
### Smurfit-Stone Container Corporation

51 Robinson Street North Tonawanda, New York 14120

# Groundwater Monitoring Report for Schreck's Scrapyard Site

North Tonawanda, New York Site No. 932099

**July 2010** 



Report Prepared By:

Malcolm Pirnie, Inc.

50 Fountain Plaza Suite 600 Buffalo New York 14202 716-667-0900



### Contents

| 1.1. Background       1-1         1.2. Purpose       1-1         2. Monitoring Network and Requirements       2-1         3. Monitoring Methods       3-1         3.1. Post Remediation Inspection       3-1         3.2. Sampling Procedures       3-1         3.2.1. Monitoring Wells       3-1         3.3. QA/QC Procedures       3-2         4. Data Usability       4-1         4.1. Analytical Data Assessment       4-1         4.1.1. Introduction       4-1         4.1.2. Data Usability       4-1         4.1.3. Sample Holding Times       4-1         4.1.4. Laboratory/Reagent Blank Analyses       4-1         5. Summary of 2010 Annual Monitoring Results       5-1         5.1. Water Quality Data       5-1         5.2. Evaluation of Monitoring Results       5-1         5.3. Evaluation of Groundwater Elevation Data       6-1         7. Post-Closure Inspection Results       7-1         8. References       8-1         Figure 6-1 Site Location Map       1-1         Figure 6-1 Shallow Groundwater Isopotential Map       6-1         Figure 6-1 Shallow Groundwater Isopotential Map       6-1 | 1. Intro       | duction                                | 1-1               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|-------------------|
| 2. Monitoring Network and Requirements       2-1         3. Monitoring Methods       3-1         3.1. Post Remediation Inspection       3-1         3.2. Sampling Procedures       3-1         3.2.1. Monitoring Wells       3-1         3.3. QA/QC Procedures       3-2         4. Data Usability       4-1         4.1. Analytical Data Assessment       4-1         4.1.1. Introduction       4-1         4.1.2. Data Usability       4-1         4.1.3. Sample Holding Times       4-1         4.1.4. Laboratory/Reagent Blank Analyses       4-1         5. Summary of 2010 Annual Monitoring Results       5-1         5.1. Water Quality Data       5-1         5.2. Evaluation of Monitoring Results       5-1         5.3. Evaluation of Groundwater       5-2         6. Summary of Groundwater Elevation Data       6-1         7. Post-Closure Inspection Results       7-1         8. References       8-1         Figure 1-1 Site Location Map       1-1         Figure 2-1 Existing Monitoring Well Location Map       2-1                                                                                       | 1.1.           | Background                             | 1-1               |
| 3. Monitoring Methods       3-1         3.1. Post Remediation Inspection       3-1         3.2. Sampling Procedures       3-1         3.2.1. Monitoring Wells       3-1         3.3. QA/QC Procedures       3-2         4. Data Usability       4-1         4.1. Analytical Data Assessment       4-1         4.1.1. Introduction       4-1         4.1.2. Data Usability       4-1         4.1.3. Sample Holding Times       4-1         4.1.4. Laboratory/Reagent Blank Analyses       4-1         5. Summary of 2010 Annual Monitoring Results       5-1         5.1. Water Quality Data       5-1         5.2. Evaluation of Monitoring Results       5-1         5.3. Evaluation of Groundwater       5-2         6. Summary of Groundwater Elevation Data       6-1         7. Post-Closure Inspection Results       7-1         8. References       8-1         Figure 1-1 Site Location Map       1-1         Figure 2-1 Existing Monitoring Well Location Map       2-1                                                                                                                                                | 1.2.           | Purpose                                | 1-1               |
| 3.1. Post Remediation Inspection       3-1         3.2. Sampling Procedures       3-1         3.2.1. Monitoring Wells       3-1         3.3. QA/QC Procedures       3-2         4. Data Usability       4-1         4.1. Analytical Data Assessment       4-1         4.1.1. Introduction       4-1         4.1.2. Data Usability       4-1         4.1.3. Sample Holding Times       4-1         4.1.4. Laboratory/Reagent Blank Analyses       4-1         5. Summary of 2010 Annual Monitoring Results       5-1         5.1. Water Quality Data       5-1         5.2. Evaluation of Monitoring Results       5-1         5.3. Evaluation of Groundwater       5-2         6. Summary of Groundwater Elevation Data       6-1         7. Post-Closure Inspection Results       7-1         8. References       8-1         Figure 1-1 Site Location Map       1-1         Figure 2-1 Existing Monitoring Well Location Map       2-1                                                                                                                                                                                        | <u> 2. Mon</u> | itoring Network and Requirements       | 2-1               |
| 3.1. Post Remediation Inspection       3-1         3.2. Sampling Procedures       3-1         3.2.1. Monitoring Wells       3-1         3.3. QA/QC Procedures       3-2         4. Data Usability       4-1         4.1. Analytical Data Assessment       4-1         4.1.1. Introduction       4-1         4.1.2. Data Usability       4-1         4.1.3. Sample Holding Times       4-1         4.1.4. Laboratory/Reagent Blank Analyses       4-1         5. Summary of 2010 Annual Monitoring Results       5-1         5.1. Water Quality Data       5-1         5.2. Evaluation of Monitoring Results       5-1         5.3. Evaluation of Groundwater       5-2         6. Summary of Groundwater Elevation Data       6-1         7. Post-Closure Inspection Results       7-1         8. References       8-1         Figure 1-1 Site Location Map       1-1         Figure 2-1 Existing Monitoring Well Location Map       2-1                                                                                                                                                                                        | 3. Mon         | itoring Methods                        | 3-1               |
| 3.2.1. Monitoring Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.1.           |                                        | _                 |
| 4. Data Usability       4-1         4.1. Analytical Data Assessment       4-1         4.1.1. Introduction       4-1         4.1.2. Data Usability       4-1         4.1.3. Sample Holding Times       4-1         4.1.4. Laboratory/Reagent Blank Analyses       4-1         5. Summary of 2010 Annual Monitoring Results       5-1         5.1. Water Quality Data       5-1         5.2. Evaluation of Monitoring Results       5-1         5.3. Evaluation of Groundwater       5-2         6. Summary of Groundwater Elevation Data       6-1         7. Post-Closure Inspection Results       7-1         8. References       8-1         Figure 1-1 Site Location Map       1-1         Figure 2-1 Existing Monitoring Well Location Map       2-1                                                                                                                                                                                                                                                                                                                                                                        | 3.2.           |                                        |                   |
| 4.1. Analytical Data Assessment       4-1         4.1.1. Introduction       4-1         4.1.2. Data Usability       4-1         4.1.3. Sample Holding Times       4-1         4.1.4. Laboratory/Reagent Blank Analyses       4-1         5. Summary of 2010 Annual Monitoring Results       5-1         5.1. Water Quality Data       5-1         5.2. Evaluation of Monitoring Results       5-1         5.3. Evaluation of Groundwater       5-2         6. Summary of Groundwater Elevation Data       6-1         7. Post-Closure Inspection Results       7-1         8. References       8-1         Figure 1-1 Site Location Map       1-1         Figure 2-1 Existing Monitoring Well Location Map       2-1                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3.           | QA/QC Procedures                       | 3-2               |
| 4.1.1.       Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. Data        | Usability                              | 4-1               |
| 5.1. Water Quality Data       5-1         5.2. Evaluation of Monitoring Results       5-1         5.3. Evaluation of Groundwater       5-2         6. Summary of Groundwater Elevation Data       6-1         7. Post-Closure Inspection Results       7-1         8. References       8-1         Figures       1-1         Figure 1-1 Site Location Map       1-1         Figure 2-1 Existing Monitoring Well Location Map       2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1.           | 4.1.1. Introduction                    | 4-1<br>4-1<br>4-1 |
| 5.2. Evaluation of Monitoring Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5. Sum         | mary of 2010 Annual Monitoring Results | 5-1               |
| 5.3. Evaluation of Groundwater 5-2  6. Summary of Groundwater Elevation Data 6-1  7. Post-Closure Inspection Results 7-1  8. References 8-1  Figures  Figure 1-1 Site Location Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.1.           | Water Quality Data                     | 5-1               |
| 6. Summary of Groundwater Elevation Data 7. Post-Closure Inspection Results 7-1 8. References 8-1 Figures Figure 1-1 Site Location Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                        |                   |
| 7. Post-Closure Inspection Results  8. References  Figures  Figure 1-1 Site Location Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.3.           | Evaluation of Groundwater              | 5-2               |
| Figures   Figure 1-1 Site Location Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>6. Sum</u>  | mary of Groundwater Elevation Data     | 6-1               |
| Figures  Figure 1-1 Site Location Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7. Post        | -Closure Inspection Results            | 7-1               |
| Figure 1-1 Site Location Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8. Refe        | rences                                 | 8-1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figu           | re 1-1 Site Location Map               | 1-1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •              | ,                                      |                   |

### Tables

| 3-1 Well Inspection Checklist                               | 3-1 |
|-------------------------------------------------------------|-----|
| 3-2 Groundwater Analytical Parameters                       | 3-1 |
| 3-3 Summary of Field Measurements                           | 3-1 |
| 3-4 Summary of Groundwater Elevation Measurements           | 3-2 |
| 5-1 Summary of Volatile Organic Compound Analytical Results | 5-1 |
| 5-2 Summary of Pesticide / PCB Analytical Results           | 5-1 |
| 5-3 Summary of Inorganic Metals Analytical Results          | 5-1 |

### **Appendices**

- A. Field Data Sheets
- B. Analytical Report (Test America Laboratories, Inc.)
- C. Selected Historical Analyte Concentration Trends
- D. Institutional Control/Engineering Control Certification Form

### 1.1. Background

As shown on Figure 1-1, Smurfit Stone owns a parcel of land located east of Tonawanda Island and just north of the confluence of the Erie Canal and the Niagara River. The property is commonly referred to as the Schreck's Scrapyard Site (the Site) and is listed as a Class 4 site (Site Number 932099) in the registry of Former Hazardous Waste Disposal Sites by the New York State Department of Environmental Conservation (NYSDEC). Operational uses of the Scrapyard Site from 1951 to 1977 included a former metal and scrap iron business, disposal of drummed phenolic waste and salvage of electrical transformers.

Subsequent to termination of the disposal and salvaging operations, an environmental audit and remedial investigation were implemented to characterize potential impacts to soil and groundwater media. The results of these investigations determined that onsite soil materials and a press pit were contaminated with elevated concentrations of PCBs petroleum derivatives (fuel oil) and metals. Based on the Record of Decision completed in September 1990, the site was classified as a Class 2 Site. Remedial actions implemented at the Site in 1991 and 2000 resulted in the excavation and disposal of drums, liquids, soil materials, remediation of the press pit, and the demolition of selected buildings.

Based on the Post-Remediation Groundwater Monitoring Plan (Camp Dresser & McKee, November 1994) the NYSDEC collected groundwater samples from the Site monitoring well network during the period of time of 1995 until 2002. In May 2008, the NYSDEC issued the Reclassification Decision Report for the Site that recommended the site be reclassified as a Class 4 site requiring continued long term monitoring and an institutional control listing the Site in the registry of Former Hazardous Waste Disposal Sites.

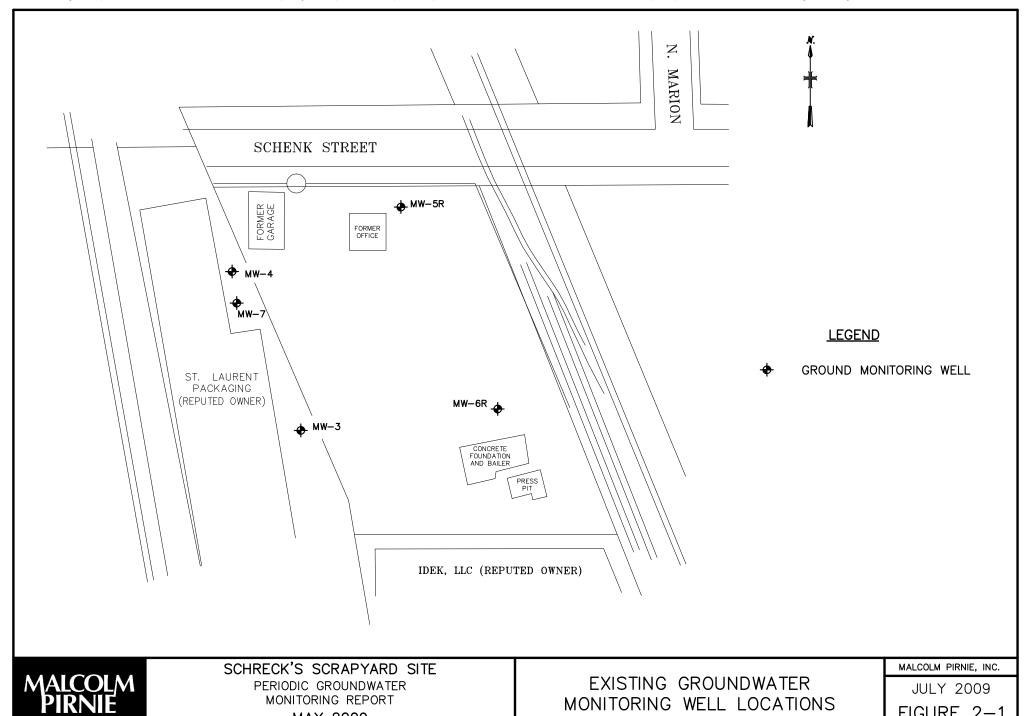
### 1.2. Purpose

This report summarizes the results of a groundwater quality monitoring event completed for the Schreck's Scrapyard Site May 13, 2010. This report was prepared as an element of the requisite NYSDEC Periodic Review and provides a comparison of the May 2010 results with regulatory guidelines and historic monitoring results.

Scale: 1:1 Date: 07/07/2009 Time: 16:08 Layout: Layout1 Spec: PIRNIE STANDARD File: F: \Projects\4320031\CADD\4320FIG1-1.DWG User: dewyer

### 2. Monitoring Network and Requirements

The groundwater monitoring network at the Schreck's Scrapyard Site consists of five monitoring wells designated: MW-3, MW-4, MW-5R, MW-6R and MW-7. Figure 2-1 illustrates the existing Scrapyard Site monitoring network.


The NYSDEC monitoring program requires the collection of groundwater samples from all five monitoring wells. The program also requires:

- Inspection of the physical integrity of each groundwater monitoring well;
- PID measurements to characterize presence of volatile organic vapors in monitoring well headspaces and;
- Procedural determination to check for presence of floating light non-aqueous phase liquid (LNAPL) product.

The well locations will be sampled for volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and Target Analyte List (TAL) metals.

MONITORING REPORT

MAY 2009



MONITORING WELL LOCATIONS

NOT TO SCALE

FIGURE 2-1

### 3. Monitoring Methods

### 3.1. Post Remediation Inspection

The Post-Remediation Groundwater Monitoring Plan (Camp Dresser & McKee, 1994) stipulated that inspection and monitoring of the Scrapyard Site be performed on a quarterly basis during the first year (1995) and thereafter at the discretion of the NYSDEC. Accordingly, a long term inspection and monitoring program was implemented on a yearly basis for a period of seven years from 1996 to 2002. Groundwater sampling was not performed during calendar years 2003 to 2008 at the discretion of the NYSDEC. As documented in the Reclassification Decision Report (NYSDEC, May 2008) the long term inspection and monitoring program will be continued indefinitely on an annual basis beginning in 2009. The inspection includes an assessment of the monitoring well network integrity and measurement of organic vapors in the well headspace, and screening for floating LNAPL product. The integrity and functionality of the monitoring wells, and related infrastructure are addressed during the periodic inspection.

The most recent periodic inspection was performed concurrently with the groundwater sampling event on May 13, 2010. The Well Inspection Checklist is included as Table 3-1. During the May 13<sup>th</sup> site visit, well MW-5R was noted to be damaged. The aboveground steel protective casing appeared to have been struck by a vehicle and was bent. The casing was straightened and the well was able to be sampled.

### 3.2. Sampling Procedures

During the May 2010 monitoring event, field sampling personnel collected groundwater samples from each of the five monitoring wells identified in Section 2.0. Columbia Analytical Services (CAS) of Rochester, New York analyzed the samples collected for the analytical parameters listed in Table 3-2.

Groundwater was purged from all monitoring locations prior to sampling, and periodically measured for the field parameters identified in Table 3-3. A summary of field measurements is summarized in Table 3-3. The groundwater sampling field data sheets are included in Appendix A.

### 3.2.1. Monitoring Wells

Prior to purging, static water levels were measured in all of the monitoring wells. Table 3-4 is a compilation of water level data measured during the May 2010 sampling event.



MONITORING WELL INSPECTION CHECKLIST - May 13, 2010 Schreck's Scrapyard Site

TABLE 3-1

| LOCATION | INSPECTION<br>DATE | Water Level<br>Ft./ BTOR | Well<br>Identification | Casing<br>Lock | Protective<br>Cover | PVC Well Cap           | Well<br>Obstruction(s)                               | Water in<br>Protective<br>Casing Annulus | Condition of<br>Concrete Pad |
|----------|--------------------|--------------------------|------------------------|----------------|---------------------|------------------------|------------------------------------------------------|------------------------------------------|------------------------------|
| MW-3     | 05/13/10           | 10.60                    | Good                   | Fair           | Fair                | Fair                   | None                                                 | No                                       | Good                         |
| MW-4     | 05/13/10           | 11.03                    | Good                   | Cut Lock       | Fair                | Fair                   | None <sup>(1)</sup>                                  | No                                       | Good                         |
| MW-5R    | 05/13/10           | 10.68                    | Good                   | Fair           | Good                | Cracked <sup>(2)</sup> | Casing bent, bailer<br>lodged in well <sup>(3)</sup> | No                                       | Poor                         |
| MW-6R    | 05/13/10           | 11.40                    | Good                   | Fair           | Good                | Cracked <sup>(2)</sup> | None                                                 | No                                       | Good                         |
| MW-7     | 05/13/10           | 8.43                     | Good                   | No Lock        | Fair                | Good                   | None                                                 | No                                       | Good                         |

### Notes:

BTOR - Below top of Riser

- (1) Bailer obstruction removed prior to sampling.
- (2) Protective PVC well cap cracked, poor fitting.
- (3) Straightened protective casing, removed bailer.



### **TABLE 3-2**

# GROUNDWATER ANALYTICAL PARAMETERS PERIODIC GROUNDWATER MONITORING EVENT- MAY 13, 2010 SCHRECK'S SCRAPYARD SITE

|                                      | Sampling<br>Parameters |
|--------------------------------------|------------------------|
| FIELD PARAMETERS(1)                  | r di dillettel 3       |
| Water Level                          | Х                      |
| Specific Conductance                 | х                      |
| Temperature                          | х                      |
| Turbidity                            | X                      |
| pH                                   | X                      |
| Eh                                   | X                      |
| Dissolved Oxygen                     | X                      |
| Floaters / Sinkers                   | X                      |
| Field Observations                   | X                      |
| TCL Volatile Organics <sup>(2)</sup> | Х                      |
| PCBs                                 | X                      |
| TAL METALS                           | Х                      |

### Notes:

- (1) All field parameters (i.e., pH, Eh, DO, Specific Conductance, Temperature, and Turbidity) measured in the field by the sampling team.
- (2) Volatile organic compounds are those compounds Identified by Method 8260.



# TABLE 3-3 SUMMARY OF FIELD MEASURMENTS<sup>(1)</sup> Groundwater Monitoring Event - May 13, 2010 Schreck's Scrapyard Site

| MONITORING WELL DESIGNATION | SAMPLING<br>DATE | SAMPLING<br>TIME | TEMP<br>(°C) | pH<br>(units) | Eh<br>(mV) | CONDUCTANCE<br>(umhos/cm) | TURBIDITY <sup>(3)</sup><br>(NTU) | DISSOLVED<br>OXYGEN<br>(mg/l) | LNAPL <sup>(2)</sup> | SAMPLE<br>APPEARANCE <sup>(3)</sup> |
|-----------------------------|------------------|------------------|--------------|---------------|------------|---------------------------|-----------------------------------|-------------------------------|----------------------|-------------------------------------|
| MW-3                        | 05/13/10         | 15:35            | 8.7          | 6.62          | -3         | 1,370                     | 0                                 | 0.0                           | NP                   | Clear                               |
| MW-4                        | 05/13/10         | 15:00            | 9.5          | 7.11          | 1          | 263                       | 10                                | 0.0                           | NP                   | Clear                               |
| MW-5R                       | 05/13/10         | 17:45            | 9.5          | 6.99          | -40        | 1,320                     | 10                                | 0.0                           | NP                   | Clear                               |
| MW-6R                       | 05/13/10         | 16:30            | 8.7          | 6.93          | -143       | 1,590                     | 2                                 | 0.0                           | NP                   | Clear, sulfur odor                  |
| MW-7                        | 05/13/10         | 13:30            | 11.0         | 7.35          | 70         | 948                       | 36                                | 0.0                           | NP                   | Clear                               |

#### Notes:

- (1) Except where noted, all measurments are readings collected immediately prior to sampling.
- (2) Light Non-aqueous Phase Liquid.
- (3) Turbidity and Sample Appearance are based on last measurement interval prior to sampling.

NP=Not Present

The monitoring wells were then purged in accordance with the procedures specified in the Post-Remediation Groundwater Monitoring Plan (Reference 1). All wells exhibited rapid or continuous recovery after purging and were allowed to recharge prior to sampling. Groundwater samples were collected using dedicated disposable bailers in accordance with the protocols identified in Reference 1. Samples for laboratory analysis were stored in the appropriate plastic or glass bottles, pre-preserved by the lab and placed on ice in the field, and transported to the Columbia Analytical Services laboratory located in Rochester, New York.

### 3.3. QA/QC Procedures

Quality Assurance and Quality Control (QA/QC) measures taken to verify the reliability of the generated data were as follows:

- One trip blank sample was submitted with the field samples and analyzed for the TCL volatile organics.
- The analytical laboratory provided in-house QA/QC including method blank and laboratory control summary results. QA/QC documentation, including chain-of-custody forms, is provided in Appendix C with the analytical report prepared by CAS.



### TABLE 3-4

# SUMMARY OF GROUNDWATER ELEVATION MEASUREMENTS PERIODIC REVIEW REPORT SCHRECK'S SCRAPYARD SITE

|          | PVC Riser         | May                          | y-09              | May                          | y-10              |                              |                   |                              |                   |                              |                   |                              |                   |
|----------|-------------------|------------------------------|-------------------|------------------------------|-------------------|------------------------------|-------------------|------------------------------|-------------------|------------------------------|-------------------|------------------------------|-------------------|
| Location | Elevation<br>(ft) | Depth <sup>(1)</sup><br>(ft) | Elevation<br>(ft) |
| MW - 3   | 578.50            | 10.82                        | 567.68            | 10.6                         | 567.90            |                              |                   |                              |                   |                              |                   |                              |                   |
| MW - 4   | 578.47            | 10.80                        | 567.67            | 11.03                        | 567.44            |                              |                   |                              |                   |                              |                   |                              |                   |
| MW - 5R  | 578.50            | 10.85                        | 567.65            | 10.68                        | 567.82            |                              |                   |                              |                   |                              |                   |                              |                   |
| MW - 6R  | 580.11            | 11.60                        | 568.51            | 11.4                         | 568.71            |                              |                   |                              |                   |                              |                   |                              |                   |
| MW - 7   | 575.52            | 8.80                         | 566.72            | 8.43                         | 567.09            |                              |                   |                              |                   |                              |                   |                              |                   |

### Notes:

(1) All depths measured as feet below top of PVC riser.

### 4.1. Analytical Data Assessment

### 4.1.1. Introduction

The results reported by CAS for samples collected at the Schreck's Scrapyard Site during May 2010 are assessed in this section. The data were evaluated to determine conformance with the requirements specified in the Groundwater Monitoring Plan (Reference 1).

Evaluation of the data was based on information supplied by the field data sheets, chain-of-custody forms and duplicate data. In addition, the assessment of analytical data included a review of data consistency.

### 4.1.2. Data Usability

A discussion of laboratory quality control (QC) analytical results is presented in the case narrative of the laboratory analytical report. Based upon a review of laboratory and field QC data, the analytical results reported by the laboratory are usable for assessing groundwater quality at the Scrapyard site.

### 4.1.3. Sample Holding Times

Holding time criteria for each of the parameters monitored at the Scrapyard Site are outlined in protocols mandated by the NYSDEC. Comparison of the sample collection dates listed on the chain-of-custody form with the reported dates of analysis listed on the laboratory chronicle indicates that all samples were analyzed prior to expiration of their prescribed holding times.

### 4.1.4. Laboratory/Reagent Blank Analyses

Laboratory (method) blank analyses were performed to identify the existence and magnitude of sample contamination originating during sample preparation and/or analysis. Laboratory blanks were prepared from deionized water and were analyzed for inorganic parameters.

Since none of the organic compounds were detected in site samples, no qualifications of analytical data were made. All blank spike recoveries for inorganic elements were within QC limits.

### 5. Summary of 2010 Annual Monitoring Results

### 5.1. Water Quality Data

The groundwater water quality results for historical groundwater samples and the May 2010 monitoring event are presented in Tables 5-1, 5-2 and 5-3. The complete laboratory analytical report for the 2010 sampling event is attached in Appendix B. Examination of the tabulated data highlighted specific analyte concentrations detected above NYSDEC Groundwater Water Quality Standards / Guidance Values.

### 5.2. Evaluation of Monitoring Results

A comparison of the groundwater monitoring data to Class "GA" Groundwater Water Quality Standards/Guidance Values (GWQS) is presented in Tables 5-1, 5-2 and 5-3. Based on this information, a historical summary of analytical detections that exceed NYSDEC Class GA groundwater standards is presented below:

### **VOCs**

Few VOCs have been detected sporadically above groundwater standards. These include methylene chloride, MTBE, and benzene. Benzene appears to be persistent at low concentrations in well MW-6R; however, benzene was not detected during the May 2010 sampling event. MTBE was detected in the groundwater samples collected at MW-5R during the May 2009 and 2010 monitoring events, MTBE was not analyzed for prior to the May 2009 sampling event.

### **Pesticides**

Two pesticides (dieldren and endrin) have been detected at concentrations below 1 ug/l on one and two occasions respectively between 1995 and 1999. The class GA standard for these pesticides is non-detect. Because of the low and infrequent detections of pesticides, analysis for pesticides ceased prior to the May 2009 sampling event.

### **PCBs**

Two wells, MW-3 and MW-4, have had historical pesticide detections in the groundwater samples. Three PCB aroclors (aroclor-1242, aroclor-1248, and aroclor-1254) have been detected at concentrations above the Class GA groundwater standard of 0.09 at well MW-3 during more than one historical sampling event. However, no PCBs were detected in the groundwater sample collected from MW-3 during the May 2010 sampling event.



# TABLE 5-1 PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF VOLATILE ORGANIC COMPOUND RESULTS SCHRECK'S SCRAPYARD SITE Well MW-3

| Analyte                    | Groundwater<br>Standards* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96 | 4/16/97 | 6/17/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09 | 5/13/10 |
|----------------------------|---------------------------|---------|--------|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| Chloromethane              | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromochloromethane         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Vinyl Chloride             | 2                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroethane               | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Methylene Chloride         | 5                         | U       | U      | U        | U      | U       | 9 BJ    | U       | U       | NA      | NA      | U       | U       |
| Acetone                    | 50 G                      | U       | U      | U        | U      | U       | 3 BJ    | U       | 2J      | NA      | NA      | 2.6 J   | U       |
| Carbon Disulfide           | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethene         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethane         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethene (total) | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroform                 | 7                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethane         | 0.6                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Butanone                 | 50 G                      | U       | U      | U        | U      | U       | 2 BJ    | U       | U       | NA      | NA      | U       | U       |
| 1,1,1-Trichloroethane      | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Carbon Tetrachloride       | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromodichloromethane       | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloropropane        | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| cis-1,3-dichloropropene    | 0.4                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trichloroethene            | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Dibromochloromethane       | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2-Trichloroethane      | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Benzene                    | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trans-1,3-dichloropropene  | 0.4                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromoform                  | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 4-Methyl-2-Pentanone       | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Hexanone                 | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Tetrachloroethene          | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2,2-Tetrachloroethane  | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Toluene                    | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chlorobenzene              | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Ethylbenzene               | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Styrene                    | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Total Xylenes              | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |

All concentrations in ug/l.

\* NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

G Guidance value.

B Analyte found in the associated blank as well as the sample.

J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed. Compound removed from long term monitoring in 2001 due to consistent non-detections.

NS No standard or guidance value available.

U Indicates that the compound was not detected.



# TABLE 5-1 PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF VOLATILE ORGANIC COMPOUND RESULTS SCHRECK'S SCRAPYARD SITE Well MW-4

| Analyte                    | Groundwater<br>Standards* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96 | 6/23/97 | 6/18/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/29/09 | 5/13/10 |
|----------------------------|---------------------------|---------|--------|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| Chloromethane              | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromochloromethane         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Vinyl Chloride             | 2                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroethane               | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Methylene Chloride         | 5                         | U       | U      | U        | U      | U       | 8 BJ    | U       | U       | NA      | NA      | U       | U       |
| Acetone                    | 50 G                      | U       | U      | U        | U      | U       | 3 BJ    | U       | U       | NA      | NA      | U       | U       |
| Carbon Disulfide           | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethene         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethane         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethene (total) | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroform                 | 7                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | 1.7     | U       |
| 1,2-Dichloroethane         | 0.6                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Butanone                 | 50 G                      | U       | U      | U        | U      | U       | 2 BJ    | U       | U       | NA      | NA      | U       | U       |
| 1,1,1-Trichloroethane      | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Carbon Tetrachloride       | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromodichloromethane       | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | 0.66    | U       |
| 1,2-Dichloropropane        | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| cis-1,3-dichloropropene    | 0.4                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trichloroethene            | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Dibromochloromethane       | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2-Trichloroethane      | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Benzene                    | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trans-1,3-dichloropropene  | 0.4                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromoform                  | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 4-Methyl-2-Pentanone       | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Hexanone                 | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Tetrachloroethene          | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2,2-Tetrachloroethane  | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Toluene                    | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chlorobenzene              | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Ethylbenzene               | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Styrene                    | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Total Xylenes              | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |

All concentrations in ug/l.

\* NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

G Guidance value.

B Analyte found in the associated blank as well as the sample.

J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed. Compound removed from long term monitoring in 2001 due to consistent non-detections.

NS No standard or guidance value available.

U Indicates that the compound was not detected.



# TABLE 5-1 PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF VOLATILE ORGANIC COMPOUND RESULTS SCHRECK'S SCRAPYARD SITE Well MW-5R

| Analyte                    | Groundwater<br>Standards* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96 | 4/16/97 | 6/18/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09 | 5/13/10 |
|----------------------------|---------------------------|---------|--------|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| Chloromethane              | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromochloromethane         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Vinyl Chloride             | 2                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroethane               | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Methylene Chloride         | 5                         | U       | U      | U        | U      | U       | 9 BJ    | U       | U       | NA      | NA      | U       | U       |
| Methyl tert-Butyl Ether    | 10                        | NA      | NA     | NA       | NA     | NA      | NA      | NA      | NA      | NA      | NA      | 11      | 12      |
| Acetone                    | 51 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | 2.4     | U       |
| Carbon Disulfide           | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethene         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethane         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethene (total) | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroform                 | 7                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethane         | 0.6                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Butanone                 | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,1-Trichloroethane      | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Carbon Tetrachloride       | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromodichloromethane       | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloropropane        | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| cis-1,3-dichloropropene    | 0.4                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trichloroethene            | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Dibromochloromethane       | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2-Trichloroethane      | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Benzene                    | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trans-1,3-dichloropropene  | 0.4                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromoform                  | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 4-Methyl-2-Pentanone       | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Hexanone                 | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Tetrachloroethene          | 5                         | U       | 1 J    | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2,2-Tetrachloroethane  | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Toluene                    | 5                         | U       | U      | U        | 2 J    | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chlorobenzene              | 5                         | 2 J     | 0.5 J  | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Ethylbenzene               | 5                         | 2 J     | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Styrene                    | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Total Xylenes              | 5                         | 4 J     | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |

All concentrations in ug/l.

G Guidance value.

B Analyte found in the associated blank as well as the sample.

J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed. Compound removed from long term monitoring in 2001 due to consistent non-detections.

NS No standard or guidance value available.

U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.



# TABLE 5-1 PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF VOLATILE ORGANIC COMPOUND RESULTS SCHRECK'S SCRAPYARD SITE Well MW-6R

| Analyte                    | Groundwater<br>Standards* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96 | 4/16/97 | 6/17/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09 | 5/13/10 |
|----------------------------|---------------------------|---------|--------|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| Chloromethane              | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromochloromethane         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Vinyl Chloride             | 2                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroethane               | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Methylene Chloride         | 5                         | U       | U      | U        | U      | U       | 9 BJ    | U       | U       | NA      | NA      | U       | U       |
| Acetone                    | 50 G                      | U       | U      | U        | U      | U       | U       | U       | 3J      | NA      | NA      | 2.2 J   | U       |
| Carbon Disulfide           | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethene         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethane         | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethene (total) | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroform                 | 7                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethane         | 0.6                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Butanone                 | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,1-Trichloroethane      | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Carbon Tetrachloride       | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromodichloromethane       | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloropropane        | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| cis-1,3-dichloropropene    | 0.4                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trichloroethene            | 5                         | U       | 0.8 BJ | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Dibromochloromethane       | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2-Trichloroethane      | 1                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,4-Dichlorobenzene        | 3                         |         |        |          |        |         |         |         |         |         |         | 0.45 J  | U       |
| Benzene                    | 1                         | 20      | 13     | U        | 8 J    | 6 J     | U       | 2 J     | 27      | NA      | 16      | 0.40 J  | U       |
| Trans-1,3-dichloropropene  | 0.4                       | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromoform                  | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 4-Methyl-2-Pentanone       | NS                        | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Hexanone                 | 50 G                      | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Tetrachloroethene          | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2,2-Tetrachloroethane  | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Toluene                    | 5                         | 0.5 J   | U      | U        | 2 J    | 2 J     | U       | U       | U       | NA      | U       | U       | U       |
| Chlorobenzene              | 5                         | 3 J     | U      | U        | U      | U       | U       | 1 J     | 4 J     | NA      | NA      | 3.9     | U       |
| Ethylbenzene               | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | U       | U       | U       |
| Styrene                    | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Total Xylenes              | 5                         | U       | U      | U        | U      | U       | U       | U       | U       | NA      | U       | U       | U       |

All concentrations in ug/l.

G Guidance value.

B Analyte found in the associated blank as well as the sample.

J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed. Compound removed from long term monitoring in 2001 due to consistent non-detections. 8021 STARS ran on 6/11/02.

NS No standard or guidance value available.

U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.



# TABLE 5-1 PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF VOLATILE ORGANIC COMPOUND RESULTS SCHRECK'S SCRAPYARD SITE Well MW-7

| Analyte                    | Groundwater<br>Standards* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96 | 4/16/97 | 6/17/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09 | 5/13/10 |
|----------------------------|---------------------------|---------|--------|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| Chloromethane              | NS                        |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromochloromethane         | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Vinyl Chloride             | 2                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroethane               | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Methylene Chloride         | 5                         |         |        |          |        | U       | 10 BJ   | U       | U       | NA      | NA      | U       | U       |
| Acetone                    | 50 G                      |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Carbon Disulfide           | NS                        |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethene         | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1-Dichloroethane         | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethene (total) | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chloroform                 | 7                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloroethane         | 0.6                       |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Butanone                 | 50 G                      |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,1-Trichloroethane      | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Carbon Tetrachloride       | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromodichloromethane       | 50 G                      |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,2-Dichloropropane        | 1                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| cis-1,3-dichloropropene    | 0.4                       |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trichloroethene            | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Dibromochloromethane       | 50 G                      |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2-Trichloroethane      | 1                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Benzene                    | 1                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Trans-1,3-dichloropropene  | 0.4                       |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Bromoform                  | 50 G                      |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 4-Methyl-2-Pentanone       | NS                        |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 2-Hexanone                 | 50 G                      |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Tetrachloroethene          | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| 1,1,2,2-Tetrachloroethane  | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Toluene                    | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Chlorobenzene              | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Ethylbenzene               | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Styrene                    | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |
| Total Xylenes              | 5                         |         |        |          |        | U       | U       | U       | U       | NA      | NA      | U       | U       |

All concentrations in ug/l.

- B Analyte found in the associated blank as well as the sample.
- J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.
- NA Not analyzed. Compound removed from long term monitoring in 2001 due to consistent non-detections.
- NS No standard or guidance value available.
- U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

G Guidance value.



## PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF PESTICIDES/PCB RESULTS SCHRECK'S SCRAPYARD SITE

#### Well MW-3

| Date Sampled        | Groundwater<br>Standard* | 5/10/95  | 9/5/95   | 12/19/95 | 8/1/96 | 4/16/97   | 6/17/98 | 4/21/99  | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09 | 5/13/10 |
|---------------------|--------------------------|----------|----------|----------|--------|-----------|---------|----------|---------|---------|---------|---------|---------|
| alpha-BHC           | 0.01                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| beta-BHC            | 0.04                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| delta-BHC           | 0.04                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| gamma-BHC (Lindane) | 0.05                     | 0.029 JP | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Heptachlor          | 0.04                     | U        | U        | U        | U      | 0.0034 JP | U       | U        | U       | U       | U       | NA      | NA      |
| Aldrin              | ND                       | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Heptachlor epoxide  | 0.03                     | U        | U        | U        | U      | 0.010 JP  | U       | U        | U       | U       | U       | NA      | NA      |
| Endosulfan I        | NS                       | U        | U        | U        | U      | 0.0086 JP | U       | U        | U       | U       | U       | NA      | NA      |
| Dieldrin            | 0.004                    | U        | U        | U        | U      | 0.012 J   | U       | U        | U       | U       | U       | NA      | NA      |
| 4,4'-DDE            | 0.2                      | U        | 0.016 JP | U        | U      | 0.0070 JP | U       | U        | U       | U       | U       | NA      | NA      |
| Endrin              | ND                       | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endosulfan II       | NS                       | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| 4,4' - DDD          | 0.3                      | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endosulfan sulfate  | NS                       | U        | U        | U        | U      | U         | U       | U        | 0.10 P  | U       | U       | NA      | NA      |
| 4,4'-DDT            | 0.2                      | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Methoxychlor        | 35                       | U        | U        | U        | U      | U         | U       | U        | 0.34 JP | U       | U       | NA      | NA      |
| Endrin ketone       | 5                        | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endrin aldehyde     | 5                        | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| alpha-Chlordane     | 0.05                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| gamma -Chlordane    | 0.05                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Toxaphene           | 0.06                     | U        | U        | U        | U      | U         | U       | U        | U       | NA      | U       | NA      | NA      |
| Aroclor-1016        | 0.09                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1221        | 0.09                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1232        | 0.09                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1242        | 0.09                     | 0.48 JP  | 1.2      | 0.31 JP  | U      | U         | U       | 1.0 PX   | U       | U       | U       | U       | U       |
| Aroclor-1248        | 0.09                     | U        | U        | U        | U      | U         | U       | U        | 4.1     | U       | U       | 0.46    | U       |
| Aroclor-1254        | 0.09                     | U        | U        | U        | U      | U         | U       | 0.59 JPX | U       | U       | U       | U       | U       |
| Aroclor-1260        | 0.09                     | U        | U        | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |

All concentrations in ug/l.

J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed.

ND No detection standard established.

NS No standard or guidance value available.

P >25% difference between the analytical results on two GC columns. The lower value is reported.

X Manually integrated and calculated.

U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.



## PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF PESTICIDES/PCB RESULTS SCHRECK'S SCRAPYARD SITE

#### Well MW-4

|                     | Groundwater |         |         |          |        |           |         |          |         |         |         |         |         |
|---------------------|-------------|---------|---------|----------|--------|-----------|---------|----------|---------|---------|---------|---------|---------|
| Date Sampled        | Standard*   | 5/10/95 | 9/5/95  | 12/19/95 | 8/1/96 | 6/23/97   | 6/18/98 | 4/21/99  | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09 | 5/13/10 |
| alpha-BHC           | 0.01        | U       | U       | U        | U      | 0.0072 J  | U       | U        | U       | U       | U       | NA      | NA      |
| beta-BHC            | 0.04        | U       | U       | U        | U      | 0.0090 JP | U       | U        | U       | U       | U       | NA      | NA      |
| delta-BHC           | 0.04        | U       | U       | U        | U      | 0.0067 J  | U       | U        | U       | U       | U       | NA      | NA      |
| gamma-BHC (Lindane) | 0.05        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Heptachlor          | 0.04        | U       | U       | U        | U      | 0.0054 JP | U       | U        | U       | U       | U       | NA      | NA      |
| Aldrin              | ND          | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Heptachlor epoxide  | 0.03        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endosulfan I        | NS          | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Dieldrin            | 0.004       | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| 4,4'-DDE            | 0.2         | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endrin              | ND          | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endosulfan II       | NS          | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| 4,4' - DDD          | 0.3         | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endosulfan sulfate  | NS          | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| 4,4'-DDT            | 0.2         | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Methoxychlor        | 35          | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endrin ketone       | 5           | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| Endrin aldehyde     | 5           | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| alpha-Chlordane     | 0.05        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | NA      | NA      |
| gamma -Chlordane    | 0.05        | U       | U       | U        | U      | C         | U       | U        | U       | U       | U       | NA      | NA      |
| Toxaphene           | 0.06        | U       | U       | U        | U      | U         | U       | U        | U       | NA      | U       | NA      | NA      |
| Aroclor-1016        | 0.09        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1221        | 0.09        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1232        | 0.09        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1242        | 0.09        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1248        | 0.09        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1254        | 0.09        | U       | U       | U        | U      | U         | U       | U        | U       | U       | U       | U       | U       |
| Aroclor-1260        | 0.09        | U       | 0.14 JP | 0.57 JP  | U      | 0.18 JP   | U       | 0.69 JPX | 1.1 P   | U       | 0.39 JP | U       | U       |

All concentrations in ug/l.

\* NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed.

ND No detection standard established.

NS No standard or guidance value available.

P >25% difference between the analytical results on two GC columns. The lower value is reported.

X Manually integrated and calculated.

U Indicates that the compound was not detected.



### PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF PESTICIDES/PCB RESULTS SCHRECK'S SCRAPYARD SITE

#### Well MW-5R

| Date Sampled        | Groundwater<br>Standard* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96 | 4/16/97 | 6/18/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09 | 5/13/10 |
|---------------------|--------------------------|---------|--------|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| alpha-BHC           | 0.01                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| beta-BHC            | 0.04                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| delta-BHC           | 0.04                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| gamma-BHC (Lindane) | 0.05                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Heptachlor          | 0.04                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Aldrin              | ND                       | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Heptachlor epoxide  | 0.03                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Endosulfan I        | NS                       | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Dieldrin            | 0.004                    | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| 4,4'-DDE            | 0.2                      | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Endrin              | ND                       | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Endosulfan II       | NS                       | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| 4,4' - DDD          | 0.3                      | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Endosulfan sulfate  | NS                       | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| 4,4'-DDT            | 0.2                      | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Methoxychlor        | 35                       | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Endrin ketone       | 5                        | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Endrin aldehyde     | 5                        | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| alpha-Chlordane     | 0.05                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| gamma -Chlordane    | 0.05                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | NA      | NA      |
| Toxaphene           | 0.06                     | U       | U      | U        | U      | U       | U       | U       | U       | NA      | NA      | NA      | NA      |
| Aroclor-1016        | 0.09                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1221        | 0.09                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1232        | 0.09                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1242        | 0.09                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1248        | 0.09                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1254        | 0.09                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1260        | 0.09                     | U       | U      | U        | U      | U       | U       | U       | U       | U       | NA      | U       | U       |

All concentrations in ug/l.

J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed.

ND No detection standard established.

NS No standard or guidance value available.

P >25% difference between the analytical results on two GC columns. The lower value is reported.

X Manually integrated and calculated.

U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.



### PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF PESTICIDES/PCB RESULTS

### SCHRECK'S SCRAPYARD SITE

#### Well MW-6R

|                     | _                        | 1        | 1        |          |        |          |         |         |          |         | 1       | 1       |         |
|---------------------|--------------------------|----------|----------|----------|--------|----------|---------|---------|----------|---------|---------|---------|---------|
| Date Sampled        | Groundwater<br>Standard* | 5/10/95  | 9/5/95   | 12/19/95 | 8/1/96 | 4/16/97  | 6/17/98 | 4/21/99 | 5/31/00  | 5/16/01 | 6/11/02 | 11/2/06 | 5/13/10 |
| alpha-BHC           | 0.01                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| beta-BHC            | 0.04                     | 0.019 JP | 0.020 JP | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| delta-BHC           | 0.04                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| gamma-BHC (Lindane) | 0.05                     | U        | U        | U        | U      | 0.018 JP | U       | U       | U        | U       | NA      | NA      | NA      |
| Heptachlor          | 0.04                     | U        | U        | U        | U      | U        | U       | U       | 0.011 JP | U       | NA      | NA      | NA      |
| Aldrin              | ND                       | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Heptachlor epoxide  | 0.03                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Endosulfan I        | NS                       | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Dieldrin            | 0.004                    | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| 4,4'-DDE            | 0.2                      | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Endrin              | ND                       | U        | U        | U        | U      | U        | U       | 0.14    | U        | U       | NA      | NA      | NA      |
| Endosulfan II       | NS                       | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| 4,4' - DDD          | 0.3                      | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Endosulfan sulfate  | NS                       | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| 4,4'-DDT            | 0.2                      | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Methoxychlor        | 35                       | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Endrin ketone       | 5                        | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Endrin aldehyde     | 5                        | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| alpha-Chlordane     | 0.05                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| gamma -Chlordane    | 0.05                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | NA      | NA      |
| Toxaphene           | 0.06                     | U        | U        | U        | U      | U        | U       | U       | U        | NA      | NA      | NA      | NA      |
| Aroclor-1016        | 0.09                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | U       | U       |
| Aroclor-1221        | 0.09                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | U       | U       |
| Aroclor-1232        | 0.09                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | U       | U       |
| Aroclor-1242        | 0.09                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | U       | U       |
| Aroclor-1248        | 0.09                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | U       | U       |
| Aroclor-1254        | 0.09                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | U       | U       |
| Aroclor-1260        | 0.09                     | U        | U        | U        | U      | U        | U       | U       | U        | U       | NA      | U       | U       |

All concentrations in ug/l.

- \* NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.
- J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed.

- ND No detection standard established.
- NS No standard or guidance value available.
- P >25% difference between the analytical results on two GC columns. The lower value is reported.
- X Manually integrated and calculated.
- U Indicates that the compound was not detected.
- Shaded values equal or exceed groundwater standards or guidance values.



# TABLE 5-2 PERIODIC REVIEW GROUNDWATER MONITORING REPORT SUMMARY OF PESTICIDES/PCB RESULTS SCHRECK'S SCRAPYARD SITE Well MW-7

| Date Sampled        | Groundwater<br>Standard* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96 | 6/23/97   | 6/18/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09 | 5/13/10 |
|---------------------|--------------------------|---------|--------|----------|--------|-----------|---------|---------|---------|---------|---------|---------|---------|
| alpha-BHC           | 0.01                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| beta-BHC            | 0.04                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| delta-BHC           | 0.04                     |         |        |          |        | 0.0069 JP | U       | U       | U       | U       | NA      | NA      | NA      |
| gamma-BHC (Lindane) | 0.05                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Heptachlor          | 0.04                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Aldrin              | ND                       |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Heptachlor epoxide  | 0.03                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Endosulfan I        | NS                       |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Dieldrin            | 0.004                    |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| 4,4'-DDE            | 0.2                      |         |        |          |        | 0.011 JP  | U       | U       | U       | U       | NA      | NA      | NA      |
| Endrin              | ND                       |         |        |          |        | U         | U       | 0.073 J | U       | U       | NA      | NA      | NA      |
| Endosulfan II       | NS                       |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| 4,4' - DDD          | 0.3                      |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Endosulfan sulfate  | NS                       |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| 4,4'-DDT            | 0.2                      |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Methoxychlor        | 35                       |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Endrin ketone       | 5                        |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Endrin aldehyde     | 5                        |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| alpha-Chlordane     | 0.05                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| gamma -Chlordane    | 0.05                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | NA      | NA      |
| Toxaphene           | 0.06                     |         |        |          |        | U         | U       | U       | U       | NA      | NA      | NA      | NA      |
| Aroclor-1016        | 0.09                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1221        | 0.09                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1232        | 0.09                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1242        | 0.09                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1248        | 0.09                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1254        | 0.09                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | U       | U       |
| Aroclor-1260        | 0.09                     |         |        |          |        | U         | U       | U       | U       | U       | NA      | U       | U       |

All concentrations in ug/l.

\* NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

J Estimated value. The indicated value is less than the sample quantification limit but greater than zero.

NA Not analyzed.

ND No detection standard established.

NS No standard or guidance value available.

P >25% difference between the analytical results on two GC columns. The lower value is reported.

X Manually integrated and calculated.

U Indicates that the compound was not detected.



### Well MW-3

|              |                           |         |         |          |         |         |         |         |         |         |         | Dissolved | Total   | Total   |
|--------------|---------------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|
| Date Sampled | Groundwater<br>Standards* | 5/10/95 | 9/5/95  | 12/19/95 | 8/1/96  | 4/16/97 | 6/17/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09   | 5/28/09 | 5/13/10 |
| Aluminum     | NS                        | 736     | 39,600  | 399      | 13,500  | 7,880   | 5,810   | 6,160   | 2,490   | NA      | 1,700   | U         | U       | U       |
| Antimony     | 3                         | 3.5 B   | U       | 5.3 B    | U       | U       | U       | U       | U       | NA      | U       | U         | U       | U       |
| Arsenic      | 25                        | 4.0 B   | 16.7    | U        | 5.1 B   | U       | 4.6 B   | 11.7    | 9.5 B   | NA      | U       | U         | U       | U       |
| Barium       | 1,000                     | 104 B   | 345     | 96.0 B   | 164 B   | 152 B   | 112 B   | 142 B   | 128 B   | NA      | 101 B   | 134       | 138     | 115     |
| Beryllium    | 3 G                       | U       | U       | U        | 0.64 B  | U       | U       | U       | U       | NA      | 0.30 B  | U         | U       | U       |
| Cadmium      | 5                         | U       | U       | U        | U       | U       | 0.64 B  | U       | U       | NA      | 0.30 B  | U         | U       | U       |
| Calcium      | NS                        | 146,000 | 206,000 | 154,000  | 156,000 | 158,000 | 139,000 | 143,000 | 163,000 | NA      | 148,000 | 203,000   | 207,000 | 184,000 |
| Chromium     | 50                        | 1.2 B   | 54.6    | 1.7 B    | 19.6    | 11.3    | 9.7 B   | 12.7    | 8.8 B   | NA      | 4.8 B   | U         | U       | U       |
| Cobalt       | NS                        | U       | 20.5 B  | U        | 8.8 B   | 5.4 B   | 3.3 B   | 4.4 B   | 1.9 B   | NA      | 1.9 B   | U         | U       | U       |
| Copper       | 200                       | 4.4 B   | 65.5    | 8.2 B    | 27.7    | 14.8 B  | 16.3 B  | 20.0 B  | 14.4 B  | NA      | 7.6 B   | U         | U       | U       |
| Iron         | 500                       | 5,780   | 55,100  | 2,650    | 20,300  | 11,300  | 17,200  | 26,300  | 19,000  | NA      | 3,800   | 534       | 1,970   | 370     |
| Lead         | 25                        | 2.0 B   | 36.7    | U        | 17.1    | 7.2     | 7.6     | 12.4    | 10.2    | NA      | 3.7     | U         | U       | U       |
| Magnesium    | 35,000 G                  | 25,000  | 46,800  | 26,400   | 31,000  | 28,300  | 26,000  | 27,500  | 30,500  | NA      | 27,100  | 29,400    | 28,800  | 24,800  |
| Manganese    | 300                       | 937     | 1,360   | 352      | 1,510   | 790     | 982     | 1,050   | 568     | NA      | 729     | 275       | 323     | 179     |
| Mercury      | 0.7                       | 0.24    | U       | U        | U       | 0.2     | 0.1     | U       | U       | NA      | U       | U         | U       | U       |
| Nickel       | 100                       | 2.8 B   | 50.3    | 3.5      | 18.4 B  | 12.1 B  | 9.8 B   | 10.1 B  | 7.4 B   | NA      | 6.1 B   | 11.9      | 14.2    | U       |
| Potassium    | NS                        | U       | 17,400  | 1,630 B  | 5,670   | 5,480   | 3,350   | 3,630 B | 3,670 B | NA      | 3,220 B | 4,220     | 4,060   | 3,800   |
| Selenium     | 10                        | U       | U       | U        | U       | 4.0 B   | U       | U       | U       | NA      | U       | U         | U       | 11      |
| Silver       | 50                        | U       | U       | U        | U       | U       | U       | 2.1     | U       | NA      | U       | U         | U       | U       |
| Sodium       | 20,000                    | 20,000  | 22,100  | 21,300   | 18,000  | 19,500  | 15,600  | 11,000  | 12,700  | NA      | 8,690   | 22,400    | 21,900  | 29,900  |
| Thallium     | 0.5 G                     | U       | 5.6 B   | U        | U       | U       | U       | U       | U       | NA      | U       | U         | U       | U       |
| Vanadium     | NS                        | U       | 74.6    | U        | 25.3    | 16.9    | 12.0 B  | 26.3 B  | 8.0 B   | NA      | 3.6 B   | U         | U       | U       |
| Zinc         | 2,000                     | 49.6    | 243     | 9.3 B    | 55.6    | 76.6    | 32.5    | 59.6    | 44.9    | NA      | 12.0 B  | 30.9      | 10.7    | U       |

All concentrations in µg/l.

G Guidance value.

B Value greater than or equal to the instrument detection limit, but less than the contract required detection limit.

NA Compound not analyzed.

NS No standard or guidance value available.

U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.



### Well MW-4

|              |                           |         |        |          |         |         |         |         |         |         |         | Dissolved | Total   | Total   |
|--------------|---------------------------|---------|--------|----------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|
| Date Sampled | Groundwater<br>Standards* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96  | 6/23/97 | 6/18/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/29/09   | 5/29/09 | 5/13/10 |
| Aluminum     | NS                        | 211     | 1,300  | 1,080    | 102 B   | 21,900  | 208     | 111,000 | 31,500  | NA      | 31,700  | U         | 2,650   | 740     |
| Antimony     | 3                         | 2.8 B   | U      | U        | U       | U       | U       | U       | 14.1 B  | NA      | U       | U         | U       | U       |
| Arsenic      | 25                        | U       | 9.7 B  | U        | U       | 19.3    | U       | 9.9 B   | 23      | NA      | 21.9    | U         | U       | U       |
| Barium       | 1,000                     | 29.2 B  | 106 B  | 48.9 B   | 31.5 B  | 190 B   | 25.5 B  | 93.3 B  | 229     | NA      | 245     | 224       | 37.9    | 35      |
| Beryllium    | 3 G                       | U       | U      | U        | U       | 1.5 B   | U       | U       | 1.6 B   | NA      | 1.9 B   | U         | U       | U       |
| Cadmium      | 5                         | U       | U      | 2.0 B    | 0.38 B  | U       | 1.3 B   | 1.3 B   | 2.8 B   | NA      | 2.0 B   | U         | U       | U       |
| Calcium      | NS                        | 36,100  | 86,700 | 49,200   | 39,100  | 80,800  | 36,700  | 38,000  | 60,400  | NA      | 73,900  | 35,200    | 35,200  | 44,300  |
| Chromium     | 50                        | 1.6 B   | U      | 3.7 B    | 2.1 B   | 49.9    | 2.2 B   | 39.3 B  | 92.8    | NA      | 72.9    | U         | 6       | U       |
| Cobalt       | NS                        | U       | U      | U        | U       | 12.4 B  | U       | 5.9 B   | 16.8 B  | NA      | 18.8 B  | U         | U       | U       |
| Copper       | 200                       | 4.9 B   | 28.9   | 16.8 B   | 5.6 B   | 82.7    | 7.9 B   | 52.9    | 151     | NA      | 116     | U         | U       | U       |
| Iron         | 500                       | 347     | 2,440  | 2,010    | 162     | 34,200  | 360     | 16,900  | 50,600  | NA      | 50,000  | U         | 2,660   | 660     |
| Lead         | 25                        | U       | 27.9   | 13.4     | U       | 79.8    | U       | 59.1    | 225     | NΑ      | 122     | U         | 11.6    | U       |
| Magnesium    | 35,000 G                  | 5,230   | 17,700 | 10,000   | 6,050   | 26,300  | 5,290   | 11,700  | 24,200  | NA      | 29,100  | 4,310     | 5,100   | 5,800   |
| Manganese    | 300                       | 11.4 B  | 186    | 78.1     | 4.9 B   | 537     | 8.6 B   | 256     | 622     | NΑ      | 674     | 19.8      | 63.7    | U       |
| Mercury      | 0.7                       | 0.24    | 1.3    | 0.64     | U       | 3.6     | U       | U       | 9.9     | NA      | 6       | U         | U       | U       |
| Nickel       | 100                       | 1.9 B   | 16.3   | 6.7 B    | U       | 46.7    | U       | 26.2 B  | 77.2    | NA      | 66.7    | U         | U       | U       |
| Potassium    | NS                        | 2,430 B | 7,580  | 1,850 B  | 1,680 B | 6,490   | 1,320 B | 3,910 B | 8,780   | NA      | 8,760   | 1,300     | 2,080   | 2,500   |
| Selenium     | 10                        | U       | U      | 7.4      | U       | U       | U       | U       | 7.4     | NA      | 7.6     | U         | U       | U       |
| Silver       | 50                        | U       | U      | U        | U       | U       | U       | U       | U       | NA      | U       | U         | U       | U       |
| Sodium       | 20,000                    | 3,450 B | 5,210  | 4,120 B  | 3,060 B | 7,600   | 907 B   | 4,050 B | 5,550   | NA      | 1,650 B | 3,000     | 3,200   | 11,700  |
| Thallium     | 0.5 G                     | U       | 6.4 B  | U        | U       | U       | U       | U       | U       | NA      | U       | U         | U       | U       |
| Vanadium     | NS                        | U       | U      | 3.3 B    | 1.2 B   | 43.6 B  | U       | 23.1 B  | 62.6    | NA      | 57.3    | U         | U       | U       |
| Zinc         | 2,000                     | 253     | 1,230  | 649      | 189     | 2,790   | 229     | 1,730   | 5,320   | NA      | 3,700   | 30.9      | 266     | 61      |

All concentrations in µg/l.

G Guidance value.

B Value greater than or equal to the instrument detection limit, but less than the contract required detection limit.

NA Compound not analyzed.

NS No standard or guidance value available.

U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.



### Well MW-5R

|              |                           |         |         |          |         |         |         |         |         |         |         | Dissolved | Total   | Total   |
|--------------|---------------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|
| Date Sampled | Groundwater<br>Standards* | 5/10/95 | 9/5/95  | 12/19/95 | 8/1/96  | 4/16/97 | 6/18/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09   | 5/28/09 | 5/13/10 |
| Aluminum     | NS                        | 1,550   | 5,170   | 3,570    | 1,310   | 1,550   | 577     | 1,240   | 9,320   | NA      | 523     | U         | U       | U       |
| Antimony     | 3                         | 15.6 B  | U       | U        | U       | U       | U       | U       | U       | NA      | U       | U         | U       | U       |
| Arsenic      | 25                        | 9.0 B   | 8.1 B   | 6.7 B    | 5.0 B   | 5.4 B   | U       | 7.7 B   | 15.8    | NA      | U       | U         | U       | U       |
| Barium       | 1,000                     | 59.2 B  | 115. B  | 95.5 B   | 62.8 B  | 63.1 B  | 46.7 B  | 63.7 B  | 122 B   | NA      | 49.9 B  | 29.1      | 31.4    | 32      |
| Beryllium    | 3 G                       | U       | U       | 0.24 B   | U       | U       | U       | U       | U       | NA      | 0.30 B  | U         | U       | U       |
| Cadmium      | 5                         | U       | U       | U        | 2.5 B   | 1.7 B   | 1.7 B   | 2.1 B   | 2.8 B   | NA      | 7       | U         | U       | U       |
| Calcium      | NS                        | 138,000 | 271,000 | 163,000  | 113,000 | 124,000 | 120,000 | 132,000 | 152,000 | NA      | 126,000 | 106,000   | 111,000 | 113,000 |
| Chromium     | 50                        | 6.2 B   | U       | 6.7 B    | 7.1 B   | 8.8 B   | 4.4 B   | 10.2    | 17      | NA      | 59      | U         | U       | U       |
| Cobalt       | NS                        | 7.2 B   | 15.6 B  | 8.0 B    | 2.1 B   | U       | 1.5     | 2.3 B   | 7 B     | NA      | 1.4 B   | U         | U       | U       |
| Copper       | 200                       | 10 B    | 11.9 B  | 16.6 B   | 6.9 B   | 11.0 B  | 13.7 B  | 12.9 B  | 16.1 B  | NA      | 4.3 B   | U         | U       | 4       |
| Iron         | 500                       | 3,980   | 14,400  | 9,230    | 1,820   | 2,330   | 935     | 1,740   | 13,000  | NA      | 1,320   | 225       | 380     | 420     |
| Lead         | 25                        | 4       | 19.5    | 9.9      | 1.3 B   | U       | U       | U       | 9.4     | NA      | 2.4 B   | U         | U       | U       |
| Magnesium    | 35,000 G                  | 56,600  | 75,300  | 64,700   | 50,200  | 55,300  | 52,600  | 54,700  | 62,600  | NA      | 57,300  | 50,500    | 51,300  | 48,700  |
| Manganese    | 300                       | 569     | 1,330   | 598      | 261     | 246     | 130     | 189     | 448     | NA      | 180     | 114       | 130     | 113     |
| Mercury      | 0.7                       | 0.57    | 0.41    | 0.27     | U       | U       | U       | U       | 0.3     | NA      | U       | U         | U       | U       |
| Nickel       | 100                       | 82.1    | 63      | 29.3 B   | 17.9 B  | 20.2 B  | 14.9 B  | 18.8 B  | 24.8 B  | NA      | 37.8 B  | U         | U       | U       |
| Potassium    | NS                        | 5,950   | 8,180   | 3,390 B  | 2,730 B | 3,350 B | 2,250 B | 2,520 B | 5,060   | NA      | 2,270 B | 1,430     | 1,510   | U       |
| Selenium     | 10                        | U       | U       | U        | U       | U       | U       | U       | U       | NA      | U       | U         | U       | 14      |
| Silver       | 50                        | U       | U       | U        | U       | U       | U       | U       | U       | NA      | U       | U         | U       | U       |
| Sodium       | 20,000                    | 67,200  | 60,500  | 64,300   | 58,300  | 61,000  | 56,300  | 67,100  | 68,500  | NA      | 69,600  | 56,800    | 58,800  | 59,400  |
| Thallium     | 0.5 G                     | U       | U       | U        | U       | U       | U       | U       | U       | NA      | U       | U         | U       | U       |
| Vanadium     | NS                        | U       | 14.2 B  | 8.4 B    | 2.5 B   | 3.3 B   | U       | 6.4 B   | 17.5 B  | NA      | 1.8 B   | U         | U       | U       |
| Zinc         | 2,000                     | 52.5    | 102     | 50.6     | 15.7 B  | 34.1    | 22.4    | 50.7    | 67.6    | NA      | 11.3 B  | U         | U       | U       |

All concentrations in µg/l.

B Value greater than or equal to the instrument detection limit, but less than the contract required detection limit.

NA Compound not analyzed.

NS No standard or guidance value available.

U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

G Guidance value.



### Well MW-6R

|              |                           |         |         |          |         |         |         |         |         |         |          | Dissolved | Total   | Total   |
|--------------|---------------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|----------|-----------|---------|---------|
| Date Sampled | Groundwater<br>Standards* | 5/10/95 | 9/5/95  | 12/19/95 | 8/1/96  | 4/16/97 | 6/17/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02  | 5/28/09   | 5/28/09 | 5/13/10 |
| Aluminum     | NS                        | 7,640   | 1,330   | 3,050    | 47,400  | 19,100  | 3,630   | 13,900  | 7,990   | NA      | 19,900   | U         | 8,650   | 190     |
| Antimony     | 3                         | 11.2 B  | U       | U        | 6.1 B   | U       | U       | U       | U       | NA      | U        | U         | U       | U       |
| Arsenic      | 25                        | 5.9 B   | 5.0 B   | U        | 14      | 6.8 B   | U       | 13.8    | U       | NA      | 8.9 B    | U         | U       | J       |
| Barium       | 1,000                     | 111 B   | 296     | 240      | 539     | 375     | 212     | 185 B   | 299     | NA      | 282      | 167       | 213     | 185     |
| Beryllium    | 3 G                       | U       | U       | 0.21 B   | 2.1 B   | 1.2 B   | U       | U       | U       | NA      | 1.0 B    | U         | U       | U       |
| Cadmium      | 5                         | U       | U       | 0.62 B   | U       | U       | 1.1 B   | U       | U       | NA      | 1.4 B    | U         | U       | U       |
| Calcium      | NS                        | 262,000 | 277,000 | 159,000  | 255,000 | 194,000 | 112,000 | 252,000 | 163,000 | NA      | 179,000  | 172,000   | 184,000 | 182,000 |
| Chromium     | 50                        | 15.9    | U       | 6.4 B    | 68.9    | 31.3    | 22.1    | 24.6    | 13.7    | NA      | 37.4     | U         | 135     | U       |
| Cobalt       | NS                        | 12.0 B  | U       | 4.8 B    | 37.1 B  | 18.8 B  | 2.6 B   | 11.2 B  | 6.6 B   | NA      | 18.5 B   | U         | 9.7     | U       |
| Copper       | 200                       | 8.3 B   | U       | 4.0 B    | 88      | 35.9    | 11.3 B  | 30.1    | 12.4 B  | NA      | 43.2     | U         | 12.5    | U       |
| Iron         | 500                       | 20,800  | 6,290   | 7,510    | 75,600  | 29,900  | 5,670   | 22,600  | 10,700  | NA      | 31,100   | 314       | 11,300  | 380     |
| Lead         | 25                        | 14      | U       | 6.5      | 41.9    | 14.9    | 4.8     | 11.8    | 9.7     | NA      | 18.9     | U         | 5.2     | U       |
| Magnesium    | 35,000 G                  | 43,400  | 42,600  | 27,700   | 57,100  | 35,800  | 21,100  | 37,600  | 31,000  | NA      | 38,800   | 32,100    | 35,400  | 31,400  |
| Manganese    | 300                       | 1,380   | 1,410   | 592      | 1,850   | 793     | 263     | 554     | 392     | NA      | 852      | 294       | 505     | 283     |
| Mercury      | 0.7                       | 0.36    | U       | U        | U       | U       | U       | U       | U       | NA      | U        | U         | U       | U       |
| Nickel       | 100                       | 30.0 B  | 24.9 B  | 12.7 B   | 76.6    | 37.7 B  | 12.8 B  | 35.5 B  | 15.3 B  | NA      | 198      | U         | 163     | U       |
| Potassium    | NS                        | 10,300  | 13,100  | 11,400   | 21,400  | 16,800  | 8,980   | 11,000  | 12,600  | NA      | 14,400 B | 6,300     | 9030    | 5,900   |
| Selenium     | 10                        | U       | U       | U        | U       | U       | U       | 7.5     | U       | NA      | U        | U         | U       | 14      |
| Silver       | 50                        | U       | U       | U        | U       | U       | U       | U       | U       | NA      | U        | U         | U       | U       |
| Sodium       | 20,000                    | 92,600  | 85,300  | 98,200   | 79,400  | 84,300  | 74,200  | 92,800  | 140,000 | NA      | 97,400   | 73,800    | 72,000  | 87,900  |
| Thallium     | 0.5 G                     | U       | 5.5 B   | U        | 6.7 B   | 5.1 B   | U       | U       | U       | NA      | U        | U         | U       | J       |
| Vanadium     | NS                        | 23.7 B  | U       | 9.2 B    | 94.6    | 45.1 B  | 9.3 B   | 34.3 B  | 17.5 B  | NA      | 40.4 B   | U         | 18.4    | U       |
| Zinc         | 2,000                     | 136     | 48.3    | 45.7     | 272     | 209     | 21.5    | 113     | 46.8    | NA      | 107      | U         | 33.2    | U       |

All concentrations in µg/l.

B Value greater than or equal to the instrument detection limit, but less than the contract required detection limit.

NA Compound not analyzed.

NS No standard or guidance value available.

U Indicates that the compound was not detected.

<sup>\*</sup> NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

G Guidance value.



### Well MW-7

|              |                           |         |        |          |        |           |         |         |         |         |         | Dissolved | Total   | Dissolved | Total   |
|--------------|---------------------------|---------|--------|----------|--------|-----------|---------|---------|---------|---------|---------|-----------|---------|-----------|---------|
| Date Sampled | Groundwater<br>Standards* | 5/10/95 | 9/5/95 | 12/19/95 | 8/1/96 | 6/23/97   | 6/18/98 | 4/21/99 | 5/31/00 | 5/16/01 | 6/11/02 | 5/28/09   | 5/28/09 | 5/13/10   | 5/13/10 |
| Aluminum     | NS                        |         |        |          |        | 276,000   | 45,700  | 17,200  | 49,200  | NA      | 31,600  | U         | 592     | U         | 3,680   |
| Antimony     | 3                         |         |        |          |        | U         | U       | U       | U       | NA      | U       | U         | U       | U         | U       |
| Arsenic      | 25                        |         |        |          |        | 151       | 19.5    | 9.0 B   | 22.4    | NA      | 14.3    | U         | U       | U         | U       |
| Barium       | 1,000                     |         |        |          |        | 2,080     | 347     | 137 B   | 370     | NA      | 202     | 15        | 16.2    | U         | 37      |
| Beryllium    | 3 G                       |         |        |          |        | 12.5      | 2.3 B   | U       | 1.9 B   | NA      | 1.6 B   | U         | U       | U         | U       |
| Cadmium      | 5                         |         |        |          |        | U         | U       | U       | 1.9 B   | NA      | 0.79 B  | U         | U       | U         | U       |
| Calcium      | NS                        |         |        |          |        | 1,190,000 | 232,000 | 141,000 | 242,000 | NA      | 167,000 | 112,000   | 106,000 | 110,000   | 105,000 |
| Chromium     | 50                        |         |        |          |        | 403       | 67.3    | 24.4    | 71.9    | NA      | 45.6    | U         | U       | U         | U       |
| Cobalt       | NS                        |         |        |          |        | 224       | 34.6 B  | 12.2 B  | 41.9 B  | NA      | 25.3 B  | U         | U       | U         | U       |
| Copper       | 200                       |         |        |          |        | 653       | 74.8    | 34.5    | 67      | NA      | 40.7    | U         | U       | U         | U       |
| Iron         | 500                       |         |        |          |        | 486,000   | 78,400  | 24,700  | 80,400  | NA      | 51,700  | U         | 519     | U         | 3,150   |
| Lead         | 25                        |         |        |          |        | 281       | 37.1    | 10.8    | 42      | NA      | 24.7    | U         | U       | U         | U       |
| Magnesium    | 35,000 G                  |         |        |          |        | 333,000   | 86,800  | 59,100  | 91,500  | NA      | 69,600  | 52,100    | 48,400  | 48,400    | 47,100  |
| Manganese    | 300                       |         |        |          |        | 9,470     | 1,570   | 486     | 1,810   | NA      | 1,250   | 8         | 35      | 19        | 71      |
| Mercury      | 0.7                       |         |        |          |        | 0.69      | U       | U       | U       | NA      | U       | C         | U       | U         | C       |
| Nickel       | 100                       |         |        |          |        | 500       | 79.8    | 25.1 B  | 84.2    | NA      | 51.6    | C         | U       | U         | C       |
| Potassium    | NS                        |         |        |          |        | 46,000    | 12,500  | 7,200   | 13,200  | NA      | 9,640   | 1,600     | 1,500   | U         | 2,900   |
| Selenium     | 10                        |         |        |          |        | 47.1      | U       | 5.2     | 5.6     | NA      | 4.4 B   | C         | U       | 12        | 14      |
| Silver       | 50                        |         |        |          |        | U         | U       | U       | U       | NA      | U       | U         | U       | U         | U       |
| Sodium       | 20,000                    |         |        |          |        | 71,800    | 61,400  | 73,100  | 79,800  | NA      | 73,200  | 73,500    | 69,700  | 75,900    | 70,100  |
| Thallium     | 0.5 G                     |         |        |          |        | 30.1      | U       | U       | U       | NA      | U       | U         | U       | U         | U       |
| Vanadium     | NS                        |         |        |          |        | 516       | 83.5    | 36.8 B  | 87.8    | NA      | 57.6    | U         | U       | U         | U       |
| Zinc         | 2,000                     |         |        |          |        | 1,660     | 225     | 93.9    | 278     | NA      | 131     | 32        | U       | U         | U       |

All concentrations in µg/l.

\* NYSDEC Ambient Water Quality Standards and Guidance Values, June 1998.

G Guidance value.

B Value greater than or equal to the instrument detection limit, but less than the contract required detection limit.

NA Compound not analyzed.

NS No standard or guidance value available.

U Indicates that the compound was not detected.

Well MW-4 detected the PCB aroclor-1260 on six occasions at concentrations as high as 1.1 ug/l. No PCBs were present in this well or in wells MW-5R, MW-6R, or MW-7 during the May 2010 monitoring event.

### Metals / Inorganics

Several metals have been detected in each monitoring well at concentrations above class GA standards since sampling began in 1995. Of these metals, three are essential nutrients and are commonly found naturally occurring at such levels in local groundwater, these include iron, magnesium, and sodium. Other metals detected at elevated concentrations include: antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, manganese, nickel, selenium, thallium, and zinc.

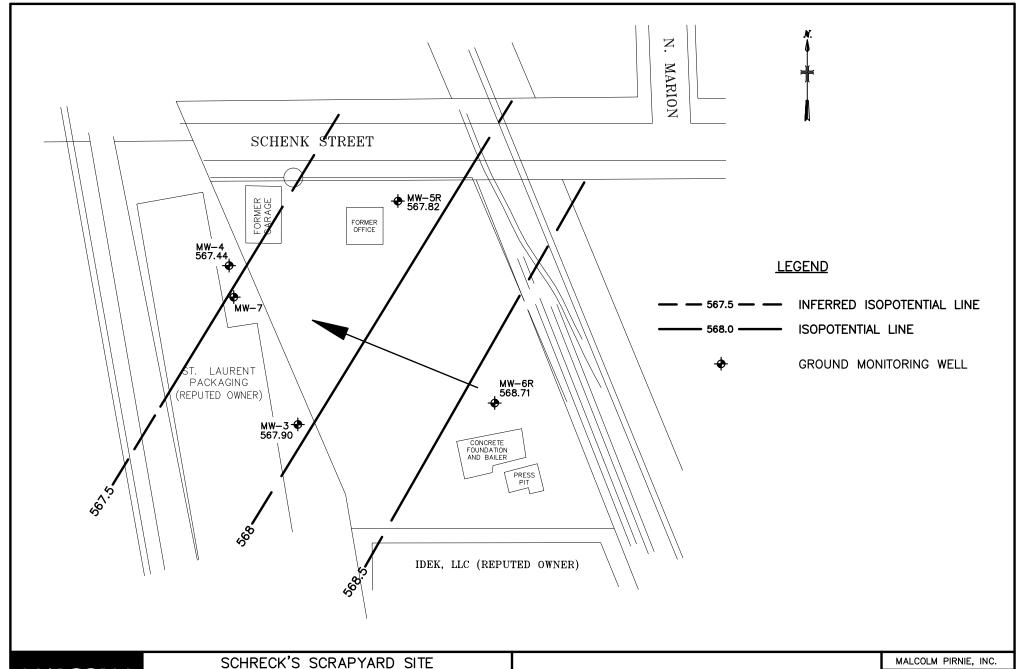
With the exception of the common essential nutrients mentioned above, few metals were present at concentrations above standards during the May 2010 monitoring event. Selenium was present in monitoring wells MW-5R and MW-7 at concentrations greater than the Class GA groundwater standard.

Although elevated concentrations of iron, magnesium and sodium were routinely detected in groundwater samples, it is important to recognize that these common and naturally occurring elements are necessary for human health and development. As summarized in Tables 5-1, 5-2 and 5-3, results of the May 2010 sampling event are generally consistent with those reported for historic groundwater samples collected during the initial quarterly Post-Remediation sampling events (1995) as well as subsequent annual monitoring events (1996 – 2002).

### 5.3. Evaluation of Groundwater

To assess the existing groundwater quality at the Schreck's Scrapyard Site, analytical data determined to be historically persistent with regards to groundwater impacts, were graphed and evaluated for observable concentration trends. Based on concentrations and frequency of detection, manganese was selected for evaluation as a Constituent of Interest (COI) in each of the five monitoring wells. Total lead and total chromium were also selected as COIs for wells MW-4, MW-7 and MW-6R. Benzene was selected as a COI for well MW-6R, and total PCBs were selected as COI for wells MW-3 and MW-4.

Analytical data presented in Tables 5-1, 5-2 and 5-3 was used to establish graphs of concentration(s) vs. time for the above-cited COIs during the period of time from May 1995 through May 2010.


The development of a groundwater monitoring database over a period of several years may reveal seasonal and/or water chemistry influences on contaminant concentrations. DEC may be petitioned in the future to reduce the number of sample parameters tested

based on the constituent trend data. Concentration vs. time graphs for the selected COIs are presented in Appendix C.

### 6. Summary of Groundwater Elevation Data

Prior to collection of groundwater samples at the Schreck's Scrapyard Site, depth to groundwater measurements were recorded at each on-site shallow overburden monitoring well to establish water table elevations. A tabulated summary of water level data is presented in Table 3-4. Groundwater elevation data collected during the May 2010 sampling event generally indicate normal water table conditions when compared with historical isopotential data. Due to the relative depth of the screened interval at well MW-7 (deeper when compared to other network wells), the water elevation determined for MW-7 was not used to prepare the isopotential map.

The general direction of overburden groundwater flow for the Schreck's Scrapyard Site on May 13, 2010 is shown on the shallow groundwater isopotential map (Figure 6-1). This map shows an overburden groundwater flow direction from southeast to northwest toward the Niagara River.



MALCOLM PIRNIE SCHRECK'S SCRAPYARD SITE
PERIODIC GROUNDWATER
MONITORING REPORT
MAY 2010

GROUNDWATER
ISOPOTENTIAL MAP
NOT TO SCALE

JULY 2010
FIGURE 6-1

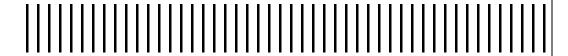
### 7. Post-Closure Inspection Results

A review of the Post Remediation monitoring well inspection results conducted May 13, 2010 generally indicate that the monitoring network is performing as designed. Free product LNAPL was not observed, institutional controls remain in place as the site is currently listed in the Hazardous Waste Site Registry, and long term groundwater monitoring has resumed. Depressions in the Site land surface caused by truck traffic were filled with clean crushed stone to return these areas to level grade. Appendix D provides a copy of the Institutional and Engineering Controls Certification form signed by the Site Owner.

As shown on Table 3-1 the only physical elements that require resolution are: 1) well identification and well caps at MW-5R and 6R; 2) protecting well MW-5R from being damaged further from vehicular traffic or made flush-mount.

### 8. References

Camp Dresser & McKee. November 1994. *Post-Remediation Groundwater Monitoring Plan for the Schreck's Scrapyard*.


Department of Environmental Conservation. May 2008. *Reclassification Decision Report, Schreck's Scrapyard Site, Site No. 932099, City of North Tonawanda, Niagara County, New York.* 

## **New York State Department of Environmental Conservation**

Schreck's Scrapyard
Groundwater Monitoring Report

# **Appendix A**

**Field Data Sheets** 





| MALCOLM<br>PIRNIE |
|-------------------|
|-------------------|

| SITE/PROJECT NAME:                             | Shreelis This Yard                 | PROJECT NUMBER:                       | 4320-045                    |
|------------------------------------------------|------------------------------------|---------------------------------------|-----------------------------|
| DATE OF INSPECTION:                            | 3/13/10                            | INSPECTOR:                            | D. Symonds                  |
| WELL DESIGNATION:                              | mw-3                               |                                       |                             |
| WELL LOCATION:                                 | N. Tonacianda                      | NY                                    |                             |
| Outured American                               |                                    |                                       |                             |
| Outward Appearance Flushmount Diameter         | - inches                           | N/A [ ]                               |                             |
| Approximate Stickup Height                     |                                    | N/A [ ]                               | •                           |
| Integrity of Protective Casing                 |                                    | eisty_                                |                             |
| Protective Casing Material                     | Steel [4]                          | Stainless Steel [ ]                   | Other                       |
| Protective Casing Width or Dia.                | inches                             |                                       |                             |
| Weep Hole in Protective Casing                 | Yes [ ]                            | No [4                                 |                             |
| Surface Seal/Apron Material                    | Cement [ 4                         | Bentonite [ ]                         | Not apparent [ ] Other      |
| Integrity of Surface Seal/Apron                | Describe: Gud                      |                                       |                             |
| Surface Drainage                               | Away from Wellhead [ ]             | Toward Wellhead [ 4                   |                             |
| Bollards Present?                              | Yes[]                              | No [ Describe:                        |                             |
| Well ID. Visible?                              | Yes [V                             | No [ ] Describe:                      | MW-3 unHon on Lid           |
| Lock Present and Functional?                   | Yes [*-]                           | No [ ] Describe:                      |                             |
| Photograph Taken? Photo #                      | Yes [ 4                            | No [ ] Describe:                      |                             |
| Inner Annearance                               | 4                                  |                                       |                             |
| Inner Appearance                               | Describe: Gerd                     |                                       |                             |
| Integrity of Well Casing Integrity of Cap Seal |                                    | ove                                   |                             |
| Surface Water in Casing?                       | Yes [ ]                            | No [4 Describe                        |                             |
| Well Casing Diameter                           | 2 inches                           | - ( )                                 |                             |
| Well Casing Material                           | PVC[]                              | Steel [ ]                             | Stainless Steel [           |
| Inner Cap                                      | Threaded [ ]                       | Slip [V                               | Expansion Plug [ ] None [ ] |
| Reference/Measuring Point                      | Groove [ · ]                       | Indelible Mark [4]                    | None [ ]                    |
| Evidence of Double Casing?                     | Yes [ ]                            | No [ Describe                         |                             |
| Davimbolo                                      |                                    |                                       |                             |
| Downhole                                       | Yes [ ]                            | No Describe                           | ·                           |
| Odor<br>DID Booding                            | <u>0.4</u> ppm                     | [44]                                  |                             |
| PID Reading  Depth to Water (to top of casing) | / <i>V</i> :60 feet (nearest 0.01) | Depth to LNAPI                        | feet (nearest 0.01) N/A [ ] |
| Total Well Depth (to top of casing)            | 1.7.                               | - span to 200 a 2                     |                             |
| Sediment (Hard/Soft Bottom)                    | Describe: Hard                     |                                       |                             |
| Sedifficial (Flatd/Soft Bottom)                |                                    |                                       |                             |
| Additional Comments:                           |                                    |                                       |                             |
|                                                |                                    |                                       |                             |
|                                                |                                    |                                       |                             |
|                                                |                                    |                                       |                             |
|                                                |                                    | · · · · · · · · · · · · · · · · · · · |                             |

| MALCOLM<br>PIRNIE |
|-------------------|
|-------------------|

| SITE/PROJECT NAME:                  | Shreeli's Siap Youd                   | /<br>PROJECT NUMBER: _ | 4320-045                    |
|-------------------------------------|---------------------------------------|------------------------|-----------------------------|
| DATE OF INSPECTION:                 | 5/13/10                               | ·<br>INSPECTOR:        | D. Symouds                  |
|                                     | mw-4                                  | •                      |                             |
| WELL DESIGNATION:                   |                                       |                        |                             |
| WELL LOCATION:                      | Tonawenda NY                          |                        |                             |
| Outward Appearance                  |                                       |                        |                             |
| Flushmount Diameter                 | inches                                | N/A [ ]                |                             |
| Approximate Stickup Height          | feet                                  | N/A[]                  |                             |
| Integrity of Protective Casing      | Describe: Loud at                     |                        |                             |
| Protective Casing Material          | Steel [ 4                             | Stainless Steel [ ]    | Other                       |
| Protective Casing Width or Dia.     | inches                                |                        |                             |
| Weep Hole in Protective Casing      | Yes [ ]                               | No [V                  | /                           |
| Surface Seal/Apron Material         | Cement [ ]                            | Bentonite [ ]          | Not apparent [ 4 Other      |
| Integrity of Surface Seal/Apron     | Describe: Some el                     | 1813 cual Sink h       | ele annel well.             |
| Surface Drainage                    | Away from Wellhead [ ]                | Toward Wellhead [14]   |                             |
| Boilards Present?                   | Yes [ ]                               | No [ V Describe:       |                             |
| Well ID. Visible?                   | Yes [                                 | No [ ] Describe:       | MW-4 marked w/paint on Cia  |
| Lock Present and Functional?        | Yes[]                                 | No [ V Describe:       | wek cit                     |
| Photograph Taken? Photo #           | Yes [ Y                               | No [ ] Describe:       |                             |
| inner Appearance                    | 1 /                                   | 1 ( .                  |                             |
| Integrity of Well Casing            | Describe: 12000 / 5                   | tain less              |                             |
| Integrity of Cap Seal               | Describe: <u>Lawd</u>                 |                        |                             |
| Surface Water in Casing?            | Yes [ ]                               | No [4 Describe:        |                             |
| Well Casing Diameter                | 2_inches                              |                        |                             |
| Well Casing Material                | PVC[]                                 | Steel [ ]              | Stainless Steel [           |
| Inner Cap                           | Threaded [ ]                          | Slip M                 | Expansion Plug [ ] None [ ] |
| Reference/Measuring Point           | Groove [ · ]                          | indelible Mark [ ]     | None [V                     |
| Evidence of Double Casing?          | Yes [ ]                               | No [  Describe:        |                             |
| Downhole                            |                                       | ,                      |                             |
| Odor                                | Yes [ ]                               | No [4] Describe:       |                             |
| PID Reading                         | <u>0.4</u> ppm                        |                        |                             |
| Depth to Water (to top of casing)   | 11.03 feet (nearest 0.01)             | Depth to LNAPL         | feet (nearest 0.01) N/A [   |
| Total Well Depth (to top of casing) | 1340 feet (nearest 0.1)               | . 1. 1                 | 1 11                        |
| Sediment (Hard/Soft Bottom)         | Describe:                             | one sediment on        | botton                      |
| Additional Comments:                |                                       |                        |                             |
|                                     |                                       |                        |                             |
|                                     |                                       |                        |                             |
|                                     | <del></del>                           |                        |                             |
|                                     | · · · · · · · · · · · · · · · · · · · |                        |                             |
|                                     |                                       |                        |                             |

| MALCOLM<br>PIRNIE |
|-------------------|
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |

| PIRINIE                             |                        | 1                   |                             |
|-------------------------------------|------------------------|---------------------|-----------------------------|
| SITE/PROJECT NAME:                  | Shrak's shipfard       | PROJECT NUMBER:     | 4320-045                    |
| DATE OF INSPECTION:                 | 3/13/10                | INSPECTOR:          |                             |
| WELL DESIGNATION:                   | MW-5R                  |                     |                             |
| WELL LOCATION:                      | N. tonauonda           | W                   |                             |
|                                     |                        |                     |                             |
| Outward Appearance                  |                        |                     |                             |
| Flushmount Diameter                 | inches                 | N/A [ ]             |                             |
| Approximate Stickup Height          | 3,5 feet               | N/A [ ]             | Led - coules @ 28           |
| ntegrity of Protective Casing       | Describe: Pour - v     | vas van into        | by a truck - casing @ 28    |
| Protective Casing Material          |                        | Stainless Steel [ ] | Other                       |
| Protective Casing Width or Dia.     | inches                 |                     |                             |
| Veep Hole in Protective Casing      | Yes [ ]                | No [                |                             |
| Surface Seal/Apron Material         | Cement [\\ _           | Bentonite [ ]       | Not apparent [ ] Other      |
| ntegrity of Surface Seal/Apron      | Describe: Pour -       |                     |                             |
| Surface Drainage                    | Away from Wellhead [ ] | Toward Wellhead [나  |                             |
| Bollards Present?                   | Yes[]                  | No L Describe:      |                             |
| Well ID. Visible?                   | Yes [나                 | No [ ] Describe:    |                             |
| ock Present and Functional?         | Yes [                  | No [ ] Describe:    |                             |
| Photograph Taken? Photo #           | Yes [ Y                | No [ ] Describe:    |                             |
| nner Appearance                     |                        |                     |                             |
| ntegrity of Well Casing             | Describe: Pouv -       |                     |                             |
| ntegrity of Cap Seal                | Describe: DOUY -       |                     |                             |
| Surface Water in Casing?            | Yes [ ]                | No [W Describe:     |                             |
| Well Casing Diameter                | inches                 | • • •               | <del></del> -               |
| Well Casing Material                | PVC[]                  | Steel [ ]           | Stainless Steel             |
| nner Cap                            | Threaded[]             | Slip[]              | Expansion Plug [ ] None [ ] |
| Reference/Measuring Point           | Groove [ · ]           | Indelible Mark [4]  | ·                           |
| Evidence of Double Casing?          | Yes [ ]                | No [ Describe:      |                             |
|                                     |                        |                     |                             |
| Downhole                            | Van I. I.              | No 1 Describe:      |                             |
| Odor                                | Yes [ ]<br>#v5ppm      | THO W 1 DOGGNOO.    |                             |
| PID Reading                         | 10:66 (nearest 0.01)   | Denth to I NAPI     | feet (nearest 0.01) N/A [ ] |
| Depth to Water (to top of casing)   | 16-001                 | DOPIN TO LINAL L    |                             |
| Total Well Depth (to top of casing) |                        |                     |                             |
| Sediment (Hard/Soft Bottom)         | Describe:              |                     |                             |
| Additional Comments:                | Sailer shelin well     | - due to dam        | age from collision u los    |
|                                     |                        |                     | 76-1-5                      |
| - Usea +                            | ncu to Stratter        |                     | ote-Casing-                 |
| - Bayler                            | remared tran           | 4 4 4 4 4           |                             |
| - photos                            | taken Betw             | —····               | Do and                      |
|                                     | reeds protects         | in from the         | TUTH C - OV VICE            |
| to b                                | re converted.          | nto a thish         | auent,                      |
| <b>-</b>                            | <del>-</del>           |                     |                             |

| MARCO         | A A B |
|---------------|-------|
| MALCO<br>PIRN |       |
| PIKN          |       |
|               |       |

| SITE/PROJECT NAME:                  | Sweik's ship Yand                              | PROJECT NUMBER:     | 4320-045                    |
|-------------------------------------|------------------------------------------------|---------------------|-----------------------------|
| DATE OF INSPECTION:                 | 5/13/10                                        | INSPECTOR:          | D. Symonds                  |
| WELL DESIGNATION:                   | MW-6R                                          | -                   |                             |
|                                     | N. Tonawarda A                                 | Ŋ                   |                             |
| WELL LOCATION:                      | N. Ibhaccanax                                  |                     |                             |
| Outward Appearance                  | _                                              |                     |                             |
| Flushmount Diameter                 | inches                                         | N/A [ ]             |                             |
| Approximate Stickup Height          | 3,5 feet                                       | N/A [ ]             |                             |
| integrity of Protective Casing      | Describe: Local                                |                     |                             |
| Protective Casing Material          | Steel [4]                                      | Stainless Steel [ ] | Other                       |
| Protective Casing Width or Dia.     | inches                                         |                     |                             |
| Weep Hole in Protective Casing      | Yes [ ]                                        | No [L]              |                             |
| Surface Seal/Apron Material         | Cement [                                       | Bentonite [ ]       | Not apparent [ ] Other      |
| Integrity of Surface Seal/Apron     | Describe:                                      |                     |                             |
| Surface Drainage                    | Away from Wellhead [ ]                         | Toward Wellhead [1- |                             |
| Bollards Present?                   | Yes[]                                          | No [ Describe:      | 11 15                       |
| Well ID. Visible?                   | Yes [1                                         | No [ ] Describe:    | MW-6R-unHaronlia            |
| Lock Present and Functional?        | Yes [4]                                        | No [ ] Describe:    |                             |
| Photograph Taken? Photo #           | Yes [ 4                                        | No [ ] Describe:    |                             |
| inner Appearance                    | , 1/                                           | 1                   |                             |
| Integrity of Well Casing            | Describe:                                      | Eisty               |                             |
| Integrity of Cap Seal               | Describe: <u>Get d</u>                         |                     |                             |
| Surface Water in Casing?            | Yes [ ]                                        | No [ Describe:      |                             |
| Well Casing Diameter                | inches                                         |                     |                             |
| Well Casing Material                | PVC[]                                          | Steel [ ]           | Stainless Steel [ 4         |
| Inner Cap                           | Threaded [ ]                                   | Slip[]              | Expansion Plug [4] None [ ] |
| Reference/Measuring Point           | Groove [ ]                                     | Indelible Mark      | None [ ]                    |
| Evidence of Double Casing?          | Yes[]                                          | No [ Describe:      |                             |
| Downhole                            |                                                | _                   |                             |
| Odor                                | Yes [ L                                        | Describe:           | Sulfu oder                  |
| PID Reading                         | <u>0,5                                    </u> |                     |                             |
| Depth to Water (to top of casing)   | 11:40 feet (nearest 0.01)                      | Depth to LNAPL      | feet (nearest 0.01) N/A [ ] |
| Total Well Depth (to top of casing) | 1 to 70.                                       |                     |                             |
| Sediment (Hard/Soft Bottom)         | Describe: Soft bott                            | a                   |                             |
| Additional Comments:                |                                                |                     |                             |
|                                     |                                                |                     |                             |
|                                     |                                                |                     |                             |
|                                     | ··.                                            |                     |                             |
|                                     |                                                |                     |                             |
|                                     |                                                |                     |                             |

| SITE/PROJECT NAME:                  | 3 hveck's Ship Yand              | PROJECT NUMBER:     | 4320-045                    |
|-------------------------------------|----------------------------------|---------------------|-----------------------------|
| DATE OF INSPECTION:                 | 5/13/10                          | INSPECTOR:          | D. Somunds                  |
| WELL DESIGNATION:                   | Mw-7                             |                     |                             |
|                                     | N. Tonacianda                    | NY                  |                             |
| WELL LOCATION:                      | TV: Toracocco.                   |                     |                             |
| Outward Appearance                  | <b>a</b> /                       |                     |                             |
| Flushmount Diameter                 | inches                           | N/A [ ]             |                             |
| Approximate Stickup Helght          | feet 6                           | N/A [ ]             |                             |
| Integrity of Protective Casing      | Describe: Land                   |                     |                             |
| Protective CasIng Material          | Steel M                          | Stainless Steel [ ] | Other                       |
| Protective Casing Width or Dia.     | inches                           |                     |                             |
| Weep Hole in Protective Casing      | Yes [ ]                          | No [ Y              |                             |
| Surface Seal/Apron Material         | Cement [ Y                       | Bentonite [ ]       | Not apparent [ ] Other      |
| Integrity of Surface Seal/Apron     | Describe: 17000                  |                     |                             |
| Surface Drainage                    | Away from Wellhead [             | Toward Wellhead [ ] |                             |
| Bollards Present?                   | Yes [ ]                          | No [ Describe:      | MW-7 on Arshment            |
| Well ID. Visible?                   | Yes [4]                          | No [ ] Describe:    |                             |
| Lock Present and Functional?        | Yes[]                            | No [  Describe:     | No lock                     |
| Photograph Taken? Photo #           | Yes [V]                          | No [ ] Describe:    |                             |
| Inner Appearance                    | <i>( )</i>                       |                     |                             |
| Integrity of Well Casing            | Describe: Gova                   |                     |                             |
| Integrity of Cap Seal               | Describe: Land                   |                     |                             |
| Surface Water in Casing?            | Yes[]                            | No [ Describe:      |                             |
| Well Casing Diameter                | inches                           |                     |                             |
| Well Casing Material                | PVC[]                            | Steel [ ]           | Stainless Steel [ ]         |
| Inner Cap                           | Threaded [ ]                     | Slip [ ]            | Expansion Plug [1] None [ ] |
| Reference/Measuring Point           | Groove [ ]                       | Indelible Mark [ 4  | None [ ]                    |
| Evidence of Double Casing?          | Yes[]                            | No [ 4 Describe:    |                             |
| Downhole                            |                                  |                     |                             |
| Odor                                | Yes[]                            | No [4] Describe:    |                             |
| PID Reading                         | <u>0,4</u> ppm                   |                     |                             |
| Depth to Water (to top of casing)   | <b>%.43</b> feet (nearest 0.0 t) | Depth to LNAPL      | feet (nearest 0.01) N/A [ ] |
| Total Well Depth (to top of casing) | 23.35 feet (nearest 0.1)         | ,                   |                             |
| Sediment (Hard/Soft Bottom)         | Describe: Soft both              | m                   |                             |
| Additional Comments:                |                                  |                     |                             |
|                                     |                                  |                     |                             |
|                                     |                                  |                     |                             |
|                                     | <u>,</u>                         |                     |                             |
|                                     |                                  |                     |                             |
|                                     |                                  |                     |                             |

| MALCOLM<br>PIRNIE             |                                   |             |          |          |                |        |              |                | ELLN           |             |
|-------------------------------|-----------------------------------|-------------|----------|----------|----------------|--------|--------------|----------------|----------------|-------------|
| WELL PURGING AND SAMPLING LOG |                                   |             |          |          |                |        |              |                | W-3            |             |
|                               | hveck's S                         | chap        | Yara     |          |                |        | <u> </u>     |                |                |             |
| PROJECT NO.: 4                | 320-045                           |             |          |          |                |        |              |                | 1              | <del></del> |
| <del></del>                   | 5/13/10                           |             |          |          |                | STAFF  | : D.         | Sam            | indi           |             |
| PURGE METHOD:                 | puristaltic                       | ·           |          |          |                |        |              | <del>-</del>   |                |             |
| SAMPLE METHOD:                | tand baller                       |             |          | T        | IME COL        | LECTED | : <i>t</i> < | 545            |                |             |
|                               |                                   |             |          |          |                |        |              |                |                | 8660000     |
|                               | P                                 | UKGIN       | G and S  | MPLIN    | G DATA         |        |              |                |                |             |
| 1. Total Casing and Sceen L   | ength (ft.)                       |             |          | 14.30    | i              |        | 3            | 70             | fuerter        | inue        |
| 2. Casing Internal Diameter   | (in.)                             |             |          | 2"       |                |        |              | .,             | 01629          | laula       |
| 3. Water Level Below Top o    | f Casing (ft.)                    |             |          | 10.60    | プ <sup>*</sup> |        | -            |                |                | -           |
| 4. Volume of Water in Casin   | g (gal.)                          |             |          |          | 29 ga 1        |        |              | 1.88           | Frest          | s           |
| 5. Photoionization Detector a | at Wellhaed (ppm)                 |             |          |          | 4000           |        | <del></del>  | Low Flow       |                |             |
| Al 1                          | 0.0400.540.2                      |             |          |          |                |        | -            | s              | tabilization C | i i         |
| (vol = 0)                     | 0.0408 [ (2) <sup>2</sup> x { (1) | ) - (3) } ] | )        |          |                |        |              | pН             | +/- 0.1        |             |
| Constants f                   | or Calculating Borel              | hole and    | Well Wat | er Volum | es             |        | ]            | Cond.<br>Turb. | 3%<br>10% if>  | NTI         |
| Well Diam.<br>Vol. (gal/ft)   | 0.04 0.17                         | 3"          | 4"       | 5"       | 6"             | 8"     | 1            | DO             | 10%            | 1110        |
| VOI. (gabity                  | 0.04   0.17                       | 0.38        | 0.66     | 1.04     | 1.50           | 2.60   |              | Temp.          | 3%             |             |
| DADAN GEORGE                  |                                   |             |          |          |                |        |              | Eh             | +/- 10 mV      |             |
| PARAMETER                     | 71                                |             |          | CUMUL    | ATED VO        | LUME P | URGEL        | )              |                |             |
| Gallons (                     | Initial 2.5                       | 415         | 515      | 60       |                |        |              |                |                |             |
| Time (24 hr. clock)           | 1505 1515                         | 1520        | 1530     | 1535     |                |        |              |                |                |             |
| pH (s.u.)                     | 6.63 6.60                         | 6.61        | 4.42     | 6.62     |                |        |              |                |                |             |
| Conductivity (mS/cm)          | u41 1141                          | 1.39        | 437      | 1:37     |                |        |              |                |                |             |

| TARAWETER               | 71             |       |       | AC    | CUMUL | ATED \ | OLUME | PURGED                                           | )        |                                                  | ***      |
|-------------------------|----------------|-------|-------|-------|-------|--------|-------|--------------------------------------------------|----------|--------------------------------------------------|----------|
| Gallons (               | Initial        | 2.5   | 415   | 515   | 60    |        |       |                                                  |          |                                                  |          |
| Time (24 hr. clock)     | 1505           | 1515  | 1520  | 1530  | 1535  |        |       | <b>†</b>                                         | <u> </u> |                                                  |          |
| pH (s.u.)               | 6.63           | 6.60  | 6 del | 4.62  | 6:62  |        |       |                                                  |          |                                                  |          |
| Conductivity (mS/cm)    | ull            | 1.41  | 1.39  | 137   | 1:37  |        |       | <del>                                     </del> |          | <del> </del>                                     |          |
| Turbidity (NTUs)        | 73.4           | 5.3   | 4.0   | 0.0   | 0.0   |        |       |                                                  | <u> </u> |                                                  |          |
| Dissolved Oxygen (mg/l) | 0.00           | 0.00  | 0:00  | 0:00  | 0.00  |        |       | <del>                                     </del> |          | <del>                                     </del> | <u> </u> |
| Temperature ( °C)       | 8.70           | 8.67  | 8.48  | 8.68  | 8.68  |        |       |                                                  |          |                                                  |          |
| Eh (mV)                 | 15             | 3     | -4    | -3    | -3    |        |       |                                                  |          | <u> </u>                                         |          |
| Depth to Water (ft.)    | 10.60          | 10,90 | 10.90 | 10.90 | 10,90 |        |       |                                                  |          |                                                  |          |
| Purge (Flow) Rate       |                |       |       |       |       |        |       | 1                                                |          |                                                  |          |
| Appearance              | Tub-<br>ovange |       |       |       |       | ···    |       |                                                  |          |                                                  |          |

Notes: \_ cellected Scuple @ 1545

- Terb - Low - didn't Filter Samples -

| MALCOLAI<br>PIRNIE<br>WI          | PIRNIE  WELL PURGING AND SAMPLING LOG |             |                 |           |           |         |         |             |                           |                                                  | O.:      |  |
|-----------------------------------|---------------------------------------|-------------|-----------------|-----------|-----------|---------|---------|-------------|---------------------------|--------------------------------------------------|----------|--|
| PROJECT TITLE:                    | shve                                  | cks         | Scry            | p Yas     | d         | •<br>   |         | <u>L</u>    |                           |                                                  |          |  |
| PROJECT NO.:                      |                                       | 9-04        | 5               | <b>*</b>  |           |         |         |             |                           |                                                  | ,        |  |
| DATE:                             | 5/13                                  |             |                 |           |           |         | STAFI   | ₹:          | ). San                    | rends                                            |          |  |
| PURGE METHOD:                     | Paris-                                | ultre       |                 |           |           |         |         |             |                           |                                                  |          |  |
| SAMPLE METHOD:                    | itand                                 | baile       |                 |           | _ 1       | TME COL | LECTE   | ):          | 500                       |                                                  |          |  |
|                                   |                                       |             | PURGIN          | G and S   | AMPLIN    | G DATA  | •       |             |                           |                                                  |          |  |
|                                   |                                       |             |                 |           |           | ,       |         |             |                           |                                                  |          |  |
| 1. Total Casing and Sceen         | Length (ft.)                          | )           |                 |           | 13.       | 60'     |         | ·7          | 271                       | . L . L                                          | e in we  |  |
| 2. Casing Internal Diameter (in.) |                                       |             |                 |           |           | į f     |         | - 2         |                           | -                                                |          |  |
| 3. Water Level Below Top          | of Casing                             | (ft.)       |                 |           | 11.0      |         |         |             | 0:436Agali<br>* 3 1:31gal |                                                  |          |  |
| 4. Volume of Water in Cas         | ing (gal.)                            |             |                 |           | 1.43      | 698     | als     |             | ×3 1131 gals              |                                                  |          |  |
| 5. Photoionization Detector       | r at We <u>llh</u> a                  | ed (ppm)    |                 |           | 0.        | Uppin   |         | _           | Low Flow                  |                                                  |          |  |
| a                                 |                                       | 7           |                 |           |           |         |         | <del></del> | S                         | tabilization (                                   |          |  |
| (Vol =                            | = 0.0408 [ (                          | (2) * x { ( | 1) - (3) } ,    | <i>1)</i> |           |         |         |             | pН                        | +/- 0.1                                          |          |  |
| Constants                         | for Calcul                            | ating Bore  | hole and        | Well Wa   | ter Volum | ies     |         | 7           | Cond.                     | 3%                                               |          |  |
| Well Diam.                        | 1"                                    | 2"          | 3 <sup>11</sup> | 46        | 5"        | 6"      | 8"      | 1           | Turb.<br>DO               | 10% if>                                          | 1 NTU    |  |
| Vol. (gal/ft)                     | 0.04                                  | 0.17        | 0.38            | 0.66      | 1.04      | 1.50    | 2.60    | ]           | Temp.                     | 3%                                               |          |  |
|                                   |                                       |             |                 |           |           |         |         |             | Eh                        | +/- 10 mV                                        | <u> </u> |  |
| PARAMETER                         | 0                                     |             |                 | A(        | CCUMUL    | ATED VO | DLUME I | URGEL       | )                         |                                                  | ···      |  |
| Gallons                           | Initial                               | 7/          | ~3              | 4.5       | 5.5       | 6.5     |         |             |                           |                                                  |          |  |
| Time (24 hr. clock)               | 1410                                  | 1421        | 1426            | 1436      | 1446      | 1456    |         | <u> </u>    |                           |                                                  |          |  |
| pH (s.u.)                         | 7.09                                  | 7.10        | 7.09            | 7.10      | 7.11      | 711     |         |             |                           | <del>-</del>                                     |          |  |
| Conductivity (mS/cm)              | 0.234                                 | 0:247       | 0.253           | 0.255     | 0.263     | 0.263   |         |             |                           |                                                  |          |  |
| Turbidity (NTUs)                  | 4340                                  | 68.7        | 33.3            | 32.3      | 10.8      | 10.0    |         |             |                           |                                                  |          |  |
| Dissolved Oxygen (mg/l)           | 2:70                                  | 4.69        | 0.08            | 4,91      | 0.00      | 0.00    |         |             |                           | <del>                                     </del> |          |  |
| Temperature ( °C)                 | 9.49                                  | 4.54        | 9.50            | 9:59      | 9.55      | 9.54    |         | <del></del> |                           |                                                  |          |  |
| Eh (mV)                           | -45                                   | -25         | -22             | -39       | -9        | 1       |         |             | <u> </u>                  |                                                  |          |  |
| Depth to Water (ft.)              | 11.03                                 | 12.00       | 12.60           | 12,60     | 12.60     | 12,40   |         |             | <u> </u>                  |                                                  |          |  |

Notes:

Purge (Flow) Rate
Appearance

1500 - collected sample

low torb. did not filter in field.

## WELL PURGING AND SAMPLING LOG

WELL NO.: MW-5R

| PROJECT TITLE: | Shreeli's Ship Yard |                   |
|----------------|---------------------|-------------------|
| PROJECT NO.:   | 4320-045            |                   |
| DATE:          | 5/13/10             | STAFF: D. Symonds |
| PURGE METHOD:  | Davisfaltiz         |                   |
| SAMPLE METHOD: | Hend bailes         | TIME COLLECTED:   |

#### PURGING and SAMPLING DATA:

| 1. 7 | [otal | Casing | and | Sceen | Length | (ft.) |  |
|------|-------|--------|-----|-------|--------|-------|--|
|------|-------|--------|-----|-------|--------|-------|--|

2. Casing Internal Diameter (in.)

3. Water Level Below Top of Casing (ft.)

4. Volume of Water in Casing (gal.)

5. Photoionization Detector at Wellhaed (ppm)

10:60 1:428 gal 0,4ppm

 $(Vol = 0.0408 [(2)^2 x {(1) - (3)}])$ 

| Constants     | for Calcula | ting Bore | hole and | Well Wate | r Volume | es   |      |
|---------------|-------------|-----------|----------|-----------|----------|------|------|
| Well Diam.    | 1"          | 2"        | 3"       | 4"        | 5"       | 6"   | 8"   |
| Vol. (gal/ft) | 0.04        | 0.17      | 0.38     | 0.66      | 1.04     | 1.50 | 2.60 |

8.41 Awater in well 1.428gol x 3 4.284gals

|       | Low Flow               |  |  |  |  |  |
|-------|------------------------|--|--|--|--|--|
| St    | Stabilization Criteria |  |  |  |  |  |
| pН    | +/- 0.1                |  |  |  |  |  |
| Cond. | 3%                     |  |  |  |  |  |
| Turb. | 10% if > 1 NTU         |  |  |  |  |  |
| DO    | 10%                    |  |  |  |  |  |
| Temp. | 3%                     |  |  |  |  |  |
| Eh    | +/• 10 mV              |  |  |  |  |  |

|         |                                                              |                                                                     | A(                                                                                                                                           | CUMUL                                                                                                                                                                                    | ATED V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PURGEI                                                                                                                                                                                                                             | )                                                                                                                                                                                                                                    |                                                                                                                                                                                                          |                              |
|---------|--------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Initial | >/                                                           | 215                                                                 | 24                                                                                                                                           | 5                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                              |
| 1705    | 1710                                                         | 1720                                                                | 1730                                                                                                                                         | 1740                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                              |
| 6.97    | 6.98                                                         | 6.99                                                                | 6.99                                                                                                                                         | 6.99                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          | <b>†</b>                     |
| 1,43    | 1.40                                                         | 1.37                                                                | 1.33                                                                                                                                         | 1.32                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                              |
| 114     | 124                                                          | 10:4                                                                | 13-2                                                                                                                                         | 10.2                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                 |                              |
| 0.00    | 0.00                                                         | 0.00                                                                | 0,00                                                                                                                                         | 0,00                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                    |                                                                                                                                                                                                          |                              |
| 9.48    | 9.49                                                         | 9.48                                                                | 9.52                                                                                                                                         | 9.5z                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | <del>-  </del>                                                                                                                                                                                                                       | <del>                                     </del>                                                                                                                                                         |                              |
| -97     | -86                                                          | -8Z                                                                 | -52                                                                                                                                          | -ye                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                    |                                                                                                                                                                                                          |                              |
| 10.60   | 13:16                                                        | 1400                                                                | 16:55                                                                                                                                        | 16.75                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>†                                     </u>                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                              |
|         |                                                              |                                                                     |                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                             |                                                                                                                                                                                                          |                              |
| clan    |                                                              |                                                                     |                                                                                                                                              | ->-                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                              |
|         | 1705<br>6:47<br>1:43<br>11:1<br>0:00<br>9:48<br>-97<br>10:60 | 1705 1710 6.97 6.98 1.43 1.40 11.1 12.4 0.00 0.00 9.48 9.49 -97 -86 | 1705 1710 1720<br>6.47 6.98 6.99<br>1.43 1.40 1.37<br>11.1 12.4 10.4<br>0.00 0.00 0.00<br>9.48 9.49 9.48<br>-97 -86 -82<br>10.60 13.16 14.00 | Initial 71 2.5 24  1705 1710 1720 1730  6.47 6.98 6.99 6.99  1.43 1.40 1.37 1.33  11.1 12.4 10.4 13.2  0.00 0.00 0.00 0.00  9.48 9.49 9.48 9.52  -97 -86 -82 -52  10.60 13.16 1400 16.55 | Initial   7/   2.5   24   5   1705   1710   1720   1730   1740   6.97   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.90   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.00   6.90   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.99   6.90   6.90   6.90   6.90   6.90   6.90   6.90   6.90   6.90   6.90   6.90   6.90   6.90   6.90 | Initial   7/   2.5   24   5   170   1720   1730   1740   1720   1730   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740   1740 | Initial 7/ 2.5 24 5  1705 1710 1720 1730 1740  6.97 6.98 6.99 6.99 6.99  1.43 1.40 1.37 1.33 1.32  11.1 12.4 10.4 13.2 10.2  0.00 0.00 0.00 0.00 0.00  9.48 9.49 9.48 9.52 9.52  -97 -86 -82 -52 -40  10.60 13.16 1400 16.55 16.75 | Initial 7/ 2.15 24 5  1705 1710 1720 1730 1740  6.17 6.18 6.19 6.19 6.19  1.143 1.10 1.37 1.33 1.32  11.1 12.4 10.4 13.2 10.2  0.00 0.00 0.00 0.00 0.00  9.18 9.19 9.18 9.52 9.52  -97 -86 -82 -52 -40  10.60 13.16 1400 16.55 16.75 | 1705 1710 1720 1730 1740  6.97 6.98 6.99 6.99  1.43 1.40 1.37 1.33 1.32  11.1 12.4 10.4 13.2 10.2  0.00 0.00 0.00 0.00 0.00  9.48 9.49 9.48 9.52 9.52  -97 -86 -82 -52 -40  10.60 13.16 1400 16.55 16.75 | Initial   7/   2.15   24   5 |

| Niα | 100  |  |
|-----|------|--|
| UFI | tes: |  |

culleet Sample @ 1745 samples not filtered.

| MALCOLM<br>PIRNIE |
|-------------------|
| PIRNIE            |

WELL NO.:

| PIRNIE<br>WE                                                                                                                                                                        | WELL PURGING AND SAMPLING LOG              |                           |        |          |          |                                         |                                        |       |             |                                                             | -             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------|--------|----------|----------|-----------------------------------------|----------------------------------------|-------|-------------|-------------------------------------------------------------|---------------|
|                                                                                                                                                                                     | 5 hved<br>4326<br>5/13/16<br>Pansk<br>Hand | s -045<br>dhe             |        | land     |          |                                         | _ STAFF:                               |       |             | nds                                                         |               |
|                                                                                                                                                                                     |                                            |                           | PURGIN | G and S/ | MPLIN    | 446000000000000000000000000000000000000 | M 000000000000000000000000000000000000 |       |             |                                                             |               |
| 1. Total Casing and Sceen I 2. Casing Internal Diameter 3. Water Level Below Top 4. Volume of Water in Casi 5. Photoionization Detector  (Vol =  Constants Well Diam. Vol. (gal/ft) | r (in.) of Casing ( ng (gal.) at Wellha    | (ft.) ed (ppm) 2) 2 x { ( |        |          | <u> </u> | )!<br>73 gu<br>5 рри                    | 1/ ½ 3<br>8"<br>2.60                   | •     | 1<br>3 .5 g | Low Flow tabilization C +/- 0.1 3% 10% if> 10% 3% +/- 10 mV | w<br>Criteria |
| PARAMETER                                                                                                                                                                           | 10                                         |                           | T 3    |          | CUMUL    | ATED VO                                 | DLUME P                                | URGED |             |                                                             |               |
| Gallons Time (24 hr. clock)                                                                                                                                                         | Initial<br>1550                            | 1600                      | 1610   | 1620     |          |                                         |                                        |       |             |                                                             |               |
| pH (s.u.)  Conductivity (mS/cm)                                                                                                                                                     | 0.757                                      | 6:89                      | 6.92   | 1.59     |          |                                         |                                        |       |             |                                                             |               |

|                         |         |       |       |       | · | <br> |          |              |
|-------------------------|---------|-------|-------|-------|---|------|----------|--------------|
| Gallons                 | Initial | 24    | 16    | 210   |   |      |          |              |
| Time (24 hr. clock)     | 1550    | 1600  | iblo  | 1620  |   |      | 1        | <del> </del> |
| pH (s.u.)               | 6.96    | 6.89  | 6.42  | 6.93  |   |      |          |              |
| Conductivity (mS/cm)    | 0:757   | 1.43  | 1.55  | 1.59  |   |      |          |              |
| Turbidity (NTUs)        | 14.1    | 4.3   | 2.9   | 1.6   |   |      |          |              |
| Dissolved Oxygen (mg/l) | 5.22    | 0,00  | 0.00  | 0100  |   |      |          |              |
| Temperature ( °C)       | 8.84    | 8-78  | 8.76  | 8.74  |   |      | <u> </u> |              |
| Eh (mV)                 | 24      | -101  | -127  | -143  |   |      |          |              |
| Depth to Water (ft.)    | 11,40   | 12,20 | 12.30 | 12-30 |   |      |          |              |
| Purge (Flow) Rate       |         |       |       |       |   |      |          |              |
| Appearance              | clear   | Clew  | Clear | cleu  |   |      |          |              |
|                         |         |       |       |       |   |      |          | j            |

| NJ. | n | 4 | c | • |
|-----|---|---|---|---|

Sulfor odor-1630 collected sample - didn't filter samples

MALCOLMA PIRNIE

## WELL PURGING AND SAMPLING LOG

WELL NO.:

| PROJECT TITLE:   | Shreehs Scr      | rap Yard          |              |
|------------------|------------------|-------------------|--------------|
| PROJECT NO.:     | 4320-045         |                   |              |
| DATE: _          | 5/13/10          | STAFF: D. SIMBLES |              |
| PURGE METHOD: _  | paristaltic pour | - Community       | _            |
| SAMPLE METHOD: _ | Hand loader      | TIME COLLECTED:   | <del>-</del> |

#### PURGING and SAMPLING DATA:

1. Total Casing and Sceen Length (ft.)

2. Casing Internal Diameter (in.).

3. Water Level Below Top of Casing (ft.)

4. Volume of Water in Casing (gal.)

5. Photoionization Detector at Wellhaed (ppm)

23.75

2,60841

1.81 cale

Low Flow
Stabilization Criteria

pH +/- 0.1

Cond. 3%

Turb. 10% if > 1 NTU

DO 10%

Temp. 3%

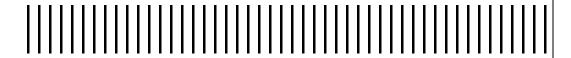
+/- 10 mV

15.32 otvatar

2,60 gals

| Constants for Calculating Borehole and Well Water Volumes |      |      |      |      |      |      |      |  |  |  |
|-----------------------------------------------------------|------|------|------|------|------|------|------|--|--|--|
| Well Diam.                                                | 1"   | 2"   | 3"   | 4"   | 5"   | 6"   | 8"   |  |  |  |
| Vol. (gal/ft)                                             | 0.04 | 0.17 | 0.38 | 0.66 | 1.04 | 1.50 | 2 60 |  |  |  |

 $(Vol = 0.0408 [(2)^2 x{(1) - (3)}]$ 


| PARAMETER                     |          | ACCUMULATED VOLUME PURGED |        |                                       |        |       |         |       |       |    |                                                  |
|-------------------------------|----------|---------------------------|--------|---------------------------------------|--------|-------|---------|-------|-------|----|--------------------------------------------------|
| Gallons                       | Initial  | >2                        | ~Z:5   |                                       | 24     | 2415  | 25.5    | 1     | -6.5  | -  |                                                  |
| Time (24 hr. clock)           | 1208     | 1219                      | 1235   | 1245                                  | 11.55  | 1309  | 1320    | 1323  | 1330  |    | <del> </del>                                     |
| pH (s.u.)                     | 6.74     | 7.10                      | 7,20   | 7,23                                  | 7,26   | 7.28  | 7.34    | 7.35  | 7.35  |    |                                                  |
| Conductivity (mS/cm)          | 1.32     | 1.25                      | 1.26   | 1.26                                  | 1.28   | 0.746 | 0:949   | 0.949 | 0.948 |    |                                                  |
| Turbidity (NTUs)              | 914      | 730                       | 63.7   | 54,2                                  | 4813   | 36.8  | 39.8    | 30,8  | 35.8  | -  | <del>                                     </del> |
| Dissolved Oxygen (mg/l)       | 1,99     | 0.00                      | 0.00   | 0.00                                  | 0.00   | 0,00  | dicu    | e;CV  | 200   |    |                                                  |
| Temperature ( <sup>0</sup> C) | 9.54     | 10:10                     | 10.25  | 10.46                                 | 10.86  | 11.52 | 10.98   | 10.96 | 10.48 |    |                                                  |
| Eh (mV)                       | 117      | 91                        | 86     | 77                                    | 70     | 70    | 69      | 69    | 70    |    |                                                  |
| Depth to Water (ft.)          | 8.43'    | 15:00                     | 18,00' | 18:501                                | 19100  | 1900' | 1950    | 1950  | 1980  |    |                                                  |
| Purge (Flow) Rate             |          | slowed                    | Slowed |                                       | slowed |       | ******* |       |       |    |                                                  |
| Appearance                    | clear    |                           | clew   |                                       |        | clea  |         |       |       | .= |                                                  |
|                               | <u> </u> |                           |        | · · · · · · · · · · · · · · · · · · · |        |       |         |       |       |    |                                                  |

Notes: Photo talka of Bailer | No Sheen @ vafer interface.
1330-collected samples

## New York State Department of Environmental Conservation Schreck's Scrapyard Groundwater Monitoring Report

# **Appendix B**

# Groundwater Analytical Report (Columbia Analytical Services)







June 01, 2010

Mr. James Richert Malcolm Pirnie, Incorporated 50 Fountain Plaza Suite 600 Buffalo, NY 14202

Laboratory Results for: Shrecks Ship Yard/4320-045

Dear Mr. Richert:

Enclosed are the results of the sample(s) submitted to our laboratory on May 14, 2010. For your reference, these analyses have been assigned our service request number R1002634.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 135. You may also contact me via email at JJaeger@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Janice Jaeger

Client Services Manager

Page 1 of 42

Service Request No: R1002634

#### **CASE NARRATIVE**

COMPANY: Malcolm Pirnie Shreck's Ship Yard Project #4320-045 SERVICE REQUEST #: R1002634

Malcolm Pirnie samples were collected on 05/13/10 and received at CAS on 05/14/10 in good condition. All Dissolved samples were filtered in the field.

#### **INORGANICS**

Five water samples were analyzed for a site specific list of Total Metals. One of these samples was also analyzed for the same list of Metals but on a filtered sample. Please see attached data pages for method numbers.

Site specific QC was not requested for these samples. All Blank spike recoveries were within limits.

The Laboratory blanks associated with these analyses were free of contamination.

No other analytical or QC problems were encountered.

#### **VOLATILE ORGANICS**

Six water samples were analyzed for a site specific list of Volatiles by Methods 8260B from SW-846.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits.

Site specific QC was not requested on these samples. All Reference spike recoveries were within limits.

MW-3 and MW-6R were analyzed at a 1:10 dilution due to the foaminess of the samples.

The Laboratory blanks associated with these samples were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

#### Malcolm Pirnie – service request #R1002634 – page 2

#### PCB's

Five water samples were analyzed for Total PCB's by method 8082 from SW-846. One of these samples was also analyzed on a filtered portion.

All initial and continuing calibration criteria were met.

All surrogate standard recoveries were within limits.

Site specific QC was not requested for these samples. All Blank spike/Blank spike duplicate and RPD's were within limits.

The Laboratory Blanks associated with these samples were free of contamination.

All samples were extracted and analyzed within required holding times.

No other analytical or QC problems were encountered.

### **CASE NARRATIVE**

This report contains analytical results for the following samples: Service Request Number: R1002634

| <u>Lab ID</u> | Client ID      |
|---------------|----------------|
| R1002634-001  | MW-7           |
| R1002634-002  | MW-7 DISSOLVED |
| R1002634-003  | MW-4           |
| R1002634-004  | MVV-3          |
| R1002634-005  | MW-6R          |
| R1002634-006  | MW-5R          |
| R1002634-007  | TRIP BLANK     |
|               |                |



#### REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- \* Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- Correlation coefficient for MSA is <0.995.</li>
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Pesticide/Aroclors: Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.



#### CAS/Rochester Lab ID # for State Certifications1

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Nebraska Accredited
Navy Facilities Engineering

Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

Navy Facilities Engineering Service Center Approved

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <a href="https://www.caslab.com">www.caslab.com</a>.

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: MW-7

R1002634-001

Service Request: R1002634
Date Collected: 5/13/10 1330

Date Received: 5/14/10

Basis: NA

#### **Inorganic Parameters**

| Analyte Name     | Method | Result Q | <u>Units</u> | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed |
|------------------|--------|----------|--------------|------|--------------------|-------------------|------------------|
| Aluminum, Total  | 6010B  | 3680     | μg/L         | 100  | I                  | 5/18/10           | 5/19/10 19:08    |
| Antimony, Total  | 6010B  | 60 U     | J μg/L       | 60   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Arsenic, Total   | 6010B  | 10 U     | J μg/L       | 10   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Barium, Total    | 6010B  | 37       | μg/L         | 20   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Beryllium, Total | 6010B  | 5.0 U    | l μg/L       | 5.0  | 1                  | 5/18/10           | 5/19/10 19:08    |
| Cadmium, Total   | 6010B  | 5.0 U    | l μg/L       | 5.0  | 1                  | 5/18/10           | 5/19/10 19:08    |
| Calcium, Total   | 6010B  | 105000   | μg/L         | 1000 | 1                  | 5/18/10           | 5/20/10 13:04    |
| Chromium, Total  | 6010B  | 10 U     | J μg/L       | 10   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Cobalt, Total    | 6010B  | 50 U     | И μg/L       | 50   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Copper, Total    | 6010B  | 20 U     | l μg/L       | 20   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Iron, Total      | 6010B  | 3150     | μg/L         | 100  | 1                  | 5/18/10           | 5/19/10 19:08    |
| Lead, Total      | 6010B  | 5.0 U    | μg/L         | 5.0  | 1                  | 5/18/10           | 5/19/10 19:08    |
| Magnesium, Total | 6010B  | 47100    | μg/L         | 1000 | 1                  | 5/18/10           | 5/19/10 19:08    |
| Manganese, Total | 6010B  | 71       | μg/L         | 10   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Mercury, Total   | 7470A  | 0.30 U   | μg/L         | 0.30 | 1                  | 5/19/10           | 5/19/10 14:42    |
| Nickel, Total    | 6010B  | 40 U     | μg/L         | 40   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Potassium, Total | 6010B  | 2900     | μg/L         | 2000 | 1                  | 5/18/10           | 5/20/10 13:04    |
| Selenium, Total  | 6010B  | 14       | μg/L         | 10   | 1                  | 5/18/10           | 5/21/10 13:53    |
| Silver, Total    | 6010B  | 10 U     | μg/L         | 10   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Sodium, Total    | 6010B  | 70100    | μg/L         | 1000 | 1                  | 5/18/10           | 5/20/10 13:04    |
| Thallium, Total  | 6010B  | 10 U     | μg/L         | 10   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Vanadium, Total  | 6010B  | 50 U     | 1.0          | 50   | 1                  | 5/18/10           | 5/19/10 19:08    |
| Zinc, Total      | 6010B  | 20 U     | μg/L         | 20   | 1                  | 5/18/10           | 5/19/10 19:08    |

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name:

MW-7

Lab Code:

R1002634-001

**Service Request:** R1002634 **Date Collected:** 5/13/10 1330 **Date Received:** 5/14/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                          | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction<br>Lot |        | is<br>Note |
|---------------------------------------|--------|---|-----|--------------------|-------------------|------------------|-------------------|--------|------------|
| 1,1,1-Trichloroethane (TCA)           | 1.0    | Ü | 1.0 | 1                  | NA                | 5/26/10 14:16    | )                 | 202233 |            |
| 1,1,2,2-Tetrachloroethane             | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:16    | ;                 | 202233 |            |
| 1,1,2-Trichloroethane                 | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    | ;                 | 202233 |            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| 1,1-Dichloroethane (1,1-DCA)          | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:16    | :<br>)            | 202233 |            |
| 1,1-Dichloroethene (1,1-DCE)          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    | i                 | 202233 |            |
| 1,2,4-Trichlorobenzene                | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    | -<br> -           | 202233 |            |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 14:16    | į                 | 202233 |            |
| 1,2-Dibromoethane                     | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    | ·<br>•            | 202233 |            |
| 1,2-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    | ,<br>i            | 202233 |            |
| 1,2-Dichloroethane                    | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| 1,2-Dichloropropane                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| 1,3-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    | -                 | 202233 |            |
| 1,4-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    | •                 | 202233 |            |
| 2-Butanone (MEK)                      | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 14:16    | ì                 | 202233 |            |
| 2-Hexanone                            | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 14:16    | ,                 | 202233 |            |
| 4-Methyl-2-pentanone                  | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 14:16    | ·<br>•            | 202233 |            |
| Acetone                               | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 14:16    | ,                 | 202233 |            |
| Benzene                               | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 | _          |
| Bromodichloromethane                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Bromoform                             | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Bromomethane                          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Carbon Disulfide                      | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Carbon Tetrachloride                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Chlorobenzene                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    | · ·               | 202233 |            |
| Chloroethane                          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Chloroform                            | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Chloromethane                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Cyclohexane                           | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Dibromochloromethane                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Dichlorodifluoromethane (CFC 12)      | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Dichloromethane                       | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |
| Ethylbenzene                          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:16    |                   | 202233 |            |

Analytical Report

Client:

Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Project: Sample Matrix:

Water

MW-7

viatrix: wat

Sample Name: Lab Code:

R1002634-001

Service Request: R1002634

Date Collected: 5/13/10 1330

Date Received: 5/14/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyta Nama                    | Danult O | MDI | Dilution | Date      | Date          | Extraction | •      |          |
|---------------------------------|----------|-----|----------|-----------|---------------|------------|--------|----------|
| Analyte Name                    | Result Q | MRL | Factor   | Extracted | Analyzed      | Lot        | Lot    | Note     |
| Isopropylbenzene (Cumene)       | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 | <u>"</u> |
| Methyl Acetate                  | 2.0 U    | 2.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| Methyl tert-Butyl Ether         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| Methylcyclohexane               | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| Styrene                         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| Tetrachloroethene (PCE)         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| Toluene                         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| Trichloroethene (TCE)           | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| Trichlorofluoromethane (CFC 11) | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| Vinyl Chloride                  | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | j          | 202233 |          |
| cis-1,2-Dichloroethene          | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| cis-1,3-Dichloropropene         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | j .        | 202233 |          |
| m,p-Xylenes                     | 2.0 U    | 2.0 | 1        | NA        | 5/26/10 14:16 | <u> </u>   | 202233 |          |
| o-Xylene                        | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 |          |
| trans-1,2-Dichloroethene        | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | j .        | 202233 |          |
| trans-1,3-Dichloropropene       | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 14:16 | 5          | 202233 | -        |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |                 |
|----------------------|------|-------------------|--------------------|------|-----------------|
| 4-Bromofluorobenzene | 94   | 85-122            | 5/26/10 14:16      | · ·  | <del>-</del> 1. |
| Dibromofluoromethane | 102  | 89-119            | 5/26/10 14:16      |      |                 |
| Toluene-d8           | 101  | 87-121            | 5/26/10 14:16      |      |                 |

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated

Sample Matrix:

Shrecks Ship Yard/4320-045

Sample Name:

Water MW-7

Lab Code:

R1002634-001

Service Request: R1002634
Date Collected: 5/13/10 1330

Date Received: 5/14/10

Units: μg/L Basis: NA

#### Polychlorinated Biphenyls (PCBs) by GC

Analytical Method: 8082

EPA 3510C

Prep Method:

| Analyte Name | Result | Q | MRL  | Dilution<br>Factor | Date<br>Extracted |               | Extraction<br>Lot | Analysis<br>Lot Note |
|--------------|--------|---|------|--------------------|-------------------|---------------|-------------------|----------------------|
| Aroclor 1016 | 0.94   | Ú | 0.94 | 1                  | 5/17/10           | 5/21/10 13:59 | 111532            | 201884               |
| Aroclor 1221 | 1.9    | U | 1.9  | 1                  | 5/17/10           | 5/21/10 13:59 | 111532            | 201884               |
| Aroclor 1232 | 0.94   | U | 0.94 | 1                  | 5/17/10           | 5/21/10 13:59 | 111532            | 201884               |
| Aroclor 1242 | 0.94   | U | 0.94 | 1                  | 5/17/10           | 5/21/10 13:59 | 111532            | 201884               |
| Aroclor 1248 | 0.94   | U | 0.94 | 1                  | 5/17/10           | 5/21/10 13:59 | 111532            | 201884               |
| Aroclor 1254 | 0.94   | U | 0.94 | 1                  | 5/17/10           | 5/21/10 13:59 | 111532            | 201884               |
| Aroclor 1260 | 0.94   | U | 0.94 | 1                  | 5/17/10           | 5/21/10 13:59 | 111532            | 201884               |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |  |
|----------------------|------|-------------------|--------------------|------|--|
| Decachlorobiphenyl   | 57   | 10-136            | 5/21/10 13:59      |      |  |
| Tetrachloro-m-xylene | 78   | 28-117            | 5/21/10 13:59      |      |  |

Analytical Report

Client:

Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Project: Sample Matrix:

Water

R1002634-002

Sample Name: Lab Code:

**MW-7 DISSOLVED** 

Service Request: R1002634 Date Collected: 5/13/10 1330 Date Received: 5/14/10

Basis: NA

## **Inorganic Parameters**

| Analyte Name         | Method        | Result | Q | Units | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed |
|----------------------|---------------|--------|---|-------|------|--------------------|-------------------|------------------|
| Aluminum, Dissolved  | 6010B         | 100    | U | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:14    |
| Antimony, Dissolved  | 6010B         | 60     | U | μg/L  | 60   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Arsenic, Dissolved   | 6010B         | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Barium, Dissolved    | 6010B         | 20     | Ü | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Beryllium, Dissolved | 6010B         | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:14    |
| Cadmium, Dissolved   | 6010B         | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:14    |
| Calcium, Dissolved   | 6010B         | 110000 |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:10    |
| Chromium, Dissolved  | 6010B         | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Cobalt, Dissolved    | 6010B         | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Copper, Dissolved    | 6010B         | 20     | Ü | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Iron, Dissolved      | 6010B         | 100    | U | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:14    |
| Lead, Dissolved      | 6010B         | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:14    |
| Magnesium, Dissolved | 6010B         | 48400  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/19/10 19:14    |
| Manganese, Dissolved | 6010B         | 19     |   | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Mercury, Dissolved   | 7470 <b>A</b> | 0.30   | U | μg/L  | 0.30 | 1                  | 5/19/10           | 5/19/10 14:43    |
| Nickel, Dissolved    | 6010B         | 40     | U | μg/L  | 40   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Potassium, Dissolved | 6010B         | 2000   | U | μg/L  | 2000 | 1                  | 5/18/10           | 5/20/10 13:10    |
| Selenium, Dissolved  | 6010B         | 12     |   | μg/L  | 10   | 1                  | 5/18/10           | 5/20/10 16:41    |
| Silver, Dissolved    | 6010B         | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Sodium, Dissolved    | 6010B         | 75900  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:10    |
| Thallium, Dissolved  | 6010B         | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Vanadium, Dissolved  | 6010B         | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:14    |
| Zinc, Dissolved      | 6010B         | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:14    |

| C     | ments |  |
|-------|-------|--|
| t ann | ments |  |

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code:

**MW-7 DISSOLVED** 

R1002634-002

Service Request: R1002634 **Date Collected:** 5/13/10 1330

Date Received: 5/14/10

Units: µg/L Basis: NA

#### Polychlorinated Biphenyls (PCBs) by GC

Analytical Method: 8082

Prep Method:

EPA 3510C

| Analyte Name | Result Q | MRL | Dilution<br>Factor | Date<br>Extracted |               | Extraction<br>Lot | Analysis<br>Lot Note |
|--------------|----------|-----|--------------------|-------------------|---------------|-------------------|----------------------|
| Aroclor 1016 | 1.0 U    | 1.0 | I                  | 5/17/10           | 5/21/10 14:29 | 111532            | 201884               |
| Aroclor 1221 | 2.0 U    | 2.0 | 1                  | 5/17/10           | 5/21/10 14:29 | 111532            | 201884               |
| Aroclor 1232 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 14:29 | 111532            | 201884               |
| Aroclor 1242 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 14:29 | 111532            | 201884               |
| Aroclor 1248 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 14:29 | 111532            | 201884               |
| Aroclor 1254 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 14:29 | 111532            | 201884               |
| Aroclor 1260 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 14:29 | 111532            | 201884               |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note        |  |
|----------------------|------|-------------------|--------------------|-------------|--|
| Decachlorobiphenyl   | 105  | 10-136            | 5/21/10 14:29      | <del></del> |  |
| Tetrachloro-m-xylene | 76   | 28-117            | 5/21/10 14:29      |             |  |

#### Analytical Report

Client:

Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Project: Sample Matrix:

Water

Sample Name: Lab Code: MW-4

R1002634-003

Service Request: R1002634

Date Collected: 5/13/10 1500

Date Received: 5/14/10

Basis: NA

#### **Inorganic Parameters**

| Analyte Name     | Method | Result | Q | Units | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed |
|------------------|--------|--------|---|-------|------|--------------------|-------------------|------------------|
| Aluminum, Total  | 6010B  | 740    |   | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:20    |
| Antimony, Total  | 6010B  | 60     | U | μg/L  | 60   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Arsenic, Total   | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Barium, Total    | 6010B  | 35     |   | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Beryllium, Total | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:20    |
| Cadmium, Total   | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:20    |
| Calcium, Total   | 6010B  | 44300  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:16    |
| Chromium, Total  | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Cobalt, Total    | 6010B  | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Copper, Total    | 6010B  | 20     | U | μg/L  | 20   | I                  | 5/18/10           | 5/19/10 19:20    |
| Iron, Total      | 6010B  | 660    |   | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:20    |
| Lead, Total      | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:20    |
| Magnesium, Total | 6010B  | 5800   |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/19/10 19:20    |
| Manganese, Total | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Mercury, Total   | 7470A  | 0.30   | U | μg/L  | 0.30 | 1                  | 5/19/10           | 5/19/10 14:49    |
| Nickel, Total    | 6010B  | 40     | U | μg/L  | 40   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Potassium, Total | 6010B  | 2500   |   | μg/L  | 2000 | 1                  | 5/18/10           | 5/20/10 13:16    |
| Selenium, Total  | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/20/10 16:47    |
| Silver, Total    | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Sodium, Total    | 6010B  | 11700  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:16    |
| Thallium, Total  | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Vanadium, Total  | 6010B  | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:20    |
| Zinc, Total      | 6010B  | 61     |   | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:20    |

| C   |     | 4   |  |
|-----|-----|-----|--|
| Con | ımę | nts |  |

#### Analytical Report

Client:

Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Project: Sample Matrix:

Water

Sample Name: Lab Code: MW-4 R1002634-003 Analytical Report

Service Request: R1002634

Date Collected: 5/13/10 1500

Date Received: 5/14/10

Units: µg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                          | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction Analysis<br>Lot Lot |             |
|---------------------------------------|--------|---|-----|--------------------|-------------------|------------------|--------------------------------|-------------|
| 1,1,1-Trichloroethane (TCA)           | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,1,2,2-Tetrachloroethane             | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,1,2-Trichloroethane                 | 1.0    | U | 1.0 | I                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,1-Dichloroethane (1,1-DCA)          | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,1-Dichloroethene (1,1-DCE)          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,2,4-Trichlorobenzene                | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 2.0    | U | 2.0 | 1                  | 'nΑ               | 5/26/10 14:47    | 202233                         |             |
| 1,2-Dibromoethane                     | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,2-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,2-Dichloroethane                    | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,2-Dichloropropane                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,3-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 1,4-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 2-Butanone (MEK)                      | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 2-Hexanone                            | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| 4-Methyl-2-pentanone                  | 5.0    |   | 5.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Acetone                               | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Benzene                               | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Bromodichloromethane                  | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Bromoform                             | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Bromomethane                          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Carbon Disulfide                      | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Carbon Tetrachloride                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Chlorobenzene                         | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Chloroethane                          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Chloroform                            | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         | -           |
| Chloromethane                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         | <del></del> |
| Cyclohexane                           | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Dibromochloromethane                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Dichlorodifluoromethane (CFC 12)      | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Dichloromethane                       | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |
| Ethylbenzene                          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 202233                         |             |

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: MW-4

R1002634-003

Service Request: R1002634

Date Collected: 5/13/10 1500

Date Received: 5/14/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                    | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction<br>Lot                     |        | s<br>Note |
|---------------------------------|--------|---|-----|--------------------|-------------------|------------------|---------------------------------------|--------|-----------|
| Isopropylbenzene (Cumene)       | 1.0    | Ū | 1.0 | 1                  | NA                | 5/26/10 14:47    |                                       | 202233 |           |
| Methyl Acetate                  | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 14:47    |                                       | 202233 |           |
| Methyl tert-Butyl Ether         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | ,                                     | 202233 |           |
| Methylcyclohexane               | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    |                                       | 202233 |           |
| Styrene                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | ,                                     | 202233 |           |
| Tetrachloroethene (PCE)         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | ,                                     | 202233 |           |
| Toluene                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    |                                       | 202233 |           |
| Trichloroethene (TCE)           | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | ,                                     | 202233 |           |
| Trichlorofluoromethane (CFC 11) | 1.0    | U | 1.0 | I                  | NA                | 5/26/10 14:47    | 1                                     | 202233 |           |
| Vinyl Chloride                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    |                                       | 202233 |           |
| cis-1,2-Dichloroethene          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | ,                                     | 202233 |           |
| cis-1,3-Dichloropropene         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | •                                     | 202233 |           |
| m,p-Xylenes                     | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 14:47    |                                       | 202233 |           |
| o-Xylene                        | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | •                                     | 202233 |           |
| trans-1,2-Dichloroethene        | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | 1                                     | 202233 |           |
| trans-1,3-Dichloropropene       | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 14:47    | · · · · · · · · · · · · · · · · · · · | 202233 |           |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |                                       |
|----------------------|------|-------------------|--------------------|------|---------------------------------------|
| 4-Bromofluorobenzene | 92   | 85-122            | 5/26/10 14:47      |      | · · · · · · · · · · · · · · · · · · · |
| Dibromofluoromethane | 103  | 89-119            | 5/26/10 14:47      |      |                                       |
| Toluene-d8           | 102  | 87-121            | 5/26/10 14:47      |      |                                       |

Analytical Report

Client:

Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Project: Sample Matrix:

Water

Date Collected: 5/13/10 1500 Date Received: 5/14/10

Service Request: R1002634

Sample Name:

MW-4

Lab Code:

R1002634-003

Units: µg/L Basis: NA

#### Polychlorinated Biphenyls (PCBs) by GC

Analytical Method: 8082

Prep Method:

EPA 3510C

| Analyte Name | Result Q | MRL  | Dilution<br>Factor | Date<br>Extracted |               | Extraction<br>Lot | Analysis<br>Lot Note |
|--------------|----------|------|--------------------|-------------------|---------------|-------------------|----------------------|
| Aroclor 1016 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:00 | 111532            | 201884               |
| Aroclor 1221 | 1.9 U    | 1.9  | 1                  | 5/17/10           | 5/21/10 17:00 | 111532            | 201884               |
| Aroclor 1232 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:00 | 111532            | 201884               |
| Aroclor 1242 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:00 | 111532            | 201884               |
| Aroclor 1248 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:00 | 111532            | 201884               |
| Aroclor 1254 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:00 | 111532            | 201884               |
| Aroclor 1260 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:00 | 111532            | 201884               |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed | Q | Note |
|----------------------|------|-------------------|------------------|---|------|
| Decachlorobiphenyl   | 80   | 10-136            | 5/21/10 17:00    |   |      |
| Tetrachloro-m-xylene | 77   | 28-117            | 5/21/10 17:00    |   |      |

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated

Sample Matrix:

Shrecks Ship Yard/4320-045 Water

Sample Name:

MW-3

Lab Code:

R1002634-004

Service Request: R1002634

Date Collected: 5/13/10 1545

Date Received: 5/14/10

Basis: NA

#### **Inorganic Parameters**

| Analyte Name     | Method | Result | Q | Units | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed |
|------------------|--------|--------|---|-------|------|--------------------|-------------------|------------------|
| Aluminum, Total  | 6010B  | 100    | U | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:26    |
| Antimony, Total  | 6010B  | 60     | U | μg/L  | 60   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Arsenic, Total   | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Barium, Total    | 6010B  | 115    |   | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Beryllium, Total | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:26    |
| Cadmium, Total   | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:26    |
| Calcium, Total   | 6010B  | 184000 |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:23    |
| Chromium, Total  | 6010B  | 10     | U | μg/L  | 10   | I                  | 5/18/10           | 5/19/10 19:26    |
| Cobalt, Total    | 6010B  | 50     | U | μg/L  | 50   | I                  | 5/18/10           | 5/19/10 19:26    |
| Copper, Total    | 6010B  | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Iron, Total      | 6010B  | 370    |   | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:26    |
| Lead, Total      | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:26    |
| Magnesium, Total | 6010B  | 24800  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/19/10 19:26    |
| Manganese, Total | 6010B  | 179    |   | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Mercury, Total   | 7470A  | 0.30   | U | μg/L  | 0.30 | 1                  | 5/19/10           | 5/19/10 14:51    |
| Nickel, Total    | 6010B  | 40     | U | μg/L  | 40   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Potassium, Total | 6010B  | 3800   |   | μg/L  | 2000 | 1                  | 5/18/10           | 5/20/10 13:23    |
| Selenium, Total  | 6010B  | 11     |   | μg/L  | 10   | 1                  | 5/18/10           | 5/20/10 16:53    |
| Silver, Total    | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Sodium, Total    | 6010B  | 29900  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:23    |
| Thallium, Total  | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Vanadium, Total  | 6010B  | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:26    |
| Zinc, Total      | 6010B  | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:26    |

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: MW-3

R1002634-004

Service Request: R1002634

Date Collected: 5/13/10 1545

Date Received: 5/14/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

|                                       |        |   |     | 30.01 c            | TD. (             | <b></b>          | <b></b>                       |            |
|---------------------------------------|--------|---|-----|--------------------|-------------------|------------------|-------------------------------|------------|
| Analyte Name                          | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction Analysi<br>Lot Lot | is<br>Note |
| 1,1,1-Trichloroethane (TCA)           | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,1,2,2-Tetrachloroethane             | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    |                               |            |
| 1,1,2-Trichloroethane                 | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,1-Dichloroethane (1,1-DCA)          | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    |                               |            |
| 1,1-Dichloroethene (1,1-DCE)          | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,2,4-Trichlorobenzene                | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 20     | U | 20  | 10                 | NA                | 5/26/10 15:18    |                               |            |
| 1,2-Dibromoethane                     | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,2-Dichlorobenzene                   | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,2-Dichloroethane                    | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,2-Dichloropropane                   | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,3-Dichlorobenzene                   | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 1,4-Dichlorobenzene                   | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 2-Butanone (MEK)                      | 50     | U | 50  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 2-Hexanone                            | 50     |   | 50  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| 4-Methyl-2-pentanone                  | 50     |   | 50  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Acetone                               | 50     | U | 50  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Benzene                               | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Bromodichloromethane                  | 10     |   | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Bromoform                             | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Bromomethane                          | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Carbon Disulfide                      | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    |                               |            |
| Carbon Tetrachloride                  | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Chlorobenzene                         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Chloroethane                          | 10     |   | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Chloroform                            | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Chloromethane                         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Cyclohexane                           | 10     |   | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Dibromochloromethane                  | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Dichlorodifluoromethane (CFC 12)      | 10     |   | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Dichloromethane                       | 10     |   | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |
| Ethylbenzene                          | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 202233                        |            |

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: MW-3

R1002634-004

Service Request: R1002634
Date Collected: 5/13/10 1545

Date Received: 5/14/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                    | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction A | •      | s<br>Note |
|---------------------------------|--------|---|-----|--------------------|-------------------|------------------|--------------|--------|-----------|
| Isopropylbenzene (Cumene)       | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    |              | 202233 |           |
| Methyl Acetate                  | 20     | U | 20  | 10                 | NA                | 5/26/10 15:18    | 3            | 202233 |           |
| Methyl tert-Butyl Ether         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 3            | 202233 |           |
| Methylcyclohexane               | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | }            | 202233 |           |
| Styrene                         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | }            | 202233 |           |
| Tetrachloroethene (PCE)         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 3            | 202233 |           |
| Toluene                         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | }            | 202233 |           |
| Trichloroethene (TCE)           | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | }            | 202233 |           |
| Trichlorofluoromethane (CFC 11) | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | ;            | 202233 |           |
| Vinyl Chloride                  | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    |              | 202233 |           |
| cis-1,2-Dichloroethene          | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | 3            | 202233 |           |
| cis-1,3-Dichloropropene         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | ;            | 202233 |           |
| m,p-Xylenes                     | 20     | U | 20  | 10                 | NA                | 5/26/10 15:18    |              | 202233 |           |
| o-Xylene                        | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | }            | 202233 |           |
| trans-1,2-Dichloroethene        | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    | }            | 202233 |           |
| trans-1,3-Dichloropropene       | 10     | U | 10  | 10                 | NA                | 5/26/10 15:18    |              | 202233 |           |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |
|----------------------|------|-------------------|--------------------|------|
| 4-Bromofluorobenzene | 95   | 85-122            | 5/26/10 15:18      |      |
| Dibromofluoromethane | 102  | 89-119            | 5/26/10 15:18      |      |
| Toluene-d8           | 102  | 87-121            | 5/26/10 15:18      |      |

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code:

MW-3

R1002634-004

Service Request: R1002634 **Date Collected:** 5/13/10 1545

Date Received: 5/14/10

Units: µg/L Basis: NA

#### Polychlorinated Biphenyls (PCBs) by GC

Analytical Method: 8082

EPA 3510C

Prep Method:

| Analyte Name | Result Q | MRL  | Dilution<br>Factor | Date<br>Extracted |               | Extraction<br>Lot | Analysis<br>Lot Note |
|--------------|----------|------|--------------------|-------------------|---------------|-------------------|----------------------|
| Aroclor 1016 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:30 | 111532            | 201884               |
| Aroclor 1221 | 1.9 U    | 1.9  | 1                  | 5/17/10           | 5/21/10 17:30 | 111532            | 201884               |
| Aroclor 1232 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:30 | 111532            | 201884               |
| Aroclor 1242 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:30 | 111532            | 201884               |
| Aroclor 1248 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:30 | 111532            | 201884               |
| Aroclor 1254 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:30 | 111532            | 201884               |
| Aroclor 1260 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 17:30 | 111532            | 201884               |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |  |
|----------------------|------|-------------------|--------------------|------|--|
| Decachlorobiphenyl   | 93   | 10-136            | 5/21/10 17:30      |      |  |
| Tetrachloro-m-xylene | 83   | 28-117            | 5/21/10 17:30      |      |  |

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: MW-6R

R1002634-005

Service Request: R1002634

Date Collected: 5/13/10 1630

Date Received: 5/14/10

Basis: NA

#### **Inorganic Parameters**

| Analyte Name     | Method        | Result | Q | Units | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed |
|------------------|---------------|--------|---|-------|------|--------------------|-------------------|------------------|
| Aluminum, Total  | 6010B         | 190    |   | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:32    |
| Antimony, Total  | 6010B         | 60     | U | μg/L  | 60   | I                  | 5/18/10           | 5/19/10 19:32    |
| Arsenic, Total   | 6010B         | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Barium, Total    | 6010B         | 185    |   | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Beryllium, Total | 6010B         | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:32    |
| Cadmium, Total   | 6010B         | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:32    |
| Calcium, Total   | 6010B         | 182000 |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:29    |
| Chromium, Total  | 6010B         | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Cobalt, Total    | 6010B         | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Copper, Total    | 6010B         | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Iron, Total      | 6010B         | 380    |   | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:32    |
| Lead, Total      | 6010B         | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:32    |
| Magnesium, Total | 6010B         | 31400  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/19/10 19:32    |
| Manganese, Total | 6010B         | 283    |   | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Mercury, Total   | <b>7</b> 470A | 0.30   | U | μg/L  | 0.30 | 1                  | 5/19/10           | 5/19/10 14:52    |
| Nickel, Total    | 6010B         | 40     | U | μg/L  | 40   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Potassium, Total | 6010B         | 5900   |   | μg/L  | 2000 | 1                  | 5/18/10           | 5/20/10 13:29    |
| Selenium, Total  | 6010B         | 14     |   | μg/L  | 10   | 1                  | 5/18/10           | 5/20/10 16:59    |
| Silver, Total    | 6010B         | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Sodium, Total    | 6010B         | 87900  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:29    |
| Thallium, Total  | 6010B         | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Vanadium, Total  | 6010B         | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:32    |
| Zinc, Total      | 6010B         | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:32    |

| Comn | nents |
|------|-------|
|------|-------|

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: MW-6R R1002634-005 **Service Request:** R1002634 **Date Collected:** 5/13/10 1630 **Date Received:** 5/14/10

Units: µg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| 1,1,1-Trichloroethane (TCA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A L 4. N.T                       | <b></b> | _ | 1507 | Dilution | Date      |               | Extraction Analysi |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|---|------|----------|-----------|---------------|--------------------|------|
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analyte Name                     |         |   | MRL  | Factor   | Extracted | Analyzed      | Lot Lot            | Note |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |         |   |      |          |           |               |                    |      |
| 1.1,2-Trichloro-1,2,2-trifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |         |   |      |          |           |               |                    |      |
| 1,1-Dichloroethane (1,1-DCA) 10 U 10 10 NA 5/26/10 15:49 202233 1,1-Dichloroethane (1,1-DCE) 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichloroethane (1,1-DCE) 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichloroethane 20 U 20 10 NA 5/26/10 15:49 202233 1,2-Dichloroethane 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichloroethane 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichloroethane 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,3-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,3-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,3-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 2-Butanone (MEK) 50 U 50 10 NA 5/26/10 15:49 202233 2-Butanone (MEK) 50 U 50 10 NA 5/26/10 15:49 202233 2-Hexanone 50 U 50 10 NA 5/26/10 15:49 202233 2-Hexanone 50 U 50 10 NA 5/26/10 15:49 202233 3-Acetone 50 U 50 10 NA 5/26/10 15:49 202233 3-Benzene 10 U 10 10 NA 5/26/10 15:49 202233 3-Bromodichloromethane 10 U 10 NA 5/26/10 15:49 202233 3-Bromoform 10 U 10 NA 5/26/10 15:49 202233 |                                  | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| 1,1-Dichloroethene (1,1-DCE)       10 U       10       10       NA       5/26/10 15:49       202233         1,2,4-Trichlorobenzene       10 U       10       10       NA       5/26/10 15:49       202233         1,2-Dibromo-3-chloropropane       20 U       20       10       NA       5/26/10 15:49       202233         1,2-Dibromoethane       10 U       10       10       NA       5/26/10 15:49       202233         1,2-Dichloroethane       10 U       10       10       NA       5/26/10 15:49       202233         1,2-Dichloroethane       10 U       10       10       NA       5/26/10 15:49       202233         1,2-Dichloroethane       10 U       10       10       NA       5/26/10 15:49       202233         1,2-Dichlorobenzene       10 U       10       10       NA       5/26/10 15:49       202233         1,3-Dichlorobenzene       10 U       10       10       NA       5/26/10 15:49       202233         1,4-Dichlorobenzene       10 U       10       NA       5/26/10 15:49       202233         2-Hexanone       50 U       50       10       NA       5/26/10 15:49       202233         2-Hexanone       50 U       50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |         |   |      |          | NA        | 5/26/10 15:49 | 202233             |      |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |         |   |      | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| 1,2-Dibromo-3-chloropropane   20 U 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1-Dichloroethene (1,1-DCE)     | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| (DBCP) 1,2-Dibromoethane 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichloropropane 10 U 10 10 NA 5/26/10 15:49 202233 1,2-Dichloropropane 10 U 10 10 NA 5/26/10 15:49 202233 1,3-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,3-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,4-Dichlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 1,4-Dichlorobenzene 10 U 10 NA 5/26/10 15:49 202233 1,4-Dichlorobenzene 10 U 10 NA 5/26/10 15:49 202233 2-Hexanone 50 U 50 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 50 U 50 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 50 U 50 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 50 U 50 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 50 U 50 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 50 U 50 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 50 U 50 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 10 U 10 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 10 U 10 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 10 U 10 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 10 U 10 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 10 U 10 NA 5/26/10 15:49 | 1,2,4-Trichlorobenzene           | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| 1,2-Dibromoethane         10 U         10         10         NA         5/26/10 15:49         202233           1,2-Dichlorobenzene         10 U         10         10         NA         5/26/10 15:49         202233           1,2-Dichlorobenzene         10 U         10         10         NA         5/26/10 15:49         202233           1,2-Dichloropropane         10 U         10         10         NA         5/26/10 15:49         202233           1,3-Dichlorobenzene         10 U         10         10         NA         5/26/10 15:49         202233           1,4-Dichlorobenzene         10 U         10         10         NA         5/26/10 15:49         202233           2-Butanone (MEK)         50 U         50         10         NA         5/26/10 15:49         202233           2-Hexanone         50 U         50         10         NA         5/26/10 15:49         202233           2-Hexanone         50 U         50         10         NA         5/26/10 15:49         202233           2-Hexanone         50 U         50         10         NA         5/26/10 15:49         202233           2-Hexanone         50 U         50         10         NA         5/26/10 15:49 </td <td></td> <td>20</td> <td>U</td> <td>20</td> <td>10</td> <td>NA</td> <td>5/26/10 15:49</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | 20      | U | 20   | 10       | NA        | 5/26/10 15:49 |                    |      |
| 1,2-Dichloroethane         10 U         10 U         10 NA         5/26/10 15:49         202233           1,2-Dichloropropane         10 U         10 U         10 NA         5/26/10 15:49         202233           1,3-Dichlorobenzene         10 U         10 NA         5/26/10 15:49         202233           1,4-Dichlorobenzene         10 U         10 NA         5/26/10 15:49         202233           1,4-Dichlorobenzene         10 U         10 NA         5/26/10 15:49         202233           2-Butanone (MEK)         50 U         50 U         10 NA         5/26/10 15:49         202233           2-Hexanone         50 U         50 U         10 NA         5/26/10 15:49         202233           4-Methyl-2-pentanone         50 U         50 U         10 NA         5/26/10 15:49         202233           Acetone         50 U         50 U         10 NA         5/26/10 15:49         202233           Benzene         10 U         10 U         10 NA         5/26/10 15:49         202233           Bromodichloromethane         10 U         10 NA         5/26/10 15:49         202233           Bromoform         10 U         10 NA         5/26/10 15:49         202233           Carbon Disulfide         10 U <td></td> <td>10</td> <td>U</td> <td>10</td> <td>10</td> <td>NA</td> <td>5/26/10 15:49</td> <td>202233</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| 1,2-Dichloropropane         10 U         10         10 NA         5/26/10 15:49         202233           1,3-Dichlorobenzene         10 U         10         10 NA         5/26/10 15:49         202233           1,4-Dichlorobenzene         10 U         10         10 NA         5/26/10 15:49         202233           2-Butanone (MEK)         50 U         50         10 NA         5/26/10 15:49         202233           2-Hexanone         50 U         50         10 NA         5/26/10 15:49         202233           4-Methyl-2-pentanone         50 U         50         10 NA         5/26/10 15:49         202233           Acctone         50 U         50         10 NA         5/26/10 15:49         202233           Benzene         10 U         10         NA         5/26/10 15:49         202233           Bromodichloromethane         10 U         10         NA         5/26/10 15:49         202233           Bromoform         10 U         10         NA         5/26/10 15:49         202233           Bromomethane         10 U         10         NA         5/26/10 15:49         202233           Carbon Disulfide         10 U         10         NA         5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dichlorobenzene              | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| 1,3-Dichlorobenzene         10 U         10         10         NA         \$/26/10 15:49         202233           1,4-Dichlorobenzene         10 U         10         10         NA         \$/26/10 15:49         202233           2-Butanone (MEK)         50 U         50         10         NA         \$/26/10 15:49         202233           2-Hexanone         50 U         50         10         NA         \$/26/10 15:49         202233           4-Methyl-2-pentanone         50 U         50         10         NA         \$/26/10 15:49         202233           Acetone         50 U         50         10         NA         \$/26/10 15:49         202233           Benzene         10 U         10         10         NA         \$/26/10 15:49         202233           Bromoform         10 U         10         10         NA         \$/26/10 15:49         202233           Bromoform         10 U         10         10         NA         \$/26/10 15:49         202233           Bromomethane         10 U         10         10         NA         \$/26/10 15:49         202233           Carbon Disulfide         10 U         10         NA         \$/26/10 15:49         202233 <t< td=""><td></td><td>10</td><td>U</td><td>10</td><td>10</td><td>NA</td><td>5/26/10 15:49</td><td>202233</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| 1,4-Dichlorobenzene       10 U 10       10 NA 5/26/10 15:49       202233         2-Butanone (MEK)       50 U 50       10 NA 5/26/10 15:49       202233         2-Hexanone       50 U 50       10 NA 5/26/10 15:49       202233         4-Methyl-2-pentanone       50 U 50       10 NA 5/26/10 15:49       202233         Acetone       50 U 50       10 NA 5/26/10 15:49       202233         Benzene       10 U 10       10 NA 5/26/10 15:49       202233         Bromodichloromethane       10 U 10       10 NA 5/26/10 15:49       202233         Bromoform       10 U 10       10 NA 5/26/10 15:49       202233         Bromomethane       10 U 10       10 NA 5/26/10 15:49       202233         Bromomethane       10 U 10       10 NA 5/26/10 15:49       202233         Carbon Disulfide       10 U 10       10 NA 5/26/10 15:49       202233         Chlorobenzene       10 U 10       10 NA 5/26/10 15:49       202233         Chlorobenzene       10 U 10       10 NA 5/26/10 15:49       202233         Chloroform       10 U 10       10 NA 5/26/10 15:49       202233         Chloroform       10 U 10       10 NA 5/26/10 15:49       202233         Chloromethane       10 U 10       10 NA 5/26/10 15:49       202233 <td>1,2-Dichloropropane</td> <td>10</td> <td>U</td> <td>10</td> <td>10</td> <td>NA</td> <td>5/26/10 15:49</td> <td>202233</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dichloropropane              | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| 1,4-Dichlorobenzene       10 U       10       10 NA       5/26/10 15:49       202233         2-Butanone (MEK)       50 U       50       10 NA       5/26/10 15:49       202233         2-Hexanone       50 U       50       10 NA       5/26/10 15:49       202233         4-Methyl-2-pentanone       50 U       50       10 NA       5/26/10 15:49       202233         Acetone       50 U       50       10 NA       5/26/10 15:49       202233         Benzene       10 U       10       10 NA       5/26/10 15:49       202233         Bromodichloromethane       10 U       10       10 NA       5/26/10 15:49       202233         Bromoform       10 U       10       10 NA       5/26/10 15:49       202233         Bromomethane       10 U       10       10 NA       5/26/10 15:49       202233         Bromomethane       10 U       10       10 NA       5/26/10 15:49       202233         Carbon Disulfide       10 U       10       10 NA       5/26/10 15:49       202233         Chlorobenzene       10 U       10       10 NA       5/26/10 15:49       202233         Chloroform       10 U       10       10 NA       5/26/10 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-Dichlorobenzene              | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| 2-Hexanone 50 U 50 10 NA 5/26/10 15:49 202233 4-Methyl-2-pentanone 50 U 50 10 NA 5/26/10 15:49 202233 Acetone 50 U 50 10 NA 5/26/10 15:49 202233 Benzene 10 U 10 10 NA 5/26/10 15:49 202233 Bromodichloromethane 10 U 10 10 NA 5/26/10 15:49 202233 Bromoform 10 U 10 10 NA 5/26/10 15:49 202233 Bromomethane 10 U 10 NA 5/26/10 15:49 202233 Bromomethane 10 U 10 NA 5/26/10 15:49 202233 Carbon Disulfide 10 U 10 NA 5/26/10 15:49 202233 Carbon Tetrachloride 10 U 10 NA 5/26/10 15:49 202233 Chlorobenzene 10 U 10 NA 5/26/10 15:49 202233 Chlorobenzene 10 U 10 NA 5/26/10 15:49 202233 Chloroform 10 U 10 NA 5/26/10 15:49 202233 Chloromethane 10 U 10 NA 5/26/10 15:49 202233 Dichlorodifluoromethane (CFC 12) 10 U 10 NA 5/26/10 15:49 202233 Dichlorodifluoromethane 10 U 10 NA 5/26/10 15:49 202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,4-Dichlorobenzene              | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 |                    |      |
| 4-Methyl-2-pentanone         50 U         50 U         50 U         10 NA         \$/26/10 15:49         202233           Acetone         50 U         50 U         50 U         10 NA         \$/26/10 15:49         202233           Benzene         10 U         10 III NA         \$/26/10 15:49         202233         202233           Bromodichloromethane         10 U         10 III NA         \$/26/10 15:49         202233           Bromoform         10 U         10 III NA         \$/26/10 15:49         202233           Bromomethane         10 U         10 III NA         \$/26/10 15:49         202233           Carbon Disulfide         10 U         10 III NA         \$/26/10 15:49         202233           Carbon Tetrachloride         10 U         10 III NA         \$/26/10 15:49         202233           Chlorobenzene         10 U         10 III NA         \$/26/10 15:49         202233           Chlorotethane         10 U         10 III NA         \$/26/10 15:49         202233           Chloroform         10 U         10 II NA         \$/26/10 15:49         202233           Chloromethane         10 U         10 II NA         \$/26/10 15:49         202233           Cyclohexane         10 U         10 II NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Butanone (MEK)                 | 50      | U | 50   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Acetone         50 U         50 U         50 II         NA         5/26/10 15:49         202233           Benzene         10 U         10 II         10 NA         5/26/10 15:49         202233           Bromodichloromethane         10 U         10 II         10 NA         5/26/10 15:49         202233           Bromoform         10 U         10 II         10 NA         5/26/10 15:49         202233           Bromomethane         10 U         10 II         10 NA         5/26/10 15:49         202233           Carbon Disulfide         10 U         10 II         10 NA         5/26/10 15:49         202233           Carbon Tetrachloride         10 U         10 II         10 NA         5/26/10 15:49         202233           Chlorobenzene         10 U         10 II         10 NA         5/26/10 15:49         202233           Chlorothane         10 U         10 II         10 NA         5/26/10 15:49         202233           Chloroform         10 U         10 II         10 NA         5/26/10 15:49         202233           Chloromethane         10 U         10 II         10 NA         5/26/10 15:49         202233           Dibromochloromethane         10 U         10 II         10 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Hexanone                       | 50      | U | 50   | 10       | NA        | 5/26/10 15:49 | 202233             | -    |
| Benzene 10 U 10 10 NA 5/26/10 15:49 202233 Bromodichloromethane 10 U 10 10 NA 5/26/10 15:49 202233 Bromoform 10 U 10 10 NA 5/26/10 15:49 202233 Bromomethane 10 U 10 10 NA 5/26/10 15:49 202233 Carbon Disulfide 10 U 10 10 NA 5/26/10 15:49 202233 Carbon Tetrachloride 10 U 10 10 NA 5/26/10 15:49 202233 Chlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 Chlorothane 10 U 10 10 NA 5/26/10 15:49 202233 Chlorothane 10 U 10 10 NA 5/26/10 15:49 202233 Chloroform 10 U 10 NA 5/26/10 15:49 202233 Chloromethane 10 U 10 NA 5/26/10 15:49 202233 Dibhoromethane (CFC 12) 10 U 10 NA 5/26/10 15:49 202233 Dichloromethane (CFC 12) 10 U 10 NA 5/26/10 15:49 202233 Dichloromethane 10 U 10 NA 5/26/10 15:49 202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |         |   |      | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Bromodichloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Bromoform         10 U         10         10 NA         5/26/10 15:49         202233           Bromomethane         10 U         10         10 NA         5/26/10 15:49         202233           Carbon Disulfide         10 U         10         10 NA         5/26/10 15:49         202233           Carbon Tetrachloride         10 U         10         10 NA         5/26/10 15:49         202233           Chlorobenzene         10 U         10         10 NA         5/26/10 15:49         202233           Chloroethane         10 U         10         10 NA         5/26/10 15:49         202233           Chloroform         10 U         10         10 NA         5/26/10 15:49         202233           Chloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Cyclohexane         10 U         10         10 NA         5/26/10 15:49         202233           Dibromochloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Dichlorodifluoromethane         10 U         10         10 NA         5/26/10 15:49         202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acetone                          | 50      | U | 50   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Bromoform         10 U         10         10 NA         5/26/10 15:49         202233           Bromomethane         10 U         10         10 NA         5/26/10 15:49         202233           Carbon Disulfide         10 U         10         10 NA         5/26/10 15:49         202233           Carbon Tetrachloride         10 U         10         10 NA         5/26/10 15:49         202233           Chlorobenzene         10 U         10         10 NA         5/26/10 15:49         202233           Chloroethane         10 U         10         10 NA         5/26/10 15:49         202233           Chloroform         10 U         10         10 NA         5/26/10 15:49         202233           Chloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Cyclohexane         10 U         10         10 NA         5/26/10 15:49         202233           Dibromochloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Dichlorodifluoromethane         10 U         10         10 NA         5/26/10 15:49         202233           Dichloromethane         10 U         10         10 NA         5/26/10 15:49         202233 </td <td></td> <td>10</td> <td>U</td> <td>10</td> <td>10</td> <td>NA</td> <td>5/26/10 15:49</td> <td>202233</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Bromomethane 10 U 10 10 NA 5/26/10 15:49 202233 Carbon Disulfide 10 U 10 10 NA 5/26/10 15:49 202233 Carbon Tetrachloride 10 U 10 10 NA 5/26/10 15:49 202233 Chlorobenzene 10 U 10 10 NA 5/26/10 15:49 202233 Chloroethane 10 U 10 10 NA 5/26/10 15:49 202233 Chloroethane 10 U 10 10 NA 5/26/10 15:49 202233 Chloroform 10 U 10 10 NA 5/26/10 15:49 202233 Chloromethane 10 U 10 10 NA 5/26/10 15:49 202233 Chloromethane 10 U 10 10 NA 5/26/10 15:49 202233 Cyclohexane 10 U 10 10 NA 5/26/10 15:49 202233 Cyclohexane 10 U 10 10 NA 5/26/10 15:49 202233 Chloromethane 10 U 10 10 NA 5/26/10 15:49 202233 Cyclohexane 10 U 10 10 NA 5/26/10 15:49 202233 Cyclohexane 10 U 10 NA 5/26/10 15:49 202233 Cyclohexane 10 U 10 NA 5/26/10 15:49 202233 Dichloromethane (CFC 12) 10 U 10 NA 5/26/10 15:49 202233 Dichloromethane 10 U 10 NA 5/26/10 15:49 202233 Dichloromethane 10 U 10 NA 5/26/10 15:49 202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |         |   | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Carbon Disulfide         10 U         10         10 NA         5/26/10 15:49         202233           Carbon Tetrachloride         10 U         10         10 NA         5/26/10 15:49         202233           Chlorobenzene         10 U         10         10 NA         5/26/10 15:49         202233           Chloroethane         10 U         10         10 NA         5/26/10 15:49         202233           Chloroform         10 U         10         10 NA         5/26/10 15:49         202233           Chloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Cyclohexane         10 U         10         10 NA         5/26/10 15:49         202233           Dibromochloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Dichlorodifluoromethane         10 U         10         10 NA         5/26/10 15:49         202233           Dichloromethane         10 U         10         10 NA         5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromoform                        | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Carbon Tetrachloride         10 U         10 III         NA 5/26/10 15:49         202233           Chlorobenzene         10 U         10 III         NA 5/26/10 15:49         202233           Chloroethane         10 U         10 III         NA 5/26/10 15:49         202233           Chloroform         10 U         10 III         NA 5/26/10 15:49         202233           Chloromethane         10 U         10 III         NA 5/26/10 15:49         202233           Cyclohexane         10 U         10 IIII         NA 5/26/10 15:49         202233           Dibromochloromethane         10 U         10 IIII         NA 5/26/10 15:49         202233           Dichlorodifluoromethane         10 U         10 IIIII         NA 5/26/10 15:49         202233           Dichloromethane         10 U         10 IIIIII         NA 5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromomethane                     | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Chlorobenzene         10 U         10         10 NA         5/26/10 15:49         202233           Chloroethane         10 U         10 NA         5/26/10 15:49         202233           Chloroform         10 U         10 NA         5/26/10 15:49         202233           Chloromethane         10 U         10 NA         5/26/10 15:49         202233           Cyclohexane         10 U         10 NA         5/26/10 15:49         202233           Dibromochloromethane         10 U         10 NA         5/26/10 15:49         202233           Dichlorodifluoromethane (CFC 12)         10 U         10 NA         5/26/10 15:49         202233           Dichloromethane         10 U         10 NA         5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carbon Disulfide                 |         |   | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Chloroethane         10 U         10 U         10 NA         5/26/10 15:49         202233           Chloroform         10 U         10 NA         5/26/10 15:49         202233           Chloromethane         10 U         10 NA         5/26/10 15:49         202233           Cyclohexane         10 U         10 NA         5/26/10 15:49         202233           Dibromochloromethane         10 U         10 NA         5/26/10 15:49         202233           Dichlorodifluoromethane (CFC 12)         10 U         10 NA         5/26/10 15:49         202233           Dichloromethane         10 U         10 NA         5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carbon Tetrachloride             | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Chloroform         10 U         10         10 NA         5/26/10 15:49         202233           Chloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Cyclohexane         10 U         10         10 NA         5/26/10 15:49         202233           Dibromochloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Dichlorodifluoromethane (CFC 12)         10 U         10         10 NA         5/26/10 15:49         202233           Dichloromethane         10 U         10         NA         5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chlorobenzene                    |         |   | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Chloromethane         10 U         10 U         10 U         10 NA 5/26/10 15:49         202233           Cyclohexane         10 U         10 U         10 NA 5/26/10 15:49         202233           Dibromochloromethane         10 U         10 NA 5/26/10 15:49         202233           Dichlorodifluoromethane (CFC 12)         10 U         10 NA 5/26/10 15:49         202233           Dichloromethane         10 U         10 NA 5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |         |   |      | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Cyclohexane         10 U         10 U         10 NA 5/26/10 15:49         202233           Dibromochloromethane         10 U         10 NA 5/26/10 15:49         202233           Dichlorodifluoromethane (CFC 12)         10 U         10 NA 5/26/10 15:49         202233           Dichloromethane         10 U         10 NA 5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloroform                       | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| Dibromochloromethane         10 U         10         10 NA         5/26/10 15:49         202233           Dichlorodifluoromethane (CFC 12)         10 U         10         10 NA         5/26/10 15:49         202233           Dichloromethane         10 U         10         10 NA         5/26/10 15:49         202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chloromethane                    |         |   |      |          |           |               |                    | _    |
| Dichlorodifluoromethane (CFC 12)       10 U       10       10 NA       5/26/10 15:49       202233         Dichloromethane       10 U       10       NA       5/26/10 15:49       202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                |         |   |      |          |           |               |                    |      |
| Dichloromethane 10 U 10 10 NA 5/26/10 15:49 202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |
| E1 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dichlorodifluoromethane (CFC 12) |         |   |      |          | NA        | 5/26/10 15:49 | 202233             |      |
| Ethylbenzene 10 U 10 10 NA 5/26/10 15:49 202233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |         |   |      |          |           | 5/26/10 15:49 | 202233             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethylbenzene                     | 10      | U | 10   | 10       | NA        | 5/26/10 15:49 | 202233             |      |

| ٧. | om | me | ents | 2 |
|----|----|----|------|---|

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: MW-6R

R1002634-005

Service Request: R1002634

Date Collected: 5/13/10 1630

Date Received: 5/14/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                    | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction<br>Lot |        | s<br>Note |
|---------------------------------|--------|---|-----|--------------------|-------------------|------------------|-------------------|--------|-----------|
| Isopropylbenzene (Cumene)       | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Methyl Acetate                  | 20     | U | 20  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Methyl tert-Butyl Ether         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Methylcyclohexane               | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Styrene                         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Tetrachloroethene (PCE)         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Toluene                         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Trichloroethene (TCE)           | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Trichlorofluoromethane (CFC 11) | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| Vinyl Chloride                  | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| cis-1,2-Dichloroethene          | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| cis-1,3-Dichloropropene         | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| m,p-Xylenes                     | 20     | U | 20  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| o-Xylene                        | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | •                 | 202233 |           |
| trans-1,2-Dichloroethene        | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |
| trans-1,3-Dichloropropene       | 10     | U | 10  | 10                 | NA                | 5/26/10 15:49    | )                 | 202233 |           |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |  |
|----------------------|------|-------------------|--------------------|------|--|
| 4-Bromofluorobenzene | 94   | 85-122            | 5/26/10 15:49      |      |  |
| Dibromofluoromethane | 103  | 89-119            | 5/26/10 15:49      |      |  |
| Toluene-d8           | 103  | 87-121            | 5/26/10 15:49      |      |  |

#### Analytical Report

Client:

Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Project: Sample Matrix:

Water

**Date Collected: 5/13/10 1630** 

Date Received: 5/14/10

Service Request: R1002634

Sample Name: Lab Code:

MW-6R

R1002634-005

Units: µg/L Basis: NA

#### Polychlorinated Biphenyls (PCBs) by GC

Analytical Method: 8082

Prep Method:

EPA 3510C

| Analyte Name | Result Q | MRL  | Dilution<br>Factor | Date<br>Extracted |               | Extraction<br>Lot | Analysis<br>Lot Note |
|--------------|----------|------|--------------------|-------------------|---------------|-------------------|----------------------|
| Aroclor 1016 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 18:00 | 111532            | 201884               |
| Aroclor 1221 | 1.9 U    | 1.9  | 1                  | 5/17/10           | 5/21/10 18:00 | 111532            | 201884               |
| Aroclor 1232 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 18:00 | 111532            | 201884               |
| Aroclor 1242 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 18:00 | 111532            | 201884               |
| Aroclor 1248 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 18:00 | 111532            | 201884               |
| Aroclor 1254 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 18:00 | 111532            | 201884               |
| Aroclor 1260 | 0.94 U   | 0.94 | 1                  | 5/17/10           | 5/21/10 18:00 | 111532            | 201884               |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |
|----------------------|------|-------------------|--------------------|------|
| Decachlorobiphenyl   | 87   | 10-136            | 5/21/10 18:00      | ·    |
| Tetrachloro-m-xylene | 78   | 28-117            | 5/21/10 18:00      |      |

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Service Request: R1002634 Date Collected: 5/13/10 0000

Date Received: 5/14/10

Sample Name:

MW-5R

Lab Code:

R1002634-006

Basis: NA

#### **Inorganic Parameters**

| Analyte Name     | Method | Result | Q | Units | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed |
|------------------|--------|--------|---|-------|------|--------------------|-------------------|------------------|
| Aluminum, Total  | 6010B  | 100    | U | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:38    |
| Antimony, Total  | 6010B  | 60     | U | μg/L  | 60   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Arsenic, Total   | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Barium, Total    | 6010B  | 32     |   | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Beryllium, Total | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:38    |
| Cadmium, Total   | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:38    |
| Calcium, Total   | 6010B  | 113000 |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:35    |
| Chromium, Total  | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Cobalt, Total    | 6010B  | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Copper, Total    | 6010B  | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Iron, Total      | 6010B  | 420    |   | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 19:38    |
| Lead, Total      | 6010B  | 5.0    | U | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 19:38    |
| Magnesium, Total | 6010B  | 48700  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/19/10 19:38    |
| Manganese, Total | 6010B  | 113    |   | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Mercury, Total   | 7470A  | 0.30   | U | μg/L  | 0.30 | 1                  | 5/19/10           | 5/19/10 14:54    |
| Nickel, Total    | 6010B  | 40     | U | μg/L  | 40   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Potassium, Total | 6010B  | 2000   | U | μg/L  | 2000 | 1                  | 5/18/10           | 5/20/10 13:35    |
| Selenium, Total  | 6010B  | 14     |   | μg/L  | 10   | 1                  | 5/18/10           | 5/20/10 17:04    |
| Silver, Total    | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Sodium, Total    | 6010B  | 59400  |   | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 13:35    |
| Thallium, Total  | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Vanadium, Total  | 6010B  | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 19:38    |
| Zinc, Total      | 6010B  | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 19:38    |

| Comments |  |
|----------|--|
|----------|--|

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: MW-5R R1002634-006 Service Request: R1002634

Date Collected: 5/13/10 0000

Date Received: 5/14/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                          | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction Analysis<br>Lot Lot Note |
|---------------------------------------|--------|---|-----|--------------------|-------------------|------------------|-------------------------------------|
| 1,1,1-Trichloroethane (TCA)           | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,1,2,2-Tetrachloroethane             | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,1,2-Trichloroethane                 | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0    |   | 1.0 | I                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,1-Dichloroethane (1,1-DCA)          | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,1-Dichloroethene (1,1-DCE)          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,2,4-Trichlorobenzene                | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,2-Dibromoethane                     | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,2-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,2-Dichloroethane                    | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,2-Dichloropropane                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,3-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 1,4-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 2-Butanone (MEK)                      | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 2-Hexanone                            | 5.0    |   | 5.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| 4-Methyl-2-pentanone                  | 5.0    |   | 5.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Acetone                               | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Benzene                               | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Bromodichloromethane                  | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Bromoform                             | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Bromomethane                          | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Carbon Disulfide                      | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Carbon Tetrachloride                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Chlorobenzene                         | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Chloroethane                          | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Chloroform                            | 1.0    | U | 1.0 | I                  | NA                | 5/26/10 16:20    | 202233                              |
| Chloromethane                         | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Cyclohexane                           | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Dibromochloromethane                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Dichlorodifluoromethane (CFC 12)      | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Dichloromethane                       | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |
| Ethylbenzene                          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20    | 202233                              |

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code:

MW-5R R1002634-006

Service Request: R1002634

Date Collected: 5/13/10 0000 Date Received: 5/14/10

> Units: µg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                    | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted |               | Extraction<br>Lot |        | is<br>Note |
|---------------------------------|--------|---|-----|--------------------|-------------------|---------------|-------------------|--------|------------|
| Isopropylbenzene (Cumene)       | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| Methyl Acetate                  | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| Methyl tert-Butyl Ether         | 12     |   | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| Methylcyclohexane               | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| Styrene                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| Tetrachloroethene (PCE)         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| Toluene                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| Trichloroethene (TCE)           | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| Trichlorofluoromethane (CFC 11) | 1.0    | U | 1.0 | 1                  | NΑ                | 5/26/10 16:20 | )                 | 202233 |            |
| Vinyl Chloride                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| cis-1,2-Dichloroethene          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| cis-1,3-Dichloropropene         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| m,p-Xylenes                     | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| o-Xylene                        | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| trans-1,2-Dichloroethene        | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |
| trans-1,3-Dichloropropene       | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 16:20 | )                 | 202233 |            |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |             |
|----------------------|------|-------------------|--------------------|------|-------------|
| 4-Bromofluorobenzene | 95   | 85-122            | 5/26/10 16:20      |      | <del></del> |
| Dibromofluoromethane | 103  | 89-119            | 5/26/10 16:20      |      |             |
| Toluene-d8           | 102  | 87-121            | 5/26/10 16:20      |      |             |

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated

Sample Matrix:

Shrecks Ship Yard/4320-045

Water

Sample Name: Lab Code:

MW-5R R1002634-006 Service Request: R1002634 Date Collected: 5/13/10 0000

Date Received: 5/14/10

Units: µg/L Basis: NA

#### Polychlorinated Biphenyls (PCBs) by GC

Analytical Method: 8082 Prep Method:

EPA 3510C

| Analyte Name | Result Q | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction<br>Lot | Analysis<br>Lot Note |
|--------------|----------|------|--------------------|-------------------|------------------|-------------------|----------------------|
| Aroclor 1016 | 0.97 U   | 0.97 | 1                  | 5/17/10           | 5/21/10 18:31    | 111532            | 201884               |
| Aroclor 1221 | 1.9 U    | 1.9  | 1                  | 5/17/10           | 5/21/10 18:31    | 111532            | 201884               |
| Aroclor 1232 | 0.97 U   | 0.97 | 1                  | 5/17/10           | 5/21/10 18:31    | 111532            | 201884               |
| Aroclor 1242 | 0.97 U   | 0.97 | 1                  | 5/17/10           | 5/21/10 18:31    | 111532            | 201884               |
| Aroclor 1248 | 0.97 U   | 0.97 | 1                  | 5/17/10           | 5/21/10 18:31    | 111532            | 201884               |
| Aroclor 1254 | 0.97 U   | 0.97 | 1                  | 5/17/10           | 5/21/10 18:31    | 111532            | 201884               |
| Aroclor 1260 | 0.97 U   | 0.97 | 1                  | 5/17/10           | 5/21/10 18:31    | 111532            | 201884               |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |                |
|----------------------|------|-------------------|--------------------|------|----------------|
| Decachlorobiphenyl   | 86   | 10-136            | 5/21/10 18:31      |      | <del>"</del> . |
| Tetrachloro-m-xylene | 75   | 28-117            | 5/21/10 18:31      |      |                |

#### Analytical Report

Client: Malcolm Pirnie, Incorporated Project: Shrecks Ship Yard/4320-045

Sample Matrix: Water

Sample Name: Lab Code: TRIP BLANK R1002634-007 Service Request: R1002634
Date Collected: 5/13/10
Date Received: 5/14/10

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| •                                     |        |   |     | Dilution | Date      | Date          | Extraction Analys | is          |
|---------------------------------------|--------|---|-----|----------|-----------|---------------|-------------------|-------------|
| Analyte Name                          | Result | Q | MRL | Factor   | Extracted | Analyzed      | Lot Lot           | Note        |
| 1,1,1-Trichloroethane (TCA)           | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,1,2,2-Tetrachloroethane             | 1.0    |   | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,1,2-Trichloroethane                 | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,1-Dichloroethane (1,1-DCA)          | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,1-Dichloroethene (1,1-DCE)          | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,2,4-Trichlorobenzene                | 1.0    | U | 1.0 | I        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 2.0    | U | 2.0 | 1        | NA        | 5/26/10 16:51 |                   |             |
| 1,2-Dibromoethane                     | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,2-Dichlorobenzene                   | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,2-Dichloroethane                    | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,2-Dichloropropane                   | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,3-Dichlorobenzene                   | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 1,4-Dichlorobenzene                   | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 2-Butanone (MEK)                      | 5.0    | U | 5.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 2-Hexanone                            | 5.0    | U | 5.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| 4-Methyl-2-pentanone                  | 5.0    | U | 5.0 | 1        | NA        | 5/26/10 16:51 | 202233            | }           |
| Acetone                               | 5.0    | U | 5.0 | 1        | NA        | 5/26/10 16:51 | 202233            | }           |
| Benzene                               | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | 3           |
| Bromodichloromethane                  | 1.0    |   | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | }           |
| Bromoform                             | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | ;           |
| Bromomethane                          | 1.0    |   | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            |             |
| Carbon Disulfide                      | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | <b>,</b>    |
| Carbon Tetrachloride                  | 1.0    | U | 1.0 | I        | NA        | 5/26/10 16:51 | 202233            | }           |
| Chlorobenzene                         | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | }           |
| Chloroethane                          | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            |             |
| Chloroform                            | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | i           |
| Chloromethane                         | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            | <del></del> |
| Cyclohexane                           | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            |             |
| Dibromochloromethane                  | 1.0    | U | 1.0 | I        | NA        | 5/26/10 16:51 | 202233            |             |
| Dichlorodifluoromethane (CFC 12)      | 1.0    |   | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            |             |
| Dichloromethane                       | 1.0    |   | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            |             |
| Ethylbenzene                          | 1.0    | U | 1.0 | 1        | NA        | 5/26/10 16:51 | 202233            |             |

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code:

TRIP BLANK R1002634-007 Service Request: R1002634

Date Collected: 5/13/10 Date Received: 5/14/10

> Units: µg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

|                                 |          |     | Dilution | Date      | Date          | Extraction | Analysis |      |
|---------------------------------|----------|-----|----------|-----------|---------------|------------|----------|------|
| Analyte Name                    | Result Q | MRL | Factor   | Extracted | Analyzed      | Lot        | Lot      | Note |
| Isopropylbenzene (Cumene)       | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | 1          | 202233   |      |
| Methyl Acetate                  | 2.0 U    | 2.0 | 1        | NA        | 5/26/10 16:51 | 1          | 202233   |      |
| Methyl tert-Butyl Ether         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| Methylcyclohexane               | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | 1          | 202233   |      |
| Styrene                         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| Tetrachloroethene (PCE)         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | 1          | 202233   |      |
| Toluene                         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| Trichloroethene (TCE)           | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| Trichlorofluoromethane (CFC 11) | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| Vinyl Chloride                  | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| cis-1,2-Dichloroethene          | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| cis-1,3-Dichloropropene         | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | Ī          | 202233   |      |
| m,p-Xylenes                     | 2.0 U    | 2.0 | 1        | NA        | 5/26/10 16:51 | <u> </u>   | 202233   |      |
| o-Xylene                        | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| trans-1,2-Dichloroethene        | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | l          | 202233   |      |
| trans-1,3-Dichloropropene       | 1.0 U    | 1.0 | 1        | NA        | 5/26/10 16:51 | <u> </u>   | 202233   |      |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note     |    |
|----------------------|------|-------------------|--------------------|----------|----|
| 4-Bromofluorobenzene | 93   | 85-122            | 5/26/10 16:51      | <u> </u> | ·. |
| Dibromofluoromethane | 104  | 89-119            | 5/26/10 16:51      |          |    |
| Toluene-d8           | 102  | 87-121            | 5/26/10 16:51      |          |    |

#### Analytical Report

Client: Project:

Sample Matrix: Water

Sample Name: Lab Code:

Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Method Blank R1002634-MB Service Request: R1002634

Date Collected: NA Date Received: NA

Basis: NA

#### **Inorganic Parameters**

| Analyte Name         | Method | Result ( | Q  | Units | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed |
|----------------------|--------|----------|----|-------|------|--------------------|-------------------|------------------|
| Aluminum, Dissolved  | 6010B  | 100 U    | U  | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Aluminum, Total      | 6010B  | 100 U    | U  | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Antimony, Dissolved  | 6010B  | 60 U     | U  | μg/L  | 60   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Antimony, Total      | 6010B  | 60 t     | U  | μg/L  | 60   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Arsenic, Dissolved   | 6010B  | 10 U     | U  | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Arsenic, Total       | 6010B  | 10 (     | U  | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Barium, Dissolved    | 6010B  | 20 t     | U  | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Barium, Total        | 6010B  | 20 U     | U  | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Beryllium, Dissolved | 6010B  | 5.0 T    | Ű  | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Beryllium, Total     | 6010B  | 5.0 U    | U  | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Cadmium, Dissolved   | 6010B  | 5.0 T    | U  | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Cadmium, Total       | 6010B  | 5.0 U    | U  | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Calcium, Dissolved   | 6010B  | 1000 U   | U  | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 10:20    |
| Calcium, Total       | 6010B  | 1000 U   | U  | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 10:20    |
| Chromium, Dissolved  | 6010B  | 10 U     | U  | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Chromium, Total      | 6010B  | 10 U     | U  | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Cobalt, Dissolved    | 6010B  | 50 T     | U  | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Cobalt, Total        | 6010B  | 50 U     | U  | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Copper, Dissolved    | 6010B  | 20 U     | U  | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Copper, Total        | 6010B  | 20 U     | U  | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Iron, Dissolved      | 6010B  | 100 U    | U  | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Iron, Total          | 6010B  | 100 U    | IJ | μg/L  | 100  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Lead, Dissolved      | 6010B  | 5.0 U    | IJ | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Lead, Total          | 6010B  | 5.0 T    | IJ | μg/L  | 5.0  | 1                  | 5/18/10           | 5/19/10 16:43    |
| Magnesium, Dissolved | 6010B  | 1000 U   | J  | μg/L  | 1000 | 1                  | 5/18/10           | 5/19/10 16:43    |
| Magnesium, Total     | 6010B  | 1000 T   | J  | μg/L  | 1000 | 1                  | 5/18/10           | 5/19/10 16:43    |
| Manganese, Dissolved | 6010B  | 10 U     | IJ | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Manganese, Total     | 6010B  | 10 U     | IJ | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Mercury, Dissolved   | 7470A  | 0.30 U   | J  | μg/L  | 0.30 | 1                  | 5/19/10           | 5/19/10 14:28    |
| Mercury, Total       | 7470A  | 0.30 U   | J  | μg/L  | 0.30 | 1                  | 5/19/10           | 5/19/10 14:28    |
| Nickel, Dissolved    | 6010B  | 40 U     | J  | μg/L  | 40   | I                  | 5/18/10           | 5/19/10 16:43    |
| Nickel, Total        | 6010B  | 40 U     | J  | μg/L  | 40   | I                  | 5/18/10           | 5/19/10 16:43    |
| Potassium, Dissolved | 6010B  | 2000 T   | J  | μg/L  | 2000 | 1                  | 5/18/10           | 5/20/10 10:20    |
| Potassium, Total     | 6010B  | 2000 U   |    | μg/L  | 2000 | 1                  | 5/18/10           | 5/20/10 10:20    |
| Selenium, Dissolved  | 6010B  | 10 U     | J  | μg/L  | 10   | 1                  | 5/18/10           | 5/20/10 09:54    |
| Selenium, Total      | 6010B  | 10 U     | J  | μg/L  | 10   | 1                  | 5/18/10           | 5/20/10 09:54    |

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated

Sample Matrix:

Sample Name:

Lab Code:

Shrecks Ship Yard/4320-045

Water

Method Blank R1002634-MB Service Request: R1002634

Date Collected: NA Date Received: NA

Basis: NA

#### **Inorganic Parameters**

| Analyte Name        | Method | Result | Q | Units | MRL  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed |
|---------------------|--------|--------|---|-------|------|--------------------|-------------------|------------------|
| Silver, Dissolved   | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Silver, Total       | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Sodium, Dissolved   | 6010B  | 1000   | U | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 10:20    |
| Sodium, Total       | 6010B  | 1000   | U | μg/L  | 1000 | 1                  | 5/18/10           | 5/20/10 10:20    |
| Thallium, Dissolved | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Thallium, Total     | 6010B  | 10     | U | μg/L  | 10   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Vanadium, Dissolved | 6010B  | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Vanadium, Total     | 6010B  | 50     | U | μg/L  | 50   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Zinc, Dissolved     | 6010B  | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 16:43    |
| Zinc, Total         | 6010B  | 20     | U | μg/L  | 20   | 1                  | 5/18/10           | 5/19/10 16:43    |

#### Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Sample Name: Lab Code: Method Blank RQ1004122-01 Service Request: R1002634

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                          | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction<br>Lot |        | is<br>Note |
|---------------------------------------|--------|---|-----|--------------------|-------------------|------------------|-------------------|--------|------------|
| 1,1,1-Trichloroethane (TCA)           | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,1,2,2-Tetrachloroethane             | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    | İ                 | 202233 |            |
| 1,1,2-Trichloroethane                 | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | ,                 | 202233 |            |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,1-Dichloroethane (1,1-DCA)          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,1-Dichloroethene (1,1-DCE)          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,2,4-Trichlorobenzene                | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,2-Dibromoethane                     | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,2-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | .,                | 202233 |            |
| 1,2-Dichloroethane                    | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,2-Dichloropropane                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,3-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 1,4-Dichlorobenzene                   | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 2-Butanone (MEK)                      | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 2-Hexanone                            | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| 4-Methyl-2-pentanone                  | 5.0    |   | 5.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Acetone                               | 5.0    | U | 5.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Benzene                               | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Bromodichloromethane                  | 1.0    |   | 1.0 | 1                  | ΝA                | 5/26/10 11:09    |                   | 202233 |            |
| Bromoform                             | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Bromomethane                          | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Carbon Disulfide                      | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Carbon Tetrachloride                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Chlorobenzene                         | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Chloroethane                          | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Chloroform                            | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Chloromethane                         | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Cyclohexane                           | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Dibromochloromethane                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Dichlorodifluoromethane (CFC 12)      | 1.0    |   | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Dichloromethane                       |        | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |
| Ethylbenzene                          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |            |

Analytical Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

water

Sample Name: Lab Code: Method Blank RQ1004122-01 Service Request: R1002634

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

#### Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

| Analyte Name                    | Result | Q | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Extraction<br>Lot |        | s<br>Note |
|---------------------------------|--------|---|-----|--------------------|-------------------|------------------|-------------------|--------|-----------|
| Isopropylbenzene (Cumene)       | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Methyl Acetate                  | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Methyl tert-Butyl Ether         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Methylcyclohexane               | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Styrene                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Tetrachloroethene (PCE)         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Toluene                         | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Trichloroethene (TCE)           | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Trichlorofluoromethane (CFC 11) | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| Vinyl Chloride                  | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| cis-1,2-Dichloroethene          | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| cis-1,3-Dichloropropene         | 1.0    | U | 1.0 | I                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| m,p-Xylenes                     | 2.0    | U | 2.0 | 1                  | NA                | 5/26/10 11:09    |                   | 202233 |           |
| o-Xylene                        | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |
| trans-1,2-Dichloroethene        | 1.0    | U | 1.0 | 1                  | NΑ                | 5/26/10 11:09    | )                 | 202233 |           |
| trans-1,3-Dichloropropene       | 1.0    | U | 1.0 | 1                  | NA                | 5/26/10 11:09    | )                 | 202233 |           |

| Surrogate Name       | %Rec | Control<br>Limits | Date<br>Analyzed Q | Note |  |
|----------------------|------|-------------------|--------------------|------|--|
| 4-Bromofluorobenzene | 94   | 85-122            | 5/26/10 11:09      |      |  |
| Dibromofluoromethane | 103  | 89-119            | 5/26/10 11:09      |      |  |
| Toluene-d8           | 100  | 87-121            | 5/26/10 11:09      |      |  |

#### Analytical Report

Client:

Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Project: Sample Matrix:

Water

wate

Sample Name: Lab Code: Method Blank RQ1003767-01 Service Request: R1002634

Date Collected: NA
Date Received: NA

Units: μg/L Basis: NA

#### Polychlorinated Biphenyls (PCBs) by GC

Analytical Method: 8082

Prep Method:

EPA 3510C

| Analyte Name | Result Q | MRL | Dilution<br>Factor | Date<br>Extracted |               | Extraction<br>Lot | Analysis<br>Lot Note |
|--------------|----------|-----|--------------------|-------------------|---------------|-------------------|----------------------|
| Aroclor 1016 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 10:58 | 3 111532          | 201884               |
| Aroclor 1221 | 2.0 U    | 2.0 | 1                  | 5/17/10           | 5/21/10 10:58 | 3 111532          | 201884               |
| Aroclor 1232 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 10:58 | 3 111532          | 201884               |
| Aroclor 1242 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 10:58 | 3 111532          | 201884               |
| Aroclor 1248 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 10:58 | 3 111532          | 201884               |
| Aroclor 1254 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 10:58 | 3 111532          | 201884               |
| Aroclor 1260 | 1.0 U    | 1.0 | 1                  | 5/17/10           | 5/21/10 10:58 | 3 111532          | 201884               |

| Surrogate Name                             | %Rec     | Control<br>Limits | Date<br>Analyzed Q             | Note |  |
|--------------------------------------------|----------|-------------------|--------------------------------|------|--|
| Decachlorobiphenyl<br>Tetrachloro-m-xylene | 97<br>79 | 10-136<br>28-117  | 5/21/10 10:58<br>5/21/10 10:58 |      |  |

QA/QC Report

Client: Project: Sample Matrix: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Water

Lab Control Sample Summary Inorganic Parameters Service Request: R1002634 Date Analyzed: 5/19/10 -

5/20/10

Units: μg/L Basis: NA

|                      | Control San<br>002634-LC | <del>-</del> |          |     |                 |  |  |
|----------------------|--------------------------|--------------|----------|-----|-----------------|--|--|
| Analyte Name         | Method                   |              | Expected |     | % Rec<br>Limits |  |  |
| Aluminum, Dissolved  | 6010B                    | 1850         | 2000     | 92  | 80 - 120        |  |  |
| Aluminum, Total      | 6010B                    | 1850         | 2000     | 92  | 80 - 120        |  |  |
| Antimony, Dissolved  | 6010B                    | 467          | 500      | 93  | 80 - 120        |  |  |
| Antimony, Total      | 6010B                    | 467          | 500      | 93  | 80 - 120        |  |  |
| Arsenic, Dissolved   | 6010B                    | 38.2         | 40       | 95  | 80 - 120        |  |  |
| Arsenic, Total       | 6010B                    | 38.2         | 40       | 95  | 80 - 120        |  |  |
| Barium, Dissolved    | 6010B                    | 1940         | 2000     | 97  | 80 - 120        |  |  |
| Barium, Total        | 6010B                    | 1940         | 2000     | 97  | 80 - 120        |  |  |
| Beryllium, Dissolved | 6010B                    | 47.2         | 50.0     | 94  | 80 - 120        |  |  |
| Beryllium, Total     | 6010B                    | 47.2         | 50.0     | 94  | 80 - 120        |  |  |
| Cadmium, Dissolved   | 6010B                    | 49.2         | 50.0     | 98  | 80 - 120        |  |  |
| Cadmium, Total       | 6010B                    | 49.2         | 50.0     | 98  | 80 - 120        |  |  |
| Calcium, Dissolved   | 6010B                    | 2130         | 2000     | 107 | 80 - 120        |  |  |
| Calcium, Total       | 6010B                    | 2130         | 2000     | 107 | 80 - 120        |  |  |
| Chromium, Dissolved  | 6010B                    | 199          | 200      | 99  | 80 - 120        |  |  |
| Chromium, Total      | 6010B                    | 199          | 200      | 99  | 80 - 120        |  |  |
| Cobalt, Dissolved    | 6010B                    | 499          | 500      | 100 | 80 - 120        |  |  |
| Cobalt, Total        | 6010B                    | 499          | 500      | 100 | 80 - 120        |  |  |
| Copper, Dissolved    | 6010B                    | 249          | 250      | 100 | 80 - 120        |  |  |
| Copper, Total        | 6010B                    | 249          | 250      | 100 | 80 - 120        |  |  |
| Iron, Dissolved      | 6010B                    | 994          | 1000     | 99  | 80 - 120        |  |  |
| Iron, Total          | 6010B                    | 994          | 1000     | 99  | 80 - 120        |  |  |
| Lead, Dissolved      | 6010B                    | 502          | 500      | 100 | 80 - 120        |  |  |
| Lead, Total          | 6010B                    | 502          | 500      | 100 | 80 - 120        |  |  |
| Magnesium, Dissolved | 6010B                    | 1990         | 2000     | 99  | 80 - 120        |  |  |
| Magnesium, Total     | 6010B                    | 1990         | 2000     | 99  | 80 - 120        |  |  |
| Manganese, Dissolved | 6010B                    | 489          | 500      | 98  | 80 - 120        |  |  |
| Manganese, Total     | 6010B                    | 489          | 500      | 98  | 80 - 120        |  |  |
| Mercury, Dissolved   | 7470A                    | 1.04         | 1.00     | 104 | 80 - 120        |  |  |
| Mercury, Total       | 7470A                    | 1.04         | 1.00     | 104 | 80 - 120        |  |  |
| Nickel, Dissolved    | 6010B                    | 509          | 500      | 102 | 80 - 120        |  |  |
| Nickel, Total        | 6010B                    | 509          | 500      | 102 | 80 - 120        |  |  |
| Potassium, Dissolved | 6010B                    | 20400        | 20000    | 102 | 80 - 120        |  |  |
| Potassium, Total     | 6010B                    | 20400        | 20000    | 102 | 80 - 120        |  |  |
| Selenium, Dissolved  | 6010B                    | 936          | 1010     | 93  | 80 - 120        |  |  |
| Selenium, Total      | 6010B                    | 936          | 1010     | 93  | 80 - 120        |  |  |
| Silver, Dissolved    | 6010B                    | 49.3         | 50       | 99  | 80 - 120        |  |  |
| Silver, Total        | 6010B                    | 49.3         | 50       | 99  | 80 - 120        |  |  |
| Sodium, Dissolved    | 6010B                    | 20500        | 20000    | 102 | 80 - 120        |  |  |

QA/QC Report

Client:

Malcolm Pirnie, Incorporated

Project:

Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Service Request: R1002634 Date Analyzed: 5/19/10 -

5/20/10

Lab Control Sample Summary Inorganic Parameters

> Units: μg/L Basis: NA

|                     |        | Lab (  | Control San  | nple  |          |  |  |  |  |
|---------------------|--------|--------|--------------|-------|----------|--|--|--|--|
|                     |        | R10    | R1002634-LCS |       |          |  |  |  |  |
| Analyte Name        | Method | Result | Expected     | % Rec | Limits   |  |  |  |  |
| Sodium, Total       | 6010B  | 20500  | 20000        | 102   | 80 - 120 |  |  |  |  |
| Thallium, Dissolved | 6010B  | 1860   | 2000         | 93    | 80 - 120 |  |  |  |  |
| Thallium, Total     | 6010B  | 1860   | 2000         | 93    | 80 - 120 |  |  |  |  |
| Vanadium, Dissolved | 6010B  | 489    | 500          | 98    | 80 - 120 |  |  |  |  |
| Vanadium, Total     | 6010B  | 489    | 500          | 98    | 80 - 120 |  |  |  |  |
| Zinc, Dissolved     | 6010B  | 509    | 500          | 102   | 80 - 120 |  |  |  |  |
| Zinc, Total         | 6010B  | 509    | 500          | 102   | 80 - 120 |  |  |  |  |

QA/QC Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Service Request: R1002634

Date Analyzed: 5/26/10

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: μg/L Basis: NA

Analysis Lot: 202233

|                                       |        | Control San  | _     |          |
|---------------------------------------|--------|--------------|-------|----------|
|                                       |        | RQ1004122-02 |       | % Rec    |
| Analyte Name                          | Result | Expected     | % Rec | Limits   |
| 1,1,1-Trichloroethane (TCA)           | 20.9   | 20.0         | 105   | 72 - 128 |
| 1,1,2,2-Tetrachloroethane             | 21.1   | 20.0         | 106   | 72 - 131 |
| 1,1,2-Trichloroethane                 | 20.5   | 20.0         | 102   | 80 - 122 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 22.3   | 20.0         | 112   | 71 - 134 |
| 1,1-Dichloroethane (1,1-DCA)          | 19.5   | 20.0         | 98    | 76 - 122 |
| 1,1-Dichloroethene (1,1-DCE)          | 21.6   | 20.0         | 108   | 72 - 129 |
| 1,2,4-Trichlorobenzene                | 19.3   | 20.0         | 96    | 70 - 133 |
| 1,2-Dibromo-3-chloropropane (DBCP)    | 23.4   | 20.0         | 117   | 62 - 131 |
| 1,2-Dibromoethane                     | 20.9   | 20.0         | 105   | 78 - 125 |
| 1,2-Dichlorobenzene                   | 19.4   | 20.0         | 97    | 79 - 124 |
| 1,2-Dichloroethane                    | 20.7   | 20.0         | 104   | 78 - 126 |
| 1,2-Dichloropropane                   | 19.4   | 20.0         | 97    | 80 - 123 |
| 1,3-Dichlorobenzene                   | 19.2   | 20.0         | 96    | 78 - 124 |
| 1,4-Dichlorobenzene                   | 18.5   | 20.0         | 93    | 78 - 123 |
| 2-Butanone (MEK)                      | 19.3   | 20.0         | 96    | 60 - 133 |
| 2-Hexanone                            | 21.0   | 20.0         | 105   | 61 - 131 |
| 4-Methyl-2-pentanone                  | 21.7   | 20.0         | 109   | 61 - 132 |
| Acetone                               | 24.6   | 20.0         | 123   | 59 - 140 |
| Benzene                               | 19.5   | 20.0         | 98    | 78 - 121 |
| Bromodichloromethane                  | 21.0   | 20.0         | 105   | 80 - 125 |
| Bromoform                             | 23.8   | 20.0         | 119   | 73 - 132 |
| Bromomethane                          | 25.4   | 20.0         | 127   | 57 - 144 |
| Carbon Disulfide                      | 14.2   | 20.0         | 71    | 59 - 138 |
| Carbon Tetrachloride                  | 22.9   | 20.0         | 115   | 69 - 135 |
| Chlorobenzene                         | 19.0   | 20.0         | 95    | 80 - 121 |
| Chloroethane                          | 21.9   | 20.0         | 109   | 71 - 130 |
| Chloroform                            | 20.1   | 20.0         | 100   | 78 - 125 |
| Chloromethane                         | 18.8   | 20.0         | 94    | 62 - 133 |
| Cyclohexane                           | 16.8   | 20.0         | 84    | 67 - 127 |
| Dibromochloromethane                  | 25.1   | 20.0         | 126   | 78 - 133 |
| Dichlorodifluoromethane (CFC 12)      | 19.0   | 20.0         | 95    | 53 - 143 |
| Dichloromethane                       | 19.3   | 20.0         | 97    | 75 - 125 |
| Ethylbenzene                          | 19.5   | 20.0         | 98    | 78 - 123 |
| Isopropylbenzene (Cumene)             | 20.4   | 20.0         | 102   | 73 - 133 |
| Methyl Acetate                        | 27.6   | 20.0         | 138   | 57 - 157 |
| Methyl tert-Butyl Ether               | 20.6   | 20.0         | 103   | 75 - 126 |
| Methylcyclohexane                     | 16.7   | 20.0         | 84    | 64 - 133 |

QA/QC Report

Client: Project: Malcolm Pirnie, Incorporated Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Service Request: R1002634

Date Analyzed: 5/26/10

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: µg/L Basis: NA

Analysis Lot: 202233

|                                 | Lab Control Sample |          |       |          |  |  |  |  |  |  |
|---------------------------------|--------------------|----------|-------|----------|--|--|--|--|--|--|
|                                 | F                  | % Rec    |       |          |  |  |  |  |  |  |
| Analyte Name                    | Result             | Expected | % Rec | Limits   |  |  |  |  |  |  |
| Styrene                         | 18.8               | 20.0     | 94    | 80 - 132 |  |  |  |  |  |  |
| Tetrachloroethene (PCE)         | 20.6               | 20.0     | 103   | 72 - 131 |  |  |  |  |  |  |
| Toluene                         | 19.7               | 20.0     | 98    | 78 - 122 |  |  |  |  |  |  |
| Trichloroethene (TCE)           | 19.8               | 20.0     | 99    | 74 - 127 |  |  |  |  |  |  |
| Trichlorofluoromethane (CFC 11) | 23.1               | 20.0     | 116   | 71 - 139 |  |  |  |  |  |  |
| Vinyl Chloride                  | 20.4               | 20.0     | 102   | 71 - 136 |  |  |  |  |  |  |
| cis-1,2-Dichloroethene          | 19.6               | 20.0     | 98    | 78 - 122 |  |  |  |  |  |  |
| cis-1,3-Dichloropropene         | 20.6               | 20.0     | 103   | 77 - 125 |  |  |  |  |  |  |
| m,p-Xylenes                     | 39.3               | 40.0     | 98    | 79 - 126 |  |  |  |  |  |  |
| o-Xylene                        | 18.9               | 20.0     | 94    | 79 - 126 |  |  |  |  |  |  |
| trans-1,2-Dichloroethene        | 19.4               | 20.0     | 97    | 75 - 121 |  |  |  |  |  |  |
| trans-1,3-Dichloropropene       | 22.5               | 20.0     | 113   | 69 - 127 |  |  |  |  |  |  |

QA/QC Report

Client:

Malcolm Pirnie, Incorporated

Project:

Shrecks Ship Yard/4320-045

Sample Matrix:

Water

Service Request: R1002634

Date Analyzed: 5/21/10

Lab Control Sample Summary Polychlorinated Biphenyls (PCBs) by GC

Analytical Method:

8082

Prep Method:

EPA 3510C

Units: µg/L

Basis: NA

Extraction Lot: 111532

Lab Control Sample **Duplicate Lab Control Sample** RQ1003767-02 RQ1003767-03 RPD % Rec Analyte Name Result Expected % Rec Expected Limits Result % Rec **RPD** Limit Aroclor 1260 4.71 5.00 94 5.00 5.00 100 51 - 123 6 30

QA/QC Report

Client:

Malcolm Pirnie, Incorporated

Project:

Smurfit-Stone N. Tonawanda/4330-045

Service Request: R1002634

Sample Matrix:

Water

Date Analyzed: 5/21/10

Lab Control Sample Summary Polychlorinated Biphenyls (PCBs) by GC

Analytical Method:

8082

Prep Method:

EPA 3510C

Units:  $\mu g/L$ 

Basis: NA

Extraction Lot: 111532

Extraction Lot.

|              |                                       | <b>Control San</b> Q1003767-0 | -     | -      | e <b>Lab Cont</b> ro<br>RQ1003767-0 | % Rec |          | RPD |       |
|--------------|---------------------------------------|-------------------------------|-------|--------|-------------------------------------|-------|----------|-----|-------|
| Analyte Name | · · · · · · · · · · · · · · · · · · · | Expected                      | % Rec | Result | Expected                            | % Rec | Limits   | RPD | Limit |
| Aroclor 1260 | 4.71                                  | 5,00                          | 94    | 5.00   | 5.00                                | 100   | 51 - 123 | 6   | 30    |

| X | Columbia                        |  |
|---|---------------------------------|--|
|   | Columbia<br>Analytical Services |  |

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

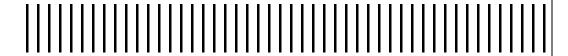
|    | SR#        |    |  |  | ś |
|----|------------|----|--|--|---|
| VI | 1          | ٠. |  |  | • |
|    | CAS Carres |    |  |  |   |

| 1 Mustard Street, Suit                                                                | Street, Suite 250, Rochester, NY 14609   585.288.5380   800 |                       |          |                    |                |                         | 222 I                                                                 | 585      | .288.8                | 3475 (          | fax)       | PA     | GE                |          | •          | )F       | - 1      |            | CAS         | Conta     | <u>101</u> | <u> </u>          | <del></del>                                                    |               |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|----------|--------------------|----------------|-------------------------|-----------------------------------------------------------------------|----------|-----------------------|-----------------|------------|--------|-------------------|----------|------------|----------|----------|------------|-------------|-----------|------------|-------------------|----------------------------------------------------------------|---------------|
| Project Name Shredus Ship Ya                                                          | and Project Number 4370 -045                                |                       |          |                    |                |                         | ANALYSIS REQUESTED (Include Method Number and Container Preservative) |          |                       |                 |            |        |                   |          |            |          |          |            |             |           |            |                   |                                                                |               |
| Project Manager Timerchest                                                            |                                                             | Report CC             |          |                    | -              | PRE                     | SERVA                                                                 | TIVE     | :                     |                 |            |        |                   |          |            |          |          |            | 11.         | -         |            |                   | <u> </u>                                                       |               |
| Company/Address Medicalin Pirmi                                                       | ethe                                                        | 2                     |          |                    |                |                         |                                                                       | . /      |                       | /               |            | $\neg$ | /                 |          |            | 7        |          |            |             | $\neg$    |            | Prese<br>0. N     | ervative Key<br>ONE                                            | $\overline{}$ |
| 50 Fountaun                                                                           | Plaz                                                        | a suite               | 600      |                    | ٠,             | NUMBER OF CONTAINERS    |                                                                       |          |                       |                 |            |        |                   |          |            |          |          |            |             |           | / /        | 2. H<br>3. H      | ONE<br>CL<br>NO3<br>2SO4<br>aOH<br>n. Acetate<br>leOH<br>aHSO4 |               |
| Butfale NY                                                                            | 14                                                          | 202                   |          |                    |                | CONTA                   |                                                                       |          |                       | }/<br> <br>     |            | 0      | ALS. DISTAL SALS. |          | <i>5</i> / | /        | /        | /          |             | / .       | / /        | 5. Zi<br>6. M     | n. Acetate<br>leOH                                             |               |
| Phone # 716.667.0900/                                                                 |                                                             | FAX#                  |          |                    |                | E G                     |                                                                       | S. S.    | ર્જું કુ <sup>7</sup> | 601/6           | S & D      | 808    |                   |          |            | -/       |          | '      /   | /           |           | ′ /        | 7. Ņ<br>8. O      | aHSO <sub>4</sub><br>ther                                      | _             |
| Sampler's Stignature Special                                                          |                                                             | Sampler's Printed Nam |          |                    |                | NUMB                    | 184                                                                   | 8 8      | 200                   |                 | PCBS 7 508 | 2 /2 O | A Logi            | 100      | /-         |          |          |            |             |           | /:         |                   |                                                                | - *-          |
| CLIENT SAMPLE ID                                                                      |                                                             | ICE USE ONLY<br>AB ID | DATE     |                    | MATRIX         |                         | /ુંફુ                                                                 |          | ျှင်<br>ကြ            | A T             |            | 1 To 1 | List C            | <u> </u> |            |          | igspace  | _          | _           | <u>/-</u> | ALTE       | REMAF<br>RNATE DE | IKS/<br>SCRIPTION                                              |               |
| MW-7                                                                                  |                                                             |                       | 5/13/10  | 1330               | bw             | 9                       | 3                                                                     |          |                       |                 | 4.         | 1      |                   |          |            |          |          |            |             |           |            |                   |                                                                |               |
| MW-4                                                                                  |                                                             |                       | ŀ        | 1500               | 1              | 6                       | 3                                                                     |          |                       | Ì               | 2          | _      |                   |          |            |          |          |            |             |           |            |                   |                                                                |               |
| MW-3                                                                                  |                                                             |                       |          | 1545               |                | 6                       | 3                                                                     |          |                       | -               | 2          | 1      |                   |          |            |          |          |            |             |           |            | ,                 |                                                                | $\neg$        |
| MW-GR                                                                                 |                                                             |                       |          | 1630               | V              | 6                       | 3                                                                     | 7        | ·                     |                 | Z          |        |                   |          |            |          |          |            |             | ,         |            |                   |                                                                | $\neg$        |
| MW-5R                                                                                 | * /                                                         |                       |          | ***                |                | 6                       | 3                                                                     | /        |                       |                 | 2          | 1      |                   |          |            |          |          |            |             |           |            | <u> </u>          |                                                                | ᅴ             |
| Trip blank                                                                            |                                                             |                       | .—_      |                    | 3              |                         | -/                                                                    |          |                       |                 |            |        | >                 |          |            |          |          |            |             |           |            |                   |                                                                | $\neg$        |
|                                                                                       |                                                             |                       |          |                    |                |                         | 7                                                                     |          |                       |                 |            |        |                   |          | -          |          |          |            |             | [. ]      |            |                   |                                                                |               |
|                                                                                       |                                                             |                       |          |                    |                |                         |                                                                       |          |                       |                 |            |        |                   |          |            |          |          |            |             |           |            | •                 |                                                                | $\neg$        |
|                                                                                       |                                                             |                       |          |                    |                |                         |                                                                       |          |                       |                 | -          |        |                   |          |            |          |          | ,          |             |           |            |                   | 1 .                                                            |               |
| ,                                                                                     |                                                             |                       |          |                    | t              | $\overline{I}$          |                                                                       |          |                       |                 |            |        | -                 |          |            |          | -        |            |             |           |            |                   |                                                                | $\neg$        |
| SPECIAL INSTRUCTIONS/COMMENTS                                                         |                                                             |                       |          |                    | /              | 7                       |                                                                       | ΤL       | JRNAR                 | DUND            | REQUI      | REMEN  | ITS               |          | REPO       | RT RE    | OUIRE    | MENT       | S           | Т         | INVO       | CE INFORI         | MATION                                                         | ᅱ             |
| Metals                                                                                |                                                             |                       |          |                    | - /            | RUSH (SURCHARGES APPLY) |                                                                       |          | I. Results Only       |                 |            |        |                   |          |            |          |          |            |             |           |            |                   |                                                                |               |
| , ,                                                                                   | ,                                                           |                       | •        |                    |                |                         |                                                                       | -        | 24 hr                 | 4               | 8 hr _     | 5      | day               |          | II. Resul  |          |          |            | <b>6</b>    | PO#       |            |                   | <del> </del>                                                   |               |
| K Im Ria                                                                              | hart.                                                       |                       | Da- 7    | T.)00 B            | f. 1.          | - 1                     |                                                                       |          | _STAN                 | DARD            | _          |        |                   |          | •          |          |          | •          |             | BILL      | .TO:       |                   | · · · · · · · · · · · · · · · · · · ·                          | $\dashv$      |
| Diss Parametes                                                                        | s were                                                      | . n: 1                |          | 797 ) 79<br>25 - 1 | - case         | 1 <del></del>           | ,                                                                     | REQU     | ESTED                 | AX DAT          | E          |        |                   |          | Summai     |          | Janu Ci  | alioration |             |           |            | _ · ·             | •                                                              |               |
| Reld Filked.                                                                          | 111                                                         | 7015                  | 1 D      | 100 V              | 18/ 1<br>Jan 1 | 61                      | (1)                                                                   | REQUI    | STED F                | REPORT          | -<br>DATE  |        |                   |          | IV. Data   | Validati | on Repo  | ortwil N   | R1          | 002       | 2634       | 1                 |                                                                | •             |
| PE Jim R. C.  Diss parametes  Seld Filked.  See QAPP   SAMPLE RECEIPT: CONDITION/COOL | 11/2/14                                                     | 10 11 £1/01           | Nic 8    | 082                | ب عريبر        | ن ان<br>مر              | )<br>W 04                                                             |          |                       |                 |            |        |                   |          | V. Speci   | alized F | orms / C |            | union arr-  | OLDING V  | N. IODAWAN | 1da               | <br>                                                           | ı             |
| SAMPLE RECEIPT: CONTITION/COOL                                                        | LER TEMP:                                                   | - 13 100              | יע בניקו | CUS                | TODY SEA       | S: Y                    |                                                                       | <u> </u> |                       |                 | ,          |        |                   | ł        | Edata      |          | Yes      | l          |             |           |            |                   |                                                                |               |
| RELINQUISHED BY                                                                       |                                                             | RECEIVED BY           | 4        |                    | INQUISHED      |                         | f                                                                     |          |                       |                 | VED 8Y     |        |                   |          | R          | ELINQI   | JISHED   | ) BY       | ٠.          | 1         | 1          | RECEIVED          | BY                                                             | _1            |
| isignatiury S                                                                         | ignature -                                                  | THE THE               |          | nature             | puch           | <u> </u>                |                                                                       | Signatu  |                       |                 | L          |        |                   | Signa(   | Q)         | '        | <u> </u> |            |             | Signe     | mures 1    |                   | •                                                              | 긕             |
| Prived Name W S Xmonds P                                                              | rinted Name                                                 | KICHG                 | - 1      | nted Name          | [WC]           | The                     |                                                                       | Piùs     | Name                  | 21              | م بدي      | H      | <del>-</del>      | Pryfiles | Marhe )    | 1        | 1.1      | المريم     | <del></del> |           | ed/Name    | Ø (               | <u></u>                                                        | $\dashv$      |
|                                                                                       | PID                                                         | ne                    | Fir      | Pik                | 125-8          | <del>,</del>            |                                                                       | Firm     | uch                   | S CA<br>C       | inc.       |        |                   | Firm WSI |            |          |          |            | Firm CAS    |           |            |                   |                                                                |               |
| Date/Time D                                                                           | )ate/Time<br>5 - / 3                                        | -18                   | Da       | e/Time             | 10/1           | 040                     | × .                                                                   | Date/Ti  | )<br> <br> }          | 110             | · ,        | 04     |                   |          |            |          | ()h,     | $\dashv$   |             |           |            |                   |                                                                |               |
| Distribution: White - Return to Originator; Yellow                                    | - (                                                         |                       |          |                    | ,              |                         | 07                                                                    |          |                       | <del>! 7/</del> | , ,        | _/     |                   | <u> </u> |            | <u> </u> | 7160     | SCOC Rev.  | . 3/10      |           |            |                   |                                                                |               |

# Cooler Receipt And Preservation Check Form

| Proje                                  | ect/Client_                                                                   |                                                                                    | Malcon                                                                                                           | Pirnit                                                             | Submice                                              | ion Nomb                    | er <sup>२,१७-</sup> २% १।          | 0                                     | ×.                |                            |
|----------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|-----------------------------|------------------------------------|---------------------------------------|-------------------|----------------------------|
| Coole                                  | er received                                                                   | on_ <i>S1</i> !                                                                    | Ylie by:                                                                                                         | MLC                                                                | COURIER:                                             | CAS) t                      | er AP 28 KI<br>SII410<br>JPS FEDEX | 0-2634<br>VELC                        | OCITY CLIE        | NT                         |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7. | Were cu<br>Were cu<br>Did all b<br>Did any<br>Were Icu<br>Where di<br>Tempera | stody se<br>stody pa<br>cottles ar<br>VOA vi<br>e oplice<br>id the bo<br>ture of o | eals on outsidapers proper<br>rive in good<br>als have sign<br>packs present<br>ottles original<br>cooler(s) upo | de of coole y filled ou condition nificant* a nt? ste? on receipt: | er?<br>it (ink, signed<br>(unbroken)?<br>ir bubbles? | 4 ata 10                    | YES<br>YES<br>YES<br>YES<br>YES    | (NO)                                  | -∕N/A             |                            |
| •                                      |                                                                               |                                                                                    | e within 0°.                                                                                                     | 6° C?:                                                             | Yes                                                  | Yes                         | Yes                                | Yes                                   | Yes               |                            |
|                                        | If No, Ex                                                                     |                                                                                    |                                                                                                                  |                                                                    | No                                                   | No                          | No                                 | No *                                  | No                |                            |
|                                        | Date/Tim                                                                      | e Temp                                                                             | eratures Tak                                                                                                     | en:                                                                | 14110 140                                            | · 7                         |                                    | 7                                     |                   |                            |
|                                        | Thermom                                                                       | eter ID:                                                                           | TR GUN#3                                                                                                         | D ir gu                                                            | N#4 Read                                             | ling From:                  | Temp Blank                         | Carrie                                | ala Baut          |                            |
| If out                                 | of Temper                                                                     | rature, i                                                                          | note packin                                                                                                      | g/ice cond                                                         | lition Clien                                         | A A                         | Cremp Blan                         | ا Sain                                | Die Bottle        | 1                          |
| 2.                                     | Did all bot                                                                   | ttle labe                                                                          | ls and tags a                                                                                                    | oree with                                                          | yors, preserv                                        | by: Mation, etc.)           | ? YES                              | NO                                    | Sun Rich          | + k, all<br>onl)<br>5/14,s |
| ٠.                                     | Were colf                                                                     | ect conta                                                                          | ainers used i                                                                                                    | Or the test                                                        | Shetcothul 2                                         | .13:                        | YES                                | NO<br>NO                              | •                 |                            |
| Explain                                | any discre                                                                    | es: Car<br>pancies                                                                 | ssettes / Tub<br>:                                                                                               | es Intact                                                          | Canisters                                            | Pressurize                  |                                    | Bags In:                              | flated WA         |                            |
| рН                                     | Reagent                                                                       | T                                                                                  | Lot Rec                                                                                                          | eived E                                                            | vn   6.   1                                          |                             | <del></del>                        |                                       |                   |                            |
| ≥12                                    | NaOH                                                                          | YES NO                                                                             | 2011/00                                                                                                          | - E                                                                | xp Sample                                            | ID Vol                      |                                    | Final<br>pH                           | Yes = All         |                            |
| ≤2                                     | HNO <sub>3</sub>                                                              | 7                                                                                  | BDB26102                                                                                                         | 0 57                                                               | W                                                    | <del></del>                 |                                    |                                       | samples OK        |                            |
| ≤2                                     | H <sub>2</sub> SO <sub>4</sub>                                                |                                                                                    | 1 0 00                                                                                                           | 0  0/                                                              |                                                      |                             |                                    |                                       | No =<br>Samples   |                            |
| Residual<br>Chlorine                   | For TCN<br>and                                                                |                                                                                    | If present, add ascorb                                                                                           | contact PM<br>ic acid                                              | to                                                   |                             |                                    |                                       | were preserved at |                            |
| (-)                                    | Phenol<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub>                       |                                                                                    | <del></del>                                                                                                      | <del></del>                                                        | <del>-  </del>                                       |                             |                                    |                                       | lab as listed     |                            |
|                                        |                                                                               |                                                                                    | <del></del>                                                                                                      | <del></del>                                                        | Not to                                               | be tested be<br>id recorded | fore analysis – p<br>by VOAs or Ge | oH<br>nChem                           | PM OK to          |                            |
|                                        | Zn Aceta<br>HCl                                                               | * *                                                                                | 41/21/00                                                                                                         | 4/1                                                                |                                                      | arate works                 | heet                               |                                       | Adjust:           |                            |
| ottle lot n                            | Zn Aceta HCl numbers: 9-5                                                     |                                                                                    | 41/9100                                                                                                          | 4/1                                                                | on a sep                                             | arate works                 | heet                               |                                       | Adjust:           |                            |
|                                        | Zn Aceta HCI numbers: 9-3 ments:                                              | 356-001                                                                            | 041210-6                                                                                                         | ७,७३२२                                                             | 10-12, BDB                                           | 26100E                      | heet                               | · · · · · · · · · · · · · · · · · · · |                   |                            |
| We                                     | Zn Aceta HCI numbers: 9-5 ments:                                              | 356-001                                                                            | 1,041210-6<br>1 en,ty                                                                                            | 250,0322                                                           | 10-1L, BDB                                           | 26100E                      | heet                               | · · · · · · · · · · · · · · · · · · · |                   | Vap. «m)                   |
| We                                     | Zn Aceta HCI numbers: 9-5 ments:                                              | 356-001                                                                            | 1,041210-6<br>1 en,ty                                                                                            | 250,0322                                                           | 10-1L, BDB                                           | 26100E                      | heet                               | · · · · · · · · · · · · · · · · · · · |                   | Vap. «~)                   |
| We                                     | Zn Aceta HCI numbers: 9-5 ments:                                              | 356-001                                                                            | 041210-6                                                                                                         | 250,0322                                                           | 10-1L, BDB                                           | 26100E                      | heet                               | · · · · · · · · · · · · · · · · · · · |                   | Vap. «~V                   |

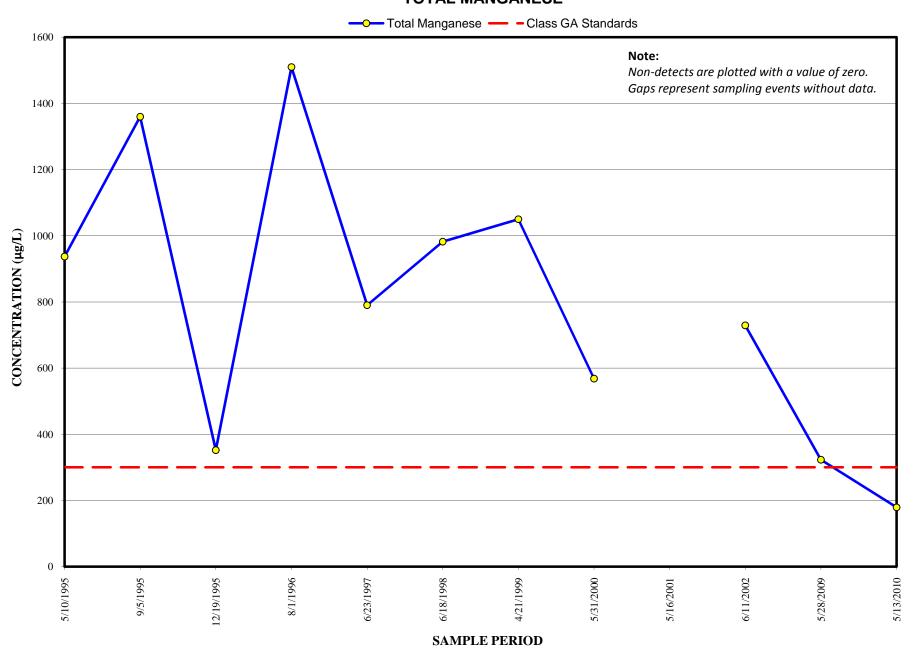
PC Secondary Review: WW BDD D\*significant air bubbles are greater than 5-6 mm


# **New York State Department of Environmental Conservation**

Schreck's Scrapyard Groundwater Monitoring Report

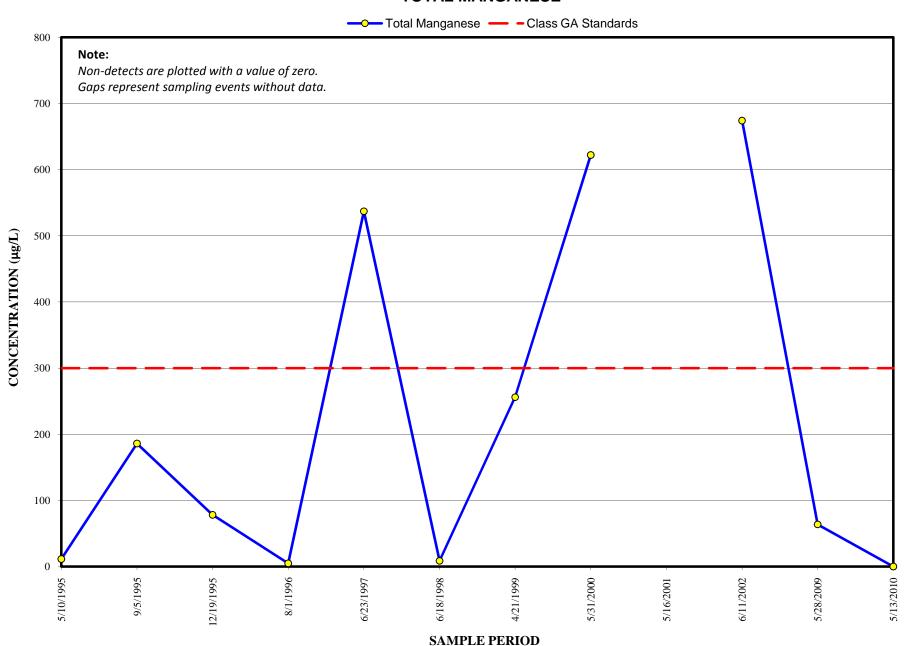
# Appendix C

# Selected Historical Analyte Concentration Trends


- Manganese
   (MW-3, MW-4, MW-5R, MW-6R, MW-7)
- Total Lead
   (MW-4, MW-6R, MW-7)
- Total PCBs (MW-3, MW-4)
- Total Chromium (MW-4, MW-6R, MW-7)
- Benzene (MW-6R)

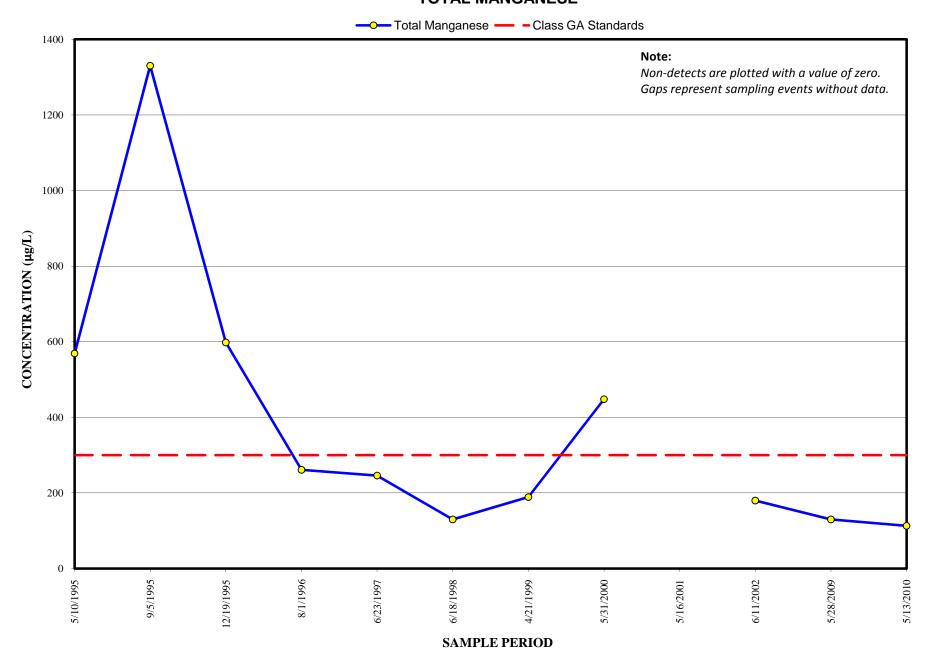






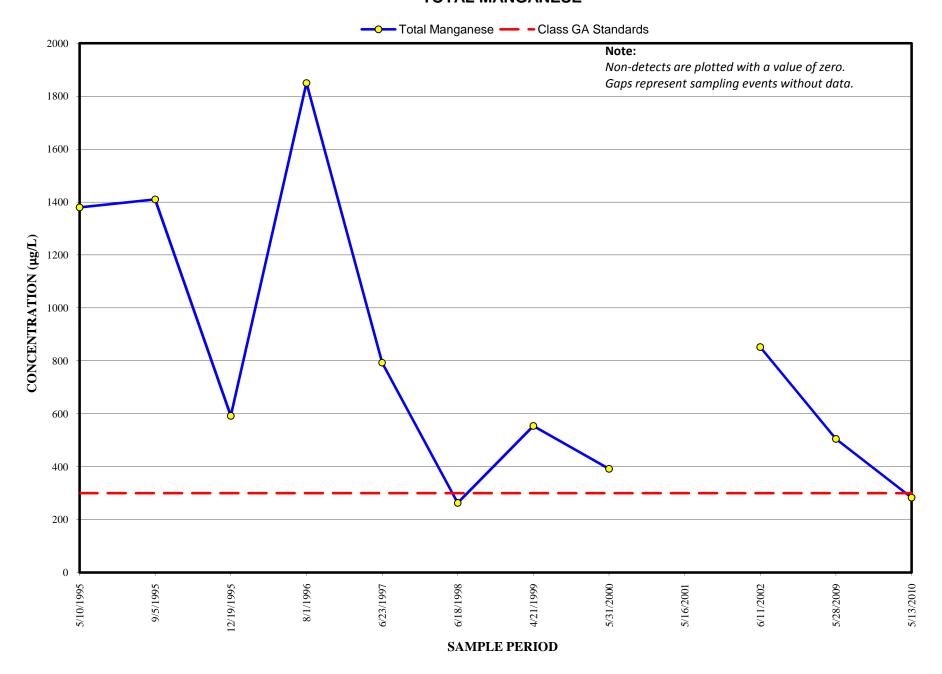

# SHRECK'S SCRAPYARD SITE MW-3 TOTAL MANGANESE






## SHRECK'S SCRAPYARD SITE MW-4 TOTAL MANGANESE





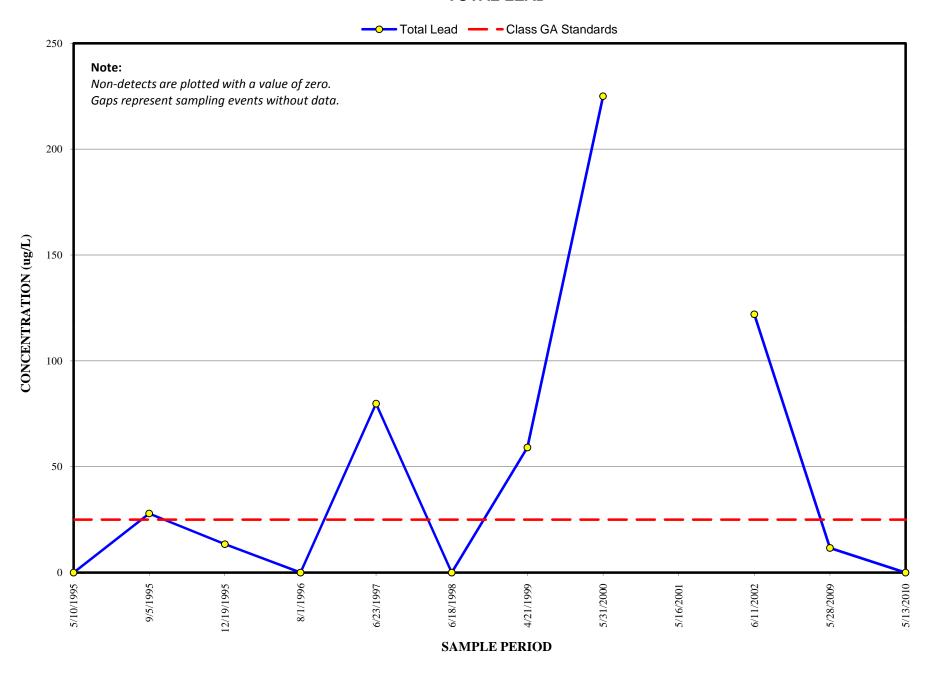

## SHRECK'S SCRAPYARD SITE MW-5R TOTAL MANGANESE





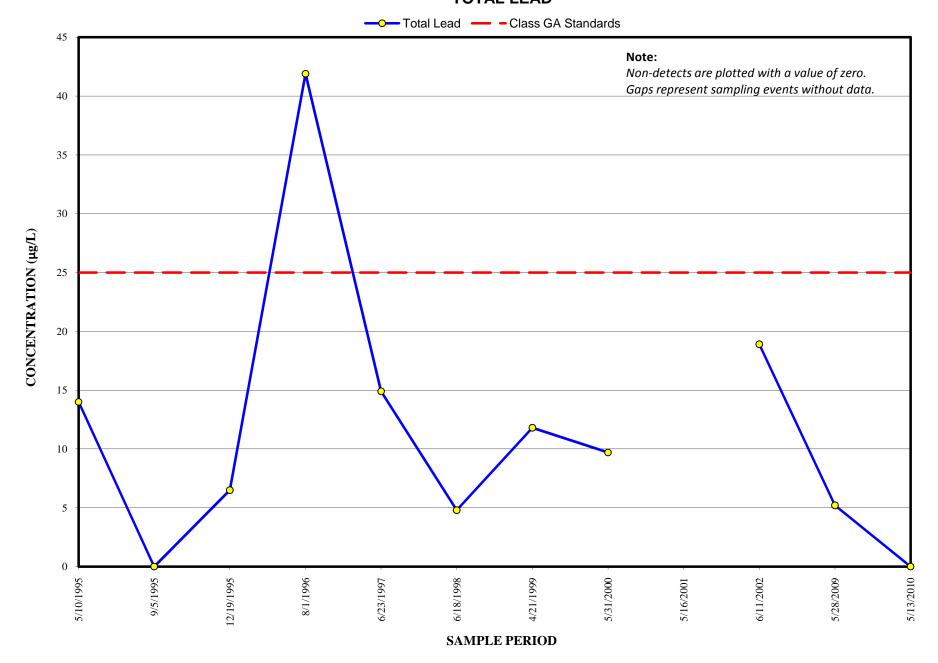

# SHRECK'S SCRAPYARD SITE MW-6R TOTAL MANGANESE





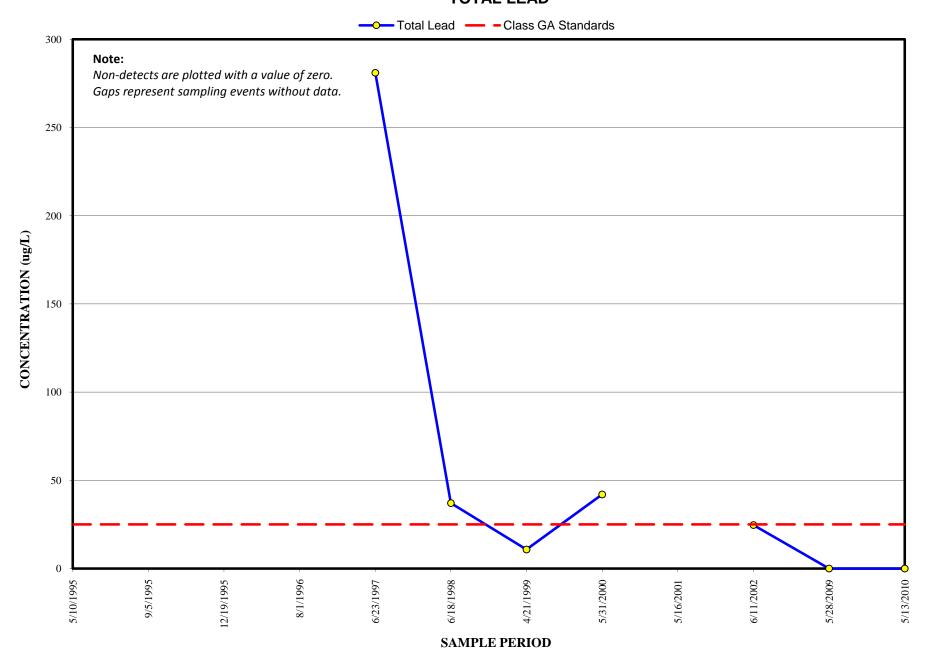

## SHRECK'S SCRAPYARD SITE MW-7 TOTAL MANGANESE





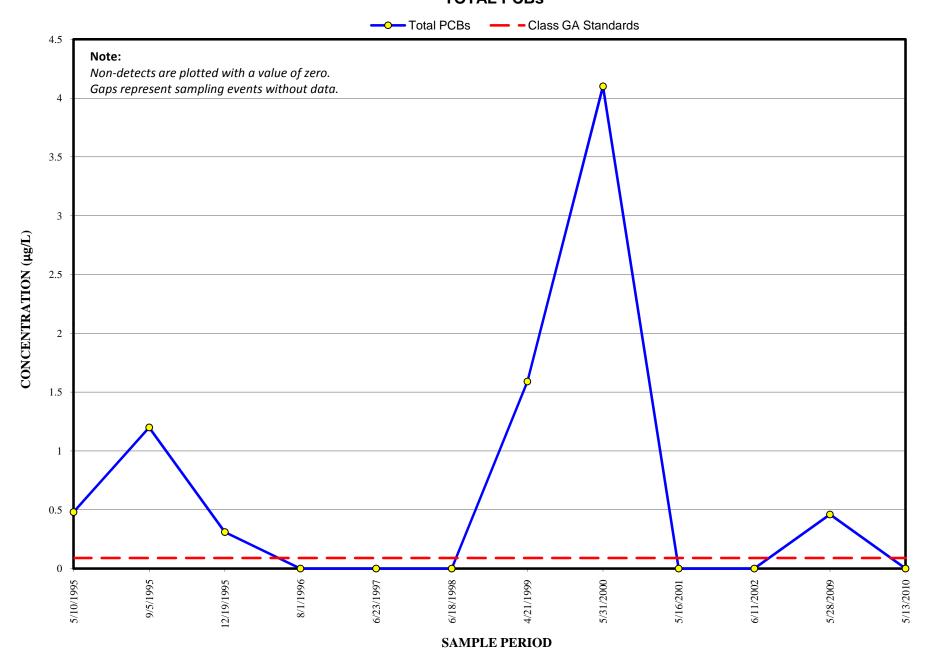

# SHRECK'S SCRAPYARD SITE MW-4 TOTAL LEAD





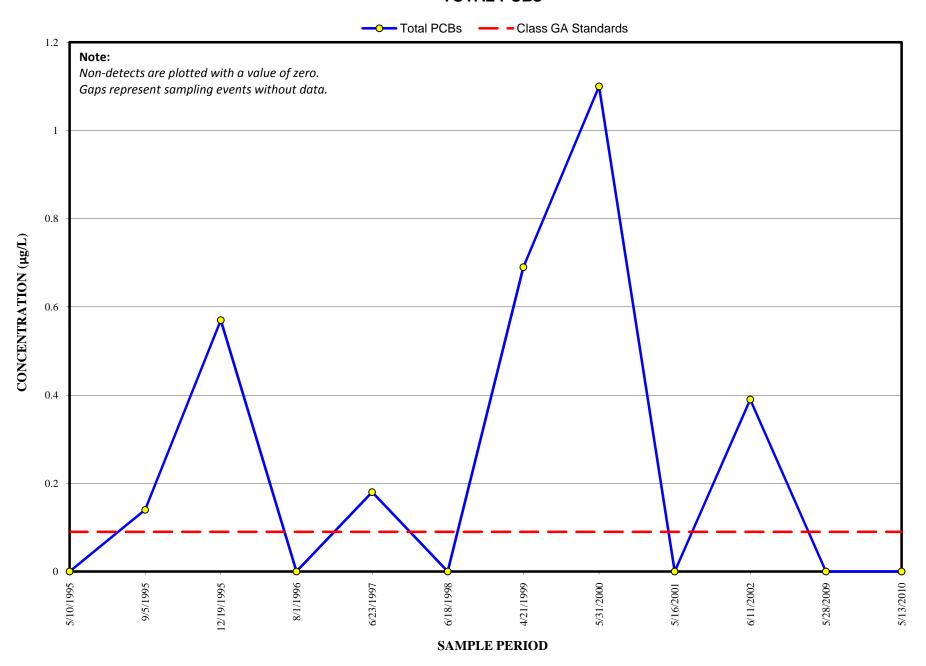

# SHRECK'S SCRAPYARD SITE MW-6R TOTAL LEAD





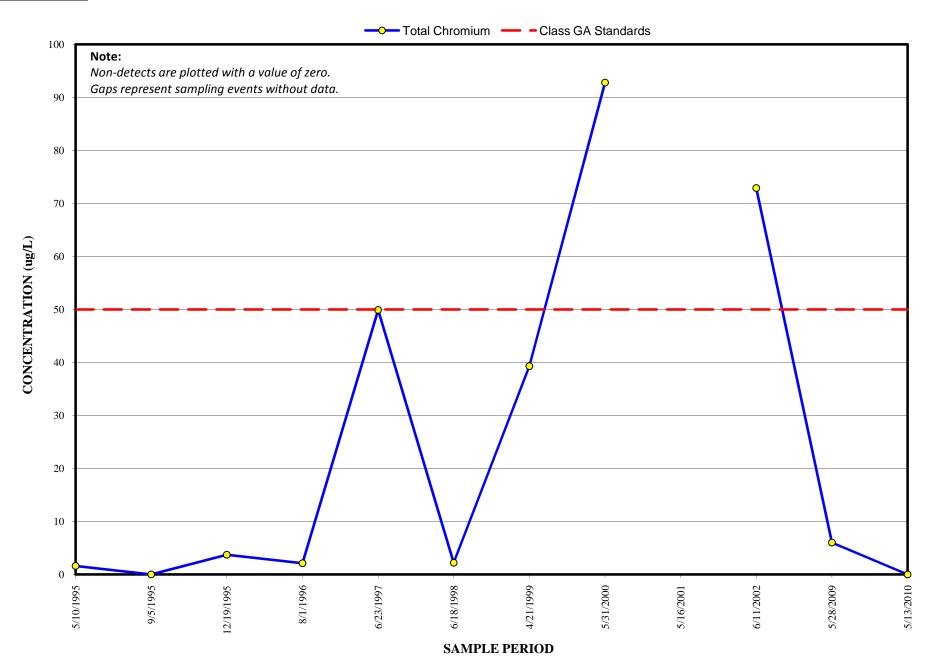

# SHRECK'S SCRAPYARD SITE MW-7 TOTAL LEAD






# SHRECK'S SCRAPYARD SITE MW-3 TOTAL PCBs

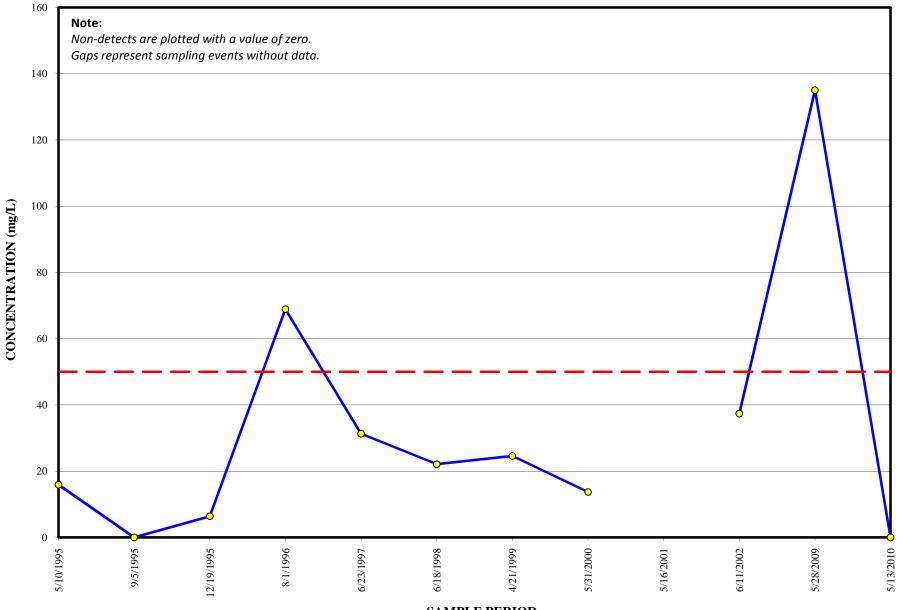





# SHRECK'S SCRAPYARD SITE MW-4 TOTAL PCBs



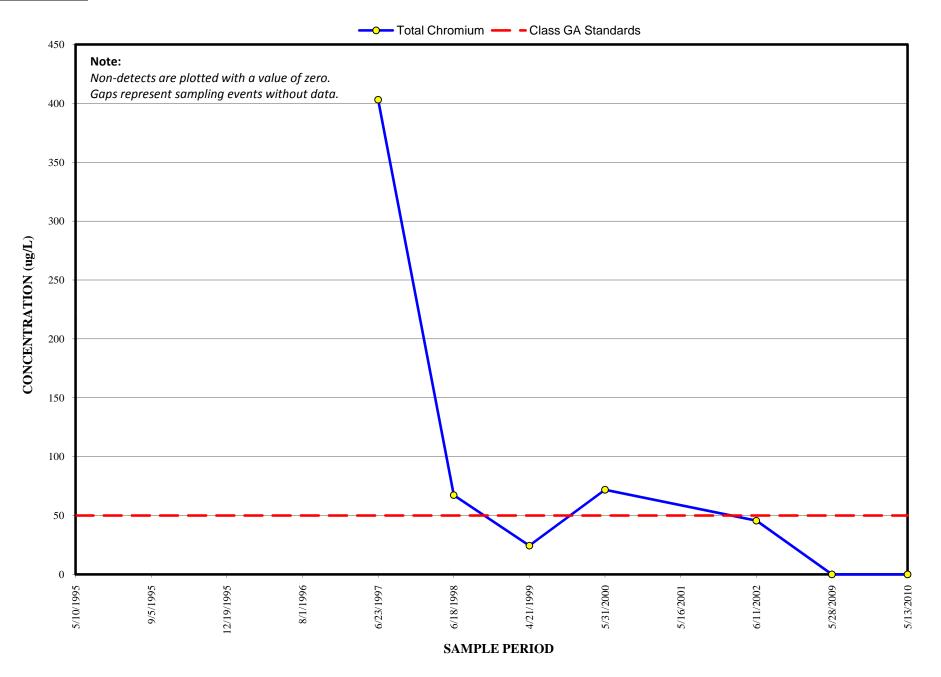




# SHRECK'S SCRAPYARD SITE MW-4 TOTAL CHROMIUM



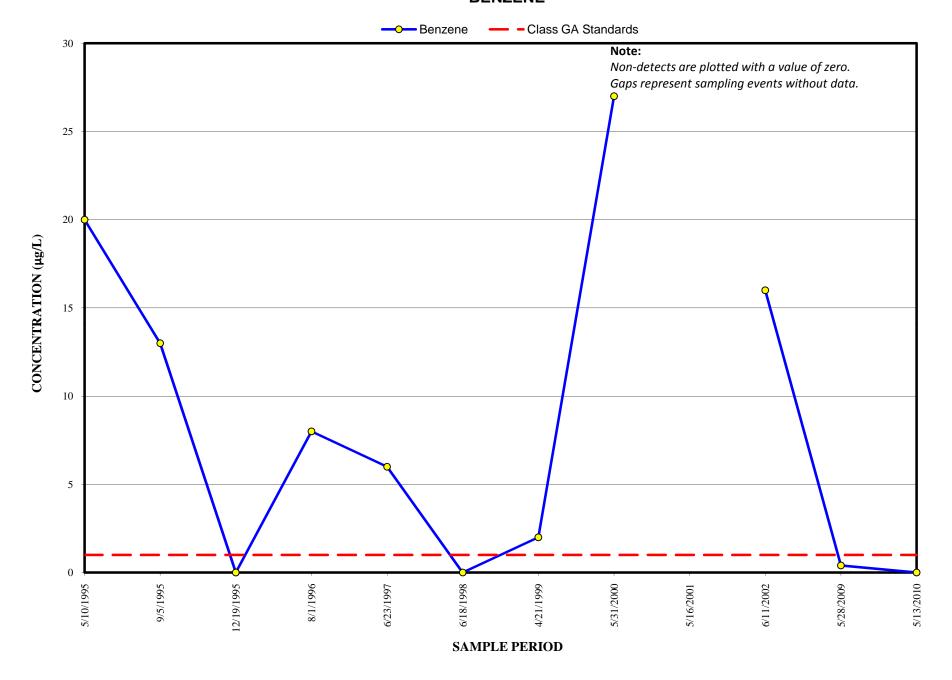


# SHRECK'S SCRAPYARD SITE MW-6R TOTAL CHROMIUM






#### SAMPLE PERIOD




## SHRECK'S SCRAPYARD SITE MW-7 TOTAL CHROMIUM





# SHRECK'S SCRAPYARD SITE MW-6R BENZENE



# **New York State Department of Environmental Conservation**

Schreck's Scrapyard
Groundwater Monitoring Report

# **Appendix D**

# Institutional Control/Engineering Control Certification Form







# Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



|      | Site Details B                                                                                                                                                                                                                       |                      | ox 1         |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|--|
| Site | No. 932099                                                                                                                                                                                                                           |                      |              |  |
| Site | Name Schreck's Scrapyard                                                                                                                                                                                                             |                      |              |  |
| Site | Address: 55 Schenck Street Zip Code: /4/20                                                                                                                                                                                           |                      |              |  |
| City | /Town: North Tonawanda                                                                                                                                                                                                               |                      |              |  |
| Cot  | unty: Nlagar <del>a</del>                                                                                                                                                                                                            |                      |              |  |
| Allo | wable Use(s) (if applicable, does not address local zoning):                                                                                                                                                                         |                      |              |  |
| Site | Acreage: 2.0                                                                                                                                                                                                                         |                      |              |  |
| <br> |                                                                                                                                                                                                                                      | В                    | )x 2         |  |
|      | Verification of Site Details                                                                                                                                                                                                         |                      | YES / NO     |  |
|      | Ave the Cite Details above correct?                                                                                                                                                                                                  |                      | <b>-</b>     |  |
| Ί.   | Are the Site Details above, correct?  If NO, are changes handwritten above or included on a separate sheet?                                                                                                                          | _                    |              |  |
| _    | Has some or all of the site property been sold, subdivided, merged, or undergone a                                                                                                                                                   |                      |              |  |
| 2.   | tax map amendment since the initial/last certification?                                                                                                                                                                              |                      | <b>9</b>     |  |
|      | If YES, is documentation or evidence that documentation has been previously submitted included with this certification?                                                                                                              | 0                    |              |  |
| 3.   | Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property since the initial/last certification?                                                                                   |                      |              |  |
|      | If YES, is documentation (or evidence that documentation has been previously submitted) included with this certification?                                                                                                            |                      | <u> </u>     |  |
| 4.   | If use of the site is restricted, is the curent use of the site consistent with those restrictions?                                                                                                                                  |                      | C C          |  |
|      | If NO, is an explanation included with this certification?                                                                                                                                                                           |                      |              |  |
| 5.   | For non-significant-threat Brownfield Cleanup Program Sites subject to ECL 27-1419 has any new information revealed that assumptions made in the Qualitative Exposur Assessment regarding offsite contamination are no longer valid? | 5.7(c),<br>re<br>N/A | <del>)</del> |  |
|      | If YES, is the new information or evidence that new information has been previously submitted included with this Certification?                                                                                                      |                      |              |  |
| 6.   | For non-significant-threat Brownfield Cleanup Program Sites subject to ECL 27-1415 are the assumptions in the Qualitative Exposure Assessment still valid (must be certified every five years)?                                      | 5.7(c),<br>NJ        | A            |  |
|      | If NO, are changes in the assessment included with this certification?                                                                                                                                                               |                      |              |  |

Box 3 SITE NO. 932099

**Description of institutional Controls** 

Institutional Control <u>Parcel</u>

S\_B\_L Image: 185.05-1-14

**Decision Document** 

Box 4

**Description of Engineering Controls** 

None Required

Attach documentation if IC/ECs cannot be certified or why IC/ECs are no longer applicable. (See instructions)

Control Description for Site No. 932099

Parcel: 185.05-1-14

In September 1990, a Record of Decision (ROD) was issued for this site. Remediation was completed in 1994. Post-ciosure groundwater monitoring is required to ensure long term effectiveness of the remedy. The ROD did not require the filing of a Deed Restriction at this site.

#### Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
  - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
  - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional
  or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the
  following statements are true:
  - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
  - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
  - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
  - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
  - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its Intended purpose established in the document.

YES NO

NA

 If this site has an Operation and Maintenance (O&M) Plan (or equivalent as required in the Decision Document);

I certify by checking "YES" below that the O&M Plan Requirements (or equivalent as required in the Decision Document) are being met.

YES NO

NA

4. If this site has a Monitoring Plan (or equivalent as required in the remedy selection document);

I certify by checking "YES" below that the requirements of the Monitoring Plan (or equivalent as required in the Decision Document) is being met.

YES NO

#### IC CERTIFICATIONS SITE NO. 932099

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. am certifying as 10 OWNER at 51 ROBINSON ST., N. TONAWANDA, NY (Owner or Remedial Party) for the Site named in the Site Details Section of this form. Signature of Owner or Remedial Party Rendering Certification IC/EC CERTIFICATIONS QUALIFIED ENVIRONMENTAL PROFESSIONAL (QEP) SIGNATURE I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. print business address am certifying as a Qualified Environmental Professional for the (Owner or Remedial Party) for the Site named in the Site Details Section of this form. Signature of Qualified Environmental Professional, for Stamp (if Required) Date the Owner or Remedial Party, Rendering Certification