10D 092016	MW10D 122016	4/12/2017 MW10D 041217	MW10D 062717	9/12/2017 MW10D 091217	MW10D 122117	MW10S 011216
	GW Stds	Sample 10	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	(ug/l)		ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i
1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5											
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50	<u> </u>	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS	<u> </u>	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50	<u> </u>	10 U *	10 U	10 U	10 U	10 U	10 U *				
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.9
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5	<u> </u>	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5	<u> </u>	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5	<u> </u>	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5	<u> </u>	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oluene	5	<u> </u>	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5	<u> </u>	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
richloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2	<u> </u>	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
/lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

J - not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

R - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

- instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 3 Groundwater Quality Data - VOCs (2015-2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-10S							
		Depth Interval								
		Sample Date	3/29/2016	6/21/2016	9/20/2016	12/20/2016	4/11/2017	6/27/2017	9/12/2017	12/21/2017
	Class GA	Sample ID	MW10S 032916	MW10S 062116	MW10S 092016	MW10S 122016	MW10S 041117	MW10S 062717	MW10S 091217	MW10S 122117
	GW Stds		ug/l							
nemical Name	(ug/l)									
1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5									
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 U							
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1 U	[10]	[14]	[13]	1.2	1.3	[29]	3.3
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U							
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
luene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		1 U	[2.3]	[2.8]	1.4	1 U	1 U	[6.6]	1 U
lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

- not detected, J - estimated, B - compound found in the blank and sample, D - Diluted Result, H - Holding time exceeded

t - unusable, NS - no standard, Dup - duplicate sample, * - LCS or LCSD exceeds control limits, '--- Not Analyzed

- instrument QC exceeds control limits, F - MS and/or MSD recovery exceeds the control limits

[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D						
		Depth Interval	-	-	-	-	-	-	-	-	-	-	-
		Sample Date	9/11/1995	11/13/1995	7/22/1997	9/15/1997	2/14/2000	8/13/2001	11/26/2001	2/25/2002	2/25/2002	5/13/2002	5/13/2002
	Class GA	Sample ID	MW-01D WG 091195	MW-01D WG 111395	MW-01D WG 072297	MW-01D WG 091597	MW-01D WG 021400	MW-01D WG 081301	MW-01D WG 112601		MW-01D WG 022502 DUP		
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l						
Chemical Name	(ug.l)												
1,1,1-Trichloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5		10 U	10 U	1 U	1 U	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.6		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (Total)	5		10 U	10 U	1 U	1 U							
1,2-Dichloropropane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	50		10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		12	10 U	2 U	2 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5		2	10 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	5		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5						0.5 J	0.5 U	0.2 J	0.1 J	0.1 J	0.1 J	0.5 U
cis-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	5		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 U	10 U	4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		13 U	10 U	1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Styrene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5						0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	2		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D
		Depth Interval											-
	Class CA	Sample Date	2/3/2004	5/18/2004	8/5/2004	11/16/2004	2/16/2005	4/18/2005	9/7/2005	11/15/2005	4/26/2006	11/14/2006	39203.68056
	Class GA GW Stds	Sample ID	MW-01D_WG_020304 ug/l	MW-01D_WG_051804 ug/l	MW-01D_WG_080504 ug/l	MW-01D_WG_111604 ug/l	MW-01D_WG_021605 ug/l	MW-01D_WG_041805	MW-1D_09072005	MW-1D_11152005 ug/l	MW-1D_04262006	MW-1D_11142006	MW-1D_050107
Chemical Name	(ua.l)		ug/i	ug/i	ug/i	ug/i	ug/i	ug/l	ug/l	ug/i	ug/l	ug/l	ug/l
1,1,1-Trichloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
1,1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
1,1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
1,1-Dichloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
1,1-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
1,2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
1,2-Dichloroethene (Total)	5												
1,2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U
Acetone	50		10 U	1 J	10 U	10 U	2 J	10 U	1.48 J	10 U	10 U	10	10 U
Benzene	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Bromodichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Bromoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
Carbon disulfide	60		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Carbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Chlorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
Chloroform	/		0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 0.13 J	0.5 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	0.4		0.5 U 0.5 U	0.1 J 0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.1 J 0.5 U	0.5 U 0.5 U	0.11 J 0.5 U	0.12 J 0.5 U		0.11 J
Dibromochloromethane	0.4 50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	[0.5] 0.5	0.5 U 0.5 U				
Ethylbenzene	50 5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10	10 U				
Methylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.16 J	2	2 U
Styrene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Tetrachloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Toluene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
trans-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
trans-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U				
Trichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U				
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
Xylenes, Total	5		0.5 U	0.5 U	1 U	1 U	1 U	1	1 U				
•													

Page 2 of 84

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-1D
		Depth Interval			-	-	-	-					
	Class GA	Sample Date Sample ID	39384.56944 MW-1D-102907	05/21/2008 MW-1D-052108	11/18/2008 MW-1D	10/19/2009	5/18/2010 MW-1D-05181005182010	1/19/2011	4/18/2011 MW-1D-041811	7/26/2011 MW-1D072611	10/25/2011	3/20/2012 MW1D032012	8/7/2012 MW1D080712
	GW Stds	Sample 1D						MW-1D-01192011			MW1D102511		
Chemical Name	(ua.l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,1,1-Trichloroethane	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5												
1,2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		10 U	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5		1 U	1 U	0.61 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 U	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		2 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1	1 U	1 U	1 U
trans-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	5		1 U	1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

Chemical Name 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	Depth Inter Sample Da Class GA Sample II GW Stds (uq.l) 5 5 1 5 0.6	e 8/7/2012	- 6/10/2014 MWID061014 ug/l 1 U 1 U 1 U	12/18/2012 MW-1D-121812 ug/l 1 U 1 U	- 5/21/2013 MW-1D-052113 ug/l 1 U	- 8/19/2013 MW-1D-081913 ug/l	- 12/19/2013 MW-1D-121913 ug/l	- 3/25/2014 MW-1D-032514 ug/l	- 6/9/2014 MW-ID-060914	- 9/23/2014 MW1D092314	- 12/9/2014 MW 1D 120914	- 3/16/2015 MW1D 031615
Chemical Name 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	GW Stds (uq.l) 5 5 1 5 5	ug/l 1 U 1 U 1 U	ug/l 1 U 1 U	ug/l	ug/l						MW 1D 120914	MW1D 031615
Chemical Name 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	(uq.l) 5 5 1 5 5	1 U 1 U 1 U	1 U 1 U	1 U		ug/l	ug/l	un/l	ua/l			
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	5 5 1 5 5	1 U 1 U	1 U		1 U			ug/i	ug/l	ug/l	ug/l	ug/l
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	5 1 5 5	1 U 1 U	1 U		1 U							
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	1 5 5	1 U		1 U		1 U	1 U	1 U	1 U	1 U	1 U*	1 U
1,1-Dichloroethane 1,1-Dichloroethene	-		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	-	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	-		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1.2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	0.0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5											
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U
Bromomethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

	Depth Inte Sample Da Class GA Sample I GW Stds	te 6/23/2015				X-1	MW-1D	MW-1D	MW-1D	MW-1D	X-1	MW-1D
	Class GA Sample I				-	-	-	-	-	-	-	-
		MW1D 062315	6/23/2015 MW1D 062315	9/21/2015 MW1D 092115	1/12/2016 MW1D 011216	1/12/2016 MW1D 011216	3/28/2016 MW1D 032816	6/21/2016 MW1D 062116	9/20/2016 MW1D 092016	12/20/2016 MW1D 122016	12/20/2016 MW1D 122016	4/11/2017 MW1D 04112017
~		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	(ug.l)	ag, .										
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5											
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	10 U	10 U	10 U	10 U *	10 U *	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.22 J
Carbon tetrachloride	5	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5	1 U	1 U	1 U	1 U 1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U 1 U
Styrene	5	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U
Tetrachloroethene	5											
Toluene trans-1,2-Dichloroethene	5	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
trans-1,2-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	ວ າ	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U
•	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	1 U 2 U	2 U	2 U	2 U
Xylenes, Total	Э	20	2 0	2 0	2 0	2 0	2 0	2 0	2 U	2 0	2 0	2 0

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-1D	MW-1D	MW-1D
		Depth Interval			
		Sample Date	6/28/2017	9/12/2017	12/19/2017
	Class GA	Sample ID	MW1D 062817	MW1D 091217	MW1D 121917
	GW Stds		ug/l	ug/l	ug/l
Chemical Name	(uq.l)				
1,1,1-Trichloroethane	5		1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1.0 U
1,1-Dichloroethane	5		1 U	1 U	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5				
1,2-Dichloropropane	1		1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5.0 U
Acetone	50		10 U	10 U	10 U
Benzene	1		1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5	I	1 U	1 U	1.0 U
cis-1,3-Dichloropropene	0.4	I	1 U	1 U	1.0 U
Dibromochloromethane	50	I	1 U	1 U	1.0 U
Ethylbenzene	5	I	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1.0 U
Methyl ethyl ketone	50	I	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1.0 U
Styrene	5	I	1 U	1 U	1.0 U
Tetrachloroethene	5	I	1 U	1 U	1.0 U
Toluene	5	I	1 U	1 U	1.0 U
trans-1,2-Dichloroethene	5 5	I	1 U	1 U	1.0 U
trans-1,3-Dichloroethene	5 0.4		1 U	1 U	1.0 U
Trichloroethene	0.4 5	I	1 U	1 U	1.0 U
			1 U 1 U	1 U 1 U	1.0 U
Vinyl chloride	2 5		2 U	1 U 2 U	2.0 U
Xylenes, Total	5		2 0	2 0	2.0 0

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Page 6 of 84

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S
		Depth Interval											
		Sample Date	9/11/1995	11/13/1995	7/22/1997	9/15/1997	2/14/2000	8/13/2001	11/26/2001	11/26/2001	2/25/2002	5/13/2002	2/3/2004
	Class GA	Sample ID	MW-01S_WG_091195	MW-01S_WG_111395	MW-01S_WG_072297	MW-01S_WG_091597	MW-01S_WG_021400	MW-01S_WG_081301		MW-01S_WG_112601_DUP		MW-01S_WG_051302	MW-01S_WG_020304
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	(ug.l)		10.11	10.11	1.11	4.11	0.5.11	0.5.11	0.511	0.511	0.511	0.511	0.5.11
1,1-Trichloroethane	5		10 U 10 U	10 U 10 U	1 U	1 U 1 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
1,2,2-Tetrachloroethane 1,2-Trichloroethane	5		10 U	10 U	1 U 1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-1 richioroethane 1-Dichloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1-Dichloroethane 1-Dichloroethene	5		10 U	10 U	1 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	5					1 U							
2-Dichloroethane 2-Dichloroethene (Total)	0.6 5		10 U 10 U	10 U 10 U	1 U 1 U	1 U 1 U	0.5 U	0.2 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
, ,	5												
2-Dichloropropane	1 50		10 U	10 U	1 U 2 U	1 U 2 U	0.5 U	0.5 U	0.5 U 5 U	0.5 U 5 U	0.5 U	0.5 U 5 U	0.5 U
Hexanone			10 U	10 U			5 U	1 J			5 U		5 U
Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	5 U	5 U	5 U 10 U	5 U 10 U	5 U	5 U	5 U 10 U
etone	50		10 U	10 U	2 U	2 U	10 U	10 U			10 U	10 U	
enzene	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omodichloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omoform	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omomethane	5		1	10 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
arbon tetrachloride	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
nlorobenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
nloroethane	5		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroform	7		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
s-1,2-Dichloroethene	5						0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U
s-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
bromochloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
hylbenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ethyl chloride	5		10 U	10 U	1 U	1 U	1 U	0.3 J	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	4 U	4 U	10 U	5 J	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		12 U	10 U	1 U	1 U	2 U	2 J	2 U	2 U	2 U	2 U	2 U
yrene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
etrachloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
oluene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ans-1,2-Dichloroethene	5						0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ans-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ichloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
nyl chloride	2		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lenes, Total	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S
		Depth Interval											
		Sample Date	5/18/2004	8/5/2004	11/16/2004	2/16/2005	4/18/2005	9/7/2005	11/15/2005	4/26/2006	11/14/2006	05/01/2007	10/29/2007
	Class GA	Sample ID	MW-01S_WG_051804	MW-01S_WG_080504	MW-01S_WG_111604	MW-01S_WG_021605	MW-01S_WG_041805	MW-1S_09072005	MW-1S_11152005	MW-1S_04262006	MW-1S_11142006	MW-1S_050107	MW-1S-102907
emical Name	GW Stds (ug.l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
,1-Trichloroethane	(ug.i)		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
-Dichloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
-Dichloroethene (Total)	5				0.5 0			0.5 0					
-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
lexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U	5 U
Nethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U	5 U
etone	50		1 J	1]	10 U	3 J	10 U	2.28 J	10 U	10 U	1.07 J	10 U	1.19 J
nzene	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
modichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
omoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U	1 U
rbon disulfide	60		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
rbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
lorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U	1 U
oroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U	0.5 U				
romochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
nylbenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U	10	10 U	10 U				
thylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.12 J	2	2 U	0.11 J
rene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
trachloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
uene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
ns-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U	0.5 U				
chloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U				
yl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U	1 U
enes, Total	5		0.5 U	1 U	1 U	1 U	1	1 U	1 U				

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-1S
		Depth Interval											
		Sample Date	5/21/2008	5/21/2008	11/18/2008	10/19/2009	5/18/2010	1/19/2011	4/18/2011	7/26/2011	10/25/2011	3/20/2012	8/7/2012
	Class GA	Sample ID	BLIND DUP	MW-1S-052108	MW-1S	MW-1S-10190910192009		MW-1S-01192011	MW-1S-041811	MW-1S072611	MW1S102511	MW1S032012	MW1S080712
emical Name	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
,1-Trichloroethane	(ug.l) 5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene (Total)	5				0.5 0								
-Dichloropropane	1		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
exanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
lethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
tone	50		10 U	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
zene	1		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
modichloromethane	50		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
moform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
momethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon disulfide	60		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon tetrachloride	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
orobenzene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroform	7		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romochloromethane	50		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ylbenzene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	0.69 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
hylene chloride	5		2 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rachloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
uene	5		0.5 U	0.5 U	0.5 U	1.9	1 U	1 U	1 U	0.83 J	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
enes, Total	5		1 U	1 U	1 U	0.67 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S
		Depth Interval											
		Sample Date	12/18/2012	5/21/2013	8/19/2013	12/18/2013	3/25/2014	6/9/2014	9/23/2014	12/9/2014	3/16/2015	6/23/2015	9/21/2015
	Class GA	Sample ID	MW-1S-121812	MW-1S-052113	MW-1S-081913	MW-1S-121813	MW-1S-032514	MW-1S-060914	MW1S092314	MW 1S 120914	MW1S 031615	MW1S 062315	MW1S 092115
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name ,1-Trichloroethane	(ug.l) 5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene (Total)	5												
-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
exanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
lethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
tone	50		10 U	10 U	10 U	10 U	10 U	10 U					
zene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
modichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
moform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
momethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
orobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romochloromethane	50		1 U	1 U	1 U	1 U *	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
ylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U					
hylene chloride	5		1 U	1 U	1 U	1 U	1 U	0.56 JB	1 U	1 U	1 U	1 U	1 U
rene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
uene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
enes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID		MW-1S	MW-1S	MW-1S	X-1	MW-1S	MW-1S	MW-1S		MW-1S	MW-1S
		Depth Interval											
		Sample Date	9/21/2015	1/12/2016	3/28/2016	6/21/2016	6/21/2016	9/20/2016	12/20/2016	4/11/2017	4/11/2017	6/28/2017	9/12/2017
	Class GA	Sample ID	MW1S 092115	MW1S 011216	MW1S 032816	MW1S 062116	MW1S 062116	MW1S 092016	MW1S 122016	MW1S 04112017	MW1S 04112017	MW1S 062817	MW1S 091217
emical Name	GW Stds (ug.l)		ug/l	ug/l	ug/l	ug/l							
,1-Trichloroethane	(ug.i)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene (Total)	5												
-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Nethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U *	10 U	10 U	10 U	10 U					
nzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
modichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
moform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
momethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon tetrachloride	5		1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
orobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U							
thylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
uene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
enes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-1S
		Depth Interval	
		Sample Date	12/19/2017
	Class GA	Sample ID	MW1S 121917
	GW Stds		ug/l
Chemical Name	(ug.l)		
1,1,1-Trichloroethane	5		1.0 U
1,1,2,2-Tetrachloroethane	5		1.0 U
1,1,2-Trichloroethane	1		1.0 U
1,1-Dichloroethane	5		1.0 U
1,1-Dichloroethene	5		1.0 U
1,2-Dichloroethane	0.6		1.0 U
1,2-Dichloroethene (Total)	5		
1,2-Dichloropropane	1		1.0 U
2-Hexanone	50		5.0 U
4-Methyl-2-pentanone	NS		5.0 U
Acetone	50		10 U
Benzene	1		1.0 U
Bromodichloromethane	50		1.0 U
Bromoform	50		1.0 U
Bromomethane	5		1.0 U
Carbon disulfide	60		1.0 U
Carbon tetrachloride	5		1.0 U
Chlorobenzene	5		1.0 U
Chloroethane	5		1.0 U
Chloroform	7		1.0 U
cis-1,2-Dichloroethene	5		1.0 U
cis-1,3-Dichloropropene	0.4		1.0 U
Dibromochloromethane	50		1.0 U
Ethylbenzene	5		1.0 U
Methyl chloride	5		1.0 U
Methyl ethyl ketone	50		10 U
Methylene chloride	5		1.0 U
Styrene	5		1.0 U
Tetrachloroethene	5		1.0 U
Toluene	5		1.0 U
trans-1,2-Dichloroethene	5		1.0 U
trans-1,3-Dichloropropene	0.4		1.0 U
Trichloroethene	5		1.0 U
Vinyl chloride	2		1.0 U
Xylenes, Total	5		2.0 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D
		Depth Interval	-										
		Sample Date	9/14/1995	11/13/1995	7/24/1997	7/24/1997	9/17/1997	2/17/2000	8/15/2001	11/29/2001	2/28/2002	5/14/2002	7/30/2003
	Class GA	Sample ID	MW-04D_WG_091495	MW-04D_WG_111395		MW-04D_WG_072497_DUP		MW-04D_WG_021700	MW-04D_WG_081501	MW-04D_WG_112901	MW-04D_WG_022802	MW-04D_WG_051402	MW-04D_WG_07300
emical Name	GW Stds (ug.l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
,1-Trichloroethane	(ug.i)		10 U	10 U	1 U	1 U	0.3	[11]	0.6	2	2	2	0.5 U
,2,2-Tetrachloroethane	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
.,2-Trichloroethane	1		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
-Dichloroethane	5		3	2	3.2	3.4	3.5	[30]	4	[14]	[18]	[19]	0.8
-Dichloroethene	5		10 U	10 U	1 U	1 U	1 U	0.7	0.5 U	0.2 J	0.2 J	0.2 J	0.5 U
2-Dichloroethane	0.6		10 U	10 U	1 U	1 U	1 U	0.2 J	0.5 U				
2-Dichloroethene (Total)	5		10 U	10 U	1.1	1.4	1.5	0.2 3				0.5 0	
2-Dichloropropane	1		10 U	10 U	1.1 1 U	1.7 1 U	1.5 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexanone	50		10 U	10 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	2 U	2 U	2 U	10 U	10 U	10 U	10 U	10 U	1 J
nzene	1		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omodichloromethane	50		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omoform	50		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omomethane	5		10 U	10 U	2 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U
rbon tetrachloride	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
lorobenzene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
loroethane	5		10 U	10 U	1 U	1 U	1 U	0.5 J	1 U	0.4 J	0.5 J	0.5 J	1 U
loroform	7		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
-1,2-Dichloroethene	5							[11]	0.8	2	3	3	0.9
-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
promochloromethane	50		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
nylbenzene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
thyl chloride	5		10 U	10 U	1 U	1 U	1 U	0.2 J	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	4 U	4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U
thylene chloride	5		10 U	10 U	1 U	1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U
rene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trachloroethene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
luene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ns-1,2-Dichloroethene	5							0.9	0.5 U	0.3 J	0.3 J	0.3 J	0.5 U
ns-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
chloroethene	5		10 U	10 U	1 U	1 U	1 U	0.4 J	0.5 U	0.1 J	0.1 J	0.1 J	0.5 U
nyl chloride	2		10 U	10 U	[2.4]	[2.6]	[3.1]	[20]	1	[5]	[6]	[7]	1
lenes, Total	- 5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D
		Depth Interval											
		Sample Date	2/5/2004	5/19/2004	8/5/2004	11/17/2004	2/15/2005	4/20/2005	9/7/2005	11/16/2005	4/27/2006	11/15/2006	5/3/2007
	Class GA	Sample ID	MW-04D_WG_020504	MW-04D_WG_051904	MW-04D_WG_080504	MW-04D_WG_111704	MW-04D_WG_021505	MW-04D_WG_042005	MW-4D_09072005	MW-4D_11162005	MW-4D_04272006	MW-4D_11152006	MW-4D_050307
emical Name	GW Stds (ug.l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,1-Trichloroethane	(ug.i)		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
1-Dichloroethane	5		0.5	0.3 J	0.3 J	0.3 J	0.3 J	0.2 J	0.23 J	0.34 J	0.21 J	0.5	0.11 J
1-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
2-Dichloroethene (Total)	5			0.5 0	0.5 0	0.5 0	0.5 0						
2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U
etone	50		10 U	10 U	2 J	10 U	3 J	10 U	1.44 J	10 U	1.18 J	10	10 U
nzene	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
omodichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
omoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
rbon disulfide	60		0.5 U	0.5 U	0.5 U	0.14 J	0.5	0.5 U					
rbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
lorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
loroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
-1,2-Dichloroethene	5		0.8	0.4 J	0.3 J	0.4 J	0.5 J	0.2 J	0.31 J	0.42 J	0.58	0.5	0.13 J
-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U					
promochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
hylbenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10	10 U					
ethylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2	2 U
yrene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
trachloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
luene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
ns-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U					
ichloroethene	5		0.5 U	0.5 U	0.5 U	0.18 J	0.5	0.5 U					
nyl chloride	2		0.8 J	0.6 J	0.4 J	0.4 J	0.5 J	0.2 J	1 U	0.46 J	0.12 J	1	1 U
lenes, Total	5		0.5 U	1 U	1 U	1 U	1	1 U					

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-4D
		Depth Interval											
		Sample Date	10/31/2007	5/23/2008	11/19/2008	10/21/2009	5/19/2010	1/20/2011	4/21/2011	7/28/2011	10/26/2011	3/22/2012	8/9/2012
	Class GA	Sample ID	MW 4-D-103107	MW-4D-052208	MW-4D	MW-4D-10210910212009	MW-4D-05191005192010	MW-4D-01202011	MW-4D-042111	MW-4D 072811	MW4D102611	MW4D032212	MW4D080912
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	(ug.l)												
1,1-Trichloroethane	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 HU	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
nzene	1		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		0.5 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		0.16 JH	0.5 U	0.12 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,3-Dichloropropene	0.4		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 HU	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		2 HU	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rachloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
uene	5		0.5 HU	0.5 U	0.5 U	1.9	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ins-1,2-Dichloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ins-1,3-Dichloropropene	0.4		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lenes, Total	5		1 HU	1 U	1 U	0.67 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D
		Depth Interval	-	-	-	-	-	-	-	-	-	-	- 0/22/2045
	Class GA	Sample Date Sample ID	12/20/2012 MW-4D-122012	5/22/2013 MW-4D-052213	8/21/2013 MW-4D-082113	12/19/2013 MW-4D-121913	3/27/2014 MW-4D-032714	6/10/2014 MW-4D-061014	9/25/2014 MW 4D 092514	12/9/2014 MW 4D 120914	3/17/2015 MW4D 031715	6/23/2015 MW4D 062315	9/22/2015 MW4D 092215
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	(ug.l)												
1,1-Trichloroethane	5	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U*	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
llorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U*	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
luene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rlenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D
		Depth Interval									
		Sample Date	1/12/2016	3/30/2016	6/21/2016	9/20/2016	12/21/2016	4/13/2017	6/28/2017	9/14/2017	12/21/2017
	Class GA	Sample ID	MW4D 011216	MW-4D-033016	MW-4D-062116	MW-4D-092016	MW-4D-122116	MW-4D-041317	MW-4D-062817	MW-4D-091417	MW-4D-122117
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nical Name	(ug.l)		1.11	4.0	111	1.11	4.0	4.11	4.11	4.0	4.11
-Trichloroethane	5		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
2,2-Tetrachloroethane 2-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Pichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
pichloroethene (Total)	5										
Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
kanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
thyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
ne	50		10 U *	10 U*	10 U						
ene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
odichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
methane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rm	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
enzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
l chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ne chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
!	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S
		Depth Interval											
		Sample Date	9/14/1995	11/13/1995	7/24/1997	9/17/1997	9/17/1997	2/17/2000	8/15/2001	11/29/2001	2/28/2002	5/14/2002	7/31/2003
	Class GA	Sample ID	MW-04S_WG_091495	MW-04S_WG_111395	MW-04S_WG_072497		MW-04S_WG_091797_DUP	MW-04S_WG_021700	MW-04S_WG_081501	MW-04S_WG_112901	MW-04S_WG_022802	MW-04S_WG_051402	MW-04S_WG_073103
2.10	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name 1,1-Trichloroethane	(ug.l) 5		10 U	10 U	1 U	1 U	1 U	0.2 J	0.5 U	0.2 J	0.1 J	0.2 J	0.5 U
1,2,2-Tetrachloroethane	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U
1,2,2-Tetrachioroethane	1		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1-Dichloroethane	5		10 U	10 U	1 U	1 U	1 U	0.5 U 0.4 J	0.3 J	0.5 0	0.3 J	0.5 J	0.5 U 0.2 J
1-Dichloroethene	5		10 U	10 U	1 U	1 U	1 U	0.4 J 0.5 U	0.5 U	0.4 J 0.5 U	0.5 U	0.5 U	0.2 J 0.5 U
2-Dichloroethane	0.6		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Dichloroethene (Total)	5		10 U	10 U	1 U	1 U	1 U	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0
2-Dichloropropane	1		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexanone	50		10 U	10 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	2 U	2 U	2 U	10 U	10 J	10 U	10 U	10 U	1 J
nzene	1		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 J
omodichloromethane	50		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omoform	50		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omomethane	5		10 U	10 U	2 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.2 J	0.5 U	0.5 U	0.5 U
rbon tetrachloride	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
lorobenzene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
loroethane	5		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
-1,2-Dichloroethene	5							0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.1 J
:-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
promochloromethane	50		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
hylbenzene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 J
ethyl chloride	5		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	4 U	4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		10 U	10 U	1 U	1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U
yrene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trachloroethene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
luene	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.6
ns-1,2-Dichloroethene	5							0.5 U					
ns-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ichloroethene	5		10 U	10 U	1 U	1 U	1 U	0.2 J	0.5 U	0.1 J	0.1 J	0.2 J	0.5 U
nyl chloride	2		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lenes, Total	5		10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S
		Depth Interval											
		Sample Date	2/6/2004	5/19/2004	8/5/2004	11/17/2004	2/15/2005	4/19/2005	9/7/2005	11/16/2005	4/27/2006	11/16/2006	5/3/2007
	Class GA	Sample ID	MW-04S_WG_020604	MW-04S_WG_051904	MW-04S_WG_080504	MW-04S_WG_111704	MW-04S_WG_021505	MW-04S_WG_041905	MW-4S_09072005	MW-4S_11162005	MW-4S_04272006	MW-4S_11162006	MW-4S_050307
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	(ug.l)												
,1-Trichloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
-Dichloroethane	5		0.1 J	0.5 U	0.2 J	0.2 J	0.2 J	0.2 J	0.18 J	0.11 J	0.5 U	0.15 J	0.13 J
-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
-Dichloroethene (Total)	5												
-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U
1ethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U
etone	50		1 J	1 J	10 U	1 J	3 J	10 U	2.61 J	10 U	10 U	1.07 J	10 U
nzene	1		0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U
omodichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
omoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
rbon disulfide	60		0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U
rbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
lorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
oroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
loroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
-1,2-Dichloroethene	5		0.5 U	0.5 U	0.11 J	0.5 U	0.1 J	0.5 U					
-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U					
romochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
ylbenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U	10	10 U					
thylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.12 J	2 U	2	2 U
rrene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
trachloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
uene	5		0.3 J	0.5 U	0.5 U	0.4 J	0.5 U	0.5 U	0.13 J	0.5 U	0.5 U	0.5	0.5 U
ns-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
chloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U					
yl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
enes, Total	5		0.2 J	0.5 U	0.5 U	0.4 J	0.5 U	0.5 U	0.1 J	1 U	1 U	1	1 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-4S
		Depth Interval											
		Sample Date	10/31/2007	5/22/2008	11/18/2008	10/21/2009	5/19/2010	1/20/2011	4/21/2011	7/28/2011	10/27/2011	3/22/2012	8/9/2012
	Class GA	Sample ID	MW 4-S-103107	MW-4S-052208	MW-4S	MW-4S-10210910212009		MW-4S-01202011	MW-4S-042111	MW-4S 072811	MW4S102711	MW4S032212	MW4S080912
emical Name	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
,1-Trichloroethane	(ug.l) 5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	5		0.11 JH	0.5 U	0.18 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	0.6		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene (Total)	5		0.5 110										
-Dichloropropane	1		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lexanone	50		5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
lethyl-2-pentanone	NS		5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		1.28 JH	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	3.4 J	10 U
nzene	1		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
modichloromethane	50		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
moform	50		0.5 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
momethane	5		1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon disulfide	60		0.11 JH	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon tetrachloride	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
orobenzene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroethane	5		1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroform	7		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropene	0.4		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romochloromethane	50		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ylbenzene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 HU	1 U	1 U	1 U	1 U	0.55 J	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 HU	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
thylene chloride	5		2 HU	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rachloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
uene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yl chloride	2		1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
enes, Total	5		1 HU	1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-4S	MW-4S	MW-4S	MW-4S							
		Depth Interval											
		Sample Date	12/20/2012	5/22/2013	8/22/2013	12/19/2013	3/27/2014	6/11/2014	9/24/2014	12/10/2014	3/18/2015	6/25/2015	9/23/2015
	Class GA	Sample ID	MW-4S-122012	MW-4S-052213	MW-4S-082213	MW-4S-121913	MW-4S-032714	MW-4S-061114	MW-4S-092414	MW 4S 121014	MW4S031815	MW4S062515	MW4S 092315
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l			ug/l	ug/l	ug/l	ug/l
emical Name	(ug.l)		4.11	4.11	4.11	4.11	4.11	411		4 114	4.11	4.11	4.11
I,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U*	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U 1 U	1 U		1 U	1 U	1 U	1 U
L-Dichloroethane	5		1 U	1 U	1 U	1 U		1 U		1 U	1 U	1 U	1 U
L-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U*	5 U		5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U	5 U	5 U
etone	50		10 U	3.2 J		10 U	10 U	10 U	10 U				
nzene	1		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
modichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U		1 U*	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
rbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
rbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
orobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
oroethane	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
loroform	7		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
oromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U		1 U*	1 U	1 U	1 U
nylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U		10 U	10 U	10 U	10 U					
thylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
rene	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
trachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 I		1 U	1 U	1 U	1 U
uene	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
chloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
nyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U		2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S
		Depth Interval									
		Sample Date	1/13/2016	3/30/2016	6/21/2016	9/21/2016	12/21/2016	4/13/2017	6/28/2017	9/14/2017	12/21/2017
	Class GA	Sample ID	MW4S 011316	MW-4S-033016	MW-4S-062116	MW-4S-092116	MW-4S-122116	MW-4S-041317	MW-4S-062817	MW-4S-091417	MW-4S-122117
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
ical Name	(ug.l)										
Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene (Total)	5										
ichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
anone	50		5 U	5 U	5 U	5 U	5 U	5 U 5 U	5 U 5 U	5 U	5 U
hyl-2-pentanone	NS		5 U 10 U *	5 U 10 U*	5 U	5 U	5 U 10 U	5 U 10 U	3.5 J	5 U 10 U	5 U 10 U
ne	50				10 U	10 U					
ne dialahan	1		1 U	1 U	1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U
dichloromethane form	50		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U
methane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloride	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
orm Dichloroethene	5		1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U
Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ketone	50		10 U	10 U	10 U	10 U	10 U *	10 U	10 U	10 U	10 U
ene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
pethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D
		Depth Interval											
		Sample Date Sample ID	9/13/1995 MW-05D WG 091395	11/14/1995 MW-05D WG 111495	7/24/1997 MW-05D WG 072497	9/16/1997 MW-05D WG 091697	2/17/2000 MW-05D WG 021700	8/14/2001 MW-05D WG 081401	11/29/2001 MW-05D WG 112901	2/27/2002 MW-05D WG 022702	5/15/2002 MW-05D_WG_051502	7/30/2003 MW-05D WG 073003	2/6/2004 MW-05D_WG_020604
	Class GA GW	Sumple 15	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	Standards (ug/l)												
1,1-Trichloroethane	5		[5]	[12]	[17]	[22]	[11]	[8]	[8]	[6]	[5]	3	2
1,2,2-Tetrachloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Trichloroethane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1-Dichloroethane	5		[8]	[13]	[26]	[33]	[20]	[19]	[18]	[17]	[17]	[6]	[5]
1-Dichloroethene	5		10 U	10 U	1.1	1.8	0.9	0.4 J	0.5	0.4 J	0.4 J	0.3 J	0.3 J
2-Dichloroethane	0.6		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Dichloroethene (Total)	5		21	68	[63.2]	[101.8]							
2-Dichloropropane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexanone	50		10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	2 U	2 U	10 U	10 J	10 U	10 U	10 U	1 J	10 U
enzene	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omodichloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omoform	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omomethane	5		10 U	10 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
arbon tetrachloride	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
nlorobenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
nloroethane	5		10 U	10 U	1 U	1 U	0.6 J	0.3 J	0.4 J	0.4 J	0.4 J	1 U	1 U
nloroform	7		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
s-1,2-Dichloroethene	5						[37]	[30]	[40]	[28]	[24]	[17]	[13]
s-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
bromochloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
hylbenzene	5		0.6	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ethyl chloride	5		10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		10 U	10 U	1 U	1 U	2 U	2 J	2 U	2 U	2 U	2 U	2 U
yrene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
etrachloroethene	5		10 U	10 U	1 U	0.6	0.2 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
oluene	5		2	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ans-1,2-Dichloroethene	5						1	0.3 J	0.4 J	0.3 J	0.3 J	0.3 J	0.2 J
ans-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ichloroethene	5		1	4	2.7	3.5	2	0.6	0.7	0.6	0.6	0.3 J	0.3 J
nyl chloride	2		[15]	[44]	[57]	[84]	[30]	[30]	[33]	[21]	[20]	[13]	[9]
rlenes, Total	5		3	10 U	10	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D
		Depth Interval	-	-	-	-	-	-	-	-	-	-	-
		Sample Date Sample ID	5/19/2004 MW-05D WG 051904	8/5/2004 MW-05D WG 080504	11/17/2004 MW-05D WG 111704	2/16/2005 MW-05D WG 021605	4/20/2005 MW-05D_WG_042005	9/7/2005 MW-5D 09072005	11/15/2005 MW-5D 11152005	4/27/2006 MW-5D_04272006	11/14/2006 MW-5D 11142006	5/2/2007 MW-5D_050207	10/30/2007 MW 5 D-103007
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
hemical Name	Standards (ug/l)												
1,1-Trichloroethane	5		1	0.9	1	0.6	0.6	0.5 J	0.42 J	0.3 J	0.22 J	0.19 J	0.11 JH
1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
1-Dichloroethane	5		3	3	4	2	3	2.4	2.42	1.9	1.49	1.32	1.08 H
1-Dichloroethene	5		0.5 U	0.1 J	0.2 J	0.1 J	0.1 J	1 U	0.1 J	0.5 U	0.5	0.5 U	0.5 HU
2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
Hexanone	50		5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U	5	5 U	5 HU
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U	5	5 U	5 HU
cetone	50		2 J	4 J	10 U	3 J	10 U	2.2 J	10 U	10 U	10	10 U	10 HU
enzene	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
omodichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
romoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
romomethane	5		1 U	1 U	1 U	1 U	1 U	2 U	1 U	1 U	1	1 U	1 HU
arbon disulfide	60		0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
arbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
nlorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
hloroethane	5		1 U	1 U	1 U	1 U	1 U	2 U	1 U	1 U	1	1 U	1 HU
nloroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
s-1,2-Dichloroethene	5		[7]	[6]	[8]	4	4	4.6	4.39	3.46	3.05	2.93	2.28 H
s-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	[0.5]	0.5 U	0.5 HU
ibromochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
hylbenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	2 U	1 U	1 U	1	1 U	1 HU
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	20 U	10 U	10 U	10	10 U	10 HU
ethylene chloride	5		2 U	2 U	2 U	2 U	2 U	0.56 J	2 U	2 U	2	2 U	2 HU
yrene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
trachloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
luene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
ns-1,2-Dichloroethene	5		0.1 J	0.1 J	0.5 U	0.1 J	0.5 U	1 U	0.5 U	0.5 U	0.5	0.5 U	0.5 HU
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.5 U	[0.5]	0.5 U	0.5 HU
ichloroethene	5		0.2 J	0.1 J	0.2 J	0.1 J	0.1 J	1 U	0.13 J	0.1 J	0.5	0.13 J	0.5 HU
inyl chloride	2		[5]	[4]	[5]	[3]	[3]	[3.08]	[2.86]	[2.39]	1.87	1.8	1.66 H
ylenes, Total	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	1 U	1	1 U	1 HU

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-5D	MW-5D
		Depth Interval	-	-	-	-	- 1/20/2011	-	- 7/20/2011	-	- 2/22/2012	-	-
		Sample Date Sample ID	5/23/2008 MW-5D-052208	11/19/2008 MW-5D	10/21/2009 MW-5D-10210910212009	5/19/2010 MW-5D-05191005192010	1/20/2011 MW-5D-01202011	4/20/2011 MW-5D-042011	7/28/2011 MW-5D 072811	10/27/2011 MW5D102711	3/22/2012 MW5D032212	8/9/2012 MW5D080912	12/19/2012 MW-5D-121912
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	Standards (ug/l)												
1,1-Trichloroethane	5		0.5 U	0.15 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1.16	1.3	1.1	0.87 J	1	0.85 J	0.8 J	0.69 J	0.85 J	0.83 J	0.77 J
1-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		2.72	2.63	2.5	1.7	2.1	1.6	1.5	1.4	1.4	1.5	1.5
s-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	0.75 J	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
luene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		[2.47]	[2.17]	[2.9]	1.2	1.8	1.3	0.93 J	0.92 J	1.3	1.1	1 U
lenes, Total	5		1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D
		Depth Interval	-	-	-	- 2/27/2014	-	-	-	-	-	- 0/22/2015	-
		Sample Date Sample ID	5/22/2013 MW-5D-052213	8/21/2013 MW-5D-082113	12/19/2013 MW-5D-121913	3/27/2014 MW-5D-032714	6/10/2014 MW-5D-061014	9/25/2014 MW 5D 092514	12/9/2014 MW 5D 120914	3/17/2015 MW5D 031715	6/25/2015 MW 5D 062515	9/22/2015 MW5D 092215	1/13/2016 MW5D 011316
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	Standards (ug/l)												
,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	5		0.59 J	0.62 J	0.79 J	0.55 J	0.62 J	0.49 J	1 U	1 U	0.57 J	0.55 J	0.6 J
-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene (Total)	5												
-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U*	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1ethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U *
nzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U
momethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
orobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		1 U	1	1.4	0.97 J	0.92 J	1 U	1 U	1 U	1 U	1 U	0.92 J
-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U
nylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U*	10 U	10 U	10 U	10 U	10 U	10 U	10 U
thylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
uene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yl chloride	2		1 U	0.94 J	0.94 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
enes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

	Depth Interva Sample Date Sample ID lass GA GW tandards (ug/l) 5 5 1 5 0.6 5 1 50 NS	- 3/30/2016 MW-5D-033016 ug/l 1 U 1 U 0.6 J 1 U 1 U 1 U 5 U	- 6/21/2016 MW-5D-062116 ug/l 1 U 1 U 0.58 J 1 U 1 U 1 U	9/20/2016 MW-5D-092016 ug/l 1 U 1 U 1 U 0.58 J 1 U 1 U	9/20/2016 MW-5D-092016 ug/l 1 U 1 U 1 U 0.54 J 1 U 1 U	- 12/21/2016 MW-5D-122116 ug/l 1 U 1 U 0.5 J 1 U 1 U	- 4/12/2017 MW-5D-041217 ug/l 1 U 1 U 1 U 0.56 J 1 U	- 6/27/2017 MW-5D-062717 ug/l 1 U 1 U 0.46 J 1 U	- 9/14/2017 MW-5D-091417 ug/l 1 U 1 U 0.51 J	12/21/2017 MW-5D-122117 ug/l 1 U 1 U 1 U 0.42 J
Chemical Name Sta 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	Sample ID lass GA GW tandards (ug/l) 5 5 5 1 5 0.6 5 1 50	MW-SD-033016 ug/l 1 U 1 U 1 U 0.6 J 1 U 1 U 1 U 1 U	MW-5D-062116 ug/l 1 U 1 U 1 U 0.58 J 1 U 1 U	MW-5D-092016 ug/l 1 U 1 U 1 U 0.58 J 1 U 1 U	MW-5D-092016 ug/l 1 U 1 U 1 U 0.54 J 1 U	MW-5D-122116 ug/l 1 U 1 U 1 U 0.5 J 1 U	MW-5D-041217 ug/l 1 U 1 U 1 U 0.56 J	MW-5D-062717 ug/l 1 U 1 U 1 U 0.46 J	MW-5D-091417 ug/l 1 U 1 U 1 U	MW-5D-122117 ug/l 1 U 1 U 1 U
Chemical Name Sta 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	lass GA GW tandards (ug/l) 5 5 1 5 5 0.6 5 1 5 0.6 5 1 5 0.6	ug/l 1 U 1 U 1 U 1 U 0.6 J 1 U 1 U 1 U 1 U 1 U	ug/l 1 U 1 U 1 U 0.58 J 1 U 1 U	ug/l 1 U 1 U 1 U 0.58 J 1 U 1 U	ug/l 1 U 1 U 1 U 0.54 J 1 U	ug/l 1 U 1 U 1 U 0.5 J 1 U	ug/l 1 U 1 U 1 U 1 U 0.56 J	ug/l 1 U 1 U 1 U 1 U 0.46 J	ug/l 1 U 1 U 1 U	ug/l 1 U 1 U 1 U
Chemical Name Sta 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	tandards (ug/l) 5 5 1 5 5 0.6 5 1 50	1 U 1 U 1 U 0.6 J 1 U 1 U 1 U	1 U 1 U 1 U 0.58 J 1 U 1 U	1 U 1 U 1 U 0.58 J 1 U 1 U	1 U 1 U 1 U 0.54 J 1 U	1 U 1 U 1 U 0.5 J 1 U	1 U 1 U 1 U 0.56 J	1 U 1 U 1 U 0.46 J	1 U 1 U 1 U	1 U 1 U 1 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	5 5 1 5 5 0.6 5 1	1 U 1 U 0.6 J 1 U 1 U 1 U	1 U 1 U 0.58 J 1 U 1 U	1 U 1 U 0.58 J 1 U 1 U	1 U 1 U 0.54 J 1 U	1 U 1 U 0.5 J 1 U	1 U 1 U 0.56 J	1 U 1 U 0.46 J	1 U 1 U	1 U 1 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene (Total) 1,2-Dichloropropane	5 1 5 5 0.6 5 1	1 U 1 U 0.6 J 1 U 1 U 1 U	1 U 1 U 0.58 J 1 U 1 U	1 U 1 U 0.58 J 1 U 1 U	1 U 1 U 0.54 J 1 U	1 U 1 U 0.5 J 1 U	1 U 1 U 0.56 J	1 U 1 U 0.46 J	1 U 1 U	1 U 1 U
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene (Total) 1,2-Dichloropropane	1 5 5 0.6 5 1 50	1 U 0.6 J 1 U 1 U 1 U	1 U 0.58 J 1 U 1 U 	1 U 0.58 J 1 U 1 U	1 U 0.54 J 1 U	1 U 0.5 J 1 U	1 U 0.56 J	1 U 0.46 J	1 U	1 U
1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene (Total) 1,2-Dichloropropane	5 5 0.6 5 1	0.6 J 1 U 1 U 1 U	0.58 J 1 U 1 U 	0.58 J 1 U 1 U	0.54 J 1 U	0.5 J 1 U	0.56 Ј	0.46 Ј		
1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethene (Total) 1,2-Dichloropropane	5 0.6 5 1 50	1 U 1 U 1 U	1 U 1 U 	1 U 1 U	1 U	1 U			0.51 J	0.42.1
1,2-Dichloroethane 1,2-Dichloroethene (Total) 1,2-Dichloropropane	0.6 5 1 50	1 U 1 U	1 U 	1 U			1 U			
1,2-Dichloroethene (Total) 1,2-Dichloropropane	5 1 50	1 U			1 U	1 11			1 U	1 U
1,2-Dichloropropane	1 50	1 U				10	1 U	1 U	1 U	1 U
	50		1 U							
2-Hexanone		5.0		1 U	1 U	1 U	1 U	1 U	1 U	1 U
	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	10 U*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Data have not been validated

Page 27 of 84

6

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S
		epth Interval											
		Sample Date	09/14/1995	11/14/1995	7/24/1997	9/16/1997	2/17/2000	2/17/2000	8/14/2001	11/29/2001	2/27/2002	5/15/2002	7/30/2003
		Sample ID	MW-05S_WG_091495	MW-05S_WG_111495	MW-05S_WG_072497	MW-05S_WG_091697		MW-05S_WG_021700_DUP	MW-05S_WG_081401	MW-05S_WG_112901	MW-05S_WG_022702	MW-05S_WG_051502	MW-05S_WG_073003
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	Standards (ug/l)												
1,1,1-Trichloroethane	5		[5]	[65]	[110]	[88]	[90]	[100]	[120]	[73]	[57]	[35]	[90]
1,1,2,2-Tetrachloroethane	5		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
1,1,2-Trichloroethane	1		10 U	100 U	1 U	1 U	0.3 J	0.3 J	5 U	20 U	20 U	20 U	20 U
1,1-Dichloroethane	5		[5]	[70]	[92]	[76]	[100]	[110]	[130]	[71]	[55]	[33]	[43]
1,1-Dichloroethene	5		10 U	100 U	16	1 U	[13]	[12]	[20]	[12] J	[8] J	[5] J	[7] J
1,2-Dichloroethane	0.6		10 U	100 U	1 U	1 U	0.4 J	0.4 J	5 U	20 U	20 U	20 U	20 U
1,2-Dichloroethene (Total)	5		[130]	[1300]	[1709.3]	[1400]							
1,2-Dichloropropane	1		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
2-Hexanone	50		10 U	100 U	2 U	2 U	5 U	5 U	50 U	200 U	200 U	200 U	200 U
4-Methyl-2-pentanone	NS		10 U	100 U	2 U	2 U	5 U	5 U	50 U	200 U	200 U	200 U	200 U
Acetone	50		8	100 U	2 U	2 U	10 U	10 U	100 U	400 U	400 U	400 U	400 U
Benzene	1		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Bromodichloromethane	50		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Bromoform	50		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Bromomethane	5		2	100 U	2 U	2 U	1 U	1 U	10 U	40 U	40 U	40 U	20 U
Carbon disulfide	60		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Carbon tetrachloride	5		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Chlorobenzene	5		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Chloroethane	5		10 U	100 U	1 U	1 U	1	1	10 U	40 U	40 U	40 U	40 U
Chloroform	7		10 U	100 U	1.7	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
cis-1,2-Dichloroethene	5						[1300]	[1500]	[2200] E	[1100]	[880]	[590]	[1300] D
cis-1,3-Dichloropropene	0.4		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Dibromochloromethane	50		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Ethylbenzene	5		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Methyl chloride	5		10 U	100 U	1 U	1 U	1 U	0.2 J	10 U	40 U	40 U	40 U	40 U
Methyl ethyl ketone	50		10 U	100 U	4 U	4 U	10 U	10 U	100 U	400 U	400 U	400 U	400 U
Methylene chloride	5		10 U	100 U	1 U	1 U	2 U	2 U	20 U	80 U	80 U	80 U	80 U
Styrene	5		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Tetrachloroethene	5		10 U	100 U	4.2	1 U	0.3 J	0.3 J	5 U	20 U	20 U	20 U	20 U
Toluene	5		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
trans-1,2-Dichloroethene	5						[41]	[46]	[25]	[11] J	[8] J	[6] J	[11] J
trans-1,3-Dichloropropene	0.4		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U
Trichloroethene	5		[8]	[76]	[350]	[230]	[130]	[140]	[55]	[59]	[26]	[17] J	[31]
Vinyl chloride	2		[16]	[220]	[170]	[240]	[210]	[240]	[370]	[190]	[140]	[89]	[380]
Xylenes, Total	5		10 U	100 U	1 U	1 U	0.5 U	0.5 U	5 U	20 U	20 U	20 U	20 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S
		Depth Interval											
		Sample Date	2/5/2004	5/19/2004	8/5/2004	11/17/2004	2/16/2005	4/20/2005	9/7/2005	11/15/2005	4/27/2006	4/27/2006	11/14/2006
		Sample ID	MW-05S_WG_020504	MW-05S_WG_051904	MW-05S_WG_080504	MW-05S_WG_111704	MW-05S_WG_021605	MW-05S_WG_042005	MW-5S_09072005	MW-5S_11152005	DUP-1_04272006	MW-5S_04272006	MW-5S_11142006
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
hemical Name	Standards (ug/l)												
,1,1-Trichloroethane	5		[43]	[32]	[78]	[110]	[17]	[38]	[148]	[41.5]	[38.2]	[40.8]	[15.1]
,1,2,2-Tetrachloroethane	5		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
,1,2-Trichloroethane	1		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
1-Dichloroethane	5		[99]	[29]	[15]	[190]	[10]	[53]	[38]	[25.5]	[13]	[14]	[10.4]
,1-Dichloroethene	5		[12] J	[7] J	4 J	[21]	2 U	[11] J	[6] J	[7] J	12.5 U	12.5 U	[1.7] J
,2-Dichloroethane	0.6		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
2-Dichloroethene (Total)	5												
,2-Dichloropropane	1		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
-Hexanone	50		200 U	200 U	100 U	200 U	25 U	200 U	250 U	250 U	125 U	125 U	[50]
-Methyl-2-pentanone	NS		200 U	200 U	100 U	200 U	25 U	200 U	250 U	250 U	125 U	125 U	50
cetone	50		400 U	400 U	200 U	400 U	50 U	400 U	101 J	500 U	250 U	250 U	[100]
enzene	1		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
romodichloromethane	50		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	5
romoform	50		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	5
romomethane	5		40 U	40 U	20 U	40 U	5 U	40 U	50 U	50 U	25 U	25 U	[10]
arbon disulfide	60		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	5
arbon tetrachloride	5		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
hlorobenzene	5		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
hloroethane	5		40 U	40 U	20 U	40 U	5 U	40 U	50 U	50 U	25 U	25 U	[10]
hloroform	7		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	5
s-1,2-Dichloroethene	5		[740]	[1300]	[460]	[890]	[410] D	[2100] D	[964]	[1290]	[372]	[377]	[219]
s-1,3-Dichloropropene	0.4		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
ibromochloromethane	50		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	5
thylbenzene	5		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
ethyl chloride	5		40 U	40 U	20 U	40 U	5 U	40 U	50 U	50 U	25 U	25 U	[10]
lethyl ethyl ketone	50		400 U	400 U	200 U	400 U	50 U	400 U	500 U	500 U	250 U	250 U	[100]
lethylene chloride	5		80 U	60 J	40 U	6 J	10 U	80 U	13 J	100 U	50 U	50 U	[20]
yrene	5		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
etrachloroethene	5		20 U	20 U	4 J	20 U	4	20 U	25 U	25 U	12.5 U	12.5 U	[5]
oluene	5		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
ans-1,2-Dichloroethene	5		[12] J	[11] J	[5] J	[16] J	[5]	[16] J	[18] J	[13] J	3 J	3 J	1.7 J
ans-1,3-Dichloropropene	0.4		20 U	20 U	10 U	20 U	2 U	20 U	25 U	25 U	12.5 U	12.5 U	[5]
richloroethene	5		[34]	[35]	[85]	[44]	[96]	[65]	[294]	[112]	[38.2]	[40.5]	[27.8]
inyl chloride	2		[120]	[140]	[53]	[100]	[28]	[240]	[52]	[146]	[32.2]	[35.8]	[8.8]
ylenes, Total	5		20 U	20 U	10 U	20 U	2 U	20 U	50 U	50 U	25 U	25 U	[10]

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S
		Depth Interval											
		Sample Date Sample ID	5/2/2007 MW-5S 050207	10/30/2007 MW 5 S-103007	05/23/2008 MW-5S-052208	11/19/2008 MW-5S	10/21/2009 MW-5S-10210910212009	5/19/2010 MW-5S-05191005192010	1/20/2011 MW-5S-01202011	4/20/2011 MW-5S-042011	7/28/2011 MW-5S 072811	10/27/2011 MW5S102711	3/22/2012 MW5S032212
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
hemical Name	Standards (ug/l)												
1,1-Trichloroethane	5		[5.5] J	[25.2] H	[15.2]	[88]	[15]	[7.2]	3.4	2.6	[14]	3.1	[10]
1,2,2-Tetrachloroethane	5		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		[8] J	[126] H	[33]	[24]	[43]	[10]	[5.4]	[7.5]	[75]	3.4	[26]
1-Dichloroethene	5		[2.75] J	[10.5] JH	12.5 U	12.5 U	2.6	2.9	1.4	2	[10]	0.78 J	[9.3]
2-Dichloroethane	0.6		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		125 U	125 HU	125 U	125 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		125 U	125 HU	125 U	125 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		250 U	250 HU	250 U	250 U	4.6 J	5 U	10 U	10 U	10 U	10 U	10 U
enzene	1		12.5 U	12.5 HU	12.5 U	12.5 U	0.66 J	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		12.5 U	12.5 HU	25 U	25 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		25 U	25 HU	25 U	25 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		12.5 U	12.5 HU	12.5 U	[14.3]	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nlorobenzene	5		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroethane	5		25 U	25 HU	25 U	25 U	1 U	1 U	1 U	1 U	2.4	1 U	1 U
hloroform	7		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		[333]	[298] H	[395]	[300]	[75]	[420] D	[280]	[460]	[500]	[98]	[1700]
s-1,3-Dichloropropene	0.4		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		25 U	25 HU	25 U	25 U	1 U	1 U	0.7 J	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		250 U	250 HU	250 U	250 U	5 U	5 U	10 U	10 U	10 U	10 U	1 U
ethylene chloride	5		4.5 J	2.75 JH	6.5 J	50 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
luene	5		12.5 U	12.5 HU	12.5 U	12.5 U	4	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		12.5 U	9.75 JH	[5.5] J	3.75 J	0.62 J	[5.1]	2.1	2.6	[10]	1 U	[16]
ans-1,3-Dichloropropene	0.4		12.5 U	12.5 HU	12.5 U	12.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		[28.8]	[24.5] H	[15.2]	[90]	[5.1]	[19]	[17]	[15]	[32]	[15]	[16]
nyl chloride	2		[10.2] J	[22.8] JH	[55.5]	[37.2]	[8.7]	[58]	[49]	[52]	[53]	[13]	[300]
lenes, Total	5		25 U	25 HU	25 U	25 U	1.8 J	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S
		Depth Interval											
		Sample Date Sample ID	8/9/2012 MW5S080912	12/19/2012 MW-5S-121912	5/22/2013 MW-5S-052213	8/21/2013 MW-5S-082113	12/19/2013 MW-5S-121913	3/27/2014 MW-5S-032714	6/10/2014 MW-5S-061014	9/25/2014 MW 5S 092514	12/9/2014 MW 5S 120914	3/17/2015 MW5S 031715	6/23/2015 MW5S 062315
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	Standards (ug/l)												
1,1-Trichloroethane	5		[59]	5 U	10 U	10 U	10 U	3.2	6.3	3.7	32 *^	1 U	[11]
1,2,2-Tetrachloroethane	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
1,2-Trichloroethane	1		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
1-Dichloroethane	5		[26]	3.4 J	[13]	[13]	[25]	[14]	[49]	[52]	[31]	1 U	[120]
1-Dichloroethene	5		4.4	5 U	10 U	10 U	8.8 J	1.9	6	1.3 J	3.1 ^	1 U	[11]
2-Dichloroethane	0.6		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
Hexanone	50		5U	25 U	50 U	50 U	50 U	5 U*	5 U	10 U*	10 U	5 U	5 U
Methyl-2-pentanone	NS		5U	25 U	50 U	50 U	50 U	5 U	5 U	10 U*	10 U	5 U	5 U
etone	50		10U	50 U	100 U	100 U	100 U	10 U	10U	7.4 J	20 U	10 U	10 U
enzene	1		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
omodichloromethane	50		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
omoform	50		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U*	1 U	1 U
omomethane	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
rbon disulfide	60		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
rbon tetrachloride	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
lorobenzene	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
loroethane	5		1U	5 U	10 U	10 U	10 U	1 U	0.9 J	2 U	2 U	1 U	1 U
loroform	7		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
s-1,2-Dichloroethene	5		[430]	[220]	[640]	[620]	[2700]	[88]	[220]	[110]	[160]	1.8	[190 F]
s-1,3-Dichloropropene	0.4		10	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
bromochloromethane	50		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U*	1 U	1 U
hylbenzene	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
ethyl chloride	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
ethyl ethyl ketone	50		10U	50 U	100 U	100 U	100 U	10 U*	10 U	20 U	20 U	10 U	10 U
ethylene chloride	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
yrene	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
trachloroethene	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2.9	1 U	1 U
uene	5		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
ns-1,2-Dichloroethene	5		3.7	5 U	10 U	10 U	[13]	1.8	4.5	2 U	2 U	1 U	[9]
ns-1,3-Dichloropropene	0.4		1U	5 U	10 U	10 U	10 U	1 U	1 U	2 U	2 U	1 U	1 U
chloroethene	5		[6.9]	[5.2]	[37]	[5.5 J]	[20]	[5.9]	14	4.8	[61]	1.4	[21]
nyl chloride	2		[85]	[41]	[120]	[170]	[590]	[6.7]	[54]	[36]	2 U	1 U	[9.7]
lenes, Total	5		2U	10 U	20 U	20 U	20 U	2 U	2U	4 U	4 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

	Location ID	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S
	Depth Interva	al -									
	Sample Date	9/23/2015	1/13/2016	3/30/2016	6/21/2016	9/20/2016	12/20/2016	4/12/2017	6/27/2017	9/14/2017	12/21/2017
	Sample ID	MW5S 092315	MW5S 011316	MW-5S-033016	MW-5S-062116	MW-5S-092016	MW-5S-122016	MW-5S-041217	MW-5S-062717	MW-5S-091417	MW-5S-122117
	Class GA GW	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	Standards (ug/l)										
1,1,1-Trichloroethane	5	[8.8]	[7.9]	2.8	[15]	[15]	[22]	1.2	3.1	12	13
1,1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	[59]	[27]	[8.9]	[43]	[33]	[38]	[6]	0.84 J	[92]	[86]
1,1-Dichloroethene	5	2.3	1.7	0.83 J	2.2	2.8	2	0.45 J	0.57 J	[5.8]	[8.2]
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5										
1,2-Dichloropropane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	10 U	10 U *	10 U*	6 J	3.5 J	10 U				
Benzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60	1 U	1 U	1 U	0.41 J	0.19 J	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	[82]	[38]	[16]	[97]	[58]	[180] F1	[5.6]	3.8	[88]	[76]
cis-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	0.71 J	1 U	1 U	1 U	0.7 J	1 U	1 U	0.51 J	0.49 J
Toluene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	1	1.4	1 U	0.94 J	1 U	2.2	1 U	1 U	3.2	4
trans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	[10]	[12]	[8.7]	[22]	[20]	[92]	2.2	[6.7]	[33]	[26]
Vinyl chloride	2	[12]	1 U	1 U	[7.3]	[4.9]	1 U	1 U	1 U	2.1	1 U
Xylenes, Total	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D
	De	epth Interval											
		Sample Date	9/12/1995	9/13/1995	11/14/1995	7/28/1997	9/17/1997	2/15/2000	8/15/2001	11/29/2001	2/27/2002	5/15/2002	7/29/2003
		Sample ID	MW-06D_WG_091295_DUP	MW-06D_WG_091395	MW-06D_WG_111495	MW-06D_WG_072897	MW-06D_WG_091797	MW-06D_WG_021500	MW-06D_WG_081501	MW-06D_WG_112901	MW-06D_WG_022702	MW-06D_WG_051502	MW-06D_WG_072903
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	Standards (ug/l)												
,1,1-Trichloroethane	5		10 U	10 U	10 U	0.7	1 U	1	0.5 J	0.8	0.9	0.8 J	0.6
,1,2,2-Tetrachloroethane	5		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
,1,2-Trichloroethane	1		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
,1-Dichloroethane	5		10 U	10 U	10 U	[5.8]	3.6	2	2	2	2	1	1
,1-Dichloroethene	5		10 U	10 U	10 U	1 U	1 U	0.3 J	0.1 J	0.2 J	0.5 U	0.2 J	0.2 J
,2-Dichloroethane	0.6		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
,2-Dichloroethene (Total)	5		[6]	[6]	[17]	[14]	[35]						
,2-Dichloropropane	1		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
-Hexanone	50		10 U	10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	10 U	5 U
-Methyl-2-pentanone	NS		10 U	10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	10 U	5 U
cetone	50		10 U	10 U	10 U	2 U	2 U	10 U	10 J	10 U	10 U	20 U	10 U
Benzene	1		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
Bromodichloromethane	50		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
Bromoform	50		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
Bromomethane	5		10 U	10 U	10 U	2 U	2 U	1 U	1 U	1 U	1 U	2 U	1 U
Carbon disulfide	60		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	1	0.5 U	1 U	0.5 U
Carbon tetrachloride	5		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
Chlorobenzene	5		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
Chloroethane	5		10 U	10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	1 U
Chloroform	7		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
is-1,2-Dichloroethene	5							[43]	[20]	[34]	[36]	[35]	[21]
is-1,3-Dichloropropene	0.4		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
Dibromochloromethane	50		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
thylbenzene	5		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
1ethyl chloride	5		10 U	10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	1 U
1ethyl ethyl ketone	50		10 U	10 U	10 U	4 U	4 U	10 U	10 U	10 U	10 U	20 U	10 U
1ethylene chloride	5		10 U	10 U	10 U	1 U	1 U	2 U	2 U	2 U	2 U	4 U	2 U
Styrene	5		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
etrachloroethene	5		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
oluene	5		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
rans-1,2-Dichloroethene	5							2	0.2 J	0.4 J	0.5 J	0.4 J	0.4 J
rans-1,3-Dichloropropene	0.4		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U
richloroethene	5		10 U	10 U	10 U	1 U	1 U	0.5	0.2 J	0.3 J	0.3 J	0.3 J	0.3 J
inyl chloride	2		10 U	10 U	[51]	[22]	[45]	[44]	[24]	[40] D	[39]	[37]	[24]
(ylenes, Total	5		10 U	10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D
		Depth Interval											
		Sample Date Sample ID	2/4/2004 MW-06D WG 020404	5/18/2004	8/5/2004 MW-06D WG 080504	11/16/2004	2/15/2005	4/18/2005	9/6/2005 MW-6D 09062005	11/15/2005 MW-6D 11152005	4/25/2006 MW-6D 04252006	11/13/2006 MW-6D 11132006	05/03/2007 MW-6D_050307
	Class GA GW	Sample 1D		MW-06D_WG_051804 ug/l	мw-06D_wG_080504 ug/l	MW-06D_WG_111604 ug/l	MW-06D_WG_021505 ug/l	MW-06D_WG_041805 ug/l	мw-6D_09062003 ug/l	мw-бD_11152005 ug/l	мw-бD_04252006 ug/l	мw-бD_11132006 ug/l	мw-6D_050307 ug/l
nemical Name	Standards (ug/l)		ug/l	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i
1,1-Trichloroethane	5		0.1 J	0.5	0.1 J	0.1 J	0.4 J	0.5 J	0.5 U	0.52 J	0.48 J	0.46 J	0.48 J
1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
-Dichloroethane	5		1	0.7	1	1	0.5	0.6	1.02	0.82 J	0.62 J	0.58	0.56 J
-Dichloroethene	5		0.5 U	0.3 J	0.5 U	0.5 U	0.2 J	0.3 J	0.5 U	0.34 J	0.26 J	0.25 J	0.3 J
2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	5	10 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	5	10 U
etone	50		10 U	10 U	2 J	10 U	2 J	10 U	2.62 J	20 U	20 U	1.83 J	20 U
nzene	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
omodichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
omoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1	2 U
rbon disulfide	60		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
rbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
lorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	1	2 U
loroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
s-1,2-Dichloroethene	5		[5]	[29]	[5]	[4]	[33]	[35]	3.26	[46.3]	[38.9]	[38.9]	[41.6]
s-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
bromochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
hylbenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	2 U	0.2 J	2 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	20 U	10	20 U
ethylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	0.66 J	4 U	2	0.26 J
rene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
trachloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
luene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	0.5	1 U
ns-1,2-Dichloroethene	5		0.5 U	0.6	0.5 U	0.5 U	0.8	0.7	0.5 U	0.94 J	0.78 J	0.7	0.66 J
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	[0.5]	1 U
ichloroethene	5		0.5 U	0.4 J	0.5 U	0.5 U	0.4 J	0.4 J	0.5 U	0.4 J	0.38 J	0.33 J	0.26 J
nyl chloride	2		[6]	[28]	[6]	[4]	[29]	[27]	[4.55]	[40.6]	[37.8]	[30.3]	[39.1]
ylenes, Total	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	2 U	2 U	1	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D	X-1
		Depth Interval											
		Sample Date Sample ID	10/30/2007 MW 6 D-103007	5/22/2008 MW-6D-052208	11/19/2008 MW-6D	10/21/2009 MW-6D-10210910212009	5/19/2010 MW-6D-05191005192010	1/19/2011 MW-6D-01192011	4/20/2011 MW-6D-042011	7/26/2011 MW-6D072611	10/26/2011 MW6D102611	3/20/2012 MW6D032012	3/20/2012 MW6D032012
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	Standards (ug/l)												
1,1-Trichloroethane	5	Ī	1 HU	0.36 J	0.26 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
L-Dichloroethane	5		0.52 JH	0.48 J	[0.77]	0.6 J	1 U	1 U	1 U	1 U	0.46 J	0.67 J	0.62 J
1-Dichloroethene	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		10 HU	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		10 HU	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		20 HU	20 U	10 U	5 U	5 U	10 U	10 U	3.2 J	10 U	10 U	5 U
nzene	1		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 HU	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		2 HU	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		2 HU	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		[13.4] H	[30.2]	[27.8]	[44]	[45]	[45]	[40]	[26]	[18]	[52]	[51]
s-1,3-Dichloropropene	0.4		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		2 HU	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		20 HU	20 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		0.2 JH	0.34 J	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
/rene	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
luene	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	0.52 J	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 HU	0.56 J	0.33 J	0.54 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1 HU	1 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		[18.9] H	[36.6]	[38.3]	[66]	[50]	[49]	[40]	[39]	[26]	[66]	[66]
lenes, Total	5		2 HU	2 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

	Locatio		MW-6D	MW-6D		MW-6D	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D
	Depth In											
	Sample		12/19/2012	5/21/2013	5/21/2013	8/21/2013	12/18/2013	3/25/2014	6/10/2014	9/23/2014	12/9/2014	3/17/2015
	Sample		MW-6D-121912	MW-6D-052113	MW-6D-052113	MW-6D-082113	MW-6D-121813	MW-6D-032514	MW-6D-061014	MW6D092314	MW 6D 120914	MW6D 031715
hemical Name	Class GA GW	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,1-Trichloroethane	Standards (ug/l) 5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U
1,2,2-Tetrachloroethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5	0.57 J	0.6 J	0.51 J	0.46J	0.47 J	1 U	0.68 J	0.84 J	0.55 J	0.66 J	1 U
1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5											
2-Dichloropropane	J 1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romodichloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romoform	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U
romomethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroethane	5 5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5	[32]	[44]	[42]	[40]	[37]	[41]	2.8	3.1	2.3	2.4	1.8
s-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U
:hylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ryrene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
luene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ins-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2	[53]	[53]	[59]	[58]	[60]	[71]	[3.3]	[3.5]	[2.5]	[2.8]	1.7
/lenes, Total	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D						
		Depth Interval	-	-	-	-	-	-	-	-	-	-	-
		Sample Date Sample ID	6/24/2015 MW6D 062415	9/22/2015 MW6D 092215	1/12/2016 MW6D 011216	3/29/2016 MW6D 032916	6/21/2016 MW6D 062116	9/20/2016 MW6D 092016	12/20/2016 MW6D 122016	4/11/2017 MW6D 041117	6/27/2017 MW6D 062717	9/12/2017 MW6D 091217	12/20/217 MW6D 122017
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l						
hemical Name	Standards (ug/l)												
1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1-Dichloroethane	5		1 U	0.72 J	0.54 J	0.56 J	0.61 J	0.66 J	0.59 J	0.71 J	0.51 J	0.6 J	0.56 J
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
cetone	50		10 U	10 U	10 U *	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
romodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
romoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
hlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
hloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
hloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
s-1,2-Dichloroethene	5		1.5	1.6	1.7	1.5	1.5	1.4	1.3	1.1	1.3	1.4	1.3
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
thylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U						
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
tyrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
etrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
oluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
richloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
nyl chloride	2		1.5 ^	[2]	1.5	1.2	1.3	1.4	1.4	1.2	1.4	1.4	1.3
ylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U

NOTES:

U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits [] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

	Locatio		MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S
	Depth In											
	Sample			7/23/1997	9/17/1997	9/17/1997	2/15/2000	8/15/2001	11/29/2001	2/27/2002	5/15/2002	7/29/2003
	Sample	ID MW-06S_WG_09		MW-06S_WG_072397	MW-06S_WG_091797		MW-06S_WG_021500	MW-06S_WG_081501	MW-06S_WG_112901	MW-06S_WG_022702	MW-06S_WG_051502	MW-06S_WG_072903
	Class GA GW	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	Standards (ug/l)											
1,1,1-Trichloroethane	5	10 U	10 U	1 U	1 U	1 U	0.2 J	0.5 U	0.2 J	0.1 J	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5	10 U	10 U	1 U	1 U	1 U	2	1	2	1	0.9	0.4 J
1,1-Dichloroethene	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.6	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (Total)	5	4	10 U	3.1	2.6	2.5						
1,2-Dichloropropane	1	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	50	10 U	10 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS	10 U	10 U	2 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	18	10 U	2 U	2 U	2 U	10 U	10 J	10 U	10 U	10 U	10 U
Benzene	1	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	50	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	50	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5	10 U	10 U	2 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	5	10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.3 J
cis-1,2-Dichloroethene	5						2	3	2	1	2	[6]
cis-1,3-Dichloropropene	0.4	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	50	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	5	[5]	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50	10 U	10 U	4 U	4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5	10 U	10 U	1 U	1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U
Styrene	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5						0.5 U					
trans-1,3-Dichloropropene	0.4	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	5	10 U	10 U	1 U	1 U	1 U	0.2 J	0.5 U	0.2 J	0.5 U	0.5 U	0.2 J
Vinyl chloride	2	10 U	10 U	1 U	1 U	1 U	0.3 J	0.8 J	0.4 J	0.4 J	0.2 J	0.7 J
Xylenes, Total	5	10 U	10 U	1 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
		I										

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S
		Depth Interval											
		Sample Date	2/4/2004	5/18/2004	8/5/2004	11/16/2004	2/15/2005	4/18/2005	9/7/2005	11/15/2005	04/25/2006	11/13/2006	5/3/2007
	Class GA GW	Sample ID	MW-06S_WG_020404	MW-06S_WG_051804	MW-06S_WG_080504	MW-06S_WG_111604	MW-06S_WG_021505	MW-06S_WG_041805	MW-6S_09072005	MW-6S_11152005	MW-6S_04252006	MW-6S_11132006	MW-6S_050307
nemical Name	Standards (ug/l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,1-Trichloroethane	Staridards (dg/1)		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
1-Dichloroethane	5		0.3 J	0.2 J	0.3 J	0.4 J	0.2 J	0.2 J	0.27 J	0.31 J	0.14 J	0.15 J	0.5 U
1-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5	5 U
cetone	50		6 J	10 U	10 U	5 J	2 J	10 U	1.56 J	10 U	10 U	2.18 J	10 U
enzene	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
romodichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
romoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
arbon disulfide	60		0.2 J	0.5 U	0.5 U	0.4 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U
arbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
hlorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
hloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
hloroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
s-1,2-Dichloroethene	5		[5]	4	[30]	[14]	[13]	[6]	[16.2]	[36.1]	[2.57]	[12]	1.01
s-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U					
ibromochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
:hylbenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10	10 U					
ethylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2	2 U
ryrene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
etrachloroethene	5		0.5 U	0.1 J	0.1 J	0.5 U	0.1 J	0.1 J	0.5 U	0.5 U	0.12 J	0.5	0.5 U
oluene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U					
ans-1,2-Dichloroethene	5		0.1 J	0.1 J	0.3 J	0.2 J	0.2 J	0.2 J	0.17 J	0.43 J	0.5 U	0.22 J	0.5 U
ans-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	[0.5]	0.5 U					
richloroethene	5		0.1 J	0.2 J	0.3 J	0.2 J	0.23 J	0.14 J					
nyl chloride	2		0.5 J	0.4 J	1	0.9 J	0.7 J	0.3 J	[3]	1.97	0.21 J	0.73 J	1 U
lenes, Total	5		0.5 U	1 U	1 U	1 U	1	1 U					

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		ition ID	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S
	Depth	Interval											
		ole Date	10/31/2007	10/31/2007	5/22/2008	11/19/2008	10/21/2009	5/19/2010	1/19/2011	4/20/2011	7/26/2011	10/26/2011	3/20/2012
		nple ID	X1-103107	MW-6S-103107	MW-6S-052208	MW-6S	MW-6S-10210910212009	MW-6S-05191005192010	MW-6S-01192011	MW-6S-042011	MW-6S072611	MW6S102611	MW6S032012
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
hemical Name	Standards (ug/l)												
1,1-Trichloroethane	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		0.95 H	0.13 JH	0.5 U	0.17 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
.2-Dichloroethane	0.6		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
,2-Dichloropropane	1		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Hexanone	50		5 HU	5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		5 HU	5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 HU	10 HU	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U
enzene	1		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romodichloromethane	50		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romoform	50		0.5 HU	0.5 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		1 HU	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hlorobenzene	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroethane	5		1 HU	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroform	7		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		[6.2] H	[14.5] H	2.87	[26.1]	[5.6]	1.5	2	1.1	1.6	[9]	1.2
s-1,3-Dichloropropene	0.4		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thylbenzene	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lethyl chloride	5		1 HU	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 HU	10 HU	10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U
lethylene chloride	5		2 HU	2 HU	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ryrene	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oluene	5		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		0.5 HU	0.5 HU	0.5 U	0.21 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		0.5 HU	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
richloroethene	5		0.22 JH	0.5 HU	0.5 U	0.25 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
inyl chloride	2		[7.37] H	1.38 H	1 U	[3.24]	1.7	1 U	1 U	1 U	1 U	[2]	1 U
ylenes, Total	5		1 HU	1 HU	1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		cation ID	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S
		oth Interval mple Date	- 8/7/2012	- 12/19/2012	- 5/21/2013	- 8/21/2013	- 12/18/2013	- 3/25/2014	- 6/11/2014	- 9/23/2014	- 12/10/2014	- 3/17/2015	- 6/24/2015
		ample ID	MW6S080712	MW-6S-121912	MW-6S-052113	6/21/2013 MW-6S-082113	MW-6S-121813	MW-6S-032514	MW-6S-061114	MW6S092314	MW 6S 121014	MW-6S 031715	MW6S-062415
	Class GA GW		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	Standards (ug/l)												
,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U
,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene (Total)	5												
-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 I	5 U	5 U	5 U	5 U
lethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 I	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	3.6 J	10 U	4.3 J	10 U
nzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
modichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
moform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U
momethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
orobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene	5		1.8	1.9	1.1	1.2	2	[22]	[73]	[17]	[17]	[11]	[8.7]
1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U
ylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
thylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.4	1 U	1 U
uene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yl chloride	2		1 U	1 U	1 U	1 U	1 U	[6.7]	[3.1]	1.4	[4.6]	[3.2]	1 ^
enes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		ition ID	MW-6S	X-1	MW-6S	MW-6S							
		Interval											
		ole Date	9/23/2015	1/12/2016	3/29/2016	6/21/2016	9/20/2016	12/20/2016	4/11/2017	6/28/2017	6/28/2017	9/14/2017	12/20/2017
		nple ID	MW6S 092315	MW6S 011216	MW6S 032916	MW6S 062116	MW6S 092016	MW6S 122016	MW6S 041117	MW6S 062817	MW6S 062817	MW6S 091417	MW6S 122017
	Class GA GW		ug/l										
nemical Name	Standards (ug/l)		1.11	1.11	1.11	1.11	4.11	111	1.11	111	111	111	1.0.11
1,1-Trichloroethane	5		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1.0 U 1.0 U
1,2,2-Tetrachloroethane	5						1 U		1 U				
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
etone	50		10 U	10 U *	10 U	3.3 J	10 U						
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
arbon tetrachloride	5		1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
lorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
hloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
s-1,2-Dichloroethene	5		[10]	[10]	[52]	[5]	[7.9]	[6.9]	[17]	[15]	[14]	[10]	4.7
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
bromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ethyl ethyl ketone	50		10 U										
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
/rene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.39 J	1 U	1 U	1.0 U
luene	5	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ins-1,2-Dichloroethene	5	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ns-1,3-Dichloropropene	0.4	1	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ichloroethene	5	1	1 U	1 U	0.8 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
nyl chloride	2		[2.8]	[5.7]	[16]	1 U	[11]	[6.2]	[8.7]	[9.1]	[8.9]	[3.8]	1.0 U
vlenes, Total	5	1	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD
		Depth Interval	60 - 62	69 - 70	80 - 81		60 - 62	60 - 62	60 - 62	60 - 62	60 - 62		
		Sample Date	7/29/2003	7/29/2003	7/29/2003	2/4/2004	5/18/2004	8/5/2004	11/16/2004	2/15/2005	4/18/2005	9/6/2005	11/14/2005
	Class GA	Sample ID	MW-06DD_WG_072903 (60) MW-06DD_WG_072903 (69	MW-06DD_WG_072903 (80	MW-06DD_WG_020404	MW-06DD_WG_051804 (6)	0 MW-06DD_WG_080504 (60	MW-06DD_WG_111604 (60	MW-06DD_WG_021505 (60-		MW-6DD_09062005	MW-6DD_11142005
	GW Stds		62) ug/l	70) ug/l	81) ug/l	ug/l	62) ug/l	62) ug/l	62) ug/l	62) ug/l	62) ug/l	ug/l	ug/l
Chemical Name	(ug/l)		ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/1	ug/i
1,1,1-Trichloroethane	(ug/i)		0.5 U	0.5 U	0.7	[5]	2	[9]	0.7	3	0.3 J	[26.7]	[7.24]
1,1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
1,1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
1,1-Dichloroethane	5		0.5 J	0.5 U	1	[5]	[5]	[5]	[9]	4	[6]	[8.38]	[6.50]
1,1-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.3 J	0.2 J	0.3 J	0.2 J	0.2 J	0.1 J	0.58	0.40 J
1,2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
1,2-Dichloroethene (Total)	5												
1,2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.00 U	10.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.00 U	10.0 U
Acetone	50		10 U	10 U	10 U	4 J	10 U	10 U	10 U	2.1	10 U	2.28 J	20.0 U
Benzene	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U	0.5 U	0.50 U	1.00 U
Bromodichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
Bromoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	2.00 U
Carbon disulfide	60		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U	0.5 U	0.50 U	1.00 U
Carbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
Chlorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	0.5 J	1 U	0.5 J	0.17 J	2.00 U
Chloroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
cis-1,2-Dichloroethene	5		0.5 J	0.5 U	[7]	[32]	[12]	[21]	[16]	[14]	[11]	[49.9]	[41.8]
cis-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
Dibromochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
Ethylbenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.2 J	0.5 U	0.5 U	0.50 U	1.00 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	2.00 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10.0 U	20.0 U
Methylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.00 U	0.80 J
Styrene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
Tetrachloroethene	5		0.5 U	0.5 U	0.5 J	0.8	0.6	0.7	0.5 U	0.7	0.5 U	0.50 U	1.00 U
Toluene	5		0.3 J	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
trans-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.3 J	0.1 J	0.2 J	0.3 J	0.1 J	0.2 J	0.54	0.46 J
trans-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	1.00 U
Trichloroethene	5		0.5 U	0.5 U	0.3 J	2	1	2	0.6	2	0.7	4.85	3.94
Vinyl chloride	2		0.3 J	0.1 J	[5]	[20]	[14]	[15]	[12]	[10]	[10]	[15.4]	[13.1]
•	5		0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.9	0.5 U	0.3 J	1.00 U	2.00 U
Xylenes, Total													

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits

[] - Exceeds NYS Class GA Ground Water Qaulity Standard

Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.

Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD
		Depth Interval Sample Date	- 4/25/2006	- 11/15/2006	- 5/2/2007	- 10/30/2007	- 5/22/2008	- 11/19/2008	- 10/21/2009	- 05/19/2010	- 01/19/2011	- 4/20/2011	- 7/26/2011
	Class GA	Sample ID	MW-6DD_04252006	MW-6DD_11152006	MW-6DD_050207	MW 6 DD-103007	MW 6 DD-052208	MW 6 DD-111908	MW-6DD-10212009	MW-6DD-05191005192010	MW-6DD-01192011	MW-6DD-042011	MW-6DD072611
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
hemical Name	(ug/l)		<u>, </u>										
,1,1-Trichloroethane	5		1.24	1.48	2.01	1.1 H	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,1,2,2-Tetrachloroethane	5		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,1,2-Trichloroethane	1		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,1-Dichloroethane	5		[5.22]	4.38	4.52	4.49 H	2.41	2.36	1.8	1.3	2.2	2	2.6
,1-Dichloroethene	5		0.22 J	0.22 J	0.24 J	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,2-Dichloroethane	0.6		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,2-Dichloroethene (Total)	5												
,2-Dichloropropane	1		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
-Hexanone	50		5.00 U	10 U	5 U	5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		5.00 U	10 U	5 U	5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10.0 U	20 U	10 U	10 HU	10 U	10 U	5 U	3.4 J	10 U	10 U	10 U
enzene	1		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
romodichloromethane	50		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
romoform	50		0.50 U	1 U	0.5 U	0.5 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		1.00 U	2 U	1 U	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
hlorobenzene	5		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
hloroethane	5		1.00 U	2 U	1 U	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroform	7		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
is-1,2-Dichloroethene	5		[15.8]	[16.4]	[13.7]	[18.4] H	[15.2]	[14.9]	[14]	2.8	[11]	[8.5]	[26]
is-1,3-Dichloropropene	0.4		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
thylbenzene	5		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
lethyl chloride	5		1.00 U	2 U	1 U	1 HU	1 U	1 U		1 U	1 U	1 U	1 U
lethyl ethyl ketone	50		10.0 U	20 U	10 U	10 HU	10 U	10 U		5 U	10 U	10 U	10 U
lethylene chloride	5		2.00 U	4 U	2 U	2 HU	2 U	2 U	1 U	1 U	1 U	1 U	1 U
tyrene	5		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
oluene	5		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	0.78 J	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		0.19 J	0.30 J	0.26 J	0.17 JH	0.23 J	0.5 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		0.50 U	1 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
richloroethene	5		0.89	1.2	0.82	0.17 JH	0.18 J	0.1 J	1 U	1 U	1 U	1 U	1 U
inyl chloride	2		[13.4]	[10.6]	[8.17]	[10.1] H	[12.5]	[13]	[21]	[5.2]	[13]	[7.5]	[16]
ylenes, Total	5		1.00 U	2 U	1 U	1 HU	1 U	1 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits [] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-06DD	MW-06DD	MW-6DD	MW-6DD	MW-6DD	MW-6DD	MW-6DD	MW-6DD	MW-6DD	MW-6DD	MW-6DD
		Depth Interval Sample Date	10/26/2011	- 3/20/2012	8/7/2012	- 12/19/2012	- 5/21/2013	- 8/21/2013	- 12/18/2013	- 3/25/2014	6/10/2014	- 9/23/2014	- 12/9/2014
	Class GA	Sample ID	MW6DD102611	MW6DD032012	MW6DD080712	MW-6DD-121912	MW-6DD-052113	MW-6DD-0821113	MW-6DD-121813	MW-6DD-032514	MW-6DD-061014	MW6DD092314	MW 6DD 120914
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	(ug/l)												
,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*
,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
L-Dichloroethane	5		3.2	3.6	4.2	4.6	2	1.9	3.7	0.7 J	0.92 J	0.61 J	1 U
L-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
nzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		[14]	[22]	[29]	[33]	[15]	[14]	[39]	[15]	[30]	[17]	[17]
-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
promochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*
nylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
thylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.57 J	1 U	1 U
luene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.58 J	0.52 J	1 U	1 U
nyl chloride	2		[11]	[12]	[19]	[19]	[15]	[17]	[32]	[3.4]	8.2	[5]	[5.3]
lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-6DD	MW-6DD	MW-6DD	MW-6DD	MW-6DD							
		Depth Interval Sample Date	- 3/17/2015	- 6/24/2015	- 9/22/2015	- 1/12/2016	- 3/29/2016	- 6/21/2016	- 9/20/2016	- 12/20/2016	- 4/11/2017	- 6/28/2017	- 9/12/2017	- 12/20/2017
	Class GA	Sample ID	MW6DD 031715	MW6DD 062515	MW6DD 092215	MW6DD 011216	MW6DD 032916	MW6DD 062116	MW6DD 092016	MW6DD 122016	MW6DD 041117	MW6DD 062817	MW6DD 091217	MW6DD 122017
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l							
Chemical Name	(ug/l)													
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5		1 U	0.84 J	0.73 J	0.43 J	1 U	0.71 J	0.62 J	0.55 J	1 U	1 U	0.6 J	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5													
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U	10 U	10 U	10 U *	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U	1 U	1 U 1 U	1 U	1 U	1 U	1.0 U 1.0 U
Chloroform	,			1 U			1 U	1 U	1 U		1 U	1 U	1 U	
cis-1,2-Dichloroethene	5		[20]	[19]	[13]	[17]	[19]	[20]	[10]	[8.6]	[13]	[24]	[22]	[17] 1.0 U
cis-1,3-Dichloropropene Dibromochloromethane	0.4 50		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1.0 U							
	50 5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene Methyl chloride	5 5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U							
Methylene chloride	50 5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Fetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	0.52 J	1 U	1 U	1 U	1 U	1 U	1.0 U
oluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.5	1 U	1 U	1 U	1 U	1.0 U
rans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.5 1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Trichloroethene	5		1 U	1 U	1 U	1 U	0.69 J	1 U	1 U	1 U	0.69 J	1 U	1 U	1.0 U
/inyl chloride	2		1.9	[4.9 ^]	[5.1]	[3.2]	1.5	[5.3]	[4.5]	[4]	1 U	[4.5]	[5.3]	1.0 U
•	5													2.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U		2 U	2 U 2 U	2 U 2 U 2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits [] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID Depth Interval	MW-07S -										
		Sample Date	9/12/1995	11/13/1995	7/23/1997	9/18/1997	2/18/2000	8/16/2001	11/28/2001	2/25/2002	5/16/2002	7/29/2003	2/3/2004
	Class GA	Sample ID	MW-07S_WG_091295	MW-07S_WG_111395	MW-07S_WG_072397	MW-07S_WG_091897	MW-07S_WG_021800	MW-07S_WG_081601	MW-07S_WG_112801	MW-07S_WG_022502	MW-07S_WG_051602	MW-07S_WG_072903	MW-07S_WG_020304
	GW Stds		ug/l										
hemical Name	(ug/l)												
1,1-Trichloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,2-Tetrachloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Trichloroethane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1-Dichloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1-Dichloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Dichloroethane	0.6		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Dichloroethene (Total)	5		10 U	10 U	1 U	1 U							
2-Dichloropropane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
-Hexanone	50		10 UJ	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 UJ	10 UJ	2 U	2 U	10 U	10 J	10 U				
enzene	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
romodichloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
romoform	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
romomethane	5		10 U	10 U	2 U	2 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U
arbon disulfide	60		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
arbon tetrachloride	5		10 U	10 U	1 U	1 U	0.5 U	0.5 UJ	0.5 U				
nlorobenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
nloroethane	5		10 U	10 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
hloroform	7		10 UJ	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
s-1,2-Dichloroethene	5						0.5 J	0.5 U	0.5 U	0.5 U	0.5 U	0.1 J	0.3 J
s-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ibromochloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
thylbenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ethyl chloride	5		10 UJ	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 UJ	10 U	4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		10 UJ	10 U	1 U	1 U	2 J	2 U	2 U	2 U	2 U	2 U	2 U
vrene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
etrachloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.1 J	0.1 J	0.2 J	0.3 J	0.2 J	0.2 J
luene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ans-1,2-Dichloroethene	5						0.5 U						
ans-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
richloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.4 J
nyl chloride	2		10 U	10 U	1 U	1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.1 J 1 U	0.4 J 1 U
•													
lenes, Total	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S
		Depth Interval Sample Date	- 5/17/2004	- 8/4/2004	- 11/15/2004	- 2/14/2005	- 4/18/2005	- 9/8/2005	- 11/16/2005	- 4/26/2006	- 11/15/2006	- 5/2/2007	- 10/31/2007
	Class GA	Sample ID	MW-07S WG 051704	MW-07S WG 080404	MW-07S WG 111504	MW-07S WG 021405	MW-07S WG 041805	MW-7S 09082005	MW-7S 11162005	MW-7S 04262006	MW-7S 11152006	MW-7S 050207	MW 7-S-103107
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	(ug/l)		-97										
1,1-Trichloroethane	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
1,2,2-Tetrachloroethane	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
1,2-Trichloroethane	1		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
1-Dichloroethane	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
1-Dichloroethene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
2-Dichloroethane	0.6		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5 U	5 U	5 HU
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5 U	5 U	5 HU
etone	50		10 U	2.13 J	10.0 U	10.0 U	10 U	10 U	10 HU				
nzene	1		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
omodichloromethane	50		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
omoform	50		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
omomethane	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU
rbon disulfide	60		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
rbon tetrachloride	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
lorobenzene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
loroethane	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU
nloroform	7		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
s-1,2-Dichloroethene	5		0.3 J	0.4 J	0.5 J	0.4 J	0.5 J	0.64	0.34 J	0.46 J	0.6	0.27 J	0.39 JH
s-1,3-Dichloropropene	0.4		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
bromochloromethane	50		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
hylbenzene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU
ethyl ethyl ketone	50		10 U	10.0 U	10.0 U	10.0 U	10 U	10 U	10 HU				
ethylene chloride	5		2 U	2 U	2 U	2 U	2 U	2.00 U	2.00 U	0.16 J	2 U	2 U	2 HU
yrene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
trachloroethene	5		0.1 J	0.2 J	0.2 J	0.2 J	0.2 J	0.28 J	0.37 J	0.31 J	0.51	0.42 J	0.46 JH
luene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
ins-1,2-Dichloroethene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
ins-1,3-Dichloropropene	0.4		0.5 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 HU				
chloroethene	5		0.4 J	0.5	0.6	0.5	0.8	0.96	0.73	1.2	1.44	1	0.98 H
nyl chloride	2		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU
rlenes, Total	5		0.5 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU				

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID Depth Interval	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S	MW-07S -	MW-7S	MW-7S -
		Sample Date	5/21/2008	11/20/2008	10/20/2009	05/17/2010	01/18/2011	4/19/2011	7/27/2011	10/26/2011	3/21/2012	8/8/2012	12/18/2012
	Class GA	Sample ID	MW 7-S-052108	MW 7-S-112008	MW-7S-10202009	MW-7S-05171005172010	MW-7S-01182011	MW-7S-041911	MW-7S072711	MW7S102611	MW7S032112	MW7S080812	MW-7S-121812
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	(ug/l)												
I,1-Trichloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
L-Dichloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
L-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	5 U	5 U	10 U	10 U	3 J	10 U	10 U	10 U	10 U
nzene	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		0.35 J	0.34 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oromochloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nylbenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U		5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene .	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		0.44 J	0.69	1 U	1 U	0.58 J	1 U	1 U	0.41 J	0.44 J	0.67 J	1 U
luene	5		0.5 U	0.5 U	2.3	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U
ins-1,2-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ins-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1.42	1.25	1 U	0.86 J	1.4	1 U	1 U	0.86 J	1.3	1.7	1 U
nyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lenes, Total	5		1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S
		Depth Interval Sample Date	- 5/23/2013	- 8/20/2013	- 12/17/2013	- 3/26/2014	- 6/11/2014	- 9/24/2014	- 12/10/2014	- 3/18/2015	- 6/24/2015	- 9/23/2015	- 1/13/2016
	Class GA	Sample ID	MW-7S-052313	MW-7S-082013	MW-7S-121713	MW-7S-032614	MW-7S-061114	MW7S092414	MW 7S 121014	MW7S031815	MW7S031815	MW7S 092315	MW7S 011216
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	(ug/l)		u _{9/} .										
1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U*	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U *
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UF	1 UF	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UF	1 UF	1 U	1 U
nloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		0.82 J	1 U	1 U	1 U	0.42 J	1 U	0.47 J	1 U	1 UF	1 U	1 U
luene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		1.7	1.2	1.2	0.48 J	1.3	0.97 J	1.7	1 U	1 U	1.3	0.78 J
nyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U
lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-7S	X-1	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S
		Depth Interval Sample Date	- 3/29/2016	- 3/29/2016	- 6/2/2016	- 9/21/2016	- 12/21/2016	- 4/12/2017	- 6/28/2017	- 9/13/2017	- 12/20/2017
	Class GA	Sample ID	MW7S 032916	MW7S 032916	MW7S 062216	MW7S 092116	MW7S 122116	MW7S 041217	MW7S 062817	MW7S 091317	MW7S 122017
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	(ug/l)		ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i	ug/i
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5										
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U*	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		1 U	1 U	1 U	2.6	1 U	1 U	1 U	1 U	1.0 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Tetrachloroethene	5		1 U	1 U	1 U	0.46 J	0.53 J	1 U	1 U	0.66 J	1.0 U
Toluene	5		1 U	1 U	1 U	1	1 U	1 U	1 U	1 U	1.0 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U*	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Trichloroethene	5		1 U	1 U	0.62 J	2.4	1.4	1	1	1.8	1.1
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D
		Depth Interval Sample Date	- 9/21/1995	- 11/14/1995	- 7/23/1997	- 9/18/1997	- 2/18/2000	- 8/16/2001	- 11/28/2001	- 2/25/2002	- 5/16/2002	- 7/29/2003	- 2/3/2004
	Class GA	Sample ID	MW-07D_WG_092195	MW-07D_WG_111495	MW-07D_WG_072397	MW-07D_WG_091897	MW-07D_WG_021800	MW-07D_WG_081601	MW-07D_WG_112801	MW-07D_WG_022502	MW-07D_WG_051602	MW-07D_WG_072903	MW-07D_WG_020304
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	(ug/l)												
1,1-Trichloroethane	5		10 U	10 U	[5.7]	[12]	[34]	[34]	[35]	[33]	[31]	1	0.8
1,2,2-Tetrachloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 UJ	1 U	5 U	0.5 U	0.5 U
1,2-Trichloroethane	1		10 U	10 U	1 U	1 U	0.2 J	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
1-Dichloroethane	5		10 U	10 U	[8]	[15]	[41]	[35]	[33]	[31]	[29]	[7]	[6]
1-Dichloroethene	5		10 U	10 U	1 U	1.3	4	3	3 J	2	3 J	0.5 J	0.4 J
2-Dichloroethane	0.6		10 U	10 U	1 U	1 U	0.2 J	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
2-Dichloroethene (Total)	5		10 U	10 U	[69]	[141]							
2-Dichloropropane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
Hexanone	50		10 UJ	10 U	2 U	2 U	5 U	5 U	50 U	10 U	50 U	5 U	5 U
Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	5 U	5 U	50 U	10 U	50 U	5 U	5 U
cetone	50		17	10 UJ	2 U	2 U	10 U	10 J	100 U	20 U	100 UJ	10 U	10 U
enzene	1		[1]	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
omodichloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
romoform	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
romomethane	5		10 U	10 U	2 U	2 U	1 U	1 UJ	10 U	2 U	10 UJ	1 U	1 U
arbon disulfide	60		10 U	10 U	1 U	1 U	0.5 U	0.5 UJ	5 U	1 U	5 U	0.5 U	0.5 U
arbon tetrachloride	5		10 U	10 U	1 U	1 U	0.5 U	0.5 UJ	5 U	1 U	5 U	0.5 U	0.5 U
nlorobenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
nloroethane	5		10 U	10 U	1 U	1 U	0.2 J	1 UJ	10 U	2 U	10 U	1 U	1 U
nloroform	7		10 UJ	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
s-1,2-Dichloroethene	5						[190]	[220] E	[240]	[210] D	[220]	[38]	[33]
s-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
bromochloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
hylbenzene	5		0.7	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
ethyl chloride	5		10 UJ	10 U	1 U	1 U	0.3 J	1 U	10 U	2 U	10 U	1 U	1 U
ethyl ethyl ketone	50		10 UJ	10 U	4 U	4 U	10 U	10 U	100 U	20 U	100 U	10 U	10 U
ethylene chloride	5		10 UJ	10 U	1 U	1 U	2 J	2 U	20 U	0.2 J	20 U	2 U	2 U
vrene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 UJ	5 U	0.5 U	0.5 U
trachloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
luene	5		2	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U
ans-1,2-Dichloroethene	5						[18]	3	4]	3	3 J	0.4 J	0.4 J
ans-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	5 U	3 1 U	5 U	0.4 J 0.5 U	0.4 J
ichloroethene	5		10 U	10 U	1 U	1 U	2	0.8	5 U	0.8 J	5 U	0.5 U	0.5 U
nyl chloride	2		10 U	10 U	[26]	[52]	2 [79]	0.8 [100] E	[160]	0.8 J [120] E	[130]	0.5 0 [35]	[32]
•	5		3										(32) 0.5 U
lenes, Total	5		3	10 U	1 U	1 U	0.5 U	0.5 U	5 U	1 U	5 U	0.5 U	0.5 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits [] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID Depth Interval	MW-07D -	MW-07D -	MW-07D -	MW-07D -							
		Sample Date	5/17/2004	8/4/2004	11/15/2004	2/14/2005	4/18/2005	9/8/2005	11/16/2005	4/26/2006	11/15/2006	5/2/2007	10/31/2007
	Class GA	Sample ID	MW-07D_WG_051704	MW-07D_WG_080404	MW-07D_WG_111504	MW-07D_WG_021405	MW-07D_WG_041805	MW-7D_09082005	MW-7D_11162005	MW-7D_04262006	MW-7D_11152006	MW-7D_050207	MW 7-D-103107
	GW Stds		ug/l	ug/l	ug/l	ug/l							
hemical Name	(ug/l)									A = A + I			
,1,1-Trichloroethane	5		0.6	0.3 J	0.5 0.5 U	0.2 J	0.4 J	0.29 J	0.17 J	0.50 U	0.18 J	0.13 J	0.5 HU
1,2,2-Tetrachloroethane	5		0.5 U	0.5 U		0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
1,2-Trichloroethane	1		0.5 U 4	0.5 U	0.5 U 4	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
1-Dichloroethane	5		0.3 J	0.7	•	0.9	3	2.42 0.17 J	0.41 J	0.27 J 0.50 U	1.75	1.6 0.13 J	1.03 H 0.5 HU
1-Dichloroethene	5			0.5 U	0.3 J	0.5 U	0.2 J		0.50 U		0.13 J		
2-Dichloroethane	0.6		0.5 U 	0.50 U 	0.50 U 	0.50 U 	0.50 U 	0.5 U	0.5 HU				
2-Dichloroethene (Total)	5 1		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	 0.5 HU				
,2-Dichloropropane -Hexanone	50		0.5 U 5 U	0.50 U 5.00 U	0.50 U 5.00 U	0.50 U 5.00 U	0.50 U 5 U	0.5 U 5 U	0.5 HU 5 HU				
	NS		5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5 U	5 U	5 HU 5 HU
-Methyl-2-pentanone	50		10 U	5.00 U 1.71 J	5.00 U 10.0 U	5.00 U	10 U	10 U	5 HU 10 HU				
cetone													
enzene	1		0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.50 U	0.50 U 0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
romodichloromethane	50		0.5 U	0.5 U			0.5 U	0.50 U		0.50 U	0.50 U	0.5 U	0.5 HU
romoform	50 5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU 1 HU				
romomethane	-		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1 U	1 U	
arbon disulfide	60		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
arbon tetrachloride	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
nlorobenzene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
hloroethane	5 7		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU
hloroform	,		0.5 U	0.50 U	0.50 U 2.58	0.50 U	0.50 U	0.5 U	0.5 HU				
is-1,2-Dichloroethene	5		[23]	[5]	[23]	[5]	[15]	[13.1]		1.75	[9.52]	[8.99]	[6.48] H
is-1,3-Dichloropropene	0.4		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
ibromochloromethane	50		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
hylbenzene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU
ethyl ethyl ketone	50 5		10 U 2 U	10 U	10 U 2 U	10 U 2 U	10 U	10.0 U 2.00 U	10.0 U 2.00 U	10.0 U 2.00 U	10 U	10 U 2 U	10 HU 2 HU
ethylene chloride				2 U			2 U				2 U		
yrene	5 5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
etrachloroethene	5 5		0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.50 U	0.12 J	0.50 U	0.50 U	0.5 U	0.5 HU
oluene			0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
ans-1,2-Dichloroethene	5		0.2 J	0.1 J	0.2 J	0.5 U	0.1 J	0.11 J	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
ans-1,3-Dichloropropene	0.4		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
richloroethene	5		0.1 J	0.2 J	0.1 J	0.2 J	0.1 J	0.15 J	0.37 J	0.38 J	0.30 J	0.19 J	0.21 JH
inyl chloride	2		[24]	[2]	[22]	[3]	[17]	[13.9]	0.73 J	0.66 J	[10.7]	[12]	[9.18] H
lenes, Total	5		0.5 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU				

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits [] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-7D
		Depth Interval Sample Date	- 5/21/2008	- 11/20/2008	- 10/20/2009	- 05/17/2010	- 1/18/2011	- 4/19/2011	- 7/27/2011	10/25/2011	10/25/2011	- 3/21/2012	8/8/2012
	Class GA	Sample ID							7/27/2011	10/23/2011	10/23/2011	3/21/2012	6/6/2012
		Sample 1D	MW 7-D-052108	MW 7-D-112008	MW-7D-10202009	MW-7D-05171005172010	MW 7-D-01182011	MW-7D-041911	MW-7D072711	MW7D102511	X-1	MW7D032112	MW7D080812
Chemical Name	GW Stds (ug/l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,1,1-Trichloroethane	(ug/i) 5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		0.52	0.41 J	1 U	1 U	0.74 J	1 U	0.65 J	1 U	1 U	0.4 J	1 U
1,1-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5												
1,2-Dichloropropane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		2.86	2.33	2.3	2.1	3.9	0.92 J	4.2	1 U	2	2.4	0.86 J
cis-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5		1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 U	10 U		5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		0.12 J	0.3 J	1 U	1 U	1 U	1 U	1 U	1 U	1.1	1 U	1 U
Toluene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5		0.51	0.88	0.82 J	0.67 J	1 U	0.48 J	1 U	0.69 J	4.1	0.55 J	0.82 J
Vinyl chloride	2		[2.03]	1.08	1.3	1.6	[4.6]	1 U	[7.8]	1 U	1 U	2.1	1 U
Xylenes, Total	5		1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D	MW-7D
		Depth Interval Sample Date	- 12/18/2012	- 5/23/2013	- 8/20/2013	- 12/17/2013	- 3/26/2014	- 6/11/2014	- 9/24/2014	- 12/10/2014	- 3/18/2015	- 6/24/2015	- 9/23/2015
	Class GA	Sample ID											
	GW Stds	Sumple 15	MW-7D-121812	MW-7D-052313	MW-7D-082013	MW-7D-121713	MW-7D-032614	MW-7D-061114	MW7D092414	MW 7D 121014	MW7D031815	MW7D062415	MW7D 092315
hemical Name	(ug/l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,1-Trichloroethane	(ug/1)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1 U	1.5	1 U	1 U	1 U	1 U	1.4	1	1 U	1 U	1
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
tyrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		0.39 J	1 U	1 U	1 U	1 U	0.36 J	1 U	1 U	1 U	1 U	1 U
oluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
richloroethene	5		1.2	0.49 J	1.1	1	1 U	1.2	0.46 J	0.59 J	1 U	0.71 J	0.63 J
inyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID Depth Interval	MW-7D -								
		Sample Date	1/13/2016	3/29/2016	6/22/2016	9/21/2016	12/21/2016	4/12/2017	6/28/2017	9/13/2017	12/20/2017
	Class GA	Sample ID	MW7D 011316	MW7D 032916	MW7D 062216	MW7D 092116	MW7D 122116	MW7D 041217	MW7D 062817	MW7D 091317	MW7D 122017
	GW Stds		ug/l								
Chemical Name	(ug/l)										
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
,1-Dichloroethane	5		1 U	1 U	1 U	0.89 J	1 U	1 U	1 U	1 U	1.0 U
,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5										
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
1-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U *	10 U							
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U *	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
etrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.61 J	0.36 J
oluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
rans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
rans-1,3-Dichloropropene	0.4		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
richloroethene	5		0.85 J	0.58 J	0.53 J	1 U	1.1	1.1	0.99 J	1.6	1.1
inyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
lylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD
		Depth Interval	53 - 55	66 - 68	82 - 84		53 - 55						
		Sample Date	7/29/2003	7/29/2003	7/29/2003	2/4/2004	5/18/2004	8/4/2004	11/15/2004	2/14/2005	4/18/2005	9/8/2005	11/16/2005
	Class GA	Sample ID			WW-07DD_WG_072903 (82-	MW-07DD WG 020404					MW-07DD_WG_041805 (53-	MW-7DD 09082005	MW-7DD 11162005
			55)	68)	84)		55)	55)	55)	55)			
Chemical Name	GW Stds (ug/l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
,1,1-Trichloroethane	(ug/i) 5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
,1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
,1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
,1-Dichloroethane	5		0.3 J	0.3 J	0.3 J	1	0.2 J	0.5 U	0.1 J	0.1 J	0.1 J	0.14 J	0.13 J
1-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
,2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
2-Dichloroethene (Total)	5												
,2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U
cetone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	1.87 J	10.0 U
enzene	1		0.5 U	0.5 U	0.2 J	0.2 J	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.36 J	[1.23]
romodichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
romoform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U
arbon disulfide	60		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.11 J	0.33 J
arbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
hlorobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
hloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U
hloroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
is-1,2-Dichloroethene	5		0.4 J	0.5 J	0.5 J	[7]	0.3 J	0.3 J	0.4 J	0.3 J	0.2 J	0.35 J	0.36 J
is-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
ibromochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
thylbenzene	5		0.5 U	0.5 U	0.1 J	0.4 J	0.5 U	0.50 U	0.50 U				
lethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U
lethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10.0 U	10.0 U
lethylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.00 U	0.26 J
tyrene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
etrachloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U 0.50 U	0.50 U
oluene	5 5		0.5 U 0.5 U	0.5 U 0.5 U	0.3 J 0.5 U	1 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.50 U 0.50 U	0.50 U 0.50 U
ans-1,2-Dichloroethene ans-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.50 U	0.50 U
richloroethene	0. 4 5		0.5 U	0.5 U	0.5 U	0.5 U 0.2 J	0.5 U 0.2 J	0.5 U 0.2 J	0.5 U 0.2 J	0.5 U 0.1 J	0.5 U 0.2 J	0.50 U 0.20 J	0.50 U 0.20 J
inyl chloride	5		0.5 U 1 J	0.5 U 1 J	0.5 U 1 J		0.2 J 0.2 J	0.2 J 0.2 J	0.2 J 0.2 J	0.1 J 0.1 J	0.2 J 1 U	1.00 U	0.20 J 0.19 J
•	5		0.5 U	0.5 U	1 I J	[9]	0.2 J 0.5 U	0.2 J 0.5 U	0.2 J 0.5 U	0.1 J 0.5 U	0.5 U	1.00 U	1.00 U
ylenes, Total	5		U.5 U	U.5 U	1	[5]	U.5 U	U.5 U	0.5 0	U.5 U	U.5 U	1.00 0	1.00 0

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits [] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD
		Depth Interval Sample Date	- 4/26/2006	- 11/15/2006	- 5/2/2007	- 10/31/2007	5/22/2008	11/20/2008	- 10/20/2009	- 5/17/2010	- 1/18/2011	- 4/19/2011	- 7/27/2011
	Class GA	Sample ID	MW-7DD (2)_04262006	MW-7DD(2)_11152006	MW-7DD (2)_050207	MW 7-DD 2-103107	MW 7-DD 2-052208	MW 7-DD 2-112008	MW-7DD-10202009	MW-7DD-05171005172010	MW-7DD-01182011	MW-7DD-041911	MW-7DD072711
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
hemical Name	(ug/l)												
,1,1-Trichloroethane	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,2-Dichloroethane	0.6		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,2-Dichloroethene (Total)	5												
,2-Dichloropropane	1		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
-Hexanone	50		5.00 U	5 U	5 U	5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		5.00 U	5 U	5 U	5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		1.23 J	10 U	10 U	3.39 JH	10 U	10 U	5 U	5 U	10 U	10 U	10 U
enzene	1		0.50 U	[1.18]	0.5 U	0.28 JH	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
romodichloromethane	50		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
romoform	50		0.50 U	0.5 U	0.5 U	0.5 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		1.00 U	1 U	1 U	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		0.50 U	0.20 J	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
hlorobenzene	5		0.50 U	0.13 J	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
hloroethane	5		1.00 U	1 U	1 U	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroform	7		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
is-1,2-Dichloroethene	5		0.36 J	0.40 J	0.25 J	0.37 JH	0.29 J	0.25 J	0.88 J	1 U	1 U	1 U	1 U
is-1,3-Dichloropropene	0.4		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
thylbenzene	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
lethyl chloride	5		1.00 U	1 U	1 U	1 HU	1 U	1 U		1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10.0 U	10 U	10 U	10 HU	10 U	10 U		5 U	10 U	10 U	10 U
ethylene chloride	5		2.00 U	2 U	2 U	2 HU	2 U	2 U	1 U	1 U	1 U	1 U	1 U
tyrene	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		0.15 J	0.10 J	0.23 J	0.1 JH	0.3 J	0.41 J	1 U	1 U	1 U	1 U	1 U
luene	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	0.7 J	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		0.50 U	0.5 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
richloroethene	5		0.53	0.48 J	0.47 J	0.55 H	0.79	0.5 0	1 U	1 U	1 U	0.46 J	1 U
inyl chloride	2		1.00 U	1 U	1 U	0.55 H 1 HU			1 U	1 U	1 U	1 U	1 U
•	5		1.00 U	1 U	1 U	1 HU 1 HU	1 U	1 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	2 U
lenes, Total	5		1.00 0	1 0	1 U	I HU	1 U	1 U	2 0	2 U	2 0	2 0	2 0

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits [] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-07DD	MW-07DD	MW-7DD	MW-7DD	X-1	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD
		Depth Interval Sample Date	10/26/2011	- 3/21/2012	8/8/2012	- 12/18/2012	- 12/18/2012	- 5/23/2013	- 8/20/2013	- 12/17/2013	- 3/26/2014	6/11/2014	- 9/24/2014
	Class GA	Sample ID	MW7DD102611	MW7DD032112	MW7DD080812	MW-7DD-121812	MW-7DD-121812	MW-7DD-052313	MW-7DD-082013	MW-7DD-121713	MW-7DD-032614	MW-7DD-061114	MW7DD092414
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	(ug/l)												
,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
L-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
L-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U*
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
nzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.62 J	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.32 J
rbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		1 U	1 U	1.1	1.2	1.2	1 U	0.98 J	1 U	1 U	1 U	1.2
-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5 U	10 U
thylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
/rene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
luene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		0.62 J	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.57 J	1 U
nyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD
		Depth Interval Sample Date	- 12/10/2014	- 3/18/2015	- 6/24/2015	- 9/23/2015	- 1/13/2016	- 3/29/2016	- 6/22/2016	- 9/21/2016	- 12/20/2016	- 4/12/2017	- 6/28/2017	- 9/13/2017	- 12/20/2017
			12/10/2014	3/10/2013	0/24/2015			3/29/2010	6/22/2016						
	Class GA	Sample ID	MW 7DD 121014	MW7DD031815	MW7DD062415	MW7DD 092315	MW7DD 011316	MW7DD 032916	MW7DD 062216	MW7DD 092116	MW7DD 122016	MW7DD 041217	MW7DD 062817	MW7DD 091317	MW7DD 122017
and all Name	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name ,1-Trichloroethane	(ug/l)		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dichloroethene (Total)	5														
Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
exanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
ethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
one	50		10 U	10 U	10 U	10 U	10 U *	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
rene	1		0.43 J	0.56 J	0.56 J	0.52 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
nodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
noform	50		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
nomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
on disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
on tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
robenzene	5		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
roethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
roform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
,2-Dichloroethene	5		1.1	1 U	0.85 J	1.1	0.92 J	1 U	1 U	1 U	1 U	1 U	1 U	1.2	1.0 U
,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 -	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
omochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
lbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
nyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
nyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ne	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
achloroethene	5		1 U	1 U	1 U	1 U	1 U	1 UF	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
ene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.59 J	1 U	1 U	1 U	1 U	1.0 U
s-1,2-Dichloroethene	5 0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U 1 U	1.0 U
s-1,3-Dichloropropene	0.4		1 U 1 U	1 U	1 U	1 U 1 U	1 U	1 U*	1 U 0.6 J	1 U	1 U 1 U	1 U 0.78 J	1 U	1 U 1 U	1.0 U 1.0 U
hloroethene	5		1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 UF 1 U	0.6 J 1 U	1 U			0.5 J	1 U 1 U	1.0 U
/l chloride	2		1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 UF	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1.0 U 2.0 U
enes, Total	5		2 0	2 0	2 0	2 U	2 U	2 UF	2 U	2 U	2 U	2 0	2 U	2 U	2.U U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-08S										
		Depth Interval	-	-	-	-	-	-	-	-	-	-	-
		Sample Date	9/14/1995	11/14/1995	7/23/1997	9/18/1997	2/18/2000	8/16/2001	11/28/2001	2/25/2002	5/16/2002	7/30/2003	2/3/2004
	Class GA	Sample ID	MW-08S_WG_091495	MW-08S_WG_111495	MW-08S_WG_072397	MW-08S_WG_091897	MW-08S_WG_021800	MW-08S_WG_081601	MW-08S_WG_112801	MW-08S_WG_022502	MW-08S_WG_051602	MW-08S_WG_073003	MW-08S_WG_020304
	GW Stds		ug/l										
Chemical Name	(ug/l)												
1,1,1-Trichloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5		10 U	10 U	1 U	1 U	0.3 J	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	0.1 J
1,2-Dichloroethane	0.6		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (Total)	5		[13]	[11]	[8.7]	[8.2]							
1,2-Dichloropropane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	50		10 UJ	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		10 UJ	10 UJ	2 U	2 U	10 J	10 J	10 U	10 U	10 U	1 J	10 U
Benzene	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	50		10 U	10 UJ	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5		10 U	10 U	2 U	2 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U
Carbon disulfide	60		10 U	10 U	1 U	1 U	0.5 U	0.5 U	10	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5		10 U	10 U	1 U	1 U	0.5 U	0.5 UJ	0.5 U				
Chlorobenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	5		10 U	10 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Chloroform	7		10 UJ	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5						[9]	[7]	[5]	[5]	4	[5]	[5]
cis-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	5		10 UJ	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 UJ	10 U	4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		10 UJ	10 U	1 U	1 U	2 J	2 J	2 U	2 U	2 U	2 U	2 U
Styrene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Styrene Tetrachloroethene	5 5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U 0.2 J	0.5 0.5	0.5 0	0.5 U 0.4 J	0.5 0
	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.2 J 0.5 U	0.9 0.5 U	0.5 U	0.4 J 0.5 U	0.7 0.5 U
Toluene	5												
trans-1,2-Dichloroethene			10.11	10.11			0.5 J	0.1 J	0.1 J	0.5 U	0.1 J	0.1 J	0.2 J
trans-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	5		2	2	1.7	1.6	3	1	3	[6]	[6]	3	[5]
Vinyl chloride	2		[3]	10 U	[2.3]	[2]	[3]	[2]	1	1	1 J	[2]	0.9 J
Xylenes, Total	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
		Depth Interval											
		Sample Date	5/17/2004	8/4/2004	11/16/2004	2/15/2005	4/19/2005	9/7/2005	11/16/2005	4/26/2006	11/15/2006	5/2/2007	11/1/2007
	Class GA	Sample ID	MW-08S_WG_051704	MW-08S_WG_080404	MW-08S_WG_111604	MW-08S_WG_021505	MW-08S_WG_041905	MW-8S_09072005	MW-8S_11162005	MW-8S_04262006	MW-8S_11152006	MW-8S_050207	MW8-S-110107
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	(ug/l)												
1,1,1-Trichloroethane	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
1,1,2,2-Tetrachloroethane	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
1,1,2-Trichloroethane	1		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
1,1-Dichloroethane	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
1,1-Dichloroethene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
1,2-Dichloroethane	0.6		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
1,2-Dichloroethene (Total)	5												
1,2-Dichloropropane	1		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5 HU
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5 HU
Acetone	50		1 J	10 U	10 U	3 J	10 U	1.73 J	10.0 U	10.0 U	10.0 U	10 U	10 HU
Benzene	1		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Bromodichloromethane	50		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Bromoform	50		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU
Carbon disulfide	60		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Carbon tetrachloride	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Chlorobenzene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU
Chloroform	7		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
cis-1,2-Dichloroethene	5		[5]	3	4	4	4	2.56	3.76	2.44	2.5	2.79	1.27 H
cis-1,3-Dichloropropene	0.4		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Dibromochloromethane	50		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Ethylbenzene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1 U	1 U	1 HU
Methyl ethyl ketone	50		10 U	10.0 U	10.0 U	10.0 U	10 U	10 U	10 HU				
Methylene chloride	5		2 U	2 U	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2 U	2 HU
Styrene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Tetrachloroethene	5		0.6	0.7	0.6	1	0.9	0.85	1.02	1.06	1.04	0.93	0.7 H
Toluene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
trans-1,2-Dichloroethene	5		0.2 J	0.1 J	0.2 J	0.2 J	0.2 J	0.12 J	0.18 J	0.12 J	0.14 J	0.16 J	0.5 HU
trans-1,3-Dichloropropene	0.4		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU				
Trichloroethene	5		3	3	3	[5]	[5]	3.56	4.39	4.1	3.7	3.29	2.37 H
Vinyl chloride	2		1	0.3 J	0.2 J	0.2 J	0.7 J	0.11 J	1.00 U	0.15 J	1.00 U	0.44 J	1 HU
Xylenes, Total	5		0.5 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU				

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-8S	MW-8S
		Depth Interval Sample Date	5/22/2008	11/18/2008	- 10/20/2009	- 05/18/2010	- 01/18/2011	- 4/19/2011	- 7/27/2011	10/25/2011	- 3/21/2012	8/8/2012	- 12/18/2012
	Class GA	Sample ID	MW8-S-052208	MW8-S-111808	MW-8S-10202009	MW-8S-05181005182010	MW-8S-01182011	MW-8S-041911	MW-8S072711	MW8S102511	MW8S032112	MW8S080812	MW-8S-121812
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	(ug/l)												
,1-Trichloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5					1 U							
2-Dichloropropane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
nzene	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		1.45	1.48	0.6 J	1.8	3.4	2.3	1.2	2	4	2.8	2.6
-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
promochloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nylbenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U		5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U		1 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
thylene chloride	5		2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		1.14	1.18	1 U	1.4	0.78 J	1	1 U	1	0.85 J	0.76 J	0.94 J
luene	5		0.5 U	0.5 U	2	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		0.5 U	0.11 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		3.83	3.79	1.1	4.9	3.3	[5]	1.4	4	3.8	3	4.3
nyl chloride	2		1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	0.93 J	1 U	1 U
lenes, Total	5		1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-8S	MW-8S	X-1-082013	MW-8S	MW-8S	MW-8S	MW-8S	MW-8S	MW-8S	MW-8S	MW-8S
		Depth Interval Sample Date	- 5/22/2013	- 8/20/2013	- 8/20/2013	- 12/17/2013	- 3/26/2014	- 6/11/2014	- 9/24/2014	- 12/10/2014	- 3/17/2015	- 6/24/2015	- 9/23/2015
	Class GA	Sample ID	MW-8S-052313	MW-8S-082013	MW-8S-082013	MW-8S-121713	MW-8S-032614	MW-8S-061114	MW8S092414	MW 8S 121014	MW8S 031715	MW8S 062415	MW8S 092315
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	(ug/l)												
1,1-Trichloroethane	5	i	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		4.2	3.9	3.8	3.3	1.3	2.7	2.2	2.2	1.2	2.3	2.8
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U	1 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		0.56 J	0.43 J	0.47 J	0.64J	0.66 J	0.89 J	0.63 J	0.72 J	0.76 J	0.77 J	0.55 J
luene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		2.7	2.8	2.7	3.6	2.7	4.5	3.1	3.7	2.8	3.6	3.3
nyl chloride	2		1.4	1	1.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID Depth Interval	MW-8S	MW-8S -	MW-8S -	MW-8S	MW-8S -	MW-8S	MW-8S	MW-8S -	MW-8S -
		Sample Date	1/13/2016	3/29/2016	6/22/2016	9/21/2016	12/21/2016	4/12/2017	6/28/2017	9/13/2017	12/20/217
	Class GA	Sample ID	MW8S 011316	MW8S 032916	MW8S 062216	MW8S 092116	MW8S 122116	MW8S 041217	MW8S 062817	MW8S 091317	MW8S 122017
	GW Stds		ug/l								
Chemical Name	(ug/l)										
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
1,2-Dichloroethene (Total)	5										
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U F1	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U F1	5.0 U
Acetone	50		10 U *	10 U							
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		2.2	2.4	2.7	1 U	2.1	2.1	2.1	3	1.0 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U *	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
Tetrachloroethene	5		0.73 J	0.89 J	0.72 J	1 U	0.55 J	0.61 J	0.58 J	0.74 J	0.86 J
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U F1	1.0 U
Trichloroethene	5		3.5	4.5	3.1	1.1	2.4	3.5	3.1	3	3.3
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U F1	2.0 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-08D										
		Depth Interval											-
		Sample Date	9/13/1995	11/14/1995	7/23/1997	9/18/1997	2/18/2000	8/16/2001	11/28/2001	2/25/2002	5/16/2002	7/30/2003	2/3/2004
	Class GA	Sample ID	MW-08D_WG_091395	MW-08D_WG_111495	MW-08D_WG_072397	MW-08D_WG_091897	MW-08D_WG_021800	MW-08D_WG_081601	MW-08D_WG_112801	MW-08D_WG_022502	MW-08D_WG_051602	MW-08D_WG_073003	MW-08D_WG_020304
	GW Stds		ug/l										
Chemical Name	(ug/l)												
1,1,1-Trichloroethane	5		10 U	10 U	1 U	1 U	0.3 J	0.3 J	0.2 J	0.2 J	0.1 J	0.2 J	0.5 U
1,1,2,2-Tetrachloroethane	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5		10 U	10 U	1.7	2	3	3	3	2	2	3	2
1,1-Dichloroethene	5		10 U	10 U	1 U	1 U	0.2 J	0.1 J	0.1 J	0.1 J	0.1 J	0.5 U	0.5 U
1,2-Dichloroethane	0.6		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (Total)	5		10 U	10 U	4.1	[5.3]							
1,2-Dichloropropane	1		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	50		10 UJ	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		10 U	10 U	2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		21	10 UJ	2 U	2 U	10 U	10 J	10 U	10 U	10 U	1 J	10 U
Benzene	1		[1]	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	50		10 U	10 UJ	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5		10 U	10 U	2 U	2 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U
Carbon disulfide	60		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5		10 U	10 U	1 U	1 U	0.5 U	0.5 UJ	0.5 U				
Chlorobenzene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	5		10 U	10 U	1 U	1 U	0.9 J	0.5 J	0.7 J	0.7 J	0.7 J	1 U	1 U
Chloroform	7		10 UJ	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5						[14]	[14]	[13]	[12]	[13]	[5]	2
cis-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	50		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	5		0.8	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	5		10 UJ	10 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 UJ	10 U	4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		10 UJ	10 U	1 U	1 U	2 J	2 U	2 U	2 U	2 U	2 U	2 U
Styrene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Tetrachloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	5		3	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5						0.3 J	0.5 U					
trans-1,3-Dichloropropene	0.4		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	5		10 U	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	2		10 U	10 U	[9.1]	[11]	[24]	[24]	[28]	[25]	[25]	[9]	[3]
Xylenes, Total	5		[5]	10 U	1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
,,	-			· ·	-	-							· · · ·

٥

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID Depth Interval	MW-08D -	MW-08D -	MW-08D -	MW-08D -	MW-08D -	MW-08D -	MW-08D -	MW-08D -	MW-08D -	MW-08D -	MW-08D -	MW-08D -
		Sample Date	5/17/2004	8/4/2004	11/16/2004	2/15/2005	4/18/2005	9/7/2005	11/16/2005	4/26/2006	11/15/2006	5/2/2007	11/1/2007	5/22/2008
	Class GA	Sample ID	MW-08D_WG_051704	MW-08D_WG_080404	MW-08D_WG_111604	MW-08D_WG_021505	MW-08D_WG_041805	MW-8D_09072005	MW-8D_11162005	MW-8D_04262006	MW-8D_11152006	MW-8D_050207	MW8-D-110107	MW8-D-052208
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
mical Name	(ug/l)													
1-Trichloroethane	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
2,2-Tetrachloroethane	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
2-Trichloroethane	1		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
Dichloroethane	5		2	2	2	2	2	1.24	1.14	1.09	0.78	0.81	0.69 H	0.51
Dichloroethene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
Dichloroethane	0.6		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
Dichloroethene (Total)	5													
Dichloropropane	1		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
exanone	50		5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5 HU	5 U
ethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5 HU	5 U
cone	50		10 U	1 J	10 U	2 J	10 U	1.92 J	10.0 U	10.0 U	10.0 U	10 U	10 HU	10 U
zene	1		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
nodichloromethane	50		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
noform	50		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	1 U				
nomethane	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU	1 U
oon disulfide	60		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
oon tetrachloride	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
robenzene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
roethane	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU	1 U
roform	7		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
1,2-Dichloroethene	5		4	3	2	3	4	3.53	4.89	4.36	4.6	[5.33]	1.01 H	4.39
1,3-Dichloropropene	0.4		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
omochloromethane	50		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
lbenzene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
hyl chloride	5		1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU	1 U
hyl ethyl ketone	50		10 U	10.0 U	10.0 U	10.0 U	10.0 U	10 U	10 HU	10 U				
hylene chloride	5		2 U	2 U	2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2 U	2 HU	2 U
ene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
achloroethene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
iene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
s-1,2-Dichloroethene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
s-1,3-Dichloropropene	0.4		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
hloroethene	5		0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U				
l chloride	2		[10]	[5]	[3]	[7]	[11]	[9.34]	[13.2]	[13.8]	[16.7]	[17.1]	1.71 H	[22]
nes, Total	- 5		0.5 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU	1 U				

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-8D	MW-8D	MW-8D
		Depth Interval Sample Date	- 11/18/2008	- 10/20/2009	05/18/2010	01/19/2011	- 4/19/2011	- 7/27/2011	10/25/2011	- 3/21/2012	8/8/2012	- 12/18/2012	- 5/22/2013
	Class GA	Sample ID	MW8-D-111808	MW-8D-10202009	MW-8D-05181005182010	MW-8D-01192011	MW-8D-041911	MW-8D072711	MW8D102511	MW8D032112	MW8D080812	MW-8D-121812	MW-8D-052213
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	(ug/l)												
1,1-Trichloroethane	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		0.48 J	1 U	1 U	1 U	0.49 J	1 U	0.38 J	1 U	0.44 J	0.52 J	1 U
1-Dichloroethene	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
nzene	1		0.5 U	0.52 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		2.72	0.72 J	2.3	2.6	2.4	2	1.8	2	2.1	2.4	1.4
:-1,3-Dichloropropene	0.4		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nylbenzene	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U		5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
thylene chloride	5		2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rachloroethene	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
uene	5		0.5 U	3.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene ns-1,3-Dichloropropene			0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U 1 U	1 U	1 U
	0.4												
chloroethene	5		0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		[9.24]	[2]	[4.9]	[8.3]	[7.1]	[5.4]	[4.5]	[4.9]	[5.2]	[5.9]	[3.8]
lenes, Total	5		1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-8D	MW-8D	MW-8D	X-1	MW-8D	MW-8D		MW-8D	MW-8D	MW-8D	MW-8D
		Depth Interval Sample Date	- 8/20/2013	- 12/17/2013	- 3/26/2014	- 3/26/2014	- 6/11/2014	- 9/24/2014	- 9/24/2014	- 12/10/2014	- 3/17/2015	- 6/24/2015	- 9/23/2015
	Class GA	Sample ID					MW-8D-061114						
		Sample 10	MW-8D-082013	MW-8D-121713	MW-8D-032614	MW-8D-032614		MW8D092414	MW8D092414	MW 8D 121014	MW8D 031715	MW8D 062415	MW8D 092315
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name ,1-Trichloroethane	(ug/l) 5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	5		0.39 J	1 U	1 U	1 U	1.1	0.91 J	0.91 J	0.94 J	0.99 J	0.97 J	0.98 J
-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene (Total)	5	l											
-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
lethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
nzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
modichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
moform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
momethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
orobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene	5		1.9	2	1.2	1.1	3.2	1.5	1.6	1.3	0.94 J	1 U	1 U
1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ylbenzene	5	l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
thylene chloride	5	l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
uene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4	l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yl chloride	2	l	[6.4]	[5.5]	[2.4]	[2.2]	[7.6]	[4.6]	[4.6]	[3.5]	1.8	1.2 ^	0.93 J
enes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID Depth Interval	MW-8D -	MW-8D -	MW-8D -	MW-8D -	MW-8D -	MW-8D -	MW-8D -	MW-8D -	MW-8D -
		Sample Date	1/13/2016	3/30/2016	6/22/2016	9/21/2016	12/21/2016	4/13/2017	6/28/2017	9/13/2017	12/20/2017
	Class GA	Sample ID	MW8D 011316	MW-8D-033016	MW-8D-062216	MW-8D-092116	MW-8D-122116	MW-8D-041317	MW-8D-062817	MW-8D-091317	MW-8D-122017
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	(ug/l)		ug, .	ag, .	ag, .	a ₉ ,.		a ∌,.	a ∌,.	a ₉ ,	ag, .
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5		0.99 J	0.83 J	0.94 J	1 U	0.86 J	0.66 J	0.62 J	0.75 J	0.89 J
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethene (Total)	5										
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U
Acetone	50		10 U *	10 U*	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	0.24 J	1 U	1 U	1.0 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U *	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U
Vinyl chloride	2		0.9 J	1 U	1 U	1 U	1 U	1.6	0.96 J	1 U	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD
		Depth Interval	53 - 56		80 - 83		53 - 56	53 - 56	53 - 56	53 - 56	53 - 56		
		Sample Date	7/28/2003	7/28/2003	7/28/2003	2/4/2004	5/17/2004	8/4/2004	11/15/2004	2/15/2005	4/19/2005	9/8/2005	11/16/2005
	Class GA	Sample ID	MW-08DD_WG_072803 (53	3-MW-08DD_WG_072803 (69	·MW-08DD_WG_072803 (80-	MW-08DD WG 020404	MW-08DD_WG_051704 (53	·MW-08DD_WG_080404 (53	MW-08DD_WG_111504 (53	MW-08DD_WG_021505 (53	3 MW-08DD_WG_041905 (53	MW-8DD 09082005	MW-8DD 1116200
		Sample 10	56)		83)		56)	56)	56)	56)	56)		
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
emical Name	(ug/l)						A = 11		A = 11				
1-Trichloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
-Dichloroethane	5		1	1	1	0.2 J	1	0.9	1	0.7	0.8	0.66	0.73
-Dichloroethene	5		0.1 J	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
-Dichloroethene (Total)	5												
-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
exanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U
lethyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.00 U	5.00 U
tone	50		10 U	10 U	10 U	10 U	1 J	10 U	10 U	2 J	10 U	1.34 J	10.0 U
zene	1		0.5 U	0.5 U	0.5 U	0.1 J	0.2 J	0.5 U	0.1 J	0.5 U	0.5 U	0.50 U	0.10 J
modichloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
moform	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
momethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U
bon disulfide	60		0.5 U	0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.1 J	0.5 U	0.1 J	0.17 J	0.14 J
bon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
orobenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
oroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U
oroform	7		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
1,2-Dichloroethene	5		[8]	[11]	[12]	0.7	0.6	0.7	1	0.4 J	0.8	1.56	0.14 J
1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
romochloromethane	50		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
ylbenzene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.3 J	0.1 J	0.2 J	0.5 U	0.5 U	0.50 U	0.50 U
hyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U
hyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10.0 U	10.0 U
hylene chloride	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.00 U	0.17 J
rene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
rachloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
uene	5		0.5 U	0.5 U	0.2 J	0.1 J	0.5	0.3 J	0.1 J	0.5 U	0.5 U	0.50 U	0.50 U
ns-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
ns-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50 U	0.50 U
hloroethene	5		0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	0.50 U	0.50 U
yl chloride	2		[15]	[14]	[16]	0.8 J	1	1	[2]	0.7 J	[2]	[2.99]	0.25 J
enes, Total	5		0.5 U	0.5 U	0.5	0.5	3	1	0.8	0.2 J	0.5 U	1.00 U	1.00 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD
		Depth Interval Sample Date	- 4/26/2006	- 11/15/2006	- 5/2/2007	- 11/1/2007	- 5/22/2008	- 11/18/2008	- 10/20/2009	05/18/2010	01/18/2011	- 4/19/2011	- 7/27/2011
	Class GA	Sample ID	4/26/2006 MW-8DD 04262006									4/19/2011	//2//2011
		Sample 10		MW-8DD_11152006	MW-8DD_050207	MW-8DD-110107	MW-8DD-052208	MW-8DD-111808	MW-8DD-10202009	MW-8DD-05181005182010	MW-8DD-01182011	MW-8DD-041911	MW-8DD072711
emical Name	GW Stds (ug/l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
,1-Trichloroethane	(ug/I)		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,2,2-Tetrachloroethane	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
,2-Trichloroethane	1		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	5		0.54	0.48 J	0.41 J	0.28 JH	0.34 J	0.35 J	1 U	1 U	1 U	1 U	1 U
-Dichloroethene	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethane	0.6		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
-Dichloroethene (Total)	5												
-Dichloropropane	1		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5.00 U	5.00 U	5 U	5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1ethyl-2-pentanone	NS		5.00 U	5.00 U	5 U	5 HU	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10.0 U	10.0 U	10 U	10 HU	10 U	10 U	5 U	5 U	10 U	10 U	10 U
nzene	1		0.14 J	0.10 J	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
omoform	50		0.50 U	0.50 U	0.5 U	0.5 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1.00 U	1.00 U	1 U	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		0.22 J	0.10 J	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1.00 U	1.00 U	1 U	1 HU	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
-1,2-Dichloroethene	5		0.50 U	0.50 U	0.42 J	1.83 H	0.5 U	0.62	1 U	1 U	2	1 U	1 U
-1,3-Dichloropropene	0.4		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
promochloromethane	50		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
nylbenzene	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
thyl chloride	5		1.00 U	1.00 U	1 U	1 HU	1 U	1 U		1 U	1 U	1 U	1 U
thyl ethyl ketone	50		10.0 U	10.0 U	10 U	10 HU	10 U	10 U		5 U	10 U	10 U	10 U
thylene chloride	5		0.23 J	2.00 U	2 U	2 HU	2 U	2 U	1 U	1 U	1 U	1 U	1 U
rene	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
uene	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1.2	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
chloroethene	5		0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U
ıyl chloride	2		1.00 U	1.00 U	0.81 J	[2.47] H	1 U	1.19	1 U	1.3	[2.2]	0.99 J	1 U
enes, Total	5		1.00 U	1.00 U	1 U	1 HU	1 U	1 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-08DD	MW-08DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD
		Depth Interval Sample Date	10/25/2011	- 3/21/2012	8/8/2012	- 12/18/2012	- 5/22/2013	- 8/20/2013	- 12/17/2013	- 3/26/2014	- 6/11/2014	- 9/24/2014	- 12/10/2014
	Class GA	Sample ID	MW8DD102511	MW8DD032112	MW8DD080812	MW-8DD-121812	MW-8DD-052213	MW-8DD-082013	MW-8DD-121713	MW-8DD-032614	MW-8DD-061114	MW8DD092414	MW 8DD 121014
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nemical Name	(ug/l)												
1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1.1	1 U	1 U	1 U	1 U	1 U	1 U	0.92 J	1 U	1 U	1 U
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		1.3	1 U	1 U	1 U	1 U	1 U	1 U	0.93 J	1 U	1 U	1 U
/lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	X-1
		Depth Interval	-	-	-	-	-	-	-	-	-	-	-	-	-
		Sample Date	3/18/2015	6/24/2015	9/23/2015	1/13/2016	3/30/2016	6/22/2016	9/21/2016	12/21/2016	4/13/2017	6/28/2017	9/13/2017	12/20/217	12/20/217
	Class GA	Sample ID	MW8DD031815	MW8DD062415	MW8DD 092315	MW8DD 011316	MW-8DD-033016	MW-8DD-062216	MW-8DD-092116	MW-8DD-122116	MW-8DD-041317	MW-8DD-062817	MW-8DD-062817	MW-8DD-122017	MW-8DD-122017
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name 1,1,1-Trichloroethane	(ug/l) 5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
1,2-Dichloroethene (Total)	5														
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5.0 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	5.0 U
Acetone	50		10 U	10 U	10 U	10 U *	10 U*	10 U	10 U						
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5		1 U	1 U	1.3	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	0.4		1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1.0 U 1.0 U	1.0 U 1.0 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Ethylbenzene Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U *	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	0.46 J	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1.5	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Vinyl chloride	2		1 U	1 U	1.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2.0 U	2.0 U
,,															

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID Depth Interval	MW-10S -										
		Sample Date	8/1/1997	9/15/1997	2/15/2000	8/14/2001	11/29/2001	2/27/2002	5/15/2002	7/30/2003	2/5/2004	5/18/2004	8/5/2004
	Class GA	Sample ID	MW-10S_WG_080197	MW-10S_WG_091597	MW-10S_WG_021500	MW-10S_WG_081401	MW-10S_WG_112901	MW-10S_WG_022702	MW-10S_WG_051502	MW-10S_WG_073003	MW-10S_WG_020504	MW-10S_WG_051804	MW-10S_WG_080504
	GW Stds		ug/l										
nemical Name	(ug/l)												
1,1-Trichloroethane	5		1 U	1 U	0.2 J	0.5 U	0.2 J	0.2 J	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U
1,2,2-Tetrachloroethane	5		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Trichloroethane	1		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1-Dichloroethane	5		1 U	1 U	2	1	2	2	1	0.9	0.7	0.7	0.4 J
1-Dichloroethene	5		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Dichloroethane	0.6		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Dichloroethene (Total)	5		1.3	2									
2-Dichloropropane	1		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexanone	50		2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		2 U	2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		2 U	2 U	10 U	10 J	10 U	3 J	10 U	10 U	10 U	10 U	2 J
enzene	1		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omodichloromethane	50		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omoform	50		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
omomethane	5		2 U	2 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		1 U	1 U	0.5 U	0.5 UJ	0.5 U						
rbon tetrachloride	5		1 U	1 U	0.5 U	0.5 UJ	0.5 U						
lorobenzene	5		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
loroethane	5		1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
s-1,2-Dichloroethene	5				0.5 U	0.9	0.8	0.7	0.8	2	1	1	1
s-1,3-Dichloropropene	0.4		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
bromochloromethane	50		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
hylbenzene	5		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		4 U	4 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		1 U	1 U	2 U	2 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U
yrene	5		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U				
trachloroethene	5		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
luene	5		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ans-1,2-Dichloroethene	5				0.5 U								
ans-1,3-Dichloropropene	0.4		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
ichloroethene	5		1 U	1 U	0.1 J	0.5 U	0.2 J	0.1 J	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U
nyl chloride	2		1.5	1.5	0.3 J	0.2 J	1 U	0.1 J	0.1 J	0.9 J	0.4 J	0.6 J	0.4 J
lenes, Total	5		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
		Depth Interval	-	-	-	-	-	-	-	-	-	-	-
		Sample Date	11/17/2004	2/15/2005	4/20/2005	9/6/2005	11/14/2005	4/25/2006	11/14/2006	5/3/2007	10/30/2007	5/22/2008	11/19/2008
	Class GA	Sample ID	MW-10S_WG_111704	MW-10S_WG_021505	MW-10S_WG_042005	MW-10S_09062005	MW-10S_11142005	MW-10S_04252006	MW-10S_11142006	MW-10S_050307	MW 10 S-103007	MW 10 S-052208	MW 10 S-111908
hemical Name	GW Stds (ug/l)		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,1-Trichloroethane	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
1,2-Trichloroethane	1		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
1-Dichloroethane	5		0.3 J	0.2 J	0.4 J	0.26 J	0.54	0.37 J	0.35 J	0.21 J	0.5 HU	0.2 J	0.24 J
1-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
-Hexanone	50		5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5 HU	5 U	5 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5 HU	5 U	5 U
cetone	50		10 U	2 J	10 U	2.83 J	1.44 J	1.23 J	10 U	1.05 J	10 HU	10 U	10 U
enzene	1		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
omodichloromethane	50		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
romoform	50		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	1 U	1 U
omomethane	5		1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU	1 U	1 U
arbon disulfide	60		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
arbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
hlorobenzene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
hloroethane	5		1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU	1 U	1 U
hloroform	7		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
s-1,2-Dichloroethene	5		0.5 J	0.6	0.8	0.65	1.6	1.03	1.22	0.68	0.57 H	1.09	1.36
s-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
ibromochloromethane	50		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
hylbenzene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
ethyl chloride	5		1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU	1 U	0.33 J
ethyl ethyl ketone	50		10 U	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U	10 U	10 HU	10 U	10 U
ethylene chloride	5		2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2 U	2 HU	2 U	2 U
yrene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
etrachloroethene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
luene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
ans-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
ans-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
richloroethene	5		0.5 U	0.1 J	0.1 J	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU	0.5 U	0.5 U
nyl chloride	2		0.2 J	1 U	0.3 J	0.21 J	0.61 J	0.34 J	0.39 J	1 U	1 HU	1 U	0.45 J
lenes, Total	5		0.5 U	0.5 U	0.5 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU	1 U	1 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
		Depth Interval Sample Date	- 10/22/2009	- 05/18/2010	- 01/20/2011	- 4/20/2011	- 7/26/2011	10/27/2011	- 3/20/2012	8/7/2012	- 12/19/2012	5/21/2013	8/22/2013
	Class GA	Sample ID	MW-10S-10222009	MW-10S-05181005182010	MW-10S-01202011	MW-10S-042011	MW-10S072611	MW10S102711	MW10S032012	MW10S080712	MW-10S-121912	MW-10-052113	MW-10-082213
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	(ug/l)												
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5												
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		1.5	1.8	1.2	1 U	1.3	1.2	0.96 J	0.93 J	1.3	1 U	0.91 J
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5			1 U	0.81 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50			5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Ayleries, rotai	5		2 0	2.0	2 0	2 0	20	20	20	2 0	2 0	20	2 0

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	X-1	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
		Depth Interval Sample Date	12/18/2013	- 3/25/2014	- 6/10/2014	- 9/23/2014	- 12/9/2014	- 12/9/2014	- 3/17/2015	- 6/25/2015	- 9/22/2015	- 1/12/2016	- 3/29/2016
	Class GA	Sample ID	MW-10S-121813	MW-10S-032514	MW-10S-061014	MW10S092314	MW 10S 120914	MW 10S 120914	MW10S 031715	MW10S 062515	MW10S 092215	MW10S 011216	MW10S 032916
	GW Stds		ug/l	ug/l	mg/l	ug/l							
hemical Name	(ug/l)												
1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U*	1 U*	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U *	10 U
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U*	1 U*	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*
nlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1.3	1 U	1 U	0.82 J	[5.1]	[5.2]	1 U	1 U	1 U	1.9	1 U
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50		1 U	1 U	1 U	1 U	1 U*	1 U*	1 U	1 U	1 U	1 U	1 U
:hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*
ichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		1 U	1 U	1 U	1 U	1.6	1.7	1 U	1 U	1 U	1 U	1 U
ylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
		Depth Interval Sample Date	- 6/21/2016	- 9/20/2016	- 12/20/2016	- 4/11/2017	- 6/27/2017	- 9/12/2017	- 12/21/2017
	Class GA	Sample ID	MW10S 062116	MW10S 092016	MW10S 122016	MW10S 041117	MW10S 062717	MW10S 091217	MW10S 122117
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Chemical Name	(ug/l)								
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (Total)	5								
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		[10]	[14]	[13]	1.2	1.3	[29]	3.3
cis-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2		[2.3]	[2.8]	[1.4]	1 U	1 U	[6.6]	1 U
Xylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

Class GA Sample Depth Inte Sample Depth	ple Date 7/29/19/ mple ID MW-10D_WG_ ug/l 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1997 9/15/1997 G_072997 MW-10D_WG_091597 // ug/l	2/15/2000 MW-10D_WG_021500 ug/l	- 8/14/2001 MW-10D_WG_081401 ug/l	11/29/2001 MW-10D_WG_112901	- 2/27/2002 MW-10D_WG_022702	- 5/15/2002 MW-10D WG 051502	7/30/2003	- 2/5/2004	- 5/18/2004	- 8/5/2004
Chemical Name	ug/l 1 U 1 U 1 U 1 U 1 U 1 U 1 U		ug/l			MW-10D_WG_022702	MW-10D WG 051502	AUU 400 1110 000000			
Chemical Name (ug/l) 1,1,1-Trichloroethane 5 1,1,2,2-Tetrachloroethane 5 1,1,2-Trichloroethane 1 1,1-Dichloroethane 5 1,1-Dichloroethane 0.6 1,2-Dichloroethane 0.6 1,2-Dichloropethene (Total) 5 1,2-Dichloropropane 1 2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chloroethane 5 Chloroethane 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 <th>1 U 1 U 1 U 1 U 1 U</th> <th>J 1 U</th> <th></th> <th>ug/l</th> <th></th> <th></th> <th>100_001002</th> <th>MW-10D_WG_073003</th> <th>MW-10D_WG_020504</th> <th>MW-10D_WG_051804</th> <th>MW-10D_WG_080504</th>	1 U 1 U 1 U 1 U 1 U	J 1 U		ug/l			100_001002	MW-10D_WG_073003	MW-10D_WG_020504	MW-10D_WG_051804	MW-10D_WG_080504
1,1,1-Trichloroethane 5 1,1,2-Tetrachloroethane 5 1,1,2-Trichloroethane 1 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,2-Dichloroethane 0.6 1,2-Dichloroethane (Total) 5 1,2-Dichloropropane 1 2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chloroethane 5 Chloroethane 5 Chloroform 7 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5	1 U 1 U 1 U 1 U		0.1.1		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,1,2,2-Tetrachloroethane 5 1,1,2-Trichloroethane 1 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,2-Dichloroethane 0.6 1,2-Dichloroethane 0.6 1,2-Dichloroethane 1 2-Dichloropropane 1 2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloropropene 0,4 Dibromochloromethane 50 Bethyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Methylene chloride 5 Styrene 5	1 U 1 U 1 U 1 U		0.1.1								
1,1,2-Trichloroethane 1 1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,2-Dichloroethane 0.6 1,2-Dichloroethane 0.6 1,2-Dichloropropane 1 2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromoform 50 Bromoform 50 Bromodithloromethane 5 Carbon disulfide 60 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,2-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U 1 U 1 U	J 1U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane 5 1,1-Dichloroethane 5 1,2-Dichloroethane 0.6 1,2-Dichloroethane 0.6 1,2-Dichloroethane 5 1,2-Dichloropropane 1 2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromodichloromethane 5 Carbon disulfide 60 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U 1 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	1 U	J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane 0.6 1,2-Dichloroethene (Total) 5 1,2-Dichloropropane 1 2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromodichloromethane 50 Bromodichloromethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,2-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5			2	0.5	0.5 J	1	0.3 J	0.1 J	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (Total) 5 1,2-Dichloropropane 1 2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromoform 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,2-Dichloroptopene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5		J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane 1 2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,2-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone 50 4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U									
4-Methyl-2-pentanone NS Acetone 50 Benzene 1 Bromodichloromethane 50 Bromofform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Acetone 50 Benzene 1 Bromodichloromethane 50 Bromodichloromethane 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,2-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	2 U	J 2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene 1 Bromodichloromethane 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chlorofethane 5 Chloroform 7 cis-1,2-Dichloropethene 5 cis-1,2-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	2 U	J 2 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane 50 Bromoform 50 Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloropethene 5 cis-1,3-Dichloropropene 0.4 Dibnomochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	2 U	J 2 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	1 J	10 U
Bromoform 50 Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chloroethane 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane 5 Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide 60 Carbon tetrachloride 5 Chlorobenzene 5 Chloroethane 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride 5 Chlorobenzene 5 Chlorobenzene 5 Chlorotethane 5 Chloroform 7 cis-1,2-Dichloropethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	2 U	J 2 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene 5 Chloroethane 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane 5 Chloroform 7 cis-1,2-Dichloroethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyle ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform 7 cis-1,2-Dichloropene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene 5 cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	0.3		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene 0.4 Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5			0.5 U	0.3 J	0.3 J	0.4 J	0.3 J	0.1 J	0.5 U	0.5 U	0.5 U
Dibromochloromethane 50 Ethylbenzene 5 Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U	J 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene 5 Methyl Chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride 5 Methyl ethyl ketone 50 Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride 5 Styrene 5 Tetrachloroethene 5	1 U		1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
Methylene chloride 5 Styrene 5 Tetrachloroethene 5	4 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Styrene 5 Tetrachloroethene 5	1 U	J 1U	2 U	2 J	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Tetrachloroethene 5	1 U		0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	1 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene 5	1 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene 5			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene 0.4			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene 5	1 11		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride 2	1 U		0.8 J	0.7 J	[2]	0.5 J	1	0.2 J	1 U	0.5 U	1 U
Xylenes, Total 5	1 U 1 U 1 U	J 1U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.1 J 0.5 U	0.5 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

hemical Name 1,1-Trichloroethane 1,2,2-Tetrachloroethane 1,2-Trichloroethane	Class GA GW Stds (ug/l) 5	Depth Interval Sample Date Sample ID	- 11/17/2004 MW-10D_WG_111704 ug/l	- 2/15/2005 MW-10D_WG_021505	- 4/20/2005	- 9/6/2005							
1,1-Trichloroethane 1,2,2-Tetrachloroethane	GW Stds (ug/l) 5		MW-10D_WG_111704			9/6/2005		4 (DE (DOOG	444440000	4/05/0006	44/44/2006	E /0 /000	40/00/000
1,1-Trichloroethane 1,2,2-Tetrachloroethane	GW Stds (ug/l) 5	Sample ID		MW-10D_WG_021505			11/14/2005	4/25/2006	11/14/2005	4/25/2006	11/14/2006	5/3/2007	10/30/2007
1,1-Trichloroethane 1,2,2-Tetrachloroethane	(ug/l) 5		ug/l		MW-10D_WG_042005	MW-10D_09062005	MW-10D_11142005	MW-10D_04252006	MW-10D_11142005	MW-10D_04252006	MW-10D_11142006	MW-10D_050307	MW 10 D-103007
1,1-Trichloroethane 1,2,2-Tetrachloroethane	5		-31-	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
1,2,2-Tetrachloroethane													
			0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
	3		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
,	1		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
1-Dichloroethane	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
1-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
Hexanone	50		5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5 HU
Methyl-2-pentanone	NS		5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5 HU
cetone	50		10 U	2 J	10 U	1.94 J	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10 U	10 HU
nzene	1		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
omodichloromethane	50		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
omoform	50		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
omomethane	5		1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU
rbon disulfide	60		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
rbon tetrachloride	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
lorobenzene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
loroethane	5		1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU
loroform	7		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
s-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
s-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
bromochloromethane	50		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
hylbenzene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
ethyl chloride	5		1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1 U	1 HU
ethyl ethyl ketone	50		10 U	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10 U	10 HU
ethylene chloride	5		2 U	2 U	2 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2 U	2 HU
yrene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
trachloroethene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
luene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
ns-1,2-Dichloroethene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
ins-1,3-Dichloropropene	0.4		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
chloroethene	5		0.5 U	0.5 U	0.5 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.5 HU
chloride nyl chloride	2				0.5 U	1.00 U		1.00 U		1.00 U			0.5 HU 1 HU
iyi chioride lenes, Total	2 5		1 U 0.5 U	1 U 0.5 U	0.5 U	1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U	1.00 U 1.00 U	1 U 1 U	1 HU 1 HU

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D
		Depth Interval Sample Date	5/22/2008	11/19/2008	- 10/22/2009	5/18/2010	1/20/2011	- 7/26/2011	- 4/20/2011	- 7/26/2011	10/27/2011	- 3/20/2012	8/7/2012
								7/20/2011	4/20/2011	7/20/2011	10/2//2011	3/20/2012	6/7/2012
	Class GA	Sample ID	MW 10 D-052208	MW 10 D-111908	MW-10D-10222009	MW-10D-05181005182010	MW-10D-01202011	MW-10D072611	MW-10D-042011	X1072611	MW10D102711	MW10D032012	MW10D080712
hemical Name	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
,1,1-Trichloroethane	(ug/l) 5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,1,2,2-Tetrachloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
,2-Dichloroethene (Total)	5												
,2-Dichloropropane	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 U	10 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nlorobenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroform	7		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U		1 U	0.93 J	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U		5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
ethylene chloride	5		2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oluene	5		0.5 U	0.5 U	1 U	1 U	0.91 J	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
richloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
inyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ylenes, Total	5		1 U	1 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

NOTES:
U - not detected, J - estimated, D - Diluted Result, H - Holding time exceeded, R - unusable, NS - no standard, Dup - te sample, --- Not analyzed, F - MS and/or MSD recovery exceeds the control limits, ^ - instrument related QC is outside limits
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Trip Blank associated with samples collected on 10/29/07 contained Acetone and Methylene Chloride.
Data have not been validated

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-10D	MW-10D	MW-10D	MW-10D	X-1-121813	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	X-1
		Depth Interval Sample Date	-	-	- 0/22/442	-	-	-	-	-	-	-	-
			12/19/2012	5/21/2013	8/22/113	12/18/2013	12/18/2013	3/25/2014	6/10/2014	9/23/2014	12/9/2014	3/17/2015	3/17/2015
	Class GA	Sample ID	MW-10D-121912	MW-10D-052113	MW-10D-082213	MW-10D-121813	MW-10D-121813	MW-10D-032514	MW-10D-061014	MW10D092314	MW 10D 120914	MW10D 031715	MW10D 031715
and all North	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l						
nemical Name 1,1-Trichloroethane	(ug/l) 5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
L-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Dichloroethene (Total)	5												
2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
etone	50		10 U	10 U	10 U	10 U	10 U						
nzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U*	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
lorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
loroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 I	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
bromochloromethane	50		1 U	1 U	1 U	1 U *	1 U *	1 U	1 U	1 U	1 U*	1 U	1 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U						
thylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
rrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
luene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ns-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		1 U	1 U	1 U	1 U *	1 U *	1 U	1 U	1 U	1 U	1 U	1 U
lenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

Table 4 Groundwater Quality Data - VOCs (1995 - 2017) Forest Glen Superfund Site Niagara Falls, New York

		Location ID	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D						
		Depth Interval Sample Date	- 6/25/2015	- 9/22/2015	- 1/12/2016	- 3/29/2016	- 6/21/2016	- 9/20/2016	- 12/20/2016	- 4/12/2017	- 6/27/2017	- 9/12/2017	- 12/21/2017
	Class GA	Sample ID	MW10D 062515	MW10D 092215	MW10D 011216	MW10D 032916	MW10D 062116	MW10D 092016	MW10D 122016	MW10D 041217	MW10D 062717	MW10D 091217	MW10D 122117
	GW Stds		ug/l	ug/l	ug/l	ug/l	ug/l						
Chemical Name	(ug/l)												
1,1-Trichloroethane	5	ı	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
.2-Dichloroethane	0.6		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
.2-Dichloroethene (Total)	5												
,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
-Hexanone	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
-Methyl-2-pentanone	NS		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cetone	50		10 U	10 U	10 U *	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
enzene	1		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omodichloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
romoform	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
omomethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon disulfide	60		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
arbon tetrachloride	5		1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nlorobenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroethane	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hloroform	7		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
s-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
hylbenzene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ethyl ethyl ketone	50		10 U	10 U	10 U	10 U	10 U						
ethylene chloride	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
yrene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
etrachloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
oluene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ans-1,3-Dichloropropene	0.4		1 U	1 U	1 U	1 U*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ichloroethene	5		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
nyl chloride	2		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ylenes, Total	5		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U

		Location ID	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S
		Depth Interval	-										
		Sample Date	2/14/2000	8/13/2001	11/26/2001	2/25/2002	5/13/2002	11/16/2004	11/15/2005	11/14/2006	10/29/2007	11/18/2008	10/19/2009
	Class GA	Sample ID	MW-01S_WG_021400	MW-01S_WG_081301	MW-01S_WG_112601	MW-01S_WG_022502	MW-01S_WG_051302	MW-01S_WG_111604	MW-1S_11152005	MW-1S_11142006	MW-1S-102907	MW-1S-111808	MW-1S-10192009
	GW Stds												
Chemical Name			mq/l										
Alkalinity (As Caco3)	NS	mg/L	250	300	270	260	340	270	260	300	240	260	356 D,B
Chloride	250	mg/L	[560]	[920]	[670]	[660]	[510]	[1000]	[940]	[970]	[1700]	[1300]	[841] D,B
Nitrate (as N)	10	mg/L	0.24	0.05 U	0.27	0.08	0.05 U	0.05 U	0.05 U	0.1 U	0.1	0.2 U	0.05 U
litrite (as N)	1	mg/l	0.05 U	0.0046 J	0.05 U	0.1 U	0.1	0.2 U	0.05 U				
litrite-Nitrate Nitrogen	NS	mg/L	0.24	0.05 U	0.27	0.08	0.05 U	0.05 U					
Gulfate	250	mg/l	7.5 U	[270]	[290]	220	[280]	[360]	[320]	[280]	[280]	240	217 D
otal Sulfides	NS	mg/l	0.2 U	0.40 J	0.40 J	0.8 U	1	1 U	0				
Total Organic Carbon, Filtered	NS	mg/L	5	6	3	1	2	3.6	9.2	5.1	3	15	2.3
oΗ	NS	STD u	7.3										

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S	MW-01S				
		Depth Interval	-										
		Sample Date	05/18/2010	1/19/2011	4/18/2011	7/26/2011	10/25/2011	3/20/2012	8/7/2012	12/18/2012	5/21/2013	8/19/2013	12/18/2013
	Class GA	Sample ID	MW-1S-05181005182010	MW-1S_01192011	MW-1S-041811	MW-1S072611	MW1S102511	MW1S032012	MW1S080712	MW-1S-121812	MW-1S-052113	MW-1S-081913	MW-15-121813
	GW Stds												
hemical Name			mq/l										
kalinity (As Caco3)	NS	mg/L	279 B	268	200 B	322 B	288		292	218	241	305 B	300
hloride	250	mg/L	[1570]	[1190]	[1860] B	[1130]	[786]	[1370] B	[1040]	[604 B]	[1270 B]	[753 B]	[557]
itrate (as N)	10	mg/L	0.21	0.15	0.35	0.05 U	0.055	0.22	0.1	3.3	2.6	0.6	0.34
itrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.1 H	0.09	0.059	0.037 J
trite-Nitrate Nitrogen	NS	mg/L											
ılfate	250	mg/l	228	241 B	190	226	227		224	351	349	[369]	[311]
otal Sulfides	NS	mg/l	0.01	0.1 U	0.1 U	0.1 UH	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
tal Organic Carbon, Filtered	NS	mg/L	3.7	1 U	2.2	3.9	5.3	1 U	1.4	2.8	5.2	3	3.5
d	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-1S	MW-1S	MW-1S	MW-1S	X-1	MW-1S
		Depth Interval						
		Sample Date	3/25/2014	6/9/2014	9/23/2014	4/11/2017	4/11/2017	9/12/2017
	Class GA	Sample ID	MW-1S-032514	MW-1S-060914	MW1S092314	MW1S041117	MW1S041117	MW1S091217
	GW Stds							
Chemical Name		units			mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/L	203	282	363 B	265	282	349 B
Chloride	250	mg/L	[2030]	[1260]	[880]	[1150]	[1180]	[788]
Nitrate (as N)	10	mg/L	0.37	0.41	0.67	0.12	0.13	0.05 U
Nitrite (as N)	1	mg/l	0.022 JB	0.05 U	0.033 JB	0.05	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L						
Sulfate	250	mg/l	[292]	[278]	[275] B	217	217	217
Total Sulfides	NS	mg/l	0.1 U	0.1 U	0.1 U	0.05 J	0.06 J	0.1 U
Total Organic Carbon, Filtered	NS	mg/L	3	3.1	4.3	2.2	2.3	4.5 B
pH	NS	STD u						

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D
		Depth Interval	-										
		Sample Date	2/14/2000	8/13/2001	11/26/2001	2/25/2002	5/13/2002	11/16/2004	11/15/2005	11/14/2006	10/29/2007	11/18/2008	10/19/2009
	Class GA	Sample ID	MW-01D_WG_021400	MW-01D_WG_081301	MW-01D_WG_112601	MW-01D_WG_022502	MW-01D_WG_051302	MW-01D_WG_111604	MW-1D_11152005	MW-1D_11142006	MW-1D-102907	MW-1D-111808	MW-1D-10192009
	GW Stds												
Chemical Name		units	mg/l										
Alkalinity (As Caco3)	NS	mg/L	330	310	340	330	340	320	320	340	330	310	394 D,B
Chloride	250	mg/L	[270]	220	[260]	240	[250]	220	[260]	[350]	240	[250]	[371] D,B
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.1 U	0.1	0.1 U	0.05 U					
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.1 U	0.1	0.1 U	0.05 U					
Nitrite-Nitrate Nitrogen	NS	mg/L	0.05 U										
Sulfate	250	mg/l	7.5 U	170	[260]	230	190	[260]	240	240	230	210	211 D
Total Sulfides	NS	mg/l	0.2 U	0.2 U	0.2 U	0.2 U	0.2	0.60 J	0.8 U	0.8 U	1	1 U	0
Total Organic Carbon, Filtered	NS	mg/L	1 U	1	4	1 U	1 U	3.6	8.8	8.4	3.8	3.7	2
pΗ	NS	STD u	7.4										

		Location ID	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-01D	MW-1D	X-1	MW-1D	MW-1D	MW-1D
		Depth Interval											
		Sample Date	5/18/2010	1/19/2011	4/18/2011	7/26/2011	10/25/2011	3/20/2012	8/7/2012	8/7/2012	12/18/2012	5/21/2013	8/19/2013
	Class GA	Sample ID	MW-1D-05181005182010	MW-1D-01192011	MW-1D-041811	MW-1D072611	MW1D102511	MW1D032012	MW1D080712	MW1D080712	MW-1D-121812	MW-1D-052113	MW-1D-081913
	GW Stds												
Chemical Name			mg/l										
Alkalinity (As Caco3)	NS	mg/L	366 B	348	251 B	374 B	336		356	341	337	424	387 B
Chloride	250	mg/L	[398]	[357]	[284]	[366]	[270]	[374] B	[265]	[265]	[298] B	[379 B]	[344 B]
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L											
Sulfate	250	mg/l	193	196 B	199	[258]	232		192	199	209	228	228
Total Sulfides	NS	mg/l	0.002 U	0.1 U	0.12	0.1 UH	0.13	0.1 U	0.16	0.13	0.13	0.1 U	0.058 J
Total Organic Carbon, Filtered	NS	mg/L	4.1	1 U	3	3.7	3.4	0.89	1.5	1.3	2.8	5.2	3.5
ρΗ	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID						
		Depth Interval						
		Sample Date	12/19/2013	3/25/2014	9/23/2014	4/11/2017	9/12/2017	9/12/2017
	Class GA	Sample ID	MW-1D-121913	MW-1D-032514	MW1D092314	MW1D041117	MW1D091217	MW1D091217
	GW Stds							
Chemical Name		units			mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/L	365	377	417 B	299	311 B	320 B
Chloride	250	mg/L	288 B	[265]	[236]	[252]	[302]	184
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.02 J	0.05	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L						
Sulfate	250	mg/l	199	202	207	132	185	[269]
Total Sulfides	NS	mg/l	0.1	0.15	0.24	0.63 F1	0.28	0.53 H
Total Organic Carbon, Filtered	NS	mg/L	3.8	5.4	3.3	2.4	3.4 B	4.2 B
pH	NS	STD u						

NOTES:

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S
		Depth Interval											
		Sample Date	2/17/2000	8/15/2001	11/29/2001	2/28/2002	5/14/2002	11/17/2004	11/16/2005	11/16/2006	10/31/2007	11/18/2008	10/21/2009
	Class GA	Sample ID	MW-04S_WG_021700	MW-04S_WG_081501	MW-04S_WG_112901	MW-04S_WG_022802	MW-04S_WG_051402	MW-04S_WG_111704	MW-4S_11162005	MW-4S_11162006	MW 4-S-103107	MW 4-S-111808	MW-4S-10212009
	GW Stds												
Chemical Name		units	mg/l										
Alkalinity (As Caco3)	NS 250	mg/L	350	330	370	360	370	350	350	370	370	370	402 D,B
Chloride	250	mg/L	150	130	230	200	200	190	160	140	110	77	121 D
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.15	0.05 U	0.05 U	0.061	0.05 U	0.1 U	0.1	0.18 J	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.018 J	0.05 U	0.1 U	0.1	0.2 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/L	0.05 U	0.05 U	0.15	0.05 U	0.05 U	0.079					
Sulfate	250	mg/l	7.5 U	[300]	[790]	[740]	[700]	[370]	[500] E	[640]	[780]	[1300]	[547] D
Total Sulfides	NS	mg/l	0.2 U	0.40 J	0.60 J	1.2	2.3	1 U	0				
Total Organic Carbon, Filtered	NS	mg/L	5	2	4	1 U	3	17	12	30	3.7	43	3.9
pH	NS	STD u	7.9										

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-04S	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S
		Depth Interval	-					-					
		Sample Date	05/19/2010	01/20/2011	4/21/2011	7/28/2011	10/27/2011	3/22/2012	8/9/2012	12/20/2012	5/22/2013	8/22/2013	12/19/2013
	Class GA	Sample ID	MW-4S-05191005192010	MW-4S-01202011	MW-4S-042111	MW-4S 072811	MW4S102711	MW4S032212	MW4S080912	MW-4S-122012	MW-4S-052213	MW-4S-082213	MW-4S-082213
	GW Stds												
Chemical Name		units	mg/l										
Alkalinity (As Caco3)	NS	mg/L	428 B	422	399	396 B	386		425	395 B	440	390	380
Chloride	250	mg/L	76.3	78.5	27	71.6	127	53.9	93.5	67.6 B	82 B	98.7	66.9 B
Nitrate (as N)	10	mg/L	0.026 J	0.05 U	0.11	0.049 J	0.05 U	0.083	0.05 U	0.1	0.048 J	0.05 U	0.038 J
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L											
Sulfate	250	mg/l	[589] B	[777] B	[1300]	[1090]	[626]		[773]	856	[788]	[473]	[598]
Total Sulfides	NS	mg/l	0.002 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.07 J	0.1 U
Total Organic Carbon, Filtered	NS	mg/L	1 U	2.5	5	1 U	1.5	3.1	1.8	2.1	11.6	3.7	3.2
pH	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-4S	MW-4S	MW-4S	MW-4S	MW-4S
		Depth Interval					
		Sample Date	3/27/2014	6/11/2014	9/23/2014	4/13/2017	9/14/2017
	Class GA	Sample ID	MW-4S-032714	MW-4S-061114	MW-4S-092414	MW-4S-041317	MW-4S-091417
	GW Stds						
Chemical Name		units					
Alkalinity (As Caco3)	NS	mg/L	401 B	421 B		411 B	442 B
Chloride	250	mg/L	65.4	70.7		42.1	92.2
Nitrate (as N)	10	mg/L	0.037 J	0.02 J		0.06	0.034 J
Nitrite (as N)	1	mg/l	0.05 U	0.043 JB		0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L					
Sulfate	250	mg/l	[427]	[840]		[504]	[459]
Total Sulfides	NS	mg/l	0.092 J	0.072 J		0.14	0.14
Total Organic Carbon, Filtered	NS	mg/L	5.2	3.4		2.4	7.1 B
pH	NS	STD u					

		Location ID	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D
		Depth Interval	-										
		Sample Date	2/17/2000	8/15/2001	11/29/2001	2/28/2002	5/14/2002	11/17/2004	11/16/2005	11/15/2006	10/31/2007	11/19/2008	10/21/2009
	Class GA	Sample ID	MW-04D_WG_021700	MW-04D_WG_081501	MW-04D_WG_112901	MW-04D_WG_022802	MW-04D_WG_051402	MW-04D_WG_111704	MW-4D_11162005	MW-4D_11152006	MW 4-D-103107	MW 4-D-111908	MW-4D-10212009
	GW Stds												
Chemical Name		units	mg/l										
Alkalinity (As Caco3)	NS	mg/L	300	290	290	270	280	310	320	330	320	320	338 D,B
Chloride	250	mg/L	110	210	240	180	140	[250]	230	210	220	210	209 D
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.1 U	0.1	0.1 U	0.05 U					
Nitrite (as N)	1	mg/l	0.05 U	0.010 J	0.05 U	0.1 U	0.1	0.1 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/L	0.05 U										
Sulfate	250	mg/l	7.5 U	180	220	220	170	[360]	[370] E	[260]	[290]	240	[275] D
otal Sulfides	NS	mg/l	0.2 U	0.4	0.2 U	0.2 U	0.2	0.8	1	0.8 U	1	1 U	0.3
Total Organic Carbon, Filtered	NS	mg/L	6	7	5	6	2	3.2	3.7	30	4.6	3.5	4.4
oH.	NS	STD u	7.4										

		Location ID	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-04D	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D
		Depth Interval	-										
		Sample Date	05/19/2010	01/20/2011	4/21/2011	7/28/2011	3/22/2012	10/26/2011	8/9/2012	12/20/2012	5/22/2013	8/21/2013	12/19/2013
	Class GA	Sample ID	MW-4D-05191005192010	MW-4D-01202011	MW-4D-042111	MW-4D 072811	MW4D032212	MW4D102611	MW4D080912	MW-4D-122012	MW-4D-052213	MW-4D-082113	MW-4D-121913
	GW Stds												
Chemical Name			mg/l										
Alkalinity (As Caco3)	NS	mg/L	355 B	364	327	339 B		310	362	401 B	360	333	362
Chloride	250	mg/L	224	201	215	208	193 B	222	229	197 B	218 B	209	196 B
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L											
Sulfate	250	mg/l	[258] B	216 B	[370]	[334]		[335]	[297]	[271]	[323]	[329]	[242]
Total Sulfides	NS	mg/l	0.223	0.093 J	0.1 U	0.44	0.056 J	0.49	0.84	0.57	0.67	0.66	0.31
Total Organic Carbon, Filtered	NS	mg/L	3.2	2.7	3.9	1 U	4	3.3	1.4	3.3	4.7	3.6	3.5
Н	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-4D	MW-4D	MW-4D	MW-4D	MW-4D
		Depth Interval					
		Sample Date	3/27/2014	6/10/2014	9/25/2014	4/13/2017	9/14/2017
	Class GA	Sample ID	MW-4D-032714	MW-4D-061014	MW 4D 092514	MW 4D 041317	MW 4D 091417
	GW Stds						
Chemical Name		units			mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/L	355 B	292	72.5 B	319 B	327 B
Chloride	250	mg/L	213	226	[283]	[253]	245
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L					
Sulfate	250	mg/l	[346]	[328]	[297]	[337] B	[299]
Total Sulfides	NS	mg/l	0.92	0.96	0.48	1.4	0.66
Total Organic Carbon, Filtered	NS	mg/L	3.8	3.6	3.1	2.5	3.6 B
pH	NS	STD u					

NOTES:

		Location ID Depth Interval	MW-05S -	MW-05S -	MW-05S -	MW-05S -	MW-05S -	MW-05S -	MW-05S -	MW-05S -	MW-05S -	MW-05S -	MW-05S -
		Sample Date	2/17/2000	8/14/2001	11/29/2001	2/27/2002	5/15/2002	11/17/2004	11/15/2005	11/14/2006	10/30/2007	11/19/2008	10/21/2009
	Class GA	Sample ID	MW-05S_WG_021700	MW-05S_WG_081401	MW-05S_WG_112901	MW-05S_WG_022702	MW-05S_WG_051502	MW-05S_WG_111704	MW-5S_11152005	MW-5S_11142006	MW 5 S-103007	MW-05S_WG_111908	MW-5S-10212009
	GW Stds												
Chemical Name		units	mg/l										
Alkalinity (As Caco3)	NS	mg/L	370	470	340	340	330	400	330	320	380		391 D,B
Chloride	250	mg/L	240	170	170	97	75	120	63	35	75	73	71.2 D
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.14	0.1	0.1 U	0.05 U					
Nitrite (as N)	1	mg/l	0.05 U	0.011 J	0.05 U	0.1 U	0.1	0.1 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/L	0.05 U	0.017 J									
Sulfate	250	mg/l	7.5 U	[290]	[270]	[260]	200	[370]	[350]	[730]	[560]	220	[375] D
Total Sulfides	NS	mg/l	0.2 U	0.60 J	0.8 U	0.8 U	1	1 U	0				
Total Organic Carbon, Filtered	NS	mg/L	6	2 UJ	9	2	6	5.2	8.6	16	6.6	5.1	4.8
pH	NS	STD u	7.1										

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-05S	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S
		Depth Interval	-										
		Sample Date	05/19/2010	01/20/2011	4/20/2011	7/28/2011	10/27/2011	3/22/2012	8/9/2012	12/19/2012	5/22/2013	8/21/2013	12/19/2013
	Class GA	Sample ID	MW-5S-05191005192010	MW-5S-01202011	MW-5S-042011	MW-5S 072811	MW5S102711	MW5S032212	MW5S080912	MW-5S-121912	MW-5S-052213	MW-5S-082113	MW-5S-121913
	GW Stds												
Chemical Name			mg/l										
Alkalinity (As Caco3)	NS	mg/L	364 B	314	190	466 B	264		449	250 B	461	403	438
Chloride	250	mg/L	38.7	20.6	10.6	60.5	17	39.8 B	90.2	9	64.4 B	59.5	47.2 B
Nitrate (as N)	10	mg/L	0.05 U	0.082	0.037 J	0.05 U	0.041 J	0.05 U	0.067	0.076 H	0.05 U	0.05 U	0.032 J
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 UH	0.05 U	0.05 U	0.05
Nitrite-Nitrate Nitrogen	NS	mg/L											
Sulfate	250	mg/l	194 B	[364] B	179	[416]	227 B		223	198	189	159	223
Total Sulfides	NS	mg/l	0.006	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.14	0.1 U
Total Organic Carbon, Filtered	NS	mg/L	0.4 J	5	4.2	1 U	2.9	5.8	2.5	4.1	14.3	5.9	5.7
pH .	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-5S	MW-5S	MW-5S	MW-5S	MW-5S
		Depth Interval					
		Sample Date	3/27/2014	6/10/2014	9/25/2014	4/12/017	9/14/2017
	Class GA	Sample ID	MW-5S-032714	MW-5S-061014	MW 5S 092514	MW 5S 041217	MW 5S 091417
	GW Stds						
Chemical Name		units			mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/L	362 B	443	40.2 B	228	442 B
Chloride	250	mg/L	56.7	48.7	95.2	8.3	12.2
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.071	0.032 J
Nitrite (as N)	1	mg/l	0.04 JB	0.05 U	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L					
Sulfate	250	mg/l	[259]	[352]	[358]	169	[326]
Total Sulfides	NS	mg/l	0.1 U	0.1 U	0.12	0.06 J	0.1
Total Organic Carbon, Filtered	NS	mg/L	4.8	4.9	5.1	2.7	4.5 B
pH	NS	STD u					

NOTES:

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID Depth Interval	MW-05D -	MW-05D -	MW-05D -	MW-05D -	MW-05D -	MW-05D -	MW-05D -	MW-05D -	MW-05D -	MW-05D -	MW-05D -
		Sample Date	2/17/2000	8/14/2001	11/29/2001	2/27/2002	5/15/2002	11/17/2004	11/15/2005	11/14/2006	10/30/2007	11/19/2008	10/21/2009
	Class GA	Sample ID	MW-05D_WG_021700	MW-05D_WG_081401	MW-05D_WG_112901	MW-05D_WG_022702	MW-05D_WG_051502	MW-05D_WG_111704	MW-5D_11152005	MW-5D_11142006	MW 5 D-103007	MW 5 D-111908	MW-5D-10212009
	GW Stds												
Chemical Name		units	mg/l										
Alkalinity (As Caco3)	NS	mg/L	260	300	250	240	260	350	340	350	350	330	366 D,B
Chloride	250	mg/L	[440]	230	230	140	120	210	210	200	190	200	200 D,B
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.1 U	0.1	0.1 U	0.05 U					
Nitrite (as N)	1	mg/l	0.05 U	0.010 J	0.05 U	0.1 U	0.1	0.1 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/L	0.05 U										
Sulfate	250	mg/l	7.5 U	230	[260]	220	180	[360]	[290]	[270]	[290]	[260]	[290] D
Total Sulfides	NS	mg/l	0.2 U	0.2	0.2 U	0.2 U	0.2 U	0.60 J	0.8 U	0.8 U	1	1 U	0.2
Total Organic Carbon, Filtered	NS	mg/L	4	7	6	2	2	3.5	4	4.3	4	4	4.3
pH	NS	STD u	7.9										

		Location ID	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-05D	MW-5D	MW-5D	MW-05D	MW-05D	MW-05D
		Depth Interval Sample Date	- 5/19/2010	- 1/20/2011	- 4/20/2011	- 7/28/2011	- 10/27/2011	- 3/22/2012	- 8/9/2012	- 12/19/2012	- 5/22/2013	- 8/21/2013	- 12/19/2013
	Class GA	Sample ID	MW-5D-051910	MW-5D_01202011	MW-5D-042011	MW-5D 072811	MW5D102711	MW5D032212	MW5D080912	MW-5D-121912	MW-5D_052213	MW-5D_082113	MW-5D-121913
	GW Stds												
Chemical Name		units											
Alkalinity (As Caco3)	NS	mg/L	369 B	392	335	329 B	354		353	389 B	370	353	326
Chloride	250	mg/L	197	206	188	177	191	167 B	172	177	181 B	180	180 B
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U				
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/L											
Sulfate	250	mg/l	[262] B	[254] B	[263]	[278]	238		194	241	249	206	200
Total Sulfides	NS	mg/l	0.006	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Total Organic Carbon, Filtered	NS	mg/L	0.4 J	3.9	4	1 U	1.6	3.8	1.5	3.7	4.4	3.7	3.3
ρΗ	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-5D	MW-5D	MW-5D	MW-5D	MW-5D
		Depth Interval					
		Sample Date	3/27/2014	6/10/2014	9/25/2014	4/12/017	9/14/2017
	Class GA	Sample ID	MW-5D-032714	MW-5D-061014	MW 5D 092514	MW 5D 041217	MW 5D 091417
	GW Stds						
Chemical Name		units			mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/L	362 B	322	24.4 B	322	327 B
Chloride	250	mg/L	182	180	183	217	193
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L					
Sulfate	250	mg/l	211	212	193	182	200
Total Sulfides	NS	mg/l	0.1 U	0.071 J	0.1 U	0.16	0.07 J
Total Organic Carbon, Filtered	NS	mg/L	4.5	5.3	3.4	2.6	5.2 B
pH	NS	STD u					

NOTES:

		Location ID	MW-06S MW-06S	MW-06S	MW-06S	MW-06S							
		Depth Interval Sample Date	2/15/2000	- 8/15/2001	- 11/29/2001	- 2/27/2002	- 5/15/2002	- 11/16/2004	- 11/15/2005	11/13/2006	- 10/31/2007	- 11/19/2008	- 10/21/2009
	Class GA	Sample ID	MW-06S_WG_021500	MW-06S_WG_081501	MW-06S_WG_112901	MW-06S_WG_022702	MW-06S_WG_051502	MW-06S_WG_111604	MW-6S_11152005	MW-6S_11132006	MW-6S-103107	MW-6S-111908	MW-6S-10212009
	GW Stds												
Chemical Name	(mg/l)	units	mg/l	mq/l	mq/l	mq/l	mq/l	mq/l	mq/l	mq/l	mq/l	mq/l	mq/l
Alkalinity (As Caco3)	NS	mg/L	250	270	230	200	230	160	260	240	200	280	269 D,B
Chloride	250	mg/L	200	120	90	43	44	52	24	18	44	37	21.3
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.05 U	0.07	0.05 U	0.05 U	0.1 U	0.1	0.1 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.0074 J	0.05 U	0.1 U	0.1	0.1 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/L	0.05 U	0.05 U	0.05 U	0.05 U	0.07	0.05 U					
Sulfate	250	mg/l	7.5 U	230	200	130	120	[330]	190	120	380 a	210	199 D
Total Sulfides	NS	mg/l	0.2 U	0.8	0.60 J	0.8 U	1	1 U	0				
Total Organic Carbon, Filtered	NS	mg/L	5	7	8	6	2	5.8	14	28	6.5	12	5.4
pH	NS	STD u	7.4										

		Location ID	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-06S	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S
		Depth Interval											
		Sample Date	05/19/2010	01/19/2011	4/20/2011	7/26/2011	10/26/2011	3/20/2012	8/7/2012	12/19/2012	5/21/2013	8/21/2013	12/18/2013
	Class GA	Sample ID	MW-6S-05191005192010	MW-6S-01192011	MW-6S-042011	MW-6S072611		MW6S032012	MW6S080712	MW-6S-121912	MW-6S-052113	MW-6S-082113	MW-6D-121813
	GW Stds												
Chemical Name			mg/l										
Alkalinity (As Caco3)	NS	mg/L	263 B	224	179	247 B	286		265	244 B	256	219	285
Chloride	250	mg/L	21.6	19.3	12	17.9	24.6	11.8	16	6.8	14.2 B	11.4	18.9 B
Nitrate (as N)	10	mg/L	0.047 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
litrite-Nitrate Nitrogen	NS	mg/L											
Gulfate	250	mg/l	136 B	151 B	78.8	153 B	214		107	63.9	101	78.1	168
otal Sulfides	NS	mg/l	0.006	0.1	0.1 U	0.1 UH	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
otal Organic Carbon, Filtered	NS	mg/L	1.4	1 U	1 U	6.5	5.3	1.5	3.2	7.7	6.6	5.5	5.8
Н - ,	NS	STD u											

		Location ID	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S
		Depth Interval					
		Sample Date	3/25/2014	6/11/2014	9/23/2014	4/11/2017	9/14/2017
	Class GA	Sample ID	MW-6S-032514	MW-6S-061114	MW6S092314	MW6S041117	MW6S091417
	GW Stds						
Chemical Name		units			mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/L	257	322 B	405 B	320	379 B
Chloride	250	mg/L	23.8	32.5	30.9	32.3	39.8
Nitrate (as N)	10	mg/L	0.05 U	0.023	0.021 J	0.14	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L					
Sulfate	250	mg/l	162	54.4	203	208	[287]
Total Sulfides	NS	mg/l	0.1 U	0.1 U	0.1 U	0.08 J	0.1 U
Total Organic Carbon, Filtered	NS	mg/L	4.8	5.3	4.9	3.9	6.3 B
pH	NS	STD u					

		Location ID	MW-06D MW-06D	MW-06D	MW-06D	MW-06D							
		Depth Interval Sample Date	- 2/15/2000	- 8/15/2001	- 11/29/2001	- 2/27/2002	- 5/15/2002	- 11/16/2004	- 11/15/2005	- 10/30/2007	- 11/19/2008	10/21/2009	5/19/2010
	Class GA GW Stds	Sample ID	MW-06D_WG_021500	MW-06D_WG_081501	MW-06D_WG_112901	MW-06D_WG_022702	MW-06D_WG_051502	MW-06D_WG_111604	MW-6D_11152005	MW 6 D-103007	MW 6 D-111908	MW-6D-10212009	MW-6D-0519100519201
Chemical Name	(mg/l)	units	mg/l	mq/l	mg/l	mq/l	mq/l	mg/l	mg/l	mg/l	mq/l	mq/l	mg/l
Alkalinity (As Caco3)	NS	mg/L	240	250	240	240	250	270	260	260	250	232 D,B	358 B
Chloride	250	mg/L	140	240	200	120	110	[340]	110	180	120	72.4 D,B	38
Nitrate (as N)	10	mg/L	0.05 U 0.1	0.1 U	0.05 U	0.05 U							
litrite (as N)	1	mg/l	0.05 U 0.1	0.1 U	0.05 U	0.05 U							
Nitrite-Nitrate Nitrogen	NS	mg/L	0.05 U										
Gulfate	250	mg/l	7.5 U	180	220	210	170	[330]	200	230	190	166 D	151 B
otal Sulfides	NS	mg/l	0.2 U	0.4	0.2 U	0.2 U	0.2 U	0.60 J	0.8 U	1	1 U	0	0.023
otal Organic Carbon, Filtered	NS	mg/L	5	6	6	3	3	3.7	5.3	4.5	14	5.3	1 U
ρΗ	NS	STD u	8										

		Location ID	MW-06D	MW-06D	MW-06D	MW-06D	MW-06D		MW-6D	MW-6D	MW-6D		MW-6D
		Depth Interval Sample Date	1/19/2011	- 4/20/2011	- 7/26/2011	- 10/26/2011	- 3/20/2012	- 3/20/2012	- 8/7/2012	- 12/19/2012	- 5/21/2013	- 5/21/2013	- 8/21/2013
	Class GA	Sample ID	MW-6D-01192011	MW-6D-042011	MW-6D072611	MW6D102611	MW6D032012	MW6D032012	MW6D080712	MW-6D-121912	MW-6D-052113	MW-6D-052113	MW-6D-082113
	GW Stds												
Chemical Name		units											
Alkalinity (As Caco3)	NS	mg/L	257	220	263 B	295			259	302 B	291	255	246
Chloride	250	mg/L	34.1	28.9	37.4	97.2	35.3	35.9	103	29	32.2 B	31.8B	27.8
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05U	0.05 U
litrite-Nitrate Nitrogen	NS	mg/L											
Sulfate	250	mg/l	145 B	135	177 B	196			181	150	147	145	126
otal Sulfides	NS	mg/l	0.21	0.1 U	0.1 UH	0.1 U	0.1 U	0.1 U	0.057 J	0.1 U	0.1 U	0.1U	0.1 U
otal Organic Carbon, Filtered	NS	mg/L	1 U	0.81 J	5.3	4.3	1.7	1.1	2	4.4	5.7	5.4	5.2
ρΗ	NS	STD u											

		Location ID Depth Interval	MW-6D -	MW-6D -	MW-6D	MW-6D	MW-6D	MW-6D
		Sample Date	12/18/2013	3/25/2014	6/10/2014	9/23/2014	4/11/2017	9/12/2017
	Class GA	Sample ID	MW-6D-121813	MW-6D-032514	MW-6D-061014	MW6D092314	MW6D041117	MW6D091217
	GW Stds							
Chemical Name	(mg/l)	units	mq/l	mg/l	mg/l	mg/l	mg/l	mg/l
All-li-it (A- C2)	NC		281	380	200	435 B	339	329 B
Alkalinity (As Caco3)	NS	mg/L	30.4 B	189	309 199	435 B 221	201	180
Chloride	250	mg/L						
Nitrate (as N)	10	mg/L	0.05 U	0.05 U	0.05 U	0.02 J	0.05	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/L						
Sulfate	250	mg/l	148	262	[313]	[340]	222	[265]
Total Sulfides	NS	mg/l	0.1 U	0.1 U	0.19	0.31	0.46	0.58
Total Organic Carbon, Filtered	NS	mg/L	5	3.9	4.8	3.7	3.1	4.5 B
pH	NS	STD u						

		Location ID	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD	MW-06DD
		Depth Interval											
		Sample Date	11/14/2005	11/15/2006	10/30/2007	11/19/2008	10/21/2009	05/19/2010	01/19/2011	4/20/2011	7/26/2011	10/26/2011	3/20/2012
	Class GA	Sample ID	MW-6DD_11142005	MW-6DD_11152006	MW 6 DD-103007	MW 6 DD-111908	MW-6DD-10212009	MW-6DD-05191005192010	MW-6DD-01192011	MW-6DD-042011	MW-6DD072611	MW6DD102611	MW6DD032012
	GW STds												
Chemical Name	(mg/l)	units	mg/l	mg/l							mg/l	mg/l	
*													
Alkalinity (As Caco3)	NS	mg/l	310	320	320	310	322 D,B	358 B	306 B	273	317 B	313	
Chloride	250	mg/l	160	150	200	180	177 D	169	131 B	123	145	160	126 B
Nitrate (as N)	10	mg/l	0.05 U	0.1 U	0.1	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.1 U	0.1	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l											
Sulfate	250	mg/l	[270]	[270]	[320]	[260]	[290] D	[257] B	235 B	196	[270]	[259]	
Total Sulfides	NS	mg/l	0.8 U	0.8 U	1	1 U	0.006	0.061	0.1	0.1 U	0.1 UH	0.1 U	0.1 U
Total Organic Carbon, Filtered	NS	mg/l	6.4	12	3.8	20	4.4	23.2	1 U	4.9	4.2	4	1.1
pH	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID Depth Interval	MW-6DD -	MW-6DD -	MW-6DD -	MW-6DD -	MW-6DD -	MW-6DD -	MW-6DD -	MW-6DD -	MW-6DD -	MW-6DD -
	Class GA	Sample Date Sample ID	8/7/2012 MW6DD080712	12/19/2012 MW-6DD-121912	5/21/2013 MW-6DD-052113	8/21/2013 MW-6DD-082113	12/18/2013 MW-6DD-121813	3/25/2014 MW-6DD-032514	6/10/2014 MW-6DD-061014	9/23/2014 MW6DD092314	4/11/2017 MW6DD041117	9/12/2017 MW6DD091217
Chemical Name	GW STds (mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/l	349	390 B	324	311	358	290	286	391 B	208	300 B
Chloride	250	mg/l	155	123	159 B	147	123 B	124	199	[275]	66	240
Nitrate (as N)	10	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.027 J	0.05 U	0.02 J	0.065	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l										
Sulfate	250	mg/l	226	232	237	230	218	209	239	[301]	[692]	238
Total Sulfides	NS	mg/l	0.06 J	0.1 U	0.065 J	0.063 J	0.061 J	0.1 U	0.091 J	0.15	0.07 J	0.19
Total Organic Carbon, Filtered	NS	mg/l	2	5.1	5.2	3.6	4.5	4.7	5.4	3.3	4.5	4.3 B
pH	NS	STD u										

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID Depth Interval	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -	MW-07S -
		Sample Date	2/18/2000	8/16/2001	11/28/2001	2/25/2002	5/16/2002	11/15/2004	11/16/2005	11/15/2006	10/31/2007	11/20/2008	10/20/2009
	Class GA	Sample ID	MW-07S_WG_021800	MW-07S_WG_081601	MW-07S_WG_112801	MW-07S_WG_022502	MW-07S_WG_051602	MW-07S_WG_111504	MW-7S_11162005	MW-7S_11152006	MW 7-S-103107	MW 7-S-112008	MW-7S-10202009
	GW STds												
Chemical Name	(mg/l)	units	mg/l								mg/l		
Alkalinity (As Caco3)	NS	mg/l	320	370	150	140	150	180	350	190	180	170	178 D,B
Chloride	250	mg/l	9	13		9	7	53	25	38	48	62	34.3
Nitrate (as N)	10	mg/l	0.05 U	0.05 U	0.11	0.14	0.1	0.16	0.2	0.17	1.3	0.3	0.331
Nitrite (as N)	1	mg/l	0.05 U	0.0068 J	0.05 U	0.1 U	0.1	0.1 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/l	0.05 U	0.05 U	0.11	0.14	0.1	0.17					
Sulfate	250	mg/l	7.5 U	95	77	42	32	120	64	72	120	79	91.8 D
Total Sulfides	NS	mg/l	0.2 U	0.2	0.2 U	0.2 U	0.2 U	0.8 U	0.40 J	0.8 U	1	1 U	0
Total Organic Carbon, Filtered	NS	mg/l	2	2	6	1 U	2	10	11	21	2.7	4.5	2.1
pΗ	NS	STD u	7.3										

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S	MW-7S	MW-7S	MW-7S	MW-7S	MW-7S
		Depth Interval	-										
		Sample Date	05/17/2010	1/18/2011	4/19/2011	7/27/2011	10/26/2011	3/21/2012	8/8/2012	12/18/2012	5/23/2013	8/20/2013	12/17/2013
	Class GA	Sample ID	MW-7S-05171005172010	MW 7-S-01182011	MW-7S-041911	MW-7S072711	MW7S102611	MW7S032112	MW7S080812	MW-7S-121812	MW-7S-052313	MW-7S-082013	MW-7S-121713
	GW STds												
nemical Name	(mg/l)		mg/l	mg/l							mg/l	mg/l	
*			l										
calinity (As Caco3)	NS	mg/l	199 B	229	166 B	305 B	167		204	115	233	244 B	297
loride	250	mg/l	77.2	51	[259] B	77.5	48.2	42.5 B	60.6	25.9 B	85	62.4 B	58.4 B
rate (as N)	10	mg/l	0.238	0.3	0.24	0.05 U	0.36	0.24	0.48	0.45	0.19	0.33	0.086
rite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
rite-Nitrate Nitrogen	NS	mg/l											
fate	250	mg/l	61.4	111 B	4.8 J^	125	116		104	64.1	105	108	100
al Sulfides	NS	mg/l	0.002 U	0.1 U	0.1 U	0.1 UH	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
al Organic Carbon, Filtered	NS	mg/l	3.9	3.6	8.9	3.6	4	1 U	1.3	4.2	12.2	2.3	4.2
g,	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID Depth Interval	MW-7S -	MW-7S -	MW-7S -	MW-7S -	MW-7S -
		Sample Date	3/26/2014	6/11/2014	9/24/2014	4/12/2017	9/13/2017
	Class GA GW STds	Sample ID	MW-7S-032614	MW-7S-061114	MW7S092414	MW7S041217	MW7S091317
Chemical Name	(mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/l	236	178	330	247	219 B
Chloride	250	mg/l	51.4	44.2	61.5	56	35.2
Nitrate (as N)	10	mg/l	0.64	0.41	0.43	1.7	0.67
Nitrite (as N)	1	mg/l	0.022 JB	0.043 JB	0.034 JB	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l					
Sulfate	250	mg/l	69.1	71.5 B	116	134	79.4
Total Sulfides	NS	mg/l	0.1 U	0.1 U	0.1 U	0.06 J	0.1 U
Total Organic Carbon, Filtered	NS	mg/l	6	2.3	3.1	6	4 B
pH	NS	STD u					

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D
		Depth Interval	-										
		Sample Date	2/18/2000	8/16/2001	11/28/2001	2/25/2002	5/16/2002	11/15/2004	11/16/2005	11/15/2006	10/31/2007	11/20/2008	10/20/2009
	Class GA	Sample ID	MW-07D_WG_021800	MW-07D_WG_081601	MW-07D_WG_112801	MW-07D_WG_022502	MW-07D_WG_051602	MW-07D_WG_111504	MW-7D_11162005	MW-7D_11152006	MW 7-D-103107	MW 7-D-112008	MW-7D-10202009
	GW STds												
Chemical Name	(mg/l)	units	mg/l								mg/l		
,													
Alkalinity (As Caco3)	NS	mg/l	330	330	330	320	330	280	220	240	230	190	255 D,B
Chloride	250	mg/l	180	180	180	120	120	97	34	41	53	64	40.6
Nitrate (as N)	10	mg/l	0.05 U	0.06	0.1 U	0.14	0.11	0.055					
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.1 U	0.1	0.1 U	0.05 U					
Nitrite-Nitrate Nitrogen	NS	mg/l	0.05 U										
Sulfate	250	mg/l	7.5 U	230	[310]	240	210	190	78	110	140	86	84 D
Total Sulfides	NS	mg/l	0.2 U	0.6	0.2 U	0.2 U	0.2 U	0.40 J	0.8 U	0.8 U	1	1 U	0
Total Organic Carbon, Filtered	NS	mg/l	6	8	5	3	1 U	5.2	3.4	33	2.7	4.4	1.7
pΗ	NS	STD u	7.9										

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D	MW-07D		MW-7D		
		Depth Interval	-										
		Sample Date	05/17/2010	01/18/2011	4/19/2011	7/27/2011	10/25/2011	10/25/2011	3/21/2012	8/8/2012	12/18/2012	5/23/2013	8/20/2013
	Class GA	Sample ID	MW-7D-05171005172010	MW-7D-01182011	MW-7D-041911	MW-7D072711	MW7D102511		MW7D032112	MW7D080812	MW-7D-121812	MW-7D-052313	MW-7D-082013
	GW STds												
emical Name	(mg/l)		mg/l								mg/l		
•			I										
calinity (As Caco3)	NS	mg/l	218 B	229 B	175 B	258 B	229	199		253	221	254	282 B
loride	250	mg/l	78	51.4	203 B	74	46.2	17.8	52.3 B	72.3	53.5 B	48.4	60.9 B
rate (as N)	10	mg/l	0.083	0.05 U	0.13	0.05 U	0.3	0.21	0.05 U	0.086	0.43	0.05 U	0.05 U
rite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.027 J	0.05 U	0.05 U
rite-Nitrate Nitrogen	NS	mg/l											
fate	250	mg/l	72	109 B	70.9	153	79.1	74.5		102	87.4	75.7	83.9
al Sulfides	NS	mg/l	0.003	0.1 U	0.1 U	0.1 UH	0.1 U	0.1 U	0.1 U				
ol Organic Carbon, Filtered	NS	mg/l	3.7	4.4	6.8	3.4	3.8	2.9	0.63	1.9	3.3	5.2	4
- ,	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID Depth Interval	MW-7D -	MW-7D -	MW-7D -	MW-7D -	MW-7D -	MW-7D -
		Sample Date	12/17/2013	3/26/2014	6/11/2014	9/24/2014	4/12/2017	- 9/13/2017
	Class GA	Sample ID	MW-7D-121713	MW-7D-032614	MW-7D-061114	MW7D092414	MW7D041217	MW7D09132017
	GW STds							
Chemical Name	(mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	ma/l	257	194	250 B	359 B	183	235 B
, , ,		mg/l		33.1	35.2	75.1	19.2	235 B 24.7
Chloride	250	mg/l	40.6 B					
Nitrate (as N)	10	mg/l	0.05 U	0.64	0.49	0.027 J	0.61	0.57
Nitrite (as N)	1	mg/l	0.05 U	0.022 JB	0.042 JB	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l						
Sulfate	250	mg/l	69.4	35.6	57.5	145	58.8	60.6
Total Sulfides	NS	mg/l	0.1 U	0.1 U	0.1 U	0.1 U	0.07 J	0.1 U
Total Organic Carbon, Filtered	NS	mg/l	3.6	5	4.9	4.2	2.9	4.1 B
pH	NS	STD u						

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD	MW-07DD
		Depth Interval											
		Sample Date	11/16/2005	11/15/2006	10/31/2007	11/20/2008	10/20/2009	05/17/2010	01/18/2011	4/19/2011	7/27/2011	10/26/2011	3/21/2012
	Class GA	Sample ID	MW-7DD_11162005	MW-7DD(2)_11152006	MW 7-DD 2-103107	MW 7-DD 2-112008	MW-7DD-10202009	MW-7DD-05171005172010	MW-7DD-01182011	MW-7DD-041911	MW-7DD(2)072711	MW7DD102611	MW7DD032112
	GW STds												
Chemical Name	(mg/l)	units	mg/l								mg/l		
Alkalinity (As Caco3)	NS	mg/l	300	310	270	200	350 D,B	314 B	224	205 B	326 B	262	
Chloride	250	mg/l	99	130	83	82	122 D	151	100	[258] B	158	78.1	76.4 B
Nitrate (as N)	10	mg/l	0.05 U	0.1 U	0.1	0.37	0.05 U	0.017 J	0.05 U	0.29	0.05 U	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.1 U	0.1	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l											
Sulfate	250	mg/l	[540] E	170	[390]	78	[331] D	[261]	[473] B	124	[318]	[433]	
Total Sulfides	NS	mg/l	0.8	0.8 U	1	1 U	0.7 D	0.736	0.074 J	0.1 U	0.17 H	0.1 U	0.1 U
Total Organic Carbon, Filtered	NS	mg/l	3.6	23	3.7	3.7	3.2	5.4	5.3	8.6	4.4	3.9	4.6
pH	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID Depth Interval	MW-7DD -	MW-7DD		MW-7DD	MW-7DD	MW-7DD	MW-7DD	MW-7DD-061114	MW-7DD	MW-7DD	MW-7DD -
		Sample Date	- 8/8/2012	- 12/18/2012	- 12/18/2012	- 5/23/2013	- 8/20/2013	12/17/2013	- 3/26/2014	6/11/2014	- 9/24/2014	- 4/12/2017	- 9/13/2017
	Class GA	Sample ID	MW7DD080812	MW-7DD-121812	MW-7DD-121812	MW-7DD-052313	MW-7DD-082013	MW-7DD-121713	MW-7DD-032614	MW-7DD-061115	MW7DD092414	MW7DD041217	MW7DD09132017
	GW STds												
Chemical Name	(mg/l)	units	mg/l							mg/L	mg/l	mg/l	mg/l
lkalinity (As Caco3)	NS	mg/l	360	232	263	314	304 B	310	309	314 B	359	207	240 B
hloride	250	mg/l	142	128 B	118 B	90.3	94.3 B	114 B	107	56.8	61.6	35.1	42.2
litrate (as N)	10	mg/l	0.05 U	0.04 J	0.049 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.38	0.033 J
itrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.05 U
itrite-Nitrate Nitrogen	NS	mg/l											
ulfate	250	mg/l	[384]	[523]	[514]	[457]	[432]	[473]	[537]	[305]	[643]	75.1	[400]
otal Sulfides	NS	mg/l	1.9	0.88	0.95	0.5	2.5	0.26	0.26	0.19	0.1 U	0.34	0.09 J
otal Organic Carbon, Filtered	NS	mg/l	2.4	3.5	3.7	4.6	4.7	4.6	5.9	4.9	4.3	2.8	5.4 B
Н	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
		Depth Interval	-			-							
		Sample Date	2/18/2000	8/16/2001	11/28/2001	2/25/2002	5/16/2002	11/16/2004	11/16/2005	11/15/2006	11/1/2007	11/18/2008	10/20/2009
	Class GA	Sample ID	MW-08S_WG_021800	MW-08S_WG_081601	MW-08S_WG_112801	MW-08S_WG_022502	MW-08S_WG_051602	MW-08S_WG_111604	MW-8S_11162005	MW-8S_11152006	MW8-S-110107	MW8-S-111808	MW-8S-10202009
	GW STds												
Chemical Name	(mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Ikalinity (As Caco3)	NS	mg/l	240	190	190	190	190	190	170	190	200	150	170 D,B
hloride	250	mg/l	19	54	13	13	12	12	7.4	6.1	10	5.6	9.29
itrate (as N)	10	mg/l	0.05 U	0.074	0.2	0.82	0.45	0.058					
trite (as N)	1	mg/l	0.05 U	0.0072 J	0.05 U	0.1 U	0.1	0.04 U	0.05 U				
itrite-Nitrate Nitrogen	NS	mg/l	0.05 U										
ulfate	250	mg/l	7.5 U	100	110	92	61	130	74	65	120	65	61.2 D
otal Sulfides	NS	mg/l	0.2 U	0.40 J	0.60 J	0.8 U	1	1 U	0				
otal Organic Carbon, Filtered	NS	mg/l	2	4	4	2	1	3.4	3.9	30	3.6	3.2	1.4
·H	NS	STD u	7.4										

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S	MW-8S	MW-8S	MW-8S	MW-8S	X-1-082013
		Depth Interval	-										
		Sample Date	05/18/2010	01/18/2011	4/19/2011	7/27/2011	10/25/2011	3/21/2012	8/8/2012	12/18/2012	5/22/2013	8/20/2013	12/18/2012
	Class GA	Sample ID	MW-8S-05181005182010	MW-8S-01182011	MW-8S-041911	MW-8S072711	MW8S102511	MW8S032112	MW8S080812	MW-8S-121812	MW-8S-052313	MW-8S-082013	MW-8S-082013
	GW STds												
nemical Name	(mg/l)		mg/l								mg/l		
kalinity (As Caco3)	NS	mg/l	196 B	186 B	152 B	238 B	166		214	139	278	245 B	228 B
loride	250	mg/l	10.5	13.7	38.9 ^B	47.7	17.7	23.6	16.8	8.1 B	25.5 B	13.2 B	13.5 B
rate (as N)	10	mg/l	0.745	0.05 U	0.15	0.026 J	0.21	0.05 U	0.05 U	0.12	0.05 U	0.05 U	0.05 U
rite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
rite-Nitrate Nitrogen	NS	mg/l											
fate	250	mg/l	43.5	108 B	41.6	152	78.4		120	73.8	123	90.9	95.6
al Sulfides	NS	mg/l	0.002 U	0.1 U	0.1 U	0.1 UH	0.063 J	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
al Organic Carbon, Filtered	NS	mg/l	2.7	2.9	1.8	2.5	3	1.0 U	1.3	2.6	2.7	2.6	2.4
	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-8S	MW-8S	MW-8S	MW-ID-060914	X-1-061014	MW-8S	MW-8S	MW-8S
		Depth Interval Sample Date	- 12/17/2013	- 3/26/2014	- 6/11/2014	- 6/9/2014	- 6/10/2014	- 9/24/2014	- 4/12/2017	- 9/13/2017
	Class GA	Sample ID	MW-8S-121713	MW-8S-032614	MW-8S-061114	MW-ID-060914	X-1-061014	MW8S092414	MW8S041217	MW8S091317
	GW STds									
Chemical Name	(mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/l	213	147	312	374	239	256 B	170	205 B
Chloride	250	mg/l	11.4 B	10.3	6	[369]	[362]	11.4 B	5.4	6.5
Nitrate (as N)	10	mg/l	0.05 U	0.098	0.09	0.05 U	0.05 U	0.029 J	0.067	0.091
Nitrite (as N)	1	mg/l	0.05 U	0.022 JB	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l								
Sulfate	250	mg/l	76.4	38.6	42.8	[258]	241	81.5	60	61.7
Total Sulfides	NS	mg/l	0.1 U	0.1 U	0.1 U	0.098 J	0.079 J	0.1 U	0.06 J	0.1 U F1
Total Organic Carbon, Filtered	NS	mg/l	2.6	1.9	2.8	5.6	3	2.7	1.4	2.6 B
pH	NS	STD u								

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D
		Depth Interval	-										
		Sample Date	2/18/2000	8/16/2001	11/28/2001	2/25/2002	5/16/2002	11/16/2004	11/16/2005	11/15/2006	11/1/2007	11/18/2008	10/20/2009
	Class GA	Sample ID	MW-08D_WG_021800	MW-08D_WG_081601	MW-08D_WG_112801	MW-08D_WG_022502	MW-08D_WG_051602	MW-08D_WG_111604	MW-8D_11162005	MW-8D_11152006	MW8-D-110107	MW8-D-111808	MW-8D-10202009
	GW Stds												
Chemical Name	(mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/l	330	300	330	310	310	280	280	260	260	260	245 D,B
Chloride	250	mg/l	150	190	190	180	170	[530]	210	140	[270]	180	81 D,B
Nitrate (as N)	10	mg/l	0.05 U	0.05 U	0.1 U	0.1	0.1 U	0.05 U					
Nitrite (as N)	1	mg/l	0.05 U	0.0042 J	0.05 U	0.1 U	0.1	0.1 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/l	0.05 U										
Sulfate	250	mg/l	7.5 U	240	[250]	[260]	240	[280]	[260] E	240	[270]	[250]	166 D
Total Sulfides	NS	mg/l	0.2 U	0.2	0.2 U	0.2 U	0.2 U	0.40 J	0.60 J	0.8 U	1	1 U	0
Total Organic Carbon, Filtered	NS	mg/l	1	7	2	3	4	3.7	3.9	34	4.5	35	1.7
pH	NS	STD u	7.2										

		Location ID	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-8D	MW-8D	MW-8D	MW-8D	MW-8D
		Depth Interval	-										
		Sample Date	5/18/2010	1/19/2011	4/19/2011	7/27/2011	10/25/2011	3/21/2012	8/8/2012	12/18/2012	5/22/2013	8/20/2013	12/17/2013
	Class GA	Sample ID	MW-8D-05181005182010	MW-8D-01192011	MW-8D-041911	MW-8D072711	MW8D102511	MW8D032112	MW8D080812	MW-8D-121812	MW-8D-052213	MW-8D-082013	MW-8D-121713
	GW Stds												
Chemical Name	(mg/l)		mg/l										
Alkalinity (As Caco3)	NS	ma/l	280 B	259 B	244 B	259 B	267		270	203	269	253 B	234
Chloride	250	mg/l	66.3	80.7	83.1	71.5	92	71 B	80.3	72.9 B	66.5 B	60.4 B	56.1 B
		٠,											
Nitrate (as N)	10	mg/l	0.087	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.022 J	0.05 U	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l											
Sulfate	250	mg/l	149	153 B	146	157	144		128	132	131	130	108
Total Sulfides	NS	mg/l	0.002 U	0.089 J	0.15	0.1 UH	0.24	0.24	0.17	0.22	0.1 U	0.19	0.23
Total Organic Carbon, Filtered	NS	mg/l	3.4	3.8	3.3	4.3	3.9	3.8	1.5	2.7	3.8	3.2	3.6
pH	NS	STD u											

		Location ID	MW-8D	X-1	MW-8D	MW-8D	X-1	MW-8D	MW-8D
		Depth Interval							
		Sample Date	3/26/2014	3/26/2014	6/11/2014	9/24/2014	9/24/2014	4/13/2017	9/13/2017
	Class GA	Sample ID	MW-8D-032614	MW-8D-032614	MW-8D-061114	MW8D092414	MW8D092414	MW8D041317	MW8D091317
	GW Stds								
Chemical Name	(mg/l)	units				mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/l	266	281	337	387 B	387 B	323 B	292 B
Chloride	250	mg/l	62.4	59.3	143	234	230	132	369
Nitrate (as N)	10	mg/l	0.042 J	0.046 J	0.05 U	0.021 J	0.026 J	0.05	0.05 U H
Nitrite (as N)	1	mg/l	0.05 U	0.022 JB	0.05 U	0.05 U	0.05 U	0.05	0.05 U H
Nitrite-Nitrate Nitrogen	NS	mg/l							
Gulfate	250	mg/l	131	132	243	[268]	[265]	184 B	226
Total Sulfides	NS	mg/l	0.15	0.11	0.18	0.1 U	0.1 U	1	0.13
otal Organic Carbon, Filtered	NS	mg/l	4.5	4.5	4.5	3.7	3.6	3.3	3.9 B
oH.	NS	STD u							

		Location ID	MW-08DD	MW-08DD	MW-08DD	MW 00DD	MW 00DD	MW 00DD	MW 00DD	MW 00DD	MW 00DD	MW 00DD	MW OODD
			MM-09DD	MMA-00DD	MW-00DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD	MW-08DD
		Depth Interval											
		Sample Date	11/16/2005	11/15/2006	11/1/2007	11/18/2008	10/20/2009	05/18/2010	01/18/2011	4/19/2011	7/27/2011	10/25/2011	3/21/2012
	Class GA	Sample ID	MW-8DD_11162005	MW-8DD_11152006	MW-8DD-110107	MW-08DD_WG_111808	MW-8DD-10202009	MW-8DD-05181005182010	MW-8DD-01182011	MW-8DD-041911	MW-8DD072711	MW8DD102511	MW8DD032112
	GW Stds												
Chemical Name	(mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/l	290	270	260	230	316 D,B	350 B	223 B	214 B	273 B	273	
Chloride	250	mg/l	220	240	[250]	240	249 D,B	177	76.8	115 B	162	141	95.9 B
Nitrate (as N)	10	mg/l	0.05 U	0.1 U	0.1	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.1 U	0.1	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l											
Sulfate	250	mg/l	[290] E	[310]	[660]	[650]	[1080] D	[1200]	178 B	[717]	[1050]	[583]	
Total Sulfides	NS	mg/l	0.8	0.8 U	1	1 U	0	0.093	0.1 U	0.1 U	0.1 UH	0.1 U	0.1 U
Total Organic Carbon, Filtered	NS	mg/l	3.8	3.7	3	3.4	1.7	3.9	4.6	4.6	4.9	4.1	4.3
pH	NS	STD u											

- NOTES:
 U not detected, J estimated, D Diluted Result, B analyte was detected in the associated method blank, R unusable, NS no standard, Dup duplicate sample, --- Not Analyzed H Sample analyzed beyond the specified holding time
 [] Exceeds NYS Class GA Ground Water Quality Standard
 Data have note been validated

		Location ID Depth Interval	MW-8DD -	MW-8DD -	MW-8DD -	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD	MW-8DD -
	Class GA	Sample Date Sample ID	8/8/2012 MW8DD080812	12/18/2012 MW-8DD-121812	5/22/2013 MW-8DD-052213	8/20/2013 MW-8DD-082013	12/17/2013 MW-8DD-121713	3/26/2014 MW-8DD-032614	6/11/2014 MW-8DD-061114	9/24/2014 MW8DD092414	4/13/2017 MW8DD041317	9/13/2017 MW8DD091317
Chemical Name	GW Stds (mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/l	286	263	283	255 B	300	299	293	351 B	259 B	247 B
Chloride	250	mg/l	101	133 B	124 B	72.5 B	79.7 B	90.2	126	166	55.5	110
Nitrate (as N)	10	mg/l	0.05 U	0.042 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.05 U H
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.05 U H
Nitrite-Nitrate Nitrogen	NS	mg/l										
Sulfate	250	mg/l	[1040]	[1160]	[1130]	[320]	[1040]	[616]	[1010]	[1080]	138 B	[1050]
Total Sulfides	NS	mg/l	0.063 J	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1.9	1.8
Total Organic Carbon, Filtered	NS	mg/l	1.3	2.9	6.7	5.3	4.9	5.2	4.3	3.4	2.6	4.1 B
pH	NS	STD u										

		Location ID	MW-10S MW-10S	MW-10S	MW-10S	MW-10S							
		Depth Interval	-										
		Sample Date	2/15/2000	8/14/2001	11/29/2001	2/27/2002	5/15/2002	11/17/2004	11/14/2005	11/14/2006	10/30/2007	11/19/2008	10/22/2009
	Class GA	Sample ID	MW-10S_WG_021500	MW-10S_WG_081401	MW-10S_WG_112901	MW-10S_WG_022702	MW-10S_WG_051502	MW-10S_WG_111704	MW-10S_11142005	MW-10S_11142006	MW 10 S-103007	MW 10 S-111908	MW-10S-10222009
	GW Stds												
Chemical Name	(mg/l)		mg/l										mg/l
Alkalinity (As Caco3)	NS	mg/l	250	260	210	210	230	280	260	270	280	330	318 D
Chloride	250	mg/l	[370]	130	70	23	14	[270]	60	40	[300]	130	75.4 D,B
Nitrate (as N)	10	mg/l	0.05 U	1.1	0.1 U	0.1	0.1 U	0.05 U					
Nitrite (as N)	1	mg/l	0.05 U	0.013 J	0.05 U	0.1 U	0.1	0.1 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/l	0.05 U										
Sulfate	250	mg/l	7.5 U	150	170	93	57	[380]	180	160	[330]	[290]	[270] D
Total Sulfides	NS	mg/l	0.2 U	0.60 J	0.8 U	0.8 U	1	1 U	0				
Total Organic Carbon, Filtered	NS	mg/l	5	7	4	5	3	3.9	6	8.2	3.6	9.3	2.8
pH	NS	STD u	7.3										

		Location ID	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
		Depth Interval	IMM-102		MM-102	MM-102	IMM-102		MM-102	IMM-102	MM-102	MAN-102	
			-										
		Sample Date	05/18/2010	1/20/2011	4/20/2011	7/26/2011	10/27/2011	3/20/2012	8/7/2012	12/19/2012	5/21/2013	8/22/2013	12/18/2013
	Class GA	Sample ID	MW-10S-05181005182010	MW 10 S-01202011	MW-10S-042011	MW-10S072611	MW10S102711	MW10S032012	MW10S080712	MW-10S-121912	MW-10S-052113	MW-10S-082213	MW-10S-121813
	GW Stds												
Chemical Name	(mg/l)		mg/l										
			1										
Alkalinity (As Caco3)	NS	mg/l	244 B	238	146	279 B	386		331	294 B	280	259	308
Chloride	250	mg/l	12.3	22.2	7.8	46.5	171	11.1	113	10	21 B	31.5	128 B
Nitrate (as N)	10	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l											
Sulfate	250	mg/l	27.5	117 B	5 U	214	[331]		[303]	87.5	113	131	216
Total Sulfides	NS	mg/l	0.055	0.1 U	0.1 U	0.1 UH	0.1 U	0.1 U	0.1 U	0.074 J	0.1 U	0.1 U	0.064 J
Total Organic Carbon, Filtered	NS	mg/l	6.6	5.9	1.2	5.5	1.8	2.1	2.1	5.9	9.5	4.6	4.3
pH	NS	STD u											

		Location ID Depth Interval	MW-10S -	MW-10S -	MW-10S -	MW-10S -	MW-10S -
		Sample Date	3/25/2014	6/10/2014	9/23/2014	4/11/2017	9/12/2017
	Class GA	Sample ID	MW-10S-032514	MW-10S-061014	MW10S092314	MW10S041117	MW10S091217
	GW Stds						
Chemical Name	(mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l
Alkalinity (As Caco3)	NS	mg/l	276	275	394 B	192	365 B
Chloride	250	mg/l	125	360	205	115	153
Nitrate (as N)	10	mg/l	0.05 U	0.05 U	0.022 J	0.05	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l					
Sulfate	250	mg/l	152	239	[338]	91.9 B	[350]
Total Sulfides	NS	mg/l	0.1 U	0.08 J	0.1 U	0.13	0.08 J
Total Organic Carbon, Filtered	NS	mg/l	4.8	3.1	3.8	4.2	4.6 B
pH	NS	STD u					

		Location ID	MW-10D MW-10D	MW-10D	MW-10D	MW-10D							
		Depth Interval Sample Date	- 2/15/2000	- 8/14/2001	- 11/29/2001	- 2/27/2002	- 5/15/2002	- 11/17/2004	- 11/14/2005	- 11/14/2006	- 10/30/2007	- 11/19/2008	- 10/22/2009
	Class GA	Sample ID	MW-10D WG 021500	MW-10D WG 081401	MW-10D WG 112901	MW-10D WG 022702	MW-10D WG 051502	MW-10D WG 111704	MW-10D 11142005	MW-10D 11142006	MW 10 D-103007	MW 10 D-111908	MW-10D-10222009
	GW Stds												
Chemical Name	(mg/l)	units	mg/l mg/l	mg/l	mg/l	mg/l							
Alkalinity (As Caco3)	NS	mg/l	240	260	270	230	270	270	270	280	270	270	248 D
Chloride	250	mg/l	190	220	230	120	230	[370]	[330]	[330]	[350]	[320]	[295] D
Nitrate (as N)	10	mg/l	0.05 U	0.035 J	0.1 U	0.1	0.1 U	0.05 U					
Nitrite (as N)	1	mg/l	0.05 U	0.011 J	0.05 U	0.1 U	0.1	0.1 U	0.05 U				
Nitrite-Nitrate Nitrogen	NS	mg/l	0.05 U										
Sulfate	250	mg/l	7.5 U	220	210	150	220	[370]	[340]	[320]	[310]	[260]	232 D
Total Sulfides	NS	mg/l	0.2 U	0.2 U	0.2 U	0.2 U	0.2	0.60 J	0.8 U	0.8 U	1	1 U	0
Total Organic Carbon, Filtered	NS	mg/l	5	6	4	4	1 U	3.3	3.5	19	3.8	15	2.8
pH	NS	STD u	8										

		Location ID	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D
		Depth Interval	-										
		Sample Date	5/18/2010	1/20/2011	4/20/2011	7/26/2011	7/26/2011	10/27/2011	3/20/2012	8/7/2012	12/19/2012	5/21/2013	8/22/113
	Class GA	Sample ID	MW-10D-05181005182010	MW-10D-01202011	MW-10D-042011	MW-10D072611	X1072611	MW10D102711	MW10D032012	MW10D080712	MW-10D-121912	MW-10D-052113	MW-10D-082213
	GW Stds												
Chemical Name	(mg/l)		mg/l										
Alkalinity (As Caco3)	NS	mg/l	317 B	273	258	278 B	285 B	251		277	327 B	319	361
Chloride	250	mg/l	247	[293]	224	233	234	237	83.9	208	212	144 B	122
Nitrate (as N)	10	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.022 J	0.05 U	0.05 U
Nitrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Nitrite-Nitrate Nitrogen	NS	mg/l											
Sulfate	250	mg/l	241	242 B	247	242	245	[253]		185	228	200	427
Total Sulfides	NS	mg/l	0.002 U	0.1 U	0.059 J	0.1 UH	0.1 UH	0.1 U	0.1 U	0.065 J	0.26	0.1 U	0.1 U
Total Organic Carbon, Filtered	NS	mg/l	3.9	2	1 U	3.4	3.3	1.6	5.2	1.4	2.3	15.1	3
pH	NS	STD u											

Page 47 of 48

NOTES:
U - not detected, J - estimated, D - Diluted Result, B - analyte was detected in the associated method blank, R - unusable, NS - no standard, Dup - duplicate sample, --- Not Analyzed H - Sample analyzed beyond the specified holding time
[] - Exceeds NYS Class GA Ground Water Quality Standard
Data have note been validated

Date Printed: 2/21/2018
File: I:\Goodyear.5540\65610.Forest-Glen-201\Docs\Reports\2017 Annual Report\Tables\Table 5 - Geochem_GW.xls
Database: Q:\6510_Goodyear\Forest Glen\Database\Forest_Glen.mdb

		Location ID		X-1-121813					
		Depth Interval Sample Date	- 12/18/2013	- 12/18/2013	- 3/25/2014	- 6/10/2014	- 9/23/2014	- 4/12/2017	- 9/12/2017
	Class GA	Sample ID	MW-10D-121813	MW-10D-121813	MW-10D-032514	MW-10D-061014	MW10D092314	MW10D041217	MW10D091217
	GW Stds								
Chemical Name	(mg/l)	units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
kalinity (As Caco3)	NS	mg/l	308	331	308	272	339 B	282	259 B
hloride	250	mg/l	128 B	128 B	[290]	[373]	[412]	[354]	[368]
itrate (as N)	10	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.05 U
itrite (as N)	1	mg/l	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05	0.05 U
trite-Nitrate Nitrogen	NS	mg/l							
ılfate	250	mg/l	216	216	241	233	[257]	238	[257]
otal Sulfides	NS	mg/l	0.064 J	0.068 J	0.1 U	0.073 J	0.1 U	0.18	0.08 J
tal Organic Carbon, Filtered	NS	mg/l	4.3	4	4	3	2.9	2.5	3.8 B
Н	NS	STD u							

Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-01S - 2/14/2000 MW-01S_WG_021400 mg/l	MW-01S - 8/13/2001 MW-01S_WG_081301 mg/l	MW-01S - 11/26/2001 MW-01S_WG_112601 mg/l	MW-01S - 2/25/2002 MW-01S_WG_022502 mg/l	MW-01S - 5/13/2002 MW-01S_WG_051302 mg/l	MW-01S - 11/16/2004 MW-01S_WG_111604 mg/l	MW-01S - 11/15/2005 MW-1S_11152005 mg/l	MW-01S - 11/14/2006 MW-1S_11142006 mg/l	MW-01S - 10/29/2007 MW-1S-102907 mg/l	MW-01S - 11/18/2008 MW-1S-111808 mg/l	MW-01S - 10/19/2009 MW-1S-101909 mg/l
NS		0.002 UJ	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.013 U	0.0013 U	0.00053 U	0.00052 U	0.00052 U
NS		0.002 UJ	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.013 U	0.0013 U	0.0005 U	0.00049 U	0.00049 U
NS		0.006	0.008 J	0.012 U	0.009	0.024	0.002 U	0.076	0.018	0.00056 U	0.001	0.00054 J
NS												
	GW Stds (mg/l) NS NS	Depth Interval Sample Date Class GA GW Stds (mg/l) NS NS	Depth Interval Sample Date 2/14/2000	Depth Interval Sample Date 2/14/2000 8/13/2001	Depth Interval Sample Date 2/14/2000 8/13/2001 11/26/2001 11	Depth Interval Sample Date 2/14/2000 8/13/2001 11/26/2001 2/25/2002	Depth Interval Sample Date 2/14/2000 8/13/2001 11/26/2001 2/25/2002 5/13/2002	Class GA Sample Date 2/14/2000 8/13/2001 11/26/2001 2/25/2002 5/13/2002 11/16/2004 Class GA Sample Date Sample ID MW-015_WG_021400 MW-015_WG_081301 MW-015_WG_112601 MW-015_WG_022502 MW-015_WG_051302 MW-015_WG_0111604 mg/l m	Class GA Sample Date 2/14/2000 8/13/2001 11/26/2001 2/25/2002 5/13/2002 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/15/2005 11/16/2004 11/16/2004 11/15/2005 11/16/2004 11/16/2004 11/15/2005 11/16/2004 11/16/20	Class GA Sample Date 2/14/2000 8/13/2001 11/26/2001 2/25/2002 5/13/2002 11/16/2004 11/15/2005 11/14/2006 11/14/20	Class GA Sample Date 2/14/2000 8/13/2001 11/26/2001 11/26/2001 2/25/2002 5/13/2002 11/16/2004 11/15/2005 11/14/2006 11/29/2007 11/26/2007 11/26/2001 11/26/20	Class GA Sample Date Z/14/2000 S/13/2001 11/26/2001 11/26/2001 2/25/2002 S/13/2002 11/16/2004 11/15/2005 11/14/2006 10/29/2007 11/18/2008 11/18/2008 11/26/2001 11/26/20

Ethylene NS 0.00054 U 0.00053 U 0.00023 J Methane NS 0.00061 U 0.001 0.001 0.0004 J 0.0013 B 0.00061 U 0.00051 J 0.00061 U 0.00061 U 0.0032 0.0083	Class C Chemical GW St Name (mg/l	ds	MW-01S - 05/18/2010 MW-1S-051810 mg/l	MW-01S - 1/19/2011 MW-1S-011911 mg/l	MW-01S - 4/18/2011 MW-1S-041811 mg/l	MW-01S - 7/26/2011 MW-1S-072611 mg/l	MW-01S - 10/25/2011 MW-1S-102511 mg/l	MW-01S - 3/20/2012 MW-1S-032012 mg/l	MW-01S - 8/7/2012 MW-1S-080712 mg/l	MW-01S - 12/18/2012 MW-1S-121812 mg/l	MW-01S - 5/21/2013 MW-1S-052113 mg/l	MW-01S - 8/19/2013 MW-1S-081913 mg/l	MW-01S - 12/18/2013 MW-1S-121813 mg/l
Methane NS 0.00061 U 0.001 0.00044 J 0.0013 B 0.00061 U 0.00051 J 0.00061 U 0.00061 U 0.00061 U 0.0032 0.0083	hane NS		0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00056 U	0.0002 U	0.0002 U
	hylene NS		0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00053 U	0.000023 J	0.0002 U
vlydrogen* NS 0.76	ethane NS		0.00061 U	0.001	0.00044 J	0.0013 B	0.00061 U	0.00051 J	0.00061 U	0.00061 U	0.0032	0.0083	0.0052
	ydrogen* NS											0.76	0.5 J

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-01S - 3/25/2014 MW-1S-032514 mg/l	MW-01S - 6/9/2014 MW-1S-060914 mg/l	MW-1S - 9/23/2014 MW1S092314 mg/L	MW-1S - 4/11/2017 MW1S041117 mg/L	X-1 - 4/11/2017 MW1S041117 mg/L	MW-1S - 9/12/2017 MW1S91217 mg/L	MW-01D - 2/14/2000 MW-01D_WG_021400 mg/l	MW-01D - 8/13/2001 MW-01D_WG_081301 mg/l	MW-01D - 11/26/2001 MW-01D_WG_112601 mg/l	MW-01D - 2/25/2002 MW-01D_WG_022502 mg/l	MW-01D - 5/13/2002 MW-01D_WG_051302 mg/l
Ethane	NS		0.0002 U	.0000062 J	0.2 U	0.000033 J	0.000023 J	0.0002 U	0.002 UJ	0.002 U	0.002 U	0.002 U	0.0013 U
Ethylene	NS		0.0002 U	.000017 J	0.000018 J	0.000016 J	0.0000085 J	0.0002 U	0.002 UJ	0.002 U	0.002 U	0.002 U	0.0013 U
Methane	NS		0.0055	0.0039	0.000088 J	0.0096 B	0.0069 B	0.00074	0.02	0.02	0.02	0.03	0.029
Hydrogen*	NS		0.67	1.2	1.3								

Ethylene NS 0.0044 U 0.0013 U 0.0013 U 0.0005 U 0.0005 U 0.0005 U 0.00054 U	Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-01D - 11/16/2004 MW-01D_WG_111604 mg/l	MW-01D - 11/15/2005 MW-1D_11152005 mg/l	MW-01D - 11/14/2006 MW-1D_11142006 mg/l	MW-01D - 10/29/2007 MW-1D-102907 mg/l	MW-01D - 11/18/2008 MW-1D-111808 mg/l	MW-1D - 10/19/2009 MW-1D-101909 mg/l	MW-01D - 05/18/2010 MW-1D-051810 mg/l	MW-01D - 1/19/2011 MW-1D-011911 mg/l	MW-01D - 4/18/2011 MW-1D-041811 mg/l	MW-01D - 7/26/2011 MW-1D-072611 mg/l	MW-01D - 10/25/2011 MW-1D-102511 mg/l
Methane NS 0.047 0.023 0.049 0.014 0.011 0.0057 0.0045 0.013 0.0067 0.01 B	thane	NS		0.0044 U	0.0013 U	0.0013 U	0.00053 U	0.00053 U	0.00053 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U
	thylene	NS		0.0044 U	0.0013 U	0.0013 U	0.0005 U	0.0005 U	0.0005 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U
vdrogen* NS	ethane	NS		0.047	0.023	0.049	0.014	0.011	0.0057	0.0045	0.013	0.0067	0.01 B	0.0055 B
	ydrogen*	NS												

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-1D - 3/20/2012 MW-1D-032012 mg/l	MW-1D - 8/7/2012 MW-1D-080712 mg/l	X-1 - 8/7/2012 MW-1D-080712 mg/l	MW-1D - 12/18/2012 MW-1D-121812 mg/l	MW-1D - 5/21/2013 MW-1D-052113 mg/l	MW-1D - 8/19/2013 MW-1D-081913 mg/l	MW-1D - 12/19/2013 MW-1D-121913 mg/l	MW-1D - 3/25/2014 MW-1D-032514 mg/l	MW-1D - 6/9/2014 MW-1D-060914 mg/l	MW-1D - 9/23/2014 MW1D092314 mg/L	MW-1D - 4/11/2017 MW1D041117 mg/L
thane	NS		0.00057 U	0.00057 U	0.00057 U	0.00056 U	0.00054 U	.000073 J	0.000077 J	0.00011 J	0.00006 J	0.00012 J	0.000074 J
thylene	NS		0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00051 U	0.0002 U	0.000019 U	0.00025 J	0.0000077 J	0.00003 J	0.000015 J
lethane	NS		0.012	0.0099	0.013	0.014	0.028	0.044	0.033	0.032	0.045	0.025	0.012 B
ydrogen*	NS							0.66	0.57 J	0.57 J	5.3	0.71	

Table 6

Groundwater Quality Data - Dissolved Gases Forest Glen Superfund Site Niagara Falls, New York

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-1D - 9/12/2017 MW1D091217 mg/L	X-1 - 9/12/2017 MW1D091217 mg/L	
Ethane	NS		0.0001 J	0.00014 J	
Ethylene	NS		0.0002 U	0.000043 J	
Methane	NS		0.024	0.21	
Hydrogen*	NS				
		 		Ground Water Qaulity Standard	sable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-04S - 2/17/2000 MW-04S_WG_021700 mg/l	MW-04S - 8/15/2001 MW-04S_WG_081501 mg/l	MW-04S - 11/29/2001 MW-04S_WG_112901 mg/l	MW-04S - 2/28/2002 MW-04S_WG_022802 mg/l	MW-04S - 5/14/2002 MW-04S_WG_051402 mg/l	MW-04S - 11/17/2004 MW-04S_WG_111704 mg/l	MW-04S - 11/16/2005 MW-4S_11162005 mg/l	MW-04S - 11/16/2006 MW-4S_11162006 mg/l	MW-04S - 10/31/2007 MW 4-S-103107 mg/l	MW-04S - 11/18/2008 MW 4-S-111808 mg/l	MW-04S - 10/21/2009 MW-4S-102109 mg/l
Ethane	NS		0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.00052 U	0.00051 U	0.00053 U
Ethylene	NS		0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.00049 U	0.00048 U	0.0005 U
Methane	NS		0.002	0.03	0.012 U	0.01	0.0058	0.031	0.063	0.00071 U	0.0093	0.0088	0.017
lydrogen*	NS												

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Unit in nM

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-04S - 05/19/2010 MW-4S-051910 mg/l	MW-04S - 1/20/2011 MW-4S-012011 mg/l	MW-04S - 4/21/2011 MW-4S-042111 mg/l	MW-04S - 7/28/2011 MW-4S-072811 mg/l	MW-04S - 10/27/2011 MW-4S-102711 mg/l	MW-4S - 3/22/2012 MW-4S-032212 mg/l	MW-4S - 8/9/2012 MW-4S-080912 mg/l	MW-4S - 12/20/2012 MW-4S-122012 mg/l	MW-4S - 5/22/2013 MW-4S-052213 mg/l	MW-4S - 8/22/2013 MW-4S-082213 mg/l	MW-4S - 12/19/2013 MW-4S-121913 mg/l
Ethane	NS		0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00056 U	0.00056 U	0.00004 J	0.000022 J
Ethylene	NS		0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00053 U	0.00053 U	0.0002 U	0.000019 J
Methane	NS		0.012	0.016	0.0034	0.009 B	0.0077 B	0.011	0.017	0.0081	0.028	0.1	0.038
Hydrogen*	NS											NS	NS

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-4S - 3/27/2014 MW-4S-032714 mg/l	MW-4S - 6/11/2014 MW-4S-061114 mg/l	MW-4S - 9/23/2014 MW-4S-092314 mg/l	MW-4S - 4/13/2017 MW-4S-041317 mg/l	MW-4S - 9/14/2017 MW-4S-091417 mg/l	MW-04D - 2/17/2000 MW-04D_WG_021700 mg/l	MW-04D - 8/15/2001 MW-04D_WG_081501 mg/l	MW-04D - 11/29/2001 MW-04D_WG_112901 mg/l	MW-04D - 2/28/2002 MW-04D_WG_022802 mg/l	MW-04D - 5/14/2002 MW-04D_WG_051402 mg/l	MW-04D - 11/17/2004 MW-04D_WG_111704 mg/l
thane	NS		0.00026 J	0.000049 J		0.000027 J	0.00006 J	0.02 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
thylene	NS		0.0002 U	0.0000096 J		0.0002 U	0.0002 U	0.02 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Methane	NS		0.056	0.037		0.03	0.05	0.06	0.02	0.012 U	0.04	0.041	0.028
lydrogen*	NS												

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-04D - 11/16/2005 MW-4D_11162005 mg/l	MW-04D - 11/15/2006 MW-4D_11152006 mg/l	MW-04D - 10/31/2007 MW 4-D-103107 mg/l	MW-04D - 11/19/2008 MW 4-D-111908 mg/l	MW-4D - 10/21/2009 MW-4D-102109 mg/l	MW-04D - 05/19/2010 MW-4D-051910 mg/l	MW-04D - 1/20/2011 MW-4D-012011 mg/l	MW-04D - 4/21/2011 MW-4D-042111 mg/l	MW-04D - 7/28/2011 MW-4D-072811 mg/l	MW-04D - 10/26/2011 MW-4D-102611 mg/l	MW-4D - 3/22/2012 MW-4D-032212 mg/l
Ethane	NS		0.0013 U	0.0013 U	0.00053 U	0.00052 U	0.00053 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U
Ethylene	NS		0.0013 U	0.0013 U	0.0005 U	0.00049 U	0.0005 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U
Methane	NS		0.032	0.016	0.0097	0.029	0.0091	0.0094	0.0067	0.0084	0.0079 B	0.0049 B	0.02
Hydrogen*	NS												

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Unit in nM

Class GA Chemical GW Stds Name (mg/l)	Depth Interval Sample Date Sample ID	8/9/2012 MW-4D-080912 mg/l	12/20/2012 MW-4D-122012 mg/l	5/22/2013 MW-4D-052213 mg/l	8/21/2013 MW-4D-082113 mg/l	12/19/2013 MW-4D-121913 mg/l	3/27/2014 MW-4D-032714	6/10/2014 MW-4D-061014	9/25/2014 MW-4D-092514	4/13/2017 MW-4D-041317	9/14/2017 MW-4D-041217
Chemical GW Stds Name (mg/l)	Sample 10										
ane NS						mg/i	mg/l	mg/l	mg/l	mg/l	mg/l
		0.00057 U	0.00057 U	0.00056 U	0.00022	0.00013 J	0.00029	0.00023	0.00023	0.0002 J	0.00018 J
vlene NS		0.00054 U	0.00054 U	0.00053 U	.00002 J	0.000019 J	0.00021 J	.0002 U	0.000030 J	0.000011 J	0.0002 U
hane NS		0.0096	0.011	0.023	0.031	0.044	0.036	0.027	0.036	0.038	0.025
rogen* NS					0.77	0.59 J	0.64	1.4	0.82		

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-05S - 2/17/2000 MW-05S_WG_021700 mg/l	MW-05S - 8/14/2001 MW-05S_WG_081401 mg/l	MW-05S - 11/29/2001 MW-05S_WG_112901 mg/l	MW-05S - 2/27/2002 MW-05S_WG_022702 mg/l	MW-05S - 5/15/2002 MW-05S_WG_051502 mg/l	MW-05S - 11/17/2004 MW-05S_WG_111704 mg/l	MW-05S - 11/15/2005 MW-5S_11152005 mg/l	MW-05S - 11/14/2006 MW-5S_11142006 mg/l	MW-05S - 10/30/2007 MW 5 S-103007 mg/l	MW-05S - 11/19/2008 MW 5 S-111908 mg/l	MW-05S - 10/21/2009 MW-5S-102109 mg/l
Ethane	NS		0.02 U	0.02 U	0.04 U	0.04 U	0.026 U	0.0044 U	0.0013 U	0.013 U	0.00032 J	0.052 U	0.00053 U
Ethylene	NS		0.02 U	0.01	0.04 U	0.04 U	0.03 U	0.0044 U	0.0013 U	0.013 U	0.0005 U	0.0014	0.0005 U
Methane	NS		0.3	0.4	0.17	0.1	0.11	0.1	0.028	0.12	0.019	0.48	0.016
Hydrogen*	NS												

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-05S - 05/19/2010 MW-5S-051910 mg/l	MW-05S - 1/20/2011 MW-5S-012011 mg/l	MW-05S - 4/20/2011 MW-5S-042011 mg/l	MW-05S - 7/28/2011 MW-5S-072811 mg/l	MW-05S - 10/27/2011 MW-5S-102711 mg/l	MW-5S - 3/22/2012 MW-5S-032212 mg/l	MW-5S - 8/9/2012 MW-5S-080912 mg/l	MW-5S - 12/19/2012 MW-5S-121912 mg/l	MW-5S - 5/22/2013 MW-5S-052213 mg/l	MW-5S - 8/21/2013 MW-5S-082113 mg/l	MW-5S - 12/19/2013 MW-5S-121913 mg/l
Ethane	NS		0.0011 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.0087	0.0028 U	0.0028 U	0.057 U	0.0019	0.0032
Ethylene	NS		0.0011 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.0024	0.0027 U	0.0027 U	0.054 U	0.0056	0.018
Methane	NS		0.087	0.071	0.14	0.057 B	0.059 B	0.64	0.18	0.18	0.57	1.5	2.3
Hydrogen*	NS											1.2	0.61

Table 6 Groundwater Quality Data - Dissolved Gases Forest Glen Superfund Site Niagara Falls, New York

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-5S - 3/27/2014 MW-5S-032714 mg/l	MW-5S - 6/10/2014 MW-5S-061014 mg/l	MW-5S - 9/25/2014 MW-5S-092514 mg/l	MW-5S - 4/12/2017 MW-5S-041217 mg/l	MW-5S - 9/14/2017 MW-5S-091417 mg/l	MW-05D - 2/17/2000 MW-05D_WG_021700 mg/l	MW-05D - 8/14/2001 MW-05D_WG_081401 mg/l	MW-05D - 11/29/2001 MW-05D_WG_112901 mg/l	MW-05D - 2/27/2002 MW-05D_WG_022702 mg/l	MW-05D - 5/15/2002 MW-05D_WG_051502 mg/l	MW-05D - 11/17/2004 MW-05D_WG_111704 mg/l
Ethane	NS		0.0001 J	0.00034	0.0011	0.0000068 J	0.00036	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Ethylene	NS		0.00027	0.0011	0.0021	0.0000071 J	0.000089 J	0.004	0.004	0.002 U	0.002 U	0.0017	0.0022 U
Methane	NS		0.037	0.16	0.032	0.000072 JB	0.038	0.04	0.05	0.03	0.02	0.024	0.057
Hydrogen*	NS		0.93	1.2									

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-05D - 11/15/2005 MW-5D_11152005 mg/l	MW-05D - 11/14/2006 MW-5D_11142006 mg/l	MW-05D - 10/30/2007 MW 5 D-103007 mg/l	MW-05D - 11/19/2008 MW 5 D-111908 mg/l	MW-5D - 10/21/2009 MW-5D-102109 mg/l	MW-05D - 5/19/2010 MW-5D-051910 mg/l	MW-05D - 1/20/2011 MW-5D-012011 mg/l	MW-05D - 4/20/2011 MW-5D-042011 mg/l	MW-5D - 7/28/2011 MW-5D-072811 mg/l	MW-05D - 10/27/2011 MW-5D-102711 mg/l	MW-5D - 3/22/2012 MW-5D-032212 mg/l
Ethane	NS		0.0013 U	0.0013 U	0.00053 U	0.00052 U	0.00053 U	0.00057 U	0.00056 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U
Ethylene	NS		0.0013 U	0.0013 U	0.0005 U	0.00049 U	0.0005 U	0.00054 U	0.00053 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U
Methane	NS		0.051	0.033	0.013	0.049	0.0083	0.012	0.013	0.0092	0.011 B	0.015 B	0.024
Hydrogen*	NS												

Chemical	Class GA GW Stds (mg/l)	Sample Date Sample ID	8/9/2012 MW-5D-080912 mg/l	12/19/2012 MW-5D-121912 mg/l	5/22/2013 MW-5D-052213 mg/l	8/21/2013 MW-5D-082113 mg/l	12/19/2013 MW-5D-121913 mg/l	- 3/27/2014 MW-5D-032714 mg/l	- 6/10/2014 MW-5D-061014 mg/l	- 9/25/2014 MW-5D-092514 mg/l	- 4/12/2017 MW-5D-041217 mg/l	- 9/14/2017 MW-5D-091417 mg/l
ane	NS		0.00057 U	0.00057 U	0.00057 U	0.000073 J	0.000073 J	0.00085 J	0.000066 J	0.00069 J	0.000058 J	0.000067 J
lene	NS		0.00054 U	0.00054 U	0.00054 U	0.000033 J	0.000023 J	0.0002 U	0.000021 J	0.00026 J	0.000015 J	0.0002 U
hane	NS		0.012	0.014	0.038	0.052	0.059	0.059	0.055	0.062	0.048 B	0.048
rogen*	NS					1.1	0.87	0.73	1.4	0.91		

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-06S - 2/15/2000 MW-06S_WG_021500 mg/l	MW-06S - 8/15/2001 MW-06S_WG_081501 mg/l	MW-06S - 11/29/2001 MW-06S_WG_112901 mg/l	MW-06S - 2/27/2002 MW-06S_WG_022702 mg/l	MW-06S - 5/15/2002 MW-06S_WG_051502 mg/l	MW-06S - 11/16/2004 MW-06S_WG_111604 mg/l	MW-06S - 11/15/2005 MW-6S_11152005 mg/l	MW-06S - 11/13/2006 MW-6S_11132006 mg/l	MW-06S - 10/31/2007 MW-6S-103107 mg/l	MW-06S - 11/19/2008 MW-6S-111908 mg/l	MW-6S - 10/21/2009 MW-6S-102109 mg/l
nane	NS		0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.00052 U	0.00052 U	0.00053 U
nylene	NS		0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.00049 U	0.00049 U	0.0005 U
thane	NS		0.002	0.02	0.012 U	0.005	0.0015	0.041	0.013	0.0042	0.00086	0.0053	0.047
drogen*	NS												

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Unit in nM

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-06S - 05/19/2010 MW-6S-051910 mg/l	MW-06S - 1/19/2011 MW-6S-011911 mg/l	MW-06S - 4/20/2011 MW-6S-042011 mg/l	MW-06S - 7/26/2011 MW-6S-072611 mg/l	MW-06S - 10/26/2011 MW-6S-102611 mg/l	MW-6S - 3/20/2012 MW-6S-032012 mg/l	MW-6S - 8/7/2012 MW-6S-080712 mg/l	MW-6S - 12/19/2012 MW-6S-121912 mg/l	MW-6S - 5/21/2013 MW-6S-052113 mg/l	MW-6S - 8/21/2013 MW-6S-082113 mg/l	MW-6S - 12/18/2013 MW-6S-121813 mg/l
Ethane	NS		0.00056 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	.000059 J	0.0001 J
Ethylene	NS		0.00053 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	.000023 J	.00005 J
Methane	NS		0.0017	0.0032	0.00039 J	0.0012 B	0.015 B	0.0022	0.006	0.0016	0.015	0.014	0.0094
Hydrogen*	NS											0.98	0.64

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-6S - 3/25/2014 MW-6S-032514 mg/l	MW-6S - 6/11/2014 MW-6S-061114 mg/l	MW-6S - 9/23/2014 MW6S092314 mg/L	MW-6S - 4/11/2017 MW6S041117 mg/L	MW-6S - 9/14/2017 MW6S091417 mg/L	MW-06D - 2/15/2000 MW-06D_WG_021500 mg/l	MW-06D - 8/15/2001 MW-06D_WG_081501 mg/l	MW-06D - 11/29/2001 MW-06D_WG_112901 mg/l	MW-06D - 2/27/2002 MW-06D_WG_022702 mg/l	MW-06D - 5/15/2002 MW-06D_WG_051502 mg/l	MW-06D - 11/16/2004 MW-06D_WG_111604 mg/l
Ethane	NS		0.00012 J	.0000081 J	0.000033 J	0.000088 J	0.000041 J	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Ethylene	NS		0.00038	.0000099 J	0.000067 J	0.00043	0.000061 J	0.002 U	0.001 J	0.002 U	0.002 U	0.0013 U	0.0022 U
Methane	NS		0.07	0.0046	0.036	0.042	0.038	0.05	0.03	0.05	0.04	0.027	0.029
Hydrogen*	NS		0.85	2.4									

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Unit in nM

Page 19 of 42

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-06D - 11/15/2005 MW-6D_11152005 mg/l	MW-06D - 11/13/2006 MW-6D_11132006 mg/l	MW-06D - 10/30/2007 MW 6 D-103007 mg/l	MW-06D - 11/19/2008 MW 6 D-111908 mg/L	MW-06D - 10/21/2009 MW-6D-102109 mg/l	MW-06D - 5/19/2010 MW-6D-051910 mg/l	MW-06D - 1/19/2011 MW-6D-011911 mg/l	MW-06D - 4/20/2011 MW-6D-042011 mg/l	MW-06D - 7/26/2011 MW-6D-072611 mg/l	MW-06D - 10/26/2011 MW-6D-102611 mg/l	MW-6D - 3/20/2012 MW-6D-032012 mg/l
Ethane	NS		0.0013 U	0.0013 U	0.00052 U	0.00052 U	0.00052 U	0.00057 U	0.00057 U	0.00061	0.00057 U	0.00057 U	0.00098
Ethylene	NS		0.0015	0.0013 U	0.00081	0.00048 J	0.00075	0.0004 J	0.0009	0.00053 U	0.00056	0.00067	0.00054 U
Methane	NS		0.065	0.015	0.039	0.016	0.028	0.014	0.03	0.014	0.023 B	0.017 B	0.029
Hydrogen*	NS												

Table 6 Groundwater Quality Data - Dissolved Gases Forest Glen Superfund Site Niagara Falls, New York

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-6D - 3/20/2012 X-1-032012 mg/l	MW-6D - 8/7/2012 MW-6D-080712 mg/l	MW-6D - 12/19/2012 MW-6D-121912 mg/l	MW-6D - 5/21/2013 MW-6D-052113 mg/l	X-1 - 5/21/2013 MW-6D-052113 mg/l	MW-6D - 8/21/2013 MW-6D-082113 mg/l	MW-6D - 12/18/2013 MW-6D-121813 mg/l	MW-6D - 3/25/2014 MW-6D-032514 mg/l	MW-6D - 6/10/2014 MW-6D-061014 mg/l	MW-6D - 9/23/2014 MW6D092314 mg/L	MW-6D - 4/11/2017 MW6D041117 mg/L	MW-6D - 9/12/2017 MW6D091217 mg/L
Ethane	NS		0.0015	0.00057 U	0.00057 U	0.0018	0.0018	0.00024	0.00026	0.00017 J	.00011 J	0.00012 J	0.00011 J	0.00013 J
Ethylene	NS		0.00054 U	0.00054 U	0.00079	0.0011 U	0.0011U	0.003	0.0037	0.0002 U	.000055 J	0.000046 J	0.000029 J	0.000029 J
Methane	NS		0.047	0.013	0.021	0.06	0.061	0.085	0.1	0.074	0.068	0.098	0.11 B	0.21
Hydrogen*	NS							1.4	0.91	0.85	0.99	0.74		

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-06DD - 11/14/2005 MW-6DD_11142005 mg/l	MW-06DD - 11/15/2006 MW-6DD_11152006 mg/l	MW-06DD - 10/30/2007 MW 6 DD-103007 mg/l	MW-06DD - 11/19/2008 MW 6 DD-111908 mg/l	MW-06DD - 10/21/2009 MW-6DD-102109 mg/l	MW-06DD - 05/19/2010 MW-6DD-051910 mg/l	MW-06DD - 1/19/2011 MW-6DD-011911 mg/l	MW-06DD - 4/20/2011 MW-6DD-042011 mg/l	MW-06DD - 7/26/2011 MW-6DD-072611 mg/l	MW-06DD - 10/26/2011 MW-6DD-102611 mg/l	MW-6DD - 3/20/2012 MW-6DD-032012 mg/l
Ethane	NS		0.013 U	0.026 U	0.00053 U	0.0026 U	0.00053 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.0028 U	0.00057 U
Ethylene	NS		0.013 U	0.026 U	0.0005	0.0025 U	0.0005 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.0027 U	0.00054 U
Methane	NS		0.38	0.24	0.14	0.16	0.056	0.025	0.06	0.00061 U	0.06 B	0.071 B	0.045
Hydrogen*	NS												

NOTES:

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-6DD - 8/7/2012 MW-6DD-080712 mg/l	MW-6DD - 12/19/2012 MW-6DD-121912 mg/l	MW-6DD - 5/21/2013 MW-6DD-052113 mg/l	MW-6DD - 8/21/2013 MW-6DD-082113 mg/l	MW-6DD - 12/18/2013 MW-6DD-121813 mg/l	MW-6DD - 3/25/2014 MW-6DD-032514 mg/l	MW-6DD - 6/10/2014 MW-6DD-061014 mg/l	MW-6DD - 9/23/2014 MW6DD092314 mg/L	MW-6DD - 4/11/2017 MW6DD041117 mg/L	MW-6DD - 9/12/2017 MW6DD091217 mg/L
Ethane	NS		0.00057 U	0.0028 U	0.0057 U	0.00025	0.00039	0.000092 J	.00024	0.00018 J	0.000041 J	0.00022
Ethylene	NS		0.00062	0.0027 U	0.0054 U	0.00055	0.0011	0.00017 J	.00071	0.00034	0.000016 J	0.00028
Methane	NS		0.07	0.15	0.09	0.19	0.35	0.031	0.14	0.099	0.0026 B	0.19
Hydrogen*	NS					0.93	0.97	0.7	1.1	0.92		

NOTES:

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Units in nM

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-07S - 2/18/2000 MW-07S_WG_021800 mg/l	MW-07S - 8/16/2001 MW-07S_WG_081601 mg/l	MW-07S - 11/28/2001 MW-07S_WG_112801 mg/l	MW-07S - 2/25/2002 MW-07S_WG_022502 mg/l	MW-07S - 5/16/2002 MW-07S_WG_051602 mg/l	MW-07S - 11/15/2004 MW-07S_WG_111504 mg/l	MW-07S - 11/16/2005 MW-7S_11162005 mg/l	MW-07S - 11/15/2006 MW-7S_11152006 mg/l	MW-07S - 10/31/2007 MW 7-S-103107 mg/l	MW-07S - 11/20/2008 MW 7-S-112008 mg/l	MW-07S - 10/20/2009 MW-7S-102009 mg/l
Ethane	NS		0.02 U	0.02 UJ	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.00053 U	0.00052 U	0.00052 U
thylene	NS		0.02 U	0.02 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.0005 U	0.00049 U	0.00049 U
lethane	NS		0.4	0.6	0.012 U	0.002 U	0.0007 U	0.002 U	0.00070 U	0.0015	0.00059	0.0026	0.0029
ydrogen*	NS												

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-07S - 05/17/2010 MW-7S-051710 mg/l	MW-07S - 1/18/2011 MW-7S-011811 mg/l	MW-07S - 4/19/2011 MW-7S-041911 mg/l	MW-07S - 7/27/2011 MW-7S-072711 mg/l	MW-07S - 10/26/2011 MW-7S-102611 mg/l	MW-07S - 3/21/2012 MW-7S-032112 mg/l	MW-75 - 8/8/2012 MW-7S-080812 mg/l	MW-7S - 12/18/2012 MW-7S-121812 mg/l	MW-7S - 5/23/2013 MW-7S-052313 mg/l	MW-7S - 8/20/2013 MW-7S-082013 mg/l	MW-7S - 12/17/2013 MW-7S-121713 mg/l
Ethane	NS		0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00056 U	0.0002 U	.000044 Ј
Ethylene	NS		0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00053 U	0.0002 U	0.0002 U
Methane	NS		0.00061 U	0.013	0.00061 U	0.24	0.00057 J	0.00084	0.011	0.00061 U	0.02	0.034	0.69
Hydrogen*	NS											1.2	0.54 J

Table 6 Groundwater Quality Data - Dissolved Gases Forest Glen Superfund Site Niagara Falls, New York

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-7S - 3/26/2014 MW-7S-032614 mg/l	MW-7S - 6/11/2014 MW-7S-061114 mg/l	MW-7S - 9/24/2014 MW7S092414 mg/L	MW-7S - 4/12/2017 MW7S041217 mg/L	MW-7S - 9/13/2017 MW7S091317 mg/L	MW-07D - 2/18/2000 MW-07D_WG_021800 mg/l	MW-07D - 8/16/2001 MW-07D_WG_081601 mg/l	MW-07D - 11/28/2001 MW-07D_WG_112801 mg/l	MW-07D - 2/25/2002 MW-07D_WG_022502 mg/l	MW-07D - 5/16/2002 MW-07D_WG_051602 mg/l	MW-07D - 11/15/2004 MW-07D_WG_111504 mg/l
Ethane	NS		0.0002 U	.0002	0.0000089 J	0.0002 U	0.0002 U	0.02 U	0.02 U	0.01 U	0.02 U	0.0052 U	0.0044 U
Ethylene	NS		0.0002 U	.000015 J	0.000011 J	0.0002 U	0.0002 U	0.02 U	0.0036 J	0.01 U	0.02 U	0.0052 U	0.0044 U
1ethane	NS		0.0071	0.0033	0.19	0.00013 JB	0.021	0.1	0.1	0.08	0.1	0.11	0.13
Hydrogen*	NS		0.69	2.1	1.2								

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Units in nM

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-07D - 11/16/2005 MW-7D_11162005 mg/l	MW-07D - 11/15/2006 MW-7D_11152006 mg/l	MW-07D - 10/31/2007 MW 7-D-103107 mg/l	MW-07D - 11/20/2008 MW 7-D-112008 mg/l	MW-07D - 10/20/2009 MW-7D-102009 mg/l	MW-07D - 05/17/2010 MW-7D-051710 mg/l	MW-07D - 1/18/2011 MW-7D-011811 mg/l	MW-07D - 4/19/2011 MW-7D-041911 mg/l	MW-07D - 7/27/2011 MW-7D-072711 mg/l	MW-07D - 10/25/2011 MW-7D-102511 mg/l	MW-07D - 10/25/2011 MW-7D-102511 mg/l
Ethane	NS		0.13 U	0.13 U	0.00052 U	0.00052 U	0.00052 U	0.00056 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U
Ethylene	NS		0.13 U	0.13 U	0.00049 U	0.00049 U	0.00049 U	0.00053 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U
Methane	NS		0.21	0.13	0.04	0.014	0.014	0.0057	0.062	0.00061 U	0.054 B	0.00046 J	0.00061 U
Hydrogen*	NS												

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-7D - 3/21/2012 MW-7D-032112 mg/l	MW-7D - 8/8/2012 MW-7D-080812 mg/l	MW-7D - 12/18/2012 MW-7D-121812 mg/l	MW-7D - 5/23/2013 MW-7D-052313 mg/l	MW-7D - 8/20/2013 MW-7D-082013 mg/l	MW-7D - 12/17/2013 MW-7D-121713 mg/l	MW-7D - 3/26/2014 MW-7D-032614 mg/l	MW-7D - 6/11/2014 MW-7D-061114 mg/l	MW-7D - 9/24/2014 MW7D092414 mg/L	MW-7D - 4/12/0217 MW7D041217 mg/L	MW-7D - 9/13/2017 MW7D091317 mg/L
thane	NS		0.00057 U	0.0011 U	0.00057 U	0.028 U	0.0002 U	0.0002 U	0.000018 U	.0002 U	0.000063 J	0.0002 U	0.0002 U
thylene	NS		0.00054 U	0.0011 U	0.00054 U	0.027 U	0.0002 U	0.0002 U	0.000019 U	.0002 U	0.000031 J	0.0002 U	0.0002 U
ethane	NS		0.0082	0.14	0.00061 U	0.34	0.48	0.048	0.000019 U	.00057	0.83	0.000077 JB	0.00053
ydrogen*	NS						1	0.49 J	1.9	1.5	1.4		

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-07DD - 11/16/2005 MW-7DD_11162005 mg/l	MW-07DD - 11/15/2006 MW-7DD(2)_11152006 mg/l	MW-07DD - 10/31/2007 MW 7-DD 2-103107 mg/l	MW-07DD - 11/20/2008 MW 7-DD 2-112008 mg/l	MW-07DD - 10/20/2009 MW-7DD-102009 mg/l	MW-07DD - 05/17/2010 MW-7DD-051710 mg/l	MW-07DD - 1/18/2011 MW-7DD-011811 mg/l	MW-07DD - 4/19/2011 MW-7DD-041911 mg/l	MW-07DD - 7/27/2011 MW-7DD(2)-072711 mg/l	MW-07DD - 10/26/2011 MW-7DD-102611 mg/l	MW-7DD - 3/21/2012 MW-7DD-032112 mg/l
thane	NS		0.075 J	0.027 U	0.00053 U	0.010 U	0.0028	0.057 U	0.0049	0.00057 U	0.00057	0.00057 U	0.0073
thylene	NS		0.13 U	0.027 U	0.0005 U	0.0098 U	0.0005 U	0.054 U	0.00054 U	0.00054 U	0.00054	0.00054 U	0.0025
1ethane	NS		0.53	0.41	0.15	0.021	0.13	0.42	0.12	0.012	0.17	0.038 B	0.59
ydrogen*	NS												

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-7DD - 8/8/2012 MW-7DD-080812 mg/l	MW-7DD - 12/18/2012 MW-7DD-121812 mg/l	X-1 - 12/18/2012 MW-7DD-121812 mg/l	MW-7DD - 5/23/2013 MW-7DD-052313 mg/l	MW-7DD - 8/20/2013 MW-7DD-082013 mg/l	MW-7DD - 12/17/2013 MW-7DD-121713 mg/l	MW-7DD - 3/26/2014 MW-7DD-032614 mg/l	MW-7DD - 6/11/2014 MW-7DD-061114 mg/l	MW-7DD - 9/24/2014 MW7DD092414 mg/L	MW-7DD - 4/12/2017 MW7DD041217 mg/L	MW-7DD - 9/13/2017 MW7DD091317 mg/L
Ethane	NS		0.011 U	0.057 U	0.056 U	0.028 U	0.0092	0.021	0.014	0.0036	0.013	0.000072 J	0.0057
Ethylene	NS		0.011 U	0.054 U	0.054 U	0.027 U	0.0002 U	0.0002 U	0.000019 U	.0002 U	0.000017 J	0.0002 U	0.0002 U
Methane	NS		0.55	0.53	0.28	0.63	1.4	0.93	1.4	0.67	1	0.08 B	0.21
Hydrogen*	NS						0.69	0.46 J	0.68	1.7	0.83		

NOTES:

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-08S - 2/18/2000 MW-08S_WG_021800 mg/l	MW-08S - 8/16/2001 MW-08S_WG_081601 mg/l	MW-08S - 11/28/2001 MW-08S_WG_112801 mg/l	MW-08S - 2/25/2002 MW-08S_WG_022502 mg/l	MW-08S - 5/16/2002 MW-08S_WG_051602 mg/l	MW-08S - 11/16/2004 MW-08S_WG_111604 mg/l	MW-08S - 11/16/2005 MW-8S_11162005 mg/l	MW-08S - 11/15/2006 MW-8S_11152006 mg/l	MW-08S - 11/1/2007 MW8-S-110107 mg/l	MW-08S - 11/18/2008 MW8-S-111808 mg/l	MW-8S - 10/20/2009 MW-8S-102009 mg/l
Ethane	NS		0.02 U	0.02 UJ	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.00053 U	0.00053 U	0.00053 U
Ethylene	NS		0.02 U	0.02 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.0005 U	0.00051 U	0.0005 U
Methane	NS		0.04	0.2	0.012	0.02	0.013	0.002 U	0.00070 U	0.00071 U	0.00038 J	0.00053 J	0.00048 J
Hydrogen*	NS												

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-08S - 05/18/2010 MW-8S-051810 mg/l	MW-08S - 1/18/2011 MW-8S-011811 mg/l	MW-08S - 4/19/2011 MW-8S-041911 mg/l	MW-08S - 7/27/2011 MW-8S-072711 mg/l	MW-08S - 10/25/2011 MW-8S-102511 mg/l	MW-8S - 3/21/2012 MW-8S-032112 mg/l	MW-8S - 8/8/2012 MW-8S-080812 mg/l	MW-8S - 12/18/2012 MW-8S-121812 mg/l	MW-8S - 5/22/2013 MW-8S-052213 mg/l	MW-8S - 8/20/2013 MW-8S-082013 mg/l	X-1 - 8/20/2013 MW-8S-082013 mg/l
Ethane	NS		0.00057 U	0.00056 U	0.00056 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00055 U	.000031 J	.000033 J
Ethylene	NS		0.00054 U	0.00053 U	0.00053 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00053 U	.000033 J	.000035 J
Methane	NS		0.00031 J	0.0032	0.00042 J	0.0013 B	0.00038 J	0.0013	0.00083	0.00061 U	0.018	0.0095	0.011
lydrogen*	NS											1.4	

NOTES:

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-8S - 12/17/2013 MW-8S-121713 mg/l	MW-8S - 3/26/2014 MW-8S-032614 mg/l	MW-8S - 6/11/2014 MW-8S-061114 mg/l	MW-8S - 9/24/2014 MW8S092414 mg/L	MW-8S - 4/12/2017 MW8S041217 mg/L	MW-8S - 9/13/2017 MW8S091317 mg/L	MW-08D - 2/18/2000 MW-08D_WG_021800 mg/l	MW-08D - 8/16/2001 MW-08D_WG_081601 mg/l	MW-08D - 11/28/2001 MW-08D_WG_112801 mg/l	MW-08D - 2/25/2002 MW-08D_WG_022502 mg/l	MW-08D - 5/16/2002 MW-08D_WG_051602 mg/l
Ethane	NS		0.0002 U	0.000018 U	.0000061 J	0.000012 J	0.0002 U	0.0002 U	0.02 U	0.01 U	0.002 U	0.02 U	0.0052 U
Ethylene	NS		0.0002 U	0.000019 U	.0002 U	0.00002 J	0.0002 U	0.0002 U	0.02 U	0.0009 J	0.002 U	0.02 U	0.0052 U
Methane	NS		0.0033	0.00028	0.00057	0.0017	0.00028 JB	0.0025	0.1	0.11	0.06	0.1	0.068
Hydrogen*	NS		0.66	0.76	1.9	0.87							

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-08D - 11/16/2004 MW-08D_WG_111604 mg/l	MW-08D - 11/16/2005 MW-8D_11162005 mg/l	MW-08D - 11/15/2006 MW-8D_11152006 mg/l	MW-08D - 11/1/2007 MW8-D-110107 mg/l	MW-08D - 11/18/2008 MW8-D-111808 mg/L	MW-08D - 10/20/2009 MW-8D-102009 mg/l	MW-08D - 5/18/2010 MW-8D-051810 mg/l	MW-08D - 1/19/2011 MW-8D-011911 mg/l	MW-08D - 4/19/2011 MW-8D-041911 mg/l	MW-08D - 7/27/2011 MW-8D-072711 mg/l	MW-08D - 10/25/2011 MW-8D-102511 mg/l
thane	NS		0.0022 U	0.026 U	0.0013 U	0.00053 U	0.0015	0.00052 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U
thylene	NS		0.0022 U	0.026 U	0.0013 U	0.0005 U	0.0017	0.00049 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U
Methane	NS		0.029	0.13	0.017	0.054	0.055	0.041	0.014	0.1	0.031	0.039 B	0.045 B
lydrogen*	NS												

NOTES:

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Units in nM

Page 34 of 42

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-8D - 3/21/2012 MW-8D-032112 mg/l	MW-8D - 8/8/2012 MW-8D-080812 mg/l	MW-8D - 12/18/2012 MW-8D-121812 mg/l	MW-8D - 5/22/2013 MW-8D-052213 mg/l	MW-8D - 8/20/2013 MW-8D-082013 mg/l	MW-8D - 12/17/2013 MW-8D-121713 mg/l	MW-8D - 3/26/2014 MW-8D-032614 mg/l	X-1 - 3/26/2014 MW-8D-032614 mg/l	MW-8D - 6/11/2014 MW-8D-061114 mg/l	MW-8D - 9/24/2014 MW8D092414 mg/L	X-1 - 9/24/2014 MW8D092414 mg/L
Ethane	NS		0.00057 U	0.00057 U	0.0028 U	0.0028 U	0.00023	0.00021	0.0002	0.00022	0.00033	0.00033	0.00036
Ethylene	NS		0.00054 U	0.00054 U	0.0027 U	0.0027 U	0.00016 J	0.00011 J	0.00018 J	0.000055 J	.00014 J	0.00012 J	0.00012 J
Methane	NS		0.046	0.064	0.16	0.11	0.18	0.37	0.51	0.48	0.13	0.092	0.1
Hydrogen*	NS						1.3	0.6	0.73		2	0.8	

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-8D - 4/13/2017 MW8D041317 mg/L	MW-8D - 9/13/2017 MW8D091317 mg/L	MW-08DD - 11/16/2005 MW-8DD_11162005 mg/l	MW-08DD - 11/15/2006 MW-8DD_11152006 mg/l	MW-08DD - 11/1/2007 MW-8DD-110107 mg/l	MW-08DD - 11/18/2008 MW-8DD-111808 mg/l	MW-08DD - 10/20/2009 MW-8DD-102009 mg/l	MW-08DD - 05/18/2010 MW-8DD-051810 mg/l	MW-8DD - 1/18/2011 MW-8DD-011811 mg/l	MW-8DD - 4/19/2011 MW-8DD-041911 mg/l	MW-08DD - 7/27/2011 MW-8DD-072711 mg/l
Ethane	NS		0.00024	0.00026	0.014 J	0.0027 U	0.00053 U	0.001 U	0.0043	0.0013	0.00057 U	0.00057 U	0.00029 J
Ethylene	NS		0.000032 J	0.0002 U	0.026 U	0.0027 U	0.0005 U	0.00098 U	0.0005 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U
Methane	NS		0.49 d,B	0.17	0.25	0.086	0.13	0.067	0.054	0.053	0.031	0.00061 U	0.027 B
Hydrogen*	NS												

Page 36 of 42

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Units in nM

Date Printed: 2/21/2018
File: I:\Goodyear.5540\65610.Forest-Glen-201\Docs\Reports\2017 Annual Report\Tables\Table 6 - DisGas Hydrogen_GW.xls
Database: Q:\6510_Goodyear\Forest Glen\Database\Forest_Glen.mdb

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-08DD - 10/25/2011 MW-8DD-102511 mg/l	MW-8DD - 3/21/2012 MW-8DD-032112 mg/l	MW-8DD - 8/8/2012 MW-8DD-080812 mg/l	MW-8DD - 12/18/2012 MW-8DD-121812 mg/l	MW-8DD - 5/22/2013 MW-8DD-052213 mg/l	MW-8DD - 8/20/2013 MW-8DD-082013 mg/l	MW-8DD - 12/17/2013 MW-8DD-082013 mg/l	MW-8DD - 3/26/2014 MW-8DD-032614 mg/l	MW-8DD - 6/11/2014 MW-8DD-061114 mg/l	MW-8DD - 9/24/2014 MW8DD092414 mg/L	MW-8DD - 4/13/2017 MW8DD041317 mg/L	MW-8DD - 9/13/2017 MW8DD091317 mg/L
Ethane	NS		0.00057 U	0.00057 U	0.00057 U	0.0028 U	0.0028 U	0.00093	0.0021	0.00088	0.0012	0.0024	0.00013 J	0.0019
Ethylene	NS		0.00054 U	0.00054 U	0.00054 U	0.0027 U	0.0027 U	2.5E-05 J	0.0002 U	0.000025 J	.000018 J	0.000032 J	0.000014 J	0.0002 U
Methane	NS		0.017 B	0.015	0.033	0.091	0.071	0.026	0.1	0.05	0.061	0.07	0.36d,B	0.36
Hydrogen*	NS							0.73	1.2	0.61	1.7	1.1		

NOTES:

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Units in nM

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-10S - 2/15/2000 MW-10S_WG_021500 mg/l	MW-10S - 8/14/2001 MW-10S_WG_081401 mg/l	MW-10S - 11/29/2001 MW-10S_WG_112901 mg/l	MW-10S - 2/27/2002 MW-10S_WG_022702 mg/l	MW-105 - 5/15/2002 MW-10S_WG_051502 mg/l	MW-10S - 11/17/2004 MW-10S_WG_111704 mg/l	MW-10S - 11/14/2005 MW-10S_11142005 mg/l	MW-10S - 11/14/2006 MW-10S_11142006 mg/l	MW-10S - 10/30/2007 MW 10 S-103007 mg/l	MW-10S - 11/19/2008 MW 10 S-111908 mg/l	MW-10S - 10/22/2009 MW-10S-102209 mg/l
Ethane	NS		0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.00053 U	0.00052 U	0.00053 U
Ethylene	NS		0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U	0.0013 U	0.0013 U	0.0005 U	0.00049 U	0.0005 U
Methane	NS		0.001	0.003 J	0.012 U	0.002 U	0.0007 U	0.023	0.0085	0.0036	0.011	0.0036	0.0048
Hydrogen*	NS												

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-10S - 05/18/2010 MW-10S-051810 mg/l	MW-10S - 1/20/2011 MW-10S-012011 mg/l	MW-10S - 4/20/2011 MW-10S-042011 mg/l	MW-10S - 7/26/2011 MW-10S-072611 mg/l	MW-10S - 10/27/2011 MW-10S-102711 mg/l	MW-10S - 3/20/2012 MW-10S-032012 mg/l	MW-10S - 8/7/2012 MW-10S-080712 mg/l	MW-10S - 12/19/2012 MW-10S-121912 mg/l	MW-10S - 5/21/2013 MW-10S-052113 mg/l	MW-10S - 8/22/2013 MW-10S-082213 mg/l	MW-10S - 12/18/2013 MW-10S-121813 mg/l
Ethane	NS		0.00057 U	0.00056 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U	0.00056 U	.000027 J	.000032 J
Ethylene	NS		0.00054 U	0.00053 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U	0.00053 U	0.0002 U	0.0002 U
Methane	NS		0.0009	0.0016	0.00066	0.0034 B	0.0055 B	0.00055 J	0.0067	0.0024	0.0026	0.0096	0.014
Hydrogen*	NS											0.71	0.69

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Units in nM

Date Printed: 2/21/2018
File: I:\Goodyear.5540\65610.Forest-Glen-201\Docs\Reports\2017 Annual Report\Tables\Table 6 - DisGas Hydrogen_GW.xls
Database: Q:\6510_Goodyear\Forest Glen\Database\Forest_Glen.mdb

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-10S - 3/25/2014 MW-10S-032514 mg/l	MW-10S-061013 - 6/10/2014 MW-10S-061014 mg/l	MW-10S - 9/23/2014 MW10S092314 mg/L	MW-10S - 4/11/2017 MW10S041117 mg/L	MW-10S - 9/12/2017 MW10S091217 mg/L	MW-10D - 2/15/2000 MW-10D_WG_021500 mg/l	MW-10D - 8/14/2001 MW-10D_WG_081401 mg/l	MW-10D - 11/29/2001 MW-10D_WG_112901 mg/l	MW-10D - 2/27/2002 MW-10D_WG_022702 mg/l	MW-10D - 5/15/2002 MW-10D_WG_051502 mg/l	MW-10D - 11/17/2004 MW-10D_WG_111704 mg/l
Ethane	NS		0.000095 J	.000097 J	0.000093 J	0.000048 J	0.00013 J	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Ethylene	NS		0.000019 U	0.0000097	0.000074 J	0.0002 U	0.00014 J	0.002 U	0.002 U	0.002 U	0.002 U	0.0013 U	0.0022 U
Methane	NS		0.032	0.041	0.025	0.031 B	0.034	0.006	0.03	0.03	0.007	0.015	0.026
Hydrogen*	NS		0.73	1.2	0.95								

Chemical Name	Class GA GW Stds (mg/l)	Location ID Depth Interval Sample Date Sample ID	MW-10D - 11/14/2005 MW-10D_11142005 mg/l	MW-10D - 11/14/2006 MW-10D_11142006 mg/l	MW-10D - 10/30/2007 MW 10 D-103007 mg/l	MW-10D - 11/19/2008 MW 10 D-111908 mg/l	MW-10D - 10/22/2009 MW-10D-102209 mg/l	MW-10D - 05/18/2010 MW-10D-051810 mg/l	MW-10D - 1/20/2011 MW-10D-012011 mg/l	MW-10D - 4/20/2011 MW-10D-045011 mg/l	MW-10D - 7/26/2011 MW-10D-072611 mg/l	MW-10D - 7/26/2011 X1-072611 mg/l	MW-10D - 10/27/2011 MW-10D-102711 mg/l
Ethane	NS		0.0013 U	0.0013 U	0.00052 U	0.00052 U	0.00053 U	0.00057 U	0.00056 U	0.00057 U	0.00057 U	0.00057 U	0.00057 U
Ethylene	NS		0.0013 U	0.0013 U	0.00049 U	0.00049 U	0.0005 U	0.00054 U	0.00053 U	0.00054 U	0.00054 U	0.00054 U	0.00054 U
Methane	NS		0.022	0.012	0.0039	0.0045	0.0068	0.0082	0.012	0.0058	0.0053 B	0.011 B	0.0054 B
Hydrogen*	NS												

		Location ID Depth Interval	MW-10D -	MW-10D -	MW-10D -	MW-10D -	MW-10D -	MW-10D -	X-1-121813 -	MW-10D -	MW-10D -	MW-10D -	MW-10D -	MW-10D -
Chemical Name	Class GA GW Stds (mg/l)	Sample Date Sample ID	3/20/2012 MW-10D-032012 mg/l	8/7/2012 MW-10D-080712 mg/l	12/19/2012 MW-10D-121912 mg/l	5/21/2013 MW-10D-052113 mg/l	8/22/2013 MW-10D-082213 mg/l	12/18/2013 MW-10D-121813 mg/l	12/18/2013 MW-10D-121813 mg/l	3/25/2014 MW-10D-032514 mg/l	6/10/2014 MW-10D-061014 mg/l	9/23/2014 MW10D092314 mg/L	4/12/2017 MW10D041217 mg/L	9/12/2017 MW10D091217 mg/L
Ethane	NS		0.00057 U	0.00057 U	0.00057 U	0.00056 U	.000076 J	.000073 J	.000063 J	0.00098 J	.00010 J	0.000094 J	0.000062 J	0.00044
Ethylene	NS		0.00054 U	0.00054 U	0.00054 U	0.00053 U	0.0002 U	.000043 J	0.0002 U	0.000019 U	.000014 J	0.0000095 J	0.0000073 J	0.0002 U
Methane	NS		0.0042	0.014	0.032	0.022	0.057	0.04	0.033	0.051	0.042	0.029	0.11 B	0.18
Hydrogen*	NS						0.98	0.62		1.3	1.7	0.96		

NOTES:

NOTES:
U - not detected, J - estimated, D - Diluted Result, R - unusable, NS - no standard, Dup - duplicate sample, B - Analyte detected in the associated Method Blank
[] - Exceeds NYS Class GA Ground Water Qaulity Standard
Data have note been validated
--- Not Analized
* - Units in nM

FOREST GLEN
SUPERFUND SITE
NIAGARA COUNTY, NEW YORK

SITE LOCATION MAP

MARCH 2014

FIGURE 2

FOREST GLEN
SUPERFUND SITE
NIAGARA COUNTY, NEW YORK

SITE PLAN

FILE NO. 5540.50998.002 FEBRUARY 2018

I:\Goodyear.5540\62547.Forest-Glen-10\Docs\D\WG\Sheets\62547-024-FIG2.dwg

I:\Goodyear.5540\62547.Forest-Glen-10\Docs\DWG\Sheets\62547-026-FIG2.dwg

FIGURE 12

LEGEND

- SWAMP/WETLANDS
- ×— FENCE LINE
- +- RAILROAD TRACKS
- EXISTING MONITORING WELL LOCATION
 - APPROXIMATE RECOVERY WELL LOCATION
- -- ENGINEERED CAP LIMITS
- 581— GROUND WATER ELEVATION
 CONTOURS (DASHED WHERE
 INFERRED)
- (580.82) GROUND WATER ELEVATIONS (FEET MEAN SEA LEVEL)

NOTE:

GROUND WATER ELEVATION AT MW-6S APPEARS ANOMALOUS AND WAS NOT USED IN CONTOUR GENERATION.

FOREST GLEN
SUPERFUND SITE
NIAGARA COUNTY, NEW YORK

BASELINE
SHALLOW BEDROCK
GROUNDWATER
ELEVATION CONTOURS
(2/14/00)

FILE NO. 5540.44667.017 MARCH 2010

Appendix A

Effluent Monitoring
Reports

Appendix A

Effluent Monitoring
Reports

March 1, 2017

Mr. Joel Paradise Niagara Falls Water Board 5815 Buffalo Avenue Niagara Falls, New York 14304

RE: Significant Industrial User (SIU)

Permit No. 61 for Forest Glen Site

SUB: Quarterly Monitoring Report (Period ending February 28, 2017)

FILE: 5540.62547

Dear Mr. Paradise

This quarterly monitoring report for the period between December 1, 2016 and February 28, 2017 is provided for the groundwater recovery and discharge system (the "system") constructed at the Forest Glen Superfund Site in Niagara Falls, New York. The Goodyear Tire & Rubber Company (Goodyear) owns and operates the system, as agent for the Forest Glen Site Trust, under the Significant Industrial User (SIU) Permit No. 61 issued by the Niagara Falls Water Board (NFWB) on September 30, 2013.

The groundwater recovery system comprises the following:

- Three groundwater recovery wells (RW-1, RW-2 and RW-3) located at the Forest Glen Site.
- An off-site electrical enclosure at Regulator No. 6C, on Hyde Park Avenue in Niagara Falls, housing a power disconnect switch, overflow level sensor, and remote monitoring unit (RMU).

During the quarter between December 1, 2016 and February 28, 2017, a total of 2,180,288 gallons of groundwater were recovered and discharged to the sanitary sewer for treatment at the Niagara Falls publicly owned treatment works (POTW), and in accordance with SIU Permit No. 61 Goodyear conducted self-monitoring of the flow. The monitoring included collection of four separate grab samples from December 19 to 20, 2016 from recovery wells RW-1, RW-2 and RW-3.

The four grab samples collected from the recovery wells were delivered to Test America, Inc. in Amherst, NY where they were composited and analyzed for volatile organic compounds (VOCs) including vinyl chloride, 1,1-dichloroethylene, 1,2-dichloroethylene (cis and trans), 1,1-dichloroethane, trichloroethylene, tetrachloroethylene and 1,1,1-trichloroethane using USEPA method 624. The results of the analyses are summarized in the attached table, and the Self Monitoring Report provided as Attachment A presents the concentration for each well based on the composite samples. The Test America laboratory report is provided as Attachment B.

As required by the SIU permit, the results of the self-monitoring were used to calculate daily loading to the POTW. Based on the results, there were no permit limit violations for the quarter and the loads to the POTW were below the established limits.

If you have any questions concerning this report, please do not hesitate to call me at (315) 956-6316.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Alfred R. Farrell, P.E.

Project Manager

I:\Goodyear.5540\62547.Forest-Glen-10\Corres\February 2017 quarterly report.docx

cc: E. Gloeckler - The Goodyear Tire & Rubber Company

G. Sosa - United States Environmental Protection Agency

Z. Russo - New York State Department of Environmental Protection

report.docx

NIAGARA FALLS WATER BOARD WASTEWATER FACILITIES ENFORCEMENT DIVISION

SELF-MONITORING REPORT SIGNIFICANT INDUSTRIAL USERS

PERMIT NO	61	QUARTER <u>February 28, 2017</u>
INDUSTRY NAME:	The Goodyea	ır Tire & Rubber Company
Regulations Part 196	0, Significant Indu	rting requirements and the Niagara Falls Water Board ustrial Users shall submit periodic self-monitoring and I be submitted using this form, according to the following
Quarte	rly - - - -	1st Quarter by February 28th 2nd Quarter by May 31st 3rd Quarter by August 31st 4th Quarter by November 30th
Semi-A	nnual - -	by February 28 th and by August 31 st

Each section of this report form shall be filled out for those parameters listed in Section "G" of the company's Wastewater Discharge Permit. The analysis results must be reported in both concentration and mass. In addition, the calculated annual average load (lbs/day) for each pollutant shall also be reported.

The samples shall be collected at the monitoring points identified in the user permit. Identification of those points in this report should be as listed on page two (2) of the User Permit.

SELF-MONITORING REPORT Significant Industrial Users (SIUs)

PAGE 2

PART II of the report is the Compliance Monitoring section. The user is obligated to determine if the analysis results indicates compliance. All violations noted should be brought to the Niagara Falls Water Board — Wastewater Facilities attention immediately upon noting and should also be reported in this section. The analysis result should be compared against all applicable federal, state and local standards and limitations. If no violations are noted then "NO VIOLATIONS" should appear on the report.

Pursuant to 40 CFR Part 403.12g of the Federal Standards, all violations noted must be followed up by a sample recollect/analysis and the results submitted to the Niagara Falls Water Board within thirty (30) days of first becoming aware of the violation.

Pursuant to 40 CFR Part 403.12g all Periodic Self-Monitoring Reports must be signed by a "responsible company official" certifying the following statement:

I, certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signed:

Title:

MNGE GLOBAL REMEDIATION

Date:

DANUARY (Le, 2017

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site

2 RW-3 l ug/l	Combined / lbs/day	ANNUAL AVERAGE	ANNUAL
l ug/ℓ	/ lbs/day	AVERAGE	
l ug/l	/ lbs/day	١	AVERAGE
	<u> </u>	ug/ ℓ	lbs/day
		<u> </u>	
			0.027
- 	+		0.027
	+	1	
	_		
	+		
		†	
	+	1	
5 U	0	0	0
18	0.0041	16.68	0.0033
5 U	0	0	0
5 U	0	0.69	0.0002
5 U	0	0.05	0
4.8 J	0.0013	5.24	0.0010
		<u> </u>	

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company				
	61				
SIU PERMIT NO.:					
SAMPLE LOCATION:	Forest Glen Site				

	RESULTS		RESULTS			
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
					AVERAGE	AVERAGE
	ug/ l	/ ug/{	ug/ l	/ lbs/day	ug∕ l	lbs/day
DATE SAMPLED: 12/20/16						
24-HOUR FLOW IN MGD						0.027
DIMETHYLPHTHALATE						
BUTYL BENZYL PHTHALATE						
Di-N-BUTHY PHTHALATE						
Di-N-OCTYL PHTHALATE						
DIETHYL PHTHALATE						
NITROSODIPHENYLAMINE						
DICHLOROBENZENES						
DICHLOROTOLUENE						
ACENAPHTHENE						
FLUORANTHENE						
CHRYSENE						
NAPHTHALENE						
BENZO (a) ANTHRACENE						
PYRENE						
TRICHLOROBENZENE						
TRICHLOROTOLUENE						
HEXACHLOROBUTADIENE						
TETRACHLOROBENZENE						
HEXACHLOROCYCLOPENTADIENE						
HEXCHLOROBENZENE						
DICHLOROBENZOTRIFLUORIDE						

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company				
SIU PERMIT NO.:	61				
SAMPLE LOCATION:	Forest Glen Site				
== = - 					

						Г	1
		SUL			SULTS	A N IN II I A I	A N IN II I A '
	RW-1		RW-2	RW-3	Combined	ANNUAL	ANNUAL
		,	.0			AVERAGE	AVERAGE
	ug/ l	_/	ug/ l	ug/ l	/ lbs/day	ug/ l	lbs/day
DATE SAMPLED: 12/20/16							
24-HOUR FLOW IN MGD							0.027
PHENANTHRENE							
MONOCHLOROPHENOL							
DICHLOROPHENOL							
MONOCHLOROCRESOL							
TRICHLOROPHENOL							
PENTACHLOROPHENOL							
HEXACHLOROCYCLOHEXANES							
PCB's							
ENDOSULFAN I +							
ENDOSULFAN II +							
ENDOSULFAN SULFATE							
MIREX							
DECHLORANE PLUS							
HEPTACHLOR +							
HEPTACHLOR EPOXIDE							
		\top					
		+		 			

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company				
CILL DEDMIT NO	61				
SIU PERMIT NO.:					
SAMPLE LOCATION:	Forest Glen Site				

	RE	SULTS	RESULTS			
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
					AVERAGE	AVERAGE
	ug/l	/ ug/ l	ug/ℓ	/ lbs/day	ug/ ℓ	lbs/day
DATE SAMPLED: 12/20/16						
24-HOUR FLOW IN MGD *						0.027
1,2,4 – TRICHLOROBENZENE						
1,2 – DICHLOROETHANE						
1,1,1 - TRICHLOROETHANE	1.2 J	5 U	5 U	0.0001	0.69	0.0002
HEXACHLOROETHANE						
1,1 - DICHLOROETHANE	3.7 J	1.5 J	0.6 J	0.0004	1.4	0.0003
1,1,2 – TRICHLOROETHANE						
CHLOROETHANE						
1,2 – DICHLOROBENZENE						
1,3 – DICHLOROBENZENE						
1,4 – DICHLOROBENZENE						
1,1 DICHLOROETHYLENE	5 U	5 U	5 U	0	0	0
1,2 – TRANS-DICHLOROETHYLENE						
1,3 – DICHLOROPROPYLENE						
METHYL CHLORIDE						
NITROBENZENE						
2 – NITROPHENOL						
4 – NITROPHENOL						
4,6 DINITRO-O-CRESOL						
BIS [2 – ETHYHEXYL] PHTHALATE						
ANTHRACENE						
DIETHYL PHTHALATE						
FLUORENE						

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company				
SIU PERMIT NO.:	61				
SAMPLE LOCATION:	Forest Glen Site				

	RE	RESULTS		RESULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL AVERAGE	ANNUAL AVERAGE
	ug/ l	/ ug/ l	ug/ℓ	/ lbs/day	ug/ℓ	lbs/day
DATE SAMPLED: 12/20/16						
24-HOUR FLOW IN MGD *						0.027
1,2 - DICHLOROPROPANE						
VINYL CHLORIDE	11	2.4 J	4.8 J	0.0013	5.24	0.0010
ACENAPHTHENE						
BENZENE						
CARBON TETRACHLORIDE						
CHLOROBENZENE						
HEXACHLOROBENZENE						
CHLOROFORM						
ETHYLBENZENE						
FLUORANTHENE						
METHYLENE CHLORIDE						
HEXACHLOROBUTADIEN						
NAPHTHALENE						
DI – N – BUTHYL PHTHALATE						
DIMETHYL PHTHALATE						
PHENANTHRENE						
PYRENE						
TRACHLOROETHYLENE						
TOLUENE						
TRICHLOROETHYLENE	5 U	5 U	5 U	0	0.05	0
TOTAL CYANIDE						
TOTAL LEAD						
TOTAL ZINC						

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company				
	61				
SIU PERMIT NO.:	Egraph Clan Sita				
SAMPLE LOCATION:	Forest Glen Site				

	T 55	CLUTO	l pr	CLUTC		1
	RE RE	SULTS RW-2	RE RW-3	SULTS Combined	ANNUAL	ANNUAL
	KVV-1	RVV-∠	KW-3	Combined	AVERAGE	
	ug/l	/ ug/l	ug/l	/ lbs/day	ug/l	AVERAGE lbs/day
DATE SAMPLED: 12/20/16	ug/1	/ ug/i	ug/1	/ ibs/day	ug/1	ibs/uay
DATE SAIVIFEED.						
24-HOUR FLOW IN MGD		+				0.027
TOTAL SUSPENDED SOLIDS						0.027
SOLUABLE ORGANIC CARBON						
TOTAL PHOSPHOROUS						
TOTAL PHENOL		+				
OIL and GREASE		+				
OIL GIRD ONLINGE		+				
CADMIUM						
CHROMIUM						
COPPER						
LEAD						
MERCURY						
NICKEL						
ZINC						
ARSENIC						
BERYLLIUM						
BARIUM						
TOTAL CYANIDE						
pH (STANDARD UNITS)						
RESIDUAL CHLORINE						
TOTAL SODIUM CHLORIDE						
TOTAL AMMONIA						
DIETHYLENE GLYCOL						

COMPLIANCE MONITORING

The Goodyear Tire & Rubber Company

SIU NAME:		
DEDMIT NO .	61	
PERMIT NO.:		

NO PERMIT VIOLATIONS

		FLOW	SAMPLE			TYPE**	
VIOLATION			POINT	ACTUAL*	PERMIT	LIMIT	
PARAMETER	DATE	[MGD]	LOCATION	DISCHARGE	LIMIT	VIOLATED	
						_	

NOTE:

- * Actual discharge list actual analytical results and appropriate units.
 ** Type Limit Violated List Type:

A.A. = Annual Average

D.M. = Daily Maximum

L.L. = Local Limits (Regulation 1960.5)

QUARTERLY SELF-MONITORING SUMMARY GROUNDWATER RECOVERY SYSTEM EFFLUENT

FOREST GLEN SUPERFUND SITE NIAGARA FALLS, NEW YORK

		RW-1 \	/olume			RW-2 v	olume	1	RW-3 v	olume	Total v	olume	
		6,798	gallons			6,109	gallons		14,539	gallons	27,445	gallons	
	RW-1	Contrib	ution to	RW-2		Contribution	n to loading	RW-3	Contribution	n to loading	Total loa	iding to	
Analyte	(12/20/16)	loading t	to POTW	(12/20/1	6)	to PC	OTW	(12/20/16)	to PC	OTW	РОТ	W	
1,1,1-trichloroethane	1.2 J	0.0001	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0.0001	lbs/day	0.2972 ug/l
1,1-dichloroethane	3.7 J	0.0002	lbs/day	1.5	J	0.0001	lbs/day	0.6 J	0.0001	lbs/day	0.0004	lbs/day	1.5682 ug/l
1,1-dichloroethylene	5 U	0	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
cis-1,2-dichloroethylene	31	0.0018	lbs/day	3.0	J	0.0002	lbs/day	18	0.0022	lbs/day	0.0041	lbs/day	17.8812 ug/l
tetrachloroethylene	5 U	0	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
trans-1,2-dichloroethylene	5 U	0	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
trichloroethylene	5 U	0	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
vinyl chloride	11	0.0006	lbs/day	2.4	J	0.0001	lbs/day	4.8 J	0.0006	lbs/day	0.0013	lbs/day	5.8015 ug/l

Notes

- 1. Concentrations reported in units of ug/l
- 2. U undetected, with detection limit identified
- 3. J estimated value

	3/28/2016	6/21/2016	9/20/2016	12/20/2016	Average
Analyte	ug/l	ug/l	ug/l	ug/l	ug/l
1,1,1-trichloroethane	1.0384	1.0990	0.3182	0.2972	0.69
1,1-dichloroethane	0.8387	2.1500	1.0250	1.5682	1.40
1,1-dichloroethylene	0	0	0	0	0.00
cis-1,2-dichloroethylene	11.9062	23.6549	13.2653	17.8812	16.68
tetrachloroethylene	0	0	0	0	0.00
trans-1,2-dichloroethylene	0	0	0	0	0.00
trichloroethylene	0.2131	0	0	0	0.05
vinyl chloride	2.326	8.1956	4.6320	5.8015	5.24

Analyte	lb/day	lb/day	lb/day	lb/day	lbs/day
1,1,1-trichloroethane	0.0003	0.0002	0.0001	0.0001	0.0002
1,1-dichloroethane	0.0002	0.0003	0.0002	0.0004	0.0003
1,1-dichloroethylene	0	0	0	0	0.0000
cis-1,2-dichloroethylene	0.0031	0.0036	0.0022	0.0041	0.0033
tetrachloroethylene	0	0	0	0	0.0000
trans-1,2-dichloroethylene	0	0	0	0	0.0000
trichloroethylene	0.0001	0	0	0	0.0000
vinyl chloride	0.0006	0.0012	0.0008	0.0013	0.0010

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-111404-1

Client Project/Site: Forest Glen Discharge Analysis

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 12/23/2016 1:45:30 PM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

3

-4

6

8

9

11

12

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 480-111404-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

RER

RPD

TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

Job ID: 480-111404-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-111404-1

Receipt

The samples were received on 12/21/2016 3:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

GC/MS VOA

Method(s) 624: The following Volatile samples were composited by the laboratory on 12/21/16 as requested by the client: RW-1 LAB COMPOSITE (480-111404-1), RW-2 LAB COMPOSITE (480-111404-6) and RW-3 LAB COMPOSITE (480-111404-11). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

8

9

1 0

12

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

Lab Sample ID: 480-111404-1

Lab Sample ID: 480-111404-6

Lab Sample ID: 480-111404-11

3

Client Sample ID: RW-1 LAB COMPOSITE

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	1.2	J	5.0	0.39	ug/L	1	_	624	Total/NA
1,1-Dichloroethane	3.7	J	5.0	0.59	ug/L	1		624	Total/NA
cis-1,2-Dichloroethylene	31		5.0	0.57	ug/L	1		624	Total/NA
Vinyl chloride	11		5.0	0.75	ug/L	1		624	Total/NA

4

Client Sample ID: RW-2 LAB COMPOSITE

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	1.5	J	5.0	0.59	ug/L	1		624	Total/NA
cis-1,2-Dichloroethylene	3.0	J	5.0	0.57	ug/L	1		624	Total/NA
Vinyl chloride	2.4	J	5.0	0.75	ug/L	1		624	Total/NA

0

Client Sample ID: RW-3 LAB COMPOSITE

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.60	J	5.0	0.59	ug/L	1	_	624	Total/NA
cis-1,2-Dichloroethylene	18		5.0	0.57	ug/L	1		624	Total/NA
Vinyl chloride	4.8	J	5.0	0.75	ug/L	1		624	Total/NA

13

14

TestAmerica Job ID: 480-111404-1

Lab Sample ID: 480-111404-1

12/22/16 00:10

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis

Client Sample ID: RW-1 LAB COMPOSITE

Date Collected: 12/20/16 10:50 Matrix: Water

Date Received: 12/21/16 15:45

Method: 624 - Volatile Organic	c Compounds (GC	C/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.2	J	5.0	0.39	ug/L			12/22/16 00:10	1
1,1-Dichloroethane	3.7	J	5.0	0.59	ug/L			12/22/16 00:10	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			12/22/16 00:10	1
cis-1,2-Dichloroethylene	31		5.0	0.57	ug/L			12/22/16 00:10	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			12/22/16 00:10	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			12/22/16 00:10	1
Trichloroethylene	ND		5.0	0.60	ug/L			12/22/16 00:10	1
Vinyl chloride	11		5.0	0.75	ug/L			12/22/16 00:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		80 - 120			_		12/22/16 00:10	1
4-Bromofluorobenzene (Surr)	107		80 - 120					12/22/16 00:10	1
Toluene-d8 (Surr)	101		77 - 120					12/22/16 00:10	1

Client Sample ID: RW-2 LAB COMPOSITE

Lab Sample ID: 480-111404-6 Date Collected: 12/20/16 10:50 **Matrix: Water**

78 - 120

Date Received: 12/21/16 15:45

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			12/22/16 00:34	1
1,1-Dichloroethane	1.5	J	5.0	0.59	ug/L			12/22/16 00:34	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			12/22/16 00:34	1
cis-1,2-Dichloroethylene	3.0	J	5.0	0.57	ug/L			12/22/16 00:34	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			12/22/16 00:34	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			12/22/16 00:34	1
Trichloroethylene	ND		5.0	0.60	ug/L			12/22/16 00:34	1
Vinyl chloride	2.4	J	5.0	0.75	ug/L			12/22/16 00:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		80 - 120			-		12/22/16 00:34	1

Dibromofluoromethane (Surr)	106	78 - 120	12/22/16 00:34	1
Toluene-d8 (Surr)	100	77 - 120	12/22/16 00:34	1
4-Bromofluorobenzene (Surr)	106	80 - 120	12/22/16 00:34	1
1,2-Dichloroethane-d4 (Surr)	107	80 - 120	12/22/16 00:34	1

Client Sample ID: RW-3 LAB COMPOSITE

Lab Sample ID: 480-111404-11 Date Collected: 12/20/16 10:50 Matrix: Water

Date Received: 12/21/16 15:45

Method: 624 - Volatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1-Trichloroethane	ND —	5.0	0.39	ug/L			12/22/16 00:58	1	
1,1-Dichloroethane	0.60 J	5.0	0.59	ug/L			12/22/16 00:58	1	
1,1-Dichloroethylene	ND	5.0	0.85	ug/L			12/22/16 00:58	1	
cis-1,2-Dichloroethylene	18	5.0	0.57	ug/L			12/22/16 00:58	1	
Tetrachloroethylene	ND	5.0	0.34	ug/L			12/22/16 00:58	1	
trans-1,2-Dichloroethylene	ND	5.0	0.59	ug/L			12/22/16 00:58	1	
Trichloroethylene	ND	5.0	0.60	ug/L			12/22/16 00:58	1	
Vinyl chloride	4.8 J	5.0	0.75	ug/L			12/22/16 00:58	1	

TestAmerica Buffalo

12/23/2016

Page 6 of 16

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

Lab Sample ID: 480-111404-11

Matrix: Water

Client Sample ID: RW-3 LAB COMPOSITE

Date Collected: 12/20/16 10:50 Date Received: 12/21/16 15:45

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		80 - 120	_		12/22/16 00:58	1
4-Bromofluorobenzene (Surr)	103		80 - 120			12/22/16 00:58	1
Toluene-d8 (Surr)	101		77 - 120			12/22/16 00:58	1
Dibromofluoromethane (Surr)	102		78 - 120			12/22/16 00:58	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery					
		12DCE	BFB	TOL	DBFM		
Lab Sample ID	Client Sample ID	(80-120)	(80-120)	(77-120)	(78-120)		
480-111404-1	RW-1 LAB COMPOSITE	109	107	101	108		
480-111404-6	RW-2 LAB COMPOSITE	107	106	100	106		
480-111404-11	RW-3 LAB COMPOSITE	105	103	101	102		
LCS 480-337477/6	Lab Control Sample	105	108	102	107		
MB 480-337477/8	Method Blank	108	106	103	104		

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

6

7

Ö

3

44

14

14

TestAmerica Job ID: 480-111404-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-337477/8

Matrix: Water

Analysis Batch: 337477

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			12/21/16 15:40	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			12/21/16 15:40	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			12/21/16 15:40	1
cis-1,2-Dichloroethylene	ND		5.0	0.57	ug/L			12/21/16 15:40	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			12/21/16 15:40	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			12/21/16 15:40	1
Trichloroethylene	ND		5.0	0.60	ug/L			12/21/16 15:40	1
Vinyl chloride	ND		5.0	0.75	ug/L			12/21/16 15:40	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		80 - 120		12/21/16 15:40	1
4-Bromofluorobenzene (Surr)	106		80 - 120		12/21/16 15:40	1
Toluene-d8 (Surr)	103		77 - 120		12/21/16 15:40	1
Dibromofluoromethane (Surr)	104		78 - 120		12/21/16 15:40	1

Lab Sample ID: LCS 480-337477/6

Matrix: Water

Analysis Batch: 337477

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	22.4		ug/L		112	52 - 162	
1,1-Dichloroethane	20.0	23.8		ug/L		119	59 ₋ 155	
1,1-Dichloroethylene	20.0	22.3		ug/L		111	1 _ 234	
Tetrachloroethylene	20.0	21.3		ug/L		107	64 - 148	
trans-1,2-Dichloroethylene	20.0	23.9		ug/L		119	54 ₋ 156	
Trichloroethylene	20.0	22.3		ug/L		112	71 _ 157	
Vinyl chloride	20.0	22.8		ug/L		114	1 _ 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	105		80 - 120	
4-Bromofluorobenzene (Surr)	108		80 - 120	
Toluene-d8 (Surr)	102		77 - 120	
Dibromofluoromethane (Surr)	107		78 - 120	

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

GC/MS VOA

Analysis Batch: 337477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-111404-1	RW-1 LAB COMPOSITE	Total/NA	Water	624	
480-111404-6	RW-2 LAB COMPOSITE	Total/NA	Water	624	
480-111404-11	RW-3 LAB COMPOSITE	Total/NA	Water	624	
MB 480-337477/8	Method Blank	Total/NA	Water	624	
LCS 480-337477/6	Lab Control Sample	Total/NA	Water	624	

2

-

D

7

9

11

4.0

14

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

Client Sample ID: RW-1 LAB COMPOSITE

Date Collected: 12/20/16 10:50 Date Received: 12/21/16 15:45 Lab Sample ID: 480-111404-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	337477	12/22/16 00:10	SWO	TAL BUF

Lab Sample ID: 480-111404-6 Client Sample ID: RW-2 LAB COMPOSITE

Date Collected: 12/20/16 10:50 Matrix: Water

Date Received: 12/21/16 15:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624			337477	12/22/16 00:34	SWO	TAL BUF

Client Sample ID: RW-3 LAB COMPOSITE Lab Sample ID: 480-111404-11

Date Collected: 12/20/16 10:50 **Matrix: Water**

Date Received: 12/21/16 15:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	337477	12/22/16 00:58	SWO	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-17

-4

_

6

8

9

11

12

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

0

9

11

12

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-111404-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-111404-1	RW-1 LAB COMPOSITE	Water	12/20/16 10:50	12/21/16 15:45
480-111404-6	RW-2 LAB COMPOSITE	Water	12/20/16 10:50	12/21/16 15:45
480-111404-11	RW-3 LAB COMPOSITE	Water	12/20/16 10:50	12/21/16 15:45

_

6

8

9

11

12

19

545

19-18-61

-ta)

20

cooler Temperature(s) C and Other Remarks

Received by:

1545

Date/Tippe:

THE LEADING M PRINCESS WAS ALLESS TO STAND N - None
O - AshlaO2
P - Na2O45
Q - Na2O3
R - Na2S23
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
W - MCAA
W - PH 4-5
Z - other (specify) 名の Congesta 480-111404 CC-Special Instructions/Note: Company OBC LABS Ample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Mon 480-90692-14318.1 G - Amchlor H - Ascorbic Acid Page: Page 1 of 1 J - Di Water etal Number of containers D ũ Analysis Requested Special Instructions/QC Requirements: orlette.johnson@testamericainc.com Received by: Lab PM: Johnson, Oriette S E-Mail: Chain of Qustody Record MM 3 abruoqmoO singgnO eliteloV - Imd_bS8 3 3 (ou to set) (IEM/EM mioried Matrix Water Water Water 3 3 33 Z 3 3 3 11111111 KOENKUEKA PROPEST 5-1739-1300 2 Radiological G=grab) (C=comp, Ţ 1530 13,00 1530 12-20-16 1050 12-20-16 1050 12-20-16 1050 Sample Time 13:00 15:30 730 13,00 12-20-16 730 130 METIN. Unknown 11-18-11 AT Requested (days): Due Date Requested: 191-61-8 10-10-10 49-61-81 01-61-81 13-30-76 Sample Date 91-08-6 9761-61 12-11-61 PO#. 11511119 WO#. Project #: 48002806 SSOW#: Poison B Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) Phone (716) 691-2600 Fax (716) 691-7991 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) D'Brien & Gere Inc of North America Possible Hazard Identification الالارامة الالمادة المارة الالمارة المارة ا Amherst, NY 14228-2298 Empty Kit Relinquished by: RW-1 1220 16 RW-2122016 RW-3 122016 RW-7 171916 131916 Client Information RW-1 121916 Sample Identification RW-2 1219 16 RW-1 1219 16 RW-3 121916 RW-1 13-30 16 RW-3 13-3016 ruri.Veliz@obg.com Non-Hazard Client Contact Mr. Yuri Veliz East Syracuse State, Zp: NY, 13221 RW-3

TestAmerica

TestAmerica Buffalo

10 Hazelwood Drive

Custody Segls Intact \ Custody Seal No..

Δ Yes Δ No

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-111404-1

Login Number: 111404 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator: Janish, Carl M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	False	
Sampling Company provided.	True	obg
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	False	NA: Check done at department level as required

_

4

_

1

9

13

June 5, 2017

Mr. Joel Paradise Niagara Falls Water Board 5815 Buffalo Avenue

Niagara Falls, New York 14304

RE: Significant Industrial User (SIU)

Permit No. 61 for Forest Glen Site

SUB: Quarterly Monitoring Report (Period ending May 31, 2017)

FILE: 5540.65610

Dear Mr. Paradise

This quarterly monitoring report for the period between March 1 and May 31, 2017 is provided for the groundwater recovery and discharge system (the "system") constructed at the Forest Glen Superfund Site in Niagara Falls, New York. The Goodyear Tire & Rubber Company (Goodyear) owns and operates the system, as agent for the Forest Glen Site Trust, under the Significant Industrial User (SIU) Permit No. 61 issued by the Niagara Falls Water Board (NFWB) on September 30, 2013.

The groundwater recovery system comprises the following:

- Three groundwater recovery wells (RW-1, RW-2 and RW-3) located at the Forest Glen Site.
- An off-site electrical enclosure at Regulator No. 6C, on Hyde Park Avenue in Niagara Falls, housing a power disconnect switch, overflow level sensor, and remote monitoring unit (RMU).

During the quarter between March 1 and May 31, 2017, a total of 1,531,520 gallons of groundwater were recovered and discharged to the sanitary sewer for treatment at the Niagara Falls publicly owned treatment works (POTW), and in accordance with SIU Permit No. 61 Goodyear conducted self-monitoring of the flow. The monitoring included collection of four separate grab samples from April 10 to 11, 2017 from recovery wells RW-1, RW-2 and RW-3.

The four grab samples collected from the recovery wells were delivered to Test America, Inc. in Amherst, NY where they were composited and analyzed for volatile organic compounds (VOCs) including vinyl chloride, 1,1-dichloroethylene, 1,2-dichloroethylene (cis and trans), 1,1-dichloroethane, trichloroethylene, tetrachloroethylene and 1,1,1-trichloroethane using USEPA method 624. The results of the analyses are summarized in the attached table, and the Self Monitoring Report provided as Attachment A presents the concentration for each well based on the composite samples. The Test America laboratory report is provided as Attachment B.

As required by the SIU permit, the results of the self-monitoring were used to calculate daily loading to the POTW. Based on the results, there were no permit limit violations for the quarter and the loads to the POTW were below the established limits.

If you have any questions concerning this report, please do not hesitate to call me at (315) 956-6316.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Alfred R. Farrell, P.E.

Project Manager

I:\Goodyear.5540\65610.Forest-Glen-201\Corres\May 2017 quarterly report.docx

cc: E. Gloeckler - The Goodyear Tire & Rubber Company

G. Sosa – United States Environmental Protection Agency

Z. Russo - New York State Department of Environmental Protection

report.docx

Semi-Annual

NIAGARA FALLS WATER BOARD WASTEWATER FACILITIES ENFORCEMENT DIVISION

SELF-MONITORING REPORT SIGNIFICANT INDUSTRIAL USERS

PERMIT NO	61	(QUARTER	May 31, 2017
INDUSTRY NAME:	The Goodyear	Tire & Rubber Cor	<u>mpany</u>	
Pursuant to federal Regulations Part 190 compliance reports. schedule:	60, Significant Indus	strial Users shall su	ıbmit periodic	
Quarte	erly - - - -	1 st Quarter by Fe 2 nd Quarter by Ma 3 rd Quarter by Ad 4 th Quarter by No	ay 31 ^{sť} ugust 31 st	

Each section of this report form shall be filled out for those parameters listed in Section "G" of the company's Wastewater Discharge Permit. The analysis results must be reported in both concentration and mass. In addition, the calculated annual average load (lbs/day) for each pollutant shall also be reported.

by February 28th and by August 31st

The samples shall be collected at the monitoring points identified in the user permit. Identification of those points in this report should be as listed on page two (2) of the User Permit.

SELF-MONITORING REPORT Significant Industrial Users (SIUs)

PAGE 2

PART II of the report is the Compliance Monitoring section. The user is obligated to determine if the analysis results indicates compliance. All violations noted should be brought to the Niagara Falls Water Board — Wastewater Facilities attention immediately upon noting and should also be reported in this section. The analysis result should be compared against all applicable federal, state and local standards and limitations. If no violations are noted then "NO VIOLATIONS" should appear on the report.

Pursuant to 40 CFR Part 403.12g of the Federal Standards, all violations noted must be followed up by a sample recollect/analysis and the results submitted to the Niagara Falls Water Board within thirty (30) days of first becoming aware of the violation.

Pursuant to 40 CFR Part 403.12g all Periodic Self-Monitoring Reports must be signed by a "responsible company official" certifying the following statement:

I, certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signed:

Title:

Marie GLOBAL REMEDIATION

Date:

May 12, 2017

ANALYTICAL RESULTS

• • • • • • • • • • • • • • • • • • • •	e doou	year III	e & Ku	bbei Co	шрапу	
						 _

SIU PERMIT NAME:		
SIU PERMIT NO.:	61	
SIO PERMIT NO.		
SAMPLE LOCATION:	Forest Glen Site	

		SULTS		SULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
	,,	, , , ,	,,		AVERAGE	AVERAGE
	ug/l	/ ug/{	ug/l	/ lbs/day	ug/l	lbs/day
DATE SAMPLED: 4/11/17						
24-HOUR FLOW IN MGD *						0.018
BENZENE						0.016
CARBON TETRACHLORIDE						
CHLORODIBROMOMETHANE						
MONOCHLOROBENZENE						
DICHLOROBROMOMETHANE						
CHLOROFORM						
1,1 – DICHLOROETHYLENE	5 U	5 U	5 U	0	0	0
1,2 – DICHLOROETHYLENE	3.2 J	19	13	0.0017	16.65	0.0029
BROMOFORM						
ETHYLBENZENE						
1,1,2,2 – TETRACHLOROETHANE						
TETRACHLOROETHYLENE	5 U	5 U	5 U	0	0	0
TOLUENE						
1,1,1 – TRICHLOROETHANE	0.77 J	3.1 J	5 U	0.0001	0.68	0.0001
1,1,2 – TRICHLOROETHANE						
TRICHLOROETHYLENE	1.4 J	5.7	0.7 J	0.0003	0.54	0
METHYLENE CHLORIDE						
MONOCHLOROTOLUENES						
MONOCHLOROBENZOTRIFLUROIDE						
VINYL CHLORIDE	5 U	5.4	2.6 J	0.0004	5.30	0.0009
TETRAHYDRAFURAN						
XYLENE						

ANALYTICAL RESULTS

The Goodyear Tire & Rubber Company

SIU PERMIT NAME:	
SIU PERMIT NO.:	61
	Forest Glen Site
SAMPLE LOCATION:	

	RI	RESULTS		RESULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL AVERAGE	ANNUAL AVERAGE
	ug/l	/ ug/l	ug/l	/ lbs/day	ug/ℓ	lbs/day
DATE SAMPLED: ◆ 4/11/17						
24-HOUR FLOW IN MGD						0.018
DIMETHYLPHTHALATE						
BUTYL BENZYL PHTHALATE						
Di-N-BUTHY PHTHALATE						
Di-N-OCTYL PHTHALATE						
DIETHYL PHTHALATE						
NITROSODIPHENYLAMINE						
DICHLOROBENZENES						
DICHLOROTOLUENE						
ACENAPHTHENE						
FLUORANTHENE						
CHRYSENE						
NAPHTHALENE						
BENZO (a) ANTHRACENE						
PYRENE						
TRICHLOROBENZENE						
TRICHLOROTOLUENE						
HEXACHLOROBUTADIENE						
TETRACHLOROBENZENE						
HEXACHLOROCYCLOPENTADIENE						
HEXCHLOROBENZENE						
DICHLOROBENZOTRIFLUORIDE						

ANALYTICAL RESULTS

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company
SIU PERMIT NO.:	61
	Forest Glen Site

SAMPLE LOCATION:

	RE	RESULTS		RESULTS			
	RW-1		RW-2	RW-3	Combined	ANNUAL	ANNUAL
						AVERAGE	AVERAGE
	ug/l	/	ug/l	ug/l	/ lbs/day	ug/ℓ	lbs/day
DATE SAMPLED: 4/11/17							
24-HOUR FLOW IN MGD							0.018
PHENANTHRENE							
MONOCHLOROPHENOL							
DICHLOROPHENOL							
MONOCHLOROCRESOL							
TRICHLOROPHENOL							
PENTACHLOROPHENOL							
HEXACHLOROCYCLOHEXANES							
PCB's							
ENDOSULFAN I +							
ENDOSULFAN II +							
ENDOSULFAN SULFATE							
MIREX							
DECHLORANE PLUS							
HEPTACHLOR +							
HEPTACHLOR EPOXIDE							
				1			

ANALYTICAL RESULTS

The Goodyear Tire & Rubber Company

SIU PERMIT NAME:	
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site

	RESULTS		RESULTS			
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
		_			AVERAGE	AVERAGE
	ug/l	/ ug/{	ug/l	/ lbs/day	ug/l	lbs/day
DATE SAMPLED: 4/11/17						
24-HOUR FLOW IN MGD *						0.018
1,2,4 – TRICHLOROBENZENE						
1,2 – DICHLOROETHANE						
1,1,1 – TRICHLOROETHANE	0.77 J	3.1 U	5 U	0.0001	0.68	0.0001
HEXACHLOROETHANE						
1,1 – DICHLOROETHANE	2.9 J	3.1 J	5 U	0.0002	1.59	0.0003
1,1,2 – TRICHLOROETHANE						
CHLOROETHANE						
1,2 – DICHLOROBENZENE						
1,3 – DICHLOROBENZENE						
1,4 – DICHLOROBENZENE						
1,1 DICHLOROETHYLENE	5 U	5 U	5 U	0	0	0
1,2 – TRANS-DICHLOROETHYLENE						
1,3 – DICHLOROPROPYLENE						
METHYL CHLORIDE						
NITROBENZENE						
2 – NITROPHENOL						
4 – NITROPHENOL						
4,6 DINITRO-O-CRESOL						
BIS [2 – ETHYHEXYL] PHTHALATE						
ANTHRACENE						
DIETHYL PHTHALATE						
FLUORENE						

ANALYTICAL RESULTS

The Goodyear	Tire & Rubber	Company
--------------	---------------	---------

SIU PERMIT NAME:		
SIU PERMIT NO.:	61	
SAMPLE LOCATION:	Forest Glen Site	

	RI	SULTS	RE	RESULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
				_	AVERAGE	AVERAGE
	ug/l	/ ug/{	ug/l	/ lbs/day	ug/l	lbs/day
DATE SAMPLED: 4/11/17	_					
24-HOUR FLOW IN MGD *						0.018
1,2 - DICHLOROPROPANE						
VINYL CHLORIDE	5 U	5.4	2.6 J	0.0004	5.30	0.0009
ACENAPHTHENE						
BENZENE						
CARBON TETRACHLORIDE						
CHLOROBENZENE						
HEXACHLOROBENZENE						
CHLOROFORM						
ETHYLBENZENE						
FLUORANTHENE						
METHYLENE CHLORIDE						
HEXACHLOROBUTADIEN						
NAPHTHALENE						
DI – N – BUTHYL PHTHALATE						
DIMETHYL PHTHALATE						
PHENANTHRENE						
PYRENE						
TRACHLOROETHYLENE						
TOLUENE						
TRICHLOROETHYLENE	1.4 J	5.7	0.7 J	0.0004	0.54	0
TOTAL CYANIDE						
TOTAL LEAD						
TOTAL ZINC						
	•			·	•	

ANALYTICAL RESULTS

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site

	RESULTS		RESULTS			
	RW-1	RW-2	RW-3	Combined	ANNUAL AVERAGE	ANNUAL AVERAGE
	ug/l	/ ug/{	ug/l	/ lbs/day	ug/ℓ	lbs/day
DATE SAMPLED: 4/11/17						
24-HOUR FLOW IN MGD						0.018
TOTAL SUSPENDED SOLIDS						
SOLUABLE ORGANIC CARBON						
TOTAL PHOSPHOROUS						
TOTAL PHENOL						
OIL and GREASE						
CADMIUM						
CHROMIUM						
COPPER						
LEAD						
MERCURY						
NICKEL						
ZINC						
ARSENIC						
BERYLLIUM						
BARIUM						
TOTAL CYANIDE						
pH (STANDARD UNITS)						
RESIDUAL CHLORINE						
TOTAL SODIUM CHLORIDE						
TOTAL AMMONIA						
DIETHYLENE GLYCOL						

COMPLIANCE MONITORING

The Goodyear Tire & Rubber Company

SIU NAME:		 	
PERMIT NO.:	61		

NO PERMIT VIOLATIONS

			SAMPLE			TYPE**
VIOLATION		FLOW	POINT	ACTUAL*	PERMIT	LIMIT
PARAMETER	DATE	[MGD]	LOCATION	DISCHARGE	LIMIT	VIOLATED
						-

NOTE:

- * Actual discharge list actual analytical results and appropriate units.
- ** Type Limit Violated List Type:

A.A. = Annual Average

D.M. = Daily Maximum

L.L. = Local Limits (Regulation 1960.5)

QUARTERLY SELF-MONITORING SUMMARY GROUNDWATER RECOVERY SYSTEM EFFLUENT

FOREST GLEN SUPERFUND SITE NIAGARA FALLS, NEW YORK

		RW-1 v	volume		RW-2 v	olume		RW-3 v	olume	Total vo	olume	
		4,925	gallons		4,515	gallons		8,270	gallons	17,710 {	gallons	
	RW-1	Contrib	ution to	RW-2	Contribution	n to loading	RW-3	Contribution	n to loading	Total loa	ding to	
Analyte	(4/11/17)	loading t	to POTW	(4/11/17)	to PC	OTW	(4/11/17)	to PC	DTW	POT	W	
1,1,1-trichloroethane	0.77 J	0.0000	lbs/day	3.1 J	0.0001	lbs/day	5 U	0	lbs/day	0.0001	lbs/day	1.0044 ug/l
1,1-dichloroethane	2.9 J	0.0001	lbs/day	3.1 J	0.0001	lbs/day	5 U	0	lbs/day	0.0002	lbs/day	1.5968 ug/l
1,1-dichloroethylene	5 U	0	lbs/day	5 U	0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
cis-1,2-dichloroethylene	3.2 J	0.0001	lbs/day	19.0	0.0007	lbs/day	13	0.0009	lbs/day	0.0017	lbs/day	11.8043 ug/l
tetrachloroethylene	5 U	0	lbs/day	5 U	0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
trans-1,2-dichloroethylene	5 U	0	lbs/day	5 U	0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
trichloroethylene	1.4 J	0.0001	lbs/day	5.7	0.0002	lbs/day	0.7 J	0.0000	lbs/day	0.0003	lbs/day	2.1694 ug/l
vinyl chloride	5 U	0	lbs/day	5.4	0.0002	lbs/day	2.6 J	0.0002	lbs/day	0.0004	lbs/day	2.5908 ug/l

Notes

- 1. Concentrations reported in units of ug/l
- 2. U undetected, with detection limit identified
- 3. J estimated value

	6/21/2016	9/20/2016	12/20/2016	4/11/2017	Average
Analyte	ug/l	ug/l	ug/l	ug/l	ug/l
1,1,1-trichloroethane	1.0990	0.3182	0.2972	1.0044	0.68
1,1-dichloroethane	2.1500	1.0250	1.5682	1.5968	1.59
1,1-dichloroethylene	0	0	0	0	0.00
cis-1,2-dichloroethylene	23.6549	13.2653	17.8812	11.8043	16.65
tetrachloroethylene	0	0	0	0	0.00
trans-1,2-dichloroethylene	0	0	0	0	0.00
trichloroethylene	0	0	0	2.1694	0.54
vinyl chloride	8.1956	4.6320	5.8015	2.5908	5.30

Analyte	lb/day	lb/day	lb/day	lb/day	lbs/day
1,1,1-trichloroethane	0.0002	0.0001	0.0001	0.0001	0.0001
1,1-dichloroethane	0.0003	0.0002	0.0004	0.0002	0.0003
1,1-dichloroethylene	0	0	0	0	0.0000
cis-1,2-dichloroethylene	0.0036	0.0022	0.0041	0.0017	0.0029
tetrachloroethylene	0	0	0	0	0.0000
trans-1,2-dichloroethylene	0	0	0	0	0.0000
trichloroethylene	0	0	0	0	0.0000
vinyl chloride	0.0012	0.0008	0.0013	0.0004	0.0009

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-116102-1

Client Project/Site: Forest Glen Discharge Analysis

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 4/21/2017 10:35:09 AM

Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

3

4

5

7

9

10

12

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Glossary

RPD

TEF

TEQ

Olobbary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Buffalo

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Job ID: 480-116102-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-116102-1

Receipt

The samples were received on 4/12/2017 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.7° C.

GC/MS VOA

Method(s) 624: The following Volatile samples were composited by the laboratory on 4/19/17 as requested by the client: RW-1 LAB COMPOSITE (480-116102-1), RW-2 LAB COMPOSITE (480-116102-6) and RW-3 LAB COMPOSITE (480-116102-11). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and laboratory standard operating procedures.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

5

4

6

7

Ŏ

3

4 4

12

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Lab Sample ID: 480-116102-1

Client Sample	ID: RW-1	LAB CO	MPOSITE

Client Sample ID: RW-2 LAB COMPOSITE

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	0.77	J	5.0	0.39	ug/L		_	624	Total/NA
1,1-Dichloroethane	2.9	J	5.0	0.59	ug/L	1		624	Total/NA
cis-1,2-Dichloroethylene	3.2	J	5.0	0.57	ug/L	1		624	Total/NA
Trichloroethylene	1.4	J	5.0	0.60	ug/L	1		624	Total/NA

Lab Sample ID: 480-116102-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	3.1	J –	5.0	0.39	ug/L	1	_	624	Total/NA
1,1-Dichloroethane	3.1	J	5.0	0.59	ug/L	1		624	Total/NA
cis-1,2-Dichloroethylene	19		5.0	0.57	ug/L	1		624	Total/NA
Trichloroethylene	5.7		5.0	0.60	ug/L	1		624	Total/NA
Vinyl chloride	5.4		5.0	0.75	ug/L	1		624	Total/NA

Client Sample ID: RW-3 LAB COMPOSITE Lab Sample ID: 480-116102-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethylene	13		5.0	0.57	ug/L	1	_	624	Total/NA
Trichloroethylene	0.70	J	5.0	0.60	ug/L	1		624	Total/NA
Vinyl chloride	2.6	J	5.0	0.75	ug/L	1		624	Total/NA

This Detection Summary does not include radiochemical test results.

4/21/2017

•

_

9

IU

12

13

14

TestAmerica Job ID: 480-116102-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis

Client Sample ID: RW-1 LAB COMPOSITE

Lab Sample ID: 480-116102-1 Date Collected: 04/11/17 11:50 Matrix: Water

Date Received: 04/12/17 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.77	J	5.0	0.39	ug/L			04/19/17 11:59	1
1,1-Dichloroethane	2.9	J	5.0	0.59	ug/L			04/19/17 11:59	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			04/19/17 11:59	1
cis-1,2-Dichloroethylene	3.2	J	5.0	0.57	ug/L			04/19/17 11:59	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			04/19/17 11:59	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			04/19/17 11:59	1
Trichloroethylene	1.4	J	5.0	0.60	ug/L			04/19/17 11:59	1
Vinyl chloride	ND		5.0	0.75	ug/L			04/19/17 11:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		80 - 120			-		04/19/17 11:59	1
4-Bromofluorobenzene (Surr)	100		80 - 120					04/19/17 11:59	1
Toluene-d8 (Surr)	102		77 - 120					04/19/17 11:59	1
Dibromofluoromethane (Surr)	106		78 - 120					04/19/17 11:59	1

Client Sample ID: RW-2 LAB COMPOSITE Lab Sample ID: 480-116102-6

Date Collected: 04/11/17 11:50 **Matrix: Water**

Date Received: 04/12/17 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	3.1	J	5.0	0.39	ug/L			04/19/17 12:22	1
1,1-Dichloroethane	3.1	J	5.0	0.59	ug/L			04/19/17 12:22	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			04/19/17 12:22	1
cis-1,2-Dichloroethylene	19		5.0	0.57	ug/L			04/19/17 12:22	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			04/19/17 12:22	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			04/19/17 12:22	1
Trichloroethylene	5.7		5.0	0.60	ug/L			04/19/17 12:22	1
Vinyl chloride	5.4		5.0	0.75	ug/L			04/19/17 12:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		80 - 120			-		04/19/17 12:22	1
4-Bromofluorobenzene (Surr)	100		80 - 120					04/19/17 12:22	1
Toluene-d8 (Surr)	102		77 - 120					04/19/17 12:22	1

Client Sample ID: RW-3 LAB COMPOSITE Lab Sample ID: 480-116102-11 Date Collected: 04/11/17 11:50

78 - 120

105

Date Received: 04/12/17 17:30

Dibromofluoromethane (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			04/19/17 12:46	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			04/19/17 12:46	1
1,1-Dichloroethylene	ND	5.0	0.85	ug/L			04/19/17 12:46	1
cis-1,2-Dichloroethylene	13	5.0	0.57	ug/L			04/19/17 12:46	1
Tetrachloroethylene	ND	5.0	0.34	ug/L			04/19/17 12:46	1
trans-1,2-Dichloroethylene	ND	5.0	0.59	ug/L			04/19/17 12:46	1
Trichloroethylene	0.70 J	5.0	0.60	ug/L			04/19/17 12:46	1
Vinyl chloride	2.6 J	5.0	0.75	ug/L			04/19/17 12:46	1

TestAmerica Buffalo

04/19/17 12:22

Matrix: Water

Page 6 of 16 4/21/2017

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Client Sample ID: RW-3 LAB COMPOSITE

Lab Sample ID: 480-116102-11

Date Collected: 04/11/17 11:50 Matrix: Water Date Received: 04/12/17 17:30

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	80 - 120		04/19/17 12:46	1
4-Bromofluorobenzene (Surr)	95	80 - 120		04/19/17 12:46	1
Toluene-d8 (Surr)	102	77 - 120		04/19/17 12:46	1
Dibromofluoromethane (Surr)	101	78 - 120		04/19/17 12:46	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su	rrogate Rec
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(80-120)	(77-120)	(78-120)
480-116102-1	RW-1 LAB COMPOSITE	115	100	102	106
480-116102-6	RW-2 LAB COMPOSITE	109	100	102	105
480-116102-11	RW-3 LAB COMPOSITE	109	95	102	101
LCS 480-352758/6	Lab Control Sample	104	95	100	99
MB 480-352758/8	Method Blank	108	99	101	101

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

TestAmerica Job ID: 480-116102-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-352758/8

Matrix: Water

Analysis Batch: 352758

Client Sample ID: Method Blank

Prep Type: Total/NA

_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			04/19/17 11:22	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			04/19/17 11:22	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			04/19/17 11:22	1
cis-1,2-Dichloroethylene	ND		5.0	0.57	ug/L			04/19/17 11:22	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			04/19/17 11:22	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			04/19/17 11:22	1
Trichloroethylene	ND		5.0	0.60	ug/L			04/19/17 11:22	1
Vinyl chloride	ND		5.0	0.75	ug/L			04/19/17 11:22	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		80 - 120	<u> </u>		04/19/17 11:22	1
4-Bromofluorobenzene (Surr)	99		80 - 120			04/19/17 11:22	1
Toluene-d8 (Surr)	101		77 - 120			04/19/17 11:22	1
Dibromofluoromethane (Surr)	101		78 - 120			04/19/17 11:22	1

Lab Sample ID: LCS 480-352758/6

Matrix: Water

Analysis Batch: 352758

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Baton: 002100								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.6		ug/L		103	52 - 162	
1,1-Dichloroethane	20.0	21.8		ug/L		109	59 - 155	
1,1-Dichloroethylene	20.0	20.5		ug/L		102	1 _ 234	
Tetrachloroethylene	20.0	20.1		ug/L		100	64 - 148	
trans-1,2-Dichloroethylene	20.0	21.0		ug/L		105	54 - 156	
Trichloroethylene	20.0	20.0		ug/L		100	71 ₋ 157	
Vinyl chloride	20.0	23.6		ug/L		118	1 _ 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	95		80 - 120
Toluene-d8 (Surr)	100		77 - 120
Dibromofluoromethane (Surr)	99		78 - 120

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

GC/MS VOA

Analysis Batch: 352758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116102-1	RW-1 LAB COMPOSITE	Total/NA	Water	624	
480-116102-6	RW-2 LAB COMPOSITE	Total/NA	Water	624	
480-116102-11	RW-3 LAB COMPOSITE	Total/NA	Water	624	
MB 480-352758/8	Method Blank	Total/NA	Water	624	
LCS 480-352758/6	Lab Control Sample	Total/NA	Water	624	

6

_

40

11

13

14

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Client Sample ID: RW-1 LAB COMPOSITE

Date Collected: 04/11/17 11:50

Lab Sample ID: 480-116102-1

Matrix: Water

Date Received: 04/12/17 17:30

Batch Dilution Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 624 352758 04/19/17 11:59 SWO TAL BUF

Client Sample ID: RW-2 LAB COMPOSITE

Date Collected: 04/11/17 11:50

Lab Sample ID: 480-116102-6

Matrix: Water

Date Received: 04/12/17 17:30

Batch Batch Dilution Batch Prepared Method Factor Prep Type Туре Run Number or Analyzed Analyst Lab TAL BUF Total/NA 624 352758 04/19/17 12:22 swo Analysis

10

Client Sample ID: RW-3 LAB COMPOSITE

Batch

Туре

Analysis

Lab Sample ID: 480-116102-11

Matrix: Water

Date Collected: 04/11/17 11:50 Date Received: 04/12/17 17:30

Total/NA

Prep Type

Batch Method 624

Run

Dilution Factor

Batch Number 352758

Prepared or Analyzed 04/19/17 12:46

Analyst SWO

Lab TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	10026	03-31-18

4

O

0

9

11

40

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

0

9

11

12

4 /

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-116102-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-116102-1	RW-1 LAB COMPOSITE	Water	04/11/17 11:50	04/12/17 17:30
480-116102-6	RW-2 LAB COMPOSITE	Water	04/11/17 11:50	04/12/17 17:30
480-116102-11	RW-3 LAB COMPOSITE	Water	04/11/17 11:50	04/12/17 17:30

2

6

8

11

40

14

Chain of Custody Record

Phone (716) 691-2600 Fax (716) 691-7991

Amherst, NY 14228-2298

TestAmerica Buffalo

THE LEADER OF MANAGEMENT AND ADDRESS To starting in the starting of the starting in
Special Instructions/Note: Be composited ~ 480-116102 COC 7 1485 eservation Codes: 480-96122-14318.1 Page 1 of 1 I-fœ J-DIW K-EDT. L-EDA Time: 4-(2-17 Potal Number of containers 3.7# Date/Time: Method of Shipment Analysis Requested Cooler Temperature(s) C and Other Remarks; - 25 - 35 25 Special Instructions/QC Requirements: E-Mail: orlette.johnson@testamericainc.com eceived by: eceived by: Lab PM: Johnson, Orlette S W w 524_5ml - Volatile Organic Compounds 3 3 α (ou yo sey) GRM/SM myoned Time: Matrix
(w=water,
s=solid,
O=waste/oil, Preservation Code: Water Water Water 3 3 \mathcal{E} 3 Company 3 ß 8 Imple: MACTINKSCHWECKG Radiological (C=comb, G=grab) Sample hone: 3(5-739-1360 Type 0 30 9 €, 14:45 2:00 1150 11:50 14,45 Sample Time 14:45 7:00 1150 00,4 11:50 Unknown Date: FAT Requested (days): Date/Time: Due Date Requested: 4-10-4 11-05-H Sample Date 41-01-6 4-10-17 4-11-14 41-11-77 41-01-14 41-01-H 41-11-17 PO#. 11511119 Project #: 48002806 SSOW#: Date/Time: #OM Poison B П Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify RW-2 OUIDIT RW-3 041014 RW-1 041017 Custody Seal No. RW-1 041017 RW-3 041017 RW-2 041617 RW-3041117 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) O'Brien & Gere Inc of North America RW-1 041117 RW-3 041117 Non-Hazard Tlammable RW-704111 RW-1 04/117 Possible Hazard Identification orest Glen Discharge Analysis mpty Kit Relinquished by: Custody Seals Intact: Client Information Sample Identification 'uri.Veliz@obg.com Minquishadoy: A Mr. Yuri Veliz East Syracuse linquished by: State, Zip: NY, 13221

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-116102-1

Login Number: 116102 List Source: TestAmerica Buffalo

List Number: 1 Creator: Kolb, Chris M

Creator. Rolb, Chris W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	False	LAB TO CHECK RC

6

0

9

11

13

14

September 11, 2017

Mr. Joel ParadiseNiagara Falls Water Board
5815 Buffalo Avenue
Niagara Falls, New York 14304

RE: Significant Industrial User (SIU)

Permit No. 61 for Forest Glen Site

SUB: Quarterly Monitoring Report (Period ending August 31, 2017)

FILE: 5540.65610

Dear Mr. Paradise,

This quarterly monitoring report for the period between June 1 and August 31, 2017 is provided for the groundwater recovery and discharge system (the "system") constructed at the Forest Glen Superfund Site in Niagara Falls, New York. The Goodyear Tire & Rubber Company (Goodyear) owns and operates the system, as agent for the Forest Glen Site Trust, under the Significant Industrial User (SIU) Permit No. 61 issued by the Niagara Falls Water Board (NFWB) on September 30, 2013.

The groundwater recovery system comprises the following:

- Three groundwater recovery wells (RW-1, RW-2 and RW-3) located at the Forest Glen Site.
- An off-site electrical enclosure at Regulator No. 6C, on Hyde Park Avenue in Niagara Falls, housing a power disconnect switch, overflow level sensor, and remote monitoring unit (RMU).

During the quarter between June 1 and August 31, 2017, a total of 2,664,022 gallons of groundwater were recovered and discharged to the sanitary sewer for treatment at the Niagara Falls publicly owned treatment works (POTW), and in accordance with SIU Permit No. 61 Goodyear conducted self-monitoring of the flow. The monitoring included collection of four separate grab samples from June 26 to 27, 2017 from recovery wells RW-1, RW-2 and RW-3.

The four grab samples collected from the recovery wells were delivered to Test America, Inc. in Amherst, NY where they were composited and analyzed for volatile organic compounds (VOCs) including vinyl chloride, 1,1-dichloroethylene, 1,2-dichloroethylene (cis and trans), 1,1-dichloroethane, trichloroethylene, tetrachloroethylene and 1,1,1-trichloroethane using USEPA method 624. The results of the analyses are summarized in the attached table, and the Self Monitoring Report provided as Attachment A presents the concentration for each well based on the composite samples. The Test America laboratory report is provided as Attachment B.

As required by the SIU permit, the results of the self-monitoring were used to calculate daily loading to the POTW. Based on the results, there were no permit limit violations for the quarter and the loads to the POTW were below the established limits.

If you have any questions concerning this report, please do not hesitate to call me at (315) 956-6836.

Very truly yours, O'BRIEN & GERE ENGINEERS, INC.

James M. Cavotta Project Manager

 $I:\label{lem:condy} I:\label{lem:condy} I:\label{lem:condy} August\ 2017\ quarterly\ report. docx$

cc: E. Gloeckler - The Goodyear Tire & Rubber Company

G. Sosa – United States Environmental Protection Agency

Z. Russo – New York State Department of Environmental Protection

NIAGARA FALLS WATER BOARD WASTEWATER FACILITIES ENFORCEMENT DIVISION

SELF-MONITORING REPORT SIGNIFICANT INDUSTRIAL USERS

PERMIT NO	61	QUAI	RTER	August 31, 2017
INDUSTRY NAME:	The Goodyear	Tire & Rubber Compar	ıy	
Pursuant to federal pret Regulations Part 1960, S compliance reports. Su schedule:	Significant Indu	strial Users shall submit	t periodic	
Quarterly	- - -	1st Quarter by Februa 2nd Quarter by May 37 3rd Quarter by Augus 4th Quarter by Noven	1 st it 31 st	
Semi-Annı	ual -	by February 28 th and by August 31 st		

Each section of this report form shall be filled out for those parameters listed in Section "G" of the company's Wastewater Discharge Permit. The analysis results must be reported in both concentration and mass. In addition, the calculated annual average load (lbs/day) for each pollutant shall also be reported.

The samples shall be collected at the monitoring points identified in the user permit. Identification of those points in this report should be as listed on page two (2) of the User Permit.

SELF-MONITORING REPORT Significant Industrial Users (SIUs)

PAGE 2

PART II of the report is the Compliance Monitoring section. The user is obligated to determine if the analysis results indicates compliance. All violations noted should be brought to the Niagara Falls Water Board – Wastewater Facilities attention immediately upon noting and should also be reported in this section. The analysis result should be compared against all applicable federal, state and local standards and limitations. If no violations are noted then "NO VIOLATIONS" should appear on the report.

Pursuant to 40 CFR Part 403.12g of the Federal Standards, all violations noted must be followed up by a sample recollect/analysis and the results submitted to the Niagara Falls Water Board within thirty (30) days of first becoming aware of the violation.

Pursuant to 40 CFR Part 403.12g all Periodic Self-Monitoring Reports must be signed by a "responsible company official" certifying the following statement:

I, certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signed:	Jelly & Summ
Γitle:	MAKE CLOBAL REMESSATION
Date:	7/21/17

ANALYTICAL RESULTS

SIU PERMIT NAME:	
SIU PERMIT NO.:	61
	Forest Glen Site

SAMPLE LOCATION:

DATE SAMPLED: 6/27/17	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
				20	AVERAGE	AVERAGE
DATE SAMPLED: 6/27/17	ug/ ℓ	/ ug/ l	ug/ ℓ	/ lbs/day	ug/ ℓ	lbs/day
<u></u>						
24-HOUR FLOW IN MGD *						0.029
BENZENE						
CARBON TETRACHLORIDE						
CHLORODIBROMOMETHANE						
MONOCHLOROBENZENE						
DICHLOROBROMOMETHANE						
CHLOROFORM						
1,1 – DICHLOROETHYLENE	5 U	5 U	5 U	0	0	0
1,2 – DICHLOROETHYLENE	31	6.8 J	23	0.0046	15.55	0.0032
BROMOFORM						
ETHYLBENZENE						
1,1,2,2 – TETRACHLOROETHANE						
TETRACHLOROETHYLENE	5 U	5 U	5 U	0	0	0
TOLUENE						
1,1,1 - TRICHLOROETHANE	1.7 J	5 U	5 U	0.0002	0.57	0.0001
1,1,2 – TRICHLOROETHANE						
TRICHLOROETHYLENE	5 U	0.91 J	5 U	0.0001	0.64	0
METHYLENE CHLORIDE						
MONOCHLOROTOLUENES						
MONOCHLOROBENZOTRIFLUROIDE						
VINYL CHLORIDE	10	1.8 J	3.9 J	0.0013	4.59	0.0010
TETRAHYDRAFURAN						
XYLENE						

ANALYTICAL RESULTS

The Goodyear Tire & Rubber Company

SIU PERMIT NAME:	
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site

	RE	SULTS	RI	ESULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
					AVERAGE	AVERAGE
	ug/ ℓ	/ ug/ l	ug/ ℓ	/ lbs/day	ug/ ℓ	lbs/day
DATE SAMPLED: → 6/27/17						
24-HOUR FLOW IN MGD						0.029
DIMETHYLPHTHALATE						
BUTYL BENZYL PHTHALATE						
Di-N-BUTHY PHTHALATE						
Di-N-OCTYL PHTHALATE						
DIETHYL PHTHALATE						
NITROSODIPHENYLAMINE						
DICHLOROBENZENES						
DICHLOROTOLUENE						
ACENAPHTHENE						
FLUORANTHENE						
CHRYSENE						
NAPHTHALENE						
BENZO (a) ANTHRACENE						
PYRENE						
TRICHLOROBENZENE						
TRICHLOROTOLUENE						
HEXACHLOROBUTADIENE						
TETRACHLOROBENZENE						
HEXACHLOROCYCLOPENTADIENE						
HEXCHLOROBENZENE						
DICHLOROBENZOTRIFLUORIDE						

ANALYTICAL RESULTS

The Goodyear Tire & Rubber Company

SIU PERMIT NAME:	
	61
SIU PERMIT NO.:	
SAMPLE LOCATION:	Forest Glen Site

	RI	ESULTS		ESULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL AVERAGE	ANNUAL AVERAGE
	ug/ ℓ	/ ug/ l	ug/ ℓ	/ lbs/day	ug/ ℓ	lbs/day
DATE SAMPLED: 6/27/17						
24-HOUR FLOW IN MGD						0.029
PHENANTHRENE						0.027
MONOCHLOROPHENOL						
DICHLOROPHENOL						
MONOCHLOROCRESOL						
TRICHLOROPHENOL						
PENTACHLOROPHENOL						
HEXACHLOROCYCLOHEXANES						
PCB's						
ENDOSULFAN I +						
ENDOSULFAN II +						
ENDOSULFAN SULFATE						
MIREX						
DECHLORANE PLUS						
HEPTACHLOR +						
HEPTACHLOR EPOXIDE						

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company					
	61					
SIU PERMIT NO.:						
SAMPLE LOCATION:	Forest Glen Site					

	RI	ESULTS	RE	SULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
					AVERAGE	AVERAGE
	ug/ ℓ	/ ug/ {	ug/ l	/ lbs/day	ug/ ℓ	lbs/day
DATE SAMPLED: 6/27/17						
24-HOUR FLOW IN MGD *						0.029
1,2,4 – TRICHLOROBENZENE						
1,2 – DICHLOROETHANE						
1,1,1 – TRICHLOROETHANE	1.7 J	5 U	5 U	0.0002	0.57	0.0001
HEXACHLOROETHANE						
1,1 – DICHLOROETHANE	3.6 J	1.7 J	0.59 J	0.0005	1.6	0.0003
1,1,2 – TRICHLOROETHANE						
CHLOROETHANE						
1,2 – DICHLOROBENZENE						
1,3 – DICHLOROBENZENE						
1,4 – DICHLOROBENZENE						
1,1 DICHLOROETHYLENE	5 U	5 U	5 U	0	0	0
1,2 - TRANS-DICHLOROETHYLENE						
1,3 – DICHLOROPROPYLENE						
METHYL CHLORIDE						
NITROBENZENE						
2 – NITROPHENOL						
4 – NITROPHENOL						
4,6 DINITRO-O-CRESOL						
BIS [2 – ETHYHEXYL] PHTHALATE						
ANTHRACENE						
DIETHYL PHTHALATE						
FLUORENE						
		-		-	-	-

The Goodyear	Tire &	Rubber	Company
--------------	--------	--------	---------

SIU PERMIT NAME:	
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site

	RI	ESULTS	RE	SULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL AVERAGE	ANNUAL AVERAGE
	ug/ℓ	/ ug/ l	ug/ l	/ lbs/day	ug/ l	lbs/day
DATE SAMPLED: 6/27/17						
24-HOUR FLOW IN MGD *						0.029
1,2 - DICHLOROPROPANE						
VINYL CHLORIDE	10	1.8 J	3.9 J	0.0013	4.59	0.0010
ACENAPHTHENE						
BENZENE						
CARBON TETRACHLORIDE						
CHLOROBENZENE						
HEXACHLOROBENZENE						
CHLOROFORM						
ETHYLBENZENE						
FLUORANTHENE						
METHYLENE CHLORIDE						
HEXACHLOROBUTADIEN						
NAPHTHALENE						
DI – N – BUTHYL PHTHALATE						
DIMETHYL PHTHALATE						
PHENANTHRENE						
PYRENE						
TRACHLOROETHYLENE						
TOLUENE						
TRICHLOROETHYLENE	5 U	0.91 J	5 U	0	0.64	0
TOTAL CYANIDE						
TOTAL LEAD						
TOTAL ZINC						

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company ————————————————————————————————————
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site
CANNOTE ESCATION.	

	R	ESUL	TS	RE	SULTS		
	RW-1		RW-2	RW-3	Combined	ANNUAL	ANNUAL
						AVERAGE	AVERAGE
	ug/ l	/	ug/ ℓ	ug/ l	/ lbs/day	ug/ l	lbs/day
DATE SAMPLED: ► 6/27/17							
24-HOUR FLOW IN MGD							0.029
TOTAL SUSPENDED SOLIDS							
SOLUABLE ORGANIC CARBON							
TOTAL PHOSPHOROUS							
TOTAL PHENOL							
OIL and GREASE							
CADMIUM							
CHROMIUM							
COPPER							
LEAD							
MERCURY							
NICKEL							
ZINC							
ARSENIC							
BERYLLIUM							
BARIUM							
TOTAL CYANIDE							
pH (STANDARD UNITS)							
RESIDUAL CHLORINE							
TOTAL SODIUM CHLORIDE							
TOTAL AMMONIA							
DIETHYLENE GLYCOL							

COMPLIANCE MONITORING

The Goodyear Tire & Rubber Company

SIU NAME:		
	61	
PERMIT NO.:		

NO PERMIT VIOLATIONS

			SAMPLE			TYPE**
VIOLATION		FLOW	POINT	ACTUAL*	PERMIT	LIMIT
PARAMETER	DATE	[MGD]	LOCATION	DISCHARGE	LIMIT	VIOLATED

NOTE:

- * Actual discharge list actual analytical results and appropriate units.** Type Limit Violated List Type:

A.A. = Annual Average

D.M. = Daily Maximum

L.L. = Local Limits (Regulation 1960.5)

QUARTERLY SELF-MONITORING SUMMARY GROUNDWATER RECOVERY SYSTEM EFFLUENT

FOREST GLEN SUPERFUND SITE NIAGARA FALLS, NEW YORK

		RW-1	/olume		RW-2 v	olume ·		RW-3 v	olume	Total vo	olume	
		11,049	gallons		12,124	gallons		5,643	gallons	28,816 {	gallons	
	RW-1	Contrib	ution to	RW-2	Contribution	n to loading	RW-3	Contribution to loading		g Total loading to		
Analyte	(6/27/17)	loading t	to POTW	(6/27/17)	to PO	OTW	(6/27/17)	to PC	DTW	POT	W	
1,1,1-trichloroethane	1.7 J	0.0002	lbs/day	5 U	0	lbs/day	5 U	0	lbs/day	0.0002	lbs/day	0.6518 ug/l
1,1-dichloroethane	3.6 J	0.0003	lbs/day	1.7 J	0.0002	lbs/day	0.59 J	0.0000	lbs/day	0.0005	lbs/day	2.2111 ug/l
1,1-dichloroethylene	5 U	0	lbs/day	5 U	0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
cis-1,2-dichloroethylene	31	0.0029	lbs/day	6.8	0.0007	lbs/day	23	0.0011	lbs/day	0.0046	lbs/day	19.2514 ug/l
tetrachloroethylene	5 U	0	lbs/day	5 U	0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
trans-1,2-dichloroethylene	5 U	0	lbs/day	5 U	0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
trichloroethylene	5 U	0	lbs/day	0.91 J	0.0001	lbs/day	5 U	0	lbs/day	0.0001	lbs/day	0.3829 ug/l
vinyl chloride	10	0.0009	lbs/day	1.8 J	0.0002	lbs/day	3.9 J	0.0002	lbs/day	0.0013	lbs/day	5.3553 ug/l

Notes

- 1. Concentrations reported in units of ug/l
- 2. U undetected, with detection limit identified
- 3. J estimated value

Flow volumes recorded on June 25, 2017 used for calculation of loading to be representative of normal flow since pumping was disrupted on June 26 and 27 and would not be representative of the normal loading. The concentrations for samples collected on June 26 and 27 were used in the calculation.

	9/20/2016	12/20/2016	4/11/2017	6/27/2017	Average
Analyte	ug/l	ug/l	ug/l	ug/l	ug/l
1,1,1-trichloroethane	0.3182	0.2972	1.0044	0.6518	0.57
1,1-dichloroethane	1.0250	1.5682	1.5968	2.2111	1.60
1,1-dichloroethylene	0	0	0	0	0.00
cis-1,2-dichloroethylene	13.2653	17.8812	11.8043	19.2514	15.55
tetrachloroethylene	0	0	0	0	0.00
trans-1,2-dichloroethylene	0	0	0	0	0.00
trichloroethylene	0	0	2.1694	0.3829	0.64
vinyl chloride	4.6320	5.8015	2.5908	5.3553	4.59

Analyte	lb/day	lb/day	lb/day	lb/day	lbs/day
1,1,1-trichloroethane	0.0001	0.0001	0.0001	0.0002	0.0001
1,1-dichloroethane	0.0002	0.0004	0.0002	0.0005	0.0003
1,1-dichloroethylene	0	0	0	0	0.0000
cis-1,2-dichloroethylene	0.0022	0.0041	0.0017	0.0046	0.0032
tetrachloroethylene	0	0	0	0	0.0000
trans-1,2-dichloroethylene	0	0	0	0	0.0000
trichloroethylene	0	0	0	0.0001	0.0000
vinyl chloride	0.0008	0.0013	0.0004	0.0013	0.0010

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-120278-1

Client Project/Site: Forest Glen Discharge Analysis

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 7/6/2017 1:02:39 PM

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents						
Cover Page	1					
-	2					
Definitions/Glossary	3					
Case Narrative	4					
Detection Summary	5					
Client Sample Results	6					
Surrogate Summary	8					
QC Sample Results	9					
QC Association Summary	10					
Lab Chronicle	11					
Certification Summary	12					
Method Summary	13					
Sample Summary	14					
Chain of Custody	15					
Receipt Checklists	17					

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Buffalo

7/6/2017

Page 3 of 17

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Job ID: 480-120278-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-120278-1

Receipt

The samples were received on 6/27/2017 6:03 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.4° C.

Receipt Exceptions

The COC listed a date of 6/26/17 for RW-3. The sample was collected on 06/27/17 and the login reflects this date.

GC/MS VOA

Method(s) 624: The following Volatile samples were composited by the laboratory on 6/29/2017 as requested by the client:RW-1- LAB COMPOSITE (480-120278-1), RW-2-LAB COMPOSITE (480-120278-6) and RW-3-LAB COMPOSITE (480-120278-11). Regulatory defined guidance for in-laboratory compositing of samples, is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

e

10

13

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

3

Client Sample ID: RW-1-LAB COMPOSITE

Lab Sample	ID:	480-1	2027	8-′

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	1.7	J	5.0	0.39	ug/L	1	_	624	Total/NA
1,1-Dichloroethane	3.6	J	5.0	0.59	ug/L	1		624	Total/NA
cis-1,2-Dichloroethylene	31		5.0	0.57	ug/L	1		624	Total/NA
Vinyl chloride	10		5.0	0.75	ug/L	1		624	Total/NA

5

Client Sample ID: RW-2-LAB COMPOSITE

Lab Sample ID: 480-120278-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	1.7	J –	5.0	0.59	ug/L	1	_	624	Total/NA
cis-1,2-Dichloroethylene	6.8		5.0	0.57	ug/L	1		624	Total/NA
Trichloroethylene	0.91	J	5.0	0.60	ug/L	1		624	Total/NA
Vinyl chloride	1.8	J	5.0	0.75	ug/L	1		624	Total/NA

Client Sample ID: RW-3-LAB COMPOSITE

Sample ID: 480-120278-11

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.59 J	5.0	0.59	ug/L		_	624	Total/NA
cis-1,2-Dichloroethylene	23	5.0	0.57	ug/L	1		624	Total/NA
Vinyl chloride	3.9 J	5.0	0.75	ug/L	1		624	Total/NA

12

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-120278-16

No Detections.

This Detection Summary does not include radiochemical test results.

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Client Sample ID: RW-1-LAB COMPOSITE

Date Collected: 06/27/17 12:00 Date Received: 06/27/17 18:03 Lab Sample ID: 480-120278-1

Lab Sample ID: 480-120278-6

Matrix: Water

Method: 624 - Volatile Orga Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.7	J	5.0	0.39	ug/L			06/29/17 20:14	1
1,1-Dichloroethane	3.6	J	5.0	0.59	ug/L			06/29/17 20:14	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			06/29/17 20:14	1
cis-1,2-Dichloroethylene	31		5.0	0.57	ug/L			06/29/17 20:14	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			06/29/17 20:14	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			06/29/17 20:14	1
Trichloroethylene	ND		5.0	0.60	ug/L			06/29/17 20:14	1
Vinyl chloride	10		5.0	0.75	ug/L			06/29/17 20:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 130					06/29/17 20:14	1
4-Bromofluorobenzene (Surr)	89		76 - 123					06/29/17 20:14	1
Toluene-d8 (Surr)	96		77 - 120					06/29/17 20:14	1
Dibromofluoromethane (Surr)	96		75 - 123					06/29/17 20:14	1

Client Sample ID: RW-2-LAB COMPOSITE

Date Collected: 06/27/17 12:00

Date Received: 06/27/17 18:03

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/29/17 20:38	1
1,1-Dichloroethane	1.7	J	5.0	0.59	ug/L			06/29/17 20:38	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			06/29/17 20:38	1
cis-1,2-Dichloroethylene	6.8		5.0	0.57	ug/L			06/29/17 20:38	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			06/29/17 20:38	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			06/29/17 20:38	1
Trichloroethylene	0.91	J	5.0	0.60	ug/L			06/29/17 20:38	1
Vinyl chloride	1.8	J	5.0	0.75	ug/L			06/29/17 20:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		68 - 130			•		06/29/17 20:38	1
4-Bromofluorobenzene (Surr)	88		76 - 123					06/29/17 20:38	1
Toluene-d8 (Surr)	95		77 - 120					06/29/17 20:38	1
Dibromofluoromethane (Surr)	99		75 - 123					06/29/17 20:38	1

Client Sample ID: RW-3-LAB COMPOSITE

Date Collected: 06/27/17 12:00

Date Received: 06/27/17 18:03

06/29/17 20:38	1
Lab Sample ID: 480-120278 Matrix: W	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/29/17 21:01	1
1,1-Dichloroethane	0.59	J	5.0	0.59	ug/L			06/29/17 21:01	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			06/29/17 21:01	1
cis-1,2-Dichloroethylene	23		5.0	0.57	ug/L			06/29/17 21:01	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			06/29/17 21:01	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			06/29/17 21:01	1
Trichloroethylene	ND		5.0	0.60	ug/L			06/29/17 21:01	1
Vinyl chloride	3.9	J	5.0	0.75	ug/L			06/29/17 21:01	1

TestAmerica Buffalo

Page 6 of 17 7/6/2017

2

<u>л</u>

5

9

11

13

Matrix: Water

14

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Client Sample ID: RW-3-LAB COMPOSITE

Date Collected: 06/27/17 12:00

Date Received: 06/27/17 18:03

Lab Sample ID: 480-120278-11

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		68 - 130		06/29/17 21:01	1
4-Bromofluorobenzene (Surr)	89		76 - 123		06/29/17 21:01	1
Toluene-d8 (Surr)	97		77 - 120		06/29/17 21:01	1
Dibromofluoromethane (Surr)	92		75 - 123		06/29/17 21:01	1

Client Sample ID: TRIP BLANK Lab Sample ID: 480-120278-16

Date Collected: 06/27/17 00:00 Matrix: Water

Date Received: 06/27/17 18:03

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/29/17 21:25	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/29/17 21:25	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			06/29/17 21:25	1
cis-1,2-Dichloroethylene	ND		5.0	0.57	ug/L			06/29/17 21:25	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			06/29/17 21:25	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			06/29/17 21:25	1
Trichloroethylene	ND		5.0	0.60	ug/L			06/29/17 21:25	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/29/17 21:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130			•		06/29/17 21:25	1
4-Bromofluorobenzene (Surr)	87		76 - 123					06/29/17 21:25	1
Toluene-d8 (Surr)	97		77 - 120					06/29/17 21:25	1
Dibromofluoromethane (Surr)	96		75 - 123					06/29/17 21:25	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(77-120)	(75-123)
480-120278-1	RW-1-LAB COMPOSITE	102	89	96	96
480-120278-6	RW-2-LAB COMPOSITE	101	88	95	99
480-120278-11	RW-3-LAB COMPOSITE	96	89	97	92
480-120278-16	TRIP BLANK	104	87	97	96
LCS 480-364746/5	Lab Control Sample	100	91	96	100
MB 480-364746/7	Method Blank	101	90	96	100

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

Page 8 of 17

7/6/2017

TestAmerica Job ID: 480-120278-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-364746/7	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 364746

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			06/29/17 16:03	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/29/17 16:03	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			06/29/17 16:03	1
cis-1,2-Dichloroethylene	ND		5.0	0.57	ug/L			06/29/17 16:03	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			06/29/17 16:03	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			06/29/17 16:03	1
Trichloroethylene	ND		5.0	0.60	ug/L			06/29/17 16:03	1
Vinyl chloride	ND		5.0	0.75	ug/L			06/29/17 16:03	1

MB MB %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 1,2-Dichloroethane-d4 (Surr) 68 - 130 06/29/17 16:03 101 4-Bromofluorobenzene (Surr) 90 76 - 123 06/29/17 16:03 96 Toluene-d8 (Surr) 77 - 120 06/29/17 16:03 Dibromofluoromethane (Surr) 100 75 - 123 06/29/17 16:03

Lab Sample ID: LCS 480-364746/5 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 364746

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.7		ug/L		104	52 - 162	
1,1-Dichloroethane	20.0	18.8		ug/L		94	59 - 155	
1,1-Dichloroethylene	20.0	19.3		ug/L		96	1 - 234	
Tetrachloroethylene	20.0	21.7		ug/L		108	64 - 148	
trans-1,2-Dichloroethylene	20.0	19.9		ug/L		100	54 ₋ 156	
Trichloroethylene	20.0	20.2		ug/L		101	71 ₋ 157	
Vinyl chloride	20.0	18.8		ug/L		94	1 - 251	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		68 - 130
4-Bromofluorobenzene (Surr)	91		76 - 123
Toluene-d8 (Surr)	96		77 - 120
Dibromofluoromethane (Surr)	100		75 - 123

TestAmerica Buffalo

Prep Type: Total/NA

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

GC/MS VOA

Analysis Batch: 364746

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-120278-1	RW-1-LAB COMPOSITE	Total/NA	Water	624	
480-120278-6	RW-2-LAB COMPOSITE	Total/NA	Water	624	
480-120278-11	RW-3-LAB COMPOSITE	Total/NA	Water	624	
480-120278-16	TRIP BLANK	Total/NA	Water	624	
MB 480-364746/7	Method Blank	Total/NA	Water	624	
LCS 480-364746/5	Lab Control Sample	Total/NA	Water	624	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Client Sample ID: RW-1-LAB COMPOSITE

Lab Sample ID: 480-120278-1 Date Collected: 06/27/17 12:00

Matrix: Water

Date Received: 06/27/17 18:03

Batch Dilution Batch Batch **Prepared** Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab TAL BUF Total/NA Analysis 624 364746 06/29/17 20:14 CDC

Client Sample ID: RW-2-LAB COMPOSITE

Lab Sample ID: 480-120278-6 Date Collected: 06/27/17 12:00

Matrix: Water

Date Received: 06/27/17 18:03

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL BUF 624 364746 06/29/17 20:38 CDC Total/NA Analysis

10

Client Sample ID: RW-3-LAB COMPOSITE

Lab Sample ID: 480-120278-11 Date Collected: 06/27/17 12:00

Matrix: Water

Date Received: 06/27/17 18:03

Dilution Batch Batch Batch Prepared

Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab

Total/NA Analysis 364746 06/29/17 21:01 CDC TAL BUF

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-120278-16 Date Collected: 06/27/17 00:00 **Matrix: Water**

Date Received: 06/27/17 18:03

Batch Batch Dilution Batch **Prepared** Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab 364746 06/29/17 21:25 CDC Total/NA Analysis 624 TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	10026	03-31-18

3

4

5

7

9

11

13

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

10

12

13

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-120278-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-120278-1	RW-1-LAB COMPOSITE	Water	06/27/17 12:00	06/27/17 18:03
480-120278-6	RW-2-LAB COMPOSITE	Water	06/27/17 12:00	06/27/17 18:03
480-120278-11	RW-3-LAB COMPOSITE	Water	06/27/17 12:00	06/27/17 18:03
480-120278-16	TRIP BLANK	Water	06/27/17 00:00	06/27/17 18:03

3

4

9

4 4

4.0

13

14

TestAmerica Buffalo					•	
10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	Chain of Custody Record	stody Re	cord		<u>FestAmerico</u>	S
Client Information	Hayna Fluss M. Ro Mollen		Lab PM: Johnson Orlette S	Carrier Tracking No(s):	COC No:	3. W
Client Contact: Mr. Yuri Veliz	5-951	7	E-Mail: ordette iohnson@testamericainc.com		480-98697-14318.1 Page:	
Company: O'Brien & Gere Inc of North America			Lebourne Calleton	100	Page 1 of ₹	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:		anhay se	Date	Preservation (1
City. East Syracuse	TAT Requested (days):				A - HCL B - NaOH	
State, Zip: NY, 13221	- Standard				C - Zn Acetate D - Nitric Acid	w.x
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#: 11511119		811	11		200
Email: Yuri.Veliz@obg.com	WO#:	ON 10	(0)	1	H - Ascorbic 4 480	° 000
Project Name: Forest Glen Discharge Analysis	Project #: 48002806	89X) 6	4 10 se	saedie	K - EDTA W - pH 4-5 L - EDA Z - other (specify)	ecify)
Site:	SSOW#:	eldme	₃Y) Œ		Other:	
		Matrix (Wewater,	ilibloV - Im	Bo Tadmul	To be com	क्रास्त्र
Sample Identification	Sample Date Time G=grab)	O=waste/oil, BT=Tissue, A=Air)	Perfo	V records	Special Instructions/Note:	Note:
D. 1	X	Preservation Code:	× X			$\left \cdot \right $
FW- 1-06201	6/2017 1200 6	Water	×	8	~	
KW-2-062617	0/21/1/200 C	Water	X	1		
KW 3 -06212	0 00e/17/1900 G	Water	×			
7-	6/20/17 1/05/D G	3	×	200		
000-0-	6/24/1 1650 O	3	X	60	-0	
KW-5-06200[6/20/17 1650 G	3	×	100		
RW-1-062717	10/27 17 10835 O	3	×	LA.		
KW-2-062717	WAT 1 0825 6	3	X	w		
KW-5-0102717	10	3	×	m		
KW-1-062717	1000 B	3	X	1		
KW-3-062717	16/27/17 1300 CO	M	X	, N		
Source nazard reentincation Non-Hazard Plammable Skin Imitant	Poison B Unknown Radiological		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ssed if samples are retain	ed longer than 1 month)	
Deliverable Requested: I, II, III, IV, Other (specify)			Requireme	Uisposal By Lab Arch	Archive For Months	
Empty Kit Relinquished by:	Date:	Time:	le;	Method of Shipment:	1	
Relinquished Mayna Luly	6/37/17 1803	O A Company	Received by:	Date line:	Kn > Company	2
Relinquished by:	()	Company	Received by:	Dati Time:	- 1	2
	Date/Time:	Company	Received by:	Date/Tima:	Company	1
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks:	2.4	1	
					-	

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (718) 691-2600 Fax (716) 691-7991	Chain of Custody Record	72	Testamerica THE LE THE BURNE SOURCES TESTING
Client Information	na Twees, Mike Mellen	ette S Carrier Tracking No(s):	COC No: 480-98697-14318 1
Ontain College. Companies. Companies.		E-Mail: orlette.johnson@testamericainc.com	Page: 20
Company. Address: Address:		Analysis Requested	Job #:
333 West Washington St. PO BOX 4873	Due Date Requested:		Preservation Codes:
Criv: East Syracuse State, Zip: NY, 13221	TAT Requested (days): Standard		A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 D Nitrin Acid P - NaZO4S
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	[6]	sp	
Email: Yuri.Veliz@obg.com	, or No		H - Ascorbic Acid I - Ice J - DI Water
Project name: Porest Glen Discharge Analysis	10 88		K - EDTA W - pH 4-5 L - EDA Z - other (specify)
ole:	A) @S		Other:
Sample Identification	Sample (Weatrix Type Second, Cacomp, Campsteel, Edit Cacomp, C	iiisioV - Imê_å	10
ouriers idonativation	13	779	Spe
KW-5-06207	1 267 120 6 water	X	
NA Mank	Water Water	A A A A A A A A A A A A A A A A A A A	
	Water Water		
	4.5		
ant	Samp Sa	ples are re	d longer than 1 month)
, III, IV, Other (specify)	STOLD	Usposal By Lab Requirements:	Archive For Months
Empty Kit Relinquished by:	Date: Time:	Method of Shipment:	
Relinquished by:	Date/fine: 7/7 /805 Conpany ReDate/Time: /	Received by: Machine: Dates Title: 7/17 Received by: Dates Title: 7/17	Company TAB
Relinquished by:	Date/Time: Company Re	Received by: Date/Time:	Сотралу
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	8	Cooler Temperature(s) °C and Other Remarks:	

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-120278-1

Login Number: 120278 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kinecki, Kenneth P

Creator: Kinecki, Kenneth P		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	False	NA: Check done at department level as required

_

4

6

8

10

12

a i

December 13, 2017

Mr. Joel Paradise Niagara Falls Water Board 5815 Buffalo Avenue Niagara Falls, New York 14304

RE: Significant Industrial User (SIU)

Permit No. 61 for Forest Glen Site

SUB: Quarterly Monitoring Report (Period ending November 30, 2017)

FILE: 5540.65610

Dear Mr. Paradise,

This quarterly monitoring report for the period between September 30 and November 30, 2017 is provided for the groundwater recovery and discharge system (the "system") constructed at the Forest Glen Superfund Site in Niagara Falls, New York. The Goodyear Tire & Rubber Company (Goodyear) owns and operates the system, as agent for the Forest Glen Site Trust, under the Significant Industrial User (SIU) Permit No. 61 issued by the Niagara Falls Water Board (NFWB) on September 30, 2013.

The groundwater recovery system comprises the following:

- Three groundwater recovery wells (RW-1, RW-2 and RW-3) located at the Forest Glen Site.
- An off-site electrical enclosure at Regulator No. 6C, on Hyde Park Avenue in Niagara Falls, housing a power disconnect switch, overflow level sensor, and remote monitoring unit (RMU).

During the quarter between September 1 and November 30, 2017, a total of 3,205,045 gallons of groundwater were recovered and discharged to the sanitary sewer for treatment at the Niagara Falls publicly owned treatment works (POTW), and in accordance with SIU Permit No. 61 Goodyear conducted self-monitoring of the flow. The monitoring included collection of four separate grab samples from September 11 to 12, 2017 from recovery wells RW-1, RW-2 and RW-3.

The four grab samples collected from the recovery wells were delivered to Test America, Inc. in Amherst, NY where they were composited and analyzed for volatile organic compounds (VOCs) including vinyl chloride, 1,1-dichloroethylene, 1,2-dichloroethylene (cis and trans), 1,1-dichloroethane, trichloroethylene, tetrachloroethylene and 1,1,1-trichloroethane using USEPA method 624. The results of the analyses are summarized in the attached table, and the Self Monitoring Report provided as Attachment A presents the concentration for each well based on the composite samples. The Test America laboratory report is provided as Attachment B.

As required by the SIU permit, the results of the self-monitoring were used to calculate daily loading to the POTW. Based on the results, there were no permit limit violations for the quarter and the loads to the POTW were below the established limits.

If you have any questions concerning this report, please do not hesitate to call me at (315) 956-6836.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

James M. Cavotta

Project Manager

 $I:\ Goodyear. 5540 \land 65610. Forest-Glen-201 \land Corres \land Quarterly\ Reports \land November\ 2017\ quarterly\ report. docx$

cc:

E. Gloeckler - The Goodyear Tire & Rubber Company

G. Sosa – United States Environmental Protection Agency

Z. Russo - New York State Department of Environmental Protection

NIAGARA FALLS WATER BOARD WASTEWATER FACILITIES ENFORCEMENT DIVISION

SELF-MONITORING REPORT SIGNIFICANT INDUSTRIAL USERS

PERMIT NO.	51	QUARTER _	November 30, 2017
INDUSTRY NAME:T	<u>he Goodyear Ti</u>	re & Rubber Company	
•			
Pursuant to federal pretrea	tment reporting	g requirements and the Nia	gara Falls Water Board
Regulations Part 1960, Signature Constitution of the Constitution		•	- '
compliance reports. Such schedule:	reports snall be	submitted using this form,	according to the following
Scriedaici	•		
Our day.		st Ownstan by Cabina and 20th	· 1
Quarterly		st Quarter by February 28 th	'
		nd Quarter by May 31st	
		rd Quarter by August 31st	- U-
	- 4	th Quarter by November 30	շտ
Semi-Annual	- b	y February 28 th	
		and	

Each section of this report form shall be filled out for those parameters listed in Section "G" of the company's Wastewater Discharge Permit. The analysis results must be reported in both concentration and mass. In addition, the calculated annual average load (lbs/day) for each pollutant shall also be reported.

by August 31st

The samples shall be collected at the monitoring points identified in the user permit. Identification of those points in this report should be as listed on page two (2) of the User Permit.

SELF-MONITORING REPORT Significant Industrial Users (SIUs)

PAGE 2

PART II of the report is the Compliance Monitoring section. The user is obligated to determine if the analysis results indicates compliance. All violations noted should be brought to the Niagara Falls Water Board – Wastewater Facilities attention immediately upon noting and should also be reported in this section. The analysis result should be compared against all applicable federal, state and local standards and limitations. If no violations are noted then "NO VIOLATIONS" should appear on the report.

Pursuant to 40 CFR Part 403.12g of the Federal Standards, all violations noted must be followed up by a sample recollect/analysis and the results submitted to the Niagara Falls Water Board within thirty (30) days of first becoming aware of the violation.

Pursuant to 40 CFR Part 403.12g all Periodic Self-Monitoring Reports must be signed by a "responsible company official" certifying the following statement:

I, certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sianed:

Title:

MNGR GLARL REMEDIATION

Date:

NOVEMBER 13, 2017

61
Forest Glen Site

	RE	SULTS	RE	SULTS		
	RW-1 RW-2		RW-3 Combined		ANNUAL	ANNUAL
					AVERAGE	AVERAGE
	ug/l	/ ug/ l	ug/l	/ lbs/day	ug/ l	lbs/day
DATE SAMPLED: 9/12/17						
						2 2 2 4
24-HOUR FLOW IN MGD *						0.034
BENZENE						
CARBON TETRACHLORIDE						
CHLORODIBROMOMETHANE						
MONOCHLOROBENZENE						
DICHLOROBROMOMETHANE						
CHLOROFORM						
1,1 – DICHLOROETHYLENE	5 U	5 U	5 U	0	0	0
1,2 – DICHLOROETHYLENE	36	4.8 J	28	0.0061	17.68	0.0041
BROMOFORM						
ETHYLBENZENE						
1,1,2,2 – TETRACHLOROETHANE						
TETRACHLOROETHYLENE	5 U	5 U	5 U	0	0	0
TOLUENE						
1,1,1 - TRICHLOROETHANE	2.3 J	0.4 J	5 U	0.0003	0.72	0.0002
1,1,2 - TRICHLOROETHANE						
TRICHLOROETHYLENE	5 U	5 U	5 U	0	0.64	0
METHYLENE CHLORIDE						
MONOCHLOROTOLUENES						
MONOCHLOROBENZOTRIFLUROIDE						
VINYL CHLORIDE	13	3.2 J	5	0.0021	5.31	0.0013
TETRAHYDRAFURAN						
XYLENE						
-						

ANALYTICAL RESULTS

The Goodyear Tire & Rubber Company

SIU PERMIT NAME:	
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site

	RESULTS		RESULTS			
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
					AVERAGE	AVERAGE
	ug/ l	/ ug/{	ug/ l	/ lbs/day	ug/ ℓ	lbs/day
DATE SAMPLED: 9/12/17						
24-HOUR FLOW IN MGD						0.034
DIMETHYLPHTHALATE						
BUTYL BENZYL PHTHALATE						
Di-N-BUTHY PHTHALATE						
Di-N-OCTYL PHTHALATE						
DIETHYL PHTHALATE						
NITROSODIPHENYLAMINE						
DICHLOROBENZENES						
DICHLOROTOLUENE						
ACENAPHTHENE						
FLUORANTHENE						
CHRYSENE						
NAPHTHALENE						
BENZO (a) ANTHRACENE						
PYRENE						
TRICHLOROBENZENE						
TRICHLOROTOLUENE						
HEXACHLOROBUTADIENE						
TETRACHLOROBENZENE						
HEXACHLOROCYCLOPENTADIENE						
HEXCHLOROBENZENE						
DICHLOROBENZOTRIFLUORIDE						

The Goodyear 1	Γire & Rubbe	r Company
----------------	--------------	-----------

SIU PERMIT NAME:	
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site

	RESULTS		RESULTS				
	RW-1		RW-2	RW-3	Combined	ANNUAL AVERAGE	ANNUAL AVERAGE
	ug/ l	/	ug/ l	ug/ ℓ	/ lbs/day	ug/ ℓ	lbs/day
DATE SAMPLED: 9/12/17							
24 HOUR FLOW IN MCD							0.034
24-HOUR FLOW IN MGD							0.034
PHENANTHRENE							
MONOCHLOROPHENOL							
DICHLOROPHENOL							
MONOCHLOROCRESOL							
TRICHLOROPHENOL							
PENTACHLOROPHENOL							
HEXACHLOROCYCLOHEXANES							
PCB's							
ENDOSULFAN I +							
ENDOSULFAN II +							
ENDOSULFAN SULFATE							
MIREX							
DECHLORANE PLUS							
HEPTACHLOR +							
HEPTACHLOR EPOXIDE							

PART I

ANALYTICAL RESULTS

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site

	RI	RESULTS		RESULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
					AVERAGE	AVERAGE
	ug/l	/ ug/{	ug/{	/ lbs/day	ug/ ℓ	lbs/day
DATE SAMPLED: 9/12/17						
24-HOUR FLOW IN MGD *						0.034
1,2,4 – TRICHLOROBENZENE						
1,2 – DICHLOROETHANE						
1,1,1 – TRICHLOROETHANE	2.3 J	0.4 J	5 U	0.0003	0.72	0.0002
HEXACHLOROETHANE						
1,1 - DICHLOROETHANE	4.2 J	1.5 J	0.68 J	0.0007	1.95	0.0005
1,1,2 – TRICHLOROETHANE						
CHLOROETHANE						
1,2 – DICHLOROBENZENE						
1,3 – DICHLOROBENZENE						
1,4 – DICHLOROBENZENE						
1,1 DICHLOROETHYLENE	5 U	5 U	5 U	0	0	0
1,2 – TRANS-DICHLOROETHYLENE						
1,3 – DICHLOROPROPYLENE						
METHYL CHLORIDE						
NITROBENZENE						
2 – NITROPHENOL						
4 – NITROPHENOL						
4,6 DINITRO-O-CRESOL						
BIS [2 – ETHYHEXYL] PHTHALATE						
ANTHRACENE						
DIETHYL PHTHALATE						
FLUORENE						

PART I

ANALYTICAL RESULTS

The Goodyear Tire	& Rubber	Company
-------------------	----------	---------

SIU PERMIT NAME:		
SIU PERMIT NO.:	61	
SAMPLE LOCATION:	Forest Glen Site	

	RI	RESULTS		RESULTS		
	RW-1	RW-2	RW-3	Combined	ANNUAL	ANNUAL
					AVERAGE	AVERAGI
	ug/ ℓ	/ ug/{	ug/ l	/ lbs/day	ug/ℓ	lbs/day
DATE SAMPLED: 9/12/17						
24-HOUR FLOW IN MGD *						0.034
1,2 - DICHLOROPROPANE						
VINYL CHLORIDE	13	3.2 J	5	0.0021	5.31	0.0013
ACENAPHTHENE						
BENZENE						
CARBON TETRACHLORIDE						
CHLOROBENZENE						
HEXACHLOROBENZENE						
CHLOROFORM						
ETHYLBENZENE						
FLUORANTHENE						
METHYLENE CHLORIDE						
HEXACHLOROBUTADIEN						
NAPHTHALENE						
DI – N – BUTHYL PHTHALATE						
DIMETHYL PHTHALATE						
PHENANTHRENE						
PYRENE						
TRACHLOROETHYLENE						
TOLUENE						
TRICHLOROETHYLENE	5 U	5 U	5 U	0	0.64	0.00003
TOTAL CYANIDE						
TOTAL LEAD						
TOTAL ZINC						

PART I

ANALYTICAL RESULTS

SIU PERMIT NAME:	The Goodyear Tire & Rubber Company
SIU PERMIT NO.:	61
SAMPLE LOCATION:	Forest Glen Site
SAMI EL LOCATION.	

	R	ESUL	TS	RE	SULTS		
	RW-1		RW-2	RW-3	Combined	ANNUAL	ANNUAL
						AVERAGE	AVERAGE
	ug/l	/	ug/ l	ug/ l	/ lbs/day	ug/ l	lbs/day
DATE SAMPLED: 9/12/17							
24-HOUR FLOW IN MGD							0.034
TOTAL SUSPENDED SOLIDS							
SOLUABLE ORGANIC CARBON							
TOTAL PHOSPHOROUS							
TOTAL PHENOL							
OIL and GREASE							
CADMIUM							
CHROMIUM							
COPPER							
LEAD							
MERCURY							
NICKEL							
ZINC							
ARSENIC							
BERYLLIUM							
BARIUM							
TOTAL CYANIDE							
pH (STANDARD UNITS)							
RESIDUAL CHLORINE							
TOTAL SODIUM CHLORIDE							
TOTAL AMMONIA							
DIETHYLENE GLYCOL							

PART II

COMPLIANCE MONITORING

The Goodyear Tire & Rubber Company

SIU NAME:		
PERMIT NO.:	61	
	NO PERMIT VIOLATIONS	

			SAMPLE			TYPE**
VIOLATION		FLOW	POINT	ACTUAL*	PERMIT	LIMIT
	DATE					
PARAMETER	DATE	[MGD]	LOCATION	DISCHARGE	LIMIT	VIOLATED

NOTE:

- * Actual discharge list actual analytical results and appropriate units.** Type Limit Violated List Type:

A.A. = Annual Average

D.M. = Daily Maximum

L.L. = Local Limits (Regulation 1960.5)

QUARTERLY SELF-MONITORING SUMMARY GROUNDWATER RECOVERY SYSTEM EFFLUENT

FOREST GLEN SUPERFUND SITE NIAGARA FALLS, NEW YORK

		RW-1 v	/olume			RW-2 v	olume/		RW-3 v	olume	Total vo	olume	
		13,457	gallons			13,665	gallons		6,455	gallons	33,577 {	gallons	
	RW-1	Contrib	ution to	RW-	2	Contribution	n to loading	RW-3	Contribution	n to loading	Total loa	ding to	
Analyte	(9/12/17)	loading t	to POTW	(9/12/	17)	to PO	OTW	(9/12/17)	to PC	DTW	POT	W	
1,1,1-trichloroethane	2.3 J	0.0003	lbs/day	0.4	J	0	lbs/day	5 U	0	lbs/day	0.0003	lbs/day	0.9218 ug/l
1,1-dichloroethane	4.2 J	0.0005	lbs/day	1.5	J	0.0002	lbs/day	0.68 J	0.00004	lbs/day	0.0007	lbs/day	2.4245 ug/l
1,1-dichloroethylene	5 U	0	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
cis-1,2-dichloroethylene	36	0.0040	lbs/day	4.8	J	0.0005	lbs/day	28	0.0015	lbs/day	0.0061	lbs/day	21.7644 ug/l
tetrachloroethylene	5 U	0	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
trans-1,2-dichloroethylene	5 U	0	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
trichloroethylene	5 U	0	lbs/day	5 U		0	lbs/day	5 U	0	lbs/day	0	lbs/day	0.0000 ug/l
vinyl chloride	13	0.0015	lbs/day	3.2	J	0.0004	lbs/day	5	0.0003	lbs/day	0.0021	lbs/day	7.4737 ug/l

Notes

- 1. Concentrations reported in units of ug/l
- 2. U undetected, with detection limit identified
- 3. J estimated value

	12/20/2016	4/11/2017	6/27/2017	9/12/2017	Average
Analyte	ug/l	ug/l	ug/l	ug/l	ug/l
1,1,1-trichloroethane	0.2972	1.0044	0.6518	0.9218	0.72
1,1-dichloroethane	1.5682	1.5968	2.2111	2.4245	1.95
1,1-dichloroethylene	0	0	0	0	0.00
cis-1,2-dichloroethylene	17.8812	11.8043	19.2514	21.7644	17.68
tetrachloroethylene	0	0	0	0	0.00
trans-1,2-dichloroethylene	0	0	0	0	0.00
trichloroethylene	0	2.1694	0.3829	0	0.64
vinyl chloride	5.8015	2.5908	5.3553	7.4737	5.31

Analyte	lb/day	lb/day	lb/day	lb/day	lbs/day
1,1,1-trichloroethane	0.0001	0.0001	0.0002	0.0003	0.0002
1,1-dichloroethane	0.0004	0.0002	0.0005	0.0007	0.0005
1,1-dichloroethylene	0	0	0	0	0.0000
cis-1,2-dichloroethylene	0.0041	0.0017	0.0046	0.0061	0.0041
tetrachloroethylene	0	0	0	0	0.0000
trans-1,2-dichloroethylene	0	0	0	0	0.0000
trichloroethylene	0	0	0.0001	0	0.00003
vinyl chloride	0.0013	0.0004	0.0013	0.0021	0.0013

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-124015-1

Client Project/Site: Forest Glen Discharge Analysis

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 9/18/2017 4:19:01 PM
Katelyn Ferguson, Project Man

Katelyn Ferguson, Project Management Assistant I katelyn.ferguson@testamericainc.com

Designee for

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

Review your project

results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	17

9

4

8

40

11

13

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Job ID: 480-124015-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-124015-1

Comments

No additional comments.

Receipt

The samples were received on 9/12/2017 5:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

Method(s) 624: The following Volatile samples were composited by the laboratory on 9/13/17 as requested by the client: RW-1 LAB COMPOSITE (480-124015-13), RW-2 LAB COMPOSITE (480-124015-14) and RW-3 LAB COMPOSITE (480-124015-15). Regulatory defined guidance for in-laboratory compositing of samples is currently not available. Laboratory sample compositing was performed using established project specifications and/or laboratory standard operating procedures.

 $No\ additional\ analytical\ or\ quality\ issues\ were\ noted,\ other\ than\ those\ described\ above\ or\ in\ the\ Definitions/Glossary\ page.$

3

4

E

6

_

o

9

10

12

13

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Lab Sample ID: 480-124015-14

Lab Sample ID: 480-124015-15

Lab Sample ID: 480-124015-13

Client Sample ID: RW-1 LAB COMPOSITE

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1,1-Trichloroethane	2.3 J	5.0	0.39 ug/L		624	Total/NA
1,1-Dichloroethane	4.2 J	5.0	0.59 ug/L	1	624	Total/NA
cis-1,2-Dichloroethylene	36	5.0	0.57 ug/L	1	624	Total/NA
Vinyl chloride	13	5.0	0.75 ug/L	1	624	Total/NA

Client Sample ID: RW-2 LAB COMPOSITE

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	0.41	J	5.0	0.39	ug/L	1	_	624	Total/NA
1,1-Dichloroethane	1.5	J	5.0	0.59	ug/L	1		624	Total/NA
cis-1,2-Dichloroethylene	4.8	J	5.0	0.57	ug/L	1		624	Total/NA
Vinyl chloride	3.2	J	5.0	0.75	ug/L	1		624	Total/NA

Client Sample ID: RW-3 LAB COMPOSITE

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.68	J	5.0	0.59	ug/L		_	624	Total/NA
cis-1,2-Dichloroethylene	28		5.0	0.57	ug/L	1		624	Total/NA
Vinyl chloride	5.0		5.0	0.75	ug/L	1		624	Total/NA

А

5

7

8

11

12

14

This Detection Summary does not include radiochemical test results.

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Client Sample ID: RW-1 LAB COMPOSITE

Date Collected: 09/12/17 11:50 Date Received: 09/12/17 17:20 Lab Sample ID: 480-124015-13

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	2.3	J	5.0	0.39	ug/L			09/13/17 17:22	1
1,1-Dichloroethane	4.2	J	5.0	0.59	ug/L			09/13/17 17:22	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			09/13/17 17:22	1
cis-1,2-Dichloroethylene	36		5.0	0.57	ug/L			09/13/17 17:22	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			09/13/17 17:22	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			09/13/17 17:22	1
Trichloroethylene	ND		5.0	0.60	ug/L			09/13/17 17:22	1
Vinyl chloride	13		5.0	0.75	ug/L			09/13/17 17:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		68 - 130					09/13/17 17:22	1
4-Bromofluorobenzene (Surr)	107		76 - 123					09/13/17 17:22	1
Toluene-d8 (Surr)	99		77 - 120					09/13/17 17:22	1
Dibromofluoromethane (Surr)	104		75 - 123					09/13/17 17:22	1

Client Sample ID: RW-2 LAB COMPOSITE Lab Sample ID: 480-124015-14

Date Collected: 09/12/17 11:50 Matrix: Water

Date Received: 09/12/17 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.41	J	5.0	0.39	ug/L			09/13/17 17:45	1
1,1-Dichloroethane	1.5	J	5.0	0.59	ug/L			09/13/17 17:45	1
1,1-Dichloroethylene	ND		5.0	0.85	ug/L			09/13/17 17:45	1
cis-1,2-Dichloroethylene	4.8	J	5.0	0.57	ug/L			09/13/17 17:45	1
Tetrachloroethylene	ND		5.0	0.34	ug/L			09/13/17 17:45	1
trans-1,2-Dichloroethylene	ND		5.0	0.59	ug/L			09/13/17 17:45	1
Trichloroethylene	ND		5.0	0.60	ug/L			09/13/17 17:45	1
Vinyl chloride	3.2	J	5.0	0.75	ug/L			09/13/17 17:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		68 - 130			•		09/13/17 17:45	1
4-Bromofluorobenzene (Surr)	111		76 - 123					09/13/17 17:45	1
Toluene-d8 (Surr)	97		77 - 120					09/13/17 17:45	1
Dibromofluoromethane (Surr)	107		75 - 123					09/13/17 17:45	1

Client Sample ID: RW-3 LAB COMPOSITE

Date Collected: 09/12/17 11:50

Lab Sample ID: 480-124015-15

Matrix: Water

Date Collected: 09/12/17 11:50 Date Received: 09/12/17 17:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	5.0	0.39	ug/L			09/13/17 18:09	1
1,1-Dichloroethane	0.68 J	5.0	0.59	ug/L			09/13/17 18:09	1
1,1-Dichloroethylene	ND	5.0	0.85	ug/L			09/13/17 18:09	1
cis-1,2-Dichloroethylene	28	5.0	0.57	ug/L			09/13/17 18:09	1
Tetrachloroethylene	ND	5.0	0.34	ug/L			09/13/17 18:09	1
trans-1,2-Dichloroethylene	ND	5.0	0.59	ug/L			09/13/17 18:09	1
Trichloroethylene	ND	5.0	0.60	ug/L			09/13/17 18:09	1
Vinyl chloride	5.0	5.0	0.75	ug/L			09/13/17 18:09	1

TestAmerica Buffalo

Page 6 of 17 9/18/2017

4

6

8

10

11

13

14

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Client Sample ID: RW-3 LAB COMPOSITE

Lab Sample ID: 480-124015-15

Matrix: Water

Date Collected: 09/12/17 11:50 Date Received: 09/12/17 17:20

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	68 - 130		09/13/17 18:09	1
4-Bromofluorobenzene (Surr)	109	76 - 123		09/13/17 18:09	1
Toluene-d8 (Surr)	97	77 - 120		09/13/17 18:09	1
Dibromofluoromethane (Surr)	105	75 - 123		09/13/17 18:09	1

5

6

8

46

11

13

14

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

80-124015-13 RW-1 LAB COMPOSITE 112 107 99 104 80-124015-14 RW-2 LAB COMPOSITE 112 111 97 107	•			Pe	ercent Surre	ogate Reco
80-124015-13 RW-1 LAB COMPOSITE 112 107 99 104 80-124015-14 RW-2 LAB COMPOSITE 112 111 97 107			12DCE	BFB	TOL	DBFM
80-124015-14 RW-2 LAB COMPOSITE 112 111 97 107	Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(77-120)	(75-123)
	480-124015-13	RW-1 LAB COMPOSITE	112	107	99	104
	480-124015-14	RW-2 LAB COMPOSITE	112	111	97	107
0-124015-15 RW-3 LAB COMPOSITE 109 109 97 105	480-124015-15	RW-3 LAB COMPOSITE	109	109	97	105
CS 480-376587/6 Lab Control Sample 111 111 96 104	LCS 480-376587/6	Lab Control Sample	111	111	96	104
B 480-376587/8 Method Blank 109 116 100 101	MB 480-376587/8	Method Blank	109	116	100	101

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

Page 8 of 17

TestAmerica Job ID: 480-124015-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-376587/8

Matrix: Water

Analysis Batch: 376587

Client Sample ID: Method Blank Prep Type: Total/NA

_	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			09/13/17 15:12	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			09/13/17 15:12	1
1,1-Dichloroethylene	ND	5.0	0.85	ug/L			09/13/17 15:12	1
cis-1,2-Dichloroethylene	ND	5.0	0.57	ug/L			09/13/17 15:12	1
Tetrachloroethylene	ND	5.0	0.34	ug/L			09/13/17 15:12	1
trans-1,2-Dichloroethylene	ND	5.0	0.59	ug/L			09/13/17 15:12	1
Trichloroethylene	ND	5.0	0.60	ug/L			09/13/17 15:12	1
Vinyl chloride	ND	5.0	0.75	ug/L			09/13/17 15:12	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		68 - 130	_		09/13/17 15:12	1
4-Bromofluorobenzene (Surr)	116		76 - 123			09/13/17 15:12	1
Toluene-d8 (Surr)	100		77 - 120			09/13/17 15:12	1
Dibromofluoromethane (Surr)	101		75 - 123			09/13/17 15:12	1

Lab Sample ID: LCS 480-376587/6

Matrix: Water

Analysis Batch: 376587

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	25.2	-	ug/L		126	52 - 162	
1,1-Dichloroethane	20.0	27.8		ug/L		139	59 - 155	
1,1-Dichloroethylene	20.0	26.2		ug/L		131	1 - 234	
Tetrachloroethylene	20.0	22.7		ug/L		113	64 - 148	
trans-1,2-Dichloroethylene	20.0	26.9		ug/L		135	54 - 156	
Trichloroethylene	20.0	24.5		ug/L		123	71 - 157	
Vinyl chloride	20.0	24.8		ug/L		124	1 - 251	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	111		68 - 130
4-Bromofluorobenzene (Surr)	111		76 - 123
Toluene-d8 (Surr)	96		77 - 120
Dibromofluoromethane (Surr)	104		75 - 123

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

GC/MS VOA

Analysis Batch: 376587

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124015-13	RW-1 LAB COMPOSITE	Total/NA	Water	624	
480-124015-14	RW-2 LAB COMPOSITE	Total/NA	Water	624	
480-124015-15	RW-3 LAB COMPOSITE	Total/NA	Water	624	
MB 480-376587/8	Method Blank	Total/NA	Water	624	
LCS 480-376587/6	Lab Control Sample	Total/NA	Water	624	

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Client Sample ID: RW-1 LAB COMPOSITE

Lab Sample ID: 480-124015-13 Date Collected: 09/12/17 11:50 **Matrix: Water**

Date Received: 09/12/17 17:20

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab TAL BUF Total/NA Analysis 624 376587 09/13/17 17:22 RJF

Client Sample ID: RW-2 LAB COMPOSITE

Lab Sample ID: 480-124015-14 Date Collected: 09/12/17 11:50

Matrix: Water

Date Received: 09/12/17 17:20

Batch Batch Dilution Batch **Prepared** Method Run Factor Number

Prep Type Туре or Analyzed Analyst Lab TAL BUF Total/NA 624 376587 09/13/17 17:45 RJF Analysis

Client Sample ID: RW-3 LAB COMPOSITE

Lab Sample ID: 480-124015-15 Date Collected: 09/12/17 11:50

Matrix: Water

Date Received: 09/12/17 17:20

Dilution Batch Batch Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis 376587 09/13/17 18:09 TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	10026	03-31-18

4

5

0

9

11

40

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

8

9

11

12

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Discharge Analysis TestAmerica Job ID: 480-124015-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-124015-13	RW-1 LAB COMPOSITE	Water	09/12/17 11:50	09/12/17 17:20
480-124015-14	RW-2 LAB COMPOSITE	Water	09/12/17 11:50	09/12/17 17:20
480-124015-15	RW-3 LAB COMPOSITE	Water	09/12/17 11:50	09/12/17 17:20

2

3

4

6

8

9

11

14

14

Chain of Custody Record

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

TestAmerica Buffalo

TestAmerica

Client Information	Samples Metry LOCHING	L'e		Carrier Tracking No(s):	COC No: 480-101978-14318.1
Client Contact: Mr. Yuri Veliz	Phone: 315-1729-130		E-Mail: orlette.johnson@testamericainc.com		Page 1 of
Company: O'Brien & Gere Inc of North America			Analysis Requested	nested	· · · · · · · · · · · · · · · · · · ·
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:				Preservation Codes:
City: East Syracuse State, Zp: NY 13021	TAT Requested (days):				B NACH C Zh Aceta. D - Niric Acid E NaHSO4
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#: 11700485				G - Amchior Acid
Email: Yuri.Veliz@obg.com	WO#:		(oN	9.5	I - Ice J - Di Water
Project Name: Forest Glen Discharge Analysis	Project #: 48002806		10 seY	enista	Transfer of the second
Site:	SSOW) ası	05 10	Other:
Sample Identification	Sample Date Time G=	Sample Matrix Type Sepoid Comp. G=comp, Comparation.	Field Filtered Perform MS/N 524_5ml - Volat	sadmuk istoT	Note:
	X	1 00	X		
RW-1 091117	9-11-19 1310	(5. Water			To Se Comonsited
RW-2091117	13	(5) Water		10000	1
RW-3 091117	9-11-17 13:10	(A) Water	M		
RW-1091117	9-1117 1550	3	20		
RW-2091117	1-17 1550	3	8		
RW-3091117	9-11-17 15.50	2 6	3		
RW-1091217	9-12-17 77:30	9	3	Tables 1	
RW-2091217	9-12-17 7:20	6 10	3	6383	
RW-3091217	9-12-17 7:20	6 1	3		
	+	+			
1			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retain	tained longer than 1 month)
Other (specify)	i in	nogical	Requirement	oosal by Lab	MOTORS AND
Empty Kit Relinquished by:	Date;		Time:	Method of Shipment:	
Relinquished by M. A. Ambu	141/41-6	20 Company	9	DataTime	7 1760 company Buf
Kelinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks:	1 3,2 4	

Chain of Custody Record

TestAmerica

Client: O'Brien & Gere Inc of North America

Job Number: 480-124015-1

Login Number: 124015 List Source: TestAmerica Buffalo

List Number: 1

Creator: Conway, Curtis R

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	True	

Appendix B

Significant Industrial User (SIU) Discharge Permit 61

NIAGARA FALLS WATER BOARD WASTEWATER FACILITIES SIGNIFICANT INDUSTRIAL USER WASTEWATER DISCHARGE PERMIT

PERMIT NO. 61 THE GOODYEAR TIRE & RUBBER COMPANY, AS AGENT FOR THE FOREST GLEN SITE TRUST

In accordance with all terms and conditions of Niagara Falls Water Board Wastewater Regulations Part 1960 and also with all applicable provisions of Federal and State Law or regulation:

Permission is Hereby Granted To: Same as above

Located at: Edgewood Drive - Niagara Falls, NY 14304

Classified by SIC No(s): 4953

For the contribution of wastewater into the Niagara Falls Water Board Publicly-Owned Treatment Works (POTW).

Effective this 1st day of October 2013

To expire this 1st day of October 2018

for

Paul J. Drof

alant c. Zaglal.

Executive Director of the Niagara Falls Water Board

Signed this 30th day of September, 2013

DISCHARGE IDENTIFICATION

OUTFALL	DESCRIPTION	LOCATION	RECEIVING
MS #1	#001 8" Site Sanitary to 12" NFWB Sanitary	Manhole MH – 3B Forest Glen Subdivision	Ground Water

WASTEWATER DISCHARGE PERMIT **REQUIREMENTS FOR:**

REQUIRED DATE ACTION **REQUIRED OF SUBMISSION**

Discharges to the Niagara Falls Water Board (NFWB) Sewer A.

Identification of all discharges to the 1. NFWB Sewer System on a current plant sewer map certified by a New York State 31, 2008

licensed professional engineer.

NONE **SUBMISSION**

RECEIVED

September 18, 2013

2. Identification of each contributing waste stream to each discharge to the NFWB Sewer System clearly marked on,

or referenced to, a current plant sewer map certified by a New York State licensed professional engineer. NONE **SUBMISSION**

RECEIVED

September 18, 2013

3. Elimination of all uncontaminated

discharges to the NFWB Sewer System. All uncontaminated flows should be clearly identified on a current sewer map certified by a New York State licensed professional engineer.

NONE

SUBMISSION

RECEIVED

September 18, 2013

4. Establishment of a control manhole that is continuously and immediately

accessible for each discharge to the

NFWB Sewer System.

NONF

SUBMISSION

RECEIVED

September 18, 2013

B. **Wastewater Discharge Management Practices**

1. Identification of a responsible person(s)

NONE

WASTEWATER DISCHARGE PERMIT REQUIREMENTS FOR:

C. Slug Control Plan**

Pursuant to Section 40 CFR 403.12 (v) of the Federal Pretreatment Standards the Niagara Falls Water Board will evaluate the permittee, a minimum of once every two years for the need for a "Slug Control Plan." If a plan is required by the Niagara Falls Water Board, then the plan will contain, at a minimum, the following elements:

- a) Description of discharge practices, including non-routine batch discharges;
- b) Description of stored chemicals;
- c) Procedures for immediately notifying the POTW of slug discharges, including any discharge that would violate a prohibition under 40 CFR 403.5 (b), with procedures for follow-up written notification within five days;
- d) If necessary, procedures to prevent adverse impact from accidental spills, including inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site runoff, worker training, building of containment structures or equipment, measures for containing toxic organic pollutants (including solvents), and/or measures and equipment necessary for emergency response.

^{**}This section applies to all pollutants limited by the Niagara Falls Water Board SPDES Permit and all prohibited wastewater discharges (See Section 1960.5 of the Niagara Falls Water Board Wastewater Regulations).

D. General Wastewater Discharge Permit Conditions

- 1. Flow monitoring should be performed concurrently with any Wastewater Discharge Permit sampling and should be reported at the same time as analytical results. If it is not feasible to perform flow monitoring, an estimate of flow (method of estimated flow preapproved by the Niagara Falls Water Board) should be submitted with the analytical results.
- 2. All sampling for billing and pretreatment compliance purposes will be coordinated through the Niagara Falls Water Board Industrial Monitoring Coordinator.
- 3. All analysis must be performed by a State certified laboratory using analytical methods promulgated and consistent with 40 CFR 136 and amendments thereto. The permittee will request their contract laboratory to report both Practical Quantitation Limit (PQL) and Method Detection Limit (MDL). The PQL and MDL are defined in the NYSDEC Technical Guidance Series 1.3.7.

The permittee should report results that are less than the MDL or PQL on the NFWB Self Monitoring Report, as non-detect (ND), by placing a less than sign (<) followed by the analytical result. Every effort should be made to attain results down to the MDL. If this is not possible; then results less than PQL but greater than MDL must also be additionally flagged with the qualifier "J" on the Self-Monitoring Report. For example, a result less than 5 PQL would be reported <5 (J). In either case the calculated load in lbs per day would be zero.

Monitoring results which are lower than the PQL must be reported but will not be used to determine compliance with the permit limit.

- 4. An estimate of relative production levels for wastewater contributing processes at the time of any pretreatment compliance sampling will be submitted upon request of the Director of Niagara Falls Water Board Wastewater Facilities.
- 5. All samples will be handled in accordance with EPA approved methods. Chain of Custody records will be submitted with all sampling results.
- 6. All conditions, standards and numeric limitations of Niagara Falls Water Board Wastewater Regulations are hereby incorporated into this permit by reference. These conditions, standards and numeric limitations must be complied with. Failure to comply with any part of said regulations constitutes a violation and is subject to enforcement actions(s) described in Section 1960.9 of said regulations, and in the Niagara Falls Water Board Pretreatment Administrative Procedure Number Five (5) "Enforcement Response Guide." Violators are subject to all applicable *Civil* and *Criminal* penalties. In the event of a violation, including slug discharges or spills, the Niagara Falls Water Board must be notified immediately by phone and confirmed by letter within five (5) working days.

Any person adjudicated of violating any provision in the Niagara Falls Water Board Wastewater Regulations shall be assessed a fine in the amount of up to \$10,000. This amount is available for each violation, and each day of a violation is a separate incident for which penalties may be sought.

- 6. The person violating any of the provisions of the Niagara Falls Water Board Wastewater Regulations will be liable for any expense, loss, or damage occasioned by reason of such violation. The expense, loss or damage will be taken to be to the extent determined by the Director.
 - In addition, any person who knowingly makes any false statements; representation or certification in any application, record, report, plan or other document filed or required to be maintained pursuant to the Niagara Falls Water Board Wastewater Regulations or Wastewater Discharge Permit, or who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required under the Niagara Falls Water Board Wastewater Regulations will, upon conviction be punished by a fine up to \$5,000. Furthermore, the Niagara Falls Water Board may recover reasonable attorney's fees, court costs, court reporting fees, and other expenses of litigation by appropriate suit at law against the person found to have violated applicable laws, orders, rules and permits required by the Niagara Falls Water Board Wastewater Regulations.
- 7. In accordance with Federal Regulation CFR 40, Part 403.12(g), any exceedance of a numeric limitation noted by the SIU must be re-sampled, analyzed and resubmitted to the Niagara Falls Water Board Wastewater Facilities within 30 days.
 - Specifically, if any limit that is <u>listed</u> in Section F of this permit is exceeded, then the permittee will undertake a short term monitoring program for that pollutant. Samples will be collected identical to those required for routine monitoring purposes and will be collected on each of at least <u>two (2)</u> operating days and analyzed. Results will be reported in both concentration and mass, and will be submitted within <u>30</u> days of becoming aware of the exceedance.
- 8. Sampling frequency for any permitted compounds may be increased beyond the requirements set forth in Section F and G of this permit. If the permittee monitors (sample and analysis) more frequent than required under this permit, **all** results of this monitoring must be reported.
- 9. As noted in Section 1960.5g of the Niagara Falls Water Board Wastewater Regulations, "Personnel as designated by the Director will be permitted at any time for reasonable cause to enter upon all properties served by the Niagara Falls Water Board Wastewater Facilities for the purpose of, and to carry out, inspection of the premises, observation, measurement, sampling and testing, in accordance with provisions of the Regulations."
- 10. As noted in Section 1960.5c of the Niagara Falls Water Board Wastewater Regulations, significant changes in discharge characteristics or volume must be reported immediately to the Niagara Falls Water Board Wastewater Facilities.
- 11. As noted in Section 1960.6b of the Niagara Falls Water Board Wastewater Regulations, samples required to be collected via a 24-hour composite sampler must be retained refrigerated for an additional 24 hour plus unrefrigerated an additional 48 hours (total 72 hours).
- 12. As noted in Section 1960.5d of the Niagara Falls Water Board Wastewater Regulations, all "SIU's will keep on file for a minimum of three (3) years, all records, flow charts, laboratory calculations or any other pertinent data on their discharge to the Niagara Falls Water Board Wastewater Facilities."

- 13. As noted in Section 1960.6g of the Niagara Falls Water Board Wastewater Regulations, "Permits are issued to a specific user for a specific monitoring station. A permit will not be reassigned or transferred without the approval of the Director which approval will not be unreasonably withheld. Any succeeding owner or user to which a permit has been transferred and approved will also comply with all the terms and conditions of the existing permit."
- 14. The Annual Average Limitation is equivalent to the specific SIU allocation, and will be defined as the permissible long term average discharge of a particular pollutant. These limitations are listed in Section F of this permit. The computation of the Annual Average will be as follows; for each compound listed in Section G of this permit, the Annual Average will be the average of the present monitoring quarter and three previous quarters' data.
- 15. The Daily Maximum Limitation will be defined as the maximum allowable discharge on anyone day. The Daily Maximum Limitation will allow for periodic short term discharge fluctuations. These specific limitations are listed in Section F of this permit.
- 16. Enforcement of the Annual Average Limitation will be based on the reported average of the last four quarters data vs. the Annual Average Limited listed in Section F of this permit. Enforcement of the Daily Maximum Limitation will be based on individual analysis results vs. the Daily Maximum Limit listed in Section F of this permit. These results may be obtained from self monitoring (Section G), City of Niagara Falls Verification, incident investigation or billing samples.
- 17. The Niagara Falls Water Board Administrative Procedure Number 6 "Procedure for Determination and Use of Local Limits" lists all pollutants noted in the Niagara Falls Water Board Wastewater Facilities SPDES Permit. The limits defined in the procedure are values which are based on the quantity of substances discharged which can be easily related to the Treatment Plant's removal capacity.

The pollutants listed in this procedure, which are <u>not</u> specifically listed in Section F and G of this permit may be present in the permittee's wastewater discharge, but at levels which do not require specific permit limitations. Consequently, if any of the limits listed in this procedure, for pollutants <u>not</u> identified in Section F and G of this permit, are exceeded then the permittee will undertake a short-term, high intensity monitoring program for that pollutant. Samples identical to those required for routine monitoring purposes will be collected on each of at least three operating days and analyzed. Results will be expressed in terms of both concentration and mass, and will be submitted no later than the end of the third month following the month when the limit was first exceeded.

If levels higher than the limit are confirmed, the permit may be reopened by the Niagara Falls Water Board for consideration of revised permit limits.

E. Specific Wastewater Discharge Permit Conditions

1. Billing Agreement:

- a) The determination of the quantity of flow will be based on effluent meter readings obtained from MS #1. The weekly readings and total average flow will be recorded on a monthly report. This report will be sent to the NFWB due 15 days after the monitoring month.
- b) "Substances of Concern" charges will be based on pollutant analysis results contained in the permittee's Quarterly Self-Monitoring Report and other appropriate data collected by the permittee.

2. <u>Self Monitoring</u>:

The permittee will collect and analyze samples for pollutant analysis and submit the results as directed in Sections F and G of this permit.

3. Regulator 6C:

The NFWB maintains several flow regulators throughout the collection system. The purpose of the regulators is to divert excess flow during peak storm events away from the treatment plant. The permittee's discharge passes through regulator 6C, which is one of these devices. Therefore, during storm events the potential for this wastewater to bypass the treatment plant exists. The permittee is required to conduct the following;

- a) Maintain an appropriate alarm system to indicate when regulator 6C is overflowing. Such a system will trigger all discharge from the site to cease until such time overflow at regulator 6C ceases.
- b) A log of all such instances will be maintained. The log will be submitted with the Quarterly Self-Monitoring Report.
- c) A check of the alarm system will be conducted quarterly and recorded on the log noted in item E3b.

F. <u>Discharge Limitations & Monitoring Requirements</u>

During the Period beginning the effective date of this Permit and lasting until the expiration date, discharge from the permitted facility outfall(s) will be limited and monitored by the permittee as specified below.

OUTFALL NUMBER/		HARGE ATIONS		MINIMUM MO REQUIREM	
EFFLUENT PARAMETER	ANNUAL AVERAGE	DAILY MAXIMUM	UNITS	MEASUREMENT FREQUENCY	SAMPLE TYPE
MS#1 - Flow	0.04	0.06	MGD	**Continuous	N/A
MS#1 – Vinyl Chloride	0.02	0.03	lbs/d	1/Qrt	2
MS#1 – 1,1 Dichloroethylene	0.005	0.01	lbs/d	1/Qrt	2
MS#1 - *1, 2 Dichloroethylene	0.05	0.1	lbs/d	1/Qrt	2
MS#1 - 1,1 Dichloroethane	0.005	0.01	lbs/d	1/Qrt	2
MS#1 – Trichloroethylene	0.005	0.01	lbs/d	1/Qrt	2
MS#1 - Tetrachloroethylene	0.005	0.01	lbs/d	1/Qrt	2
MS#1 - 1,1,1 Trichloroethane	0.005	0.01	lbs/d	1/Qrt	2

^{*}total cis and trans

^{**} The flow meter must continuously operate, however the NFWB will allow to have the integrator readings recorded once (1) per week instead of daily. This data must be submitted in the monthly flow report.

F. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS CONTINUED

SAMPLE TYPE FOOTNOTES

- (1) Each sample will consist of four (4) grabs collected spaced throughout the **batch** discharge, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. The four (4) grabs will be **composited in the laboratory** and analyzed as one sample.
- (2) Each sample will consist of four (4) grabs collected spaced over the 24-hour period, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. The four (4) grabs will be **composited in the laboratory** and analyzed as one sample.
- (3) Each sample will consist of a 24-hour, **flow proportioned** composite sample collected from the monitoring point.
- (4) Flow will be monitored continuously with the use of a water meter or another acceptable flow metering device.
- (5) Each sample will consist of a 24-hour, **time proportioned** composite sample collected from the monitoring point.
- (6) Reserved
- (7) Same as (3), however, five (5) samples will be collected per quarter from the monitoring point and analyzed by and at the Niagara Falls Water Board's expense.
- (8) Four (4) grab samples will be collected spaced over the 24-hour period, such that they are representative of the effluent being discharged pursuant to 40CFR 403.12.b5iii. Each grab will be **analyzed and reported separately**.
- (9) A grab sample is defined as an aliquot collected over a period of not more than 15 minutes.

G. <u>Discharge Monitoring Reporting Requirements</u>

During the period beginning the effective date of this permit and lasting until its expiration date, discharge monitoring results will be summarized and reported by the permittee; Monthly - 14 days after monitoring period, Quarterly - by the last day of the monitoring period = February 28, May 31, August 31, November 30. Semiannual reports will be submitted on the last day of the monitoring period = February 28, August 31. The annual average for each parameter listed in Section F, will be computed and reported quarterly. The individual sample analysis for present quarter will also be reported quarterly unless directed otherwise in this permit.

OUTFALL NO	PARAMETER	REPORTING FREQUENCY
MS#1	Flow	Monthly
MS#1	Regular 6c data, Inspections	Quarterly
MS#1	Vinyl Chloride	Quarterly
MS#1	1,1 - Dichloroethylene	Quarterly
MS#1	1,2 - Dichloroethylene	Quarterly
MS#1	1,1 - Dichloroethane	Quarterly
MS#1	Trichloroethylene	Quarterly
MS#1	Tetrachloroethylene	Quarterly
MS#1	1,1,1 - Trichloroethane	Quarterly

H. Comments/Revisions

F:\ADMIN\WINWORD\ZAEPFEL\SIU\PERMITS\GOODYEAR (FOREST GLEN)

Appendix C

Groundwater Monitoring Laboratory Reports

April 20, 2017

Pace Analytical Energy Services LLC 220 William Pitt Way Pittsburgh, PA 15238

> Phone: (412) 826-5245 Fax: (412) 826-3433

David Carnevale O'Brien & Gere 333 W Washington St Syracuse, NY 13202

RE: FOREST GLENN / 62547

Pace Workorder: 22293

Dear David Carnevale:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, April 13, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Welsh 04/20/2017 Ruth.Welsh@pacelabs.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service.

Please email PAESfeedback@pacelabs.com.

Total Number of Pages 24

Report ID: 22293 - 914368 Page 1 of 22

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor: Pennsylvania Department of Environmental Protection, Bureau of Laboratories

Accreditation ID: 02-00538

Scope: NELAP Non-Potable Water and Solid & Hazardous Waste

Accreditor: West Virginia Department of Environmental Protection, Division of Water and Waste

Management

Accreditation ID: 395

Scope: Non-Potable Water

Accreditor: South Carolina Department of Health and Environmental Control, Office of Environmental

Laboratory Certification

Accreditation ID: 89009003

Scope: Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water; Solid and Chemical Materials

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water; Solid and Hazardous Waste

Accreditor: State of Connecticut, Department of Public Health, Division of Environmental Health

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

Scope: Non-potable water

Accreditor: State of Georgia
Accreditation ID: Chapter 391-3-26

Scope: As per the Georgia EPD Rules and Regulations for Commercial Laboratories, PAES is

accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 22293 - 914368 Page 2 of 22

SAMPLE SUMMARY

Workorder: 22293 FOREST GLENN / 62547

Lab ID	Sample ID	Matrix	Date Collected	Date Received
222930001	MW-6D-041117	Water	4/11/2017 09:30	4/13/2017 09:21
222930002	MW-6DD-041117	Water	4/11/2017 11:15	4/13/2017 09:21
222930003	MW-1S-041117	Water	4/11/2017 13:00	4/13/2017 09:21
222930004	MW-6S-041117	Water	4/11/2017 13:00	4/13/2017 09:21
222930005	MW-1D-041117	Water	4/11/2017 16:30	4/13/2017 09:21
222930006	MW-1D-041117 MS	Water	4/11/2017 16:30	4/13/2017 09:21
222930007	MW-1D-041117 MSD	Water	4/11/2017 16:30	4/13/2017 09:21
222930008	MW-10S-041117	Water	4/11/2017 16:40	4/13/2017 09:21
222930009	X-1-041117	Water	4/11/2017 00:00	4/13/2017 09:21
222930010	MW-10D-041217	Water	4/12/2017 09:10	4/13/2017 09:21
222930011	MW-5D-041217	Water	4/12/2017 10:45	4/13/2017 09:21
222930012	MW-7DD-041217	Water	4/12/2017 11:50	4/13/2017 09:21
222930013	MW-5S-041217	Water	4/12/2017 12:10	4/13/2017 09:21
222930014	MW-7S-041217	Water	4/12/2017 13:45	4/13/2017 09:21
222930015	MW-8S-041217	Water	4/12/2017 14:10	4/13/2017 09:21
222930016	MW-7D-041217	Water	4/12/2017 15:40	4/13/2017 09:21

Report ID: 22293 - 914368 Page 3 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930001 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-6D-041117 Date Collected: 4/11/2017 09:30

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	110 ug/l	0.50	0.019 1	4/18/2017 08:46	AK	В
Ethane	0.11J ug/l	0.20	0.0050 1	4/18/2017 08:46	AK	
Ethene	0.029J ug/l	0.20	0.0070 1	4/18/2017 08:46	AK	

Report ID: 22293 - 914368 Page 4 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930002 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-6DD-041117 Date Collected: 4/11/2017 11:15

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	2.6 ug/l	0.50	0.019 1	4/18/2017 08:57	AK	В
Ethane	0.041J ug/l	0.20	0.0050 1	4/18/2017 08:57	AK	
Ethene	0.016J ug/l	0.20	0.0070 1	4/18/2017 08:57	AK	

Report ID: 22293 - 914368 Page 5 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930003 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-1S-041117 Date Collected: 4/11/2017 13:00

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	9.6 ug/l	0.50	0.019 1	4/18/2017 09:07	AK	В
Ethane	0.033J ug/l	0.20	0.0050 1	4/18/2017 09:07	AK	
Ethene	0.016J ug/l	0.20	0.0070 1	4/18/2017 09:07	AK	

Report ID: 22293 - 914368 Page 6 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930004 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-6S-041117 Date Collected: 4/11/2017 13:00

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	42 ug/l	0.50	0.019 1	4/18/2017 09:18	AK	В
Ethane	0.088J ug/l	0.20	0.0050 1	4/18/2017 09:18	AK	
Ethene	0.43 ug/l	0.20	0.0070 1	4/18/2017 09:18	AK	

Report ID: 22293 - 914368 Page 7 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930005 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-1D-041117 Date Collected: 4/11/2017 16:30

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane	12 ug/l	0.50	0.019 1	4/18/2017 09:28	AK	В
Ethane	0.074J ug/l	0.20	0.0050 1	4/18/2017 09:28	AK	
Ethene	0.015J ug/l	0.20	0.0070 1	4/18/2017 09:28	AK	

Report ID: 22293 - 914368 Page 8 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930006 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-1D-041117 MS Date Collected: 4/11/2017 16:30

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	cal Method: E	PA RSK175			
Methane	54 ug/l	0.50	0.019 1	4/18/2017 09:38	AK	В
Ethane	77 ug/l	0.20	0.0050 1	4/18/2017 09:38	AK	
Ethene	74 ug/l	0.20	0.0070 1	4/18/2017 09:38	AK	

Report ID: 22293 - 914368 Page 9 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930007 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-1D-041117 MSD Date Collected: 4/11/2017 16:30

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	55 ug/l	0.50	0.019 1	4/18/2017 09:49	AK	В
Ethane	76 ug/l	0.20	0.0050 1	4/18/2017 09:49	AK	
Ethene	73 ug/l	0.20	0.0070 1	4/18/2017 09:49	AK	

Report ID: 22293 - 914368 Page 10 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930008 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-10S-041117 Date Collected: 4/11/2017 16:40

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	31 ug/l	0.50	0.019 1	4/18/2017 10:02	AK	В
Ethane	0.048J ug/l	0.20	0.0050 1	4/18/2017 10:02	AK	
Ethene	0.0070U ug/l	0.20	0.0070 1	4/18/2017 10:02	AK	

Report ID: 22293 - 914368 Page 11 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930009 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: X-1-041117 Date Collected: 4/11/2017 00:00

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	ical Method: E	PA RSK175			
Methane	6.9 ug/l	0.50	0.019 1	4/18/2017 10:13	AK	В
Ethane	0.023J ug/l	0.20	0.0050 1	4/18/2017 10:13	AK	
Ethene	0.0085J ug/l	0.20	0.0070 1	4/18/2017 10:13	AK	

Report ID: 22293 - 914368 Page 12 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930010 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-10D-041217 Date Collected: 4/12/2017 09:10

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	110 ug/l	0.50	0.019 1	4/18/2017 10:24	AK	В
Ethane	0.062J ug/l	0.20	0.0050 1	4/18/2017 10:24	AK	
Ethene	0.0073J ug/l	0.20	0.0070 1	4/18/2017 10:24	AK	

Report ID: 22293 - 914368 Page 13 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930011 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-5D-041217 Date Collected: 4/12/2017 10:45

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	48 ug/l	0.50	0.019 1	4/18/2017 10:55	AK	В
Ethane	0.058J ug/l	0.20	0.0050 1	4/18/2017 10:55	AK	
Ethene	0.015J ug/l	0.20	0.0070 1	4/18/2017 10:55	AK	

Report ID: 22293 - 914368 Page 14 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930012 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-7DD-041217 Date Collected: 4/12/2017 11:50

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane	80 ug/l	0.50	0.019 1	4/18/2017 11:07	AK	В
Ethane	0.072J ug/l	0.20	0.0050 1	4/18/2017 11:07	AK	
Ethene	0.0070U ug/l	0.20	0.0070 1	4/18/2017 11:07	AK	

Report ID: 22293 - 914368 Page 15 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930013 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-5S-041217 Date Collected: 4/12/2017 12:10

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane	0.072J ug/l	0.50	0.019 1	4/18/2017 11:17	AK	В
Ethane	0.0068J ug/l	0.20	0.0050 1	4/18/2017 11:17	AK	
Ethene	0.0071J ug/l	0.20	0.0070 1	4/18/2017 11:17	AK	

Report ID: 22293 - 914368 Page 16 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930014 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-7S-041217 Date Collected: 4/12/2017 13:45

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	0.13J ug/l	0.50	0.019 1	4/18/2017 11:28	AK	В
Ethane	0.0050U ug/l	0.20	0.0050 1	4/18/2017 11:28	AK	
Ethene	0.0070U ug/l	0.20	0.0070 1	4/18/2017 11:28	AK	

Report ID: 22293 - 914368 Page 17 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930015 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-8S-041217 Date Collected: 4/12/2017 14:10

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	cal Method: E	PA RSK175			
Methane	0.28J ug/l	0.50	0.019 1	4/18/2017 11:39	AK	В
Ethane	0.0050U ug/l	0.20	0.0050 1	4/18/2017 11:39	AK	
Ethene	0.0070U ug/l	0.20	0.0070 1	4/18/2017 11:39	AK	

Report ID: 22293 - 914368 Page 18 of 22

ANALYTICAL RESULTS

Workorder: 22293 FOREST GLENN / 62547

Lab ID: 222930016 Date Received: 4/13/2017 09:21 Matrix: Water

Sample ID: MW-7D-041217 Date Collected: 4/12/2017 15:40

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	cal Method: E	PA RSK175			
Methane	0.077J ug/l	0.50	0.019 1	4/18/2017 11:50	AK	В
Ethane	0.0050U ug/l	0.20	0.0050 1	4/18/2017 11:50	AK	
Ethene	0.0070U ug/l	0.20	0.0070 1	4/18/2017 11:50	AK	

Report ID: 22293 - 914368 Page 19 of 22

ANALYTICAL RESULTS QUALIFIERS

Workorder: 22293 FOREST GLENN / 62547

DEFINITIONS/QUALIFIERS

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

B The analyte was detected in the associated blank.

Report ID: 22293 - 914368 Page 20 of 22

QUALITY CONTROL DATA

Workorder: 22293 FOREST GLENN / 62547

QC Batch: DISG/6051 Analysis Method: EPA RSK175

QC Batch Method: EPA RSK175

Associated Lab Samples: 222930001, 222930002, 222930003, 222930004, 222930005, 222930006, 222930007, 222930008, 222930009,

222930010, 222930011, 222930012, 222930013, 222930014, 222930015, 222930016

METHOD BLANK: 48257

		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
RISK			
Methane	ug/l	0.021J	0.019 B
Ethane	ug/l	0.0050U	0.0050
Ethene	ug/l	0.0070U	0.0070

ı	ABORATORY CONTROL	SAMPLE & LCSD	48258	48259

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK Methane	ug/l	44	42	42	94	95	85-115	1.1	20	В
Ethane Ethene	ug/l ug/l	83 78	78 74	79 75	94 96	95 96	85-115 85-115	1.1 0	20 20	

MATRIX SPIKE & MA	ATRIX SPIKE DUPLI	CATE: 48260		48261		Original:	22293000)5			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK											
Methane	ug/l	12	44	54	55	94	95	70-130	1.1	20	В
Ethane	ug/l	0.074	83	77	76	92	91	70-130	1.1	20	
Ethene	ug/l	0.015	78	74	73	95	94	70-130	1.1	20	

SAMPLE DUPLICATE: 48269 Original: 222930008

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						_
Methane	ug/l	31	33	4.3	20	В
Ethane	ug/l	0.048	0.049	2.5	20	
Ethene	ug/l	0.0067	0.0079	16	20	

Report ID: 22293 - 914368 Page 21 of 22

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 22293 FOREST GLENN / 62547

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
222930001	MW-6D-041117			EPA RSK175	DISG/6051
222930002	MW-6DD-041117			EPA RSK175	DISG/6051
222930003	MW-1S-041117			EPA RSK175	DISG/6051
222930004	MW-6S-041117			EPA RSK175	DISG/6051
222930005	MW-1D-041117			EPA RSK175	DISG/6051
222930006	MW-1D-041117 MS			EPA RSK175	DISG/6051
222930007	MW-1D-041117 MSD			EPA RSK175	DISG/6051
222930008	MW-10S-041117			EPA RSK175	DISG/6051
222930009	X-1-041117			EPA RSK175	DISG/6051
222930010	MW-10D-041217			EPA RSK175	DISG/6051
222930011	MW-5D-041217			EPA RSK175	DISG/6051
222930012	MW-7DD-041217			EPA RSK175	DISG/6051
222930013	MW-5S-041217			EPA RSK175	DISG/6051
222930014	MW-7S-041217			EPA RSK175	DISG/6051
222930015	MW-8S-041217			EPA RSK175	DISG/6051
222930016	MW-7D-041217			EPA RSK175	DISG/6051

Report ID: 22293 - 914368 Page 22 of 22

CHAIN-OF-CUSTODY / Analytical Request Document

Page:

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pittsburgh, PA 15238 220 William Pitt Way

Pace Analytical ® www.pacelabs.com

412-826-5245

Section C

MS/MSD G1162461 Pace Project No./ Lab I.D. **DRINKING WATER** 2 Samples Intac SAMPLE CONDITIONS OTHER Sealed Cooler 5 Received on **GROUND WATER** Residual Chlorine (Y/N) 16 O° ni qmeT REGULATORY AGENCY RCRA TIME Requested Analysis Filtered (Y/N) 180 7/10//1 Site Location STATE: NPDES DATE UST DS Store ACCEPTED BY / AFFILIATION R Judierality ♦ Jest alsylsis Test N/A Other Zinc Acetate & NaOH Preservatives BAK **GST** HCI Invoice Information: Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #: ⁵OS^zH Unpreserved TIME Attention: Address: walk \mathcal{N}_{l} # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION DATE Bergar Solida 00 PD 10/A 555 TIME DATE 10/2 COLLECTED RELINQUISHED BY / AFFILIATION Project Name: Forest Glenn TIME COMPOSITE START Veli2 <u>2</u> DATE Section B
Required Project Information: Project Number: 6254 **=** Report To: Yuri (G=GRAB C=COMP) **SAMPLE TYPE** Purchase Order No.: (see valid codes to left) MATRIX CODE ONIGINAL Copy To: WW WW SL OOL WP AR AR OT Matrix Codes MS/MSt Drinking Water Water Waste Water Product Soil/Solid Oil obarcom Air Tissue Other ADDITIONAL COMMENTS コニナローローへW リニナの MW-5D-041217 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE MIN-CODD-OHI ニナロー MW-105-0411 MIN-JOI-OH B MW-7PD-04121 ニナラーン SAMPLE ID さ Required Client Information Section A Required Client Information: [c-951-910] MW-lot からめて Address: 83 Section D Company: # MaTi

(N/Y)

(N/Y)

Custody

Ice (Y/N)

HOUNDER SIGNED CH

Martin

PRINT Name of SAMPLER: A JAYNA FWES

SIGNATURE OF SAMPLER: CHAUMAZ

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for ago

F-ALL-Q-020rev.07, 15-May-2007

Δ.	Shipping/Container Information (circle appropriate response)				
	Courier: FedEx UPS USPS Client Other:		hill P	recent	Yes No
			D;;;;	1 - 2 - 11 -	103
	Tracking Number: 12 AV 0 602 15 032799	997			
	Custody Seal on Cooler/Box Present: Yes (No Seals	Intac:	Yes	No	
	Cooler/Box Packing Material: Bubble Wrap Absorbent F	mso:	Other	÷	·
	Type of Ice: (We) Blue None Ice Intact: (Yes Mel	ted			
	Cooler Temperature: Sec Radiation Screened: Yes	i (kt) ch	ain of	Custody Present: Yes No
	Comments:				
В.	Laboratory Assignment/Log-in (check appropriate response)				
i		YES	NO	1 81/4	Comment
		r LJ,	140	11,7.	Reference non-Conformar
İ	Chain of Custody properly filled out				
	Chain of Custody relinquished				
ļ	Sampler Name & Signature on COC				
i					i
	Containers intact	1			
	Containers intact Were samples in separate bags	7			
	Were samples in separate bags Sample container labels match COC	1	ć		
	Were samples in separate bags		<i>L</i>		
	Were samples in separate bags Sample container labels match COC Sample name/date and time collected		<i>(</i>		
	Were samples in separate bags Sample container labels match COC Sample name/date and time collected Sufficient volume provided PAES containers used Are containers properly preserved for the requested testing?				
	Were samples in separate bags Sample container labels match COC Sample name/date and time collected Sufficient volume provided PAES containers used Are containers properly preserved for the requested testing? (as labeled) If an unknown preservation state, were containers checked?				If yes, see pH form.
	Were samples in separate bags Sample container labels match COC Sample name/date and time collected Sufficient volume provided PAES containers used Are containers properly preserved for the requested testing? (as labeled)				If yes, see pH form.
	Were samples in separate bags Sample container labels match COC Sample name/date and time collected Sufficient volume provided PAES containers used Are containers properly preserved for the requested testing? (as labeled) If an unknown preservation state, were containers checked? Exception: VOA's coliform Was volume for dissolved testing field filtered, as noted on				If yes, see pH form.
	Were samples in separate bags Sample container labels match COC Sample name/date and time collected Sufficient volume provided PAES containers used Are containers properly preserved for the requested testing? (as labeled) If an unknown preservation state, were containers checked? Exception: VOA's coliform Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?				If yes, see pH form.

April 26, 2017

David Carnevale O'Brien & Gere 333 W Washington St Syracuse, NY 13202

RE: FOREST GLENN / 62547

Pace Workorder: 22309

Dear David Carnevale:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, April 14, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Welsh 04/26/2017 Ruth.Welsh@pacelabs.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service.

Please email PAESfeedback@pacelabs.com.

Total Number of Pages __14_

Report ID: 22309 - 916579 Page 1 of 12

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor: Pennsylvania Department of Environmental Protection, Bureau of Laboratories

Accreditation ID: 02-00538

Scope: NELAP Non-Potable Water and Solid & Hazardous Waste

Accreditor: West Virginia Department of Environmental Protection, Division of Water and Waste

Management

Accreditation ID: 395

Scope: Non-Potable Water

Accreditor: South Carolina Department of Health and Environmental Control, Office of Environmental

Laboratory Certification

Accreditation ID: 89009003

Scope: Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water; Solid and Chemical Materials

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water; Solid and Hazardous Waste

Accreditor: State of Connecticut, Department of Public Health, Division of Environmental Health

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

Scope: Non-potable water

Accreditor: State of Georgia
Accreditation ID: Chapter 391-3-26

Scope: As per the Georgia EPD Rules and Regulations for Commercial Laboratories, PAES is

accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 22309 - 916579 Page 2 of 12

SAMPLE SUMMARY

Workorder: 22309 FOREST GLENN / 62547

Lab ID	Sample ID	Matrix	Date Collected	Date Received
223090001	MW 4D 041317	Water	4/13/2017 09:35	4/14/2017 08:45
223090002	MW 4S 041317	Water	4/13/2017 11:20	4/14/2017 08:45
223090003	MW 8DD 041317	Water	4/13/2017 11:30	4/14/2017 08:45
223090004	MW 8D 041317	Water	4/13/2017 13:05	4/14/2017 08:45

Report ID: 22309 - 916579 Page 3 of 12

ANALYTICAL RESULTS

Workorder: 22309 FOREST GLENN / 62547

Lab ID: 223090001 Date Received: 4/14/2017 08:45 Matrix: Water

Sample ID: MW 4D 041317			Date Collec	cted: 4/13/2017 09):35	
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	38 ug/l	0.50	0.019 1	4/21/2017 08:54	AK	
Ethane	0.20J ug/l	0.20	0.0050 1	4/21/2017 08:54	AK	
Ethene	0.011J ug/l	0.20	0.0070 1	4/21/2017 08:54	AK	

Report ID: 22309 - 916579 Page 4 of 12

ANALYTICAL RESULTS

Workorder: 22309 FOREST GLENN / 62547

Lab ID: 223090002 Date Received: 4/14/2017 08:45 Matrix: Water

Sample ID: MW 4S 041317		Date Collected: 4/13/2017 11:20				
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES Analysis Desc: EPA RSK175	Analytic	al Method: El	PA RSK175			
Methane Ethane Ethene	30 ug/l 0.027J ug/l 0.0070U ug/l	0.50 0.20 0.20	0.019 1 0.0050 1 0.0070 1	4/21/2017 09:05 4/21/2017 09:05 4/21/2017 09:05	AK	

Report ID: 22309 - 916579 Page 5 of 12

ANALYTICAL RESULTS

Workorder: 22309 FOREST GLENN / 62547

Lab ID: 223090003 Date Received: 4/14/2017 08:45 Matrix: Water

Sample ID: MW 8DD 041317 Date Collected: 4/13/2017 11:30

campio is.							
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers	
RISK - PAES							
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175				
Methane	360 ug/l	2.5	0.095 5	4/25/2017 12:55	AK	d,B	
Ethane	0.13J ug/l	0.20	0.0050 1	4/21/2017 09:17	AK		
Ethene	0.014J ug/l	0.20	0.0070 1	4/21/2017 09:17	AK		

Report ID: 22309 - 916579 Page 6 of 12

ANALYTICAL RESULTS

Workorder: 22309 FOREST GLENN / 62547

Lab ID: 223090004 Date Received: 4/14/2017 08:45 Matrix: Water

Sample ID: MW 8D 041317 Date Collected: 4/13/2017 13:05

Parameters	Results Units	PQL	MDL DF	Analyzed	By	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane	490 ug/l	2.5	0.095 5	4/25/2017 13:05	AK	d,B
Ethane	0.24 ug/l	0.20	0.0050 1	4/21/2017 09:27	AK	
Ethene	0.032J ug/l	0.20	0.0070 1	4/21/2017 09:27	AK	

Report ID: 22309 - 916579 Page 7 of 12

ANALYTICAL RESULTS QUALIFIERS

Workorder: 22309 FOREST GLENN / 62547

DEFINITIONS/QUALIFIERS

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

B The analyte was detected in the associated blank.

d The analyte concentration was determined from a dilution.

Report ID: 22309 - 916579 Page 8 of 12

QUALITY CONTROL DATA

Workorder: 22309 FOREST GLENN / 62547

QC Batch: DISG/6060 Analysis Method: EPA RSK175

QC Batch Method: EPA RSK175

Associated Lab Samples: 223090001, 223090002, 223090003, 223090004

METHOD BLANK: 48326

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
RISK				
Methane	ug/l	0.019J	0.019	
Ethane	ug/l	0.0050U	0.0050	
Ethene	ug/l	0.0070U	0.0070	

LABORATORY CONTROL SAMPLE & LCSD: 48327 48328

Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK										·
Methane	ug/l	44	43	43	97	97	85-115	0	20	
Ethane	ug/l	83	81	80	97	96	85-115	1	20	
Ethene	ug/l	78	77	76	99	98	85-115	1	20	

SAMPLE DUPLICATE: 48329 Original: 223330010

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK Methane	ug/l	650	680	4	20	d

SAMPLE DUPLICATE: 48333 Original: 223090001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						_
Methane	ug/l	38	35	9.8	20	
Ethane	ug/l	0.2	0.2	2.9	20	
Ethene	ug/l	0.011	0.0096	9.9	20	

Report ID: 22309 - 916579 Page 9 of 12

QUALITY CONTROL DATA

Workorder: 22309 FOREST GLENN / 62547

QC Batch: DISG/6067 Analysis Method: EPA RSK175

QC Batch Method: EPA RSK175

Associated Lab Samples: 223090003, 223090004

ug/l

METHOD BLANK: 48392

Methane

Parameter Units Result Limit Qualifiers

RISK

0.019 B

LABORATORY CONTROL SAMPLE & LCSD: 48393 48394

0.021J

LCS LCSD LCS LCSD Spike % Rec Max RPD Parameter Units Conc. Result Result % Rec % Rec Limit **RPD** Qualifiers **RISK** В Methane 44 44 44 100 98 85-115 2 20 ug/l

SAMPLE DUPLICATE: 48397 Original: 223240017

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK Methane	ug/l	14	14	1	20	В

SAMPLE DUPLICATE: 48398 Original: 223240024

Parameter	Units	Original Result	Result	RPD	Max RPD	Qualifiers
RISK Methane	ug/l	210	220	1.5	20	В

Report ID: 22309 - 916579 Page 10 of 12

QUALITY CONTROL DATA QUALIFIERS

Workorder: 22309 FOREST GLENN / 62547

QUALITY CONTROL PARAMETER QUALIFIERS

B The analyte was detected in the associated blank.

d The analyte concentration was determined from a dilution.

Report ID: 22309 - 916579 Page 11 of 12

Phone: (412) 826-5245 Fax: (412) 826-3433

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 22309 FOREST GLENN / 62547

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
223090001	MW 4D 041317			EPA RSK175	DISG/6060
223090002	MW 4S 041317			EPA RSK175	DISG/6060
223090003	MW 8DD 041317			EPA RSK175	DISG/6060
223090004	MW 8D 041317			EPA RSK175	DISG/6060
223090003	MW 8DD 041317			EPA RSK175	DISG/6067
223090004	MW 8D 041317			EPA RSK175	DISG/6067

Report ID: 22309 - 916579 Page 12 of 12

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pittsburgh, PA 15238 220 William Pitt Way

Face Analytical" www.pacelabs.com

DRINKING WATER 756 OTHER φ **GROUND WATER** Page: RCRA REGULATORY AGENCY STATE: Site Location NPDES UST Invoice Information: Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #: Section C Address: 22309 10 m Report To: UMNI VELIZ 12 Pest Section B Required Project Information: Purchase Order No.: Project Number: Project Name: 412-826-5245 Mashirathn9. ack tom Section A Required Client Information: 7-956-6100 4ddress: **333** W Company: OBC uracust

SAMPLE ID CONTROL COMMENT OF THE WARRENGE OF T	ŀ													_	kequested Analysis Filtered (Y/N)	Analy	SIS FIITE	red (Y/I	- -				
SAMPLE ID Summer to the control of			Matrix Codes MATRIX / CODE	(flel o	(AMC		COLLEC"	ſĘĎ			Pres	ervatíve:	s	1 N /A									
AMM 4D CH 1317 MW 4D CH 1317 MW 4D CH 1317 MW 8D CH 1317 MW 1500 MW 8D CH 1317 MW 1500 MW 8D CH 1317 MW 1500 MW 8D CH 1317 MW 1500 MW 8D CH 1317 MW 1500 MW 8D CH 1317 MW 1500 MW 8D CH 1317 MW 1500 MW 8D CH 1317 MW 1500 MW 150				see valid codes t	DD=D 8AA9=	COMPOS	TE	COMPOSITE END/GRAB	***************************************	S			HOB	Î						(N/A) :			
MIW 4D C41317 MW 2D C41317 MW 8D			MATRIX CODE (DATE			TA 9M3T 3J9MA8	Unpreserved	[€] ONH †OS ^z H	q2T	Zinc Acetate & N	↓Analysis Test <i>¶</i> E∓							ace Proi	ect No./ I	Lab I.D.	
ANW S D C 4 13 17 ANW S D C 4 13 17 ANW S D C 4 13 17 ANW S D C 4 13 17 AND S D C 4 1		CH M	419	\mathbb{Z}	0		7	L	~	W		×		\geq									
ADDITIONAL COMMENTS RELIACIONSHED BY A FFILLATION ADDITIONAL COMMENTS RELIACIONSHED BY A FFILLATION ADDITIONAL COMMENTS RELIACIONSHED BY A FFILLATION AND THE TIME ACCEPTED BY A FFILLATION AND THE TIME AND THE TIME AND THE TIME ACCEPTED BY A FFILLATION AND THE TIME AND THE TI	-	54	μI,					6//	G	W		X		K -									
ADDITIONAL COMMENTS RELINGUISHED BY AFFILLATION ADDITIONAL COMMENTS RELINGUISHED BY AFFILLATION DATE THE ACCEPTED BY AFFILLATION DAT	-	das /	317						0	W		×		X									
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINGUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINGUISH DATE TIME SAMPLE S		18D04	317	_				136	FU	W		X		K									
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION PART TIME SAMPLE CONDITIONS CONDITIONS SIGNATURE OF SAMPLER. MAINTA FOUNDERS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITIONS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITIONS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITIONS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITIONS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITIONS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITIONS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITIONS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITIONS SIGNATURE OF SAMPLER. MAINTA FILIATION DATE SUDGED WITH A CONDITION DATE SUDGED																							
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINGUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINGUISHED BY AFFILIATION PROPERTY AND SIGNATURE PRINT Name of SAMPLER: AMAINA TWOSS, MAYIN KOUTHOCKS PRINT NAME OF SAMPLER: AMAINA TWOSS, MAYIN TO DATE TIME PRINT NAME OF SAMPLER: AMAINA TWOSS, MAYIN TO DATE TIME PRINT NAME OF SAMPLER: AMAINA TWOSS, MAYIN TWO THE SAMPLER: AMAINA TWO SAMPLER: AMAINA TWO THE SAMPLER: AMAINA TW			177																				
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS ORIGINAL SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: May And Signal Will a fine of Samples in Part 1984 (1887) PRINT Name of SAMPLER: May And Signal Will a fine of Samples in Part 1987 (1887) ORIGINAL PRINT Name of SAMPLER: May And Signal Will a fine of Samples in Part 1987 (1887) ORIGINAL PRINT Name of SAMPLER: May And Signal Will a fine Signal Will a fine of SAMPLER: May And Samples in Samples Samples in Samples														3.3									
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS THE ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS THE ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS ORIGINAL SAMPLER NAME AND SIGNATURE SIGNATURE OF SAMPLER: May A 14.1 1515	-																						
RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS ORIGINAL SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: MAINTA FIOSS, MAYAN KOUNDOK O PRINT Name of SAMPLER: MAINTA FIOSS, MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNATURE OF SAMPLER: MAINTA FIOSS MAYAN KOUNDOK O SIGNAT																							
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILIATION DATE TIME SAMPLE CONDITIONS CARRIED BY AFFILIATION DAT																							
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS WAS ARREST TO BE THE ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS ORIGINAL SAMPLER: May A TWSS, May TWSS, TWS																							
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: HANVA TWOSS, MAYAN KOUNTOCKE SIGNATURE of SAMPLER: MANVA TWOSS, MAYAN TWOSS,		ADDITIONAL COMMENTS	S	RELL	NOUISI	HED BY / #	VEFILIATION	ρQ	 	TIME	_	H _{AC}	CEPTE	BY/AF	ILIATION	_	DATE	TIME]	- N	AMPLE CC	NDITIONS	
SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Hayna Truss, Martin Konnocke Cualody Cu			M	Jann 1	4.7	Web 2	10BE	i Ali	14/1	151	1	The	13	\ \ \ \	Pore	2	13/17		1				
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: # AND STATH KOUNDEKL PRINT Name of SAMPLER: # AND STATH KOUNDEKL SIGNATURE of SAMPLER: # AND STATH KOUNDEKL Per Signed # AND STATH FOR STATH F			S								X	6	2		& Br	7	-	284	7			7	5
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Alay A TWSS, May HM Koundek 2 SIGNATURE of SAMPLER: May A That A May A That A May A That A May A That A May A That A May A That A May A That A May A That A May A That A May A M																							
Marth Kounnecke Custody Sealed Col (Y/N) Man L. DATE Signed (M/A) Custody Sealed Col (Y/N) Received (Y/N) Sealed Col (Y/N)			ORIGINA	and A			SAMPLER N		NATURE										0,	uo	'		tact
DATE Signed (M. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co						<u></u>	PR	'NT Name of SA	MPLER:	4 Laura	1005	I ~	子子	Series	rocko				, uj al	bəvie	rstod)	(N/A	人N) les ln
						I	SIC	NATURE of SA	MPLER:		1		J. Much	6	VTE Signed	1/2	12	11	uə⊥	Весе	Cr)	dwe;

F-ALL-Q-020rev.07, 15-May-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoides hot paid within 30 days.

Client	Name: <u>C</u>	BG	Project:	Forest G	len!	2_	Lab V∳	Jork Order: <u>223</u> 0°
		ainer Information						
Α.								
		Ex (UPS) USPS				ЫII Рі	resent	: (Yes) No
	Tracking Num	Der: 17 AV	2 6021	5367264	14.			
		n Cooler/Box Pre.						
	Cooler/Box.Pa	cking Material	Bubble Wraj	p) Absorbent 1	חבם-	Other	·	
	Type of Ice:	Wet Blue Non	ė lce l	ntact: Yes Me	lted			
	Cooler Tempe	гатыге: 4.8%	Raduatio	on Screened: - Yë	5 lv1) Ch	ein of '	Custody Present: Yes No
	Comments:							
۵.	Laboratory As.	signment/Log-in (check appro	priate response)				
					YES	NO	N/A	Comment
						<u> </u>	1	Reference non-Conforman
	Chain of Custo	dy properly filled (วบt์ 			<u> </u>	1	
	Chain of Custo	dy relinquished				l		
	Sampler Name	& Signatura on Co	DC DC					
	Containers into	∍ct						
	Were samples	in separate bags						
		ner labels match C date and time coll						
	Sufficient volu							
	PAES containe	rs used						
	Are containers (as labeled)	properly preserve	ed for the re	quested testing?				
		preservation state	e, were cont	ainers checked?				If yes, see pH form.
	Was volume to	or dissolved testing volume received					0	
		, voidine reserves						
	CC/(;				· 			
			Cooler conti	ents examined/re	eceived	Бy :	6	y Date: 4.14.17
				Project Manag		-	78	M Date: 4/14/17
				LINÍEFT INENEZ	1 11-11	G	<i>y</i>	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-116100-1

Client Project/Site: Forest Glen Monitoring

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 4/27/2017 5:12:20 PM

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	9
Surrogate Summary	30
QC Sample Results	31
QC Association Summary	44
Lab Chronicle	48
Certification Summary	53
Method Summary	54
Sample Summary	55
Detection Limit Exceptions Summary	56
Chain of Custody	57
Receipt Checklists	62

3

4

6

8

46

11

13

14

46

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

F1 MS and/or MSD Recovery is outside acceptance limits. В Compound was found in the blank and sample.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit**

MDC Minimum detectable concentration

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control RER** Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF** Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Buffalo

Page 3 of 63

4/27/2017

Case Narrative

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Job ID: 480-116100-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-116100-1

Receipt

The samples were received on 4/12/2017 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 3.0° C, 3.7° C and 4.2° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method(s) 300.0: The following samples were reported with elevated reporting limits for all analytes: MW 5S 041217 (480-116100-11), MW 7S 041217 (480-116100-12), MW 8S 041217 (480-116100-13) and MW 7D 041217 (480-116100-14). The sample was analyzed at a dilution based on screening results.

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-6D 041117 (480-116100-1), MW 6DD 041117 (480-116100-2), MW 1S 041117 (480-116100-3), X-1 041117 (480-116100-4), MW 6S 041117 (480-116100-5), MW 1D 041117 (480-116100-6), MW 10S 041117 (480-116100-7), MW 10D 041217 (480-116100-8), MW 5D 041217 (480-116100-9) and MW 7DD 041217 (480-116100-10). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 4500 S2 D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-422765 and 490-422766 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Job ID: 480-116100-1

TestAmerica Job ID: 480-116100-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW-6D 041117

Lab Sample ID: 480-116100-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.71	J	1.0	0.38	ug/L		_	8260C	Total/NA
cis-1,2-Dichloroethene	1.1		1.0	0.81	ug/L	1		8260C	Total/NA
Methyl tert-butyl ether	0.24	J	1.0	0.16	ug/L	1		8260C	Total/NA
Vinyl chloride	1.2		1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	201		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	222		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	339		50.0	20.0	mg/L	5		310.2_ASP	Total/NA
Sulfide	0.46		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	3.1		1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 6DD 041117

Lab Sample ID: 480-116100-2

Analyte	Result Qual	lifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	13	1.0	0.81	ug/L		_	8260C	Total/NA
Trichloroethene	0.69 J	1.0	0.46	ug/L	1		8260C	Total/NA
Chloride	66.0	5.0	2.8	mg/L	10		300.0	Total/NA
Sulfate	692	20.0	3.5	mg/L	10		300.0	Total/NA
Alkalinity, Bicarbonate	208	30.0	12.0	mg/L	3		310.2_ASP	Total/NA
Nitrate as N	0.065	0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.070 J	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	4.5	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 1S 041117

Lab Sample ID: 480-116100-3

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methyl tert-butyl ether	0.18		1.0	0.16	ug/L		_	8260C	Total/NA
Chloride	1150		25.0	14.1	mg/L	50		300.0	Total/NA
Sulfate	217		100	17.5	mg/L	50		300.0	Total/NA
Alkalinity, Bicarbonate	265		50.0	20.0	mg/L	5		310.2_ASP	Total/NA
Nitrate as N	0.12		0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.050 J	J	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.2		1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: X-1 041117

Lab Sample ID: 480-116100-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methyl tert-butyl ether	0.20 J	1.0	0.16	ug/L		_	8260C	Total/NA
Chloride	1180	25.0	14.1	mg/L	50		300.0	Total/NA
Sulfate	217	100	17.5	mg/L	50		300.0	Total/NA
Alkalinity, Bicarbonate	282	50.0	20.0	mg/L	5		310.2_ASP	Total/NA
Nitrate as N	0.13	0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.060 J	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.3	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 6S 041117

Lab Sample ID: 480-116100-5

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	17	1.0	0.81	ug/L	1	_	8260C	Total/NA
Vinyl chloride	8.7	1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	32.3	2.5	1.4	mg/L	5		300.0	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 5 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Lab Sample ID: 480-116100-5

Lab Sample ID: 480-116100-6

Lab Sample ID: 480-116100-7

Lab Sample ID: 480-116100-8

Lab Sample ID: 480-116100-9

Client Sample ID: MW 6S 041117 (Continued)
--

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Met	hod	Prep Type
Sulfate	208	10.0	1.7	mg/L	5	300.	.0	Total/NA
Alkalinity, Bicarbonate	320	50.0	20.0	mg/L	5	310.	2_ASP	Total/NA
Nitrate as N	0.14	0.050	0.020	mg/L	1	353.	.2	Total/NA
Sulfide	0.080 J	0.10	0.050	mg/L	1	SM	4500 S2 D	Total/NA
Dissolved Organic Carbon	3.9	1.0	0.43	mg/L	1	SM	5310C	Dissolved

Client Sample ID: MW 1D 041117

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Carbon disulfide	0.22	J	1.0	0.19	ug/L		8260C	Total/NA
Methyl tert-butyl ether	0.68	J	1.0	0.16	ug/L	1	8260C	Total/NA
Chloride	252		2.5	1.4	mg/L	5	300.0	Total/NA
Sulfate	132		10.0	1.7	mg/L	5	300.0	Total/NA
Alkalinity, Bicarbonate	299		50.0	20.0	mg/L	5	310.2_ASP	Total/NA
Sulfide	0.63	F1	0.10	0.050	mg/L	1	SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.4		1.0	0.43	mg/L	1	SM 5310C	Dissolved

Client Sample ID: MW 10S 041117

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	1.2		1.0	0.81	ug/L	1	8260C	Total/NA
Chloride	115		2.5	1.4	mg/L	5	300.0	Total/NA
Sulfate	91.9 E	3	40.0	7.0	mg/L	20	300.0	Total/NA
Alkalinity, Bicarbonate	192		30.0	12.0	mg/L	3	310.2_ASP	Total/NA
Sulfide	0.13		0.10	0.050	mg/L	1	SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	4.2		1.0	0.43	mg/L	1	SM 5310C	Dissolved

Client Sample ID: MW 10D 041217

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Methyl tert-butyl ether	0.27	J	1.0	0.16	ug/L		8260C	Total/NA
Chloride	354		5.0	2.8	mg/L	10	300.0	Total/NA
Sulfate	238		20.0	3.5	mg/L	10	300.0	Total/NA
Alkalinity, Bicarbonate	282		50.0	20.0	mg/L	5	310.2_ASP	Total/NA
Sulfide	0.18		0.10	0.050	mg/L	1	SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.5		1.0	0.43	mg/L	1	SM 5310C	Dissolved

Client Sample ID: MW 5D 041217

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.56	J –	1.0	0.38	ug/L		8260C	Total/NA
Methyl tert-butyl ether	0.35	J	1.0	0.16	ug/L	1	8260C	Total/NA
Chloride	217		2.5	1.4	mg/L	5	300.0	Total/NA
Sulfate	182		10.0	1.7	mg/L	5	300.0	Total/NA
Alkalinity, Bicarbonate	322		50.0	20.0	mg/L	5	310.2_ASP	Total/NA
Sulfide	0.16		0.10	0.050	mg/L	1	SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.6		1.0	0.43	mg/L	1	SM 5310C	Dissolved

Client Sample ID: MW 7DD 041217

Lab Sample ID: 480-116100-10

This Detection Summary does not include radiochemical test results.

Page 6 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Lab Sample ID: 480-116100-10

Lab Sample ID: 480 116100 11

Lab Sample ID: 480-116100-12

Lab Sample ID: 480-116100-13

Client Sample ID: MW 7DD 041217 (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	0.78 J	1.0	0.46	ug/L		_	8260C	Total/NA
Chloride	35.1	2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	75.1	10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	207	30.0	12.0	mg/L	3		310.2_ASP	Total/NA
Nitrate as N	0.38	0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.34	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.8	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 5S 041217

Silent Sample ID: WW 5	041217					Lab Sali	ipie iD: 460-	116100-1
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I	D Method	Prep Type
1,1,1-Trichloroethane	1.2		1.0	0.82	ug/L	1	8260C	Total/NA
1,1-Dichloroethane	6.0		1.0	0.38	ug/L	1	8260C	Total/NA
1,1-Dichloroethene	0.45	J	1.0	0.29	ug/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	5.6		1.0	0.81	ug/L	1	8260C	Total/NA
Trichloroethene	2.2		1.0	0.46	ug/L	1	8260C	Total/NA
Chloride	8.3		1.0	0.56	mg/L	2	300.0	Total/NA
Sulfate	169		4.0	0.70	mg/L	2	300.0	Total/NA
Alkalinity, Bicarbonate	228		50.0	20.0	mg/L	5	310.2_ASP	Total/NA
Nitrate as N	0.071		0.050	0.020	mg/L	1	353.2	Total/NA
Sulfide	0.060	J	0.10	0.050	mg/L	1	SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.7		1.0	0.43	mg/L	1	SM 5310C	Dissolved

Client Sample ID: MW 7S 041217

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D M	ethod	Prep Type
Trichloroethene	1.0	1.0	0.46	ug/L	1	82	260C	Total/NA
Chloride	56.0	1.0	0.56	mg/L	2	30	0.00	Total/NA
Sulfate	134	4.0	0.70	mg/L	2	30	0.00	Total/NA
Alkalinity, Bicarbonate	247	50.0	20.0	mg/L	5	31	10.2_ASP	Total/NA
Nitrate as N	1.7	0.050	0.020	mg/L	1	35	53.2	Total/NA
Sulfide	0.060 J	0.10	0.050	mg/L	1	SI	M 4500 S2 D	Total/NA
Dissolved Organic Carbon	6.0	1.0	0.43	mg/L	1	SI	M 5310C	Dissolved

Client Sample ID: MW 8S 041217

- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2.1		1.0	0.81	ug/L		_	8260C	Total/NA
Tetrachloroethene	0.61	J	1.0	0.36	ug/L	1		8260C	Total/NA
Trichloroethene	3.5		1.0	0.46	ug/L	1		8260C	Total/NA
Chloride	5.4		1.0	0.56	mg/L	2		300.0	Total/NA
Sulfate	60.0		4.0	0.70	mg/L	2		300.0	Total/NA
Alkalinity, Bicarbonate	170		30.0	12.0	mg/L	3		310.2_ASP	Total/NA
Nitrate as N	0.067		0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.060	J	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	1.4		1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 7D 041217

Lab Sample ID: 480-116100-14

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 7 of 63

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Lab Sample ID: 480-116100-14

Client Sample ID: MW 7D 041217 (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	1.1	1.0	0.46	ug/L		_	8260C	Total/NA
Chloride	19.2	1.0	0.56	mg/L	2		300.0	Total/NA
Sulfate	58.8	4.0	0.70	mg/L	2		300.0	Total/NA
Alkalinity, Bicarbonate	183	30.0	12.0	mg/L	3		310.2_ASP	Total/NA
Nitrate as N	0.61	0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.070 J	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.9	1.0	0.43	mg/L	1		SM 5310C	Dissolved

3

F

Q

10

12

13

15

46

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW-6D 041117

Lab Sample ID: 480-116100-1 Date Collected: 04/11/17 09:30 **Matrix: Water**

Date Received: 04/12/17 17:30

Method: 8260C - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/20/17 00:34	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/20/17 00:34	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/20/17 00:34	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			04/20/17 00:34	1
I,1-Dichloroethane	0.71	J	1.0	0.38	ug/L			04/20/17 00:34	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/20/17 00:34	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/20/17 00:34	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/20/17 00:34	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/20/17 00:34	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/20/17 00:34	1
1,2-Dichloroethane	ND		1.0	0.21	_			04/20/17 00:34	1
1,2-Dichloropropane	ND		1.0	0.72	-			04/20/17 00:34	1
1,3-Dichlorobenzene	ND		1.0		ug/L			04/20/17 00:34	1
1,4-Dichlorobenzene	ND		1.0		ug/L			04/20/17 00:34	1
2-Hexanone	ND		5.0		ug/L			04/20/17 00:34	1
2-Butanone (MEK)	ND		10		ug/L			04/20/17 00:34	1
1-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	-			04/20/17 00:34	1
Acetone	ND		10		ug/L			04/20/17 00:34	1
Benzene	ND		1.0		ug/L			04/20/17 00:34	
Bromodichloromethane	ND		1.0		ug/L			04/20/17 00:34	1
Bromoform	ND		1.0	0.26	_			04/20/17 00:34	1
Bromomethane	ND		1.0	0.69	-			04/20/17 00:34	
Carbon disulfide	ND		1.0	0.19	_			04/20/17 00:34	1
Carbon tetrachloride	ND		1.0	0.27	-			04/20/17 00:34	1
Chlorobenzene	ND		1.0		ug/L			04/20/17 00:34	
Chlorodibromomethane	ND		1.0	0.32	_			04/20/17 00:34	-
Chloroethane	ND		1.0		ug/L			04/20/17 00:34	1
Chloroform	ND		1.0		ug/L			04/20/17 00:34	
Chloromethane	ND		1.0	0.35	-			04/20/17 00:34	-
cis-1,2-Dichloroethene	1.1		1.0	0.81	-			04/20/17 00:34	-
cis-1,3-Dichloropropene	ND		1.0	0.36	_			04/20/17 00:34	
Cyclohexane	ND		1.0	0.18	-			04/20/17 00:34	-
Dichlorodifluoromethane	ND		1.0	0.68	_			04/20/17 00:34	-
Ethylbenzene	ND		1.0	0.74	-			04/20/17 00:34	
sopropylbenzene	ND		1.0	0.79	-			04/20/17 00:34	-
Methyl acetate	ND		1.3		ug/L			04/20/17 00:34	-
	0.24		1.0		ug/L			04/20/17 00:34	}
Methyl tert-butyl ether		J			-				
Methylcyclohexane	ND		1.0		ug/L			04/20/17 00:34	1
Methylene Chloride	ND		1.0		ug/L			04/20/17 00:34 04/20/17 00:34	
Styrene Fetrachloroethene	ND		1.0		ug/L				1
	ND		1.0		ug/L			04/20/17 00:34	1
Foluene	ND		1.0		ug/L			04/20/17 00:34	1
rans-1,2-Dichloroethene	ND		1.0		ug/L			04/20/17 00:34	1
rans-1,3-Dichloropropene	ND		1.0		ug/L			04/20/17 00:34	1
Frichloroethene	ND		1.0		ug/L			04/20/17 00:34	
Frichlorofluoromethane	ND		1.0		ug/L			04/20/17 00:34	1
/inyl chloride	1.2		1.0	0.90	ug/L			04/20/17 00:34	1

TestAmerica Buffalo

Page 9 of 63 4/27/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW-6D 041117

Lab Sample ID: 480-116100-1 Date Collected: 04/11/17 09:30

Matrix: Water

Date Received: 04/12/17 17:30

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					04/20/17 00:34	1
Toluene-d8 (Surr)	100		80 - 120					04/20/17 00:34	1
4-Bromofluorobenzene (Surr)	108		73 - 120					04/20/17 00:34	1
Dibromofluoromethane (Surr)	108		75 - 123					04/20/17 00:34	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	201		2.5	1.4	mg/L			04/21/17 22:15	5
Sulfate	222		10.0	1.7	mg/L			04/24/17 21:25	5
Alkalinity, Bicarbonate	339		50.0	20.0	mg/L			04/18/17 15:41	5
Nitrate as N	ND		0.050	0.020	mg/L			04/12/17 21:15	1
Nitrite as N	ND		0.050	0.020	mg/L			04/12/17 21:15	1
Sulfide	0.46		0.10	0.050	mg/L			04/17/17 13:00	1

Client Sample ID: MW 6DD 041117 Lab Sample ID: 480-116100-2

RL

1.0

MDL Unit

0.43 mg/L

Prepared

Analyzed

04/17/17 06:30

Result Qualifier

3.1

Date Collected: 04/11/17 11:15 **Matrix: Water**

Date Received: 04/12/17 17:30

Dissolved Organic Carbon

General Chemistry - Dissolved

Analyte

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			04/20/17 01:01	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/20/17 01:01	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/20/17 01:01	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/20/17 01:01	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/20/17 01:01	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/20/17 01:01	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/20/17 01:01	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/20/17 01:01	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			04/20/17 01:01	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/20/17 01:01	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/20/17 01:01	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/20/17 01:01	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/20/17 01:01	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/20/17 01:01	1
2-Hexanone	ND	5.0	1.2	ug/L			04/20/17 01:01	1
2-Butanone (MEK)	ND	10	1.3	ug/L			04/20/17 01:01	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/20/17 01:01	1
Acetone	ND	10	3.0	ug/L			04/20/17 01:01	1
Benzene	ND	1.0	0.41	ug/L			04/20/17 01:01	1
Bromodichloromethane	ND	1.0	0.39	ug/L			04/20/17 01:01	1
Bromoform	ND	1.0	0.26	ug/L			04/20/17 01:01	1
Bromomethane	ND	1.0	0.69	ug/L			04/20/17 01:01	1
Carbon disulfide	ND	1.0	0.19	ug/L			04/20/17 01:01	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			04/20/17 01:01	1
Chlorobenzene	ND	1.0	0.75	ug/L			04/20/17 01:01	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			04/20/17 01:01	1
Chloroethane	ND	1.0	0.32	ug/L			04/20/17 01:01	1

TestAmerica Buffalo

Page 10 of 63

Dil Fac

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 6DD 041117 Lab Sample ID: 480-116100-2

Date Collected: 04/11/17 11:15 Date Received: 04/12/17 17:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0	0.34	ug/L			04/20/17 01:01	1
Chloromethane	ND		1.0	0.35	ug/L			04/20/17 01:01	1
cis-1,2-Dichloroethene	13		1.0	0.81	ug/L			04/20/17 01:01	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/20/17 01:01	1
Cyclohexane	ND		1.0	0.18	ug/L			04/20/17 01:01	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/20/17 01:01	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/20/17 01:01	1
Isopropylbenzene	ND		1.0	0.79	ug/L			04/20/17 01:01	1
Methyl acetate	ND		1.3	1.3	ug/L			04/20/17 01:01	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/20/17 01:01	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/20/17 01:01	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/17 01:01	1
Styrene	ND		1.0	0.73	ug/L			04/20/17 01:01	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/17 01:01	1
Toluene	ND		1.0	0.51	ug/L			04/20/17 01:01	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/17 01:01	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/20/17 01:01	1
Trichloroethene	0.69	J	1.0	0.46	ug/L			04/20/17 01:01	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/20/17 01:01	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/20/17 01:01	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/20/17 01:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			-		04/20/17 01:01	1
Toluene-d8 (Surr)	99		80 - 120					04/20/17 01:01	1
4-Bromofluorobenzene (Surr)	108		73 - 120					04/20/17 01:01	1
Dibromofluoromethane (Surr)	112		75 - 123					04/20/17 01:01	1

_									
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	66.0		5.0	2.8	mg/L		<u> </u>	04/21/17 22:23	10
Sulfate	692		20.0	3.5	mg/L			04/24/17 21:33	10
Alkalinity, Bicarbonate	208		30.0	12.0	mg/L			04/18/17 15:55	3
Nitrate as N	0.065		0.050	0.020	mg/L			04/13/17 01:51	1
Nitrite as N	ND		0.050	0.020	mg/L			04/13/17 01:51	1
Sulfide	0.070	J	0.10	0.050	mg/L			04/17/17 13:00	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.5		1.0	0.43	mg/L			04/17/17 06:45	1

Client Sample ID: MW 1S 041117 Lab Sample ID: 480-116100-3 Date Collected: 04/11/17 13:00

Date Received: 04/12/17 17:30

Method: 8260C - Volatile Org	janic Compounds by GC/	MS					
Analyte	Result Qualifier	RL	MDL Un	lnit l	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82 ug	g/L	_	04/20/17 01:28	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug	g/L		04/20/17 01:28	1
1,1,2-Trichloroethane	ND	1.0	0.23 ug	g/L		04/20/17 01:28	1

TestAmerica Buffalo

Page 11 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 1S 041117

Lab Sample ID: 480-116100-3 Date Collected: 04/11/17 13:00 **Matrix: Water**

Date Received: 04/12/17 17:30

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			04/20/17 01:28	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/20/17 01:28	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/20/17 01:28	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/20/17 01:28	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/20/17 01:28	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/20/17 01:28	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/20/17 01:28	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/20/17 01:28	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/20/17 01:28	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/20/17 01:28	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/20/17 01:28	1
2-Hexanone	ND		5.0	1.2	ug/L			04/20/17 01:28	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/20/17 01:28	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		-			04/20/17 01:28	1
Acetone	ND		10		ug/L			04/20/17 01:28	1
Benzene	ND		1.0		ug/L			04/20/17 01:28	1
Bromodichloromethane	ND		1.0	0.39	-			04/20/17 01:28	1
Bromoform	ND		1.0	0.26	-			04/20/17 01:28	1
Bromomethane	ND		1.0		ug/L			04/20/17 01:28	1
Carbon disulfide	ND		1.0		ug/L			04/20/17 01:28	1
Carbon tetrachloride	ND		1.0		ug/L			04/20/17 01:28	1
Chlorobenzene	ND		1.0		ug/L			04/20/17 01:28	· · · · · · · · · · · · · · · · · · ·
Chlorodibromomethane	ND		1.0	0.32				04/20/17 01:28	1
Chloroethane	ND		1.0	0.32	-			04/20/17 01:28	1
Chloroform	ND		1.0		ug/L			04/20/17 01:28	
Chloromethane	ND		1.0	0.35	-			04/20/17 01:28	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/20/17 01:28	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/20/17 01:28	
Cyclohexane	ND ND		1.0		ug/L			04/20/17 01:28	1
Dichlorodifluoromethane	ND ND		1.0	0.18	-			04/20/17 01:28	1
	ND		1.0		ug/L ug/L			04/20/17 01:28	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene Isopropylbenzene	ND ND		1.0	0.74	-			04/20/17 01:28	1
	ND ND		1.3		-			04/20/17 01:28	
Methyl acetate		•			ug/L				1
Methyl tert-butyl ether	0.18	J	1.0		ug/L			04/20/17 01:28	1
Methylcyclohexane	ND		1.0		ug/L			04/20/17 01:28	1
Methylene Chloride	ND		1.0	0.44				04/20/17 01:28	
Styrene	ND		1.0		ug/L			04/20/17 01:28	1
Tetrachloroethene	ND		1.0		ug/L			04/20/17 01:28	1
Toluene	ND		1.0		ug/L			04/20/17 01:28	
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/20/17 01:28	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/20/17 01:28	1
Trichloroethene	ND		1.0		ug/L			04/20/17 01:28	
Trichlorofluoromethane	ND		1.0		ug/L			04/20/17 01:28	1
Vinyl chloride	ND		1.0		ug/L			04/20/17 01:28	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/20/17 01:28	1
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					04/20/17 01:28	1
Toluene-d8 (Surr)	98		80 - 120					04/20/17 01:28	1
4-Bromofluorobenzene (Surr)	108		73 - 120					04/20/17 01:28	1
(/									

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Lab Sample ID: 480-116100-3

Matrix: Water

Client Sample ID: MW 1S 041117

Date Collected: 04/11/17 13:00 Date Received: 04/12/17 17:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	111		75 - 123		04/20/17 01:28	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1150		25.0	14.1	mg/L			04/21/17 22:31	50
Sulfate	217		100	17.5	mg/L			04/24/17 21:41	50
Alkalinity, Bicarbonate	265		50.0	20.0	mg/L			04/18/17 15:39	5
Nitrate as N	0.12		0.050	0.020	mg/L			04/13/17 01:52	1
Nitrite as N	ND		0.050	0.020	mg/L			04/13/17 01:52	1
Sulfide	0.050	J	0.10	0.050	mg/L			04/17/17 13:00	1

General Chemistry - Dissolved Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.2		1.0	0.43	mg/L			04/17/17 07:00	1

Client Sample ID: X-1 041117 Lab Sample ID: 480-116100-4

Date Collected: 04/11/17 00:00 **Matrix: Water**

Date Received: 04/12/17 17:30

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82 ι	ug/L			04/20/17 01:55	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ι	ug/L			04/20/17 01:55	1
1,1,2-Trichloroethane	ND	1.0	0.23 ι	ug/L			04/20/17 01:55	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31 ι	ug/L			04/20/17 01:55	1
1,1-Dichloroethane	ND	1.0	0.38 ι	ug/L			04/20/17 01:55	1
1,1-Dichloroethene	ND	1.0	0.29 ι	ug/L			04/20/17 01:55	1
1,2,4-Trichlorobenzene	ND	1.0	0.41 ι	ug/L			04/20/17 01:55	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39 ι	ug/L			04/20/17 01:55	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73 ι	ug/L			04/20/17 01:55	1
1,2-Dichlorobenzene	ND	1.0	0.79 ι	ug/L			04/20/17 01:55	1
1,2-Dichloroethane	ND	1.0	0.21 ι	ug/L			04/20/17 01:55	1
1,2-Dichloropropane	ND	1.0	0.72 ι	ug/L			04/20/17 01:55	1
1,3-Dichlorobenzene	ND	1.0	0.78 ι	ug/L			04/20/17 01:55	1
1,4-Dichlorobenzene	ND	1.0	0.84 ι	ug/L			04/20/17 01:55	1
2-Hexanone	ND	5.0	1.2 ι	ug/L			04/20/17 01:55	1
2-Butanone (MEK)	ND	10	1.3 ι	ug/L			04/20/17 01:55	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1 ι	ug/L			04/20/17 01:55	1
Acetone	ND	10	3.0 ι	ug/L			04/20/17 01:55	1
Benzene	ND	1.0	0.41 ι	ug/L			04/20/17 01:55	1
Bromodichloromethane	ND	1.0	0.39 ι	ug/L			04/20/17 01:55	1
Bromoform	ND	1.0	0.26 ι	ug/L			04/20/17 01:55	1
Bromomethane	ND	1.0	0.69 ι	ug/L			04/20/17 01:55	1
Carbon disulfide	ND	1.0	0.19 ι	ug/L			04/20/17 01:55	1
Carbon tetrachloride	ND	1.0	0.27 ι	ug/L			04/20/17 01:55	1
Chlorobenzene	ND	1.0	0.75 ι	ug/L			04/20/17 01:55	1
Chlorodibromomethane	ND	1.0	0.32 ι	ug/L			04/20/17 01:55	1
Chloroethane	ND	1.0	0.32 ι	ug/L			04/20/17 01:55	1
Chloroform	ND	1.0	0.34 ι	ug/L			04/20/17 01:55	1
Chloromethane	ND	1.0	0.35 ι	ug/L			04/20/17 01:55	1

TestAmerica Buffalo

Page 13 of 63

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Client Sample ID: X-1 041117

TestAmerica Job ID: 480-116100-1

Lab Sample ID: 480-116100-4

. Matrix: Water

Date Collected: 04/11/17 00:00 Date Received: 04/12/17 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/20/17 01:55	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/20/17 01:55	1
Cyclohexane	ND		1.0	0.18	ug/L			04/20/17 01:55	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/20/17 01:55	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/20/17 01:55	1
Isopropylbenzene	ND		1.0	0.79	ug/L			04/20/17 01:55	1
Methyl acetate	ND		1.3	1.3	ug/L			04/20/17 01:55	1
Methyl tert-butyl ether	0.20	J	1.0	0.16	ug/L			04/20/17 01:55	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/20/17 01:55	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/17 01:55	1
Styrene	ND		1.0	0.73	ug/L			04/20/17 01:55	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/17 01:55	1
Toluene	ND		1.0	0.51	ug/L			04/20/17 01:55	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/17 01:55	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/20/17 01:55	1
Trichloroethene	ND		1.0	0.46	ug/L			04/20/17 01:55	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/20/17 01:55	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/20/17 01:55	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/20/17 01:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					04/20/17 01:55	1
Toluene-d8 (Surr)	97		80 - 120					04/20/17 01:55	1
4-Bromofluorobenzene (Surr)	106		73 - 120					04/20/17 01:55	1
Dibromofluoromethane (Surr)	108		75 - 123					04/20/17 01:55	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1180		25.0		mg/L		Tropurcu	04/21/17 22:39	50
Sulfate	217		100		mg/L			04/24/17 21:50	50
Alkalinity, Bicarbonate	282		50.0		mg/L			04/18/17 15:39	5
Nitrate as N	0.13		0.050	0.020				04/13/17 01:53	1
Nitrite as N	ND		0.050	0.020	mg/L			04/13/17 01:53	1
Sulfide	0.060	J	0.10	0.050	mg/L			04/17/17 14:00	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.3		1.0	0.43	mg/L			04/17/17 07:15	1

Client Sample ID: MW 6S 041117 Lab Sample ID: 480-116100-5

Date Collected: 04/11/17 13:00 Matrix: Water Date Received: 04/12/17 17:30

Method: 8260C - Volatile Org	anic Compounds by GC	/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			04/20/17 02:22	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/20/17 02:22	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/20/17 02:22	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/20/17 02:22	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/20/17 02:22	1

TestAmerica Buffalo

Page 14 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 6S 041117

Date Collected: 04/11/17 13:00 Date Received: 04/12/17 17:30 Lab Sample ID: 480-116100-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/20/17 02:22	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/20/17 02:22	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/20/17 02:22	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/20/17 02:22	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/20/17 02:22	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/20/17 02:22	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/20/17 02:22	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/20/17 02:22	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/20/17 02:22	1
2-Hexanone	ND		5.0	1.2	ug/L			04/20/17 02:22	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/20/17 02:22	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/20/17 02:22	1
Acetone	ND		10		ug/L			04/20/17 02:22	1
Benzene	ND		1.0		ug/L			04/20/17 02:22	1
Bromodichloromethane	ND		1.0		ug/L			04/20/17 02:22	1
Bromoform	ND		1.0		ug/L			04/20/17 02:22	1
Bromomethane	ND		1.0		ug/L			04/20/17 02:22	1
Carbon disulfide	ND		1.0		ug/L			04/20/17 02:22	1
Carbon tetrachloride	ND		1.0		ug/L			04/20/17 02:22	1
Chlorobenzene	ND		1.0		ug/L			04/20/17 02:22	1
Chlorodibromomethane	ND		1.0		ug/L			04/20/17 02:22	1
Chloroethane	ND		1.0		ug/L			04/20/17 02:22	1
Chloroform	ND		1.0		ug/L			04/20/17 02:22	
Chloromethane	ND		1.0		ug/L			04/20/17 02:22	1
cis-1,2-Dichloroethene	17		1.0		ug/L			04/20/17 02:22	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/20/17 02:22	1
Cyclohexane	ND		1.0		ug/L			04/20/17 02:22	1
Dichlorodifluoromethane	ND		1.0		ug/L			04/20/17 02:22	1
Ethylbenzene	ND		1.0		ug/L			04/20/17 02:22	· · · · · · · · 1
Isopropylbenzene	ND		1.0		ug/L			04/20/17 02:22	
Methyl acetate	ND		1.3		ug/L			04/20/17 02:22	1
Methyl tert-butyl ether	ND		1.0		ug/L			04/20/17 02:22	
Methylcyclohexane	ND		1.0		ug/L			04/20/17 02:22	1
Methylene Chloride	ND ND		1.0		ug/L			04/20/17 02:22	1
Styrene	ND		1.0		ug/L			04/20/17 02:22	' 1
Tetrachloroethene	ND		1.0		ug/L ug/L			04/20/17 02:22	1
Toluene	ND		1.0		ug/L ug/L			04/20/17 02:22	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/20/17 02:22	 1
,	ND ND		1.0		-			04/20/17 02:22	1
trans-1,3-Dichloropropene Trichloroethene	ND ND		1.0		ug/L ug/L			04/20/17 02:22	1
Trichlorofluoromethane	ND		1.0		.			04/20/17 02:22	ا 1
			1.0		ug/L			04/20/17 02:22	
Vinyl chloride Xylenes, Total	8.7 ND		2.0		ug/L ug/L			04/20/17 02:22	1 1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					04/20/17 02:22	1
Toluene-d8 (Surr)	100		80 - 120					04/20/17 02:22	1
4-Bromofluorobenzene (Surr)	107		73 - 120					04/20/17 02:22	1

TestAmerica Buffalo

04/20/17 02:22

Page 15 of 63

75 - 123

112

Dibromofluoromethane (Surr)

4/27/2017

3

6

9

1U 11

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 6S 041117

Date Received: 04/12/17 17:30

Lab Sample ID: 480-116100-5 Date Collected: 04/11/17 13:00 **Matrix: Water**

TestAmerica Job ID: 480-116100-1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	32.3		2.5	1.4	mg/L		<u> </u>	04/21/17 22:47	5
Sulfate	208		10.0	1.7	mg/L			04/24/17 21:58	5
Alkalinity, Bicarbonate	320		50.0	20.0	mg/L			04/18/17 15:39	5
Nitrate as N	0.14		0.050	0.020	mg/L			04/13/17 01:54	1
Nitrite as N	ND		0.050	0.020	mg/L			04/13/17 01:54	1
Sulfide	0.080	J	0.10	0.050	mg/L			04/17/17 14:00	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	3.9		1.0	0.43	mg/L			04/17/17 07:30	1

Lab Sample ID: 480-116100-6 Client Sample ID: MW 1D 041117

Date Collected: 04/11/17 16:30 Matrix: Water

Date Received: 04/12/17 17:30

Analyte	Result C	Qualifier R	L MI	DL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1	.0 0.	82	ug/L			04/20/17 02:49	1
1,1,2,2-Tetrachloroethane	ND	1	.0 0.	21	ug/L			04/20/17 02:49	1
1,1,2-Trichloroethane	ND	1	.0 0.	23	ug/L			04/20/17 02:49	1
1,1,2-Trichlorotrifluoroethane	ND	1	.0 0.	31	ug/L			04/20/17 02:49	1
1,1-Dichloroethane	ND	1	.0 0.	38	ug/L			04/20/17 02:49	1
1,1-Dichloroethene	ND	1	.0 0.	29	ug/L			04/20/17 02:49	1
1,2,4-Trichlorobenzene	ND	1	.0 0.	41	ug/L			04/20/17 02:49	1
1,2-Dibromo-3-Chloropropane	ND	1	.0 0.	39	ug/L			04/20/17 02:49	1
1,2-Dibromoethane (EDB)	ND	1	.0 0.	73	ug/L			04/20/17 02:49	1
1,2-Dichlorobenzene	ND	1	.0 0.	79	ug/L			04/20/17 02:49	1
1,2-Dichloroethane	ND	1	.0 0.	21	ug/L			04/20/17 02:49	1
1,2-Dichloropropane	ND	1	.0 0.	72	ug/L			04/20/17 02:49	1
1,3-Dichlorobenzene	ND	1	.0 0.	78	ug/L			04/20/17 02:49	1
1,4-Dichlorobenzene	ND	1	.0 0.	84	ug/L			04/20/17 02:49	1
2-Hexanone	ND	5	.0	1.2	ug/L			04/20/17 02:49	1
2-Butanone (MEK)	ND	1	0 ′	1.3	ug/L			04/20/17 02:49	1
4-Methyl-2-pentanone (MIBK)	ND	5	.0 2	2.1	ug/L			04/20/17 02:49	1
Acetone	ND	1	0 3	3.0	ug/L			04/20/17 02:49	1
Benzene	ND	1	.0 0.	41	ug/L			04/20/17 02:49	1
Bromodichloromethane	ND	1	.0 0.	39	ug/L			04/20/17 02:49	1
Bromoform	ND	1	.0 0.	26	ug/L			04/20/17 02:49	1
Bromomethane	ND	1	.0 0.	69	ug/L			04/20/17 02:49	1
Carbon disulfide	0.22 J	1	.0 0.	19	ug/L			04/20/17 02:49	1
Carbon tetrachloride	ND	1	.0 0.	27	ug/L			04/20/17 02:49	1
Chlorobenzene	ND	1	.0 0.	75	ug/L			04/20/17 02:49	1
Chlorodibromomethane	ND	1	.0 0.	32	ug/L			04/20/17 02:49	1
Chloroethane	ND	1	.0 0.	32	ug/L			04/20/17 02:49	1
Chloroform	ND	1	.0 0.	34	ug/L			04/20/17 02:49	1
Chloromethane	ND	1	.0 0.	35	ug/L			04/20/17 02:49	1
cis-1,2-Dichloroethene	ND	1	.0 0.	81	ug/L			04/20/17 02:49	1
cis-1,3-Dichloropropene	ND	1	.0 0.	36	ug/L			04/20/17 02:49	1
Cyclohexane	ND	1	.0 0.	18	ug/L			04/20/17 02:49	1
Dichlorodifluoromethane	ND	1	.0 0.	68	ug/L			04/20/17 02:49	1

TestAmerica Buffalo

Page 16 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 1D 041117

Lab Sample ID: 480-116100-6

Matrix: Water

Date Collected: 04/11/17 16:30 Date Received: 04/12/17 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.74	ug/L			04/20/17 02:49	1
Isopropylbenzene	ND		1.0	0.79	ug/L			04/20/17 02:49	1
Methyl acetate	ND		1.3	1.3	ug/L			04/20/17 02:49	1
Methyl tert-butyl ether	0.68	J	1.0	0.16	ug/L			04/20/17 02:49	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/20/17 02:49	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/17 02:49	1
Styrene	ND		1.0	0.73	ug/L			04/20/17 02:49	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/17 02:49	1
Toluene	ND		1.0	0.51	ug/L			04/20/17 02:49	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/17 02:49	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/20/17 02:49	1
Trichloroethene	ND		1.0	0.46	ug/L			04/20/17 02:49	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/20/17 02:49	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/20/17 02:49	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/20/17 02:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			-		04/20/17 02:49	1
Toluene-d8 (Surr)	99		80 - 120					04/20/17 02:49	1
4-Bromofluorobenzene (Surr)	105		73 - 120					04/20/17 02:49	1
Dibromofluoromethane (Surr)	109		75 - 123					04/20/17 02:49	1

General Chemistry Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	252	2.5	1.4	mg/L			04/21/17 21:34	5
Sulfate	132	10.0	1.7	mg/L			04/24/17 22:06	5
Alkalinity, Bicarbonate	299	50.0	20.0	mg/L			04/18/17 15:39	5
Nitrate as N	ND	0.050	0.020	mg/L			04/13/17 01:55	1
Nitrite as N	ND	0.050	0.020	mg/L			04/13/17 01:55	1
Sulfide	0.63 F1	0.10	0.050	mg/L			04/17/17 14:00	1

General Chemistry - Dissolved								
Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.4	1.0	0.43	mg/L			04/17/17 08:30	1

Lab Sample ID: 480-116100-7 Client Sample ID: MW 10S 041117 Date Collected: 04/11/17 16:40 **Matrix: Water**

Date Received: 04/12/17 17:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/20/17 03:15	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/20/17 03:15	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/20/17 03:15	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/20/17 03:15	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/20/17 03:15	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/20/17 03:15	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/20/17 03:15	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/20/17 03:15	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			04/20/17 03:15	1

Page 17 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 10S 041117 Lab Sample ID: 480-116100-7

Matrix: Water

Date Collected: 04/11/17 16:40 Date Received: 04/12/17 17:30

Sulfate

Method: 8260C - Volatile O Analyte		Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/20/17 03:15	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/20/17 03:15	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/20/17 03:15	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/20/17 03:15	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/20/17 03:15	1
2-Hexanone	ND		5.0	1.2	ug/L			04/20/17 03:15	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/20/17 03:15	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/20/17 03:15	1
Acetone	ND		10	3.0	ug/L			04/20/17 03:15	1
Benzene	ND		1.0	0.41	ug/L			04/20/17 03:15	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/20/17 03:15	1
Bromoform	ND		1.0	0.26	ug/L			04/20/17 03:15	1
Bromomethane	ND		1.0	0.69	ug/L			04/20/17 03:15	1
Carbon disulfide	ND		1.0	0.19	ug/L			04/20/17 03:15	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/20/17 03:15	1
Chlorobenzene	ND		1.0	0.75	ug/L			04/20/17 03:15	1
Chlorodibromomethane	ND		1.0		ug/L			04/20/17 03:15	1
Chloroethane	ND		1.0	0.32	ug/L			04/20/17 03:15	1
Chloroform	ND		1.0		ug/L			04/20/17 03:15	1
Chloromethane	ND		1.0	0.35	ug/L			04/20/17 03:15	1
cis-1,2-Dichloroethene	1.2		1.0	0.81	ug/L			04/20/17 03:15	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/20/17 03:15	1
Cyclohexane	ND		1.0	0.18	ug/L			04/20/17 03:15	1
Dichlorodifluoromethane	ND		1.0	0.68	-			04/20/17 03:15	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/20/17 03:15	1
Isopropylbenzene	ND		1.0		ug/L			04/20/17 03:15	1
Methyl acetate	ND		1.3		ug/L			04/20/17 03:15	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/20/17 03:15	1
Methylcyclohexane	ND		1.0	0.16	-			04/20/17 03:15	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/17 03:15	1
Styrene	ND		1.0	0.73	ug/L			04/20/17 03:15	1
Tetrachloroethene	ND		1.0		ug/L			04/20/17 03:15	1
Toluene	ND		1.0	0.51	ug/L			04/20/17 03:15	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/17 03:15	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/20/17 03:15	1
Trichloroethene	ND		1.0	0.46	ug/L			04/20/17 03:15	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/20/17 03:15	1
Vinyl chloride	ND		1.0		ug/L			04/20/17 03:15	1
Xylenes, Total	ND		2.0		ug/L			04/20/17 03:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120			-		04/20/17 03:15	1
Toluene-d8 (Surr)	101		80 - 120					04/20/17 03:15	1
4-Bromofluorobenzene (Surr)	106		73 - 120					04/20/17 03:15	1
Dibromofluoromethane (Surr)	113		75 - 123					04/20/17 03:15	1
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	115		2.5	1.4	mg/L			04/21/17 22:56	5

TestAmerica Buffalo

04/25/17 00:41

40.0

7.0 mg/L

91.9 B

20

2

4

6

8

10

12

14

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 10S 041117

Lab Sample ID: 480-116100-7 Date Collected: 04/11/17 16:40

Matrix: Water

Date Received: 04/12/17 17:30

General Chemistry (Continued) Analyte	Popult	Qualifier	RL	MDL	l lnit	D	Prepared	Analyzad	Dil Fac
Allalyte	Resuit	Qualifier	KL	MDL	Ullit		Prepareu	Analyzed	DII Fac
Alkalinity, Bicarbonate	192		30.0	12.0	mg/L			04/18/17 16:04	3
Nitrate as N	ND		0.050	0.020	mg/L			04/12/17 21:31	1
Nitrite as N	ND		0.050	0.020	mg/L			04/12/17 21:31	1
Sulfide	0.13		0.10	0.050	mg/L			04/17/17 14:00	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.2		1.0	0.43	mg/L			04/17/17 07:45	1

Client Sample ID: MW 10D 041217

Lab Sample ID: 480-116100-8 Date Collected: 04/12/17 09:10 **Matrix: Water**

Date Received: 04/12/17 17:30

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/20/17 03:42	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/20/17 03:42	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/20/17 03:42	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/20/17 03:42	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/20/17 03:42	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/20/17 03:42	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/20/17 03:42	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/20/17 03:42	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			04/20/17 03:42	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/20/17 03:42	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/20/17 03:42	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/20/17 03:42	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/20/17 03:42	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/20/17 03:42	1
2-Hexanone	ND	5.0	1.2	ug/L			04/20/17 03:42	1
2-Butanone (MEK)	ND	10	1.3	ug/L			04/20/17 03:42	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/20/17 03:42	1
Acetone	ND	10	3.0	ug/L			04/20/17 03:42	1
Benzene	ND	1.0	0.41	ug/L			04/20/17 03:42	1
Bromodichloromethane	ND	1.0	0.39	ug/L			04/20/17 03:42	1
Bromoform	ND	1.0	0.26	ug/L			04/20/17 03:42	1
Bromomethane	ND	1.0	0.69	ug/L			04/20/17 03:42	1
Carbon disulfide	ND	1.0	0.19	ug/L			04/20/17 03:42	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			04/20/17 03:42	1
Chlorobenzene	ND	1.0	0.75	ug/L			04/20/17 03:42	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			04/20/17 03:42	1
Chloroethane	ND	1.0	0.32	ug/L			04/20/17 03:42	1
Chloroform	ND	1.0	0.34	ug/L			04/20/17 03:42	1
Chloromethane	ND	1.0	0.35	ug/L			04/20/17 03:42	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			04/20/17 03:42	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			04/20/17 03:42	1
Cyclohexane	ND	1.0	0.18	ug/L			04/20/17 03:42	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			04/20/17 03:42	1
Ethylbenzene	ND	1.0	0.74	ug/L			04/20/17 03:42	1
Isopropylbenzene	ND	1.0	0.79	-			04/20/17 03:42	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 10D 041217

Date Collected: 04/12/17 09:10

TestAmerica Job ID: 480-116100-1

Lab Sample ID: 480-116100-8

04/20/17 03:42

04/20/17 03:42

04/20/17 03:42

Matrix: Water

Date Received: 04/12/17 17:30
Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

98

106

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl acetate	ND		1.3	1.3	ug/L			04/20/17 03:42	1
Methyl tert-butyl ether	0.27	J	1.0	0.16	ug/L			04/20/17 03:42	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/20/17 03:42	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/17 03:42	1
Styrene	ND		1.0	0.73	ug/L			04/20/17 03:42	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/17 03:42	1
Toluene	ND		1.0	0.51	ug/L			04/20/17 03:42	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/17 03:42	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/20/17 03:42	1
Trichloroethene	ND		1.0	0.46	ug/L			04/20/17 03:42	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/20/17 03:42	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/20/17 03:42	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/20/17 03:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120					04/20/17 03:42	1

Dibromofluoromethane (Surr)	111
-	

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	354		5.0	2.8	mg/L			04/21/17 23:04	10
Sulfate	238		20.0	3.5	mg/L			04/24/17 22:47	10
Alkalinity, Bicarbonate	282		50.0	20.0	mg/L			04/18/17 15:41	5
Nitrate as N	ND		0.050	0.020	mg/L			04/12/17 21:32	1
Nitrite as N	ND		0.050	0.020	mg/L			04/12/17 21:32	1
Sulfide	0.18		0.10	0.050	mg/L			04/17/17 14:00	1

80 - 120

73 - 120

75 - 123

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.5		1.0	0.43	mg/L			04/17/17 09:15	1

Client Sample ID: MW 5D 041217

Lab Sample ID: 480-116100-9 Date Collected: 04/12/17 10:45 **Matrix: Water** Date Received: 04/12/17 17:30

Method: 8260C - Volatile O	rganic Compounds by GC/MS
Amalasta	Desuit Ouslities

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/20/17 04:09	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/20/17 04:09	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/20/17 04:09	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			04/20/17 04:09	1
1,1-Dichloroethane	0.56	J	1.0	0.38	ug/L			04/20/17 04:09	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/20/17 04:09	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/20/17 04:09	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/20/17 04:09	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/20/17 04:09	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/20/17 04:09	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/20/17 04:09	1

TestAmerica Buffalo

Page 20 of 63

4/27/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 5D 041217 Lab Sample ID: 480-116100-9

Date Collected: 04/12/17 10:45 **Matrix: Water** Date Received: 04/12/17 17:30

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/20/17 04:09	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/20/17 04:09	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/20/17 04:09	1
2-Hexanone	ND		5.0	1.2	ug/L			04/20/17 04:09	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/20/17 04:09	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/20/17 04:09	1
Acetone	ND		10	3.0	ug/L			04/20/17 04:09	1
Benzene	ND		1.0	0.41	ug/L			04/20/17 04:09	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/20/17 04:09	1
Bromoform	ND		1.0	0.26	ug/L			04/20/17 04:09	1
Bromomethane	ND		1.0	0.69	ug/L			04/20/17 04:09	1
Carbon disulfide	ND		1.0	0.19	ug/L			04/20/17 04:09	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/20/17 04:09	1
Chlorobenzene	ND		1.0	0.75	ug/L			04/20/17 04:09	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			04/20/17 04:09	1
Chloroethane	ND		1.0	0.32	ug/L			04/20/17 04:09	1
Chloroform	ND		1.0	0.34	ug/L			04/20/17 04:09	1
Chloromethane	ND		1.0	0.35	ug/L			04/20/17 04:09	1
cis-1,2-Dichloroethene	ND		1.0	0.81	-			04/20/17 04:09	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/20/17 04:09	1
Cyclohexane	ND		1.0	0.18	ug/L			04/20/17 04:09	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/20/17 04:09	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/20/17 04:09	1
Isopropylbenzene	ND		1.0	0.79	ug/L			04/20/17 04:09	1
Methyl acetate	ND		1.3	1.3	ug/L			04/20/17 04:09	1
Methyl tert-butyl ether	0.35	J	1.0	0.16	ug/L			04/20/17 04:09	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/20/17 04:09	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/17 04:09	1
Styrene	ND		1.0	0.73	ug/L			04/20/17 04:09	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/17 04:09	1
Toluene	ND		1.0	0.51	ug/L			04/20/17 04:09	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/17 04:09	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/20/17 04:09	1
Trichloroethene	ND		1.0	0.46	ug/L			04/20/17 04:09	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/20/17 04:09	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/20/17 04:09	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/20/17 04:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120			-		04/20/17 04:09	1
Toluene-d8 (Surr)	98		80 - 120					04/20/17 04:09	1
4-Bromofluorobenzene (Surr)	103		73 - 120					04/20/17 04:09	1
Dibromofluoromethane (Surr)	113		75 - 123					04/20/17 04:09	1

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	217	2.5	1.4	mg/L			04/21/17 23:12	5
Sulfate	182	10.0	1.7	mg/L			04/24/17 22:55	5
Alkalinity, Bicarbonate	322	50.0	20.0	mg/L			04/18/17 15:43	5
Nitrate as N	ND	0.050	0.020	ma/L			04/12/17 21:33	1

TestAmerica Buffalo

Page 21 of 63

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-116100-9

TestAmerica Job ID: 480-116100-1

Matrix: Water

Client Sample ID: MW 5D 041217

Date Collected: 04/12/17 10:45 Date Received: 04/12/17 17:30

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite as N	ND		0.050	0.020	mg/L			04/12/17 21:33	1
Sulfide	0.16		0.10	0.050	mg/L			04/17/17 14:00	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.6		1.0	0.43	mg/L			04/17/17 09:30	1

Client Sample ID: MW 7DD 041217 Lab Sample ID: 480-116100-10

Date Collected: 04/12/17 11:50 **Matrix: Water**

Method: 8260C - Volatile Org Analyte		unds by GC/ Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82		- -	opa. oa	04/20/17 04:36	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	•			04/20/17 04:36	1
1,1,2-Trichloroethane	ND		1.0	0.23	-			04/20/17 04:36	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	-			04/20/17 04:36	1
1,1-Dichloroethane	ND		1.0	0.38	_			04/20/17 04:36	1
1,1-Dichloroethene	ND		1.0	0.29	•			04/20/17 04:36	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ū			04/20/17 04:36	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	_			04/20/17 04:36	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	•			04/20/17 04:36	1
1,2-Dichlorobenzene	ND		1.0	0.79	•			04/20/17 04:36	1
1,2-Dichloroethane	ND		1.0	0.21				04/20/17 04:36	1
1,2-Dichloropropane	ND		1.0	0.72	-			04/20/17 04:36	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/20/17 04:36	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/20/17 04:36	1
2-Hexanone	ND		5.0	1.2	ug/L			04/20/17 04:36	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/20/17 04:36	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/20/17 04:36	1
Acetone	ND		10	3.0	ug/L			04/20/17 04:36	1
Benzene	ND		1.0	0.41	ug/L			04/20/17 04:36	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/20/17 04:36	1
Bromoform	ND		1.0	0.26	ug/L			04/20/17 04:36	1
Bromomethane	ND		1.0	0.69	ug/L			04/20/17 04:36	1
Carbon disulfide	ND		1.0	0.19	ug/L			04/20/17 04:36	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/20/17 04:36	1
Chlorobenzene	ND		1.0	0.75	ug/L			04/20/17 04:36	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			04/20/17 04:36	1
Chloroethane	ND		1.0	0.32	ug/L			04/20/17 04:36	1
Chloroform	ND		1.0	0.34	ug/L			04/20/17 04:36	1
Chloromethane	ND		1.0	0.35	ug/L			04/20/17 04:36	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/20/17 04:36	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/20/17 04:36	1
Cyclohexane	ND		1.0	0.18	ug/L			04/20/17 04:36	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/20/17 04:36	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/20/17 04:36	1
Isopropylbenzene	ND		1.0	0.79				04/20/17 04:36	1
Methyl acetate	ND		1.3		ug/L			04/20/17 04:36	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/20/17 04:36	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 7DD 041217

Lab Sample ID: 480-116100-10

Date Collected: 04/12/17 11:50 **Matrix: Water** Date Received: 04/12/17 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylcyclohexane	ND		1.0	0.16	ug/L			04/20/17 04:36	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/17 04:36	1
Styrene	ND		1.0	0.73	ug/L			04/20/17 04:36	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/17 04:36	1
Toluene	ND		1.0	0.51	ug/L			04/20/17 04:36	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/17 04:36	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/20/17 04:36	1
Trichloroethene	0.78	J	1.0	0.46	ug/L			04/20/17 04:36	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/20/17 04:36	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/20/17 04:36	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/20/17 04:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					04/20/17 04:36	1
Toluene-d8 (Surr)	99		80 - 120					04/20/17 04:36	1
4-Bromofluorobenzene (Surr)	107		73 - 120					04/20/17 04:36	1
Dibromofluoromethane (Surr)	115		75 - 123					04/20/17 04:36	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	35.1		2.5	1.4	mg/L			04/26/17 09:49	5
Sulfate	75.1		10.0	1.7	mg/L			04/26/17 09:49	5
Alkalinity, Bicarbonate	207		30.0	12.0	mg/L			04/18/17 16:04	3
Nitrate as N	0.38		0.050	0.020	mg/L			04/13/17 01:58	1
Nitrite as N	ND		0.050	0.020	mg/L			04/13/17 01:58	1
Sulfide	0.34		0.10	0.050	mg/L			04/17/17 14:00	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.8		1.0	0.43	mg/L			04/17/17 09:44	1

Client Sample ID: MW 5S 041217 Lab Sample ID: 480-116100-11 Date Collected: 04/12/17 12:10 **Matrix: Water**

Date Received: 04/12/17 17:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.2	1.0	0.82	ug/L			04/20/17 18:31	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/20/17 18:31	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/20/17 18:31	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/20/17 18:31	1
1,1-Dichloroethane	6.0	1.0	0.38	ug/L			04/20/17 18:31	1
1,1-Dichloroethene	0.45 J	1.0	0.29	ug/L			04/20/17 18:31	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/20/17 18:31	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/20/17 18:31	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			04/20/17 18:31	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/20/17 18:31	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/20/17 18:31	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/20/17 18:31	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/20/17 18:31	1

TestAmerica Buffalo

Page 23 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 5S 041217

Date Collected: 04/12/17 12:10 Date Received: 04/12/17 17:30 Lab Sample ID: 480-116100-11

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed 1,4-Dichlorobenzene $\overline{\mathsf{ND}}$ 1.0 0.84 ug/L 04/20/17 18:31 2-Hexanone ND 5.0 04/20/17 18:31 1.2 ug/L 2-Butanone (MEK) ND 10 1.3 ug/L 04/20/17 18:31 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 04/20/17 18:31 ND Acetone 10 3.0 ug/L 04/20/17 18:31 Benzene ND 1.0 0.41 ug/L 04/20/17 18:31 0.39 ug/L Bromodichloromethane ND 1.0 04/20/17 18:31 **Bromoform** ND 1.0 0.26 ug/L 04/20/17 18:31 ND 04/20/17 18:31 Bromomethane 1.0 0.69 ug/L Carbon disulfide 04/20/17 18:31 ND 1.0 0.19 ug/L Carbon tetrachloride ND 1.0 0.27 ug/L 04/20/17 18:31 Chlorobenzene ND 1.0 0.75 ug/L 04/20/17 18:31 Chlorodibromomethane ND 1.0 0.32 ug/L 04/20/17 18:31 Chloroethane ND 1.0 0.32 ug/L 04/20/17 18:31 Chloroform ND 1.0 0.34 ug/L 04/20/17 18:31 Chloromethane ND 1.0 0.35 ug/L 04/20/17 18:31 1.0 0.81 ug/L 04/20/17 18:31 cis-1,2-Dichloroethene 5.6 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 04/20/17 18:31 Cyclohexane ND 1.0 0.18 ug/L 04/20/17 18:31 Dichlorodifluoromethane ND 1.0 0.68 ug/L 04/20/17 18:31 Ethylbenzene ND 1.0 0.74 ug/L 04/20/17 18:31 ND Isopropylbenzene 1.0 0.79 ug/L 04/20/17 18:31 Methyl acetate ND 1.3 1.3 ug/L 04/20/17 18:31 ND Methyl tert-butyl ether 1.0 0.16 ug/L 04/20/17 18:31 Methylcyclohexane ND 1.0 0.16 ug/L 04/20/17 18:31 Methylene Chloride ND 1.0 04/20/17 18:31 0.44 ug/L Styrene ND 1.0 0.73 ug/L 04/20/17 18:31 Tetrachloroethene NΠ 1.0 0.36 ug/L 04/20/17 18:31 Toluene ND 1.0 0.51 ug/L 04/20/17 18:31 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/20/17 18:31 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/20/17 18:31 **Trichloroethene** 2.2 1.0 0.46 ug/L 04/20/17 18:31 ND 0.88 ug/L Trichlorofluoromethane 1.0 04/20/17 18:31 Vinyl chloride ND 1.0 0.90 ug/L 04/20/17 18:31 ND 0.66 ug/L 2.0 04/20/17 18:31 Xylenes, Total %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 104 77 - 120 04/20/17 18:31 Toluene-d8 (Surr) 95 80 - 120 04/20/17 18:31 4-Bromofluorobenzene (Surr) 102 73 - 120 04/20/17 18:31 Dibromofluoromethane (Surr) 112 75 - 123 04/20/17 18:31

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D Prepare	d Analyzed	Dil Fac
Chloride	8.3	1.0	0.56	mg/L		04/21/17 18:40	2
Sulfate	169	4.0	0.70	mg/L		04/21/17 18:40	2
Alkalinity, Bicarbonate	228	50.0	20.0	mg/L		04/18/17 15:43	5
Nitrate as N	0.071	0.050	0.020	mg/L		04/13/17 02:02	1
Nitrite as N	ND	0.050	0.020	mg/L		04/13/17 02:02	1
Sulfide	0.060 J	0.10	0.050	ma/L		04/17/17 14:00	1

TestAmerica Buffalo

Page 24 of 63

... 9

6

11

10

15

16

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

General Chemistry - Dissolved								
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.7	1.0	0.43	mg/L	_		04/17/17 09:59	1

Client Sample ID: MW 7S 041217

Lab Sample ID: 480-116100-12 Date Collected: 04/12/17 13:45 **Matrix: Water**

Method: 8260C - Volatile Org Analyte	Result Qualifier	IVIS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND — —	1.0	0.82			Тторигои	04/20/17 05:30	1
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			04/20/17 05:30	1
1,1,2-Trichloroethane	ND	1.0	0.23	-			04/20/17 05:30	1
1,1,2-Trichlorotrifluoroethane	ND	1.0		ug/L			04/20/17 05:30	1
1,1-Dichloroethane	ND	1.0		ug/L			04/20/17 05:30	1
1,1-Dichloroethene	ND	1.0	0.29	-			04/20/17 05:30	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			04/20/17 05:30	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			04/20/17 05:30	1
1,2-Dibromoethane (EDB)	ND	1.0		ug/L			04/20/17 05:30	1
1,2-Dichlorobenzene	ND	1.0	0.79	-			04/20/17 05:30	1
1,2-Dichloroethane	ND	1.0		ug/L			04/20/17 05:30	1
1,2-Dichloropropane	ND	1.0		ug/L			04/20/17 05:30	1
1,3-Dichlorobenzene	ND	1.0		ug/L			04/20/17 05:30	1
1,4-Dichlorobenzene	ND	1.0	0.84	_			04/20/17 05:30	1
2-Hexanone	ND	5.0		ug/L			04/20/17 05:30	1
2-Butanone (MEK)	ND	10		ug/L			04/20/17 05:30	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/20/17 05:30	1
Acetone	ND	10		ug/L			04/20/17 05:30	1
Benzene	ND	1.0	0.41	-			04/20/17 05:30	1
Bromodichloromethane	ND	1.0	0.39	-			04/20/17 05:30	1
Bromoform	ND	1.0	0.26	U			04/20/17 05:30	1
Bromomethane	ND	1.0	0.69				04/20/17 05:30	1
Carbon disulfide	ND	1.0	0.19	-			04/20/17 05:30	1
Carbon tetrachloride	ND	1.0	0.27	-			04/20/17 05:30	1
Chlorobenzene	ND	1.0	0.75	-			04/20/17 05:30	1
Chlorodibromomethane	ND	1.0	0.32				04/20/17 05:30	1
Chloroethane	ND	1.0	0.32	-			04/20/17 05:30	1
Chloroform	ND	1.0		ug/L			04/20/17 05:30	1
Chloromethane	ND	1.0		ug/L			04/20/17 05:30	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			04/20/17 05:30	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/20/17 05:30	1
Cyclohexane	ND	1.0	0.18	-			04/20/17 05:30	1
Dichlorodifluoromethane	ND	1.0		ug/L			04/20/17 05:30	1
Ethylbenzene	ND	1.0		ug/L			04/20/17 05:30	1
Isopropylbenzene	ND	1.0	0.79				04/20/17 05:30	1
Methyl acetate	ND	1.3		ug/L			04/20/17 05:30	1
Methyl tert-butyl ether	ND	1.0		ug/L			04/20/17 05:30	1
Methylcyclohexane	ND	1.0		ug/L			04/20/17 05:30	1
Methylene Chloride	ND	1.0		ug/L			04/20/17 05:30	1
Styrene	ND	1.0		ug/L			04/20/17 05:30	
Tetrachloroethene	ND	1.0		ug/L			04/20/17 05:30	1
Toluene	ND	1.0		ug/L			04/20/17 05:30	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/20/17 05:30	
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/20/17 05:30	1
Trichloroethene	1.0	1.0		ug/L			04/20/17 05:30	1

TestAmerica Buffalo

Page 25 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 7S 041217

Lab Sample ID: 480-116100-12 Date Collected: 04/12/17 13:45

Matrix: Water

Date Received: 04/12/17 17:30

General Chemistry - Dissolved

Dissolved Organic Carbon

Sulfide

Analyte

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/20/17 05:30	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/20/17 05:30	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/20/17 05:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120			,		04/20/17 05:30	1
Toluene-d8 (Surr)	97		80 - 120					04/20/17 05:30	1
4-Bromofluorobenzene (Surr)	102		73 - 120					04/20/17 05:30	1
Dibromofluoromethane (Surr)	110		75 - 123					04/20/17 05:30	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	56.0		1.0	0.56	mg/L			04/21/17 18:55	2
Sulfate	134		4.0	0.70	mg/L			04/21/17 18:55	2
Alkalinity, Bicarbonate	247		50.0	20.0	mg/L			04/18/17 15:44	5
Nitrate as N	1.7		0.050	0.020	mg/L			04/13/17 02:03	1
Nitrite as N	ND		0.050	0.020	mg/L			04/13/17 02:03	1

Client Sample ID: MW 8S 041217 Lab Sample ID: 480-116100-13

0.10

RL

1.0

0.050 mg/L

MDL Unit

0.43 mg/L

Date Collected: 04/12/17 14:10

0.060 J

6.0

Result Qualifier

Matrix: Water

Prepared

04/17/17 14:00

Analyzed

04/17/17 10:15

Date Received: 04/12/17 17:30

Analyte	Result Qualif	ier RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/20/17 05:57	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/20/17 05:57	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/20/17 05:57	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/20/17 05:57	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/20/17 05:57	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/20/17 05:57	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/20/17 05:57	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/20/17 05:57	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			04/20/17 05:57	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/20/17 05:57	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/20/17 05:57	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/20/17 05:57	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/20/17 05:57	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/20/17 05:57	1
2-Hexanone	ND	5.0	1.2	ug/L			04/20/17 05:57	1
2-Butanone (MEK)	ND	10	1.3	ug/L			04/20/17 05:57	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/20/17 05:57	1
Acetone	ND	10	3.0	ug/L			04/20/17 05:57	1
Benzene	ND	1.0	0.41	ug/L			04/20/17 05:57	1
Bromodichloromethane	ND	1.0	0.39	ug/L			04/20/17 05:57	1
Bromoform	ND	1.0	0.26	ug/L			04/20/17 05:57	1

TestAmerica Buffalo

Page 26 of 63

Dil Fac

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

General Chemistry - Dissolved

Dissolved Organic Carbon

Analyte

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 8S 041217 Lab Sample ID: 480-116100-13

Date Collected: 04/12/17 14:10 **Matrix: Water** Date Received: 04/12/17 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		1.0	0.69	ug/L			04/20/17 05:57	
Carbon disulfide	ND		1.0	0.19	ug/L			04/20/17 05:57	
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/20/17 05:57	
Chlorobenzene	ND		1.0	0.75	ug/L			04/20/17 05:57	,
Chlorodibromomethane	ND		1.0	0.32	ug/L			04/20/17 05:57	
Chloroethane	ND		1.0	0.32	ug/L			04/20/17 05:57	
Chloroform	ND		1.0	0.34	ug/L			04/20/17 05:57	
Chloromethane	ND		1.0	0.35	ug/L			04/20/17 05:57	
cis-1,2-Dichloroethene	2.1		1.0	0.81	ug/L			04/20/17 05:57	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/20/17 05:57	•
Cyclohexane	ND		1.0		ug/L			04/20/17 05:57	
Dichlorodifluoromethane	ND		1.0	0.68	-			04/20/17 05:57	
Ethylbenzene	ND		1.0	0.74	-			04/20/17 05:57	• • • • • • • •
Isopropylbenzene	ND		1.0		ug/L			04/20/17 05:57	
Methyl acetate	ND		1.3		ug/L			04/20/17 05:57	
Methyl tert-butyl ether	ND		1.0		ug/L			04/20/17 05:57	
Methylcyclohexane	ND		1.0		ug/L			04/20/17 05:57	
Methylene Chloride	ND		1.0	0.44	_			04/20/17 05:57	
Styrene	ND		1.0	0.73	ū			04/20/17 05:57	
Tetrachloroethene	0.61	J	1.0		ug/L			04/20/17 05:57	
Toluene	ND		1.0	0.51	_			04/20/17 05:57	
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/20/17 05:57	· · · · · · .
trans-1,3-Dichloropropene	ND		1.0	0.37	-			04/20/17 05:57	
Trichloroethene	3.5		1.0		ug/L			04/20/17 05:57	
Trichlorofluoromethane	ND		1.0		ug/L			04/20/17 05:57	,
Vinyl chloride	ND		1.0		ug/L			04/20/17 05:57	
Xylenes, Total	ND		2.0		ug/L			04/20/17 05:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			-	-	04/20/17 05:57	
Toluene-d8 (Surr)	98		80 - 120					04/20/17 05:57	
4-Bromofluorobenzene (Surr)	106		73 - 120					04/20/17 05:57	
Dibromofluoromethane (Surr)	109		75 - 123					04/20/17 05:57	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.4		1.0	0.56	mg/L			04/21/17 19:09	
Sulfate	60.0		4.0	0.70	mg/L			04/21/17 19:09	2
Alkalinity, Bicarbonate	170		30.0	12.0	mg/L			04/18/17 15:55	3
Nitrate as N	0.067		0.050	0.020				04/13/17 02:04	
Nitrite as N	ND		0.050	0.020				04/13/17 02:04	
Sulfide	0.060	4	0.10	0.050	ma/l			04/17/17 14:00	

TestAmerica Buffalo

Analyzed

04/17/17 10:30

Prepared

RL

1.0

MDL Unit

0.43 mg/L

Result Qualifier

1.4

Dil Fac

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 7D 041217

Lab Sample ID: 480-116100-14 Date Collected: 04/12/17 15:40

Matrix: Water

Date Received: 04/12/17 17:30

Analyte	anic Compou Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/20/17 06:23	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/20/17 06:23	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/20/17 06:23	
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			04/20/17 06:23	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/20/17 06:23	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/20/17 06:23	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/20/17 06:23	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39				04/20/17 06:23	
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			04/20/17 06:23	
1,2-Dichlorobenzene	ND		1.0		ug/L			04/20/17 06:23	
1,2-Dichloroethane	ND		1.0	0.21	-			04/20/17 06:23	
1,2-Dichloropropane	ND		1.0	0.72	-			04/20/17 06:23	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/20/17 06:23	
1,4-Dichlorobenzene	ND		1.0	0.84	-			04/20/17 06:23	
2-Hexanone	ND		5.0		ug/L			04/20/17 06:23	
2-Butanone (MEK)	ND		10		ug/L			04/20/17 06:23	· · · · · · .
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	-			04/20/17 06:23	
Acetone	ND		10		ug/L			04/20/17 06:23	
Benzene	ND		1.0		ug/L			04/20/17 06:23	
Bromodichloromethane	ND		1.0		ug/L			04/20/17 06:23	
Bromoform	ND		1.0		ug/L			04/20/17 06:23	
Bromomethane	ND		1.0		ug/L			04/20/17 06:23	· · · · · .
Carbon disulfide	ND		1.0		ug/L			04/20/17 06:23	
Carbon tetrachloride	ND		1.0	0.27	-			04/20/17 06:23	
Chlorobenzene	ND		1.0		ug/L			04/20/17 06:23	
Chlorodibromomethane	ND		1.0		ug/L			04/20/17 06:23	
Chloroethane	ND		1.0		ug/L			04/20/17 06:23	
Chloroform	ND		1.0		ug/L			04/20/17 06:23	
Chloromethane	ND		1.0		ug/L			04/20/17 06:23	
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/20/17 06:23	
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/20/17 06:23	· · · · · .
Cyclohexane	ND		1.0		ug/L			04/20/17 06:23	
Dichlorodifluoromethane	ND		1.0	0.68	-			04/20/17 06:23	
Ethylbenzene	ND		1.0	0.74	-			04/20/17 06:23	
Isopropylbenzene	ND		1.0		ug/L			04/20/17 06:23	
Methyl acetate	ND		1.3		ug/L			04/20/17 06:23	
Methyl tert-butyl ether	ND		1.0		ug/L			04/20/17 06:23	
Methylcyclohexane	ND		1.0		ug/L			04/20/17 06:23	
Methylene Chloride	ND		1.0		ug/L			04/20/17 06:23	
	ND				ug/L			04/20/17 06:23	· · · · · .
Styrene Tetrachloroethene	ND ND		1.0					04/20/17 06:23	
Toluene	ND ND		1.0 1.0		ug/L ug/L			04/20/17 06:23	•
trans-1,2-Dichloroethene								04/20/17 06:23	
·	ND		1.0		ug/L				
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/20/17 06:23	
Trichloroethene	1.1		1.0		ug/L			04/20/17 06:23	
Trichlorofluoromethane	ND		1.0		ug/L			04/20/17 06:23	
Vinyl chloride	ND		1.0	0.90	ug/L			04/20/17 06:23	•

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Client Sample ID: MW 7D 041217

Lab Sample ID: 480-116100-14

Matrix: Water

Date Collected: 04/12/17 15:40 Date Received: 04/12/17 17:30

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		77 - 120			-		04/20/17 06:23	1
Toluene-d8 (Surr)	97		80 - 120					04/20/17 06:23	1
4-Bromofluorobenzene (Surr)	102		73 - 120					04/20/17 06:23	1
Dibromofluoromethane (Surr)	110		75 - 123					04/20/17 06:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19.2		1.0	0.56	mg/L			04/21/17 19:24	2
Sulfate	58.8		4.0	0.70	mg/L			04/21/17 19:24	2
Alkalinity, Bicarbonate	183		30.0	12.0	mg/L			04/18/17 16:09	3
Nitrate as N	0.61		0.050	0.020	mg/L			04/13/17 02:05	1
Nitrite as N	ND		0.050	0.020	mg/L			04/13/17 02:05	1
Sulfide	0.070	J	0.10	0.050	mg/L			04/17/17 14:00	1
General Chemistry - Dissolved									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.9		1.0	0.43	mg/L			04/17/17 10:46	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Rec
		12DCE	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(80-120)	(73-120)	(75-123)
480-116100-1	MW-6D 041117	104	100	108	108
480-116100-2	MW 6DD 041117	104	99	108	112
480-116100-3	MW 1S 041117	101	98	108	111
480-116100-4	X-1 041117	100	97	106	108
480-116100-5	MW 6S 041117	104	100	107	112
480-116100-6	MW 1D 041117	100	99	105	109
480-116100-6 MS	MW 1D 041117	99	100	107	110
480-116100-6 MSD	MW 1D 041117	100	102	110	108
480-116100-7	MW 10S 041117	105	101	106	113
480-116100-8	MW 10D 041217	102	98	106	111
480-116100-9	MW 5D 041217	105	98	103	113
480-116100-10	MW 7DD 041217	108	99	107	115
480-116100-11	MW 5S 041217	104	95	102	112
480-116100-12	MW 7S 041217	106	97	102	110
480-116100-13	MW 8S 041217	104	98	106	109
480-116100-14	MW 7D 041217	103	97	102	110
LCS 480-352919/4	Lab Control Sample	95	102	108	107
LCS 480-353013/4	Lab Control Sample	99	99	106	110
MB 480-352919/6	Method Blank	100	100	108	107
MB 480-353013/6	Method Blank	103	96	105	112

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-352919/6

Matrix: Water

Analysis Batch: 352919

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/19/17 22:13	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/19/17 22:13	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/19/17 22:13	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			04/19/17 22:13	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/19/17 22:13	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/19/17 22:13	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/19/17 22:13	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/19/17 22:13	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/19/17 22:13	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/19/17 22:13	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/19/17 22:13	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/19/17 22:13	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/19/17 22:13	1
1,4-Dichlorobenzene	ND		1.0	0.84	-			04/19/17 22:13	1
2-Hexanone	ND		5.0		ug/L			04/19/17 22:13	1
2-Butanone (MEK)	ND		10		ug/L			04/19/17 22:13	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/19/17 22:13	1
Acetone	ND		10		ug/L			04/19/17 22:13	1
Benzene	ND		1.0	0.41	-			04/19/17 22:13	1
Bromodichloromethane	ND		1.0	0.39	_			04/19/17 22:13	1
Bromoform	ND		1.0	0.26	-			04/19/17 22:13	1
Bromomethane	ND		1.0		ug/L			04/19/17 22:13	· · · · · · · · 1
Carbon disulfide	ND		1.0	0.19	-			04/19/17 22:13	1
Carbon tetrachloride	ND		1.0		ug/L			04/19/17 22:13	1
Chlorobenzene	ND		1.0	0.75	-			04/19/17 22:13	· · · · · · · · · 1
Chlorodibromomethane	ND		1.0	0.32	-			04/19/17 22:13	1
Chloroethane	ND		1.0	0.32	-			04/19/17 22:13	1
Chloroform	ND		1.0	0.34	-			04/19/17 22:13	1
Chloromethane	ND		1.0	0.35	-			04/19/17 22:13	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/19/17 22:13	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/19/17 22:13	· · · · · · · · · · · · · · · · · · ·
Cyclohexane	ND		1.0	0.18	_			04/19/17 22:13	1
Dichlorodifluoromethane	ND		1.0		ug/L			04/19/17 22:13	1
Ethylbenzene	ND		1.0		ug/L			04/19/17 22:13	· · · · · · · · 1
Isopropylbenzene	ND		1.0	0.79	-			04/19/17 22:13	
Methyl acetate	ND		1.3		ug/L			04/19/17 22:13	
Methyl tert-butyl ether	ND		1.0	0.16				04/19/17 22:13	
Methylcyclohexane	ND		1.0		ug/L			04/19/17 22:13	1
Methylene Chloride	ND		1.0		ug/L			04/19/17 22:13	1
Styrene	ND		1.0		ug/L			04/19/17 22:13	
Tetrachloroethene	ND		1.0		ug/L ug/L			04/19/17 22:13	1
					•				
Toluene trans-1,2-Dichloroethene	ND		1.0		ug/L ug/L			04/19/17 22:13	1
	ND ND		1.0 1.0		ug/L ug/L			04/19/17 22:13	1
trans-1,3-Dichloropropene Trichloroethene	ND ND				•				1
			1.0		ug/L			04/19/17 22:13	1
Trichlorofluoromethane	ND		1.0		ug/L			04/19/17 22:13	1
Vinyl chloride	ND		1.0		ug/L			04/19/17 22:13	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/19/17 22:13	1

TestAmerica Buffalo

Page 31 of 63

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120	04/19/17 22:13	1
Toluene-d8 (Surr)	100		80 - 120	04/19/17 22:13	1
4-Bromofluorobenzene (Surr)	108		73 - 120	04/19/17 22:13	1
Dibromofluoromethane (Surr)	107		75 - 123	04/19/17 22:13	1

Lab Sample ID: LCS 480-352919/4

Matrix: Water

Analysis Batch: 352919

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	22.8		ug/L		91	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.3		ug/L		97	76 - 120	
1,1,2-Trichloroethane	25.0	22.9		ug/L		92	76 - 122	
1,1,2-Trichlorotrifluoroethane	25.0	23.3		ug/L		93	61 - 148	
1,1-Dichloroethane	25.0	23.7		ug/L		95	77 - 120	
1,1-Dichloroethene	25.0	22.9		ug/L		92	66 - 127	
1,2,4-Trichlorobenzene	25.0	23.2		ug/L		93	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	18.3		ug/L		73	56 - 134	
1,2-Dibromoethane (EDB)	25.0	23.4		ug/L		93	77 - 120	
1,2-Dichlorobenzene	25.0	23.5		ug/L		94	80 - 124	
1,2-Dichloroethane	25.0	21.9		ug/L		88	75 - 120	
1,2-Dichloropropane	25.0	24.9		ug/L		100	76 - 120	
1,3-Dichlorobenzene	25.0	24.2		ug/L		97	77 - 120	
1,4-Dichlorobenzene	25.0	23.4		ug/L		94	80 - 120	
2-Hexanone	125	127		ug/L		101	65 - 127	
2-Butanone (MEK)	125	134		ug/L		107	57 - 140	
4-Methyl-2-pentanone (MIBK)	125	120		ug/L		96	71 - 125	
Acetone	125	144		ug/L		115	56 - 142	
Benzene	25.0	24.2		ug/L		97	71 - 124	
Bromodichloromethane	25.0	22.6		ug/L		90	80 - 122	
Bromoform	25.0	20.0		ug/L		80	61 - 132	
Bromomethane	25.0	19.2		ug/L		77	55 - 144	
Carbon disulfide	25.0	22.3		ug/L		89	59 - 134	
Carbon tetrachloride	25.0	21.6		ug/L		87	72 - 134	
Chlorobenzene	25.0	23.2		ug/L		93	80 - 120	
Chlorodibromomethane	25.0	21.8		ug/L		87	75 ₋ 125	
Chloroethane	25.0	18.9		ug/L		76	69 - 136	
Chloroform	25.0	22.4		ug/L		90	73 - 127	
Chloromethane	25.0	24.4		ug/L		98	68 - 124	
cis-1,2-Dichloroethene	25.0	23.7		ug/L		95	74 - 124	
cis-1,3-Dichloropropene	25.0	22.4		ug/L		89	74 - 124	
Cyclohexane	25.0	25.4		ug/L		101	59 ₋ 135	
Dichlorodifluoromethane	25.0	22.5		ug/L		90	59 ₋ 135	
Ethylbenzene	25.0	22.6		ug/L		91	77 - 123	
Isopropylbenzene	25.0	22.4		ug/L		89	77 - 122	
Methyl acetate	125	111		ug/L		89	74 - 133	
Methyl tert-butyl ether	25.0	21.1		ug/L		85	77 - 120	
Methylcyclohexane	25.0	23.4		ug/L		94	68 - 134	
Methylene Chloride	25.0	25.9		ug/L		104	75 ₋ 124	
Styrene	25.0	23.1		ug/L		92	80 - 120	
Tetrachloroethene	25.0	27.5		ug/L		110	74 - 122	
Toluene	25.0	23.5		ug/L		94	80 - 122	
trans-1,2-Dichloroethene	25.0	24.1		ug/L		96	73 - 127	
trans-1,3-Dichloropropene	25.0	21.1		ug/L		84	80 - 120	
· · · /= =:=:::=:=p::=p:::=	20.0			3		• •		

TestAmerica Buffalo

Page 32 of 63

2

3

4

6

8

9

11

13

15

1 6

QC Sample Results

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-116100-1

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

ND

ND

ND

ND

ND

ND

ND

ND

ND

0.22

ND

Lab Sample ID: LCS 480-352919/4

Matrix: Water

Analysis Batch: 352919

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichloroethene	25.0	24.4		ug/L		98	74 - 123	
Trichlorofluoromethane	25.0	24.3		ug/L		97	62 - 150	
Vinyl chloride	25.0	21.7		ug/L		87	65 - 133	

	LCS	LCS			
Surrogate	%Recovery	Qualifier	Limits		
1,2-Dichloroethane-d4 (Surr)	95		77 - 120		
Toluene-d8 (Surr)	102		80 - 120		
4-Bromofluorobenzene (Surr)	108		73 - 120		
Dibromofluoromethane (Surr)	107		75 - 123		

Lab Sample ID: 480-116100-6 MS

Matrix: Water

1,4-Dichlorobenzene

2-Butanone (MEK)

Bromodichloromethane

4-Methyl-2-pentanone (MIBK)

2-Hexanone

Acetone

Benzene

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Chloromethane

Cyclohexane

Chloroform

Carbon tetrachloride

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Analysis Batch: 352919

Client Samp	e ID: MW 1D 041117
	Pron Type: Total/NA

%Rec.

101

104

106

101

90

112

102

95

78

106

97

101

95

85

103

76

110

78 - 124

65 - 127

57 - 140

71 - 125

56 - 142

71 - 124

80 - 122

61 - 132

55 - 144

59 - 134

72 - 134

80 - 120

75 - 125

69 - 136

73 - 127

68 - 124

74 - 124

Prep Type: Total/NA

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		25.0	27.0		ug/L		108	73 - 126	
1,1,2,2-Tetrachloroethane	ND		25.0	25.3		ug/L		101	76 - 120	
1,1,2-Trichloroethane	ND		25.0	26.2		ug/L		105	76 - 122	
1,1,2-Trichlorotrifluoroethane	ND		25.0	24.5		ug/L		98	61 - 148	
1,1-Dichloroethane	ND		25.0	26.8		ug/L		107	77 - 120	
1,1-Dichloroethene	ND		25.0	27.4		ug/L		110	66 - 127	
1,2,4-Trichlorobenzene	ND		25.0	25.4		ug/L		102	79 - 122	
1,2-Dibromo-3-Chloropropane	ND		25.0	18.4		ug/L		74	56 - 134	
1,2-Dibromoethane (EDB)	ND		25.0	25.5		ug/L		102	77 - 120	
1,2-Dichlorobenzene	ND		25.0	25.3		ug/L		101	80 - 124	
1,2-Dichloroethane	ND		25.0	24.2		ug/L		97	75 - 120	
1,2-Dichloropropane	ND		25.0	28.4		ug/L		113	76 - 120	
1,3-Dichlorobenzene	ND		25.0	24.7		ug/L		99	77 - 120	

25.0

125

125

125

125

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

MS MS

25.4

130

132

126

113

28.0

25.4

23.6

19.4

26.7

24.3

25.4

23.8

21.2

25.8

18.9

27.4

22.7

27.4

23.2

ug/L

Spike

91 74 - 124 110 59 - 13593 59 - 135

TestAmerica Buffalo

Page 33 of 63

Client Sample ID: MW 1D 041117

Prep Type: Total/NA

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-116100-6 MS Client Sample ID: MW 1D 041117 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 352919

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %	Rec	Limits	
Ethylbenzene	ND		25.0	24.7		ug/L		99	77 - 123	
Isopropylbenzene	ND		25.0	24.6		ug/L		99	77 - 122	
Methyl acetate	ND		125	114		ug/L		91	74 - 133	
Methyl tert-butyl ether	0.68	J	25.0	24.7		ug/L		96	77 - 120	
Methylcyclohexane	ND		25.0	24.6		ug/L		99	68 - 134	
Methylene Chloride	ND		25.0	29.2		ug/L		117	75 - 124	
Styrene	ND		25.0	24.5		ug/L		98	80 - 120	
Tetrachloroethene	ND		25.0	30.1		ug/L		120	74 - 122	
Toluene	ND		25.0	25.7		ug/L		103	80 - 122	
trans-1,2-Dichloroethene	ND		25.0	27.9		ug/L		112	73 - 127	
trans-1,3-Dichloropropene	ND		25.0	20.0		ug/L		80	80 - 120	
Trichloroethene	ND		25.0	27.3		ug/L		109	74 - 123	
Trichlorofluoromethane	ND		25.0	25.8		ug/L		103	62 - 150	
Vinyl chloride	ND		25.0	23.9		ug/L		95	65 - 133	

MS MS %Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 99 77 - 120 Toluene-d8 (Surr) 80 - 120 100 4-Bromofluorobenzene (Surr) 107 73 - 120 Dibromofluoromethane (Surr) 75 - 123 110

Lab Sample ID: 480-116100-6 MSD

Matrix: Water

Analysis Batch: 352919	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	25.7		ug/L	— <u> </u>	103	73 - 126	5	15
1,1,2,2-Tetrachloroethane	ND		25.0	25.1		ug/L		100	76 - 120	1	15
1,1,2-Trichloroethane	ND		25.0	25.9		ug/L		104	76 - 122	1	15
1,1,2-Trichlorotrifluoroethane	ND		25.0	24.2		ug/L		97	61 - 148	1	20
1,1-Dichloroethane	ND		25.0	26.4		ug/L		106	77 - 120	1	20
1,1-Dichloroethene	ND		25.0	26.8		ug/L		107	66 - 127	2	16
1,2,4-Trichlorobenzene	ND		25.0	26.0		ug/L		104	79 - 122	2	20
1,2-Dibromo-3-Chloropropane	ND		25.0	19.6		ug/L		78	56 ₋ 134	6	15
1,2-Dibromoethane (EDB)	ND		25.0	25.4		ug/L		101	77 - 120	0	15
1,2-Dichlorobenzene	ND		25.0	24.5		ug/L		98	80 - 124	3	20
1,2-Dichloroethane	ND		25.0	24.1		ug/L		96	75 - 120	0	20
1,2-Dichloropropane	ND		25.0	27.0		ug/L		108	76 - 120	5	20
1,3-Dichlorobenzene	ND		25.0	25.6		ug/L		102	77 - 120	4	20
1,4-Dichlorobenzene	ND		25.0	24.5		ug/L		98	78 - 124	3	20
2-Hexanone	ND		125	132		ug/L		106	65 - 127	1	15
2-Butanone (MEK)	ND		125	131		ug/L		105	57 - 140	1	20
4-Methyl-2-pentanone (MIBK)	ND		125	131		ug/L		105	71 - 125	3	35
Acetone	ND		125	122		ug/L		98	56 - 142	8	15
Benzene	ND		25.0	26.2		ug/L		105	71 - 124	6	13
Bromodichloromethane	ND		25.0	25.2		ug/L		101	80 - 122	1	15
Bromoform	ND		25.0	24.4		ug/L		98	61 - 132	3	15
Bromomethane	ND		25.0	17.8		ug/L		71	55 - 144	9	15

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-116100-6 MSD

Matrix: Water

Analysis Batch: 352919

Client Sample ID: MW 1D 041117 **Prep Type: Total/NA**

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon disulfide	0.22	J	25.0	25.5		ug/L		101	59 - 134	5	15
Carbon tetrachloride	ND		25.0	23.2		ug/L		93	72 - 134	5	15
Chlorobenzene	ND		25.0	25.4		ug/L		102	80 - 120	0	25
Chlorodibromomethane	ND		25.0	24.7		ug/L		99	75 - 125	4	15
Chloroethane	ND		25.0	20.9		ug/L		84	69 - 136	1	15
Chloroform	ND		25.0	24.8		ug/L		99	73 - 127	4	20
Chloromethane	ND		25.0	18.1		ug/L		73	68 - 124	4	15
cis-1,2-Dichloroethene	ND		25.0	25.6		ug/L		102	74 - 124	7	15
cis-1,3-Dichloropropene	ND		25.0	22.9		ug/L		92	74 - 124	1	15
Cyclohexane	ND		25.0	27.2		ug/L		109	59 - 135	1	20
Dichlorodifluoromethane	ND		25.0	21.3		ug/L		85	59 - 135	9	20
Ethylbenzene	ND		25.0	24.6		ug/L		99	77 - 123	0	15
Isopropylbenzene	ND		25.0	23.8		ug/L		95	77 - 122	3	20
Methyl acetate	ND		125	112		ug/L		90	74 - 133	1	20
Methyl tert-butyl ether	0.68	J	25.0	24.3		ug/L		94	77 - 120	2	37
Methylcyclohexane	ND		25.0	24.6		ug/L		99	68 - 134	0	20
Methylene Chloride	ND		25.0	27.7		ug/L		111	75 - 124	5	15
Styrene	ND		25.0	24.6		ug/L		99	80 - 120	0	20
Tetrachloroethene	ND		25.0	29.4		ug/L		117	74 - 122	2	20
Toluene	ND		25.0	25.5		ug/L		102	80 - 122	1	15
trans-1,2-Dichloroethene	ND		25.0	27.1		ug/L		108	73 - 127	3	20
trans-1,3-Dichloropropene	ND		25.0	20.8		ug/L		83	80 - 120	4	15
Trichloroethene	ND		25.0	26.5		ug/L		106	74 - 123	3	16
Trichlorofluoromethane	ND		25.0	24.5		ug/L		98	62 - 150	5	20
Vinyl chloride	ND		25.0	21.5		ug/L		86	65 - 133	11	15

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene (Surr)	110		73 - 120
Dibromofluoromethane (Surr)	108		75 - 123

Lab Sample ID: MB 480-353013/6

Matrix: Water

Analysis Batch: 353013

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB ME	3							
Analyte R	esult Qu	ıalifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/20/17 10:45	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/20/17 10:45	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/20/17 10:45	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			04/20/17 10:45	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/20/17 10:45	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/20/17 10:45	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/20/17 10:45	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/20/17 10:45	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/20/17 10:45	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/20/17 10:45	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/20/17 10:45	1

TestAmerica Buffalo

Page 35 of 63

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Lab Sample ID: MB 480-353013/6

TestAmerica Job ID: 480-116100-1

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water Analysis Batch: 353013

Analyte 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone 2-Butanone (MEK)	Result (ND ND ND ND	Qualifier	1.0	MDL 0.72		D	Prepared	Analyzed 04/20/17 10:45	Dil Fac
1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone	ND			0.72	ug/L			04/20/17 10:45	1
1,4-Dichlorobenzene 2-Hexanone			1 0						
2-Hexanone	ND			0.78	-			04/20/17 10:45	1
			1.0	0.84	-			04/20/17 10:45	1
2 Butanono (MEK)	ND		5.0		ug/L			04/20/17 10:45	1
2-Butanone (WEN)	ND		10	1.3	ug/L			04/20/17 10:45	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/20/17 10:45	1
Acetone	ND		10	3.0	ug/L			04/20/17 10:45	1
Benzene	ND		1.0	0.41	ug/L			04/20/17 10:45	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/20/17 10:45	1
Bromoform	ND		1.0	0.26	ug/L			04/20/17 10:45	1
Bromomethane	ND		1.0	0.69	ug/L			04/20/17 10:45	1
Carbon disulfide	ND		1.0	0.19	ug/L			04/20/17 10:45	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/20/17 10:45	1
Chlorobenzene	ND		1.0	0.75	ug/L			04/20/17 10:45	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			04/20/17 10:45	1
Chloroethane	ND		1.0	0.32	ug/L			04/20/17 10:45	1
Chloroform	ND		1.0	0.34	ug/L			04/20/17 10:45	1
Chloromethane	ND		1.0	0.35	ug/L			04/20/17 10:45	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/20/17 10:45	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/20/17 10:45	1
Cyclohexane	ND		1.0	0.18	ug/L			04/20/17 10:45	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/20/17 10:45	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/20/17 10:45	1
Isopropylbenzene	ND		1.0	0.79	ug/L			04/20/17 10:45	1
Methyl acetate	ND		1.3	1.3	ug/L			04/20/17 10:45	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/20/17 10:45	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/20/17 10:45	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/20/17 10:45	1
Styrene	ND		1.0	0.73	ug/L			04/20/17 10:45	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/20/17 10:45	1
Toluene	ND		1.0	0.51	ug/L			04/20/17 10:45	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/20/17 10:45	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/20/17 10:45	1
Trichloroethene	ND		1.0	0.46				04/20/17 10:45	1
Trichlorofluoromethane	ND		1.0	0.88	-			04/20/17 10:45	1
Vinyl chloride	ND		1.0	0.90				04/20/17 10:45	1
Xylenes, Total	ND		2.0	0.66	-			04/20/17 10:45	1

1D	MD
IID	IVID

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		77 - 120		04/20/17 10:45	1
Toluene-d8 (Surr)	96		80 - 120		04/20/17 10:45	1
4-Bromofluorobenzene (Surr)	105		73 - 120		04/20/17 10:45	1
Dibromofluoromethane (Surr)	112		75 - 123		04/20/17 10:45	1

TestAmerica Buffalo

Page 36 of 63

2

3

_

7

0

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-353013/4

Matrix: Water

Client Sample ID:	: Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 353013 Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits **Analyte** 25.0 1,1,1-Trichloroethane 23.7 ug/L 95 73 - 126 25.0 1,1,2,2-Tetrachloroethane 24.5 ug/L 98 76 - 120 25.0 ug/L 76 - 122 1,1,2-Trichloroethane 24.0 96 98 1,1,2-Trichlorotrifluoroethane 25.0 24.4 ug/L 61 - 1481,1-Dichloroethane 25.0 24.5 ug/L 98 77 - 1201,1-Dichloroethene 25.0 24.9 ug/L 100 66 - 12725.0 99 79 - 122 1,2,4-Trichlorobenzene 24.7 ug/L 1,2-Dibromo-3-Chloropropane 25.0 78 56 - 134 19.6 ug/L 25.0 97 1,2-Dibromoethane (EDB) 24 1 ug/L 77 - 1201,2-Dichlorobenzene 25.0 24.4 ug/L 97 80 - 124 1.2-Dichloroethane 25.0 23.8 ug/L 95 75 - 1201,2-Dichloropropane 25.0 27.3 ug/L 109 76 - 120 1,3-Dichlorobenzene 25.0 24.3 ug/L 97 77 - 120 1,4-Dichlorobenzene 25.0 25.0 ug/L 100 80 - 120 2-Hexanone 125 131 ug/L 104 65 - 127 2-Butanone (MEK) 125 115 57 - 140 143 ug/L 125 101 4-Methyl-2-pentanone (MIBK) 126 ug/L 71 - 125Acetone 125 145 ug/L 116 56 - 142 Benzene 25.0 25.8 ug/L 103 71 - 124 Bromodichloromethane 25.0 24.0 ug/L 96 80 - 122 Bromoform 25.0 21.9 87 61 - 132 ug/L 77 25.0 55 - 144 Bromomethane 19.3 ug/L Carbon disulfide 25.0 23.4 ug/L 94 59 - 134 Carbon tetrachloride 25.0 21.7 87 72 - 134 ug/L Chlorobenzene 25.0 24.4 ug/L 98 80 - 120ug/L Chlorodibromomethane 25.0 22.2 89 75 - 125 Chloroethane 25.0 20.3 ug/L 81 69 - 136 Chloroform 25.0 24.1 ug/L 96 73 - 127 Chloromethane 25.0 25.7 103 68 - 124 ug/L cis-1,2-Dichloroethene 25.0 25.2 ug/L 101 74 - 124 97 cis-1,3-Dichloropropene 25.0 ug/L 74 - 12424.4 Cyclohexane 25.0 26.5 ug/L 106 59 - 135 59 - 135 Dichlorodifluoromethane 25.0 25.6 ug/L 103 Ethylbenzene 25.0 23.1 ug/L 92 77 - 123 25.0 91 77 - 122 Isopropylbenzene 22.8 ug/L Methyl acetate 125 119 ug/L 95 74 - 133 25.0 22.9 ug/L 92 77 - 120 Methyl tert-butyl ether Methylcyclohexane 25.0 25.5 ug/L 102 68 - 134Methylene Chloride 25.0 27.6 ug/L 110 75 - 124Styrene 25.0 23.4 ug/L 93 80 - 120 Tetrachloroethene 25.0 27.3 ug/L 109 74 - 122 25.0 80 - 122 Toluene 23.9 ug/L 96 trans-1,2-Dichloroethene 25.0 26.0 ug/L 104 73 - 127 25.0 20.9 84 trans-1,3-Dichloropropene ug/L 80 - 120 Trichloroethene 25.0 26.2 105 74 - 123 ug/L 27.2 ug/L 109 Trichlorofluoromethane 25.0 62 - 150Vinyl chloride 25.0 23.8 ug/L 95 65 - 133

TestAmerica Buffalo

_

4

6

8

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-353013/4

Matrix: Water

Analysis Batch: 353013

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: MW 1D 041117

Client Sample ID: MW 1D 041117

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene (Surr)	106		73 - 120
Dibromofluoromethane (Surr)	110		75 - 123

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-353353/28

Matrix: Water

Analysis Batch: 353353

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			04/21/17 20:45	1

Lab Sample ID: LCS 480-353353/27

Matrix: Water

Analysis Batch: 353353

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	49.16		mg/L	_	98	90 - 110	

Lab Sample ID: 480-116100-6 MS

Matrix: Water

Analysis Batch: 353353

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	252		250	493.1		mg/L		96	81 - 120

Lab Sample ID: 480-116100-6 MSD

Matrix: Water

Analysis Batch: 353353

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	252		250	492.6		mg/L		96	81 - 120		20

Lab Sample ID: MB 480-353362/4

Matrix: Water

Analysis Batch: 353362

мв мв

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			04/21/17 18:25	1
Sulfate	ND		2.0	0.35	ma/L			04/21/17 18:25	1

Lab Sample ID: LCS 480-353362/3

Matrix: Water

Analysis Batch: 353362

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	50.50		mg/L		101	90 - 110	

TestAmerica Buffalo

Prep Type: Total/NA

4/27/2017

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-353362/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 353362

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Sulfate 50.0 50.16 100 90 - 110 mg/L

Lab Sample ID: MB 480-353748/28 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 353748

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			04/25/17 00:32	1
Sulfate	0.624	J	2.0	0.35	mg/L			04/25/17 00:32	1

Lab Sample ID: MB 480-353748/4 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 353748

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride $\overline{\mathsf{ND}}$ 0.50 0.28 mg/L 04/24/17 21:17 Sulfate ND 2.0 0.35 mg/L 04/24/17 21:17

Lab Sample ID: LCS 480-353748/27 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 353748

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	49.76		mg/L		100	90 - 110	
Sulfate	50.0	46.23		mg/L		92	90 - 110	

Lab Sample ID: LCS 480-353748/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 353748

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	49.42		mg/L	_	99	90 - 110	
Sulfate	50.0	46.06		ma/L		92	90 - 110	

Client Sample ID: MW 1D 041117 Lab Sample ID: 480-116100-6 MS **Matrix: Water** Prep Type: Total/NA

Analysis Ratch: 353749

Alialysis Datcii. 353740										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	132		250	381.8		mg/L		100	80 - 120	

Lab Sample ID: 480-116100-6 MSD Client Sample ID: MW 1D 041117 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 353748

Analysis Batom 500140	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Sulfate	132		250	388.1		mg/L		102	80 - 120	2	20	

TestAmerica Buffalo

Page 39 of 63

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 480-354021/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 354021

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			04/26/17 08:03	1
Sulfate	ND		2.0	0.35	mg/L			04/26/17 08:03	1

Lab Sample ID: LCS 480-354021/3 Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 354021

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	49.92		mg/L		100	90 - 110	
Sulfate	50.0	48.28		mg/L		97	90 - 110	

Method: 310.2_ASP - Alkalinity - Colorimetric

Lab Sample ID: MB 480-352693/24 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 352693

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	ND	10.0	4.0 mg/L			04/18/17 15:31	1

мв мв

Lab Sample ID: MB 480-352693/36 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 352693

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	ND		10.0	4.0	mg/L			04/18/17 15:41	1

Lab Sample ID: MB 480-352693/44 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 352693

	MR	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	ND		10.0	4.0	mg/L			04/18/17 15:45	1

Lab Sample ID: MB 480-352693/54 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 352693

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	ND		10.0	4.0	mg/L			04/18/17 15:53	1

Lab Sample ID: MB 480-352693/66 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 352693

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	ND		10.0	4.0	mg/L			04/18/17 16:05	1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: MW 1D 041117

Client Sample ID: MW 1D 041117

Client Sample ID: MW 7D 041217

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-351678/3

Matrix: Water

Analysis Batch: 351678

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Nitrite as N 0.050 ND 0.020 mg/L 04/13/17 01:48

Lab Sample ID: LCS 480-351678/4

Matrix: Water

Analysis Batch: 351678

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Nitrite as N 1.50 1.52 mg/L 101 90 - 110

Lab Sample ID: 480-116100-6 MS

Matrix: Water

Analysis Batch: 351678

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Nitrite as N ND 1.00 0.962 mg/L 96 90 - 110

Lab Sample ID: 480-116100-6 MSD

Matrix: Water

Analysis Batch: 351678

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Nitrite as N ND 1.00 0.989 99 90 - 110 mg/L

Lab Sample ID: 480-116100-14 MS

Matrix: Water

Analysis Batch: 351678

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Nitrite as N ND 1.00 0.997 mg/L 100 90 - 110

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 490-422765/2

Matrix: Water

Analysis Batch: 422765

MB MB

RL **MDL** Unit Analyzed Analyte Result Qualifier Dil Fac Prepared Sulfide 0.10 0.050 mg/L 04/17/17 13:00 ND

Lab Sample ID: LCS 490-422765/3

Matrix: Water

Analysis Batch: 422765

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Sulfide 1.00 1.07 mg/L 107 90 - 110

TestAmerica Buffalo

4/27/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: SM 4500 S2 D - Sulfide, Total (Continued)

Lab Sample ID: MB 490-422766/2 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 422766

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.10 Sulfide ND 0.050 mg/L 04/17/17 14:00

Lab Sample ID: LCS 490-422766/3 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 422766

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Sulfide 1.00 1.07 mg/L 107 90 - 110

Lab Sample ID: 480-116100-6 MS Client Sample ID: MW 1D 041117 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 422766

Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier Added Limits Analyte Unit D %Rec Sulfide 0.63 F1 1.00 2.55 F1 mg/L 192 70 - 130

Client Sample ID: MW 1D 041117 Lab Sample ID: 480-116100-6 MSD Prep Type: Total/NA

Matrix: Water

Analysis Batch: 422766

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Sulfide 0.63 F1 1.00 2.17 F1 154 70 - 130 mg/L 16 50

Method: SM 5310C - Organic Carbon, Dissolved (DOC)

Lab Sample ID: MB 480-352418/3 Client Sample ID: Method Blank **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 352418

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed 1.0 **Dissolved Organic Carbon** $\overline{\mathsf{ND}}$ 0.43 mg/L 04/17/17 05:30

Lab Sample ID: LCS 480-352418/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Dissolved**

Analysis Batch: 352418

Spike LCS LCS %Rec. Result Qualifier Added Analyte Unit %Rec Limits **Dissolved Organic Carbon** 60.0 57.21 mg/L 95 90 - 110

Lab Sample ID: 480-116100-6 MS Client Sample ID: MW 1D 041117 **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 352418

Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits **Dissolved Organic Carbon** 2.4 20.0 19.51 mg/L 86 54 - 131

TestAmerica Buffalo

QC Sample Results

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-116100-1

Project/Site: Forest Glen Monitoring

Method: SM 5310C - Organic Carbon, Dissolved (DOC) (Continued)

Lab Sample ID: 480-116100-6 MSD Client Sample ID: MW 1D 041117 **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 352418

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dissolved Organic Carbon	2.4		20.0	18.82		mg/L		82	54 - 131	4	20

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

GC/MS VOA

Analysis Batch: 352919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-116100-1	MW-6D 041117	Total/NA	Water	8260C	_
480-116100-2	MW 6DD 041117	Total/NA	Water	8260C	
480-116100-3	MW 1S 041117	Total/NA	Water	8260C	
480-116100-4	X-1 041117	Total/NA	Water	8260C	
480-116100-5	MW 6S 041117	Total/NA	Water	8260C	
480-116100-6	MW 1D 041117	Total/NA	Water	8260C	
480-116100-7	MW 10S 041117	Total/NA	Water	8260C	
480-116100-8	MW 10D 041217	Total/NA	Water	8260C	
480-116100-9	MW 5D 041217	Total/NA	Water	8260C	
480-116100-10	MW 7DD 041217	Total/NA	Water	8260C	
480-116100-12	MW 7S 041217	Total/NA	Water	8260C	
480-116100-13	MW 8S 041217	Total/NA	Water	8260C	
480-116100-14	MW 7D 041217	Total/NA	Water	8260C	
MB 480-352919/6	Method Blank	Total/NA	Water	8260C	
LCS 480-352919/4	Lab Control Sample	Total/NA	Water	8260C	
480-116100-6 MS	MW 1D 041117	Total/NA	Water	8260C	
480-116100-6 MSD	MW 1D 041117	Total/NA	Water	8260C	

Analysis Batch: 353013

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-11	MW 5S 041217	Total/NA	Water	8260C	
MB 480-353013/6	Method Blank	Total/NA	Water	8260C	
LCS 480-353013/4	Lab Control Sample	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 351678

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-2	MW 6DD 041117	Total/NA	Water	353.2	
480-116100-3	MW 1S 041117	Total/NA	Water	353.2	
480-116100-4	X-1 041117	Total/NA	Water	353.2	
480-116100-5	MW 6S 041117	Total/NA	Water	353.2	
480-116100-6	MW 1D 041117	Total/NA	Water	353.2	
480-116100-10	MW 7DD 041217	Total/NA	Water	353.2	
480-116100-11	MW 5S 041217	Total/NA	Water	353.2	
480-116100-12	MW 7S 041217	Total/NA	Water	353.2	
480-116100-13	MW 8S 041217	Total/NA	Water	353.2	
480-116100-14	MW 7D 041217	Total/NA	Water	353.2	
MB 480-351678/3	Method Blank	Total/NA	Water	353.2	
LCS 480-351678/4	Lab Control Sample	Total/NA	Water	353.2	
480-116100-6 MS	MW 1D 041117	Total/NA	Water	353.2	
480-116100-6 MSD	MW 1D 041117	Total/NA	Water	353.2	
480-116100-14 MS	MW 7D 041217	Total/NA	Water	353.2	

Analysis Batch: 351682

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-1	MW-6D 041117	Total/NA	Water	353.2	<u> </u>
480-116100-2	MW 6DD 041117	Total/NA	Water	353.2	
480-116100-3	MW 1S 041117	Total/NA	Water	353.2	
480-116100-4	X-1 041117	Total/NA	Water	353.2	

TestAmerica Buffalo

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

General Chemistry (Continued)

Analysis Batch: 351682 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-5	MW 6S 041117	Total/NA	Water	353.2	
480-116100-6	MW 1D 041117	Total/NA	Water	353.2	
480-116100-7	MW 10S 041117	Total/NA	Water	353.2	
480-116100-8	MW 10D 041217	Total/NA	Water	353.2	
480-116100-9	MW 5D 041217	Total/NA	Water	353.2	
480-116100-10	MW 7DD 041217	Total/NA	Water	353.2	
480-116100-11	MW 5S 041217	Total/NA	Water	353.2	
480-116100-12	MW 7S 041217	Total/NA	Water	353.2	
480-116100-13	MW 8S 041217	Total/NA	Water	353.2	
480-116100-14	MW 7D 041217	Total/NA	Water	353.2	

Analysis Batch: 351684

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-1	MW-6D 041117	Total/NA	Water	353.2	
480-116100-7	MW 10S 041117	Total/NA	Water	353.2	
480-116100-8	MW 10D 041217	Total/NA	Water	353.2	
480-116100-9	MW 5D 041217	Total/NA	Water	353.2	

Analysis Batch: 352418

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-1	MW-6D 041117	Dissolved	Water	SM 5310C	
480-116100-2	MW 6DD 041117	Dissolved	Water	SM 5310C	
480-116100-3	MW 1S 041117	Dissolved	Water	SM 5310C	
480-116100-4	X-1 041117	Dissolved	Water	SM 5310C	
480-116100-5	MW 6S 041117	Dissolved	Water	SM 5310C	
480-116100-6	MW 1D 041117	Dissolved	Water	SM 5310C	
480-116100-7	MW 10S 041117	Dissolved	Water	SM 5310C	
480-116100-8	MW 10D 041217	Dissolved	Water	SM 5310C	
480-116100-9	MW 5D 041217	Dissolved	Water	SM 5310C	
480-116100-10	MW 7DD 041217	Dissolved	Water	SM 5310C	
480-116100-11	MW 5S 041217	Dissolved	Water	SM 5310C	
480-116100-12	MW 7S 041217	Dissolved	Water	SM 5310C	
480-116100-13	MW 8S 041217	Dissolved	Water	SM 5310C	
480-116100-14	MW 7D 041217	Dissolved	Water	SM 5310C	
MB 480-352418/3	Method Blank	Dissolved	Water	SM 5310C	
LCS 480-352418/4	Lab Control Sample	Dissolved	Water	SM 5310C	
480-116100-6 MS	MW 1D 041117	Dissolved	Water	SM 5310C	
480-116100-6 MSD	MW 1D 041117	Dissolved	Water	SM 5310C	

Analysis Batch: 352693

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-1	MW-6D 041117	Total/NA	Water	310.2_ASP	
480-116100-2	MW 6DD 041117	Total/NA	Water	310.2_ASP	
480-116100-3	MW 1S 041117	Total/NA	Water	310.2_ASP	
480-116100-4	X-1 041117	Total/NA	Water	310.2_ASP	
480-116100-5	MW 6S 041117	Total/NA	Water	310.2_ASP	
480-116100-6	MW 1D 041117	Total/NA	Water	310.2_ASP	
480-116100-7	MW 10S 041117	Total/NA	Water	310.2_ASP	
480-116100-8	MW 10D 041217	Total/NA	Water	310.2_ASP	
480-116100-9	MW 5D 041217	Total/NA	Water	310.2_ASP	
480-116100-10	MW 7DD 041217	Total/NA	Water	310.2_ASP	

TestAmerica Buffalo

4/27/2017

onoa Banaio

Page 45 of 63

-

4

6

8

9

10

40

13

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

General Chemistry (Continued)

Analysis Batch: 352693 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-11	MW 5S 041217	Total/NA	Water	310.2_ASP	
480-116100-12	MW 7S 041217	Total/NA	Water	310.2_ASP	
480-116100-13	MW 8S 041217	Total/NA	Water	310.2_ASP	
480-116100-14	MW 7D 041217	Total/NA	Water	310.2_ASP	
MB 480-352693/24	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-352693/36	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-352693/44	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-352693/54	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-352693/66	Method Blank	Total/NA	Water	310.2_ASP	
LCS 480-352693/25	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-352693/37	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-352693/45	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-352693/55	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-352693/67	Lab Control Sample	Total/NA	Water	310.2_ASP	
480-116100-6 MS	MW 1D 041117	Total/NA	Water	310.2_ASP	
480-116100-6 MSD	MW 1D 041117	Total/NA	Water	310.2_ASP	

Analysis Batch: 353353

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-1	MW-6D 041117	Total/NA	Water	300.0	
480-116100-2	MW 6DD 041117	Total/NA	Water	300.0	
480-116100-3	MW 1S 041117	Total/NA	Water	300.0	
480-116100-4	X-1 041117	Total/NA	Water	300.0	
480-116100-5	MW 6S 041117	Total/NA	Water	300.0	
480-116100-6	MW 1D 041117	Total/NA	Water	300.0	
480-116100-7	MW 10S 041117	Total/NA	Water	300.0	
480-116100-8	MW 10D 041217	Total/NA	Water	300.0	
480-116100-9	MW 5D 041217	Total/NA	Water	300.0	
MB 480-353353/28	Method Blank	Total/NA	Water	300.0	
LCS 480-353353/27	Lab Control Sample	Total/NA	Water	300.0	
480-116100-6 MS	MW 1D 041117	Total/NA	Water	300.0	
480-116100-6 MSD	MW 1D 041117	Total/NA	Water	300.0	

Analysis Batch: 353362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-11	MW 5S 041217	Total/NA	Water	300.0	_
480-116100-12	MW 7S 041217	Total/NA	Water	300.0	
480-116100-13	MW 8S 041217	Total/NA	Water	300.0	
480-116100-14	MW 7D 041217	Total/NA	Water	300.0	
MB 480-353362/4	Method Blank	Total/NA	Water	300.0	
LCS 480-353362/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 353748

Lab Sample ID	Client Sample ID	ent Sample ID Prep Type		Method	Prep Batch
480-116100-1	MW-6D 041117	Total/NA	Water	300.0	_
480-116100-2	MW 6DD 041117	Total/NA	Water	300.0	
480-116100-3	MW 1S 041117	Total/NA	Water	300.0	
480-116100-4	X-1 041117	Total/NA	Water	300.0	
480-116100-5	MW 6S 041117	Total/NA	Water	300.0	
480-116100-6	MW 1D 041117	Total/NA	Water	300.0	
480-116100-7	MW 10S 041117	Total/NA	Water	300.0	

TestAmerica Buffalo

4/27/2017

Page 46 of 63

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

General Chemistry (Continued)

Analysis Batch: 353748 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-8	MW 10D 041217	Total/NA	Water	300.0	
480-116100-9	MW 5D 041217	Total/NA	Water	300.0	
MB 480-353748/28	Method Blank	Total/NA	Water	300.0	
MB 480-353748/4	Method Blank	Total/NA	Water	300.0	
LCS 480-353748/27	Lab Control Sample	Total/NA	Water	300.0	
LCS 480-353748/3	Lab Control Sample	Total/NA	Water	300.0	
480-116100-6 MS	MW 1D 041117	Total/NA	Water	300.0	
480-116100-6 MSD	MW 1D 041117	Total/NA	Water	300.0	

Analysis Batch: 354021

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-	116100-10	MW 7DD 041217	Total/NA	Water	300.0	
MB 4	180-354021/4	Method Blank	Total/NA	Water	300.0	
LCS	480-354021/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 422765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-1	MW-6D 041117	Total/NA	Water	SM 4500 S2 D	
480-116100-2	MW 6DD 041117	Total/NA	Water	SM 4500 S2 D	
480-116100-3	MW 1S 041117	Total/NA	Water	SM 4500 S2 D	
MB 490-422765/2	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 490-422765/3	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	

Analysis Batch: 422766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116100-4	X-1 041117	Total/NA	Water	SM 4500 S2 D	
480-116100-5	MW 6S 041117	Total/NA	Water	SM 4500 S2 D	
480-116100-6	MW 1D 041117	Total/NA	Water	SM 4500 S2 D	
480-116100-7	MW 10S 041117	Total/NA	Water	SM 4500 S2 D	
480-116100-8	MW 10D 041217	Total/NA	Water	SM 4500 S2 D	
480-116100-9	MW 5D 041217	Total/NA	Water	SM 4500 S2 D	
480-116100-10	MW 7DD 041217	Total/NA	Water	SM 4500 S2 D	
480-116100-11	MW 5S 041217	Total/NA	Water	SM 4500 S2 D	
480-116100-12	MW 7S 041217	Total/NA	Water	SM 4500 S2 D	
480-116100-13	MW 8S 041217	Total/NA	Water	SM 4500 S2 D	
480-116100-14	MW 7D 041217	Total/NA	Water	SM 4500 S2 D	
MB 490-422766/2	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 490-422766/3	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
480-116100-6 MS	MW 1D 041117	Total/NA	Water	SM 4500 S2 D	
480-116100-6 MSD	MW 1D 041117	Total/NA	Water	SM 4500 S2 D	

TestAmerica Buffalo

Page 47 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-116100-1

Matrix: Water

Client Sample ID: MW-6D 041117 Date Collected: 04/11/17 09:30

Date Received: 04/12/17 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	352919	04/20/17 00:34	NEA	TAL BUF
Total/NA	Analysis	300.0		5	353353	04/21/17 22:15	DMR	TAL BUF
Total/NA	Analysis	300.0		5	353748	04/24/17 21:25	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:41	LED	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/12/17 21:15	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351684	04/12/17 21:15	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422765	04/17/17 13:00	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 06:30	EKB	TAL BUF

Lab Sample ID: 480-116100-2 Client Sample ID: MW 6DD 041117

Date Collected: 04/11/17 11:15 Date Received: 04/12/17 17:30

Matrix: Water

Batch **Batch** Dilution Batch Prepared **Prep Type** Туре Method Run Number or Analyzed **Factor** Analyst Lab Total/NA Analysis 8260C 1 352919 04/20/17 01:01 NEA TAL BUF Total/NA Analysis 300.0 10 353353 04/21/17 22:23 DMR TAL BUF Total/NA Analysis 300.0 10 353748 04/24/17 21:33 DMR TAL BUF Total/NA Analysis 310.2_ASP 3 352693 04/18/17 15:55 LED TAL BUF Total/NA 353.2 351678 04/13/17 01:51 DSC TAL BUF Analysis 1 Total/NA Analysis 353.2 351682 04/13/17 01:51 DSC TAL BUF 1

Date Received: 04/12/17 17:30

Date Collected: 0	4/11/17 13	:00						Matrix: Water
Client Sample	ID: MW	1S 041117				Lab Sa	mple ID:	480-116100-3
Dissolved 	Analysis	SM 5310C	ı	352416	04/17/17 06:45	END	TAL BUF	
Dissalvad	Analysis	CM 5340C	4	252440	04/47/47 06:45	EKD	TAL DUE	
Total/NA	Analysis	SM 4500 S2 D	1	422765	04/17/17 13:00	GRM	TAL NSH	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			352919	04/20/17 01:28	NEA	TAL BUF
Total/NA	Analysis	300.0		50	353353	04/21/17 22:31	DMR	TAL BUF
Total/NA	Analysis	300.0		50	353748	04/24/17 21:41	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:39	LED	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 01:52	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 01:52	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422765	04/17/17 13:00	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 07:00	EKB	TAL BUF

Page 48 of 63

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-116100-4

Matrix: Water

Client Sample ID: X-1 041117

Date Collected: 04/11/17 00:00 Date Received: 04/12/17 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	352919	04/20/17 01:55	NEA	TAL BUF
Total/NA	Analysis	300.0		50	353353	04/21/17 22:39	DMR	TAL BUF
Total/NA	Analysis	300.0		50	353748	04/24/17 21:50	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:39	LED	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 01:53	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 01:53	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 07:15	EKB	TAL BUF

Client Sample ID: MW 6S 041117 Lab Sample ID: 480-116100-5

Date Collected: 04/11/17 13:00 Date Received: 04/12/17 17:30

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			352919	04/20/17 02:22	NEA	TAL BUF
Total/NA	Analysis	300.0		5	353353	04/21/17 22:47	DMR	TAL BUF
Total/NA	Analysis	300.0		5	353748	04/24/17 21:58	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:39	LED	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 01:54	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 01:54	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 07:30	EKB	TAL BUF

Client Sample ID: MW 1D 041117 Lab Sample ID: 480-116100-6 **Matrix: Water**

Date Collected: 04/11/17 16:30 Date Received: 04/12/17 17:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			352919	04/20/17 02:49	NEA	TAL BUF
Total/NA	Analysis	300.0		5	353353	04/21/17 21:34	DMR	TAL BUF
Total/NA	Analysis	300.0		5	353748	04/24/17 22:06	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:39	LED	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 01:55	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 01:55	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 08:30	EKB	TAL BUF

2

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 10S 041117

Date Collected: 04/11/17 16:40 Date Received: 04/12/17 17:30 Lab Sample ID: 480-116100-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	352919	04/20/17 03:15	NEA	TAL BUF
Total/NA	Analysis	300.0		5	353353	04/21/17 22:56	DMR	TAL BUF
Total/NA	Analysis	300.0		20	353748	04/25/17 00:41	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		3	352693	04/18/17 16:04	LED	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/12/17 21:31	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351684	04/12/17 21:31	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 07:45	EKB	TAL BUF

Client Sample ID: MW 10D 041217 Lab Sample ID:

Date Collected: 04/12/17 09:10

Date Received: 04/12/17 17:30

Lab Sample ID: 480-116100-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	352919	04/20/17 03:42	NEA	TAL BUF
Total/NA	Analysis	300.0		10	353353	04/21/17 23:04	DMR	TAL BUF
Total/NA	Analysis	300.0		10	353748	04/24/17 22:47	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:41	LED	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/12/17 21:32	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351684	04/12/17 21:32	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 09:15	EKB	TAL BUF

Client Sample ID: MW 5D 041217

Date Collected: 04/12/17 10:45

Date Received: 04/12/17 17:30

Lab Sample ID: 480-116100-9
Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			352919	04/20/17 04:09	NEA	TAL BUF
Total/NA	Analysis	300.0		5	353353	04/21/17 23:12	DMR	TAL BUF
Total/NA	Analysis	300.0		5	353748	04/24/17 22:55	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:43	LED	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/12/17 21:33	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351684	04/12/17 21:33	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 09:30	EKB	TAL BUF

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-116100-10

Client Sample ID: MW 7DD 041217 **Matrix: Water**

Date Collected: 04/12/17 11:50 Date Received: 04/12/17 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	352919	04/20/17 04:36	NEA	TAL BUF
Total/NA	Analysis	300.0		5	354021	04/26/17 09:49	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		3	352693	04/18/17 16:04	LED	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 01:58	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 01:58	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 09:44	EKB	TAL BUF

Lab Sample ID: 480-116100-11 Client Sample ID: MW 5S 041217

Date Collected: 04/12/17 12:10 **Matrix: Water**

Date Received: 04/12/17 17:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			353013	04/20/17 18:31	ARS	TAL BUF
Total/NA	Analysis	300.0		2	353362	04/21/17 18:40	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:43	LED	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 02:02	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 02:02	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 09:59	EKB	TAL BUF

Lab Sample ID: 480-116100-12 Client Sample ID: MW 7S 041217

Date Collected: 04/12/17 13:45

Date Received: 04/12/17 17:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			352919	04/20/17 05:30	NEA	TAL BUF
Total/NA	Analysis	300.0		2	353362	04/21/17 18:55	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 15:44	LED	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 02:03	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 02:03	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 10:15	EKB	TAL BUF

Client Sample ID: MW 8S 041217 Lab Sample ID: 480-116100-13 **Matrix: Water**

Date Collected: 04/12/17 14:10 Date Received: 04/12/17 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	352919	04/20/17 05:57	NEA	TAL BUF
Total/NA	Analysis	300.0		2	353362	04/21/17 19:09	DMR	TAL BUF

TestAmerica Buffalo

Page 51 of 63

Matrix: Water

4/27/2017

Lab Chronicle

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	310.2_ASP	-	3	352693	04/18/17 15:55	LED	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 02:04	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 02:04	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 10:30	EKB	TAL BUF

Client Sample ID: MW 7D 041217

Lab Sample ID: 480-116100-14

Matrix: Water

Date Collected: 04/12/17 15:40 Date Received: 04/12/17 17:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	352919	04/20/17 06:23	NEA	TAL BUF
Total/NA	Analysis	300.0		2	353362	04/21/17 19:24	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		3	352693	04/18/17 16:09	LED	TAL BUF
Total/NA	Analysis	353.2		1	351678	04/13/17 02:05	DSC	TAL BUF
Total/NA	Analysis	353.2		1	351682	04/13/17 02:05	DSC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 10:46	EKB	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-116100-1

Project/Site: Forest Glen Monitoring

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New York	Program NELAP		EPA Region 2	Identification Number	Expiration Date
Analysis Method	Prep Method	Matrix	Analyt	e	

Laboratory: TestAmerica Nashville

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	11342	03-31-18

TestAmerica Buffalo

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
310.2_ASP	Alkalinity - Colorimetric	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
SM 4500 S2 D	Sulfide, Total	SM	TAL NSH
SM 5310C	Organic Carbon, Dissolved (DOC)	SM	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

Lab Sample ID	Client Sample ID	Matrix	Collected Receive
480-116100-1	MW-6D 041117	Water	04/11/17 09:30 04/12/17 17
480-116100-2	MW 6DD 041117	Water	04/11/17 11:15 04/12/17 17
480-116100-3	MW 1S 041117	Water	04/11/17 13:00 04/12/17 17
480-116100-4	X-1 041117	Water	04/11/17 00:00 04/12/17 17
480-116100-5	MW 6S 041117	Water	04/11/17 13:00 04/12/17 17
480-116100-6	MW 1D 041117	Water	04/11/17 16:30 04/12/17 17
480-116100-7	MW 10S 041117	Water	04/11/17 16:40 04/12/17 17
480-116100-8	MW 10D 041217	Water	04/12/17 09:10 04/12/17 17
480-116100-9	MW 5D 041217	Water	04/12/17 10:45 04/12/17 17
480-116100-10	MW 7DD 041217	Water	04/12/17 11:50 04/12/17 17
480-116100-11	MW 5S 041217	Water	04/12/17 12:10 04/12/17 17
480-116100-12	MW 7S 041217	Water	04/12/17 13:45 04/12/17 17
480-116100-13	MW 8S 041217	Water	04/12/17 14:10 04/12/17 17
480-116100-14	MW 7D 041217	Water	04/12/17 15:40 04/12/17 17

6

A

7

8

4.6

44

12

14

15

Quantitation Limit Exceptions Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116100-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

MethodMatrixAnalyteUnitsClient RLLab PQL8260CWaterMethyl acetateug/L1.32.5

3

_

7

8

10

12

14

15

3.0年

Cooler Temperature(s) °C and Other Remarks:

Received by:

TestAmerica

Chain of Custody Record

TestAmerica Buffalo

	lestAmerica builaio	1		•					ď	ななけ	でしている人となり
	10 Hazelwood Drive	Chain of (Chain of Custody Record	ecord							
	Allileist, NT 14220-2230 Phone (716) 691-2600 Fax (716) 691-7991								THE LEA	ADER IN ENVI	the Leader in Environmental Testing
		Sampler: Noonmarke,	Hanna Labra	Lab PM: Johnson, Orlette S		O	Carrier Tracking No(s)	No(s):	COC No: 480-961	COC No: 480-96124-22905.1	_
		Phone: 215 051, 61	E-Mail	E-Mail:	o diccirco	<u> </u>			Page:	, to	
		200		e.jorinson@testan	iei icali ic.o				rage i or	7 10	
	Company: O'Brien & Gere Inc of North America	215-325-150	00		Analy	Analysis Requested	ested				
	4873	Due Date Requested:							Preserva	Preservation Codes: A-HCL M	s: 1 - Hexane
		TAT Requested (days):	(5)						B - NaOH C - Zn Acetate		N - None O - AsNaO2
		7 a 4	0		uoq				Ž Z Ž		ستا ۲۳۰ ۲۳۰ ۲۳۰ ۲۳۰ ۲۳۰ ۲۳۰ ۲۳۰ ۲۳۰ ۲۳۰ ۲۳۰
	00(Tel) 315-463-7554(Fax)	PO#: 11511119		(ŏN	ısO olr				G-Ar H-As		Jecahydrate
	Email: Yuri.Veliz@obg.com	WO #:		(on)		ə			The second second	3	
	Σ̈́	Project #: 48002808		C.P.(Sulfid			nigin 7 - 9 9	480-116100 COC	0 COC
		SSOW#:		SO4 OFW(sid - (IstoT			oo to		
		, poe	Sample (w=water, Type S=solid, O=solid, ParaTransue, C=comp.	id Filiered form: MS/M 00 - TCL IIst 0.28D - CI, :	.2, 363.2_Uit 5310_DOC_C	- a¨zs¯009t			aj Ņņimber		
F	Sample Identification		G=grab) A=Air)	928 300 300	SWS	ws.				pecial Insti	Special Instructions/Note:
Pag			Preservation Code:	XANN	A	CB			X		
ge 5	MW-60	19-11-17 930	(S) Water	3 1 3	ر ا				ngiliya.		
57 o	MW (DD)	1-11-17 11:15	6 Water	316) S S	6					
f 63	MW 15 CHILL	13,00	G Water	- E	20	-			1 2 3 Sec.		
3	X-1	1-11-11	G Water	w 	20	~			1100		
		4-11-17 13:00 ((5 Water	w -	2 2 1				- Ken		
	(Qsw'sw/LIIIho	7 1630	6 Water	93		3			SW	[Sm; s	Q
	.7)	(5 Water	3 1 2	2						
	(10)	10	(5 Water	3 1 0	2 2 1						
	15D C41319	9 Sho1 4,1-81-H	5 Water	1312) R				· 13.4 (1.182)		
	_	9 0511 11-E1-H	> Water	3 ()	166	1 1			The same of the sa		
	mw 55 0412 (1)	9 0181 11-81-4	Water	313	コスト						
	Possible Hazard Identification Non-Hazard	Unknown	Radiological	Sample Disposal (A i	sal (A fee o Client	may be as $\Box_{D!!}$	assessed if san Disposal By Lab	amples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab — Archive For Mon	er than 1 r	nonth) Months
	ssted: I, II, III, IV, Other (specify)			Special Instructions/QC Requirements:	tions/QC P	equirement	ö			ł	
	ished by:	Date: /		Time:			Method of	Method of Shipment:			
4	Relinquisped by Mrn My / & F	0571/7:/19/17	Company ORC	Received by:	(2)	Ser y		Date/Time:	71 17	30	Company
1/27		Date/Time:	Company	Received by:		7	, i	Date/Time:'		0	Company

Relinquished by:

Custody Seal No.:

Custody Seals Infact: A Yes A No

Chain of Custody Record

TestAmerica Buffalo

4	-
1	
	v
1	Н
()	
-	
th Consume	
Distant	
Л٩	ш
w	8
atititi'	
(
Attaces?	П
	н
	Н
1	н
-	
44	В
arigonate.	
(I)	я
716	
(I)	
, w	
	ă,
•	

T - TSP Dodecahydrate
U - Acetone
V - MCAA
W - pH 4-5
Z - other (specify) THE LEADER IN ENVIRONMENTAL TESTING N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 M - Hexane COC No: 480-96124-22905.2 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - NaHSO4
F - MacHO7
G - Amchlor
H - Ascorbic Acid Page: Page 2 of 2 Job#: i - ice J - Di Water K - EDTA L - EDA Total Number of containers **Analysis Requested** SM4500_S2_D - Total Sulfide E-Mail: orlette.johnson@testamericainc.com 310.2 - Alkalinity SM5310_DOC_C - Dissolved Organic Carbon 900'0 SBD - CI' SO4 Lab PM: Johnson, Orlette S ertotin MS/MSD (Yes or No) Field Filtered Sample (Yes or No) (W=water, S=solid, O=waste/oil, BT=Tissue, 4 thush Standard(10 Days) Sample Type (C=comp, G=grab) Months Kounsky 315-424-1306 AT Requested (days): Due Date Requested: PO#: 11511119 Project #: 48002808 NO #: Phone (716) 691-2600 Fax (716) 691-7991 333 West Washington St. PO BOX 4873 Phone: 315-956-6100(Tel) 315-463-7554(Fax) Jompany: O'Brien & Gere Inc of North America 10 Hazelwood Drive Amherst, NY 14228-2298 Client Information Forest Glen Monitoring 'uri.Veliz@obg.com East Syracuse Client Contact: Mr. Yuri Veliz State, Zip: NY, 13221

Special Instructions/Note:

SB

Preservation Code:

A=Air)

Sample Time

Sample Date

Water Water Water

B 18

3 3

a ત

> Water Water Water Water

0 ${\mathfrak O}$ 3

4-12-17 1540

418170

MW 7D

85 0412M

38

Page 58 of 63

MELHOSY WA

Sample Identification

14.70

4-13-19 13-61-H

3481

Water Water

ょ

		1 1			
Possible Hazard Identification	ation	S	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	f samples are retained longer than 1 m	onth)
Non-Hazard Flammable	ımmable 🗀 Skin Irritant 🗀 Poison B 🗀 Unknown 🗀 Radiological	cal	Heturn To Client Disposal By Lab	Lab Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	II, III, IV, Other (specify)	Ś	Special Instructions/QC Requirements:		
Empty Kit Relinquished by:	: Date: /	Time:		Method of Shipment:	
Relinquished by:	12 Date Time: 3-17 11730	28 Company 86	Received by: (MCPPH)	Date/Time: 7-12-17 1730 Co	Company
Relinquished by:		Company	Received by:		Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:	Custody Seal No.:		Cooler Temperature(s) °C and Other Remarks:	30十月23日井	
		1			

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

1 1010 (1 10) 00 1-2000 1 ax (1 10) 001-1001														ĺ					1	20
Client Information (Sub Contract Lab)	Sampler:			Lab PM: Johnso	Lab PM: Johnson, Orlette	ette S					Carrier Tracking No(s):	Trackir)oN G	÷		.	COC No: 480-34277.1			27/
Client Contact: Shipping/Receiving	Phone:			E-Mail: orlette	E-Mail: orlette.johnson@testame	n@tes	tameri	ricainc.com	ă		State of Origin: New York	ork Origin				- T	Page: Page 1 of 2		:	4/
Company: TestAmerica Laboratories, Inc				7 ≻	Accreditations Required (See note): NELAP - New York	Ons Req	uired (Si	ee note)	-							N C.	Job #: 480-116100-1			
Address: 2960 Foster Creighton Drive,	Due Date Requested: 4/24/2017	#						Ana	Analysis	Req	Requested	ď				***	Preservation Codes:	odes:		
City: Nashville	TAT Requested (days):	/s):		4.50		-							\dashv			1	B - NaOH C - Zn Acetate	N - None O - AsNaO2	ž ā	
State, ZIp: TN, 37204																1327	D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	ដ ភ	
Phone: 615-726-0177(Tel) 615-726-3404(Fax)	PO#:															Tiby oth Fyliadio	F - MeOH G - Amchlor H - Ascorbic Acid		R - Na2S2O3 S - H2SO4 T - TSB Dedecabudants	
Email:	WO#			ou N													I - Ice J - DI Water		le	
Project Name: Forest Glen Monitoring	Project #: 48002808			. IVoir	s or	ulfide											K-EDTA L-EDA	W - pH 4-5 Z - other (specify)	5 specify)	
Site:	SSOW#:			22.41	D (Y	otal S								-			Other:			
	:	Sample (Sample Type (C≃comp,	Matrix (W=water, S=solid, G=waste/oil, BT=Tissue, G=0)	rform MS/M	4500_S2_D/										al Number				
Sample Identification - Client ID (Lab ID)	Sample Date	X i	Preservation Code:	Ξ.,	X P	SI				į.		물 물 ()	7. 15.		Š	$\langle T \rangle$	Special	Special Instructions/Note:	s/Note:	f 63
MW-6D 041117 (480-116100-1)	4/11/17			Water		×				,	- 1					- }		\$ 16. \$ 1.2.14801	1 10 11 11 11 11 11 11 11 11 11 11 11 11	59 c
MW 6DD 041117 (480-116100-2)	4/11/17	11:15 Eastern		Water		×										-				nge :
MW 1S 041117 (480-116100-3)	4/11/17	13:00 Eastern		Water		×														Pa
X-1 041117 (480-116100-4)	4/11/17	Eastern		Water		×										-				
MW 6S 041117 (480-116100-5)	4/11/17	13:00 Eastern		Water		×	-									-				
MW 1D 041117 (480-116100-6)	4/11/17	16:30 Eastern		Water		×										ند				
MW 1D 041117 (480-116100-6MS)	4/11/17	16:30 Eastern	MS	Water		×										4 .				
MW 1D 041117 (480-116100-6MSD)	4/11/17	16:30 Eastern	MSD	Water		<u>×</u>														
MW 10S 041117 (480-116100-7)	4/11/17	16:40 Eastern		Water		×										4				
Note: Since laboratory accreditations are subject to change, TestAmenca Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc.	ries, Inc. places the ov matrix being analyzed to date, return the sign	wnership of met I, the samples n ned Chain of Cι	hod, analyte & nust be shippອ ıstody attesting	accreditation condition to back to the Te	ompliance stAmeric	e upon o la labora TestAme	ut subcc tory or o rica Lab	ntract la ther inst oratorie	aborator ructions s, Inc.	ies. Th	is samp provide	ile ship id. Anj	ment is	forwa jes to a	ded ur	ider ch	hain-of-custody. status should be	If the laboraton brought to Test	y does not tAmerica	
Possible Hazard Identification Unconfirmed					Sam	Sample Disposal (A f		(A fe	e may	be as	assessed if san Disposal By Lab	ed if:	samp .ab	les a	∐e ret	aine.	(A fee may be assessed if samples are retained longer than 1 month)	n 1 month) Months	6	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	ble Rank: 2			Spec	Special Instructio	uction	ns/QC Requirements:	Requir	emen	įs									
		Date:		T	Time:						~	Method of Shipment:	of Ship	ment:						
reincustred by	Date/lime/3//1	16	600		π	Received by:	oy:						Dat	Date/Time:				Company		
Kelli Iquisi Ieu Dje	Date/I ime:			Company	70	Received by:	Ņ						Dat	Date/Time:				Company		
Reinquished by:	Date/Time:		- 6	Company	70	Received by:	oy:						Dat	Date/Time:				Company		

TestAmerica Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

				!		-		-						
			"	and Other Remarks:	റ്	Cooler Temperature(s)	Cooler Te			-			Custody Seal No.:	eals intact:
Company		Date/Time:	Da			d by:	Received by:	ny	Company			Date/Time:		Relinquished by:
Company		Date/Time:	Da			d by:	Received by:	iny	Compa			Date/Time:		Relinquisned by:
Company		Date/Time:	Da			d by:	Received by:	R	Company	7/60	13/	Date/Time:		Relinguished by:
		oment:	Method of Shipment:				55	Time:		te:	Date:			Empty Kit Relinquished by:
				ements:	ΩC Requirements	Special Instructions/Q	pecial Ins	S		e Rank: 2	Primary Deliverable Rank: 2	Primary [III, IV, Other (specify)	Deliverable Requested: I, II, III, IV, Other (specify)
than 1 month) Months	etained longer than Archive For	be assessed if samples are retained longer Disposal By Lab Archive For	assessed if samp Disposal By Lab	be asses:	fee may	Sample Disposal (A	iample Di:	S					ion	Possible Hazard Identification Unconfirmed
tody. I	This sample shipment is forwarded under chain-of-custody.	nent is forwarded	sample shipn		ontract laboratories.	on out subcc	ımpliance up	creditation col	າod, analyte & ac	vnership of meth	viaces the ov	aboratories, Inc. p	Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcor	Note: Since laboratory accreditation
	_ 2								_		-			
		7%												
							×	ier Ier	Water	15:40 Eastern		4/12/17	0-14)	MW 7D 041217 (480-116100-14)
'							×	iter	Water	14:10 Eastern		4/12/17)-13)	MW 8S 041217 (480-116100-13)
	·	. 					×	ıter	Water	13:45 astern		4/12/17)-12)	MW 7S 041217 (480-116100-12)
776700		1					×	iter	Water	12:10 Eastern		4/12/17)-11)	MW 5S 041217 (480-116100-11)
Loc: 480	b 45-						×)ter	Water	11:50 Eastern		4/12/17	00-10)	MW 7DD 041217 (480-116100-10)
	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	2. 255 1. 11 35					×	iter	Water	10:45 Eastern		4/12/17)-9)	MW 5D 041217 (480-116100-9)
	-	1,23					×)ter	Water	09:10 <u>-astern</u>		4/12/17	00-8)	MW 10D 041217 (480-116100-8)
Harting Commencer of the Commencer of th		V	新		To the second	5.		ode X	Preservation Code:	2 C		V	April 1985年 (1995年) Apri	· · · · · · · · · · · · · · · · · · ·
pecial Instructions/Note:	s	Total N					SM4500	stefoii, Field F Perfort	(C=comp, (v=water, S=solid o=waste/oii, G=grab) BT=Tissue, A=Air)	Sample (C=		Sample Date	nt ID (Lab ID)	Sample Identification - Client ID (Lab ID)
	MIGHE!	i i graba					ALIA VALUE DE LA	iltered	Sample Matrix	- Sai				
	Other:	01 PC					VIII - 10/4	-Faller Lifery				SSOW#:		Site:
Z - other (specify)	L-EDA	ntalis					SALT-OFF	-5-x				Project #: 48002808		Project Name: Forest Glen Monitoring
								Lange Sent				WO#:		Email:
S - H2SO4 T - TSP Dodecahydrate	G - Amchlor H - Ascorbic Acid											PO #	615-726-3404(Fax)	Phone: 615-726-0177(Tel) 615-726
Q - Na2SO3	E - NaHSO4	3.73												State, 2tp: TN, 37204
N - None O - AsNaO2	B - NaOH C - Zn Acetate						LOCK-SE	i care		ភ	TAT Requested (days):	TAT Reque		City: Nashville
odes: M - Hexane	Preservation Codes:		ted	Requested	alysis	An					equested:	Due Date Requested: 4/24/2017	-	Address: 2960 Foster Creighton Drive,
	Job#: 480-116100-1				note):	Accreditations Required (See note): NELAP - New York	Accreditations Required NELAP - New York	Accre. NEL					Ĉ	Company: TestAmerica Laboratories, Inc
	Page: Page 2 of 2		State of Origin: New York	New New	nc.com	E-Mail: orlette.johnson@testamericainc.com	ınson@tes	orlette.joh) ;		Phone:		Shipping/Receiving
	480-34277.2	(8):	Carrier Fracking No(s):	Carrie	5		Oriette S	Johnson, Oriette S					(Sub Contract Lab)	ormation
	COC No.	s).	Tracking No.	Carrie				ah DM:				Sampler		

Loc: 480

116100

COOLER RECEIPT FORM

Cooler Received/Opened On 4/14/2017 @ 0945	
Time Samples Removed From Cooler 1 100 Time Samples Placed In Storage	(2 Hour Window)
1. Tracking #(last 4 digits, FedEx) Courier: _FedEx_	
IR Gun ID_160656843_ pH Strip Lot Chlorine Strip Lot	A-100-11
2. Temperature of rep. sample or temp blank when opened: 59 Degrees Celsius	
3. If Item #2 temperatures is 0°C or less, was the representative sample or temp blank frozen	YES NONA
4. Were custody seals on outside of cooler?	YES NONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YE9NONA
6. Were custody papers inside cooler?	resNONA
I certify that I opened the cooler and answered questions 1-6 (initial)	
7. Were custody seals on containers: YES and Intact	YESNONA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	Other None
9. Cooling process: (1ce Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA
12. Did all container labels and tags agree with custody papers?	ESNONA
13a. Were VOA vials received?	ESNO.L.NA
b. Was there any observable headspace present in any VOA vial?	YES. NONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers sequence	e #
I certify that I unloaded the cooler and answered questions 7-14 (initial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. was residual chlorine present?	YESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial)	
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	YESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (initial)	
I certify that I attached a label with the unique LIMS number to each container (initial)	
21. Were there Non-Conformance issues at login? YESNO Was a NCM generated? YESl	NO#

End of Form

LF-1

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-116100-1

Login Number: 116100 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Critis W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

3

4

6

8

10

12

14

Client: O'Brien & Gere Inc of North America

Job Number: 480-116100-1

List Source: TestAmerica Nashville
List Number: 2
List Creation: 04/15/17 12:48 PM

Creator: Armstrong, Daniel

Creator: Armstrong, Daniel		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.9C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-116242-1

Client Project/Site: Forest Glen Monitoring

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 4/27/2017 11:46:08 PM

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	22
Certification Summary	24
Method Summary	25
Sample Summary	26
Detection Limit Exceptions Summary	27
Chain of Custody	28
Receipt Checklists	29

4

6

8

10

12

1 1

15

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD is outside acceptance limits.

General Chemistry

В Compound was found in the blank and sample.

Qualifier Description

Ε Result exceeded calibration range.

Quality Control

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

QC

RL

RER

RPD

TEF **TEQ**

Qualifier

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

TestAmerica Buffalo

Page 3 of 30

4/27/2017

Case Narrative

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-116242-1 Project/Site: Forest Glen Monitoring

Job ID: 480-116242-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-116242-1

Receipt

The samples were received on 4/13/2017 4:06 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

Method(s) 8260C: The Laboratory Control Sample (LCS) for analytical batch 353527 was outside laboratory/project quality control limits for the following analyte: Trichlorofluoromethane. All other spike recoveries and quality control indicators, including sample specific surrogate recoveries, were acceptable. Reanalysis was not performed due to holding time limitations. The following samples are impacted: MW4D 041317 (480-116242-1), MW4S 041317 (480-116242-2), MW8DD 041317 (480-116242-3), MW8D 041317 (480-116242-4) and QC TRIP BLANK (480-116242-5).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-353527 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes: therefore, the data have been reported. The following samples are impacted: MW4D 041317 (480-116242-1), MW4S 041317 (480-116242-2), MW8DD 041317 (480-116242-3), MW8D 041317 (480-116242-4) and QC TRIP BLANK (480-116242-5).

Method(s) 8260C: The initial calibration curve analyzed in analytical batch 480-353444 was outside acceptance criteria for Trichlorofluoromethane. The following samples were non detect for the affected analyte, therefore, the data has been reported; MW4D 041317 (480-116242-1), MW4S 041317 (480-116242-2), MW8DD 041317 (480-116242-3), MW8D 041317 (480-116242-4) and QC TRIP BLANK (480-116242-5).

Method(s) 8260C: The initial calibration verification (ICV) result for analytical batch 480-353444 was above the upper control limit. Sample results were non-detects, and have been reported as qualified data. The following samples were non detect for the affected analyte, therefore, the data has been reported: MW4D 041317 (480-116242-1), MW4S 041317 (480-116242-2), MW8DD 041317 (480-116242-3), MW8D 041317 (480-116242-4) and QC TRIP BLANK (480-116242-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method(s) 300.0: The following samples was diluted to bring the concentration of target analytes within the calibration range: MW4D 041317 (480-116242-1), MW4S 041317 (480-116242-2), MW8DD 041317 (480-116242-3) and MW8D 041317 (480-116242-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 4500 S2 D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-422766 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW4D 041317

Lab	Sample	e ID:	480-1	116242-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methyl tert-butyl ether	0.34	J	1.0	0.16	ug/L	1	_	8260C	Total/NA
Chloride	253		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	337	В	10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	319	В	50.0	20.0	mg/L	5		310.2_ASP	Total/NA
Sulfide	1.4		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.5		1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW4S 041317

Lah	Sample	ID:	480-1	16242-2
Lab	Janpie	ıD.	TUU- 1	IULTL

Analyte	Result Q	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	42.1		2.5	1.4	mg/L	5	_	300.0	Total/NA
Sulfate	504		40.0	7.0	mg/L	20		300.0	Total/NA
Alkalinity, Bicarbonate	411 B	1	50.0	20.0	mg/L	5		310.2_ASP	Total/NA
Nitrate as N	0.060		0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.14		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.4		1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW8DD 041317

Lab Sample ID: 480-116242-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	55.5		1.0	0.56	mg/L	2	300.0	Total/NA
Sulfate	138	В	4.0	0.70	mg/L	2	300.0	Total/NA
Alkalinity, Bicarbonate	259	В	40.0	16.0	mg/L	4	310.2_ASP	Total/NA
Sulfide	1.9		0.10	0.050	mg/L	1	SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	2.6		1.0	0.43	mg/L	1	SM 5310C	Dissolved

Client Sample ID: MW8D 041317

Lab Sample ID: 480-116242-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.66	J	1.0	0.38	ug/L	1	_	8260C	Total/NA
Carbon disulfide	0.24	J	1.0	0.19	ug/L	1		8260C	Total/NA
Vinyl chloride	1.6		1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	132		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	184	В	10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	323	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	1.0		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	3.3		1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: QC TRIP BLANK

Lab Sample ID: 480-116242-5

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-116242-1 Project/Site: Forest Glen Monitoring

Client Sample ID: MW4D 041317

Lab Sample ID: 480-116242-1 Date Collected: 04/13/17 09:35 **Matrix: Water**

Date Received: 04/13/17 16:06

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/23/17 00:43	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/23/17 00:43	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/23/17 00:43	
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/23/17 00:43	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/23/17 00:43	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/23/17 00:43	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/23/17 00:43	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/23/17 00:43	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			04/23/17 00:43	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/23/17 00:43	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/23/17 00:43	
1,2-Dichloropropane	ND	1.0	0.72	-			04/23/17 00:43	
1,3-Dichlorobenzene	ND	1.0	0.78	-			04/23/17 00:43	
1,4-Dichlorobenzene	ND	1.0	0.84				04/23/17 00:43	
2-Hexanone	ND	5.0		ug/L			04/23/17 00:43	
2-Butanone (MEK)	ND	10		ug/L			04/23/17 00:43	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/23/17 00:43	
Acetone	ND	10		ug/L			04/23/17 00:43	
Benzene	ND	1.0		ug/L			04/23/17 00:43	
Bromodichloromethane	ND	1.0		ug/L			04/23/17 00:43	
Bromoform	ND	1.0		ug/L			04/23/17 00:43	
3romomethane	ND	1.0		ug/L			04/23/17 00:43	
Carbon disulfide	ND	1.0		ug/L			04/23/17 00:43	
Carbon tetrachloride	ND	1.0	0.27	-			04/23/17 00:43	
Chlorobenzene	ND	1.0		ug/L			04/23/17 00:43	
Chlorodibromomethane	ND	1.0	0.32	-			04/23/17 00:43	
Chloroethane	ND	1.0	0.32	ū			04/23/17 00:43	
Chloroform	ND	1.0	0.34	-			04/23/17 00:43	
Chloromethane	ND	1.0		ug/L			04/23/17 00:43	
cis-1,2-Dichloroethene	ND	1.0		ug/L			04/23/17 00:43	
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/23/17 00:43	
Cyclohexane	ND	1.0		ug/L ug/L			04/23/17 00:43	
Dichlorodifluoromethane	ND	1.0		ug/L ug/L			04/23/17 00:43	
Ethylbenzene	ND	1.0	0.08	-			04/23/17 00:43	
sopropylbenzene	ND	1.0	0.74	-			04/23/17 00:43	
				_				
Methyl acetate	ND	1.3		ug/L			04/23/17 00:43	
Methyl tert-butyl ether	0.34 J	1.0	0.16				04/23/17 00:43	
Methylcyclohexane	ND	1.0		ug/L			04/23/17 00:43	
Methylene Chloride	ND	1.0		ug/L			04/23/17 00:43 04/23/17 00:43	
Styrene	ND	1.0		ug/L				
Tetrachloroethene	ND	1.0		ug/L			04/23/17 00:43	
Toluene	ND	1.0		ug/L			04/23/17 00:43	
rans-1,2-Dichloroethene	ND	1.0		ug/L			04/23/17 00:43	
rans-1,3-Dichloropropene	ND	1.0		ug/L			04/23/17 00:43	
Trichloroethene	ND	1.0		ug/L			04/23/17 00:43	
Trichlorofluoromethane	ND *	1.0		ug/L			04/23/17 00:43	
√inyl chloride	ND	1.0	0.90	ug/L			04/23/17 00:43	

TestAmerica Buffalo

Page 6 of 30

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Prepared

Analyzed

04/17/17 12:30

Client Sample ID: MW4D 041317

Lab Sample ID: 480-116242-1

Matrix: Water

Date Collected: 04/13/17 09:35 Date Received: 04/13/17 16:06

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					04/23/17 00:43	1
Toluene-d8 (Surr)	104		80 - 120					04/23/17 00:43	1
4-Bromofluorobenzene (Surr)	101		73 - 120					04/23/17 00:43	1
Dibromofluoromethane (Surr)	99		75 - 123					04/23/17 00:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	253		2.5	1.4	mg/L			04/25/17 01:15	5
	227	D	10.0	17	mg/L			04/25/17 01:15	5
Sulfate	337	D	10.0	1.7	9. —			0 1/20/11 01:10	
Sulfate Alkalinity, Bicarbonate	33 <i>7</i> 319		50.0		mg/L			04/18/17 18:50	5
					mg/L				5 1
Alkalinity, Bicarbonate	319		50.0	20.0	mg/L mg/L			04/18/17 18:50	5 1 1

Client Sample ID: MW4S 041317 Lab Sample ID: 480-116242-2

Result Qualifier

2.5

Date Collected: 04/13/17 11:20 **Matrix: Water**

RL

1.0

MDL Unit

0.43 mg/L

Date Received: 04/13/17 16:06

Dissolved Organic Carbon

Analyte

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/23/17 01:06	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/23/17 01:06	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/23/17 01:06	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/23/17 01:06	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/23/17 01:06	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/23/17 01:06	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/23/17 01:06	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/23/17 01:06	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			04/23/17 01:06	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/23/17 01:06	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/23/17 01:06	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/23/17 01:06	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/23/17 01:06	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/23/17 01:06	1
2-Hexanone	ND	5.0	1.2	ug/L			04/23/17 01:06	1
2-Butanone (MEK)	ND	10	1.3	ug/L			04/23/17 01:06	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/23/17 01:06	1
Acetone	ND	10	3.0	ug/L			04/23/17 01:06	1
Benzene	ND	1.0	0.41	ug/L			04/23/17 01:06	1
Bromodichloromethane	ND	1.0	0.39	ug/L			04/23/17 01:06	1
Bromoform	ND	1.0	0.26	ug/L			04/23/17 01:06	1
Bromomethane	ND	1.0	0.69	ug/L			04/23/17 01:06	1
Carbon disulfide	ND	1.0	0.19	ug/L			04/23/17 01:06	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			04/23/17 01:06	1
Chlorobenzene	ND	1.0	0.75	ug/L			04/23/17 01:06	1
Chlorodibromomethane	ND	1.0		ug/L			04/23/17 01:06	1
Chloroethane	ND	1.0		ug/L			04/23/17 01:06	1

TestAmerica Buffalo

Page 7 of 30

Dil Fac

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Date Collected: 04/13/17 11:20 Matrix: Water Date Received: 04/13/17 16:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0	0.34	ug/L			04/23/17 01:06	1
Chloromethane	ND		1.0	0.35	ug/L			04/23/17 01:06	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/23/17 01:06	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/23/17 01:06	1
Cyclohexane	ND		1.0	0.18	ug/L			04/23/17 01:06	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/23/17 01:06	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/23/17 01:06	1
Isopropylbenzene	ND		1.0	0.79	ug/L			04/23/17 01:06	1
Methyl acetate	ND		1.3	1.3	ug/L			04/23/17 01:06	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/23/17 01:06	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/23/17 01:06	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/23/17 01:06	1
Styrene	ND		1.0	0.73	ug/L			04/23/17 01:06	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/23/17 01:06	1
Toluene	ND		1.0	0.51	ug/L			04/23/17 01:06	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/23/17 01:06	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/23/17 01:06	1
Trichloroethene	ND		1.0	0.46	ug/L			04/23/17 01:06	1
Trichlorofluoromethane	ND	*	1.0	0.88	ug/L			04/23/17 01:06	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/23/17 01:06	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/23/17 01:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120			-		04/23/17 01:06	1
Toluene-d8 (Surr)	101		80 - 120					04/23/17 01:06	1
4-Bromofluorobenzene (Surr)	100		73 - 120					04/23/17 01:06	1
Dibromofluoromethane (Surr)	102		75 - 123					04/23/17 01:06	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	42.1		2.5	1.4	mg/L			04/25/17 01:30	5
Sulfate	504		40.0	7.0	mg/L			04/25/17 22:39	20
Alkalinity, Bicarbonate	411	В	50.0	20.0	mg/L			04/18/17 18:50	5
Nitrate as N	0.060		0.050	0.020	mg/L			04/14/17 00:19	1
Nitrite as N	ND		0.050	0.020	mg/L			04/14/17 00:19	1
Sulfide	0.14		0.10	0.050	mg/L			04/17/17 14:00	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	2.4		1.0	0.43	mg/L			04/17/17 13:15	1

Date Collected: 04/13/17 11:30 Matrix: Water Date Received: 04/13/17 16:06

Method: 8260C - Volatile Organic Compounds by GC/MS								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			04/23/17 01:29	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/23/17 01:29	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/23/17 01:29	1

TestAmerica Buffalo

4/27/2017

Page 8 of 30

2

TestAmerica Job ID: 480-116242-1

3

5

8

10

12

11

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Client Sample ID: MW8DD 041317 Lab Sample ID: 480-116242-3

Matrix: Water

Date Collected: 04/13/17 11:30 Date Received: 04/13/17 16:06

Method: 8260C - Volatile O Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,2-Trichlorotrifluoroethane	ND ND	1.0	0.31	ug/L		•	04/23/17 01:29	
1,1-Dichloroethane	ND	1.0		ug/L			04/23/17 01:29	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/23/17 01:29	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/23/17 01:29	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			04/23/17 01:29	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	-			04/23/17 01:29	
1,2-Dichlorobenzene	ND	1.0		ug/L			04/23/17 01:29	
1,2-Dichloroethane	ND	1.0	0.21	-			04/23/17 01:29	
1,2-Dichloropropane	ND	1.0	0.72	-			04/23/17 01:29	
1,3-Dichlorobenzene	ND	1.0		ug/L			04/23/17 01:29	
1,4-Dichlorobenzene	ND	1.0		ug/L			04/23/17 01:29	
2-Hexanone	ND	5.0		ug/L			04/23/17 01:29	
2-Butanone (MEK)	ND	10		ug/L			04/23/17 01:29	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/23/17 01:29	
Acetone	ND	10		ug/L			04/23/17 01:29	
Benzene	ND	1.0		ug/L			04/23/17 01:29	
Bromodichloromethane	ND	1.0	0.39	-			04/23/17 01:29	
Bromoform	ND	1.0	0.26	-			04/23/17 01:29	
Bromomethane	ND	1.0		ug/L			04/23/17 01:29	
Carbon disulfide	ND	1.0		ug/L			04/23/17 01:29	
Carbon tetrachloride	ND	1.0		ug/L			04/23/17 01:29	
Chlorobenzene	ND	1.0		ug/L			04/23/17 01:29	
Chlorodibromomethane	ND	1.0		ug/L			04/23/17 01:29	
Chloroethane	ND	1.0		ug/L			04/23/17 01:29	
Chloroform	ND	1.0		ug/L			04/23/17 01:29	
Chloromethane	ND ND	1.0	0.35	-			04/23/17 01:29	
cis-1,2-Dichloroethene	ND	1.0	0.81	-			04/23/17 01:29	
cis-1,3-Dichloropropene	ND	1.0	0.36				04/23/17 01:29	
Cyclohexane	ND ND	1.0		-			04/23/17 01:29	
Dichlorodifluoromethane	ND ND	1.0	0.18	ug/L ug/L			04/23/17 01:29	
Ethylbenzene	ND	1.0		ug/L			04/23/17 01:29	
•	ND ND	1.0		ug/L ug/L			04/23/17 01:29	
Isopropylbenzene	ND ND			-			04/23/17 01:29	
Methyl acetate		1.3		ug/L				
Methyl tert-butyl ether	ND ND	1.0		ug/L			04/23/17 01:29	
Methylcyclohexane	ND ND	1.0		ug/L			04/23/17 01:29	
Methylene Chloride	ND	1.0	0.44				04/23/17 01:29	
Styrene	ND	1.0		ug/L			04/23/17 01:29	
Tetrachloroethene	ND	1.0		ug/L			04/23/17 01:29	
Toluene	ND	1.0		ug/L			04/23/17 01:29	
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/23/17 01:29	
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/23/17 01:29	
Trichloroethene	ND	1.0		ug/L			04/23/17 01:29	
Trichlorofluoromethane	ND *	1.0		ug/L			04/23/17 01:29	
Vinyl chloride	ND	1.0		ug/L			04/23/17 01:29	
Xylenes, Total	ND	2.0	0.66	ug/L			04/23/17 01:29	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	97	77 - 120					04/23/17 01:29	
Toluene-d8 (Surr)	104	80 - 120					04/23/17 01:29	
4-Bromofluorobenzene (Surr)	104	73 - 120					04/23/17 01:29	

TestAmerica Buffalo

Page 9 of 30

4/27/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Client Sample ID: MW8DD 041317 Lab Sample ID: 480-116242-3

Matrix: Water

Analyzed

04/17/17 13:30

Prepared

Date Collected: 04/13/17 11:30 Date Received: 04/13/17 16:06

Result Qualifier

2.6

Surrogate	%Recovery	Qualifier	Limits	Prepar	ed Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		75 - 123		04/23/17 01:29	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	55.5		1.0	0.56	mg/L			04/25/17 01:44	2
Sulfate	138	В	4.0	0.70	mg/L			04/25/17 01:44	2
Alkalinity, Bicarbonate	259	В	40.0	16.0	mg/L			04/18/17 18:50	4
Nitrate as N	ND		0.050	0.020	mg/L			04/14/17 01:58	1
Nitrite as N	ND		0.050	0.020	mg/L			04/14/17 01:47	1
Sulfide	1.9		0.10	0.050	mg/L			04/17/17 14:00	1

Lab Sample ID: 480-116242-4 Client Sample ID: MW8D 041317

RL

1.0

MDL Unit

0.43 mg/L

Date Collected: 04/13/17 13:05 **Matrix: Water**

Date Received: 04/13/17 16:06

Dissolved Organic Carbon

Analyte

Method: 8260C - Volatile Org Analyte		unds by GC/I Qualifier	VIS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		-	04/23/17 01:52	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/23/17 01:52	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/23/17 01:52	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			04/23/17 01:52	1
1,1-Dichloroethane	0.66	J	1.0	0.38	ug/L			04/23/17 01:52	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/23/17 01:52	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/23/17 01:52	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/23/17 01:52	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/23/17 01:52	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/23/17 01:52	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/23/17 01:52	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/23/17 01:52	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/23/17 01:52	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/23/17 01:52	1
2-Hexanone	ND		5.0	1.2	ug/L			04/23/17 01:52	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/23/17 01:52	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/23/17 01:52	1
Acetone	ND		10	3.0	ug/L			04/23/17 01:52	1
Benzene	ND		1.0	0.41	ug/L			04/23/17 01:52	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/23/17 01:52	1
Bromoform	ND		1.0	0.26	ug/L			04/23/17 01:52	1
Bromomethane	ND		1.0	0.69	ug/L			04/23/17 01:52	1
Carbon disulfide	0.24	J	1.0	0.19	ug/L			04/23/17 01:52	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/23/17 01:52	1
Chlorobenzene	ND		1.0	0.75	ug/L			04/23/17 01:52	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			04/23/17 01:52	1
Chloroethane	ND		1.0		ug/L			04/23/17 01:52	1
Chloroform	ND		1.0		ug/L			04/23/17 01:52	1
Chloromethane	ND		1.0	0.35	ug/L			04/23/17 01:52	1

TestAmerica Buffalo

Page 10 of 30

Dil Fac

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Client Sample ID: MW8D 041317

Date Collected: 04/13/17 13:05 Date Received: 04/13/17 16:06

Lab Sample ID: 480-116242-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/23/17 01:52	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/23/17 01:52	1
Cyclohexane	ND		1.0	0.18	ug/L			04/23/17 01:52	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/23/17 01:52	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/23/17 01:52	1
Isopropylbenzene	ND		1.0	0.79	ug/L			04/23/17 01:52	1
Methyl acetate	ND		1.3	1.3	ug/L			04/23/17 01:52	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/23/17 01:52	1
Methylcyclohexane	ND		1.0	0.16	ug/L			04/23/17 01:52	1
Methylene Chloride	ND		1.0	0.44	ug/L			04/23/17 01:52	1
Styrene	ND		1.0	0.73	ug/L			04/23/17 01:52	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/23/17 01:52	1
Toluene	ND		1.0	0.51	ug/L			04/23/17 01:52	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/23/17 01:52	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/23/17 01:52	1
Trichloroethene	ND		1.0	0.46	ug/L			04/23/17 01:52	1
Trichlorofluoromethane	ND	*	1.0	0.88	ug/L			04/23/17 01:52	1
Vinyl chloride	1.6		1.0	0.90	ug/L			04/23/17 01:52	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/23/17 01:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					04/23/17 01:52	1
Toluene-d8 (Surr)	101		80 - 120					04/23/17 01:52	1
4-Bromofluorobenzene (Surr)	101		73 - 120					04/23/17 01:52	1
Dibromofluoromethane (Surr)	107		75 - 123					04/23/17 01:52	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	132		2.5	1.4	mg/L			04/25/17 03:12	5
Sulfate	184	В	10.0	1.7	mg/L			04/25/17 03:12	5
Alkalinity, Bicarbonate	323	В	40.0	16.0	mg/L			04/18/17 18:50	4
Nitrate as N	ND		0.050	0.020	mg/L			04/14/17 01:58	1
Nitrite as N	ND		0.050	0.020	mg/L			04/14/17 01:47	1
Sulfide	1.0		0.10	0.050	mg/L			04/17/17 14:00	1
General Chemistry - Dissolved Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	3.3		1.0	0.43	mg/L		-	04/17/17 13:44	1

Client Sample ID: QC TRIP BLANK Lab Sample ID: 480-116242-5

Date Collected: 04/13/17 00:00 Date Received: 04/13/17 16:06

Method: 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			04/23/17 02:15	1		
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/23/17 02:15	1		
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/23/17 02:15	1		
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			04/23/17 02:15	1		
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/23/17 02:15	1		

TestAmerica Buffalo

Page 11 of 30

Matrix: Water

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Client Sample ID: QC TRIP BLANK

Date Collected: 04/13/17 00:00 Date Received: 04/13/17 16:06 Lab Sample ID: 480-116242-5

Matrix: Water

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	ND		1.0		ug/L			04/23/17 02:15	
1,2,4-Trichlorobenzene	ND		1.0	0.41	-			04/23/17 02:15	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/23/17 02:15	
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/23/17 02:15	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/23/17 02:15	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/23/17 02:15	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/23/17 02:15	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/23/17 02:15	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/23/17 02:15	
2-Hexanone	ND		5.0	1.2	ug/L			04/23/17 02:15	
2-Butanone (MEK)	ND		10	1.3	ug/L			04/23/17 02:15	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/23/17 02:15	
Acetone	ND		10	3.0	ug/L			04/23/17 02:15	
Benzene	ND		1.0	0.41	ug/L			04/23/17 02:15	
Bromodichloromethane	ND		1.0	0.39	-			04/23/17 02:15	
Bromoform	ND		1.0	0.26	-			04/23/17 02:15	
Bromomethane	ND		1.0	0.69	-			04/23/17 02:15	
Carbon disulfide	ND		1.0	0.19	-			04/23/17 02:15	
Carbon tetrachloride	ND		1.0	0.27	-			04/23/17 02:15	
Chlorobenzene	ND		1.0	0.75	-			04/23/17 02:15	
Chlorodibromomethane	ND		1.0	0.32	-			04/23/17 02:15	
Chloroethane	ND		1.0	0.32	-			04/23/17 02:15	
Chloroform	ND		1.0	0.34	-			04/23/17 02:15	
Chloromethane	ND		1.0	0.35	-			04/23/17 02:15	
cis-1,2-Dichloroethene	ND		1.0	0.81	-			04/23/17 02:15	
cis-1,3-Dichloropropene	ND		1.0	0.36	-			04/23/17 02:15	
Cyclohexane	ND		1.0	0.18	-			04/23/17 02:15	
Dichlorodifluoromethane	ND		1.0	0.68	-			04/23/17 02:15	
Ethylbenzene	ND		1.0	0.08				04/23/17 02:15	
Isopropylbenzene	ND ND		1.0	0.74	-			04/23/17 02:15	
Methyl acetate	ND ND		1.0		ug/L ug/L			04/23/17 02:15	
					-				
Methyl tert-butyl ether	ND		1.0	0.16	-			04/23/17 02:15	
Methylcyclohexane	ND		1.0	0.16	-			04/23/17 02:15	
Methylene Chloride	ND		1.0	0.44	-			04/23/17 02:15	
Styrene	ND		1.0	0.73	-			04/23/17 02:15	
Tetrachloroethene	ND		1.0	0.36				04/23/17 02:15	
Toluene	ND		1.0	0.51				04/23/17 02:15	
trans-1,2-Dichloroethene	ND		1.0	0.90	-			04/23/17 02:15	
trans-1,3-Dichloropropene	ND		1.0	0.37	•			04/23/17 02:15	
Trichloroethene	ND		1.0	0.46				04/23/17 02:15	
Trichlorofluoromethane	ND	*	1.0	0.88	J			04/23/17 02:15	
Vinyl chloride	ND		1.0	0.90	-			04/23/17 02:15	
Xylenes, Total	ND		2.0	0.66	ug/L			04/23/17 02:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					04/23/17 02:15	
Toluene-d8 (Surr)	102		80 - 120					04/23/17 02:15	
4-Bromofluorobenzene (Surr)	101		73 - 120					04/23/17 02:15	

TestAmerica Buffalo

3

6

8

10

12

1 *1*

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				ercent Surre	•
		12DCE	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(80-120)	(73-120)	(75-123)
480-116242-1	MW4D 041317	101	104	101	99
480-116242-2	MW4S 041317	102	101	100	102
480-116242-3	MW8DD 041317	97	104	104	103
480-116242-4	MW8D 041317	108	101	101	107
480-116242-5	QC TRIP BLANK	98	102	101	105
LCS 480-353527/4	Lab Control Sample	100	97	100	100
MB 480-353527/6	Method Blank	100	101	99	101

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

4

-

7

0

10

11

12

4 A

15

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-353527/6

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 353527	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/23/17 00:19	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/23/17 00:19	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/23/17 00:19	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			04/23/17 00:19	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/23/17 00:19	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/23/17 00:19	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/23/17 00:19	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/23/17 00:19	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			04/23/17 00:19	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/23/17 00:19	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/23/17 00:19	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/23/17 00:19	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/23/17 00:19	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/23/17 00:19	1
2-Hexanone	ND		5.0		ug/L			04/23/17 00:19	1
2-Butanone (MEK)	ND		10		ug/L			04/23/17 00:19	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/23/17 00:19	1
Acetone	ND		10		ug/L			04/23/17 00:19	1
Benzene	ND		1.0	0.41	-			04/23/17 00:19	1
Bromodichloromethane	ND		1.0	0.39	_			04/23/17 00:19	1
Bromoform	ND		1.0	0.26	-			04/23/17 00:19	1
Bromomethane	ND		1.0		ug/L			04/23/17 00:19	1
Carbon disulfide	ND		1.0		ug/L			04/23/17 00:19	1
Carbon tetrachloride	ND		1.0	0.27	_			04/23/17 00:19	1
Chlorobenzene	ND		1.0		ug/L			04/23/17 00:19	1
Chlorodibromomethane	ND		1.0	0.32	-			04/23/17 00:19	1
Chloroethane	ND		1.0	0.32	-			04/23/17 00:19	1
Chloroform	ND		1.0		ug/L			04/23/17 00:19	1
Chloromethane	ND		1.0	0.35	-			04/23/17 00:19	1
cis-1,2-Dichloroethene	ND		1.0	0.81	-			04/23/17 00:19	1
cis-1,3-Dichloropropene	ND		1.0	0.36				04/23/17 00:19	
Cyclohexane	ND		1.0	0.18	_			04/23/17 00:19	1
Dichlorodifluoromethane	ND		1.0	0.68	-			04/23/17 00:19	1
Ethylbenzene	ND		1.0	0.74	_			04/23/17 00:19	1
Isopropylbenzene	ND		1.0	0.79				04/23/17 00:19	1
Methyl acetate	ND		1.3		ug/L			04/23/17 00:19	1
Methyl tert-butyl ether	ND		1.0		ug/L			04/23/17 00:19	1
Methylcyclohexane	ND		1.0		ug/L			04/23/17 00:19	1
Methylene Chloride	ND		1.0		ug/L			04/23/17 00:19	1
Styrene	ND		1.0		ug/L			04/23/17 00:19	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	ND		1.0		ug/L			04/23/17 00:19	1
Toluene	ND		1.0		ug/L			04/23/17 00:19	1
trans-1,2-Dichloroethene	ND		1.0		ug/L ug/L			04/23/17 00:19	
trans-1,3-Dichloropropene	ND		1.0		ug/L ug/L			04/23/17 00:19	1
Trichloroethene	ND ND		1.0					04/23/17 00:19	
Trichlorofluoromethane					ug/L ug/L			04/23/17 00:19	1 1
	ND ND		1.0					04/23/17 00:19	
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			04/23/17 00:19	1

TestAmerica Buffalo

Page 14 of 30

2

3

5

7

9

10

12

14

13

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		04/23/17 00:19	1
Toluene-d8 (Surr)	101	80 - 120		04/23/17 00:19	1
4-Bromofluorobenzene (Surr)	99	73 - 120		04/23/17 00:19	1
Dibromofluoromethane (Surr)	101	75 - 123		04/23/17 00:19	1

Lab Sample ID: LCS 480-353527/4

Matrix: Water

Analysis Batch: 353527

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Analyte	Spike Added	LCS Posult		Jnit	D	%Rec	%Rec. Limits	
1,1,1-Trichloroethane		24.5		ig/L	_	98	73 - 126	_
1,1,2,2-Tetrachloroethane	25.0	24.8		ıg/L		99	76 - 120	
1,1,2-Trichloroethane	25.0	25.4		ıg/L		102	76 - 122	
1,1,2-Trichlorotrifluoroethane	25.0	22.9		ig/L		92	61 - 148	
1,1-Dichloroethane	25.0	23.7		ıg/L		95	77 - 120	
1,1-Dichloroethene	25.0	23.1		ıg/L		92	66 - 127	
1,2,4-Trichlorobenzene	25.0	24.6		ig/L		98	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	25.6		ıg/L		103	56 - 134	
1,2-Dibromoethane (EDB)	25.0	22.9		ıg/L		91	77 ₋ 120	
1,2-Dichlorobenzene	25.0	25.3		ıg/L		101	80 - 124	
1,2-Dichloroethane	25.0	22.9		ıg/L		92	75 ₋ 120	
1,2-Dichloropropane	25.0	22.8		ıg/L		91	76 - 120	
1,3-Dichlorobenzene	25.0	24.9				100	70 - 120 77 - 120	
1,4-Dichlorobenzene	25.0 25.0	24.9 25.4		ıg/L ıg/L		100	77 - 120 80 - 120	
2-Hexanone	125	118		ıg/L		94	65 - 127	
2-Detailone 2-Butanone (MEK)	125					101	57 - 140	
,	125	126 121		ıg/L		97	71 ₋ 125	
4-Methyl-2-pentanone (MIBK)				ıg/L				
Acetone	125	113		ıg/L		91	56 - 142	
Benzene	25.0	23.7		ıg/L		95	71 - 124	
Bromodichloromethane	25.0	24.8		ıg/L		99	80 - 122	
Bromoform	25.0	24.2		ig/L		97	61 - 132	
Bromomethane	25.0	20.6		ıg/L		82	55 ₋ 144	
Carbon disulfide	25.0	25.6		ıg/L		103	59 ₋ 134	
Carbon tetrachloride	25.0	27.9		ıg/L		112	72 - 134	
Chlorobenzene	25.0	23.5		ıg/L		94	80 - 120	
Chlorodibromomethane	25.0	24.6		ıg/L		99	75 - 125	
Chloroethane	25.0	23.7		ıg/L		95	69 - 136	
Chloroform	25.0	23.3		ıg/L		93	73 - 127	
Chloromethane	25.0	24.6		ıg/L		98	68 - 124	
cis-1,2-Dichloroethene	25.0	24.5		ıg/L		98	74 - 124	
cis-1,3-Dichloropropene	25.0	23.9		ıg/L		96	74 - 124	
Cyclohexane	25.0	24.8		ıg/L		99	59 - 135	
Dichlorodifluoromethane	25.0	24.5		ıg/L		98	59 - 135	
Ethylbenzene	25.0	23.9		ıg/L		95	77 - 123	
Isopropylbenzene	25.0	24.5		ıg/L		98	77 - 122	
Methyl acetate	125	116		ıg/L		93	74 - 133	
Methyl tert-butyl ether	25.0	23.6		ıg/L		94	77 - 120	
Methylcyclohexane	25.0	23.6		ıg/L		94	68 - 134	
Methylene Chloride	25.0	21.3	L	ıg/L		85	75 - 124	
Styrene	25.0	24.7	L	ıg/L		99	80 - 120	
Tetrachloroethene	25.0	24.4	ι	ıg/L		98	74 - 122	
Toluene	25.0	23.4	ι	ıg/L		94	80 - 122	
trans-1,2-Dichloroethene	25.0	24.3	ι	ıg/L		97	73 - 127	
trans-1,3-Dichloropropene	25.0	24.1	ι	ıg/L		96	80 - 120	

TestAmerica Buffalo

Page 15 of 30

2

3

5

6

8

10

12

14

IJ

TestAmerica Job ID: 480-116242-1

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-353527/4

Matrix: Water

Analysis Batch: 353527

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

	s	pike LC	S LCS				%Rec.	
Analyte	Ad	dded Resu	ılt Qualifier	Unit	D	%Rec	Limits	
Trichloroethene		25.0 23	.9	ug/L		96	74 - 123	
Trichlorofluoromethane		25.0 46	.8 *	ug/L		187	62 - 150	
Vinyl chloride		25.0 24	.4	ug/L		97	65 - 133	

	LCS LCS					
Surrogate	%Recovery	Qualifier	Limits			
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			
Toluene-d8 (Surr)	97		80 - 120			
4-Bromofluorobenzene (Surr)	100		73 - 120			
Dibromofluoromethane (Surr)	100		75 - 123			

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-353745/28

Matrix: Water

Analysis Batch: 353745

١	-	MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	ND		0.50	0.28	mg/L			04/25/17 02:57	1
l	Sulfate	1.58	J	2.0	0.35	mg/L			04/25/17 02:57	1

Lab Sample ID: MB 480-353745/4

Matrix: Water

Analysis Batch: 353745

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			04/24/17 21:06	1
Sulfate	0.523	J	2.0	0.35	mg/L			04/24/17 21:06	1

Lab Sample ID: LCS 480-353745/27

Matrix: Water

Analysis Batch: 353745

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 50.0	49.61		mg/L		99	90 - 110	
Sulfate	50.0	52.10		mg/L		104	90 - 110	

Lab Sample ID: LCS 480-353745/3

Matrix: Water

Analysis Ratch: 353745

Allalysis Datcii. 333743								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	48.89		mg/L		98	90 - 110	
Sulfate	50.0	48.99		ma/L		98	90 - 110	

TestAmerica Buffalo

Page 16 of 30

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-116242-3 MS

Analysis Batch: 352693

Alkalinity, Bicarbonate

Analyte

Method: 300.0 - Anions, Ion Chromatography (Continued)

TestAmerica Job ID: 480-116242-1

Client Sample ID: MW8DD 041317

Matrix: Water													Prep Type: To	otal/NA
Analysis Batch: 353745														
S	Sample	San	nple	Spike		MS	MS						%Rec.	
Analyte	Result	Qua	lifier	Added		Result	Qua	alifier	Unit		D	%Rec	Limits	
Chloride	55.5			100		152.0			mg/L			97	81 - 120	
Sulfate	138	В		100		227.5	Е		mg/L			89	80 - 120	
- Lab Sample ID: MB 480-353981/	4										Clie	ent San	nple ID: Method	d Blank
Matrix: Water													Prep Type: To	
Analysis Batch: 353981														
•		MB	MB											
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Chloride		ND			0.50		0.28	mg/L		_			04/25/17 21:10	1
Sulfate		ND			2.0		0.35	mg/L					04/25/17 21:10	1
Lab Sample ID: LCS 480-353981	/3								CI	ient	Sar	nple ID	: Lab Control	Sample
Matrix: Water													Prep Type: T	
Analysis Batch: 353981													Trop Type: 1	
Amaryoro Batom Cocco				Spike		LCS	LCS	3					%Rec.	
Analyte				Added		Result	Qua	alifier	Unit		D	%Rec	Limits	
Chloride				50.0		49.55			mg/L			99	90 - 110	_
Sulfate				50.0		46.84			mg/L			94	90 - 110	
lethod: 310.2_ASP - Alkali	nity -	Со	lorimet	ric										
Lab Sample ID: MB 480-352693/	173										Clie	ent San	nple ID: Method	
Matrix: Water													Prep Type: To	otal/NA
Analysis Batch: 352693														
		MB	MB											
Analyte	Re		Qualifier		RL			Unit		D	Р	repared	Analyzed	Dil Fac
Alkalinity, Bicarbonate		ND		_	10.0		4.0	mg/L					04/18/17 17:53	1
Lab Sample ID: MB 480-352693/	196										Clie	ent San	nple ID: Method	d Blank
Matrix: Water													Prep Type: To	otal/NA
Analysis Batch: 352693														
-		MB	MB											
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	4	4.33	J		10.0		4.0	mg/L		_			04/18/17 18:48	1
- Lab Sample ID: MB 480-352693/	96										Clie	ent San	nple ID: Method	d Blank
Matrix: Water													Prep Type: To	otal/NA
A collecte Details again														

Analyzed

04/18/17 16:29

Dil Fac

RL

10.0

MDL Unit

4.0 mg/L

Prepared

MB MB

ND

Result Qualifier

TestAmerica Job ID: 480-116242-1

%Rec.

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-351957/75 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 351957

MB MB Analyte Result Qualifier RL **MDL** Unit D Analyzed Dil Fac Prepared Nitrite as N 0.050 ND 0.020 mg/L 04/14/17 00:03

Lab Sample ID: MB 480-351957/99 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 351957 MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.050 Nitrite as N $\overline{\mathsf{ND}}$ 0.020 mg/L 04/14/17 00:30

Lab Sample ID: LCS 480-351957/100 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 351957

Spike LCS LCS

Added Result Qualifier Limits Analyte Unit D %Rec Nitrite as N 1.50 1.58 mg/L 105 90 - 110

Lab Sample ID: LCS 480-351957/76 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 351957

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Nitrite as N 1.50 1.62 108 mg/L 90 _ 110

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 490-422766/2 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 422766

MB MB Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Sulfide 0.10 $\overline{\mathsf{ND}}$ 0.050 mg/L 04/17/17 14:00

Lab Sample ID: LCS 490-422766/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 422766

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Sulfide 1.00 1.07 mg/L 107 90 - 110

Method: SM 5310C - Organic Carbon, Dissolved (DOC)

Client Sample ID: Method Blank Lab Sample ID: MB 480-352418/27 **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 352418

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Dissolved Organic Carbon ND 1.0 0.43 mg/L 04/17/17 11:31

TestAmerica Buffalo

QC Sample Results

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-116242-1

Project/Site: Forest Glen Monitoring

Method: SM 5310C - Organic Carbon, Dissolved (DOC) (Continued)

Lab Sample ID: LCS 480-352418/28	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Dissolved

Analysis Batch: 352418

		Spike	LCS	LCS			%Rec.	
Analyte		Added	Result	Qualifier	Unit	%Re	c Limits	
Dissolved Organic Carbon	 	60.0	58.39		mg/L	 	90 - 110	

Lab Sample ID: 480-116242-1 MS Client Sample ID: MW4D 041317 **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 352418

/ maryone Datem CC211C	Sample Sample	Spike	MS N	MS				%Rec.
Analyte	Result Qualifier	Added	Result C	Qualifier	Unit	D	%Rec	Limits
Dissolved Organic Carbon	2.5	50.0	46.29		mg/L	_	88	54 - 131

Lab Sample ID: 480-116242-1 MSD Client Sample ID: MW4D 041317 **Prep Type: Dissolved**

Matrix: Water

Analysis Batch: 352418

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dissolved Organic Carbon	2.5		50.0	48.23		mg/L	<u></u>	91	54 - 131	4	20

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

GC/MS VOA

Analysis Batch: 353527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116242-1	MW4D 041317	Total/NA	Water	8260C	
480-116242-2	MW4S 041317	Total/NA	Water	8260C	
480-116242-3	MW8DD 041317	Total/NA	Water	8260C	
480-116242-4	MW8D 041317	Total/NA	Water	8260C	
480-116242-5	QC TRIP BLANK	Total/NA	Water	8260C	
MB 480-353527/6	Method Blank	Total/NA	Water	8260C	
LCS 480-353527/4	Lab Control Sample	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 351957

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116242-2	MW4S 041317	Total/NA	Water	353.2	<u> </u>
MB 480-351957/75	Method Blank	Total/NA	Water	353.2	
MB 480-351957/99	Method Blank	Total/NA	Water	353.2	
LCS 480-351957/100	Lab Control Sample	Total/NA	Water	353.2	
LCS 480-351957/76	Lab Control Sample	Total/NA	Water	353.2	

Analysis Batch: 351960

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116242-1	MW4D 041317	Total/NA	Water	353.2	
480-116242-3	MW8DD 041317	Total/NA	Water	353.2	
480-116242-4	MW8D 041317	Total/NA	Water	353.2	

Analysis Batch: 351961

Lab Sample ID 480-116242-1	Client Sample ID MW4D 041317	Prep Type Total/NA	Matrix Water	Method 353.2	Prep Batch
480-116242-2	MW4S 041317	Total/NA	Water	353.2	
480-116242-3 480-116242-4	MW8DD 041317 MW8D 041317	Total/NA Total/NA	Water Water	353.2 353.2	

Analysis Batch: 352418

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116242-1	MW4D 041317	Dissolved	Water	SM 5310C	_
480-116242-2	MW4S 041317	Dissolved	Water	SM 5310C	
480-116242-3	MW8DD 041317	Dissolved	Water	SM 5310C	
480-116242-4	MW8D 041317	Dissolved	Water	SM 5310C	
MB 480-352418/27	Method Blank	Dissolved	Water	SM 5310C	
LCS 480-352418/28	Lab Control Sample	Dissolved	Water	SM 5310C	
480-116242-1 MS	MW4D 041317	Dissolved	Water	SM 5310C	
480-116242-1 MSD	MW4D 041317	Dissolved	Water	SM 5310C	

Analysis Batch: 352693

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116242-1	MW4D 041317	Total/NA	Water	310.2_ASP	
480-116242-2	MW4S 041317	Total/NA	Water	310.2_ASP	
480-116242-3	MW8DD 041317	Total/NA	Water	310.2_ASP	
480-116242-4	MW8D 041317	Total/NA	Water	310.2_ASP	
MB 480-352693/173	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-352693/196	Method Blank	Total/NA	Water	310.2_ASP	

TestAmerica Buffalo

Page 20 of 30

2

3

8

44

11

13

14

15

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

General Chemistry (Continued)

Analysis Batch: 352693 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-352693/96	Method Blank	Total/NA	Water	310.2_ASP	
LCS 480-352693/174	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-352693/197	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-352693/97	Lab Control Sample	Total/NA	Water	310.2_ASP	

Analysis Batch: 353745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116242-1	MW4D 041317	Total/NA	Water	300.0	_
480-116242-2	MW4S 041317	Total/NA	Water	300.0	
480-116242-3	MW8DD 041317	Total/NA	Water	300.0	
480-116242-4	MW8D 041317	Total/NA	Water	300.0	
MB 480-353745/28	Method Blank	Total/NA	Water	300.0	
MB 480-353745/4	Method Blank	Total/NA	Water	300.0	
LCS 480-353745/27	Lab Control Sample	Total/NA	Water	300.0	
LCS 480-353745/3	Lab Control Sample	Total/NA	Water	300.0	
480-116242-3 MS	MW8DD 041317	Total/NA	Water	300.0	

Analysis Batch: 353981

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116242-2	MW4S 041317	Total/NA	Water	300.0	
MB 480-353981/4	Method Blank	Total/NA	Water	300.0	
LCS 480-353981/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 422766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-116242-1	MW4D 041317	Total/NA	Water	SM 4500 S2 D	
480-116242-2	MW4S 041317	Total/NA	Water	SM 4500 S2 D	
480-116242-3	MW8DD 041317	Total/NA	Water	SM 4500 S2 D	
480-116242-4	MW8D 041317	Total/NA	Water	SM 4500 S2 D	
MB 490-422766/2	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 490-422766/3	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	

2

4

5

7

9

10

12

14

15

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-116242-1

Matrix: Water

Client Sample ID: MW4D 041317

Date Collected: 04/13/17 09:35 Date Received: 04/13/17 16:06

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	353527	04/23/17 00:43	NEA	TAL BUF
Total/NA	Analysis	300.0		5	353745	04/25/17 01:15	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 18:50	LED	TAL BUF
Total/NA	Analysis	353.2		1	351960	04/14/17 01:47	DCB	TAL BUF
Total/NA	Analysis	353.2		1	351961	04/14/17 01:58	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 12:30	EKB	TAL BUF

Client Sample ID: MW4S 041317

Date Collected: 04/13/17 11:20

Date Received: 04/13/17 16:06

Matrix: Water

Lab Sample ID: 480-116242-3

Matrix: Water

Lab Sample ID: 480-116242-2

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			353527	04/23/17 01:06	NEA	TAL BUF
Total/NA	Analysis	300.0		5	353745	04/25/17 01:30	DMR	TAL BUF
Total/NA	Analysis	300.0		20	353981	04/25/17 22:39	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		5	352693	04/18/17 18:50	LED	TAL BUF
Total/NA	Analysis	353.2		1	351961	04/14/17 00:19	DCB	TAL BUF
Total/NA	Analysis	353.2		1	351957	04/14/17 00:19	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 13:15	EKB	TAL BUF

Client Sample ID: MW8DD 041317

Date Collected: 04/13/17 11:30

Date Received: 04/13/17 16:06

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			353527	04/23/17 01:29	NEA	TAL BUF
Total/NA	Analysis	300.0		2	353745	04/25/17 01:44	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		4	352693	04/18/17 18:50	LED	TAL BUF
Total/NA	Analysis	353.2		1	351960	04/14/17 01:47	DCB	TAL BUF
Total/NA	Analysis	353.2		1	351961	04/14/17 01:58	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 13:30	EKB	TAL BUF

TestAmerica Buffalo

Page 22 of 30

4/27/2017

Lab Chronicle

Client: O'Brien & Gere Inc of North America

Client Sample ID: MW8D 041317

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Lab Sample ID: 480-116242-4

Date Collected: 04/13/17 13:05 **Matrix: Water** Date Received: 04/13/17 16:06

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	353527	04/23/17 01:52	NEA	TAL BUF
Total/NA	Analysis	300.0		5	353745	04/25/17 03:12	DMR	TAL BUF
Total/NA	Analysis	310.2_ASP		4	352693	04/18/17 18:50	LED	TAL BUF
Total/NA	Analysis	353.2		1	351960	04/14/17 01:47	DCB	TAL BUF
Total/NA	Analysis	353.2		1	351961	04/14/17 01:58	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	422766	04/17/17 14:00	PEK	TAL NSH
Dissolved	Analysis	SM 5310C		1	352418	04/17/17 13:44	EKB	TAL BUF

Lab Sample ID: 480-116242-5 Client Sample ID: QC TRIP BLANK

Date Collected: 04/13/17 00:00 **Matrix: Water**

Date Received: 04/13/17 16:06

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	353527	04/23/17 02:15	NEA	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New York	Program NELAP		EPA Region 2	Identification Number	Expiration Date
Analysis Method	Prep Method	Matrix	Analyt	e	

Laboratory: TestAmerica Nashville

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	11342	03-31-18

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
310.2_ASP	Alkalinity - Colorimetric	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
SM 4500 S2 D	Sulfide, Total	SM	TAL NSH
SM 5310C	Organic Carbon, Dissolved (DOC)	SM	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600
TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Buffalo

10

42

13

15

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-116242-1	MW4D 041317	Water	04/13/17 09:35	04/13/17 16:06
480-116242-2	MW4S 041317	Water	04/13/17 11:20	04/13/17 16:06
480-116242-3	MW8DD 041317	Water	04/13/17 11:30	04/13/17 16:06
480-116242-4	MW8D 041317	Water	04/13/17 13:05	04/13/17 16:06
480-116242-5	QC TRIP BLANK	Water	04/13/17 00:00	04/13/17 16:06

2

4

6

8

4.0

11

12

14

15

Quantitation Limit Exceptions Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-116242-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

MethodMatrixAnalyteUnitsClient RLLab PQL8260CWaterMethyl acetateug/L1.32.5

3

4

J

8

9

11

13

14

TESTAMETICO

Chain of Custody Record

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (745) 601-7001	Chain		ot Custody Record	cord						THE LEADER IN E	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler: MANTON Kolonge &	eles Mama	And And	Lab PM: Johnson, Orlette S			Carrier Tr	Carrier Tracking No(s):		COC No: 480-96124-22905.1	5.1
Client Contact: Mr. Yuri Veliz	Phone: 315 1789-1300	\$		johnson@te	stameric	ainc.com				Page: Page 1 🕰	
Сотралу: O'Brien & Gere Inc of North America						Analysis	Requested	70		Job #:	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:		22-7	ayaca k						Preservation Codes A - HCL	des: M - Hexane
Ohr. East Syracuse	TAT Requested (days):									B-NaOH C-Z	N - None Sr
State, Zip: NY, 13221						noar				. Z Z	ນ & C
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#. 11511119		= (0 N						E. se etc.	5.4 - 5.4 - 5.4	boecahydrate
Email: Yuri.Veliz@obg.com	WO #:		10 86	STATE OF THE PERSON NAMED IN					S.Jə	-1cr J-D 480-116242 COC	
Project Name: Forest Glen Monitoring	Project #: 48002808		Υ) <u>Θ</u> Ια	овах				`	ulejuo	K-E. L-EDA	5 Z - other (specify)
Site:	:#MOSS			OFWI	irite, N	Æ		-	o jo .	Other:	
Sample Identification	Sample Date Ti	Sample Type Sample (C=comp,	(W=water, GO S=solid, H= O=waste/oil, GO BT=Tissue, GO A=Air)	Perform MS/N 8260C - TCL 11st 300.0_28D - Cl,	353.2, 353.2_Uii	SW2310_DOC_C			iədmuN lstoT	Special in	Special instructions/Note:
	, Sechille	1	ation Code	X	z	Z		建筑线	X	A COLUMN TO THE COLUMN TO SERVICE AND ASSESSMENT OF THE COLUMN TO SERVICE AND ASSESSME	1 American material and a second a second and a second a
1351 HO UT UM B	4-13-17 935	9 5	Water	3	٦	1 1 1	-				
mw 45 CH13(1)		1130 6	Water	8	ره	1 1 6					
8 DD 041317		11:30 6	Water	3 1	4	2 [i			臺珍		
	4-13-17 1305	5 6	Water	3 1	べ	A					
OC TRU BLANK			Water	(Company)					# A		
			Water								
			Water								
			Water								
			Water								
			Water								
			Water								
ant	□ Poison R □ IInknown	Badiological	le	Sample D	l le Disposal (A i Betum To Client	(A fee may _{ient}	be assessed if san	d if samples Bv Lab	are retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab World	1 month) Months
Other (specify)	ı	200000000000000000000000000000000000000	7	Special Ins	struction	Special Instructions/QC Requirements:	ements:				
Empty Kit Relinquished by:	Date:/		E	Time:			Meti	Method of Shipment:			
	Date/Time:	1606	Company 6	Received by	13.7	w Con		Date/Tim	1/5/	7 1606	Company CLB
Relinquis	Date/Time:	, ;	Company	Received by	d by:			Date/Fime:) :e:		Company
Relinquished by:	Date/Time:		Сотралу	Received by:	d by:			Date/Time:	Эе:		Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No				Cooler T	emperatur	Cooler Temperature(s) °C and Other Remarks:	er Remarks:	3,60	なった		
			1	1	1	1	1				
			56	4	3	1	0	3	5 7	5	2

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-116242-1

Login Number: 116242 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Chris M
Question Answer Comment
Radioactivity either was not measured or, if measured, is at or below True background
The cooler's custody seal, if present, is intact.
The cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice.
Cooler Temperature is acceptable.
Cooler Temperature is recorded. True
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC?
There are no discrepancies between the sample IDs on the containers and the COC.
Samples are received within Holding Time (Excluding tests with immediate True HTs)
Sample containers have legible labels. True
Containers are not broken or leaking.
Sample collection date/times are provided. True
Appropriate sample containers are used.
Sample bottles are completely filled. True
Sample Preservation Verified True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter.
If necessary, staff have been informed of any short hold time or quick TAT True needs
Multiphasic samples are not present.
Samples do not require splitting or compositing.
Sampling Company provided. True OBG
Samples received within 48 hours of sampling.
Samples requiring field filtration have been filtered in the field.
Chlorine Residual checked. N/A

2

4

6

8

10

12

14

4.0

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-116242-1

List Number: 116242
List Number: 2
List Source: TestAmerica Nashville
List Number: 2
List Creation: 04/15/17 04:59 PM

Creator: West, Derrick D

Creator: West, Derrick D		
Question	Answer	Comment
Radioactivity wasn't checked or is $<$ /= background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

2

4

6

8

10

12

14

Residual Chlorine Checked.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-120234-1

Client Project/Site: Forest Glen Monitoring

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for relea

Authorized for release by: 7/13/2017 8:06:56 AM

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	23
Lab Chronicle	24
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	29

3

4

•

0

9

10

12

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

F1 MS and/or MSD Recovery is outside acceptance limits.

Glossary

QC

RL

RER

RPD TEF

TEQ

Ciocoary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

TestAmerica Buffalo

Page 3 of 29

- 4

7

9

10

12

13

16

Case Narrative

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-120234-1 Project/Site: Forest Glen Monitoring

Job ID: 480-120234-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-120234-1

Receipt

The samples were received on 6/27/2017 6:03 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-365728 recovered outside acceptance criteria, low biased, for 1,2-Dichloroethane, 4-Methyl-2-pentanone (MIBK) and 2-Butanone (MEK). A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following sample is impacted: MW-6D-062717 (480-120234-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: O'Brien & Gere Inc of North America

Client Sample ID: MW-10D-062717

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Lab Sample ID: 480-120234-1

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Methyl tert-butyl ether 0.16 ug/L 8260C Total/NA 0.28 J 1.0

Client Sample ID: MW-10S-062717 Lab Sample ID: 480-120234-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.3	1.0	0.81	ug/L		_	8260C	Total/NA
Methyl tert-butyl ether	0.32 J	1.0	0.16	ug/L	1		8260C	Total/NA

Client Sample ID: MW-5D-062717 Lab Sample ID: 480-120234-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.46	J	1.0	0.38	ug/L		8260C	Total/NA
Methyl tert-butyl ether	0.36	J	1.0	0.16	ug/L	1	8260C	Total/NA

Client Sample ID: MW-6D-062717 Lab Sample ID: 480-120234-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.51 J	1.0	0.38 ug/L		8260C	Total/NA
cis-1,2-Dichloroethene	1.3	1.0	0.81 ug/L	1	8260C	Total/NA
Vinyl chloride	1.4	1.0	0.90 ug/L	1	8260C	Total/NA

Client Sample ID: MW-5S-062717 Lab Sample ID: 480-120234-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Mothod	Prep Type
1.1.1-Trichloroethane	— Result Qualifier —		0.82 ug/L		8260C	Total/NA
, ,	3.1	1.0	J	!		
1,1-Dichloroethane	0.84 J	1.0	0.38 ug/L	1	8260C	Total/NA
1,1-Dichloroethene	0.57 J	1.0	0.29 ug/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	3.8	1.0	0.81 ug/L	1	8260C	Total/NA
Trichloroethene	6.7	1.0	0.46 ug/L	1	8260C	Total/NA

Client Sample ID: TRIP BLANK Lab Sample ID: 480-120234-6

No Detections.

This Detection Summary does not include radiochemical test results.

7/13/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Client Sample ID: MW-10D-062717

Lab Sample ID: 480-120234-1 Date Collected: 06/27/17 11:45 **Matrix: Water**

Date Received: 06/27/17 18:03

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			07/06/17 12:21	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/06/17 12:21	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/06/17 12:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			07/06/17 12:21	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/06/17 12:21	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/06/17 12:21	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/06/17 12:21	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/06/17 12:21	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/06/17 12:21	
1,2-Dichloroethane	ND	1.0		ug/L			07/06/17 12:21	
1,2-Dichloropropane	ND	1.0		ug/L			07/06/17 12:21	
1,3-Dichlorobenzene	ND	1.0		ug/L			07/06/17 12:21	
1,4-Dichlorobenzene	ND	1.0		ug/L			07/06/17 12:21	
2-Butanone (MEK)	ND	10		ug/L			07/06/17 12:21	
2-Hexanone	ND	5.0		ug/L			07/06/17 12:21	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			07/06/17 12:21	
Acetone	ND	10		ug/L			07/06/17 12:21	
Benzene	ND	1.0	0.41	-			07/06/17 12:21	
Bromodichloromethane	ND	1.0		ug/L			07/06/17 12:21	
Bromoform	ND	1.0	0.26	-			07/06/17 12:21	
Bromomethane	ND	1.0		ug/L			07/06/17 12:21	
Carbon disulfide	ND	1.0		ug/L			07/06/17 12:21	
Carbon tetrachloride	ND	1.0		ug/L			07/06/17 12:21	
Calbon tetrachionide	ND ND	1.0		ug/L ug/L			07/06/17 12:21	
Dibromochloromethane	ND	1.0		ug/L			07/06/17 12:21	
Chloroethane	ND ND	1.0	0.32				07/06/17 12:21	
Chloroform	ND ND	1.0		ug/L ug/L			07/06/17 12:21	
				-				
Chloromethane	ND	1.0		ug/L			07/06/17 12:21	
cis-1,2-Dichloroethene	ND	1.0		ug/L			07/06/17 12:21	
cis-1,3-Dichloropropene	ND	1.0	0.36	-			07/06/17 12:21	
Cyclohexane	ND	1.0		ug/L			07/06/17 12:21	
Dichlorodifluoromethane	ND	1.0		ug/L			07/06/17 12:21	
Ethylbenzene	ND	1.0		ug/L			07/06/17 12:21	
1,2-Dibromoethane	ND	1.0		ug/L			07/06/17 12:21	
Isopropylbenzene	ND	1.0		ug/L			07/06/17 12:21	
Methyl acetate	ND	2.5		ug/L			07/06/17 12:21	
Methyl tert-butyl ether	0.28 J	1.0		ug/L			07/06/17 12:21	
Methylcyclohexane	ND	1.0		ug/L			07/06/17 12:21	
Methylene Chloride	ND	1.0		ug/L			07/06/17 12:21	
Styrene	ND	1.0		ug/L			07/06/17 12:21	
Tetrachloroethene	ND	1.0	0.36	ug/L			07/06/17 12:21	
Toluene	ND	1.0		ug/L			07/06/17 12:21	
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			07/06/17 12:21	
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			07/06/17 12:21	
Trichloroethene	ND	1.0	0.46	ug/L			07/06/17 12:21	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			07/06/17 12:21	
Vinyl chloride	ND	1.0	0.90	ug/L			07/06/17 12:21	
Xylenes, Total	ND	2.0		ug/L			07/06/17 12:21	

TestAmerica Buffalo

7/13/2017

Page 6 of 29

Client: O'Brien & Gere Inc of North America

Client Sample ID: MW-10D-062717

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-120234-1

TestAmerica Job ID: 480-120234-1

Matrix: Water

Date Collected: 06/27/17 11:45 Date Received: 06/27/17 18:03

Surrogate	%Recovery Q	Qualifier Limits	Prepared An	alyzed Dil Fac
Toluene-d8 (Surr)	91	80 - 120	07/06	6/17 12:21 1
1,2-Dichloroethane-d4 (Surr)	102	77 - 120	07/06	6/17 12:21 1
4-Bromofluorobenzene (Surr)	90	73 - 120	07/06	6/17 12:21 1
Dibromofluoromethane (Surr)	96	75 - 123	07/06	6/17 12:21 1

Lab Sample ID: 480-120234-2 Client Sample ID: MW-10S-062717

Date Collected: 06/27/17 12:30 **Matrix: Water**

Date Received: 06/27/17 18:03

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			07/06/17 12:44	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/06/17 12:44	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/06/17 12:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			07/06/17 12:44	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/06/17 12:44	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/06/17 12:44	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/06/17 12:44	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/06/17 12:44	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/06/17 12:44	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/06/17 12:44	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/06/17 12:44	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/06/17 12:44	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/06/17 12:44	1
2-Butanone (MEK)	ND	10	1.3	ug/L			07/06/17 12:44	1
2-Hexanone	ND	5.0	1.2	ug/L			07/06/17 12:44	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/06/17 12:44	1
Acetone	ND	10	3.0	ug/L			07/06/17 12:44	1
Benzene	ND	1.0	0.41	ug/L			07/06/17 12:44	1
Bromodichloromethane	ND	1.0	0.39	ug/L			07/06/17 12:44	1
Bromoform	ND	1.0	0.26	ug/L			07/06/17 12:44	1
Bromomethane	ND	1.0	0.69	ug/L			07/06/17 12:44	1
Carbon disulfide	ND	1.0	0.19	ug/L			07/06/17 12:44	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/06/17 12:44	1
Chlorobenzene	ND	1.0	0.75	ug/L			07/06/17 12:44	1
Dibromochloromethane	ND	1.0	0.32	ug/L			07/06/17 12:44	1
Chloroethane	ND	1.0	0.32	ug/L			07/06/17 12:44	1
Chloroform	ND	1.0	0.34	ug/L			07/06/17 12:44	1
Chloromethane	ND	1.0	0.35	ug/L			07/06/17 12:44	1
cis-1,2-Dichloroethene	1.3	1.0	0.81	ug/L			07/06/17 12:44	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			07/06/17 12:44	1
Cyclohexane	ND	1.0	0.18	ug/L			07/06/17 12:44	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			07/06/17 12:44	1
Ethylbenzene	ND	1.0	0.74	ug/L			07/06/17 12:44	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			07/06/17 12:44	1
Isopropylbenzene	ND	1.0	0.79	ug/L			07/06/17 12:44	1
Methyl acetate	ND	2.5	1.3	ug/L			07/06/17 12:44	1
Methyl tert-butyl ether	0.32 J	1.0	0.16	ug/L			07/06/17 12:44	1
Methylcyclohexane	ND	1.0	0.16				07/06/17 12:44	1
Methylene Chloride	ND	1.0	0.44	-			07/06/17 12:44	1

TestAmerica Buffalo

Page 7 of 29

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Client Sample ID: MW-10S-062717

Lab Sample ID: 480-120234-2 Date Collected: 06/27/17 12:30

Matrix: Water

Date Received: 06/27/17 18:03

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contin	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			07/06/17 12:44	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/06/17 12:44	1
Toluene	ND		1.0	0.51	ug/L			07/06/17 12:44	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/06/17 12:44	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/06/17 12:44	1
Trichloroethene	ND		1.0	0.46	ug/L			07/06/17 12:44	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/06/17 12:44	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/06/17 12:44	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/06/17 12:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90		80 - 120			•		07/06/17 12:44	1
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					07/06/17 12:44	1
4-Bromofluorobenzene (Surr)	90		73 - 120					07/06/17 12:44	1
Dibromofluoromethane (Surr)	93		75 - 123					07/06/17 12:44	1

Lab Sample ID: 480-120234-3 Client Sample ID: MW-5D-062717 **Matrix: Water**

Date Collected: 06/27/17 14:30 Date Received: 06/27/17 18:03

Chloroform

Chloromethane

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			07/06/17 13:07	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/06/17 13:07	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/06/17 13:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			07/06/17 13:07	1
1,1-Dichloroethane	0.46 J	1.0	0.38	ug/L			07/06/17 13:07	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/06/17 13:07	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/06/17 13:07	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/06/17 13:07	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/06/17 13:07	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/06/17 13:07	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/06/17 13:07	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/06/17 13:07	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/06/17 13:07	1
2-Butanone (MEK)	ND	10	1.3	ug/L			07/06/17 13:07	1
2-Hexanone	ND	5.0	1.2	ug/L			07/06/17 13:07	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/06/17 13:07	1
Acetone	ND	10	3.0	ug/L			07/06/17 13:07	1
Benzene	ND	1.0	0.41	ug/L			07/06/17 13:07	1
Bromodichloromethane	ND	1.0	0.39	ug/L			07/06/17 13:07	1
Bromoform	ND	1.0	0.26	ug/L			07/06/17 13:07	1
Bromomethane	ND	1.0	0.69	ug/L			07/06/17 13:07	1
Carbon disulfide	ND	1.0	0.19	ug/L			07/06/17 13:07	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/06/17 13:07	1
Chlorobenzene	ND	1.0	0.75	ug/L			07/06/17 13:07	1
Dibromochloromethane	ND	1.0	0.32	ug/L			07/06/17 13:07	1
Chloroethane	ND	1.0	0.32	ug/L			07/06/17 13:07	1

1.0

1.0

0.34 ug/L

0.35 ug/L

ND

ND

TestAmerica Buffalo

07/06/17 13:07

07/06/17 13:07

Page 8 of 29 7/13/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Client Sample ID: MW-5D-062717

Date Collected: 06/27/17 14:30 Date Received: 06/27/17 18:03 Lab Sample ID: 480-120234-3

Matrix: Water

Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			07/06/17 13:07	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			07/06/17 13:07	1
Cyclohexane	ND	1.0	0.18	ug/L			07/06/17 13:07	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			07/06/17 13:07	1
Ethylbenzene	ND	1.0	0.74	ug/L			07/06/17 13:07	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			07/06/17 13:07	1
Isopropylbenzene	ND	1.0	0.79	ug/L			07/06/17 13:07	1
Methyl acetate	ND	2.5	1.3	ug/L			07/06/17 13:07	1
Methyl tert-butyl ether	0.36 J	1.0	0.16	ug/L			07/06/17 13:07	1
Methylcyclohexane	ND	1.0	0.16	ug/L			07/06/17 13:07	1
Methylene Chloride	ND	1.0	0.44	ug/L			07/06/17 13:07	1
Styrene	ND	1.0	0.73	ug/L			07/06/17 13:07	1
Tetrachloroethene	ND	1.0	0.36	ug/L			07/06/17 13:07	1
Toluene	ND	1.0	0.51	ug/L			07/06/17 13:07	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			07/06/17 13:07	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			07/06/17 13:07	1
Trichloroethene	ND	1.0	0.46	ug/L			07/06/17 13:07	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			07/06/17 13:07	1
Vinyl chloride	ND	1.0	0.90	ug/L			07/06/17 13:07	1
Xylenes, Total	ND	2.0	0.66	ug/L			07/06/17 13:07	1
Surrogate	%Recovery Qu	alifier Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90	80 - 120			•		07/06/17 13:07	1
1,2-Dichloroethane-d4 (Surr)	100	77 - 120					07/06/17 13:07	1
4-Bromofluorobenzene (Surr)	86	73 - 120					07/06/17 13:07	1
Dibromofluoromethane (Surr)	92	75 - 123					07/06/17 13:07	1

Client Sample ID: MW-6D-062717

Date Collected: 06/27/17 14:57 Date Received: 06/27/17 18:03 Lab Sample ID: 480-120234-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/07/17 05:04	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/07/17 05:04	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/07/17 05:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			07/07/17 05:04	1
1,1-Dichloroethane	0.51	J	1.0	0.38	ug/L			07/07/17 05:04	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/07/17 05:04	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/07/17 05:04	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/07/17 05:04	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/07/17 05:04	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/07/17 05:04	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/07/17 05:04	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/07/17 05:04	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/07/17 05:04	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/07/17 05:04	1
2-Hexanone	ND		5.0	1.2	ug/L			07/07/17 05:04	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/07/17 05:04	1
Acetone	ND		10	3.0	ug/L			07/07/17 05:04	1

TestAmerica Buffalo

7/13/2017

Page 9 of 29

2

3

_

8

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW-6D-062717 Lab Sample ID: 480-120234-4

Date Collected: 06/27/17 14:57 **Matrix: Water** Date Received: 06/27/17 18:03

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed Benzene $\overline{\mathsf{ND}}$ 1.0 0.41 ug/L 07/07/17 05:04 Bromodichloromethane ND 1.0 0.39 ug/L 07/07/17 05:04 Bromoform ND 1.0 0.26 ug/L 07/07/17 05:04 Bromomethane ND 1.0 0.69 ug/L 07/07/17 05:04 Carbon disulfide ND 1.0 0.19 ug/L 07/07/17 05:04 Carbon tetrachloride ND 1.0 0.27 ug/L 07/07/17 05:04 0.75 ug/L Chlorobenzene ND 1.0 07/07/17 05:04 Dibromochloromethane ND 1.0 0.32 ug/L 07/07/17 05:04 Chloroethane 07/07/17 05:04 ND 1.0 0.32 ug/L Chloroform 0.34 ug/L ND 1.0 07/07/17 05:04 Chloromethane ND 1.0 0.35 ug/L 07/07/17 05:04 1.0 0.81 ug/L 07/07/17 05:04 cis-1.2-Dichloroethene 1.3 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 1 07/07/17 05:04 Cyclohexane ND 1.0 0.18 ug/L 07/07/17 05:04 Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 05:04 Ethylbenzene ND 1.0 0.74 ug/L 07/07/17 05:04 1,2-Dibromoethane ND 1.0 0.73 ug/L 07/07/17 05:04 Isopropylbenzene ND 1.0 0.79 ug/L 07/07/17 05:04 Methyl acetate ND F1 2.5 1.3 ug/L 07/07/17 05:04 07/07/17 05:04 Methyl tert-butyl ether ND 0.16 ug/L 1.0 07/07/17 05:04 Methylcyclohexane ND 1.0 0.16 ug/L Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 05:04 Styrene ND 1.0 0.73 ug/L 07/07/17 05:04 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 05:04 Toluene ND 1.0 0.51 ug/L 07/07/17 05:04 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 05:04 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 05:04 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 05:04 Trichlorofluoromethane ND 1.0 0.88 ug/L 07/07/17 05:04 1.0 0.90 ug/L 07/07/17 05:04 Vinyl chloride 1.4 Xylenes, Total ND 2.0 0.66 ug/L 07/07/17 05:04 %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed Toluene-d8 (Surr) 97 80 - 120 07/07/17 05:04 87 77 - 120 07/07/17 05:04 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 97 73 - 120 07/07/17 05:04 Dibromofluoromethane (Surr) 95 75 - 123 07/07/17 05:04

Client Sample ID: MW-5S-062717 Lab Sample ID: 480-120234-5 Date Collected: 06/27/17 15:35

Date Received: 06/27/17 18:03

Method: 8260C - Volatile Organ	ic Compounds by GC/	MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	3.1	1.0	0.82 ug/L			07/06/17 13:53	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug/L			07/06/17 13:53	1
1,1,2-Trichloroethane	ND	1.0	0.23 ug/L			07/06/17 13:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31 ug/L			07/06/17 13:53	1
1,1-Dichloroethane	0.84 J	1.0	0.38 ug/L			07/06/17 13:53	1
1,1-Dichloroethene	0.57 J	1.0	0.29 ug/L			07/06/17 13:53	1

TestAmerica Buffalo

Matrix: Water

Page 10 of 29

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Client Sample ID: MW-5S-062717 Lab Sample ID: 480-120234-5

Date Collected: 06/27/17 15:35 Matrix: Water Date Received: 06/27/17 18:03

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed 1,2,4-Trichlorobenzene $\overline{\mathsf{ND}}$ 1.0 0.41 ug/L 07/06/17 13:53 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 07/06/17 13:53 ug/L 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 07/06/17 13:53 1,2-Dichloroethane ND 1.0 0.21 ug/L 07/06/17 13:53 1,2-Dichloropropane ND 1.0 0.72 ug/L 07/06/17 13:53 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 07/06/17 13:53 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 07/06/17 13:53 2-Butanone (MEK) ND 10 1.3 ug/L 07/06/17 13:53 ND 2-Hexanone 5.0 ug/L 07/06/17 13:53 1.2 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 07/06/17 13:53 Acetone ND 10 3.0 ug/L 07/06/17 13:53 Benzene ND 1.0 0.41 ug/L 07/06/17 13:53 Bromodichloromethane ND 1.0 0.39 ug/L 07/06/17 13:53 Bromoform ND 1.0 0.26 ug/L 07/06/17 13:53 Bromomethane ND 0.69 ug/L 1.0 07/06/17 13:53 Carbon disulfide ND 1.0 0.19 ug/L 07/06/17 13:53 Carbon tetrachloride ND 1.0 0.27 ug/L 07/06/17 13:53 Chlorobenzene ND 1.0 0.75 ug/L 07/06/17 13:53 Dibromochloromethane ND 1.0 0.32 ug/L 07/06/17 13:53 Chloroethane ND 0.32 ug/L 1.0 07/06/17 13:53 Chloroform ND 1.0 0.34 ug/L 07/06/17 13:53 Chloromethane ND 1.0 0.35 ug/L 07/06/17 13:53 cis-1,2-Dichloroethene 3.8 1.0 0.81 ug/L 07/06/17 13:53 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/06/17 13:53 Cyclohexane ND 1.0 0.18 ug/L 07/06/17 13:53 Dichlorodifluoromethane ND 1.0 07/06/17 13:53 0.68 ug/L Ethylbenzene ND 1.0 0.74 ug/L 07/06/17 13:53 1,2-Dibromoethane ND 1.0 0.73 ug/L 07/06/17 13:53 Isopropylbenzene ND 1.0 0.79 ug/L 07/06/17 13:53 Methyl acetate ND 2.5 1.3 ug/L 07/06/17 13:53 Methyl tert-butyl ether ND 1.0 0.16 ug/L 07/06/17 13:53 Methylcyclohexane ND 1.0 0.16 ug/L 07/06/17 13:53 Methylene Chloride ND 1.0 0.44 ug/L 07/06/17 13:53 Styrene ND 1.0 0.73 ug/L 07/06/17 13:53 Tetrachloroethene ND 1.0 0.36 ug/L 07/06/17 13:53 Toluene ND 1.0 0.51 ug/L 07/06/17 13:53 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/06/17 13:53 trans-1,3-Dichloropropene ND 0.37 ug/L 1.0 07/06/17 13:53 **Trichloroethene** 6.7 1.0 0.46 ug/L 07/06/17 13:53 Trichlorofluoromethane ND 1.0 0.88 ug/L 07/06/17 13:53 Vinyl chloride ND 1.0 0.90 ug/L 07/06/17 13:53 ND 0.66 ug/L Xylenes, Total 20 07/06/17 13:53

	Surrogate	%Recovery	Qualifier	Limits	Pre	epared	Analyzed	Dil Fac
	Toluene-d8 (Surr)	90		80 - 120			07/06/17 13:53	1
	1,2-Dichloroethane-d4 (Surr)	97		77 - 120			07/06/17 13:53	1
	4-Bromofluorobenzene (Surr)	88		73 - 120			07/06/17 13:53	1
١	Dibromofluoromethane (Surr)	97		75 - 123			07/06/17 13:53	1

TestAmerica Buffalo

3

4

6

0

11

13

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-120234-1 Project/Site: Forest Glen Monitoring

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-120234-6 Date Collected: 06/27/17 00:00 **Matrix: Water**

Date Received: 06/27/17 18:03

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	-			07/06/17 14:16	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/06/17 14:16	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/06/17 14:16	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			07/06/17 14:16	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/06/17 14:16	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/06/17 14:16	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/06/17 14:16	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/06/17 14:16	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/06/17 14:16	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/06/17 14:16	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/06/17 14:16	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/06/17 14:16	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/06/17 14:16	
2-Butanone (MEK)	ND	10	1.3	ug/L			07/06/17 14:16	
2-Hexanone	ND	5.0	1.2	ug/L			07/06/17 14:16	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/06/17 14:16	
Acetone	ND	10	3.0	ug/L			07/06/17 14:16	
Benzene	ND	1.0	0.41	ug/L			07/06/17 14:16	
Bromodichloromethane	ND	1.0	0.39	ug/L			07/06/17 14:16	
Bromoform	ND	1.0	0.26	ug/L			07/06/17 14:16	
Bromomethane	ND	1.0	0.69	ug/L			07/06/17 14:16	
Carbon disulfide	ND	1.0	0.19	ug/L			07/06/17 14:16	
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/06/17 14:16	
Chlorobenzene	ND	1.0	0.75	ug/L			07/06/17 14:16	
Dibromochloromethane	ND	1.0	0.32	ug/L			07/06/17 14:16	
Chloroethane	ND	1.0	0.32	ug/L			07/06/17 14:16	
Chloroform	ND	1.0	0.34	ug/L			07/06/17 14:16	
Chloromethane	ND	1.0	0.35	ug/L			07/06/17 14:16	
cis-1,2-Dichloroethene	ND	1.0	0.81	-			07/06/17 14:16	
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			07/06/17 14:16	
Cyclohexane	ND	1.0	0.18	ug/L			07/06/17 14:16	
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			07/06/17 14:16	
Ethylbenzene	ND	1.0	0.74	ug/L			07/06/17 14:16	
1,2-Dibromoethane	ND	1.0	0.73	ug/L			07/06/17 14:16	
Isopropylbenzene	ND	1.0	0.79	ug/L			07/06/17 14:16	
Methyl acetate	ND	2.5		ug/L			07/06/17 14:16	
Methyl tert-butyl ether	ND	1.0	0.16				07/06/17 14:16	
Methylcyclohexane	ND	1.0	0.16				07/06/17 14:16	
Methylene Chloride	ND	1.0	0.44				07/06/17 14:16	
Styrene	ND	1.0	0.73	-			07/06/17 14:16	
Tetrachloroethene	ND	1.0	0.36				07/06/17 14:16	
Toluene	ND	1.0	0.51	-			07/06/17 14:16	
rans-1,2-Dichloroethene	ND	1.0	0.90				07/06/17 14:16	
rans-1,3-Dichloropropene	ND	1.0	0.37	-			07/06/17 14:16	
Trichloroethene	ND	1.0	0.46	•			07/06/17 14:16	
Trichlorofluoromethane	ND	1.0	0.88	-			07/06/17 14:16	
Vinyl chloride	ND	1.0	0.90				07/06/17 14:16	
Xylenes, Total	ND	2.0	0.66	-			07/06/17 14:16	

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Client Sample ID: TRIP BLANK

TestAmerica Job ID: 480-120234-1

Lab Sample ID: 480-120234-6

Matrix: Water

Date Collected: 06/27/17 00:00 Date Received: 06/27/17 18:03

Surrogate	%Recovery Qualifier	Limits	Prepared	l Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120		07/06/17 14:16	1
1,2-Dichloroethane-d4 (Surr)	98	77 - 120		07/06/17 14:16	1
4-Bromofluorobenzene (Surr)	90	73 - 120		07/06/17 14:16	1
Dibromofluoromethane (Surr)	95	75 - 123		07/06/17 14:16	1

4

5

8

10

12

13

Surrogate Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	rcent Surro	gate Recovery (Acceptance L	imits)
		TOL	12DCE	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)	
480-120234-1	MW-10D-062717	91	102	90	96	
480-120234-2	MW-10S-062717	90	99	90	93	
480-120234-3	MW-5D-062717	90	100	86	92	
480-120234-4	MW-6D-062717	97	87	97	95	
480-120234-4 MS	MW-6D-062717	98	83	99	94	
480-120234-4 MSD	MW-6D-062717	98	84	100	94	
480-120234-5	MW-5S-062717	90	97	88	97	
480-120234-6	TRIP BLANK	93	98	90	95	
LCS 480-365580/4	Lab Control Sample	94	96	93	94	
LCS 480-365728/5	Lab Control Sample	97	84	97	95	
MB 480-365580/6	Method Blank	93	96	91	91	
MB 480-365728/8	Method Blank	97	84	96	91	

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

Lab Sample ID: MB 480-365580/6

Matrix: Water

Analysis Batch: 365580

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/06/17 10:05	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/06/17 10:05	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/06/17 10:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			07/06/17 10:05	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/06/17 10:05	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/06/17 10:05	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/06/17 10:05	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/06/17 10:05	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/06/17 10:05	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/06/17 10:05	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/06/17 10:05	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/06/17 10:05	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/06/17 10:05	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/06/17 10:05	1
2-Hexanone	ND		5.0	1.2	ug/L			07/06/17 10:05	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/06/17 10:05	1
Acetone	ND		10	3.0	ug/L			07/06/17 10:05	1
Benzene	ND		1.0	0.41	ug/L			07/06/17 10:05	1
Bromodichloromethane	ND		1.0		ug/L			07/06/17 10:05	1
Bromoform	ND		1.0	0.26	ug/L			07/06/17 10:05	1
Bromomethane	ND		1.0		ug/L			07/06/17 10:05	1
Carbon disulfide	ND		1.0		ug/L			07/06/17 10:05	1
Carbon tetrachloride	ND		1.0		ug/L			07/06/17 10:05	1
Chlorobenzene	ND		1.0	0.75	-			07/06/17 10:05	1
Dibromochloromethane	ND		1.0	0.32	ug/L			07/06/17 10:05	1
Chloroethane	ND		1.0		ug/L			07/06/17 10:05	1
Chloroform	ND		1.0		ug/L			07/06/17 10:05	1
Chloromethane	ND		1.0		ug/L			07/06/17 10:05	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			07/06/17 10:05	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			07/06/17 10:05	1
Cyclohexane	ND		1.0		ug/L			07/06/17 10:05	1
Dichlorodifluoromethane	ND		1.0		ug/L			07/06/17 10:05	1
Ethylbenzene	ND		1.0		ug/L			07/06/17 10:05	1
1,2-Dibromoethane	ND		1.0		ug/L			07/06/17 10:05	1
Isopropylbenzene	ND		1.0		ug/L			07/06/17 10:05	1
Methyl acetate	ND		2.5		ug/L			07/06/17 10:05	1
Methyl tert-butyl ether	ND		1.0		ug/L			07/06/17 10:05	1
Methylcyclohexane	ND		1.0		ug/L			07/06/17 10:05	1
Methylene Chloride	ND		1.0		ug/L			07/06/17 10:05	1
Styrene	ND		1.0		ug/L			07/06/17 10:05	
Tetrachloroethene	ND		1.0		ug/L			07/06/17 10:05	1
Toluene	ND		1.0		ug/L			07/06/17 10:05	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/06/17 10:05	
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/06/17 10:05	1
	110		1.0	0.07	~g, _			37,00,17 10.00	

TestAmerica Buffalo

07/06/17 10:05

07/06/17 10:05

07/06/17 10:05

07/06/17 10:05

Page 15 of 29

1.0

1.0

1.0

2.0

ND

ND

ND

ND

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 93 80 - 120 07/06/17 10:05 1,2-Dichloroethane-d4 (Surr) 96 77 - 120 07/06/17 10:05 4-Bromofluorobenzene (Surr) 91 73 - 120 07/06/17 10:05 91 75 - 123 Dibromofluoromethane (Surr) 07/06/17 10:05

Lab Sample ID: LCS 480-365580/4

Matrix: Water

Analysis Batch: 365580

Client Sample ID	: Lab Control Sample
	Pren Type: Total/NA

Analyte	Spike Added		LCS Qualifier Unit	D %Rec	%Rec. Limits	
1,1,1-Trichloroethane	25.0	24.4	ug/L	98	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.8	ug/L	99	76 ₋ 120	
1,1,2-Trichloroethane	25.0	24.4	ug/L	98	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.1	ug/L	92	61 - 148	
ne 1,1-Dichloroethane	25.0	23.4	ug/L	93	77 ₋ 120	
1,1-Dichloroethene	25.0	21.8	ug/L	87	66 - 127	
1,2,4-Trichlorobenzene	25.0	24.8	ug/L	99	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	24.4	ug/L	98	56 - 134	
1,2-Dichlorobenzene	25.0	24.6	ug/L	98	80 - 124	
1,2-Dichloroethane	25.0	23.5	ug/L	94	75 - 120	
1,2-Dichloropropane	25.0	23.8	ug/L	95	76 - 120	
1,3-Dichlorobenzene	25.0	23.9	ug/L	96	77 ₋ 120	
1,4-Dichlorobenzene	25.0	23.2	ug/L	93	80 - 120	
2-Butanone (MEK)	125	130	ug/L	104	57 ₋ 140	
2-Hexanone	125	135	ug/L	108	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	137	ug/L	109	71 - 125	
Acetone	125	133	ug/L	106	56 ₋ 142	
Benzene	25.0	22.5	ug/L	90	71 - 124	
Bromodichloromethane	25.0	24.7	ug/L	99	80 - 122	
Bromoform	25.0	24.3	ug/L	97	61 ₋ 132	
Bromomethane	25.0	20.4	ug/L	82	55 ₋ 144	
Carbon disulfide	25.0	22.4	ug/L	90	59 - 134	
Carbon tetrachloride	25.0	23.0	ug/L	92	72 ₋ 134	
Chlorobenzene	25.0	22.8	ug/L	91	80 - 120	
Dibromochloromethane	25.0	24.7	ug/L	99	75 ₋ 125	
Chloroethane	25.0	24.3	ug/L	97	69 - 136	
Chloroform	25.0	23.5	ug/L	94	73 - 127	
Chloromethane	25.0	23.1	ug/L	92	68 - 124	
cis-1,2-Dichloroethene	25.0	22.9	ug/L	91	74 - 124	
cis-1,3-Dichloropropene	25.0	25.4	ug/L	102	74 - 124	
Cyclohexane	25.0	22.7	ug/L	91	59 - 135	
Dichlorodifluoromethane	25.0	23.0	ug/L	92	59 ₋ 135	
Ethylbenzene	25.0	23.4	ug/L	93	77 - 123	
1,2-Dibromoethane	25.0	23.6	ug/L	94	77 - 120	
Isopropylbenzene	25.0	23.9	ug/L	96	77 - 122	
Methyl acetate	125	129	ug/L	103	74 - 133	
Methyl tert-butyl ether	25.0	24.2	ug/L	97	77 - 120	
Methylcyclohexane	25.0	22.6	ug/L	90	68 - 134	
Methylene Chloride	25.0	20.9	ug/L	84	75 - 124	
Styrene	25.0	24.3	ug/L	97	80 - 120	
Tetrachloroethene	25.0	22.0	ug/L	88	74 - 122	
Toluene	25.0	22.9	ug/L	92	80 - 122	
trans-1,2-Dichloroethene	25.0	22.4	ug/L	90	73 - 127	

TestAmerica Buffalo

_

А

6

8

9

11

13

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-365580/4

Matrix: Water

Analysis Batch: 365580

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
25.0	25.6		ug/L		102	80 - 120	
25.0	22.5		ug/L		90	74 - 123	
25.0	22.1		ug/L		88	62 - 150	
25.0	22.4		ug/L		90	65 - 133	
	Added 25.0 25.0 25.0	Added Result 25.0 25.6 25.0 22.5 25.0 22.1	Added Result Qualifier 25.0 25.6 25.0 22.5 25.0 22.1	Added Result Qualifier Unit 25.0 25.6 ug/L 25.0 22.5 ug/L 25.0 22.1 ug/L	Added Result Qualifier Unit D 25.0 25.6 ug/L 25.0 22.5 ug/L 25.0 22.1 ug/L	Added Result Qualifier Unit D %Rec 25.0 25.6 ug/L 102 25.0 22.5 ug/L 90 25.0 22.1 ug/L 88	Added Result 25.0 Qualifier 25.0 Unit ug/L D %Rec 20.1 Limits 30.2 25.0 25.6 ug/L 102 80 - 120 25.0 22.5 ug/L 90 74 - 123 25.0 22.1 ug/L 88 62 - 150

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 80 - 120 94 1,2-Dichloroethane-d4 (Surr) 96 77 - 120 4-Bromofluorobenzene (Surr) 93 73 - 120 Dibromofluoromethane (Surr) 94 75 - 123

Lab Sample ID: MB 480-365728/8 Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 365728	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/06/17 22:08	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/06/17 22:08	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/06/17 22:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			07/06/17 22:08	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/06/17 22:08	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/06/17 22:08	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/06/17 22:08	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/06/17 22:08	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/06/17 22:08	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/06/17 22:08	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/06/17 22:08	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/06/17 22:08	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/06/17 22:08	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/06/17 22:08	1
2-Hexanone	ND		5.0	1.2	ug/L			07/06/17 22:08	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/06/17 22:08	1
Acetone	ND		10	3.0	ug/L			07/06/17 22:08	1
Benzene	ND		1.0	0.41	ug/L			07/06/17 22:08	1
Bromodichloromethane	ND		1.0	0.39	ug/L			07/06/17 22:08	1
Bromoform	ND		1.0	0.26	ug/L			07/06/17 22:08	1
Bromomethane	ND		1.0	0.69	ug/L			07/06/17 22:08	1
Carbon disulfide	ND		1.0	0.19	ug/L			07/06/17 22:08	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			07/06/17 22:08	1
Chlorobenzene	ND		1.0	0.75	ug/L			07/06/17 22:08	1
Dibromochloromethane	ND		1.0	0.32	ug/L			07/06/17 22:08	1
Chloroethane	ND		1.0	0.32	ug/L			07/06/17 22:08	1
Chloroform	ND		1.0	0.34	ug/L			07/06/17 22:08	1
Chloromethane	ND		1.0	0.35	ug/L			07/06/17 22:08	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/06/17 22:08	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/06/17 22:08	1
Cyclohexane	ND		1.0	0.18	ug/L			07/06/17 22:08	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/06/17 22:08	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-365728/8

Matrix: Water

Analysis Batch: 365728

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Baton. 5007 20									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.74	ug/L			07/06/17 22:08	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			07/06/17 22:08	1
Isopropylbenzene	ND		1.0	0.79	ug/L			07/06/17 22:08	1
Methyl acetate	ND		2.5	1.3	ug/L			07/06/17 22:08	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/06/17 22:08	1
Methylcyclohexane	ND		1.0	0.16	ug/L			07/06/17 22:08	1
Methylene Chloride	ND		1.0	0.44	ug/L			07/06/17 22:08	1
Styrene	ND		1.0	0.73	ug/L			07/06/17 22:08	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/06/17 22:08	1
Toluene	ND		1.0	0.51	ug/L			07/06/17 22:08	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/06/17 22:08	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/06/17 22:08	1
Trichloroethene	ND		1.0	0.46	ug/L			07/06/17 22:08	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/06/17 22:08	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/06/17 22:08	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/06/17 22:08	1

MB MB

Surrogate %Recovery Qualifier Limits Pr Toluene-d8 (Surr) 97 80 - 120 1,2-Dichloroethane-d4 (Surr) 84 77 - 120 4-Bromofluorobenzene (Surr) 96 73 - 120 Dibromofluoromethane (Surr) 91 75 - 123						
1,2-Dichloroethane-d4 (Surr) 84 77 - 120 4-Bromofluorobenzene (Surr) 96 73 - 120	Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) 96 73 - 120	Toluene-d8 (Surr)	97	80 - 120		07/06/17 22:08	1
	1,2-Dichloroethane-d4 (Surr)	84	77 - 120		07/06/17 22:08	1
Dibromofluoromethane (Surr) 91 75 - 123	4-Bromofluorobenzene (Surr)	96	73 - 120		07/06/17 22:08	1
	Dibromofluoromethane (Surr)	91	75 - 123		07/06/17 22:08	1

Lab Sample ID: LCS 480-365728/5

Matrix: Water

Analysis Batch: 365728

Client Sample ID:	Lab	Con	trol	Sample	
	Prep	Тур	e: T	otal/NA	

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	22.4		ug/L		90	73 - 126
1,1,2,2-Tetrachloroethane	25.0	20.2		ug/L		81	76 - 120
1,1,2-Trichloroethane	25.0	21.2		ug/L		85	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.1		ug/L		88	61 - 148
ne							
1,1-Dichloroethane	25.0	22.2		ug/L		89	77 - 120
1,1-Dichloroethene	25.0	20.7		ug/L		83	66 - 127
1,2,4-Trichlorobenzene	25.0	22.1		ug/L		88	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	21.0		ug/L		84	56 - 134
1,2-Dichlorobenzene	25.0	21.4		ug/L		86	80 - 124
1,2-Dichloroethane	25.0	19.4		ug/L		78	75 - 120
1,2-Dichloropropane	25.0	21.5		ug/L		86	76 - 120
1,3-Dichlorobenzene	25.0	21.7		ug/L		87	77 - 120
1,4-Dichlorobenzene	25.0	22.0		ug/L		88	80 - 120
2-Butanone (MEK)	125	110		ug/L		88	57 ₋ 140
2-Hexanone	125	103		ug/L		83	65 - 127
4-Methyl-2-pentanone (MIBK)	125	98.7		ug/L		79	71 - 125
Acetone	125	112		ug/L		89	56 - 142
Benzene	25.0	22.4		ug/L		89	71 - 124
Bromodichloromethane	25.0	22.8		ug/L		91	80 - 122

TestAmerica Buffalo

Page 18 of 29

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-365728/5

Matrix: Water

Analysis Batch: 365728

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromoform	25.0	24.7		ug/L		99	61 - 132	
Bromomethane	25.0	22.7		ug/L		91	55 ₋ 144	
Carbon disulfide	25.0	20.5		ug/L		82	59 - 134	
Carbon tetrachloride	25.0	23.4		ug/L		93	72 - 134	
Chlorobenzene	25.0	22.3		ug/L		89	80 - 120	
Dibromochloromethane	25.0	23.3		ug/L		93	75 - 125	
Chloroethane	25.0	23.5		ug/L		94	69 - 136	
Chloroform	25.0	21.2		ug/L		85	73 - 127	
Chloromethane	25.0	24.6		ug/L		99	68 - 124	
cis-1,2-Dichloroethene	25.0	22.0		ug/L		88	74 - 124	
cis-1,3-Dichloropropene	25.0	24.2		ug/L		97	74 - 124	
Cyclohexane	25.0	22.0		ug/L		88	59 - 135	
Dichlorodifluoromethane	25.0	29.1		ug/L		116	59 ₋ 135	
Ethylbenzene	25.0	22.0		ug/L		88	77 - 123	
1,2-Dibromoethane	25.0	20.6		ug/L		82	77 - 120	
Isopropylbenzene	25.0	22.8		ug/L		91	77 - 122	
Methyl acetate	125	92.2		ug/L		74	74 - 133	
Methyl tert-butyl ether	25.0	21.0		ug/L		84	77 - 120	
Methylcyclohexane	25.0	22.2		ug/L		89	68 - 134	
Methylene Chloride	25.0	20.1		ug/L		81	75 - 124	
Styrene	25.0	22.3		ug/L		89	80 - 120	
Tetrachloroethene	25.0	24.5		ug/L		98	74 - 122	
Toluene	25.0	22.2		ug/L		89	80 - 122	
trans-1,2-Dichloroethene	25.0	22.3		ug/L		89	73 - 127	
trans-1,3-Dichloropropene	25.0	23.3		ug/L		93	80 - 120	
Trichloroethene	25.0	21.5		ug/L		86	74 - 123	
Trichlorofluoromethane	25.0	22.5		ug/L		90	62 - 150	
Vinyl chloride	25.0	25.3		ug/L		101	65 ₋ 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	84		77 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	95		75 - 123

Lab Sample ID: 480-120234-4 MS

Matrix: Water

Analysis Batch: 365728

Client Sample ID: MW-6D-062717
Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		25.0	24.4		ug/L		98	73 - 126	
1,1,2,2-Tetrachloroethane	ND		25.0	21.1		ug/L		84	76 - 120	
1,1,2-Trichloroethane	ND		25.0	22.0		ug/L		88	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	21.9		ug/L		88	61 - 148	
ne										
1,1-Dichloroethane	0.51	J	25.0	23.5		ug/L		92	77 - 120	
1,1-Dichloroethene	ND		25.0	24.0		ug/L		96	66 - 127	
1,2,4-Trichlorobenzene	ND		25.0	23.3		ug/L		93	79 - 122	
l e e e e e e e e e e e e e e e e e e e										

TestAmerica Buffalo

Page 19 of 29

9

3

5

7

9

11

40

14

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-120234-4 MS

Matrix: Water Analysis Batch: 365728 Client Sample ID: MW-6D-062717

Prep Type: Total/NA %Rec

Analysis Batch: 365/28	Sample	Sample	Spike	MS	MS		%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier Unit	D %Rec	Limits
1,2-Dibromo-3-Chloropropane	ND		25.0	21.3	ug/L		56 - 134
1,2-Dichlorobenzene	ND		25.0	23.1	ug/L	92	80 - 124
1,2-Dichloroethane	ND		25.0	20.2	ug/L	81	75 - 120
1,2-Dichloropropane	ND		25.0	23.2	ug/L	93	76 - 120
1,3-Dichlorobenzene	ND		25.0	23.6	ug/L	94	77 - 120
1,4-Dichlorobenzene	ND		25.0	23.3	ug/L	93	78 - 124
2-Butanone (MEK)	ND		125	88.3	ug/L	71	57 ₋ 140
2-Hexanone	ND		125	94.7	ug/L	76	65 - 127
4-Methyl-2-pentanone (MIBK)	ND		125	94.6	ug/L	76	71 - 125
Acetone	ND		125	87.2	ug/L	70	56 - 142
Benzene	ND		25.0	24.0	ug/L	96	71 - 124
Bromodichloromethane	ND		25.0	23.4	ug/L	93	80 - 122
Bromoform	ND		25.0	25.6	ug/L	102	61 - 132
Bromomethane	ND		25.0	25.5	ug/L	102	55 - 144
Carbon disulfide	ND		25.0	22.5	ug/L	90	59 - 134
Carbon tetrachloride	ND		25.0	25.4	ug/L	102	72 - 134
Chlorobenzene	ND		25.0	23.3	ug/L	93	80 - 120
Dibromochloromethane	ND		25.0	24.0	ug/L	96	75 - 125
Chloroethane	ND		25.0	27.2	ug/L	109	69 - 136
Chloroform	ND		25.0	22.9	ug/L	92	73 - 127
Chloromethane	ND		25.0	28.2	ug/L	113	68 - 124
cis-1,2-Dichloroethene	1.3		25.0	24.6	ug/L	93	74 - 124
cis-1,3-Dichloropropene	ND		25.0	23.2	ug/L	93	74 - 124
Cyclohexane	ND		25.0	22.0	ug/L	88	59 - 135
Dichlorodifluoromethane	ND		25.0	29.6	ug/L	118	59 ₋ 135
Ethylbenzene	ND		25.0	23.6	ug/L	94	77 - 123
1,2-Dibromoethane	ND		25.0	21.2	ug/L	85	77 - 120
sopropylbenzene	ND		25.0	24.5	ug/L	98	77 - 122
Methyl acetate	ND	F1	125	86.0	F1 ug/L	69	74 - 133
Methyl tert-butyl ether	ND		25.0	20.5	ug/L	82	77 - 120
Methylcyclohexane	ND		25.0	21.4	ug/L	86	68 - 134
Methylene Chloride	ND		25.0	20.7	ug/L	83	75 - 124
Styrene	ND		25.0	22.9	ug/L	92	80 - 120
Tetrachloroethene	ND		25.0	24.0	ug/L	96	74 - 122
Toluene	ND		25.0	23.6	ug/L	94	80 - 122
trans-1,2-Dichloroethene	ND		25.0	24.4	ug/L	97	73 - 127
trans-1,3-Dichloropropene	ND		25.0	22.4	ug/L	90	80 - 120
Trichloroethene	ND		25.0	23.2	ug/L	93	74 - 123
Trichlorofluoromethane	ND		25.0	24.3	ug/L	97	62 - 150
Vinyl chloride	1.4		25.0	30.7	ug/L	117	65 ₋ 133

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		80 - 120
1,2-Dichloroethane-d4 (Surr)	83		77 - 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Dibromofluoromethane (Surr)	94		75 - 123

TestAmerica Buffalo

Page 20 of 29

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-120234-4 MSD

Matrix: Water

Vinyl chloride

Client Sample ID: MW-6D-062717 Prep Type: Total/NA

Analysis Batch: 365728									Prep Tyl		
Amaluta	•	Sample	Spike Added		MSD	l lmi4	_	%Rec	%Rec. Limits	RPD	RPD
Analyte 1,1,1-Trichloroethane	ND	Qualifier	25.0 —	23.7	Qualifier	Unit	D	% Rec	73 ₋ 126		Limit 15
1,1,2,2-Tetrachloroethane	ND ND		25.0	20.8		ug/L ug/L		83	75 - 120 76 - 120	3 1	15
1,1,2-Trichloroethane	ND ND		25.0	21.3		_		85	76 - 120 76 - 122	3	15
	ND		25.0	20.1		ug/L		81	61 - 148	9	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		23.0	20.1		ug/L		01	01 - 140	9	20
1,1-Dichloroethane	0.51	J	25.0	23.2		ug/L		91	77 - 120	1	20
1,1-Dichloroethene	ND		25.0	23.0		ug/L		92	66 - 127	4	16
1,2,4-Trichlorobenzene	ND		25.0	22.7		ug/L		91	79 - 122	3	20
1,2-Dibromo-3-Chloropropane	ND		25.0	20.5		ug/L		82	56 ₋ 134	4	15
1,2-Dichlorobenzene	ND		25.0	22.4		ug/L		89	80 - 124	3	20
1,2-Dichloroethane	ND		25.0	19.3		ug/L		77	75 - 120	4	20
1,2-Dichloropropane	ND		25.0	22.6		ug/L		91	76 - 120	2	20
1,3-Dichlorobenzene	ND		25.0	23.2		ug/L		93	77 - 120	2	20
1,4-Dichlorobenzene	ND		25.0	23.1		ug/L		92	78 - 124	1	20
2-Butanone (MEK)	ND		125	87.4		ug/L		70	57 ₋ 140	1	20
2-Hexanone	ND		125	91.8		ug/L		73	65 - 127	3	15
4-Methyl-2-pentanone (MIBK)	ND		125	94.2		ug/L		75	71 - 125	0	35
Acetone	ND		125	87.7		ug/L		70	56 - 142	1	15
Benzene	ND		25.0	23.4		ug/L		94	71 - 124	3	13
Bromodichloromethane	ND		25.0	23.0		ug/L		92	80 - 122	2	15
Bromoform	ND		25.0	25.2		ug/L		101	61 - 132	2	15
Bromomethane	ND		25.0	26.1		ug/L		104	55 - 144	2	15
Carbon disulfide	ND		25.0	21.8		ug/L		87	59 - 134	3	15
Carbon tetrachloride	ND		25.0	25.7		ug/L		103	72 ₋ 134	1	15
Chlorobenzene	ND		25.0	23.3		ug/L		93	80 - 120	0	25
Dibromochloromethane	ND		25.0	24.1		ug/L		96	75 - 125	0	15
Chloroethane	ND		25.0	26.9		ug/L		108	69 - 136	1	15
Chloroform	ND		25.0	22.3		ug/L		89	73 - 127	3	20
Chloromethane	ND		25.0	28.0		ug/L		112	68 - 124	0	15
cis-1,2-Dichloroethene	1.3		25.0	24.3		ug/L		92	74 - 124	1	15
cis-1,3-Dichloropropene	ND		25.0	22.5		ug/L		90	74 - 124	3	15
Cyclohexane	ND		25.0	20.6		ug/L		82	59 - 135	6	20
Dichlorodifluoromethane	ND		25.0	27.1		ug/L		108	59 ₋ 135	9	20
Ethylbenzene	ND		25.0	23.4		ug/L		94	77 - 123	1	15
1,2-Dibromoethane	ND		25.0	20.7		ug/L		83	77 - 120	3	15
Isopropylbenzene	ND		25.0	24.6		ug/L		98	77 - 122	0	20
Methyl acetate	ND	F1	125	84.6	F1	ug/L		68	74 - 133	2	20
Methyl tert-butyl ether	ND		25.0	20.2		ug/L		81	77 - 120	<u>-</u> .	37
Methylcyclohexane	ND		25.0	20.6		ug/L		82	68 - 134	4	20
Methylene Chloride	ND		25.0	20.1		ug/L		80	75 - 124	3	15
Styrene	ND		25.0	22.3		ug/L		89	80 - 120	3	20
Tetrachloroethene	ND		25.0	24.0		ug/L		96	74 - 122	0	20
Toluene	ND		25.0	23.5		ug/L ug/L		94	80 - 122	0	15
trans-1,2-Dichloroethene	ND		25.0	23.0		ug/L		92	73 - 127	6	20
trans-1,3-Dichloropropene	ND ND		25.0	23.0		ug/L ug/L		92 88	80 ₋ 120	1	15
Trichloroethene	ND ND		25.0	23.0		ug/L ug/L		92	74 ₋ 123	1	16
Trichlorofluoromethane	ND		25.0	23.0				95	62 - 150	2	20
Visul shleride	IND		25.0	20.9		ug/L		95	02 - 100	2	20

TestAmerica Buffalo

Page 21 of 29

30.1

ug/L

115

65 - 133

25.0

1.4

<u>ی</u>

8

J 6

11

13

14

13

2

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-120234-4 MSD

Matrix: Water

Analysis Batch: 365728

Client Sample ID:	MW-6	D-062717
Prep	Type:	Total/NA

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		80 - 120
1,2-Dichloroethane-d4 (Surr)	84		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Dibromofluoromethane (Surr)	94		75 - 123

QC Association Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

GC/MS VOA

Analysis Batch: 365580

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-120234-1	MW-10D-062717	Total/NA	Water	8260C	
480-120234-2	MW-10S-062717	Total/NA	Water	8260C	
480-120234-3	MW-5D-062717	Total/NA	Water	8260C	
480-120234-5	MW-5S-062717	Total/NA	Water	8260C	
480-120234-6	TRIP BLANK	Total/NA	Water	8260C	
MB 480-365580/6	Method Blank	Total/NA	Water	8260C	
LCS 480-365580/4	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 365728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-120234-4	MW-6D-062717	Total/NA	Water	8260C	
MB 480-365728/8	Method Blank	Total/NA	Water	8260C	
LCS 480-365728/5	Lab Control Sample	Total/NA	Water	8260C	
480-120234-4 MS	MW-6D-062717	Total/NA	Water	8260C	
480-120234-4 MSD	MW-6D-062717	Total/NA	Water	8260C	

10

Client: O'Brien & Gere Inc of North America

Client Sample ID: MW-10D-062717

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-120234-1

Matrix: Water

Date Collected: 06/27/17 11:45 Date Received: 06/27/17 18:03

Batch Dilution Batch Prepared Batch Method Factor Number or Analyzed Lab **Prep Type** Type Run **Analyst** TAL BUF Total/NA Analysis 8260C 365580 07/06/17 12:21 ARS

Client Sample ID: MW-10S-062717 Lab Sample ID: 480-120234-2

Date Collected: 06/27/17 12:30 **Matrix: Water**

Date Received: 06/27/17 18:03

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL BUF Total/NA 8260C 365580 07/06/17 12:44 ARS Analysis

Client Sample ID: MW-5D-062717 Lab Sample ID: 480-120234-3

Date Collected: 06/27/17 14:30 **Matrix: Water**

Date Received: 06/27/17 18:03

Dilution Batch Batch Batch **Prepared** Method Number or Analyzed Prep Type Type Run **Factor** Analyst Lab Analysis 8260C 365580 07/06/17 13:07 ARS TAL BUF Total/NA

Lab Sample ID: 480-120234-4 Client Sample ID: MW-6D-062717 **Matrix: Water**

Date Collected: 06/27/17 14:57

Date Received: 06/27/17 18:03

Batch Batch Dilution Batch **Prepared** Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 8260C 365728 07/07/17 05:04 JAS TAL BUF Total/NA Analysis

Client Sample ID: MW-5S-062717 Lab Sample ID: 480-120234-5

Date Collected: 06/27/17 15:35 **Matrix: Water**

Date Received: 06/27/17 18:03

Batch Dilution Batch Batch **Prepared** Method **Factor** Number or Analyzed Prep Type Type Run Analyst TAL BUF Total/NA Analysis 8260C 365580 07/06/17 13:53 ARS

Client Sample ID: TRIP BLANK Lab Sample ID: 480-120234-6

Date Collected: 06/27/17 00:00 **Matrix: Water**

Date Received: 06/27/17 18:03

Batch Dilution Batch Batch Prepared Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab TAL BUF Total/NA Analysis 8260C 365580 07/06/17 14:16 ARS

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date	
New York	NELAP	2	10026	03-31-18	

- 0

4

5

9

11

12

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

-

3

4

5

6

8

11

12

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120234-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-120234-1	MW-10D-062717	Water	06/27/17 11:45	06/27/17 18:03
480-120234-2	MW-10S-062717	Water	06/27/17 12:30	06/27/17 18:03
480-120234-3	MW-5D-062717	Water	06/27/17 14:30	06/27/17 18:03
480-120234-4	MW-6D-062717	Water	06/27/17 14:57	06/27/17 18:03
480-120234-5	MW-5S-062717	Water	06/27/17 15:35	06/27/17 18:03
480-120234-6	TRIP BLANK	Water	06/27/17 00:00	06/27/17 18:03

__

3

4

O

9

4 4

12

13

14

TestAmerica Buffalo	;			TestAmerica
10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	Chain of Custody Record	ustody Re	ecord	THE LEADER OF ENVIRONMENTAL TESTING
Client Information	ma Fuess	Mithe Mellen Johnson	Carrier Tracking No(s)	
Client Contact: Mr. Yuri Veliz	956-1)	E-Mait: orlette johnson@testamericainc.com	Page 1 of \$
Company: O'Brien & Gere Inc of North America			Analysis Requested	,40p #:
Address: 333 West Washington St. PO BOX 4873	Due Date Requested;			Cod
City. East Syracuse East Syracuse NY. 13221	TAT Requested (days): Standard			B - NaCH N - None C - Zn Acriste O - AsNaO2 D - Nitree E - Na
Phone: 315-956-6100(Tel) 315-463-7554(Fax) Email: Vari Vali-@also com	PO#. 11511119 WO#			
Project Name: Project Name: Sire:	Project#: 48002808 SSOW#.		D (Yes or N	K - Ei K- Ei L - Ei 480-120234 COC city) other:
Samula Idantification	Sample Time G=crah)	Matrix (wwwster, 5*solid, Owwasteioli,	Field Filtered S	Total Number of Sharial Instructions/Note:
Sample Identification	X	ation Code:	X	
MW-IDD-DOODTI	6/27/17/145 6	Water	X	M
-105	1/17 1830	Water	X	N.
MW-5D-062717	6/27/17/430 6	Water	X	100
MW-6D-062117	6 17/11/157 6	Water	×	A MS/MSD
MW-55-0102717	Wat/171535 G	Water	X	3
TOBBLANK	1 :	Water		X
		Water		,
		Water	35	
		Water		
		Water		ē
		Water		
ant	Poison B Unknown Radiological	ca!	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mor	samples are retained longer than 1 month) Lab Archive For Months
0 0			Special Instructions/QC Requirements:	
Empty Kit Relinquished by: /	Date:			Method of Shipment:
Relinquistration Husse	6 27/7 1803	Company	Received by my Court	1803
/ Ag pausindurian	Oato ime: /	Сотрану	Received by	1
Relinquished by,	Date/Time;	Company	Received by:	Date/Time: Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) ^o C and Other Remarks:	8.7 #1

Client: O'Brien & Gere Inc of North America

Job Number: 480-120234-1

Login Number: 120234 List Source: TestAmerica Buffalo

List Number: 1

Creator: Conway, Curtis R

ordatori odilitaj, oditio it		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-120391-1

Client Project/Site: Forest Glen Monitoring

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 7/13/2017 7:39:50 AM

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	24
QC Sample Results	25
QC Association Summary	35
Lab Chronicle	36
Certification Summary	39
Method Summary	40
Sample Summary	41
Detection Limit Exceptions Summary	42
Chain of Custody	43
Receipt Checklists	45

6

8

10

12

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-120391-1 Project/Site: Forest Glen Monitoring

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Case Narrative

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Job ID: 480-120391-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-120391-1

Receipt

The samples were received on 6/29/2017 10:07 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.2° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-365816 recovered above the upper control limit for 2-Hexanone and Methylcyclohexane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-6S-062817 (480-120391-1) and MW-4D-062817 (480-120391-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Client Sample ID: MW-6S-062817

TestAmerica Job ID: 480-120391-1

Lab Sample ID: 480-120391-1 Analyte Result Qualifier Dil Fac D Method RL MDL Unit **Prep Type** cis-1,2-Dichloroethene 15 0.81 ug/L 8260C Total/NA 1.0 0.39 J 8260C Total/NA Tetrachloroethene 1.0 0.36 ug/L 1 Vinyl chloride 9.1 1.0 0.90 ug/L 1 8260C Total/NA

Client Sample ID: MW-4D-062817 Lab Sample ID: 480-120391-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methyl tert-butyl ether	0.37 J	1.0	0.16 ug/L	1	Total/NA

Client Sample ID: MW-4S-062817 Lab Sample ID: 480-120391-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Acetone	3.5 J	10	3.0 ug/L	1 8260C	Total/NA

Client Sample ID: MW-1D-062817 Lab Sample ID: 480-120391-4

No Detections.

Client Sample ID: MW-6DD-062817 Lab Sample ID: 480-120391-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	24		1.0	0.81	ug/L		_	8260C	Total/NA
Vinyl chloride	4.5		1.0	0.90	ug/L	1		8260C	Total/NA

Lab Sample ID: 480-120391-6 Client Sample ID: MW-1S-062817

No Detections.

Client Sample ID: MW-8DD-062817 Lab Sample ID: 480-120391-7

No Detections.

Client Sample ID: MW-7DD-062817 Lab Sample ID: 480-120391-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichloroethene	0.50 J	1.0	0.46 ug/L	1 8260C	Total/NA

Client Sample ID: MW-8S-062817 Lab Sample ID: 480-120391-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	2.1	1.0	0.81 ug/L		8260C	Total/NA
Tetrachloroethene	0.58 J	1.0	0.36 ug/L	1	8260C	Total/NA
Trichloroethene	3.1	1.0	0.46 ug/L	1	8260C	Total/NA

Client Sample ID: MW-7S-062817 Lab Sample ID: 480-120391-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichloroethene	1.0	1.0	0.46 ug/L	1 8260C	Total/NA

Client Sample ID: MW-8D-062817 Lab Sample ID: 480-120391-11

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-8D-062817 (Continued)

Lab	Sam	ple	ID:	480)-12	2039	91.	-1	1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.62 J	1.0	0.38 ug/L		8260C	Total/NA
Methyl tert-butyl ether	0.19 J	1.0	0.16 ug/L	1	8260C	Total/NA
Vinyl chloride	0.96 J	1.0	0.90 ug/L	1	8260C	Total/NA

Client Sample ID: MW-7D-062817 Lab Sample ID: 480-120391-12

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	0.99 J	1.0	0.46	ug/L	1	_	8260C	Total/NA

Client Sample ID: X-1-062817 Lab Sample ID: 480-120391-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	14		1.0	0.81	ug/L	1	_	8260C	Total/NA
Vinyl chloride	8.9		1.0	0.90	ug/L	1		8260C	Total/NA

Client Sample ID: TRIP BLANK Lab Sample ID: 480-120391-14

No Detections.

This Detection Summary does not include radiochemical test results.

9

5

7

0

10

12

13

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-6S-062817

Lab Sample ID: 480-120391-1

Matrix: Water

Date Collected: 06/28/17 09:40 Date Received: 06/29/17 10:07

Method: 8260C - Volatile Org Analyte	Result Qualifi		MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L		-	07/07/17 17:42	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/07/17 17:42	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/07/17 17:42	
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			07/07/17 17:42	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/07/17 17:42	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/07/17 17:42	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/07/17 17:42	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/07/17 17:42	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			07/07/17 17:42	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/07/17 17:42	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/07/17 17:42	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/07/17 17:42	
1,3-Dichlorobenzene	ND	1.0		ug/L			07/07/17 17:42	
1,4-Dichlorobenzene	ND	1.0		ug/L			07/07/17 17:42	
2-Hexanone	ND	5.0		ug/L			07/07/17 17:42	
2-Butanone (MEK)	ND	10	1.3	ug/L			07/07/17 17:42	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			07/07/17 17:42	
Acetone	ND	10		ug/L			07/07/17 17:42	
Benzene	ND	1.0		ug/L			07/07/17 17:42	
Bromodichloromethane	ND	1.0		ug/L			07/07/17 17:42	
Bromoform	ND	1.0		ug/L			07/07/17 17:42	
Bromomethane	ND	1.0		ug/L			07/07/17 17:42	
Carbon disulfide	ND	1.0		ug/L			07/07/17 17:42	
Carbon tetrachloride	ND	1.0		ug/L			07/07/17 17:42	
Chlorobenzene	ND	1.0		ug/L			07/07/17 17:42	
Chlorodibromomethane	ND	1.0		ug/L			07/07/17 17:42	
Chloroethane	ND	1.0		ug/L			07/07/17 17:42	
Chloroform	ND	1.0		ug/L			07/07/17 17:42	
Chloromethane	ND	1.0		ug/L			07/07/17 17:42	
cis-1,2-Dichloroethene	15	1.0		ug/L			07/07/17 17:42	
cis-1,3-Dichloropropene	ND	1.0		ug/L			07/07/17 17:42	
Cyclohexane	ND	1.0		ug/L			07/07/17 17:42	
Dichlorodifluoromethane	ND	1.0		ug/L			07/07/17 17:42	
Ethylbenzene	ND	1.0		ug/L			07/07/17 17:42	
Isopropylbenzene	ND	1.0		ug/L			07/07/17 17:42	
Methyl acetate	ND	1.3		ug/L			07/07/17 17:42	
Methyl tert-butyl ether	ND	1.0		ug/L			07/07/17 17:42	
Methylcyclohexane	ND	1.0		ug/L			07/07/17 17:42	
Methylene Chloride	ND	1.0		ug/L			07/07/17 17:42	
Styrene	ND	1.0		ug/L			07/07/17 17:42	
Tetrachloroethene	0.39 J	1.0		ug/L			07/07/17 17:42	
Toluene	ND	1.0		ug/L			07/07/17 17:42	
trans-1,2-Dichloroethene	ND	1.0		ug/L			07/07/17 17:42	
trans-1,3-Dichloropropene	ND	1.0		ug/L			07/07/17 17:42	
Trichloroethene	ND	1.0		ug/L			07/07/17 17:42	
Trichlorofluoromethane	ND	1.0		ug/L			07/07/17 17:42	
Vinyl chloride	9.1	1.0		ug/L ug/L			07/07/17 17:42	
Xylenes, Total	ND	2.0		ug/L			07/07/17 17:42	

TestAmerica Buffalo

3

5

7

10

12

1 /

15

L (

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-120391-1

TestAmerica Job ID: 480-120391-1

Matrix: Water

Matrix: Water

Client Sample ID: MW-6S-062817

Date Collected: 06/28/17 09:40 Date Received: 06/29/17 10:07

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	77 - 120		77/07/17 17:42	1
Toluene-d8 (Surr)	103	80 - 120		07/07/17 17:42	1
4-Bromofluorobenzene (Surr)	100	73 - 120		07/07/17 17:42	1
Dibromofluoromethane (Surr)	107	75 - 123		07/07/17 17:42	1

Lab Sample ID: 480-120391-2 Client Sample ID: MW-4D-062817

Date Collected: 06/28/17 10:45

Date Received: 06/29/17 10:07

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			07/07/17 18:09	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/07/17 18:09	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/07/17 18:09	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			07/07/17 18:09	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/07/17 18:09	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/07/17 18:09	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/07/17 18:09	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/07/17 18:09	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			07/07/17 18:09	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/07/17 18:09	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/07/17 18:09	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/07/17 18:09	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/07/17 18:09	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/07/17 18:09	1
2-Hexanone	ND	5.0	1.2	ug/L			07/07/17 18:09	1
2-Butanone (MEK)	ND	10	1.3	ug/L			07/07/17 18:09	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/07/17 18:09	1
Acetone	ND	10	3.0	ug/L			07/07/17 18:09	1
Benzene	ND	1.0	0.41	ug/L			07/07/17 18:09	1
Bromodichloromethane	ND	1.0	0.39	ug/L			07/07/17 18:09	1
Bromoform	ND	1.0	0.26	ug/L			07/07/17 18:09	1
Bromomethane	ND	1.0	0.69	ug/L			07/07/17 18:09	1
Carbon disulfide	ND	1.0	0.19	ug/L			07/07/17 18:09	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/07/17 18:09	1
Chlorobenzene	ND	1.0	0.75	ug/L			07/07/17 18:09	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			07/07/17 18:09	1
Chloroethane	ND	1.0	0.32	ug/L			07/07/17 18:09	1
Chloroform	ND	1.0	0.34	ug/L			07/07/17 18:09	1
Chloromethane	ND	1.0	0.35	ug/L			07/07/17 18:09	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			07/07/17 18:09	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			07/07/17 18:09	1
Cyclohexane	ND	1.0	0.18	ug/L			07/07/17 18:09	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			07/07/17 18:09	1
Ethylbenzene	ND	1.0	0.74	ug/L			07/07/17 18:09	1
Isopropylbenzene	ND	1.0	0.79	ug/L			07/07/17 18:09	1
Methyl acetate	ND	1.3	1.3	ug/L			07/07/17 18:09	1
Methyl tert-butyl ether	0.37 J	1.0	0.16	ug/L			07/07/17 18:09	1
Methylcyclohexane	ND	1.0	0.16	ug/L			07/07/17 18:09	1
Methylene Chloride	ND	1.0	0.44	ug/L			07/07/17 18:09	1

TestAmerica Buffalo

7/13/2017

Page 8 of 45

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-4D-062817 Lab Sample ID: 480-120391-2

Matrix: Water

Date Collected: 06/28/17 10:45 Date Received: 06/29/17 10:07

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Conti	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			07/07/17 18:09	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/07/17 18:09	1
Toluene	ND		1.0	0.51	ug/L			07/07/17 18:09	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/07/17 18:09	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/07/17 18:09	1
Trichloroethene	ND		1.0	0.46	ug/L			07/07/17 18:09	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/07/17 18:09	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/07/17 18:09	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/07/17 18:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		77 - 120			•		07/07/17 18:09	1
Toluene-d8 (Surr)	102		80 - 120					07/07/17 18:09	1
4-Bromofluorobenzene (Surr)	97		73 - 120					07/07/17 18:09	1
Dibromofluoromethane (Surr)	107		75 - 123					07/07/17 18:09	1

Lab Sample ID: 480-120391-3 Client Sample ID: MW-4S-062817

Date Collected: 06/28/17 11:00 **Matrix: Water**

Date Received: 06/29/17 10:07

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			07/08/17 01:24	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/08/17 01:24	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/08/17 01:24	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			07/08/17 01:24	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/08/17 01:24	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/08/17 01:24	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/08/17 01:24	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/08/17 01:24	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			07/08/17 01:24	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/08/17 01:24	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/08/17 01:24	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/08/17 01:24	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/08/17 01:24	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/08/17 01:24	1
2-Hexanone	ND	5.0	1.2	ug/L			07/08/17 01:24	1
2-Butanone (MEK)	ND	10	1.3	ug/L			07/08/17 01:24	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/08/17 01:24	1
Acetone	3.5 J	10	3.0	ug/L			07/08/17 01:24	1
Benzene	ND	1.0	0.41	ug/L			07/08/17 01:24	1
Bromodichloromethane	ND	1.0	0.39	ug/L			07/08/17 01:24	1
Bromoform	ND	1.0	0.26	ug/L			07/08/17 01:24	1
Bromomethane	ND	1.0	0.69	ug/L			07/08/17 01:24	1
Carbon disulfide	ND	1.0	0.19	ug/L			07/08/17 01:24	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/08/17 01:24	1
Chlorobenzene	ND	1.0	0.75	ug/L			07/08/17 01:24	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			07/08/17 01:24	1
Chloroethane	ND	1.0	0.32	ug/L			07/08/17 01:24	1
Chloroform	ND	1.0	0.34	ug/L			07/08/17 01:24	1

TestAmerica Buffalo

7/13/2017

Page 9 of 45

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-4S-062817

Lab Sample ID: 480-120391-3

Matrix: Water

Date Collected: 06/28/17 11:00 Date Received: 06/29/17 10:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	0.35	ug/L			07/08/17 01:24	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/08/17 01:24	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/08/17 01:24	1
Cyclohexane	ND		1.0	0.18	ug/L			07/08/17 01:24	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/08/17 01:24	1
Ethylbenzene	ND		1.0	0.74	ug/L			07/08/17 01:24	1
Isopropylbenzene	ND		1.0	0.79	ug/L			07/08/17 01:24	1
Methyl acetate	ND		1.3	1.3	ug/L			07/08/17 01:24	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/08/17 01:24	1
Methylcyclohexane	ND		1.0	0.16	ug/L			07/08/17 01:24	1
Methylene Chloride	ND		1.0	0.44	ug/L			07/08/17 01:24	1
Styrene	ND		1.0	0.73	ug/L			07/08/17 01:24	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/08/17 01:24	1
Toluene	ND		1.0	0.51	ug/L			07/08/17 01:24	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/08/17 01:24	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/08/17 01:24	1
Trichloroethene	ND		1.0	0.46	ug/L			07/08/17 01:24	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/08/17 01:24	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/08/17 01:24	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/08/17 01:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 - 120			-		07/08/17 01:24	1
Toluene-d8 (Surr)	99		80 - 120					07/08/17 01:24	1
4-Bromofluorobenzene (Surr)	98		73 - 120					07/08/17 01:24	1

75 - 123

Client Sample ID: MW-1D-062817

102

Date Collected: 06/28/17 12:00 Date Received: 06/29/17 10:07

Dibromofluoromethane (Surr)

Lab Sample ID: 480-120391-4

07/08/17 01:24

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/08/17 01:51	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/08/17 01:51	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/08/17 01:51	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			07/08/17 01:51	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/08/17 01:51	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/08/17 01:51	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/08/17 01:51	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/08/17 01:51	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			07/08/17 01:51	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/08/17 01:51	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/08/17 01:51	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/08/17 01:51	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/08/17 01:51	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/08/17 01:51	1
2-Hexanone	ND		5.0	1.2	ug/L			07/08/17 01:51	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/08/17 01:51	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/08/17 01:51	1

TestAmerica Buffalo

Page 10 of 45

3

5

7

9

11

13

15

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Dibromofluoromethane (Surr)

Client Sample ID: MW-1D-062817

Lab Sample ID: 480-120391-4

Date Collected: 06/28/17 12:00 **Matrix: Water** Date Received: 06/29/17 10:07

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac **Analyte** Result Qualifier RL**MDL** Unit D Prepared Analyzed Acetone $\overline{\mathsf{ND}}$ 10 3.0 ug/L 07/08/17 01:51 Benzene ND 1.0 07/08/17 01:51 0.41 ug/L Bromodichloromethane ND 1.0 0.39 ug/L 07/08/17 01:51 **Bromoform** ND 1.0 0.26 ug/L 07/08/17 01:51 Bromomethane ND 0.69 ug/L 1.0 07/08/17 01:51 Carbon disulfide ND 1.0 0.19 ug/L 07/08/17 01:51 Carbon tetrachloride ND 1.0 0.27 ug/L 07/08/17 01:51 Chlorobenzene ND 1.0 0.75 ug/L 07/08/17 01:51 Chlorodibromomethane ND 1.0 0.32 ug/L 07/08/17 01:51 Chloroethane ND 1.0 0.32 ug/L 07/08/17 01:51 Chloroform ND 1.0 0.34 ug/L 07/08/17 01:51 Chloromethane ND 1.0 0.35 ug/L 07/08/17 01:51 cis-1.2-Dichloroethene ND 1.0 0.81 ug/L 07/08/17 01:51 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/08/17 01:51 ND 1.0 0.18 ug/L Cyclohexane 07/08/17 01:51 Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/08/17 01:51 Ethylbenzene ND 1.0 0.74 ug/L 07/08/17 01:51 Isopropylbenzene ND 1.0 0.79 ug/L 07/08/17 01:51 Methyl acetate ND 1.3 1.3 ug/L 07/08/17 01:51 Methyl tert-butyl ether ND 0.16 ug/L 07/08/17 01:51 1.0 07/08/17 01:51 Methylcyclohexane ND 1.0 0.16 ug/L Methylene Chloride ND 1.0 0.44 ug/L 07/08/17 01:51 Styrene ND 1.0 0.73 ug/L 07/08/17 01:51 Tetrachloroethene ND 1.0 0.36 ug/L 07/08/17 01:51 Toluene ND 1.0 0.51 ug/L 07/08/17 01:51 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/08/17 01:51 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/08/17 01:51 Trichloroethene ND 1.0 0.46 ug/L 07/08/17 01:51 Trichlorofluoromethane ND 1.0 0.88 ug/L 07/08/17 01:51 Vinyl chloride ND 1.0 0.90 ug/L 07/08/17 01:51 Xylenes, Total ND 2.0 0.66 ug/L 07/08/17 01:51 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 108 77 - 120 07/08/17 01:51 Toluene-d8 (Surr) 99 80 - 120 07/08/17 01:51 4-Bromofluorobenzene (Surr) 97 73 - 120 07/08/17 01:51

Client Sample ID: MW-6DD-062817 Lab Sample ID: 480-120391-5

75 - 123

104

Date Collected: 06/28/17 12:12 **Matrix: Water** Date Received: 06/29/17 10:07

Method: 8260C - Volatile Organic Compounds by GC/MS									
Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
ND —	1.0	0.82	ug/L			07/08/17 02:18	1		
ND	1.0	0.21	ug/L			07/08/17 02:18	1		
ND	1.0	0.23	ug/L			07/08/17 02:18	1		
ND	1.0	0.31	ug/L			07/08/17 02:18	1		
ND	1.0	0.38	ug/L			07/08/17 02:18	1		
ND	1.0	0.29	ug/L			07/08/17 02:18	1		
	Result Qualifier ND ND ND ND ND ND ND	Result Qualifier RL ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	Result ND Qualifier RL MDL ND 1.0 0.82 ND 1.0 0.21 ND 1.0 0.23 ND 1.0 0.31 ND 1.0 0.38	Result Qualifier RL MDL ug/L ND 1.0 0.82 ug/L ND 1.0 0.21 ug/L ND 1.0 0.23 ug/L ND 1.0 0.31 ug/L ND 1.0 0.38 ug/L	Result Qualifier RL MDL ug/L Unit D ND 1.0 0.82 ug/L ug/L ND 1.0 0.21 ug/L ND 1.0 0.23 ug/L ND 1.0 0.31 ug/L ND 1.0 0.38 ug/L	Result Qualifier RL MDL Unit D Prepared ND 1.0 0.82 ug/L ND 1.0 0.21 ug/L ND 1.0 0.23 ug/L ND 1.0 0.31 ug/L ND 1.0 0.38 ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.82 ug/L 07/08/17 02:18 ND 1.0 0.21 ug/L 07/08/17 02:18 ND 1.0 0.23 ug/L 07/08/17 02:18 ND 1.0 0.31 ug/L 07/08/17 02:18 ND 1.0 0.38 ug/L 07/08/17 02:18		

TestAmerica Buffalo

07/08/17 01:51

Page 11 of 45

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-6DD-062817 Lab Sample ID: 480-120391-5

Date Collected: 06/28/17 12:12 Date Received: 06/29/17 10:07

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	1.0	0.41	-			07/08/17 02:18	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/08/17 02:18	•
1,2-Dibromoethane (EDB)	ND	1.0	0.73	-			07/08/17 02:18	•
1,2-Dichlorobenzene	ND	1.0	0.79	-			07/08/17 02:18	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/08/17 02:18	•
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/08/17 02:18	•
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/08/17 02:18	•
1,4-Dichlorobenzene	ND	1.0	0.84	-			07/08/17 02:18	•
2-Hexanone	ND	5.0	1.2	ug/L			07/08/17 02:18	•
2-Butanone (MEK)	ND	10	1.3	ug/L			07/08/17 02:18	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/08/17 02:18	•
Acetone	ND	10	3.0	ug/L			07/08/17 02:18	•
Benzene	ND	1.0	0.41	-			07/08/17 02:18	
Bromodichloromethane	ND	1.0	0.39	-			07/08/17 02:18	•
Bromoform	ND	1.0	0.26	ug/L			07/08/17 02:18	•
Bromomethane	ND	1.0	0.69	ug/L			07/08/17 02:18	
Carbon disulfide	ND	1.0	0.19	ug/L			07/08/17 02:18	•
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/08/17 02:18	•
Chlorobenzene	ND	1.0	0.75	ug/L			07/08/17 02:18	
Chlorodibromomethane	ND	1.0	0.32	ug/L			07/08/17 02:18	•
Chloroethane	ND	1.0	0.32	ug/L			07/08/17 02:18	•
Chloroform	ND	1.0	0.34	ug/L			07/08/17 02:18	
Chloromethane	ND	1.0	0.35	ug/L			07/08/17 02:18	•
cis-1,2-Dichloroethene	24	1.0	0.81	ug/L			07/08/17 02:18	•
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			07/08/17 02:18	
Cyclohexane	ND	1.0	0.18	ug/L			07/08/17 02:18	•
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			07/08/17 02:18	•
Ethylbenzene	ND	1.0	0.74	ug/L			07/08/17 02:18	
Isopropylbenzene	ND	1.0	0.79	ug/L			07/08/17 02:18	•
Methyl acetate	ND	1.3	1.3	ug/L			07/08/17 02:18	•
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			07/08/17 02:18	· · · · · · · · ·
Methylcyclohexane	ND	1.0	0.16	ug/L			07/08/17 02:18	•
Methylene Chloride	ND	1.0	0.44	ug/L			07/08/17 02:18	•
Styrene	ND	1.0	0.73	ug/L			07/08/17 02:18	· · · · · · · · ·
Tetrachloroethene	ND	1.0	0.36	ug/L			07/08/17 02:18	•
Toluene	ND	1.0	0.51	ug/L			07/08/17 02:18	•
trans-1,2-Dichloroethene	ND	1.0	0.90				07/08/17 02:18	
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			07/08/17 02:18	•
Trichloroethene	ND	1.0	0.46	ug/L			07/08/17 02:18	•
Trichlorofluoromethane	ND	1.0	0.88	ug/L			07/08/17 02:18	
Vinyl chloride	4.5	1.0	0.90	ug/L			07/08/17 02:18	•
Xylenes, Total	ND	2.0	0.66	ug/L			07/08/17 02:18	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		07/08/17 02:18	1
Toluene-d8 (Surr)	99	80 - 120		07/08/17 02:18	1
4-Bromofluorobenzene (Surr)	97	73 - 120		07/08/17 02:18	1
Dibromofluoromethane (Surr)	98	75 - 123		07/08/17 02:18	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-1S-062817 Lab Sample ID: 480-120391-6

Matrix: Water

Date Collected: 06/28/17 12:45

Method: 8260C - Volatile Org Analyte	ganic Compounds by GC/MS Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		1.0		ug/L		•	07/07/17 16:44	1
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			07/07/17 16:44	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/07/17 16:44	1
1,1,2-Trichlorotrifluoroethane	ND	1.0		ug/L			07/07/17 16:44	1
1,1-Dichloroethane	ND	1.0		ug/L			07/07/17 16:44	1
1,1-Dichloroethene	ND	1.0		ug/L			07/07/17 16:44	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			07/07/17 16:44	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			07/07/17 16:44	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			07/07/17 16:44	1
1,2-Dichlorobenzene	ND	1.0		ug/L			07/07/17 16:44	1
1,2-Dichloroethane	ND	1.0		ug/L			07/07/17 16:44	1
1,2-Dichloropropane	ND	1.0		ug/L			07/07/17 16:44	1
1,3-Dichlorobenzene	ND	1.0		ug/L			07/07/17 16:44	1
1,4-Dichlorobenzene	ND	1.0		ug/L			07/07/17 16:44	1
2-Hexanone	ND	5.0		ug/L			07/07/17 16:44	1
2-Butanone (MEK)	ND	10		ug/L			07/07/17 16:44	· · · · · · · · · · · · · · · · · · ·
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			07/07/17 16:44	1
Acetone	ND	10		ug/L			07/07/17 16:44	1
Benzene	ND	1.0		ug/L			07/07/17 16:44	· · · · · · · · · · · · · · · · · · ·
Bromodichloromethane	ND	1.0		ug/L			07/07/17 16:44	
Bromoform	ND	1.0		ug/L			07/07/17 16:44	1
Bromomethane	ND	1.0		ug/L			07/07/17 16:44	· · · · · · · · · · · · · · · · · · ·
Carbon disulfide	ND	1.0		ug/L			07/07/17 16:44	1
Carbon tetrachloride	ND ND	1.0		ug/L			07/07/17 16:44	1
Chlorobenzene	ND	1.0		ug/L			07/07/17 16:44	
Chlorodibromomethane	ND ND	1.0		ug/L			07/07/17 16:44	1
Chloroethane	ND ND	1.0		ug/L			07/07/17 16:44	1
Chloroform	ND	1.0		ug/L			07/07/17 16:44	
Chloromethane	ND	1.0		ug/L ug/L			07/07/17 16:44	1
cis-1,2-Dichloroethene	ND ND	1.0		ug/L			07/07/17 16:44	1
	ND			ug/L ug/L			07/07/17 16:44	
cis-1,3-Dichloropropene	ND ND	1.0 1.0		•			07/07/17 16:44	-
Cyclohexane				ug/L ug/L				1
Dichlorodifluoromethane	ND ND	1.0					07/07/17 16:44	1
Ethylbenzene	ND	1.0		ug/L			07/07/17 16:44	1
Isopropylbenzene	ND ND	1.0		ug/L			07/07/17 16:44	1
Methyl acetate	ND ND	1.3		ug/L			07/07/17 16:44	1
Methyl tert-butyl ether	ND	1.0		ug/L			07/07/17 16:44	1
Methylcyclohexane	ND	1.0		ug/L			07/07/17 16:44	1
Methylene Chloride	ND	1.0		ug/L			07/07/17 16:44	1
Styrene	ND	1.0		ug/L			07/07/17 16:44	1
Tetrachloroethene	ND	1.0		ug/L			07/07/17 16:44	1
Toluene	ND	1.0		ug/L			07/07/17 16:44	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			07/07/17 16:44	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			07/07/17 16:44	1
Trichloroethene	ND	1.0		ug/L			07/07/17 16:44	
Trichlorofluoromethane	ND	1.0		ug/L			07/07/17 16:44	1
Vinyl chloride	ND	1.0		ug/L			07/07/17 16:44	1
Xylenes, Total	ND	2.0	0.66	ug/L			07/07/17 16:44	1

TestAmerica Buffalo

7/13/2017

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Lab Sample ID: 480-120391-6

Matrix: Water

Client Sample ID: MW-1S-062817

Date Collected: 06/28/17 12:45 Date Received: 06/29/17 10:07

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	77 - 120		07/07/17 16:44	1
Toluene-d8 (Surr)	90	80 - 120		07/07/17 16:44	1
4-Bromofluorobenzene (Surr)	87	73 - 120		07/07/17 16:44	1
Dibromofluoromethane (Surr)	97	75 - 123		07/07/17 16:44	1

Lab Sample ID: 480-120391-7 Client Sample ID: MW-8DD-062817

Date Collected: 06/28/17 14:40 Date Received: 06/29/17 10:07

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			07/07/17 17:07	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/07/17 17:07	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/07/17 17:07	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			07/07/17 17:07	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/07/17 17:07	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/07/17 17:07	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/07/17 17:07	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/07/17 17:07	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			07/07/17 17:07	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/07/17 17:07	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/07/17 17:07	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/07/17 17:07	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/07/17 17:07	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/07/17 17:07	1
2-Hexanone	ND	5.0	1.2	ug/L			07/07/17 17:07	1
2-Butanone (MEK)	ND	10	1.3	ug/L			07/07/17 17:07	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/07/17 17:07	1
Acetone	ND	10	3.0	ug/L			07/07/17 17:07	1
Benzene	ND	1.0	0.41	ug/L			07/07/17 17:07	1
Bromodichloromethane	ND	1.0	0.39	ug/L			07/07/17 17:07	1
Bromoform	ND	1.0	0.26	ug/L			07/07/17 17:07	1
Bromomethane	ND	1.0	0.69	ug/L			07/07/17 17:07	1
Carbon disulfide	ND	1.0	0.19	ug/L			07/07/17 17:07	1
Carbon tetrachloride	ND	1.0	0.27				07/07/17 17:07	1
Chlorobenzene	ND	1.0	0.75	ug/L			07/07/17 17:07	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			07/07/17 17:07	1
Chloroethane	ND	1.0	0.32	ug/L			07/07/17 17:07	1
Chloroform	ND	1.0	0.34	ug/L			07/07/17 17:07	1
Chloromethane	ND	1.0	0.35				07/07/17 17:07	1
cis-1,2-Dichloroethene	ND	1.0	0.81	-			07/07/17 17:07	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			07/07/17 17:07	1
Cyclohexane	ND	1.0	0.18	ug/L			07/07/17 17:07	1
Dichlorodifluoromethane	ND	1.0	0.68	-			07/07/17 17:07	1
Ethylbenzene	ND	1.0	0.74	ug/L			07/07/17 17:07	1
Isopropylbenzene	ND	1.0	0.79	_			07/07/17 17:07	1
Methyl acetate	ND	1.3		ug/L			07/07/17 17:07	1
Methyl tert-butyl ether	ND	1.0	0.16				07/07/17 17:07	1
Methylcyclohexane	ND	1.0	0.16	-			07/07/17 17:07	1
Methylene Chloride	ND	1.0	0.44	•			07/07/17 17:07	1

TestAmerica Buffalo

Page 14 of 45

7/13/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-8DD-062817

Date Collected: 06/28/17 14:40 Date Received: 06/29/17 10:07

Lab Sample ID: 480-120391-7

Matrix: Water

Method: 8260C - Volatile O	rganic Compou	inds by G	C/MS (Contin	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			07/07/17 17:07	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/07/17 17:07	1
Toluene	ND		1.0	0.51	ug/L			07/07/17 17:07	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/07/17 17:07	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/07/17 17:07	1
Trichloroethene	ND		1.0	0.46	ug/L			07/07/17 17:07	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/07/17 17:07	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/07/17 17:07	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/07/17 17:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120			•		07/07/17 17:07	1
Toluene-d8 (Surr)	90		80 - 120					07/07/17 17:07	1
4-Bromofluorobenzene (Surr)	87		73 - 120					07/07/17 17:07	1
Dibromofluoromethane (Surr)	92		75 - 123					07/07/17 17:07	1

Lab Sample ID: 480-120391-8 Client Sample ID: MW-7DD-062817

Date Collected: 06/28/17 15:20 Date Received: 06/29/17 10:07

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			07/07/17 17:30	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/07/17 17:30	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/07/17 17:30	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			07/07/17 17:30	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/07/17 17:30	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/07/17 17:30	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/07/17 17:30	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/07/17 17:30	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			07/07/17 17:30	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/07/17 17:30	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/07/17 17:30	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/07/17 17:30	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/07/17 17:30	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/07/17 17:30	1
2-Hexanone	ND	5.0	1.2	ug/L			07/07/17 17:30	1
2-Butanone (MEK)	ND	10	1.3	ug/L			07/07/17 17:30	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/07/17 17:30	1
Acetone	ND	10	3.0	ug/L			07/07/17 17:30	1
Benzene	ND	1.0	0.41	ug/L			07/07/17 17:30	1
Bromodichloromethane	ND	1.0	0.39	ug/L			07/07/17 17:30	1
Bromoform	ND	1.0	0.26	ug/L			07/07/17 17:30	1
Bromomethane	ND	1.0	0.69	ug/L			07/07/17 17:30	1
Carbon disulfide	ND	1.0	0.19	ug/L			07/07/17 17:30	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/07/17 17:30	1
Chlorobenzene	ND	1.0	0.75	ug/L			07/07/17 17:30	1
Chlorodibromomethane	ND	1.0	0.32				07/07/17 17:30	1
Chloroethane	ND	1.0		ug/L			07/07/17 17:30	1
Chloroform	ND	1.0	0.34	ug/L			07/07/17 17:30	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Lab Sample ID: 480-120391-9

Matrix: Water

Client Sample ID: MW-7DD-062817

Lab Sample ID: 480-120391-8 Date Collected: 06/28/17 15:20

Matrix: Water

Date Received: 06/29/17 10:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	0.35	ug/L			07/07/17 17:30	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/07/17 17:30	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/07/17 17:30	1
Cyclohexane	ND		1.0	0.18	ug/L			07/07/17 17:30	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/07/17 17:30	1
Ethylbenzene	ND		1.0	0.74	ug/L			07/07/17 17:30	1
Isopropylbenzene	ND		1.0	0.79	ug/L			07/07/17 17:30	1
Methyl acetate	ND		1.3	1.3	ug/L			07/07/17 17:30	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/07/17 17:30	1
Methylcyclohexane	ND		1.0	0.16	ug/L			07/07/17 17:30	1
Methylene Chloride	ND		1.0	0.44	ug/L			07/07/17 17:30	1
Styrene	ND		1.0	0.73	ug/L			07/07/17 17:30	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/07/17 17:30	1
Toluene	ND		1.0	0.51	ug/L			07/07/17 17:30	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/07/17 17:30	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/07/17 17:30	1
Trichloroethene	0.50	J	1.0	0.46	ug/L			07/07/17 17:30	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/07/17 17:30	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/07/17 17:30	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/07/17 17:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			-		07/07/17 17:30	1
Toluene-d8 (Surr)	89		80 - 120					07/07/17 17:30	1
4-Bromofluorobenzene (Surr)	88		73 - 120					07/07/17 17:30	1
Dibromofluoromethane (Surr)	91		75 - 123					07/07/17 17:30	1

Client Sample ID: MW-8S-062817

Date Collected: 06/28/17 15:35

Date Received: 06/29/17 10:07

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L			07/07/17 17:53	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/07/17 17:53	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/07/17 17:53	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			07/07/17 17:53	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/07/17 17:53	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/07/17 17:53	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/07/17 17:53	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/07/17 17:53	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			07/07/17 17:53	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/07/17 17:53	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/07/17 17:53	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/07/17 17:53	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			07/07/17 17:53	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			07/07/17 17:53	1
2-Hexanone	ND	5.0	1.2	ug/L			07/07/17 17:53	1
2-Butanone (MEK)	ND	10	1.3	ug/L			07/07/17 17:53	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			07/07/17 17:53	1

TestAmerica Buffalo

Page 16 of 45

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Oli - -- 4 O - --- - 1 - 1 D - 1 N N / 0 O 0 0 0 0 0 0 0

Date Collected: 06/28/17 15:35

Date Received: 06/29/17 10:07

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed Acetone $\overline{\mathsf{ND}}$ 10 3.0 ug/L 07/07/17 17:53 Benzene ND 1.0 07/07/17 17:53 0.41 ug/L Bromodichloromethane ND 1.0 0.39 ug/L 07/07/17 17:53 **Bromoform** ND 1.0 0.26 ug/L 07/07/17 17:53 Bromomethane ND 1.0 0.69 ug/L 07/07/17 17:53 Carbon disulfide ND 1.0 0.19 ug/L 07/07/17 17:53 Carbon tetrachloride ND 1.0 0.27 ug/L 07/07/17 17:53 Chlorobenzene ND 1.0 0.75 ug/L 07/07/17 17:53 Chlorodibromomethane ND 1.0 0.32 ug/L 07/07/17 17:53 Chloroethane ND 1.0 0.32 ug/L 07/07/17 17:53 Chloroform ND 1.0 0.34 ug/L 07/07/17 17:53 Chloromethane ND 1.0 0.35 ug/L 07/07/17 17:53 cis-1,2-Dichloroethene 2.1 1.0 0.81 ug/L 07/07/17 17:53 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/07/17 17:53 ND 1.0 0.18 ug/L Cyclohexane 07/07/17 17:53 Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 17:53 Ethylbenzene ND 1.0 0.74 ug/L 07/07/17 17:53 Isopropylbenzene ND 1.0 0.79 ug/L 07/07/17 17:53 Methyl acetate ND 1.3 1.3 ug/L 07/07/17 17:53 Methyl tert-butyl ether ND 0.16 ug/L 07/07/17 17:53 1.0 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 17:53 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 17:53 ND Styrene 1.0 0.73 ug/L 07/07/17 17:53 **Tetrachloroethene** 0.58 1.0 0.36 ug/L 07/07/17 17:53 Toluene ND 1.0 0.51 ug/L 07/07/17 17:53 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 17:53 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 17:53 **Trichloroethene** 3.1 1.0 0.46 ug/L 07/07/17 17:53 Trichlorofluoromethane ND 1.0 0.88 ug/L 07/07/17 17:53 Vinyl chloride ND 1.0 0.90 ug/L 07/07/17 17:53 Xylenes, Total ND 2.0 0.66 ug/L 07/07/17 17:53 %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 98 77 - 120 07/07/17 17:53 Toluene-d8 (Surr) 88 80 - 120 07/07/17 17:53 4-Bromofluorobenzene (Surr) 86 73 - 120 07/07/17 17:53 Dibromofluoromethane (Surr) 94 75 - 123 07/07/17 17:53

Date Collected: 06/28/17 16:10 Matrix: Water Date Received: 06/29/17 10:07

Method: 8260C - Volatile Orga	nic Compounds by GC/	MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			07/07/17 18:16	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/07/17 18:16	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/07/17 18:16	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			07/07/17 18:16	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/07/17 18:16	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/07/17 18:16	1

TestAmerica Buffalo

Page 17 of 45

7/13/2017

3

4

6

8

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Date Collected: 06/28/17 16:10 Matrix: Water Date Received: 06/29/17 10:07

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/07/17 18:16	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/07/17 18:16	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			07/07/17 18:16	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/07/17 18:16	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/07/17 18:16	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/07/17 18:16	1
1,3-Dichlorobenzene	ND		1.0	0.78	-			07/07/17 18:16	1
1,4-Dichlorobenzene	ND		1.0	0.84	-			07/07/17 18:16	1
2-Hexanone	ND		5.0		ug/L			07/07/17 18:16	1
2-Butanone (MEK)	ND		10		ug/L			07/07/17 18:16	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			07/07/17 18:16	1
Acetone	ND		10		ug/L			07/07/17 18:16	1
Benzene	ND		1.0	0.41	-			07/07/17 18:16	1
Bromodichloromethane	ND		1.0	0.39	-			07/07/17 18:16	1
Bromoform	ND		1.0	0.26	ū			07/07/17 18:16	1
Bromomethane	ND		1.0	0.69	-			07/07/17 18:16	1
Carbon disulfide	ND		1.0	0.19	-			07/07/17 18:16	1
Carbon tetrachloride	ND		1.0	0.27	-			07/07/17 18:16	1
Chlorobenzene	ND		1.0	0.75	-			07/07/17 18:16	
Chlorodibromomethane	ND		1.0	0.32	-			07/07/17 18:16	1
Chloroethane	ND		1.0	0.32	-			07/07/17 18:16	1
Chloroform	ND		1.0	0.34	-			07/07/17 18:16	
Chloromethane	ND ND		1.0	0.35	-			07/07/17 18:16	1
cis-1,2-Dichloroethene	ND ND		1.0	0.81	-			07/07/17 18:16	1
	ND		1.0	0.36	-			07/07/17 18:16	' 1
cis-1,3-Dichloropropene Cyclohexane	ND ND		1.0	0.30	-			07/07/17 18:16	1
Dichlorodifluoromethane	ND ND		1.0	0.18	-			07/07/17 18:16	1
	ND				-			07/07/17 18:16	
Ethylbenzene	ND ND		1.0	0.74	-				1
Isopropylbenzene			1.0	0.79	-			07/07/17 18:16	1
Methyl acetate	ND		1.3		ug/L			07/07/17 18:16	
Methyl tert-butyl ether	ND		1.0	0.16	-			07/07/17 18:16	1
Methylcyclohexane	ND		1.0	0.16	-			07/07/17 18:16	1
Methylene Chloride	ND		1.0	0.44				07/07/17 18:16	
Styrene	ND		1.0	0.73				07/07/17 18:16	1
Tetrachloroethene	ND		1.0	0.36	-			07/07/17 18:16	1
Toluene	ND		1.0	0.51				07/07/17 18:16	1
trans-1,2-Dichloroethene	ND		1.0	0.90				07/07/17 18:16	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/07/17 18:16	1
Trichloroethene	1.0		1.0		ug/L			07/07/17 18:16	1
Trichlorofluoromethane	ND		1.0		ug/L			07/07/17 18:16	1
Vinyl chloride	ND		1.0		ug/L			07/07/17 18:16	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/07/17 18:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			•		07/07/17 18:16	1

1,2-Dichloroethane-d4 (Surr) 100 77 - 120 07/07/17 18:16 Toluene-d8 (Surr) 91 80 - 120 07/07/17 18:16 4-Bromofluorobenzene (Surr) 89 73 - 120 07/07/17 18:16 Dibromofluoromethane (Surr) 93 75 - 123 07/07/17 18:16

TestAmerica Buffalo

_

<u>ی</u>

6

8

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-8D-062817 Lab Sample ID: 480-120391-11

Date Collected: 06/28/17 16:30 Matrix: Water Date Received: 06/29/17 10:07

1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 07/07/17 18:3 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 07/07/17 18:3 1,1,2-Trichlorotrifluoroethane ND 1.0 0.31 ug/L 07/07/17 18:3 1,1-Dichloroethane 0.62 J 1.0 0.38 ug/L 07/07/17 18:3 1,1-Dichloroethane ND 1.0 0.29 ug/L 07/07/17 18:3 1,2-J-Trichlorobenzene ND 1.0 0.41 ug/L 07/07/17 18:3 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 07/07/17 18:3 1,2-Dibromoethane (EDB) ND 1.0 0.73 ug/L 07/07/17 18:3 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 07/07/17 18:3 1,2-Dichloropropane ND 1.0 0.21 ug/L 07/07/17 18:3 1,2-Dichloropropane ND 1.0 0.72 ug/L 07/07/17 18:3 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 07/07/17 18:3 1,4-Dichlorobenzene ND 1.0 0.78 ug/L 07/07/17 18:3 1,4-Dichlorobenzene ND 1.0 0.84 ug/L <	Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1.1.2-Trichloroethane ND 1.0 0.23 ug/L 07/07/17 18.31 1.2-Trichloroethane ND 1.0 0.31 ug/L 07/07/17 18.31 1.1.2-Trichloroethane 0.62 J 1.0 0.38 ug/L 07/07/17 18.31 1.1.2-Trichloroethane ND 1.0 0.29 ug/L 07/07/17 18.31 1.1.2-Dichloroethane ND 1.0 0.29 ug/L 07/07/17 18.31 12.4-Trichloroethane ND 1.0 0.41 ug/L 07/07/17 18.31 12.2-Dibromo-3-Chloropropane ND 1.0 0.33 ug/L 07/07/17 18.31 12.2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 07/07/17 18.31 12.2-Dibromo-3-Chloropropane ND 1.0 0.73 ug/L 07/07/17 18.31 12.2-Dichloroethane (EDB) ND 1.0 0.79 ug/L 07/07/17 18.31 12.2-Dichloroethane ND 1.0 0.79 ug/L 07/07/17 18.31 12.2-Dichloroethane ND 1.0 0.79 ug/L 07/07/17 18.31 12.2-Dichloroethane ND 1.0 0.72 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.72 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.72 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.78 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.78 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.78 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.84 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 5.0 1.2 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 5.0 1.2 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.84 ug/L 07/07/17 18.31 13.2-Dichloroethane (MIBK) ND 5.0 1.2 ug/L 07/07/17 18.31 13.2-Dichloroethane (MIBK) ND 5.0 1.2 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.30 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.30 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.30 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.30 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.30 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.30 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.30 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.35 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.35 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.36 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.36 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.36 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.36 ug/L 07/07/17 18.31 13.2-Dichloroethane ND 1.0 0.46 ug/L 07/07/17 18.31 13.2-Dichloroet	1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/07/17 18:39	
1,1,2-Trichlorotifluoroethane ND 1,0 0.31 ug/L 07/07/17 18:3 1,1-Dichloroethane 0.62 J 1,0 0.38 ug/L 07/07/17 18:3 1,1-Dichloroethane ND 1,0 0.29 ug/L 07/07/17 18:3 1,2-Hrichlorobenzene ND 1,0 0.39 ug/L 07/07/17 18:3 1,2-Dibromoethane (EDB) ND 1,0 0.79 ug/L 07/07/17 18:3 1,2-Dichlorobenzene ND 1,0 0.79 ug/L 07/07/17 18:3 1,2-Dichloroperace ND 1,0 0.21 ug/L 07/07/17 18:3 1,2-Dichloroperace ND 1,0 0.72 ug/L 07/07/17 18:3 1,2-Dichlorobenzene ND 1,0 0.72 ug/L 07/07/17 18:3 1,2-Dichlorobenzene ND 1,0 0.78 ug/L 07/07/17 18:3 1,2-Dichlorobenzene ND 1,0 0.78 ug/L 07/07/17 18:3 1,2-Dichlorobenzene ND 1,0 0.78 ug/L 07/07/17 18:3 2-Debrace (MEK) ND 1,0 0.84 ug/L 07/07/17 18:3 <	1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/07/17 18:39	
1,1-Dichloroethane 0.62 J 1.0 0.38 ug/L 07/07/17 18:3 1,1-Dichloroethene ND 1.0 0.29 ug/L 07/07/17 18:3 1,2-Dibromo-S-Chloropropane ND 1.0 0.41 ug/L 07/07/17 18:3 1,2-Dibridorobenzene ND 1.0 0.73 ug/L 07/07/17 18:3 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 07/07/17 18:3 1,2-Dichloropenzene ND 1.0 0.72 ug/L 07/07/17 18:3 1,2-Dichloropenzene ND 1.0 0.72 ug/L 07/07/17 18:3 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 07/07/17 18:3 1,3-Dichlorobenzene ND 1.0 0.84 ug/L 07/07/17 18:3 1,3-Dichlorobenzene ND 1.0 0.84 ug/L 07/07/17 18:3 1,3-Dichlorobenzene ND 1.0 0.84 ug/L 07/07/17 18:3 2-Hexanone ND 1.0 0.84 ug/L	1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/07/17 18:39	
1.1-Dichloroethene	1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			07/07/17 18:39	
1.2.4-Trichlorobenzene ND 1.0 0.41 ug/L 07/07/17 18.3 1.2-Dibromo-S-Chloropropane ND 1.0 0.73 ug/L 07/07/17 18.3 1.2-Dibriorobenzene ND 1.0 0.79 ug/L 07/07/17 18.3 1.2-Dichlorobenzene ND 1.0 0.72 ug/L 07/07/17 18.3 1.2-Dichloropropane ND 1.0 0.72 ug/L 07/07/17 18.3 1.2-Dichlorobenzene ND 1.0 0.78 ug/L 07/07/17 18.3 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 07/07/17 18.3 2-Hexanone ND 5.0 1.2 ug/L 07/07/17 18.3 2-Hexanone ND 5.0 1.2 ug/L 07/07/17 18.3 2-Hexanone (MEK) ND 1.0 0.84 ug/L 07/07/17 18.3 2-Hexanone (MIBK) ND 5.0 2.1 ug/L 07/07/17 18.3 Acetone ND 1.0 0.4 ug/L 07/07/17 18.3	1,1-Dichloroethane	0.62	J	1.0	0.38	ug/L			07/07/17 18:39	
1.2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 07/07/17 18:30 1.2-Dibromoethane (EDB) ND 1.0 0.79 ug/L 07/07/17 18:30 1.2-Dichlorobenzene ND 1.0 0.79 ug/L 07/07/17 18:30 1.2-Dichlorobenzene ND 1.0 0.72 ug/L 07/07/17 18:30 1.2-Dichlorobenzene ND 1.0 0.78 ug/L 07/07/17 18:30 1.4-Dichlorobenzene ND 1.0 0.84 ug/L 07/07/17 18:30 2-Butanone (MEK) ND 1.0 0.84 ug/L 07/07/17 18:30 2-Butanone (MEK) ND 1.0 1.3 ug/L 07/07/17 18:30 2-Butanone (MEK) ND 5.0 2.1 ug/L 07/07/17 18:30 2-Butanone (MEK) ND 5.0 2.1 ug/L 07/07/17 18:30 2-Butanone (MEK) ND 1.0 0.41 ug/L 07/07/17 18:30 2-Benzene ND 1.0 0.41 ug/L 07/07/17 18:30	1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/07/17 18:39	
1.2-Dischoroethane (EDB) ND 1.0 0.73 ug/L 07/07/17 18:3 1.2-Dischorobenzene ND 1.0 0.27 ug/L 07/07/17 18:3 1.2-Dischorobenzene ND 1.0 0.21 ug/L 07/07/17 18:3 1.2-Dischorobenzene ND 1.0 0.78 ug/L 07/07/17 18:3 1.3-Dischorobenzene ND 1.0 0.84 ug/L 07/07/17 18:3 2-Hexanone ND 5.0 1.2 ug/L 07/07/17 18:3 2-Butanone (MEK) ND 10 1.3 ug/L 07/07/17 18:3 2-Butanone (MIBK) ND 5.0 1.2 ug/L 07/07/17 18:3 Acetone ND 5.0 2.1 ug/L 07/07/17 18:3 Acetone ND 1.0 0.41 ug/L 07/07/17 18:3 Benzene ND 1.0 0.41 ug/L 07/07/17 18:3 Bromodichiomethane ND 1.0 0.26 ug/L 07/07/17 18:3 Bromodiremethane ND 1.0 0.59 ug/L 07/07/17 18:3	1,2,4-Trichlorobenzene	ND		1.0					07/07/17 18:39	
1.2-Dischoroethane (EDB) ND 1.0 0.73 ug/L 07/07/17 18:3 1.2-Dischorobenzene ND 1.0 0.27 ug/L 07/07/17 18:3 1.2-Dischorobenzene ND 1.0 0.21 ug/L 07/07/17 18:3 1.2-Dischorobenzene ND 1.0 0.78 ug/L 07/07/17 18:3 1.3-Dischorobenzene ND 1.0 0.84 ug/L 07/07/17 18:3 2-Hexanone ND 5.0 1.2 ug/L 07/07/17 18:3 2-Butanone (MEK) ND 10 1.3 ug/L 07/07/17 18:3 2-Butanone (MIBK) ND 5.0 1.2 ug/L 07/07/17 18:3 Acetone ND 5.0 2.1 ug/L 07/07/17 18:3 Acetone ND 1.0 0.41 ug/L 07/07/17 18:3 Benzene ND 1.0 0.41 ug/L 07/07/17 18:3 Bromodichiomethane ND 1.0 0.26 ug/L 07/07/17 18:3 Bromodiremethane ND 1.0 0.59 ug/L 07/07/17 18:3	1,2-Dibromo-3-Chloropropane	ND		1.0		-			07/07/17 18:39	
1.2-Dichlorobenzene ND 1.0 0.79 ug/L 07/07/17 18:3 1.2-Dichlorocethane ND 1.0 0.21 ug/L 07/07/17 18:3 1.3-Dichloropropane ND 1.0 0.72 ug/L 07/07/17 18:3 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 07/07/17 18:3 1.4-Dichlorobenzene ND 1.0 0.84 ug/L 07/07/17 18:3 2-Butanone (MEK) ND 10 1.3 ug/L 07/07/17 18:3 2-Butanone (MIBK) ND 5.0 2.1 ug/L 07/07/17 18:3 2-Butanone (MIBK) ND 1.0 3.3 ug/L 07/07/17 18:3 2-Bromodichloromethane ND 1.0 0.41 ug/L 07/07/17 18:3 2-Bromodichloromethane ND 1.0 0.49 ug/L 07/07/17 18:3 2-Bromodichloromethane ND 1.0 0.69 ug/L 07/07/17 18:3 2-Bromodichloromethane ND 1.0 0.69 ug/L 07/07/17	1,2-Dibromoethane (EDB)	ND				-			07/07/17 18:39	
1.2-Dichloroethane		ND		1.0					07/07/17 18:39	
1,2-Dichloropropane	1,2-Dichloroethane					-			07/07/17 18:39	
1,3-Dichlorobenzene ND 1.0 0.78 ug/L 07/07/17 18:31 (1,4-Dichlorobenzene ND 1.0 0.84 ug/L 07/07/17 18:31 (1,4-Dichlorobenzene ND 1.0 0.84 ug/L 07/07/17 18:31 (1,4-Dichlorobenzene ND 5.0 1.2 ug/L 07/07/17 18:31 (1,4-Dichlorobenzene ND 5.0 1.2 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 1.3 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 1.3 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.41 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.41 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.41 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.39 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.99 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.99 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.99 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.92 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.75 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.32 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.32 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.32 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.32 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.32 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.32 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.34 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.35 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.35 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.35 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.36 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.36 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.36 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.36 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.44 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.44 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 07/07/17 18:31 (1,4-Dichlorobene ND 1.0 0.46 ug/L 0	1,2-Dichloropropane			1.0		-			07/07/17 18:39	
1.4-Dichlorobenzene ND 1.0 0.84 ug/L 07/07/17 18:33 2-Hexanone ND 5.0 1.2 ug/L 07/07/17 18:33 2-Butanone (MEK) ND 10 1.3 ug/L 07/07/17 18:33 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 07/07/17 18:33 Acetone ND 10 0.4 ug/L 07/07/17 18:33 Beromedichloromethane ND 1.0 0.4 ug/L 07/07/17 18:33 Bromoform ND 1.0 0.26 ug/L 07/07/17 18:33 Bromoform ND 1.0 0.99 ug/L 07/07/17 18:33 Bromoform ND 1.0 0.99 ug/L 07/07/17 18:33 Bromofithane ND 1.0 0.99 ug/L 07/07/17 18:33 Carbon Isufficle ND 1.0 0.91 ug/L 07/07/17 18:33 Carbon Isuffice ND 1.0 0.75 ug/L 07/07/17 18:33 Chlorobenzene ND 1.0 0.75 ug/L 07/07/17 18:33				1.0		-			07/07/17 18:39	
2-Hexanone (MEK) ND 5.0 1.2 ug/L 07/07/17 18:36 2-Butanone (MEK) ND 10 1.3 ug/L 07/07/17 18:36 Acetone ND 10 1.3 ug/L 07/07/17 18:36 Acetone ND 10 3.0 ug/L 07/07/17 18:36 Benzene ND 1.0 0.41 ug/L 07/07/17 18:36 Benzene ND 1.0 0.41 ug/L 07/07/17 18:36 Bromodichloromethane ND 1.0 0.39 ug/L 07/07/17 18:36 Bromodichloromethane ND 1.0 0.26 ug/L 07/07/17 18:36 Bromodichloromethane ND 1.0 0.59 ug/L 07/07/17 18:36 Bromodichloromethane ND 1.0 0.59 ug/L 07/07/17 18:36 Bromodichloromethane ND 1.0 0.59 ug/L 07/07/17 18:36 Bromodichloromethane ND 1.0 0.59 ug/L 07/07/17 18:36 Carbon disulfide ND 1.0 0.75 ug/L 07/07/17 18:36 Carbon disulfide ND 1.0 0.75 ug/L 07/07/17 18:36 Chlorodenzene ND 1.0 0.75 ug/L 07/07/17 18:36 Chlorodenzene ND 1.0 0.75 ug/L 07/07/17 18:36 Chlorodentane ND 1.0 0.32 ug/L 07/07/17 18:36 Chlorodibromomethane ND 1.0 0.32 ug/L 07/07/17 18:36 Chlorodibromomethane ND 1.0 0.32 ug/L 07/07/17 18:36 Chlorofethane ND 1.0 0.35 ug/L 07/07/17 18:36 Chloromethane ND 1.0 0.36 ug/L 07/07/17 18:36 Cis-1,2-Dichloropropene ND 1.0 0.36 ug/L 07/07/17 18:36 Cis-1,3-Dichloropropene ND 1.0 0.74 ug/L 07/07/17 18:36 Cis-1,3-Dichloropropene ND 1.0 0.74 ug/L 07/07/17 18:36 Cis-1,3-Dichloropropene ND 1.0 0.74 ug/L 07/07/17 18:36 Cis-1,3-Dichloropropene ND 1.0 0.74 ug/L 07/07/17 18:36 Cis-1,3-Dichloropropene ND 1.0 0.74 ug/L 07/07/17 18:36 Cis-1,3-Dichloropropene ND 1.0 0.75 ug/L 07/07/17 18:36 Cis-1,3-Dichloropropene ND 1.0 0.76 ug/L 07/07/17 18:36 Cis-1,3-Dichloropropene ND 1.0 0.76 ug/L 07/07/17 18:37 Cis-1,3-Dichloropropene ND 1.0 0.76 ug/L 07/07/17 18:37 Cis-1,3-Dichloropropene ND 1.0 0.76 ug/L 07/07/17 18:37 Cis-1,3-Dichloropropene ND 1.0 0.76 ug/L 07/07/17 18:37 Cis-1,3-Dichloropropene ND 1.0 0.76 ug/L 07/07/17 18:37 Cis-1,3-Dichloropropene ND 1.0 0.76 ug/L 07/07/17 18:37 Cis-1,3-Dichloropropene ND 1.0 0.76						-			07/07/17 18:39	
2-Butanone (MEK) ND 10 1.3 ug/L 07/07/17 18:34 -Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 07/07/17 18:34 -Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 07/07/17 18:34 -Methyl-2-pentanone (MIBK) ND 5.0 ug/L 07/07/17 18:34 -Methyl-2-pentanone (MIBK) ND 5.0 ug/L 07/07/17 18:34 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl cert-butyl ether ND 5.0 ug/L 07/07/17 18:35 -Methyl						-			07/07/17 18:39	
### A-Methyl-2-pentanone (MIBK) ACE of the MID ACE of the MI										
Acetone ND 10 3.0 ug/L 07/07/17 18:33 Benzene ND 1.0 0.41 ug/L 07/07/17 18:33 Bernodichloromethane ND 1.0 0.41 ug/L 07/07/17 18:33 Bromodichloromethane ND 1.0 0.39 ug/L 07/07/17 18:33 Bromodichloromethane ND 1.0 0.26 ug/L 07/07/17 18:33 Bromodichloromethane ND 1.0 0.69 ug/L 07/07/17 18:33 Bromomethane ND 1.0 0.69 ug/L 07/07/17 18:33 Carbon disulfide ND 1.0 0.19 ug/L 07/07/17 18:33 Carbon disulfide ND 1.0 0.27 ug/L 07/07/17 18:33 Chlorotetrachloride ND 1.0 0.75 ug/L 07/07/17 18:33 Chlorotetrachloride ND 1.0 0.75 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.32 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.32 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.32 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.32 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.35 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.35 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.35 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.35 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.36 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.36 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.36 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.68 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.68 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.68 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.68 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.68 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.68 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.68 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/17 18:33 Chlorotethane ND 1.0 0.79 ug/L 07/07/	` '					-				
Senzene ND						-				
Second S										
Seromoform ND						-				
Saromomethane ND 1.0 0.69 ug/L 07/07/17 18:38						-				
Carbon disulfide ND 1.0 0.19 ug/L 07/07/17 18:38 Carbon tetrachloride ND 1.0 0.27 ug/L 07/07/17 18:38 Chlorobenzene ND 1.0 0.75 ug/L 07/07/17 18:38 Chlorobenzene ND 1.0 0.32 ug/L 07/07/17 18:38 Chlorodibromomethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chlorodibromomethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chloroform ND 1.0 0.34 ug/L 07/07/17 18:38 Chloroform ND 1.0 0.35 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 Cis-1,2-Dichloroethene ND 1.0 0.35 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.81 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/07/17 18:38 Cis-1,3-Dichlorodifluoromethane ND 1.0 0.18 ug/L 07/07/17 18:38 Cis-1,3-Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.74 ug/L 07/07/17 18:38 Cis-1,3-Dichlorodifluoromethane ND 1.0 0.79 ug/L 07/07/17 18:38 Cis-1,3-Dichlorodifluoromethane ND 1.0 0.79 ug/L 07/07/17 18:38 Cis-1,3-Dichlorodifluoromethane ND 1.0 0.79 ug/L 07/07/17 18:38 Cis-1,3-Dichlorodifluoromethane ND 1.0 0.16 ug/L 07/07/17 18:38 Cis-1,3-Dichlorodifluoromethane ND 1.0 0.16 ug/L 07/07/17 18:38 Cis-1,3-Dichlorodifluoromethane ND 1.0 0.73 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.73 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38										
Carbon tetrachloride ND 1.0 0.27 ug/L 07/07/17 18:38 Chlorobenzene ND 1.0 0.75 ug/L 07/07/17 18:38 Chlorodibromomethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chlorodethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.34 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 Cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 07/07/17 18:38 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/07/17 18:38 Cyclohexane ND 1.0 0.18 ug/L 07/07/17 18:38 Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 18:38 Eithylbenzene ND 1.0 0.68 ug/L 07/07/17 18:38 Wethyl actate ND 1.0 0.79 ug/L 07/07/17 18:38						-				
Chlorobenzene ND 1.0 0.75 ug/L 07/07/17 18:38 Chlorodibromomethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chloroethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chloroform ND 1.0 0.34 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 Chloropethene ND 1.0 0.36 ug/L 07/07/17 18:38 Chloropethane ND 1.0 0.36 ug/L 07/07/17 18:38 Chloropethane ND 1.0 0.18 ug/L 07/07/17 18:38 Chloropethane ND 1.0 0.68 ug/L 07/07/17 18:38 Chloropethane ND 1.0 0.79 ug/L 07/07/17 18:38 Sopropylbenzene ND 1.0 0.79 ug/L 07/07/17 18:38 Wetthyl cert-butyl ether 0.19 J 1.						-				
Chlorodibromomethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chloroethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chloroform ND 1.0 0.34 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 Cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 07/07/17 18:38 Cis-1,2-Dichloropropene ND 1.0 0.81 ug/L 07/07/17 18:38 Cyclohexane ND 1.0 0.18 ug/L 07/07/17 18:38 Cyclohexane ND 1.0 0.68 ug/L 07/07/17 18:38 Eithylbenzene ND 1.0 0.68 ug/L 07/07/17 18:38 Sepropylbenzene ND 1.0 0.79 ug/L 07/07/17 18:38 Wethyl acetate ND 1.0 0.79 ug/L 07/07/17 18:38 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>						-				
Chloroethane ND 1.0 0.32 ug/L 07/07/17 18:38 Chloroform ND 1.0 0.34 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 Cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 07/07/17 18:38 Cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/07/17 18:38 Cyclohexane ND 1.0 0.18 ug/L 07/07/17 18:38 Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 18:38 Eithylbenzene ND 1.0 0.74 ug/L 07/07/17 18:38 Schylbenzene ND 1.0 0.79 ug/L 07/07/17 18:38 Wethyl acetate ND 1.3 1.3 ug/L 07/07/17 18:38 Wethyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 Wethyl tert-butyl ether 0.19 J 0 0.16 ug/L						-				
Chloroform ND 1.0 0.34 ug/L 07/07/17 18:38 Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 07/07/17 18:38 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/07/17 18:38 Cyclohexane ND 1.0 0.68 ug/L 07/07/17 18:38 Citchlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 18:38 Eithylbenzene ND 1.0 0.74 ug/L 07/07/17 18:38 sopropylbenzene ND 1.0 0.79 ug/L 07/07/17 18:38 Methyl acetate ND 1.3 1.3 ug/L 07/07/17 18:38 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 Wethylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:38 Wethylere Chloride ND 1.0 0.44 ug/L 07/						-				
Chloromethane ND 1.0 0.35 ug/L 07/07/17 18:38 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 07/07/17 18:38 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/07/17 18:38 Cyclohexane ND 1.0 0.18 ug/L 07/07/17 18:38 Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 18:38 Ethylbenzene ND 1.0 0.74 ug/L 07/07/17 18:38 sopropylbenzene ND 1.0 0.79 ug/L 07/07/17 18:38 Methyl acetate ND 1.3 1.3 ug/L 07/07/17 18:38 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:38 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:38 Styrene ND 1.0 0.73 ug/L 07/07/17 18:38 Tetrachloroethene ND 1.0 0.51 ug/L 07/07/17 18:38 Troluene <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>						-				
Sis-1,2-Dichloroethene						-				
cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 07/07/17 18:38 Cyclohexane ND 1.0 0.18 ug/L 07/07/17 18:38 Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 18:38 Ethylbenzene ND 1.0 0.74 ug/L 07/07/17 18:38 Isopropylbenzene ND 1.0 0.79 ug/L 07/07/17 18:38 Methyl acetate ND 1.3 1.3 ug/L 07/07/17 18:38 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:38 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:38 Styrene ND 1.0 0.73 ug/L 07/07/17 18:38 Tetrachloroethene ND 1.0 0.51 ug/L 07/07/17 18:38 Trans-1,2-Dichloropropene ND 1.0 0.90 ug/L 07/07/17 18:38 Trichloroethene ND 1.0 0.37 ug/L 07/07/17 18:38 Trichloroethene <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>						-				
Cyclohexane ND 1.0 0.18 ug/L 07/07/17 18:38 Dichlorodifiluoromethane ND 1.0 0.68 ug/L 07/07/17 18:38 Ethylbenzene ND 1.0 0.74 ug/L 07/07/17 18:38 sopropylbenzene ND 1.0 0.79 ug/L 07/07/17 18:38 Methyl acetate ND 1.3 1.3 ug/L 07/07/17 18:38 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:38 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:38 Styrene ND 1.0 0.73 ug/L 07/07/17 18:38 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:38 Toluene ND 1.0 0.51 ug/L 07/07/17 18:38 Trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:38 Trichloroethene ND 1.0 0.37 ug/L 07/07/17 18:38 Trichloroethene ND	·					-				
Dichlorodifluoromethane ND 1.0 0.68 ug/L 07/07/17 18:35 Ethylbenzene ND 1.0 0.74 ug/L 07/07/17 18:35 Isopropylbenzene ND 1.0 0.79 ug/L 07/07/17 18:35 Methyl acetate ND 1.3 1.3 ug/L 07/07/17 18:35 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:35 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:35 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:35 Styrene ND 1.0 0.73 ug/L 07/07/17 18:35 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:35 Toluene ND 1.0 0.51 ug/L 07/07/17 18:35 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:35 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:35 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:35						-				
Ethylbenzene ND 1.0 0.74 ug/L 07/07/17 18:38 Isopropylbenzene ND 1.0 0.79 ug/L 07/07/17 18:38 Methyl acetate ND 1.3 1.3 ug/L 07/07/17 18:38 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:38 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:38 Styrene ND 1.0 0.73 ug/L 07/07/17 18:38 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:38 Troluene ND 1.0 0.51 ug/L 07/07/17 18:38 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:38 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:38 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 1	•					-				
ND 1.0 0.79 ug/L 07/07/17 18:38 Methyl acetate ND 1.3 1.3 ug/L 07/07/17 18:39 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:39 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.73 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.73 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.36 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.36 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.51 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.51 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.37 ug/L 07/07/17 18:39 Methylene Chloride ND 1.0 0.46 ug/L 07/07/17 18:39 Methylene Chloride ND 0.46 ug/L 07/07						-				
Methyl acetate ND 1.3 1.3 ug/L 07/07/17 18:38 Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:38 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:38 Styrene ND 1.0 0.73 ug/L 07/07/17 18:38 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:38 Toluene ND 1.0 0.51 ug/L 07/07/17 18:38 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:38 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:38 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:38	•					-				
Methyl tert-butyl ether 0.19 J 1.0 0.16 ug/L 07/07/17 18:38 Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:38 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:38 Styrene ND 1.0 0.73 ug/L 07/07/17 18:38 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:38 Toluene ND 1.0 0.51 ug/L 07/07/17 18:38 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:38 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:38 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:38	,					-				
Methylcyclohexane ND 1.0 0.16 ug/L 07/07/17 18:38 Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:38 Styrene ND 1.0 0.73 ug/L 07/07/17 18:38 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:38 Toluene ND 1.0 0.51 ug/L 07/07/17 18:38 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:38 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:38 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:38	•									
Methylene Chloride ND 1.0 0.44 ug/L 07/07/17 18:38 Styrene ND 1.0 0.73 ug/L 07/07/17 18:38 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:38 Toluene ND 1.0 0.51 ug/L 07/07/17 18:38 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:38 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:38 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:38			J							
Styrene ND 1.0 0.73 ug/L 07/07/17 18:39 Tetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:39 Foluene ND 1.0 0.51 ug/L 07/07/17 18:39 grans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:39 grans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:39 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:39	• •					-				
Fetrachloroethene ND 1.0 0.36 ug/L 07/07/17 18:38 Foluene ND 1.0 0.51 ug/L 07/07/17 18:38 rans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:38 rans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:38 Frichloroethene ND 1.0 0.46 ug/L 07/07/17 18:38						-				
Foluene ND 1.0 0.51 ug/L 07/07/17 18:39 grans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:39 grans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:39 Frichloroethene ND 1.0 0.46 ug/L 07/07/17 18:39	•									
rans-1,2-Dichloroethene ND 1.0 0.90 ug/L 07/07/17 18:39 rans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:39 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:39						-				
rans-1,3-Dichloropropene ND 1.0 0.37 ug/L 07/07/17 18:39 Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:39										
Trichloroethene ND 1.0 0.46 ug/L 07/07/17 18:39	•									
•										
i richiorofluoromethane ND 1.0 0.88 ug/L 07/07/17 18:3:										
			J			-			07/07/17 18:39 07/07/17 18:39	

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Lab Sample ID: 480-120391-11

Matrix: Water

Client Sample ID: MW-8D-062817

Date Collected: 06/28/17 16:30 Date Received: 06/29/17 10:07

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		07/07/17 18:39	1
Toluene-d8 (Surr)	91	80 - 120		07/07/17 18:39	1
4-Bromofluorobenzene (Surr)	87	73 - 120		07/07/17 18:39	1
Dibromofluoromethane (Surr)	93	75 - 123		07/07/17 18:39	1

Client Sample ID: MW-7D-062817 Lab Sample ID: 480-120391-12

Date Collected: 06/28/17 16:55 Date Received: 06/29/17 10:07

Matrix: Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/07/17 19:02	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			07/07/17 19:02	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/07/17 19:02	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			07/07/17 19:02	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/07/17 19:02	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/07/17 19:02	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/07/17 19:02	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/07/17 19:02	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			07/07/17 19:02	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/07/17 19:02	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/07/17 19:02	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/07/17 19:02	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/07/17 19:02	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/07/17 19:02	1
2-Hexanone	ND		5.0	1.2	ug/L			07/07/17 19:02	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/07/17 19:02	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/07/17 19:02	1
Acetone	ND		10	3.0	ug/L			07/07/17 19:02	1
Benzene	ND		1.0	0.41	ug/L			07/07/17 19:02	1
Bromodichloromethane	ND		1.0	0.39	ug/L			07/07/17 19:02	1
Bromoform	ND		1.0	0.26	ug/L			07/07/17 19:02	1
Bromomethane	ND		1.0	0.69	ug/L			07/07/17 19:02	1
Carbon disulfide	ND		1.0	0.19	ug/L			07/07/17 19:02	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			07/07/17 19:02	1
Chlorobenzene	ND		1.0	0.75	ug/L			07/07/17 19:02	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			07/07/17 19:02	1
Chloroethane	ND		1.0	0.32	ug/L			07/07/17 19:02	1
Chloroform	ND		1.0	0.34	ug/L			07/07/17 19:02	1
Chloromethane	ND		1.0	0.35	ug/L			07/07/17 19:02	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/07/17 19:02	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/07/17 19:02	1
Cyclohexane	ND		1.0	0.18	ug/L			07/07/17 19:02	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/07/17 19:02	1
Ethylbenzene	ND		1.0	0.74	ug/L			07/07/17 19:02	1
Isopropylbenzene	ND		1.0	0.79				07/07/17 19:02	1
Methyl acetate	ND		1.3		ug/L			07/07/17 19:02	1
Methyl tert-butyl ether	ND		1.0	0.16	•			07/07/17 19:02	1
Methylcyclohexane	ND		1.0	0.16				07/07/17 19:02	1
Methylene Chloride	ND		1.0	0.44	-			07/07/17 19:02	1

TestAmerica Buffalo

Page 20 of 45

7/13/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Client Sample ID: MW-7D-062817

Lab Sample ID: 480-120391-12

Date Collected: 06/28/17 16:55 Date Received: 06/29/17 10:07

Matrix: Water

Method: 8260C - Volatile O	•	•	•		l lmi4	ь.	Duamanad	Amalumad	Dil Fac
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			07/07/17 19:02	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/07/17 19:02	1
Toluene	ND		1.0	0.51	ug/L			07/07/17 19:02	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/07/17 19:02	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/07/17 19:02	1
Trichloroethene	0.99	J	1.0	0.46	ug/L			07/07/17 19:02	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/07/17 19:02	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/07/17 19:02	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/07/17 19:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120			-		07/07/17 19:02	1
Toluene-d8 (Surr)	90		80 - 120					07/07/17 19:02	1
4-Bromofluorobenzene (Surr)	89		73 - 120					07/07/17 19:02	1
Dibromofluoromethane (Surr)	98		75 - 123					07/07/17 19:02	1

Client Sample ID: X-1-062817 Lab Sample ID: 480-120391-13

Date Collected: 06/28/17 00:00 Date Received: 06/29/17 10:07

Chloroform

Matrix: Water

Method: 8260C - Volatile Org Analyte	janic Compounds by GC/ Result Qualifier	/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		1.0	0.82	ug/L			07/08/17 05:23	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/08/17 05:23	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/08/17 05:23	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			07/08/17 05:23	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/08/17 05:23	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/08/17 05:23	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/08/17 05:23	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/08/17 05:23	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ua/L			07/08/17 05:23	1

1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L	07/08/17 05:23	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L	07/08/17 05:23	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L	07/08/17 05:23	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L	07/08/17 05:23	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L	07/08/17 05:23	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L	07/08/17 05:23	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L	07/08/17 05:23	1
2-Hexanone	ND	5.0	1.2	ug/L	07/08/17 05:23	1
2-Butanone (MEK)	ND	10	1.3	ug/L	07/08/17 05:23	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L	07/08/17 05:23	1
Acetone	ND	10	3.0	ug/L	07/08/17 05:23	1
Benzene	ND	1.0	0.41	ug/L	07/08/17 05:23	1
Bromodichloromethane	ND	1.0	0.39	ug/L	07/08/17 05:23	1
Bromoform	ND	1.0	0.26	ug/L	07/08/17 05:23	1
Bromomethane	ND	1.0	0.69	ug/L	07/08/17 05:23	1
Carbon disulfide	ND	1.0	0.19	ug/L	07/08/17 05:23	1
Carbon tetrachloride	ND	1.0	0.27	ug/L	07/08/17 05:23	1
Chlorobenzene	ND	1.0	0.75	ug/L	07/08/17 05:23	1
Chlorodibromomethane	ND	1.0	0.32	ug/L	07/08/17 05:23	1
Chloroethane	ND	1.0	0.32	ug/L	07/08/17 05:23	1

TestAmerica Buffalo

07/08/17 05:23

Page 21 of 45

1.0

0.34 ug/L

ND

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-120391-13

Lab Sample ID: 480-120391-14

Matrix: Water

TestAmerica Job ID: 480-120391-1

Matrix: Water

Matrix: Water

Client Sample ID: X-1-062817

Date Collected: 06/28/17 00:00

Date Received: 06/29/17 10:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND ND		1.0	0.35	ug/L			07/08/17 05:23	1
cis-1,2-Dichloroethene	14		1.0	0.81	ug/L			07/08/17 05:23	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/08/17 05:23	1
Cyclohexane	ND		1.0	0.18	ug/L			07/08/17 05:23	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/08/17 05:23	1
Ethylbenzene	ND		1.0	0.74	ug/L			07/08/17 05:23	1
Isopropylbenzene	ND		1.0	0.79	ug/L			07/08/17 05:23	1
Methyl acetate	ND		1.3	1.3	ug/L			07/08/17 05:23	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/08/17 05:23	1
Methylcyclohexane	ND		1.0	0.16	ug/L			07/08/17 05:23	1
Methylene Chloride	ND		1.0	0.44	ug/L			07/08/17 05:23	1
Styrene	ND		1.0	0.73	ug/L			07/08/17 05:23	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/08/17 05:23	1
Toluene	ND		1.0	0.51	ug/L			07/08/17 05:23	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/08/17 05:23	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/08/17 05:23	1
Trichloroethene	ND		1.0	0.46	ug/L			07/08/17 05:23	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/08/17 05:23	1
Vinyl chloride	8.9		1.0	0.90	ug/L			07/08/17 05:23	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/08/17 05:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			=		07/08/17 05:23	1
Toluene-d8 (Surr)	93		80 - 120					07/08/17 05:23	1
4-Bromofluorobenzene (Surr)	88		73 - 120					07/08/17 05:23	1
Dibromofluoromethane (Surr)	100		75 - 123					07/08/17 05:23	1

Client Sample ID: TRIP BLANK

Date Collected: 06/28/17 00:00

Date Received: 06/29/17 10:07

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/08/17 05:46	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/08/17 05:46	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/08/17 05:46	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			07/08/17 05:46	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/08/17 05:46	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/08/17 05:46	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/08/17 05:46	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/08/17 05:46	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			07/08/17 05:46	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/08/17 05:46	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/08/17 05:46	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/08/17 05:46	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/08/17 05:46	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/08/17 05:46	1
2-Hexanone	ND		5.0	1.2	ug/L			07/08/17 05:46	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/08/17 05:46	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/08/17 05:46	1

TestAmerica Buffalo

Page 22 of 45

7/13/2017

5

0

9

11

13

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-120391-14

TestAmerica Job ID: 480-120391-1

Matrix: Water

Client Sample ID: TRIP BLANK Date Collected: 06/28/17 00:00

Date Received: 06/29/17 10:07

Dibromofluoromethane (Surr)

Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND ND	10	3.0	ug/L			07/08/17 05:46	1
Benzene	ND	1.0	0.41	ug/L			07/08/17 05:46	1
Bromodichloromethane	ND	1.0	0.39	ug/L			07/08/17 05:46	1
Bromoform	ND	1.0	0.26	ug/L			07/08/17 05:46	1
Bromomethane	ND	1.0	0.69	ug/L			07/08/17 05:46	1
Carbon disulfide	ND	1.0	0.19	ug/L			07/08/17 05:46	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			07/08/17 05:46	1
Chlorobenzene	ND	1.0	0.75	ug/L			07/08/17 05:46	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			07/08/17 05:46	1
Chloroethane	ND	1.0	0.32	ug/L			07/08/17 05:46	1
Chloroform	ND	1.0	0.34	ug/L			07/08/17 05:46	1
Chloromethane	ND	1.0	0.35	ug/L			07/08/17 05:46	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			07/08/17 05:46	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			07/08/17 05:46	1
Cyclohexane	ND	1.0	0.18	ug/L			07/08/17 05:46	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			07/08/17 05:46	1
Ethylbenzene	ND	1.0	0.74	ug/L			07/08/17 05:46	1
Isopropylbenzene	ND	1.0	0.79	ug/L			07/08/17 05:46	1
Methyl acetate	ND	1.3	1.3	ug/L			07/08/17 05:46	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			07/08/17 05:46	1
Methylcyclohexane	ND	1.0	0.16	ug/L			07/08/17 05:46	1
Methylene Chloride	ND	1.0	0.44	ug/L			07/08/17 05:46	1
Styrene	ND	1.0	0.73	ug/L			07/08/17 05:46	1
Tetrachloroethene	ND	1.0	0.36	ug/L			07/08/17 05:46	1
Toluene	ND	1.0	0.51	ug/L			07/08/17 05:46	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			07/08/17 05:46	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			07/08/17 05:46	1
Trichloroethene	ND	1.0	0.46	ug/L			07/08/17 05:46	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			07/08/17 05:46	1
Vinyl chloride	ND	1.0	0.90				07/08/17 05:46	1
Xylenes, Total	ND	2.0	0.66				07/08/17 05:46	1
Surrogate	%Recovery Qua	lifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	77 - 120			•		07/08/17 05:46	1
Toluene-d8 (Surr)	90	80 - 120					07/08/17 05:46	1
4-Bromofluorobenzene (Surr)	85	73 - 120					07/08/17 05:46	1

07/08/17 05:46

75 - 123

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	rcent Surre	ogate Reco
		12DCE	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(80-120)	(73-120)	(75-123)
480-120391-1	MW-6S-062817	109	103	100	107
480-120391-2	MW-4D-062817	109	102	97	107
480-120391-3	MW-4S-062817	107	99	98	102
480-120391-4	MW-1D-062817	108	99	97	104
480-120391-5	MW-6DD-062817	100	99	97	98
480-120391-6	MW-1S-062817	99	90	87	97
480-120391-7	MW-8DD-062817	98	90	87	92
480-120391-8	MW-7DD-062817	100	89	88	91
480-120391-9	MW-8S-062817	98	88	86	94
480-120391-10	MW-7S-062817	100	91	89	93
480-120391-11	MW-8D-062817	101	91	87	93
480-120391-12	MW-7D-062817	102	90	89	98
480-120391-13	X-1-062817	104	93	88	100
480-120391-14	TRIP BLANK	105	90	85	95
LCS 480-365816/7	Lab Control Sample	105	101	97	106
LCS 480-365820/4	Lab Control Sample	93	91	90	91
LCS 480-365974/4	Lab Control Sample	104	103	93	105
LCS 480-365981/5	Lab Control Sample	98	94	91	95
MB 480-365816/32	Method Blank	105	102	101	107
MB 480-365820/6	Method Blank	100	91	90	94
MB 480-365974/7	Method Blank	107	100	96	107
MB 480-365981/7	Method Blank	102	92	90	98

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

Page 24 of 45

7/13/2017

3

А

5

7

0

11

12

14

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-365816/32

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analysis Batch: 365816	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/07/17 12:29	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/07/17 12:29	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/07/17 12:29	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			07/07/17 12:29	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/07/17 12:29	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/07/17 12:29	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/07/17 12:29	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/07/17 12:29	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			07/07/17 12:29	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/07/17 12:29	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/07/17 12:29	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/07/17 12:29	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/07/17 12:29	1
1,4-Dichlorobenzene	ND		1.0		ug/L			07/07/17 12:29	1
2-Hexanone	ND		5.0	1.2	ug/L			07/07/17 12:29	1
2-Butanone (MEK)	ND		10		ug/L			07/07/17 12:29	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			07/07/17 12:29	1
Acetone	ND		10		ug/L			07/07/17 12:29	1
Benzene	ND		1.0		ug/L			07/07/17 12:29	
Bromodichloromethane	ND		1.0		ug/L			07/07/17 12:29	1
Bromoform	ND		1.0		ug/L			07/07/17 12:29	1
Bromomethane	ND		1.0		ug/L			07/07/17 12:29	
Carbon disulfide	ND		1.0		ug/L			07/07/17 12:29	1
Carbon tetrachloride	ND		1.0	0.27	_			07/07/17 12:29	1
Chlorobenzene	ND		1.0		ug/L			07/07/17 12:29	1
Chlorodibromomethane	ND		1.0	0.32	-			07/07/17 12:29	1
Chloroethane	ND		1.0		ug/L			07/07/17 12:29	1
Chloroform	ND		1.0		ug/L			07/07/17 12:29	1
Chloromethane	ND		1.0		ug/L			07/07/17 12:29	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			07/07/17 12:29	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			07/07/17 12:29	1
Cyclohexane	ND		1.0		ug/L			07/07/17 12:29	1
Dichlorodifluoromethane	ND		1.0	0.68	_			07/07/17 12:29	1
Ethylbenzene	ND		1.0		ug/L			07/07/17 12:29	1
Isopropylbenzene	ND		1.0	0.79				07/07/17 12:29	1
Methyl acetate	ND		1.3		ug/L			07/07/17 12:29	1
Methyl tert-butyl ether	ND		1.0		ug/L			07/07/17 12:29	
Methylcyclohexane	0.740	J	1.0		ug/L			07/07/17 12:29	1
Methylene Chloride	ND		1.0		ug/L			07/07/17 12:29	1
Styrene	ND		1.0		ug/L			07/07/17 12:29	1
Tetrachloroethene	ND		1.0		ug/L			07/07/17 12:29	1
Toluene	ND		1.0		ug/L			07/07/17 12:29	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/07/17 12:29	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/07/17 12:29	1
Trichloroethene	ND		1.0		ug/L			07/07/17 12:29	1
Trichlorofluoromethane	ND		1.0		ug/L			07/07/17 12:29	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	ND		1.0		ug/L			07/07/17 12:29	1
Xylenes, Total	ND		2.0		ug/L			07/07/17 12:29	1

TestAmerica Buffalo

Page 25 of 45

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared And	alyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120	07/07/	/17 12:29	1
Toluene-d8 (Surr)	102		80 - 120	07/07	/17 12:29	1
4-Bromofluorobenzene (Surr)	101		73 - 120	07/07	/17 12:29	1
Dibromofluoromethane (Surr)	107		75 - 123	07/07.	/17 12:29	1

Lab Sample ID: LCS 480-365816/7

Matrix: Water

Analysis Batch: 365816

nent Sample	ID. Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS					%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	20.7		ug/L		83	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	23.2		ug/L		93	76 - 120	
1,1,2-Trichloroethane	25.0	24.1		ug/L		96	76 - 122	
1,1,2-Trichlorotrifluoroethane	25.0	19.5		ug/L		78	61 - 148	
1,1-Dichloroethane	25.0	21.6		ug/L		87	77 - 120	
1,1-Dichloroethene	25.0	20.6		ug/L		82	66 - 127	
1,2,4-Trichlorobenzene	25.0	22.7		ug/L		91	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	21.0		ug/L		84	56 - 134	
1,2-Dibromoethane (EDB)	25.0	24.1		ug/L		96	77 - 120	
1,2-Dichlorobenzene	25.0	22.8		ug/L		91	80 - 124	
1,2-Dichloroethane	25.0	21.9		ug/L		88	75 - 120	
1,2-Dichloropropane	25.0	23.6		ug/L		94	76 - 120	
1,3-Dichlorobenzene	25.0	22.6		ug/L		90	77 - 120	
1,4-Dichlorobenzene	25.0	22.7		ug/L		91	80 - 120	
2-Hexanone	125	126		ug/L		101	65 - 127	
2-Butanone (MEK)	125	118		ug/L		95	57 ₋ 140	
4-Methyl-2-pentanone (MIBK)	125	121		ug/L		97	71 - 125	
Acetone	125	142		ug/L		114	56 - 142	
Benzene	25.0	22.2		ug/L		89	71 - 124	
Bromodichloromethane	25.0	23.7		ug/L		95	80 - 122	
Bromoform	25.0	24.2		ug/L		97	61 - 132	
Bromomethane	25.0	31.1		ug/L		125	55 - 144	
Carbon disulfide	25.0	18.7		ug/L		75	59 ₋ 134	
Carbon tetrachloride	25.0	19.9		ug/L		80	72 ₋ 134	
Chlorobenzene	25.0	22.3		ug/L		89	80 - 120	
Chlorodibromomethane	25.0	24.8		ug/L		99	75 ₋ 125	
Chloroethane	25.0	26.4		ug/L		106	69 - 136	
Chloroform	25.0	21.5		ug/L		86	73 - 127	
Chloromethane	25.0	20.3		ug/L		81	68 - 124	
cis-1,2-Dichloroethene	25.0	23.3		ug/L		93	74 - 124	
cis-1,3-Dichloropropene	25.0	25.4		ug/L		102	74 - 124	
Cyclohexane	25.0	19.0		ug/L		76	59 ₋ 135	
Dichlorodifluoromethane	25.0	21.0		ug/L		84	59 ₋ 135	
Ethylbenzene	25.0	22.3		ug/L		89	77 - 123	
Isopropylbenzene	25.0	21.8		ug/L		87	77 - 122	
Methyl acetate	125	116		ug/L		93	74 - 133	
Methyl tert-butyl ether	25.0	24.1		ug/L		96	77 - 120	
Methylcyclohexane	25.0	21.8		ug/L		87	68 - 134	
Methylene Chloride	25.0	20.9		ug/L ug/L		83	75 ₋ 124	
Styrene	25.0	23.7				95	80 - 120	
Tetrachloroethene	25.0	23.7		ug/L		90	74 ₋ 122	
Toluene	25.0	22.0		ug/L ug/L		88	80 ₋ 122	
trans-1,2-Dichloroethene	25.0	20.4		ug/L		82	73 ₋ 127	
trans-1,3-Dichloropropene	25.0	24.6		ug/L		99	80 - 120	

TestAmerica Buffalo

Page 26 of 45

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-120391-1

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-365816/7

Lab Sample ID: MB 480-365820/6

cis-1,2-Dichloroethene

Cyclohexane

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Matrix: Water

Analysis Batch: 365816

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Trichloroethene 25.0 22.3 ug/L 89 74 - 123 Trichlorofluoromethane 25.0 26.2 ug/L 105 62 - 150Vinyl chloride 25.0 21.4 ug/L 85 65 - 133

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 105 77 - 120 101 Toluene-d8 (Surr) 80 - 120 4-Bromofluorobenzene (Surr) 97 73 - 120 Dibromofluoromethane (Surr) 106 75 - 123

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 365820								,	
Analyta	MB	MB Qualifier	RL	MDI	Unit	D	Dronorod	Anglyzad	Dil Fac
Analyte 1,1,1-Trichloroethane	ND	Qualifier	1.0	0.82		b	Prepared	Analyzed 07/07/17 12:16	DII Fac
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L ug/L			07/07/17 12:16	1
1,1,2-Trichloroethane	ND ND		1.0		ug/L ug/L			07/07/17 12:16	1
1,1,2-Trichloroethane	ND		1.0		ug/L			07/07/17 12:16	
1.1-Dichloroethane	ND.		1.0		ug/L			07/07/17 12:16	1
1,1-Dichloroethene	ND		1.0		ug/L			07/07/17 12:16	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/07/17 12:16	· · · · · · · · · · · · · · · · · · ·
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			07/07/17 12:16	1
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			07/07/17 12:16	1
1,2-Dichlorobenzene	ND		1.0		ug/L			07/07/17 12:16	
1.2-Dichloroethane	ND		1.0		ug/L			07/07/17 12:16	1
1,2-Dichloropropane	ND		1.0		ug/L			07/07/17 12:16	
1,3-Dichlorobenzene	ND		1.0		ug/L			07/07/17 12:16	
1,4-Dichlorobenzene	ND		1.0		ug/L			07/07/17 12:16	1
2-Hexanone	ND		5.0		ug/L			07/07/17 12:16	1
2-Butanone (MEK)	ND		10		ug/L			07/07/17 12:16	<u>.</u> 1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			07/07/17 12:16	1
Acetone	ND		10		ug/L			07/07/17 12:16	1
Benzene	ND		1.0		ug/L			07/07/17 12:16	1
Bromodichloromethane	ND		1.0		ug/L			07/07/17 12:16	1
Bromoform	ND		1.0		ug/L			07/07/17 12:16	1
Bromomethane	ND		1.0		ug/L			07/07/17 12:16	1
Carbon disulfide	ND		1.0		ug/L			07/07/17 12:16	1
Carbon tetrachloride	ND		1.0		ug/L			07/07/17 12:16	1
Chlorobenzene	ND		1.0		ug/L			07/07/17 12:16	1
Chlorodibromomethane	ND		1.0		ug/L			07/07/17 12:16	1
Chloroethane	ND		1.0		ug/L			07/07/17 12:16	1
Chloroform	ND		1.0		ug/L			07/07/17 12:16	1
Chloromethane	ND		1.0		ug/L			07/07/17 12:16	1
					•				

TestAmerica Buffalo

07/07/17 12:16

07/07/17 12:16

07/07/17 12:16

07/07/17 12:16

Page 27 of 45

1.0

1.0

1.0

1.0

0.81 ug/L

0.36 ug/L

0.18 ug/L

0.68 ug/L

ND

ND

ND

ND

TestAmerica Job ID: 480-120391-1

Prep Type: Total/NA

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-365820/6 **Client Sample ID: Method Blank**

Matrix: Water Analysis Batch: 365820

7 many old Datom Code									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.74	ug/L			07/07/17 12:16	1
Isopropylbenzene	ND		1.0	0.79	ug/L			07/07/17 12:16	1
Methyl acetate	ND		1.3	1.3	ug/L			07/07/17 12:16	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/07/17 12:16	1
Methylcyclohexane	ND		1.0	0.16	ug/L			07/07/17 12:16	1
Methylene Chloride	ND		1.0	0.44	ug/L			07/07/17 12:16	1
Styrene	ND		1.0	0.73	ug/L			07/07/17 12:16	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/07/17 12:16	1
Toluene	ND		1.0	0.51	ug/L			07/07/17 12:16	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/07/17 12:16	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/07/17 12:16	1
Trichloroethene	ND		1.0	0.46	ug/L			07/07/17 12:16	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/07/17 12:16	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/07/17 12:16	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/07/17 12:16	1
The state of the s									

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		07/07/17 12:16	1
Toluene-d8 (Surr)	91	80 - 120		07/07/17 12:16	1
4-Bromofluorobenzene (Surr)	90	73 - 120		07/07/17 12:16	1
Dibromofluoromethane (Surr)	94	75 - 123		07/07/17 12:16	1

Lab Sample ID: LCS 480-365820/4

Matrix: Water

Analysis Batch: 365820

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 365820							0/5
	Spike		LCS		_	a. –	%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.6		ug/L		98	73 - 126
1,1,2,2-Tetrachloroethane	25.0	23.5		ug/L		94	76 - 120
1,1,2-Trichloroethane	25.0	23.6		ug/L		94	76 - 122
1,1,2-Trichlorotrifluoroethane	25.0	21.6		ug/L		87	61 - 148
1,1-Dichloroethane	25.0	23.9		ug/L		95	77 - 120
1,1-Dichloroethene	25.0	22.6		ug/L		90	66 - 127
1,2,4-Trichlorobenzene	25.0	24.0		ug/L		96	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	21.8		ug/L		87	56 - 134
1,2-Dibromoethane (EDB)	25.0	23.4		ug/L		94	77 - 120
1,2-Dichlorobenzene	25.0	24.3		ug/L		97	80 - 124
1,2-Dichloroethane	25.0	23.9		ug/L		95	75 - 120
1,2-Dichloropropane	25.0	24.5		ug/L		98	76 - 120
1,3-Dichlorobenzene	25.0	23.9		ug/L		96	77 - 120
1,4-Dichlorobenzene	25.0	23.4		ug/L		94	80 - 120
2-Hexanone	125	127		ug/L		102	65 - 127
2-Butanone (MEK)	125	122		ug/L		98	57 - 140
4-Methyl-2-pentanone (MIBK)	125	129		ug/L		103	71 - 125
Acetone	125	126		ug/L		100	56 - 142
Benzene	25.0	22.8		ug/L		91	71 ₋ 124
Bromodichloromethane	25.0	23.7		ug/L		95	80 - 122
Bromoform	25.0	21.7		ug/L		87	61 - 132

TestAmerica Buffalo

Page 28 of 45

TestAmerica Job ID: 480-120391-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-365820/4

Matrix: Water

Analysis Batch: 365820

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromomethane	25.0	20.3		ug/L		81	55 - 144	
Carbon disulfide	25.0	21.3		ug/L		85	59 - 134	
Carbon tetrachloride	25.0	23.0		ug/L		92	72 - 134	
Chlorobenzene	25.0	22.7		ug/L		91	80 - 120	
Chlorodibromomethane	25.0	23.8		ug/L		95	75 - 125	
Chloroethane	25.0	24.5		ug/L		98	69 - 136	
Chloroform	25.0	23.3		ug/L		93	73 - 127	
Chloromethane	25.0	22.6		ug/L		90	68 - 124	
cis-1,2-Dichloroethene	25.0	22.1		ug/L		88	74 - 124	
cis-1,3-Dichloropropene	25.0	24.5		ug/L		98	74 - 124	
Cyclohexane	25.0	23.1		ug/L		93	59 - 135	
Dichlorodifluoromethane	25.0	25.1		ug/L		100	59 - 135	
Ethylbenzene	25.0	23.5		ug/L		94	77 - 123	
Isopropylbenzene	25.0	24.4		ug/L		98	77 - 122	
Methyl acetate	125	120		ug/L		96	74 - 133	
Methyl tert-butyl ether	25.0	23.4		ug/L		93	77 - 120	
Methylcyclohexane	25.0	23.5		ug/L		94	68 - 134	
Methylene Chloride	25.0	21.0		ug/L		84	75 - 124	
Styrene	25.0	24.1		ug/L		96	80 - 120	
Tetrachloroethene	25.0	23.0		ug/L		92	74 - 122	
Toluene	25.0	23.8		ug/L		95	80 - 122	
trans-1,2-Dichloroethene	25.0	22.4		ug/L		90	73 - 127	
trans-1,3-Dichloropropene	25.0	23.7		ug/L		95	80 - 120	
Trichloroethene	25.0	23.0		ug/L		92	74 - 123	
Trichlorofluoromethane	25.0	25.9		ug/L		104	62 - 150	
Vinyl chloride	25.0	24.4		ug/L		98	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		77 - 120
Toluene-d8 (Surr)	91		80 - 120
4-Bromofluorobenzene (Surr)	90		73 - 120
Dibromofluoromethane (Surr)	91		75 - 123

Lab Sample ID: MB 480-365974/7

Matrix: Water

Analysis Batch: 365974

Client Sample ID: Method Blank Prep Type: Total/NA

_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/07/17 23:30	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/07/17 23:30	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/07/17 23:30	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			07/07/17 23:30	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/07/17 23:30	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/07/17 23:30	1
1,2,4-Trichlorobenzene	0.528	J	1.0	0.41	ug/L			07/07/17 23:30	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/07/17 23:30	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			07/07/17 23:30	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/07/17 23:30	1

TestAmerica Buffalo

Page 29 of 45

7/13/2017

TestAmerica Job ID: 480-120391-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-365974/7 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 365974

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/07/17 23:30	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/07/17 23:30	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/07/17 23:30	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/07/17 23:30	1
2-Hexanone	ND		5.0	1.2	ug/L			07/07/17 23:30	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/07/17 23:30	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/07/17 23:30	1
Acetone	ND		10	3.0	ug/L			07/07/17 23:30	1
Benzene	ND		1.0	0.41	ug/L			07/07/17 23:30	1
Bromodichloromethane	ND		1.0	0.39	ug/L			07/07/17 23:30	1
Bromoform	ND		1.0	0.26	ug/L			07/07/17 23:30	1
Bromomethane	ND		1.0	0.69	ug/L			07/07/17 23:30	1
Carbon disulfide	ND		1.0	0.19	ug/L			07/07/17 23:30	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			07/07/17 23:30	1
Chlorobenzene	ND		1.0	0.75	ug/L			07/07/17 23:30	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			07/07/17 23:30	1
Chloroethane	ND		1.0	0.32	ug/L			07/07/17 23:30	1
Chloroform	ND		1.0	0.34	ug/L			07/07/17 23:30	1
Chloromethane	ND		1.0	0.35	ug/L			07/07/17 23:30	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/07/17 23:30	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/07/17 23:30	1
Cyclohexane	ND		1.0	0.18	ug/L			07/07/17 23:30	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/07/17 23:30	1
Ethylbenzene	ND		1.0	0.74	ug/L			07/07/17 23:30	1
Isopropylbenzene	ND		1.0		ug/L			07/07/17 23:30	1
Methyl acetate	ND		1.3	1.3	ug/L			07/07/17 23:30	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/07/17 23:30	1
Methylcyclohexane	ND		1.0		ug/L			07/07/17 23:30	1
Methylene Chloride	ND		1.0		ug/L			07/07/17 23:30	1
Styrene	ND		1.0		ug/L			07/07/17 23:30	1
Tetrachloroethene	ND		1.0		ug/L			07/07/17 23:30	1
Toluene	ND		1.0		ug/L			07/07/17 23:30	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/07/17 23:30	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/07/17 23:30	1
Trichloroethene	ND		1.0		ug/L			07/07/17 23:30	1
Trichlorofluoromethane	ND		1.0		ug/L			07/07/17 23:30	1
Vinyl chloride	ND		1.0		ug/L			07/07/17 23:30	1
Xylenes, Total	ND		2.0		ug/L			07/07/17 23:30	1

MB	ΜB
 0/5	_

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	77 - 120		07/07/17 23:30	1
Toluene-d8 (Surr)	100	80 - 120		07/07/17 23:30	1
4-Bromofluorobenzene (Surr)	96	73 - 120		07/07/17 23:30	1
Dibromofluoromethane (Surr)	107	75 - 123		07/07/17 23:30	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-365974/4

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 365974	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
1,1,1-Trichloroethane	25.0	21.2		ug/L		73 - 126	_
1,1,2,2-Tetrachloroethane	25.0	23.0		ug/L	92	76 - 120	
1,1,2-Trichloroethane	25.0	24.0		ug/L	96	76 - 122	
1,1,2-Trichlorotrifluoroethane	25.0	20.4		ug/L	82	61 - 148	
1,1-Dichloroethane	25.0	21.8		ug/L	87	77 - 120	
1,1-Dichloroethene	25.0	21.0		ug/L	84	66 - 127	
1,2,4-Trichlorobenzene	25.0	23.4		ug/L	94	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	22.6		ug/L	90	56 - 134	
1,2-Dibromoethane (EDB)	25.0	24.6		ug/L	98	77 - 120	
1,2-Dichlorobenzene	25.0	23.1		ug/L	92	80 - 124	
1,2-Dichloroethane	25.0	22.1		ug/L	88	75 - 120	
1,2-Dichloropropane	25.0	23.2		ug/L	93	76 - 120	
1,3-Dichlorobenzene	25.0	22.0		ug/L	88	77 - 120	
1,4-Dichlorobenzene	25.0	22.8		ug/L	91	80 - 120	
2-Hexanone	125	129		ug/L	103	65 - 127	
2-Butanone (MEK)	125	134		ug/L	107	57 - 140	
4-Methyl-2-pentanone (MIBK)	125	122		ug/L	98	71 - 125	
Acetone	125	155		ug/L	124	56 - 142	
Benzene	25.0	21.9		ug/L	88	71 - 124	
Bromodichloromethane	25.0	22.9		ug/L	92	80 - 122	
Bromoform	25.0	22.4		ug/L	90	61 - 132	
Bromomethane	25.0	28.8		ug/L	115	55 - 144	
Carbon disulfide	25.0	19.7		ug/L	79	59 - 134	
Carbon tetrachloride	25.0	21.4		ug/L	86	72 - 134	
Chlorobenzene	25.0	21.4		ug/L	85	80 - 120	
Chlorodibromomethane	25.0	23.4		ug/L	94	75 ₋ 125	
Chloroethane	25.0	25.1		ug/L	101	69 - 136	
Chloroform	25.0	21.6		ug/L	86	73 - 127	
Chloromethane	25.0	19.2		ug/L	77	68 - 124	
cis-1,2-Dichloroethene	25.0	23.2		ug/L	93	74 - 124	
cis-1,3-Dichloropropene	25.0	24.5		ug/L	98	74 - 124	
Cyclohexane	25.0	19.8		ug/L	79	59 - 135	
Dichlorodifluoromethane	25.0	19.0		ug/L	76	59 - 135	
Ethylbenzene	25.0	21.6		ug/L	86	77 - 123	
Isopropylbenzene	25.0	22.3		ug/L	89	77 - 122	
Methyl acetate	125	120		ug/L	96	74 - 133	
Methyl tert-butyl ether	25.0	24.2		ug/L	97	77 - 120	
Methylcyclohexane	25.0	20.0		ug/L	80	68 - 134	
Methylene Chloride	25.0	21.1		ug/L	84	75 - 124	
Styrene	25.0	22.8		ug/L	91	80 - 120	
Tetrachloroethene	25.0	20.2		ug/L	81	74 - 122	
Toluene	25.0	21.1		ug/L	84	80 - 122	
trans-1,2-Dichloroethene	25.0	21.1		ug/L	84	73 - 127	
trans-1,3-Dichloropropene	25.0	23.5		ug/L	94	80 - 120	
Trichloroethene	25.0	21.8		ug/L	87	74 - 123	
Trichlorofluoromethane	25.0	22.1		ug/L	88	62 - 150	
Vinyl chloride	25.0	20.0		ug/L	80	65 - 133	

TestAmerica Buffalo

3

4

6

8

10

12

14

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-365974/4

Matrix: Water

Analysis Batch: 365974

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		77 - 120
Toluene-d8 (Surr)	103		80 - 120
4-Bromofluorobenzene (Surr)	93		73 - 120
Dibromofluoromethane (Surr)	105		75 - 123

Lab Sample ID: MB 480-365981/7

Matrix: Water

Analysis Batch: 365981

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 365981		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	_			07/07/17 23:03	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	_			07/07/17 23:03	1
1,1,2-Trichloroethane	ND		1.0	0.23				07/07/17 23:03	1
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			07/07/17 23:03	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/07/17 23:03	1
1,1-Dichloroethene	ND		1.0		ug/L			07/07/17 23:03	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/07/17 23:03	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/07/17 23:03	1
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			07/07/17 23:03	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/07/17 23:03	1
1,2-Dichloroethane	ND		1.0	0.21	-			07/07/17 23:03	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/07/17 23:03	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/07/17 23:03	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/07/17 23:03	1
2-Hexanone	ND		5.0	1.2	ug/L			07/07/17 23:03	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/07/17 23:03	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/07/17 23:03	1
Acetone	ND		10	3.0	ug/L			07/07/17 23:03	1
Benzene	ND		1.0	0.41	ug/L			07/07/17 23:03	1
Bromodichloromethane	ND		1.0	0.39	ug/L			07/07/17 23:03	1
Bromoform	ND		1.0	0.26	ug/L			07/07/17 23:03	1
Bromomethane	ND		1.0	0.69	ug/L			07/07/17 23:03	1
Carbon disulfide	ND		1.0	0.19	ug/L			07/07/17 23:03	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			07/07/17 23:03	1
Chlorobenzene	ND		1.0	0.75	ug/L			07/07/17 23:03	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			07/07/17 23:03	1
Chloroethane	ND		1.0	0.32	ug/L			07/07/17 23:03	1
Chloroform	ND		1.0	0.34	ug/L			07/07/17 23:03	1
Chloromethane	ND		1.0	0.35	ug/L			07/07/17 23:03	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/07/17 23:03	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/07/17 23:03	1
Cyclohexane	ND		1.0		ug/L			07/07/17 23:03	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/07/17 23:03	1
Ethylbenzene	ND		1.0	0.74				07/07/17 23:03	1
Isopropylbenzene	ND		1.0	0.79	-			07/07/17 23:03	1
Methyl acetate	ND		1.3		ug/L			07/07/17 23:03	1
Methyl tert-butyl ether	ND		1.0	0.16				07/07/17 23:03	1
Methylcyclohexane	ND		1.0		ug/L			07/07/17 23:03	1

TestAmerica Buffalo

Page 32 of 45

7/13/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-365981/7

Matrix: Water

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Analyte

Styrene

Toluene

Analysis Batch: 365981

Client Sample ID: Method Blank Prep Type: Total/NA

07/07/17 23:03

07/07/17 23:03

07/07/17 23:03

MB MB Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac $\overline{\mathsf{ND}}$ 1.0 0.44 ug/L 07/07/17 23:03 ND 1.0 0.73 ug/L 07/07/17 23:03 ND 1.0 0.36 ug/L 07/07/17 23:03 ND 1.0 0.51 ug/L 07/07/17 23:03 ND 1.0 0.90 ug/L 07/07/17 23:03 ND 1.0 0.37 ug/L 07/07/17 23:03 ND 1.0 0.46 ug/L 07/07/17 23:03

0.88 ug/L

0.90 ug/L

0.66 ug/L

MB MB

ND

ND

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120		07/07/17 23:03	1
Toluene-d8 (Surr)	92		80 - 120		07/07/17 23:03	1
4-Bromofluorobenzene (Surr)	90		73 - 120		07/07/17 23:03	1
Dibromofluoromethane (Surr)	98		75 - 123		07/07/17 23:03	1

1.0

1.0

2.0

Lab Sample ID: LCS 480-365981/5

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 365981							Trop Type: Tetamin
Allalysis Batch. 300901	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.9		ug/L		100	73 - 126
1,1,2,2-Tetrachloroethane	25.0	24.6		ug/L		99	76 ₋ 120
1,1,2-Trichloroethane	25.0	25.2		ug/L		101	76 - 122
1,1,2-Trichlorotrifluoroethane	25.0	22.2		ug/L		89	61 - 148
1,1-Dichloroethane	25.0	23.6		ug/L		94	77 - 120
1,1-Dichloroethene	25.0	21.4		ug/L		86	66 - 127
1,2,4-Trichlorobenzene	25.0	24.4		ug/L		98	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	23.9		ug/L		96	56 ₋ 134
1,2-Dibromoethane (EDB)	25.0	25.0		ug/L		100	77 - 120
1,2-Dichlorobenzene	25.0	25.2		ug/L		101	80 - 124
1,2-Dichloroethane	25.0	24.3		ug/L		97	75 - 120
1,2-Dichloropropane	25.0	24.0		ug/L		96	76 - 120
1,3-Dichlorobenzene	25.0	24.1		ug/L		96	77 - 120
1,4-Dichlorobenzene	25.0	24.4		ug/L		97	80 - 120
2-Hexanone	125	137		ug/L		109	65 - 127
2-Butanone (MEK)	125	128		ug/L		103	57 - 140
4-Methyl-2-pentanone (MIBK)	125	137		ug/L		109	71 - 125
Acetone	125	132		ug/L		106	56 - 142
Benzene	25.0	22.6		ug/L		90	71 - 124
Bromodichloromethane	25.0	25.9		ug/L		104	80 - 122
Bromoform	25.0	24.6		ug/L		99	61 - 132
Bromomethane	25.0	20.7		ug/L		83	55 - 144
Carbon disulfide	25.0	21.7		ug/L		87	59 - 134
Carbon tetrachloride	25.0	24.2		ug/L		97	72 - 134
Chlorobenzene	25.0	22.8		ug/L		91	80 - 120
Chlorodibromomethane	25.0	26.0		ug/L		104	75 - 125
				-			

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-365981/5

Matrix: Water

Analysis Batch: 365981

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloroethane	25.0	23.9		ug/L		95	69 - 136
Chloroform	25.0	23.6		ug/L		94	73 - 127
Chloromethane	25.0	20.0		ug/L		80	68 - 124
cis-1,2-Dichloroethene	25.0	21.7		ug/L		87	74 - 124
cis-1,3-Dichloropropene	25.0	25.5		ug/L		102	74 - 124
Cyclohexane	25.0	21.6		ug/L		86	59 - 135
Dichlorodifluoromethane	25.0	19.3		ug/L		77	59 ₋ 135
Ethylbenzene	25.0	23.8		ug/L		95	77 - 123
Isopropylbenzene	25.0	23.8		ug/L		95	77 - 122
Methyl acetate	125	123		ug/L		98	74 - 133
Methyl tert-butyl ether	25.0	24.3		ug/L		97	77 - 120
Methylcyclohexane	25.0	20.5		ug/L		82	68 - 134
Methylene Chloride	25.0	22.1		ug/L		88	75 - 124
Styrene	25.0	25.3		ug/L		101	80 - 120
Tetrachloroethene	25.0	21.8		ug/L		87	74 - 122
Toluene	25.0	23.3		ug/L		93	80 - 122
trans-1,2-Dichloroethene	25.0	22.3		ug/L		89	73 - 127
trans-1,3-Dichloropropene	25.0	25.8		ug/L		103	80 - 120
Trichloroethene	25.0	23.0		ug/L		92	74 - 123
Trichlorofluoromethane	25.0	22.3		ug/L		89	62 - 150
Vinyl chloride	25.0	20.9		ug/L		83	65 - 133
10	0 100						

LCS LCS

Surrogate	%Recovery	Qualifier	Limits			
1,2-Dichloroethane-d4 (Surr)	98		77 - 120			
Toluene-d8 (Surr)	94		80 - 120			
4-Bromofluorobenzene (Surr)	91		73 - 120			
Dibromofluoromethane (Surr)	95		75 - 123			

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

GC/MS VOA

Analysis Batch: 365816

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-120391-1	MW-6S-062817	Total/NA	Water	8260C	
480-120391-2	MW-4D-062817	Total/NA	Water	8260C	
MB 480-365816/32	Method Blank	Total/NA	Water	8260C	
LCS 480-365816/7	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 365820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-120391-6	MW-1S-062817	Total/NA	Water	8260C	_
480-120391-7	MW-8DD-062817	Total/NA	Water	8260C	
480-120391-8	MW-7DD-062817	Total/NA	Water	8260C	
480-120391-9	MW-8S-062817	Total/NA	Water	8260C	
480-120391-10	MW-7S-062817	Total/NA	Water	8260C	
480-120391-11	MW-8D-062817	Total/NA	Water	8260C	
480-120391-12	MW-7D-062817	Total/NA	Water	8260C	
MB 480-365820/6	Method Blank	Total/NA	Water	8260C	
LCS 480-365820/4	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 365974

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-120391-3	MW-4S-062817	Total/NA	Water	8260C	
480-120391-4	MW-1D-062817	Total/NA	Water	8260C	
480-120391-5	MW-6DD-062817	Total/NA	Water	8260C	
MB 480-365974/7	Method Blank	Total/NA	Water	8260C	
LCS 480-365974/4	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 365981

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-120391-13	X-1-062817	Total/NA	Water	8260C	
480-120391-14	TRIP BLANK	Total/NA	Water	8260C	
MB 480-365981/7	Method Blank	Total/NA	Water	8260C	
LCS 480-365981/5	Lab Control Sample	Total/NA	Water	8260C	

10

Client Sample ID: MW-6S-062817

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-120391-1

Matrix: Water

Date Collected: 06/28/17 09:40 Date Received: 06/29/17 10:07

Batch Dilution Batch Prepared Batch Method Run Factor Number or Analyzed Lab **Prep Type** Type **Analyst** 365816 TAL BUF Total/NA Analysis 8260C 07/07/17 17:42 ARS

Client Sample ID: MW-4D-062817 Lab Sample ID: 480-120391-2

Date Collected: 06/28/17 10:45 **Matrix: Water**

Date Received: 06/29/17 10:07

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL BUF Total/NA 8260C 365816 07/07/17 18:09 ARS Analysis

Client Sample ID: MW-4S-062817 Lab Sample ID: 480-120391-3

Date Collected: 06/28/17 11:00 **Matrix: Water**

Date Received: 06/29/17 10:07

Dilution Batch Batch Batch **Prepared** Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab Total/NA Analysis 8260C 365974 07/08/17 01:24 RJF TAL BUF

Lab Sample ID: 480-120391-4 Client Sample ID: MW-1D-062817 **Matrix: Water**

Date Collected: 06/28/17 12:00

Date Received: 06/29/17 10:07

Batch Batch Dilution Batch **Prepared** Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 8260C 07/08/17 01:51 RJF TAL BUF Total/NA Analysis 365974

Client Sample ID: MW-6DD-062817 Lab Sample ID: 480-120391-5

Date Collected: 06/28/17 12:12 **Matrix: Water**

Date Received: 06/29/17 10:07

Dilution **Batch** Batch Prepared Batch Prep Type Method **Factor** Number or Analyzed Type Run Analyst TAL BUF Total/NA Analysis 8260C 365974 07/08/17 02:18 RJF

Client Sample ID: MW-1S-062817 Lab Sample ID: 480-120391-6

Date Collected: 06/28/17 12:45 **Matrix: Water**

Date Received: 06/29/17 10:07

Batch Batch Dilution Batch Prepared Method Number **Prep Type** or Analyzed Type Run **Factor** Analyst Lab 365820 TAL BUF Total/NA Analysis 8260C 07/07/17 16:44 ARS

TestAmerica Buffalo

10

Project/Site: Forest Glen Monitoring

Client Sample ID: MW-8DD-062817 Lab Sample ID: 480-120391-7 Date Collected: 06/28/17 14:40

Matrix: Water

Date Received: 06/29/17 10:07

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 365820 07/07/17 17:07 ARS TAL BUF

Client Sample ID: MW-7DD-062817 Lab Sample ID: 480-120391-8

Date Collected: 06/28/17 15:20 **Matrix: Water**

Date Received: 06/29/17 10:07

Dilution Batch Batch Batch **Prepared** Number Prep Type Type Method Run **Factor** or Analyzed Lab Analyst TAL BUF Total/NA 8260C 365820 07/07/17 17:30 ARS Analysis

Client Sample ID: MW-8S-062817 Lab Sample ID: 480-120391-9

Date Collected: 06/28/17 15:35 **Matrix: Water** Date Received: 06/29/17 10:07

Ratch Batch Dilution Batch **Prepared**

Prep Type Type Method Run **Factor** Number or Analyzed Analyst Lab 8260C 365820 07/07/17 17:53 ARS TAL BUF Total/NA Analysis

Client Sample ID: MW-7S-062817 Lab Sample ID: 480-120391-10

Date Collected: 06/28/17 16:10 **Matrix: Water**

Date Received: 06/29/17 10:07

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Run **Factor** Number **Analyst** Type Lab TAL BUF Total/NA 8260C 365820 07/07/17 18:16 ARS Analysis

Client Sample ID: MW-8D-062817 Lab Sample ID: 480-120391-11

Date Collected: 06/28/17 16:30 **Matrix: Water** Date Received: 06/29/17 10:07

Dilution Batch Batch Batch **Prepared**

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 8260C Total/NA Analysis 365820 07/07/17 18:39 ARS TAL BUF

Client Sample ID: MW-7D-062817 Lab Sample ID: 480-120391-12

Date Collected: 06/28/17 16:55 **Matrix: Water** Date Received: 06/29/17 10:07

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260C 365820 07/07/17 19:02 ARS TAL BUF

Lab Chronicle

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Client Sample ID: X-1-062817

Date Received: 06/29/17 10:07

TestAmerica Job ID: 480-120391-1

Lab Sample ID: 480-120391-13

Date Collected: 06/28/17 00:00 **Matrix: Water**

Batch Batch Dilution Batch **Prepared Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260C 365981 07/08/17 05:23 RJF TAL BUF

Client Sample ID: TRIP BLANK Lab Sample ID: 480-120391-14

Date Collected: 06/28/17 00:00 **Matrix: Water**

Date Received: 06/29/17 10:07

Batch Dilution Batch Batch **Prepared** Method Lab **Prep Type** Type Run **Factor** Number or Analyzed Analyst TAL BUF 8260C 365981 07/08/17 05:46 RJF Total/NA Analysis

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date	
New York	NELAP	2	10026	03-31-18	

3

5

Q

9

11

12

14

15

Method Summary

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-120391-1

Project/Site: Forest Glen Monitoring

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-120391-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-120391-1	MW-6S-062817	Water	06/28/17 09:40	06/29/17 10:07
480-120391-2	MW-4D-062817	Water	06/28/17 10:45	06/29/17 10:07
480-120391-3	MW-4S-062817	Water	06/28/17 11:00	06/29/17 10:07
480-120391-4	MW-1D-062817	Water	06/28/17 12:00	06/29/17 10:07
480-120391-5	MW-6DD-062817	Water	06/28/17 12:12	06/29/17 10:07
480-120391-6	MW-1S-062817	Water	06/28/17 12:45	06/29/17 10:07
480-120391-7	MW-8DD-062817	Water	06/28/17 14:40	06/29/17 10:07
480-120391-8	MW-7DD-062817	Water	06/28/17 15:20	06/29/17 10:07
480-120391-9	MW-8S-062817	Water	06/28/17 15:35	06/29/17 10:07
480-120391-10	MW-7S-062817	Water	06/28/17 16:10	06/29/17 10:07
480-120391-11	MW-8D-062817	Water	06/28/17 16:30	06/29/17 10:07
480-120391-12	MW-7D-062817	Water	06/28/17 16:55	06/29/17 10:07
480-120391-13	X-1-062817	Water	06/28/17 00:00	06/29/17 10:07
480-120391-14	TRIP BLANK	Water	06/28/17 00:00	06/29/17 10:07

Quantitation Limit Exceptions Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring TestAmerica Job ID: 480-120391-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

MethodMatrixAnalyteUnitsClient RLLab PQL8260CWaterMethyl acetateug/L1.32.5

3

5

_

7

0

10

12

14

15

S T Tueduro

700

Date/Time:

Received by:

Company

Date/Time:

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Special Instructions/QC Requirements:

Radiological

Unknown

Poison B

Skin Irritant

Deliverable Requested: I, II, III, IV, Other (specify)

Empty Kit Relinquished by

Flammable

Non-Hazard

Possible Hazard Identification

535

Soll

7DD-0628

M \geq M

180010-0

MW-85

-8DD-0628

06281

(1/0)

Method of Shipment

B

eceived by: eceived by

H.O.

0

0

The 22

Mayna

elinquished by:

7/13/2017

Date:

TestAmerica

M - Hexane N - None

THE LEADER IN ENVIRONMENTAL TESTING COC No: 480-98696-15479.1 Preservation Codes: Page 1 of 2 A - HCL B - NaOH C - Zn ' D - Ni F.M. G.A. H.As J.D. Total Number of containers a Analysis Requested orlette.johnson@testamericainc.com Lab PM: Johnson, Orlette S Chain of Custody Record SEOC - TCL Volatiles Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) E-Mail: Preservation Code: Water Water Water Water O=waste/oil BT=Tissue, Water A-Air) Mike Mellen 040 Type (C=comp, G=grab) Sample Alayna Fress, Mike Phone 15-956-(Sample Time 142 1206 Standard FAT Requested (days): Due Date Requested: Sample Date PO#: 11511119 Project #: 48002808 SSOW#: 18019 WO# -062817 D-06281 06281 06281 Phone (716) 691-2600 Fax (716) 691-7991 333 West Washington St. PO BOX 4873 315-956-6100(Tel) 315-463-7554(Fax) O'Brien & Gere Inc of North America TestAmerica Buffalo Amherst, NY 14228-2298 Client Information Forest Glen Monitoring Sample Identification Yuri.Veliz@obg.com 10 Hazelwood Drive

Client Contact: Mr. Yuri Veliz

East Syracuse

State, Zip: NY, 13221

480-120391 COC

Special Instructions/Note:

W

Water Water Water Water Water Water

TestAmerica Buffalo		2	1 × × × × × × × × × × × × × × × × × × ×
10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	Chain of Custody Record	ン WHAT	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler. Lab PW. Lab PW. A. K. Molland Johnson. Orlette S.	Carrier Tracking No(s): COC No	COC No: 480-98696-15479.2
Client Contact: Mr. Yuri Veliz	101-1156-		Page:
Company: O'Brien & Gere Inc of North America		sis Requested	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:		Preservation Codes:
Oity: East Syracuse	TAT Requested (days):	0 P P	IaOH N - None N - AsNaO2
State, Zip. NY, 13221	Standard		D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	119	- T Q H	leOH K - Na2S2O3 Amchlor S - H2SO4 Scorbic Acid T - TSP Dodecahydrate
Email: Yuri.Veliz@obg.com	S OF M		I - Ice U - Acetone J - DI Water V - MCAA
Project Name: Forest Glen Monitoring			K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Site:	A) as	of con	Ľ
	Sample	otel Number	
Sample Identification	P P	991	Special Instructions/Note:
MW-71-062817			
LIXCOULIX	(1)28/7 — (2) Water X		
The Blank	(0/38/17 water		
	. Water		
	Water		
	Water		
	Water		
	Water		
	Water		
Possible Hazard Identification Non-Hazard Flammable Skin Initant	Sample Disposal (A I Samp	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mon	nger than 1 month) Months
ssted: I, II, III, IV, Other (specify)		Requirements:	
Empty Kit Relinquished by:	Date:	Method of Shipment:	
Relinquistigd by: Relinquisted by	DayerTine Company Received by:	Company Date/77	10 07 Company TAB
Relinquished by:	Date/Time: Company Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:	Cooler Tempe	Cooler Temperature(s) °C and Other Remarks: 5,2 # [FC F
3			

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-120391-1

Login Number: 120391 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Chris M
Question Answer Comment
Radioactivity either was not measured or, if measured, is at or below True background
The cooler's custody seal, if present, is intact.
The cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice.
Cooler Temperature is acceptable.
Cooler Temperature is recorded. True
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC?
There are no discrepancies between the sample IDs on the containers and the COC.
Samples are received within Holding Time (Excluding tests with immediate True HTs)
Sample containers have legible labels.
Containers are not broken or leaking.
Sample collection date/times are provided. True
Appropriate sample containers are used.
Sample bottles are completely filled. True
Sample Preservation Verified True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter.
If necessary, staff have been informed of any short hold time or quick TAT True needs
Multiphasic samples are not present.
Samples do not require splitting or compositing.
Sampling Company provided. True OBG
Samples received within 48 hours of sampling.
Samples requiring field filtration have been filtered in the field.
Chlorine Residual checked. N/A

Λ

5

7

9

11

12

14

September 22, 2017

David Carnevale O'Brien & Gere 333 W Washington St Syracuse, NY 13202

RE: FOREST GLEN

Pace Workorder: 23865

Dear David Carnevale:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, September 14, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Welsh 09/22/2017 Ruth.Welsh@pacelabs.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service.

Please email PAESfeedback@pacelabs.com.

Total Number of Pages _____24

Report ID: 23865 - 967499 Page 1 of 22

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor: Pennsylvania Department of Environmental Protection, Bureau of Laboratories

Accreditation ID: 02-00538

Scope: NELAP Non-Potable Water and Solid & Hazardous Waste

Accreditor: West Virginia Department of Environmental Protection, Division of Water and Waste

Management

Accreditation ID: 395

Scope: Non-Potable Water

Accreditor: South Carolina Department of Health and Environmental Control, Office of Environmental

Laboratory Certification

Accreditation ID: 89009003

Scope: Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water; Solid and Chemical Materials

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water; Solid and Hazardous Waste

Accreditor: State of Connecticut, Department of Public Health, Division of Environmental Health

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX
Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

Scope: Non-potable water

Accreditor: State of Georgia
Accreditation ID: Chapter 391-3-26

Scope: As per the Georgia EPD Rules and Regulations for Commercial Laboratories, PAES is

accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 23865 - 967499 Page 2 of 22

SAMPLE SUMMARY

Workorder: 23865 FOREST GLEN

Lab ID	Sample ID	Matrix	Date Collected	Date Received
238650001	MW1S 091217	Water	9/12/2017 10:30	9/14/2017 11:00
238650002	MW1D 091217	Water	9/12/2017 10:52	9/14/2017 11:00
238650003	MW6D 091217	Water	9/12/2017 13:02	9/14/2017 11:00
238650004	MW10S 091217	Water	9/12/2017 14:10	9/14/2017 11:00
238650005	MW6DD 091217	Water	9/12/2017 15:25	9/14/2017 11:00
238650006	MW10D 091217	Water	9/12/2017 15:30	9/14/2017 11:00
238650007	X-1 091217	Water	9/12/2017 00:00	9/14/2017 11:00
238650008	MW8D 091317	Water	9/13/2017 09:05	9/14/2017 11:00
238650009	MW8DD 091317	Water	9/13/2017 09:17	9/14/2017 11:00
238650010	MW8S 091317	Water	9/13/2017 11:05	9/14/2017 11:00
238650011	MW8S MS 091317	Water	9/13/2017 11:05	9/14/2017 11:00
238650012	MW8S MSD 091317	Water	9/13/2017 11:05	9/14/2017 11:00
238650013	MW7DD 091317	Water	9/13/2017 11:08	9/14/2017 11:00
238650014	MW7D 091317	Water	9/13/2017 13:20	9/14/2017 11:00
238650015	MW7S 091317	Water	9/13/2017 13:25	9/14/2017 11:00

Report ID: 23865 - 967499 Page 3 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650001 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW1S 091217 Date Collected: 9/12/2017 10:30

•						
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	0.74 ug/l	0.50	0.031 1	9/19/2017 08:45	AK	В
Ethane	0.0060U ug/l	0.20	0.0060 1	9/19/2017 08:45	AK	
Ethene	0 021U ug/l	0.20	0.021_1	9/19/2017 08:45	ΔK	

Report ID: 23865 - 967499 Page 4 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650002 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW1D 091217 Date Collected: 9/12/2017 10:52

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	cal Method: E	PA RSK175			
Methane	24 ug/l	0.50	0.031 1	9/19/2017 08:55	AK	В
Ethane	0.10J ug/l	0.20	0.0060 1	9/19/2017 08:55	AK	
Ethene	0.021U ug/l	0.20	0.021 1	9/19/2017 08:55	AK	

Report ID: 23865 - 967499 Page 5 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650003 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW6D 091217 Date Collected: 9/12/2017 13:02

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	210 ug/l	0.50	0.031 1	9/19/2017 09:06	AK	В
Ethane	0.13J ug/l	0.20	0.0060 1	9/19/2017 09:06	AK	
Ethene	0.029J ug/l	0.20	0.021 1	9/19/2017 09:06	AK	

Report ID: 23865 - 967499 Page 6 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650004 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW10S 091217 Date Collected: 9/12/2017 14:10

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	cal Method: E	PA RSK175			
Methane	34 ug/l	0.50	0.031 1	9/19/2017 09:16	AK	В
Ethane	0.13J ug/l	0.20	0.0060 1	9/19/2017 09:16	AK	
Ethene	0.14J ug/l	0.20	0.021 1	9/19/2017 09:16	AK	

Report ID: 23865 - 967499 Page 7 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650005 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW6DD 091217 Date Collected: 9/12/2017 15:25

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	190 ug/l	0.50	0.031 1	9/19/2017 09:27	AK	В
Ethane	0.22 ug/l	0.20	0.0060 1	9/19/2017 09:27	AK	
Ethene	0.28 ug/l	0.20	0.021 1	9/19/2017 09:27	AK	

Report ID: 23865 - 967499 Page 8 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650006 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW10D 091217 Date Collected: 9/12/2017 15:30

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane	180 ug/l	0.50	0.031 1	9/19/2017 09:37	AK	В
Ethane	0.44 ug/l	0.20	0.0060 1	9/19/2017 09:37	AK	
Ethene	0.021U ug/l	0.20	0.021 1	9/19/2017 09:37	AK	

Report ID: 23865 - 967499 Page 9 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650007 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: X-1 091217 Date Collected: 9/12/2017 00:00

•						
Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	210 ug/l	0.50	0.031 1	9/19/2017 09:48	AK	В
Ethane	0.14J ug/l	0.20	0.0060 1	9/19/2017 09:48	AK	
Ethene	0.043.L ug/l	0.20	0.021.1	9/19/2017 09:48	ΔK	

Report ID: 23865 - 967499 Page 10 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650008 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW8D 091317 Date Collected: 9/13/2017 09:05

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane Ethane	170 ug/l 0.26 ug/l	0.50 0.20	0.031 1 0.0060 1	9/19/2017 09:58 9/19/2017 09:58	AK AK	В
Ethene	0.021U ug/l	0.20	0.021 1	9/19/2017 09:58		

Report ID: 23865 - 967499 Page 11 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650009 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW8DD 091317 Date Collected: 9/13/2017 09:17

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane	360 ug/l	2.0	0.12 4	9/20/2017 12:52	AK	d
Ethane	1.9 ug/l	0.20	0.0060 1	9/19/2017 10:09	AK	
Ethene	0.021U ug/l	0.20	0.021 1	9/19/2017 10:09	AK	

Report ID: 23865 - 967499 Page 12 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650010 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW8S 091317 Date Collected: 9/13/2017 11:05

Parameters	Results Units	PQL	MDL DF	Analyzed	By	Qualifiers
Farameters	Results Offits	FQL	NIDE DI	Allalyzeu	Бу	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane	2.5 ug/l	0.50	0.031 1	9/19/2017 11:06	AK	В
Ethane	0.0060U ug/l	0.20	0.0060 1	9/19/2017 11:06	AK	
Ethene	0.021U ug/l	0.20	0.021 1	9/19/2017 11:06	AK	

Report ID: 23865 - 967499 Page 13 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650011 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW8S MS 091317 Date Collected: 9/13/2017 11:05

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	44 ug/l	0.50	0.031 1	9/19/2017 11:16	AK	В
Ethane	78 ug/l	0.20	0.0060 1	9/19/2017 11:16	AK	
Ethene	75 ug/l	0.20	0.021 1	9/19/2017 11:16	AK	

Report ID: 23865 - 967499 Page 14 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650012 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW8S MSD 091317 Date Collected: 9/13/2017 11:05

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175			
Methane	44 ug/l	0.50	0.031 1	9/19/2017 11:27	AK	В
Ethane	76 ug/l	0.20	0.0060 1	9/19/2017 11:27	AK	
Ethene	73 ug/l	0.20	0.021 1	9/19/2017 11:27	AK	

Report ID: 23865 - 967499 Page 15 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650013 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW7DD 091317 Date Collected: 9/13/2017 11:08

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	210 ug/l	0.50	0.031 1	9/19/2017 11:38	AK	В
Ethane	5.7 ug/l	0.20	0.0060 1	9/19/2017 11:38	AK	
Ethene	0.021U ug/l	0.20	0.021 1	9/19/2017 11:38	AK	

Report ID: 23865 - 967499 Page 16 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650014 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW7D 091317 Date Collected: 9/13/2017 13:20

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers
RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	0.53 ug/l	0.50	0.031 1	9/19/2017 11:49	AK	В
Ethane	0.0060U ug/l	0.20	0.0060 1	9/19/2017 11:49	AK	
Ethene	0.021U ug/l	0.20	0.021 1	9/19/2017 11:49	AK	

Report ID: 23865 - 967499 Page 17 of 22

ANALYTICAL RESULTS

Workorder: 23865 FOREST GLEN

Lab ID: 238650015 Date Received: 9/14/2017 11:00 Matrix: Water

Sample ID: MW7S 091317 Date Collected: 9/13/2017 13:25

Parameters	Results Units	PQL	MDL DF	Analyzed	Ву	Qualifiers			
RISK - PAES									
Analysis Desc: EPA RSK175	Analyti	cal Method: E	PA RSK175						
Methane	21 ug/l	0.50	0.031 1	9/19/2017 12:00	AK	В			
Ethane	0.0060U ug/l	0.20	0.0060 1	9/19/2017 12:00	AK				
Ethene	0.021U ug/l	0.20	0.021 1	9/19/2017 12:00	AK				

Report ID: 23865 - 967499 Page 18 of 22

ANALYTICAL RESULTS QUALIFIERS

Workorder: 23865 FOREST GLEN

DEFINITIONS/QUALIFIERS

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

B The analyte was detected in the associated blank.

d The analyte concentration was determined from a dilution.

Report ID: 23865 - 967499 Page 19 of 22

QUALITY CONTROL DATA

Workorder: 23865 FOREST GLEN

QC Batch: DISG/6342 Analysis Method: EPA RSK175

QC Batch Method: EPA RSK175

Associated Lab Samples: 238650001, 238650002, 238650003, 238650004, 238650005, 238650006, 238650007, 238650008, 238650009,

238650010, 238650011, 238650012, 238650013, 238650014, 238650015

METHOD BLANK: 50948

Parameter	Units	Blank Result	Reporting Limit Qualifiers
RISK			
Methane	ug/l	0.036J	0.031 B
Ethane	ug/l	0.0060U	0.0060
Ethene	ug/l	0.021U	0.021

LABORATORY CONTROL SAMPLE & LCSD: 50949 50950

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK Methane	ug/l	44	43	43	97	97	85-115	0	20	В
Ethane Ethene	ug/l ug/l	83 78	80 76	81 77	96 98	97 99	85-115 85-115	1	20 20	J

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 50951			50952 O			Original:	Original: 238650010				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK Methane Ethane Ethene	ug/l ug/l ug/l	2.5 0 0	44 83 78	44 78 75	44 76 73	94 94 96	93 92 94	70-130 70-130 70-130		20 20 20	В

SAMPLE DUPLICATE: 50953 Original: 238650002

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						
Methane	ug/l	24	28	12	20	В
Ethane	ug/l	.1	.12	12	20	
Ethene	ug/l	0	0	0	20	

Report ID: 23865 - 967499 Page 20 of 22

QUALITY CONTROL DATA

Workorder: 23865 FOREST GLEN

QC Batch: DISG/6346 Analysis Method: EPA RSK175

QC Batch Method: EPA RSK175
Associated Lab Samples: 238650009

METHOD BLANK: 50969

Parameter Units Result Limit Qualifiers

Parameter Units Result Limit Qualifiers

RISK

Methane ug/l 0.031U 0.031

LABORATORY CONTROL SAMPLE & LCSD: 50970 50971

LCS LCS LCSD Spike LCSD % Rec Max RPD RPD Parameter Units Conc. Result Result % Rec % Rec Limit Qualifiers RISK Methane 44 43 43 97 96 85-115 20 ug/l 1

SAMPLE DUPLICATE: 50974 Original: 238860002

Original DUP Max Parameter Units Result Result **RPD RPD** Qualifiers RISK Methane ug/l 50 45 9.4 20

SAMPLE DUPLICATE: 50975 Original: 238960001

DUP Original Max RPD RPD Parameter Units Result Result Qualifiers **RISK** Methane 16 16 0.55 20 ug/l

Report ID: 23865 - 967499 Page 21 of 22

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 23865 FOREST GLEN

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
238650001	MW1S 091217			EPA RSK175	DISG/6342
238650002	MW1D 091217			EPA RSK175	DISG/6342
238650003	MW6D 091217			EPA RSK175	DISG/6342
238650004	MW10S 091217			EPA RSK175	DISG/6342
238650005	MW6DD 091217			EPA RSK175	DISG/6342
238650006	MW10D 091217			EPA RSK175	DISG/6342
238650007	X-1 091217			EPA RSK175	DISG/6342
238650008	MW8D 091317			EPA RSK175	DISG/6342
238650009	MW8DD 091317			EPA RSK175	DISG/6342
238650010	MW8S 091317			EPA RSK175	DISG/6342
238650011	MW8S MS 091317			EPA RSK175	DISG/6342
238650012	MW8S MSD 091317			EPA RSK175	DISG/6342
238650013	MW7DD 091317			EPA RSK175	DISG/6342
238650014	MW7D 091317			EPA RSK175	DISG/6342
238650015	MW7S 091317			EPA RSK175	DISG/6342
238650009	MW8DD 091317			EPA RSK175	DISG/6346

Report ID: 23865 - 967499 Page 22 of 22

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

4

ğ

Page:

23865

Pittsburgh, PA 15238

Pace Analytical® www.pacelabs.com

412-826-5245

220 William Pitt Way

Section C

Pace Project No./ Lab I.D. **DRINKING WATER** SAMPLE CONDITIONS 389 OTHER **GROUND WATER** Residual Chlorine (Y/N) REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME Site Location STATE: 1416 DATE NPDES UST ACCEPTED BY / AFFILIATION BBW 3 $\omega \omega \omega$ $\omega \omega \omega \omega$ www # Analysis Test 1 N / KISODIUM PROSONE Other Zinc Acetate & NaOH Preservatives BAK **GST** HCI Invoice Information: €ОИН Company Name: [⊅]OS^zH 1630 Pace Quote Reference: Pace Project ace Profile Unpreserved TIME Attention: Address: # OF CONTAINERS SAMPLE TEMP AT COLLECTION 9-13-17 DATE TIME COMPOSITE END/GRAB DATE COLLECTED 59 5 RELINQUISHED BY / AFFILIATION ARCO 124 1530 9-12-11/1052 9-12-17 1302 01 H1 WE1-6 50,6 1525 9-13-01 11:05 1030 TIME 41:6 9-13-17 11 05 1 19/ COMPOSITE START 11-61-6 9-12-17 19-13-11 11-6-6 9-13-17 9-13-17 11×11 DATE FORREST Section B Required Project Information: Mart Korn Mr DAVE URI $\overline{\mathcal{Q}}$ ٤ D 9 9 ٩ 9 Ð E (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.: E (see valid codes to left) MATRIX CODE roject Name: roject Number Report To: Copy To: DWW WT SL OLL WMP AR AR AR OT Matrix Codes
MATRIX / CODE **Drinking Water** Waste Water Product Soil/Solid Oil Wipe Air Tissue Other Email To. YURING OBG COM 333 WESTWASTINGEN 716190 SYLACUSONF 1322 85 MSD 0913. 091217 091217 95 MS 191919 691217 MW 600 00 121 mw 10D 091217 218120 ADDITIONAL COMMENTS mw 800 091317 85 091317 GERE MW 8D 09 1317 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID MWID Sompany: OBRIENS MWIDS Required Client Information S ≥ 60 Required Client Information: MU Requested Due Date/TAT: 1 3 <u>≥</u> 3 Section D FIRST Address: 3 5 9 œ 6 9 7 7 # MƏTI ~ 7

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices pol paid within 30 days SIGNATURE OF SAMPLERY HELL

F-ALL-Q-020rev.07, 15-May-2007

(N/Y)

Samples Intact

(N/Y) Sealed Cooler Custody

Received on Ice (Y/N)

O° ni qmeT

DATE Signed (MM/DD/YY): 04 13 17

AManda Young

PRINT Name of SAMPLER: MARTIN

SAMPLER NAME AND SIGNATURE

ORIGINAL

lient	Name: OBG Project: Forrest 6	Her)	Lab W	Vork Order: <u>28865</u>
	Shipping/Container Information (circle appropriate response)				
	Courier: FedEx UPS USPS Client Other:	Air	bill P	resent	: (Yes) No
	Tracking Number: 12 AV & 602 011429969	5			
	Custody Seal on Cooler/Box Present: Yes No Seals	Intac::	Yes	No	•
	Cooler/Box Packing Material: Bubble Wrap Absorbent F	osm.	Other	·	
	Type of Ice: Wet Blue None Ice Intact: Yes Mal	ied			
	Cooler Temperature: 3-2°C Radiation Screened: Yes	s (Nt) ch	ain of	Custody Present (Yes) No
	Comments:				
В.	Laboratory Assignment/Log-in (check appropriate response)				
		YES	NO	N/A	Comment Reference non-Conformance
	Chain of Custody properly filled out	1			
	Chain of Custody relinquished				·
	Sampler Name & Signature on COC				
	Containers intact				
	Were samples in separate bags	TU			
	Sample container labels match COC Sample name/date and time collected				
	Sufficient volume provided				
	PAES containers used	10			
	Are containers properly preserved for the requested testing? (as labeled)				
	If an unknown preservation state, were containers checked? Exception: VOA's coliform			14	if yes, see pH form.
	Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?				
	Comments:				
			1		d Di Gilling
					9 Date: 9.14.17
	Project Manag	er Ravi	∋₩ :	P	Date: 9-14-17

September 25, 2017

David Carnevale O'Brien & Gere 333 W Washington St Syracuse, NY 13202

RE: FOREST GLEN

Pace Workorder: 23886

Dear David Carnevale:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, September 15, 2017. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ruth Welsh 09/25/2017 Ruth.Welsh@pacelabs.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service.

Please email PAESfeedback@pacelabs.com.

Total Number of Pages __13

Report ID: 23886 - 967487 Page 1 of 11

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor: Pennsylvania Department of Environmental Protection, Bureau of Laboratories

Accreditation ID: 02-00538

Scope: NELAP Non-Potable Water and Solid & Hazardous Waste

Accreditor: West Virginia Department of Environmental Protection, Division of Water and Waste

Management

Accreditation ID: 395

Scope: Non-Potable Water

Accreditor: South Carolina Department of Health and Environmental Control, Office of Environmental

Laboratory Certification

Accreditation ID: 89009003

Scope: Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water; Solid and Chemical Materials

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water; Solid and Hazardous Waste

Accreditor: State of Connecticut, Department of Public Health, Division of Environmental Health

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX
Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

Scope: Non-potable water

Accreditor: State of Georgia
Accreditation ID: Chapter 391-3-26

Scope: As per the Georgia EPD Rules and Regulations for Commercial Laboratories, PAES is

accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 23886 - 967487 Page 2 of 11

SAMPLE SUMMARY

Workorder: 23886 FOREST GLEN

Lab ID	Sample ID	Matrix	Date Collected	Date Received
238860001	MW5S 091417	Water	9/14/2017 07:15	9/15/2017 11:00
238860002	MW4S 091417	Water	9/14/2017 07:40	9/15/2017 11:00
238860003	MW5D 091417	Water	9/14/2017 09:05	9/15/2017 11:00
238860004	MW4D 091417	Water	9/14/2017 09:54	9/15/2017 11:00
238860005	MW6S 091417	Water	9/14/2017 10:10	9/15/2017 11:00

Report ID: 23886 - 967487 Page 3 of 11

ANALYTICAL RESULTS

Workorder: 23886 FOREST GLEN

Lab ID: 238860001 Date Received: 9/15/2017 11:00 Matrix: Water

Sample ID: MW5S 091417 Date Collected: 9/14/2017 07:15

Parameters Results Units PQL MDL DF Analyzed By Qualifiers

RISK - PAES						
Analysis Desc: EPA RSK175	Analyt	ical Method: E	PA RSK175			
Methane	38 ug/l	0.50	0.031 1	9/20/2017 08:42	AK	
Ethane	0.36 ug/l	0.20	0.0060 1	9/20/2017 08:42	AK	
Ethene	0.089J ug/l	0.20	0.021 1	9/20/2017 08:42	AK	

Report ID: 23886 - 967487 Page 4 of 11

ANALYTICAL RESULTS

Workorder: 23886 FOREST GLEN

Lab ID: 238860002 Date Received: 9/15/2017 11:00 Matrix: Water

Sample ID: MW4S 091417 Date Collected: 9/14/2017 07:40

Parameters Results Units PQL MDL DF Analyzed By Qualifiers

RISK - PAES

Applysic Description Results Units PA PSK175

Analytical Method: EPA RSK175 Analysis Desc: EPA RSK175 Methane **50** ug/l 0.50 ΑK 0.031 1 9/20/2017 08:53 Ethane **0.060J** ug/l 0.20 0.0060 1 9/20/2017 08:53 AK Ethene **0.021U** ug/l 0.20 0.021 1 9/20/2017 08:53 ΑK

Report ID: 23886 - 967487 Page 5 of 11

ANALYTICAL RESULTS

Workorder: 23886 FOREST GLEN

Lab ID: 238860003 Date Received: 9/15/2017 11:00 Matrix: Water

Sample ID: MW5D 091417 Date Collected: 9/14/2017 09:05

Parameters Results Units PQL MDL DF Analyzed By Qualifiers

RISK - PAES

KISK - FAES	
Analysis Desc: EPA RSK175	Analytical Method: EPA RSK175

Allalysis Bess. El Alloretto	7 triary tre	oai ivictiioa. Li	7111011170		
Methane	48 ug/l	0.50	0.031 1	9/20/2017 09:03	ΑK
Ethane	0.067J ug/l	0.20	0.0060 1	9/20/2017 09:03	AK
Ethene	0.021U ug/l	0.20	0.021 1	9/20/2017 09:03	AK

Report ID: 23886 - 967487 Page 6 of 11

ANALYTICAL RESULTS

Workorder: 23886 FOREST GLEN

Lab ID: 238860004 Date Received: 9/15/2017 11:00 Matrix: Water

Sample ID: MW4D 091417 Date Collected: 9/14/2017 09:54

Parameters Results Units PQL MDL DF Analyzed By Qualifiers

RISK - PAES						
Analysis Desc: EPA RSK175	Anal	ytical Method: E	PA RSK175			
Methane	25 ug/l	0.50	0.031 1	9/20/2017 09:14	AK	
Ethane	0.18J ug/l	0.20	0.0060 1	9/20/2017 09:14	AK	
Ethene	0.021U ug/l	0.20	0.021 1	9/20/2017 09:14	AK	

Report ID: 23886 - 967487 Page 7 of 11

ANALYTICAL RESULTS

Workorder: 23886 FOREST GLEN

Lab ID: 238860005 Date Received: 9/15/2017 11:00 Matrix: Water

Sample ID: MW6S 091417 Date Collected: 9/14/2017 10:10

Parameters Results Units PQL MDL DF Analyzed By Qualifiers

RISK - PAES

RISK - PAES					
Analysis Desc: EPA RSK175	Analyti	ical Method: El	PA RSK175		
Methane	38 ug/l	0.50	0.031 1	9/20/2017 09:24	AK
Ethane	0.041J ug/l	0.20	0.0060 1	9/20/2017 09:24	AK
Ethene	0.061J ug/l	0.20	0.021 1	9/20/2017 09:24	AK

Report ID: 23886 - 967487 Page 8 of 11

ANALYTICAL RESULTS QUALIFIERS

Workorder: 23886 FOREST GLEN

DEFINITIONS/QUALIFIERS

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

Report ID: 23886 - 967487 Page 9 of 11

QUALITY CONTROL DATA

Workorder: 23886 FOREST GLEN

QC Batch: DISG/6346 Analysis Method: EPA RSK175

QC Batch Method: EPA RSK175

Associated Lab Samples: 238860001, 238860002, 238860003, 238860004, 238860005

METHOD BLANK: 50969

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
RISK				
Methane	ug/l	0.031U	0.031	
Ethane	ug/l	0.0060U	0.0060	
Ethene	ug/l	0.021U	0.021	

LABORATORY CONTROL SAMPLE & LCSD: 50970 50971

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
RISK										
Methane	ug/l	44	43	43	97	96	85-115	1	20	
Ethane	ug/l	83	81	80	97	96	85-115	1	20	
Ethene	ug/l	78	78	77	100	99	85-115	1	20	

SAMPLE DUPLICATE: 50974 Original: 238860002

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						
Methane	ug/l	50	45	9.4	20	
Ethane	ug/l	.06	.056	7.8	20	
Ethene	ug/l	.0091	.0077	17	20	

SAMPLE DUPLICATE: 50975 Original: 238960001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
RISK						
Methane	ug/l	16	16	0.55	20	
Ethane	ug/l	.087	.087	0.12	20	
Ethene	ug/l	0	0	0	20	

Report ID: 23886 - 967487 Page 10 of 11

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 23886 FOREST GLEN

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
238860001	MW5S 091417			EPA RSK175	DISG/6346
238860002	MW4S 091417			EPA RSK175	DISG/6346
238860003	MW5D 091417			EPA RSK175	DISG/6346
238860004	MW4D 091417			EPA RSK175	DISG/6346
238860005	MW6S 091417			EPA RSK175	DISG/6346

Report ID: 23886 - 967487 Page 11 of 11

E	CHAIN-OF-C	CHAIN-OF-CUSTODY / Analytical Request Document	ument
Pace Analytical" www.paceebs.com	2988 The Chain-of-Custody i	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.	courately.
Section A	Section B	Section C	
Required Client Information:	Required Project Information:	Invoice Information:	Page:
Company: O'Brien & Gere	Report To: VRI VELIZ	Attention:	
Address: 333 W Washington St	Copy To:	Company Name:	REGULATORY AGENCY
Syracuse, NY		Address:	☐ NPDES ☐ GROUND WATER ☐
Email TO: KRI, VELIZ @ DBG, COM	Purchase Order No.:	Pace Quote Reference:	□ UST □ RCRA
Phone 956-6333 Fax:	Project Name: FORREST (SLEN	Pace Project Manager:	Site Location
Requested Due Date/TAT:	Project Number:	Pace Profile #:	STATE:

DRINKING WATER

OTHER

															Re	queste	1 Anai	Requested Analysis Filtered (Y/N)	Itered	(N/N)					
				/	ŏ	COLLECT	ED				Prese	Preservatives	es	↑ N/A											, to Mary
	SAMPLE ID Delinking water with water water and one of the properties of the propert	see valid codes to			COMPOSITE START	Eg .	COMPOSITE END/GRAB	ОГГЕСТІОИ	S					1							(N/A) :				
TEM #	(A-Z, 0-9 / -) OIL TS (A-Z, 0-9 / -) OIL TS (A-Z, 0-9 / -) OIL TS OTHER TISSUE		SAMPLE TYPE (G=	-0) -111 -7 1014		L	Ē	I r	OF CONTAINER	Jnpreserved 1 ₂ SO ₄	1CI 1NO³	NaOH	O _s S _s o _s Nethanol	Analysis Test							esidual Chlorine			-	
٦	MWSSOGIHIA	1/3	-		E-	╂	DAIE	1	1-	4	1	1	١		~	‡	1	-	+			ğ	e Projec	race Project No./ Lab I.D.	T
2	7) KI60 SHMW	13	1-	4-14-17	1-17 7:40	40					_			12	w		-								T
3	MW 5D 091417	TM	<i>(</i> -	19-M	9-14-17 9:05	92								X	W										
4	MW 4D 091417	TW	7	4-14	4-14-17 9:54	Sί								X	ω										Г
2	MW/6509 HIT	T/VI	/-	6-14	0].'0/ JH-5	aj.								X	9										
9				_										11.15									:		_
7									-																
∞	iden series de la companya de la co													T											
6											\vdash														T
9														l											Ī
1																									
12																									
	ADDITIONAL COMMENTS	E	FINOL	UISHED	RELINQUISHED BY I AFFILIATION	LIATION	ď	DATE	TIME	ш			ACCEPTED BY / AFFILIATION	ED BY	/AFFIL	ATION		DATE		TIME		SAN	SAMPLE CONDITIONS	SNOIL	T
		Mish	K	hy	/Anna		7.6	W-H-6	6	2.00	X	D	Ŋ,		0	A	8	9.05.		180	4	2	22		
											-														
										:															
					SAN	MPLER N.	SAMPLER NAME AND SIGNATURE	NATURE						\					. Y		၁.	əəl u	(N/. pajes	pejr	
						PRINT	NT Name of SAMPLER: MROTIN KOLKINGE	MPLER:	MAG	Tink	Denn	eat.	\searrow	Annanda		Vouna	_				uį du	ved o	ody Se Y) sek	(N/X)	
						SIG	SIGNATURE OF SAMPLER: Worth for	MPLER:	1/2	The same	3	1	1	- 1	DATE	DATE Signed (MM/DD/YY):	00	1418	41		ıeT	Кесе	olsuO 50O	Jms2	
												ĺ													١

Client	Name: 086 Project: Forest 6	Hen	Lab W	ork Order: <u>23886</u>
	Shipping/Container Information (circle appropriate response)			
	Courier: FedEx (UPS) USPS Client Other:	Air bill P	resent:	Yes No
	Tracking Number: 1 & AV& 602011437333	36		
	Custody Seal on Cooler/Box Present: Yes No Seals I	ntac:: (Yes	No	
	Cooler/Box.Packing Material: Bubble Wrap Absorbent Fe	oam Othe	Г	
	Type of Ice: Wet Blue None Ice Intact: Yes Melt	ed		
	Cooler Temperature: 4°C Radiation Screened: Yes	his ch	ain of (Custody Present: Yes No
	Comments:			
B.	Laboratory Assignment/Log-in (check appropriate response)			
		YES NO	N/A	Comment Reference non-Conformance
	Chain of Custody properly filled out			No analyzes noted
	Chain of Custody relinquished			referreallto proj. file
	Sampler Name & Signature on COC			
	Containers intact			
	Were samples in separate bags			
	Sample container labels match COC Sample name/date and time collected			
	Sufficient volume provided			,
	PAES containers used			
	Are containers properly preserved for the requested testing? (as labeled)			
	If an unknown preservation state, were containers checked? Exception: VOA's coliform		(C	If yes, see pH form.
	Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?			
	Comments:			
	Cooler contents examined/rec	ceived by :_	4	J Date: 9, 15/7
	Proj e ct Manage	er Raview :_	Ru) Date: 9-15-17

ANALYTICAL REPORT

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-124014-1

Client Project/Site: Forest Glen Monitoring

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. Al Farrell

Authorized for release by: 9/21/2017 12:14:27 AM

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

Review your project

results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	19
QC Sample Results	20
QC Association Summary	25
Lab Chronicle	27
Certification Summary	30
Method Summary	31
Sample Summary	32
Detection Limit Exceptions Summary	33
Chain of Custody	34
Receipt Checklists	35

3

6

R

9

11

12

14

13

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

General Chemistry

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Н	Sample was prepped or analyzed beyond the specified holding time

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

TestAmerica Buffalo

9/21/2017

Page 3 of 36

Case Narrative

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-124014-1

Project/Site: Forest Glen Monitoring

Job ID: 480-124014-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-124014-1

Receipt

The samples were received on 9/12/2017 5:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 3.3° C and 3.5° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-377449 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW 1S 091217 (480-124014-1), MW 1D 091217 (480-124014-2), MW 6D 091217 (480-124014-3), MW 10S 091217 (480-124014-4), MW 6DD 091217 (480-124014-5), MW 10D 091217 (480-124014-6), X-1 091217 (480-124014-7) and QC TRIP BLANK (480-124014-8).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method(s) 300.0: The following samples was diluted to bring the concentration of target analytes within the calibration range: MW 1S 091217 (480-124014-1), MW 1D 091217 (480-124014-2), MW 6D 091217 (480-124014-3), MW 10S 091217 (480-124014-4), MW 6DD 091217 (480-124014-5), MW 10D 091217 (480-124014-6) and X-1 091217 (480-124014-7). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 4500 S2 D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-461144 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) SM 4500 S2 D: The following sample was analyzed outside of analytical holding time: X-1 091217 (480-124014-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Job ID: 480-124014-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 1S 091217

Lab Sample ID: 480-124014-1

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	788		10.0	5.6	mg/L	20	_	300.0	Total/NA
Sulfate	217		40.0	7.0	mg/L	20		300.0	Total/NA
Alkalinity, Bicarbonate	349 B		40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Dissolved Organic Carbon	4.5 B		1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 1	4.5 B		1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 2	4.5 B		1.0	0.43	mg/L	1		SM 5310C	Dissolved
Dissolved Organic Carbon - Duplicate	4.5 B		1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 1D 091217

Lab Sample ID: 480-12401	4-2
--------------------------	-----

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methyl tert-butyl ether	0.75	J	1.0	0.16	ug/L	1	_	8260C	Total/NA
Chloride	302		5.0	2.8	mg/L	10		300.0	Total/NA
Sulfate	185		20.0	3.5	mg/L	10		300.0	Total/NA
Alkalinity, Bicarbonate	311	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	0.28		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	3.4	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 1	3.5	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 2	3.3	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
Dissolved Organic Carbon - Duplicate	3.4	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 6D 091217

Lab Sample ID: 480-124014-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.60	J	1.0	0.38	ug/L		_	8260C	Total/NA
cis-1,2-Dichloroethene	1.4		1.0	0.81	ug/L	1		8260C	Total/NA
Vinyl chloride	1.4		1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	180		5.0	2.8	mg/L	10		300.0	Total/NA
Sulfate	265		20.0	3.5	mg/L	10		300.0	Total/NA
Alkalinity, Bicarbonate	329	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	0.58		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	4.5	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 1	4.6	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 2	4.4	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
Dissolved Organic Carbon - Duplicate	4.5	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 10S 091217

Lab Sample ID: 480-124014-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	29		1.0	0.81	ug/L		_	8260C	Total/NA
Vinyl chloride	6.6		1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	153		5.0	2.8	mg/L	10		300.0	Total/NA
Sulfate	350		20.0	3.5	mg/L	10		300.0	Total/NA
Alkalinity, Bicarbonate	365	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	0.080	J	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	4.6	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 1	4.6	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 2	4.5	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
Dissolved Organic Carbon - Duplicate	4.6	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

9/21/2017

3

7-

0

Ŏ

10

12

13

1 E

16

TestAmerica Job ID: 480-124014-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 6DD 091217

Lab Sample ID: 480-124014-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.60	J	1.0	0.38	ug/L		_	8260C	Total/NA
cis-1,2-Dichloroethene	22		1.0	0.81	ug/L	1		8260C	Total/NA
Methyl tert-butyl ether	0.23	J	1.0	0.16	ug/L	1		8260C	Total/NA
Vinyl chloride	5.3		1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	240		5.0	2.8	mg/L	10		300.0	Total/NA
Sulfate	238		20.0	3.5	mg/L	10		300.0	Total/NA
Alkalinity, Bicarbonate	300	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	0.19		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	4.3	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 1	4.3	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 2	4.2	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
Dissolved Organic Carbon - Duplicate	4.3	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 10D 091217

Lab Sample ID: 480-124014-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methyl tert-butyl ether	0.31	J	1.0	0.16	ug/L		_	8260C	Total/NA
Chloride	368		5.0	2.8	mg/L	10		300.0	Total/NA
Sulfate	257		20.0	3.5	mg/L	10		300.0	Total/NA
Alkalinity, Bicarbonate	259	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	0.080	J	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	3.8	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 1	3.8	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 2	3.7	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
Dissolved Organic Carbon - Duplicate	3.8	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: X-1 091217

Lab Sample ID: 480-124014-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.61	J	1.0	0.38	ug/L		_	8260C	Total/NA
cis-1,2-Dichloroethene	1.2		1.0	0.81	ug/L	1		8260C	Total/NA
Vinyl chloride	1.4		1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	184		5.0	2.8	mg/L	10		300.0	Total/NA
Sulfate	269		20.0	3.5	mg/L	10		300.0	Total/NA
Alkalinity, Bicarbonate	320	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	0.53	Н	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon	4.2	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 1	4.2	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
DOC Result 2	4.1	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved
Dissolved Organic Carbon - Duplicate	4.2	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: QC TRIP BLANK

Lab Sample ID: 480-124014-8

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

9/21/2017

Page 6 of 36

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Client Sample ID: MW 1S 091217

Date Collected: 09/12/17 10:30 Date Received: 09/12/17 17:20 Lab Sample ID: 480-124014-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/18/17 22:57	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/18/17 22:57	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/18/17 22:57	
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/18/17 22:57	· · · · · · · · ·
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/18/17 22:57	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/18/17 22:57	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/18/17 22:57	· · · · · · · · ·
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/18/17 22:57	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/18/17 22:57	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/18/17 22:57	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/18/17 22:57	
1,2-Dichloropropane	ND	1.0		ug/L			09/18/17 22:57	
1,3-Dichlorobenzene	ND	1.0		ug/L			09/18/17 22:57	
1,4-Dichlorobenzene	ND	1.0		ug/L			09/18/17 22:57	
2-Hexanone	ND	5.0		ug/L			09/18/17 22:57	
2-Butanone (MEK)	ND	10		ug/L			09/18/17 22:57	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			09/18/17 22:57	
Acetone	ND	10		ug/L			09/18/17 22:57	
Benzene	ND	1.0		ug/L			09/18/17 22:57	
Bromodichloromethane	ND	1.0		ug/L			09/18/17 22:57	
Bromoform	ND	1.0		ug/L			09/18/17 22:57	
Bromomethane	ND	1.0		ug/L			09/18/17 22:57	
Carbon disulfide	ND	1.0		ug/L			09/18/17 22:57	
Carbon tetrachloride	ND	1.0		ug/L			09/18/17 22:57	
Chlorobenzene	ND	1.0		ug/L			09/18/17 22:57	
Chlorodibromomethane	ND	1.0		ug/L			09/18/17 22:57	
Chloroethane	ND	1.0		ug/L			09/18/17 22:57	
Chloroform	ND	1.0		ug/L			09/18/17 22:57	
Chloromethane	ND	1.0		ug/L			09/18/17 22:57	
cis-1,2-Dichloroethene	ND	1.0		ug/L			09/18/17 22:57	
cis-1,3-Dichloropropene	ND	1.0		ug/L			09/18/17 22:57	
Cyclohexane	ND	1.0		ug/L			09/18/17 22:57	
Dichlorodifluoromethane	ND	1.0		ug/L			09/18/17 22:57	
Ethylbenzene	ND	1.0		ug/L			09/18/17 22:57	
Isopropylbenzene	ND	1.0		ug/L			09/18/17 22:57	
Methyl acetate	ND	1.3		ug/L			09/18/17 22:57	
Methyl tert-butyl ether	ND	1.0		ug/L			09/18/17 22:57	
Methylcyclohexane	ND	1.0		ug/L			09/18/17 22:57	
Methylene Chloride	ND	1.0		ug/L			09/18/17 22:57	
Styrene	ND	1.0		ug/L			09/18/17 22:57	,
Tetrachloroethene	ND	1.0		ug/L			09/18/17 22:57	
Toluene	ND	1.0		ug/L			09/18/17 22:57	
rans-1,2-Dichloroethene	ND	1.0		ug/L ug/L			09/18/17 22:57	
trans-1,3-Dichloropropene	ND ND	1.0		ug/L ug/L			09/18/17 22:57	
Trichloroethene	ND ND	1.0		ug/L ug/L			09/18/17 22:57	
Trichloroethene								
	ND ND	1.0		ug/L			09/18/17 22:57 09/18/17 22:57	
Vinyl chloride Xylenes, Total	ND	1.0 2.0		ug/L ug/L			09/18/17 22:57	

TestAmerica Buffalo

Page 7 of 36

2

3

5

7

9

11

13

15

10

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Client Sample ID: MW 1S 091217

Date Collected: 09/12/17 10:30 Date Received: 09/12/17 17:20 Lab Sample ID: 480-124014-1

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120	09/18/17 22:57	1
Toluene-d8 (Surr)	99		80 - 120	09/18/17 22:57	1
4-Bromofluorobenzene (Surr)	96		73 - 120	09/18/17 22:57	1
Dibromofluoromethane (Surr)	100		75 - 123	09/18/17 22:57	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	788		10.0	5.6	mg/L			09/18/17 13:44	20
Sulfate	217		40.0	7.0	mg/L			09/18/17 13:44	20
Alkalinity, Bicarbonate	349	В	40.0	16.0	mg/L			09/13/17 16:39	4
Nitrate as N	ND		0.050	0.020	mg/L			09/13/17 15:43	1
Nitrite as N	ND		0.050	0.020	mg/L			09/13/17 15:43	1
Sulfide	ND		0.10	0.050	mg/L			09/19/17 15:30	1

General Chemistry - Dissolve	d								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.5	В	1.0	0.43	mg/L			09/14/17 17:34	1
DOC Result 1	4.5	В	1.0	0.43	mg/L			09/14/17 17:34	1
DOC Result 2	4.5	В	1.0	0.43	mg/L			09/14/17 17:34	1
Dissolved Organic Carbon - Duplicate	4.5	В	1.0	0.43	mg/L			09/14/17 17:34	1

Client Sample ID: MW 1D 091217 Lab Sample ID: 480-124014-2

Date Collected: 09/12/17 10:52

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			09/18/17 23:20	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/18/17 23:20	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/18/17 23:20	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/18/17 23:20	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/18/17 23:20	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/18/17 23:20	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/18/17 23:20	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/18/17 23:20	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/18/17 23:20	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/18/17 23:20	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/18/17 23:20	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/18/17 23:20	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/18/17 23:20	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/18/17 23:20	1
2-Hexanone	ND	5.0	1.2	ug/L			09/18/17 23:20	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/18/17 23:20	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/18/17 23:20	1
Acetone	ND	10	3.0	ug/L			09/18/17 23:20	1
Benzene	ND	1.0	0.41	ug/L			09/18/17 23:20	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/18/17 23:20	1
Bromoform	ND	1.0	0.26	ug/L			09/18/17 23:20	1
Bromomethane	ND	1.0	0.69	ug/L			09/18/17 23:20	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/18/17 23:20	1

TestAmerica Buffalo

Page 8 of 36 9/21/2017

Client Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Client Sample ID: MW 1D 091217

Lab Sample ID: 480-124014-2

Matrix: Water

Date Collected: 09/12/17 10:52 Date Received: 09/12/17 17:20

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/18/17 23:20	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/18/17 23:20	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/18/17 23:20	1
Chloroethane	ND		1.0	0.32	ug/L			09/18/17 23:20	1
Chloroform	ND		1.0	0.34	ug/L			09/18/17 23:20	1
Chloromethane	ND		1.0	0.35	ug/L			09/18/17 23:20	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/18/17 23:20	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/18/17 23:20	1
Cyclohexane	ND		1.0	0.18	ug/L			09/18/17 23:20	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/18/17 23:20	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/18/17 23:20	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/18/17 23:20	1
Methyl acetate	ND		1.3	1.3	ug/L			09/18/17 23:20	1
Methyl tert-butyl ether	0.75	J	1.0	0.16	ug/L			09/18/17 23:20	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/18/17 23:20	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/18/17 23:20	1
Styrene	ND		1.0	0.73	ug/L			09/18/17 23:20	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/18/17 23:20	1
Toluene	ND		1.0	0.51	ug/L			09/18/17 23:20	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/18/17 23:20	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/18/17 23:20	1
Trichloroethene	ND		1.0	0.46	ug/L			09/18/17 23:20	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/18/17 23:20	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/18/17 23:20	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/18/17 23:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120					09/18/17 23:20	1
Toluene-d8 (Surr)	99		80 - 120					09/18/17 23:20	1
4-Bromofluorobenzene (Surr)	95		73 - 120					09/18/17 23:20	1

	MDL	Unit	D	Prepared	Analyzed	Dil Fac
5.0	2.8	mg/L			09/18/17 13:52	10
20.0	3.5	mg/L			09/18/17 13:52	10
B 40.0	16.0	mg/L			09/13/17 17:13	4
0.050	0.020	mg/L			09/13/17 15:44	1
0.050	0.020	mg/L			09/13/17 15:44	1
0.10	0.050	mg/L			09/19/17 15:30	1
	0.050	5.0 2.8 20.0 3.5 B 40.0 16.0 0.050 0.020 0.050 0.020	5.0 2.8 mg/L 20.0 3.5 mg/L B 40.0 16.0 mg/L 0.050 0.020 mg/L 0.050 0.020 mg/L	5.0 2.8 mg/L 20.0 3.5 mg/L B 40.0 16.0 mg/L 0.050 0.020 mg/L 0.050 0.020 mg/L	5.0 2.8 mg/L 20.0 3.5 mg/L B 40.0 16.0 mg/L 0.050 0.020 mg/L 0.050 0.020 mg/L	5.0 2.8 mg/L 09/18/17 13:52 20.0 3.5 mg/L 09/18/17 13:52 B 40.0 16.0 mg/L 09/13/17 17:13 0.050 0.020 mg/L 09/13/17 15:44 0.050 0.020 mg/L 09/13/17 15:44

75 - 123

104

General Chemistry - Dissolved Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	3.4	В	1.0	0.43	mg/L			09/14/17 17:49	1
DOC Result 1	3.5	В	1.0	0.43	mg/L			09/14/17 17:49	1
DOC Result 2	3.3	В	1.0	0.43	mg/L			09/14/17 17:49	1
Dissolved Organic Carbon - Duplicate	3.4	В	1.0	0.43	mg/L			09/14/17 17:49	1

09/18/17 23:20

Page 9 of 36

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Client Sample ID: MW 6D 091217

Date Received: 09/12/17 17:20

Lab Sample ID: 480-124014-3 Date Collected: 09/12/17 13:02

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/18/17 23:43	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/18/17 23:43	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/18/17 23:43	
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			09/18/17 23:43	
1,1-Dichloroethane	0.60	J	1.0	0.38	ug/L			09/18/17 23:43	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/18/17 23:43	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/18/17 23:43	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/18/17 23:43	
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			09/18/17 23:43	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/18/17 23:43	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/18/17 23:43	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/18/17 23:43	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/18/17 23:43	
1,4-Dichlorobenzene	ND		1.0		ug/L			09/18/17 23:43	
2-Hexanone	ND		5.0		ug/L			09/18/17 23:43	
2-Butanone (MEK)	ND		10		ug/L			09/18/17 23:43	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			09/18/17 23:43	
Acetone	ND		10		ug/L			09/18/17 23:43	
Benzene	ND		1.0		ug/L			09/18/17 23:43	
Bromodichloromethane	ND		1.0		ug/L			09/18/17 23:43	
Bromoform	ND		1.0		ug/L			09/18/17 23:43	
Bromomethane	ND		1.0		ug/L			09/18/17 23:43	
Carbon disulfide	ND		1.0		ug/L			09/18/17 23:43	
Carbon tetrachloride	ND		1.0		ug/L			09/18/17 23:43	
Chlorobenzene	ND		1.0		ug/L			09/18/17 23:43	
Chlorodibromomethane	ND		1.0		ug/L			09/18/17 23:43	
Chloroethane	ND		1.0		ug/L			09/18/17 23:43	
Chloroform	ND		1.0		ug/L			09/18/17 23:43	
Chloromethane	ND		1.0		ug/L			09/18/17 23:43	
cis-1,2-Dichloroethene	1.4		1.0		ug/L			09/18/17 23:43	
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/18/17 23:43	
Cyclohexane	ND		1.0	0.18	_			09/18/17 23:43	
Dichlorodifluoromethane	ND		1.0		ug/L			09/18/17 23:43	
Ethylbenzene	ND		1.0		ug/L			09/18/17 23:43	
Isopropylbenzene	ND		1.0	0.79	-			09/18/17 23:43	
Methyl acetate	ND		1.3		ug/L			09/18/17 23:43	
Methyl tert-butyl ether	ND		1.0		ug/L			09/18/17 23:43	
Methylcyclohexane	ND		1.0		ug/L			09/18/17 23:43	
Methylene Chloride	ND		1.0		ug/L			09/18/17 23:43	
Styrene	ND		1.0		ug/L			09/18/17 23:43	
Tetrachloroethene	ND		1.0		ug/L			09/18/17 23:43	
Toluene	ND ND		1.0		ug/L			09/18/17 23:43	
trans-1,2-Dichloroethene	ND		1.0		ug/L ug/L			09/18/17 23:43	
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			09/18/17 23:43	
Trichloroethene	ND ND		1.0		•			09/18/17 23:43	
Trichlorofluoromethane					ug/L			09/18/17 23:43	
	ND		1.0		ug/L			09/18/17 23:43	
Vinyl chloride Xylenes, Total	1.4 ND		1.0 2.0		ug/L ug/L			09/18/17 23:43	

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Client Sample ID: MW 6D 091217

Date Collected: 09/12/17 13:02 Date Received: 09/12/17 17:20

Lab Sample ID: 480-124014-3

Matrix: Water

Surr	rogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-L	Dichloroethane-d4 (Surr)	99		77 - 120	09/18/17 23:4	1
Tolu	iene-d8 (Surr)	100		80 - 120	09/18/17 23:4	1
4-Br	romofluorobenzene (Surr)	98		73 - 120	09/18/17 23:4	1
Dibr	romofluoromethane (Surr)	103		75 - 123	09/18/17 23:4	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	180		5.0	2.8	mg/L			09/18/17 14:00	10
Sulfate	265		20.0	3.5	mg/L			09/18/17 14:00	10
Alkalinity, Bicarbonate	329	В	40.0	16.0	mg/L			09/13/17 17:13	4
Nitrate as N	ND		0.050	0.020	mg/L			09/13/17 15:45	1
Nitrite as N	ND		0.050	0.020	mg/L			09/13/17 15:45	1
Sulfide	0.58		0.10	0.050	mg/L			09/19/17 15:30	1

General Chemistry - Dissolve	d								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.5	В	1.0	0.43	mg/L			09/14/17 18:03	1
DOC Result 1	4.6	В	1.0	0.43	mg/L			09/14/17 18:03	1
DOC Result 2	4.4	В	1.0	0.43	mg/L			09/14/17 18:03	1
Dissolved Organic Carbon - Duplicate	4.5	В	1.0	0.43	mg/L			09/14/17 18:03	1

Client Sample ID: MW 10S 091217 Lab Sample ID: 480-124014-4

Date Collected: 09/12/17 14:10 **Matrix: Water**

Method: 8260C - Volatile Org Analyte	anic Compounds by GC/ Result Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		1.0	0.82	ug/L			09/19/17 00:07	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 00:07	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 00:07	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/19/17 00:07	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 00:07	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 00:07	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/19/17 00:07	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 00:07	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/19/17 00:07	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/19/17 00:07	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/19/17 00:07	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/19/17 00:07	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/19/17 00:07	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/19/17 00:07	1
2-Hexanone	ND	5.0	1.2	ug/L			09/19/17 00:07	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/19/17 00:07	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/19/17 00:07	1
Acetone	ND	10	3.0	ug/L			09/19/17 00:07	1
Benzene	ND	1.0	0.41	ug/L			09/19/17 00:07	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 00:07	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 00:07	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 00:07	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 00:07	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-124014-1

Project/Site: Forest Glen Monitoring

Sulfide

Client Sample ID: MW 10S 091217 Lab Sample ID: 480-124014-4

Date Collected: 09/12/17 14:10 Matrix: Water Date Received: 09/12/17 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/19/17 00:07	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/19/17 00:07	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/19/17 00:07	1
Chloroethane	ND		1.0	0.32	ug/L			09/19/17 00:07	1
Chloroform	ND		1.0	0.34	ug/L			09/19/17 00:07	1
Chloromethane	ND		1.0	0.35	ug/L			09/19/17 00:07	1
cis-1,2-Dichloroethene	29		1.0	0.81	ug/L			09/19/17 00:07	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/19/17 00:07	1
Cyclohexane	ND		1.0	0.18	ug/L			09/19/17 00:07	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/19/17 00:07	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/19/17 00:07	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/19/17 00:07	1
Methyl acetate	ND		1.3	1.3	ug/L			09/19/17 00:07	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/19/17 00:07	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/19/17 00:07	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/19/17 00:07	1
Styrene	ND		1.0	0.73	ug/L			09/19/17 00:07	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/19/17 00:07	1
Toluene	ND		1.0	0.51	ug/L			09/19/17 00:07	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/17 00:07	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/19/17 00:07	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/17 00:07	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/19/17 00:07	1
Vinyl chloride	6.6		1.0	0.90	ug/L			09/19/17 00:07	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 00:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		77 - 120			-		09/19/17 00:07	1
Toluene-d8 (Surr)	99		80 - 120					09/19/17 00:07	1
4-Bromofluorobenzene (Surr)	95		73 - 120					09/19/17 00:07	1
Dibromofluoromethane (Surr)	105		75 - 123					09/19/17 00:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	153		5.0	2.8	mg/L			09/18/17 14:08	10
Sulfate	350		20.0	3.5	mg/L			09/18/17 14:08	10
Alkalinity, Bicarbonate	365	В	40.0	16.0	mg/L			09/13/17 17:13	4
Nitrate as N	ND		0.050	0.020	mg/L			09/13/17 15:46	1
Nitrite as N	ND		0.050	0.020	mg/L			09/13/17 15:46	1

General Chemistry - Dissolved	d								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.6	В	1.0	0.43	mg/L			09/14/17 18:18	1
DOC Result 1	4.6	В	1.0	0.43	mg/L			09/14/17 18:18	1
DOC Result 2	4.5	В	1.0	0.43	mg/L			09/14/17 18:18	1
Dissolved Organic Carbon -	4.6	В	1.0	0.43	mg/L			09/14/17 18:18	1

0.10

0.050 mg/L

0.080 J

09/19/17 15:30

Page 12 of 36

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Client Sample ID: MW 6DD 091217

Date Received: 09/12/17 17:20

Chloroform

Chloromethane

Cyclohexane

Ethylbenzene

Methyl acetate

Styrene

Toluene

Isopropylbenzene

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Methyl tert-butyl ether

trans-1.2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Lab Sample ID: 480-124014-5 Date Collected: 09/12/17 15:25

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS RL Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 1,1,1-Trichloroethane $\overline{\mathsf{ND}}$ 1.0 0.82 ug/L 09/19/17 00:30 1,1,2,2-Tetrachloroethane ND 1.0 09/19/17 00:30 0.21 ug/L 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 09/19/17 00:30 1,1,2-Trichlorotrifluoroethane ND 1.0 0.31 ug/L 09/19/17 00:30 1.1-Dichloroethane 0.60 1.0 0.38 ug/L 09/19/17 00:30 1.1-Dichloroethene ND 1.0 0.29 ug/L 09/19/17 00:30 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 09/19/17 00:30 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 09/19/17 00:30 ND 1,2-Dibromoethane (EDB) 1.0 0.73 ug/L 09/19/17 00:30 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 09/19/17 00:30 1,2-Dichloroethane ND 0.21 ug/L 09/19/17 00:30 1.0 1,2-Dichloropropane ND 1.0 0.72 ug/L 09/19/17 00:30 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 09/19/17 00:30 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 09/19/17 00:30 2-Hexanone ND 5.0 1.2 ug/L 09/19/17 00:30 2-Butanone (MEK) ND 10 1.3 ug/L 09/19/17 00:30 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 09/19/17 00:30 ug/L Acetone ND 10 3.0 ug/L 09/19/17 00:30 Benzene ND 1.0 0.41 ug/L 09/19/17 00:30 Bromodichloromethane ND 0.39 1.0 ug/L 09/19/17 00:30 Bromoform ND 1.0 0.26 ug/L 09/19/17 00:30 ND Bromomethane 1.0 0.69 ug/L 09/19/17 00:30 Carbon disulfide NΩ 1.0 0.19 ug/L 09/19/17 00:30 Carbon tetrachloride ND 1.0 0.27 ug/L 09/19/17 00:30 Chlorobenzene ND 1.0 0.75 ug/L 09/19/17 00:30 Chlorodibromomethane ND 1.0 09/19/17 00:30 0.32 ug/L Chloroethane ND 1.0 0.32 ug/L 09/19/17 00:30

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.3

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

0.34 ug/L

0.18 ug/L

0.68

0.74 ug/L

0.79 ug/L

1.3 ug/L

0.16 ug/L

0.16 ug/L

0.73 ug/L

0.36 ug/L

0.51 ug/L

0.90

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

0.44 ug/L

ug/L

0.35 ug/L

0.81 ug/L

0.36 ug/L

ug/L

ND

ND

22

ND

ND

ND

ND

ND

ND

0.23

ND

ND

ND

ND

ND

ND

ND

ND

ND

5.3

ND

TestAmerica Buffalo

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

09/19/17 00:30

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Client Sample ID: MW 6DD 091217 Lab Sample ID: 480-124014-5

Date Collected: 09/12/17 15:25 Matrix: Water Date Received: 09/12/17 17:20

Surrogate	%Recovery	Qualifier	Limits	Prepared Ana	alyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120	09/19/	17 00:30	1
Toluene-d8 (Surr)	99		80 - 120	09/19/	17 00:30	1
4-Bromofluorobenzene (Surr)	96		73 - 120	09/19/	17 00:30	1
Dibromofluoromethane (Surr)	101		75 - 123	09/19/	17 00:30	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	240		5.0	2.8	mg/L			09/18/17 14:57	10
Sulfate	238		20.0	3.5	mg/L			09/18/17 14:57	10
Alkalinity, Bicarbonate	300	В	40.0	16.0	mg/L			09/13/17 17:13	4
Nitrate as N	ND		0.050	0.020	mg/L			09/13/17 15:47	1
Nitrite as N	ND		0.050	0.020	mg/L			09/13/17 15:47	1
Sulfide	0.19		0.10	0.050	ma/L			09/19/17 15:30	1

General Chemistry - Dissolve	d								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.3	В	1.0	0.43	mg/L			09/14/17 18:32	1
DOC Result 1	4.3	В	1.0	0.43	mg/L			09/14/17 18:32	1
DOC Result 2	4.2	В	1.0	0.43	mg/L			09/14/17 18:32	1
Dissolved Organic Carbon - Duplicate	4.3	В	1.0	0.43	mg/L			09/14/17 18:32	1

Client Sample ID: MW 10D 091217 Lab Sample ID: 480-124014-6

Date Collected: 09/12/17 15:30 Matrix: Water Date Received: 09/12/17 17:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/19/17 00:53	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/19/17 00:53	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/19/17 00:53	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/19/17 00:53	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/19/17 00:53	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/19/17 00:53	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/19/17 00:53	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/19/17 00:53	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/19/17 00:53	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/19/17 00:53	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/19/17 00:53	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/19/17 00:53	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/19/17 00:53	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/19/17 00:53	1
2-Hexanone	ND	5.0	1.2	ug/L			09/19/17 00:53	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/19/17 00:53	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/19/17 00:53	1
Acetone	ND	10	3.0	ug/L			09/19/17 00:53	1
Benzene	ND	1.0	0.41	ug/L			09/19/17 00:53	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/19/17 00:53	1
Bromoform	ND	1.0	0.26	ug/L			09/19/17 00:53	1
Bromomethane	ND	1.0	0.69	ug/L			09/19/17 00:53	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/19/17 00:53	1

TestAmerica Buffalo

Page 14 of 36

2

3

5

7

9

11

13

14

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Duplicate

TestAmerica Job ID: 480-124014-1

Client Sample ID: MW 10D 091217 Lab Sample ID: 480-124014-6

Date Collected: 09/12/17 15:30 Matrix: Water Date Received: 09/12/17 17:20

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Carbon tetrachloride	ND		1.0		-			09/19/17 00:53	
Chlorobenzene	ND		1.0		ug/L			09/19/17 00:53	•
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/19/17 00:53	
Chloroethane	ND		1.0		ug/L			09/19/17 00:53	
Chloroform	ND		1.0	0.34	ug/L			09/19/17 00:53	
Chloromethane	ND		1.0	0.35	ug/L			09/19/17 00:53	•
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/19/17 00:53	•
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/19/17 00:53	
Cyclohexane	ND		1.0	0.18	ug/L			09/19/17 00:53	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/19/17 00:53	
Ethylbenzene	ND		1.0	0.74	ug/L			09/19/17 00:53	
Isopropylbenzene	ND		1.0	0.79	ug/L			09/19/17 00:53	•
Methyl acetate	ND		1.3	1.3	ug/L			09/19/17 00:53	
Methyl tert-butyl ether	0.31	J	1.0	0.16	ug/L			09/19/17 00:53	· · · · · · · · ·
Methylcyclohexane	ND		1.0	0.16	ug/L			09/19/17 00:53	
Methylene Chloride	ND		1.0	0.44	ug/L			09/19/17 00:53	
Styrene	ND		1.0	0.73	ug/L			09/19/17 00:53	· · · · · · · · ·
Tetrachloroethene	ND		1.0	0.36	ug/L			09/19/17 00:53	
Toluene	ND		1.0	0.51	ug/L			09/19/17 00:53	
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/19/17 00:53	· · · · · · · · ·
trans-1,3-Dichloropropene	ND		1.0		ug/L			09/19/17 00:53	
Trichloroethene	ND		1.0		ug/L			09/19/17 00:53	
Trichlorofluoromethane	ND		1.0		ug/L			09/19/17 00:53	
Vinyl chloride	ND		1.0		ug/L			09/19/17 00:53	
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 00:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			_		09/19/17 00:53	
Toluene-d8 (Surr)	99		80 - 120					09/19/17 00:53	
4-Bromofluorobenzene (Surr)	93		73 - 120					09/19/17 00:53	
Dibromofluoromethane (Surr)	104		75 - 123					09/19/17 00:53	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	368		5.0	2.8	mg/L			09/18/17 15:05	10
Sulfate	257		20.0		mg/L			09/18/17 15:05	10
Alkalinity, Bicarbonate	259	В	40.0		mg/L			09/13/17 17:17	
Nitrate as N	ND		0.050	0.020	-			09/13/17 15:48	
Nitrite as N	ND		0.050	0.020	-			09/13/17 15:48	•
Sulfide	0.080	J	0.10	0.050	mg/L			09/19/17 15:30	•
General Chemistry - Dissolved		0 115				_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Dissolved Organic Carbon	3.8		1.0		mg/L			09/14/17 18:47	
DOC Result 1	3.8		1.0		mg/L			09/14/17 18:47	
DOC Result 2	3.7		1.0		mg/L			09/14/17 18:47	
Dissolved Organic Carbon -	3.8	В	1.0	0.43	mg/L			09/14/17 18:47	•

TestAmerica Buffalo

3

4

7

10

11 12

14

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Client Sample ID: X-1 091217

Lab Sample ID: 480-124014-7

Matrix: Water

Date Collected: 09/12/17 00:00
Date Received: 09/12/17 17:20

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/19/17 01:16	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/19/17 01:16	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/19/17 01:16	
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			09/19/17 01:16	
1,1-Dichloroethane	0.61	J	1.0	0.38	ug/L			09/19/17 01:16	
1,1-Dichloroethene	ND		1.0	0.29	-			09/19/17 01:16	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/19/17 01:16	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/19/17 01:16	
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			09/19/17 01:16	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/19/17 01:16	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/19/17 01:16	
1,2-Dichloropropane	ND		1.0		ug/L			09/19/17 01:16	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/19/17 01:16	
1,4-Dichlorobenzene	ND		1.0		ug/L			09/19/17 01:16	
2-Hexanone	ND		5.0		ug/L			09/19/17 01:16	
2-Butanone (MEK)	ND		10	1.3	ug/L			09/19/17 01:16	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/19/17 01:16	
Acetone	ND		10		ug/L			09/19/17 01:16	
Benzene	ND		1.0		ug/L			09/19/17 01:16	
Bromodichloromethane	ND		1.0	0.39	ug/L			09/19/17 01:16	
Bromoform	ND		1.0		ug/L			09/19/17 01:16	
Bromomethane	ND		1.0	0.69	-			09/19/17 01:16	
Carbon disulfide	ND		1.0	0.19	-			09/19/17 01:16	
Carbon tetrachloride	ND		1.0		ug/L			09/19/17 01:16	
Chlorobenzene	ND		1.0		ug/L			09/19/17 01:16	
Chlorodibromomethane	ND		1.0	0.32	-			09/19/17 01:16	
Chloroethane	ND		1.0		ug/L			09/19/17 01:16	
Chloroform	ND		1.0		ug/L			09/19/17 01:16	
Chloromethane	ND		1.0		ug/L			09/19/17 01:16	
cis-1,2-Dichloroethene	1.2		1.0		ug/L			09/19/17 01:16	
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/19/17 01:16	
Cyclohexane	ND		1.0	0.18	-			09/19/17 01:16	
Dichlorodifluoromethane	ND		1.0	0.68	-			09/19/17 01:16	
Ethylbenzene	ND		1.0		ug/L			09/19/17 01:16	
Isopropylbenzene	ND		1.0	0.79	-			09/19/17 01:16	
Methyl acetate	ND		1.3		ug/L			09/19/17 01:16	
Methyl tert-butyl ether	ND		1.0		ug/L			09/19/17 01:16	
Methylcyclohexane	ND		1.0		ug/L			09/19/17 01:16	
Methylene Chloride	ND		1.0		ug/L			09/19/17 01:16	
Styrene	ND		1.0		ug/L			09/19/17 01:16	
Tetrachloroethene	ND		1.0		ug/L			09/19/17 01:16	
Toluene	ND		1.0		ug/L			09/19/17 01:16	
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/19/17 01:16	
trans-1,3-Dichloropropene	ND		1.0		ug/L			09/19/17 01:16	
Trichloroethene	ND		1.0		ug/L			09/19/17 01:16	
Trichlorofluoromethane	ND		1.0		ug/L			09/19/17 01:16	
Vinyl chloride	1.4		1.0		ug/L			09/19/17 01:16	
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 01:16	

TestAmerica Buffalo

3

5

7

10

12

14

15

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Client Sample ID: X-1 091217

TestAmerica Job ID: 480-124014-1

Lab Sample ID: 480-124014-7

Matrix: Water

Date Collected: 09/12/17 00:00 Date Received: 09/12/17 17:20

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	77 - 120		09/19/17 01:16	1
Toluene-d8 (Surr)	99	80 - 120		09/19/17 01:16	1
4-Bromofluorobenzene (Surr)	97	73 - 120		09/19/17 01:16	1
Dibromofluoromethane (Surr)	102	75 - 123		09/19/17 01:16	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	184		5.0	2.8	mg/L			09/18/17 15:14	10
Sulfate	269		20.0	3.5	mg/L			09/18/17 15:14	10
Alkalinity, Bicarbonate	320	В	40.0	16.0	mg/L			09/13/17 16:49	4
Nitrate as N	ND		0.050	0.020	mg/L			09/13/17 15:49	1
Nitrite as N	ND		0.050	0.020	mg/L			09/13/17 15:49	1
Sulfide	0.53	н	0.10	0.050	ma/L			09/19/17 15:30	1

General Chemistry - Dissolve	d								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	4.2	В	1.0	0.43	mg/L			09/14/17 19:01	1
DOC Result 1	4.2	В	1.0	0.43	mg/L			09/14/17 19:01	1
DOC Result 2	4.1	В	1.0	0.43	mg/L			09/14/17 19:01	1
Dissolved Organic CarbonDuplicate	4.2	В	1.0	0.43	mg/L			09/14/17 19:01	1

Client Sample ID: QC TRIP BLANK

Date Collected: 09/12/17 00:00

Lab Sample ID: 480-124014-8

Matrix: Water

Date Collected: 09/12/17 00:00
Date Received: 09/12/17 17:20

Analyte	Result Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82 u	ug/L			09/19/17 01:39	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 u	ug/L			09/19/17 01:39	1
1,1,2-Trichloroethane	ND	1.0	0.23 u	ug/L			09/19/17 01:39	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31 u	ug/L			09/19/17 01:39	1
1,1-Dichloroethane	ND	1.0	0.38 u	ug/L			09/19/17 01:39	1
1,1-Dichloroethene	ND	1.0	0.29 u	ug/L			09/19/17 01:39	1
1,2,4-Trichlorobenzene	ND	1.0	0.41 u	ug/L			09/19/17 01:39	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39 u	ug/L			09/19/17 01:39	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73 u	ug/L			09/19/17 01:39	1
1,2-Dichlorobenzene	ND	1.0	0.79 u	ug/L			09/19/17 01:39	1
1,2-Dichloroethane	ND	1.0	0.21 u	ug/L			09/19/17 01:39	1
1,2-Dichloropropane	ND	1.0	0.72 u	ug/L			09/19/17 01:39	1
1,3-Dichlorobenzene	ND	1.0	0.78 u	ug/L			09/19/17 01:39	1
1,4-Dichlorobenzene	ND	1.0	0.84 u	ug/L			09/19/17 01:39	1
2-Hexanone	ND	5.0	1.2 u	ug/L			09/19/17 01:39	1
2-Butanone (MEK)	ND	10	1.3 u	ug/L			09/19/17 01:39	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1 u	ug/L			09/19/17 01:39	1
Acetone	ND	10	3.0 u	ug/L			09/19/17 01:39	1
Benzene	ND	1.0	0.41 u	ug/L			09/19/17 01:39	1
Bromodichloromethane	ND	1.0	0.39 u	ug/L			09/19/17 01:39	1
Bromoform	ND	1.0	0.26 u	ug/L			09/19/17 01:39	1
Bromomethane	ND	1.0	0.69 u	ug/L			09/19/17 01:39	1
Carbon disulfide	ND	1.0	0.19 u	ug/L			09/19/17 01:39	1

TestAmerica Buffalo

Page 17 of 36

2

3

5

7

9

1 1

12

14

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Project/Site. Forest Gleri Morittoring

Client Sample ID: QC TRIP BLANK

Date Collected: 09/12/17 00:00 Date Received: 09/12/17 17:20

Dibromofluoromethane (Surr)

Lab Sample ID: 480-124014-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/19/17 01:39	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/19/17 01:39	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/19/17 01:39	1
Chloroethane	ND		1.0	0.32	ug/L			09/19/17 01:39	1
Chloroform	ND		1.0	0.34	ug/L			09/19/17 01:39	1
Chloromethane	ND		1.0	0.35	ug/L			09/19/17 01:39	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/19/17 01:39	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/19/17 01:39	1
Cyclohexane	ND		1.0	0.18	ug/L			09/19/17 01:39	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/19/17 01:39	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/19/17 01:39	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/19/17 01:39	1
Methyl acetate	ND		1.3	1.3	ug/L			09/19/17 01:39	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/19/17 01:39	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/19/17 01:39	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/19/17 01:39	1
Styrene	ND		1.0	0.73	ug/L			09/19/17 01:39	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/19/17 01:39	1
Toluene	ND		1.0	0.51	ug/L			09/19/17 01:39	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/19/17 01:39	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/19/17 01:39	1
Trichloroethene	ND		1.0	0.46	ug/L			09/19/17 01:39	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/19/17 01:39	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/19/17 01:39	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/19/17 01:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 - 120			-		09/19/17 01:39	1
Toluene-d8 (Surr)	102		80 - 120					09/19/17 01:39	1
4-Bromofluorobenzene (Surr)	97		73 - 120					09/19/17 01:39	1

75 - 123

102

09/19/17 01:39

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		12DCE	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(80-120)	(73-120)	(75-123)
480-124014-1	MW 1S 091217	102	99	96	100
480-124014-2	MW 1D 091217	106	99	95	104
480-124014-3	MW 6D 091217	99	100	98	103
480-124014-4	MW 10S 091217	103	99	95	105
480-124014-5	MW 6DD 091217	100	99	96	101
480-124014-6	MW 10D 091217	104	99	93	104
480-124014-7	X-1 091217	107	99	97	102
480-124014-8	QC TRIP BLANK	106	102	97	102
LCS 480-377449/4	Lab Control Sample	102	102	97	104
MB 480-377449/6	Method Blank	102	103	98	101

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Job ID: 480-124014-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-377449/6

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB I					_	_		
Analyte		Qualifier	RL —		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0		ug/L			09/18/17 22:12	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			09/18/17 22:12	
1,1,2-Trichloroethane	ND		1.0		ug/L			09/18/17 22:12	
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			09/18/17 22:12	
1,1-Dichloroethane	ND		1.0		ug/L			09/18/17 22:12	
1,1-Dichloroethene	ND		1.0		ug/L			09/18/17 22:12	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/18/17 22:12	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	-			09/18/17 22:12	
1,2-Dibromoethane (EDB)	ND		1.0	0.73				09/18/17 22:12	
1,2-Dichlorobenzene	ND		1.0		ug/L			09/18/17 22:12	
1,2-Dichloroethane	ND		1.0	0.21	-			09/18/17 22:12	
1,2-Dichloropropane	ND		1.0		ug/L			09/18/17 22:12	
1,3-Dichlorobenzene	ND		1.0		ug/L			09/18/17 22:12	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/18/17 22:12	
2-Hexanone	ND		5.0		ug/L			09/18/17 22:12	
2-Butanone (MEK)	ND		10	1.3	ug/L			09/18/17 22:12	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/18/17 22:12	
Acetone	ND		10	3.0	ug/L			09/18/17 22:12	
Benzene	ND		1.0	0.41	ug/L			09/18/17 22:12	
Bromodichloromethane	ND		1.0	0.39	ug/L			09/18/17 22:12	
Bromoform	ND		1.0	0.26	ug/L			09/18/17 22:12	
Bromomethane	ND		1.0	0.69	ug/L			09/18/17 22:12	
Carbon disulfide	ND		1.0	0.19	ug/L			09/18/17 22:12	
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/18/17 22:12	
Chlorobenzene	ND		1.0	0.75	ug/L			09/18/17 22:12	
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/18/17 22:12	
Chloroethane	ND		1.0		ug/L			09/18/17 22:12	
Chloroform	ND		1.0	0.34	ug/L			09/18/17 22:12	
Chloromethane	ND		1.0		ug/L			09/18/17 22:12	
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/18/17 22:12	
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/18/17 22:12	
Cyclohexane	ND		1.0		ug/L			09/18/17 22:12	
Dichlorodifluoromethane	ND		1.0		ug/L			09/18/17 22:12	
Ethylbenzene	ND		1.0		ug/L			09/18/17 22:12	
Isopropylbenzene	ND		1.0	0.79	-			09/18/17 22:12	
Methyl acetate	ND		1.3		ug/L			09/18/17 22:12	
Methyl tert-butyl ether	ND		1.0		ug/L			09/18/17 22:12	
Methylcyclohexane	ND		1.0		ug/L			09/18/17 22:12	
Methylene Chloride	ND		1.0		ug/L			09/18/17 22:12	
Styrene	ND		1.0		ug/L			09/18/17 22:12	
Tetrachloroethene	ND		1.0		ug/L			09/18/17 22:12	
Toluene	ND		1.0		ug/L			09/18/17 22:12	
trans-1,2-Dichloroethene	ND		1.0		ug/L ug/L			09/18/17 22:12	
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			09/18/17 22:12	
Trichloroethene	ND ND		1.0					09/18/17 22:12	
Trichlorofluoromethane					ug/L ug/L			09/18/17 22:12	
	ND		1.0						
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			09/18/17 22:12 09/18/17 22:12	

TestAmerica Buffalo

Page 20 of 36

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	77 - 120		09/18/17 22:12	1
Toluene-d8 (Surr)	103	80 - 120		09/18/17 22:12	1
4-Bromofluorobenzene (Surr)	98	73 - 120		09/18/17 22:12	1
Dibromofluoromethane (Surr)	101	75 - 123		09/18/17 22:12	1

Lab Sample ID: LCS 480-377449/4

Matrix: Water

Client Sample ID	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 377449						
7 mary old Datom of 1 1 10	Spike	LCS L	cs		%Rec.	
Analyte	Added	Result C	ualifier Unit	D %Rec	Limits	
1,1,1-Trichloroethane	25.0	24.2	ug/L	97	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	23.9	ug/L	96	76 - 120	
1,1,2-Trichloroethane	25.0	25.7	ug/L	103	76 - 122	
1,1,2-Trichlorotrifluoroethane	25.0	25.1	ug/L	100	61 - 148	
1,1-Dichloroethane	25.0	25.0	ug/L	100	77 - 120	
1,1-Dichloroethene	25.0	23.2	ug/L	93	66 - 127	
1,2,4-Trichlorobenzene	25.0	24.9	ug/L	100	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	23.8	ug/L	95	56 - 134	
1,2-Dibromoethane (EDB)	25.0	24.6	ug/L	99	77 - 120	
1,2-Dichlorobenzene	25.0	25.0	ug/L	100	80 - 124	
1,2-Dichloroethane	25.0	25.6	ug/L	103	75 - 120	
1,2-Dichloropropane	25.0	25.3	ug/L	101	76 - 120	
1,3-Dichlorobenzene	25.0	25.1	ug/L	101	77 - 120	
1,4-Dichlorobenzene	25.0	24.7	ug/L	99	80 - 120	
2-Hexanone	125	128	ug/L	103	65 - 127	
2-Butanone (MEK)	125	131	ug/L	105	57 ₋ 140	
4-Methyl-2-pentanone (MIBK)	125	121	ug/L	97	71 - 125	
Acetone	125	148	ug/L	118	56 - 142	
Benzene	25.0	25.5	ug/L	102	71 - 124	
Bromodichloromethane	25.0	25.5	ug/L	102	80 - 122	
Bromoform	25.0	25.7	ug/L	103	61 - 132	
Bromomethane	25.0	22.2	ug/L	89	55 - 144	
Carbon disulfide	25.0	23.6	ug/L	95	59 ₋ 134	
Carbon tetrachloride	25.0	25.9	ug/L	104	72 - 134	
Chlorobenzene	25.0	25.0	ug/L	100	80 - 120	
Chlorodibromomethane	25.0	27.4	ug/L	109	75 - 125	
Chloroethane	25.0	24.9	ug/L	100	69 - 136	
Chloroform	25.0	24.7	ug/L	99	73 - 127	
Chloromethane	25.0	22.4	ug/L	90	68 - 124	
cis-1,2-Dichloroethene	25.0	25.0	ug/L	100	74 - 124	
cis-1,3-Dichloropropene	25.0	26.2	ug/L	105	74 - 124	
Cyclohexane	25.0	25.9	ug/L	104	59 ₋ 135	
Dichlorodifluoromethane	25.0	18.0	ug/L	72	59 ₋ 135	
Ethylbenzene	25.0	24.7	ug/L	99	77 - 123	
Isopropylbenzene	25.0	23.7	ug/L	95	77 - 122	
Methyl acetate	125	125	ug/L	100	74 - 133	
Methyl tert-butyl ether	25.0	25.1	ug/L	100	77 - 120	
Methylcyclohexane	25.0	25.4	ug/L	102	68 - 134	
Methylene Chloride	25.0	25.9	ug/L	103	75 - 124	
Styrene	25.0	24.8	ug/L	99	80 - 120	
Tetrachloroethene	25.0	25.8	ug/L	103	74 - 122	
Toluene	25.0	24.8	ug/L	99	80 - 122	
trans-1,2-Dichloroethene	25.0	25.3	ug/L	101	73 - 127	
trans-1,3-Dichloropropene	25.0	26.2	ug/L	105	80 - 120	
• •			•			

TestAmerica Buffalo

9/21/2017

Page 21 of 36

TestAmerica Job ID: 480-124014-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-377449/4

Matrix: Water

Analyte Trichloroethene Trichlorofluoromethane

Vinyl chloride

Analysis Batch: 377449

Client Sample ID:	: Lab Control Sample
	Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
 25.0	25.1		ug/L		100	74 - 123	
25.0	24.4		ug/L		98	62 - 150	
25.0	23.9		ua/L		96	65 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		77 - 120
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Dibromofluoromethane (Surr)	104		75 - 123

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-377327/28

Matrix: Water

Analysis Batch: 377327

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			09/18/17 14:49	1
Sulfate	ND		2.0	0.35	mg/L			09/18/17 14:49	1
 -									

Lab Sample ID: MB 480-377327/4

Matrix: Water

Analysis Batch: 377327

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			09/18/17 11:34	1
Sulfate	ND		2.0	0.35	mg/L			09/18/17 11:34	1

Lab Sample ID: LCS 480-377327/27

Matrix: Water

Analysis Batch: 377327

	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	 50.0	49.55		mg/L		99	90 - 110		_
Sulfate	50.0	47.03		mg/L		94	90 - 110		

Lab Sample ID: LCS 480-377327/3

Matrix: Water

Analysis Batch: 377327

indiyolo Datoli. Or rozr								
-	Spike	LCS	LCS				%Rec.	
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
hloride	50.0	49.55		mg/L		99	90 - 110	
ulfate	50.0	47.06		ma/L		94	90 - 110	

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 480-124014-4 MS Client Sample ID: MW 10S 091217 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 377327

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	153		500	653.1		mg/L		100	81 - 120	
Sulfate	350		500	810.2		mg/L		92	80 - 120	

Method: 310.2 ASP - Alkalinity - Colorimetric

Lab Sample ID: MB 480-376712/30 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 376712

	MB	MR									
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac	
Alkalinity, Bicarbonate	5.51	J	10.0	4.0	mg/L				09/13/17 16:39	1	

Lab Sample ID: MB 480-376712/42 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 376712

MD MD

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	7.62	J	10.0	4.0	mg/L		_		09/13/17 16:49	1

Lab Sample ID: MB 480-376712/60 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 376712

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	8.00	J	10.0	4.0	mg/L			09/13/17 16:57	1

Lab Sample ID: MB 480-376712/68 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 376712

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	7.12	J	10.0	4.0	mg/L			09/13/17 17:10	1

Lab Sample ID: 480-124014-2 DU Client Sample ID: MW 1D 091217 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 376712

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Alkalinity, Bicarbonate	311	В	321.9		mg/L			20

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 490-461144/2 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 461144

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Sulfide ND 0.10 0.050 mg/L 09/19/17 15:30

TestAmerica Buffalo

9/21/2017

Page 23 of 36

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Method: SM 4500 S2 D - Sulfide, Total (Continued)

Lab Sample ID: LCS 490-461144/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 461144

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfide	 1.00	0.940		mg/L		94	90 - 110	

Method: SM 5310C - Organic Carbon, Dissolved (DOC)

Lab Sample ID: MB 480-377219/3 **Client Sample ID: Method Blank Matrix: Water Prep Type: Dissolved**

Analysis Batch: 377219

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	0.515	J	1.0	0.43	mg/L			09/14/17 16:49	1
DOC Result 1	0.501	J	1.0	0.43	mg/L			09/14/17 16:49	1
DOC Result 2	0.528	J	1.0	0.43	mg/L			09/14/17 16:49	1
Dissolved Organic Carbon - Duplicate	0.515	J	1.0	0.43	mg/L			09/14/17 16:49	1
	Dissolved Organic Carbon DOC Result 1 DOC Result 2	Analyte Result Dissolved Organic Carbon 0.515 DOC Result 1 0.501 DOC Result 2 0.528	Dissolved Organic Carbon 0.515 J DOC Result 1 0.501 J DOC Result 2 0.528 J	Analyte Result Dissolved Organic Carbon Qualifier Output RL Output Dissolved Organic Carbon 0.515 J J 1.0 1.0 DOC Result 1 0.501 J 1.0 1.0 DOC Result 2 0.528 J 1.0 1.0	Analyte Result Qualifier RL Qualifier MDL RL Qualifier Dissolved Organic Carbon 0.515 J 1.0 0.43 DOC Result 1 0.501 J 1.0 0.43 DOC Result 2 0.528 J 1.0 0.43	Analyte Result Dissolved Organic Carbon Qualifier RL MDL Unit Dissolved Organic Carbon 0.515 J 1.0 0.43 mg/L DOC Result 1 0.501 J 1.0 0.43 mg/L DOC Result 2 0.528 J 1.0 0.43 mg/L	Analyte Result Dissolved Organic Carbon Qualifier RL Dissolved Organic Carbon MDL Unit Dissolved Organic Carbon Description DOC Result 1 0.501 J 1.0 0.43 mg/L DOC Result 2 0.528 J 1.0 0.43 mg/L	Analyte Result Dissolved Organic Carbon Qualifier RL DISCONDING MDL Unit DISCONDING D DISCONDING Prepared DOC Result 1 0.501 J 1.0 0.43 mg/L mg/L DOC Result 2 0.528 J 1.0 0.43 mg/L mg/L DOC Result 2 0.528 J 1.0 0.43 mg/L mg/L DOC Result 2 0.528 J 0.528 J 0.43 mg/L mg/L 0.43 m	Analyte Result Dissolved Organic Carbon Qualifier RL Dissolved Organic Carbon MDL Unit MDL Unit MDL Unit MDL MIT MIT MIT MIT MIT MIT MIT MIT MIT MIT

Lab Sample ID: LCS 480-377219/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Dissolved**

Analysis Batch: 377219

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dissolved Organic Carbon	60.0	59.76		mg/L		100	90 - 110	
DOC Result 1	60.0	59.11		mg/L		99	90 - 110	
DOC Result 2	60.0	60.40		mg/L		101	90 - 110	
Dissolved Organic Carbon -	60.0	59.76		mg/L		100	90 - 110	
Duplicate								

TestAmerica Buffalo

TestAmerica Job ID: 480-124014-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

GC/MS VOA

Analysis Batch: 377449

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124014-1	MW 1S 091217	Total/NA	Water	8260C	
480-124014-2	MW 1D 091217	Total/NA	Water	8260C	
480-124014-3	MW 6D 091217	Total/NA	Water	8260C	
480-124014-4	MW 10S 091217	Total/NA	Water	8260C	
480-124014-5	MW 6DD 091217	Total/NA	Water	8260C	
480-124014-6	MW 10D 091217	Total/NA	Water	8260C	
480-124014-7	X-1 091217	Total/NA	Water	8260C	
480-124014-8	QC TRIP BLANK	Total/NA	Water	8260C	
MB 480-377449/6	Method Blank	Total/NA	Water	8260C	
LCS 480-377449/4	Lab Control Sample	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 376706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124014-1	MW 1S 091217	Total/NA	Water	353.2	_
480-124014-2	MW 1D 091217	Total/NA	Water	353.2	
480-124014-3	MW 6D 091217	Total/NA	Water	353.2	
480-124014-4	MW 10S 091217	Total/NA	Water	353.2	
480-124014-5	MW 6DD 091217	Total/NA	Water	353.2	
480-124014-6	MW 10D 091217	Total/NA	Water	353.2	
480-124014-7	X-1 091217	Total/NA	Water	353.2	

Analysis Batch: 376707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124014-1	MW 1S 091217	Total/NA	Water	353.2	
480-124014-2	MW 1D 091217	Total/NA	Water	353.2	
480-124014-3	MW 6D 091217	Total/NA	Water	353.2	
480-124014-4	MW 10S 091217	Total/NA	Water	353.2	
480-124014-5	MW 6DD 091217	Total/NA	Water	353.2	
480-124014-6	MW 10D 091217	Total/NA	Water	353.2	
480-124014-7	X-1 091217	Total/NA	Water	353.2	

Analysis Batch: 376712

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124014-1	MW 1S 091217	Total/NA	Water	310.2_ASP	-
480-124014-2	MW 1D 091217	Total/NA	Water	310.2_ASP	
480-124014-3	MW 6D 091217	Total/NA	Water	310.2_ASP	
480-124014-4	MW 10S 091217	Total/NA	Water	310.2_ASP	
480-124014-5	MW 6DD 091217	Total/NA	Water	310.2_ASP	
480-124014-6	MW 10D 091217	Total/NA	Water	310.2_ASP	
480-124014-7	X-1 091217	Total/NA	Water	310.2_ASP	
MB 480-376712/30	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-376712/42	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-376712/60	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-376712/68	Method Blank	Total/NA	Water	310.2_ASP	
LCS 480-376712/31	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-376712/43	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-376712/61	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-376712/69	Lab Control Sample	Total/NA	Water	310.2 ASP	

TestAmerica Buffalo

Page 25 of 36

2

3

0

0

9

10

16

1 4

15

. .

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

General Chemistry (Continued)

Analysis Batch: 376712 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124014-2 MS	MW 1D 091217	Total/NA	Water	310.2_ASP	
480-124014-2 DU	MW 1D 091217	Total/NA	Water	310.2_ASP	

Analysis Batch: 377219

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124014-1	MW 1S 091217	Dissolved	Water	SM 5310C	
480-124014-2	MW 1D 091217	Dissolved	Water	SM 5310C	
480-124014-3	MW 6D 091217	Dissolved	Water	SM 5310C	
480-124014-4	MW 10S 091217	Dissolved	Water	SM 5310C	
480-124014-5	MW 6DD 091217	Dissolved	Water	SM 5310C	
480-124014-6	MW 10D 091217	Dissolved	Water	SM 5310C	
480-124014-7	X-1 091217	Dissolved	Water	SM 5310C	
MB 480-377219/3	Method Blank	Dissolved	Water	SM 5310C	
LCS 480-377219/4	Lab Control Sample	Dissolved	Water	SM 5310C	

Analysis Batch: 377327

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124014-1	MW 1S 091217	Total/NA	Water	300.0	
480-124014-2	MW 1D 091217	Total/NA	Water	300.0	
480-124014-3	MW 6D 091217	Total/NA	Water	300.0	
480-124014-4	MW 10S 091217	Total/NA	Water	300.0	
480-124014-5	MW 6DD 091217	Total/NA	Water	300.0	
480-124014-6	MW 10D 091217	Total/NA	Water	300.0	
480-124014-7	X-1 091217	Total/NA	Water	300.0	
MB 480-377327/28	Method Blank	Total/NA	Water	300.0	
MB 480-377327/4	Method Blank	Total/NA	Water	300.0	
LCS 480-377327/27	Lab Control Sample	Total/NA	Water	300.0	
LCS 480-377327/3	Lab Control Sample	Total/NA	Water	300.0	
480-124014-4 MS	MW 10S 091217	Total/NA	Water	300.0	

Analysis Batch: 461144

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124014-1	MW 1S 091217	Total/NA	Water	SM 4500 S2 D	
480-124014-2	MW 1D 091217	Total/NA	Water	SM 4500 S2 D	
480-124014-3	MW 6D 091217	Total/NA	Water	SM 4500 S2 D	
480-124014-4	MW 10S 091217	Total/NA	Water	SM 4500 S2 D	
480-124014-5	MW 6DD 091217	Total/NA	Water	SM 4500 S2 D	
480-124014-6	MW 10D 091217	Total/NA	Water	SM 4500 S2 D	
480-124014-7	X-1 091217	Total/NA	Water	SM 4500 S2 D	
MB 490-461144/2	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 490-461144/3	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	

TestAmerica Buffalo

Page 26 of 36

TestAmerica Job ID: 480-124014-1

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-124014-1

Matrix: Water

Client Sample ID: MW 1S 091217 Date Collected: 09/12/17 10:30

Date Received: 09/12/17 17:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377449	09/18/17 22:57	NEA	TAL BUF
Total/NA	Analysis	300.0		20	377327	09/18/17 13:44	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	376712	09/13/17 16:39	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	376706	09/13/17 15:43	LED	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:43	LED	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377219	09/14/17 17:34	EKB	TAL BUF

Lab Sample ID: 480-124014-2 Client Sample ID: MW 1D 091217 **Matrix: Water**

Date Collected: 09/12/17 10:52

Date Received: 09/12/17 17:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377449	09/18/17 23:20	NEA	TAL BUF
Total/NA	Analysis	300.0		10	377327	09/18/17 13:52	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	376712	09/13/17 17:13	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	376706	09/13/17 15:44	LED	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:44	LED	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377219	09/14/17 17:49	EKB	TAL BUF

Lab Sample ID: 480-124014-3 Client Sample ID: MW 6D 091217

Date Collected: 09/12/17 13:02

Date Received: 09/12/17 17:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377449	09/18/17 23:43	NEA	TAL BUF
Total/NA	Analysis	300.0		10	377327	09/18/17 14:00	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	376712	09/13/17 17:13	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	376706	09/13/17 15:45	LED	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:45	LED	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377219	09/14/17 18:03	EKB	TAL BUF

Client Sample ID: MW 10S 091217

Lab Sample ID: 480-124014-4 Date Collected: 09/12/17 14:10

Date Received: 09/12/17 17:20

Γ	-	Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260C		1	377449	09/19/17 00:07	NEA	TAL BUF

Page 27 of 36

Matrix: Water

TestAmerica Buffalo

Matrix: Water

TestAmerica Job ID: 480-124014-1

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-124014-4

Client Sample ID: MW 10S 091217 Date Collected: 09/12/17 14:10

Matrix: Water

Date Received: 09/12/17 17:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	377327	09/18/17 14:08	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	376712	09/13/17 17:13	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	376706	09/13/17 15:46	LED	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:46	LED	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377219	09/14/17 18:18	EKB	TAL BUF

Client Sample ID: MW 6DD 091217 Lab Sample ID: 480-124014-5

Date Collected: 09/12/17 15:25 **Matrix: Water**

Date Received: 09/12/17 17:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377449	09/19/17 00:30	NEA	TAL BUF
Total/NA	Analysis	300.0		10	377327	09/18/17 14:57	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	376712	09/13/17 17:13	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	376706	09/13/17 15:47	LED	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:47	LED	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377219	09/14/17 18:32	EKB	TAL BUF

Lab Sample ID: 480-124014-6 Client Sample ID: MW 10D 091217

Date Collected: 09/12/17 15:30

Date Received: 09/12/17 17:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	_		377449	09/19/17 00:53	NEA	TAL BUF
Total/NA	Analysis	300.0		10	377327	09/18/17 15:05	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	376712	09/13/17 17:17	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	376706	09/13/17 15:48	LED	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:48	LED	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377219	09/14/17 18:47	EKB	TAL BUF

Lab Sample ID: 480-124014-7 Client Sample ID: X-1 091217

Date Collected: 09/12/17 00:00 Date Received: 09/12/17 17:20

Batch Batch **Dilution** Batch Prepared **Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260C Analysis 377449 09/19/17 01:16 NEA TAL BUF

Total/NA Analysis 300.0 10 377327 09/18/17 15:14 RJS TAL BUF TAL BUF Total/NA Analysis 310.2 ASP 376712 09/13/17 16:49 ALZ 4

TestAmerica Buffalo

Page 28 of 36

Matrix: Water

Lab Chronicle

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	353.2		1	376706	09/13/17 15:49	LED	TAL BUF
Total/NA	Analysis	353.2		1	376707	09/13/17 15:49	LED	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377219	09/14/17 19:01	EKB	TAL BUF

Client Sample ID: QC TRIP BLANK

Lab Sample ID: 480-124014-8

Date Collected: 09/12/17 00:00 **Matrix: Water** Date Received: 09/12/17 17:20

Batch Dilution Batch Batch Prepared **Prep Type** Method Number or Analyzed Type Run **Factor** Analyst Lab Total/NA Analysis 8260C 377449 09/19/17 01:39 NEA TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
lew York	NELAP		2	10026	03-31-18
The following analytes	are included in this repor	rt, but accreditation/o	certification is not offe	ered by the governing auth	ority:
Analysis Method	Prep Method	Matrix	Analyt	te	
SM 5310C		Water	Dissol	ved Organic Carbon - Dupl	icate
		Motor	DOC I	Result 1	
SM 5310C		Water	DOC	Result 1	

Laboratory: TestAmerica Nashville

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	11342	03-31-18

TestAmerica Buffalo

3

6

9

10

12

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
310.2_ASP	Alkalinity - Colorimetric	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
SM 4500 S2 D	Sulfide, Total	SM	TAL NSH
SM 5310C	Organic Carbon, Dissolved (DOC)	SM	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Buffalo

2

3

6

9

12

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-124014-1	MW 1S 091217	Water	09/12/17 10:30 09/12/17 17:
480-124014-2	MW 1D 091217	Water	09/12/17 10:52 09/12/17 17:
480-124014-3	MW 6D 091217	Water	09/12/17 13:02 09/12/17 17:
480-124014-4	MW 10S 091217	Water	09/12/17 14:10 09/12/17 17:
480-124014-5	MW 6DD 091217	Water	09/12/17 15:25 09/12/17 17:
480-124014-6	MW 10D 091217	Water	09/12/17 15:30 09/12/17 17:
480-124014-7	X-1 091217	Water	09/12/17 00:00 09/12/17 17:
480-124014-8	QC TRIP BLANK	Water	09/12/17 00:00 09/12/17 17:

4

6

8

10

11

13

14

Quantitation Limit Exceptions Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124014-1

Project/Site: Forest Gien Monitoring

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

MethodMatrixAnalyteUnitsClient RLLab PQL8260CWaterMethyl acetateug/L1.32.5

2

4

5

0

17

8

10

12

4.4

15

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-5600 Fax (716) 691-7991	0	hain o	ef Cus	Chain of Custody Record	ecord					THE LEADER IN ENVI	ENVIRONMENTAL TESTING
Client Information	Sampler.	Keern he		Lab PM: Johnson,	f: son, Orlette	S		Carrier Tr	Carrier Tracking No(s):	COC No: 480-101979-22905.	905.2
Client Contact: Mr. Yuri Veliz	Phone: 73	7-130		E-Mail:	E-Mail: orlette.johnson@testamericainc.com	gtestame	ricainc.cc	E		Page: Page 2 of 2	
Company: O'Brien & Gere Inc of North America							Analysis	rsis Requested	_		
Address: 333 West Washington St. PO BOX 4873	Due Date Requeste	.;								Preservation Codes:	des:
City: East Syracuse	TAT Requested (days):	ys):			April 1900 Otto Salta					B-NaOH C-Zn Act	7.500
State, Zip: NY, 13221							uo			D - Nitric / E - NaHS/	
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#: 11700485				(0		c Carb			G - Amch H - Ascor	drate
Email: Yuri.Veliz@obg.com	,# OM				0.000	olaG	Organi			J. DI Wa	480-124014 COC
Project Name: Forest Glen Monitoring	Project #: 48002808				10 88	trate_	pavlo	əpiliné			Z - other (specify)
Site:	SSOW#:				y) as			S IstoT		of cor	
Samula Idantification	Sample Date	Sample	Sample Type (C=comp,	Matrix (wwater, S=solid, Owwasteloll,	ield Filtered : erform MS/M sector - TCL list	100.0_28D - CI,	SM5310_DOC_C	- d_s2_00_sm		Total Number	Special Instructions/Note:
oampie identification	Sample Date	X	Preserva	Preservation Code:	X	12	12	CB			instruction structure.
MW 15 091217	9-12-17	1030	3	Water	W	-	2	_			
Aw 10 091217	9-12-17	45,01	9	Water	~	-	~	-			
	9-12-19	1302	9	Water	W	1	-6	-			
MW 105 OGIAIT	4-13-14	1430	9	Water	~	1 3	7	1			
mw 600 091217	9-13-17	15:35	9	Water	W	1 3	10	1 1			
1	9-12-17	1530	9	Water	3	1 3	4	1			
115190 1-X	9-13-17	(9	Water	8	1	7				
ac TRY BLANK				Water	j						
				Water							
	-				-	1					
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B Unknown		Radiological		Sampl	le Disposal (A f Return To Client	al (A fer	Sample Disposal (A fee may be assessed if samples Return To Client	d if samples ar By Lab	are retained longer than 1 month,	1 month) Months
sted: I, II, III, IV, Other (specify)					Specia	Instructi	ons/QC F	Special Instructions/QC Requirements:			
Empty Kit Relinquished by:		Date: /			Time:		9	THE STREET	Method of Shipment:		
Relinguished by:	13-	1/11	7:30	$\mathcal{S}_{\mathcal{O}}^{company}\mathcal{B}$	S. L.	Received by:	1	1	DecTine	1/17 1710	Company BUF.
Relinquished by:	Date/Time:			Company	Rec	Received by:			Date/Time		Company
Relinquished by:	Date/Time:			Company	₩.	Received by:			Date/Time	U	Company
Custody Seals Intact: Custody Seal No.:					S	oler Tempe	ature(s) °C	Cooler Temperature(s) °C and Other Remarks:	5,5	3.3	41

TestAmerica

TestAmerica Buffalo

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-124014-1

Login Number: 124014 List Source: TestAmerica Buffalo

List Number: 1

Creator: Conway, Curtis R

ordatori commaj, carno it		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

3

4

6

8

10

12

. .

15

Client: O'Brien & Gere Inc of North America

Job Number: 480-124014-1

List Source: TestAmerica Nashville
List Number: 2
List Creation: 09/15/17 09:25 AM

Creator: Dawson, Keith M

Creator: Dawson, Keith M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-124182-1

Client Project/Site: Forest Glen Monitoring

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Authorized for release by: 9/26/2017 7:29:28 AM

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Surrogate Summary	26
QC Sample Results	27
QC Association Summary	36
Lab Chronicle	39
Certification Summary	43
Method Summary	44
Sample Summary	45
Detection Limit Exceptions Summary	46
Chain of Custody	47
Receipt Checklists	52

12

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

IVIDL	WICHIOG DCICCION LIMIT
ML	Minimum Level (Dioxin)
NC:	Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 53 9/26/2017

Case Narrative

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Job ID: 480-124182-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-124182-1

Receipt

The samples were received on 9/14/2017 12:38 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.1° C and 2.4° C.

GC/MS VOA

Method(s) 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 480-377677 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. MW 8S 091317 (480-124182-3[MSD]) and MW 8S 091317 (480-124182-3[MSD]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method(s) 300.0: The following samples was diluted to bring the concentration of target analytes within the calibration range: MW 8D 091317 (480-124182-1), MW 8DD 091317 (480-124182-2), MW 7DD 091317 (480-124182-4), MW 5S 091417 (480-124182-7), MW 4S 091417 (480-124182-8), MW 5D 091417 (480-124182-9), MW 4D 091417 (480-124182-10) and MW 6S 091417 (480-124182-12). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following samples was reported with elevated reporting limits for all analytes: MW 8S 091317 (480-124182-3). MW 7D 091317 (480-124182-5) and MW 7S 091317 (480-124182-6). The sample was analyzed at a dilution based on screening results.

Method(s) 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW 8DD 091317 (480-124182-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 353.2: The following samples was filtered prior to analysis due to color, turbidity and/or particulates: MW 8D 091317 (480-124182-1). MW 8DD 091317 (480-124182-2). MW 7DD 091317 (480-124182-4) and MW 7S 091317 (480-124182-6).

Method(s) 353.2: The following samples was analyzed outside of analytical holding time due to analyst error: MW 8D 091317 (480-124182-1) and MW 8DD 091317 (480-124182-2).

Method(s) Nitrate by calc: The following samples was analyzed outside of analytical holding time due to analyst error. MW 8D 091317 (480-124182-1) and MW 8DD 091317 (480-124182-2).

Method(s) 353.2: The following samples was analyzed outside of analytical holding time due to analyst error: MW 8D 091317 (480-124182-1) and MW 8DD 091317 (480-124182-2).

Method(s) SM 4500 S2 D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-461144 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Lab Sample ID: 480-124182-1

Lab Sample ID: 480-124182-2

Lab Sample ID: 480-124182-3

Lab Sample ID: 480-124182-4

Lab Sample ID: 480-124182-5

Client Sample ID: MW 8D 091317

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.75	J	1.0	0.38	ug/L	1	8260C	Total/NA
Methyl tert-butyl ether	0.27	J	1.0	0.16	ug/L	1	8260C	Total/NA
Chloride	369		5.0	2.8	mg/L	10	300.0	Total/NA
Sulfate	226		20.0	3.5	mg/L	10	300.0	Total/NA
Alkalinity, Bicarbonate	292	В	40.0	16.0	mg/L	4	310.2_ASP	Total/NA
Sulfide	0.13		0.10	0.050	mg/L	1	SM 4500 S2 D	Total/NA
Dissolved Organic Carbon - Duplicate	3.9	В	1.0	0.43	mg/L	1	SM 5310C	Dissolved

Client Sample ID: MW 8DD 091317

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Metho	d	Prep Type
Chloride	110		5.0	2.8	mg/L	10	300.0		Total/NA
Sulfate	1050		40.0	7.0	mg/L	20	300.0		Total/NA
Alkalinity, Bicarbonate	247	В	30.0	12.0	mg/L	3	310.2_	ASP	Total/NA
Sulfide	1.8		0.10	0.050	mg/L	1	SM 45	00 S2 D	Total/NA
Dissolved Organic Carbon - Duplicate	4.1	В	1.0	0.43	mg/L	1	SM 53	10C	Dissolved

Client Sample ID: MW 8S 091317

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.0		1.0	0.81	ug/L	1	_	8260C	Total/NA
Tetrachloroethene	0.74	J	1.0	0.36	ug/L	1		8260C	Total/NA
Trichloroethene	3.0		1.0	0.46	ug/L	1		8260C	Total/NA
Chloride	6.5		1.0	0.56	mg/L	2		300.0	Total/NA
Sulfate	61.7		4.0	0.70	mg/L	2		300.0	Total/NA
Alkalinity, Bicarbonate	205	В	30.0	12.0	mg/L	3		310.2_ASP	Total/NA
Nitrate as N	0.091		0.050	0.020	mg/L	1		353.2	Total/NA
Dissolved Organic Carbon - Duplicate	2.6	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 7DD 091317

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	1.2		1.0	0.81	ug/L		8260C	Total/NA
Chloride	42.2		2.5	1.4	mg/L	5	300.0	Total/NA
Sulfate	400		10.0	1.7	mg/L	5	300.0	Total/NA
Alkalinity, Bicarbonate	240	В	30.0	12.0	mg/L	3	310.2_ASP	Total/NA
Nitrate as N	0.033	J	0.050	0.020	mg/L	1	353.2	Total/NA
Sulfide	0.090	J	0.10	0.050	mg/L	1	SM 4500 S2 D	Total/NA
Dissolved Organic Carbon - Duplicate	5.4	В	1.0	0.43	mg/L	1	SM 5310C	Dissolved

Client Sample ID: MW 7D 091317

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	0.61	J	1.0	0.36	ug/L	1	_	8260C	Total/NA
Trichloroethene	1.6		1.0	0.46	ug/L	1		8260C	Total/NA
Chloride	24.7		1.0	0.56	mg/L	2		300.0	Total/NA
Sulfate	60.6		4.0	0.70	mg/L	2		300.0	Total/NA
Alkalinity, Bicarbonate	235	В	30.0	12.0	mg/L	3		310.2_ASP	Total/NA
Nitrate as N	0.57		0.050	0.020	mg/L	1		353.2	Total/NA
Dissolved Organic Carbon - Duplicate	4.1	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

9/26/2017

Page 5 of 53

2

3

4

6

8

9

11

12

4

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 7S 091317

Client Sample ID: MW 5S 091417

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	0.66	J	1.0	0.36	ug/L		_	8260C	Total/NA
Trichloroethene	1.8		1.0	0.46	ug/L	1		8260C	Total/NA
Chloride	35.2		1.0	0.56	mg/L	2		300.0	Total/NA
Sulfate	79.4		4.0	0.70	mg/L	2		300.0	Total/NA
Alkalinity, Bicarbonate	219	В	30.0	12.0	mg/L	3		310.2_ASP	Total/NA
Nitrate as N	0.67		0.050	0.020	mg/L	1		353.2	Total/NA
Dissolved Organic Carbon - Duplicate	4.0	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Lab Sample ID: 480-124182-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	12		1.0	0.82	ug/L		_	8260C	Total/NA
1,1-Dichloroethane	92		1.0	0.38	ug/L	1		8260C	Total/NA
1,1-Dichloroethene	5.8		1.0	0.29	ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	88		1.0	0.81	ug/L	1		8260C	Total/NA
Tetrachloroethene	0.51	J	1.0	0.36	ug/L	1		8260C	Total/NA
trans-1,2-Dichloroethene	3.2		1.0	0.90	ug/L	1		8260C	Total/NA
Trichloroethene	33		1.0	0.46	ug/L	1		8260C	Total/NA
Vinyl chloride	2.1		1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	12.2		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	326		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	442	В	50.0	20.0	mg/L	5		310.2_ASP	Total/NA
Nitrate as N	0.032	J	0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.10		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon - Duplicate	4.5	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 4S 091417 Lab Sample ID: 480-124182-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	92.2		2.5	1.4	mg/L	5	_	300.0	Total/NA
Sulfate	459		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	442	В	50.0	20.0	mg/L	5		310.2_ASP	Total/NA
Nitrate as N	0.034	J	0.050	0.020	mg/L	1		353.2	Total/NA
Sulfide	0.14		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon - Duplicate	7.1	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 5D 091417 Lab Sample ID: 480-124182-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.51	J	1.0	0.38	ug/L	1	_	8260C	Total/NA
Methyl tert-butyl ether	0.38	J	1.0	0.16	ug/L	1		8260C	Total/NA
Chloride	193		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	200		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	327	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	0.070	J	0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon - Duplicate	5.2	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

Client Sample ID: MW 4D 091417 Lab Sample ID: 480-124182-10

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 6 of 53

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

2

Client Sample ID: MW 4D 091417 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methyl tert-butyl ether	0.46	J	1.0	0.16	ug/L		_	8260C	Total/NA
Chloride	245		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	299		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	327	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Sulfide	0.66		0.10	0.050	mg/L	1		SM 4500 S2 D	Total/NA
Dissolved Organic Carbon - Duplicate	3.6	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

5

Client Sample ID: MW 6S 091417

Lab Sample ID: 480-124182-12

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.3		10	3.0	ug/L		_	8260C	Total/NA
cis-1,2-Dichloroethene	10		1.0	0.81	ug/L	1		8260C	Total/NA
Vinyl chloride	3.8		1.0	0.90	ug/L	1		8260C	Total/NA
Chloride	39.8		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	287		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Bicarbonate	379 I	В	40.0	16.0	mg/L	4		310.2_ASP	Total/NA
Dissolved Organic Carbon - Duplicate	6.3 I	В	1.0	0.43	mg/L	1		SM 5310C	Dissolved

10

Client Sample ID: QC TRIP BLANK

Lab Sample ID: 480-124182-13

No Detections.

This Detection Summary does not include radiochemical test results.

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-124182-1

Project/Site: Forest Glen Monitoring

Client Sample ID: MW 8D 091317

Date Collected: 09/13/17 09:05 Date Received: 09/14/17 12:38 Lab Sample ID: 480-124182-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			09/20/17 00:04	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/20/17 00:04	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/20/17 00:04	
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/20/17 00:04	
1,1-Dichloroethane	0.75 J	1.0	0.38	ug/L			09/20/17 00:04	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/20/17 00:04	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/20/17 00:04	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/20/17 00:04	
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/20/17 00:04	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/20/17 00:04	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/20/17 00:04	
1,2-Dichloropropane	ND	1.0	0.72	-			09/20/17 00:04	
1,3-Dichlorobenzene	ND	1.0	0.78	-			09/20/17 00:04	
1,4-Dichlorobenzene	ND	1.0	0.84	-			09/20/17 00:04	
2-Hexanone	ND	5.0		ug/L			09/20/17 00:04	
2-Butanone (MEK)	ND	10		ug/L			09/20/17 00:04	
I-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			09/20/17 00:04	
Acetone	ND	10		ug/L			09/20/17 00:04	
Benzene	ND	1.0	0.41	-			09/20/17 00:04	
Bromodichloromethane	ND	1.0	0.39	-			09/20/17 00:04	
Bromoform	ND	1.0	0.26	-			09/20/17 00:04	
romomethane	ND	1.0	0.69	-			09/20/17 00:04	
Carbon disulfide	ND	1.0	0.19	-			09/20/17 00:04	
Carbon tetrachloride	ND ND	1.0	0.19	-			09/20/17 00:04	
Chlorobenzene	ND ND	1.0	0.27	-			09/20/17 00:04	
	ND ND			_				
Chlorodibromomethane		1.0	0.32	-			09/20/17 00:04	
Chloroethane	ND	1.0	0.32	-			09/20/17 00:04	
Chloroform	ND	1.0	0.34	-			09/20/17 00:04	
Chloromethane	ND	1.0	0.35	_			09/20/17 00:04	
is-1,2-Dichloroethene	ND	1.0	0.81	•			09/20/17 00:04	
sis-1,3-Dichloropropene	ND	1.0	0.36	-			09/20/17 00:04	
Cyclohexane	ND	1.0		ug/L			09/20/17 00:04	
Dichlorodifluoromethane	ND	1.0	0.68	Ū			09/20/17 00:04	
Ethylbenzene	ND	1.0	0.74	-			09/20/17 00:04	
sopropylbenzene	ND	1.0	0.79	-			09/20/17 00:04	
Methyl acetate	ND	1.3		ug/L			09/20/17 00:04	
Methyl tert-butyl ether	0.27 J	1.0	0.16	ug/L			09/20/17 00:04	
Methylcyclohexane	ND	1.0	0.16	ug/L			09/20/17 00:04	
Nethylene Chloride	ND	1.0	0.44	ug/L			09/20/17 00:04	
Styrene	ND	1.0	0.73	ug/L			09/20/17 00:04	
etrachloroethene	ND	1.0	0.36	ug/L			09/20/17 00:04	
oluene	ND	1.0	0.51	ug/L			09/20/17 00:04	
rans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/20/17 00:04	
rans-1,3-Dichloropropene	ND	1.0		ug/L			09/20/17 00:04	
richloroethene	ND	1.0		ug/L			09/20/17 00:04	
richlorofluoromethane	ND	1.0		ug/L			09/20/17 00:04	
/inyl chloride	ND	1.0		ug/L			09/20/17 00:04	
Kylenes, Total	ND	2.0	0.66	•			09/20/17 00:04	

TestAmerica Buffalo

Page 8 of 53 9/26/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 8D 091317

Date Received: 09/14/17 12:38

Lab Sample ID: 480-124182-1 Date Collected: 09/13/17 09:05

Matrix: Water

Prepared Surrogate %Recovery Qualifier Limits Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 94 77 - 120 09/20/17 00:04 Toluene-d8 (Surr) 103 80 - 120 09/20/17 00:04 4-Bromofluorobenzene (Surr) 101 73 - 120 09/20/17 00:04 Dibromofluoromethane (Surr) 91 75 - 123 09/20/17 00:04

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	369		5.0	2.8	mg/L			09/20/17 12:15	10
Sulfate	226		20.0	3.5	mg/L			09/20/17 12:15	10
Alkalinity, Bicarbonate	292	В	40.0	16.0	mg/L			09/15/17 15:28	4
Nitrate as N	ND	Н	0.050	0.020	mg/L			09/15/17 10:12	1
Nitrite as N	ND	Н	0.050	0.020	mg/L			09/15/17 10:12	1
Sulfide	0.13		0.10	0.050	mg/L			09/19/17 15:30	1

General Chemistry - Dissolved Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon - Duplicate	3.9	В	1.0	0.43	mg/L			09/19/17 12:02	1

Client Sample ID: MW 8DD 091317

Lab Sample ID: 480-124182-2 Date Collected: 09/13/17 09:17

Matrix: Water

Date Received: 09/14/17 12:38

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			09/20/17 00:31	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/20/17 00:31	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/20/17 00:31	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/20/17 00:31	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/20/17 00:31	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/20/17 00:31	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/20/17 00:31	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/20/17 00:31	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/20/17 00:31	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/20/17 00:31	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/20/17 00:31	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/20/17 00:31	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/20/17 00:31	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/20/17 00:31	1
2-Hexanone	ND	5.0	1.2	ug/L			09/20/17 00:31	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/20/17 00:31	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/20/17 00:31	1
Acetone	ND	10	3.0	ug/L			09/20/17 00:31	1
Benzene	ND	1.0	0.41	ug/L			09/20/17 00:31	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/20/17 00:31	1
Bromoform	ND	1.0	0.26	ug/L			09/20/17 00:31	1
Bromomethane	ND	1.0	0.69	ug/L			09/20/17 00:31	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/20/17 00:31	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/20/17 00:31	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/20/17 00:31	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/20/17 00:31	1

TestAmerica Buffalo

Page 9 of 53 9/26/2017

TestAmerica Job ID: 480-124182-1

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Client Sample ID: MW 8DD 091317

Date Collected: 09/13/17 09:17 Date Received: 09/14/17 12:38

Lab Sample ID: 480-124182-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	ND		1.0	0.32	ug/L			09/20/17 00:31	1
Chloroform	ND		1.0	0.34	ug/L			09/20/17 00:31	1
Chloromethane	ND		1.0	0.35	ug/L			09/20/17 00:31	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/20/17 00:31	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/20/17 00:31	1
Cyclohexane	ND		1.0	0.18	ug/L			09/20/17 00:31	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/20/17 00:31	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/20/17 00:31	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/20/17 00:31	1
Methyl acetate	ND		1.3	1.3	ug/L			09/20/17 00:31	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/20/17 00:31	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/20/17 00:31	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/20/17 00:31	1
Styrene	ND		1.0	0.73	ug/L			09/20/17 00:31	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/20/17 00:31	1
Toluene	ND		1.0	0.51	ug/L			09/20/17 00:31	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/20/17 00:31	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/20/17 00:31	1
Trichloroethene	ND		1.0	0.46	ug/L			09/20/17 00:31	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/20/17 00:31	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/20/17 00:31	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/20/17 00:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		77 - 120			-		09/20/17 00:31	1
Toluene-d8 (Surr)	102		80 - 120					09/20/17 00:31	1
4-Bromofluorobenzene (Surr)	104		73 - 120					09/20/17 00:31	1
Dibromofluoromethane (Surr)	91		75 - 123					09/20/17 00:31	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		5.0	2.8	mg/L			09/20/17 12:23	10
Sulfate	1050		40.0	7.0	mg/L			09/21/17 19:18	20
Alkalinity, Bicarbonate	247	В	30.0	12.0	mg/L			09/15/17 15:28	3
Nitrate as N	ND	H	0.050	0.020	mg/L			09/15/17 10:13	1
Nitrite as N	ND	Н	0.050	0.020	mg/L			09/15/17 10:13	1
Sulfide	1.8		0.10	0.050	mg/L			09/19/17 15:30	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	4.1	В	1.0	0.43	mg/L			09/19/17 12:17	1
Duplicate									

Client Sample ID: MW 8S 091317 Lab Sample ID: 480-124182-3

Date Collected: 09/13/17 11:05 **Matrix: Water** Date Received: 09/14/17 12:38

Method: 8260C - Volatile Orga	nic Compou	inds by GC	/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/20/17 00:59	1
1,1,2,2-Tetrachloroethane	ND	F1	1.0	0.21	ug/L			09/20/17 00:59	1

TestAmerica Buffalo

Page 10 of 53

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 8S 091317

Lab Sample ID: 480-124182-3 Date Collected: 09/13/17 11:05

Matrix: Water

Date Received: 09/14/17 12:38

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	ND	F1	1.0	0.23	ug/L			09/20/17 00:59	
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			09/20/17 00:59	
1,1-Dichloroethane	ND	F1	1.0	0.38	ug/L			09/20/17 00:59	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/20/17 00:59	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/20/17 00:59	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/20/17 00:59	•
1,2-Dibromoethane (EDB)	ND	F1	1.0	0.73	ug/L			09/20/17 00:59	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/20/17 00:59	1
1,2-Dichloroethane	ND	F1	1.0	0.21	ug/L			09/20/17 00:59	1
1,2-Dichloropropane	ND	F1	1.0	0.72	ug/L			09/20/17 00:59	1
1,3-Dichlorobenzene	ND	F1	1.0	0.78	ug/L			09/20/17 00:59	1
1,4-Dichlorobenzene	ND		1.0	0.84	-			09/20/17 00:59	1
2-Hexanone	ND	F1	5.0		ug/L			09/20/17 00:59	1
2-Butanone (MEK)	ND		10		ug/L			09/20/17 00:59	1
4-Methyl-2-pentanone (MIBK)	ND	F1	5.0		ug/L			09/20/17 00:59	1
Acetone	ND		10		ug/L			09/20/17 00:59	1
Benzene	ND	F1	1.0		ug/L			09/20/17 00:59	
Bromodichloromethane	ND		1.0	0.39	-			09/20/17 00:59	1
Bromoform	ND		1.0		ug/L			09/20/17 00:59	1
Bromomethane	ND		1.0		ug/L			09/20/17 00:59	1
Carbon disulfide	ND		1.0	0.19	-			09/20/17 00:59	1
Carbon tetrachloride	ND		1.0		ug/L			09/20/17 00:59	1
Chlorobenzene	ND	F1	1.0		ug/L			09/20/17 00:59	· · · · · · · · · · · · · · · · · · ·
Chlorodibromomethane	ND		1.0		ug/L ug/L			09/20/17 00:59	1
Chloroethane	ND	' '	1.0		ug/L ug/L			09/20/17 00:59	1
Chloroform	ND		1.0		ug/L			09/20/17 00:59	· · · · · · · · · · · · · · · · · · ·
Chloromethane	ND	E1	1.0		ug/L ug/L			09/20/17 00:59	1
cis-1,2-Dichloroethene	3.0	1 1	1.0		ug/L			09/20/17 00:59	1
cis-1,3-Dichloropropene	ND		1.0		ug/L ug/L			09/20/17 00:59	
Cyclohexane	ND ND		1.0		ug/L ug/L			09/20/17 00:59	1
Dichlorodifluoromethane	ND ND		1.0		ug/L			09/20/17 00:59	1
	ND	E1	1.0					09/20/17 00:59	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene	ND ND	ГІ			ug/L				
Isopropylbenzene	ND ND		1.0		ug/L			09/20/17 00:59	1
Methyl acetate			1.3		ug/L			09/20/17 00:59	
Methyl tert-butyl ether	ND	F1	1.0	0.16	-			09/20/17 00:59	1
Methylcyclohexane	ND		1.0	0.16				09/20/17 00:59	1
Methylene Chloride	ND		1.0		ug/L			09/20/17 00:59	
Styrene	ND		1.0		ug/L			09/20/17 00:59	1
Tetrachloroethene	0.74		1.0		ug/L			09/20/17 00:59	1
Toluene	ND	F1	1.0		ug/L			09/20/17 00:59	
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/20/17 00:59	1
trans-1,3-Dichloropropene	ND	F1	1.0		ug/L			09/20/17 00:59	1
Trichloroethene	3.0		1.0		ug/L			09/20/17 00:59	1
Trichlorofluoromethane	ND		1.0		ug/L			09/20/17 00:59	1
Vinyl chloride	ND		1.0		ug/L			09/20/17 00:59	1
Xylenes, Total	ND	F1	2.0	0.66	ug/L			09/20/17 00:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		77 - 120					09/20/17 00:59	1
Toluene-d8 (Surr)	105		80 - 120					09/20/17 00:59	1

TestAmerica Buffalo

9/26/2017

Page 11 of 53

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 8S 091317 Lab Sample ID: 480-124182-3

Matrix: Water

Date Collected: 09/13/17 11:05 Date Received: 09/14/17 12:38

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		73 - 120		09/20/17 00:59	1
Dibromofluoromethane (Surr)	90		75 - 123		09/20/17 00:59	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.5		1.0	0.56	mg/L			09/20/17 12:39	2
Sulfate	61.7		4.0	0.70	mg/L			09/20/17 12:39	2
Alkalinity, Bicarbonate	205	В	30.0	12.0	mg/L			09/15/17 15:48	3
Nitrate as N	0.091		0.050	0.020	mg/L			09/15/17 10:54	1
Nitrite as N	ND		0.050	0.020	mg/L			09/15/17 10:54	1
Sulfide	ND	F1	0.10	0.050	mg/L			09/19/17 15:30	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	2.6	В	1.0	0.43	mg/L			09/19/17 19:49	1
_Duplicate									

Client Sample ID: MW 7DD 091317

Lab Sample ID: 480-124182-4

Date Collected: 09/13/17 11:08 Matrix: Water

Method: 8260C - Volatile Org Analyte		unds by GC/ Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L	<u> </u>		09/20/17 01:26	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/20/17 01:26	1
1,1,2-Trichloroethane	ND		1.0		ug/L			09/20/17 01:26	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			09/20/17 01:26	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/20/17 01:26	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/20/17 01:26	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/20/17 01:26	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/20/17 01:26	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			09/20/17 01:26	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/20/17 01:26	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/20/17 01:26	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/20/17 01:26	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/20/17 01:26	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/20/17 01:26	1
2-Hexanone	ND		5.0	1.2	ug/L			09/20/17 01:26	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/20/17 01:26	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/20/17 01:26	1
Acetone	ND		10	3.0	ug/L			09/20/17 01:26	1
Benzene	ND		1.0	0.41	ug/L			09/20/17 01:26	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/20/17 01:26	1
Bromoform	ND		1.0	0.26	ug/L			09/20/17 01:26	1
Bromomethane	ND		1.0	0.69	ug/L			09/20/17 01:26	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/20/17 01:26	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/20/17 01:26	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/20/17 01:26	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/20/17 01:26	1
Chloroethane	ND		1.0	0.32	ug/L			09/20/17 01:26	1

TestAmerica Buffalo

Page 12 of 53

TestAmerica Job ID: 480-124182-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 7DD 091317

Lab Sample ID: 480-124182-4 Date Collected: 09/13/17 11:08 **Matrix: Water**

Date Received: 09/14/17 12:38

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0	0.34	ug/L			09/20/17 01:26	1
Chloromethane	ND		1.0	0.35	ug/L			09/20/17 01:26	1
cis-1,2-Dichloroethene	1.2		1.0	0.81	ug/L			09/20/17 01:26	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/20/17 01:26	1
Cyclohexane	ND		1.0	0.18	ug/L			09/20/17 01:26	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/20/17 01:26	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/20/17 01:26	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/20/17 01:26	1
Methyl acetate	ND		1.3	1.3	ug/L			09/20/17 01:26	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/20/17 01:26	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/20/17 01:26	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/20/17 01:26	1
Styrene	ND		1.0	0.73	ug/L			09/20/17 01:26	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/20/17 01:26	1
Toluene	ND		1.0	0.51	ug/L			09/20/17 01:26	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/20/17 01:26	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/20/17 01:26	1
Trichloroethene	ND		1.0	0.46	ug/L			09/20/17 01:26	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/20/17 01:26	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/20/17 01:26	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/20/17 01:26	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		77 - 120			-		09/20/17 01:26	1
Toluene-d8 (Surr)	102		80 - 120					09/20/17 01:26	1
4-Bromofluorobenzene (Surr)	102		73 - 120					09/20/17 01:26	1
Dibromofluoromethane (Surr)	92		75 - 123					09/20/17 01:26	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	42.2		2.5	1.4	mg/L			09/20/17 12:31	5
Sulfate	400		10.0	1.7	mg/L			09/20/17 12:31	5
Alkalinity, Bicarbonate	240	В	30.0	12.0	mg/L			09/15/17 15:28	3
Nitrate as N	0.033	J	0.050	0.020	mg/L			09/15/17 10:14	1
Nitrite as N	ND		0.050	0.020	mg/L			09/15/17 10:14	1
Sulfide	0.090	J	0.10	0.050	mg/L			09/19/17 15:30	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: MW 7D 091317 Lab Sample ID: 480-124182-5

5.4 B

1.0

0.43 mg/L

Date Collected: 09/13/17 13:20 Date Received: 09/14/17 12:38

Dissolved Organic Carbon -

Duplicate

Method: 8260C - Volatile Organic Compounds by GC/MS									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1-Trichloroethane	ND ND	1.0	0.82 ug/L			09/20/17 01:54	1		
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug/L			09/20/17 01:54	1		
1,1,2-Trichloroethane	ND	1.0	0.23 ug/L			09/20/17 01:54	1		

TestAmerica Buffalo

Matrix: Water

09/19/17 12:32

Page 13 of 53 9/26/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 7D 091317

Date Collected: 09/13/17 13:20 Date Received: 09/14/17 12:38 Lab Sample ID: 480-124182-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			09/20/17 01:54	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/20/17 01:54	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/20/17 01:54	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/20/17 01:54	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/20/17 01:54	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			09/20/17 01:54	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/20/17 01:54	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/20/17 01:54	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/20/17 01:54	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/20/17 01:54	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/20/17 01:54	1
2-Hexanone	ND		5.0	1.2	ug/L			09/20/17 01:54	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/20/17 01:54	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/20/17 01:54	1
Acetone	ND		10		ug/L			09/20/17 01:54	1
Benzene	ND		1.0		ug/L			09/20/17 01:54	1
Bromodichloromethane	ND		1.0		ug/L			09/20/17 01:54	1
Bromoform	ND		1.0		ug/L			09/20/17 01:54	1
Bromomethane	ND		1.0		ug/L			09/20/17 01:54	1
Carbon disulfide	ND		1.0		ug/L			09/20/17 01:54	1
Carbon tetrachloride	ND		1.0		ug/L			09/20/17 01:54	1
Chlorobenzene	ND		1.0		ug/L			09/20/17 01:54	
Chlorodibromomethane	ND		1.0		ug/L			09/20/17 01:54	. 1
Chloroethane	ND		1.0		ug/L			09/20/17 01:54	1
Chloroform	ND		1.0		ug/L			09/20/17 01:54	
Chloromethane	ND		1.0		ug/L			09/20/17 01:54	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/20/17 01:54	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/20/17 01:54	
Cyclohexane	ND		1.0		ug/L			09/20/17 01:54	1
Dichlorodifluoromethane	ND ND		1.0		ug/L			09/20/17 01:54	1
Ethylbenzene	ND		1.0		ug/L			09/20/17 01:54	
Isopropylbenzene	ND		1.0		ug/L			09/20/17 01:54	1
Methyl acetate	ND ND		1.3		ug/L			09/20/17 01:54	1
	ND ND		1.0		ug/L ug/L			09/20/17 01:54	י 1
Methyl tert-butyl ether	ND ND				-			09/20/17 01:54	
Methylcyclohexane			1.0		ug/L				1
Methylene Chloride	ND		1.0		ug/L			09/20/17 01:54	1
Styrene	ND		1.0		ug/L			09/20/17 01:54	1
Tetrachloroethene	0.61	J	1.0		ug/L			09/20/17 01:54	1
Toluene	ND		1.0		ug/L			09/20/17 01:54	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/20/17 01:54	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			09/20/17 01:54	1
Trichloroethene	1.6		1.0		ug/L			09/20/17 01:54	
Trichlorofluoromethane	ND		1.0		ug/L			09/20/17 01:54	1
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			09/20/17 01:54 09/20/17 01:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		77 - 120			-	•	09/20/17 01:54	1
Toluene-d8 (Surr)	104		80 - 120					09/20/17 01:54	1
4-Bromofluorobenzene (Surr)	102		73 - 120					09/20/17 01:54	1

TestAmerica Buffalo

Page 14 of 53

•

2

4

7

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 7D 091317

Date Collected: 09/13/17 13:20 Date Received: 09/14/17 12:38

Lab Sample ID: 480-124182-5

09/19/17 12:47

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	94	75 - 123		09/20/17 01:54	1

Dibiomoniuorometriane (Surr)			10-123					09/20/11 01.34	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.7		1.0	0.56	mg/L			09/20/17 13:20	2
Sulfate	60.6		4.0	0.70	mg/L			09/20/17 13:20	2
Alkalinity, Bicarbonate	235	В	30.0	12.0	mg/L			09/15/17 15:28	3
Nitrate as N	0.57		0.050	0.020	mg/L			09/15/17 10:57	1
Nitrite as N	ND		0.050	0.020	mg/L			09/15/17 10:57	1
Sulfide	ND		0.10	0.050	mg/L			09/19/17 15:30	1
General Chemistry - Dissolved Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.0

0.43 mg/L

Client Sample ID: MW 7S 091317

Lab Sample ID: 480-124182-6 Date Collected: 09/13/17 13:25 **Matrix: Water**

Dissolved Organic Carbon -

Duplicate

Method: 8260C - Volatile Org Analyte	anic Compou Result (I <mark>S</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	 1.0	0.82	ug/L			09/20/17 02:21	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/20/17 02:21	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/20/17 02:21	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/20/17 02:21	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/20/17 02:21	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/20/17 02:21	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/20/17 02:21	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/20/17 02:21	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/20/17 02:21	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/20/17 02:21	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/20/17 02:21	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/20/17 02:21	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/20/17 02:21	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/20/17 02:21	1
2-Hexanone	ND	5.0	1.2	ug/L			09/20/17 02:21	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/20/17 02:21	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/20/17 02:21	1
Acetone	ND	10	3.0	ug/L			09/20/17 02:21	1
Benzene	ND	1.0	0.41	ug/L			09/20/17 02:21	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/20/17 02:21	1
Bromoform	ND	1.0	0.26	ug/L			09/20/17 02:21	1
Bromomethane	ND	1.0	0.69	ug/L			09/20/17 02:21	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/20/17 02:21	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/20/17 02:21	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/20/17 02:21	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/20/17 02:21	1
Chloroethane	ND	1.0	0.32	ug/L			09/20/17 02:21	1
Chloroform	ND	1.0	0.34	ug/L			09/20/17 02:21	1

TestAmerica Buffalo

Page 15 of 53

TestAmerica Job ID: 480-124182-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 7S 091317

Date Collected: 09/13/17 13:25 Date Received: 09/14/17 12:38 Lab Sample ID: 480-124182-6

Matrix: Water

Analyte	Result Qualit	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND	1.0	0.35	ug/L			09/20/17 02:21	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/20/17 02:21	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/20/17 02:21	1
Cyclohexane	ND	1.0	0.18	ug/L			09/20/17 02:21	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			09/20/17 02:21	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/20/17 02:21	1
Isopropylbenzene	ND	1.0	0.79	ug/L			09/20/17 02:21	1
Methyl acetate	ND	1.3	1.3	ug/L			09/20/17 02:21	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			09/20/17 02:21	1
Methylcyclohexane	ND	1.0	0.16	ug/L			09/20/17 02:21	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/20/17 02:21	1
Styrene	ND	1.0	0.73	ug/L			09/20/17 02:21	1
Tetrachloroethene	0.66 J	1.0	0.36	ug/L			09/20/17 02:21	1
Toluene	ND	1.0	0.51	ug/L			09/20/17 02:21	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/20/17 02:21	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/20/17 02:21	1
Trichloroethene	1.8	1.0	0.46	ug/L			09/20/17 02:21	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/20/17 02:21	1
Vinyl chloride	ND	1.0	0.90	ug/L			09/20/17 02:21	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/20/17 02:21	1
Surrogate	%Recovery Quali	fier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	77 - 120			-		09/20/17 02:21	1
Toluene-d8 (Surr)	105	80 - 120					09/20/17 02:21	1
4-Bromofluorobenzene (Surr)	100	73 - 120					09/20/17 02:21	1
Dibromofluoromethane (Surr)	97	75 - 123					09/20/17 02:21	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	35.2		1.0	0.56	mg/L		<u> </u>	09/20/17 13:28	2
Sulfate	79.4		4.0	0.70	mg/L			09/20/17 13:28	2
Alkalinity, Bicarbonate	219	В	30.0	12.0	mg/L			09/15/17 15:28	3
Nitrate as N	0.67		0.050	0.020	mg/L			09/15/17 10:58	1
Nitrite as N	ND		0.050	0.020	mg/L			09/15/17 10:58	1
Sulfide	ND		0.10	0.050	mg/L			09/19/17 15:30	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	4.0	В	1.0	0.43	mg/L			09/19/17 13:31	1

Client Sample ID: MW 5S 091417 Lab Sample ID: 480-124182-7 **Matrix: Water**

Date Collected: 09/14/17 07:15 Date Received: 09/14/17 12:38

Method: 8260C - Volatile Org	ganic Compounds by GC	MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	12	1.0	0.82	ug/L			09/20/17 02:48	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/20/17 02:48	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/20/17 02:48	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/20/17 02:48	1

TestAmerica Buffalo

Page 16 of 53

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 5S 091417

Date Received: 09/14/17 12:38

Lab Sample ID: 480-124182-7 Date Collected: 09/14/17 07:15

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	92		1.0	0.38	ug/L			09/20/17 02:48	1
1,1-Dichloroethene	5.8		1.0	0.29	ug/L			09/20/17 02:48	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/20/17 02:48	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/20/17 02:48	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			09/20/17 02:48	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/20/17 02:48	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/20/17 02:48	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/20/17 02:48	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/20/17 02:48	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/20/17 02:48	1
2-Hexanone	ND		5.0	1.2	ug/L			09/20/17 02:48	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/20/17 02:48	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/20/17 02:48	1
Acetone	ND		10	3.0	ug/L			09/20/17 02:48	1
Benzene	ND		1.0	0.41	ug/L			09/20/17 02:48	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/20/17 02:48	1
Bromoform	ND		1.0	0.26	ug/L			09/20/17 02:48	1
Bromomethane	ND		1.0	0.69	ug/L			09/20/17 02:48	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/20/17 02:48	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/20/17 02:48	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/20/17 02:48	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/20/17 02:48	1
Chloroethane	ND		1.0	0.32	ug/L			09/20/17 02:48	1
Chloroform	ND		1.0	0.34	ug/L			09/20/17 02:48	1
Chloromethane	ND		1.0	0.35	ug/L			09/20/17 02:48	1
cis-1,2-Dichloroethene	88		1.0	0.81	-			09/20/17 02:48	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/20/17 02:48	1
Cyclohexane	ND		1.0	0.18	ug/L			09/20/17 02:48	1
Dichlorodifluoromethane	ND		1.0	0.68	-			09/20/17 02:48	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/20/17 02:48	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/20/17 02:48	1
Methyl acetate	ND		1.3	1.3	ug/L			09/20/17 02:48	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/20/17 02:48	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/20/17 02:48	1
Methylene Chloride	ND		1.0	0.44	-			09/20/17 02:48	1
Styrene	ND		1.0	0.73	-			09/20/17 02:48	1
Tetrachloroethene	0.51	J	1.0	0.36	-			09/20/17 02:48	1
Toluene	ND		1.0		ug/L			09/20/17 02:48	1
trans-1,2-Dichloroethene	3.2		1.0		ug/L			09/20/17 02:48	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			09/20/17 02:48	1
Trichloroethene	33		1.0		ug/L			09/20/17 02:48	1
Trichlorofluoromethane	ND		1.0		ug/L			09/20/17 02:48	1
Vinyl chloride	2.1		1.0		ug/L			09/20/17 02:48	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/20/17 02:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		77 - 120		09/20/17 02:48	1
Toluene-d8 (Surr)	104		80 - 120		09/20/17 02:48	1
4-Bromofluorobenzene (Surr)	103		73 - 120		09/20/17 02:48	1
Dibromofluoromethane (Surr)	95		75 - 123		09/20/17 02:48	1

TestAmerica Buffalo

Page 17 of 53

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.2		2.5	1.4	mg/L			09/20/17 13:36	5
Sulfate	326		10.0	1.7	mg/L			09/20/17 13:36	5
Alkalinity, Bicarbonate	442	В	50.0	20.0	mg/L			09/15/17 16:00	5
Nitrate as N	0.032	J	0.050	0.020	mg/L			09/15/17 17:27	1
Nitrite as N	ND		0.050	0.020	mg/L			09/15/17 17:27	1
Sulfide	0.10		0.10	0.050	mg/L			09/19/17 16:00	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	4.5	В	1.0	0.43	mg/L			09/19/17 13:46	1

Client Sample ID: MW 4S 091417 Lab Sample ID: 480-124182-8

Date Collected: 09/14/17 07:40 **Matrix: Water**

Date Received: 09/14/17 12:38

Duplicate

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/20/17 03:16	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/20/17 03:16	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/20/17 03:16	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			09/20/17 03:16	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/20/17 03:16	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/20/17 03:16	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/20/17 03:16	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/20/17 03:16	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			09/20/17 03:16	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/20/17 03:16	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/20/17 03:16	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/20/17 03:16	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/20/17 03:16	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/20/17 03:16	1
2-Hexanone	ND		5.0	1.2	ug/L			09/20/17 03:16	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/20/17 03:16	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/20/17 03:16	1
Acetone	ND		10	3.0	ug/L			09/20/17 03:16	1
Benzene	ND		1.0	0.41	ug/L			09/20/17 03:16	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/20/17 03:16	1
Bromoform	ND		1.0	0.26	ug/L			09/20/17 03:16	1
Bromomethane	ND		1.0	0.69	ug/L			09/20/17 03:16	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/20/17 03:16	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/20/17 03:16	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/20/17 03:16	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/20/17 03:16	1
Chloroethane	ND		1.0	0.32	ug/L			09/20/17 03:16	1
Chloroform	ND		1.0	0.34	ug/L			09/20/17 03:16	1
Chloromethane	ND		1.0	0.35	ug/L			09/20/17 03:16	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/20/17 03:16	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/20/17 03:16	1
Cyclohexane	ND		1.0	0.18	ug/L			09/20/17 03:16	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/20/17 03:16	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/20/17 03:16	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/20/17 03:16	1
Methyl acetate	ND		1.3		ug/L			09/20/17 03:16	1

TestAmerica Buffalo

Page 18 of 53

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 4S 091417

Date Collected: 09/14/17 07:40 Date Received: 09/14/17 12:38 Lab Sample ID: 480-124182-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			09/20/17 03:16	1
Methylcyclohexane	ND		1.0	0.16	ug/L			09/20/17 03:16	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/20/17 03:16	1
Styrene	ND		1.0	0.73	ug/L			09/20/17 03:16	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/20/17 03:16	1
Toluene	ND		1.0	0.51	ug/L			09/20/17 03:16	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/20/17 03:16	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/20/17 03:16	1
Trichloroethene	ND		1.0	0.46	ug/L			09/20/17 03:16	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/20/17 03:16	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/20/17 03:16	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/20/17 03:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120			-		09/20/17 03:16	1
Toluene-d8 (Surr)	103		80 - 120					09/20/17 03:16	1
4-Bromofluorobenzene (Surr)	99		73 - 120					09/20/17 03:16	1
Dibromofluoromethane (Surr)	94		75 - 123					09/20/17 03:16	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	92.2		2.5	1.4	mg/L			09/20/17 13:45	5
Sulfate	459		10.0	1.7	mg/L			09/20/17 13:45	5
Alkalinity, Bicarbonate	442	В	50.0	20.0	mg/L			09/15/17 16:00	5
Nitrate as N	0.034	J	0.050	0.020	mg/L			09/15/17 17:28	1
Nitrite as N	ND		0.050	0.020	mg/L			09/15/17 17:28	1
Sulfide	0.14		0.10	0.050	mg/L			09/19/17 16:00	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	7.1	В	1.0	0.43	mg/L			09/19/17 14:02	1
Duplicate									

Client Sample ID: MW 5D 091417

Date Collected: 09/14/17 09:05

Date Received: 09/14/17 12:38

Method: 8260C - Volatile Org	anic Compounds by GC/	MS				
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82 ug/L		09/20/17 03:43	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug/L		09/20/17 03:43	1
1,1,2-Trichloroethane	ND	1.0	0.23 ug/L		09/20/17 03:43	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31 ug/L		09/20/17 03:43	1
1,1-Dichloroethane	0.51 J	1.0	0.38 ug/L		09/20/17 03:43	1
1,1-Dichloroethene	ND	1.0	0.29 ug/L		09/20/17 03:43	1
1,2,4-Trichlorobenzene	ND	1.0	0.41 ug/L		09/20/17 03:43	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39 ug/L		09/20/17 03:43	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73 ug/L		09/20/17 03:43	1
1,2-Dichlorobenzene	ND	1.0	0.79 ug/L		09/20/17 03:43	1
1,2-Dichloroethane	ND	1.0	0.21 ug/L		09/20/17 03:43	1
1,2-Dichloropropane	ND	1.0	0.72 ug/L		09/20/17 03:43	1

TestAmerica Buffalo

Page 19 of 53

2

3

0

۰ R

10

12

14

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 5D 091417

Lab Sample ID: 480-124182-9

TestAmerica Job ID: 480-124182-1

Matrix: Water

Date Collected: 09/14/17 09:05

Date Received: 09/14/17 12:38

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/20/17 03:43	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			09/20/17 03:43	1
2-Hexanone	ND		5.0	1.2	ug/L			09/20/17 03:43	1
2-Butanone (MEK)	ND		10	1.3	ug/L			09/20/17 03:43	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			09/20/17 03:43	1
Acetone	ND		10	3.0	ug/L			09/20/17 03:43	1
Benzene	ND		1.0	0.41	ug/L			09/20/17 03:43	1
Bromodichloromethane	ND		1.0	0.39	ug/L			09/20/17 03:43	1
Bromoform	ND		1.0	0.26	ug/L			09/20/17 03:43	1
Bromomethane	ND		1.0	0.69	ug/L			09/20/17 03:43	1
Carbon disulfide	ND		1.0	0.19	ug/L			09/20/17 03:43	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			09/20/17 03:43	1
Chlorobenzene	ND		1.0	0.75	ug/L			09/20/17 03:43	1
Chlorodibromomethane	ND		1.0	0.32	ug/L			09/20/17 03:43	1
Chloroethane	ND		1.0	0.32	ug/L			09/20/17 03:43	1
Chloroform	ND		1.0	0.34	ug/L			09/20/17 03:43	1
Chloromethane	ND		1.0	0.35	ug/L			09/20/17 03:43	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			09/20/17 03:43	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			09/20/17 03:43	1
Cyclohexane	ND		1.0	0.18	ug/L			09/20/17 03:43	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			09/20/17 03:43	1
Ethylbenzene	ND		1.0	0.74	ug/L			09/20/17 03:43	1
Isopropylbenzene	ND		1.0	0.79	ug/L			09/20/17 03:43	1
Methyl acetate	ND		1.3	1.3	ug/L			09/20/17 03:43	1
Methyl tert-butyl ether	0.38		1.0	0.16	ug/L			09/20/17 03:43	1
Methylcyclohexane	ND		1.0		ug/L			09/20/17 03:43	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/20/17 03:43	1
Styrene	ND		1.0	0.73	ug/L			09/20/17 03:43	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/20/17 03:43	1
Toluene	ND		1.0	0.51	ug/L			09/20/17 03:43	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/20/17 03:43	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			09/20/17 03:43	1
Trichloroethene	ND		1.0	0.46	ug/L			09/20/17 03:43	1
Trichlorofluoromethane	ND		1.0		ug/L			09/20/17 03:43	1
Vinyl chloride	ND		1.0		ug/L			09/20/17 03:43	1
Xylenes, Total	ND		2.0		ug/L			09/20/17 03:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120			-		09/20/17 03:43	1
Toluene-d8 (Surr)	102		80 - 120					09/20/17 03:43	1
4-Bromofluorobenzene (Surr)	99		73 - 120					09/20/17 03:43	1
Dibromofluoromethane (Surr)	94		75 - 123					09/20/17 03:43	1

General Chemistry Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	193		2.5	1.4	mg/L			09/20/17 13:53	5
Sulfate	200		10.0	1.7	mg/L			09/20/17 13:53	5
Alkalinity, Bicarbonate	327	В	40.0	16.0	mg/L			09/15/17 15:41	4
Nitrate as N	ND		0.050	0.020	mg/L			09/15/17 17:37	1
Nitrite as N	ND		0.050	0.020	mg/L			09/15/17 17:37	1

TestAmerica Buffalo

9/26/2017

Page 20 of 53

Client: O'Brien & Gere Inc of North America

Client Sample ID: MW 5D 091417

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Lab Sample ID: 480-124182-9

Matrix: Water

Date Received: 09/14/17 12:38 **General Chemistry (Continued)**

Date Collected: 09/14/17 09:05

Analyte Result Qualifier RL **MDL** Unit D Analyzed Prepared Dil Fac Sulfide 0.10 0.050 mg/L 09/19/17 16:00 0.070 J

General Chemistry - Dissolved Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 1.0 0.43 mg/L 09/19/17 14:17 **Dissolved Organic Carbon -**5.2 B

Duplicate

Client Sample ID: MW 4D 091417 Lab Sample ID: 480-124182-10

Date Collected: 09/14/17 09:54 **Matrix: Water**

Date Received: 09/14/17 12:38

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			09/20/17 04:11	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/20/17 04:11	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/20/17 04:11	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/20/17 04:11	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/20/17 04:11	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/20/17 04:11	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/20/17 04:11	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/20/17 04:11	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/20/17 04:11	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/20/17 04:11	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/20/17 04:11	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/20/17 04:11	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/20/17 04:11	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			09/20/17 04:11	1
2-Hexanone	ND	5.0	1.2	ug/L			09/20/17 04:11	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/20/17 04:11	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/20/17 04:11	1
Acetone	ND	10	3.0	ug/L			09/20/17 04:11	1
Benzene	ND	1.0	0.41	ug/L			09/20/17 04:11	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/20/17 04:11	1
Bromoform	ND	1.0	0.26	ug/L			09/20/17 04:11	1
Bromomethane	ND	1.0	0.69	ug/L			09/20/17 04:11	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/20/17 04:11	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/20/17 04:11	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/20/17 04:11	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/20/17 04:11	1
Chloroethane	ND	1.0	0.32	ug/L			09/20/17 04:11	1
Chloroform	ND	1.0	0.34	ug/L			09/20/17 04:11	1
Chloromethane	ND	1.0	0.35	ug/L			09/20/17 04:11	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			09/20/17 04:11	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/20/17 04:11	1
Cyclohexane	ND	1.0	0.18	ug/L			09/20/17 04:11	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			09/20/17 04:11	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/20/17 04:11	1
Isopropylbenzene	ND	1.0	0.79	ug/L			09/20/17 04:11	1
Methyl acetate	ND	1.3	1.3	ug/L			09/20/17 04:11	1
Methyl tert-butyl ether	0.46 J	1.0	0.16				09/20/17 04:11	1

TestAmerica Buffalo

Page 21 of 53

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 4D 091417

Date Collected: 09/14/17 09:54

Lab Sample ID: 480-124182-10 **Matrix: Water**

Date Received: 09/14/17 12:38

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylcyclohexane	ND		1.0	0.16	ug/L			09/20/17 04:11	1
Methylene Chloride	ND		1.0	0.44	ug/L			09/20/17 04:11	1
Styrene	ND		1.0	0.73	ug/L			09/20/17 04:11	1
Tetrachloroethene	ND		1.0	0.36	ug/L			09/20/17 04:11	1
Toluene	ND		1.0	0.51	ug/L			09/20/17 04:11	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			09/20/17 04:11	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			09/20/17 04:11	1
Trichloroethene	ND		1.0	0.46	ug/L			09/20/17 04:11	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/20/17 04:11	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/20/17 04:11	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/20/17 04:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120			-		09/20/17 04:11	1
Toluene-d8 (Surr)	103		80 - 120					09/20/17 04:11	1
4-Bromofluorobenzene (Surr)	101		73 - 120					09/20/17 04:11	1
Dibromofluoromethane (Surr)	100		75 - 123					09/20/17 04:11	1

General Chemistry Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	245	2.5	1.4	mg/L			09/20/17 14:01	5
Sulfate	99	10.0	1.7	mg/L			09/20/17 14:01	5
Alkalinity, Bicarbonate	27 B	40.0	16.0	mg/L			09/15/17 15:41	4
Nitrate as N	ND	0.050	0.020	mg/L			09/15/17 17:38	1
Nitrite as N	ND	0.050	0.020	mg/L			09/15/17 17:38	1
Sulfide	.66	0.10	0.050	mg/L			09/19/17 16:00	1

General Chemistry - Dissolve Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon - Duplicate	3.6	В	1.0	0.43	mg/L			09/19/17 14:32	1

Client Sample ID: MW 6S 091417 Lab Sample ID: 480-124182-12

Date Collected: 09/14/17 10:10 **Matrix: Water** Date Received: 09/14/17 12:38

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			09/20/17 04:38	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			09/20/17 04:38	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			09/20/17 04:38	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			09/20/17 04:38	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			09/20/17 04:38	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			09/20/17 04:38	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			09/20/17 04:38	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			09/20/17 04:38	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	ug/L			09/20/17 04:38	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			09/20/17 04:38	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			09/20/17 04:38	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			09/20/17 04:38	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			09/20/17 04:38	1

TestAmerica Buffalo

Page 22 of 53

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Toject/Site. I drest dien Montoning

Client Sample ID: MW 6S 091417 Lab Sample ID: 480-124182-12

Date Collected: 09/14/17 10:10 Matrix: Water Date Received: 09/14/17 12:38

Analyte	Result Quali	ifier RL	MDL		D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND ND	1.0	0.84	ug/L			09/20/17 04:38	1
2-Hexanone	ND	5.0	1.2	ug/L			09/20/17 04:38	1
2-Butanone (MEK)	ND	10	1.3	ug/L			09/20/17 04:38	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			09/20/17 04:38	1
Acetone	3.3 J	10	3.0	ug/L			09/20/17 04:38	1
Benzene	ND	1.0	0.41	ug/L			09/20/17 04:38	1
Bromodichloromethane	ND	1.0	0.39	ug/L			09/20/17 04:38	1
Bromoform	ND	1.0	0.26	ug/L			09/20/17 04:38	1
Bromomethane	ND	1.0	0.69	ug/L			09/20/17 04:38	1
Carbon disulfide	ND	1.0	0.19	ug/L			09/20/17 04:38	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			09/20/17 04:38	1
Chlorobenzene	ND	1.0	0.75	ug/L			09/20/17 04:38	1
Chlorodibromomethane	ND	1.0	0.32	ug/L			09/20/17 04:38	1
Chloroethane	ND	1.0	0.32	ug/L			09/20/17 04:38	1
Chloroform	ND	1.0	0.34	ug/L			09/20/17 04:38	1
Chloromethane	ND	1.0	0.35	ug/L			09/20/17 04:38	1
cis-1,2-Dichloroethene	10	1.0	0.81	ug/L			09/20/17 04:38	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			09/20/17 04:38	1
Cyclohexane	ND	1.0	0.18	ug/L			09/20/17 04:38	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			09/20/17 04:38	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/20/17 04:38	1
Isopropylbenzene	ND	1.0	0.79	ug/L			09/20/17 04:38	1
Methyl acetate	ND	1.3	1.3	ug/L			09/20/17 04:38	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			09/20/17 04:38	1
Methylcyclohexane	ND	1.0	0.16	ug/L			09/20/17 04:38	1
Methylene Chloride	ND	1.0	0.44	ug/L			09/20/17 04:38	1
Styrene	ND	1.0	0.73	ug/L			09/20/17 04:38	1
Tetrachloroethene	ND	1.0	0.36	ug/L			09/20/17 04:38	1
Toluene	ND	1.0	0.51	ug/L			09/20/17 04:38	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			09/20/17 04:38	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			09/20/17 04:38	1
Trichloroethene	ND	1.0	0.46	ug/L			09/20/17 04:38	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			09/20/17 04:38	1
Vinyl chloride	3.8	1.0	0.90	ug/L			09/20/17 04:38	1
Xylenes, Total	ND	2.0	0.66	ug/L			09/20/17 04:38	1
Surrogate	%Recovery Quali	ifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	77 - 120			-		09/20/17 04:38	1
Toluene-d8 (Surr)	102	80 - 120					09/20/17 04:38	1
4-Bromofluorobenzene (Surr)	100	73 - 120					09/20/17 04:38	1
Dibromofluoromethane (Surr)	95	75 - 123					09/20/17 04:38	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	39.8		2.5	1.4	mg/L		-	09/20/17 14:09	5
Sulfate	287		10.0	1.7	mg/L			09/20/17 14:09	5
Alkalinity, Bicarbonate	379	В	40.0	16.0	mg/L			09/15/17 15:48	4
Nitrate as N	ND		0.050	0.020	mg/L			09/15/17 17:39	1
Nitrite as N	ND		0.050	0.020	mg/L			09/15/17 17:39	1
Sulfide	ND		0.10	0.050	mg/L			09/19/17 16:00	1

TestAmerica Buffalo

9/26/2017

Page 23 of 53

3

4

6

8

10

12

14

15

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

General Chemistry - Dissolved

General Chemistry - Dissolved										
Analyte	Result	Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	6.3	В	1.0	0.43	mg/L		_		09/19/17 14:48	1
Duplicate										

Client Sample ID: QC TRIP BLANK

Lab Sample ID: 480-124182-13

Date Collected: 09/14/17 00:00 Matrix: Water

Method: 8260C - Volatile Or Analyte	ganic Compounds by GC/I Result Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82			- 1	09/20/17 05:06	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	•			09/20/17 05:06	1
1,1,2-Trichloroethane	ND	1.0	0.23	-			09/20/17 05:06	1
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	-			09/20/17 05:06	1
1,1-Dichloroethane	ND	1.0	0.38	-			09/20/17 05:06	1
1,1-Dichloroethene	ND	1.0	0.29	-			09/20/17 05:06	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	-			09/20/17 05:06	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	-			09/20/17 05:06	1
1,2-Dibromoethane (EDB)	ND	1.0	0.73	-			09/20/17 05:06	1
1,2-Dichlorobenzene	ND	1.0	0.79				09/20/17 05:06	1
1,2-Dichloroethane	ND	1.0	0.21	-			09/20/17 05:06	1
1,2-Dichloropropane	ND	1.0	0.72	-			09/20/17 05:06	1
1,3-Dichlorobenzene	ND	1.0	0.78	-			09/20/17 05:06	1
1,4-Dichlorobenzene	ND	1.0	0.84	-			09/20/17 05:06	1
2-Hexanone	ND	5.0		ug/L			09/20/17 05:06	1
2-Butanone (MEK)	ND	10		ug/L			09/20/17 05:06	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			09/20/17 05:06	1
Acetone	ND	10		ug/L			09/20/17 05:06	1
Benzene	ND	1.0	0.41	-			09/20/17 05:06	1
Bromodichloromethane	ND	1.0	0.39	-			09/20/17 05:06	1
Bromoform	ND	1.0	0.26	-			09/20/17 05:06	1
Bromomethane	ND	1.0	0.69	-			09/20/17 05:06	1
Carbon disulfide	ND	1.0	0.19	-			09/20/17 05:06	1
Carbon tetrachloride	ND	1.0	0.27	-			09/20/17 05:06	1
Chlorobenzene	ND	1.0	0.75	-			09/20/17 05:06	1
Chlorodibromomethane	ND	1.0	0.32	-			09/20/17 05:06	1
Chloroethane	ND	1.0	0.32	-			09/20/17 05:06	1
Chloroform	ND	1.0	0.34	-			09/20/17 05:06	1
Chloromethane	ND	1.0	0.35	-			09/20/17 05:06	1
cis-1,2-Dichloroethene	ND	1.0	0.81	-			09/20/17 05:06	1
cis-1,3-Dichloropropene	ND	1.0	0.36	-			09/20/17 05:06	1
Cyclohexane	ND	1.0	0.18	-			09/20/17 05:06	1
Dichlorodifluoromethane	ND	1.0	0.68	-			09/20/17 05:06	1
Ethylbenzene	ND	1.0	0.74	ug/L			09/20/17 05:06	1
sopropylbenzene	ND	1.0	0.79	-			09/20/17 05:06	1
Methyl acetate	ND	1.3		ug/L			09/20/17 05:06	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			09/20/17 05:06	1
Methylcyclohexane	ND	1.0	0.16				09/20/17 05:06	1
Methylene Chloride	ND	1.0	0.44				09/20/17 05:06	1
Styrene	ND	1.0	0.73				09/20/17 05:06	1
Tetrachloroethene	ND	1.0	0.36				09/20/17 05:06	1
Toluene	ND	1.0	0.51	-			09/20/17 05:06	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			09/20/17 05:06	1
trans-1,3-Dichloropropene	ND	1.0	0.37				09/20/17 05:06	1
Trichloroethene	ND	1.0	0.46				09/20/17 05:06	1

TestAmerica Buffalo

9/26/2017

Page 24 of 53

2

3

5

6

0

1 U

12

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Lab Sample ID: 480-124182-13

Matrix: Water

Date Collected: 09/14/17 00:00 Date Received: 09/14/17 12:38

Client Sample ID: QC TRIP BLANK

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Conti	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0	0.88	ug/L			09/20/17 05:06	1
Vinyl chloride	ND		1.0	0.90	ug/L			09/20/17 05:06	1
Xylenes, Total	ND		2.0	0.66	ug/L			09/20/17 05:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			•		09/20/17 05:06	1
Toluene-d8 (Surr)	101		80 - 120					09/20/17 05:06	1
4-Bromofluorobenzene (Surr)	98		73 - 120					09/20/17 05:06	1
Dibromofluoromethane (Surr)	96		75 - 123					09/20/17 05:06	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

					gate Recovery (Acceptance Limits)	
		12DCE	TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	(77-120)	(80-120)	(73-120)	(75-123)	
480-124182-1	MW 8D 091317	94	103	101	91	
480-124182-2	MW 8DD 091317	90	102	104	91	
480-124182-3	MW 8S 091317	89	105	101	90	
480-124182-3 MS	MW 8S 091317	99	102	107	100	
480-124182-3 MSD	MW 8S 091317	96	101	105	96	
480-124182-4	MW 7DD 091317	92	102	102	92	
480-124182-5	MW 7D 091317	95	104	102	94	
480-124182-6	MW 7S 091317	97	105	100	97	
480-124182-7	MW 5S 091417	94	104	103	95	
480-124182-8	MW 4S 091417	96	103	99	94	
480-124182-9	MW 5D 091417	96	102	99	94	
480-124182-10	MW 4D 091417	101	103	101	100	
480-124182-12	MW 6S 091417	99	102	100	95	
480-124182-13	QC TRIP BLANK	97	101	98	96	
LCS 480-377677/5	Lab Control Sample	93	103	105	93	
MB 480-377677/7	Method Blank	93	103	99	91	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

J

4

5

7

9

11

14

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-377677/7

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analysis Batch: 377677	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			09/19/17 22:04	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			09/19/17 22:04	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			09/19/17 22:04	1
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			09/19/17 22:04	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			09/19/17 22:04	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			09/19/17 22:04	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			09/19/17 22:04	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			09/19/17 22:04	1
1,2-Dibromoethane (EDB)	ND		1.0	0.73	ug/L			09/19/17 22:04	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			09/19/17 22:04	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			09/19/17 22:04	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			09/19/17 22:04	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			09/19/17 22:04	1
1,4-Dichlorobenzene	ND		1.0	0.84	-			09/19/17 22:04	1
2-Hexanone	ND		5.0		ug/L			09/19/17 22:04	1
2-Butanone (MEK)	ND		10		ug/L			09/19/17 22:04	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			09/19/17 22:04	1
Acetone	ND		10		ug/L			09/19/17 22:04	1
Benzene	ND		1.0		ug/L			09/19/17 22:04	1
Bromodichloromethane	ND		1.0		ug/L			09/19/17 22:04	1
Bromoform	ND		1.0		ug/L			09/19/17 22:04	1
Bromomethane	ND		1.0		ug/L			09/19/17 22:04	
Carbon disulfide	ND		1.0		ug/L			09/19/17 22:04	
Carbon tetrachloride	ND		1.0	0.27	_			09/19/17 22:04	1
Chlorobenzene	ND		1.0		ug/L			09/19/17 22:04	
Chlorodibromomethane	ND		1.0	0.32	-			09/19/17 22:04	1
Chloroethane	ND		1.0	0.32	-			09/19/17 22:04	1
Chloroform	ND		1.0	0.34	-			09/19/17 22:04	
Chloromethane	ND		1.0	0.35	-			09/19/17 22:04	
cis-1,2-Dichloroethene	ND		1.0	0.81	-			09/19/17 22:04	1
cis-1,3-Dichloropropene	ND		1.0	0.36				09/19/17 22:04	
Cyclohexane	ND		1.0	0.18	•			09/19/17 22:04	-
Dichlorodifluoromethane	ND		1.0	0.68	•			09/19/17 22:04	1
Ethylbenzene	ND		1.0	0.74				09/19/17 22:04	
Isopropylbenzene	ND		1.0	0.79	_			09/19/17 22:04	
Methyl acetate	ND		1.3		ug/L			09/19/17 22:04	-
Methyl tert-butyl ether	ND		1.0		ug/L			09/19/17 22:04	1
Methylcyclohexane	ND		1.0		ug/L			09/19/17 22:04	1
Methylene Chloride	ND		1.0		ug/L			09/19/17 22:04	1
Styrene	ND		1.0		ug/L			09/19/17 22:04	
Tetrachloroethene	ND		1.0		ug/L			09/19/17 22:04	-
Toluene	ND		1.0		ug/L			09/19/17 22:04	,
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/19/17 22:04	
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			09/19/17 22:04	
Trichloroethene	ND ND		1.0					09/19/17 22:04	,
Trichlorofluoromethane	ND ND				ug/L ug/L			09/19/17 22:04	
	ND ND		1.0					09/19/17 22:04	
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			09/19/17 22:04	1

TestAmerica Buffalo

9/26/2017

Page 27 of 53

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

	MB ME	В			
Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	77 - 120		09/19/17 22:04	1
Toluene-d8 (Surr)	103	80 - 120		09/19/17 22:04	1
4-Bromofluorobenzene (Surr)	99	73 - 120		09/19/17 22:04	1
Dibromofluoromethane (Surr)	91	75 - 123		09/19/17 22:04	1

Lab Sample ID: LCS 480-377677/5

Matrix: Water

Analysis Batch: 377677

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Cilei	it Sai	libie in	Prep Type: Total/NA
			%Rec.
it	D	%Rec	Limits
/L		93	73 - 126

Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits	
1,1,1-Trichloroethane	25.0	23.3		ug/L	_ <u>-</u>	93	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	26.7		ug/L		107	76 ₋ 120	
1,1,2-Trichloroethane	25.0	25.1		ug/L		101	76 - 122	
1,1,2-Trichlorotrifluoroethane	25.0	24.2		ug/L		97	61 - 148	
1,1-Dichloroethane	25.0	23.5		ug/L		94	77 - 120	
1,1-Dichloroethene	25.0	23.3		ug/L		93	66 - 127	
1,2,4-Trichlorobenzene	25.0	26.7		ug/L		107	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	26.8		ug/L		107	56 - 134	
1,2-Dibromoethane (EDB)	25.0	25.3		ug/L		101	77 ₋ 120	
1,2-Dichlorobenzene	25.0	26.2		ug/L		105	80 - 124	
1,2-Dichloroethane	25.0	23.5		ug/L		94	75 - 120	
1,2-Dichloropropane	25.0	23.4		ug/L		94	76 - 120	
1,3-Dichlorobenzene	25.0	27.2		ug/L		109	77 - 120	
1,4-Dichlorobenzene	25.0	26.5		ug/L		106	80 - 120	
2-Hexanone	125	134		ug/L		108	65 - 127	
2-Butanone (MEK)	125	114		ug/L		91	57 ₋ 140	
4-Methyl-2-pentanone (MIBK)	125	132		ug/L		106	71 - 125	
Acetone	125	109		ug/L		87	56 - 142	
Benzene	25.0	22.9		ug/L		92	71 - 124	
Bromodichloromethane	25.0	23.4		ug/L		94	80 - 122	
Bromoform	25.0	26.1		ug/L		104	61 - 132	
Bromomethane	25.0	22.3		ug/L		89	55 ₋ 144	
Carbon disulfide	25.0	24.5		ug/L		98	59 ₋ 134	
Carbon tetrachloride	25.0	23.9		ug/L		95	72 - 134	
Chlorobenzene	25.0	26.0		ug/L		104	80 - 120	
Chlorodibromomethane	25.0	26.6		ug/L		106	75 ₋ 125	
Chloroethane	25.0	23.1		ug/L		92	69 - 136	
Chloroform	25.0	23.0		ug/L		92	73 - 127	
Chloromethane	25.0	21.5		ug/L		86	68 ₋ 124	
cis-1,2-Dichloroethene	25.0	22.0		ug/L		88	74 - 124	
cis-1,3-Dichloropropene	25.0	23.8		ug/L		95	74 - 124	
Cyclohexane	25.0	24.4		ug/L ug/L		98	59 ₋ 135	
Dichlorodifluoromethane	25.0	24.0		ug/L		96	59 ₋ 135	
Ethylbenzene	25.0	25.9		ug/L		104	77 - 123	
Isopropylbenzene	25.0	26.7		ug/L ug/L		107	77 - 123 77 - 122	
Methyl acetate	125	116		ug/L ug/L		93	74 - 133	
Methyl tert-butyl ether	25.0	24.3		ug/L		97	77 ₋ 120	
· · · · · · · · · · · · · · · · · · ·	25.0	24.0		-		96		
Methylcyclohexane Methylene Chloride	25.0	24.0		ug/L ug/L		96 84	68 ₋ 134 75 ₋ 124	
	25.0					110	75 - 124 80 - 120	
Styrene Tetrachloroethene	25.0 25.0	27.4 26.0		ug/L		104	74 ₋ 122	
Toluene	25.0 25.0	25.6		ug/L				
trans-1,2-Dichloroethene				ug/L		102	80 - 122	
•	25.0	19.8		ug/L		79 106	73 ₋ 127	
trans-1,3-Dichloropropene	25.0	26.6		ug/L		106	80 - 120	

TestAmerica Buffalo

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-377677/5

Lab Sample ID: 480-124182-3 MS

Matrix: Water

Trichloroethene

Vinyl chloride

Analyte

Analysis Batch: 377677

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec. Spike Added Result Qualifier Limits Unit D %Rec 25.0 22.6 ug/L 90 74 - 123 Trichlorofluoromethane 25.0 26.0 ug/L 104 62 - 150 25.0 23.1 ug/L 92 65 - 133

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 93 77 - 120 80 - 120 Toluene-d8 (Surr) 103 4-Bromofluorobenzene (Surr) 105 73 - 120 Dibromofluoromethane (Surr) 93 75 - 123

Client Sample ID: MW 8S 091317

Matrix: Water Prep Type: Total/NA

Analysis Batch: 377677	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		25.0	30.4		ug/L		122	73 - 126
1,1,2,2-Tetrachloroethane	ND	F1	25.0	32.2	F1	ug/L		129	76 - 120
1,1,2-Trichloroethane	ND	F1	25.0	31.8	F1	ug/L		127	76 - 122
1,1,2-Trichlorotrifluoroethane	ND		25.0	25.1		ug/L		101	61 - 148
1,1-Dichloroethane	ND	F1	25.0	32.7	F1	ug/L		131	77 - 120
1,1-Dichloroethene	ND		25.0	30.7		ug/L		123	66 - 127
1,2,4-Trichlorobenzene	ND		25.0	30.5		ug/L		122	79 - 122
1,2-Dibromo-3-Chloropropane	ND		25.0	30.8		ug/L		123	56 - 134
1,2-Dibromoethane (EDB)	ND	F1	25.0	33.0	F1	ug/L		132	77 - 120
1,2-Dichlorobenzene	ND		25.0	29.9		ug/L		120	80 - 124
1,2-Dichloroethane	ND	F1	25.0	32.7	F1	ug/L		131	75 - 120
1,2-Dichloropropane	ND	F1	25.0	31.8	F1	ug/L		127	76 - 120
1,3-Dichlorobenzene	ND	F1	25.0	31.1	F1	ug/L		125	77 - 120
1,4-Dichlorobenzene	ND		25.0	30.0		ug/L		120	78 - 124
2-Hexanone	ND	F1	125	163	F1	ug/L		131	65 - 127
2-Butanone (MEK)	ND		125	139		ug/L		111	57 - 140
4-Methyl-2-pentanone (MIBK)	ND	F1	125	169	F1	ug/L		135	71 - 125
Acetone	ND		125	107		ug/L		85	56 - 142
Benzene	ND	F1	25.0	31.4	F1	ug/L		126	71 - 124
Bromodichloromethane	ND	F1	25.0	30.6	F1	ug/L		123	80 - 122
Bromoform	ND		25.0	32.3		ug/L		129	61 - 132
Bromomethane	ND		25.0	29.9		ug/L		120	55 - 144
Carbon disulfide	ND		25.0	31.3		ug/L		125	59 - 134
Carbon tetrachloride	ND		25.0	29.3		ug/L		117	72 - 134
Chlorobenzene	ND	F1	25.0	32.4	F1	ug/L		130	80 - 120
Chlorodibromomethane	ND	F1	25.0	33.3	F1	ug/L		133	75 - 125
Chloroethane	ND		25.0	30.6		ug/L		122	69 - 136
Chloroform	ND		25.0	31.5		ug/L		126	73 - 127
Chloromethane	ND	F1	25.0	32.7	F1	ug/L		131	68 - 124
cis-1,2-Dichloroethene	3.0		25.0	32.1		ug/L		116	74 - 124
cis-1,3-Dichloropropene	ND		25.0	29.8		ug/L		119	74 - 124
Cyclohexane	ND		25.0	25.6		ug/L		102	59 ₋ 135
Dichlorodifluoromethane	ND		25.0	22.6		ug/L		90	59 - 135

TestAmerica Buffalo

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 8S 091317

Client Sample ID: MW 8S 091317

Prep Type: Total/NA

Prep Type: Total/NA

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-124182-3 MS

Matrix: Water Analysis Batch: 377677

Analysis Batom of for	Camala	Commis	Cuiles	MC	MC				0/ Dag	
	•	Sample	Spike	MS					%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	ND	F1	25.0	31.2	F1	ug/L		125	77 - 123	
Isopropylbenzene	ND		25.0	29.3		ug/L		117	77 - 122	
Methyl acetate	ND		125	149		ug/L		119	74 - 133	
Methyl tert-butyl ether	ND	F1	25.0	30.7	F1	ug/L		123	77 - 120	
Methylcyclohexane	ND		25.0	23.6		ug/L		94	68 - 134	
Methylene Chloride	ND		25.0	28.3		ug/L		113	75 - 124	
Styrene	ND	F1	25.0	33.4	F1	ug/L		133	80 - 120	
Tetrachloroethene	0.74	J	25.0	29.8		ug/L		116	74 - 122	
Toluene	ND	F1	25.0	32.2	F1	ug/L		129	80 - 122	
trans-1,2-Dichloroethene	ND		25.0	26.9		ug/L		108	73 - 127	
trans-1,3-Dichloropropene	ND	F1	25.0	31.7	F1	ug/L		127	80 - 120	
Trichloroethene	3.0		25.0	31.2		ug/L		113	74 - 123	
Trichlorofluoromethane	ND		25.0	26.1		ug/L		105	62 - 150	
Vinyl chloride	ND		25.0	30.6		ug/L		122	65 - 133	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene (Surr)	107		73 - 120
Dibromofluoromethane (Surr)	100		75 - 123

Lab Sample ID: 480-124182-3 MSD

Matrix: Water

Sample	Sample	Spike						%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND		25.0	28.7		ug/L		115	73 - 126	6	15
ND	F1	25.0	31.8	F1	ug/L		127	76 - 120	1	15
ND	F1	25.0	30.6		ug/L		122	76 - 122	4	15
ND		25.0	21.6		ug/L		87	61 - 148	15	20
ND	F1	25.0	31.1	F1	ug/L		125	77 - 120	5	20
ND		25.0	27.1		ug/L		108	66 - 127	12	16
ND		25.0	29.6		ug/L		118	79 - 122	3	20
ND		25.0	31.8		ug/L		127	56 - 134	3	15
ND	F1	25.0	31.8	F1	ug/L		127	77 - 120	4	15
ND		25.0	29.7		ug/L		119	80 - 124	1	20
ND	F1	25.0	30.5	F1	ug/L		122	75 - 120	7	20
ND	F1	25.0	30.9	F1	ug/L		123	76 - 120	3	20
ND	F1	25.0	30.8	F1	ug/L		123	77 - 120	1	20
ND		25.0	30.1		ug/L		120	78 - 124	0	20
ND	F1	125	160	F1	ug/L		128	65 - 127	2	15
ND		125	134		ug/L		107	57 - 140	4	20
ND	F1	125	167	F1	ug/L		133	71 - 125	1	35
ND		125	103		ug/L		83	56 - 142	3	15
ND	F1	25.0	29.6		ug/L		118	71 - 124	6	13
ND	F1	25.0	29.6		ug/L		119	80 - 122	3	15
ND		25.0	30.9		ug/L		124	61 - 132	5	15
ND		25.0	28.9		ug/L		116	55 - 144	3	15
	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	ND F1 ND F1 ND ND F1 ND ND F1 ND ND F1	Result Qualifier Added ND 25.0 ND F1 25.0 ND F1 25.0 ND 25.0 ND 25.0 ND 25.0 ND 25.0 ND 25.0 ND 25.0 ND 25.0 ND F1 25.0 ND F1 25.0 ND F1 25.0 ND F1 25.0 ND F1 25.0 ND F1 125 ND F1 125 ND F1 125 ND F1 25.0 ND F1 25.0 ND F1 25.0	Result Qualifier Added Result ND 25.0 28.7 ND F1 25.0 31.8 ND F1 25.0 30.6 ND 25.0 21.6 ND 25.0 27.1 ND 25.0 29.6 ND 25.0 31.8 ND 25.0 31.8 ND 25.0 39.7 ND F1 25.0 30.5 ND F1 25.0 30.8 ND F1 25.0 30.8 ND F1 25.0 30.1 ND F1 125 160 ND F1 125 134 ND F1 125 103 ND F1 125 103 ND F1 25.0 29.6 ND F1 25.0 29.6 ND F1 25.0 29.6	Result ND Qualifier Added 25.0 Result 28.7 ND F1 25.0 31.8 F1 ND F1 25.0 30.6 F1 ND F1 25.0 21.6 ND ND F1 25.0 31.1 F1 ND 25.0 27.1 P1 ND 25.0 29.6 ND 25.0 31.8 F1 ND 25.0 31.8 F1 ND 25.0 31.8 F1 ND 25.0 30.5 F1 ND F1 25.0 30.5 F1 ND F1 25.0 30.8 F1 ND F1 25.0 30.8 F1 ND F1 125 160 F1 ND F1 125 167 F1 ND F1 125 167 F1 ND F1 25.0 29.6	Result Qualifier Added Result Qualifier Unit ND 25.0 28.7 ug/L ND F1 25.0 31.8 F1 ug/L ND F1 25.0 30.6 ug/L ND F1 25.0 21.6 ug/L ND F1 25.0 31.1 F1 ug/L ND 25.0 27.1 ug/L ND 25.0 29.6 ug/L ND 25.0 31.8 ug/L ND 25.0 31.8 F1 ug/L ND 25.0 31.8 F1 ug/L ND F1 25.0 30.5 F1 ug/L ND F1 25.0 30.9 F1 ug/L ND F1 25.0 30.8 F1 ug/L ND F1 125 160 F1 ug/L ND F1 125 167	Result Qualifier Added Result Qualifier Unit D ND 25.0 28.7 ug/L ND F1 25.0 31.8 F1 ug/L ND F1 25.0 30.6 ug/L ND F1 25.0 21.6 ug/L ND F1 25.0 31.1 F1 ug/L ND F1 25.0 27.1 ug/L ND 25.0 29.6 ug/L ND 25.0 31.8 F1 ug/L ND F1 25.0 31.8 F1 ug/L ND F1 25.0 30.5 F1 ug/L ND F1 25.0 30.5 F1 ug/L ND F1 25.0 30.8 F1 ug/L ND F1 25.0 30.1 ug/L ND F1 125 160 F1 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec ND 25.0 28.7 ug/L 115 ND F1 25.0 31.8 F1 ug/L 127 ND F1 25.0 30.6 ug/L 87 ND F1 25.0 21.6 ug/L 87 ND F1 25.0 31.1 F1 ug/L 125 ND 25.0 27.1 ug/L 108 ND 25.0 29.6 ug/L 118 ND 25.0 31.8 ug/L 127 ND F1 25.0 31.8 F1 ug/L 127 ND F1 25.0 31.8 F1 ug/L 127 ND F1 25.0 30.5 F1 ug/L 122 ND F1 25.0 30.9 F1 ug/L 123 ND F1 <td>Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 25.0 28.7 ug/L 115 73.126 ND F1 25.0 31.8 F1 ug/L 127 76-120 ND F1 25.0 30.6 ug/L 87 61-148 ND F1 25.0 31.1 F1 ug/L 125 77-120 ND F1 25.0 31.1 F1 ug/L 108 66-127 ND 25.0 29.6 ug/L 118 79-122 ND 25.0 31.8 F1 ug/L 127 75-120 ND 25.0 31.8 F1 ug/L 127 77-120 ND 1 25.0 31.8 F1 ug/L 127 77-120 ND F1 25.0 30.5 F1 ug/L 122 75-120 ND F1</td> <td>Result ND Added ND Result Path Qualifier Unit Unit Path D %Rec No Limits No RPD ND 25.0 28.7 ug/L 115 73 - 126 6 ND F1 25.0 31.8 F1 ug/L 127 76 - 120 1 ND F1 25.0 30.6 ug/L 87 61 - 148 15 ND F1 25.0 31.1 F1 ug/L 125 77 - 120 5 ND F1 25.0 31.1 F1 ug/L 108 66 - 127 12 ND 25.0 27.1 ug/L 118 79 - 122 3 ND 25.0 29.6 ug/L 118 79 - 122 3 ND 25.0 31.8 F1 ug/L 127 77 - 120 4 ND 1 25.0 31.8 F1 ug/L 127 77 - 120 4 ND F1 25.0 30.5</td>	Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 25.0 28.7 ug/L 115 73.126 ND F1 25.0 31.8 F1 ug/L 127 76-120 ND F1 25.0 30.6 ug/L 87 61-148 ND F1 25.0 31.1 F1 ug/L 125 77-120 ND F1 25.0 31.1 F1 ug/L 108 66-127 ND 25.0 29.6 ug/L 118 79-122 ND 25.0 31.8 F1 ug/L 127 75-120 ND 25.0 31.8 F1 ug/L 127 77-120 ND 1 25.0 31.8 F1 ug/L 127 77-120 ND F1 25.0 30.5 F1 ug/L 122 75-120 ND F1	Result ND Added ND Result Path Qualifier Unit Unit Path D %Rec No Limits No RPD ND 25.0 28.7 ug/L 115 73 - 126 6 ND F1 25.0 31.8 F1 ug/L 127 76 - 120 1 ND F1 25.0 30.6 ug/L 87 61 - 148 15 ND F1 25.0 31.1 F1 ug/L 125 77 - 120 5 ND F1 25.0 31.1 F1 ug/L 108 66 - 127 12 ND 25.0 27.1 ug/L 118 79 - 122 3 ND 25.0 29.6 ug/L 118 79 - 122 3 ND 25.0 31.8 F1 ug/L 127 77 - 120 4 ND 1 25.0 31.8 F1 ug/L 127 77 - 120 4 ND F1 25.0 30.5

TestAmerica Job ID: 480-124182-1

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-124182-3 MSD

Matrix: Water

Analysis Batch: 377677

Client Sample ID: MW 8S 091317

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon disulfide	ND		25.0	29.6		ug/L		118	59 - 134	6	15
Carbon tetrachloride	ND		25.0	27.1		ug/L		109	72 - 134	8	15
Chlorobenzene	ND	F1	25.0	31.0	F1	ug/L		124	80 - 120	4	25
Chlorodibromomethane	ND	F1	25.0	32.4	F1	ug/L		129	75 - 125	3	15
Chloroethane	ND		25.0	29.7		ug/L		119	69 - 136	3	15
Chloroform	ND		25.0	30.0		ug/L		120	73 - 127	5	20
Chloromethane	ND	F1	25.0	28.5		ug/L		114	68 - 124	14	15
cis-1,2-Dichloroethene	3.0		25.0	31.2		ug/L		113	74 - 124	3	15
cis-1,3-Dichloropropene	ND		25.0	29.4		ug/L		118	74 - 124	1	15
Cyclohexane	ND		25.0	22.2		ug/L		89	59 - 135	14	20
Dichlorodifluoromethane	ND		25.0	21.7		ug/L		87	59 - 135	4	20
Ethylbenzene	ND	F1	25.0	28.7		ug/L		115	77 - 123	8	15
Isopropylbenzene	ND		25.0	28.7		ug/L		115	77 - 122	2	20
Methyl acetate	ND		125	143		ug/L		114	74 - 133	4	20
Methyl tert-butyl ether	ND	F1	25.0	29.7		ug/L		119	77 - 120	3	37
Methylcyclohexane	ND		25.0	21.3		ug/L		85	68 - 134	10	20
Methylene Chloride	ND		25.0	26.6		ug/L		106	75 - 124	6	15
Styrene	ND	F1	25.0	31.4	F1	ug/L		126	80 - 120	6	20
Tetrachloroethene	0.74	J	25.0	27.0		ug/L		105	74 - 122	10	20
Toluene	ND	F1	25.0	30.4		ug/L		122	80 - 122	6	15
trans-1,2-Dichloroethene	ND		25.0	26.2		ug/L		105	73 - 127	2	20
trans-1,3-Dichloropropene	ND	F1	25.0	30.9	F1	ug/L		124	80 - 120	2	15
Trichloroethene	3.0		25.0	29.4		ug/L		106	74 - 123	6	16
Trichlorofluoromethane	ND		25.0	26.1		ug/L		104	62 - 150	0	20
Vinyl chloride	ND		25.0	28.1		ug/L		112	65 - 133	9	15

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		77 - 120
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene (Surr)	105		73 - 120
Dibromofluoromethane (Surr)	96		75 - 123

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-377767/4

Matrix: Water

Analysis Batch: 377767

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			09/20/17 11:51	1
Sulfate	ND		2.0	0.35	mg/L			09/20/17 11:51	1

Lab Sample ID: LCS 480-377767/3

Matrix: Water

Analysis Batch: 377767								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 50.0	49.52		mg/L		99	90 - 110	

TestAmerica Buffalo

Prep Type: Total/NA

Page 31 of 53

TestAmerica Job ID: 480-124182-1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-377767/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 377767

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits Sulfate 50.0 46.96 94 90 - 110 mg/L

Lab Sample ID: 480-124182-3 MS Client Sample ID: MW 8S 091317 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 377767

•	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	6.5		100	111.6		mg/L		105	81 - 120		_
Sulfate	61.7		100	157.8		mg/L		96	80 - 120		

Lab Sample ID: 480-124182-3 MSD Client Sample ID: MW 8S 091317 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 377767

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	6.5		100	109.6		mg/L		103	81 - 120	2	20
Sulfate	61.7		100	155.3		mg/L		94	80 - 120	2	20

Lab Sample ID: MB 480-378076/4 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 378076

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			09/21/17 17:48	1
Sulfate	ND		2.0	0.35	mg/L			09/21/17 17:48	1

Lab Sample ID: LCS 480-378076/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 378076

	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %R	ec Limits	
Chloride	50.0	50.98	mg/l		90 - 110	
Sulfate	50.0	48.70	mg/l	L 9	90 - 110	

Method: 310.2_ASP - Alkalinity - Colorimetric

Lab Sample ID: MB 480-377158/38 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 377158

MB MB Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Alkalinity, Bicarbonate 7.26 J 10.0 4.0 mg/L 09/15/17 15:26

Lab Sample ID: MB 480-377158/56 **Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water**

Analysis Batch: 377158

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 10.0 09/15/17 15:37 Alkalinity, Bicarbonate 5.55 J 4.0 mg/L

TestAmerica Buffalo

Page 32 of 53

9/26/2017

TestAmerica Job ID: 480-124182-1

Method: 310.2 ASP - Alkalinity - Colorimetric (Continued)

Lab Sample ID: MB 480-377158/67 Client Sample ID: Method Blank **Prep Type: Total/NA Matrix: Water**

Analysis Batch: 377158

MB MB Analyte Result Qualifier RL **MDL** Unit D Analyzed Dil Fac Prepared 10.0 Alkalinity, Bicarbonate 5.32 J 4.0 mg/L 09/15/17 15:41

Lab Sample ID: MB 480-377158/90 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 377158

MB MB

Analyte Result Qualifier RL MDL Unit Analyzed Prepared Dil Fac Alkalinity, Bicarbonate 6.41 J 10.0 4.0 mg/L 09/15/17 15:53

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-377050/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 377050

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Nitrite as N 0.050 0.020 mg/L 09/15/17 10:52 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 480-377050/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 377050

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit %Rec Nitrite as N 1.50 1.53 mg/L 102 90 - 110

Lab Sample ID: 480-124182-3 MS Client Sample ID: MW 8S 091317 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 377050

Sample Sample Spike MS MS %Rec. %Rec Result Qualifier Added Result Qualifier Unit Limits Analyte ND 1.00 Nitrite as N 1.05 105 90 - 110 mg/L

Lab Sample ID: 480-124182-3 MSD Client Sample ID: MW 8S 091317 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 377050

Sample Sample Spike MSD MSD %Rec. **RPD** Added Result Qualifier Limits RPD Analyte Result Qualifier Unit %Rec Limit Nitrite as N ND 1.00 1.07 mg/L 107 90 - 110 20

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 490-461144/2 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 461144

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Sulfide ND 0.10 0.050 mg/L 09/19/17 15:30

TestAmerica Buffalo

TestAmerica Job ID: 480-124182-1

Method: SM 4500 S2 D - Sulfide, Total (Continued)

Lab Sample ID: LCS 490-461144/3	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 461144

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfide	1.00	0.940		mg/L		94	90 - 110	

Lab Sample ID: 480-124182-3 MS Client Sample ID: MW 8S 091317 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 461144

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfide	ND	F1	1.00	1.74	F1	mg/L		174	70 - 130	

Lab Sample ID: 480-124182-3 MSD Client Sample ID: MW 8S 091317 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 461144

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfide	ND	F1	1.00	1.76	F1	mg/L		176	70 - 130	1	50

Lab Sample ID: MB 490-461146/2 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 461146

	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sulfide	ND —	0.10	0.050 mg/L			09/19/17 16:00	1

Lab Sample ID: LCS 490-461146/3 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Analysis Batch: 461146

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Sulfide 1.00 0.950 95 90 - 110 mg/L

Lab Sample ID: 480-124182-9 MS Client Sample ID: MW 5D 091417 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 461146

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfide	0.070	J	1 00	1 04		ma/l	_	97	70 - 130	

Lab Sample ID: 480-124182-9 MSD Client Sample ID: MW 5D 091417 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 461146

Analysis Baton, 401140	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfide	0.070	J	1.00	1.04		mg/L		97	70 - 130	0	50

TestAmerica Buffalo

TestAmerica Job ID: 480-124182-1

Client Sample ID: MW 8S 091317

Prep Type: Dissolved

Method: SM 5310C - Organic Carbon, Dissolved (DOC)

Lab Sample ID: MB 480-377715/27 Client Sample ID: Method Blank **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 377715

MB MB Analyte Result Qualifier RL **MDL** Unit D Analyzed Dil Fac Prepared 1.0 Dissolved Organic Carbon - Duplicate 0.492 J 0.43 mg/L 09/19/17 16:33

Lab Sample ID: MB 480-377715/3 Client Sample ID: Method Blank **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 377715

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 09/19/17 10:32 Dissolved Organic Carbon - Duplicate 0.513 J 1.0 0.43 mg/L

Lab Sample ID: LCS 480-377715/28 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Dissolved**

Analysis Batch: 377715

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 60.0 60.61 mg/L 101 Dissolved Organic Carbon -Duplicate

Lab Sample ID: LCS 480-377715/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Dissolved**

Analysis Batch: 377715

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 60.0 60.76 mg/L 101 90 - 110 Dissolved Organic Carbon -Duplicate

Lab Sample ID: 480-124182-3 MS

Matrix: Water

Analysis Batch: 377715

Sample Sample Spike MS MS %Rec. **Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits 2.6 B 20.0 22.84 mg/L 101 54 - 131 Dissolved Organic Carbon -

Lab Sample ID: 480-124182-3 MSD Client Sample ID: MW 8S 091317 **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 377715

RPD Sample Sample Spike MSD MSD %Rec. Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit %Rec 2.6 B 20.0 Dissolved Organic Carbon -22.77 mg/L 101 54 - 131 0 20

Duplicate

Duplicate

TestAmerica Job ID: 480-124182-1

GC/MS VOA

Analysis Batch: 377677

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-1	MW 8D 091317	Total/NA	Water	8260C	_
480-124182-2	MW 8DD 091317	Total/NA	Water	8260C	
480-124182-3	MW 8S 091317	Total/NA	Water	8260C	
480-124182-4	MW 7DD 091317	Total/NA	Water	8260C	
480-124182-5	MW 7D 091317	Total/NA	Water	8260C	
480-124182-6	MW 7S 091317	Total/NA	Water	8260C	
480-124182-7	MW 5S 091417	Total/NA	Water	8260C	
480-124182-8	MW 4S 091417	Total/NA	Water	8260C	
480-124182-9	MW 5D 091417	Total/NA	Water	8260C	
480-124182-10	MW 4D 091417	Total/NA	Water	8260C	
480-124182-12	MW 6S 091417	Total/NA	Water	8260C	
480-124182-13	QC TRIP BLANK	Total/NA	Water	8260C	
MB 480-377677/7	Method Blank	Total/NA	Water	8260C	
LCS 480-377677/5	Lab Control Sample	Total/NA	Water	8260C	
480-124182-3 MS	MW 8S 091317	Total/NA	Water	8260C	
480-124182-3 MSD	MW 8S 091317	Total/NA	Water	8260C	

General Chemistry

Analysis Batch: 377050

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-3	MW 8S 091317	Total/NA	Water	353.2	_
480-124182-5	MW 7D 091317	Total/NA	Water	353.2	
480-124182-6	MW 7S 091317	Total/NA	Water	353.2	
MB 480-377050/3	Method Blank	Total/NA	Water	353.2	
LCS 480-377050/4	Lab Control Sample	Total/NA	Water	353.2	
480-124182-3 MS	MW 8S 091317	Total/NA	Water	353.2	
480-124182-3 MSD	MW 8S 091317	Total/NA	Water	353.2	

Analysis Batch: 377080

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-1	MW 8D 091317	Total/NA	Water	353.2	<u> </u>
480-124182-2	MW 8DD 091317	Total/NA	Water	353.2	
480-124182-4	MW 7DD 091317	Total/NA	Water	353.2	

Analysis Batch: 377081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-1	MW 8D 091317	Total/NA	Water	353.2	
480-124182-2	MW 8DD 091317	Total/NA	Water	353.2	
480-124182-3	MW 8S 091317	Total/NA	Water	353.2	
480-124182-4	MW 7DD 091317	Total/NA	Water	353.2	
480-124182-5	MW 7D 091317	Total/NA	Water	353.2	
480-124182-6	MW 7S 091317	Total/NA	Water	353.2	

Analysis Batch: 377158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-1	MW 8D 091317	Total/NA	Water	310.2_ASP	·
480-124182-2	MW 8DD 091317	Total/NA	Water	310.2_ASP	
480-124182-3	MW 8S 091317	Total/NA	Water	310.2_ASP	
480-124182-4	MW 7DD 091317	Total/NA	Water	310.2_ASP	

TestAmerica Buffalo

6

9

4

8

9

10

12

4 4

TestAmerica Job ID: 480-124182-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

General Chemistry (Continued)

Analysis Batch: 377158 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-5	MW 7D 091317	Total/NA	Water	310.2_ASP	-
480-124182-6	MW 7S 091317	Total/NA	Water	310.2_ASP	
480-124182-7	MW 5S 091417	Total/NA	Water	310.2_ASP	
480-124182-8	MW 4S 091417	Total/NA	Water	310.2_ASP	
480-124182-9	MW 5D 091417	Total/NA	Water	310.2_ASP	
480-124182-10	MW 4D 091417	Total/NA	Water	310.2_ASP	
480-124182-12	MW 6S 091417	Total/NA	Water	310.2_ASP	
MB 480-377158/38	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-377158/56	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-377158/67	Method Blank	Total/NA	Water	310.2_ASP	
MB 480-377158/90	Method Blank	Total/NA	Water	310.2_ASP	
LCS 480-377158/39	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-377158/57	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-377158/68	Lab Control Sample	Total/NA	Water	310.2_ASP	
LCS 480-377158/91	Lab Control Sample	Total/NA	Water	310.2_ASP	
480-124182-3 MS	MW 8S 091317	Total/NA	Water	310.2_ASP	
480-124182-3 MSD	MW 8S 091317	Total/NA	Water	310.2_ASP	

Analysis Batch: 377167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-7	MW 5S 091417	Total/NA	Water	353.2	
480-124182-8	MW 4S 091417	Total/NA	Water	353.2	
480-124182-9	MW 5D 091417	Total/NA	Water	353.2	
480-124182-10	MW 4D 091417	Total/NA	Water	353.2	
480-124182-12	MW 6S 091417	Total/NA	Water	353.2	

Analysis Batch: 377168

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-7	MW 5S 091417	Total/NA	Water	353.2	
480-124182-8	MW 4S 091417	Total/NA	Water	353.2	
480-124182-9	MW 5D 091417	Total/NA	Water	353.2	
480-124182-10	MW 4D 091417	Total/NA	Water	353.2	
480-124182-12	MW 6S 091417	Total/NA	Water	353.2	

Analysis Batch: 377715

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-1	MW 8D 091317	Dissolved	Water	SM 5310C	_
480-124182-2	MW 8DD 091317	Dissolved	Water	SM 5310C	
480-124182-3	MW 8S 091317	Dissolved	Water	SM 5310C	
480-124182-4	MW 7DD 091317	Dissolved	Water	SM 5310C	
480-124182-5	MW 7D 091317	Dissolved	Water	SM 5310C	
480-124182-6	MW 7S 091317	Dissolved	Water	SM 5310C	
480-124182-7	MW 5S 091417	Dissolved	Water	SM 5310C	
480-124182-8	MW 4S 091417	Dissolved	Water	SM 5310C	
480-124182-9	MW 5D 091417	Dissolved	Water	SM 5310C	
480-124182-10	MW 4D 091417	Dissolved	Water	SM 5310C	
480-124182-12	MW 6S 091417	Dissolved	Water	SM 5310C	
MB 480-377715/27	Method Blank	Dissolved	Water	SM 5310C	
MB 480-377715/3	Method Blank	Dissolved	Water	SM 5310C	
LCS 480-377715/28	Lab Control Sample	Dissolved	Water	SM 5310C	
LCS 480-377715/4	Lab Control Sample	Dissolved	Water	SM 5310C	

TestAmerica Buffalo

2

5

6

40

12

13

15

16

9/26/2017

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

General Chemistry (Continued)

Analysis Batch: 377715 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-3 MS	MW 8S 091317	Dissolved	Water	SM 5310C	
480-124182-3 MSD	MW 8S 091317	Dissolved	Water	SM 5310C	

Analysis Batch: 377767

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-1	MW 8D 091317	Total/NA	Water	300.0	
480-124182-2	MW 8DD 091317	Total/NA	Water	300.0	
480-124182-3	MW 8S 091317	Total/NA	Water	300.0	
480-124182-4	MW 7DD 091317	Total/NA	Water	300.0	
480-124182-5	MW 7D 091317	Total/NA	Water	300.0	
480-124182-6	MW 7S 091317	Total/NA	Water	300.0	
480-124182-7	MW 5S 091417	Total/NA	Water	300.0	
480-124182-8	MW 4S 091417	Total/NA	Water	300.0	
480-124182-9	MW 5D 091417	Total/NA	Water	300.0	
480-124182-10	MW 4D 091417	Total/NA	Water	300.0	
480-124182-12	MW 6S 091417	Total/NA	Water	300.0	
MB 480-377767/4	Method Blank	Total/NA	Water	300.0	
LCS 480-377767/3	Lab Control Sample	Total/NA	Water	300.0	
480-124182-3 MS	MW 8S 091317	Total/NA	Water	300.0	
480-124182-3 MSD	MW 8S 091317	Total/NA	Water	300.0	

Analysis Batch: 378076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-2	MW 8DD 091317	Total/NA	Water	300.0	
MB 480-378076/4	Method Blank	Total/NA	Water	300.0	
LCS 480-378076/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 461144

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-1	MW 8D 091317	Total/NA	Water	SM 4500 S2 D	
480-124182-2	MW 8DD 091317	Total/NA	Water	SM 4500 S2 D	
480-124182-3	MW 8S 091317	Total/NA	Water	SM 4500 S2 D	
480-124182-4	MW 7DD 091317	Total/NA	Water	SM 4500 S2 D	
480-124182-5	MW 7D 091317	Total/NA	Water	SM 4500 S2 D	
480-124182-6	MW 7S 091317	Total/NA	Water	SM 4500 S2 D	
MB 490-461144/2	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 490-461144/3	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
480-124182-3 MS	MW 8S 091317	Total/NA	Water	SM 4500 S2 D	
480-124182-3 MSD	MW 8S 091317	Total/NA	Water	SM 4500 S2 D	

Analysis Batch: 461146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-124182-7	MW 5S 091417	Total/NA	Water	SM 4500 S2 D	
480-124182-8	MW 4S 091417	Total/NA	Water	SM 4500 S2 D	
480-124182-9	MW 5D 091417	Total/NA	Water	SM 4500 S2 D	
480-124182-10	MW 4D 091417	Total/NA	Water	SM 4500 S2 D	
480-124182-12	MW 6S 091417	Total/NA	Water	SM 4500 S2 D	
MB 490-461146/2	Method Blank	Total/NA	Water	SM 4500 S2 D	
LCS 490-461146/3	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
480-124182-9 MS	MW 5D 091417	Total/NA	Water	SM 4500 S2 D	
480-124182-9 MSD	MW 5D 091417	Total/NA	Water	SM 4500 S2 D	

TestAmerica Buffalo

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Lab Sample ID: 480-124182-1

Matrix: Water

Client Sample ID: MW 8D 091317 Date Collected: 09/13/17 09:05

Date Received: 09/14/17 12:38

itch E	Batch		Dilution	Batch	Prepared		
pe N	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
alysis 8	3260C			377677	09/20/17 00:04	RJF	TAL BUF
nalysis 3	300.0		10	377767	09/20/17 12:15	RJS	TAL BUF
nalysis 3	310.2_ASP		4	377158	09/15/17 15:28	ALZ	TAL BUF
nalysis 3	353.2		1	377080	09/15/17 10:12	KRT	TAL BUF
nalysis 3	353.2		1	377081	09/15/17 10:12	KRT	TAL BUF
nalysis S	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
nalysis S	SM 5310C		1	377715	09/19/17 12:02	EKB	TAL BUF
na na na	oe Ralysis Salysis	Method alysis 8260C alysis 300.0 alysis 310.2_ASP alysis 353.2 alysis 353.2 alysis SM 4500 S2 D	Dee Method Run alysis 8260C alysis 300.0 alysis 310.2_ASP alysis 353.2 alysis 353.2 alysis SM 4500 S2 D	De alysis Method Run Factor alysis 300.0 10 alysis 310.2_ASP 4 alysis 353.2 1 alysis 353.2 1 alysis SM 4500 S2 D 1	De lalysis Method Run Factor Number alysis 8260C 1 377677 alysis 300.0 10 377767 alysis 310.2_ASP 4 377158 alysis 353.2 1 377080 alysis 353.2 1 377081 alysis SM 4500 S2 D 1 461144	Dee Method Run Factor Number or Analyzed alysis 8260C 1 377677 09/20/17 00:04 alysis 300.0 10 377767 09/20/17 12:15 alysis 310.2_ASP 4 377158 09/15/17 15:28 alysis 353.2 1 377080 09/15/17 10:12 alysis 353.2 1 377081 09/15/17 10:12 alysis SM 4500 S2 D 1 461144 09/19/17 15:30	Method Run Factor Number or Analyzed Analyst alysis 8260C 1 377677 09/20/17 00:04 RJF alysis 300.0 10 377767 09/20/17 12:15 RJS alysis 310.2_ASP 4 377158 09/15/17 15:28 ALZ alysis 353.2 1 377080 09/15/17 10:12 KRT alysis 353.2 1 377081 09/15/17 10:12 KRT alysis SM 4500 S2 D 1 461144 09/19/17 15:30 GRM

Client Sample ID: MW 8DD 091317 Lab Sample ID: 480-124182-2

Date Collected: 09/13/17 09:17 **Matrix: Water**

Date Received: 09/14/17 12:38

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377677	09/20/17 00:31	RJF	TAL BUF
Total/NA	Analysis	300.0		10	377767	09/20/17 12:23	RJS	TAL BUF
Total/NA	Analysis	300.0		20	378076	09/21/17 19:18	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		3	377158	09/15/17 15:28	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377080	09/15/17 10:13	KRT	TAL BUF
Total/NA	Analysis	353.2		1	377081	09/15/17 10:13	KRT	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 12:17	EKB	TAL BUF

Lab Sample ID: 480-124182-3 Client Sample ID: MW 8S 091317

Date Collected: 09/13/17 11:05 Date Received: 09/14/17 12:38

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377677	09/20/17 00:59	RJF	TAL BUF
Total/NA	Analysis	300.0		2	377767	09/20/17 12:39	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		3	377158	09/15/17 15:48	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377081	09/15/17 10:54	KRT	TAL BUF
Total/NA	Analysis	353.2		1	377050	09/15/17 10:54	KRT	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 19:49	EKB	TAL BUF

TestAmerica Buffalo

Page 39 of 53

Matrix: Water

9/26/2017

TestAmerica Job ID: 480-124182-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 7DD 091317

Lab Sample ID: 480-124182-4

Date Collected: 09/13/17 11:08 **Matrix: Water**

Date Received: 09/14/17 12:38

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377677	09/20/17 01:26	RJF	TAL BUF
Total/NA	Analysis	300.0		5	377767	09/20/17 12:31	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		3	377158	09/15/17 15:28	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377080	09/15/17 10:14	KRT	TAL BUF
Total/NA	Analysis	353.2		1	377081	09/15/17 10:14	KRT	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 12:32	EKB	TAL BUF

Lab Sample ID: 480-124182-5 Client Sample ID: MW 7D 091317

Date Collected: 09/13/17 13:20 **Matrix: Water**

Date Received: 09/14/17 12:38

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377677	09/20/17 01:54	RJF	TAL BUF
Total/NA	Analysis	300.0		2	377767	09/20/17 13:20	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		3	377158	09/15/17 15:28	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377050	09/15/17 10:57	KRT	TAL BUF
Total/NA	Analysis	353.2		1	377081	09/15/17 10:57	KRT	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSI
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 12:47	EKB	TAL BU

Client Sample ID: MW 7S 091317 Lab Sample ID: 480-124182-6

Date Collected: 09/13/17 13:25 **Matrix: Water**

Date Received: 09/14/17 12:38

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377677	09/20/17 02:21	RJF	TAL BUF
Total/NA	Analysis	300.0		2	377767	09/20/17 13:28	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		3	377158	09/15/17 15:28	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377050	09/15/17 10:58	KRT	TAL BUF
Total/NA	Analysis	353.2		1	377081	09/15/17 10:58	KRT	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461144	09/19/17 15:30	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 13:31	EKB	TAL BUF

Lab Sample ID: 480-124182-7 Client Sample ID: MW 5S 091417

Date Collected: 09/14/17 07:15 **Matrix: Water** Date Received: 09/14/17 12:38

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377677	09/20/17 02:48	RJF	TAL BUF
Total/NA	Analysis	300.0		5	377767	09/20/17 13:36	RJS	TAI BUF

TestAmerica Buffalo

Page 40 of 53 9/26/2017

Lab Chronicle

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-124182-1

Project/Site: Forest Glen Monitoring

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	310.2_ASP		5	377158	09/15/17 16:00	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377167	09/15/17 17:27	DCB	TAL BUF
Total/NA	Analysis	353.2		1	377168	09/15/17 17:27	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461146	09/19/17 16:00	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 13:46	EKB	TAL BUF

Client Sample ID: MW 4S 091417

Lab Sample ID: 480-124182-8 Date Collected: 09/14/17 07:40

Matrix: Water

Date Received: 09/14/17 12:38

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377677	09/20/17 03:16	RJF	TAL BUF
Total/NA	Analysis	300.0		5	377767	09/20/17 13:45	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		5	377158	09/15/17 16:00	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377167	09/15/17 17:28	DCB	TAL BUF
Total/NA	Analysis	353.2		1	377168	09/15/17 17:28	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461146	09/19/17 16:00	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 14:02	EKB	TAL BUF

Client Sample ID: MW 5D 091417

Lab Sample ID: 480-124182-9 Date Collected: 09/14/17 09:05

Matrix: Water

Date Received: 09/14/17 12:38

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377677	09/20/17 03:43	RJF	TAL BUF
Total/NA	Analysis	300.0		5	377767	09/20/17 13:53	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	377158	09/15/17 15:41	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377167	09/15/17 17:37	DCB	TAL BUF
Total/NA	Analysis	353.2		1	377168	09/15/17 17:37	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461146	09/19/17 16:00	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 14:17	EKB	TAL BUF

Client Sample ID: MW 4D 091417

Lab Sample ID: 480-124182-10 Date Collected: 09/14/17 09:54 **Matrix: Water**

Date Received: 09/14/17 12:38

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377677	09/20/17 04:11	RJF	TAL BUF
Total/NA	Analysis	300.0		5	377767	09/20/17 14:01	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	377158	09/15/17 15:41	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377167	09/15/17 17:38	DCB	TAL BUF
Total/NA	Analysis	353.2		1	377168	09/15/17 17:38	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461146	09/19/17 16:00	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 14:32	EKB	TAL BUF

TestAmerica Buffalo

Page 41 of 53

Lab Chronicle

Client: O'Brien & Gere Inc of North America

Client Sample ID: MW 6S 091417

Project/Site: Forest Glen Monitoring

Date Collected: 09/14/17 10:10

Date Received: 09/14/17 12:38

TestAmerica Job ID: 480-124182-1

Lab Sample ID: 480-124182-12

Matrix: Water

Lab Sample ID: 480-124182-13

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			377677	09/20/17 04:38	RJF	TAL BUF
Total/NA	Analysis	300.0		5	377767	09/20/17 14:09	RJS	TAL BUF
Total/NA	Analysis	310.2_ASP		4	377158	09/15/17 15:48	ALZ	TAL BUF
Total/NA	Analysis	353.2		1	377167	09/15/17 17:39	DCB	TAL BUF
Total/NA	Analysis	353.2		1	377168	09/15/17 17:39	DCB	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	461146	09/19/17 16:00	GRM	TAL NSH
Dissolved	Analysis	SM 5310C		1	377715	09/19/17 14:48	EKB	TAL BUF

Client Sample ID: QC TRIP BLANK

Date Collected: 09/14/17 00:00

Date Received: 09/14/17 12:38

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	377677	09/20/17 05:06	RJF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Matrix: Water

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-124182-1

Project/Site: Forest Glen Monitoring

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Expiration Date EPA Region Identification Number New York NELAP 10026 03-31-18 The following analytes are included in this report, but accreditation/certification is not offered by the governing authority: Analysis Method Prep Method Analyte Matrix SM 5310C Water Dissolved Organic Carbon - Duplicate

Laboratory: TestAmerica Nashville

The accreditations/certifications listed below are applicable to this report.

Authority Program **EPA Region Identification Number Expiration Date** New York NELAP 11342 03-31-18

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Method	Method Description	Protocol	Laboratory	
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF	
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF	
310.2_ASP	Alkalinity - Colorimetric	MCAWW	TAL BUF	
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF	
353.2	Nitrate	EPA	TAL BUF	
SM 4500 S2 D	Sulfide, Total	SM	TAL NSH	
SM 5310C	Organic Carbon, Dissolved (DOC)	SM	TAL BUF	

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-124182-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-124182-1	MW 8D 091317	Water	09/13/17 09:05	09/14/17 12:38
480-124182-2	MW 8DD 091317	Water	09/13/17 09:17	09/14/17 12:38
480-124182-3	MW 8S 091317	Water	09/13/17 11:05	09/14/17 12:38
480-124182-4	MW 7DD 091317	Water	09/13/17 11:08	09/14/17 12:38
480-124182-5	MW 7D 091317	Water	09/13/17 13:20	09/14/17 12:38
480-124182-6	MW 7S 091317	Water	09/13/17 13:25	09/14/17 12:38
480-124182-7	MW 5S 091417	Water	09/14/17 07:15	09/14/17 12:38
480-124182-8	MW 4S 091417	Water	09/14/17 07:40	09/14/17 12:38
480-124182-9	MW 5D 091417	Water	09/14/17 09:05	09/14/17 12:38
480-124182-10	MW 4D 091417	Water	09/14/17 09:54	09/14/17 12:38
480-124182-12	MW 6S 091417	Water	09/14/17 10:10	09/14/17 12:38
480-124182-13	QC TRIP BLANK	Water	09/14/17 00:00	09/14/17 12:38

3

4

6

R

9

4 4

12

14

15

Quantitation Limit Exceptions Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring TestAmerica Job ID: 480-124182-1

Project/Site: Forest Glen Monitoring

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
8260C	Water	Methyl acetate	ug/L	1.3	2.5

4

5

6

6

9

11

12

14

15

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	υ	hain o	hain of Custody Record	dy Re	cord							TestA	TestAmerica
Client Information	Sample.	Koena	necky	Lab PM: Johnso	Lab PM: Johnson, Orlette	S			Carrier Tra	Carrier Tracking No(s):		COC No: 480-101979-22905.1	2905.1
Client Contact: Mr. Yuri Veliz		29-13	300	E-Mail: orlette.	E-Mail: orlette.johnson@testamericainc.com	testame	ricainc.c	шо				Page: Page 1 of 2	
Company: O'Brien & Gere Inc of North America							Ana	Analysis	Requested			Job #:	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested			\$13/35								Preservation Codes	odes:
City. East Syracuse	TAT Requested (days):	s):										B-Na C-Zn	
State, Zip: NY, 13221							uo					E-Na	
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#. 11700485			10			c Carb						480-124182 COC ahydrate
Email: Yuri.Veliz@obg.com	WO#:			10 F N	DOM:	olaC	Organi				SI	J-DI Wa	
Project Name: Forest Glen Monitoring	Project #: 48002808			eV) e	10 89	trate_C	pəvlo	apıılıng			ntaìne	L-EDA	W - pri 4-5 Z - other (specify)
Site:	:#WOSS			lames	Y) asi			_			nos to	Other	
Samula Hantification	Sample Date	Sample	Sample Type (C=comp, o	Matrix (wwwater, Sasolid, Owasteloil, ield	Sertorn MS/M	100.0_28D - CI, 1	SM5310_DOC_C	10.2 - Alkalinit)			Total Number		Special Instructions/Note:
	X	1	- 05	(8)	X	12	12				X		
MW 8D 091317	9-13-17	30.6	9	Water	3		9						
MW 8 DD 09 1317	9-13-17	9:17	9	Water	33	13	4	- 1				10-20	
	9-13-17	11:05	9	Water	30	i d	2)	-					
	9-13-17	11:05	6	Water	^	1 2	6	_					
MW 85 MSD 0913 17	9-13-17	11:05	9	Water	3	13	6	_					
MW 7DD091317	4-13-17	80:11	6	Water	w	ر -	76	~					
mw 7D 091317	9-13-17	1320	9	Water	w	-	6	-					
mw 75091317	9-13-17	1325	9	Water	33	0	6	-				2790	
MW 55 0914 17	9-14-17	7:15	9	Water	w	1	4	-				1070	
mw 45 ogi417	9-14-17	4:40	9	Water	3	ر	76	~					
MW5D 091417	9-14-17	50:6	9	Water	3	13	6	1				Turnistics.	
Skin Imfant	Poison B Unknown		Radiological		Sampl	le Disposal (At	al (A fe	e may	Disposal By Lab	if samples By Lab	are retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mor	1 month)
ssted: I, II, III, IV, Other (specify)					Special	Special Instructions/QC Requirements.	ons/QC	Require	ments:				
Empty Kit Relinquished by:		Date:			Time:				Met	Method of Shipment			
Relinquished by Mark Koull	Date(Time:	111	2 55.	Company 6	Rec	Received by:	1	6		Date/Time:	14/17	1155	,
Relinquished by: A The The Relinquished by:	9/14/17	123	8	Company O'86	Rec	Received by:	3	3	X	DateTime	19-17	1238	S Company
Relinquished by:	Date/Timé:		8	Company	Rec	Received by:	,)	Date/Time	me:		Company
Custody Seals Intact: Custody Seal No.:					80	ler Tempe	ature(s) °(and Oth	Cooler Temperature(s) °C and Other Remarks:	2.1	é	1# 6	

TestAmerica Buffalo

TestAmerica

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	0	Chain o	f Cust	n of Custody Record	cord						TestA	TestAmerica
Client Information	SamolyngeTin	Koune	well	Lab PM: Johnso	Lab PM: Johnson, Orlette	S			Carner Tracking No(s):		COC No: 480-96124-22905.2	5.2
Glient Contact: Mr. Yuri Veliz	Phone: 15-1	26	300	E-Mail: orlette.	E-Maii: orlette.johnson@testamericainc.com	testame	icainc.co	ш			Page: Page 2 of 2	
Company: O'Brien & Gere Inc of North America							Analy	Analysis Requested	uested		Job #:	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:	:pa									Preservation Codes	
Ony: East Syracuse	TAT Requested (days):	ıys):									B - NaOH C - Zn Acetate	N · None O - AsNaO2
State, Zip: NY, 13221							rbon	-			D - Nitric Acid E - NaHSO4	P - Na2045 O - Na2SO3
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#. 11511119			(0)			nic Ca				G - Amchlor H - Ascorbic Acid	S - H2SO4
Етаі» Yuri.Veliz@obg.com	WO#:			10 56		Calc	egiO t	ə				U - Acetone V - MCAA
Project Name: Forest Glen Monitoring	Project #: 48002808			(Y) 9lc	o sə,	itrale	evlos	Sulfid			ntain L-EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:			dmeS	ı) ası		7.	laloT -			of co Other:	
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=qrab)	Matrix ce (w=water, S=solld, O=wasteloll, de BT-Tissue, A=Ar)	Perform MS/N 8260C - TCL lis	300:0 S8D - CI	SM5310_DOC_0	a_ss_0054MS			Notal Number	Special Instructions/Note:
		1			X	-	-	CB				
WW 4D 69 14 19	41-41-6	954	9	Water	3	10	- r6					
MW 65 C91417	4-14-17	10:10	9	Water	3	4	7	-				
				Water	16	The Wat						
-				Water	7							
				Water	Ē							
				Water								
				Water								
				Water								
				Water								
											100	
1		1			Sample	Dispos	II (A fee	may be	ssessed if sampl	es are ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)
Non-Hazard Flammable Skin Irritant	Poison B Unknown	П	Radiological		Special	Return To Client	Client ne/OC F	Special Instructions/OC Requirements:	Disposal By Lab		Archive For	Months
Deliverable nequested. I, II, IV, Other (specify)					opedia	III SII DOIL	2000	addina in	ा			
Empty Kit Relinquished by:		Date:			Time:				Method of Shipment:	ent:		
Reinquisipalin franke	9-14-17	111:	52	Company		Received by:	A	280		1	5511 (1	Company O/8-6
Relinquished by: Relinquished by:	9/14/17	21	30	Company		Received by:	ing	To	Date/	Date/Time:	17 1338	Company 4 5
-60			i		+							
Custody Seals Intact: Custody Seal No.:					Cool	er Tempera	ture(s) °C	Cooler Temperature(s) °C and Other Remarks	emarks:			

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On 9/16/17 0935	
10.61	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # 9538 (last 4 digits, FedEx), Courier: _FedEx_	,
IR Gun ID31470368 pH Strip Lot/ Chlorine Strip Lot/	<u>#</u>
2. Temperature of rep. sample or temp blank when opened: Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NONA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YES NONA
6. Were custody papers inside cooler?	YES NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO. NA
Were these signed and dated correctly?	YESNO., NA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: Ce-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	ESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YESNONA
12. Did all container labels and tags agree with custody papers?	ESNONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence	e #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO(NA)
b. Did the bottle labels indicate that the correct preservatives were used	(YE)NONA
16. Was residual chlorine present?	YESNO(NA)
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	KD.
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	YESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	~ KD

Was a NCM generated? YES. N.#

I certify that I attached a label with the unique LIMS number to each container (intial)

21. Were there Non-Conformance issues at login? YES..(No

Date/Time:

Cooler Temperature(s) °C and Other Remarks:

Received by:

Date/Time:

Wethod of Shipment

Received by:

Time:

Primary Deliverable Rank: 2

Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Empty Kit Relinquished by: Unconfirmed

										_			-	* (•	-
10 Hazelwood Drive	Š	thain of Custody Becord	Cust	70 200									-	上方り	ついしむこれでか	Ü
Amherst, NY 14228-2298		<u> </u>				_							- 1888			
Phone (716) 691-2600 Fax (716) 691-7991													fe	HE LEADER IN	THE LEADER IN ENVIRONMENTAL TESTING	TESTING
Client Information (Sub Contract Lab)	Sampler.			Lab PM: Johnso	Lab PM: Johnson, Orlette S	် မ		_					8 4	COC No: 480-37249 1		
}	Phone:			E-Mail:	E-Mail: orlette.iohnson@testamericainc.c.	@testam	ericainc	ال ا		¥			a a	Page:		
Company: TestAmerica Laboratories, Inc		i i			Accreditations Required (See note) NELAP - New York	is Require	d (See nor	(e)					S 4	Job #: 480-124182-1		
Address: 2960 Foster Creighton Drive.	Due Date Requested: 9/26/2017						1	ivsis	Analysis Requested	sted			<u> </u>	Preservation Codes:	sepo	
	TAT Requested (days):												₹ M (A - HCL B - NaOH C - 7n Acetate	M - Hexane N - None	
State, Zip. TN, 37204													, С , Ц , Ц , Ц	D - Nitric Acid E - NaHSO4	O - ASNAO2 P - Na2O4S Q - Na2SO3	
Phone: 615-726-0177(Tel) 615-726-3404(Fax)	PO#.		1		.t <u>-</u> (o								LOI ()	F - MeOH G - Amchlor H - Ascorbíc Acid	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate	ahvdrate
Email:	WO#:				TOTAL RIVER									1 - lœ J - Di Water		
Project Name: Forest Glen Monitoring	Project #: 48002808				l jo ac									K-EDTA L-EDA	W - pH 4-5 Z - other (specify)	ięk)
Site:	SSOW#.			788	A) as									Other:		
		, si	Sample	T	W/SV								jedi	E I		
	- V	Sample (C		Matrix (W=water, S=solid,	o Filte A miot 2_0021								nuN la			
Sample Identification - Client ID (Lab ID)	Sample Date	_		į,	Jød								ioT	Special	Special Instructions/Note:	ote:
Belleting - Printing and Section of the Control of		37	Preservation Code.	n Code:	\Diamond	整然を				- E			X	計分震	子が、養に	Property of
MW 8D 091317 (480-124182-1)	9/13/17 C	09:05 Eastern		Water	×								P .			
MW 8DD 091317 (480-124182-2)	9/13/17	09:17 Eastern		Water	×								Į.			
MW 8S 091317 (480-124182-3)	9/13/17	11:05 Eastern		Water	×			ļ					- 1/2	_ _ 	Loc: 480	
MW 8S 091317 (480-124182-3MS)	9/13/17 E	11:05 Eastern	MS	Water	×			<u> </u>							124182	
MW 8S 091317 (480-124182-3MSD)	9/13/17 E		MSD	Water	×								-/55X**;			
MW 7DD 091317 (480-124182-4)	9/13/17 E	11:08 Eastern	1	Water	×								37°			
MW 7D 091317 (480-124182-5)	9/13/17 E	13:20 astern		Water	×								\ \			
MW 7S 091317 (480-124182-6)	9/13/17 E	13:25 Eastern		Water	×								į , į			
MW 5S 091317 (480-124182-7)	9/14/17 C	07:15 Eastern		Water	×											
Note: Since laboratory accreditations are subject to change, TestAmenica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does no control to the state of Origin listed above for analysis/tests/marity being analyzed, the samples must be shipped back to the TestAmenica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmenica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmenica laboratory or other instructions will be provided.	atories, Inc. places the ow sts/matrix being analyzed,	nership of me the samples	thod, analyte must be ship	& accreditation	n complian e TestAme	ce upon ot ica laboral	ut subcont tary or oth	ract labor er instruc	atones. 7	his sample e provide	e shipme d. Any ct	nt is forwa	rded und accredita	er chain-of-cus tion status shou	This sample shipment is forwarded under chain-of-custody. If the laboratory does not be provided. Any changes to accreditation status should be brought to TestAmerica.	ory does not

TestAmerica

TestAmerica Buffalo

Custody Seals Intact:

linquished by:

Custody Seal No.

TestAmerica THE LEADER IN ENVRONMENTAL TESTING

Chain of Custody Record

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

TestAmerica Buffalo

	Sampler			MO 40 I					Company Toward	(3)	ľ	1100	
Client Information (Sub Contract Lab)				Johns	Johnson, Orlette S	S)		3	III II WOULD	, (e)o, (e).) 4	480-37249.2	
Client Contact. Shipping/Receiving	Phone:			E-Mail: orlette	.johnson()testamer	E-Maii: orlette johnson@testamericainc.com		State of Origin: New York			Page: Page 2 of 2	
Company: TestAmerica Laboratories, Inc				\ <u>\</u>	AELAP - N	Accreditations Required (See note): NELAP - New York	See note):]		2 4	Job #: 480-124182-1	
	Due Date Requested: 9/26/2017	ij					Analysis	is Requested	sted			Preservation Codes	odes:
	TAT Requested (da	ys):										A - HCL 8 - NaOH 0 - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip. TN, 37204				* ×-								D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone: 615-726-0177(Tel) 615-726-3404(Fax)	PO#:) lo							F - MeOH G - Amchior H - Ascorbic Acid	
Email:	WO#;											I - Ice J - Di Water	
Project Name. Forest Glen Monitoring	Project #: 48002808				10 se							K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
	:#WOSS				A) as						_	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp,	Matrix (W=water, S=solid, O=wastefoli, BT=Tissue, A=AIr)	Fleid Filtered Periorm MS/W SM4500_S2_D/						Tedmini/ [sto]	Special	Special Instructions/Note:
STOCK CONTRACTOR CONTR		1	Preservat	Preservation Code:	X	を記る	主 語 不 图 3	· 公里	· · · · · · · · · · · · · · · · · · ·	100	X	The state of the s	All helps of a methods of the second
MW 4S 091317 (480-124182-8)	9/14/17	 		Water	×						数		
MW 5D 091317 (480-124182-9)	9/14/17	09:05 Fastern		Water	×			-					
MW 4D 091317 (480-124182-10)	9/14/17	09:54 Eastern		Water	×				_		₹		
MW 6S 091317 (480-124182-12)	9/14/17	10:10 Eastern		Water	×				_				
			i										
Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. I	atories, Inc. places the	ownership of (nethod, analy	te & accreditatic	и сотріалс	e upon out s	ubcontract la	boratories. T	his sample :	shipment is	forwarded un	der chain-of-cust	ody. 1
Possible Hazard Identification					Sample	le Disposal (A i	I (A fee m	ay be assu	assessed if sar	amples a	re retained lon	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverabl	ible Rank: 2			Special	Instruction	1s/QC Rec	Special Instructions/QC Requirements:	G man			5	Station
Empty Kit Relinquished by:		Date:			Time:		1		Method o	Method of Shipment			
Reling/Rehed by # 1/1/1/19	Date/Time /	7/6		Company	Rec	Received by:	Dist.	ند		Date/Time	C MCJ	75180	Company
Relinquished by:	Ďate/Time:			Company	Rec	Received by:	1			Date/Time	3	3	Company
Relinquished by:	Date/Time:			Company	Rec	Received by:				Date/Time.			Company
Custody Seals Intact: Custody Seal No.:]]	ပိ	ler Temperat	ure(s) °C and	Cooler Temperature(s) °C and Other Remarks:	Acs:	c			

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-124182-1

Login Number: 124182 List Source: TestAmerica Buffalo

List Number: 1

Creator: Conway, Curtis R

Creator. Conway, Curus N		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

9

44

12

14

Client: O'Brien & Gere Inc of North America

Job Number: 480-124182-1

List Source: TestAmerica Nashville
List Number: 2
List Creation: 09/16/17 06:01 PM

Creator: Dawson, Keith M

Creator: Dawson, Keith M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-129276-1

Client Project/Site: Forest Glen Monitoring

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Inlette J. Johnson

Authorized for release by: 12/30/2017 1:38:38 PM

Orlette Johnson, Senior Project Manager (484)685-0864

orlette.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	23
QC Sample Results	24
QC Association Summary	34
Lab Chronicle	35
Certification Summary	38
Method Summary	39
Sample Summary	40
Chain of Custody	41
Receipt Checklists	43

3

4

<u>۾</u>

9

11

12

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits

Glossary

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
t	Listed under the "D" column to designate that the result is reported on a dry weight basis
6R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Oil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
.OD	Limit of Detection (DoD/DOE)
.OQ	Limit of Quantitation (DoD/DOE)
/IDA	Minimum Detectable Activity (Radiochemistry)
ИDC	Minimum Detectable Concentration (Radiochemistry)
/IDL	Method Detection Limit
ΛL	Minimum Level (Dioxin)
IC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 43

4

-

4

5

7

_

12

IS

Case Narrative

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-129276-1

Project/Site: Forest Glen Monitoring

Job ID: 480-129276-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-129276-1

Receipt

The samples were received on 12/20/2017 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 3.1° C and 3.3° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-393403 recovered outside acceptance criteria, low biased, for 1,1,2,2-Tetrachloroethane, 2-Hexanone and 4-Methyl-2-pentanone (MIBK). A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: MW 1S 121917 (480-129276-1) and MW 1D 121917 (480-129276-2).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-393428 recovered above the upper control limit for Tetrachloroethene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW 7D 122017 (480-129276-3), MW 8DD 122017 (480-129276-4), MW 7S 122017 (480-129276-5), MW 8S 122017 (480-129276-6), X-1 122017 (480-129276-7), MW 8D 122017 (480-129276-8), MW 7DD-2 122017 (480-129276-11), MW 6D 122017 (480-129276-12), MW 6DD 122017 (480-129276-13), MW 6S 122017 (480-129276-14) and QC TRIP BLANK (480-129276-15).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-393428 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: MW 7D 122017 (480-129276-3), MW 8DD 122017 (480-129276-4), MW 7S 122017 (480-129276-5), MW 8S 122017 (480-129276-6), X-1 122017 (480-129276-7), MW 8D 122017 (480-129276-8), MW 7DD-2 122017 (480-129276-11), MW 6D 122017 (480-129276-12), MW 6DD 122017 (480-129276-13), MW 6S 122017 (480-129276-14) and QC TRIP BLANK (480-129276-15).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

А

4

5

6

ا

9

1 4

12

IR

a E

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 1S 121917 Lab Sample ID: 480-129276-1

No Detections.

Client Sample ID: MW 1D 121917 Lab Sample ID: 480-129276-2

No Detections.

Client Sample ID: MW 7D 122017 Lab Sample ID: 480-129276-3

ſ	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Tetrachloroethene	0.36	J	1.0	0.36	ug/L	1	_	8260C	Total/NA
L	Trichloroethene	1.1		1.0	0.46	ug/L	1		8260C	Total/NA

Client Sample ID: MW 8DD 122017 Lab Sample ID: 480-129276-4

No Detections.

Client Sample ID: MW 7S 122017 Lab Sample ID: 480-129276-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Trichloroethene	1.1	1.0	0.46 ug/L	1 8260C	Total/NA

Client Sample ID: MW 8S 122017 Lab Sample ID: 480-129276-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	ı	Prep Type
Tetrachloroethene	0.86	J	1.0	0.36	ug/L		_	8260C	-	Total/NA
Trichloroethene	3.3		1.0	0.46	ug/L	1		8260C	-	Total/NA

Client Sample ID: X-1 122017 Lab Sample ID: 480-129276-7

No Detections.

Client Sample ID: MW 8D 122017 Lab Sample ID: 480-129276-8

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
1,1-Dichloroethane	0.89	J F1	1.0	0.38 ug/L		8260C	Total/NA
Methyl tert-butyl ether	0.30	J	1.0	0.16 ug/L	1	8260C	Total/NA

Client Sample ID: MW 7DD-2 122017 Lab Sample ID: 480-129276-11

No Detections.

Client Sample ID: MW 6D 122017 Lab Sample ID: 480-129276-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.56	J –	1.0	0.38	ug/L		_	8260C	Total/NA
cis-1,2-Dichloroethene	1.3		1.0	0.81	ug/L	1		8260C	Total/NA
Vinyl chloride	1.3		1.0	0.90	ug/L	1		8260C	Total/NA

Client Sample ID: MW 6DD 122017 Lab Sample ID: 480-129276-13

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
cis-1.2-Dichloroethene		1.0	0.81 ua/L	1 8260C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

12/30/2017

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 6S 122017

Lab Sample ID: 480-129276-14

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
cis-1,2-Dichloroethene	4.7	1.0	0.81 ug/L	1 8260C	Total/NA

Client Sample ID: QC TRIP BLANK Lab Sample ID: 480-129276-15

No Detections.

5

0

9

11

13

14

1!

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-129276-1

Project/Site: Forest Glen Monitoring

Client Sample ID: MW 1S 121917 Lab Sample ID: 480-129276-1

Date Collected: 12/19/17 16:23 Matrix: Water Date Received: 12/20/17 17:30

Analyte	nic Compoun Result Q		MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		-	12/23/17 02:57	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 02:57	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 02:57	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 02:57	· · · · · · · · ·
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/23/17 02:57	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 02:57	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			12/23/17 02:57	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			12/23/17 02:57	
1,2-Dichlorobenzene	ND	1.0		ug/L			12/23/17 02:57	
1,2-Dichloroethane	ND	1.0		ug/L			12/23/17 02:57	
1,2-Dichloropropane	ND	1.0		ug/L			12/23/17 02:57	
1,3-Dichlorobenzene	ND	1.0		ug/L			12/23/17 02:57	
1,4-Dichlorobenzene	ND	1.0		ug/L			12/23/17 02:57	
2-Butanone (MEK)	ND	10		ug/L			12/23/17 02:57	
2-Hexanone	ND	5.0		ug/L			12/23/17 02:57	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			12/23/17 02:57	
Acetone	ND	10		ug/L			12/23/17 02:57	
Benzene	ND	1.0		ug/L			12/23/17 02:57	
Bromodichloromethane	ND	1.0		ug/L			12/23/17 02:57	
Bromoform	ND	1.0		ug/L			12/23/17 02:57	
Bromomethane	ND	1.0		ug/L			12/23/17 02:57	
Carbon disulfide	ND	1.0		ug/L			12/23/17 02:57	
Carbon tetrachloride	ND	1.0		ug/L			12/23/17 02:57	
Chlorobenzene	ND	1.0		ug/L			12/23/17 02:57	
Dibromochloromethane	ND	1.0		ug/L ug/L			12/23/17 02:57	
Chloroethane	ND ND	1.0		_			12/23/17 02:57	
Chloroform	ND	1.0		ug/L ug/L			12/23/17 02:57	
				ug/L			12/23/17 02:57	
Chloromethane	ND ND	1.0 1.0		-			12/23/17 02:57	
cis-1,2-Dichloroethene	ND ND	1.0		ug/L ug/L			12/23/17 02:57	
cis-1,3-Dichloropropene	ND			-				
Cyclohexane	ND ND	1.0		ug/L			12/23/17 02:57 12/23/17 02:57	
Dichlorodifluoromethane		1.0		ug/L				
Ethylbenzene	ND	1.0		ug/L			12/23/17 02:57	
1,2-Dibromoethane	ND	1.0		ug/L			12/23/17 02:57	
sopropylbenzene	ND	1.0		ug/L			12/23/17 02:57	
Methyl acetate	ND	2.5		ug/L			12/23/17 02:57	
Methyl tert-butyl ether	ND	1.0		ug/L			12/23/17 02:57	
Methylcyclohexane	ND	1.0		ug/L			12/23/17 02:57	
Methylene Chloride	ND	1.0		ug/L			12/23/17 02:57	
Styrene	ND	1.0		ug/L			12/23/17 02:57	
Tetrachloroethene	ND	1.0		ug/L			12/23/17 02:57	
Toluene	ND	1.0		ug/L			12/23/17 02:57	
rans-1,2-Dichloroethene	ND	1.0		ug/L			12/23/17 02:57	
trans-1,3-Dichloropropene	ND	1.0		ug/L			12/23/17 02:57	
Trichloroethene	ND	1.0		ug/L			12/23/17 02:57	
Trichlorofluoromethane	ND	1.0		ug/L			12/23/17 02:57	
Vinyl chloride	ND	1.0	0.90	ug/L			12/23/17 02:57	•
Xylenes, Total	ND	2.0	0.66	ug/L			12/23/17 02:57	

TestAmerica Buffalo

Page 7 of 43 12/30/2017

Client: O'Brien & Gere Inc of North America

Client Sample ID: MW 1S 121917

Project/Site: Forest Glen Monitoring

Date Collected: 12/19/17 16:23

Lab Sample ID: 480-129276-1

TestAmerica Job ID: 480-129276-1

Matrix: Water

Date Received: 12/20/17 17:30

Surrogate	%Recovery Qual	ifier Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	88	80 - 120	12/23/17 02:57	1
1,2-Dichloroethane-d4 (Surr)	106	77 - 120	12/23/17 02:57	1
4-Bromofluorobenzene (Surr)	104	73 - 120	12/23/17 02:57	1
Dibromofluoromethane (Surr)	107	75 - 123	12/23/17 02:57	1

Lab Sample ID: 480-129276-2 Client Sample ID: MW 1D 121917

Date Collected: 12/19/17 16:25 **Matrix: Water**

Date Received: 12/20/17 17:30

Analyte	Result (Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/23/17 03:21	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/23/17 03:21	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/23/17 03:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/23/17 03:21	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/23/17 03:21	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/23/17 03:21	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/23/17 03:21	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/23/17 03:21	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/23/17 03:21	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/23/17 03:21	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/23/17 03:21	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/23/17 03:21	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/23/17 03:21	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/23/17 03:21	1
2-Hexanone	ND		5.0	1.2	ug/L			12/23/17 03:21	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/23/17 03:21	1
Acetone	ND		10	3.0	ug/L			12/23/17 03:21	1
Benzene	ND		1.0	0.41	ug/L			12/23/17 03:21	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/23/17 03:21	1
Bromoform	ND		1.0	0.26	ug/L			12/23/17 03:21	1
Bromomethane	ND		1.0	0.69	ug/L			12/23/17 03:21	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/23/17 03:21	
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/23/17 03:21	
Chlorobenzene	ND		1.0	0.75	ug/L			12/23/17 03:21	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/23/17 03:21	1
Chloroethane	ND		1.0	0.32	ug/L			12/23/17 03:21	1
Chloroform	ND		1.0	0.34	ug/L			12/23/17 03:21	1
Chloromethane	ND		1.0	0.35	ug/L			12/23/17 03:21	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/23/17 03:21	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/23/17 03:21	1
Cyclohexane	ND		1.0	0.18	ug/L			12/23/17 03:21	1
Dichlorodifluoromethane	ND		1.0	0.68	-			12/23/17 03:21	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/23/17 03:21	1
1,2-Dibromoethane	ND		1.0	0.73	-			12/23/17 03:21	1
Isopropylbenzene	ND		1.0	0.79				12/23/17 03:21	1
Methyl acetate	ND		2.5		ug/L			12/23/17 03:21	1
Methyl tert-butyl ether	ND		1.0	0.16				12/23/17 03:21	1
Methylcyclohexane	ND		1.0	0.16				12/23/17 03:21	1
Methylene Chloride	ND		1.0	0.44	-			12/23/17 03:21	1

TestAmerica Buffalo

Page 8 of 43 12/30/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 1D 121917

Lab Sample ID: 480-129276-2 Date Collected: 12/19/17 16:25

Matrix: Water

Date Received: 12/20/17 17:30

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contin	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			12/23/17 03:21	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/23/17 03:21	1
Toluene	ND		1.0	0.51	ug/L			12/23/17 03:21	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/23/17 03:21	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/23/17 03:21	1
Trichloroethene	ND		1.0	0.46	ug/L			12/23/17 03:21	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/23/17 03:21	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/23/17 03:21	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/23/17 03:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		80 - 120			•		12/23/17 03:21	1
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					12/23/17 03:21	1
4-Bromofluorobenzene (Surr)	105		73 - 120					12/23/17 03:21	1
Dibromofluoromethane (Surr)	104		75 - 123					12/23/17 03:21	1

Client Sample ID: MW 7D 122017

Lab Sample ID: 480-129276-3 Date Collected: 12/20/17 10:40 **Matrix: Water**

Date Received: 12/20/17 17:30

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/23/17 11:35	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 11:35	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 11:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 11:35	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/23/17 11:35	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 11:35	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/23/17 11:35	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/23/17 11:35	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/23/17 11:35	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/23/17 11:35	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/23/17 11:35	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/23/17 11:35	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/23/17 11:35	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/23/17 11:35	1
2-Hexanone	ND	5.0	1.2	ug/L			12/23/17 11:35	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/23/17 11:35	1
Acetone	ND	10	3.0	ug/L			12/23/17 11:35	1
Benzene	ND	1.0	0.41	ug/L			12/23/17 11:35	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/23/17 11:35	1
Bromoform	ND	1.0	0.26	ug/L			12/23/17 11:35	1
Bromomethane	ND	1.0	0.69	ug/L			12/23/17 11:35	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/23/17 11:35	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/23/17 11:35	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/23/17 11:35	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/23/17 11:35	1
Chloroethane	ND	1.0	0.32	ug/L			12/23/17 11:35	1
Chloroform	ND	1.0	0.34	ug/L			12/23/17 11:35	1
Chloromethane	ND	1.0		ug/L			12/23/17 11:35	1

TestAmerica Buffalo

Page 9 of 43 12/30/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 7D 122017

Date Collected: 12/20/17 10:40 Date Received: 12/20/17 17:30

Lab Sample ID: 480-129276-3

Matrix: Water

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND ND		1.0	0.81	ug/L			12/23/17 11:35	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/23/17 11:35	1
Cyclohexane	ND		1.0	0.18	ug/L			12/23/17 11:35	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/23/17 11:35	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/23/17 11:35	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/23/17 11:35	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/23/17 11:35	1
Methyl acetate	ND		2.5	1.3	ug/L			12/23/17 11:35	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/23/17 11:35	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/23/17 11:35	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/23/17 11:35	1
Styrene	ND		1.0	0.73	ug/L			12/23/17 11:35	1
Tetrachloroethene	0.36 J		1.0	0.36	ug/L			12/23/17 11:35	1
Toluene	ND		1.0	0.51	ug/L			12/23/17 11:35	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/23/17 11:35	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/23/17 11:35	1
Trichloroethene	1.1		1.0	0.46	ug/L			12/23/17 11:35	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/23/17 11:35	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/23/17 11:35	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/23/17 11:35	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		80 - 120			-		12/23/17 11:35	1
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					12/23/17 11:35	1
4-Bromofluorobenzene (Surr)	105		73 - 120					12/23/17 11:35	1
Dibromofluoromethane (Surr)	105		75 - 123					12/23/17 11:35	1

Client Sample ID: MW 8DD 122017 Lab Sample ID: 480-129276-4 Date Collected: 12/20/17 10:42 **Matrix: Water**

Date Received: 12/20/17 17:30

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/23/17 11:59	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/23/17 11:59	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/23/17 11:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/23/17 11:59	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/23/17 11:59	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/23/17 11:59	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/23/17 11:59	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/23/17 11:59	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/23/17 11:59	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/23/17 11:59	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/23/17 11:59	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/23/17 11:59	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/23/17 11:59	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/23/17 11:59	1
2-Hexanone	ND		5.0	1.2	ug/L			12/23/17 11:59	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/23/17 11:59	1
Acetone	ND		10	3.0	ug/L			12/23/17 11:59	1

TestAmerica Buffalo

Page 10 of 43

TestAmerica Job ID: 480-129276-1

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Client Sample ID: MW 8DD 122017

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

ND

ND

ND

Date Collected: 12/20/17 10:42 Date Received: 12/20/17 17:30

Lab Sample ID: 480-129276-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			12/23/17 11:59	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/23/17 11:59	1
Bromoform	ND		1.0	0.26	ug/L			12/23/17 11:59	1
Bromomethane	ND		1.0	0.69	ug/L			12/23/17 11:59	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/23/17 11:59	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/23/17 11:59	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/23/17 11:59	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/23/17 11:59	1
Chloroethane	ND		1.0	0.32	ug/L			12/23/17 11:59	1
Chloroform	ND		1.0	0.34	ug/L			12/23/17 11:59	1
Chloromethane	ND		1.0	0.35	ug/L			12/23/17 11:59	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/23/17 11:59	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/23/17 11:59	1
Cyclohexane	ND		1.0	0.18	ug/L			12/23/17 11:59	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/23/17 11:59	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/23/17 11:59	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/23/17 11:59	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/23/17 11:59	1
Methyl acetate	ND		2.5	1.3	ug/L			12/23/17 11:59	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/23/17 11:59	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/23/17 11:59	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/23/17 11:59	1
Styrene	ND		1.0	0.73	ug/L			12/23/17 11:59	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/23/17 11:59	1
Toluene	ND		1.0	0.51	ug/L			12/23/17 11:59	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/23/17 11:59	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/23/17 11:59	1
Trichloroethene	ND		1.0	0.46	ug/L			12/23/17 11:59	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		80 - 120	-		12/23/17 11:59	1
1,2-Dichloroethane-d4 (Surr)	102		77 - 120			12/23/17 11:59	1
4-Bromofluorobenzene (Surr)	106		73 - 120			12/23/17 11:59	1
Dibromofluoromethane (Surr)	102		75 - 123			12/23/17 11:59	1

1.0

1.0

2.0

0.88 ug/L

0.90 ug/L

0.66 ug/L

Client Sample ID: MW 7S 122017

Date Collected: 12/20/17 11:50 Date Received: 12/20/17 17:30

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Lab Sample ID: 480-129276-5

12/23/17 11:59

12/23/17 11:59

12/23/17 11:59

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/23/17 12:23	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 12:23	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 12:23	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 12:23	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/23/17 12:23	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 12:23	1

TestAmerica Buffalo

Page 11 of 43

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Project/Site. Forest Gien Monitoring

Client Sample ID: MW 7S 122017 Lab Sample ID: 480-129276-5

Date Collected: 12/20/17 11:50 Matrix: Water
Date Received: 12/20/17 17:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed 1,2,4-Trichlorobenzene $\overline{\mathsf{ND}}$ 1.0 0.41 ug/L 12/23/17 12:23 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 12/23/17 12:23 ug/L 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 12/23/17 12:23 1,2-Dichloroethane ND 1.0 0.21 ug/L 12/23/17 12:23 12/23/17 12:23 1,2-Dichloropropane ND 1.0 0.72 ug/L 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 12/23/17 12:23 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 12/23/17 12:23 2-Butanone (MEK) ND 10 1.3 ug/L 12/23/17 12:23 ND 2-Hexanone 5.0 ug/L 12/23/17 12:23 1.2 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 12/23/17 12:23 Acetone ND 10 3.0 ug/L 12/23/17 12:23 Benzene ND 1.0 0.41 ug/L 12/23/17 12:23 Bromodichloromethane ND 1.0 0.39 ug/L 12/23/17 12:23 **Bromoform** ND 1.0 0.26 ug/L 12/23/17 12:23 Bromomethane ND 0.69 ug/L 12/23/17 12:23 1.0 Carbon disulfide ND 1.0 0.19 ug/L 12/23/17 12:23 Carbon tetrachloride ND 1.0 0.27 ug/L 12/23/17 12:23 Chlorobenzene ND 1.0 0.75 ug/L 12/23/17 12:23 Dibromochloromethane ND 1.0 0.32 ug/L 12/23/17 12:23 Chloroethane ND 0.32 ug/L 1.0 12/23/17 12:23 Chloroform 12/23/17 12:23 ND 1.0 0.34 ug/L Chloromethane ND 1.0 0.35 ug/L 12/23/17 12:23 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 12/23/17 12:23 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 12/23/17 12:23 Cyclohexane ND 1.0 0.18 ug/L 12/23/17 12:23 Dichlorodifluoromethane ND 1.0 12/23/17 12:23 0.68 ug/L Ethylbenzene ND 1.0 0.74 ug/L 12/23/17 12:23 1,2-Dibromoethane ND 1.0 0.73 ug/L 12/23/17 12:23 Isopropylbenzene ND 1.0 0.79 ug/L 12/23/17 12:23 Methyl acetate ND 2.5 1.3 ug/L 12/23/17 12:23 Methyl tert-butyl ether ND 1.0 0.16 ug/L 12/23/17 12:23 Methylcyclohexane ND 1.0 0.16 ug/L 12/23/17 12:23 Methylene Chloride ND 1.0 0.44 ug/L 12/23/17 12:23 Styrene ND 1.0 0.73 ug/L 12/23/17 12:23 Tetrachloroethene ND 1.0 0.36 ug/L 12/23/17 12:23 Toluene ND 1.0 0.51 ug/L 12/23/17 12:23 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 12/23/17 12:23 trans-1,3-Dichloropropene ND 0.37 ug/L 12/23/17 12:23 1.0 12/23/17 12:23 **Trichloroethene** 1.1 1.0 0.46 ug/L Trichlorofluoromethane ND 1.0 0.88 ug/L 12/23/17 12:23 Vinyl chloride ND 1.0 0.90 ug/L 12/23/17 12:23 ND 2.0 0.66 ug/L Xylenes, Total 12/23/17 12:23

Surrogate	%Recovery	Qualifier	Limits	ı	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		80 - 120			12/23/17 12:23	1
1,2-Dichloroethane-d4 (Surr)	111		77 - 120			12/23/17 12:23	1
4-Bromofluorobenzene (Surr)	100		73 - 120			12/23/17 12:23	1
Dibromofluoromethane (Surr)	105		75 - 123			12/23/17 12:23	1

TestAmerica Buffalo

2

5 6

9

11

13

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 8S 122017

Date Received: 12/20/17 17:30

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Lab Sample ID: 480-129276-6 Date Collected: 12/20/17 11:58

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS RL Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 1,1,1-Trichloroethane $\overline{\mathsf{ND}}$ 1.0 0.82 ug/L 12/23/17 12:47 1,1,2,2-Tetrachloroethane ND 1.0 12/23/17 12:47 0.21 ug/L 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 12/23/17 12:47 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.0 0.31 ug/L 12/23/17 12:47 ND 1,1-Dichloroethane 1.0 0.38 ug/L 12/23/17 12:47 1.1-Dichloroethene ND 1.0 0.29 ug/L 12/23/17 12:47 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 12/23/17 12:47 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 12/23/17 12:47 ND 1,2-Dichlorobenzene 1.0 0.79 ug/L 12/23/17 12:47 1,2-Dichloroethane ND 1.0 0.21 ug/L 12/23/17 12:47 1,2-Dichloropropane ND 0.72 ug/L 12/23/17 12:47 1.0 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 12/23/17 12:47 1.4-Dichlorobenzene ND 1.0 1 0.84 ug/L 12/23/17 12:47 2-Butanone (MEK) ND 10 1.3 ug/L 12/23/17 12:47 2-Hexanone ND 5.0 1.2 ug/L 12/23/17 12:47 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 12/23/17 12:47 ND 10 3.0 12/23/17 12:47 Acetone ug/L Benzene ND 1.0 0.41 ug/L 12/23/17 12:47 Bromodichloromethane ND 1.0 0.39 ug/L 12/23/17 12:47 **Bromoform** ND 0.26 1.0 ug/L 12/23/17 12:47 Bromomethane ND 1.0 0.69 ug/L 12/23/17 12:47 ND Carbon disulfide 1.0 0.19 ug/L 12/23/17 12:47 Carbon tetrachloride ND 1.0 0.27 ug/L 12/23/17 12:47 Chlorobenzene ND 1.0 0.75 ug/L 12/23/17 12:47 Dibromochloromethane ND 1.0 0.32 ug/L 12/23/17 12:47 Chloroethane ND 1.0 0.32 ug/L 12/23/17 12:47 Chloroform ND 1.0 0.34 ug/L 12/23/17 12:47 Chloromethane ND 1.0 0.35 ug/L 12/23/17 12:47 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 12/23/17 12:47 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 12/23/17 12:47 Cyclohexane ND 1.0 0.18 ug/L 12/23/17 12:47 Dichlorodifluoromethane ND 1.0 0.68 ug/L 12/23/17 12:47 Ethylbenzene ug/L ND 1.0 0.74 12/23/17 12:47 1,2-Dibromoethane ND 1.0 0.73 ug/L 12/23/17 12:47 Isopropylbenzene ND 1.0 0.79 ug/L 12/23/17 12:47 Methyl acetate NΩ 25 1.3 ug/L 12/23/17 12:47 Methyl tert-butyl ether ND 1.0 0.16 ug/L 12/23/17 12:47 Methylcyclohexane ND 1.0 0.16 ug/L 12/23/17 12:47 ND Methylene Chloride 1.0 0.44 ug/L 12/23/17 12:47 Styrene ND 1.0 0.73 ug/L 12/23/17 12:47 1.0 0.36 ug/L 12/23/17 12:47 **Tetrachloroethene** 0.86 Toluene ND 1.0 0.51 ug/L 12/23/17 12:47 trans-1.2-Dichloroethene ND 1.0 0.90 12/23/17 12:47 ug/L trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 12/23/17 12:47 **Trichloroethene** 1.0 0.46 ug/L 12/23/17 12:47 3.3

TestAmerica Buffalo

12/23/17 12:47

12/23/17 12:47

12/23/17 12:47

1.0

1.0

2.0

0.88 ug/L

0.90 ug/L

0.66 ug/L

ND

ND

ND

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 8S 122017

Lab Sample ID: 480-129276-6 Date Collected: 12/20/17 11:58 Matrix: Water

Date Received: 12/20/17 17:30

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	91	80 - 120	12/23/17 12:4	7 1
1,2-Dichloroethane-d4 (Surr)	103	77 - 120	12/23/17 12:4	7 1
4-Bromofluorobenzene (Surr)	105	73 - 120	12/23/17 12:4	7 1
Dibromofluoromethane (Surr)	107	75 - 123	12/23/17 12:4	7 1

Lab Sample ID: 480-129276-7 Client Sample ID: X-1 122017

Date Collected: 12/20/17 00:00

Matrix: Water Date Received: 12/20/17 17:30

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/23/17 13:11	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 13:11	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 13:11	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 13:11	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/23/17 13:11	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 13:11	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/23/17 13:11	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/23/17 13:11	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/23/17 13:11	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/23/17 13:11	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/23/17 13:11	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/23/17 13:11	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/23/17 13:11	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/23/17 13:11	1
2-Hexanone	ND	5.0	1.2	ug/L			12/23/17 13:11	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/23/17 13:11	1
Acetone	ND	10	3.0	ug/L			12/23/17 13:11	1
Benzene	ND	1.0	0.41	ug/L			12/23/17 13:11	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/23/17 13:11	1
Bromoform	ND	1.0	0.26	ug/L			12/23/17 13:11	1
Bromomethane	ND	1.0	0.69	ug/L			12/23/17 13:11	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/23/17 13:11	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/23/17 13:11	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/23/17 13:11	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/23/17 13:11	1
Chloroethane	ND	1.0	0.32	ug/L			12/23/17 13:11	1
Chloroform	ND	1.0	0.34	ug/L			12/23/17 13:11	1
Chloromethane	ND	1.0	0.35	ug/L			12/23/17 13:11	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			12/23/17 13:11	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/23/17 13:11	1
Cyclohexane	ND	1.0	0.18	ug/L			12/23/17 13:11	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/23/17 13:11	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/23/17 13:11	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/23/17 13:11	1
Isopropylbenzene	ND	1.0		ug/L			12/23/17 13:11	1
Methyl acetate	ND	2.5		ug/L			12/23/17 13:11	1
Methyl tert-butyl ether	ND	1.0		ug/L			12/23/17 13:11	1
Methylcyclohexane	ND	1.0		ug/L			12/23/17 13:11	1
Methylene Chloride	ND	1.0		ug/L			12/23/17 13:11	1

TestAmerica Buffalo

12/30/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Oli - -- 4 O - -- -- ID - V 4 40004

Client Sample ID: X-1 122017 Lab Sample ID: 480-129276-7

Date Collected: 12/20/17 00:00 Matrix: Water Date Received: 12/20/17 17:30

Method: 8260C - Volatile O Analyte	•	unds by G Qualifier	C/MS (Contil RL	nuea) MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L		<u> </u>	12/23/17 13:11	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/23/17 13:11	1
Toluene	ND		1.0	0.51	ug/L			12/23/17 13:11	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/23/17 13:11	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/23/17 13:11	1
Trichloroethene	ND		1.0	0.46	ug/L			12/23/17 13:11	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/23/17 13:11	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/23/17 13:11	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/23/17 13:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		80 - 120			-		12/23/17 13:11	1
1,2-Dichloroethane-d4 (Surr)	107		77 - 120					12/23/17 13:11	1
4-Bromofluorobenzene (Surr)	110		73 - 120					12/23/17 13:11	1
Dibromofluoromethane (Surr)	104		75 - 123					12/23/17 13:11	1

Client Sample ID: MW 8D 122017 Lab Sample ID: 480-129276-8

Date Collected: 12/20/17 13:00 Matrix: Water

Date Received: 12/20/17 17:30

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/23/17 13:35	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/23/17 13:35	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/23/17 13:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/23/17 13:35	1
1,1-Dichloroethane	0.89	J F1	1.0	0.38	ug/L			12/23/17 13:35	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/23/17 13:35	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/23/17 13:35	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/23/17 13:35	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/23/17 13:35	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/23/17 13:35	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/23/17 13:35	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/23/17 13:35	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/23/17 13:35	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/23/17 13:35	1
2-Hexanone	ND		5.0	1.2	ug/L			12/23/17 13:35	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/23/17 13:35	1
Acetone	ND	F2	10	3.0	ug/L			12/23/17 13:35	1
Benzene	ND		1.0	0.41	ug/L			12/23/17 13:35	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/23/17 13:35	1
Bromoform	ND		1.0	0.26	ug/L			12/23/17 13:35	1
Bromomethane	ND		1.0	0.69	ug/L			12/23/17 13:35	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/23/17 13:35	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/23/17 13:35	1
Chlorobenzene	ND	F1	1.0	0.75	ug/L			12/23/17 13:35	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/23/17 13:35	1
Chloroethane	ND		1.0	0.32	ug/L			12/23/17 13:35	1
Chloroform	ND		1.0	0.34	ug/L			12/23/17 13:35	1
Chloromethane	ND	F1	1.0	0.35	ug/L			12/23/17 13:35	1

TestAmerica Buffalo

Page 15 of 43

2

3

E

7

9

11

4.0

14

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-129276-8

TestAmerica Job ID: 480-129276-1

Matrix: Water

Client Sample ID: MW 8D 122017

Date Collected: 12/20/17 13:00 Date Received: 12/20/17 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/23/17 13:35	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/23/17 13:35	1
Cyclohexane	ND		1.0	0.18	ug/L			12/23/17 13:35	1
Dichlorodifluoromethane	ND	F1	1.0	0.68	ug/L			12/23/17 13:35	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/23/17 13:35	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/23/17 13:35	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/23/17 13:35	1
Methyl acetate	ND		2.5	1.3	ug/L			12/23/17 13:35	1
Methyl tert-butyl ether	0.30	J	1.0	0.16	ug/L			12/23/17 13:35	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/23/17 13:35	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/23/17 13:35	1
Styrene	ND	F1	1.0	0.73	ug/L			12/23/17 13:35	1
Tetrachloroethene	ND	F1	1.0	0.36	ug/L			12/23/17 13:35	1
Toluene	ND	F1	1.0	0.51	ug/L			12/23/17 13:35	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/23/17 13:35	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/23/17 13:35	1
Trichloroethene	ND	F1	1.0	0.46	ug/L			12/23/17 13:35	1
Trichlorofluoromethane	ND	F2	1.0	0.88	ug/L			12/23/17 13:35	1
Vinyl chloride	ND	F1	1.0	0.90	ug/L			12/23/17 13:35	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/23/17 13:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		80 - 120			-		12/23/17 13:35	1
1,2-Dichloroethane-d4 (Surr)	109		77 - 120					12/23/17 13:35	1
4-Bromofluorobenzene (Surr)	110		73 - 120					12/23/17 13:35	1
Dibromofluoromethane (Surr)	110		75 - 123					12/23/17 13:35	1

Client Sample ID: MW 7DD-2 122017

Date Collected: 12/20/17 13:55 Date Received: 12/20/17 17:30

Lab Sample ID: 480-129276-11

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/23/17 14:46	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 14:46	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 14:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 14:46	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/23/17 14:46	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 14:46	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/23/17 14:46	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/23/17 14:46	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/23/17 14:46	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/23/17 14:46	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/23/17 14:46	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/23/17 14:46	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/23/17 14:46	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/23/17 14:46	1
2-Hexanone	ND	5.0	1.2	ug/L			12/23/17 14:46	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/23/17 14:46	1
Acetone	ND	10	3.0	ug/L			12/23/17 14:46	1

TestAmerica Buffalo

Page 16 of 43

12/30/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 7DD-2 122017

Lab Sample ID: 480-129276-11 Date Collected: 12/20/17 13:55 **Matrix: Water**

Date Received: 12/20/17 17:30

Analyte	Result Qualifier	· RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	0.41	ug/L			12/23/17 14:46	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/23/17 14:46	1
Bromoform	ND	1.0	0.26	ug/L			12/23/17 14:46	1
Bromomethane	ND	1.0	0.69	ug/L			12/23/17 14:46	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/23/17 14:46	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/23/17 14:46	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/23/17 14:46	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/23/17 14:46	1
Chloroethane	ND	1.0	0.32	ug/L			12/23/17 14:46	1
Chloroform	ND	1.0	0.34	ug/L			12/23/17 14:46	1
Chloromethane	ND	1.0	0.35	ug/L			12/23/17 14:46	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			12/23/17 14:46	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/23/17 14:46	1
Cyclohexane	ND	1.0	0.18	ug/L			12/23/17 14:46	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/23/17 14:46	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/23/17 14:46	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/23/17 14:46	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/23/17 14:46	1
Methyl acetate	ND	2.5	1.3	ug/L			12/23/17 14:46	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/23/17 14:46	1
Methylcyclohexane	ND	1.0	0.16	ug/L			12/23/17 14:46	1
Methylene Chloride	ND	1.0	0.44	ug/L			12/23/17 14:46	1
Styrene	ND	1.0	0.73	ug/L			12/23/17 14:46	1
Tetrachloroethene	ND	1.0	0.36	ug/L			12/23/17 14:46	1
Toluene	ND	1.0	0.51	ug/L			12/23/17 14:46	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/23/17 14:46	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			12/23/17 14:46	1
Trichloroethene	ND	1.0	0.46	ug/L			12/23/17 14:46	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			12/23/17 14:46	1
Vinyl chloride	ND	1.0	0.90	ug/L			12/23/17 14:46	1
Xylenes, Total	ND	2.0	0.66	ug/L			12/23/17 14:46	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90	80 - 120					12/23/17 14:46	1
1,2-Dichloroethane-d4 (Surr)	104	77 - 120					12/23/17 14:46	1
4-Bromofluorobenzene (Surr)	100	73 - 120					12/23/17 14:46	1

Client Sample ID: MW 6D 122017

103

Date Collected: 12/20/17 15:10

Date Received: 12/20/17 17:30

Dibromofluoromethane (Surr)

Lab	Sample	ID:	480-1	292	76-12	

12/23/17 14:46

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/23/17 15:10	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 15:10	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 15:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 15:10	1
1,1-Dichloroethane	0.56 J	1.0	0.38	ug/L			12/23/17 15:10	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 15:10	1

75 - 123

TestAmerica Buffalo

Page 17 of 43

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 6D 122017 Lab Sample ID: 480-129276-12

Date Collected: 12/20/17 15:10 **Matrix: Water** Date Received: 12/20/17 17:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Dil Fac **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed 1,2,4-Trichlorobenzene $\overline{\mathsf{ND}}$ 1.0 0.41 ug/L 12/23/17 15:10 1,2-Dibromo-3-Chloropropane ND 1.0 12/23/17 15:10 0.39 ug/L 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 12/23/17 15:10 1,2-Dichloroethane ND 1.0 0.21 ug/L 12/23/17 15:10 1,2-Dichloropropane ND 1.0 0.72 ug/L 12/23/17 15:10 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 12/23/17 15:10 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 12/23/17 15:10 2-Butanone (MEK) ND 10 1.3 ug/L 12/23/17 15:10 ND 2-Hexanone 5.0 ug/L 1.2 12/23/17 15:10 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 12/23/17 15:10 Acetone ND 10 3.0 ug/L 12/23/17 15:10 Benzene ND 1.0 0.41 ug/L 12/23/17 15:10 Bromodichloromethane ND 1.0 0.39 ug/L 12/23/17 15:10 **Bromoform** ND 1.0 0.26 ug/L 12/23/17 15:10 Bromomethane ND 0.69 ug/L 1.0 12/23/17 15:10 Carbon disulfide ND 1.0 0.19 ug/L 12/23/17 15:10 Carbon tetrachloride ND 1.0 0.27 ug/L 12/23/17 15:10 Chlorobenzene ND 1.0 0.75 ug/L 12/23/17 15:10 Dibromochloromethane ND 1.0 0.32 ug/L 12/23/17 15:10 Chloroethane ND 0.32 ug/L 1.0 12/23/17 15:10 Chloroform ND 1.0 0.34 ug/L 12/23/17 15:10 Chloromethane ND 1.0 0.35 ug/L 12/23/17 15:10 cis-1,2-Dichloroethene 1.0 0.81 ug/L 12/23/17 15:10 1.3 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 12/23/17 15:10 Cyclohexane ND 1.0 0.18 ug/L 12/23/17 15:10 Dichlorodifluoromethane ND 1.0 12/23/17 15:10 0.68 ug/L Ethylbenzene ND 1.0 0.74 ug/L 12/23/17 15:10 1,2-Dibromoethane ND 1.0 0.73 ug/L 12/23/17 15:10 Isopropylbenzene ND 1.0 0.79 ug/L 12/23/17 15:10 Methyl acetate ND 2.5 1.3 ug/L 12/23/17 15:10 Methyl tert-butyl ether ND 1.0 0.16 ug/L 12/23/17 15:10 Methylcyclohexane ND 1.0 0.16 ug/L 12/23/17 15:10 Methylene Chloride ND 1.0 0.44 ug/L 12/23/17 15:10 Styrene ND 1.0 0.73 ug/L 12/23/17 15:10 Tetrachloroethene ND 1.0 0.36 ug/L 12/23/17 15:10 Toluene ND 1.0 0.51 ug/L 12/23/17 15:10 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 12/23/17 15:10 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 12/23/17 15:10 ND Trichloroethene 1.0 0.46 ug/L 12/23/17 15:10 Trichlorofluoromethane ND 1.0 0.88 ug/L 12/23/17 15:10 1.0 0.90 ug/L 12/23/17 15:10 Vinyl chloride 1.3 0.66 ug/L Xylenes, Total ND 20 12/23/17 15:10

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91		80 - 120	_		12/23/17 15:10	1
1,2-Dichloroethane-d4 (Surr)	105		77 - 120			12/23/17 15:10	1
4-Bromofluorobenzene (Surr)	105		73 - 120			12/23/17 15:10	1
Dibromofluoromethane (Surr)	107		75 - 123			12/23/17 15:10	1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 6DD 122017

Lab Sample ID: 480-129276-13

Date Collected: 12/20/17 15:45 Date Received: 12/20/17 17:30 Matrix: Water

Method: 8260C - Volatile Orgar Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	 1.0	0.82	ug/L		<u> </u>	12/23/17 15:34	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 15:34	•
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 15:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 15:34	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/23/17 15:34	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 15:34	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/23/17 15:34	,
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/23/17 15:34	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/23/17 15:34	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/23/17 15:34	
1,2-Dichloropropane	ND	1.0		ug/L			12/23/17 15:34	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/23/17 15:34	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/23/17 15:34	
2-Butanone (MEK)	ND	10	1.3	ug/L			12/23/17 15:34	
2-Hexanone	ND	5.0	1.2	ug/L			12/23/17 15:34	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/23/17 15:34	
Acetone	ND	10	3.0	ug/L			12/23/17 15:34	
Benzene	ND	1.0	0.41	ug/L			12/23/17 15:34	
Bromodichloromethane	ND	1.0		ug/L			12/23/17 15:34	
Bromoform	ND	1.0		ug/L			12/23/17 15:34	
Bromomethane	ND	1.0		ug/L			12/23/17 15:34	
Carbon disulfide	ND	1.0		ug/L			12/23/17 15:34	
Carbon tetrachloride	ND	1.0		ug/L			12/23/17 15:34	
Chlorobenzene	ND	1.0		ug/L			12/23/17 15:34	
Dibromochloromethane	ND	1.0		ug/L			12/23/17 15:34	
Chloroethane	ND	1.0		ug/L			12/23/17 15:34	
Chloroform	ND	1.0		ug/L			12/23/17 15:34	
Chloromethane	ND	1.0		ug/L			12/23/17 15:34	
cis-1,2-Dichloroethene	17	1.0		ug/L			12/23/17 15:34	
cis-1,3-Dichloropropene	ND	1.0		ug/L			12/23/17 15:34	
Cyclohexane	ND	1.0	0.18	ug/L			12/23/17 15:34	
Dichlorodifluoromethane	ND	1.0		ug/L			12/23/17 15:34	
Ethylbenzene	ND	1.0		ug/L			12/23/17 15:34	
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/23/17 15:34	
Isopropylbenzene	ND	1.0		ug/L			12/23/17 15:34	
Methyl acetate	ND	2.5		ug/L			12/23/17 15:34	
Methyl tert-butyl ether	ND	1.0		ug/L			12/23/17 15:34	
Methylcyclohexane	ND	1.0		ug/L			12/23/17 15:34	
Methylene Chloride	ND	1.0		ug/L			12/23/17 15:34	
Styrene	ND	1.0		ug/L			12/23/17 15:34	
Tetrachloroethene	ND	1.0		ug/L			12/23/17 15:34	
Toluene	ND	1.0		ug/L			12/23/17 15:34	
trans-1,2-Dichloroethene	ND	1.0		ug/L			12/23/17 15:34	
trans-1,3-Dichloropropene	ND	1.0		ug/L			12/23/17 15:34	
Trichloroethene	ND	1.0		ug/L			12/23/17 15:34	
Trichlorofluoromethane	ND	1.0		ug/L			12/23/17 15:34	
Vinyl chloride	ND	1.0		ug/L			12/23/17 15:34	
Xylenes, Total	ND	2.0		ug/L			12/23/17 15:34	

TestAmerica Buffalo

12/30/2017

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 6DD 122017

Lab Sample ID: 480-129276-13

Matrix: Water

Date Collected: 12/20/17 15:45 Date Received: 12/20/17 17:30

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		12/23/17 15:34	1
1,2-Dichloroethane-d4 (Surr)	110	77 - 120		12/23/17 15:34	1
4-Bromofluorobenzene (Surr)	102	73 - 120		12/23/17 15:34	1
Dibromofluoromethane (Surr)	110	75 - 123		12/23/17 15:34	1

Client Sample ID: MW 6S 122017 Lab Sample ID: 480-129276-14

Date Collected: 12/20/17 16:20 Matrix: Water

Date Received: 12/20/17 17:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/23/17 15:58	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 15:58	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 15:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 15:58	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/23/17 15:58	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 15:58	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/23/17 15:58	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/23/17 15:58	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/23/17 15:58	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/23/17 15:58	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/23/17 15:58	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/23/17 15:58	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/23/17 15:58	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/23/17 15:58	1
2-Hexanone	ND	5.0	1.2	ug/L			12/23/17 15:58	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/23/17 15:58	1
Acetone	ND	10	3.0	ug/L			12/23/17 15:58	1
Benzene	ND	1.0	0.41	ug/L			12/23/17 15:58	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/23/17 15:58	1
Bromoform	ND	1.0	0.26	ug/L			12/23/17 15:58	1
Bromomethane	ND	1.0	0.69	ug/L			12/23/17 15:58	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/23/17 15:58	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/23/17 15:58	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/23/17 15:58	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/23/17 15:58	1
Chloroethane	ND	1.0	0.32	ug/L			12/23/17 15:58	1
Chloroform	ND	1.0	0.34	ug/L			12/23/17 15:58	1
Chloromethane	ND	1.0	0.35	ug/L			12/23/17 15:58	1
cis-1,2-Dichloroethene	4.7	1.0	0.81	ug/L			12/23/17 15:58	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/23/17 15:58	1
Cyclohexane	ND	1.0	0.18				12/23/17 15:58	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/23/17 15:58	1
Ethylbenzene	ND	1.0	0.74				12/23/17 15:58	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/23/17 15:58	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/23/17 15:58	1
Methyl acetate	ND	2.5		ug/L			12/23/17 15:58	1
Methyl tert-butyl ether	ND	1.0	0.16	-			12/23/17 15:58	1
Methylcyclohexane	ND	1.0	0.16				12/23/17 15:58	1
Methylene Chloride	ND	1.0	0.44	ua/L			12/23/17 15:58	1

TestAmerica Buffalo

Page 20 of 43

9

3

5

6

Q

10

12

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Client Sample ID: MW 6S 122017 Lab Sample ID: 480-129276-14

Matrix: Water

Date Collected: 12/20/17 16:20 Date Received: 12/20/17 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			12/23/17 15:58	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/23/17 15:58	1
Toluene	ND		1.0	0.51	ug/L			12/23/17 15:58	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/23/17 15:58	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/23/17 15:58	1
Trichloroethene	ND		1.0	0.46	ug/L			12/23/17 15:58	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/23/17 15:58	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/23/17 15:58	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/23/17 15:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		80 - 120			-		12/23/17 15:58	1
1,2-Dichloroethane-d4 (Surr)	110		77 - 120					12/23/17 15:58	1
4-Bromofluorobenzene (Surr)	107		73 - 120					12/23/17 15:58	1
Dibromofluoromethane (Surr)	105		75 - 123					12/23/17 15:58	1

Client Sample ID: QC TRIP BLANK

Lab Sample ID: 480-129276-15 Date Collected: 12/20/17 00:00 **Matrix: Water**

Date Received: 12/20/17 17:30

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/23/17 16:22	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/23/17 16:22	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/23/17 16:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/23/17 16:22	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/23/17 16:22	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/23/17 16:22	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/23/17 16:22	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/23/17 16:22	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/23/17 16:22	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/23/17 16:22	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/23/17 16:22	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/23/17 16:22	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/23/17 16:22	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/23/17 16:22	1
2-Hexanone	ND	5.0	1.2	ug/L			12/23/17 16:22	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/23/17 16:22	1
Acetone	ND	10	3.0	ug/L			12/23/17 16:22	1
Benzene	ND	1.0	0.41	ug/L			12/23/17 16:22	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/23/17 16:22	1
Bromoform	ND	1.0	0.26	ug/L			12/23/17 16:22	1
Bromomethane	ND	1.0	0.69	ug/L			12/23/17 16:22	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/23/17 16:22	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/23/17 16:22	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/23/17 16:22	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/23/17 16:22	1
Chloroethane	ND	1.0	0.32	ug/L			12/23/17 16:22	1
Chloroform	ND	1.0	0.34	ug/L			12/23/17 16:22	1
Chloromethane	ND	1.0	0.35	ug/L			12/23/17 16:22	1

TestAmerica Buffalo

Page 21 of 43

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Lab Sample ID: 480-129276-15

Matrix: Water

Client Sample ID: QC TRIP BLANK

Date Collected: 12/20/17 00:00 Date Received: 12/20/17 17:30

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/23/17 16:22	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/23/17 16:22	1
Cyclohexane	ND		1.0	0.18	ug/L			12/23/17 16:22	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/23/17 16:22	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/23/17 16:22	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/23/17 16:22	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/23/17 16:22	1
Methyl acetate	ND		2.5	1.3	ug/L			12/23/17 16:22	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/23/17 16:22	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/23/17 16:22	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/23/17 16:22	1
Styrene	ND		1.0	0.73	ug/L			12/23/17 16:22	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/23/17 16:22	1
Toluene	ND		1.0	0.51	ug/L			12/23/17 16:22	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/23/17 16:22	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/23/17 16:22	1
Trichloroethene	ND		1.0	0.46	ug/L			12/23/17 16:22	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/23/17 16:22	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/23/17 16:22	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/23/17 16:22	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		80 - 120			-		12/23/17 16:22	1
1,2-Dichloroethane-d4 (Surr)	111		77 - 120					12/23/17 16:22	1
4-Bromofluorobenzene (Surr)	108		73 - 120					12/23/17 16:22	1
Dibromofluoromethane (Surr)	108		75 - 123					12/23/17 16:22	1

12/30/2017

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

					ogate Recove	ery (Acce
		TOL	DCA	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)	
480-129276-1	MW 1S 121917	88	106	104	107	
480-129276-2	MW 1D 121917	93	104	105	104	
480-129276-3	MW 7D 122017	92	108	105	105	
480-129276-4	MW 8DD 122017	96	102	106	102	
480-129276-5	MW 7S 122017	95	111	100	105	
480-129276-6	MW 8S 122017	91	103	105	107	
480-129276-7	X-1 122017	94	107	110	104	
480-129276-8	MW 8D 122017	94	109	110	110	
480-129276-8 MS	MW 8D 122017	102	95	102	102	
480-129276-8 MSD	MW 8D 122017	100	94	100	101	
480-129276-11	MW 7DD-2 122017	90	104	100	103	
480-129276-12	MW 6D 122017	91	105	105	107	
480-129276-13	MW 6DD 122017	94	110	102	110	
480-129276-14	MW 6S 122017	94	110	107	105	
480-129276-15	QC TRIP BLANK	94	111	108	108	
LCS 480-393403/5	Lab Control Sample	94	107	103	111	
LCS 480-393428/5	Lab Control Sample	95	101	107	103	
LCS 480-393632/4	Lab Control Sample	103	91	104	100	
MB 480-393403/7	Method Blank	97	100	106	105	
MB 480-393428/7	Method Blank	92	100	104	97	
MB 480-393632/6	Method Blank	98	99	95	103	

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

Page 23 of 43

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-393403/7

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Ameliata	MB				1124	_	D	A 1	D:: -
Analyte 1,1,1-Trichloroethane	ND	Qualifier	RL 1.0	MDL	ug/L	D	Prepared	Analyzed 12/22/17 21:34	Dil Fac
1,1,2,2-Tetrachloroethane	ND ND		1.0		ug/L ug/L			12/22/17 21:34	1
1.1.2-Trichloroethane	ND ND		1.0		ug/L			12/22/17 21:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L ug/L			12/22/17 21:34	
1,1-Dichloroethane	ND ND		1.0		ug/L ug/L			12/22/17 21:34	1
1,1-Dichloroethene	ND ND		1.0		ug/L ug/L			12/22/17 21:34	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L ug/L			12/22/17 21:34	
1,2-Dibromo-3-Chloropropane	ND ND		1.0		ug/L ug/L			12/22/17 21:34	1
1.2-Dichlorobenzene	ND ND		1.0		ug/L ug/L			12/22/17 21:34	1
1,2-Dichloroethane	ND		1.0		ug/L ug/L			12/22/17 21:34	1
1,2-Dichloropropane	ND ND		1.0		ug/L ug/L			12/22/17 21:34	1
1,3-Dichlorobenzene	ND ND		1.0		ug/L ug/L			12/22/17 21:34	1
1,4-Dichlorobenzene	ND		1.0		ug/L ug/L			12/22/17 21:34	1
2-Butanone (MEK)	ND ND		1.0		ug/L ug/L			12/22/17 21:34	1
,					_				
2-Hexanone	ND ND		5.0		ug/L			12/22/17 21:34	1
4-Methyl-2-pentanone (MIBK)	ND ND		5.0		ug/L			12/22/17 21:34	1
Acetone			10		ug/L			12/22/17 21:34	1
Benzene	ND		1.0		ug/L			12/22/17 21:34	1
Bromodichloromethane	ND		1.0		ug/L			12/22/17 21:34	1
Bromoform	ND		1.0		ug/L			12/22/17 21:34	1
Bromomethane	ND		1.0		ug/L			12/22/17 21:34	1
Carbon disulfide	ND		1.0		ug/L			12/22/17 21:34	1
Carbon tetrachloride	ND		1.0		ug/L			12/22/17 21:34	1
Chlorobenzene	ND		1.0		ug/L			12/22/17 21:34	
Dibromochloromethane	ND		1.0		ug/L			12/22/17 21:34	1
Chloroethane	ND		1.0		ug/L			12/22/17 21:34	1
Chloroform	ND		1.0		ug/L			12/22/17 21:34	
Chloromethane	ND		1.0		ug/L			12/22/17 21:34	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			12/22/17 21:34	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			12/22/17 21:34	
Cyclohexane	ND		1.0		ug/L			12/22/17 21:34	1
Dichlorodifluoromethane	ND		1.0		ug/L			12/22/17 21:34	1
Ethylbenzene	ND		1.0		ug/L			12/22/17 21:34	1
1,2-Dibromoethane	ND		1.0		ug/L			12/22/17 21:34	1
Isopropylbenzene	ND		1.0	0.79				12/22/17 21:34	1
Methyl acetate	ND		2.5		ug/L			12/22/17 21:34	1
Methyl tert-butyl ether	ND		1.0		ug/L			12/22/17 21:34	1
Methylcyclohexane	ND		1.0		ug/L			12/22/17 21:34	1
Methylene Chloride	ND		1.0		ug/L			12/22/17 21:34	1
Styrene	ND		1.0		ug/L			12/22/17 21:34	1
Tetrachloroethene	ND		1.0		ug/L			12/22/17 21:34	1
Toluene	ND		1.0		ug/L			12/22/17 21:34	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/22/17 21:34	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/22/17 21:34	1
Trichloroethene	ND		1.0		ug/L			12/22/17 21:34	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/22/17 21:34	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/22/17 21:34	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/22/17 21:34	1

TestAmerica Buffalo

12/30/2017

Page 24 of 43

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

	MB M	1B				
Surrogate	%Recovery Q	Qualifier Lin	its	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 -	120		12/22/17 21:34	1
1,2-Dichloroethane-d4 (Surr)	100	77 -	120		12/22/17 21:34	1
4-Bromofluorobenzene (Surr)	106	73 .	120		12/22/17 21:34	1
Dibromofluoromethane (Surr)	105	75.	123		12/22/17 21:34	1

Lab Sample ID: LCS 480-393403/5

Matrix: Water

Analysis Batch: 393403

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits	
1,1,1-Trichloroethane		27.7		ug/L		111	73 ₋ 126	
1,1,2,2-Tetrachloroethane	25.0	19.3		ug/L		77	76 - 120 76 - 120	
1,1,2-Trichloroethane	25.0	21.5		ug/L		86	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.9		ug/L		112	61 - 148	
ne	20.0	27.0		ug/L			01-110	
1,1-Dichloroethane	25.0	23.5		ug/L		94	77 - 120	
1,1-Dichloroethene	25.0	23.9		ug/L		96	66 - 127	
1,2,4-Trichlorobenzene	25.0	23.0		ug/L		92	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	21.2		ug/L		85	56 ₋ 134	
1,2-Dichlorobenzene	25.0	22.0		ug/L		88	80 - 124	
1,2-Dichloroethane	25.0	26.4		ug/L		105	75 - 120	
1,2-Dichloropropane	25.0	22.3		ug/L		89	76 - 120	
1,3-Dichlorobenzene	25.0	22.8		ug/L		91	77 - 120	
1,4-Dichlorobenzene	25.0	22.7		ug/L		91	80 - 120	
2-Butanone (MEK)	125	113		ug/L		90	57 - 140	
2-Hexanone	125	99.2		ug/L		79	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	94.9		ug/L		76	71 - 125	
Acetone	125	138		ug/L		110	56 - 142	
Benzene	25.0	23.9		ug/L		96	71 - 124	
Bromodichloromethane	25.0	24.7		ug/L		99	80 - 122	
Bromoform	25.0	23.0		ug/L		92	61 - 132	
Bromomethane	25.0	24.9		ug/L		99	55 - 144	
Carbon disulfide	25.0	23.8		ug/L		95	59 - 134	
Carbon tetrachloride	25.0	27.7		ug/L		111	72 - 134	
Chlorobenzene	25.0	22.7		ug/L		91	80 - 120	
Dibromochloromethane	25.0	22.9		ug/L		92	75 - 125	
Chloroethane	25.0	21.9		ug/L		88	69 - 136	
Chloroform	25.0	25.1		ug/L		100	73 - 127	
Chloromethane	25.0	20.2		ug/L		81	68 - 124	
cis-1,2-Dichloroethene	25.0	26.1		ug/L		104	74 - 124	
cis-1,3-Dichloropropene	25.0	23.8		ug/L		95	74 - 124	
Cyclohexane	25.0	22.1		ug/L		89	59 - 135	
Dichlorodifluoromethane	25.0	23.6		ug/L		94	59 ₋ 135	
Ethylbenzene	25.0	21.6		ug/L		86	77 - 123	
1,2-Dibromoethane	25.0	22.2		ug/L		89	77 - 120	
Isopropylbenzene	25.0	21.7		ug/L		87	77 - 122	
Methyl acetate	50.0	43.1		ug/L		86	74 - 133	
Methyl tert-butyl ether	25.0	24.9		ug/L		100	77 - 120	
Methylcyclohexane	25.0	24.0		ug/L		96	68 - 134	
Methylene Chloride	25.0	24.3		ug/L		97	75 - 124	
Styrene	25.0	21.1		ug/L		85	80 - 120	
Tetrachloroethene	25.0	26.8		ug/L		107	74 - 122	
Toluene	25.0	23.2		ug/L		93	80 - 122	
trans-1,2-Dichloroethene	25.0	26.4		ug/L		106	73 - 127	

TestAmerica Buffalo

2

3

6

8

10

. . 12

1 *1*

13

12/30/2017

QC Sample Results

Spike

Added

25.0

25.0

25.0

25.0

LCS LCS

21.2

25.5

29.0

22.7

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

ug/L

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-393403/5

Matrix: Water

Trichloroethene

Vinyl chloride

Analyte

Analysis Batch: 393403

trans-1,3-Dichloropropene

Trichlorofluoromethane

Client Sample ID: Lab Control Sample Prep Type: Total/NA

65 - 133

%Rec. D %Rec Result Qualifier Limits Unit ug/L 85 80 - 120 ug/L 102 74 - 123 116 ug/L 62 - 150

91

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 94 80 - 120 1,2-Dichloroethane-d4 (Surr) 107 77 - 120 4-Bromofluorobenzene (Surr) 103 73 - 120 Dibromofluoromethane (Surr) 111 75 - 123

Lab Sample ID: MB 480-393428/7

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 393428									
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82		— <u> </u>		12/23/17 10:35	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/23/17 10:35	1
1,1,2-Trichloroethane	ND		1.0	0.23	-			12/23/17 10:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/23/17 10:35	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/23/17 10:35	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/23/17 10:35	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/23/17 10:35	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	-			12/23/17 10:35	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/23/17 10:35	1
1,2-Dichloroethane	ND		1.0	0.21	-			12/23/17 10:35	1
1,2-Dichloropropane	ND		1.0	0.72				12/23/17 10:35	1
1,3-Dichlorobenzene	ND		1.0	0.78				12/23/17 10:35	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/23/17 10:35	1
2-Butanone (MEK)	ND		10		ug/L			12/23/17 10:35	1
2-Hexanone	ND		5.0		ug/L			12/23/17 10:35	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/23/17 10:35	1
Acetone	ND		10		ug/L			12/23/17 10:35	1
Benzene	ND		1.0	0.41	•			12/23/17 10:35	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/23/17 10:35	1
Bromoform	ND		1.0	0.26				12/23/17 10:35	1
Bromomethane	ND		1.0	0.69	-			12/23/17 10:35	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/23/17 10:35	1
Carbon tetrachloride	ND		1.0	0.27	-			12/23/17 10:35	1
Chlorobenzene	ND		1.0	0.75	-			12/23/17 10:35	1
Dibromochloromethane	ND		1.0	0.32	-			12/23/17 10:35	1
Chloroethane	ND		1.0	0.32	-			12/23/17 10:35	1
Chloroform	ND		1.0	0.34	ug/L			12/23/17 10:35	1
Chloromethane	ND		1.0	0.35	-			12/23/17 10:35	1
cis-1,2-Dichloroethene	ND		1.0	0.81	-			12/23/17 10:35	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ū			12/23/17 10:35	1
Cyclohexane	ND		1.0	0.18				12/23/17 10:35	1
Dichlorodifluoromethane	ND		1.0	0.68	-			12/23/17 10:35	1

TestAmerica Buffalo

TestAmerica Job ID: 480-129276-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-393428/7

Matrix: Water

Analysis Batch: 393428

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec.

Limite

86

105

94

101

71 - 125 56 - 142

71 - 124

80 - 122

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.74	ug/L			12/23/17 10:35	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/23/17 10:35	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/23/17 10:35	1
Methyl acetate	ND		2.5	1.3	ug/L			12/23/17 10:35	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/23/17 10:35	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/23/17 10:35	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/23/17 10:35	1
Styrene	ND		1.0	0.73	ug/L			12/23/17 10:35	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/23/17 10:35	1
Toluene	ND		1.0	0.51	ug/L			12/23/17 10:35	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/23/17 10:35	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/23/17 10:35	1
Trichloroethene	ND		1.0	0.46	ug/L			12/23/17 10:35	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/23/17 10:35	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/23/17 10:35	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/23/17 10:35	1

MB MB Surrogate Dil Fac %Recovery Qualifier Limits Prepared Analyzed Toluene-d8 (Surr) 92 80 - 120 12/23/17 10:35 1,2-Dichloroethane-d4 (Surr) 100 77 - 120 12/23/17 10:35 4-Bromofluorobenzene (Surr) 104 73 - 120 12/23/17 10:35 Dibromofluoromethane (Surr) 97 75 - 123 12/23/17 10:35

LCS LCS

107

132

23.4

25.1

ug/L

ug/L

ug/L

ug/L

Popult Qualifier Unit

Spike

A 4404

Lab Sample ID: LCS 480-393428/5

Matrix: Water

Analyto

Analysis Batch: 393428

4-Methyl-2-pentanone (MIBK)

Bromodichloromethane

Acetone

Benzene

Analyte	Added	Result Qualifie	er Unit	D %Rec	Limits	
1,1,1-Trichloroethane	25.0	26.4	ug/L	106	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	21.2	ug/L	85	76 - 120	
1,1,2-Trichloroethane	25.0	23.0	ug/L	92	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.1	ug/L	105	61 - 148	
ne						
1,1-Dichloroethane	25.0	22.5	ug/L	90	77 - 120	
1,1-Dichloroethene	25.0	22.8	ug/L	91	66 - 127	
1,2,4-Trichlorobenzene	25.0	25.0	ug/L	100	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	22.8	ug/L	91	56 - 134	
1,2-Dichlorobenzene	25.0	25.4	ug/L	102	80 - 124	
1,2-Dichloroethane	25.0	25.7	ug/L	103	75 - 120	
1,2-Dichloropropane	25.0	21.7	ug/L	87	76 - 120	
1,3-Dichlorobenzene	25.0	25.2	ug/L	101	77 - 120	
1,4-Dichlorobenzene	25.0	24.6	ug/L	98	80 - 120	
2-Butanone (MEK)	125	114	ug/L	91	57 ₋ 140	
2-Hexanone	125	108	ug/L	86	65 - 127	

TestAmerica Buffalo

Page 27 of 43

125

125

25.0

25.0

TestAmerica Job ID: 480-129276-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-393428/5

Matrix: Water

Analysis Batch: 393428

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromoform	25.0	25.1		ug/L		101	61 - 132	
Bromomethane	25.0	22.0		ug/L		88	55 - 144	
Carbon disulfide	25.0	22.5		ug/L		90	59 - 134	
Carbon tetrachloride	25.0	28.2		ug/L		113	72 - 134	
Chlorobenzene	25.0	24.2		ug/L		97	80 - 120	
Dibromochloromethane	25.0	25.4		ug/L		102	75 - 125	
Chloroethane	25.0	21.0		ug/L		84	69 - 136	
Chloroform	25.0	24.6		ug/L		98	73 - 127	
Chloromethane	25.0	18.1		ug/L		72	68 - 124	
cis-1,2-Dichloroethene	25.0	24.3		ug/L		97	74 - 124	
cis-1,3-Dichloropropene	25.0	23.4		ug/L		94	74 - 124	
Cyclohexane	25.0	21.4		ug/L		86	59 - 135	
Dichlorodifluoromethane	25.0	21.5		ug/L		86	59 - 135	
Ethylbenzene	25.0	23.0		ug/L		92	77 - 123	
1,2-Dibromoethane	25.0	23.6		ug/L		94	77 - 120	
Isopropylbenzene	25.0	23.4		ug/L		93	77 - 122	
Methyl acetate	50.0	45.3		ug/L		91	74 - 133	
Methyl tert-butyl ether	25.0	23.9		ug/L		96	77 - 120	
Methylcyclohexane	25.0	24.2		ug/L		97	68 - 134	
Methylene Chloride	25.0	22.4		ug/L		90	75 - 124	
Styrene	25.0	23.0		ug/L		92	80 - 120	
Tetrachloroethene	25.0	27.5		ug/L		110	74 - 122	
Toluene	25.0	23.7		ug/L		95	80 - 122	
trans-1,2-Dichloroethene	25.0	26.3		ug/L		105	73 - 127	
trans-1,3-Dichloropropene	25.0	22.5		ug/L		90	80 - 120	
Trichloroethene	25.0	24.3		ug/L		97	74 - 123	
Trichlorofluoromethane	25.0	24.6		ug/L		99	62 - 150	
Vinyl chloride	25.0	20.7		ug/L		83	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		80 - 120
1,2-Dichloroethane-d4 (Surr)	101		77 - 120
4-Bromofluorobenzene (Surr)	107		73 - 120
Dibromofluoromethane (Surr)	103		75 - 123

Lab Sample ID: MB 480-393632/6

Matrix: Water

Analysis Batch: 393632

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/27/17 11:50	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/27/17 11:50	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/27/17 11:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/27/17 11:50	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/27/17 11:50	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/27/17 11:50	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/27/17 11:50	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/27/17 11:50	1

TestAmerica Buffalo

Page 28 of 43

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-393632/6

Matrix: Water

Analysis Batch: 393632

Dibromofluoromethane (Surr)

Client Sample ID: Method Blank **Prep Type: Total/NA**

		MB					_	_	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		1.0		ug/L			12/27/17 11:50	1
1,2-Dichloroethane	ND		1.0		ug/L			12/27/17 11:50	1
1,2-Dichloropropane	ND		1.0		ug/L			12/27/17 11:50	1
1,3-Dichlorobenzene	ND		1.0		ug/L			12/27/17 11:50	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/27/17 11:50	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/27/17 11:50	1
2-Hexanone	ND		5.0	1.2	ug/L			12/27/17 11:50	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/27/17 11:50	1
Acetone	ND		10	3.0	ug/L			12/27/17 11:50	1
Benzene	ND		1.0	0.41	ug/L			12/27/17 11:50	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/27/17 11:50	1
Bromoform	ND		1.0	0.26	ug/L			12/27/17 11:50	1
Bromomethane	ND		1.0	0.69	ug/L			12/27/17 11:50	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/27/17 11:50	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/27/17 11:50	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/27/17 11:50	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/27/17 11:50	1
Chloroethane	ND		1.0	0.32	ug/L			12/27/17 11:50	1
Chloroform	ND		1.0	0.34	ug/L			12/27/17 11:50	1
Chloromethane	ND		1.0	0.35	ug/L			12/27/17 11:50	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/27/17 11:50	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/27/17 11:50	1
Cyclohexane	ND		1.0	0.18	ug/L			12/27/17 11:50	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/27/17 11:50	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/27/17 11:50	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/27/17 11:50	1
Isopropylbenzene	ND		1.0		ug/L			12/27/17 11:50	1
Methyl acetate	ND		2.5		ug/L			12/27/17 11:50	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/27/17 11:50	1
Methylcyclohexane	ND		1.0		ug/L			12/27/17 11:50	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/27/17 11:50	1
Styrene	ND		1.0		ug/L			12/27/17 11:50	1
Tetrachloroethene	ND		1.0		ug/L			12/27/17 11:50	1
Toluene	ND		1.0		ug/L			12/27/17 11:50	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			12/27/17 11:50	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			12/27/17 11:50	1
Trichloroethene	ND		1.0		ug/L			12/27/17 11:50	1
Trichlorofluoromethane	ND		1.0		ug/L			12/27/17 11:50	1
Vinyl chloride	ND		1.0		ug/L			12/27/17 11:50	1
Xylenes, Total	ND		2.0		ug/L			12/27/17 11:50	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98	80 - 120		12/27/17 11:50	1
1,2-Dichloroethane-d4 (Surr)	99	77 - 120		12/27/17 11:50	1
4-Bromofluorobenzene (Surr)	95	73 - 120		12/27/17 11:50	1

75 - 123

103

TestAmerica Buffalo

12/27/17 11:50

Page 29 of 43

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-393632/4 Matrix: Water

Client Sample	ID: Lab C	ontrol Sample
	Prep 7	Γype: Total/NA

Analysis Batch: 393632	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
1,1,1-Trichloroethane	25.0	26.8		ug/L		73 - 126	
1,1,2,2-Tetrachloroethane	25.0	23.1		ug/L	92	76 ₋ 120	
1,1,2-Trichloroethane	25.0	27.8		ug/L	111	76 ₋ 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.5		ug/L	102	61 - 148	
ne							
1,1-Dichloroethane	25.0	26.3		ug/L	105	77 - 120	
1,1-Dichloroethene	25.0	21.9		ug/L	87	66 - 127	
1,2,4-Trichlorobenzene	25.0	26.7		ug/L	107	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	17.9		ug/L	72	56 - 134	
1,2-Dichlorobenzene	25.0	26.7		ug/L	107	80 - 124	
1,2-Dichloroethane	25.0	24.8		ug/L	99	75 - 120	
1,2-Dichloropropane	25.0	25.4		ug/L	102	76 - 120	
1,3-Dichlorobenzene	25.0	27.0		ug/L	108	77 - 120	
1,4-Dichlorobenzene	25.0	26.1		ug/L	104	80 - 120	
2-Butanone (MEK)	125	118		ug/L	95	57 ₋ 140	
2-Hexanone	125	121		ug/L	97	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	114		ug/L	91	71 - 125	
Acetone	125	154		ug/L	123	56 - 142	
Benzene	25.0	26.9		ug/L	108	71 - 124	
Bromodichloromethane	25.0	24.4		ug/L	97	80 - 122	
Bromoform	25.0	27.2		ug/L	109	61 - 132	
Bromomethane	25.0	25.2		ug/L	101	55 - 144	
Carbon disulfide	25.0	24.7		ug/L	99	59 ₋ 134	
Carbon tetrachloride	25.0	26.7		ug/L	107	72 - 134	
Chlorobenzene	25.0	28.5		ug/L	114	80 - 120	
Dibromochloromethane	25.0	27.0		ug/L	108	75 ₋ 125	
Chloroethane	25.0	25.1		ug/L	100	69 - 136	
Chloroform	25.0	26.9		ug/L	108	73 ₋ 127	
Chloromethane	25.0	29.0		ug/L	116	68 - 124	
cis-1,2-Dichloroethene	25.0	26.9		ug/L	107	74 - 124	
cis-1,3-Dichloropropene	25.0	24.4		ug/L	98	74 - 124	
Cyclohexane	25.0	26.6		ug/L	106	59 - 135	
Dichlorodifluoromethane	25.0	31.0		ug/L	124	59 ₋ 135	
Ethylbenzene	25.0	27.7		ug/L	111	77 ₋ 123	
1,2-Dibromoethane	25.0	26.4		ug/L	106	77 - 120	
Isopropylbenzene	25.0	25.4		ug/L	102	77 ₋ 122	
Methyl acetate	50.0	42.5		ug/L	85	74 - 133	
Methyl tert-butyl ether	25.0	24.4		ug/L	98	77 - 120	
Methylcyclohexane	25.0	29.4		ug/L	118	68 - 134	
Methylene Chloride	25.0	24.4		ug/L	98	75 - 124	
Styrene	25.0	27.9		ug/L	112	80 - 120	
Tetrachloroethene	25.0	29.9		ug/L	119	74 - 122	
Toluene	25.0	27.7		ug/L	111	80 - 122	
trans-1,2-Dichloroethene	25.0	27.4		ug/L	109	73 - 127	
trans-1,3-Dichloropropene	25.0	25.2		ug/L	101	80 - 120	
Trichloroethene	25.0	27.5		ug/L	110	74 - 123	
Trichlorofluoromethane	25.0	21.7		ug/L	87	62 - 150	
Vinyl chloride	25.0	28.8		ug/L	115	65 - 133	

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-393632/4

Lab Sample ID: 480-129276-8 MS

Matrix: Water

Analysis Batch: 393632

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
1,2-Dichloroethane-d4 (Surr)	91		77 - 120
4-Bromofluorobenzene (Surr)	104		73 - 120
Dibromofluoromethane (Surr)	100		75 - 123

Client Sample ID: MW 8D 122017

Matrix: Water

Analysis Batch: 393632

Prep Type:	Total/NA

	-	Sample	Spike		MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		25.0	30.4		ug/L		122	73 - 126
1,1,2,2-Tetrachloroethane	ND		25.0	26.9		ug/L		107	76 - 120
1,1,2-Trichloroethane	ND		25.0	30.4		ug/L		122	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	28.7		ug/L		115	61 - 148
ne									
1,1-Dichloroethane		J F1	25.0	31.1	F1	ug/L		121	77 - 120
1,1-Dichloroethene	ND		25.0	24.8		ug/L		99	66 - 127
1,2,4-Trichlorobenzene	ND		25.0	29.7		ug/L		119	79 - 122
1,2-Dibromo-3-Chloropropane	ND		25.0	19.0		ug/L		76	56 - 134
1,2-Dichlorobenzene	ND		25.0	29.8		ug/L		119	80 - 124
1,2-Dichloroethane	ND		25.0	27.6		ug/L		111	75 - 120
1,2-Dichloropropane	ND		25.0	28.0		ug/L		112	76 - 120
1,3-Dichlorobenzene	ND		25.0	29.2		ug/L		117	77 - 120
1,4-Dichlorobenzene	ND		25.0	29.0		ug/L		116	78 - 124
2-Butanone (MEK)	ND		125	122		ug/L		98	57 - 140
2-Hexanone	ND		125	124		ug/L		99	65 - 127
4-Methyl-2-pentanone (MIBK)	ND		125	125		ug/L		100	71 - 125
Acetone	ND	F2	125	123		ug/L		98	56 - 142
Benzene	ND		25.0	30.3		ug/L		121	71 - 124
Bromodichloromethane	ND		25.0	27.5		ug/L		110	80 - 122
Bromoform	ND		25.0	27.8		ug/L		111	61 - 132
Bromomethane	ND		25.0	29.1		ug/L		116	55 - 144
Carbon disulfide	ND		25.0	27.7		ug/L		111	59 - 134
Carbon tetrachloride	ND		25.0	30.3		ug/L		121	72 - 134
Chlorobenzene	ND	F1	25.0	30.7	F1	ug/L		123	80 - 120
Dibromochloromethane	ND		25.0	27.4		ug/L		110	75 - 125
Chloroethane	ND		25.0	29.8		ug/L		119	69 - 136
Chloroform	ND		25.0	30.6		ug/L		122	73 - 127
Chloromethane	ND	F1	25.0	33.7	F1	ug/L		135	68 - 124
cis-1,2-Dichloroethene	ND		25.0	30.1		ug/L		120	74 - 124
cis-1,3-Dichloropropene	ND		25.0	26.0		ug/L		104	74 - 124
Cyclohexane	ND		25.0	28.0		ug/L		112	59 - 135
Dichlorodifluoromethane	ND	F1	25.0	33.3		ug/L		133	59 - 135
Ethylbenzene	ND		25.0	29.7		ug/L		119	77 - 123
1,2-Dibromoethane	ND		25.0	29.2		ug/L		117	77 - 120
Isopropylbenzene	ND		25.0	28.4		ug/L		114	77 - 122
Methyl acetate	ND		50.0	44.5		ug/L		89	74 - 133
Methyl tert-butyl ether	0.30	j	25.0	27.3		ug/L		108	77 - 120

TestAmerica Buffalo

Page 31 of 43

12/30/2017

TestAmerica Job ID: 480-129276-1

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-129276-8 MS

Matrix: Water

Analysis Batch: 393632

Client Sample	ID:	MW	8 D	1220	17
Pr	ep '	Туре): T	otal/	NA

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylcyclohexane	ND		25.0	32.0	-	ug/L		128	68 - 134	
Methylene Chloride	ND		25.0	27.7		ug/L		111	75 ₋ 124	
Styrene	ND	F1	25.0	30.2	F1	ug/L		121	80 - 120	
Tetrachloroethene	ND	F1	25.0	32.7	F1	ug/L		131	74 - 122	
Toluene	ND	F1	25.0	30.8	F1	ug/L		123	80 - 122	
trans-1,2-Dichloroethene	ND		25.0	30.4		ug/L		122	73 - 127	
trans-1,3-Dichloropropene	ND		25.0	26.7		ug/L		107	80 - 120	
Trichloroethene	ND	F1	25.0	30.9	F1	ug/L		124	74 - 123	
Trichlorofluoromethane	ND	F2	25.0	28.2		ug/L		113	62 - 150	
Vinyl chloride	ND	F1	25.0	34.6	F1	ug/L		138	65 - 133	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
1,2-Dichloroethane-d4 (Surr)	95		77 - 120
4-Bromofluorobenzene (Surr)	102		73 - 120
Dibromofluoromethane (Surr)	102		75 - 123

Lab Sample ID: 480-129276-8 MSD

Matrix: Water

Client	Sample	ID:	\mathbf{MW}	8D	122017	
	D.		Turn	ъ. т	atal/NIA	

Prep Type: Total/NA

Analysis Batch: 393632											
	-	Sample	Spike	_	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	29.1		ug/L		116	73 - 126	4	15
1,1,2,2-Tetrachloroethane	ND		25.0	24.8		ug/L		99	76 - 120	8	15
1,1,2-Trichloroethane	ND		25.0	27.7		ug/L		111	76 - 122	9	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	29.1		ug/L		116	61 - 148	1	20
ne											
1,1-Dichloroethane	0.89	J F1	25.0	29.6		ug/L		115	77 - 120	5	20
1,1-Dichloroethene	ND		25.0	25.4		ug/L		101	66 - 127	2	16
1,2,4-Trichlorobenzene	ND		25.0	28.4		ug/L		114	79 - 122	4	20
1,2-Dibromo-3-Chloropropane	ND		25.0	19.1		ug/L		77	56 - 134	1	15
1,2-Dichlorobenzene	ND		25.0	28.0		ug/L		112	80 - 124	6	20
1,2-Dichloroethane	ND		25.0	26.9		ug/L		107	75 - 120	3	20
1,2-Dichloropropane	ND		25.0	26.9		ug/L		108	76 - 120	4	20
1,3-Dichlorobenzene	ND		25.0	27.2		ug/L		109	77 - 120	7	20
1,4-Dichlorobenzene	ND		25.0	27.7		ug/L		111	78 - 124	5	20
2-Butanone (MEK)	ND		125	112		ug/L		90	57 - 140	8	20
2-Hexanone	ND		125	121		ug/L		96	65 - 127	3	15
4-Methyl-2-pentanone (MIBK)	ND		125	121		ug/L		96	71 - 125	4	35
Acetone	ND	F2	125	105	F2	ug/L		84	56 - 142	16	15
Benzene	ND		25.0	28.1		ug/L		112	71 - 124	8	13
Bromodichloromethane	ND		25.0	26.0		ug/L		104	80 - 122	6	15
Bromoform	ND		25.0	26.5		ug/L		106	61 - 132	5	15
Bromomethane	ND		25.0	26.6		ug/L		106	55 - 144	9	15
Carbon disulfide	ND		25.0	25.0		ug/L		100	59 - 134	10	15
Carbon tetrachloride	ND		25.0	28.6		ug/L		115	72 - 134	6	15
Chlorobenzene	ND	F1	25.0	29.3		ug/L		117	80 - 120	5	25
Dibromochloromethane	ND		25.0	26.5		ug/L		106	75 - 125	3	15

TestAmerica Buffalo

Page 32 of 43

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-129276-8 MSD

Matrix: Water

Analysis Batch: 393632

Client Sample ID: MW 8D 122017

Prep Type: Total/NA

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroethane	ND		25.0	27.0		ug/L		108	69 - 136	10	15
Chloroform	ND		25.0	27.6		ug/L		110	73 - 127	10	20
Chloromethane	ND	F1	25.0	33.2	F1	ug/L		133	68 - 124	1	15
cis-1,2-Dichloroethene	ND		25.0	29.0		ug/L		116	74 - 124	4	15
cis-1,3-Dichloropropene	ND		25.0	24.6		ug/L		98	74 - 124	5	15
Cyclohexane	ND		25.0	27.4		ug/L		110	59 - 135	2	20
Dichlorodifluoromethane	ND	F1	25.0	34.4	F1	ug/L		137	59 - 135	3	20
Ethylbenzene	ND		25.0	28.4		ug/L		114	77 - 123	5	15
1,2-Dibromoethane	ND		25.0	28.1		ug/L		112	77 - 120	4	15
Isopropylbenzene	ND		25.0	26.8		ug/L		107	77 - 122	6	20
Methyl acetate	ND		50.0	44.7		ug/L		89	74 - 133	0	20
Methyl tert-butyl ether	0.30	J	25.0	25.8		ug/L		102	77 - 120	5	37
Methylcyclohexane	ND		25.0	30.5		ug/L		122	68 - 134	5	20
Methylene Chloride	ND		25.0	26.7		ug/L		107	75 - 124	3	15
Styrene	ND	F1	25.0	28.6		ug/L		114	80 - 120	5	20
Tetrachloroethene	ND	F1	25.0	31.8	F1	ug/L		127	74 - 122	3	20
Toluene	ND	F1	25.0	28.4		ug/L		114	80 - 122	8	15
trans-1,2-Dichloroethene	ND		25.0	28.4		ug/L		114	73 - 127	7	20
trans-1,3-Dichloropropene	ND		25.0	25.4		ug/L		102	80 - 120	5	15
Trichloroethene	ND	F1	25.0	30.0		ug/L		120	74 - 123	3	16
Trichlorofluoromethane	ND	F2	25.0	22.5	F2	ug/L		90	62 - 150	23	20
Vinyl chloride	ND	F1	25.0	33.9	F1	ug/L		136	65 - 133	2	15

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		80 - 120
1,2-Dichloroethane-d4 (Surr)	94		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Dibromofluoromethane (Surr)	101		75 - 123

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

GC/MS VOA

Analysis Batch: 393403

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-129276-1	MW 1S 121917	Total/NA	Water	8260C	
480-129276-2	MW 1D 121917	Total/NA	Water	8260C	
MB 480-393403/	7 Method Blank	Total/NA	Water	8260C	
LCS 480-393403	/5 Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 393428

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-129276-3	MW 7D 122017	Total/NA	Water	8260C	_
480-129276-4	MW 8DD 122017	Total/NA	Water	8260C	
480-129276-5	MW 7S 122017	Total/NA	Water	8260C	
480-129276-6	MW 8S 122017	Total/NA	Water	8260C	
480-129276-7	X-1 122017	Total/NA	Water	8260C	
480-129276-8	MW 8D 122017	Total/NA	Water	8260C	
480-129276-11	MW 7DD-2 122017	Total/NA	Water	8260C	
480-129276-12	MW 6D 122017	Total/NA	Water	8260C	
480-129276-13	MW 6DD 122017	Total/NA	Water	8260C	
480-129276-14	MW 6S 122017	Total/NA	Water	8260C	
480-129276-15	QC TRIP BLANK	Total/NA	Water	8260C	
MB 480-393428/7	Method Blank	Total/NA	Water	8260C	
LCS 480-393428/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 393632

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-393632/6	Method Blank	Total/NA	Water	8260C	<u> </u>
LCS 480-393632/4	Lab Control Sample	Total/NA	Water	8260C	
480-129276-8 MS	MW 8D 122017	Total/NA	Water	8260C	
480-129276-8 MSD	MW 8D 122017	Total/NA	Water	8260C	

5

6

8

9

10

12

4 /

10

Client Sample ID: MW 1S 121917

Project/Site: Forest Glen Monitoring

Lab Sample ID: 480-129276-1

Matrix: Water

Date Collected: 12/19/17 16:23 Date Received: 12/20/17 17:30

Batch Dilution Batch Prepared Batch Method Run Factor Number or Analyzed **Prep Type** Type **Analyst** Lab TAL BUF Total/NA Analysis 8260C 393403 12/23/17 02:57 KMN

Client Sample ID: MW 1D 121917 Lab Sample ID: 480-129276-2

Date Collected: 12/19/17 16:25 **Matrix: Water**

Date Received: 12/20/17 17:30

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab KMN TAL BUF Total/NA 8260C 393403 12/23/17 03:21 Analysis

Client Sample ID: MW 7D 122017 Lab Sample ID: 480-129276-3

Date Collected: 12/20/17 10:40 **Matrix: Water**

Date Received: 12/20/17 17:30

Dilution Batch Batch Batch **Prepared** Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab Total/NA Analysis 8260C 393428 12/23/17 11:35 KMN TAL BUF

Lab Sample ID: 480-129276-4 Client Sample ID: MW 8DD 122017

Date Collected: 12/20/17 10:42 **Matrix: Water**

Date Received: 12/20/17 17:30

Batch Batch Dilution Batch **Prepared** Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 8260C 12/23/17 11:59 KMN TAL BUF Total/NA Analysis 393428

Client Sample ID: MW 7S 122017 Lab Sample ID: 480-129276-5

Date Collected: 12/20/17 11:50 **Matrix: Water**

Date Received: 12/20/17 17:30

Dilution Batch **Batch** Batch Prepared Prep Type Method **Factor** Number or Analyzed Type Run Analyst TAL BUF Total/NA Analysis 8260C 393428 12/23/17 12:23 KMN

Client Sample ID: MW 8S 122017 Lab Sample ID: 480-129276-6

Date Collected: 12/20/17 11:58 **Matrix: Water** Date Received: 12/20/17 17:30

Batch Batch Dilution Batch Prepared Method **Prep Type** Number or Analyzed Type Run **Factor** Analyst Lab KMN TAL BUF Total/NA Analysis 8260C 393428 12/23/17 12:47

10

Matrix: Water

Matrix: Water

Project/Site: Forest Glen Monitoring

Client Sample ID: X-1 122017

Lab Sample ID: 480-129276-7

Date Collected: 12/20/17 00:00 **Matrix: Water**

Date Received: 12/20/17 17:30

Batch Dilution Batch Batch **Prepared** Number **Prep Type** Type Method Run Factor or Analyzed Analyst Lab Total/NA Analysis 8260C 393428 12/23/17 13:11 KMN TAL BUF

Client Sample ID: MW 8D 122017 Lab Sample ID: 480-129276-8

Date Collected: 12/20/17 13:00 Date Received: 12/20/17 17:30

Dilution Batch Batch Batch **Prepared** Number **Prep Type** Type Method Run **Factor** or Analyzed Lab Analyst 12/23/17 13:35 KMN TAL BUF Total/NA 8260C 393428 Analysis

Lab Sample ID: 480-129276-11

Client Sample ID: MW 7DD-2 122017 Date Collected: 12/20/17 13:55

Date Received: 12/20/17 17:30

Ratch Ratch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 8260C 393428 12/23/17 14:46 KMN TAL BUF Total/NA Analysis

Client Sample ID: MW 6D 122017 Lab Sample ID: 480-129276-12

Date Collected: 12/20/17 15:10 **Matrix: Water**

Date Received: 12/20/17 17:30

Batch Batch Dilution Batch **Prepared** Method or Analyzed Run **Factor** Number **Analyst** Prep Type Type Lab KMN TAL BUF Total/NA 8260C 393428 12/23/17 15:10 Analysis

Client Sample ID: MW 6DD 122017 Lab Sample ID: 480-129276-13

Date Collected: 12/20/17 15:45 **Matrix: Water**

Date Received: 12/20/17 17:30

Dilution Batch **Batch** Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab 8260C Total/NA Analysis 393428 12/23/17 15:34 KMN TAL BUF

Client Sample ID: MW 6S 122017 Lab Sample ID: 480-129276-14

Date Collected: 12/20/17 16:20 **Matrix: Water** Date Received: 12/20/17 17:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab KMN Total/NA Analysis 8260C 12/23/17 15:58 TAL BUF

Lab Chronicle

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-129276-1

Project/Site: Forest Glen Monitoring

Client Sample ID: QC TRIP BLANK

Lab Sample ID: 480-129276-15 Date Collected: 12/20/17 00:00 **Matrix: Water**

Date Received: 12/20/17 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	393428	12/23/17 16:22	KMN	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	10026	03-31-18

4

6

8

9

11

14

14

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

Δ

5

6

8

11

12

14

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129276-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-129276-1	MW 1S 121917	Water	12/19/17 16:23	12/20/17 17:30
480-129276-2	MW 1D 121917	Water	12/19/17 16:25	12/20/17 17:30
480-129276-3	MW 7D 122017	Water	12/20/17 10:40	12/20/17 17:30
480-129276-4	MW 8DD 122017	Water	12/20/17 10:42	12/20/17 17:30
480-129276-5	MW 7S 122017	Water	12/20/17 11:50	12/20/17 17:30
480-129276-6	MW 8S 122017	Water	12/20/17 11:58	12/20/17 17:30
480-129276-7	X-1 122017	Water	12/20/17 00:00	12/20/17 17:30
480-129276-8	MW 8D 122017	Water	12/20/17 13:00	12/20/17 17:30
480-129276-11	MW 7DD-2 122017	Water	12/20/17 13:55	12/20/17 17:30
480-129276-12	MW 6D 122017	Water	12/20/17 15:10	12/20/17 17:30
480-129276-13	MW 6DD 122017	Water	12/20/17 15:45	12/20/17 17:30
480-129276-14	MW 6S 122017	Water	12/20/17 16:20	12/20/17 17:30
480-129276-15	QC TRIP BLANK	Water	12/20/17 00:00	12/20/17 17:30

-6

Л

6

8

9

10

12

4 4

Ver: 08/04/2016

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	o Jaho	Chain of Custody Record 、Covolveへ	or cus	tody n	ecora			BI ITAGE IN	HILLIAGE THE PROPERTY STATES
Client Information	Sampley RIIN	Kennahi	aki	Lab P John	Lab PM: Johnson, Orlette S		Carrier Tracking No(s):	COC No:	70.7
Circui contact: Mr. Yuri Veliz	Phone: 3/5-7	729-1300	ږ	E-Mai	e.johnson@te	E-Mail: orlette.iohnson@testamericainc.com		Page:	
Company: O'Brien & Gere Inc of North America						Analysis Regiseted	3	Job#:	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:				6	Transport Co.		Preservation Codes:	des:
city: East Syracuse	TAT Requested (days):	/s):						A - HCL B - NaOH	
State, Zip: NY, 13221								C - Zn Acetate D - Nitric Acid	
Phone: 315-956-6100(Tel) 315-463-7554(Fax)	PO#:				(F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
Email: Yuri.Veliz@obg.com	WO #:								
Project Name: Forest Glen Monitoring	Project #: 48002808						enenie		V - MCAA W - pH 4-5 Z - other (specify)
Site:	SSOW#:				ey) de		i conta		(Alloade) page
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=crab)	Matrix (W=water, S=solid, O=wastefoil, STATICUS A=A)	Fleid Filtered : erform MS/M 2002 - TCL Vol		o tadmuM le3o		
Annual Control of the	X	X	- 100	Preservation Code:	1		1		Special Instructions/Note:
MW 15 121917	13-19-19	16:33	9	Water	m				
MW 10 121917	13-19-17	16:35	9	Water	N				
MW 77 122617	19-20-17	2431	ئ	Water	3			*	. 44
ZNI		10:43	9	Water	3				-
MW 75 1220 17	13-30-17	1150	4	Water	0			3	H
MW 85 (22017	12-20-17	1158	٩	Water	n			480.129	480.129276 CG
X-1 122017	13-20-17	1	Q	Water	K				9
MW 8D 122017	13-30-17	13:00	9	Water	3				
MW 8DMS 122017	12-30-17	13:00	9	Water	W				
MW 8D MSD 1230 17	12-20-17	13:00	9	Water	W				
MW 7DD-2 123017	13-20-17	13/55	Q	Water	m				
Possible Hazard Identification Non-Hazard — Flammable — Skin Imtant —	Deison B Unknown		Radiological		Sample Di	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retaine	ed fonger than	f month)
o ,≡, i					Special Ins	Requireme		AICHING FOI	Months
Empty Kit Relinquished by:		Date:			Time:	We	Method of Shipment:		
JIMO Must Kirny My Commission	Date/Time:	LI/L	.30	1) Supplied	Received IV:		DateTime	1720	Company
Kelinquished by:	Date/Time:	-		Company	Received by:	d by:	Date/Time:	- 11	Company
Relinquished by:	Date/Time:			Company	Received by:	d by:	Date/Time:		Company
Custody Seals Intact: Custody Seal No -									

TestAmerica Buffalo 10 Hazelwood Drive Amhary NY 14228-2298		Chain of Custody Record	of Cusi	tody R	ecord			TestA	TestAmerica
Filone (7 to) 591-2500 Fax (715) 591-7991	VNCO	30101/2	2					1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 to	ASE CARPY TRUTHER
Client Information	Sampler MACT.	Tin Koenwee	we Le	Lab PM: Johnso	Lab PM: Johnson, Orlette S	Camer T	Carrier Tracking No(s):	COC No:	000
Clent Contact. Mr. Yuri Veliz	Phone: 315-1729-1360	1-684	300	E-Mail: orlette	E-Mail: orlette.johnson@testamericainc.com	cainc.com		Page:	+/ 9.2
Company: O'Brien & Gere Inc of North America						Analysis Rogiostod		Job#:	
Address: 333 West Washington St. PO BOX 4873	Due Date Requested:	:pe						Preservation Codes:	des:
Crity: East Syracuse State, Zip:	TAT Requested (days):	ays):			100			A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
NY, 13221								D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Friedra: 315-956-6100(Tel) 315-463-7554(Fax) Email:	11700485				(0)			F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S203 S - H2SO4 T - TSP Dodecabydrate
Yuri.Veliz@obg.com	**								U - Acetone
Project Name: Forest Glen Monitoring	Project #: 48002808								W - pH 4-5 Z - other (specify)
Site:	SSOW#:				A) as			other:	
Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (W-water, Sesolid, Owystatol),	Fleid Filterad S Parform MS/Mi Parfor - TCL Vol.			o YadımuM İsio	
	\bigvee	X	100	Preservation Code:	X				Special instructions/Note:
MW GD 122017	19-20-17	0151	3	Water	W				
MW 6DD 122017	12-20-17	1545	9	Water	\mathcal{n}				
MW 65 122017	12-26-17	1620	e	Water	n				
QC TRIP BLANKS				Water	લ				
-				Water					
				Water					
				Water					
				Water					
				Water					
Possible Hazard Identification									
Skin Imitant	Poison B Unkr	Unknown	Radiological		Sample Disposal (A f	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Man	d if samples are reta By Lab	tained longer than 1 Archive For	month)
Deliverable Requested: I, II, III, IV, Other (specify)					Special Instructions	Requireme			Simon
Empty Kit Relinquished by: Relinquished by:		Date:			Time:	Met	Method of Shipment:		
Relinquished by:	Date/Time:	1/1	05:41	Company	Received hy		Date Time:	7 1730	Company
Refinquished by:	Date/Time:			Company	December 19.		Date/Time:		Company
Principally Saula Intends Principals				f and	Necelved by.		Date/Time:		Company
					Cooler Temperature	Cooler Temperature(s) °C and Other Remarks:			
									Vor. 08/04/2016

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-129276-1

Login Number: 129276 List Source: TestAmerica Buffalo

List Number: 1

Creator: Harper, Marcus D

Creator. Harper, Marcus D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

e

_

_

111

13

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-129353-1

Client Project/Site: Forest Glen Monitoring

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Joseph V. Gircomagger

Authorized for release by: 1/3/2018 10:11:02 AM
Joe Giacomazza, Project Management Assistant II

Designee for

Orlette Johnson, Senior Project Manager (484)685-0864

joe.giacomazza@testamericainc.com

orlette.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	20
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

3

4

8

9

11

13

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Qualifiers

GC/MS VOA

RL

RPD

TEF

TEQ

Qualifier	Qualifier Description	
1	Posult is loss than the PL but greater than or equal to the MDL and the concentration is an approximate value	

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Case Narrative

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Job ID: 480-129353-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-129353-1

Comments

No additional comments.

Receipt

The samples were received on 12/21/2017 3:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.1° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-393478 recovered above the upper control limit for Carbon Tetrachloride, 1,1,1-Trichloroethane, 1,1,2-Trichloro-1,1,1-trifluoroethane and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes: therefore, the data have been reported. The following samples are impacted: MW 10D 122117 (480-129353-1), MW 5D 122117 (480-129353-2), MW 10S 122117 (480-129353-3), MW 4D 122117 (480-129353-5), MW 4S 122117 (480-129353-6) and QC TRIP BLANK (480-129353-7).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-393478 recovered above the upper control limit for Carbon Tetrachloride, 1,1,2-Trichloro-1,2,2-trifluoroethane and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: MW 5S 122117 (480-129353-4).

Method(s) 8260C: The continuing calibration verification (CCV) analyzed in 480-393478 was outside the method criteria for the following analyte(s): 1,1,1-Trichloroethane. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated. The following sample was impacted: MW 5S 122117 (480-129353-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 10D 122117

Lab Sample ID: 480-129353-1

No Detections.

Client Sample ID: MW 5D 122117 Lab Sample ID: 480-129353-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
1,1-Dichloroethane	0.42 J	1.0	0.38 ug/L	1 8260C	Total/NA

Client Sample ID: MW 10S 122117 Lab Sample ID: 480-129353-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	P	Prep Type
cis-1,2-Dichloroethene	3.3		1.0	0.81	ug/L			8260C	T	otal/NA

Client Sample ID: MW 5S 122117 Lab Sample ID: 480-129353-4

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	13		1.0	0.82	ug/L		_	8260C	Total/NA
1,1-Dichloroethane	86		1.0	0.38	ug/L	1		8260C	Total/NA
1,1-Dichloroethene	8.2		1.0	0.29	ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	76		1.0	0.81	ug/L	1		8260C	Total/NA
Tetrachloroethene	0.49 J	J	1.0	0.36	ug/L	1		8260C	Total/NA
trans-1,2-Dichloroethene	4.0		1.0	0.90	ug/L	1		8260C	Total/NA
Trichloroethene	26		1.0	0.46	ug/L	1		8260C	Total/NA

Client Sample ID: MW 4D 122117 Lab Sample ID: 480-129353-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methyl tert-butyl ether	0.50 J	1.0	0.16 ug/L	1 8260C	Total/NA

Client Sample ID: MW 4S 122117 Lab Sample ID: 480-129353-6

No Detections.

Client Sample ID: QC TRIP BLANK

Lab Sample ID: 480-129353-7

No Detections.

This Detection Summary does not include radiochemical test results.

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Lab Sample ID: 480-129353-1

Matrix: Water

Client Sample ID: MW 10D 122117

Date Collected: 12/21/17 09:52 Date Received: 12/21/17 15:20

Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/26/17 11:06	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/26/17 11:06	•
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/26/17 11:06	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/26/17 11:06	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/26/17 11:06	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/26/17 11:06	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/26/17 11:06	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/26/17 11:06	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/26/17 11:06	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/26/17 11:06	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/26/17 11:06	
1,3-Dichlorobenzene	ND	1.0		ug/L			12/26/17 11:06	
1,4-Dichlorobenzene	ND	1.0		ug/L			12/26/17 11:06	
2-Butanone (MEK)	ND	10		ug/L			12/26/17 11:06	
2-Hexanone	ND	5.0		ug/L			12/26/17 11:06	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			12/26/17 11:06	
Acetone	ND	10		ug/L			12/26/17 11:06	
Benzene	ND	1.0		ug/L			12/26/17 11:06	
Bromodichloromethane	ND	1.0		ug/L			12/26/17 11:06	
Bromoform	ND	1.0		ug/L			12/26/17 11:06	
Bromomethane	ND	1.0		ug/L			12/26/17 11:06	
Carbon disulfide	ND	1.0		ug/L			12/26/17 11:06	
Carbon tetrachloride	ND	1.0		ug/L			12/26/17 11:06	
Chlorobenzene	ND	1.0		ug/L			12/26/17 11:06	
Dibromochloromethane	ND	1.0		ug/L			12/26/17 11:06	
Chloroethane	ND	1.0		ug/L			12/26/17 11:06	
Chloroform	ND	1.0		ug/L			12/26/17 11:06	
Chloromethane							12/26/17 11:06	
	ND ND	1.0 1.0		ug/L ug/L			12/26/17 11:06	
cis-1,2-Dichloroethene	ND ND	1.0		ug/L ug/L			12/26/17 11:06	
cis-1,3-Dichloropropene								
Cyclohexane	ND	1.0		ug/L			12/26/17 11:06	
Dichlorodifluoromethane	ND	1.0		ug/L			12/26/17 11:06	
Ethylbenzene	ND	1.0		ug/L			12/26/17 11:06	
1,2-Dibromoethane	ND	1.0		ug/L			12/26/17 11:06	
Isopropylbenzene	ND	1.0		ug/L			12/26/17 11:06	
Methyl acetate	ND	2.5		ug/L			12/26/17 11:06	
Methyl tert-butyl ether	ND	1.0		ug/L			12/26/17 11:06	
Methylcyclohexane	ND	1.0		ug/L			12/26/17 11:06	
Methylene Chloride	ND	1.0		ug/L			12/26/17 11:06	
Styrene	ND	1.0		ug/L			12/26/17 11:06	
Tetrachloroethene	ND	1.0		ug/L			12/26/17 11:06	
Toluene	ND	1.0		ug/L			12/26/17 11:06	
trans-1,2-Dichloroethene	ND	1.0		ug/L			12/26/17 11:06	
trans-1,3-Dichloropropene	ND	1.0		ug/L			12/26/17 11:06	
Trichloroethene	ND	1.0		ug/L			12/26/17 11:06	
Trichlorofluoromethane	ND	1.0		ug/L			12/26/17 11:06	
Vinyl chloride	ND	1.0	0.90	ug/L			12/26/17 11:06	
Xylenes, Total	ND	2.0	0.66	ug/L			12/26/17 11:06	

TestAmerica Buffalo

1/3/2018

Page 6 of 26

2

Δ

6

8

10

12

1 *1*

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Lab Sample ID: 480-129353-1

Matrix: Water

Matrix: Water

Client Sample ID: MW 10D 122117

Date Collected: 12/21/17 09:52 Date Received: 12/21/17 15:20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		80 - 120		12/26/17 11:06	1
1,2-Dichloroethane-d4 (Surr)	113		77 - 120		12/26/17 11:06	1
4-Bromofluorobenzene (Surr)	104		73 - 120		12/26/17 11:06	1
Dibromofluoromethane (Surr)	109		75 - 123		12/26/17 11:06	1

Client Sample ID: MW 5D 122117 Lab Sample ID: 480-129353-2

Date Collected: 12/21/17 09:55

Date Received: 12/21/17 15:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/26/17 11:30	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/26/17 11:30	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/26/17 11:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/26/17 11:30	1
1,1-Dichloroethane	0.42 J	1.0	0.38	ug/L			12/26/17 11:30	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/26/17 11:30	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/26/17 11:30	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/26/17 11:30	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/26/17 11:30	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/26/17 11:30	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/26/17 11:30	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/26/17 11:30	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/26/17 11:30	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/26/17 11:30	1
2-Hexanone	ND	5.0	1.2	ug/L			12/26/17 11:30	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/26/17 11:30	1
Acetone	ND	10	3.0	ug/L			12/26/17 11:30	1
Benzene	ND	1.0	0.41	ug/L			12/26/17 11:30	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/26/17 11:30	1
Bromoform	ND	1.0	0.26	ug/L			12/26/17 11:30	1
Bromomethane	ND	1.0	0.69	ug/L			12/26/17 11:30	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/26/17 11:30	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/26/17 11:30	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/26/17 11:30	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/26/17 11:30	1
Chloroethane	ND	1.0	0.32	ug/L			12/26/17 11:30	1
Chloroform	ND	1.0	0.34	ug/L			12/26/17 11:30	1
Chloromethane	ND	1.0	0.35	ug/L			12/26/17 11:30	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			12/26/17 11:30	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/26/17 11:30	1
Cyclohexane	ND	1.0	0.18	ug/L			12/26/17 11:30	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/26/17 11:30	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/26/17 11:30	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/26/17 11:30	1
Isopropylbenzene	ND	1.0	0.79	-			12/26/17 11:30	1
Methyl acetate	ND	2.5	1.3	ug/L			12/26/17 11:30	1
Methyl tert-butyl ether	ND	1.0		ug/L			12/26/17 11:30	1
Methylcyclohexane	ND	1.0	0.16	-			12/26/17 11:30	1
Methylene Chloride	ND	1.0	0.44	•			12/26/17 11:30	1

TestAmerica Buffalo

Page 7 of 26

2

3

5

6

Q

9

11

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Client Sample ID: MW 5D 122117

Lab Sample ID: 480-129353-2 Date Collected: 12/21/17 09:55

Matrix: Water

Date Received: 12/21/17 15:20

Method: 8260C - Volatile Organ	nic Compounds by G	C/MS (Continued)						
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND ND	1.0	0.73	ug/L			12/26/17 11:30	1
Tetrachloroethene	ND	1.0	0.36	ug/L			12/26/17 11:30	1
Toluene	ND	1.0	0.51	ug/L			12/26/17 11:30	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/26/17 11:30	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			12/26/17 11:30	1
Trichloroethene	ND	1.0	0.46	ug/L			12/26/17 11:30	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			12/26/17 11:30	1
Vinyl chloride	ND	1.0	0.90	ug/L			12/26/17 11:30	1
Xylenes, Total	ND	2.0	0.66	ug/L			12/26/17 11:30	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120			-		12/26/17 11:30	1
1,2-Dichloroethane-d4 (Surr)	110	77 - 120					12/26/17 11:30	1
4-Bromofluorobenzene (Surr)	103	73 - 120					12/26/17 11:30	1
Dibromofluoromethane (Surr)	111	75 - 123					12/26/17 11:30	1

Client Sample ID: MW 10S 122117

Lab Sample ID: 480-129353-3

Date Collected: 12/21/17 10:45 Matrix: Water

Date Received: 12/21/17 15:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			12/26/17 11:53	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/26/17 11:53	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/26/17 11:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/26/17 11:53	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/26/17 11:53	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/26/17 11:53	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/26/17 11:53	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/26/17 11:53	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/26/17 11:53	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/26/17 11:53	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/26/17 11:53	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/26/17 11:53	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/26/17 11:53	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/26/17 11:53	1
2-Hexanone	ND	5.0	1.2	ug/L			12/26/17 11:53	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/26/17 11:53	1
Acetone	ND	10	3.0	ug/L			12/26/17 11:53	1
Benzene	ND	1.0	0.41	ug/L			12/26/17 11:53	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/26/17 11:53	1
Bromoform	ND	1.0	0.26	ug/L			12/26/17 11:53	1
Bromomethane	ND	1.0	0.69	ug/L			12/26/17 11:53	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/26/17 11:53	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/26/17 11:53	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/26/17 11:53	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/26/17 11:53	1
Chloroethane	ND	1.0	0.32	ug/L			12/26/17 11:53	1
Chloroform	ND	1.0	0.34	ug/L			12/26/17 11:53	1
Chloromethane	ND	1.0	0.35	ug/L			12/26/17 11:53	1

TestAmerica Buffalo

Page 8 of 26

1/3/2018

TestAmerica Job ID: 480-129353-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Client Sample ID: MW 10S 122117

Lab Sample ID: 480-129353-3 Date Collected: 12/21/17 10:45

Matrix: Water

Lab Sample ID: 480-129353-4

Matrix: Water

Date Received: 12/21/17 15:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	3.3		1.0	0.81	ug/L			12/26/17 11:53	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/26/17 11:53	1
Cyclohexane	ND		1.0	0.18	ug/L			12/26/17 11:53	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/26/17 11:53	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/26/17 11:53	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/26/17 11:53	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/26/17 11:53	1
Methyl acetate	ND		2.5	1.3	ug/L			12/26/17 11:53	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/26/17 11:53	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/26/17 11:53	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/26/17 11:53	1
Styrene	ND		1.0	0.73	ug/L			12/26/17 11:53	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/26/17 11:53	1
Toluene	ND		1.0	0.51	ug/L			12/26/17 11:53	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/26/17 11:53	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/26/17 11:53	1
Trichloroethene	ND		1.0	0.46	ug/L			12/26/17 11:53	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/26/17 11:53	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/26/17 11:53	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/26/17 11:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		80 - 120			_		12/26/17 11:53	1
1,2-Dichloroethane-d4 (Surr)	112		77 - 120					12/26/17 11:53	1
4-Bromofluorobenzene (Surr)	104		73 - 120					12/26/17 11:53	1
Dibromofluoromethane (Surr)	104		75 - 123					12/26/17 11:53	1

Client Sample ID: MW 5S 122117

Date Collected: 12/21/17 11:50

Date Received: 12/21/17 15:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	13		1.0	0.82	ug/L			12/26/17 12:17	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/26/17 12:17	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/26/17 12:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/26/17 12:17	1
1,1-Dichloroethane	86		1.0	0.38	ug/L			12/26/17 12:17	1
1,1-Dichloroethene	8.2		1.0	0.29	ug/L			12/26/17 12:17	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/26/17 12:17	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/26/17 12:17	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/26/17 12:17	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/26/17 12:17	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/26/17 12:17	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/26/17 12:17	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/26/17 12:17	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/26/17 12:17	1
2-Hexanone	ND		5.0	1.2	ug/L			12/26/17 12:17	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/26/17 12:17	1
Acetone	ND		10	3.0	ug/L			12/26/17 12:17	1

TestAmerica Buffalo

Page 9 of 26 1/3/2018

TestAmerica Job ID: 480-129353-1

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Date Received: 12/21/17 15:20

Client Sample ID: MW 5S 122117

Date Collected: 12/21/17 11:50

Lab Sample ID: 480-129353-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			12/26/17 12:17	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/26/17 12:17	1
Bromoform	ND		1.0	0.26	ug/L			12/26/17 12:17	1
Bromomethane	ND		1.0	0.69	ug/L			12/26/17 12:17	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/26/17 12:17	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/26/17 12:17	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/26/17 12:17	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/26/17 12:17	1
Chloroethane	ND		1.0	0.32	ug/L			12/26/17 12:17	1
Chloroform	ND		1.0	0.34	ug/L			12/26/17 12:17	1
Chloromethane	ND		1.0	0.35	ug/L			12/26/17 12:17	1
cis-1,2-Dichloroethene	76		1.0	0.81	ug/L			12/26/17 12:17	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/26/17 12:17	1
Cyclohexane	ND		1.0	0.18	ug/L			12/26/17 12:17	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/26/17 12:17	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/26/17 12:17	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/26/17 12:17	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/26/17 12:17	1
Methyl acetate	ND		2.5	1.3	ug/L			12/26/17 12:17	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/26/17 12:17	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/26/17 12:17	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/26/17 12:17	1
Styrene	ND		1.0	0.73	ug/L			12/26/17 12:17	1
Tetrachloroethene	0.49	J	1.0	0.36	ug/L			12/26/17 12:17	1
Toluene	ND		1.0	0.51	ug/L			12/26/17 12:17	1
trans-1,2-Dichloroethene	4.0		1.0	0.90	ug/L			12/26/17 12:17	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/26/17 12:17	1
Trichloroethene	26		1.0	0.46	ug/L			12/26/17 12:17	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/26/17 12:17	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/26/17 12:17	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/26/17 12:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		80 - 120			_		12/26/17 12:17	1
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					12/26/17 12:17	1

Client Sample ID: MW 4D 122117

Date Collected: 12/21/17 12:10

Date Received: 12/21/17 15:20

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

.ab	Samp	le ID:	480-	129353	-5
-----	------	--------	------	--------	----

12/26/17 12:17

12/26/17 12:17

Matrix: Water

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/26/17 12:41	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/26/17 12:41	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/26/17 12:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/26/17 12:41	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/26/17 12:41	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/26/17 12:41	1

73 - 120

75 - 123

109

104

TestAmerica Buffalo

Page 10 of 26

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Lab Sample ID: 480-129353-5

ab campic ib. 400-12000-0

Matrix: Water

Client Sample ID: MW 4D 122117
Date Collected: 12/21/17 12:10

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

Method: 8260C - Volatile Organi Analyte	c Compounds by GC/MS (Co Result Qualifier	ontinued) RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
1.2.4-Trichlorobenzene	ND ND	1.0		ug/L		riepaieu	12/26/17 12:41	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			12/26/17 12:41	1
1.2-Dichlorobenzene	ND	1.0		ug/L			12/26/17 12:41	1
1,2-Dichloroethane	ND	1.0		ug/L			12/26/17 12:41	1
1,2-Dichloropropane	ND	1.0		ug/L			12/26/17 12:41	1
1,3-Dichlorobenzene	ND	1.0		ug/L			12/26/17 12:41	1
1,4-Dichlorobenzene	ND	1.0		ug/L			12/26/17 12:41	1
2-Butanone (MEK)	ND	10		ug/L			12/26/17 12:41	1
2-Hexanone	ND	5.0		ug/L			12/26/17 12:41	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			12/26/17 12:41	1
Acetone	ND	10		ug/L			12/26/17 12:41	1
Benzene	ND	1.0		ug/L			12/26/17 12:41	1
Bromodichloromethane	ND	1.0		ug/L			12/26/17 12:41	1
Bromoform	ND	1.0		ug/L			12/26/17 12:41	1
Bromomethane	ND	1.0		ug/L			12/26/17 12:41	1
Carbon disulfide	ND	1.0		ug/L			12/26/17 12:41	1
Carbon tetrachloride	ND	1.0		ug/L			12/26/17 12:41	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/26/17 12:41	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/26/17 12:41	1
Chloroethane	ND	1.0		ug/L			12/26/17 12:41	1
Chloroform	ND	1.0		ug/L			12/26/17 12:41	1
Chloromethane	ND	1.0	0.35	ug/L			12/26/17 12:41	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			12/26/17 12:41	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/26/17 12:41	1
Cyclohexane	ND	1.0	0.18	ug/L			12/26/17 12:41	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/26/17 12:41	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/26/17 12:41	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/26/17 12:41	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/26/17 12:41	1
Methyl acetate	ND	2.5	1.3	ug/L			12/26/17 12:41	1
Methyl tert-butyl ether	0.50 J	1.0	0.16	ug/L			12/26/17 12:41	1
Methylcyclohexane	ND	1.0	0.16	ug/L			12/26/17 12:41	1
Methylene Chloride	ND	1.0	0.44	ug/L			12/26/17 12:41	1
Styrene	ND	1.0	0.73	ug/L			12/26/17 12:41	1
Tetrachloroethene	ND	1.0	0.36	ug/L			12/26/17 12:41	1
Toluene	ND	1.0	0.51	ug/L			12/26/17 12:41	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/26/17 12:41	1

Surrogate	%Recovery	Qualifier	Limits	Pro	epared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		80 - 120			12/26/17 12:41	1
1,2-Dichloroethane-d4 (Surr)	105		77 - 120			12/26/17 12:41	1
4-Bromofluorobenzene (Surr)	108		73 - 120			12/26/17 12:41	1
Dibromofluoromethane (Surr)	101		75 - 123			12/26/17 12:41	1

1.0

1.0

1.0

1.0

2.0

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

ND

ND

ND

ND

ND

TestAmerica Buffalo

12/26/17 12:41

12/26/17 12:41

12/26/17 12:41

12/26/17 12:41

12/26/17 12:41

Page 11 of 26

2

3

5

0

10

12

1 /

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Lab Sample ID: 480-129353-6

Matrix: Water

Client Sample ID: MW 4S 122117 Date Collected: 12/21/17 12:50

Date Received: 12/21/17 15:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/26/17 13:05	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/26/17 13:05	•
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/26/17 13:05	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/26/17 13:05	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/26/17 13:05	•
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/26/17 13:05	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/26/17 13:05	,
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/26/17 13:05	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/26/17 13:05	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/26/17 13:05	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/26/17 13:05	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/26/17 13:05	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/26/17 13:05	
2-Butanone (MEK)	ND	10	1.3	ug/L			12/26/17 13:05	
2-Hexanone	ND	5.0		ug/L			12/26/17 13:05	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			12/26/17 13:05	
Acetone	ND	10		ug/L			12/26/17 13:05	
Benzene	ND	1.0		ug/L			12/26/17 13:05	
Bromodichloromethane	ND	1.0		ug/L			12/26/17 13:05	
Bromoform	ND	1.0		ug/L			12/26/17 13:05	
Bromomethane	ND	1.0		ug/L			12/26/17 13:05	
Carbon disulfide	ND	1.0		ug/L			12/26/17 13:05	
Carbon tetrachloride	ND	1.0		ug/L			12/26/17 13:05	
Chlorobenzene	ND	1.0		ug/L			12/26/17 13:05	
Dibromochloromethane	ND	1.0		ug/L			12/26/17 13:05	
Chloroethane	ND	1.0		ug/L			12/26/17 13:05	
Chloroform	ND	1.0		ug/L			12/26/17 13:05	
Chloromethane	ND	1.0		ug/L			12/26/17 13:05	
cis-1,2-Dichloroethene	ND	1.0		ug/L			12/26/17 13:05	
cis-1,3-Dichloropropene	ND	1.0		ug/L			12/26/17 13:05	
Cyclohexane							12/26/17 13:05	
Dichlorodifluoromethane	ND ND	1.0		ug/L			12/26/17 13:05	
		1.0		ug/L				
Ethylbenzene	ND	1.0		ug/L			12/26/17 13:05	
1,2-Dibromoethane	ND	1.0		ug/L			12/26/17 13:05	
Isopropylbenzene	ND	1.0		ug/L			12/26/17 13:05	•
Methyl acetate	ND	2.5		ug/L			12/26/17 13:05	
Methyl tert-butyl ether	ND	1.0		ug/L			12/26/17 13:05	•
Methylcyclohexane	ND	1.0		ug/L			12/26/17 13:05	•
Methylene Chloride	ND	1.0		ug/L			12/26/17 13:05	
Styrene	ND	1.0		ug/L			12/26/17 13:05	
Tetrachloroethene	ND	1.0		ug/L			12/26/17 13:05	
Toluene	ND	1.0		ug/L			12/26/17 13:05	
trans-1,2-Dichloroethene	ND	1.0		ug/L			12/26/17 13:05	
trans-1,3-Dichloropropene	ND	1.0		ug/L			12/26/17 13:05	•
Trichloroethene	ND	1.0		ug/L			12/26/17 13:05	
Trichlorofluoromethane	ND	1.0		ug/L			12/26/17 13:05	•
Vinyl chloride	ND	1.0	0.90	ug/L			12/26/17 13:05	•

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Client Sample ID: MW 4S 122117

Date Received: 12/21/17 15:20

Lab Sample ID: 480-129353-6 Date Collected: 12/21/17 12:50

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	l Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		12/26/17 13:05	1
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		12/26/17 13:05	1
4-Bromofluorobenzene (Surr)	105	73 - 120		12/26/17 13:05	1
Dibromofluoromethane (Surr)	100	75 - 123		12/26/17 13:05	1

Client Sample ID: QC TRIP BLANK Lab Sample ID: 480-129353-7

Date Collected: 12/21/17 00:00 Matrix: Water

Date Received: 12/21/17 15:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/26/17 13:29	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/26/17 13:29	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/26/17 13:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/26/17 13:29	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/26/17 13:29	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/26/17 13:29	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/26/17 13:29	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/26/17 13:29	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/26/17 13:29	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/26/17 13:29	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/26/17 13:29	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/26/17 13:29	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/26/17 13:29	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/26/17 13:29	1
2-Hexanone	ND		5.0	1.2	ug/L			12/26/17 13:29	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/26/17 13:29	1
Acetone	ND		10	3.0	ug/L			12/26/17 13:29	1
Benzene	ND		1.0	0.41	ug/L			12/26/17 13:29	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/26/17 13:29	1
Bromoform	ND		1.0	0.26	ug/L			12/26/17 13:29	1
Bromomethane	ND		1.0	0.69	ug/L			12/26/17 13:29	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/26/17 13:29	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/26/17 13:29	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/26/17 13:29	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/26/17 13:29	1
Chloroethane	ND		1.0	0.32	ug/L			12/26/17 13:29	1
Chloroform	ND		1.0	0.34	ug/L			12/26/17 13:29	1
Chloromethane	ND		1.0	0.35	ug/L			12/26/17 13:29	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/26/17 13:29	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/26/17 13:29	1
Cyclohexane	ND		1.0	0.18	ug/L			12/26/17 13:29	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/26/17 13:29	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/26/17 13:29	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/26/17 13:29	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/26/17 13:29	1
Methyl acetate	ND		2.5	1.3	ug/L			12/26/17 13:29	•
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/26/17 13:29	
Methylcyclohexane	ND		1.0	0.16	ug/L			12/26/17 13:29	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/26/17 13:29	1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Client Sample ID: QC TRIP BLANK

Date Received: 12/21/17 15:20

Lab Sample ID: 480-129353-7 Date Collected: 12/21/17 00:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			12/26/17 13:29	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/26/17 13:29	1
Toluene	ND		1.0	0.51	ug/L			12/26/17 13:29	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/26/17 13:29	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/26/17 13:29	1
Trichloroethene	ND		1.0	0.46	ug/L			12/26/17 13:29	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/26/17 13:29	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/26/17 13:29	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/26/17 13:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		80 - 120			-		12/26/17 13:29	1
1,2-Dichloroethane-d4 (Surr)	103		77 - 120					12/26/17 13:29	1
4-Bromofluorobenzene (Surr)	104		73 - 120					12/26/17 13:29	1
Dibromofluoromethane (Surr)	96		75 - 123					12/26/17 13:29	1

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	ogate Recovery (Acceptan	ice Limits)
		TOL	DCA	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)	
480-129353-1	MW 10D 122117	95	113	104	109	
480-129353-2	MW 5D 122117	93	110	103	111	
480-129353-3	MW 10S 122117	92	112	104	104	
480-129353-4	MW 5S 122117	96	108	109	104	
480-129353-5	MW 4D 122117	92	105	108	101	
480-129353-6	MW 4S 122117	94	103	105	100	
480-129353-7	QC TRIP BLANK	97	103	104	96	
LCS 480-393478/5	Lab Control Sample	91	110	104	103	
MB 480-393478/7	Method Blank	94	106	106	105	

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Job ID: 480-129353-1

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-393478/7

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

		5
nalyzed	Dil Fac	

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/26/17 10:12	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/26/17 10:12	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/26/17 10:12	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/26/17 10:12	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/26/17 10:12	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/26/17 10:12	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/26/17 10:12	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/26/17 10:12	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/26/17 10:12	
1,2-Dichloroethane	ND		1.0	0.21				12/26/17 10:12	
1,2-Dichloropropane	ND		1.0	0.72				12/26/17 10:12	
1,3-Dichlorobenzene	ND		1.0		ug/L			12/26/17 10:12	
1,4-Dichlorobenzene	ND		1.0		ug/L			12/26/17 10:12	
2-Butanone (MEK)	ND		10		ug/L			12/26/17 10:12	
2-Hexanone	ND		5.0		ug/L			12/26/17 10:12	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			12/26/17 10:12	
Acetone	ND		10		ug/L			12/26/17 10:12	
Benzene	ND		1.0		ug/L			12/26/17 10:12	
Bromodichloromethane	ND		1.0	0.39	. 			12/26/17 10:12	
Bromoform	ND		1.0		ug/L ug/L			12/26/17 10:12	
Bromomethane	ND ND		1.0		ug/L ug/L			12/26/17 10:12	
Carbon disulfide	ND		1.0	0.19				12/26/17 10:12	
Carbon tetrachloride	ND		1.0	0.27				12/26/17 10:12	
Chlorobenzene	ND		1.0		ug/L			12/26/17 10:12	
Dibromochloromethane	ND		1.0	0.32	_			12/26/17 10:12	
Chloroethane	ND		1.0	0.32				12/26/17 10:12	
Chloroform	ND		1.0		ug/L			12/26/17 10:12	
Chloromethane	ND		1.0	0.35				12/26/17 10:12	
cis-1,2-Dichloroethene	ND		1.0	0.81				12/26/17 10:12	
cis-1,3-Dichloropropene	ND		1.0		ug/L			12/26/17 10:12	
Cyclohexane	ND		1.0	0.18				12/26/17 10:12	
Dichlorodifluoromethane	ND		1.0	0.68	_			12/26/17 10:12	
Ethylbenzene	ND		1.0		ug/L			12/26/17 10:12	
1,2-Dibromoethane	ND		1.0	0.73				12/26/17 10:12	
sopropylbenzene	ND		1.0	0.79	ug/L			12/26/17 10:12	
Methyl acetate	ND		2.5		ug/L			12/26/17 10:12	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/26/17 10:12	
Methylcyclohexane	ND		1.0	0.16	ug/L			12/26/17 10:12	
Methylene Chloride	ND		1.0	0.44	ug/L			12/26/17 10:12	
Styrene	ND		1.0	0.73	ug/L			12/26/17 10:12	
Tetrachloroethene	ND		1.0	0.36	ug/L			12/26/17 10:12	
Toluene	ND		1.0	0.51	ug/L			12/26/17 10:12	
rans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/26/17 10:12	
rans-1,3-Dichloropropene	ND		1.0		ug/L			12/26/17 10:12	
Trichloroethene	ND		1.0		ug/L			12/26/17 10:12	
Frichlorofluoromethane	ND		1.0		ug/L			12/26/17 10:12	
Vinyl chloride	ND		1.0		ug/L			12/26/17 10:12	
Xylenes, Total	ND		2.0		ug/L			12/26/17 10:12	

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

	MB MB				
Surrogate %Re	ecovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		12/26/17 10:12	1
1,2-Dichloroethane-d4 (Surr)	106	77 - 120		12/26/17 10:12	1
4-Bromofluorobenzene (Surr)	106	73 - 120		12/26/17 10:12	1
Dibromofluoromethane (Surr)	105	75 - 123		12/26/17 10:12	1

Lab Sample ID: LCS 480-393478/5 Client Sample ID: Lab Control Sample **Matrix: Water**

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	29.3		ug/L		117	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	21.2		ug/L		85	76 - 120	
1,1,2-Trichloroethane	25.0	23.5		ug/L		94	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.8		ug/L		115	61 - 148	
ne								
1,1-Dichloroethane	25.0	23.3		ug/L		93	77 - 120	
1,1-Dichloroethene	25.0	24.2		ug/L		97	66 - 127	
1,2,4-Trichlorobenzene	25.0	25.8		ug/L		103	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	21.8		ug/L		87	56 - 134	
1,2-Dichlorobenzene	25.0	24.8		ug/L		99	80 - 124	
1,2-Dichloroethane	25.0	26.4		ug/L		106	75 - 120	
1,2-Dichloropropane	25.0	22.0		ug/L		88	76 - 120	
1,3-Dichlorobenzene	25.0	25.1		ug/L		101	77 - 120	
1,4-Dichlorobenzene	25.0	24.5		ug/L		98	80 - 120	
2-Butanone (MEK)	125	114		ug/L		91	57 - 140	
2-Hexanone	125	108		ug/L		87	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	107		ug/L		86	71 - 125	
Acetone	125	129		ug/L		103	56 - 142	
Benzene	25.0	23.6		ug/L		94	71 - 124	
Bromodichloromethane	25.0	25.9		ug/L		104	80 - 122	
Bromoform	25.0	28.7		ug/L		115	61 - 132	
Bromomethane	25.0	26.1		ug/L		104	55 - 144	
Carbon disulfide	25.0	23.2		ug/L		93	59 - 134	
Carbon tetrachloride	25.0	30.5		ug/L		122	72 - 134	
Chlorobenzene	25.0	24.2		ug/L		97	80 - 120	
Dibromochloromethane	25.0	27.3		ug/L		109	75 - 125	
Chloroethane	25.0	22.9		ug/L		92	69 - 136	
Chloroform	25.0	25.1		ug/L		100	73 ₋ 127	
Chloromethane	25.0	22.0		ug/L		88	68 - 124	
cis-1,2-Dichloroethene	25.0	26.0		ug/L		104	74 - 124	
cis-1,3-Dichloropropene	25.0	25.6		ug/L		102	74 ₋ 124	
Cyclohexane	25.0	23.4		ug/L		94	59 - 135	
Dichlorodifluoromethane	25.0	30.3		ug/L		121	59 ₋ 135	
Ethylbenzene	25.0	23.5		ug/L		94	77 - 123	
1,2-Dibromoethane	25.0	24.8		ug/L		99	77 - 120	
Isopropylbenzene	25.0	23.1		ug/L		92	77 - 122	
Methyl acetate	50.0	47.3		ug/L		95	74 - 133	
Methyl tert-butyl ether	25.0	24.8		ug/L		99	77 - 120	
Methylcyclohexane	25.0	24.7		ug/L		99	68 - 134	
Methylene Chloride	25.0	23.5		ug/L		94	75 - 124	
Styrene	25.0	23.5		ug/L		94	80 - 120	
Tetrachloroethene	25.0	27.5		ug/L		110	74 - 122	
Toluene	25.0	23.7		-		95	74 - 122 80 - 122	
IOIUCIIC	∠5.0	23.7		ug/L		90	00 - 122	

TestAmerica Buffalo

1/3/2018

Page 17 of 26

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water

Analysis Batch: 393478

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,3-Dichloropropene	25.0	24.0		ug/L		96	80 - 120	
Trichloroethene	25.0	25.5		ug/L		102	74 - 123	
Trichlorofluoromethane	25.0	29.4		ug/L		117	62 _ 150	
Vinyl chloride	25.0	22.5		ug/L		90	65 - 133	

	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
Toluene-d8 (Surr)	91		80 - 120	
1,2-Dichloroethane-d4 (Surr)	110		77 - 120	
4-Bromofluorobenzene (Surr)	104		73 - 120	
Dibromofluoromethane (Surr)	103		75 - 123	

6

Ω

0

10

11

13

14

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

GC/MS VOA

Analysis Batch: 393478

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-129353-1	MW 10D 122117	Total/NA	Water	8260C	
480-129353-2	MW 5D 122117	Total/NA	Water	8260C	
480-129353-3	MW 10S 122117	Total/NA	Water	8260C	
480-129353-4	MW 5S 122117	Total/NA	Water	8260C	
480-129353-5	MW 4D 122117	Total/NA	Water	8260C	
480-129353-6	MW 4S 122117	Total/NA	Water	8260C	
480-129353-7	QC TRIP BLANK	Total/NA	Water	8260C	
MB 480-393478/7	Method Blank	Total/NA	Water	8260C	
LCS 480-393478/5	Lab Control Sample	Total/NA	Water	8260C	

4

4

5

7

Q

4.0

11

16

14

10

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

Client Sample ID: MW 10D 122117

Date Received: 12/21/17 15:20

Lab Sample ID: 480-129353-1 Date Collected: 12/21/17 09:52 Matrix: Water

Batch Dilution Batch Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 393478 12/26/17 11:06 LCH TAL BUF

Client Sample ID: MW 5D 122117 Lab Sample ID: 480-129353-2

Date Collected: 12/21/17 09:55

Date Received: 12/21/17 15:20

Batch Batch Dilution Batch Prepared or Analyzed Method Run Factor Number Prep Type Type Analyst Lab TAL BUF Total/NA 8260C 393478 12/26/17 11:30 LCH Analysis

Client Sample ID: MW 10S 122117 Lab Sample ID: 480-129353-3

Date Collected: 12/21/17 10:45

Date Received: 12/21/17 15:20

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst 393478 LCH TAL BUF Total/NA Analysis 8260C 12/26/17 11:53

Client Sample ID: MW 5S 122117 Lab Sample ID: 480-129353-4

Date Collected: 12/21/17 11:50

Date Received: 12/21/17 15:20

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Туре Run Factor Number Analyst Lab Total/NA Analysis 8260C 393478 12/26/17 12:17 LCH TAL BUF

Client Sample ID: MW 4D 122117 Lab Sample ID: 480-129353-5

Date Collected: 12/21/17 12:10

Date Received: 12/21/17 15:20

Batch Dilution Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 8260C 393478 12/26/17 12:41 LCH TAL BUF Total/NA Analysis

Client Sample ID: MW 4S 122117 Lab Sample ID: 480-129353-6

Date Collected: 12/21/17 12:50 Matrix: Water

Date Received: 12/21/17 15:20

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 393478 12/26/17 13:05 LCH TAL BUF

Lab Chronicle

Client: O'Brien & Gere Inc of North America

Client Sample ID: QC TRIP BLANK

Project/Site: Forest Glen Monitoring

Date Collected: 12/21/17 00:00

TestAmerica Job ID: 480-129353-1

Lab Sample ID: 480-129353-7

Matrix: Water

Date Received: 12/21/17 15:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	393478	12/26/17 13:29	LCH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

TestAmerica Job ID: 480-129353-1

Project/Site: Forest Glen Monitoring

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	10026	03-31-18

2

3

4

5

0

8

4.0

11

10

14

Method Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

-6

4

6

8

9

11

12

1/

Sample Summary

Client: O'Brien & Gere Inc of North America Project/Site: Forest Glen Monitoring

TestAmerica Job ID: 480-129353-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-129353-1	MW 10D 122117	Water	12/21/17 09:52	12/21/17 15:20
480-129353-2	MW 5D 122117	Water	12/21/17 09:55	12/21/17 15:20
480-129353-3	MW 10S 122117	Water	12/21/17 10:45	12/21/17 15:20
480-129353-4	MW 5S 122117	Water	12/21/17 11:50	12/21/17 15:20
480-129353-5	MW 4D 122117	Water	12/21/17 12:10	12/21/17 15:20
480-129353-6	MW 4S 122117	Water	12/21/17 12:50	12/21/17 15:20
480-129353-7	QC TRIP BLANK	Water	12/21/17 00:00	12/21/17 15:20

4

5

7

8

9

4 4

13

14

N - None
O - ANAO2
P - Na2O45
Q - Na2SO3
R - Na2S203
S - H2SO4
T - TSP Dodecatydrate
U - Acetone
W - MCAA
W - PH 4-5
Z - other (specify) Special Instructions/Note: Company 480-129353 COC Months Company Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No: 480-106520-15479.1 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - NanSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 250 Page: Page 1 of ≰ Job #: I - Ice J - DI Water K - EDTA L - EDA Archive For Date/Tine Total Number of containers Date/Time: Method of Shipment Analysis Requested Special Instructions/QC Requirements: Sampler Acordon Lab PM: Lab PM: Orlette S
Phone: E-Mail: Control 1360 orlette johnson@testamericainc.com Received by: Received by: Received by MM M WW S 8260C - TCL Volatiles 3 (old to self) GEMIEM emoheq Time: Preservation Code: (W=water, S=solid, O=waste/oli, BT=Tissue, Water Water Water Water Water Water Water Water Water Water Water A=Alr) Company Radiological Sample Type (C=comp, G=grab) 5:30 3 9 9 9 Sample 1310 12:50 6.23 54:01 9:55 1150 Time Unknown Date: TAT Requested (days): Due Date Requested: Date/Time: Sample Date 13-21-17 17-15-61 13-16-61 19-01-17 17-16-61 71-14-41 PO#: 11700485 Project #: 48002808 SSOW#: Date/Time: Poison B Skin Irritant 14 (quotu OCTRIP BLUMES Deliverable Requested: I, II, III, IV, Other (specify) 333 West Washington St. PO BOX 4873 Phone: |315-956-6100(Tel) 315-463-7554(Fax) MW 45 122117 1.11861 122117 19411 17116-61 122117 Company: O'Brien & Gere Inc of North America Flammable Possible Hazard Identification Empty Kit Relinquished by: DO/ AS Client Information Project Name: Forest Glen Monitoring Sample Identification 501 MILV 4D Yuri.Veliz@obg.com Non-Hazard Relinquished by: A City: East Syracuse Client Contact: Mr. Yuri Veliz SW 3 MM Relinquished by: BE State, Zip: NY, 13221

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

TestAmerica

Page 25 of 26

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-129353-1

Login Number: 129353 List Source: TestAmerica Buffalo

List Number: 1

Creator: Harper, Marcus D

ordatori ridipor, marodo B		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	OBG
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

3

4

_

0

4 0

4.0

13

Appendix D Groundwater VOC Concentration Trends

MW-4S: TCE

MW-4S: cis-1,2-DCE

MW-4S: Vinyl Chloride

MW-4D: cis-1,2-DCE

MW-4D: Vinyl Chloride

MW-5S: cis-1,2-DCE

MW-5S: Vinyl Chloride

MW-5D: cis-1,2-DCE

MW-5D: Vinyl Chloride

MW-6S: cis-1,2-DCE

MW-6S: Vinyl Chloride

MW-6D: cis-1,2-DCE

MW-6D: Vinyl Chloride

MW-6DD: cis-1,2-DCE

MW-6DD: Vinyl Chloride

MW-7S: cis-1,2-DCE

MW-7S: Vinyl Chloride

MW-7D: TCE

MW-7D: cis-1,2-DCE

MW-7D: Vinyl Chloride

MW-7DD: TCE

MW-7DD: cis-1,2-DCE

MW-7DD: Vinyl Chloride

MW-8S: cis-1,2-DCE

MW-8S: Vinyl Chloride

Non-Detect - - NYSDEC Class GA Std - Pump shutdown -

MW-8D: cis-1,2-DCE

MW-8D: Vinyl Chloride

MW-8DD: cis-1,2-DCE

MW-8DD: Vinyl Chloride

MW-10S: TCE

MW-10S: cis-1,2 DCE

MW-10S: Vinyl Chloride

MW-10D: TCE

MW-10D: cis-1,2 DCE

MW-10D: Vinyl Chloride

Appendix E CAHs Mass Trends

