NYSEG # **NEW YORK STATE ELECTRIC & GAS CORPORATION** Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902-5224 #### **INTERIM REMEDIAL MEASURES** # **WORK PLAN** NEW YORK STATE DEPARTMENT OF TRANSPORTATION PROSPECT STREET OVER ERIE CANAL PROJECT FOR ACTIVITIES ADJACENT TO LOCKPORT STATE ROAD FORMER MANUFACTURE GAS PLANT SITE City of Lockport, Niagara County, New York **JUNE 2002** Prepared By: NYSEG Licensing & Environmental Operations Department Reviewed and Approved By: New York State Department of Environmental Conservation and New York State Department of Health # NYSEG # **NEW YORK STATE ELECTRIC & GAS CORPORATION** Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902-5224 #### INTERIM REMEDIAL MEASURES # **WORK PLAN** NEW YORK STATE DEPARTMENT OF TRANSPORTATION PROSPECT STREET OVER ERIE CANAL PROJECT FOR ACTIVITIES ADJACENT TO LOCKPORT STATE ROAD FORMER MANUFACTURED GAS PLANT SITE City of Lockport, Niagara County, New York **JUNE 2002** Prepared By: Bert W Finch Project Manager Approved By: oseph M. Simone, P.E. Program Manager TOPESSIONAL WARNING: It is a violation of Title VIII of the Education Law of New York State, Article 145, for any person, unless acting rander the direction of a licensed professional engineer, to alter this document. # **Table of Contents** | Sec | | | P | age | |-----|------|----------|---|-----| | | | | s Referred to in the Documentiii | _ | | 1.0 | INT | RODUC | CTION | 1 | | | 1.1 | Site Lo | ocation and Description | 1 | | | 1.2 | Site His | story | . 2 | | | | | of Potential Industrial Residues Located at the Site | | | | | | us Investigation | | | 2.0 | PR | OJECT | OBJECTIVES | 3 | | 3.0 | OR | GANIZA | ATIONAL STRUCTURE AND RESPONSIBILITY | . 4 | | 4.0 | INT | ERIM R | EMEDIAL MEASURE PROGRAM | | | | | 4.0.1 | Definitions of MGP Materials | | | | | 4.0.2 | Pre-Construction/Remediation Sampling and Analysis | 7 | | | | 4.0.3 | General Excavation Limits and Procedures | | | | | 4.0.4 | Disposal Protocol | | | | | 4.0.5 | Stockpile Management For Sampling | | | | | 4.0.6 | Post Excavation Sampling Requirements | | | | 4.1 | | et up | | | | | 4.1.1 | Notification | | | | | 4.1.2 | Site Security | | | | | 4.1.3 | Construction Trailer | | | , | | 4.1.4 | Exclusion Zone | | | - | , | 4.1.5 | Contamination Reduction Zone | | | | | 4.1.5 | | | | | | 4.1.5 | | | | | | | Preparation of Stockpile Management Areas | | | | | 4.1.7 | Support Zone | | | | | 4.1.8 | Erosion and Sedimentation Control | | | | | | ation | | | | | | ation of Contaminated Soil | | | | | | and/or Ground Water | | | | | | uction Equipment, Tools and Trucks Decontamination | | | | | | Transportation and Disposal | | | | | | storation | | | | | | entation of Site Activities | | | | | 4.8.1 | Daily Logbook | | | | | 4.8.2 | Master Sample Log | | | | | 4.8.3 | Chain-of-Custody Record | | | | | 4.8.4 | Waybills | 20 | | | | 4.8.5 | NYSEG's Public Liability accident Report, NYSEG's Report of | | | | | | Employee Injury, and NYSEG's Incident Report | | | | 4.9 | Site (| Cleanup | 20 | | | 4.10 | 0 Proje | ct Schedule | 20 | | | | | nits | | | 5.0 | AIR | l-QUALI | TY MONITORING PLAN | | | | | | ew | | | | | | Zone Air-Monitoring Program | | | | 5.3 | | unity Air-Monitoring Program | | | | | 5.3.1 | Overview | | | | | 5.3.2 | Real-Time Air Monitoring - Volatile Organic Compounds | | | | | 5.3.2 | | 25 | | | | 5.3.2 | | | | | | 5.3.3 | Speciated Real-Time Air Monitoring - BTEX | | | | | 5.3.4 | Time Weighted Average (TWA) Air Monitoring - BTEX | | | | | 5.3.5 | Real-Time Air Monitoring - Total Suspended Particulates | | | | | 5.3.6 | Real-Time Air Monitoring - Hydrogen Cyanide | | | | | 5.3.7 | Real-Time Air Monitoring - Hydrogen Sulfide | | | | | 5.3.8 | Odor Monitoring Plan | 33 | | | | 5.3.9 Meteorological Observations | | |------------|------|--|----------| | | | 5.3.10 Documentation for Air Quality Monitoring | | | 6.0 | | 1PLING AND ANALYSIS PLÂN | 35 | | | 6.1 | Quality Assurance/Quality Control (QA/QC) Requirements/Data | - | | | | Quality Objectives | | | | | Soil Sampling and Analyses Plan | | | | | 6.2.1 Soil Sampling Field Protocols |)/
)7 | | | | 6.2.1.2 Soil Sampling Field Equipment List | | | | | 6.2.2 Confirmation Soil Sampling and Analyses Plan | | | | | 6.2.2.1 Sampling Plan Rationale | įΩ | | | - | 6.2.2.2 Laboratory Analytical Protocols | | | | | 6.2.2.3 Soil Sampling Protocol | | | | | 6.2.3 Roll Off Container Soil Sampling and Analysis Plan | 39 | | | | 6.2.3.1 Roll Off Container Rationale | | | | | 6.2.3.2 Laboratory Analytical Protocols | | | | | 6.2.3.3 Soil Sampling Protocol | | | | 6.3 | Wastewater Sampling and Analyses Plan 4 | ŀŌ | | | | 6.3.1 Sampling Plan Rationale | 10 | | | | 6.3.2 Laboratory Analytical Protocols | 1 | | | | 6.3.3 Wastewater Sampling Protocol | | | | | 6.3.4 Wastewater Field Sampling Procedures | | | | 1 | 6.3.5 Wastewater Sampling Field Equipment List 4 | 2 | | - : | | | | | rıgı | ıres | Site Legation Man | | | | 1 | Site Location Map Former Operations Layout | | | | 3 | Pre-Construction/Remediation Sampling Plan | | | | 4 | Project layout | | | | PL-2 | | | | | PL-3 | | | | | ST-8 | | | | | PR-1 | | | | | | | | | Tab | les | | | | | 4-1 | Composite Sample TCLP Analytes and Limits | 9 | | | 4-2 | Composite Analytes and Limits (Reactive Cyanide and Reactive Sulfide) | 1 | | | 4-3 | Composite Sample Analytes and Action limits Landfill Analytical | | | | 4-4 | Total Benzene, Toluene, Ethylbenzene and Xyenes | | | | 4-5 | Polycyclic Aromatic Hydrocarbons (PAHs) | | | | 5-1 | Air Guide-1 Short Term Guidance (SGC) Concentrations | | | | 6-1 | Environmental Sampling Media and Objectives | 6 | | | | | | | | endi | | | | | Α · | Pre-Remediation In Situ Samples Analytical Results | | | | В | Citizen Participation Plan (CPP) | | | | С | Construction Quality Assurance Plan (CQAP) | | | | D | Quality Assurance Project Plan (QAPP) | | | | E | Transportation of Solid and/or Liquid Material | | | | F. | New York State Department of Environmental Conservation Order on Consent | | | | G | Organization Structure | | | | H | Lockport State Road MGP Site Vapor Emission Response Plan Contingency Plan | | | | 1 | IRM Work Plan - NYSDEC Approval Letter | | | | J | HATE FFORE INDICATE OF COMPLETED AND CONTRACT OF CONTR | | # List of Acronyms Referred to in the Document ACGIH American Congress of Government Industrial Hygienists ALJ Administrative Law Judge ANSI American National Standards Institute AOC Area of Contamination AQMP Air-Quality Monitoring Program ASP - analytical service protocol ASTM American Society for Testing and Materials ATSDR Agency for Toxic Substances and Disease Registry AWQC Ambient Water Quality Criteria BTEX benzene, toluene, ethylbenzene and xylenes BTU British thermal unit BWT Body Water Temperature cPAH Carcinogenic Polycyclic Aromatic Hydrocarbons C Centigrade CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CFR Code of Federal Regulations COC Chain-of-Custody CPP Citizen Participation Plan CPR cardiopulmonary resuscitation CQAP Construction Quality Assurance Plan CTS coal tar soils DEC Department of Environmental Conservation DI deionized ECL Environmental Conservation Law EEI Edison Electric Institute ELAP Environmental Laboratory Approval Program EMS Emergency Medical Services EPA Environmental Protection Agency EPRI Electric Power Research Institute F Fahrenheit FS feasibility study GC gas chromatograph GCS-DN gas chromatograph station downwind GCS-UP gas chromatograph station upwind HASP Health and Safety Plan HEPA high efficiency particulate air HSM Health & Safety Manager IARC International Agency for Research on Cancer ID identification IDLH immediately dangerous to life IRMs interim remedial measures Kg kilogram L liter LDRs Land Disposal Restrictions NYSEG LGAC liquid-phase
granular activated carbon mg milligram MGP manufactured gas plant MMBTU million British thermal units MSDS material safety data sheet NCP National Contingency Plan NIOSH National Institute for Occupational Safety and Health NYCRR New York Codes, Rules and Regulations NYSDEC New York State Department of Environmental Conservation NYSDOH New York State Department of Health NYSDOT New York State Department of Transportation NYSEG New York State Electric & Gas Corporation OSHA Occupational Safety and Health Act or Administration PAHs polycyclic aromatic hydrocarbons PC personal computer PCBs polychlorinated biphenyls PEL permissible exposure limits PHSC Project Health and Safety Coordinator PID photo ionization detector POTW Public Owned Treatment Works PM Project Manager ppb part per billion PPE personal protective equipment ppm parts per million PSA preliminary site assessment QA quality assurance QAPP Quality Assurance Project Plan QA/QC quality assurance/quality control QC quality control O&M operation and maintenance RAP Remedial Action Plan RCRA Resource Conservation and Recovery Act RI Remedial Investigation RI/FS remedial investigation/feasibility study ROD record of decision RTS1 Real-time Station 1 RTS4 Real-time Station 4 SAP Sampling and Analysis Plan SCGs Standards, Criteria, and Guidance SGC short-term guideline concentrations SHSO Site Health & Safety Officer SPL sound pressure level STEL short-term exposure limits SVOCs semivolatile organic compounds SW solid waste T & A time and activity. TAGM technical and administrative guidance memorandum TC toxicity characteristic TCLP toxicity characteristic leachate procedure TLVs threshold limit values TPAH total polycyclic aromatic hydrocarbons UFPO Underground Facility Protection Organization USEPA United States Environmental Protection Agency USWAG Utilities Solid Waste Activities Group UTS Universal Treatment Standard VOCs volatile organic compounds VOA volatile organic analysis WBGT wet bulb globe temperature #### 1.0 INTRODUCTION This Interim Remedial Measure Work Plan (Work Plan) describes interim remedial measure (IRM) proposed for activities adjacent to the Lockport State Road former manufactured gas plant (MGP) site (Site) located in the City of Lockport, Niagara County, New York, as shown on Figure 1. The IRM will be undertaken by NYSEG (New York State Electric & Gas Corporation) and New York State Department of Transportation (NYSDOT) and will involve excavation and disposal of coal tar contaminated soil (CTS) and water. The NYSDOT will construct a road over a small portion of the former MGP Site. A more significant portion of the road will also be constructed on NYSEG property adjacent to the former MGP Site. This IRM is being proposed in accordance with Section III of the Order on Consent (Index No. DO-000209309, see Appendix F) between NYSEG and the New York State Department of Environmental Conservation (NYSDEC). This Work Plan describes the techniques to be utilized for the sampling, excavation, material handling, community air monitoring, waste characterization, transportation and disposal of MGP residues. This effort will be performed under the approval and oversight of NYSDEC, NYSDOT and New York State Department of Health (NYSDOH). #### 1.1 Site Location and Description The State Road Site is located in a mixed commercial/residential area in the southwest section of Lockport, New York. The closest residence is within 50 feet of the site. The site is bordered by the New York State Barge Canal to the northwest, a NYSEG gas regulator house to the southwest, State Road to the southeast, and by an open lot to the northeast. The site consists of open vegetated and gravel-covered land with the only existing structure being a partially fenced-in gas regulator. A large percentage of the site appears to be filled and rubble empiaced adjacent to the New York State Barge Canal. Former manufactured gas plant structures believed to exist on the site were a gas holder, tar tanks, plant buildings and a warehouse. All of the structures have been razed except for their foundations. # 1.2 Site History The State Road Site is the location of the former State Road Tar Works in the City of Lockport, Niagara County, New York. The State Road Tar Works was established as a secondary processing plant for tar generated at the Transit Street MGP Site. The Transit Street MGP was located approximately one block east of the State Road Tar Works in Lockport. The 1898 Sanborn Map showed State Road Site occupied by several warehouses that were owned by Lockport Gas Light Company. The State Road Tar Works was identified on the 1903 Sanborn Map. Several tar tanks and ammonia tanks are also depicted. Lockport Light, Heat and Power Company acquired the site in 1907. The site remained essentially unchanged between 1903 and 1919. The 1928 Sanborn Map documented the construction of a 500,000 cubic foot gas holder northeast of the warehouse building between 1919 and 1928. In 1929, NYSEG acquired the Lockport Light, Heat and Power Company, and in the process, the property now referred to as the State Road Site. The old stone building, adjacent to State Road and north west of the holder, was added onto and converted into a gas compressor building by 1938. #### 1.3 Nature of Potential Industrial Residues Located at the Site For the purpose of this document, MGP residues refer to coal tar soils and coal tars. Coal tar soils (CTS) are typically a nonhazardous mixture, as defined by the Resource Conservation and Recovery Act (RCRA), and consists of a mixture of soil, coal tar, and demolition debris (i.e., brick, timbers, scrap metal, concrete, etc.). These materials generally contain varying concentrations of polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and heavy metals. Coal tars are a by-product from gas manufacturing at former MGP. These materials are typically defined as a Hazardous Waste by RCRA due to the leachable concentrations of benzene. These materials generally contain 10% or more of PAHs and VOCs. Purifier waste (characteristically blue color) are spent iron filings and wood chips and is present along the embankment. These materials vary in their concentration of sulfides and cyanides and thus some of the purifier wastes are defined by RCRA as nonhazardous while concentrated disposal areas may have materials which meet the definition of hazardous waste. # 1.4 Previous Investigation In May 1991, NYSEG's consultant Atlantic Environmental Services, Inc. completed a *Manufactured Gas Plant Site Screening Report*. This investigation was completed prior to NYSEG signing the Order on Consent and were not done under NYSDEC oversight. In September 2000, NYSEG completed a *Pre-Construction/Remediation In-situ Sampling & Analysis Work Plan* with NYSDEC oversight. Documents associated with the previous investigations and this *IRM* are available for public review at the following document repositories: Lockport City Library23 East StreetLockport, New York14094 Attn.: Margaret Lynch Phone: (716) 433-5935 New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203-2999 Attn.: Martin Doster Phone: (716) 851-7220 NYSEG (New York State Electric & Gas Corporation) 6544 Lincoln Avenue Lockport, New York 14095 Attn.: Frank B. Inglese Phone: (716) 438-9803, Ext. 367 #### 2.0 PROJECT OBJECTIVES The overall objectives of the proposed *IRM* will be to support the Prospect Street over Erie Canal Construction Project (BIN 4454180) proposed by the NYSDOT. This work will include the excavation, handling, disposal of coal tar contaminated soil and handling, collection, disposal of contaminated construction water and groundwater, as required to complete the *IRM*. Excavated surface soil, depending on analytical results, may be used for subsurface backfill. At least four feet of clean fill will be placed over subsurface backfill. This *IRM* is scheduled to be initiated during the Fall of 2002. #### 3.0 ORGANIZATIONAL STRUCTURE AND RESPONSIBILITY NYSEG and New York State regulatory agencies will participate jointly in the remedial action for the Prospect Street over Erie Canal Construction Project adjacent to the Lockport State Road former MGP site. NYSEG and NYSDOT have the ultimate responsibility for implementing this Work Plan for the project. including the community air monitoring program during the project (see Organization Structure in Appendix G). Approval of this Work Plan by the NYSDEC and the NYSDOH will be secured prior to site excavation. NYSDEC and NYSDOH personnel are anticipated to be on-site periodically for purposes of general program oversight. The NYSDOT's Contractor will be responsible for all on-site construction operations during the IRM, unless otherwise stated in Section 4.0, including: excavation safety; construction personnel health and safety; worker's personal protective equipment; worker's personal air monitoring program; implementation of contingency plans for odor control; handling of wastewater and waste-handing operations; maintenance of Site controls (i.e., run-off, run-on); traffic controls; heavy equipment, tools and materials; and the construction, excavation, and material handing activities associated with the remedial action. NYSEG is responsible for ensuring that the remedial program is implemented in accordance with this Work Plan; community air monitoring; providing a technician who will collect soil samples and send them to NYSDOT's contract laboratory; construction oversight; post excavation soil sampling and analysis; any incremental excavation and associated disposal of material beyond that which is required by NYSDOT for bridge and road construction; transportation and disposal of all soil, water, and other materials which is determined to be a RCRA hazardous waste; and documentation of the extent of the removal action. Communication with regulatory agencies and with members of the
surrounding community will be managed by NYSEG. The plan for sharing project information with the community (*Citizen Participation Plan*, *CPP* in Appendix B). Key personnel and their assigned responsibilities for implementation of the remedial action include: **NYSEG:** Joseph M. Simone, P.E.: Program Manager **NYSEG** Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902 Phone: (607) 762-7498 E-mail: jmsimone@nyseg.com **NYSEG**: Bert W. Finch: Project Manager **NYSEG** Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902 Phone: (607) 762-8683 E-mail: bwfinch@nyseg.com **NYSEG**: Walter J. Savichky: Soil and Air Sampling Oversight NYSEG Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902 Phone: (607) 762-7412 E-mail: wjsavichky@nyseg.com **NYSDEC:** David Crosby, P.E.: Project Manager NYSDEC 625 Broadway Albany, New York 12233-7013 Phone: (518) 402-9813 E-mail: dacrosby@gw.dec.state.ny.us **NYSDOH**: Mark VanValkenburg: Community H&S Oversight New York State Department of Health Flannigan Square 547 River Street Troy, New York 12180-2216 Phone: (518) 402-7890 E-mail: mev05@heaith.state.ny.us # Niagara County Department of Health: Paul Dicky Niagara County Department of Health 5467 Upper Mountain Road Lockport, New York 14094 Phone: (716) 439-7444 NYSDOT: Project Engineer: (To Be Determined) NYSDOT: Engineer-In-Charge: (To Be Determined) NYSDOT: Tracy Wheeler: **Environmental Services** **NYSDOT** 125 Main Street Buffalo, New York 14203 Phone: (716) 847-3189 E-mail: twheeler@gw.dot.state.ny.us #### 4.0 INTERIM REMEDIAL MEASURE PROGRAM This Work Plan includes a chronological description of anticipated IRM activities together with a schedule for performance of these activities. Documents include a health and safety plan, figures, pre-remediation in-situ sampling & analysis work plan, citizen participation plan, construction quality assurance plan, quality assurance project plan, transportation of solid and/or liquid waste plan, project schedule, organization structure, site vapor emission response plan, and a contingency plan. Actual project data (i.e., community air monitoring, noise, dust control, etc.), obtained from NYSEG's previous remediation and material processing efforts at other MGP sites, have been used as guidance to design the procedures for directing this *IRM* program and to minimize any potential impacts to the community. The following sections describe the procedures to be used for the remedial activities. #### 4.0.1 Definitions of MGP Materials **MGP** Residue - All material which is contaminated with waste from the manufactured gas plant. Coal Tar - Free phase tar. Coal Tar Soil (CTS) - Soil that exhibits evidence of coal tar staining, but no free phase tar. For purposes of this Work Plan, any soil excavated will be disposed as CTS. Subsurface Backfill (to be used below four feet) - Excavated soil that meets chemical concentration limits described in section 4.0.2, based on analytical results, and has no visual staining or coal tar odor. #### 4.0.2 Pre-Construction/Remediation Sampling and Analysis NYSEG has conducted an in situ sampling event at the Lockport State Road former MGP Site. This sampling event was conducted in accordance with the Pre-Construction/Remediation In Situ Sampling & Analysis Work Plan Lockport State Road Former MGP Site, Lockport, New York, approved by the NYSDEC. Work was completed with NYSDEC oversight. See Appendix A. The results of the sampling and analysis will be used to designate sections of the soil into the following three categories: Hazardous Waste - CTS which exceeds the toxicity characteristic leaching procedure (TCLP) limits or reactivity limits. Non Hazardous Waste - CTS which is below the TCLP limits and reactivity limits. Subsurface Backfill - Soil which is below TCLP limits and shall not exceed total benzene 0.06 ppm, total toluene 1.5 ppm, total ethylbenzene 5.5, total xylenes 1.2, total PAHs 500 ppm, and naphthalene 13.0. #### 4.0.3 General Excavation Limits and Procedures The removal of coal tar contaminated soil and water will be accomplished through open-cut excavation techniques which require sloping or benching of the excavation side walls to prevent sloughing or collapse of adjacent soils. A more extensive description of the procedures and contingencies for excavation is contained in Section 4.3 of this *Work Rlan*. The project may result in potential nuisance community impacts such as noise and traffic. However, all on-site work will be conducted so that public impact is minimized, to the extent practicable. Construction activities undertaken during the *IRM* will be completed in accordance with the *Construction Quality Assurance Plan* (See Appendix C). # 4.0.4 Disposal Protocol In situ samples were collected 0-4 feet between State Road and top of embankment (Figure 3; Area 1, Area 2, Area 3 and Area 4) in accordance with *Pre-Construction/Remediation In Situ Sampling & Analysis Work Plan Lockport State Road Former MGP Site.* The project work area has increased since the In Situ Sampling was performed. Soil excavated outside of the area previously sampled will be either sampled in situ prior to construction or excavated, stockpiled and sampled. - If the analytical results of the soil samples collected indicate that the analytes listed in Table 4-1, 4-2, 4-3, 4-4 and 4-5 are within specified limits, then the respective soil from these areas may be reused as subsurface fill in excavated area. If, during the course of excavation, soil with visual or odorous coal tar contamination is encountered, it will be segregated and sent to a permitted disposal facility. - If analytical results of a soil sample collected for waste characterization indicated that the Analytes listed in Table 4-1, Table 4-2 and Table 4-3 are within their specified limits, then its respective soil may be sent to an industrial nonhazardous waste landfill. If, during excavation, seams of free phase coal tar not characterized by in situ sampling are encountered, then this material will be (1) segregated and sent to a hazardous waste disposal facility; or (2) placed in a roll off, sampled and analyzed for waste characterization parameters. If analytical results of a soil sample collected for waste characterization indicated that the Analytes listed in Table 4-1, Table 4-2 and Table 4-3 exceeds its specified limit, then its respective soil will be sent to a hazardous waste disposal facility permitted to accept this waste stream. | TABLE 4-1 (Continued on next page) COMPOSITE SAMPLE TCLP ANALYTES AND LIMITS | | | | |--|---|--|--| | TCLP ANALYTE | REGULATORY LIMIT (mg/L) [6NYCRR Part 371] | | | | Arsenic | 5.0 | | | | Barium | 100.0 | | | | Benzene | 0.5 | | | | Cadmium | 1.0 | | | | Carbon tetrachloride | 0.5 | | | | Chlorobenzene | 0.03 | | | | Chloroform | 6.0 | | | | Chromium | 5.0 | | | | Cresols (total of o,m,p) | 200.0 | | | | 2,4-D | 10.0 | | | | 1,4-Dichlorobenzene | 7.5 | | | | 1,2-Dichloroethane | 0.5 | | | | 1,1-Dichloroethylene | 0.7 | | | | 2,4-Dinitro toluene | 0.13 | | | | Endrin | 0.02 | | | | TABLE 4-1 (Continued from previous page) COMPOSITE SAMPLE TCLP ANALYTES AND LIMITS | | | |--|---|--| | TCLP ANALYTE | REGULATORY LIMIT (mg/L) [6NYCRR Part 371] | | | Heptachlor | 0.008 | | | Hexachlorobenzene | 0.13 | | | Hexachlorobutadiene | 0.5 | | | Lead | 5.0 | | | Lindane | 0.4 | | | Mercury | 0.2 | | | Methoxychlor | 10.0 | | | Methyl ethyl ketone | 200.0 | | | Nitrobenzene | 2.0 | | | Pentachlorophenol | 100.0 | | | Pyridine | 5.0 | | | Selenium | 1.0 | | | Silver | 5.0 | | | Silvex | 1.0 | | | Tetrachloroethylene | . 0.7 | | | Toxaphene | 0.5 | | | Trichloroethylene | 0.5 | | | 2,4,5-Trichlorophenol | 400.0 | | | 2,4,6-Trichlorophenol | 2.0 | | | Vinyl chloride | 0.2 | | | TABLE 4-2 | | | | |--|-----------------------------|--|--| | COMPOSITE SAMPLE ANALYTES AND ACTION LIMITS REACTIVE CYANIDE AND REACTIVE SULFIDE (REACTIVITY) | | | | | ANALYTE | US EPA ACTION LIMIT (mg/Kg) | | | | Reactive Cyanide | 250 | | | | Reactive Sulfide | 500 | | | | TABLE 4-3 COMPOSITE SAMPLE ANALYTES AND ACTION LEVELS LANDFILL ANALYTICAL | | | |---|--|--| | ANALYTE | LIMIT | | | PCBs (total) | 50 mg/Kg | | | Corrosity (pH) | Non-Corrosive (pH must be >2 or <12.5) | | | Flashpoint | Must be >60 Deg. C | | | % Solids | Must be >20% | | | TABLE 4-4 | | | | |--|-------------|--|--| | TOTAL BENZENE, TOLUENE, ETHYLBENZENE AND XYLENES | | | | | PARAMETER | LIMIT (ppm) | | | | Benzene | 0.06 | | | | Toluene | 1.5 | | | | Ethylbenzene | 5.5 | | | | Xylenes | 1.5 | | | # **TABLE 4-5** # POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) TOTAL PAHS SHALL NOT EXCEED 500 PPM TOTAL cPAHs SHALL NOT EXCEED 50 PPM | TOTAL NAPHTHALINE SHALL NOT EXCEED 13.0 PPM | | | | |---|--|--|--| | PARAMETER | | | | | Naphthalene | | | | | 2-Methylnaphthalene | | | | | Acenaphthene | | | | | Acenaphthylene | | | | | Fluorene | | | | | Phenanthrene | | | | | Anthracene | | | | | Fluoranthene | | | | | Dibenzofuran | | | | | Pyrene | | | | | Benzo (A) Anthracene* | | | | | Chrysene* | | | | | Benzo (B) Fluoranthene* | | | | | Benzo (K) Fluoranthene* | | | | | Benzo (A) Pyrene* | | | | | Indeno (1,2,3 CD) Pyrene* | | | | | Dibenzo (A,H) Anthracene* | | | | | Benzo (G,H,I) P erylene | | | | | *Carcinogenic PAHs (cPAH) | | | | # 4.0.5 Stockpile Management for Sampling Soil will be placed in the stockpile area in
piles not to exceed 200 cubic yards. The stockpiles will then be sampled in accordance with Section 6.2.1. Dust and odor suppression techniques will be employed, as necessary, while stockpiled material is added or removed from the piles, and all piles will be covered to the greatest extent practicable. All piles will be completely covered when not being work or at the end of each working day. The work zone and community air monitoring plans (Section 5.0) will be in effect during these operations to monitor for potential releases to the atmosphere. Water collected within the stockpile management areas will be pumped into either 1,500 gallon containers or a 21,000 gallon frac tank. # 4.0.6 Post Excavation Sampling Requirements Sampling and analysis of soils will be conducted after the excavation is completed. Soil samples will be collected under material storage areas (i.e., roll-off storage area, water storage areas and equipment contamination reduction area). Procedures for post excavation sampling are presented in Section 6.2.2 of this Work Plan. # 4.1 Site Set Up #### 4.1.1 Notification Prior to any on-site construction activities, the Underground Facility Protection Organization (UFPO) will be notified, and all on-site underground utilities will be marked in the field. Local police and fire departments will also be notified. The Citizen Participation Plan for Activities Adjacent to the Lockport State Road Former Manufactured Gas Plant Site addresses notification of adjacent property owners and local officials. Lockport State Road Former MGP Site, Lockport, NY IRM Work Plan # 4.1.2 Site Security A 6-foot high, chain-link fence will be placed around the perimeter of the site with a main entrance gate at the southeast corner of the site near the intersection of State Road and West High Street (see Figure 4). "NO TRESPASSING" signs will be installed on the perimeter fencing. During daily operations, admittance requirements and visitor monitoring will be in effect, as specified in the *Health and Safety Plan for Activities Adjacent to the Lockport State Road Former Manufactured Gas Plant Site*. The gates will be locked will be locked at night and weekends. #### 4.1.3 Construction Office NYSDOT will provide an office trailer that will be mobilized to the Site, blocked and leveled, and equipped with office supplies (see Figure 4). Electric, telephone service, facsimile capabilities, potable water and portable toilets will be available for ail project personnel. The NYSDEC oversight personnel will have an area with a desk, electrical outlet, phone and a phone line for computer hookup. When required, an area will be available for the NYSDEC onsite personnel to have a confidential phone conversation with other NYSDEC and NYSDOH staff. The air sampling technician will have an area for monitoring equipment, sample preparation and storage. Also available will be space for records storage, personal protective equipment, and first aid location. #### 4.1.4 Exclusion Zone The Exclusion Zone will be the immediate area of excavation (see Figure 4) and inside the transporter's trailer or roll off container. #### 4.1.5 Contamination Reduction Zone The Contamination Reduction Zone will include the personnel contamination reduction area, equipment contamination reduction pad, wastewater storage area and roll-off containers storage area. A 4-foot high orange construction fence will be placed along the perimeter of this area. The Contamination Reduction Zone will also include the truck loading area and as a minimum a lane 3 feet wide outside the Exclusion Zone. Yellow caution tape will be placed along the perimeter of the Contamination Reduction Zone and the Exclusion Zone (see Figure 4). # 4.1.5.1 Equipment Contamination Reduction Pad An equipment contamination reduction pad (ECRP), with a minimum size of 20 feet X 40 feet, will be sloped to a collection sump and be constructed as follows: The existing ground surface will be graded and compacted as required; two inches of medium sand will be placed over the proposed area; 10-inch X 10-inch timbers. held in place by #5 rebar, will be placed along the perimeter; medium sand will be bermed around the inside of the timbers to protect the sheeting; 30-mil thick HDPE sheeting will be placed over the sand and timbers; sheeting will be secured by nailing wooden battens to the timbers; two inches of medium sand will be placed on the sheeting; a sump will be constructed in the lowest area by using a 12-inch diameter slotted PVC pipe and will be set in stone to collect water; and four inches of #2 stone will be placed on the sand. In addition, a submersible pump will be placed in the sump as required to transfer wastewater via hose to storage containers. At the completion of this IRM, the sand and stone will be sampled, analyzed and disposed of at a permitted facility. To keep rain out, the equipment ECRP will be covered with a 6-mil thick polyethylene sheet and secured with sandbags. #### 4.1.5.2 Personnel Contamination Reduction Area A personnel contamination reduction area, as a minimum, will be constructed by placing 6-mil polyethylene sheet on the ground. Stage 1 will contain a boot wash tub with solution of detergent, water and a long handle brush. Next will be an additional boot wash tub containing rinse water and a long handle brush. A 55-gallon barrel lined with a 6-mil polyethylene bag will also be available for disposing Tyvek® suits, gloves, paper hand towels, etc. Stage 2 will contain a hand wash tub with solution of detergent and water. Next will be an additional hand wash tub containing rinse water. Paper hand towels will also be available in this area. # 4.1.6 Preparation of Stockpile Management Areas Stockpile management areas will be prepared for stockpiling excavated soils (see Figure 4). The areas will be prepared as follows: The existing ground surface will be graded and compacted as required; a sump will be constructed in the lowest area; two inches of medium sand will be placed over the proposed area; 8-inch X 8-inch timbers, held in place by #5 rebar will be placed around the perimeter; sand will be bermed around the timbers to protect the liner; a 10-mil polyethylene sheeting will be placed over the sand and timbers; sheeting will be secured by nailing wooden battens on the outside of the timbers; four inches of medium sand will be placed on the sheeting. The stockpiles will be covered with a 6-mil thick polyethylene sheet and secured with sandbags. # 4.1.7 Support Zone The Support Zone will be the areas outside the Contamination Reduction Zone (see Figure 4). #### 4.1.8 Erosion and Sedimentation Control Erosion and sediment control will be implemented per NYSDOT Specification and Drawings for Prospect Street Bridge Over Erie Canal (BIN 4454180) and NYSDOT contractor proposal. The erosion and sediment controls must be approved by NYSDEC, NYSDOH and NYSEG. #### 4.2 Mobilization NYSDOT's contractor will mobilize equipment, personnel and materials to perform the *IRM*. Mobilization to the Site will be sequential in nature to accommodate the general requirements and specific operations to be undertaken. NYSDOT's contractor anticipates mobilizing the following major pieces of equipment: one (1) frac tank, one (1) excavator, one (1) articulated wheel loader, one (1) dozer, miscellaneous portable equipment, air monitoring equipment, and hand tools. Equipment and mode of operation will be described in further detail in the following sections. #### 4.3 Excavation of Contaminated Soil The procedures that will be implemented during all excavation activities are as follows. The excavation of soil will be accomplished through open cut excavation techniques which require sloping or benching of the excavation side walls over four feet deep at a minimum of one and one-half horizontal to one vertical ratio to minimize sloughing or collapse of adjacent soils. Excavation will be supervised by a competent person (29 CPR 1926.650) to maintain compliance with the Occupational Safety and Health Administration's (OSHA's) excavation standards. If Tarry Waste (grossly contaminated soil, with visible free phase coal tar present) is encountered in a section of the excavation classified as nonhazardous waste, it will be placed in roll off containers, sampled and covered with tarp. Caution will be taken during segregation of such tarry waste to ensure that excavation techniques will not be used to dilute the tarry waste for the purpose of disposal as non-hazardous waste. Odors or fugitive vapors which could potentially emanate from this excavation will be actively controlled by misting the working area with BIO SOLVE® and by covering the excavation with polyethylene sheeting in inactive areas and overnight. The BIO SOLVE® will be applied using a pressure washer. A worker will be available for dedicated operation of this equipment if required. Dust will be actively controlled by misting the excavated area with water or BIO SOLVE®. The NYSDOT contractor will water and sweep streets as required to insure no tracking of soil or mud off-site. Prior to backfilling the excavation, the NYSDOT contractor will place a visual marker (i.e., orange construction fencing, geotextile fabric, etc.) to delineate the limits of the excavation. #### 4.4 Storm and/or Ground Water NYSDOT Contractor will pump storm water from excavation area into 21,000 gallon frak tanks. The tanks' contents will be sampled and characterized in accordance with the acceptance requirements of the facility permitted to accept the wastewater. Upon receipt of favorable laboratory analytical results and NYSDEC approval, the wastewater will be transferred into a tank truck and transported off-site for disposal at a properly permitted facility. # 4.5 Construction Equipment, Tools and Trucks Decontamination The tires, tracks, and excavation bucket of construction equipment and tools which enter the Exclusion Zone will be decontaminated prior
to entering the Support Zone. Decontamination procedures include the physical/mechanical removal of soil and high-pressure washing. If tarry waste is encountered during excavation the equipment will be decontaminated before excavating non hazardous soil. At a minimum, this would include decontaminating the excavation bucket. Trucks transporting soil off site will be staged in the Contamination Reduction Zone and placed on 6 mil polyethylene sheeting. Care will be exercised when loading trucks not to spill material on the outside of the trucks. Prior to leaving the Contamination Reduction Zone, each truck will be visually inspected (i.e. box sidewalls, box tailgate, and tires, etc.) and cleaned with brushes as required. In addition trucks will be tarped in the Contamination Reduction Zone. Before staging another truck, the 6 mil polyethylene sheeting will be either cleaned by brooms or replaced. # 4.6 Waste Transportation and Disposal The transportation of soil will be accomplished by a transportation contractor in accordance with the NYSEG specification for the *Transportation of Solid/or Liquid Materials* (see Appendix E). All truck drivers leaving the site must have either a Hazardous Waste Manifest or a Nonhazardous Solid Waste Manifest. Trucks and roll off containers transporting coal tar contaminated hazardous waste will have the entire box (to top of side boards) lined with 4-mils thick polyethylene sheets (poly sheets). Trucks transporting non hazardous waste may be lined as previously stated, if conditions warrant. All trucks will also have a gasket between the box and tailgate. The NYSDOT contractor remedial workers will reposition the tarp support bars over the loads. Drivers will not be allowed to walk over loads. Stockpiled soil and debris will be removed and disposed of within 90 days of start of excavation. The NYSDOT contractor must provide a waste management plan for RCRA non-hazardous material for review and approval by NYSDEC and NYSEG. NYSEG will provide transportation and disposal for RCRA hazardous material at a permitted facility approved by NYSDEC. #### 4.7 Site Restoration Site Restoration will be part of the NYSDOT Specifications and Drawings for Prospect Street Bridge Over Erie Canal (BIN 4454180). The site restoration must be approved by NYSDEC and NYSEG. In general the excavated area will be covered with asphalt and concrete sidewalks. The remaining area will be a lawn and storage area. #### 4.8 Documentation Of Site Activities #### 4.8.1 Daily Logbook A designated logbook will be used to document daily on-site activities. The daily logbook will be kept in the field office. #### 4.8.2 Master Sample Log A laboratory notebook will remain in the field office to record every sample collected. The field technician will log in all samples collected and those sent to the off-site analytical laboratory. Waybill numbers will be logged at the end of each day. #### 4.8.3 Chain-of-Custody Record A Chain-of-Custody (COC) form will document custody of all samples from the field to the laboratory. #### 4.8.4 Waybills A waybill receipt will be obtained at the time of accepted sample shipment by Federal Express or courier and will be attached to the Master Sample Log. # 4.8.5 NYSEG's Public Liability Accident Report, NYSEG's Report of Employee Injury, and NYSEG's Incident Report The above-mentioned report forms will be used to document any accident occurring on-site during the remedial project. The sheets are attached to the HASP and will be located in the field office. # 4.9 Site Cleanup All equipment, materials and construction debris will be removed from the site at the conclusion of the project. # 4.10 Project Schedule The project work schedule shall be included in the NYSDOT Contractor Proposal. Under no circumstances will work be performed prior to NYSDEC approval for the Work Plan. NYSDEC and NYSEG will be notified 30 days in advance to start of work. #### 4.11 Permits NYSDEC Waste Transporter permits (6NYCRR Part 364) will be obtained by the Transportation Contractor for the vehicles used for transportation of waste as specified in subsection 4.6 of this *Work Plan*. All other permits required for this project will be the responsibility of the NYSDCT. #### 5.0 AIR-QUALITY MONITORING PLAN #### 5.1 Overview The objective of this Air-Quality Monitoring Program (AQMP) is to provide direct measurement of total suspended particulates (0.1 to 10 microns) and chemical compounds which could potentially be released during excavation, handling, and transportation of MGP residues at the site. The air-quality monitoring program consists of (1) work area (exclusion zone) air-monitoring for evaluating construction worker health and safety; and (2) community air-monitoring to determine the levels of volatile compounds and particulate at the perimeter of the site. Real-time air monitoring and speciated real-time data will be used to guide appropriate action to reduce/minimize air emissions to acceptable levels. NYSEG has developed an Lockport State Road MGP Site Vapor Emission Response Plan (see Appendix H). # 5.2 Work Zone Air-Monitoring Program (Responsibility of NYSDOT Contractor) NYSDOT contractor will undertake a work zone air-monitoring program during the IRM project to provide direct measurement of volatile organic compounds, total suspended particulates, hydrogen cyanide and hydrogen sulfide which may be released during excavation and handling of MGP residues and activities associated with the IRM project. The air quality within the work zone will be monitored to ensure worker health and safety in accordance with requirements specified in 29 CPR 1910.120 as described in the Lockport State Road Pormer MGP Site Health and Safety Plan. # 5.3 Community Air-Monitoring Program (Responsibility of NYSEG) #### 5.3.1 Overview NYSEG will undertake a community air-monitoring program during the IRM project to provide direct measurement of volatile organic compounds, total suspended particulates, hydrogen cyanide and hydrogen sulfide which may be released during excavation and handling of MGP residues and activities associated with the IRM project. This air-monitoring program is directed toward evaluating and documenting the migration of potential emissions to the site perimeter. Results will be used to confirm the maintenance of safe air quality surrounding the site during the handling of contaminated soils. If contaminant levels in the air exceed the air-quality action levels detailed in Section 5.3.2.1, the site construction supervisor will be promptly alerted to the results of the monitoring and the need for the implementation of additional measures (as described in Section 5.3.2.1) to further control emissions from the site. The community air monitoring program is intended to supplement, but be discrete from, the work zone air monitoring program implemented for purposes of evaluating site worker health and safety during construction and materials handling. Real-time air quality monitoring for volatile organic compounds and total suspended particulates, hydrogen cyanide, hydrogen sulfide as well as speciated BTEX (benzene, toluene, ethylbenzene and xylenes) real-time air monitoring will provide the site construction supervisor with immediate data concerning air quality at the site during the project. The procedures for monitoring and the short-term air quality action levels are subsequently described in this section. Real-time air quality data will be collected throughout the duration of excavation activities. Background data will be collected over a one-day period prior to soil excavation when no soil handling work is being performed. Based on continuous meteorological data gathered for each day of intrusive work activities, an upwind and downwind station will be established for each work area, at a position between the work area and the site perimeter (referred to henceforth as site perimeter monitoring). The upwind and downwind positions will be modified if meteorological data indicate a shift in wind direction. The position of the upwind and downwind locations will be documented through the use of a hand held global positioning system (GPS) unit. # 5.3.2 Real-Time Air Monitoring -Volatile Organic Compounds Real-time total VOC monitoring will commence at the start of each work day and will continue until daily activities have ceased. The real-time data generated will allow the NYSDOT contractor construction supervisor to determine if air quality at the work area and site perimeter are being impacted by site activities and whether the implementation of emission control measures, as delineated in Section 5.3.2.1, is necessary. Real-time monitoring will be accomplished using a total volatile organic analyzer equipped with a photo ionization detector (PID) and a 10.2-eV lamp, which will be calibrated daily to benzene with a 10 ppm isobutylene air standard. The PID will be capable of calculating 15-minute running average concentrations. Monitoring will be undertaken at the downwind location of the work area and site perimeter on a continuous basis during daily Upwind concentrations will be measured at the start of each workday and if a change in wind direction has occurred. Equivalent backup, real-time air-monitoring equipment will be available on-site, should a piece of equipment malfunction. Equipment to effectively monitor wind direction will be erected at the site.. Sampling at each station will be accomplished by pointing the intake tube of the PID toward the likely emission source, generally at the height of the breathing zone (4 to 5 feet). The instrument will then be turned on and allowed to run. After 15-minutes have elapsed, the calculated running average concentrations of total volatiles in air will be measured and recorded on data sheets along with the time, sampling location, wind direction, and weather conditions. Real-time air monitoring data will be kept in on-site files. On a daily basis,
these data will be submitted to Mark VanValkenburg, of NYSDOH, at mev05@health.state.ny.us; Tracy Wheeler, of NYSDOT, at twheeler@gw.dot.state.ny.us; and Walter Savichky of NYSEG, at wjsavichky@nyseg.com. Based on data published by OSHA (Occupational Safety and Health Administration), ACGIH (American Congress of Government Industrial Hygienists), and NIOSH (National Institute for Occupational Safety and Health), short-term air quality action levels have been established for air emissions control at the site perimeter. An action level of total volatiles at the site perimeter has been established at 5.0 ppm above background (see below). If this action level is exceeded the following actions will be taken: - (1) Work activities will be halted and actions specified under the Vapor Emission Response Plan (Section 5.3.2.1) will be undertaken. - (2) A benzene-specific Dräger[™] tube or a portable gas chromatograph (GC) unit (i.e., Perkin-Elmer Photovac Voyager™) will be used to measure the concentration of benzene migrating from the site perimeter. The 5.0 ppm action level at the site perimeter is based on an estimated concentration of benzene in the PID reading from total BTEX compounds measured during monitoring. Since the PID detects volatile compounds other than BTEX, the 5.0 ppm action level is considered conservative. If odors are detected in the nearby community, despite the fact that total VOC levels are below the 5.0 ppm action level. engineering controls as described in Section 5.3.2.1 will be implemented. An action level of 2.5 ppm above background will be used at the work area, in accordance with OSHA short-term exposure limits (STEL) for benzene to ensure construction worker health and safety (29 CFR 1910.1028). If the total VOC concentration exceeds 2.5 ppm, worker personal protective equipment will be upgraded from Modified Level D to Level C as specified in the Health and Safety Plan. # 5.3.2.1 Vapor Emission Response Plan. The Lockport State Road MGP Site Vapor Emission Response Plan (see Appendix H) will be triggered by either an exceedance of total VOC action levels at either the work area or site perimeter or a benzene measurement of 0.5 ppm at the site perimeter. If a five-minute sustained measurement of 5.0 ppm above background for the work area or the site perimeter or a benzene level of 0.5 ppm at the site perimeter is measured, excavation activities will be stopped and the following actions will be undertaken: - Continue total VOC monitoring at the work area perimeter. If the total VOC level decreases below 5 ppm over background, then excavation activities can resume. If the total VOC levels persist above 5.0 ppm, then the construction supervisor will implement engineering controls and immediately notify the site project manager and the Project Health and Safety Coordinator (PHSC) - Following the implementation of engineering controls, excavation activity may resume after the total VOC levels at the work area perimeter and site perimeter are below 5.0 ppm above background. - If the total VOC levels are greater than 5.0 ppm but less than 25 ppm over background at the perimeter of the work area, excavation activity may resume provided that the total VOC level 200 feet downwind of the work area or half the distance to the nearest residential or commercial structure (whichever is less) is below 5.0 ppm above background. - If the total VOC level is above 25 ppm at the perimeter of the work area, excavation activities must be shut down. When work shutdown occurs, downwind air monitoring as directed by the PHSC will be implemented to ensure that the emission does not impact the nearest residential or commercial structure at levels exceeding those specified in the Major Vapor Emission Response Plan (Section 5.3.2.2) Primary engineering controls which may be implemented to reduce emission levels include: cover piles of contaminated soils with polyethylene sheeting. - limiting excavation size and the surface area of exposed contaminated soil - adding surfactant such as BIO SOLVE® to impacted media (application in excavated areas will be a light mist as to avoid increasing solubility of wastes leading to increased groundwater contamination). # 5.3.2.2 Major Vapor Emission Response Plan If after the cessation of the work activities and implementation of engineering controls, persistent total VOC levels (1) greater than 25 ppm above background at the work perimeter; or (2) greater than 5.0 ppm above background 200 feet downwind of the work area or half the distance to the nearest residential or commercial structure (whichever is less) are measured, then the following action will be taken within 30 minutes: - Cover the excavated area with polyethylene sheeting or clean soil. - Notify Mark VanValkenburg of NYSDOH at (518) 402-7890, Paul Dicky of Niagara County Health Department at (716) 439-7444, David Crosby of NYSDEC at (518) 402-9813 and City of Lockport Police Bureau at (716) 433-7700. - Total VOC levels will be monitored within 20 feet of the nearest downwind residential or commercial structure. (20 Foot Zone). - Continue air monitoring 15-minute intervals in the 20-Foot Zone. If two successive readings below action levels are measured, air monitoring intervals may be halted or modified by the PHSC, with approval of the NYSDEC and NYSDOH. - If total VOC levels persist above the 5.0 ppm within the 20 foot zone, the NYSDOT contractor construction supervisor, PHSC and NYSEG project manager will consult with each other and the Emergency Response agencies to determine appropriate actions to be implemented. NYSEG project management personnel have ultimate authority during major vapor emission emergencies. The NYSDEC must approve any actions to continue work following such a shut down period. # 5.3.3 Speciated Real-Time Air Monitoring - BTEX To supplement the real-time VOC air monitoring for the community air monitoring program, a portable gas chomatograph (GC) unit will be used to determine the BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds. The GC instrument will be a Perkin-Elmer Photovac Voyager™. The Voyager™, equipped with a PID detector, can accurately determine the BTEX compounds with detection limits in the low ppb (parts per billion) range. The purpose in generating these data will be twofold: (1) to supplement the real time VOC readings, aiding in critical path decisions to be made for the vapor emission response plan (Section 5.3.2.1) and the major vapor emission response plan (Section 5.3.2.2); and (2) to document emissions of BTEX to the surrounding community during periods of construction activity potentially conducive to the emissions of these compounds. The Voyager™ will be calibrated daily using gas standards containing BTEX compounds. Calibration checks will be conducted twice daily (AM/PM) with a verification gas standard containing the target analytes. Calibration drift of greater than +/- 20% will require recalibration of the instrument. Two site perimeter monitoring locations, one upwind and one downwind, will be established based on meteorological information and will be designated as GCS-UP (Gas Chromatograph Station Upwind) and GCS-DN (Gas Chromatograph Station Downwind) respectively. One sample will be collected and analyzed at each monitoring location according to the following schedule: - every two hours during excavation of MGP contaminated soil and debris, commencing at the start of the work day continuing until excavation activities have ceased - as warranted by the Vapor Emission Response Plan (Section 5.3.2.1) - as necessary during periods of excavation that produce visual or odorous evidence of coal tar per the request of the on-site NYSDEC or NYSDOH representatives The results of this sampling and analysis will be data logged into the Voyager™ memory and downloaded into a laptop PC (personal computer) daily. The raw data will be reviewed weekly by the field technician after each sample is run. If the results of analysis indicate that a sample contains greater that 0.5 ppm benzene, then action specified in the Vapor Emission Response plan (Section 5.3.2.1) will be implemented. At the end of each work day the data will be e-mailed to project scientist for review. The results will be provided to the New York State Department of Health (NYSDOH) as soon as possible during instances when the benzene or total VOC action level is exceeded or when an odor complaint is lodged by a community member. In absence of such instances, these data will be provided to NYSDOH or NYSDEC monthly or upon request. Sample results will be compared to the short term guidance (SGC) values as published in Air-Guide-1 (See Table 5-1). | TABLE 5-1 | | | | |--|-------------|-----------|--| | AIR GUIDE-1 SHORT TERM GUIDANCE (SGC) CONCENTRATIONS | | | | | Contaminant | SGC (ug/m3) | SGC (ppm) | | | Benzene | 30 | 0.009 | | | Toluene | 89,000 | 24 | | | Ethylbenzene | 100,000 | 23 | | | Xylenes | 100,000 | 23 | | # 5.3.4 Time Weighted Average (TWA) Air Monitoring - BTEX As a contingency plan for the speciated real-time air monitoring (i.e., in the event of a malfunction of the on-site portable GC), NYSEG with approval from NYSDEC, will conduct TWA air monitoring of BTEX compounds to document potential air emissions to the surrounding community. Air sampling and analysis for the BTEX compounds will be conducted in accordance with the NYSDOH Method 311-6, Volatile Organics In Air By GC/PID/ELCD. Samples will be collected over an 8 hour period during excavation of the MGP contaminated soil and debris. Two site perimeter monitoring stations, one upwind and one down wind, will be established daily based on meteorological information and will be designated as TWA-UP (Time Weighted Average Station Upwind) and TWA-DN (Time Weighted Average Station Downwind) respectively. One sample will be collected at each station per day. Based on real-time total
VOC readings and odorous observations, the week's worst case upwind and downwind samples will be submitted to the laboratory for analysis. The results of these analyses will be submitted to DOH and DEC within 30 days of submission to the laboratory. # 5.3.5 Real-Time Air Monitoring - Total Suspended Particulates In conjunction with the real-time volatile emission monitoring, direct-reading monitoring equipment for particulate matter will be used to collect real-time airborne particulate data on a every 15 minutes basis. The instrument to be used for this sampling is a *personal* DataRamTM(pDR-1000AN), which operates on the principle of light scattering. The *personal* DataRamTM(pDR-1000AN) responds to particles in the size range of 0.1 to 10 micrometers and in the concentration range of 0.01 to 400 mg/m³. Real-time particulate measurements will be based on a 30-second, time-weighted average. The *personal* DataRamTM(pDR-1000AN) will be calibrated daily with a filtered air sample. Recorded measurements at the upwind and downwind monitoring locations will be logged by the technician. Equivalent backup real-time air monitoring equipment will be available on-site in the event of an equipment malfunction. A New York State action level of 0.15 mg/m³ for particulate matter above background will be used to determine whether modifications to given processes are required. If the action level is exceeded, real-time monitoring of the upwind background level will commence immediately using the same portable monitor. If the site particulate measurement is greater than 0.15 mg/m³ above the upwind background level, or if dust is observed leaving the work site, dust suppression techniques (i.e., misting surfaces with water or covering open piles) will be implemented to reduce the generation of fugitive dust. If the action level of 0.15 mg/m³ above background is exceeded, the NYSEG project manager and NYSDEC on-site representative will be notified. The NYSEG project manager will notify the Division of Air Resources in writing within five working days (NYSDEC TAGM: Fugitive Dust Suppression and Particulate Monitoring Program at Inactive Hazardous Waste Sites, October 1989). #### 5.3.6 Real-Time Air Monitoring - Hydrogen Cyanide In conjunction with the real-time volatile emission and total suspended particulate monitoring, direct reading monitoring equipment will be used to collect real-time hydrogen cyanide (HCN). The instrument used for this is the Dräger CMS analyzer with a HCN specific chip. This instrument has a digital read out with a sensitivity of 2 to 50 ppm. In addition a backup method using a standard Dräger tube for hydrogen cyanide will be onsite. The Dräger tube utilizes the same technology as the CMS analyzer and has a sensitivity of 2 to 30 ppm (5 pump strokes) with a relative standard deviation of 10 to 15%. The HCN Dräger tube can be substituted for the analyzer. The Dräger CMS analyzer will be used to measure the HCN level at a downwind location at the site perimeter at least every 15 minutes during the first three days of intrusive operations. The data will be submitted to Mark VanValkenburg, of NYSDOH on a daily basis. If the HCN data is consistent through out the initial three day period, NYSEG will reduce the monitoring frequency to one sample per hour, however if site conditions warrant more frequent monitoring (i.e., changes in material characteristics), monitoring will be increased. Based on data published by ACGIH and NIOSH, an action level of 4 ppm has been established for the site perimeter. If the action level is exceeded the following action will be taken: 1. If the CMS analyzer reading exceeds 4 ppm, all work activities will be immediately halted. The remedial workers who will be in Level "C" PPE will cover the excavation with clean soil or polyethylene sheeting before leaving the work area. Under no circumstances will any person be allowed to enter the work area without Level "B" PPE while readings indicate levels above 4 ppm. - 2. The NYSDOT contractor construction supervisor, NYSEG project manager. NYSDOH, NYSDEC and PHSC will ne immediately notified. - 3. The sampling technician will upgrade to Level "B" PPE and continuously monitor the work area at 15 minute intervals to monitor the air quality. A minimum of one air sample will be collected from the work area and submitted to a laboratory (NIOSH 6010) to confirm the concentration of hydrogen cyanide. - Air monitoring adjacent the work area will continue at the downwind position using the CMS analyzer until HCN levels are consistently measured below the 4 ppm action level. If HCN levels persist above the 4 ppm action level, then the NYSEG project manager, PHSC and the NYSDOT contractor construction supervisor will meet with Emergency Response agencies to determine appropriate actions to be implemented. - NYSEG, NYSDEC and NYSDOH will review laboratory results to confirm the 5. presence of HCN. On the basis of this data, NYSEG in consultation with NYSDEC and NYSDOH, will determine whether work may resume or whether the project must be indefinitely suspend until appropriate action is taken to resume the project. #### 5.3.7 Real-Time Air Monitoring - Hydrogen Sulfide In conjunction with the real-time HCN monitoring, direct reading monitoring equipment will be used to collect real-time hydrogen sulfide (H₂S). Two meters will be employed in the monitoring H₂S, the Dynamation Autocal AGM Model 502 (LEL, CO, O₂ and H₂S) and a Jerome 631X-H₂S. The Dynamation Autocal AGM Model 502 will undergo a daily calibration using 220 ppm CO standard in accordance with the manufacturer's specifications. The Dyamation Autocal AGM Model 502 has a digit read out with a sensitivity of 0 ppm to 200 ppm. The Jerome 631X-H₂S measures the reaction with gold to determine the concentration of H₂S. This instrument must perform a daily regeneration and zero adjust. The Jerome 631X-H₂S has a digital read out with a sensitivity of 2 ppb to 5000 ppb. The Jerome 631X-H₂S will be used to measure the H₂S level at a downwind location at the site perimeter at least every 15 minutes during the course of the intrusive operations. The highest sustained concentration of H₂S measured by the Jerome 631X-H₂S during the 30 second interval will be recorded by the sampling technician. The Dynamation Autocal AGM Model 502 will be used primarily in the work area for assessing H₂S concentrations for worker health and safety. The Jerome 631X-H₂S data will be submitted to Mark VanValkenburg, of NYSDOH on a daily basis. Work area will include the excavation, truck loading and covering of purifier waste. Any worker working in and around purifier waste will be required at a minimum to have Level"D" PPE. Concentrations of hydrogen sulfide over 5 ppm will require Level "B" PPE (NIOSH recommends that the concentration for a 10 minute sample not exceed 10 ppm). Based on data published by Agency for Toxic Substances and Disease Registry (ATSDR), an action level of 70 ppb has been established for the site perimeter. If action level is exceeded the following action will be taken: - 1. All work activities will be immediately halted and remedial workers who will be in Level "B" PPE will cover the excavation with clean soil or polyethylene sheeting before leaving the work area. Under no circumstances will any person be allowed to enter the purifier waste work area without Level "B" PPE when concentrations of hydrogen sulfide exceed 5 ppm. - 2. The NYSDOT contractor construction supervisor, NYSEG project manager, NYSDOH, NYSDEC and PHSC will ne immediately notified. - The sampling technician will upgrade to Level "B" PPE and continuously 3. monitor the work area at 15 minute intervals to monitor the air quality. A minimum of one air sample will be collected from the work area and IDM Mork Plan submitted to a laboratory (NIOSH 6013) to confirm the concentration of hydrogen sulfide. - 4. Air monitoring adjacent the work area will continue at the downwind position using a Jerome 631X-H₂S until H₂S levels are consistently measured below 70 ppb action level. if H₂S levels persist above the 70 ppb action level, then the NYSEG project manager, PHSC and NYSDOT contractor construction supervisor will meet with Emergency Response agencies to determine appropriate actions to be implemented. - 5. NYSEG, NYSDEC and NYSDOH will review laboratory results to confirm the presence of H₂S. On the basis of this data, NYSEG in consultation with NYSDEC and NYSDOH, will determine whether work may resume or whether the project must be indefinitely suspend until appropriate action is taken to resume the project. #### 5.3.8 Odor Monitoring Plan The nature of the MGP residues pose a concern regarding the generation of nuisance odors during excavation and material handling. As such, an odor control and monitoring plan has been developed for the *IRM*. A sign will be posted at the gate with a local phone number to call to register complaints of odor. A call to the posted phone number during normal business hours will be answered by one of a group of operators (at the NYSEG Call Center) who can provide information from the project fact sheet. If additional information is required, the operator can contact members of the project team from a call list. After normal business hours, for emergencies, this phone number (800 572-1121) rings directly to NYSEG's Power Supply which will contact a project team member directly from the call list. Project team members will archive all call information and contact the site construction supervisor or project manager, if necessary, so that engineering controls can be implemented. NYSDOH will be promptly notified of any odor complaints. A project fact sheet will be distributed to adjacent property owners explaining the remediation work to occur on the site, the potential for odors, and how the phone IRM Work Plan system for odor complaints will work. This will be distributed prior to intrusive work
beginning. Hourly, the designated field technician will walk the site perimeter to take notice of any appreciable odor emanating from the site. NYSEG will periodically have a NYSEG employee (i.e., NYSEG MGP employee and Plattsburgh Service Oenter Employees) not associated with the daily activities will visit the site and take note of odors around the site perimeter to address the issue of odor fatigue. If significant odor is noted by the site personnel, or by non-project personnel, engineering controls will be implemented as outlined in the Vapor Emissions Response Plan (Section 5.3.2.1) to reduce odor causing emissions. Once odors are not noticed at the downwind site perimeter, normal operations may resume. This determination will be subject to the approval of the on-site NYSEG representative. #### 5.3.9 Meteorological Observations Wind direction will be monitored throughout the air-sampling program at an on-site weather station. This data will be reduced and reviewed for each 24-hour period during the removal program, and air sampling stations will be adjusted accordingly if necessary. A log of local weather observations will be kept with observations taken coincidentally with real-time air quality measurements. Data included in the log will consist of temperature, cloud coverage, and precipitation conditions. ## 5.3.10 Documentation for Air Quality Monitoring An essential part of any sampling/analytical scheme is ensuring the integrity of the sample from collection to data reporting. Sample integrity includes the possession and handling of a sample, that is traceable from the time of collection, through analysis and final disposition. IRM Work Plan Sample Labels: Unique sample identification codes will be assigned at the time of collection to prevent misidentification of samples. The identification codes will include the following information: - project/name/number; - sample location; - date of collection; - time of collection; - initials of sampler; - analytical method. Field Log Book: All information pertinent to sampling will be recorded in a log book. It is imperative that sufficient information be recorded so that the sampling event can be reconstructed without reliance on the collector's memory. Information will be entered into a bound notebook and, as a minimum, entries will include the following: - location of sampling point; - sample identification code; - sample collection date and time; - sample methodology; - sample analysis; - collector's initials; - field observations, if any; and - field measurements, if any. Dedicated field log books will be maintained on site to document the daily calibration of the real-time and speciated real-time air monitoring equipment. #### 6.0 SAMPLING AND ANALYSIS PLAN This Sampling and Analysis Plan (SAP) has been developed to describe the objectives and procedures for the sampling and analyses of MGP residues, soil, and wastewater that will be produced during the Lockport State Road MGP IRM. In addition, the NYSEG Lockport State Road MGP Site Quality Assurance Project RM Work Plan Plan (QAPP, Appendix D) should be consulted where specific sampling and analysis procedures and methods are referenced. The environmental media to be sampled during the IRM, and the purpose for collecting and analyzing environmental samples, includes the following: | Table 6-1 Environmental Sampling Media and Objectives | | |---|--| | Sampling Objective Sampling Media | | | Soil: | | | - Confirmation Samples | To characterize soil for proper waste disposal | | | To document residual soil quality after completion of remedial excavation | | Wastewater: | To characterize wastewater to be transported and disposed of at a permitted facility | MGP residue and soil quality will be evaluated relative to disposal requirements listed in Section 4.0.3 of this *Work Plan*. Wastewater sampling and analysis will be completed as described in Section 6.3 and in accordance with the requirements of a permitted wastewater disposal facility. Because of the importance of air monitoring to worker and community health and safety, it has been described in detail as a separate section of this *Work Plan (Air Quality Monitoring Plan*, Section 5.0). The following sections of this *SAP* provide specific information regarding the rationale and methods for sampling and analyzing MGP residues, soil, and wastewater. IRM Work Plan # 6.1 Quality Assurance/Quality Control (QA/QC) Requirements/Data Quality Objectives QA/QC requirements are specified throughout the QAPP, (Appendix D) Data quality objectives are also delineated in the QAPP (Appendix D, Section 2). #### 6.2 Soil Sampling and Analyses Pian #### 6.2.1 Soil Sampling Field Protocols #### 6.2.1.1 Soil Sampling Field Procedures Samples will be placed into the appropriate containers specified in the QAPP (Appendix D) using decontaminated stainless steel trowels or spoons. Organic debris (i.e., leaves, twigs, bark) along with large pieces of gravel will be avoided. Sampling containers will be filled completely to avoid creating a head space where volatiles may escape. After each jar is filled, the threads will be wiped clean so the cap can be threaded on without creating an air gap. All filled jars will be labeled with the following information as a minimum: - Project Number; - Sampling Time and Date; - Sample Number; - Sample Location; - Analysis; and - Collector's Initials. The location, depth of sample, sample type, time of sample, and other associated data (i.e., color of the soil, odors, texture, etc.) will be documented in the field notebook when the sample is taken. Once all the soil samples are collected, the samples will be maintained at 4°C until the samples are delivered off site for analyses. All used sampling devices will be kept together, separate from clean tools, so that they can be cleaned according to appropriate decontamination and cleaning procedure as specified in the QAPP. In no event will a sampling device be used without full cleaning between samples. #### 6.2.1.2 Soil Sampling Field Equipment List The following items constitute a minimum listing of required field equipment for collecting soil samples. - chemical resistant boots, latex gloves, chemical resistant gloves and the appropriate level of personal protection for working conditions as described in Section 4.2 of the Health and Safety Plan for Activities at the Lockport State Road Former MGP Site; - sample containers: glass jars with Teflon-lined caps; - Teflon-coated or stainless steel sample spoons and bowls; - wooden stakes and spray paint (highly visible); - field notebook: - sample bottle labels; water resistant tape; and - ice cooler for sample storage. ## 6.2.2 Confirmation Soil Sampling and Analysis Plan ## 6.2.2.1 Sampling Plan Rationale A confirmation soil sampling and analyses plan will be implemented to determine the concentration of compounds remaining on the site following excavation. ## 6.2.2.2 Laboratory Analytical Protocols. Confirmation soil samples will be submitted to the laboratory for total benzene, total PAHs (polycyclic aromatic hydrocarbons) and total cyanide determinations using EPA Laboratory methods SW 846 8260, SW 846 8270, SW 846 9012, SW 846 Section 7.3.3.2, and SW 846 Chapter 7.3.4.2 respectively. Samples collected will be subject to NYSDEC ASP (Analytical Services Protocol) Category B deliverables. #### 6.2.2.3 Soil Sampling Protocol In the excavated areas, post excavation samples (either sidewall or bottom) will be obtained at worst case visual at intervals of 50 feet. A sample representing the first 3 to 6 inches of soil encountered will be taken from each sampling point. The sample will be representative of the area soil based upon visual and olfactory observations and PID readings. Confirmation samples obtained from excavations extending beyond 4 feet below grade may be collected via a stainless steel remote sampler or a hydraulicallyactivated sampling device. After each sample of soil is taken, an indicator will be used to mark the location, in the event that additional excavation in that area is required. A drawing depicting confirmation sample locations along with information concerning sample identifications, depth below original ground surface, and dates of collection will maintained by the field sampling technician throughout the project. #### 6.2.3 Roll Off Container/Area of Contaminated Soil Sampling and Analysis Plan for Waste Characterization #### 6.2.3.1 Roll off Container/Area of Contamination Sampling Rationale A soil roll off container/area of contamination sampling and analysis plan may be implemented to supplement the Pre-remediation In Situ Sampling and Analysis Work Plan. This sampling and analysis plan is to primarily address (1) subsurface soil characterized as RCRA non-hazardous waste by pre-remediation in situ sampling which upon excavation appears to be require hazardous waste disposal (i.e., soil that is grossly contaminated with tarry waste); or (2) subsurface soil characterized as a RCRA hazardous waste by pre-remediation in situ sampling which upon excavation appears to be suitable for disposal at a non-hazardous industrial waste landfill (i.e., soil that appears to be lightly contaminated or IRM Work Plan Section 7.3.3.2, and SW 846 Chapter 7.3.4.2 respectively. Samples collected will be subject to NYSDEC ASP (Analytical Services Protocol) Category B deliverables. #### 6.2.2.3 Soil Sampling Protocol In the excavated areas, post excavation samples (either sidewall or bottom) will be obtained at worst case visual at intervals of 50 feet. A sample representing the first 3 to 6 inches of soil encountered will be taken from each sampling point. The sample will be representative of the area soil based upon visual and olfactory observations and PID readings. Confirmation samples obtained from
excavations extending beyond 4 feet below grade may be collected via a stainless steel remote sampler or a hydraulicallyactivated sampling device. After each sample of soil is taken, an indicator will be used to mark the location, in the event that additional excavation in that area is required. A drawing depicting confirmation sample locations along with information concerning sample identifications, depth below original ground surface, and dates of collection will maintained by the field sampling technician throughout the project. ## 6.2.3 Roll Off Container/Area of Contaminated Soil Sampling and Analysis Plan for Waste Characterization #### Roll off Container/Area of Contamination Sampling Rationale 6.2.3.1 A soil roll off container/area of contamination sampling and analysis plan may be implemented to supplement the Pre-remediation In Situ Sampling and Analysis Work Plan. This sampling and analysis plan is to primarily address (1) subsurface soil characterized as RCRA non-hazardous waste by pre-remediation in situ sampling which upon excavation appears to be require hazardous waste disposal (i.e., soil that is grossly contaminated with tarry waste); or (2) subsurface soil characterized as a RCRA hazardous waste by pre-remediation in situ sampling which upon excavation appears to be suitable for disposal at a non-hazardous industrial waste landfill (i.e., soil that appears to be lightly contaminated or IRM Work Plan uncontaminated). During the course of remedial excavation, subsurface soil will be examined for visual and odorous evidence of MGP contamination. If the excavated soil appears to fit either description delineated above, it may be placed in a roll off container or stockpiled within the area of contamination in increments up to 100 cubic yards. Caution will be taken during segregation of waste to ensure that excavation techniques will not be used to dilute tarry waste, which are likely to be RCRA hazardous waste, for the purpose of disposal as non-hazardous waste. The Area of Contamination (AOC) for the Lockport State Road Former MGP Site, is the area of excavation. Disposition of soil will be based on the criteria delineated in Section 4.0.5. #### 6.2.3.2 Laboratory Analytical Protocols (See Pre-Remediation in Situ Sampling and Analysis Work Plan for the Lockport State Road MGP Site, Appendix A, 'Analytical Protocol", List A Analytes and List B Analytes) #### 6.2.3.3 Soil Sampling Protocol One worst case grab sample will be collected from each roll off container as soon as practical following excavation and submitted to the laboratory for analysis. Each sample will represent up to 100 cubic yards of soil. #### 6.3 Water Sampling and Analyses Plan #### 6.3.1 Sampling Plan Rationale Storm and/or ground water resulting from dewatering of the excavation may be generated during the project. This water, if required will be transferred to a 21,000 gallon frak tank that will be stored on-site. A sampling and analysis plan will be implemented to properly characterize the water for disposal at a local POTW (Public Owned Treatment Works) or an alternate disposal facility permitted to accept it. If the results of analysis meet the limits specified by the POTW, then the water will then be transferred into tank trucks for transport to the POTW or be discharged into a sanitary sewer. If the water is identified as material that exceeds local POTW specifications, then an alternate permitted disposal facility will be used. #### 6.3.2 Laboratory Analytical Protocols Analytical requirements will be determined by a POTW or facility permitted to accept wastewater. #### 6.3.3 Water Sampling Protocol As the frak tank nears its capacity, a sample will be collected and analyzed for parameters specified by a local POTW (or an alternate facility permitted to accept the water). #### 6.3.4 Water Field Sampling Procedures Water will be sampled directly from each filled tank prior to shipment off-site. Latex or rubber gloves will be worn to protect the sampling person and to avoid cross contamination through handling. Water will be sampled by lowering a stainless steel or disposable polyethylene bailer into the tank using a polyethylene cord. The sample contents will be immediately transferred into the appropriate sized container for each analysis as specified in the *QAPP* (Appendix D). Vials for volatile analyses will be filled completely so as to avoid creating a head space where volatiles may escape, and must be checked to ensure that no air gap or bubbles are present. All filled jars must be labeled with the following information as a minimum: - Project Number; - Sampling Time and Date; - Sample Number; - Analysis; and - Collector's Initials. Lockport State Road Former MGP Site, Lockport, NY IRM Work Plan The sample chain-of-custody form will then be immediately filled out and kept with the sample. The sample will be maintained at 4°C until delivered to the off-site analytical laboratory. #### 6.3.5 Water Sampling Field Equipment List: The following items constitute a minimum listing of required field equipment for collecting wastewater samples. - chemical resistant gloves and appropriate level of personal protection for working conditions as described in Section 4.2 of the *Health and Safety Plan for Activities at the Lockport State Road Former MGP Site* (Appendix A); - sample containers two 40-ml VOA vials; two one-liter amber containers; two plastic 500-ml acid-washed containers; - stainless steel or disposable polyethylene bailer; - field notebook; - sample bottle labels; and - chain-of-custody forms. ## **FIGURES** | FIGURE 1 | SITE LOCATION MAP | |----------|----------------------------------| | FIGURE 2 | FORMER OPERATIONS LAYOUT | | FIGURE 3 | PRE-REMEDIATION IN SITU SAMPLING | | FIGURE 4 | PROJECT LAYOUT | | PL-2 | NYSDOT PLAN | | PL-3 | NYSDOT PLAN | | ST-8 | NYSDOT EXCAVATION AND EMBANKMENT | | • | SECTIONS | | PR-1 | NYSDOT PROFILE | ## **APPENDIX A** PRE-CONSTRUCTION/REMEDIATION IN SITU SAMPLING & ANALYSIS WORK PLAN PRE-CONSTRUCTION/REMEDIATION IN SITU SAMPLES ANALYICAL RESULTS #### **NEW YORK STATE ELECTRIC & GAS CORPORATION** Licensing & Environmental Operations Department Corporate Drive, Kirkwood Industrial Park, P. O. Box 5224 Binghamton, NY 13902-5224 INTERIM REMEDIAL MEASURES # PRE-CONSTRUCTION/REMEDIATION IN SITU SAMPLING & ANALYSIS WORK PLAN LOCKPORT STATE ROAD FORMER MGP SITE LOCKPORT, NEW YORK September 20, 2000 Prepared by: Approved by: John J. Ruspantini, CHMM Staff Environmental Specialist Joseph M. Simone, P.E. Supervising Engineer #### Introduction: The New York State Department of Transportation (DOT) is proposing to construct a road over a small portion the NYSEG (New York State Electric & Gas Corp.) Lockport State Road Former MGP site. A more significant portion of the road will also be constructed on NYSEG property immediately adjacent to the former MGP site. NYSEG is preparing to conduct an investigation to determine if any contaminants associated with historic MGP operations may impact the DOT project and, if so, characterize significantly impacted soil and debris for off-site disposal. In addition, NYSEG plans to conduct a limited investigation in the areas of the former distribution gas holder, tar tanks, booster house, and boiler room building to determine whether an IRM would be appropriate. This work plan delineates a pre-construction/remediation sampling and analysis protocol designed to provide data for in situ waste characterization and site characterization. The first phase of in situ soil sampling and analysis is designed to properly characterize waste to be generated from the future excavation of soil for the DOT road construction. Based on the analytical results of in situ sampling for waste characterization, any soil determined to be RCRA hazardous waste will either be excavated and (1) sent to a thermal treatment facility; or (2) sent to a secured hazardous waste landfill in Canada. Soil determined to be RCRA non-hazardous waste will be excavated and (1) sent to an industrial non-hazardous waste landfill; or (2) stockpiled on-site for future use as subsurface backfill. Soil with no MGP impacts above background will be handled by DOT as normal construction and demolition debris (C&D). During remedial excavation, visual observations will also be used to segregate waste. For example, all free phase coal tar will be excluded from being used for subsurface backfill or disposed at a sanitary landfill. A total of approximately 3400 cubic yards of soil will be sampled for waste characterization of soil that will be removed for road construction. The second phase of in situ soil sampling and analysis is designed to determine if gross contamination is present in the former MGP vessels. If site characterization samples indicate that an IRM may be undertaken, NYSEG may then elect to collect in situ soil samples for waste characterization to determine proper off-site disposal of contaminated soil targeted for remedial excavation. NYSEG will conduct the sampling event. Zebra Environmental Services, Inc will provide geoprobe services and Severn Trent Laboratories, Inc. will provide analytical laboratory services. All sampling and analyses will be performed in accordance with the attached Quality Assurance Project Plan (QAPP). Data will be submitted to NYSDEC for review. The data will also be sent to the landfill and/or hazardous waste disposal facility representatives and the NYSDEC for review and approval prior to the transport of soil to any disposal facility. The Health and Safety Plan used in a previous investigation has been updated for use in this sampling event. Care will be taken, through the use of plastic bags or equivalent, to ensure that no subsurface material will be spread over the surface of the site. Soil cuttings, PPE and other sampling related consumables will be containerized for proper off-site disposal. #### Sampling Protocol: The sections of the site targeted for
excavation or investigation have been designated Areas 1 - 11. (See Fig. 1) Areas 1 through 7 will represent the DOT road construction area, Area 8 will represent the former gas holder, Areas 9 will represent the area of the former tar tanks, Area 10 will represent the former booster house area and Area 11 will represent the former boiler room area. Sampling points from each Area have been chosen to gather representative waste characterization and/or site characterization samples for the target Areas. Composite samples will be collected in selected Areas for waste characterization of various depths and horizons. Additional soil samples may be collected from any general area where grossly contaminated soil is observed. A geoprobe sampling rig will be used to collect 2" macrocore samples. The core will be examined to determine any distinct change in coal tar impact with depth. Where specified, the core samples will be properly mixed to generate a composite sample that is representative of its respective soil volume. Each core sample will be placed in a large stainless steel collection vessel. When collecting composite samples for TCLP volatile analysis, volatilization will be minimized by covering the sample compositing container and placing it within a cooler filled with ice between grab sample additions or by opening the core samples simultaneously prior to compositing. ## 1. DOT Road Construction Area Sampling (Areas 1 through 7) #### A. Sampling of Soil to be Excavated for Road Construction The maximum depth of excavation anticipated for Area 1 is approximately 4 feet below grade surface (bgs). The maximum depth of excavation anticipated for Areas 2 through 7 is approximately 5 feet below grade surface (bgs). For waste characterization profiling of Area 1, a composite sample will be generated for a depth interval of 0-4'. characterization profiling of Areas 2 through 7, a composite sample will be generated for a depth interval of 0-5'. Each composite sample will be comprised of a minimum of three core grab samples collected at the designated sampling points (depicted in Fig. 1) Each Area's composite sample will represent an estimated volume of soil as delineated in Table 7. Each composite sample will be submitted to the laboratory for determination of List A Analytes (See Analytical Protocol). For reuse characterization, at least one worst case grab sample will be collected from each Area. Worst case determination will be based on visual, olfactory and OVA meter observations. Each worst case grab sample will be submitted to the laboratory for determination of List B Analytes (See Analytical Protocol). Site reconnaissance has revealed a steep embankment in Areas 5a, 5b and 6. if sampling equipment and vehicles are not able to access these areas using normal techniques, then the in situ sampling method will be abandoned to ensure worker and equipment safety. At the time of excavation, the soil in the inaccessible areas will be stockpiled, sampled and analyzed (on a priority turnaround basis) to determine proper soil disposition. # B. Sampling of Soil to be Removed for Bridge Abutment and Wing Wall A bridge abutment and wing wall, as specified by NYSDOT, are currently planned to be placed in Areas 5 and 6. (See figure 1). Based on site reconnaissance, the placement of the bridge abutment will coincide with the embankment described above. Sampling equipment and vehicles are not likely to gain access to this area using normal techniques. Therefore, a sample point will be located along the flat edge at the top of embankment and toward the south end of the abutment. (Approximately located at point A1 as depicted in Figure 1.) Composite samples for at least two depth intervals to a final depth of approximately 40 ft (or bedrock refusal) will be generated from core grab samples collected continuously at sample point A1. Each composite sample will represent approximately 200 cubic yards of soil to be excavated for the abutment placement. According to current specifications, the placement of the wing wall will coincide with the bank of the Erie Canal. Three sample points spanning the width of the wing wall (W1, W2, and W3 - as depicted in Figure 1) will be used to generate composite samples for 8 foot depth intervals to a depth of bedrock refusal. Each composite sample will represent approximately 100 cubic yards of soil to be excavated for wing wall placement. Each composite sample will be submitted to the laboratory for determination of List A Analytes. If, at the time of construction, any soil excavated from the steep embankment appears to be contaminated with MGP constituents, then NYSEG proposes that the soil in question be stockpiled, sampled and analyzed (on a priority turnaround basis) for proper disposition. #### C. Sampling of Soil to Remain Beneath Road Construction Continuous geoprobe macrocore sampling will be conducted along the proposed northern curb line of the road to determine if the soil to remain under the road is impacted by MGP constituents. The geoprobe borings will be advanced at the following sample point locations: Area 1, Sample Point 1; Area 3, Sample Point 1; and Area 4, Sample Point 1 (See Fig. 1). Each boring will be advanced to a minimum depth of 16 feet bgs. If observed MGP impacts are evident at the base of these borings, then the borings will advanced as deeply as possible to the vertical extent of contamination. Each core sample will be examined for visual and olfactory evidence of MGP impacts and will be screened with an OVA meter. The portion of each core sample which appears most impacted will be submitted to the laboratory for determination of List B Analytes. If any MGP impacts are encountered at boring refusal, then this work plan will be modified to address the situation and personnel and equipment will be re-mobilized to conduct an investigation of the bedrock within the road construction area at a future date. #### D. Surface Soil Sampling In order to determine if precautions need to be taken by DOT workers accessing the excavation area, one surface soil sample will be collected in the vicinity immediately north of Area 1. (i.e., at a location adjacent to the DOT construction where soil will not be removed; See Fig 1: SS-4) following procedure will be used: A square measuring 1 meter by 1 meter (3.5 feet by 3.5 feet) will be established at each of the surface soil sampling locations. Five grab samples will be collected from the square -- one from each corner of the square and one from the center of it -- and composited into one analytical sample. Each grab sample will be collected from the top 1 inch of soil. An OVA meter will be used to screen each grab sample for VOCs (volatile organic compounds). The five grab samples will then be composited into one sample. Vegetation will be carefully removed from the sample. Each composite surface soil sample will be submitted to the laboratory for determination of List C and List D Analytes. TCL Volatile analysis will only be required if VOC's are detected from the OVA meter screening. #### 2. MGP Site Sampling #### A. Gas Holder Area Sampling Area 8 will be designated as the former gas holder area. Continuous geoprobe macrocore sampling will be conducted to determine the level of contamination within the perimeter of the former gas holder. The geoprobe boring will be advanced in Area 8, Sample Point 3 (or B-1 as depicted in Figure 1). The core will be examined for visual and olfactory evidence of MGP contamination and will be screened with an OVA meter. The observations will be recorded and the portion of the core which appears most impacted will be submitted to the laboratory for determination of List C and List D Analytes. To determine the level of MGP contamination outside the former gas holder, a second geoprobe boring will be advanced immediately outside and downgradient of the former gas holder (north northwest of the gas holder - See B-2 as depicted in Figure 1) to a depth of 4 feet below the structure, or until there are no MGP impacts observed. If field observations indicate that an IRM may be conducted to remove the contents of the former gas holder for off-site disposal, composite samples from various depth horizons within the perimeter of the gas holder may be collected for waste characterization. One composite sample will be generated for each two foot interval until the bottom of the holder is encountered. Each composite sample will be comprised of a minimum of five core grab samples collected at the designated sampling points (depicted in Fig. 1) for each depth interval. To accommodate the uneven terrain in this area, the sampling points may be rearranged in the field to develop more congruous depth horizons. Each composite sample will represent approximately 640 yd³ of soil and will be submitted to the laboratory for determination of List A Analytes. #### B. Tar Tank, Booster House and Boiler Room Area Sampling Area 9 will be designated as the former tar tank area, Area 10 will be designated as the former booster house area, and Area 11 will be designated as the former boiler room area. Continuous geoprobe macrocore sampling will be conducted to determine if MGP constituents are present within the Areas of the former gas plant structures. A minimum of one geoprobe boring will be advanced in each Area (See Figure 1: B-3 in Area 11; B-4 in Area 10; and B-5 in Area 9). The core will be examined for visual and olfactory evidence of MGP impacts and will be screened with an OVA meter. The observations will be recorded and the portion of the core which appears most impacted with will be submitted to the laboratory for determination of List C and List D Analytes. #### C. Surface Soil Sampling Three surface soil samples will be collected in the area of the former MGP site. One sample will be collected west northwest of the former gas holder a second sample will collected north of the former booster house and west of the
former boiler room, a third sample will be collected southeast of the former tar tanks (SS-1, SS-2, and SS-3, respectively as depicted in Figure 1). The 5 point composite sampling method described in Section 1C will be used to collect the surface soil samples. Each composite surface soil sample will be submitted to the laboratory for determination of List C and List D Analytes. TCL Volatile analysis will only be required if VOC's are detected from the OVA meter screening. #### **Analytical Protocol:** (Refer to the attached QAPP for specific methods.) List A Analytes: TCLP Volatiles, TCLP Semivolatiles, TCLP Metals, TCLP Pesticides, TCLP Herbicides, Reactive Cyanide and Reactive Sulfide (Reactivity), Corrosivity (pH), Flashpoint, PCBs, % Solids, - (Tables 1, 2, & 3). List B Analytes: Total BTEX (benzene, toluene, ethylbenzene, and xylenes - Table 4); Total PAHs (Table 5). List C Analytes: Target Analyte List Metals, Total Cyanide (Table 6) List D Analytes: Target Compound List Volatiles and Semi- Volatiles | | Regulatory Limit (mg/L) 6NYCRR Part 37 | |----------------------------|--| | Arsenic | 5.0 | | Barium | 100.0 | | Benzene | 0.5 | | Cadmium | 1.0 | | Carbon tetrachloride | 0.5 | | Chlordane | 0.03 | | Chlorobenzene | 100.0 | | Chloroform | 6.0 | | Chromium | 5.0 | | Cresols (total of o, m, p) | 200.0 | | 2,4-D | 10.0 | | 1,4-Dichlorobenzene | . 7.5 | | 1,2-Dichloroethane | 0.5 | | 1,1-Dichloroethylene | 0.7 | | 2,4-Dinitrotoluene | 0.13 | | Endrin | 0.02 | | Heptachlor | 0.008 | | Hexachlorobenzene | 0.13 | | Hexachlorobutadiene | 0.5 | | Lead | 5.0 | | Lindane | 0.4 | | Mercury | 0.2 | | Methoxychlor | 10.0 | | Methyl ethyl ketone | 200.0 | | Nitrobenzene | 2.0 | | Pentachlorophenol | 100.0 | | Pyridine | 5.0 | | Selenium | 1.0 | | Silver | 5.0 | | Silvex | 1.0 | | TABLE 1: COMPOSITE SAMPLE TCLP ANALYTES AND LIMITS | | |--|---| | TCLP Analyte | Regulatory Limit (mg/L) 6NYCRR Part 371 | | Toxaphene | 0.5 | | Trichloroethylene | 0.5 | | 2,4,5-Trichlorophenol | 400.0 | | 2,4,6-Trichlorophenol | 2.0 | | Vinyl chloride | 0.2 | | TABLE 2: COMPOSITE SAMPLE ANALYTES AND ACTION LIMITS REACTIVE CYANIDE and REACTIVE SULFIDE (REACTIVITY) | | |---|-----------------------------| | ANALYTE | US EPA ACTION LIMIT (MG/KG) | | Reactive Cyanide | 250 | | Reactive Sulfide | 500 | | TABLE 3: COMPOSITE SAMPLE ANALYTES AND ACTION LIMITS OTHER RCRA CHARACTERISTICS AND LANDFILL ANALYTICAL REQUIREMENTS | | |--|--| | ANALYTE | LIMIT | | Corrosivity (pH) | Non- Corrosive (pH must be >2 or <12.5) | | Flashpoint | Must be > 60 deg. C | | PCBs (Total) | 50 mg/Kg | | % Solids | Must be > 20% | | TABLE 4: TOTAL BTEX (BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES) | | | |---|--|--| | ANALYTE | | | | Benzene | | | | Toluene | | | | Ethylbenzene | | | | Xylenes | | | | TABLE 5: TOTAL POLYCYCLIC AROMATIC HYDROCARBONS (PAH) | | |---|----------------------------| | | PARAMETER | | | Naphthalene | | | 2-Methylnaphthalene | | | Acenaphthene | | | Acenaphthylene | | • | Fluorene | | | Phenanthrene | | | Anthracene | | | Fluoranthene | | | Dibenzofuran | | | Pyrene | | | Benzo (g,h,i) perylene | | | Benzo (a) anihracene* | | | Chrysene* | | | Benzo (b) fluoranthene* | | | Benzo (k) fluoranthene* | | | Benzo (a) pyrene* | | | Indeno (1,2,3 cd) pyrene* | | | Dibenzo (a, h) anthracene* | | | *Carcinogenic PAHs (cPAH) | | TABLE 6: Target Analyte List Metals & Total Cyanide | | |---|---------------| | | PARAMETER | | Aluminum | Magnesium | | Antimony | Manganese | | Arsenic | Mercury | | Barium | Nickel | | Berylium | Potassium | | Cadmuim | Selenium | | Calcium | Silver | | Chromium | Sodium | | Cobalt | Thallium | | Copper | Vanadium | | Iron | Zinc | | Lead | Total Cyanide | | TABLE 7: Estimated Soil Volumes - DOT Road Construction Area | | |--|---------| | Area 1 | 415 Yd³ | | Area 2 | 590 Yd³ | | Area 3 | 590 Yd³ | | Area 4 | 590 Yd³ | | Area 5a | 422 Yd³ | | Area 5b | 296 Yd³ | | Area 6 | 520 Yd³ | | Area 7 | 440 Yd³ | # PRE-CONSTRUCTION/REMEDIATION IN SITU SAMPLES ANALYICAL RESULTS #### Table 1 New York State Electric & Gas Corp Lockport State Road Proposed Bridge Site Pre-Construction/Remediation Investigation Results of Soil Reuse Samples | Area/
Sample
Point | Sample
Depth
(ft) | Sample ID | Sample
Collection
Date | Total
Benzene
(ppm) | Total PAH
(ppm) | Total cPAH
(ppm) | Naphthalene
(ppm) | |--------------------------|-------------------------|-------------|------------------------------|---------------------------|--------------------|---------------------|----------------------| | 1/1 | 0-4 | LSV1010401G | 9/26/00 | <0.005 | 5.800 | 5.800 | <3.000 | | 2/3 | 0-5 | LSV1030502G | 9/25/00 | <0.005 | 25.50 | 19.70 | <12.00 | | 3/2 | 0-5 | LSVI020503G | 9/25/00 | <0.005 | 32.46 | 11.90 | <1.200 | | 4/1 | 0-5 | LSVI010504G | 9/25/00 | <0.005 | 34.50 | 10.20 | <1.200 | | 7/3 | 0-5 | LSVI030507G | 9/25/00 | <0.005 | 148.8 | 71.70 | 1.10 | ppm means parts per million. na means not applicable. PAH means polycyclic aromatic hydrocarbons cPAH carcinogenic polycyclic aromatic hydrocarbons PAH data are the results of original semivolatile analysis ### Table 2 New York State Electric & Gas Corp Lockport State Road Proposed DOT Bridge Site Pre-Construction/Remediation Investigation Results of Site Characterization Samples | Area/
Sample
Point | SampleDepth
(ft) | Sample ID | Sample
Collect
Date | Total
Benzene
(ppm) | Total
PAH
(ppm) | Total
cPAH
(ppm) | Naphthalene
(ppm) | Total
Cyanide
(ppm) | |--------------------------|---------------------|---------------|---------------------------|---------------------------|-----------------------|------------------------|----------------------|---------------------------| | 1/1 | 6-8 | LSVIC16801G | 9/26/00 | <0.005 | 93.00 | 39.00 | <6.700 | · nd | | 1/1 | 8-10 | LSVIC181001G | 9/26/00 | <0.005 | 150.9 | 119.6 | <6.500 | nd | | 1/1 | 14-16 | LSVIC1141601G | 9/26/00 | <0.005 | <0.330 | <0.330 | <0.330 | nd | | 3/1 | 6-8 | LSVIC16803G | 9/25/00 | <0.005 | 19.50 | 19.50 ⁻ | <12.00 | nd | | 3/1 | 10-12 | LSVIC101203G | 9/25/00 | <0.005 | 1077 | 471.0 | <13.00 | nd | | 3/1 | · 14-16 | LSVIC1141603G | 9/25/00 | <0.005 | <1.500 | <1.500 | <1.500 | nd | | 4/2 | 6-8 | LSVIC26804G | 9/26/00 | <0.005 | 0.207 | 0.084 | <0.330 | nd | | 4/2 | 10-12 | LSVIC2101204G | 9/26/00 | <0.005 | 0.261 | 0.087 | <0.330 | ·nd | | 4/2 | 14-16 | LSVIC2141604G | 9/26/00 | <0.005 | 0.600 | 0.600 | <0.330 | nd | | na | surface (SS-4) | LSVISS04C | 9/26/00 | <0.011 | 3.721 | 1.792 | <3.400 | <0.50 | ft means feet. ppm means parts per million. na means not applicable. nd means not determined PAH means not determined PAH means polycyclic aromatic hydrocarbons CPAH carcinogenic polycyclic aromatic hydrocarbons PAH data are the results of original semivolatile analysis #### Table 3 # New York State Electric & Gas Corporation Lockport State Road Proposed DOT Bridge Site Pre-construction/Remediation Investigation Analytical Results of Pre-remediation In Situ Sampling Waste Characterization - Areas 1, 2, 3, 4, 5A, 6, 7, WW, WWA, and A1 | Area | Depth
Interval
(ft) | Sample ID | Sample
Collect
Date | RCRA Waste
Classification | TCLP
Benzene
(ppm) | Soil
Volume
(yd³) | Comments | |------|---------------------------|----------------|---------------------------|------------------------------|--------------------------|-------------------------|---| | 1 | 0-4 | LSVIWC0401C | 9/26/00 | Non-hazardous | <0.006 | 415 | | | 2 | 0-5 | LSVIWC0502C | 9/25/00 | Non-hazardous | <0.006 | 590 | - | | 3 | 0-5 | LSVIWC0503C | 9/25/00 | Non-hazardous | <0.006 | 590 | | | 4 | 0-5 | LSVIWC0504C | 9/25/00 | Non-hazardous | <0.006 | 590 | | | 5a | 0-0.5 | LSVIWCBB05A | 9/26/00 | Non-hazardous | <0.006 | 90 | Noted bluish stain and sulfury odor in sufrace soil | | 6 | 0-0.5 | LSVIWCSS06C | 9/26/00 | Non-hazardous | <0.006 | 100 | | | 7 | 0-5 | LSVIWC0507C | 9/25/00 | Non-hazardous | <0.006 | 440 | · | | ww | .0-4 | LSVIWC04WWC | 9/26/00 | Non-hazardous | <0.006 | 50 | · | | WWA | 0-4 | LSVIWC04WWAC | 9/25/00 | Non-hazardous | <0.006 | . 50 | | | · | 4-8 | LSVICW48WWAC | 9/25/00 | Non-hazardous | <0.006 | 50 | | | A1 | 0-20 | LSCVIWC020A1C | 9/26/00 | Non-hazardous | <0.006 | 200 | | | | 20-23 | LSVIWC2023A1G | 9/26/00 | Non-hazardous | <0.006 | 30 | | | | | Total Volume N | on-hazard | ous | | 3195 | · | | · . | | Total Volume | Hazardou | S | | 0 | | ppm means parts per million. yd3 means cubic yards WW means proposed wing wall area (composite of grab samples from W1, W2 and W3). WWA means proposed wing wall area offset North Northeast (composite of samples from W1A, W2A and W3A). A1 means sample area intended for the proposed bridge abutment (this area was offset East due to refusal in the specified bridge abutment area). c:\wpdocs\Lockport\sampling results waste char1.wpd ### Table 4 New York State Electric & Gas Corp Lockport State Road Former MGP Site Pre-Construction/Remediation investigation Results of Soil Borings and Surface Soil Samples | Area/
Boring | Depth
(ft) | Sample ID | Sample
Collect
Date | Total
Benzene
(ppm) | Total
PAH
(ppm) | Total
cPAH
(ppm) | Naphthalene
(ppm) | Total Cyanide
(ppm) | |-----------------|-------------------|-------------|---------------------------
---------------------------|-----------------------|------------------------|----------------------|------------------------| | 8B/B1 | 3-4 | LSVI34B1G | 9/26/00 | <0.010 | 0.684 | 0.354 | <3.500 | <0.50 | | 8B/B1 | 7-8 | LSVI78B1G | 9/26/00 | <0.011 | 97.20 | 34.15 | 0.280 | <0.50 | | 8B/B1 | 10-11 | LSVI1011B1G | 9/26/00 | <0.011 | 2.140 | 0.924 | <1.900 | <0.50 | | 8B/B1 | 12-13 | LSVI1213B1G | 9/26/00 | <0.011 | 37.72 | 13.93 | 0.140 | 1.30 | | na/B2 | 0-4 | LSVI04B2G | 9/25/00 | <0.010 | 99.03 | 33.60 | 1.400 | 15.7 | | 11/B3 | 2-3 | LSVI23B3G | 9/26/00 | <0.011 | 5.900 | 2.945 | <3.600 | 0.78 | | 11/B3 | 5-6 | LSVI56B3G | 9/26/00 | <0.011 | 1228. | 359.7 | 11.00 | 1.70 | | 10/B4 | 2-4 | LSVI24B4G | 9/26/00 | <0.011 | 11.60 | 5.230 | <35.00 | 2.00 | | 10/B4 | 6-7 | LSVI67B4G | 9/26/00 | 0.004 | 139.0 | 41.00 | 8.000 | 12.5 | | 10/B4 | 8-9 | LSVI89B4G | 9/26/00 | <0.011 | 54.45 | 18.71 | 2.200 | 3.00 | | 10/B4 | 13-15 | LSVI1315B4G | 9/26/00 | <0.011 | 36.69 | 17.14 | 0.930 | 2.50 | | 10/B4 | 17-19 | LSVI1719B4G | 9/26/00 | <0.011 | 31.39 | 15.93 | 0.560 | 3.00 | | 10/B4 | 21-23 | LSVI2123B4G | 9/26/00 | <0.012 | 1.811 | 0.693 | 0.070 | 10.0 | | 9/B5 | 2-3 | LSVI23B5G | 9/26/00 | <0.010 | 12.48 | 7.480 | <18.00 | <0.50 | | 9/B5 | 7-8 | LSVI78B5G | 9/26/00 | <0.011 | 11.18 | 5.570 | 0.019 | <0.50 | | 9/B5 | 10-12 | LSVI1012B5G | 9/26/00 | <0.011 | 24.44 | 10.20 | <1.900 | <0.50 | | na | surface
(SS-1) | LSVISS01C | .9/26/00 | <0.014 | 5.899 | 2.600 | <3.500 | 0.99 | | na | surface
(SS-2) | LSVISS02C | 9/26/00 | <0.013 | 7.393 | 3.546 | <4.100 | 0.83 | | na | surface
(SS-3) | LSVISS03C | 9/26/00 | <0.011 | 8.135 | 4.140 | 4.600 | <0.50 | | | | | | | | | | | ft means feet. ppm means parts per million. na means not applicable. PAH means polycyclic aromatic hydrocarbons cPAH carcinogenic polycyclic aromatic hydrocarbons #### Table 5 # New York State Electric & Gas Corporation Lockport State Road Former MGP Site Pre-construction/Remediation Investigation Analytical Results of Pre-remediation In Situ Sampling Waste Characterization - Areas 8A and 8B | Агеа | Depth
Interval
(ft) | Sample ID | Sample
Collect
Date | RCRA Waste
Classification | TCLP
Benzene
(ppm) | Soil
Volume
(yd³) | Comments | |------------|---------------------------|----------------|---------------------------|------------------------------|--------------------------|-------------------------|---------------------------------------| | 8 A | 0-4 | LSVIWC0408AC | 9/25/00 | Non-hazardous | <0.006 | 600 | | | 8B | 0-4 | LSVIWC0408BC | 9/25/00 | Non-hazardous | <0.006 | 600 | · · · · · · · · · · · · · · · · · · · | | | 4-8 | LSVIWC4808BC | 9/25/00 | Non-hazardous | <0.006 | 600 | | | | · | Total Volume N | lon-hazard | ous | | 1800 | | | | | Total Volume | e Hazardou | s | | 0 | : | ppm means parts per million yd³ means cubic yards #### Lockport State Road Former Manufactured Gas Plant (MGP) Site Pre-construction/Remediation In Situ Soil Sampling Field Notes J. J. Ruspantini - Project Manager #### September 25, 2000 Arrive 10:30, mostly sunny, temp approximately 60 degrees F. Present: Scott Fisher-URS geologist; Zebra Environmental - geoprobe company (Butch, Chris, Ken); Dave Kerrick and tree removal crew; Brian Balchikonis of Beak; Eric Knapp of DEC arrives ~ 13:00. Walked site with Dave Kerrick to determine what trees required removal to access sampling points. Noted significant slope, rip rap, and forestation in Areas 5a, 5b and 6.. (Geoprobe unit will not gain access to these areas.) Ran ATV mounted geoprobe rig down the embankment in Area 8 to gain access to sample points closer to the canal. Scott Fisher was charged with directing geoprobe crew and collection of samples in the former MGP area. (See field notes and boring logs from Scott Fisher of URS for work done in the MGP Areas.) #### **DOT Construction Area Sampling:** NYSEG gas department contacted to confirm main markout in area 1. #### Waste Characterization and Soil Reuse Samples: #### Area 2 Sample point 1, 0-5': fill, brown soil, clay, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 0-5': fill, brown soil, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 3, 0-5': fill, brick, stone, no visible tar, no coal tar odors, PID = 0.0 ppm. Use sample point 3 as worst case sample for potential soil reuse. #### Area 3 Sample point 1, 0-5': fill, brown soil, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 0-5': fill, brown red soil, brick, clay, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 3, 0-5': fill, stone no visible tar, no coal tar odors, PID = 0.0 ppm. Use sample point 2 as worst case sample for potential soil reuse. #### Area 4 Sample point 1, 0-5': fill, brown soil, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 0-5': fill, brown soil, concrete, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 3, 0-5': fill, brown soil, concrete, no visible tar, no coal tar odors, PID = 0.0 ppm. Use sample point 1 as worst case sample for potential soil reuse. #### Area 7 Sample point 1, 0-5': fill, brown soil, **coal**, stone, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 0-5': fill, brick, silty clay, wet, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 3, 0-5': fill, brown soil, glass, no visible tar, no coal tar odors, PID = 0.0 ppm. Use sample point 3 as worst case sample for potential soil reuse. #### Site Characterization Samples: #### Area 3 Sample point 1, 4-8': brown sandy soil, wet silty clay, fill, no visible tar, no coal tar odor, PID = 0.0 ppm. Sample taken at 6-8' Sample point 1, 8-12': brown sandy soil, wet dark clay (?), fill, no visible tar, no coal tar odor, PID = 0.0 ppm. Sample taken at 10-12' Sample point 1, 12-16': dark soil "clay" like, fill, brick, stone, glass, no visible tar, no coal tar odor, PID = 0.0 ppm. Sample taken at 14-16' End sampling in DOT construction Area at 17:35. #### September 26, 2000 Arrived on-site 08:09. Partly cloudy skies. Temp approximately 50 degrees F. Present: Scott Fisher (URS); Butch, Ken, Chris (Zebra); Eric Knapp (DEC); Brian Balchikonis (BEAK). NYSEG Gas dept contacted to send truck with winch to pull out ATV geoprobe rig - Jim Volpe and Rick dispatched to hoist rig from canal bank. #### Waste Characterization and Soil Reuse Samples: #### Area 1 Sample point 1, 0-4': brown wet soil, fill, brick, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 0-4': fill, brown, soil, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 3, 0-4': brown sandy soil, stone, fill, no visible tar, no coal tar odors, PID = 0.0 ppm. Use sample point 1 as worst case sample for potential reuse. #### Abutment Location Waste Characterization Sample: Sample point A1 was intended to provide waste characterization data for soil to be excavated for the bridge abutment. However, numerous refusals along bank edge in Areas 5a and 5b forced the crew to locate sampling point A1 to Area 4, sample point 2, east of the specified location of the bridge abutment. Limestone rip rap suspected at the edge of the embankment. #### Area 4 Sample point 2, 0-4': brown soi!, gravel, fill, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 4-8': fill, brick, stone, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 8-12': stone, gravel, fill, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 12-16': stone, gravel, fill, no visible tar, no coal tar odors, PID = 0.0 ppm. Sample point 2, 16-20': gravel, fill, stone, brown clay -18', no visible tar, no coal tar odors, PID = 0.0 ppm. Composite all cores from 0-20 to form one waste characterization sample. Sample point 2, 20-24': refusal at 23', brown clay, grey clay, fill no visible tar, no coal tar odors, PID = 0.0 ppm. Deeper boring for waste characterization in this area has been abandoned. Avoiding refusal requires moving to far back from the edge of the embankment to get useful waste characterization data in the vicinity of the bridge abutment installation. #### Waste Characterization Sampling: #### Area 5A Purifier waste observed in the embankment of Area 5A. Bluish color and sulfury odor. One composite surface soil collected for waste characterization parameters. ATV geoprobe rig could not access this area due to steep slope and large rip rap. #### Area 5B Soil in this area could not be accessed for sampling due to large rip rap and heavy forestation on a steep slope. #### Area 6 One composite surface soil sample collected for waste characterization parameters. ATV geoprobe rig could not access this area due to steep slope and large rip rap. #### Site Characterization Samples: #### Area 4 Sample point 1, 4-8': refusal at 5'; moved sampling location to sample point 2. Sample point 2, 4-8': fill, stone, soil, no visible tar, no coal tar odor, PID = 0.2 ppm. Sample taken at 6-8' Sample point 2, 8-12': fill, stone, soil, no visible tar, no coal tar odor, PID = 1.0 ppm. Sample taken at 10-12'. Sample point 2, 12-16': fill, stone, soil, clay \sim 15ft. no visible tar, no coal tar odor, PID = 1.0 ppm. Sample taken at 14-16'. #### Area 1 Sample point 1, 4-8': fill, brown silty clay, purifier waste evident at \sim 8', sulfury odor observed, no visible tar, no coal tar odor, PID = 0.0 ppm. Sample taken at 6-8'. Sample point 1- offset, 8-12': fill, red sand, silt, no visible tar, purifier waste 8-10', no coal tar odor, PID = 0.0 ppm. Sample taken at 8-10'. Sample point 1- offset, 12-16': red sand, silt at 13', purifier waste 12-13', PID = 0.0 ppm. #### Surface Soil Sampling: #### **DOT Construction Area** Sample point 4: fill, gravel, soil: Grab #1 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #2 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #3 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #4 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #5 - PID = 0.0 ppm, no
visible tar, no coal tar odor. #### **MGP Site** Sample point 1: brown/black top soil Grab #1 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #2 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #3 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #4 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #5 - PID = 0.0 ppm, no visible tar, no coal tar odor. #### Sample point 3: brown/black top soil Grab #1 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #2 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #3 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #4 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #5 - PID = 0.0 ppm, no visible tar, no coal tar odor. #### Sample point 2: brown/black top soil Grab #1 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #2 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #3 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #4 - PID = 0.0 ppm, no visible tar, no coal tar odor. Grab #5 - PID = 0.0 ppm, no visible tar, no coal tar odor. JJR ends sampling at 14:55. All samples left in custody of Scott Fisher for in person delivery to Severn Trent Laboratories in Amherst, NY. JJR demobed from site at 16:15. # **URS** Copies to: OC1 2€ 2000 79 Hammond Lane HE BELL OIL Letter of Transmittal | | Luspantini | | _Date: | 10/23/00 Job No.: 0535635.81 | |--|---------------------------------------|------------------------------|-------------------------|---| | NYSE | G | | Re: | State Rd. Former MGP, Lockport | | | Orive, Kirkwood Industria
x 5224 | ıl Park | | | | Bingha | nmton NY 13902-5224 | | <u></u> | | | | | | PLEASE RE
ALL FUTURI | FER TO THE TRANSMITTAL NUMBER E CORRESPONDENCE | | We are sending | you D Attached D U | Inder Separate Co | over the following ite | ems: | | ☐ Shop Drawi | ngs 🗆 Print | s | ☐ Plans | ☐ Specifications | | ☐ Copy of lett | er 🗆 Chan | ge Order | <u> </u> | | | | · · · · · · · · · · · · · · · · · · · | | | | | COPIES | DRAWING NO. | DATE | | DESCRIPTION | | 1 | | | Geoprobe Logs (8 | each) dated 9/25/00 | | | | | | | | | · | | | | | | | | | | | | | | | | | ÆSE ARE TRA | NSMITTED as checked be | elow: | | | | | NSMITTED as checked be | elow: | ns Taken | ☐ Resubmit copies for approval | | ☐ For approval | NSMITTED as checked be | | | ☐ Resubmit copies for approval ☐ Submit copies for distribution | | TESE ARE TRA For approval For your use As requested | NSMITTED as checked be | ☐ No Exception | ted | | | For approval For your use | | ☐ No Exception☐ Revise as No | ted
Resubmit | ☐ Submit copies for distribution | Paul E. Pavone Office Supervisor | | | | UF | RS G | rei | ner W | 700 | | | GEO | PF | <u> </u> | BE | <u>LOG</u> | | | | | | | |------------------|----------|---|-------------|-------------|--------------|------------------|-----------|----------------|------------------|----------|--------|---|--------------------|--|----------|------|--------------|-------------|---------|---------| | | | | | | • | | | | , | | | | | BORING | NO.: | 3 | | 1_ | | | | PROJ | ECT: | Sto | te | Rd. | To | mer | M(| P, | Loc | kΡ | wt | | | SHEET: | 1 OF | 1 | | | | | | CLIEN | | N | SE | . G- | | | | | | | | | | JOB NO.: | 05 | 00 | 039 | 563 | 5,81 | <u></u> | | BORIN | NG CONT | RACT | OR: | Ze | 6- | a En | 1100 | mer | tal | Ser | ices | | | BORING | LOCATIO | ON: | | | | | | GROU | NDWATE | R: | | | · | | | | CAS. | SAM | PLER | CORE | TUBE | GROUND | ELEVAT | TON: | | | | | | DATE | TIME | L | EVEL | | • | TYPĖ | | TYPE | <u> </u> | W | مرين | - Cor | e (mc) | DATE ST | ARTED: | | 9/z | 5/20 | 000 | | | | | $oldsymbol{ol}}}}}}}}}}}}}}}}}$ | | | | | | DIA. | | | | 7 | 1 | DATE FIN | ISHED: | • | 7/2 | 5/2 | 000 | | | | | | | | | | | wr. | <u> </u> | | · . | | | DRILLER | <u>こ</u> | w+ | ch. | Eag | an | | | | | | | | | • | | FALL | | <u> </u> | | | | GEOLOG | IST: | S | 6H | - Fis | cher | | | | | | | | | | | * P(| OCKET F | ENETI | ROMETE | R READ | ING . | REVIEWE | D BY: | | | | | | | | | | | SAMP | LE | | | | | | D | ESCRIP | пои | | ····· | ···· | | | | 1-1 | | DEPTH S | STRATA | "S"
NO. | CORE
NO. | BLO\
PER | | RECOVERY
ROD% | α | DLOR | CONSIST
HARDI | | | · 1 | MATER | TION | | | LASS
JSCS | | REMARKS | التا | | | 5.5 | 1 | 2 | | 4 | . , | 此 | · own | 1 | | Appo | rent. | £11. v | lateric
ravel
is Fraga
inders | · I — | G | M- | Dry | | 0.0 | | | 0 | | 1 | | + | 90% | 6 | | | | - Sa | 7 ~
v9 1 > | 1116 | ravel | , , | • | | Ī |) | 0.0 | | 4 | 5 5 | | , | | 1 | | 010 | ran | | • | Bri | tk . / | الم لاه | is trage | nents | 1 | | | , | | | -5- | .0 | | MC | \vdash | + | | 1 | 1 | | | CI. | | isk _i i | 74 GO 7 | , | | $ \neg $ | SIN | noist | 0.0 | | | Proper | NA | Z | NA | NA | 100% | Ime
Dr | sun's | NA | | - 74 | | odaja | 07'0 | ا م را | | | | 0121 | PIN | | _0 _F | 1 | 1 | | | + | | OF | ange/ | | | w i | ack
Vo ai | stain
S Rea | . @ 7'-8
. ding. | 692 | Ì | | | | | | | 50 | | 3 | | | 100% | | 1 | | | | | | 7. | | | | | | 0,0 | | | 0,0 | | ĺ | | + | 100% | 1 0 | تمدم | 1 | | | | | | } | | - | | | | | 17 | 0,0 | ł | nc
4 | 4 | + | 25% | lon | ragel | 4 | | | | | | | | y – | * | <u></u> | PPA | | 13 | | | | | | | | | | | E.O | 13¢ | Refi | 1591 @ | 1369 | s | _ | | | | | H - | . | | | \vdash | | | | ļ | | | | | | | | | _ | | | | | | | | | | |] | | | | | | • | | | | - | _ | | | | | | | | | | |] | | | | | | | | | | } | _ | 1 | | | | | 1 | | | | | | | l | | | | | | | | | _ | 1 | • | | | | | | | | | | | | | | | | • | | | . | _ | | | - | | | { | | | | | | | [| | | | | | | | | - | | | | | | | | | | | |] | ļ | | | - | | | • | | | _ | | | • |] | | | ļ | • | | | | -] | _ | | | | | | | | | | | | | | | |] | | | | | 1 | | | | | | | | | | | | | | . | | | | | | | | | _ | | | | | . | | | | | | - | 1 | | | | | | | | ÷ | | | , | _ | | | | | | | | - | | | | | . | | | | | | | | 1 | · — | | | | | | | | | | | | ļ | | | | | | | | | | _ |] | _ | 1 | | | | | 1 | | | | - | | | . | | | | | | | | | _ | 1 | | | | | | | | | | | | | | • | | | | | | | _ | 4 | | | | | 1 | <u>. </u>
78 | | <u> </u> | | ا ما | ٠.٠ | | A ^^ | ماء م | 1 | + 1 | J. 16 | uoi+ | | | | | |
 | | COMM | ients:_ | 100 | 21/6 | 74 C | 76N | ced u | <u> </u> | y 5 | ا توپ | ع ه د | D, F | <u>' [] </u> | 037 | <u> </u> | 1 | | | | 35.P33 | | | | <u> </u> | - U | سين | | <u>. Y</u> . | | | | | | | | | | - 1 | BORI | NG NO | O.: | 73- | 1 | J | | | | | | | | ···· | | · | | | |--------------|--------------|-------------
---|---------------|------------|----------|----------------|---|-----------------------------|------------|----------| | 1 . | UR | S Greiner W | oodwa | rd C | lvde | | | GEC | PRO | BE LOG | | | | | | <u>ood wa</u> | <u>. u C</u> | 1744 | • | | BORING NO.: | B-2 | | | | PROJECT: | tate | Rd. Former | MGP. | Local | k Pof | 4. | | SHEET: 1 OF | 1 | | | | CLIENT: | NYSE | G | | | | | | JOB NO.: 050 | 00356 | 35,81 | | | BORING CONTR | ACTOR: | Zebra E | nv: ronz | nent | al : | Ser | vices, | BORING LOCATI | • | _ | | | GROUNDWATE | A: | | | CAS. | SAM | PLER | CORE TUBE | GROUND ELEVA | TION: | | | | DATE TIME | LEVEL | TYPE | TYPE | | M | acr | o-core(mc) | DATE STARTED: | 9 /z | 5/2000 | | | | | | DIA. | | | | Z ⁿ | DATE FINISHED: | | 5/2000 | | | | | | WT. | | | | | DRILLER: 7 | 3utch | Eagan | | | | | | FALL | | | | , | GEOLOGIST: | | Fischer | | | | | | • p | OCKET | PENET | ROMET | ER READING | REVIEWED BY: | | | | | | | SAMPLE | | | | | | | | | | | | TST CORE | PER 6" ROO% | COLOR | RIAL
PTION | CLASS | REMARKS | LED. | | | | | | 7 5050 | 1 mc | 11 | ill Materia
es of med,
nd & Fine
ts & conjonce | 17 ML- | - Slightly | 2.2 | | | | | | | 1 2 2 5 5 1 | NAI | NA NA 90% | Med, | 1 | À | 1-2: | It w/ True | es of med, | - | muist 3 | 0,0 | | 3 405 | \downarrow | ¥ ¥ | Brown | 4 | , | 95 | avel z. | ne a time | SM- | - Dry | | | -5- | | | metal , | <u> </u> | 3 | | | | | | | | | 1 } | | metal, 4 | - | | • | | | | | | | | | | ļ | , | | 1-1 | 1 to 3,5 6 | 95 Silt4 | $\parallel \parallel \perp$ | | | | | | | | | | F | he sand i | u/ Some | - | | | | -10- | | | · | | | 1/ 10 | unded gra | ivel up to | // I | | | | | | | | | | 117 | d. Sam | gs Silt &
w/ some
welves to
e Nobish | - | | | | | | | | | | las | s above. | , v | 4 = | | | | -15- | | | | | • | Eic | B & Ref | wal @ 4169 | | | | | | | | | | | NoT | E: 4'110 | 1 He on to | 2 - | | | | | | | | | | 1 | Jesth ach | 5 the greates
lieved after | _ | | | | | | | · | | • | 4 | attempt | ζ. | _ | | ٠ | | -zo- | | | | | | · ' | | • | - | | | | | | | | | | | - | | | 1 | | | | | | | | | | | | - | - | | | -25- | | | | | | | | | - | · | | | | | | | 1 | | | · | | - | | | | | | | | | | | | * | - | | | | -30- | - | 1 | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | - | - | | | -35- | . } | | | !
 | | | | | - | | | | | | | | | | | | | | - | | | | 1 } | | | | | | | • | - | - | | | -40- | | · . | | | | | | | | <u></u> | | | | | | | <u> </u> | | <u> </u> | · . | , , , , , , , , , , , , , , , , , , , | | | <u> </u> | | COMMENTS: | Boring | Advanced us | ing ac | Jeup1 | obe | 0:0 | ect Push | Unit | PROJECT | NO.: 35635 | - 81 | | Mainte | La con | an ATV. | | | | | | | BORING N | · | | |--------------|------------------|---|----------|--------------|------------|-------|-------------|----------|------------|------|----------|---|--------------|---------------------------------------|---------------|------------------|----------| | | | | UR | S G | reii | ner W | oodw | aro | i C | lvđe | · | | • | GEC | PRO | BE LOG | à | | | | | | | | | | | • | | | | | BORING NO.: | B-2 | Α | | | PRO | IECT: | | | | , Fe | nmer | MG | 4 | , <u>L</u> | ock | Aor" | | | SHEET: 1 OF | 1 | | | | CLIE | NT: | W | SE | <u>G</u> | | · . | | | , | | | | | 108 NO: 05 | 00035 | 635,81 | | | BOR | NG CONT | RACT | OR: | Zel | 500 | Envi | ronm | en | 41 | Se | rvio | es | | BORING LOCATION | ON: | | | | GRO | TAWDNU | ER: | | - | | | | \dashv | CAS. | SAMI | PLER | CORE T | UBE | GROUND ELEVA | TION: | | | | DATE | TIME | LE | VEL | ļ | Ţ | YPE | TYF | PE | | 3 | معت | -core | | DATE STARTED: | 9/2 | 25/2000 | | | <u> </u> | | | | | | | DI | A. | | | | 2" | | DATE FINISHED: | 9/ | 25/Z000 | <u> </u> | | | <u> </u> | <u> </u> | _ | ļ | | | , Wi | r. | | · · | | · · · · · · · · · · · · · · · · · · · | | DRILLER: | | Eagan | | | | | ┼ | | ļ . | | · · · | FAI | LL | | | | <u> </u> | | GEOLOGIST: | Scott | - fischer | | | | | | | <u> </u> | | | | | | | | REVIEWED BY: | | · · · · · · · · · · · · · · · · · · · | | | | | ОЕРТН | STRATA | -5 - | CORE | | | | | | | | | | RIAL | CLASS | REMAR | KS PID | | | FEET | | NO. NO. PER 6" ROD% COLOR HARDNESS DESCRIPTION | | | | | | | | | | | PTION | USCS | | | | | | 101 | 1 Mc 1 100% Orange 1 0-3,5': See 3-Z
1 NA NA 100% Tan NA 3,5' to 5': Silty Fin | | | | | | | | | | | 5-ス | SM- | Dry | 0.0 | | | Z | 1,00 | NΑ | 1 | NA | NA | 1000 | Tan | | Nis | t | 2,2 | tos: | 7. I
2. I | ity time Sm | 91 - | | | | 4 | Trace of angu | | | | | | | | | | | | | 1 Apparent | 4 - | 1 + | DO | | -5- | I Fil Material) | } | | | * | | | | | | | | | | . ` | | | | , | | t | | | • | | | | | 1 | D PIS | Red | adina sen | 1시 - | 1 | | | _10_ | | | Ĺ | | | | | | | | 10 | inders a | もみ | Black Layer
ading, Asoko
Sh. | - | - | | | | | | ŀ | | | | | | | | | | | Fusal @ | - - | 1 | | | | | | | | | | | | | | | 015 ¢. | | 341 6 | - | 1 | | | - 15- | | | ŀ | | | | · | | | , | ١ | . <i>2 </i> | • , | + 1 11 | - | 1 | | | | | | - | | | | | | | | No | te: 0 | eepe | est Depth | – لد | | | | | | | E | | | | | | | | 4 | <u>U</u> n 1000 | r 03 | tera atten | _ <i>T</i> 70 | 1 | | | | | | F | | | | | | | | <u> </u> | | | | - | 1 | | | -zo- | | | | | | | | | | | | • | | | _ |] | | | | | | } | | | | | | | | | | | | _ | <u> </u> | | | | | | F | | | : | | | | | | | | ÷ | - | 1 | | | -25- | | | - | | | | | | | | | | | | - | 1 . | | | | | | - | | | | | | | | | | | | - | · · | | | | | | - } | · - | | | | | | | | | | | - | _ | | | -30- | | | | | | | | | | | | | • | | _ | | | | \vdash | | | } | | | - | | | | | | | | | - | - | | | | | | | | | | * | ` | - | + | | | -35- | | | } | | | | | | | | | | - | • | - | 1 | | | 1 | | ' | - | | | | | | | | | | | | - | - | | | ┌─┤ | | | } | | | • | | | ÷ | | | | | | _ | 1 | | | -40 | | | | | | | } | | | • | | | | • | - | 4 | • | | s i | | | <u>ا</u> | . 1 | 1 | 4000 | 1 k 3 ~ | <u> </u> | <u> </u> | ~ ~ | 1.1. | Nine . | + 6 | Sugh . 1 | | | <u> </u> | | COM | MENTS: _ | Mor | nte | H C | <u>ννω</u> | an At | <u>~.~~</u> | <u>a</u> | <u>ۍو</u> | opi | سهلا | Direc | | | | no.: <u>3563</u> | | | | - 1 1 | | | <u> U</u> | | | | | | | | | | | BORING N | 10.: <u>R</u> – | LA_ | | | | | | | | | | | | | <i></i> | | | | | | | | |-------|----------|-------|--|--------------|--|----------|-----------------|----------|--|------|-------------------|----------|--|-------------------------------------|----------------|------------|-------------------|----------------| | | | | UR | S (| Frei | ner W | oodv | Var | ·d C | lvde | . | | | GE | OP | PRO | BE LOG | | | | | | | | | | oga, | <u> </u> | <u>u </u> | ., | - | | | BORING NO.: | | B- | 3 | | | PRO | JECT: | Sta | te | Rd | T | vmer | MG | 4. | La | ek A | rt | | | SHEET: 1 | OF 1 | | | | | CUE | NT: | NY | SE | <u>ک</u> | | | | | 7 | | | | | JOB NO.: 05 | 000 | 356 | 35.81 | | | BOR | ING CONT | TRACT | ron: | Z | ebra | Envi | man | en | tal | Se | rvic | es | | BORING LOCA | | | | | | GRO | UNDWAT | ER: | | | | | | | CAS. | | PLER | CORE | TUBE | GROUND ELEV | /ATIO | N: | | | | DATI | TIME | L | EVEL | | , 1 | TYPE | T | YPE | | M | 2 Cro- | -core | (mc) | DATE STARTE | D: | 9/2 | 5/2000 | | | | | | | | | | | DIA. | | | - | Z | | DATE FINISHE | | | 5/2000 | | | | | | | | | | V | VT. | | | | | | DRILLER: | 7 | | Eagan | | | | | | • | | | | F. | ALL | | | | | - | GEOLOGIST: | - (| | Fischer | | | - | | 1 | | | | | | | | | | | REVIEWED BY |
: | <u>) WIL</u> | 7.30() | | | | | | | | SAM | IPLE | | | | , | | | ESCRIPT | TON | ! | | | | Τ. | | DEPTH | STRATA | -2. | CORE | | ows | RECOVERY | <u> </u> | | CONSIS | | 1 | | MATE | | | CLASS | REMARKS | : P <u>T</u> 0 | | FEET | O O | NO. | NO. | PE | R6" | RQD% | Altern | | HARDI | NESS | <u> </u> | | DESCRI | | , | USCS | | | | | . 5 | | nc
1 | | | ४०% | ŧ | | , J | | 1/2 | Dond; | 75.1 | t & Grave 1) w/ Cone 10 1t & glas | ٠ | G-17- | Slightly | 0.0 | | | 5:5 | | _ | | |] " | Layer | > | · | | Ca | -4 |) ۱+۱)
مادسک |) w/ cone | reto | | Murist | PPW | | 4 | 0 0 | NA | | NA | NA | 1 | 3 | | N/ | 4 | 0 1 | 100 | 17 Spr. | ला के नेपर | ٤. | - | , | | | -5- | | | MC | | | -1 | Tany | ارم | - 1 | | Ha | 4111 | (), | | | | DM | | | | ر کی | | 2 | + | ╁╂╌ | 5% | | | ĺ | | 1-15 | kt K lan | Jer | į | | _ | 1 | PPA | | 8 | 50.3 | + | | + | 1 | 1 | # Blac | 火. | + | | I | | | ' | | V - | • | 1 | | -10- | | | | | | | | | | | Eic | , હ હ | ~0 | 1'595. | | _ | | | | | · | | | | | 1 | | | • | | Re | ,fusal | @~ | ~9'6gs. | | | | | | | | | | | | 1 . | ` | | | • | ŀ | | - | | | _ | | | | | | | | | - | 1 | | | | | | | | | | _ | | | | - 15- | · | | | | |] | } | | | | | | | | | _ | | | | • | · | | | | |] | · | | | • | | | | | | | | | | | · | ٠, | | | | 1 | | | | | | | | | | _ | , | | | -zo | | | | | | | | | | | | | | | | _ | | | | | | | } | | | | | | | | | | | | | _ | | | | | | | | | ├ | | | | | | | | | | | _ | | ٠ | | -25- | | | | | | | | | | | İ | | | | | _ | | | | ω_ | · . | | | | - | | | | , | | | | | | | | | | | | | | } | | | | | | | | | | | | | _ | _ | | | | -30- | , | | | | ļ | | | ` | | | | | | | | _ | | | | | | | | | | 1 | | | | | | | | | | _ | | | | | | | | | |] , | | | | | | | | | | _ | | | | | |
| } | | | | | | | | | | | | | | | | | -35 | | | | | |] | | | | | | | | | | _ | | | | | | | | | - | 1 | | | | | | | | | | - | | | | | | | | | | 1 . | | | | | | | | | | _ | | | | -40- | .] | | | | | | } | | | • | | | | | | - | - | - | | | | 77 | <u>' </u> | , ^ | 1 | 1 | . 4 . | | 6 | | <u>ا</u>
ماء د | · · · · | + ^ | 1 | Ι | <u> </u> | | | | COM | MENTS:_ | Mari | 7017
Fox | 4 /-
5 xx | tava | nced a | <u> </u> | 4 | <u>اس</u> | eysi | سي وه | 11rec | <u>- </u> | wsh | PRO | OJECT N | 10.: <u>37635</u> | | | | . 17 1 | \ | , ~- | <u> </u> | | 7.1 | | | | | | | | | во | RING N | o.: <u> </u> | <u> </u> | | | URS Greiner Woodward Clyde | | | | | | | | | | | | | | | | | |--|---|------|-----------|----------|----------|-------|------------|--------------|--------------|--------|---------|---------|--------------|-------------------|-----------------------|-----------------------|------| | | | | <u>UR</u> | S G | reiı | ner W | <u>ood</u> | <u>w</u> ar | d C | lyde | | | , | GE | DPRO | BE LOG | | | | | | | | | | · · | | | | | | | BORING NO.: | B- 6 | 7 | | | PRO | JECT: | Sto | ite: | Rd. | Fo | -mer | MG | P, | Lock | < Por | + | | | SHEET: 1 O | - 1 | | | | CLIE | NT: | UY | 'SE | 6 | | | | | | | | | | JOB NO.: 05 | 00351 | 535.81 | | | BOR | NG CONT | RACT | OR: | Ze | 700 | i Env | 1100 | me | र्यवर | S | چکن و | ج کافی | | BORING LOCAT | | | | | GRO | UNDWAT | R: | | | | - | | | CAS. | SAMI | LER | CORE T | JBE | GROUND ELEV | TION: | | | | DATE | TIME | L | EVEL | | T | YPE | | TYPE | | Mac | ري
- | - cordi | ncl | DATE STARTED | : 9/ | 25/2000 | | | | | | | | | . , | | DIA. | | | | 21 | | DATE FINISHED | : 9/ | 25/2000 | | | | | | | | | | | WT. | | | | | | DRILLER: | Bitch & | acan | | | | | | | | | | | | | | | | GEOLOGIST: | Swit | Tische | _ | | | | * POCKET PENETROMETER READING REVIEWED | | | | | | | | | | | | REVIEWED BY: | | | | | | | SAMPLE DESCRIPTION | | | | | | | | | | | | | | B5114 DV | D-1 | | | PEET | ET NO. NO. PER 6" ROD% COLOR HARDNESS DESCRIPTION | | | | | | | | | | | | | | CLASS
USCS | REMARKS | 1110 | | C'S A A A Alternate A - Sand, S: It & Graves | | | | | | | | | | | | | Gm_ | T • | 0.0 | | | | - | (Apparent Fill material) - moist ppm | | | | | | | | | | | | | | | | | | 4 | Brown Brown W/ Asphalt, Ash, cinders Residue was | | | | | | | | | | | | | | | | | | -5- | -5-5 mc Tan, brick, contrete, glass Jobsened@ 0.7 | | | | | | | | | | | | | | | | | | mc 75% orange, 4 metal Fragments, -z'-z.5'65s, -5.5'-6'50s | | | | | | | | | | | | | | PPM | | | | | 8 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | - | | € B | ack | | | | | | | - - | 1,4, | _ | | 10 | Ø | | me- | | | 50% | Thru | mh+ | 1 | | | · | | | | 2.69 2.8 -8 | 2.5 | | 10 | 55 | | | | | | | `` | 1 | | | | | | - - | - Petrol./
Solvent | ppm | | 12 | . } | NA | mc | NA | 1014 | | | | NA | l . | | | | |]]] - | odor From | 0.0 | | | 60 | | 4 | | | 100% | | | 1 | | - c1 | ean Fi | II # | om 14' to | Sm- | sections. | PAN | | - 15- | 0 | | | + | + | | | 1 | ĺ | | r | 3,200 4 | and | 4 Silt, less grav | - ا | sections. | | | -16. | 5.5 | | nc | | | ء ا | | | | | | | | ras above | GM |] | 0,0 | | \vdash | , Ç. | | 5 | ++ | + | 100% | | | | | | | | to cl' bgs, | _ | 1 | ppm | | -zo- | 0 0 | | | | | | | . | | | | | | | ↓ ↓ - |] | | | | 0 | | VC F | | 上 | C0.9 | | | | | - cl | ean FII | as | 14' to 17' also | e SM- | | 0,0 | | | 5 | | 6 | + | ↓ | 80% | | | \downarrow | | | | + | | - | - | pan | | 24
-25 | | | | | | | | | | | F. | 713.0 | 7 | 3,51695. | _ | 1 | | | - | | | | | | | | | | | | | | Z3,5'69S | . - | - | | | | | | lt | | | | | | | | • | - | | 20.3 | ` <u> </u> | 1 | | | | | | [| | | | | | | | | | | | - | 4 | | | -30 | | | | | | } | | | | | | | | | - | _ | - | | | | | | | | | | | | *** | | • | | | - | 4 | | | | | | | | | | | | | | | | | | - | - | | | -35- | | | | | | 1 | | | | | | | | | - | | | | | | | | | | | | | | | | • | | | - | - | \dashv | | | | | | | | | | 2 | - | - | | | -40- | | | <u> </u> | | | | | | | | | | | | | · . | | | COM | MENTS. | ろ | بهمايمر | Ąλ | Va | nced | USW | م <u>`</u> ر | Ge | ליזאיט | he 1 | Sirect | P | ush | nno :505 | NO.: 3.7635 | , 91 | | ت ا | nit 1 | مهر | nted | on | Cu | 1 41 | √, | 7 | <u>:</u> | V | | | | | BORING I | | | | | | | | | | | | | | | | | | | BURING | vU.: ',) | ١. | | | | | | | <i>₾</i> | | | | | | · | _ | | | |---------------|----------|------------|-------------|-----------------|------------------|-------------------|----------------|-----------------|-----------|-----------------|--|----------|--|--------| | | | | IIR | S Gr | iner W | กกศพล | rd C | 'lvde | | | GEO | PRO | BE LOG | | | Į | • | | | | | ood wa | <u>. u c</u> | <u> </u> | | • | BORING NO.: | B-5 | | | | PRO. | JECT: | ita | te | Rd. | Forme | - MG | P. L | Lock | (Δο | + | SHEET: 1 OF | 1_ | | | | CLIE | | ŬΫ | SE | Ç | | | | | | | JOB NO.: 050 | 25000 | 635.81 | - | | BOR | ING CONT | TRAC1 | OR: | Zel | ora kn | vironm | enta | 1 5 | en | ices | BORING LOCATIO | N: | | | | GRO | UNDWAT | ER: | | | | | CAS. | SAM | PLER | CORE TUBE | GROUND ELEVAT | ON: | | | | DATI | TIME | L | EVEL | | TYPE | TYPE | | Mac | <u>~_</u> | Core(mc) | DATE STARTED: | 9/2 | 25/2000 | | | | | | | | | DIA. | | | | 2" | DATE FINISHED: | 9/ | 25/200Q | | | | | | | <u> </u> | | WT. | | <u> </u> | | | DRILLER: 7 | outch | Eggan | | | | | | | | | FALL | 1 | <u> </u> | | | GEOLOGIST: | ڪ ت | # 453cl | her | | | | | | | | REVIEWED BY: | | | | | | | | | | | | | | SAMPLE | | | 1= | REMARK | SPEN | | | | | | | DEPTH
FEET | STRATA | ST
NO. | CORE
NO. | BLOWS
PER 6* | RECOVERY
ROD% | rial.
Ption | CLASS
USCS | | 1 | | | | | | | 0 | 43 | 1 | -00 | A | 10.00 | Alterate | | | - S | and, sitt & | gravel w/
, conders , Brid
& asphalt | GM- | Slightly-
Moist | 0.0 | | - | 0 | | 1 m | | 100% | layers
of | |) · | 36 | iss, Ash | , conders, Brid | 시 - | Maist | M box | | 4 | .0.0 | | | | 7 | 1 Drown | ì | | Co | noreteted | f asphalt | |] | | | -5- | 5.5 | | | NA N | 4 80 % | Grang. | | <u>,</u> | tro | gments. | | - | 1 | 0.0 | | | 0 | INA
 | 2 | | | amac, | N | ۰٦.
ا | | | | | -Black, | II Bon | | 8 | 0 0 | | | | | EBlock. | | | | | | - | -Black,
hard Tar-
like Seam
@ 7'to7.5 | | | -10 | 5 | | mc | | 100% | | | | | | | 11 = | like Seam | , c.o | | | 9) | | 3 | | <i>,</i> '' | | , | r | | • | Y | - | 165 | My My | | 12 | | <u> </u> | | | | | | <u> </u> | E.(| O.BE Re | Fural @ | 7 - | 1 | | | | | · | | | - | | | | 12 | OBERCE
1695. | | - | - | | | - 15- | · | | | | | | : | | | - ,7 | | - | 1 | | | | | | | | | | | | | ·. | | _ | 1 | | | | | | | | | | | | | | | - | 1 | | | -zo- | | | | | - | | | | | | | - | <u>.</u> | | | | | | | | 7 | } | | | | | | - | | | | | | | | | <u> </u> | } | | | | * | | | 1 | | | -25- | | | - | | | | | | | • | | - | 1 | | | | | | | | | l · | | | | | | _ |] | | | | | | | | | | | | | | | - | - I | , | | | | | | | - | | | • | | | | _ | _ | | | -30 | | | | | \exists | [| | | | | | - | - | | | | | | | - | - | | | | | • | | - | _ | | | | | | | | | 1 | | | | | | - | - | | | -35- | ' | | | - | | | | | | • | | - | _ | | | | | | | | \exists | 1 | | | | | • | - |], | | | | 1 | | | | - | | | | | | | - | - | | | - 40 | | | | | | | | • | - | | | |] | | | -40- | <u> </u> | | | | <u> </u> | <u> </u> | | | 1 | | 1 | · · | | | | COM | MENTS: | <u> Bo</u> | د ، ۳۹ | Adva | nced u | 1chaga | 5-e,/ | <u> الماماه</u> | <u> </u> | rect pus | h | ROJECT | NO.: 3563 | 5,71 | | | mit_ | r w | MIE | don | an 41 | v, ~ | | | | | | ORING. N | $\overline{\cdot}$ | 5_ | | , | • | τ | JRS | Greii | ner W | oodwa | rd C | lvde | • | | | GE | OF | RO | BE LOG | | |----------|----------|--------------|------------|----------------|------------------|--------------|-------------|----------|----------|----------|---------------|-----------------|------------|------------|------------------|------------| | | - | | | | | | | | | | | BORING NO.: | B | - W1 | WACI- | 3 | | PROJE | ст: ζ: | tate | 79 | . Form | مور ۱۸ | 1G-P | Local | x Po | ct. | | | SHEET: 1 | of 1 | | | | | CLIEN | | NYS | | | | | | | | | | TOB NOT DE | 5000 | 3.76 | 35,81 | | | BORIN | IG CONTI | RACTO | 1: 2 | Zebra | . Envi | ronne | ntal | <u>S</u> | ٠٠/١/ | es | | BORING LOCA | ATION: | | | | | GROU | NDWATE | R: | | | | | CAS. | SAM | PLER | CORE | TUBE | GROUND ELE | VATIO | N: | | | | DATE | TIME | LEV | EL | Т | YPE | TYPI | : · | mai | <u> </u> | Corel | (mc) | DATE STARTE | ED; | 9/2 | 5/2000 | | | <u> </u> | | | | <u> </u> | | DIA | | | | 2 | lt . | OATE FINISHE | D: | 9/2 | 25/2000 | | | | | | | · | | WT. | | | | | | DRILLER: | B | utch | Eagan | | | | , . | <u> </u> | | | | FAL | <u> </u> | <u> </u> | | 1 | - | GEOLOGIST: | _ <u>S</u> | cott | Fischer | | | | | | | · | | | POCKET | PENETI | ROMET | ER READI | NG | REVIEWED BY | /: · | · | , | · | | | | | | SAMPLE | | | CONSIS | | | ESCRIPT | | | | CLASS | REMARK | SPTA | | DEPTH S | STRATA | | ORE
IO. | PER 6° | RECOVERY
ROD% | COLOR | HARD | NESS | | | MATE | PTION | | USCS | | 1 20 | | | 5.5 | 1 | . - | 111 | ~~9 | Med. | 1 | | - S | andy- | Silt | Trace 9 | rquel | SM- | Slightly | 0.0 | | | (() | | 1 - | | 50% | Boun | | | Aci | h thuck | ich a
Ecm | vete. | | | Moist | PPM | | 4 | | NA | _ \ | A NA | | 1 | , N | A | Fra | 4Med | ts. | Brick,
crete | | | } | - | | -5- | 5.5. | | v 🗀 | | ر م | Orange/ | | | | • | ٠ | 1 | | | | 0.0 | | | 5. 5 | | 2 [| | 35% | Tan | | , | | • | | Y | | V - | \ | ppm | | 8 | | 1 | \dashv | 1 4 | | <u> Y</u> | <u> </u> | | F | 0.3. | 6 | 8 693. | | | | .1 | | -10- | - | | | | | | | | L. | | ٠ | 0 693. | - | _ | |
| | 1 | . | |
 | · · | | • | | | | | | | | <u>-</u> | | | | | | | | | ` | | | | | | | | | | | ٠ | | | ٠. ا | | - | | | | | | | | | | | _ | ł | | | - 15- | | | | | | , | 1 | | | | • | | | | | | | \vdash | | | - | | , | | | | | | | | | . – | | | | · . | | . | | | | | | | | | | | | _ | | | | -zo- | . | | - | 1. | | | | | | | | • | | _ | <u>.</u> | | | | | | F | | | | | | | | | ٠., | | | | | | | l | | | | | | | | | | | | | _ | 1 | | | -25 | | | - | | , | | _ | | | | | | | _ | 1 | • . | | | 1 | | E | | · | | | | | | | ٠ | | _ | , , | | | | | | | | | | | | | | | • | | _ | | | | | | | - | | | , | | | | | | | | _ | 1 | | | -30- | | | | | | | | | | | | | | _ | | | | | | | - | | , | - |] | | | -35- | | | \vdash | | | | | | | | | | | - | 1 | | | | | | | | | | | | | | | | | |] | | | | | | _ | | | | | | | | | | | - | - | | | | | | - | | | : | | | | | | | | | 1 | | | -40- | | | | | | | | | <u> </u> | | In | | Τ- | <u></u> | | | | СОМИ | MENTS: _ | <u> 300-</u> | 1300 | d on | nced | <u>using</u> | <u>م (۲</u> | 20-PT | obe | Direc | <u>.T 1</u> - | iush | PR | OJECT I | NO.: 3563 | 5.81 | | 1 This | Lou | Descr | 152 | e on
Borina | 441 17 | WACI | <u>-</u> | عهر_ | 2 & | ww. | ac 3 | .4 | во | RING N | 0.: <u>B-WWA</u> | <u>c1-</u> | | 1 | <u> </u> | | | | | | 1 | | - | | | | 1 | | | | | | LIENT: NYSEG ORING CONTRACTOR: Zebia Environmental Services ROUNDWATER: CAS. SAMPLER CORE TUBE GROUND ELEVATION: ATTE TIME LEVEL TYPE TYPE (HP) Hand Port Circ Date Strates: 9/25/2000 WIT. DATE FINISHED: 9/25/2000 WIT. DATE FINISHED: 9/25/2000 FALL GEOLOGIST: BUTCH EAGAN FALL GEOLOGIST: SCOTT TISCHET SAMPLE CORE TUBE GROUND ELEVATION: DATE FINISHED: 9/25/2000 FINISHE |---------------|--|--------------|-------------|---------------|--------------|-------------------|--------------|--|--------------|-------------|---------|-----------|--------------|----------|--------|-------------|-----------|------------------|--------------| | | | | <u>UR</u> | S Gre | iner W | 000 | <u>dw</u> aı | rd C | <u>lyd</u> e | | | | | GE | OF | PRC |)B | BE LOG | | | | BORNANO: W-I W-Z4U-3 ROLLECT: State RL tomer MCt lock Port SHEET: I OF I JOBNO: OS DOO 35835.81 BORNANO: W-I W-Z4U-3 SHEET: I OF I JOBNO: OS DOO 35835.81 BORNANO: MOD SECONDON: ROUNDWATER: CAS. SAMPLER CORE TUBE GROUND ELEVATION: ATE TIME LEVEL TYPE TYPE (NP) Hand-Point Core DATE STANTED: 9/25/2010 WITH DATE FINISHED: 9/25/2010 FALL GROUNDWATER READING REVIEWED BY: SAMPLER GROUND BESCRIPTION SAMPLER BOOKET PENETROMETER READING REVIEWED BY: SAMPLER BOOKET PENETROMETER READING REVIEWED BY: SAMPLER BOOKET PENETROMETER READING REVIEWED BY: DESCRIPTION THIS STRAIL SORDER ROUND COMPSTENCY NO. NO. PERF RODS COOKE COMPSTENCY NO. NO. PERF RODS COOKE COMPSTENCY DESCRIPTION THE STRAIL SORDER ROUND COMPSTENCY DESCRIPTION DESCRIPTION SAMPLER COOKET PENETROMETER READING USCS REMARKS PID SOR BYONG COOKET ROUND DESCRIPTION THE STRAIL SORDER ROUND CONSTENCY NO. NO. PERF RODS COOKE CONSTENCY DESCRIPTION THE STRAIL SORDER ROUND CONSTENCY DESCRIPTION DE | PRO | BORING NO.: W-1, W-24U-3 DIECT: State Rd. Furmer MGP, Lock Pert SHEET: 1 OF 1 ENT: NYSEG BORING CONTRACTOR: Zebra Environmental Services BORING CONTRACTOR: Zebra Environmental Services BORING CONTRACTOR: JOB NO.: 05000 35635.81 BORING CONTRACTOR: JOB NO.: 05000 35635.81 BORING CONTRACTOR: JOB NO.: 05000 35635.81 BORING 051000 | | NT: / | <u>۷۲۶</u> | SEG | <u> </u> | | | <u>_</u> | | | | | | JOB | NO: O | 500 | 70 <u>3</u> | 57 | 35.81 | | | BOR | ING CONT | RACT | OR: | Zeb | ra Env | : 100 | men- | tal! | Ser | vice! | 3 | | + | | | <u> </u> | | | | | GRO | UNDWATE | R: | | - | | · · | | | | | | | GRO | UND ELE | EVATIO | N: | | | | | DATE | TIME | | EVEL | | TYPE | | TYPE | (HP) | Itan | <u>19-5</u> | int 4 | <u>re</u> | DAT | E START | ED: | 9/ | 25 | 5/2000 | <u> </u> | | ļ | <u> </u> | Ļ | | | | | DIA. | <u> </u> | · · | | 1 | | DAT | E FINISH | | 9/ | 2 | 5/2000 | | | ļ | | | | | <u> </u> | | WT. | <u> </u> | | | | ······ | | | | <u>u tc</u> | 4 | | | | ļ | | - | | ļ | | | | <u> </u> | <u> </u> | | | | ┼─- | | > | <u>Sco.</u> | 11 | tischer | | | | | J | | <u> </u> | | 7 | * P(| OCKET | PENETI | | | | REV | EWED B | Y: | | 7 | | | | ОЕРТН | STRATA | -S' | CORE | | RECOVERY | - | | CONSIS | TENCY | | ESCRIPT | | RIAL | · | | CLAS | | REMARKS | PID | | FEET | 1-114 | | NO. | | | + | DLOR | | | | | DESCRI | PTION | | | USC | s | | | | | 5,5 | 1 | I ⊿ } | NA N | 50% | | 1 | | 1 | - 0 | xindy | - S; [| +,7 | Tace | F | 5M. | \dashv | Slightly | | | | | | 1 1 | | Ϊ. | | | N | 1 | 13r | ck.A | いろかり | t & c | en To or | P | | | Moist" | | | 4 | JOB NO.: 05000 35635.81 RING CONTRACTOR: Zebra Environmental Services Boring Location: OUNDWATER: CAS. SAMPLER CORE TUBE GROUND ELEVATION: TE TIME LEVEL TYPE TYPE (HP) Hand Abin't Core Date Stated: 9/25/2000 WT. DATE FINISHED: 9/25/2000 WT. DRILLER: Butch Eagan FALL GEOLOGIST: Scott Fischer *POCKET PENETROMETER READING REVIEWED BY: 1 STRATA STORE BLOWS REDURN NO. NO. PERGY RODS COLOR HARDNESS DESCRIPTION USCS NO. NO. PERGY RODS REDURN NO. ORGAN CONSISTENCY DESCRIPTION USCS PART OF COLOR BLOWS REDURN NO. ORGAN COLOR HARDNESS DESCRIPTION USCS REMARKS PLE STRATA STORE BLOWS REDURN RODS COLOR HARDNESS DESCRIPTION USCS REMARKS PLE DESCRIPTION USCS REMARKS PLE DESCRIPTION USCS REMARKS PLE SO A SIGNAL DO. ORGAN CO. O | | | | | | | | | | | | | | | ppm | | | | | -5- | | | | | <u> </u> | | 1 | | | 6 | . ی ای | , હિ | 4 | 6gs. | | ' | | | | | - | | | | | - | ļ | | | | | | | | | | | \dashv | | | | | | | | | 1 | | | | | | | | | | | | | | • | | — 10 — | | | } | | - | | ĺ | | | | ٠ | | | | | | \dashv | , | | | | | | | | | | | | | | • | | | | • | | | | | | | | | | - | | | - 1 | | | | | | | | | | + | | ٠ | | | | | | | _ | | . | | | · | • | | | | | | 1 | | | | - 15- | | | | |] . | | į | | | | | | | | | | 4 | | | | | | | | | _ | Ì | • | | | | | | | | ٠. | | 1 | | | | | | | | |] | | | | | | | | | | | | \dashv | | | | -zo- | · | | | | _ | | . | | | | | | | - | | | \exists | | | | | | | | | -{ | | Ì | | | | | | | | , | | \exists | , | • | | | | | | |] | | | | | | | | ÷ | • | | | 7 | | | | -25- | | | | | - | | İ | | | | | | | | | | \exists | | | | | | | | | 7 | | ł | | • | | | • | | , | | | 4 | | | | | | | | | - | | } | | | } | | | | | | | \dashv | | | | -30- | | | | | 1 | | | | | | | | | | | | \exists | | | | | | | | | -{ | | | | | | | | | | | | \dashv | | | | | | .* | | | | | : } | | | | | | | | • | | コ | | | | ļ | . | | | | - | | | | | | | | | | • | | \dashv | | | | -35— | | | | | - | | | | | | | | | | , | | \exists | | | | - | | | | | - | | | | | | | | | | | | + | | | | | | | | | ┥ . | | | | | | | | | | • | | \exists | | | | -40- | | | | | | | | | - | | | | | | | | - | | <u>.</u> | | | | 77 | | ا م ه | 1 | | ا . | | 10. | 1 | ا ملا | _ Δ. | <u>~</u> + | | \top | <u> </u> | 1 | | - 0, 4 | | COM | MENTS: _ | 140 | m m | = 140v | anced
1"x | <u>رسي</u>
11ح | mai | 10 - C | we | bar | rel. | | <u> </u> | | ВЯ | OJECT | TNO | o.: <u>35635</u> | · 8工 | | 太 | Log | <u>ses</u> | ribe | s Bur | 1265 - | w | 1, 1 | JZ | ŧW | -3. | | | | | ВС | RING | NO | W-1,W-2 | t & W | BORING NO .: W-I, W-Z&W-7 STL Buffalo ं अपि 10 Hazelwood Drive Suite 106 Amherst, NY 14228 Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com Mr. John Ruspantini, CHMM New York State Electric & Gas Corp. Corporate Drive, Kirkwood Industrial Park P.O. Box 5224 Binghamton, New York 13902-5224 Dear Mr. Ruspantini, We have reviewed the Lockport State Road Former Manufactured Gas Plant Site data in follow-up to our phone conversations of last week. These data are stored
under STL Buffalo Project Number NY0A8576/Job Numbers A01-6823, A01-6824, A01-6830 and A01-7000. Our recommendations are presented below. - 1) A01-6823 All data is compliant. - 2) A01-6824 All data, except the TCLP Pesticides were reported using an unit of measure of MG/L. TCLP Pesticides were reported using an unit of measure of UG/L. Our AIMS system formatted the TCLP results giving the impression that the unit of measure for all analyses was MG/L. We are providing TCLP Organic Summary Forms. These forms provide the organic TCLP constituent regulatory levels and results in MG/L. - 3) A01-6830 These samples exhibited a high degree of sample to sample variability. The volume of soil in the sample containers was not homogenous. The laboratory personnel attempted to collect a homogenous volume of sample material from each container. Regarding the spiked Method Blank, we do not believe that this error effected any of the field samples and we recommend that the reported Acenaphthene and Pyrene results are representative of the associated sample points. Regarding the re-extractions, these were conducted due to the Method Blank being spiked. If not for that lab error, the original results would have been reported. The original results reflect samples extracted and analyzed within holding time. However, some of the re-extractions (extractions performed outside of holding time/analyses performed within holding time) exhibited specific parameter results that exceeded those reported in the original analyses. While non-compliant, we believe these results provide useable data. Due to the noted sample variability, we recommend the use of any quantified compounds, including J values, in determining the representative level of target compounds in each sample. STL Buffalo 4) A00-7000 Regarding the spiked Method Blank, we do not believe that this error effected any of the field samples and we recommend that the reported Acenaphthene and Pyrene results are representative of the associated sample points. If not for the spiked Method Blank, the original data set would have been reported as compliant. The sample re-extractions and re-injections confirm the original results. We recommend use of the original results in determining the representative level of target compounds in each sample. I hope this information will assist you in using our data. I you have any additional questions or require any other assistance, please feel free to call me. We look forward to working with you in the future. Sincerely, SEVERN FRENT LABORATORIES, INC Kenneth P. Kinecki^{\(\)} Project Manager KPK/kpk # Chain of Custody Record SERVICES Severn Trent Laboratories, Inc. | STL-4124 (0700) | | | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | |--|---------------------------------------|---|----------------|-----------|--------------|-----------------|---------|----------|----------------|------------|-------------|----------|------------|----------|-----|--------------------|-----------|-----------|--------------|-------------|---------|---------|----------|------|-----------------|---------|-------------|------------|-------------|--------------| | Client | | Project | Mana | ager
1 | 0 | | 1.4Ti | | | | | | | | 0 | ٠ | | Date | 9 | | | | | | Chair | n of Cu | slody l | | | 110 | | NYSEG | | | | | | | | | _ | | | | | | _રૃ | <u> </u> | | | | | | | | | ļ | | | <u> </u> | <u> 102</u> | 15 | | Address | 00 | Telephi
(657 | | | | | de)/Fa | Num
6 | | 76 | · , | ح. | سدد | , | 7 | | · j | Lab | F ant | nber | | • | | | | _ | | • | | | | City KIRKWEXED INDUSTRIAL | PARIC
Zip Code | Site Co | | >2~ | 310 | 3 / . | | Conta | | / 0 | | | 75 / | | -3 | _ | | A
Baia | | ach | liet i | | | | Pag | θ | | | | | | BINGHANTON NT | 13902 | 310 00 | maci | | | | Lab | Juna | C. | | | | | | U. | m | ore | spa | 8 i | ach
s ne | edec | '
d) | | | | | | | | | | Project Name and Location (State) | 13/20 | Carrier | Wavb | oill Nu | mber | | | - | | | | | 7 | | | 3 | ام | _ الا | প্র | 4 | | 4 | | w | | | | | | | | LOCKPORT MAP SITE | Ny | . | , | | | | | | | | | | 9 | 1 | 13 | 3 | ₹ | * | 7 | T | - } | 500 A | <u></u> | etak | | Sn | ecial | Insti | uctions | c / | | Contract/Purchase Order/Quote No. | | ! | Γ | | | | T | Cr | . ——
ontaii | ners | R | | 13 | | 11 | F | \$ | ٩, | ñ | 2 | | - 1 | | 146 | - | Cor | nditio | ns ol | Recei | pt | | | * | | | Ma | atrix | | | | esen | | | | 145 | 1 | | ! ` | ٩. | শ্ব ' | ‡ | 7 | | Į) | <u></u> | 3 | | | | | | | | Sample I.D. No. and Description (Containers for each sample may be combined on one | line) Date | Time | ž | Aqueous | Sed. | } | Unpres. | H2SO4 | HO I | 70 | ZnAc | NaCH | 1.84 | 87 | 1 | | | 200 | | 7682 | - 1 | 18 J | 7 | 13 | | | | | | | | LIVINCOTOZE | 9/25/00 | 1435 | | |) | (| X | | | | | | | | X | 2 | () | () | < > | X | | | <u></u> | | | | | | | | | D LSVI 030502 G | 8/25/00 | 1438 | | | د | | X | | | | | | X | X | 1 | L | | | | | \perp | | | | | , | | | | | | D 1-5 V 520 6 0 503C | 9/35/00. | 1505 | | |) | | X | | | | | | | | X | <u>ر</u> | () | () | () | <u> </u> | | \perp | | | \bot | | | | | | | D LSVIO 20503G | 9/25/00 | 1511 | | | > | | X | | 1 | | | | X | X | | | | | | | | | | | | | | | | | | DLSVIWCO JOAC | 9/25/00 | 1543 | | | | <u>r</u> | X | | | | | | | | X | | <u>(</u> | <u>()</u> | <u>(</u> | X | | _ | | | | | | · · · · | | | | DLSVE (10504G | 9/25/00 | 1540 | | | > | — | X | | | | | | X | X | | L | | | | | 1 | | | | _ | | ·
 | | | | | 3LSVI WCOSOTC | 9 pesto | 1629 | | | _ \ | | X | | | | | _ | ļ | | X | () | <u>()</u> | 4/2 | X | X | | | | | \perp | | | | | | | DLSVI-0305016, | 9/15/20 | 1633 | | | ; | 4 | X | | | | | | X | 1 | | $oldsymbol{\perp}$ | _ | | \perp | | | \perp | | | | | | | | | | USVICI600X | 9/4/60 | 1644 | | | _/ | 4 | x | | | | | _ | X | X | | \perp | L | \perp | ┙ | | | 1 | \perp | | \perp | | | | | | | 2 L SVI L 11012036 | 9/65/00 | 1644 | | | | <u> </u> | X | | | | \perp | <u> </u> | X | + | _ | L | _ | | | _ | | _ | | | _ | | | | | | | DL3VIC11414026 | 9/25/00 | 1657 | | | _ <u> </u> × | | X | | | | | | X | X | _ | L | ļ | _ | 1 | | | | | | | | | | | | | LSVI SSOYC | 9/26/20 | 1348 | | | 7 | | × | | | | | | | <u>L</u> | | L | | \perp | | | | | <u>X</u> | M | | | | | | | | Possible Hazard Identification | | , ·
 | - | • | Disp | | _ | ٠, | | | | _ | , | | | | | | | | | | | | | if samp | oles are | e retai | ned | | | ☐ Non-Hazard ☐ Flammable ☐ Skin Irritant Turn Around Time Requires | Poison B | Unknown | <u> </u> | Ret | um To | Clie | | Dis | | | | | Arci | hive | For | | === | _ M | onth. | s lo | onge | r (ha | n 3 i | mont | hs) | | | | | | | | 14 Days 🔲 21 Day | s 🗆 Oth | | | | | - [| yu Ni | ayund | 311161 | no jo | респ | y) | | | | | | | | | | | | | | • | | | | | 1. Felinguished by | 14 Days 21 Day | Date | 7 | . 1 | Time | | | 1. Red | ceive | d By | | | | | | | - | | | | | | | | Da | le | | 1 Tin | 10 | | | 2 Reinquished By | · · · · · · · · · · · · · · · · · · · | 9/2 | 40 | 0 | | <u>63</u> | | 2 6 | | 7 | | -/- | | _ | | | | | | | | | | | 丄 | | | <u>_</u> _ | | | | 1 the film | | 9/2 | 1/ | 00 | I Ime | 7 0- | 04 | 2. Re | -/2 | ا
شرکدد | · · | K | ار ا | | | * | | • | | | | | | | 9 | 10/26 | 100 | Tim | 17u | Ý. | | A Relinquished by | | Date | - - | | Time | | | 3. Re | cive | d By | | | - | | | | | | | | | | | | Di | | | Tin | ne · | | | Comments | | | | | L | | | | <u> </u> | | | | - | | | | | | | | | | | | | | | | | ~~ <i>``</i> | # Chain of Custody Record Severn Trent Laboratories, Inc. | STL-4124 (0700). | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | • | | | | | | | 100 | -10 | | | | |---|---------------------------------------|-------------|--------------|-------------|----------|--------------|-------|---------|------|---------------------|----------|----------|-------|-------------|----------|-----|------------|---------------|-------------|------------|------|----------|-------|---------------|-------------|---------------------|--------------| | Client N1SEC | | Project | Manag
Joh | er k | 200 | 7 <i>7</i> 7 | ,,, | | | | | | | 9 | | | ale | 9/2 | . L | | | | Chair | of Cust | | |)210 | | Address | | Teleph | one Nui | | | | | nber | | | | | | 7 | | Ŧ, | ab J | umbi | er e | | | | - | | | <u> </u> | / | | KIRKWOOD INDUSTRIAL PARK | • | | 176 | - | | (60 | 2) | 762 | 8 | 8.79 | 5-1 | • | | ·, | | 4 | . 3 | | | | | | Pag | е | · · · | of _ | | | <u> </u> | ip Code | Site Co | | | | Lab | Conta | ct | | | | | | 75 | An | aky | is | Attac
is n | h lis | t if | | | | | | | | | BINGHAMOTON BY | 13902 | | | | | <u>.l_</u> | | | | | | | | 4 | mor
L | Ø | 150
150 | 15 7 | 88 0 | <i>ea)</i> | | | | • | | | | | Project Name and Location (State) | | Carrier | Waybill | Numb | ar | | | | | | Ì | PAR | | ŝ | 1 | # | Ĭ | 14 | | 54 | | detal | | 0 | -1-11 | 4 4 | ial | | Contract/Purchase Order/Quote No. | | | | | , | | | ontaii | nors | . 8 | \dashv | | | (£ , | 3 | ħ | | 24 | | 13.1 | ME | 2 | | | | nstructi
s of Re | | | | | • | | Matri | X | | | usen | | | | 죤 | , | . 4 | 3 | SOF | 1 | 1 | | 1 | 1 | | | | | | • | | Sample I.D. No. and Description (Containers for each sample may be combined on one line | Date | Time | Accompany | Sed. | Soil | Unpres. | H2SO4 | HNOS | 2 2 | ZnAc | | 767 | Bres | 4 | 3 | .×. | B | 16 | | £ | 707 | 174 | | | | | | | 2) LSVIC 268046 | 9/26/00 | 0910 | | | X | X | | | | | | X | X | | | | | | | | | | | | | | | | D LSVICZIDIZO46 |
9/24/00 | 043E | | | X | × | | | | | | X | X | | | | | | | | | | | | | | | | D LSVIC 21416046 | 9/26/02 | 0844 | | | × | X | | | | | | X | X | _ | | | | | | | | | | | | | | |) LSUS WCOZOAIC | 9/26/00 | 1036 | | | Х | X | | · | | | | | | Χı | X | X | X | X | | | | | | | | | | | LSVIWC 2023 416 | 9/26/00 | 1100 | | | X | × | | | | | | | | X | X | X | × | X | | | | | | | | | | | DISWICIBEOIG | 9/26/20 | 1141 | | | X | X | | | | | | X | X | | | | | | | | | | | | | | | | DLSVICIBIOOIG | 9/26/00 | 1205 | | | X | X | | | | | | X | X | | | | | | | | | | | | | | | | LSVIC1141601G | 9/26/00 | 12/0 | · | | X | X | | | | | | X | X | | | | | | | | | • | | | | | | | D LSVI 010HOIG | 9/26/00 | 1217 | | | X | X | | | | | | X | X | | | | | | | | | | | | | | | | B LSVI WCO4016 | 9/76/20 | 1223 | | | X | X | | | | | | | | X | X | Х | X | X | | | | | | | | | | | LSVISSOIC | 9/26/00 | 1407 | | | X | X | | | | | | | · | | | | | | | X | X | X | | | | | | | LSVISSO3 C | 9/21/00 | 1419 | | | X | ス | | | | | | | | | | | | | | X | X | У | | | | | | | Possible Hazard Identification | | | | | sposal | | | | | | | | | | | | | <u> </u> | (A I | ee m | av b | e ass | essed | if sample | es are | retained | | | Non-Hazard ☐ Flammable ☐ Skin Irritant Turn Around Time Required | Poison B | Unknown | , 🖸 | Return | To Clie | | | sposa | | | | Arch | ive F | or _ | | = | Mor | ths | | | | | | | | | | | | Dave Dat Day | rs 🔲 Ott | he | | | 1 | OC R | Require | emei | nts (S _f | oecify, |) | | | | | ٠, | | | | | | | | | | | | 1. Relinguished by | | , Date | Ya | ا ر | 763 | SO | 1. Re | ceive | d By | , . | | | - | | | | _ | | | | | | De | ile | | Time | | | 2 Melinbuished BW | | 0319 | 11. | Ti | me Ac | | 2. 96 | свіче | By | , | | <u> </u> | 0 | 5 | | - | | | | | | <u> </u> | - 1 | ile / | 7 | Time | | | 7 Relinquished By | | Date | טוע | | ma
ma | , 44 | 3. Re | ceive | d By | <u>~</u> | /le | <u></u> | | • 7 | | | | | | | | |) C | $\frac{1}{2}$ | <u>. إس</u> | Time | دی ً | | | | | | | | | / | | | ·
 | | | | | | | | | | | | | | | | <u>L</u> | | | Comments | | | | | | | | | | | | ٠. | - | | | | | | | | | | | | | | | # Chain of Custody Record Severn Trent Laboratories, Inc. | STL-4124 (0700) | т а. | | | |---|--------------|-------------------------|--------------|---------|-------------------|--|--|---------------|-------|--------------|---------------|--|---------|-------------|----------|--|-----------|------------|----------|--------------|-----------------|-----------------|---------------------------------------|--------------------|---------------------------------------| | Client | | Project | Manage
To | er
• | D | | nΔ | | 7 A I | | | | · | | | | Dale
2 | L | . 1 | _ | | | Chi | ain of Custody No | imber
7 1 7217 | | JYSEQ Address | | Telepho | <u>) 6</u> | H~ | 1002 C | odal/E | av Nu | mhai | | | | | | | | | ah h | Je
Jumt | 6k | | | | - | | 111222 | | KIRKUDOD INDOSTRIAL PO | HRK | Cos | • | | الم المالة | | | | , | | | | | | | | -60 / | ****** | ,,,, | | | | Pa | gé | of | | City State Zip C | ode
よその こ | Site Co. | | | 20 | | b Con | | | , | | | | | A
mo | naly
ore s | sis (i | Atta | ch lis | t if
led) | · · | ··· | | | | | Project Name and Location (State) | | Carrier/ | Waybill | Numb | er | | | | - | | | \dashv | ١l . | 1 | 10 | , | 1 | 1 | 1 | | | | | | | | LOCKBORT MGP SITE, A | 14 | | | | | | _ | | , | | | | }
 - | <u>.</u> | 3,3 | ار ا | 1 | 1 | 12 | | | | | | structions/ | | Contract/Purchase Order/Quote No. | | | | Matri | x | | | Cont
Prese | | | | 7 | | Mot. | 1 | \ \cdot \ | 1 - | Reactivity | Ses | | | | | Conditions | s of Receipt | | Sample I.D. No. and Description
(Containers for each sample may be combined on one line) | Date | Time | Act rous | Sed. | Soil | Unpres. | H2SO4 | HNOS | HČI | NaOH | ZnAc/
NaOH | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 15 | 19 | D. B. | 1 | \$ | 6 | | | | | | | | LSVISSOCC | 9/24/00 | 1433 | | | X | X | | | | | | X | X | 'Χ | | | | | | | | | | | | | LSVIWCBBOSAC | 9/26/00 | 1445 | | | X | X | | | | | | | | | \times | X | X | X | X | | | | | | | | LSVIWESSOBC | 9/24/0 | 1500 | | | X | X | | | | | | | | | X | × | X | × | X | \top | | | | | | | | | | | | | | | | \neg | | | \top | \Box | | | | | _ | \top | 1 | Τ | Τ | | | | | | | | | | | | | | | | | | | | | \neg | | + | T | 1 | | | | - | 1 | | | | \exists | | | | | | | _ | +- | | +- | \vdash | | | \dashv | - | | ╁- | + | 1 | - | T | † | - | | | | _ | | | | | | | | + | | + | ╁┤ | | | \dashv | \dashv | \dashv | ╁ | + | ╁ | ╁ | + | ╁╌ | +- | <u> </u> | | - | \dashv | | | | | | | | - | | ╁. | \vdash | - | | | + | - - | ╁ | +- | +- | + | + | ├ | ┼- | | | - | \dashv | | | | | | | | + | - | + | \vdash | | | _ | | | + | | ╁ | ╁ | ╁ | ┼- | ├- | - | \vdash | - | | | | | | | | | 4 | | | - | - | - | | \dashv | _ | + | | \vdash | _ | 1 | ├- | ╁_ | \vdash | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | \perp | 1_ | | <u> </u> | | <u> </u> | <u> </u> | | | | | | | | | | | | | | ļ | | | | | | | | | | | | | i | | | | | | | | Possible Hazard Identification Non-Hazard Flammable Skin Irritant | Poison B | Unknown | ' | • | sposal
To Clie | ent | | | | | |] Arc | hive | For | | | Мог | nths | | | nay be
han 3 | | | l if samples are i | etained | | Turn Around Time Required | | | | | | | lac | Requ | uirem | ent s | (Spec | cify) | | | | | | ~ | | | | | | • | | | P24 Hours ABHours 7 Days 14 Day | s 🗌 21 Days | 011p
 Date
 9/2 | | Tir | ne/63 | ==
ပ | 1. R | Receiv | ved E | Зу | | ·
 | | | | | | | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Da'e | Time | | 2/Relinquist data | | Date/ | 6/00 | Ti. | 7/70 | | 2. F | Receiv | Ver E | | 16 | ,
 | 2 | | , | | | | | | . • | | | 9/26/10 | Time
17-00 | | 3. Relimentshed By | | Dale | | | ņθ | | 3. F | Regen | | | | | ` | | | | | | | | | | | Date | Time | | Comments | | | | | | | ــــــــــــــــــــــــــــــــــــــ | | | | | | | | | | | | | | | | | *** | <u> </u> | | | | | | | | | | | | | | | | | 0 | 0 | (| J | , | // | /// | /? _/ | / | | | # Chain of Custody Record Services Severn Trent Laboratories, Inc. | STL-4124 (0700) | | | • | | | | | | | • | | | | |--|---------------------|-------------------|-----------|---------------------|---------------|--------------|--|-------------------------|--|---|-----|---|-----------------| | NVSECT | Project | Manager
ToHN [| Cusp, | ANTIN | · | | | Dale | /
2し/ | 100 | Che | ain of Custody Number | —
/ <u>j</u> | | Address | Telentit | one Number (Area | Code)/Fax | Number / | <u>'</u> | =AX | | Lab Num | iber / | | | Sold at all the Co | -7 | | City BUX5 224 Corporate Drive | | | 1-87 | 87 /76 | , 2 - | 845/ | , | | | | Pa | ge of | | | Bushamfon M State Zip Code 1390: | | ISHER_ | | ontact!
Ineck! | | | | lysis (Atta
space is | | | | | | | Project Name and Location (State) | | Waybill Number | | mouje | | 401 | 9 | | | , | | | | | Cockport State Road, Lockport Ny | | | | | | 43/ | Metals | | | . | | Special Instructions/ | | | Contract/Perchase Order/Quote No. | | Matrix | | Containers & | | 25 | 1 8 | | | 1 1 | 1 1 | Conditions of Receipt | | | | | | 1 | Preservatives | ; ; <u> </u> | 1775 | 1% K | | | | | | | | Sample I.D. No. and Description (Containers for each sample may be combined on one line) | , Time | Sed. Sed. | Unpres | HNOS
HCI
NaOH | ZnAc/
NaOH | 55 | 3 |]. | | | | | | | LSVI23 B5 G TO 26 | 00 1345 | | | | | XII | | | | | | ASP 91-1-2-4 | | | LSVI 78856 | 1355 | | | | | | | | | | | Jack + Added | | | LSVI 10 12 B5 G | 1400 | | | | | | | | | | | LSVI 7881 G | 9/ | | LSVI2484G | 1415 | | | | . [] | | | | | | | | <u>0</u> 4 | | LSVI67B4G | 1430 | | 1 1 . | | | | | | 11 | | | | | | LSVI 89 B4 B | 1435 | | <u> </u> | | | | | | 11 | | 1 1 | *************************************** | | | LSVI 1315 B4G | 1455 | | | | | | | | 11 | | 17 | | | | LSVI 1719 B4G | 1445 | | 111 | 1111 | | 71:11 | | 11 | 11 | 11 | 1 | | _ | | LSVIA123B4G | 1808 | | | | | 1111 | | | 11 | | 1 | | _ | | LSVI34BIG | 0930 | | | 1111 | | | | | 11 | | 1 1 | | | | LSUI 1011BIG | 1017 | | | | | 11 | | - | 11 | | | - | _ | | LSUI 1213 BIG | 1330 | | 1 | | | 4 4 | 11 | 1 | | | 11 | <u> </u> | | | Possible Hazard Identification | | Sample Disposa | | | | | | · | ــــــــــــــــــــــــــــــــــــــ | | | | | | Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison B | Unknown | Return To C | lient 💹 | Disposal By Lab |) . D | Archive For | <u> </u> | _ Months | | e may be a
or than 3 mi | | d if samples are retained | • | | Turn Around Time Required 24 Hg/lys A 48 Hours 7 Days 14 Days 211 | . har - | or Standar | 1 1° | C Requirements | (Specify) | | | | | | | | | | 1/Regingy/shep By/ | Days X Othe
Date | Time | | Received By | | | | | | | | <u> </u> | | | How Dudauntia | | 400 16. | 102 | Neceived By | / | | _ , | 4 | | | | Date Time | | | 2 Altriquish bollow | 18/7 | 6/00 Time | | Received By | L | L. | 1. | | | | | Pate Time | ∌-
> | | 3 Actional Fled By | Date | Time | 3. | Received By | 12 | 22 4 | · | <u></u> | | - | | Pate Time |)
h | |
Comments | | | | | | - | | | | | | | <u>}_</u> | | | | | • | 6.00 | 6:0 | | Jula | •/ | | | | G. | • | ## Chain of Custody Record Severn Trent Laboratories, Inc. | STL-4124 (0700) | | | | | | | | | | | | | | | | | <i>;</i> | | , | | | | | | | |---|---------------------------------------|--------------|-------------|---------------------|----------|------------------|----------------|--------------|---------------|--------|------------|-----------|----------------|-------------|----------------|-------------|---------------|---------------------|--------------|-----------------|--------------|--------------|----------|----------|-------------| | Client ANSET | | Project I | Manager | 101 8 | 7 110 | - DA | ta / T | 7 11 | w/ | | | • | | | Da | 10
91 | /5, | // | ,
 | | Chair | n ol Cust | | | 1229 | | Address | <u> </u> | Telepho | ne Num | ber (Area | Code | S P N | imber | | -/ | | | | | | 12 | //
5.100 | mber | 10 | <u>Q</u> | | | | | <u> </u> | 1223 | | PU SOX 5224 Corporate Dr | w. | | | 762 | | | | | | | | | | | -" | | | | | | Pag | je | | of _ | | | Cily / State Zip | SSV > | Site Con | | | | ab Con | | ٠. | | • | Ĺ | | | Ana | alysi
e sp | s (At | tach
s nee | list if |) | | | | | | | | Project Name and Location (Stale) | 011 | Carrier/V | Vaybill N | Number | | | | | | | 14 | 4 | $ \mathbf{x} $ | 5 | ۱۵ | الد | ᆋ | 3 | | | | | | | | | Lukport State Read Mr | Lougar | M | | · | | | | | | | 9 | | 2 | 16/ | 7 | | 3 | Ş ` | ্ব ५ | | | | | structi | | | Contract/Purchase Order/Quote No. | • | / | . 1 | Matrix | | | Conta
Prese | | | • | 12 | 8 | 12/ | 100 | Ü | 4 | 200 | <u>ئ</u> ے' | 7 6 | | ļ | Conc | มแดกร | of Re | ceipt | | Sample I.D. No. and Description
(Containers for each sample may be combined on one line) | Date
175 (| Time | Ari | Sed.
Soil | | Unpres.
H2SO4 | HINUS | Ę | NaOH
ZnAc/ | NaOH | 72 | 757 | 10 | 1/2 | E. | 3 | ĬŔ | - 3 | 76 | | | | | | | | LSVI DYBZG | 9/5/10 | 1341 | | X | | X | | | | | X | X | | X | | | | | | | | Ast | 19 | 1-1, | -2,-4 | | LSVI23B36- | 3/26/00 | 1328 | | X | | X | | | | | X | Y | Ϋ́ | X | | | | | | | | . [| | | | | LSVI 56 B 3/- | "I" | 1535 | | χ | T, | (| | | | | K | X | X | Y | | | | | | | | 1 | | | | | LS VIMCO4 wwc | и, | 1136 | | | \prod' | | | | | | T | | | | Х | XI, | ΧÌ | | X | | | | | | - | | CS VI WC 0408AC | 9/25/00 | 1430 | | | | | | | | | - | | | | Χ | X | < \ \ | ĺγ | | | | | | | | | ISVINCOYWNAC | 1 | 16:45 | | | | | | | | | 1 | | | | Υ | Υ, | XX | () χ | () | | | | | | | | SINCYBUWAC | | 16:45 | | | | | | | | | | | | | X) | x \ | x) | $\langle \chi $ | XX | | | | | | ı | | SVINC 0408BC | | 1600 | | | | | | | | | Π | | , | - | ΧÏ | X | XX | (X | X | | | | | | | | SVI WC = 4808BC | | 1610 | | | | | | | | | | | | | Ϋ́ | X | X | () | (X | | | | | | | | LSVIUC 81208BC | V | | | | | | | | | | | | | | χÌ | X | XX | $\langle \rangle$ | X | Ţ | | | | | | , | Possible Hazard Identification | | - | Samp | le Dispos | al | | LL | - | | | ٠. | _ | 11 | | , 1 | | | | | 1,1 | | | | | | | □ Non-Hazard □ Flammable □ Skin Irritant □ | ☐ Poison B | X Unknown | R | eturn To (| Client | Χį | Dispos | sal B | / Lab | | Arch | nive F | or _ | 2 | ^ | 1onth | | | | e asse
3 mon | | if sample | is are r | etained | | | Turn Around Time Required | | | , | . , | | QC | Requ | iirem | ents (| Specif | y) | | | | | | | | | | | | | | | | 74 Hours 49 Apurs 7 Days 14 Da | ys 🗌 21 Day | s Othe | r | | | | | | - | | • | | | | | | | | | | :_ | | | | | | 1. Helihaylished By | • | 9/26 | 100 | 1 ^{Time} 6 | 36 | $\Big ^{1.5}$ | Receiv | /ed B | y | 1 | | • | | , | | • | | | | | Da | ate
/ | . | Time | | | 2. Inimuished (1) | | 9/7 | , / | Time_ | Toc) | 2.4 | Receiv | | - | 1 |
,
, | 1 | (| < | | | | | | | j | 9/26 | 20 | Time | رن)
(دن) | | 3. Relinquished By | | Date | | Time | | 3. F | Regeiv | ∕ed E | ly . | | | | | _ | •. | | | | | | De | ate | | Time | | | Comments | · · · · · · · · · · · · · · · · · · · | <u> </u> | | <u> </u> | | | | | | | | | | | | | | 7 | <u>-</u> | - | | | | | | | | | • | | | | | | | | | | | | | | | 180 | ماد | 22 | 4 | 114 | 1400 | ·_ | | | # **Analytical Report for Table 1** DESTRUCTION OF THE PARTY MOY 7 2000 SEVERN TRENT SERVICES November 6, 2000 Mr. John Ruspantini NYSEG - Corporate Drive Kirkwood Industrial Park Binghamton, NY 13902-5224 RE: Analytical Results Dear Mr. Ruspantini: **STL Buffalo** 10 Hazelwood Drive Suite 106 Amherst, NY 14228 Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com Please find enclosed analytical results concerning the samples recently submitted by your firm. The pertinent information regarding these analyses is listed below: Project: NYSEG - Lockport State Road Former MGP Matrix: Soil Samples Received: 09/26/00 Sample Dates: 09/25,26/00 If you have any questions concerning this data, please contact me at (716) 691-2600 and refer to the I.D. number listed below. It has been our pleasure to provide New York State Electric & Gas with environmental testing services. We look forward to serving you in the future. Sincerely, STL Buffalo Kenneth P. Kinecki Program Manager KPK/ekn Enclosure I.D.#A00-6830 #NY0A8576 This report contains pages which are individually numbered #### ANALYTICAL RESULTS Prepared for: New York State Electric & Gas Kirkwood Industrial Park Binghamton, NY 13902-5224 Prepared by: STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228-2298 #### **METHODOLOGY** The specific methodology employed in obtaining the enclosed analytical results is indicated on the specific data tables. The method number presented refers to the following U.S. Environmental Protection Agency reference: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" (SW-846), Third Edition, Update III, December 1996, United States Environmental Protection Agency Office of Solid Waste. #### COMMENTS Comments pertain to data on one or all pages of this report. The enclosed data has been reported utilizing data qualifiers (Q) as defined on the Data Comment Page. #### **METHOD 8260** No deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. #### **METHOD 8270** All samples exhibited a high degree of sample to sample variability. The collected sample volumes are not homogenous. The Method Blank (A0B0779202) was inadvertently spiked and exhibited results for Acenaphthene and Pyrene. All associated results will be flagged with a "B" qualifier. Therefore, all samples were re-extracted outside of holding time and reanalyzed within analytical holding time. Sample LSVI010401G was initially analyzed at a dilution factor of 5 due to viscosity. All surrogates were diluted out. The sample was re-extracted outside of holding time and reanalyzed within holding time at a dilution factor of 5 and exhibited similar results. Both sets of data are reported. #### METHOD 8270 CON'T Sample LSVI010504G was initially analyzed at a dilution factor of 20 due to viscosity. The sample was re-extracted outside of holding time and reanalyzed within holding time at a dilution factor of 20 and exhibited similar results. All surrogates were diluted out of LSVI010504G RE. Both sets of data are reported. Sample LSVI020503G was initially analyzed at a dilution factor of 20 due to viscosity. The sample was re-extracted outside of holding time and reanalyzed within holding time at a dilution factor of 10 and exhibited similar results. All surrogates were diluted out of LSVI020503G RE. Both sets of data are reported. Sample LSVI030502G was initially analyzed at a dilution factor of 20 due to viscosity. All surrogates were diluted out. The sample was re-extracted outside of holding time and reanalyzed within holding time at a dilution factor of 40 and exhibited similar results. Both sets of data are reported. Sample LSVI030507G was initially analyzed at a dilution factor of 20 due to viscosity. The sample was re-extracted outside of holding time and reanalyzed within holding time at a dilution factor of 10 and exhibited similar results. All surrogates were diluted out of LSVI030507G RE. Both sets of data are reported. Samples LSVI030507G MS and LSVI030507G SD were analyzed at a dilution factor of 20 due to viscosity and exhibited spike recovery results above quality control limits for Acenaphthene and Pyrene. However, the Matrix Spike Blank (A0B0817701) was compliant. The Matrix Spike Blank (A0B0779201) exhibited spike recovery results below quality control limits for Acenaphthene and Pyrene. The sample was reanalyzed (A0B0817701) and was compliant. No other deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. #### WET CHEMISTRY No deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. #### DATA COMMENT PAGE #### ORGANIC DATA QUALIFIERS ND or U Indicates compound was analyzed for, but not detected. - J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero. - C This flag applies to pesticide results where the identification has been confirmed by GC/MS. - B This flag is used when the analyte is found in the associated blank, as well as in the sample. - This flag identifies compounds whose concentrations exceed the calibration range of the instrument for
that specific analysis. - D This flag identifies all compounds identified in an analysis at the secondary dilution factor. - N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results. - P This flag is used for a pesticide/Aroclo, target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P". - A This flag indicates that a TIC is a suspected aldol-condensation product. - Indicates coelution. - * Indicates analysis is not within the quality control limits. #### **INORGANIC DATA QUALIFIERS** AID or U. Indicates element was analyzed for, but not detected. Report with the detection limit value. - J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit. - N Indicates spike sample recovery is not within the quality control limits. - K Indicates the post digestion spike recovery is not within the quality control limits. - S Indicates value determined by the Method of Standard Addition. - M Indicates duplicate injection results exceeded quality control limits. - W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance. - E Indicates a value estimated or not reported due to the presence of interierences. - H Indicates analytical holding time exceedance. The value obtained should be considered an estimate. - Indicates analysis is not within the quality control limits. - + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995. Sample Data Package Pate: 10/23/2000 Time: 11:49:24 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Page: 2 Rept: AN1178 000006 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSVI010401G RE Sample ID: A0683014RE Date Collected: 09/26/2000 ime Collected: 12:17 | | | , . | | Detection | | | Date/Time | | |-------------|-------------------------|--------|------|-----------|-------|--------|------------------|---------| | | <u>Parameter</u> | Result | Flag | Limit | Units | Method | Analyzed | Analyst | | YSEG | -SW8463/8270 - PAH'S | • | | | | | | | | 2-1 | Methylnaphthalene | . ND | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Acc | enaph thene | ND | : | 1700 | UG/KG | 8270 | 10/19/2000 11:59 | JH - | | Ace | enaph thy l <i>e</i> ne | ND | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | An1 | thracene | ND | | 1700 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Ber | nzo(a)anthracene | ND | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Ber | nzo(a)pyrene | 1900 | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Ber | nzo(b)fluoranthene | 2700 | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | . JH | | Ber | nzo(ghi)perylene | ND | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Ber | nzo(k)fluoranthene | 990 | J. | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Chi | rysene | ND | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Dil | benzo(a,h)anthracene | ND | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH- | | Dil | benzofuran | ND | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Flu | uoranthene | 5400 | | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | F li | uorene | ND | | 1700 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Ind | deno(1,2,3-cd)pyrene | ND | . ** | 1900 | UG/KG | 8270 | 10/19/2000 11:57 | JH | | Na | oh tha lene | ND | | 1500 | UG/KG | 8270 | 10/19/2000 11:59 | JH | | Pho | enanthrene | 4800 | • | 1900 | UG/KG | 8270 | 10/19/2000 11:59 | · JH | | Pyı | rene | 4600 | | 1700 | UG/KG | 8270 | 10/19/2000 11:59 | JH | Total PAH 4,699 Date: 10/23/2000 Time: 11:49:24 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Page: Rept: AN117 000007 Sample ID: LSVI030502G Lab Sample ID: A0683001 Date Collected: 09/25/2000 Time Collected: 14:38 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | | | | Detection | | | Date/Time | - | |--------------------------------|--------|------|--------------|-------|--------|--------------------|---------| | Paramet <u>er</u> | Result | Flag | <u>Limit</u> | Units | Method | Analyzed | Analysi | | NYSEG- SW8463/8260-BTEX - SOIL | | | | | | | | | Benzene | ND | | 5.0 | UG/KG | 8260 | 10/06/2000 17:24 | CAS | | Ethylbenzene | ND | | 5.0 | UG/KG | 8260 | 10/06/2000 17:24 | CAS | | Toluene | ND | ٠ | 5.0 | UG/KG | 8260 | 10/06/2000 17:24 | CAS | | Total Xylenes | НД | | 15 | UG/KG | 8260 | 10/06/2000 17:24 | CAS | | | | | • | | | | | | NYSEG-SW8463/8270 - PAH'S | | | | | | | • | | 2-Methylnaphthalene | ND . | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Acenaphthene | ND , | | 14000 | UG/KG | 8270 | . 10/13/2000 15:39 | JH | | Acenaphthylene | , ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Anthracene | 5800 | J | 14000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Benzo(a)anthracene | , ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Benzo(a)pyrene | . ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Benzo(b)fluoranthene | 14000 | J | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Benzo(ghi)perylene | · ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Benzo(k)fluoranthene | 5700 | J | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Chrysene | ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Dibenzo(a,h)anthracene | , ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Dibenzofuran | ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH . | | Fluoranthene | ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Fluorene | - ND | • | 14000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Indeno(1,2,3-cd)pyrene | ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Naphthalene | ND | | 12000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Phenanthrene | ND | | 15000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | Pyrene | ND | • | 14000 | UG/KG | 8270 | 10/13/2000 15:39 | JH | | √et Chemistry Analysis | | , • | , | | | | | | Leachable pH | 7.1 | | 0 | s.u. | 9045 | 10/09/2000 | RM | Total CPAH 19.70 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Page: 8 Rept: AN1178 Rept: AN1178 Sample ID: LSVI030502G RE Sample ID: A0683001RE Date Collected: 09/25/2000 Time Collected: 14:38 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | | | | Detection | | | Date/Time | | | | |--------------------------|--------|------|-----------|--------------|--------|------------------|---------|--|--| | Parameter | Result | Flag | Limit | <u>Units</u> | Method | Analyzed | Analyst | | | | YSEG-SW8463/8270 - PAH'S | | | | , | | | | | | | 2-Methylnaphthalene | ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Acenaphthene | ND | | 14000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Acenaphthylene | ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Anthracene | ND | | 14000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Benzo(a)anthracene | , ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Benzo(a)pyrene | ND · | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Benzo(b)fluoranthene | ND ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Benzo(ghi)perylene | ·ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Benzo(k)fluoranthene | · ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Chrysene | ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Dibenzo(a,h)anthracene | ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Dibenzofuran | . ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH - | | | | Fluoranthene | ND . | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Fluorene | ND | | 14000 | UG/KG | 8270 | 10/18/2000 19:38 | JH · | | | | Indeno(1,2,3-cd)pyrene | , ND | | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Naphthalene | ND | | 12000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Phenanthrene | ND | • | 15000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | | Pyrene | ND | | 14000 | UG/KG | 8270 | 10/18/2000 19:38 | JH | | | Total PART (15.00) Total CPAH (15.00) New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Page: Rept: AN11 **000009** Sample ID: LSVI020503G Lab Sample ID: A0683002 Date Collected: 09/25/2000 Time Collected: 15:11 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | | | | Detection | | | Date/Time | - , | |--------------------------------|--------|-------------|-----------|--------------|--------|------------------|-------| | Parameter | Result | <u>Flag</u> | Limit | <u>Units</u> | Method | Analyzed | Analy | | NYSEG- SW8463/8260-BTEX - SOIL | - | | | | | , - | | | Benzene | ND | | 5.0 | UG/KG | 8260 | 10/06/2000 17:56 | S CAS | | Ethylbenzene | ND | | 5.0 | UG/KG | 8260 | 10/06/2000 17:56 | CAS | | Toluene | ND | | 5.0 | UG/KG | 8260 | 10/06/2000 17:56 | CAS | | Total Xylenes | ND | • | 15 | UG/KG | 8260 | 10/06/2000 17:56 | CAS | | | | | | | • | | 7 | | NYSEG-SW8463/8270 - PAH'S | | • | | | * | | - | | 2-Methylnaphthalene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | HL | | Acenaphthene | ND | | 1400 | UG/KG | 8270 | 10/13/2000 16:09 | HL (| | Acenaphthylene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | HL (| | Anthracene | 960 | 7 | 1400 | UG/KG | 8270 | 10/13/2000 16:09 | HL (| | Benzo(a)anthracene | 3300 | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | HL . | | Benzo(a)pyrene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | JH | | Benzo(b)fluoranthene | 3800 | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 |) JH | | Benzo(ghi)perylene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | JH | |
Benzo(k)fluoranthene | 1600 | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | HL | | Chrysene | 3200 | • | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | JH | | Dibenzo(a,h)anthracene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | JH | | Dibenzofuran | · ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | JH | | Fluoranthene | 7300 | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | J. | | Fluorene | ND . | • | 1400 | UG/KG | 8270 | 10/13/2000 16:09 | JH | | Indeno(1,2,3-cd)pyrene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | HL | | Naphthalene | ND | | 1200 | UG/KG | 8270 | 10/13/2000 16:09 | JH | | Phenanthrene | 5700 | | 1500 | UG/KG | 8270 | 10/13/2000 16:09 | JH | | Pyrene | 6600 | В | 1400 | UG/KG | 8270 | 10/13/2000 16:09 | JH | | | | | | | | | - | | Wet Chemistry Analysis | | | . • | | | | | | Leachable pH | 7.7 | | . 0 | S.U. | 9045 | 10/09/2000 | RM | Total PArt 32.46 Total CPAH 11.90 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Page: 6 Rept: AN1178 000010 Sample ID: LSVI020503G RE > Sample ID: A0683002RE Date Collected: 09/25/2000 Time Collected: 15:11 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | | | Detection | | | Date/Time | | | | |---------------------------|--------|-------------|-------|--------------|-----------|------------------|---------|--| | Parameter | Result | <u>flag</u> | Limit | <u>Units</u> | Method | Analyzed | Analyst | | | NYSEG-SW8463/8270 - PAH'S | | | | | | | | | | 2-Methylnaphthalene | ND | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Acenaphthene | , ND | | 3500 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Acenaphthylene | ND | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH · | | | Anthracene | 3200 | j | 3500 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Benzo(a)anthracene | 19000 | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Benzo(a)pyrene | 16000 | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Benzo(b)fluoranthene | 21000 | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Benzo(ghi)perylene | ND | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Benzo(k)fluoranthene | 12000 | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | · JH | | | Chrysene | 17000 | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Dibenzo(a,h)anthracene | ND | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Dibenzofuran | ND | ~ | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Fluoranthene | 20000 | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH, | | | Fluorene | ND | | 3500 | UG/KG | 8270 | 10/18/2000 20:07 | ' JH | | | Indeno(1,2,3-cd)pyrene | ND | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Naphthalene | ND | | 3100 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Phenanthrene | 10000 | | 3800 | UG/KG | 8270 | 10/18/2000 20:07 | JH | | | Pyrene | 16000 | | 3500 | UG/KG | 8270 | 10/18/2000 20:07 | ' JH | | Total PAH 134,2 Total CPAH 85,00 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Rept: AN11 **000011**Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSV1010504G Lab Sample ID: A0683003 Date Collected: 09/25/2000 Time Collected: 15:40 | | | | Detection | | | Date/Time | - | |--------------------------------|-------------------------|-----|-----------|--------------|--------|---------------------------------------|--------------| | <u>Parameter</u> | <u>Parameter</u> Result | | Limit | <u>Units</u> | Method | Analyzed | Analys | | NYSEG- SW8463/8260-BTEX - SOIL | • | | | | - | | - | | Benzene | ND . | | 5.0 | UG/KG | 8260 | 10/06/2000 18:3 | O CAS | | Ethylbenzene | ND | · e | 5.0 | UG/KG | 8260 | 10/06/2000 18:3 | O CAS | | Toluene | ND | • | 5.0 | UG/KG | 8260 | 10/06/2000 18:3 | O CAS | | Total Xylenes | ND | | 15 | UG/KG | 8260 | 10/06/2000 18:3 | O CAS | | NYSEG-SW8463/8270 - PAH'S | | | | | , | · · · · · · · · · · · · · · · · · · · | | | 2-Methylnaphthalene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:3 | 9 JH ' | | Acenaphthene | ND | | 1300 | UG/KG | 8270 | 10/13/2000 16:3 | 9 JH | | Acenaphthylene | ND ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:3 | 9 JH | | Anthracene | 5400 | | 1300 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Benzo(a)anthracene | 2300 | | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Benzo(a)pyrene | ND. | | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Benzo(b)fluoranthene | 3500 | | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Benzo(ghi)perylene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Benzo(k)fluoranthene | 1400 | J | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Chrysene | 3000 | | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Dibenzo(a,h)anthracene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Dibenzofuran | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Fluoranthere | 6900 | • | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Fluorene | ND | | 1300 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Indeno(1,2,3-cd)pyrene | ND | | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Naphthalene | ND | | 1200 | UG/KG | 8270 | 10/13/2000 16:39 | 9 ЈН | | Phenanthrene | 5600 | ~ | 1500 | UG/KG | 8270 | 10/13/2000 16:39 | 9 JH | | Pyrene | 6400 | В | 1300 | UG/KG | 8270 | 10/13/2000 16:39 |) JH | | Wet Chemistry Analysis | | | | | | • | | | Leachable pH | 7.8 | | 0 | s.u. | 9045 | 10/09/2000 | RM | Total CPAH 10,20 Date: 11/06/2000 Time: 10:45:05 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Page: Rept: AN1178 000012 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | | Sample 1 | D: | LSVI0105040 | |------|----------|----|-------------| | ļ | Sample 1 | D: | A0683003RR | | Date | Collecte | d: | 09/25/2000 | | Time | Collecte | d: | 15:40 | | | | , . | | | | | | | | |---------------------------|-------|-------------|-----------|-------|--------|------------------|---------|--|--| | | | | Detection | | | — Date/Time- | | | | | Parameter Result | | <u>Flag</u> | Limit | Units | Method | Analyzed | Analyst | | | | NYSEG-SW8463/8270 - PAH'S | • | | • | | | | | | | | 2-Methylnaphthalene | , ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Acenaphthene | ND | | 3300 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Acenaphthylene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Anthracene | ND | | 3300 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Benzo(a)anthracene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | HL | | | | Benzo(a)pyrene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Benzo(b)fluoranthene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Benzo(ghi)perylene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | HL | | | | Benzo(k)fluoranthene | ND ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Chrysene | · ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | HL | | | | Dibenzo(a,h)anthracene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | HL | | | | Dibenzofuran | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Fluoranthene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | HL | | | | Fluorene | ND | | 3300 | UG/KG | 8270 | 10/25/2000 20:03 | HL | | | | Indeno(1,2,3-cd)pyrene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | HL | | | | Naphthalene | . ND | | 2900 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Phenanthrene | ND | | 3700 | UG/KG | 8270 | 10/25/2000 20:03 | JH | | | | Pyrene | ND | | 3300 | UG/KG | 8270 | 10/25/2000 20:03 | JH : | | | | | | | | | | | | | | Total PATH (3,700) Total CPAH (3,700) New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Page: Rept: AN' Sample ID: LSVI030507G Lab Sample ID: A0683004 Date Collected: 09/25/2000 Time Collected: 10:33 000013 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | | • | | Detection | | | Date/Time | | |--------------------------------|--------|-------------|-----------|---------|--------|------------------|--------| | <u>Parameter</u> | Result | <u>Flag</u> | Limit | Units | Method | Analyzed | Analys | | NYSEG- SW8463/8260-BTEX - SOIL | | | | | | | | | Benzene | , ND | | 5.0 | UG/KG | 8260 | 10/06/2000 19:02 | CAS | | Ethylbenzene | ND | | 5.0 | UG/KG | 8260 | 10/06/2000 19:02 | CAS | | Toluene | ND . | | 5.0 | UG/KG | 8260 | 10/06/2000 19:02 | CAS | | Total Xylenes | ND | | 15 | UG/KG | 8260 | 10/06/2000 19:02 | CAS | | | | | | | | | | | NYSEG-SW8463/8270 - PAH'S | | | | | | | | | 2-Methylnaphthalene | ND | - | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Acenaphthene | 1600 | В | 1400 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Acenaphthylene | ND | | 1600 | UG/KG - | 8270 | 10/13/2000 17:09 | JH | | Anthracene | 4400 | | 1400 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Benzo(a)anthracene | 13000 | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Benzo(a)pyrene | 13000 | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Benzo(b)fluoranthene | 20000 | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Benzo(ghi)perylene | 4000 | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH · | | Benzo(k)fluoranthene | 7600 | • | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | Jii | | Chrysene | 14000 | · . | 1600 | ŲG/KG | 8270 | 10/13/2000 17:09 | JH | | Dibenzo(a,h)anthracene | ND | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH. | | Dibenzofuran | ND | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Fluoranthene | 24000 | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | Jł. | | Fluorene | ND | | 1400 | UG/KG | 3270 | 10/13/2000 17:09 | JH | | Indeno(1,2,3-cd)pyrene | 4100 | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Naphthalene | 1100 | J . | 1200 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Phenanthrene | 18000 | | 1600 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Pyrene | 24000 | . B | 1400 | UG/KG | 8270 | 10/13/2000 17:09 | JH | | Vet Chemistry Analysis | | | | • | | | | | Leachable pH | 9.0 | | 0 | s.u. | 9045 |
10/09/2000 | RM | Total Ant 148.8 Total coast 71.70 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - 8260/8270 Page: 10 Rept: AN1178 000014 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | Sample | ID: | F2A1020201@ | KE | |--------|-----|-------------|----| | Sample | ID: | A0683004RE | | | | | | | Date Collected: 09/25/2000 Time Collected: 10:33 | | • | Detection ——Date/Ti | | | | Date/Time | | | |---------------------------|--------|---------------------|--------------|-------|--------|------------------|--------------|--| | Parameter | Result | Flag | Limit | Units | Method | Analyzed | Analyst | | | NYSEG-SW8463/8270 - PAH'S | | | | | | | | | | 2-Methylnaphthalene | ND | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Acenaphthene | ND | | 7000 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Acenaphthylene | ND | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Anthracene | 9200 | | 7000 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Benzo(a)anthracene | ND | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | · JH | | | Benzo(a)pyrene | 4000 | · J | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Benzo(b)fluoranthene | 7900 | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Benzo(ghi)perylene | ND | • | 78 00 | UG/KG | 8270 | 10/18/2000 21:05 | . JH | | | Benzo(k)fluoranthene | 3000 | J | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Chrysene | ND | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH · | | | Dibenzo(a,h)anthracene | ND | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Dibenzofuran | ND | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Fluoranthene | 11000 | , | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Fluorene | ND | | 7000 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Indeno(1,2,3-cd)pyrene | ND . | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Naphthalene | ND | , | 6200 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Phenanth, ene | 9600 | | 7800 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | | Pyrene | 9400 | | 7000 | UG/KG | 8270 | 10/18/2000 21:05 | JH | | Total CPAH 14.90 # **Analytical Report for Table 2** ### SEGEINER MOV 7 2000 . L ENV. OP. SEVERN TRENT SERVICES STL Buffalo 10 Hazelwood Drive Suite 106 Amherst, NY 14228 Tel: 716 691 2600 Fax: 716 691 7991www.sti-inc.com November 2, 2000 Mr. John Ruspantini NYSEG - Corporate Drive Kirkwood Industrial Park Binghamton, NY 13902-5224 RE: Analytical Results Dear Mr. Ruspantini: Please find enclosed analytical results concerning the samples recently submitted by your firm. The pertinent information regarding these analyses is listed below: Project: NYSEG - Lockport State Road Former MGP Matrix: Soil Samples Received: 09/26/00 Sample Dates: 09/25,26/00 If you have any questions concerning this data, please contact me at (716) 691-2600 and refer to the I.D. number listed below. It has been our pleasure to provide New York State Electric & Gas with environmental testing services. We look forward to serving you in the future. Sincerely, STL Buffalo Kenneth P. Kinecki Program Manager Susan L. Tinsmith Laboratory Manager KPK/SLT/ekn Enclosure I.D.#A00-7000 #NY0A8576 This report contains _______ pages which are individually numbered SAMPLE DATA SUMMARY PACKAGE #### **SDG NARRATIVE** Laboratory Name: STL Buffalo Laboratory Code: STL Buffalo Contract Number: NY00-167 SDG Number: LVL4 Sample Identifications: LSVIC1101203G LSVIC1141601G LSVIC1141603G LSVIC16801G LSVIC16803G LSVIC181001G LSVIC2101204G LSVIC2141604G LSVIC26804G ### **METHODOLOGY** The specific methodology employed in obtaining the enclosed analytical results is indicated on the specific data tables. The method number presented refers to the following U.S. Environmental Protection Agency reference: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" (SW-846), Third Edition, Update III, December 1996, United States Environmental Protection Agency Office of Solid Waste. #### **COMMENTS** Comments pertain to data on one or all pages of this report. The enclosed data has been reported utilizing data qualifiers (Q) as defined on the Data Comment Page. ### **VOLATILE DATA** No deviations that affected the acceptability of the analytical results were encountered during the analytical procedure. #### SEMIVOLATILE DATA SBLK60 was inadvertently spiked with the spiking compounds Acenaphthene and Pyrene. All subsequent results will be flagged with a "B" qualifier. This deviation requires re-extraction of all samples. All samples were re-extracted outside of extraction holding time, with the exception of samples LSVIC1101203G, LSVIC16801G, and LSVIC181001G. Both sets of data are reported. Analysis of samples LSVIC1101203G RE, LSVIC16801G RE, and LSVIC181001G RE exhibited dissimilar results from their base sample. Therefore, the results of these re-extracted samples were not reported. These differing results are attributed to the lack of homogeneity of the samples in question. As a confirmation, samples LSVIC1101203G, LSVIC16801G, and LSVIC181001G were re-injected. These samples and their associated re-injection exhibited similar results. Samples LSVIC1101203G; LSVIC1101203G RI, LSVIC16801G, LSVIC16801G RI, LSVIC181001G, and LSVIC181001G RI were reported. Due to sample thickness during organic preparation the following samples were concentrated to a final volume of 10 milliliters: LSVIC1101203G, LSVIC1101203G RI, LSVIC16801G, LSVIC16803G RE, LSVIC181001G, and LSVIC181001G RI. Sample LSVIC1101203G was initially analyzed at a dilution factor 20 due to sample viscosity, and reanalyzed at a dilution factor of 20. All surrogates were diluted out of both samples. Both sets of data are reported. Sample LSVIC1141603G was initially analyzed at a dilution factor 20 due to sample viscosity and all surrogates were diluted out. The sample was reanalyzed at a dilution factor of 20 and exhibited surrogate recovery results of zero percent for Nitrobenzene-D5. A Both sets of data are reported. Sample LSVIC16801G was initially analyzed at a dilution factor 10 due to sample viscosity, and reanalyzed at a dilution factor of 10. All surrogates were diluted out of both samples. Both sets of data are reported. Sample LSVIC16803G was initially analyzed at a dilution factor 20 due to sample viscosity, and reanalyzed at a dilution factor 20. All surrogates were diluted out of both samples. Both sets of data are reported. Sample LSVIC181001G was initially analyzed at a dilution factor 10 due to sample viscosity, and reanalyzed at a dilution factor 10. All surrogates were diluted out of both samples. Both sets of data are reported. Sample LSVIC2141604G was initially analyzed at a dilution factor 5.0 due to sample viscosity, and reanalyzed at a dilution factor of 5. Both sets of data are reported. The initial calibration standard curve analyzed on 10/18/2000 exhibits the %RSD of surrogate Nitrobenzene-D5 as greater than 15%. However, the mean RSD of all compounds is 6.7%. Sample LSVIC1141603G RE exhibited internal standard recovery results below quality control limits for Perylene-D12. However, the original sample was compliant. No corrective action was required. #### SEMIVOLATILES DATA CON'T Sample LSVIC16803G RE exhibited internal standard recovery results below quality control limits for Perylene-D12. However, the original sample was compliant. No corrective action was required. Sample LSVIC2101204G RE exhibited internal standard recovery results below quality control limits for Perylene-D12. However, the original sample was compliant. No corrective action was required. Sample LSVIC2141604G RE exhibited internal standard recovery results below quality control limits for Perylene-D12. However, the original sample was compliant. No corrective action was required. Sample LSVIC26804G RE exhibited internal standard recovery results below quality control limits for Perylene-D12. However, the original sample was compliant. No corrective action was required. #### WET CHEMISTRY No deviations that affected the acceptability of the analytical results were encountered during the analytical procedure. "I certify that this data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Director or her designee, as verified by the following signature." Susan L. Tinsmith Laboratory Director Date ### DATA COMMENT PAGE #### ORGANIC DATA QUALIFIERS ND or U Indicates compound was analyzed for, but not detected. - J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1.1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero. - C This flag applies to pesticide results where the identification has been confirmed by GC/MS. - B This flag is used when the analyte is found in the associated blank, as well as in the sample, - E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis. - D This flag identifies all compounds identified in an analysis at the secondary dilution factor. - N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results. - P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P". - A This flag indicates that a TIC is a suspected
aldol-condensation product. - Indicates coelution. - Indicates analysis is not within the quality control limits. #### INORGANIC DATA QUALIFIERS ND or U. Indicates element was analyzed for, but not detected. Report with the detection limit value - J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit. - N Indicates spike sample recovery is not within the quality control limits. - K Indicates the post digestion spike recovery is not within the quality control limits. - S Indicates value determined by the Method of Standard Addition. - M Indicates duplicate injection results exceeded quality control limits. - W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance. - E Indicates a value estimated or not reported due to the presence of interferences. - H Indicates analytical holding time exceedance. The value obtained should be considered an estimate. - Indicates analysis is not within the quality control limits. - + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995 Contract: <u>98-153</u> ### 000006 Client No. LSVIC1101203G Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: LVL4 Lab Sample ID: A0683006 Lab File ID: <u>H2822.RR</u> Date Samp/Recv: 09/25/2000 09/26/2000 Date Analyzed: 10/06/2000 Matrix: (soil/water) <u>SOIL</u> ab Name: <u>STL Buffalo</u> Sample wt/vol: $\underline{5.15}$ (g/mL) \underline{G} evel: (low/med) <u>LOW</u> Moisture: not dec. <u>18.6</u> Heated Purge: Y GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm) oil Extract Volume: ____ (uL) Dilution Factor: 1.00 Soil Aliquot Volume: ____ (uL) CONCENTRATION UNITS: | CAS NO. | COMPOUND |
(ug/L or ug/Kg) | UG/KG | Q | |----------------------|---|---------------------|-------------------------|-------------| | 100-41-4
108-88-3 | Benzene
Ethylbenzene
Toluene
Total Xylenes | | 5.0
5.0
5.0
15 | บ
บ
บ | ## 000007 Client No. | lah Name | STI. Buff | alo | Contract: 98-1 | 53 | | LSVIC | 1141601G | | |----------|-------------------|------------------------|--------------------|---------|---------------------------------|-------------------|-------------|--------| | | . <u>010 0011</u> | <u></u> | <u> </u> | <u></u> | _ | | | | | Lab Code | : RECNY | Case No.: | _ SAS No.: | | SDG No.: <u>LVL</u> | 4 | | | | Matrix: | (soil/wate | r) <u>SOIL</u> | | | Lab Sample ID | : <u>A06830</u> | 13 | ٠ | | Sample w | t/vol: | <u>5.05</u> (g/mL) |) <u>G</u> | | Lab File ID: | H2829.F | ₹ <u> </u> | | | Level: | (low/med) | TOM | | | Date Samp/Rec | v: <u>09/26/2</u> | 2000 09/2 | 26/200 | | Moistu | re: not de | c. <u>15.4</u> Heate | ed Purge: <u>Y</u> | | Date Analyzed | : 10/06/2 | 2000 | | | 3C Colum | n: <u>DB-624</u> | ID: <u>0.53</u> | (mm) | | Dilution Facto | or: <u>1.0</u> | <u>)0</u> - | | | Soil Ext | ract Volum | e: (uL) | | • | Soil Aliquot ' | Volume: | (1 | رلد) | | | CAS NO. | COMPOUND | ··· . | | ENIRATION UNIT
1/L or ug/Kg) | | Q | - ' | | | 1 | Benzene
Ethylbenzer | ne | | | 5.0
5.0 | ט | | | | 3 | Toluene | | | | 5.0 | Ü | | | | 1330-20-7 | Total Xyler | nes | | | 15 | ט | | ### 800009 Client No. | Lab Name: <u>STL Buffalo</u> Contract: <u>98-15</u> | LSVIC1141603G | |---|--| | Lab Code: RECNY Case No.: SAS No.: | SDG No.: <u>LVL4</u> | | Matrix: (soil/water) <u>SOIL</u> | Lab Sample ID: A0683007 | | Sample wt/vol: <u>5.13</u> (g/mL) <u>G</u> | Lab File ID: <u>H2823.RR</u> | | Level: (low/med) <u>LOW</u> | Date Samp/Recv: 09/25/2000 09/26/200 | | % Moisture: not dec. <u>11.8</u> Heated Purge: Y | Date Analyzed: <u>10/06/2000</u> | | GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm) | Dilution Factor: 1.00 | | Boil Extract Volume: (uL) | Soil Aliquot Volume: (uL) | | CAS NO. COMPOUND | CONCENIRATION UNITS:
(ug/L or ug/Kg) <u>UG/KG</u> Q | | 71-43-2Benzene
100-41-4Ethylbenzene
108-88-3Total Xylenes | 5.0 U
5.0 U
5.0 U | ### 000009 Client No. LSVIC16801G Contract: <u>98-153</u> Lab Name: STL Buffalo Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: LVL4 Matrix: (soil/water) SOIL Lab Sample ID: A0683011 Sample wt/vol: $\underline{5.18}$ (g/mL) \underline{G} Lab File ID: H2827.RR Level: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: not dec. <u>22.8</u> Heated Purge: Y Date Analyzed: 10/06/2000 GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: ___ 1.00 Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 71-43-2----Benzene 5.0 U 100-41-4----Ethylbenzene 5.0 U 108-88-3----Toluene 5.0 U 1330-20-7----Total Xylenes 15 U ### 000010 Client No. | ab Name: STL Buffalo Contract: 98-153 | | LSVIC16803G | |--|---|-----------------------| | White. bill bullium white white with the second sec | | | | ab Code: <u>RECNY</u> Case No.: SAS No.: | SDG No.: LVLA | | | atrix: (soil/water) <u>SOIL</u> | Lab Sample ID: | A0683005 | | Sample wt/vol: $\underline{5.07}$ (g/mL) \underline{G} | Lab File ID: | H2821.RR | | evel: (low/med) <u>LOW</u> | Date Samp/Recv: | 09/25/2000 09/26/2000 | | Moisture: not dec. <u>10.0</u> Heated Purge: <u>Y</u> | Date Analyzed: | 10/06/2000 | | C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) | Dilution Factor: | 1.00 | | oil Extract Volume: (uL) | Soil Aliquot Vol | ume: (uL) | | | CONCENTRATION UNITS:
(ug/L or ug/Kg) | | | 71-43-2Benzene
100-41-4Ethylbenzene | | 5.0 U
5.0 U | | 108-88-3Toluene
1330-20-7Total Xylenes | | 5.0 U
15 U | ### 000011 5.0 15 U U Client No. | Lab Name: STL Buffalo Contract: 98-153 | | LSVIC181001G | |---|--|-----------------------| | Lab Code: RECNY Case No.: SAS No.: | SDG No.: <u>LVL4</u> | | | Matrix: (soil/water) <u>SOIL</u> | Lab Sample ID: | A0683012 | | Sample wt/vol: 5.12 (g/mL) G | Lab File ID: | H2828.RR | | Level: (low/med) <u>LOW</u> | Date Samp/Recv: | 09/26/2000 09/26/2000 | | Moisture: not dec. <u>18.1</u> Heated Purge: <u>Y</u> | Date Analyzed: | 10/06/2000 | | 3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) | Dilution Factor: | 1.00 | | Soil Extract Volume: (uL) | Soil Aliquot Vol | ume: (uL) | | | NCENTRATION UNITS:
ug/L or ug/Kg) ! | UG/KG Q | | 71-43-2Benzene
100-41-4Ethylbenzene | | 5.0 U
5.0 U | 100-41-4----Ethylbenzene 1330-20-7----Total Xylenes 108-88-3----Toluene ### 000012 Client No. LSVIC2101204G | iab Name: <u>STL Buffalo</u> | Contract: 98-15 | 3 | , <u>L</u> | | | |--|-----------------|--|-------------------|-------------|--------| | Lab Code: RECNY Case No.: | SAS No.: | SDG No.: <u>LVL4</u> | | | | | latrix: (soil/water) <u>SOIL</u> | | Lab Sample ID: | A068300 | 9 | | | Sample wt/vol: $\underline{5.13}$ (g/mL) | <u>G</u> | Lab File ID: | H2825.R | R | | | evel: (low/med) <u>LOW</u> | , | Date Samp/Recv | : 09/26/2 | 000 09/2 | 6/2000 | | Moisture: not dec. 6.1 Heated | i Purge: Y | Date Analyzed: | 10/06/2 | 000 | | | GC Column: <u>DB-624</u> ID: <u>0.53</u> (r | rm) | Dilution Factor | r: <u>1.0</u> | <u>0</u> | | | oil Extract Volume: (uL) | | Soil Aliquot Vo | olume: | (ı | 工) | | CAS NO. COMPOUND | | CONCENIRATION UNITS
(ug/L or ug/Kg) | | Q | .* | | 71-43-2Benzene
100-41-4Ethylbenzene
108-88-3Toluene
1330-20-7Total Xylene | | | 5.0
5.0
5.0 | บ
บ
บ | | ### 000013 Client No LSVIC2141604G Contract: <u>98-153</u> Lab Name: STL Buffalo Case No.: ____ SAS No.: ____ SDG No.: LVIA Lab Code: <u>RECNY</u> Matrix: (soil/water) SOIL Lab
Sample ID: A0683010 __<u>5.25</u> (g/mL) <u>G</u> Lab File ID: <u>H2826.RR</u> Sample wt/vol: Level: (low/med) LOW Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: not dec. <u>5.8</u> Heated Purge: Y Date Analyzed: 10/06/2000 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: ____1.00 Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 ### 000014 Client No. | inh Minne | . com Diffici | Contract | 00 152 : | • | LSVICE | 680 4G | | |-----------|----------------------|---|----------|----------------------------------|-------------------------|------------------|----------------| | ad Name: | : SIL BULLAR | <u>o</u> Contract: | 98-153 | · | - | - | | | ab Code: | : RECNY | Case No.: SAS No. | • | SDG No.: LI | <u>/L4</u> | | | | atrix: | (soil/water) | SOIL | • | Lab Sample I | D: <u>A068300</u> | 8 | | | Sample wt | t/vol: | 5.10 (g/mL) <u>G</u> | | Lab File ID: | H2824.R | R | | | evel: | (low/med) | LOW | - | Date Samp/Re | ecv: <u>09/26/2</u> | <u>000 09/</u> 2 | <u>26/2000</u> | | Moistur | re: not dec. | | | Date Analyze | ed: <u>10/06/2</u> | <u>000</u> | | | C Column | n: <u>DB-624</u> | ID: <u>0.53</u> (mm) | | Dilution Fac | ctor:1.0 | <u>O</u> | | | oil Exti | ract Volume: | (uL) | | Soil Aliquot | : Volume: | (1 | ىلد) | | I | CAS NO. | COMPOUND | | NCENTRATION UN
ug/L or ug/Kg) | | Q | | | | 100-41-4
108-88-3 | Benzene
Ethylbenzene
Toluene
Total Xylenes | | | 5.0
5.0
5.0
15 | ט
ט
ט | | ### 000015 Client N LSVIC1101203G Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: LVL4 Matrix: (soil/water) SOIL Lab Sample ID: A0683006 Sample wt/vol: 30.29 (g/mL) <u>G</u> Lab File ID: <u>W41381.MSO</u> Level: (low/med) <u>LOW</u> Date Samp/Recv: 09/25/2000 09/26/2000 % Moisture: 18.6 decanted: (Y/N) N Date Extracted: 10/04/2000 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/18/2000 Injection Volume: 1.00 (uL) Dilution Factor: 20.00 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> | CAS NO. COMPOUND (ug, | /Lorug/Kg) <u>UG/KG</u> | Q | |----------------------------------|-------------------------|-----| | 83-32-9Acenaphthene | 5600 | BJ | | 208-96-8Acenaphthylene | 16000 | U | | 120-12-7Anthracene | 38000 | | | 56-55-3Benzo (a) anthracene | 90000 | - | | 205-99-2Benzo (b) fluoranthene | 110000 | | | 207-08-9Benzo(k) fluoranthene | 67000 | | | 191-24-2Benzo (ghi) perylene | 22000 | | | 50-32-8Benzo (a) pyrene | 85000 | 1 | | 218-01-9Chrysene | 94000 | | | 53-70-3Dibenzo (a, h) anthracene | 16000 | שׁ | | 206-44-0Fluoranthene | 210000 | | | 86-73-7Fluorene | 14000 | ַט | | 193-39-5Indeno(1,2,3-cd)pyrene | 25000 | | | 91-57-62-Methylnaphthalene | 16000 | U | | 91-20-3Naphthalene | 13000 | ַּט | | 85-01-8Phenanthrene | 160000 | 1 | | 129-00-0Pyrene | 170000 | В | | 132-64-9Dibenzofuran | 16000 | U | Total PAH 1077 Total CPAH 471.0 ### 000016 Client No. LSVIC1101203G RI Lab Name: <u>STL Buffalo</u> Contract: <u>98-153</u> Lab Code: RECONY Case No.: ____ SAS No.: ___ SDG No.: LVL4 Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: A0683006RI Sample wt/vol: 30.29 (g/mL) G W41485.MSO evel: (low/med) <u>LOW</u> Lab File ID: Date Samp/Recv: 09/25/2000 09/26/2000 Moisture: 18.6 decanted: (Y/N) N Date Extracted: <u>10/04/2000</u> Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/25/2000 njection Volume: 1.00(uL) Dilution Factor: ___20.00 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | |----------|---------------------------|-----------------|---------------|-----| | 83-32-9 | Acenaphthene | | 14000 | บ | | 208-96-8 | Acenaphthylene | | 16000 | U | | | Anthracene | | 30000 | | | 56-55-3 | Benzo (a) anthracene | _ | 7 5000 | | | 205-99-2 | Benzo (b) fluoranthene | | 88000 | | | 207-08-9 | Benzo(k)fluoranthene | | 44000 | 1 | | | Benzo(ghi)perylene | | 30000 | | | 50-32-8 | Benzo (a) pyrene | | 70000 | | | | Chrysene | | 74000 | | | 53-70-3 | Dibenzo (a, h) anthracene | | 9900 | J | | 206-44-0 | Fluoranthene | | 180000 | | | 86-73-7 | Fluorene | , . | 14000 | U | | 193-39-5 | Indeno (1,2,3-cd) pyrene | | 33000 | | | 91-57-6 | 2-Methylnaphthalene | | 16000 | ט | | | Naphthalene | | 13000 | U | | 85-01-8 | Phenanthrene | | 130000 | l l | | 129-00-0 | Pyrene | | 140000 | В | | | Dibenzofuran | | 16000 | lυ | Total DAH 903,9 Total CPAH 393,9 00001 LSVIC1141601G Client N Contract: <u>98-153</u> Lab Name: <u>STL Buffalo</u> Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: ____ SDG No.: <u>LVL4</u> Matrix: (soil/water) SOIL Lab Sample ID: A0683013 Sample wt/vol: <u>30.36</u> (g/mL) <u>G</u> Lab File ID: W41404.MSQ LOW Level: (low/med) Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: 15.4 decanted: (Y/N) N Date Extracted: 10/04/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/2000 Injection Volume: 1.00 (uL) Dilution Factor: ____1.00 GPC Cleanup: (Y/N) N pH: ____ | CAS NO. CC | OMPOUND | CONCENTRATION (ug/L or ug/K | | G/KG | Q | |------------|--------------------------|---------------------------------------|----|------|------| | 83-32-9Ac | cenaphthene | | 3, | 30 | U | | 208-96-8A | | | | 30 | ט | | 120-12-7Ar | | , | | 30 | Ü | | | enzo (a) anthracene | | | 30 | Ū | | | enzo (b) fluoranthene | | | 30 | Ū | | | enzo (k) fluoranthene | | | 30 | Ū | | | enzo (ghi) perylene | | | 30 | Ū | | 50-32-8Be | enzo (a) pyrene | | | 30 | U | | 218-01-9Cf | | | | 30 | Ü | | | ibenzo (a, h) anthracene | | | 30 | lΰ | | 206-44-0F1 | | | | 30 | lu l | | 86-73-7F1 | | | | 30 | Ū | | | ndeno (1,2,3-cd) pyrene | · · · · · · · · · · · · · · · · · · · | | 30 | Ū | | | -Methylnaphthalene | | | 30 | Ū | | 91-20-3Na | | | | 30 | Ū · | | 85-01-8Ph | | | | 30 | Ū | | 129-00-0Py | | | | 30 | Ū | | | ibenzofuran | | | 30 | Ü | Total PAN (0,330) Total a PAH (0,330) ## 000018 Client No. LSVIC1141601G RE | Lab Name: <u>STL Buffalo</u> | Contract: <u>98-153</u> | | L | | |-------------------------------------|-------------------------|------------------|------------|-------------| | Lab Code: <u>RECNY</u> Case No.: | SAS No.: | SDG No.: LVIA | | • | | Matrix: (soil/water) <u>SOIL</u> | | Lab Sample ID: | A0683013RE | | | Sample wt/vol: 30.13 (g/mL) | <u>G</u> | Lab File ID: | W41406.MSO | | | Level: (low/med) <u>LOW</u> | | Date Samp/Recv: | 09/26/2000 | 9/26/2000 | | Moisture: <u>15.4</u> decanted: (Y/ | /N) <u>N</u> | Date Extracted: | 10/17/2000 | | | Concentrated Extract Volume: 1000(u | T') | Date Analyzed: | 10/19/2000 | | | Injection Volume: 1.00(uL) | | Dilution Factor: | 1.00 | | | GPC Cleanup: (Y/N) N pH: | | • | | | | | CONCENTRATION UNITS: | | |-----------------|----------------------|--| | (ug/L or ug/Kg) | UG/KG | Q | | | 330 | U | | | 330 | טן | | | 330 | ַט | | | 330 | ַט | | | 330 | U | | | 330 | שׁן | | | 330 | lυ | | | 330 | U | | | 330 | U | | ne | 330 | U | | | 330 | U | | | 330 | U | | ne | 330 | U | | | 330 | U | | | 330 | ט | | | 330 | ט | | | 330 | U | | | | U | | | (ug/L or ug/Kg) | (ug/L or ug/Kg) UG/KG 330 330 330 330 330 330 330 330 330 3 | PPM Total PAH (0.330 Total CPAH (0.530) Client N Lab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: LVLA Matrix: (soil/water) SOIL Lab Sample ID: A0683007 Sample wt/vol: _30.93 (g/mL) <u>G</u> Lab File ID: W41382.MSQ Date Samp/Recv: 09/25/2000 09/26/2000 Level: (low/med) LOW % Moisture: 11.8 decanted: (Y/N) N Date Extracted: 10/04/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/18/2000 Injection Volume: 1.00 (uL) Dilution Factor: 20.00 GPC Cleanup: (Y/N) N pH: ____ | • | | CONCENTRATION | UNITS: | | |----------|---------------------------------------|---------------|------------------|-----| | CAS NO. | COMPOUND | (ug/L or ug/k | (g) <u>UG/KG</u> | Q | | | Acenaphthene | | 1300 | U | | 208-96-8 | Acenaphthylene | | 1500 | ט ו | | | Anthracene | | 1300 | ט | | | Benzo (a) anthracene | | 1500 | ט | | 205-99-2 | Benzo (b) fluoranthene | | 1500 | ט ו | | | Benzo(k) fluoranthene | | 1500 | ט ו | | 191-24-2 | Benzo(ghi)perylene | | 1500 | ט ו | | | Benzo (a) pyrene | | 1500 | ט | | 218-01-9 | Chrysene | | 1500. | ן ט | | 53-70-3 | Dibenzo (a, h) anthracene | | 1500 | ט | | 206-44-0 | Fluoranthene | | 1500 . | ן ט | | 86-73-7 | | | 1300 | ן ח | | 193-39-5 | Indeno(1,2,3-cd)pyrene | | 1500 | ן ט | | 91-57-6 | 2-Methylnaphthalene | | 1500 | ע . | | 91-20-3 | Naphthalene | | 1200 | U · | | 85-01-8 | Phenanthrene | | 1500 | ן ט | | 129-00-0 | Pyrene | | 1300 | ט | | 132-64-9 | Dibenzofuran | | 1500 | U | | I | • • • • • • • • • • • • • • • • • • • | | | | Total PAH (1.500) Total CPAH (4500) ### 000020 Client No. LSVIC1141603G RE Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: LVL4 Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0683007RE</u> Sample wt/vol: 30.09 (g/mL) G Lab File ID: W41393.MSO Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/25/2000</u> <u>09/26/2000</u> Moisture: 11.8 decanted: (Y/N) N Date Extracted: 10/17/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/18/2000 Injection Volume: 1.00 (uL) Dilution Factor: 20.00 GPC Cleanup: (Y/N) N pH: ____ | 83-32-9Acenaphthene | 1400
1500 | Ū
Q | |----------------------------------|--------------|--------| | | 1500 | 1 - | | | | 7.7 | | 208-96-8Acenaphthylene | | U | | 120-12-7Anthracene | 1400 | U | | 56-55-3Benzo (a) anthracene | 1500 | U | | 205-99-2Benzo (b) fluoranthene | 2900 | 1 | | 207-08-9Benzo(k) fluoranthene | 990 | J | | 191-24-2Benzo (ghi) perylene | 1500 | U | | 50-32-8Benzo (a) pyrene | 1200 | J | | 218-01-9Chrysene | 1500 | U | | 53-70-3Dibenzo (a, h) anthracene | 1500 | U | | 206-44-0Fluoranthene | 1500 | U | | 86-73-7Fluorene | 1400 | υ- | | 193-39-5Indeno (1,2,3-cd)
pyrene | 1500 | U | | 91-57-62-Methylnaphthalene | 1500 | U | | 91-20-3Naphthalene | 1200 | U | | 85-01-8Phenanthrene | 1500 | U | | 129-00-0Pyrene | 1400 | U | | 132-64-9Dibenzofuran | 1500 | ប | Total PAH 5.090 Total CPHH 5.090 ### 000021 LSVIC16801G Client N | Lab Name: STL Buffalo | 2 | Contract: <u>98-153</u> | | L | |-----------------------|---------------|-------------------------|----------------------|-----------------------| | Lab Code: RECNY C | ase No.: | SAS No.: | SDG No.: <u>LVI4</u> | • | | Matrix: (soil/water) | SOIL | | Lab Sample ID: | A0683011 | | Sample wt/vol: | _30.99 (g/mL) | <u>G</u> | Lab File ID: | W41386.MSO | | Level: (low/med) | LOW | | Date Samp/Recv: | 09/26/2000 09/26/2000 | % Moisture: 22.8 decanted: (Y/N) N Date Extracted: 10/04/2000 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/18/2000 Injection Volume: 1.00 (uL) Dilution Factor: 10.00 GPC Cleanup: (Y/N) N pH: ____ | | | CONCENTRATION U | VITS: | • | |----------|------------------------|-----------------|-------|-----| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | | 83-32-9 | Acenaphthene | | 7500 | บ | | 208-96-8 | Acenaphthylene | | 8400 | ט | | 120-12-7 | Anthracene | | 7500 | U | | 56-55-3 | Benzo(a) anthracene | | 8400 | ט | | 205-99-2 | Benzo (b) fluoranthene | | 27000 | | | 207-08-9 | Benzo(k)fluoranthene | | 12000 | | | 191-24-2 | Benzo(ghi)perylene | | 8400 | ប | | 50-32-8 | Benzo (a) pyrene | | 8400 | ט ו | | 218-01-9 | Chrysene | | 8400 | U | | 53-70-3 | Dibenzo(a,h)anthracene | | 8400 | υ | | 206-44-0 | Fluoranthene | | 18000 | | | 86-73-7 | | | 7500 | ט ' | | 193-39-5 | Indeno(1,2,3-cd)pyrene | | 8400 | ט | | 91-57-6 | 2-Methylnaphthalene | | 8400 | ַ ט | | 91-20-3 | Naphthalene | | 6700 | ן ט | | 85-01-8 | Phenanthrene | | 22000 | | | 129-00-0 | Pyrene | | 14000 | В | | 132-64-9 | Dibenzofuran | | 8400 | U | Total PAH 93.00 Total CMAIT 39.00 ### 000022 Client No. | Lab Name: SIL Buffal | <u>o</u> | Contract: 98-153 | | IBVICIOSUIG RI | |--------------------------|-----------------|------------------|-----------------|-----------------------| | Lab Code: <u>RECNY</u> C | ase No.: | SAS No.: | SDG No.: LVIA | | | Matrix: (soil/water) | SOIL | | Lab Sample ID: | A0683011RI | | Sample wt/vol: | _30.99 (g/mL) | G | Lab File ID: | W41486.MSQ | | Level: (low/med) | TOM | | Date Samp/Recv: | 09/26/2000 09/26/2000 | | Moisture: 22.8 | decanted: (Y | /n) <u>n</u> | Date Extracted: | 10/04/2000 | | Concentrated Extract | Volume: 10000 (| uL) | Date Analyzed: | 10/25/2000 | Injection Volume: 1.00 (uL) Dilution Factor: ___10.00 GPC Cleanup: 0 (Y/N) N pH: ____ CONCENTRATION UNITS: Date Analyzed: <u>10/25/2000</u> | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|--------------------------|-----------------|-------|-------| | 83-32-9 | Acenaphthene | | 7500 | U | | | Acenaphthylene | | 8400 | บ | | | Anthracene | | 3900 | J | | 56-55-3 | Benzo (a) anthracene | | 8400 | שו | | | Benzo (b) fluoranthene | | 23000 | | | 207-08-9 | Benzo(k) fluoranthene | | 9200 | - - | | | Benzo(ghi)perylene | | 8000 | J | | | Benzo (a) pyrene | | 6100 | J | | | Chrysene | | 8400 | υ | | 53-70-3 | Dibenzo (a,h) anthracene | | 8400 | Ū | | | Fluoranthene | - | 16000 | | | 86-73-7 | Fluorene | | 7500 | שו | | 193-39-5 | Indeno (1,2,3-cd) pyrene | | 8600 | | | | 2-Methylnaphthalene | | 8400 | U | | | Naphthalene | | 6700 | Ū | | | Phenanthrene | | 20000 | 1 | | 129-00-0 | | | 12000 | В | | | Dibenzofuran | | 8400 | יו | | | | | - | | Total PART 106.8 00002 Client N LSVIC16803G Lab Name: STL Buffalo Contract: <u>98-153</u> Case No.: ____ SAS No.: ____ SDG No.: LVIA Lab Code: RECNY Matrix: (soil/water) SOIL Lab Sample ID: A0683005 Sample wt/vol: _30.36 (g/mL) <u>G</u> Lab File ID: W41380.MSQ (low/med) Level: Date Samp/Recv: 09/25/2000 09/26/2000 LOW % Moisture: <u>10.0</u> decanted: (Y/N) N Date Extracted: 10/04/2000 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/18/2000 Injection Volume: ___1.00(uL) GPC Cleanup: (Y/N) N pH: ___ CONCENIRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 83-32-9----Acenaphthene 13000 U 208-96-8-----Acenaphthylene 15000 U 120-12-7-----Anthracene U 13000 56-55-3-----Benzo (a) anthracene U 15000 205-99-2----Benzo (b) fluoranthene 8900 J 207-08-9----Benzo(k) fluoranthene J 4200 191-24-2----Benzo(ghi)perylene 15000 U 50-32-8-----Benzo (a) pyrene 6400 J 218-01-9-----Chrysene U 15000 53-70-3-----Dibenzo(a,h)anthracene 15000 U 206-44-0----Fluoranthene U 15000 86-73-7----Fluorene 13000 U 193-39-5-----Indeno (1,2,3-cd) pyrene 15000 U 91-57-6----2-Methylnaphthalene 15000 U 91-20-3----Naphthalene 12000 U 85-01-8-----Phenanthrene 15000 U 129-00-0----Pyrene 13000 U 132-64-9-----Dibenzofuran 15000 70tMPAH 19.50 Total CPAH 19.50 Dilution Factor: 20.00 ### 000024 Client No. LSVIC16803G RE Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: LVL4 Matrix: (soil/water) SOIL Lab Sample ID: A0683005RE Sample wt/vol: 30.67 (g/mL) G Lab File ID: W41391.MSO Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/25/2000 09/26/2000</u> % Moisture: <u>10.0</u> decanted: (Y/N) N Date Extracted: <u>10/17/2000</u> Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/18/2000 Injection Volume: 1.00 (uL) Dilution Factor: 20.00 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|--------------------------|-----------------|-------|-------| | 83-32-9 | Acenaphthene | | 13000 | ט | | 208-96-8 | Acenaphthylene | | 14000 | ן ט | | 120-12-7 | Anthracene | | 13000 | U | | 56-55-3 | Benzo (a) anthracene | | 14000 | U | | 205-99-2 | Benzo (b) fluoranthene | | 14000 | U | | 207-08-9 | Benzo(k)fluoranthene | | 14000 | U | | 191-24-2 | Benzo(ghi)perylene | | 14000 | ט | | 50-32-8 | Benzo(a)pyrene | | 14000 | U | | 218-01-9 | Chrysene | • | 14000 | U | | 53-70-3 | Dibenzo (a,h) anthracene | | 14000 | U | | 206-44-0 | Fluoranthene | | 14000 | U | | 86-73-7 | Fluorene | | 13000 | U | | 193-39-5 | Indeno (1,2,3-cd) pyrene | | 14000 | U | | 91-57-6 | 2-Methylnaphthalene | | 14000 | ַ | | 91-20-3 | Naphthalene | | 12000 | י ט | | 85-01-8 | Phenanthrene | | 14000 | שׁ | | 129-00-0 | Pyrene | | 13000 | ט | | 132-64-9 | Dibenzofuran | | 14000 | U | TOTAL PAH 214.00 TOTAL CLAH < 14.00 ### 000025 Client N LSVIC181001G Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: LVL4 Matrix: (soil/water) SOIL Lab Sample ID: Sample wt/vol: 30.23 (g/mL) G Lab File ID: A0683012 W41403.MSQ Level: (low/med) <u>LOW</u> Date Extracted: 10/04/2000 Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: 18.1 decanted: (Y/N) N Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/19/2000 Injection Volume: 1.00(uL) Dilution Factor: 10.00 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|--------------------------|-----------------|-------|------| | 83-32-9 | Acenaphthene | | 7300 | U | | 208-96-8 | Acenaphthylene | | 8100 | ט | | 120-12-7 | Anthracene | | 7300 | ט | | 56-55-3 | Benzo (a) anthracene | | 15000 | 1 | | 205-99-2 | Benzo(b)fluoranthene | | 39000 | 1 | | | Benzo(k)fluoranthene | | 15000 | | | 191-24-2 | Benzo(ghi)perylene | | 8700 | 1 | | 50-32-8 | Benzo (a) pyrene | | 18000 | | | 218-01-9 | | | 23000 | | | 53-70-3 | Dibenzo (a,h) anthracene | | 8100 | ט | | 206-44-0 | Fluoranthene | | 8100 | ט | | 86-73-7 | Fluorene | | 7300 | บ | | | Indeno(1,2,3-cd)pyrene | | 9600 | 1 1 | | 91-57-6 | 2-Methylnaphthalene | | 8100 | ַ ט. | | 91-20-3 | Naphthalene | | 6500 | U | | 85-01-8 | Phenanthrene | | 7600 | J | | 129-00-0 | Pyrene | · . | 15000 | В | | 132-64-9 | Dibenzofuran | | 8100 | ט | | | | | | 1 1 | Total CPAH 150.9 ### 000026 Client No. LSVIC181001G RI ab Name: STL Buffalo Contract: 98-153 Lab Code: RECONY Case No.: ____ SAS No.: ___ SDG No.: LVIA atrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0683012RI</u> Sample wt/vol: 30.23 (g/mL) G Lab File ID: W41487.MSO evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 18.1 decanted: (Y/N) N Date Extracted: 10/04/2000 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/25/2000 hjection Volume: 1.00 (uL) Dilution Factor: 10.00 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>ug/kg</u> | Q | |----------|---------------------------|-----------------|--------------|------| | 83-32-9 | Acenaphthene | | 7300 | U | | 208-96-8 | Acenaphthylene | | 8100 | ט | | 120-12-7 | Anthracene | | 7300 | ן ט | | 56-55-3 | Benzo (a) anthracene | : | 17000 | | | 205-99-2 | Benzo (b) fluoranthene | | 39000 | 1 | | 207-08-9 | Benzo(k)fluoranthene | | 17000 | ·] | | 191-24-2 | Benzo(ghi)perylene | · | 13000 | 1 | | 50-32-8 | Benzo (a) pyrene | | 20000 | | | 218-01-9 | Chrysene | | 23000 | ŀ | | 53-70-3 | Dibenzo (a, h) anthracene | | 3300 | J | | 206-44-0 | Fluoranthene | · | 15000 | | | 86-73-7 | Fluorene | | 7300 | ์ บ | | 193-39-5 | Indeno(1,2,3-od)pyrene | | 13000 | | | 91-57-6 | 2-Methylnaphthalene | | 8100 | υ | | 91-20-3 | Naphthalene | | 6500 | υ· | | | Phenanthrene | | 7700 | J | | 129-00-0 | Pyrene | | 15000 | В | | 132-64-9 | Dibenzofuran | No. | 8100 | U | | 1 | | | | 1 | Total PArt 183.0 Total CPArt 132,3 ### 000027 Client N | LSVIC2101204G | |---------------| |---------------| Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: _____ SDG No.: LVL4 Matrix: (soil/water) SOIL Lab Sample ID: A0683009 Sample wt/vol: 30.98 (g/mL) G Lab File ID: W41384.MSQ Level: (low/med) LOW Date Samp/Recv: 09/26/2000 09/26/200 % Moisture: 6.1 decanted: Date Extracted: 10/04/2000 (Y/N) <u>N</u> ncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/18/2000 injection Volume: 1.00(uL) Dilution Factor: 1.00 GPC Cleanup: (Y/N) N pH: ____ | | CONCENTRATION UNI | rs: | | |--------------------------------|-------------------|-------|----| | CAS NO. COMPOUND |
(ug/L or ug/Kg) | UG/KG | Q | | 83-32-9Acenaphthene | | 330 | บ | | 208-96-8Acenaphthylene | | 330 | ט | | 120-12-7Anthracene | | 330 | ט | | 56-55-3Benzo (a) anthracene | | 330 | ט | | 205-99-2Benzo (b) fluoranthene | | 59 | J | | 207-08-9Benzo(k)fluoranthene | | 28 | J | | 191-24-2Benzo (ghi) perylene | | 330 | U | | 50-32-8Benzo (a) pyrene | | 330 | ט | | 218-01-9Chrysene | | 330 | ט | | 53-70-3Dibenzo(a,h)anthracene | | 330 | U | | 206-44-0Fluoranthene | | 67 | J | | 86-73-7Fluorene | | 330 | ע | | 193-39-5Indeno(1,2,3-cd)pyrene | | 330 | U | | 91-57-62-Methylnaphthalene | | . 330 | ט | | 91-20-3Naphthalene | | 330 | ט | | 85-01-8Phenanthrene | | 47 | J | | 129-00-0Pyrene | | 60 | BJ | | 132-64-9Dibenzofuran | | 330 | U | Total PAH 0, 261 Total CPAH 0,087 #### 000028 LSVIC2101204G RE #### NEW YORK STATE ELECTRIC & GAS NYSEG-METHOD 8270 - PAH'S ANALYSIS DATA SHEET Client No. | ab Name: <u>STL Buffalo</u> | Contract: <u>98-153</u> | · · | <u> </u> | - | |--------------------------------------|-------------------------|------------------|------------|------------| | Lab Code: RECNY Case No.: | SAS No.: | SDG No.: LVL4 | | | | atrix: (soil/water) <u>SOIL</u> | | Lab Sample ID: | A0683009RE | | | Sample wt/vol: 30.45 (g/mL) | <u>G</u> | Lab File ID: | W41395.MSQ | · | | evel: (low/med) <u>LOW</u> | | Date Samp/Recv: | 09/26/2000 | 09/26/2000 | | Moisture: 6.1 decanted: (Y/ | N) <u>N</u> | Date Extracted: | 10/17/2000 | 2 | | Concentrated Extract Volume: 1000 (u | L) | Date Analyzed: | 10/18/2000 | | | njection Volume:1.00(uL) | | Dilution Factor: | 1.00 | - | | GPC Cleanup: (Y/N) N pH: | • | | | | CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) CAS NO. UG/KG Q 83-32-9----Acenaphthene 330 U 208-96-8-----Acenaphthylene 330 U 120-12-7----Anthracene 330 U 56-55-3-----Benzo (a) anthracene 330 U 205-99-2----Benzo (b) fluoranthene J 36 207-08-9----Benzo(k) fluoranthene 330 U 191-24-2----Benzo (ghi) perylene U 330 330 U 50-32-8-----Benzo (a) pyrene U 218-01-9-----Chrysene 330 53-70-3-----Dibenzo (a, h) anthracene 330 U 206-44-0----Fluoranthene U 330 86-73-7----Fluorene 330 U 193-39-5-----Indeno (1,2,3-cd) pyrene 330 U U 91-57-6----2-Methylnaphthalene 330 91-20-3----Naphthalene 330 U 85-01-8-----Phenanthrene U 330 129-00-0----Pyrene 330 U 132-64-9----Dibenzofuran 330 U Total PAH 0.036 Total CPAH 0.036 # 000029 Client No LSVIC2141604G Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: LVLA Matrix: (soil/water) SOIL Lab Sample ID: A0683010 Sample wt/vol: 30.43 (g/mL) G Lab File ID: W41385.MSO Level: (low/med) LOW Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: 5.8 decanted: (Y/N) N Date Extracted: 10/04/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/18/2000 Injection Volume: 1.00 (uL) Dilution Factor: 5.00 GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 83-32-9----Acenaphthene 330 U. 208-96-8-----Acenaphthylene 350 U 120-12-7----Anthracene 330 U 56-55-3-----Benzo (a) anthracene 350 U 205-99-2----Benzo (b) fluoranthene 400 207-08-9----Benzo(k) fluoranthene 200 J. 191-24-2----Benzo(ghi)perylene 350 U 50-32-8-----Benzo (a) pyrene 300 J 218-01-9-----Chrysene 350 U 53-70-3-----Dibenzo (a, h) anthracene 350 U 206-44-0----Fluoranthene 350 U 86-73-7-----Fluorene 330 U 193-39-5----Indeno (1,2,3-cd) pyrene 350 91-57-6----2-Methylnaphthalene 350 U 91-20-3----Naphthalene 330 IJ 85-01-8-----Phenanthrene 350 U 129-00-0----Pyrene 330 U 132-64-9-----Dibenzofuran 350 Total PAH 0,600 # 000030 Client No. LSVIC2141604G RE | | | - | | | |----------|-------------|---|-----------|--------| | ab Name: | STL Buffalo | | Contract: | 98-153 | | | | | | | Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: LVL4 Matrix: (soil/water) SOIL Lab Sample ID: A0683010RE Sample wt/vol: __30.69 (g/mL) <u>G</u> Lab File ID: <u>W41396.MSQ</u> Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 5.8 decanted: (Y/N) N Date Extracted: 10/17/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/2000 Injection Volume: 1.00 (uL) Dilution Factor: 5.00 GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | | |----------|---------------------------|-----------------|-------|-----|--| | 83-32-9 | Acenaphthene | | 330 | U | | | 208-96-8 | Acenaphthylene | | 340 | U | | | 120-12-7 | Anthracene | | 330 | ไป | | | 56-55-3 | Benzo (a) anthracene | | 340 | ับ | | | 205-99-2 | Benzo (b) fluoranthene | | 420 | ļ | | | 207-08-9 | Benzo(k) fluoranthene | | 220 | J | | | 191-24-2 | Benzo(ghi)perylene | | 340 | ָ ט | | | 50-32-8 | Benzo (a) pyrene | | 270 | J | | | 218-01-9 | Chrysene | | 340 | טן | | | 53-70-3 | Dibenzo (a, h) anthracene | | 340 | ט | | | 206-44-0 | Fluoranthene | | 340 | - ט | | | 86-73-7 | Fluorene | | 330 | บ | | | 193-39-5 | Indeno (1,2,3-cd) pyrene | | 340 | U | | | | 2-Methylnaphthalene | | 340 | טן | | | | Naphthalene | | 330 | טו | | | | Phenanthrene | | 340 | U | | | 129-00-0 | Pyrene | | 330 | ט | | | 132-64-9 | Dibenzofuran | | 340 | ט | | | | | | | 1 | | Total PATH 0.910 Total CIAH 0.910 # 000031 Client No LSVIC26804G Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: LVIA Matrix: (soil/water) SOIL Lab Sample ID: A0683008 Sample wt/vol: 30.14 (g/mL) G Lab File ID: W41383.MSO Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> % Moisture: <u>5.9</u> decanted: (Y/N) N Date Extracted: <u>10/04/2000</u> Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/18/2000 Injection Volume: 1.00 (uL) Dilution Factor: 1.00 GPC Cleanup: (Y/N) N pH: ____ | | | CONCENTRATION UNIT | | | |----------|--------------------------|--------------------|--------------|------| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | | 83-32-9 | Acenaphthene | | 330 | ט | | 208-96-8 | Acenaphthylene | | 330 | ט | | 120-12-7 | Anthracene | | 330 | ט | | 56-55-3 | Benzo (a) anthracene | | 330 | U | | 205-99-2 | Benzo(b) fluoranthene | | 57 | J : | | | Benzo(k)fluoranthene | | 27 | J | | 191-24-2 | Benzo(ghi)perylene | | 330 | ן ט | | 50-32-8 | Benzo (a) pyrene | | 330 | U | | 218-01-9 | Chrysene | - | 330 | ט | | 53-70-3 | Dibenzo (a,h) anthracene | | 330 | ן ט | | 206-44-0 | Fluoranthene | | 65 | J | | 86-73-7 | | | 330 | ן ט | | | Indeno (1,2,3-cd) pyrene | | 330 | U , | | 91-57-6 | 2-Methylnaphthalene | | 330 | U | | 91-20-3 | Naphthalene | | 330 | U | | 85-01-8 | Phenanthrene | | 58 | J | | 129-00-0 | Pyrene | | 330 | ט | | 132-64-9 | Dibenzofuran | | 330 | ָ 'U | | 1 | | | | t l | Total PAH 0.207 ### 000032 Client No. LSVIC26804G RE ab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: ____ SAS No.: _ SDG No.: LVL4 atrix: (soil/water) SOIL Lab Sample ID: A0683008RE Sample wt/vol: 30.43 (g/mL) G Lab File ID: W41394.MSO Level: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: 5.9 decanted: (Y/N) N Date Extracted: 10/17/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/18/2000 njection Volume: 1.00(uL) Dilution Factor: ____1.00 PC Cleanup: (Y/N) N pH: ____ | | ITS: | | | |-----------------|----------------------------------|--|---| | (ug/L or ug/Kg) | <u>UG/KG</u> | Q Q | | | | 330 | U | | | | 330 | U | | | | 330 | U | | | | 330 | U | | | | 330 | ע | | | | 330 | שׁ | | | | 330 | U | 1 | | | 330 | ט | 1 | | | 330 | ַּט | 1 | | | 330 | ט | | | | 330 | U | | | | 330 | U | 1 | | | 330 | U | 1 | | | 330 | U | 1 | | | 330 | U | 1 | | | 330 | U | 1 | | | 330 | U | | | | 330 | · U | | | | CONCENTRATION UN (ug/L or ug/Kg) | 330
330
330
330
330
330
330
330 | (ug/L or ug/Kg) UG/KG Q 330 U | #### NEW YORK STATE ELECTRIC & GAS NYSEG - ASP91-2/S-VOAS - SOIL ANALYSIS DATA SHEET # 000069 Client No. | LSVISS04C | | | |-----------|--|--| | 1200010 | | | ab Name: STL Buffalo Contract: 98-153 CUMECULINED ab Code: RECNY Case No.: ____ SDG No.: 23B5G latrix: (soil/water) SOIL Lab Sample ID: A0682316 Tample wt/vol: 30.43 (g/mL) G Lab File ID: Z44625.RR evel: (low/med) <u>IOW</u> Date Samp/Recv: <u>09/26/2000</u> 09/26/2000 : Moisture: 5.0 decanted: (Y/N) N Date Extracted: 09/29/2000 bncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 Dilution Factor: 10.00 Cleanup: (Y/N) N pH: ____ CAS NO # CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> (| CAS NO. COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | |-------------------------------------|-----------------|------------------------|-----| | 108-95-2Phenol_ | | 3400 | U | | 111-44-4Bis(2-chloroethyl) ether | | 3400 | ַ | | 95-57-82-Chlorophenol | | 3400 | U | | 541-73-11,3-Dichlorobenzene | | 3400 | U | | 106-46-71,4-Dichlorobenzene | | 3400 | υ | | 95-50-11,2-Dichlorobenzene | | 3400 | U | | 95-48-72-Methylphenol | | 3400 | U | | 108-60-12,2'-Oxybis(1-Chloropropane | •) | 3400 | שׁ | | 106-44-54-Methylphenol | | 3400 | U | | 621-64-7N-Nitroso-Di-n-propylamine | | 3400 | U | | 67-72-1Hexachloroethane | | 3400 | U | | 98-95-3Nitrobenzene | | 3400 | U | | 78-59-1Isophorone | | 3400 | U | | 88-75-52-Nitrophenol | | 3400 | U | | 105-67-92,4-Dimethylphenol | | 3400 | ט | | 111-91-1Bis(2-chloroethoxy) methane | | 3400 | ט | | 120-83-22,4-Dichlorophenol_ | | 3400 | U. | | 120-82-11,2,4-Trichlorobenzene | | 3400 | ַ ט | | 91-20-3Naphthalene | | 3400 ' | ט | | 106-47-84-Chloroaniline | | 3400 | ט | | 87-68-3Hexachlorobutadiene | | 3400 | ט | | 59-50-74-Chloro-3-methylphenol | | 3400 | ט | | 91-57-62-Methylnaphthalene | | 3400 | Ū | | 77-47-4Hexachlorocyclopentadiene | | 3400 | ט | | 88-06-22,4,6-Trichlorophenol | | 3400 | ט | | 95-95-42,4,5-Trichlorophenol | | 8300 | ט | | 91-58-72-Chloronaphthalene | | 3400 | ט | | 88-74-42-Nitroaniline | |
8300 | ט - | | 131-11-3Dimethyl phthalate | | 3400 | υ | | 208-96-8Acenaphthylene | | 3400 | Ū | | 606-20-22,6-Dinitrotoluene | | 3400 | Ū | | 99-09-23-Nitroaniline | | · 8 30 0 | ט | | | | - | 1 | #### NEW YORK STATE ELECTRIC & GAS NYSEG - ASP91-2/S-VOAS - SOIL ANALYSIS DATA SHEET #### 000070 Client No. LSVISS04C au Name: STL Buffalo Contract: <u>98-153</u> b Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 23B5G trix: (soil/water) <u>SOIL</u> Lab Sample ID: A0682316 ample wt/vol: <u>30.43</u> (g/mL) <u>G</u> Lab File ID: Z44625.RR (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 decanted: (Y/N) N Moisture: 5.0 Date Extracted: 09/29/2000 Date Analyzed: 10/14/2000 hcentrated Extract Volume: 1000 (uL) jection Volume: 2.00 (uL) Dilution Factor: ___10.00 Tolal PArt 3,721 PC Cleanup: (Y/N) N pH: ____ The CAH 1.79] | • | CONCENTRATION UNIT | IS: | | |------------------------|--|--|---| | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | | Acenaphthene | | 3400 | U | | 2,4-Dinitrophenol | | 8300 | U | | | | 8300 | U | | | | 3400 | U | | | | | U | | | | | ן ט | | | | | U | | | | | บ | | | | | U | | | | | U | | | | | ט | | | | | U | | | | | ע | | | | | U | | | | | J | | | | | J | | | | | J | | | · · · · · · · · · · · · · · · · · · · | | U | | | | | J | | | | | J | | | | | U | | | | | U | | | | | J | | Chrysene | | 320 | J | | | . ` | 3400 | U | | | | 3400 | U | | Benzo(b)fluoranthene | | 670 | J | | Benzo(k)fluoranthene | | 3400 | U | | Benzo(a)pyrene | | 310 | J | | Indeno(1,2,3-cd)pyrene | | 62 | J | | Dibenzo(a,h)anthracene | | 3400 | ע | | Benzo(ghi)perylene | | 59 | J | | | Acenaphthene2,4-Dinitrophenol4-NitrophenolDibenzofuran2,4-DiritrotolueneDiethyl phthalate4-Chlorophenyl phenyl etherFluorene4-Nitroaniline4,6-Dinitro-2-methylphenolN-nitrosodiphenylamine4-Bromophenyl phenyl etherHexachlorophenolPhenanthreneAnthraceneCarbazoleDi-n-butyl phthalateFluoranthenePyreneButyl benzyl phthalate3,3'-DichlorobenzidineBenzo(a) anthraceneChryseneBis (2-ethylhexyl) phthalateBenzo(b) fluorantheneBenzo(a) pyreneBenzo(a) pyreneBenzo(a,h) anthracene | COMPOUND (ug/L or ug/Kg) Acenaphthene2,4-Dinitrophenol4-NitrophenolDibenzofuran2,4-DinitrotolueneDiethyl phthalate4-Chlorophenyl phenyl etherFluorene4-Nitroaniline4,6-Dinitro-2-methylphenolN-nitrosodiphenylamine4-Bromophenyl phenyl etherHexachlorobenzenePentachlorophenolPhenanthreneAnthraceneCarbazoleDi-n-butyl phthalateFluoranthenePyreneButyl benzyl phthalate3,3'-DichlorobenzidineBenzo (a) anthraceneChryseneBis (2-ethylhexyl) phthalateBenzo (b) fluorantheneBenzo (a) pyreneIndeno (1,2,3-cd) pyreneDibenzo (a,h) anthracene | COMPOUND (ug/L or ug/kg) UG/kg Acenaphthene 3400 2,4-Dinitrophenol 8300 4-Nitrophenol 3400 Dibenzofuran 3400 2,4-Dinitrotoluene 3400 | #### New York State Electric & Gas-Wet Chemistry Analysis # 000110 Client Sample No. Lab Name: STL Buffalo Lab Code: RECNY Contract: <u>98-153</u> SAS No.: ____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682316 % Solids: 95.0 Case No.: Date Samp/Recv: 09/26/2000 09/26/2000 | Parameter Name | Units of
Measure | Result | С | Q | M. | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|----|------------------|------------------| | Cyanide - Total | MG/KG | 0.50 | U | | | CLP-WC | 10/06/2000 | | Comments: | | | | | | | | • | | |-----------|--|---|---|--|---------------------------------------|-----------|--|---|--| | | | • | | | | · · · · · | , | | · · · · · · · · · · · · · · · · · · · | | | | | ANALYSIS DATA SHEET | f | | |-----------|--| | LSVISS04C | | Client No. | ab 1 | Name: | STL | Buffalo | Contract: | 98-153 | |------|-------|-----|---------|-----------|--------| GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682316 <u>5.04</u> (g/mL) <u>G</u> Sample wt/vol: Lab File ID: H2795.RR Level: (low/med) LOW Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: not dec. <u>8.0</u> Heated Purge: Y Date Analyzed: 10/04/2000 oil Extract Volume: ____ (uL) Soil Aliquot Volume: _____ (uL) #### CONCENTRATION UNITS: Dilution Factor: 1.00 | CAS NO. COMPOUND | (ug/L or ug/Kg |) <u>UG/KG</u> | Q | |-------------------------------------|----------------|----------------|------| | 74-87-3Chloromethane | | 11. | U | | 74-83-9Bromomethane | | 11 | ן ט | | 75-01-4Vinyl chloride | | 11 | יט ו | | 75-00-3Chloroethane | | 11 | U | | 75-09-2Methylene chloride | | 8 | BJ | | 67-64-1Acetone | | 11 | U | | 75-15-0Carbon Disulfide | | 11 | ַ ט | | 75-35-41,1-Dichloroethene | | 11 | ן ט | | 75-34-31,1-Dichloroethane | | 11 | U | | 540-59-01,2-Dichloroethene (Total) | | 11 | U | | 67-66-3Chloroform | | 11 | U | | 107-06-21,2-Dichloroethane | | 11 | U | | 78-93-32-Butanone | | 11 | U | | 71-55-61,1,1-Trichloroethane | | 11 | U | | 56-23-5Carbon Tetrachloride | | 11 | U | | 75-27-4Bromodichloromethane | - | 11 | U | | 78-87-51,2-Dichloropropane | | 11 | ע | | 10061-01-5ois-1,3-Dichloropropene | | 11 | U | | 79-01-6Trichloroethene | | 2 | J | | 124-48-1Dibromochloromethane | | 11 | ע | | 79-00-51,1,2-Trichloroethane | | 11 | U | | 71-43-2Benzene | | 11 | U | | 10061-02-6trans-1,3-Dichloropropene | | 11 | U | | 75-25-2Bromoform | | 11 | U | | 108-10-14-Methyl-2-pentanone | | 11 | U | | 591-78-62-Hexanone | | 11 | U | | 127-18-4Tetrachloroethene | | 11 | ט | | 108-88-3Toluene | | 11 | ן ט | | 79-34-51,1,2,2-Tetrachloroethane | | 11 | U | | 108-90-7Chlorobenzene | | 11 | U | | 100-41-4Ethylbenzene | | 11 | U | | 100-42-5Styrene | | 11 | U | | 1330-20-7Total Xylenes_ | | 11 | บ | # NEW YORK STATE ELECTRIC & GAS # INORGANIC ANALYSIS DATA SHEET | SAMPLE | NO. | |-------------|-----| | 1.SVT SS0.4 | IC. | | Contract: | • | | | LSVISS | | |-------------|------------|-----------|----------------|----------|---------| | Lab Code: | STL | Case No.: | SAS No.: | SDG NO.: | 23B5G | | Matrix (soi | l/water): | SOIL | Lab Sample ID: | AD016969 | | | Level (low/ | med): LC | w | Date Received: | 9/26/00 | | | e solider s |) F | • | | | * | Concentration Units (ug/L or mg/kg dry weight): MG/KG | · | | · · · · · · · · · · · · · · · · · · · | | | | |-----------|-----------|---------------------------------------|----|----|----| | CAS No. | Analyte | Concentration | C | Q. | м | | 7429-90-5 | Aluminum | 1060 | | * | P | | 7440-36-0 | Antimony | 1.3 | В | N | P | | 7440-38-2 | Arsenic | 3.3 | T | İ | P | | 7440-39-3 | Barium | 12.7 | В | | P | | 7440-41-7 | Beryllium | 0.26 | В | 1 | P | | 7440-43-9 | Cadmium | 0.83 | В | 1 | P | | 7440-70-2 | Calcium | 139000 | 1 | E | P | | 7440-47-3 | Chromium | 10.2 | | * | P | | 7440-48-4 | Cobalt | 1.9 | В | | P | | 7440-50-8 | Copper | 11.4 | | 1 | P | | 7439-89-6 | Iron | 8410 | | | P | | 7439-92-1 | Lead | 69.1 | | 1 | P | | 7439-95-4 | Magnesium | 67100 | | E | P | | 7439-96-5 | Manganese | 970 | | *_ | P | | 7440-02-0 | Nickel | 29.4 | 1. | | P | | 7440-09-7 | Potassium | 569 | В | 1 | P | | 7782-49-2 | Selenium | 1.1 | ט | | P | | 7439-97-6 | Mercury | 0.02 | В | N | CV | | 7440-22-4 | Silver | 0.32 | ש | 1 | P | | 7440-23-5 | Sodium | 210 | В | | P | | 7440-28-0 | Thallium | 1.1 | ט | 1 | P | | 7440-62-2 | Vanadium | 4.7 | В | 1 | P | | 7440-66-6 | Zinc | 191 | 1 | 1 | P | | | | | | | | | Color | Before: | GREY | | Clarity | Before: | | Texture: | MEDIUM | |--------|---------|--------|-----------|---------|---------|----------|------------|----------| | Color | After: | YELLOW | , <u></u> | Clarity | After: | CLEAR | Artifacts: | <u> </u> | | Commer | nts: | | | | | <u> </u> | | | | | | | | | | | | • | # **Analytical Report for Tables 3 & 5** OCI 27 2000 ME & BUY. OF. October 24, 2000 Mr. John Ruspantini NYSEG - Corporate Drive Kirkwood Industrial Park Binghamton, NY 13902-5224 RE: Analytical Results Dear Mr. Ruspantini: STL Buffalo 10 Hazelwood Drive Suite 106 Amherst, NY 14228 Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com Please find enclosed analytical results concerning the samples recently submitted by your firm. The pertinent information regarding these analyses is listed below: Project: NYSEG - Lockport State Road Former MGP Matrix: Soil; Water Samples Received: 09/26/00 Sample Dates: 09/25-26/00 If you have any questions concerning this data, please contact me at (716) 691-2600 and refer to the I.D. number listed below. It has been our pleasure to provide New York State Electric & Gas with environmental testing services. We look forward to serving you in the future. Sincerely, STL Buffalo Kenneth P. Kinecki Program Manager KPK/klc Enclosure I.D.#A00-6824 #NY0A8576 This report contains \ \ \ \ \ \ \ \ \ pages which are individually numbered #### ANALYTICAL RESULTS Prepared
for: New York State Electric & Gas Kirkwood Industrial Park Binghamton, NY 13902-5224 Prepared by: STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228-2298 #### **METHODOLOGY** The specific methodology employed in obtaining the enclosed analytical results is indicated on the specific data tables. The method number presented refers to the following U.S. Environmental Protection Agency reference: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" (SW-846), Third Edition, Update III, December 1996, United States Environmental Protection Agency Office of Solid Waste. #### COMMENTS Comments pertain to data on one or all pages of this report. The enclosed data has been reported utilizing data qualifiers (Q) as defined on the Data Comment Page. #### **METHOD** 8260 Samples LSVIWC020A1C, LSVIWC0401C, LSVIWC203A1G, LSVIWCBB05AC, and LSVIWCSS06C were analyzed outside of holding time. The samples were in the auto sampler and were analyzed less than 12 hours past the holding time. All samples were analyzed at a dilution factor of 10 due to TCLP matrix. No other deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. #### **METHOD 8270** Samples LSVIWC0408AC, LSVIWC04WWAC, Extractor Blank (J-1332), and Method Blank (A0B0784603) exhibited low surrogate recovery results for Phenol-D5. Samples LSVIWC0408AC, LSVIWC04WWAC, LSVIWC0408BC, LSVIWC4808BC, LSVIWC48WWAC, Extractor Blank (J-1332), and Method Blank (A0B0784603) were re-extracted due non-compliant Method Blank results. The re-extraction occurred outside of holding time. Both sets of data are reported for all samples. The Matrix Spike Blank (A0B0797902) exhibited low surrogate recoveries for Nitrobenzene-D5, 2-Fluorobiphenol-d14, Phenol-D5, and 2-Fluorophenol. However, the Matrix Spike Blank Duplicate (A0B0788702) was compliant. The Matrix Spike Blank Duplicate (A0B0784602) exhibited low surrogate recoveries for Phenol-D5. No corrective action was taken. The Method Blank (AB0788703) exhibited spike recovery results below quality control limits for 2,4-Dinitrotoluene, Hexachlorobenzne, 2-Methylphenol, 3-Methylphenol, 4-Methylphenol, Nitrobenzene, Pentachlorophenol, 2,4,5-Trichlorophenol, and 2,4,6-Trichlorophenol for the SB. The SBD was compliant. The relative percent difference (RPD) for spike recovery between the Matrix Spike Blank and the Matrix Spike Blank Duplicate was outside quality control limits for all analytes. The associated samples were not detected for 8270 target compounds. The Method Blank (AB0784603) exhibited spike recovery slightly results below quality control limits for 2,4-Dinitrotoluene and 3-Methylphenol for the SB; and 2,4-Dinitrotoluene, 3-Methylphenol, and 4-Methylphenol for the SD. No corrective action was taken. The relative percent difference (RPD) for spike recovery between the Matrix Spike Blank and the Matrix Spike Blank Duplicate was outside quality control limits for Pyridine. No other deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. #### **METHOD 8081** The Method Blank (A0B0784904) exhibited surrogate recovery results outside quality control limits for Tetrachloro-m-xylene. However, the sample was compliant for Decachlorobiphenyl. No other deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. STL Buffalo #### **METHOD 8150** No deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. #### **METALS** The Extractor Blank (A0B0790001) exhibited results for Total Chromium, Total Barium, and Total Silver. No corrective action was taken. The Extractor Blank (A0B0790003) exhibited results for Total Lead. No corrective action was taken. No other deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. #### DATA COMMENT PAGE #### ORGANIC DATA QUALIFIERS ND or U Indicates compound was analyzed for, but not detected. - J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero. - C This flag applies to pesticide results where the identification has been confirmed by GC/MS. - B This flag is used when the analyte is found in the associated blank, as well as in the sample. - This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis. - D This flag identifies all compounds identified in an analysis at the secondary dilution factor. - N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results. - P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P". - A This flag indicates that a TIC is a suspected aldol-condensation product. - Indicates coelution. - Indicates analysis is not within the quality control limits. #### INORGANIC DATA QUALIFIERS ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value. - J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit - N Indicates spike sample recovery is not within the quality control limits. - K Indicates the post digestion spike recovery is not within the quality control limits. - S Indicates value determined by the Method of Standard Addition. - M Indicates duplicate injection results exceeded quality control limits. - W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance. - E Indicates a value estimated or not reported due to the presence of interferences. - H Indicates analytical holding time exceedance. The value obtained should be considered an estimate. - Indicates analysis is not within the quality control limits - + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995. #### Local Date and Torms Manufactured Gas Flanc # Toxicity Characteristic Leaching Procedure oratory: Job No: STL Buffalo - RECNY Job No: Sample ID: A0682401 ent Sample ID: LSVIWC04WWC 08TCLP A00-6824 | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|---| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | U | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | ט | | D021 | Chlorobenzene | 100.0000 | 0.0080 | U | | D022 | Chloroform | 6.0000 | 0.0050 | U | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | U | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | U | | D040 | Trichloroethene | 0.5000 | 0.0050 | ט | | D043 | Vinyl chloride | 0.2000 | 0.0080 | U | | | | | | | ### Toxicity Characteristic Leaching Procedure STL Buffalo - . RECNY - oratory: STL Bullate Job No: A00-6824 Sample ID: A0682402 ent Sample ID: LSVIWC0408AC 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|---| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | U | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | D021 | Chlorobenzene | 100.0000 | 0.0080 | U | | D022 | Chloroform | 6.0000 | 0.0050 | U | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | υ | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | ט | | 0039 | Tetrachloroethene | 0.7000 | 0.0080 | U | | D040 | Trichloroethene | 0.5000 | 0.0050 | U | | D043 | Vinyl chloride | 0.2000 | 0.0080 | U | RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682403 ent Sample ID: LSVIWC04WWAC No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|------| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | U | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | D021 | Chlorobenzene | 100.0000 | 0.0080 | U | | D022 | Chloroform | 6.0000 | 0.0050 | U | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | ט | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | ט | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | ָּט | | D040 | Trichloroethene | 0.5000 | 0.0050 | ט [| | D043 | Vinyl chloride | 0.2000 | 0.0080 | l ti | ockpor a e oa Former anu acture Toxicity Characteristic Leaching Procedure RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682404 ent Sample ID: LSVIWC48WWAC No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|-----| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | ן ט | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | D021 | Chlorobenzene | 100.0000 | 0.0080 | U | | D022 | Chloroform | 6.0000 | 0.0050 | ט | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | ט | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | ט | | D039 | Tetrachloroethene | 0.7000 | 0.062 | | | D040 | Trichloroethene | 0.5000 | 0.13 | | | D043 | Vinyl chloride | 0.2000 | 0.0080 | ט | RECNY Job No: A00-6824
Sample ID: A0682405 ent Sample ID: LSVIWC0408BC No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|-----| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | ט | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | บ | | D021 | Chlorobenzene | 100.0000 | 0.0080 | ט | | D022 | Chloroform | 6.0000 | 0.0050 | שׁי | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | ע | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | U | | D040 | Trichloroethene | 0.5000 | 0.0050 | U | | D043 | Vinyl chloride | 0.2000 | 0.0080 | ט | | | | | | | # Toxicity Characteristic Leaching Procedure RECNY oratory: STL Bullace Job No: A00-6824 Sample ID: A0682406 ent Sample ID: LSVIWC4808BC NO: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|-----| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | U | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | Ū | | D021 | Chlorobenzene | 100.0000 | 0.0080 | U - | | D022 | Chloroform | 6.0000 | 0.0050 | U | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | Ū | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | ן ט | | D040 | Trichloroethene | 0.5000 | 0.0050 | ט | | D043 | Vinyl chloride | 0.2000 | 0.0080 | ט | | | | | · |] | RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682408 ent Sample ID: LSVIWC0502C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|-----| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | ט (| | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | D021 | Chlorobenzene | 100.0000 | 0.0080 | U | | D022 | Chloroform | 6.0000 | 0.0050 | ט | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | U | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | ט | | D040 | Trichloroethene | 0.5000 | 0.0050 | U | | D043 | Vinyl chloride | 0.2000 | 0.0080 | U | # Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Job No: Sample ID: A0682409 ent Sample ID: LSVIWC0503C 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|-------| | D018 | Benzene | 0.5000 | 0.0060 | ט | | D035 | 2-Butanone | 200.0000 | 0.020 | ן ט | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | ן ט | | D021 | Chlorobenzene | 100.0000 | 0.0080 | ן ט | | D022 | Chloroform | 6.0000 | 0.0050 | ע | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | ן ט | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | ן ט ן | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | ן ט | | D040 | Trichloroethene | 0.5000 | 0.0050 | ן ט | | D043 | Vinyl chloride | 0.2000 | 0.0080 | ט | | | | | | | oratory: STL Buffalo -A00-6824 RECNY Job No: A00-6824 Sample ID: A0682410 ent Sample ID: LSVIWC0504C NO: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|----| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | U | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | D021 | Chlorobenzene | 100.0000 | 0.0080 | U | | D022 | Chloroform | 6.0000 | 0.0050 | U | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | U | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | U | | D040 | Trichloroethene | 0.5000 | 0.0050 | U | | D043 | Vinyl chloride | 0.2000 | 0.0080 | U. | # Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: STL Bullaco Job No: A00-6824 Sample ID: A0682411 ent Sample ID: LSVIWC0507C 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|---| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | U | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | D021 | Chlorobenzene | 100.0000 | 0.0080 | ט | | D022 | Chloroform | 6.0000 | 0.0050 | U | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | U | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | 0.7000 | 0.020 | | | D040 | Trichloroethene | 0.5000 | 0.046 | | | D043 | Vinyl chloride | 0.2000 | 0.0080 | U | RECNY Job No: A00-6824 Sample ID: A0682412 ent Sample ID: LSVIWC020A1C NO: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|-----| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | . U | | 019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | 0021 | Chlorobenzene | 100.0000 | 0.0080 | U | | 0022 | Chloroform | 6.0000 | 0.0050 | U | | 0028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | U | | 0029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | 0039 | Tetrachloroethene | 0.7000 | 0.0080 | U | | 040 | Trichloroethene | 0.5000 | 0.0050 | U | | 0043 | Vinyl chloride | 0.2000 | 0.0080 | U | # Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Sample ID: A0682413 ent Sample ID: LSVIWC2023A1G No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|-----| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | ט | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | D021 | Chlorobenzene | 100.0000 | 0.0080 | U | | D022 | Chloroform | 6.0000 | 0.0050 | U . | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | U. | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | U | | D040 | Trichloroethene | 0.5000 | 0.0050 | U | | D043 | Vinyl chloride | 0.2000 | 0.0080 | υ | | | | | | | STL Buffalo - RECNY Job No: A00-6824 Sample ID: A0682414 ent Sample ID: LSVIWC0401C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|---| | 0018 | Benzene | 0.5000 | 0.0060 | U | | 0035 | 2-Butanone | 200.0000 | 0.020 | U | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | U | | 0021 | Chlorobenzene | 100.0000 | 0.0080 | U | | D022 | Chloroform | 6.0000 | 0.0050 | U | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | U | | 0029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | U | | D040 | Trichloroethene | 0.5000 | 0.0050 | U | | D043 | Vinyl chloride | 0.2000 | 0.0080 | U | ### Toxicity Characteristic Leaching Procedure RECNY oratory: STL Bullar Job No: A00-6824 Sample ID: A0682415 ent Sample ID: LSVIWCBB05AC No: 08TCLP | EPA HW
Number | Parameter | | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|---|-------------------------------|------------------|-------| | D018 | Benzene | | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | | 200.0000 | 0.020 | บ | | D019 | Carbon Tetrachloride | | 0.5000 | 0.0080 | บ | | D021 | Chlorobenzene | | 100.0000 | 0.0080 | ן ט . | | D022 | Chloroform | | 6.0000 | 0.0050 | υ - | | D028 | 1,2-Dichloroethane | | 0.5000 | 0.0050 | ט | | D029 | 1,1-Dichloroethene | | 0.7000 | 0.0080 | U | | D039 | Tetrachloroethene | | 0.7000 | 0.013 | | | D040 | Trichloroethene | | 0.5000 | 0.048 |] | | D043 | Vinyl chloride | • | 0.2000 | 0.0080 | ן ט | | | | | | | | RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682416 ent Sample ID: LSVIWCSS06C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|----------------------|-------------------------------|------------------|-----| | D018 | Benzene | 0.5000 | 0.0060 | U | | D035 | 2-Butanone | 200.0000 | 0.020 | U | | D019 | Carbon Tetrachloride | 0.5000 | 0.0080 | ט | | D021 | Chlorobenzene | 100.0000 | 0.0080 | ט | | D022 | Chloroform | 6.0000 | 0.0050 | ט | | D028 | 1,2-Dichloroethane | 0.5000 | 0.0050 | U - | | D029 | 1,1-Dichloroethene | 0.7000 | 0.0080 | ט | | D039 | Tetrachloroethene | 0.7000 | 0.0080 | U | | D040 | Trichloroethene | 0.5000 | 0.0050 | ប | | D043 | Vinyl chloride | 0.2000 | 0.0080 | ប | # Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: STL Bullar Job No: A00-6824 Sample ID: A0682401 ent Sample ID: LSVIWC04WWC 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | U | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | Ū | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | ט | | D023 | 2-Methylphenol | 200.0000 | 0.010 | ט | | D025 | 4-Methylphenol | 200.0000 | 0.010 | עֹי | | D036 | Nitrobenzene | 2.0000 | 0.010 | υ· | | D037 | Pentachlorophenol | 100.0000 | 0.050 | U | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | υ | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | บ | | | _ | | | | STL Buffalo - RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682402 ent Sample ID: LSVIWC0408AC No: 08TCLP | EPA HW
Number |
Parameter | | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-----|-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | , | 0.1300 | 0.010 | U | | D032 | Hexachlorobenzene | | 0.1300 | 0.010 | U | | D033 | Hexachlorobutadiene | , | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | · | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | | 200.0000 | 0.010 | U | | D023 | 2-Methylphenol | | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | , i | 2.0000 | 0.010 | ี บ | | D037 | Pentachlorophenol | | 100.0000 | 0.050 | U | | D038 | Pyridine | • | 5.0000 | 0.010 | ט | | D041 | 2,4,5-Trichlorophenol | | 400.0000 | 0.025 | U | | D042 | 2,4,6-Trichlorophenol | | 2.0000 | 0.010 | U | | | | | | | | # Toxicity Characteristic Leaching Procedure RECNY oratory: STL Bullato Job No: A00-6824 Sample ID: A0682403 ent Sample ID: LSVIWC04WWAC 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U . | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | U | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | U | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | · U | | D023 | 2-Methylphenol | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | 2.0000 | 0.010 | U | | D037 | Pentachlorophenol | 100.0000 | 0.050 | Ū | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | บ | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | U | | | | | · | | STL Buffalo - A00-6824 RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682404 ent Sample ID: LSVIWC48WWAC No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | Ŭ | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | U | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | U | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | U . | | D023 | 2-Methylphenol | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | 2.0000 | 0.010 | ָּט | | D037 | Pentachlorophenol | 100.0000 | 0.050 | U | | D038 | Pyridine | 5.0000 | 0.010 | ט | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | บ | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | U | ### Toxicity Characteristic Leaching Procedure oratory: STL Buffalo - Job No: A00-6824 Sample ID: A0682405 ent Sample ID: LSVIWC0408BC No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|------------| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | υ, | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | υ | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | ט | | D034 | Hexachloroethane | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | U | | D023 | 2-Methylphenol | 200.0000 | 0.010 | ט | | D025 | 4-Methylphenol | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | 2.0000 | 0.010 | U | | D037 | Pentachlorophenol | 100.0000 | 0.050 | U | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | ַ ט | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | U | | | | | | | RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682406 ent Sample ID: LSVIWC4808BC No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | บ | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | U | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | υ | | D034 | Hexachloroethane | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | U | | D023 | 2-Methylphenol | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | 2.0000 | 0.010 | U | | D037 | Pentachlorophenol | 100.0000 | 0.050 | ן ח | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | Ū . | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | บ | | | | | | | #### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Sample ID: A0682408 ent Sample ID: LSVIWC0502C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|------| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | บ | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | υ | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | υ | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0,010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | ับ • | | D023 | 2-Methylphenol | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | 200.0000 | 0.010 | ับ | | D036 | Nitrobenzene | 2.0000 | 0.010 | U | | D037 | Pentachlorophenol | 100.0000 | 0.050 | ַ ט | | D038 | Pyridine | 5.0000 | 0.010 | ี บ | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | ט | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | ט | | | | | | | RECNY Job No: A00-6824 Sample ID: A0682409 ent Sample ID: LSVIWC0503C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | ט | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | ับ | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0.010 | Ų | | D024 | 3-Methylphenol | 200.0000 | 0.010 | Ū | | D023 | 2-Methylphenol | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | 2.0000 | 0.010 | U | | D037 | Pentachlorophenol | 100.0000 | 0.050 | ט | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | ן ט | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | ט | | | | | | | # Toxicity Characteristic Leaching Procedure STL Buffalo · RECNY oratory: Job No: A00-6824 Sample ID: A0682410 ent Sample ID: LSVIWC0504C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|-------| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | U | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | U | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | ן ט - | | D023 | 2-Methylphenol | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | 2.0000 | 0.010 | U | | D037 | Pentachlorophenol | 100.0000 | 0.050 | U | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | U | | D042 · | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | U | STL Buffalo - A00-6824 RECNY Job No: A00-6824 Sample ID: A0682411 ent Sample ID: LSVIWC0507C NO: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|------| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | U | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | lυ | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0.010 | ្រ 🔻 | | D024 | 3-Methylphenol | 200.0000 | 0.010 | U | | D023 | 2-Methylphenol | 200.0000 | 0.010 | บ | | D025 | 4-Methylphenol | 200.0000 | 0.010 |) U | | D036 | Nitrobenzene | 2.0000 | 0.010 | U | | D037 | Pentachlorophenol | 100.0000 | 0.050 | U | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 |) ប | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | U | #### Toxicity Characteristic Leaching Procedure oratory: STL Buffalo - RECNY oratoly. Job No: A00-6824 Sample ID: A0682412 ent Sample ID: LSVIWC020A1C 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|----------| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | บ | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | ប | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | บ | | D034 | Hexachloroethane | 3.0000 | 0.010 | ប | | D024 | 3-Methylphenol | 200.0000 | 0.010 | บ • | | D023 | 2-Methylphenol | 200.0000 | 0.010 | ប | | D025 | 4-Methylphenol | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | 2.0000 | 0.010 | ប | | D037 | Pentachlorophenol | 100.0000 | 0.050 | ប | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | ט | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | ָּט | | | | | | <u> </u> | STL Buffalo - A00-6824 RECNY oratory: Job No: Sample ID: A0682413 ent Sample ID: LSVIWC2023A1G No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------
-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | Ŭ | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | U | | D032 | Hexachlorobenzene | 0.1300 | 0.010 | U | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | ับ | | D023 | 2-Methylphenol | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | 200.0000 | 0.010 | U | | D036 | Nitrobenzene | 2.0000 | 0.010 | U | | D037 | Pentachlorophenol | 100.0000 | 0.050 | U | | D038 | Pyridine | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | U | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | U · | | <u>.</u> | | | | | #### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: STL Bullaco Job No: A00-6824 Sample ID: A0682414 ent Sample ID: LSVIWC0401C 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.012 | Ü, | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.012 | U | | D032 | Hexachlorobenzene | 0.1300 | 0.012 | ט | | D033 | Hexachlorobutadiene | 0.5000 | 0.012 | ט (| | D034 | Hexachloroethane | 3.0000 | 0.012 | U | | D024 | 3-Methylphenol | 200.0000 | 0.012 | U | | D023. | 2-Methylphenol | 200.0000 | 0.012 | U | | D025 | 4-Methylphenol | 200.0000 | 0.012 | U | | D036 | Nitrobenzene | 2.0000 | 0.012 | ט | | D037 | Pentachlorophenol | 100.0000 | 0.050 | U | | D038 | Pyridine | 5.0000 | 0.012 | U | | D041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | U | | D042 | 2,4,6-Trichlorophenol | 2.0000 | 0.012 | U | STL Buffalo -A00-6824 RECNY Job No: A00-6824 Sample ID: A0682415 ent Sample ID: LSVIWCBB05AC No: | EPA HW
Number | Parameter | | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|---|-------------------------------|------------------|-------| | D027 | 1,4-Dichlorobenzene | | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | | 0.1300 | 0.010 | ן ט | | D032 | Hexachlorobenzene | | 0.1300 | 0.010 | ט | | D033 | Hexachlorobutadiene | • | 0.5000 | 0.010 | ן ט | | D034 | Hexachloroethane | | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | | 200.0000 | 0.010 | ∖ ט ∖ | | D023 | 2-Methylphenol | | 200.0000 | 0.010 | ∫ ט ∫ | | D025 | 4-Methylphenol | | 200.0000 | 0.010 | ן ט י | | D036 | Nitrobenzene | | 2.0000 | 0.010 | ן ט . | | D037 | Pentachlorophenol | | 100.0000 | 0.050 | ∫ ט . | | D038 | Pyridine | , | 5.0000 | 0.010 | U | | D041 | 2,4,5-Trichlorophenol | | 400.0000 | 0.025 | U | | D042 | 2,4,6-Trichlorophenol | | 2.0000 | 0.010 | ן ט | # Lockport State Road Former Manufactured Gas Plant Toxicity Characteristic Leaching Procedure oratory: Job No: STL Buffalo - RECNY A00-6824 Job No: Sample ID: A0682416 ent Sample ID: LSVIWCSS06C 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-----------------------|-------------------------------|------------------|-----| | D027 | 1,4-Dichlorobenzene | 7.5000 | 0.010 | U | | D030 | 2,4-Dinitrotoluene | 0.1300 | 0.010 | U | | 0032 | Hexachlorobenzene | 0.1300 | 0.010 | U | | D033 | Hexachlorobutadiene | 0.5000 | 0.010 | U | | D034 | Hexachloroethane | 3.0000 | 0.010 | U | | D024 | 3-Methylphenol | 200.0000 | 0.010 | U | | 0023 | 2-Methylphenol | 200.0000 | 0.010 | U | | D025 | 4-Methylphenol | 200.0000 | 0.010 | Ū | | 0036 | Nitrobenzene | 2.0000 | 0.010 | U - | | 0037 - | Pentachlorophenol | 100.0000 | 0.050 | U | | 0038 | Pyridine | 5.0000 | 0.010 | U | | 0041 | 2,4,5-Trichlorophenol | 400.0000 | 0.025 | U | | 0042 | 2,4,6-Trichlorophenol | 2.0000 | 0.010 | U | STL Buffalo - RECNY oratory: Job No: Job No: Sample ID: A0682401 ent Sample ID: LSVIWC04WWC 08TCLP A00-6824 | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | บ | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | บ | #### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Sample ID: A00-6824 ent Sample ID: LSVIWC0408AC No: 08TCLP | EPA HW
Number | | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | RECNY Job No: A00-6824 Sample ID: A0682403 ent Sample ID: LSVIWC04WWAC No: 08TCLP | EPA HW
Number | | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-----------|-------------------------------|------------------|--------| | D016
D017 | 2,4-D
2,4,5-TP | (Silvex) | 10.0000 | 0.0010
0.0010 | U
U | # Lockport State Road Former Manufactured Gas Plant Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Job No: Sample ID: A0682404 ent Sample ID: LSVIWC48WWAC 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | บ | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | บ | STL Buffalo - RECNY Job No: A00-6824 Sample ID: A0682405 ent Sample ID: LSVIWC0408BC No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | #### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Job No: Sample ID: A0682406 ent Sample ID: LSVIWC4808BC 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | Ŭ | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | STL Buffalo - A00-6824 RECNY Oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682408 Ent Sample ID: LSVIWC0502C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|-----| | D016 | 2,4-D | 10.0000 | 0.0010 | υ | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | υ . | # Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Sample ID: A0682409 ent Sample ID: LSVIWC0503C No: | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | บ | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | บ | STL Buffalo - RECNY Job No: A00-6824 Sample ID: A0682410 ent Sample ID: LSVIWC0504C No: | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | ### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682411 ent Sample ID: LSVIWC0507C No: | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | STL Buffalo - A00-6824 RECNY oratory: Job No: Sample ID: A0682412 ent Sample ID: LSVIWC020A1C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | ### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Job No: Sample ID: A0682413 ent Sample ID: LSVIWC2023A1G 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | oratory: STL Buffalo - RECNY Job No: A00-6824 Job No: Sample ID: A0682414 ent Sample ID: LSVIWC0401C 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | # Toxicity Characteristic Leaching Procedure oratory: STL Buffalo - RECNY Job No: A00-6824 Sample ID: A0682415 ent Sample ID: LSVIWCBB05AC No: | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | 1.0000 | 0.0010 | Ŭ | oratory: Job No: STL Buffalo - A00-6824 RECNY Sample ID: A0682416 ent Sample ID: LSVIWCSS06C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(MG/L) | Result
(MG/L) | Q | |------------------|-------------------|-------------------------------|------------------|---| | D016 | 2,4-D | 10.0000 | 0.0010 | U | | D017 | 2,4,5-TP (Silvex) | | 0.0010 | U | #### Toxicity Characteristic Leaching Procedure oratory: STL Buffalo - RECNY Job No: A00-6824 Sample ID: A0682401 ent Sample ID: LSVIWC04WWC No: | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q |
------------------|---------------------|-------------------------------|------------------|-----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | U | | D020 | Chlordane | 30 | 2.0 | ט | | D012 | Endrin | 20 | 0.20 | บ | | D031 | Heptachlor | 8 | 0.20 | U | | D031 | Heptachlor epoxide | 8 | 0.20 | U | | D014 | Methoxychlor | 10000 | 0.20 | ט | | D015 | Toxaphene | 500 | 8.0 | ע ∤ | | | | | | | STL Buffalo - RECNY oratory: STL Burrard Job No: A00-6824 Sample ID: A0682402 ent Sample ID: LSVIWC0408AC No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|-----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | ט | | D020 | Chlordane | 30 | 2.0 | ט | | D012 | Endrin | 20 | 0.20 | . ט | | D031 | Heptachlor | 8 | 0.20 | ט | | D031 | Heptachlor epoxide | 8 | 0.20 | ט | | D014 | Methoxychlor | 10000 | 0.20 | ט | | D015 | Toxaphene | 500 | 8.0 | ט | | 2013 | TOXADITETIE | 500 | 8.0 | | #### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Sample ID: A0682403 ent Sample ID: LSVIWC04WWAC No: | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | υ | | D020 | Chlordane | 30 | 2.0 | ָט | | D012 | Endrin | 20 | 0.20 | U | | D031 | Heptachlor | 8 | 0.20 | ט | | D031 | Heptachlor epoxide | 8 | 0.20 | U | | D014 | Methoxychlor | 10000 | 0.20 | U | | D015 | Toxaphene | 500 | 8.0 | U | | | | | | | RECNY Job No: A00-6824 Sample ID: A0682404 ent Sample ID: LSVIWC48WWAC 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|---| | D013 | gamma-BHC (Lindane) | 400 | 0.25 | U | | D020 | Chlordane | .30 | 2.5 | U | | D012 | Endrin | 20 | 0.25 | U | | D031 | Heptachlor | 8 | 0.25 | U | | D031 | Heptachlor epoxide | . 8 | 0.25 | U | | D014 | Methoxychlor | 10000 | 0.25 | U | | D015 | Toxaphene | 500 | 10 | U | | | | | | | ### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY oratory: Job No: A00-6824 Job No: Sample ID: A0682405 ent Sample ID: LSVIWC0408BC 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|-----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | U | | D020 | Chlordane | 30 | 2.0 | ט | | D012 | Endrin | 20 | 0.20 | U | | D031 | Heptachlor | 8 | 0.20 | U | | D031 | Heptachlor epoxide | 8 | 0.20 | บ . | | D014 | Methoxychlor | 10000 | 0.20 | U | | D015 | Toxaphene | 500 | 8.0 | ับ | | | | | | | STL Buffalo - A00-6824 RECNY Job No: A00-6824 Sample ID: A0682406 ent Sample ID: LSVIWC4808BC No: 08TCLP | EPA HW
Number | Parameter | | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|----|-------------------------------|------------------|----| | D013 | gamma-BHC (Lindane) | .′ | 400 | 0.20 | U | | D020 | Chlordane | • | 30 | 2.0 | Ū | | D012 | Endrin | | 20 | 0.20 | U | | D031 | Heptachlor | • | 8 | 0.20 | U | | D031 | Heptachlor epoxide | | 1 8 1 | 0.20 | ΙŪ | | D014 | Methoxychlor | , | 10000 | 0.20 | Ū | | D015 | Toxaphene | • | 500 | 8.0 | Ū | | | | | | | | #### Toxicity Characteristic Leaching Procedure RECNY oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682408 ent Sample ID: LSVIWC0502C No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|-----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | U | | D020 | Chlordane | 30 | 2.0 | U | | D012 | Endrin | 20 | 0.20 | ט | | D031 | Heptachlor | 8 | 0.20 | ן ט | | D031 | Heptachlor epoxide | 8 | 0.20 | U | | 0014 | Methoxychlor | 10000 | 0.20 | U | | D015 | Toxaphene | 500 | 8.0 | ט . | STL Buffalo -A00-6824 RECNY Job No: A00-6824 Sample ID: A0682409 ent Sample ID: LSVIWC0503C NO: 08TCLP | EPA HW
Number | . | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|-----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | U . | | D020 | Chlordane | 30 | 2.0 | U | | D012 | Endrin | 20 | 0.20 | U | | D031 | Heptachlor | 8 | 0.20 | ט | | 0031 | Heptachlor epoxide | 8 | 0.20 | ט | | D014 | Methoxychlor | 10000 | 0.20 | ט | | 0015 | Toxaphene | 500 | 8.0 | υ | # Lockport State Road Former Manufactured Gas Plant Toxicity Characteristic Leaching Procedure STL Buffalo - A00-6824 RECNY oratory: Job No: Sample ID: A0682410 ent Sample ID: LSVIWC0504C No: | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|---| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | ט | | D020 | Chlordane | 30 | 2.0 | U | | D012 | Endrin | 20 | 0.20 | U | | D031 | Heptachlor | 8 | 0.20 | U | | D031 | Heptachlor epoxide | 8 | 0.20 | U | | D014 | Methoxychlor | 10000 | 0.20 | ט | | D015 | Toxaphene | 500 | 8.0 | U | | | | | | | STL Buffalo - RECNY oratory: Job No: A00-6824 Job No: Sample ID: A0682411 ent Sample ID: LSVIWC0507C 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | U | | D020 | Chlordane | 30 | 2.0 | ט | | D012 | Endrin | 20 | 0.20 | ע | | D031 | Heptachlor | 8 (| 0.20 | ט | | D031 | Heptachlor epoxide | 8 | 0.20 | ט | | D014 | Methoxychlor | 10000 | 0.20 | ט | | D015 | Toxaphene | 500 | 8.0 | טו | #### Toxicity Characteristic Leaching Procedure oratory: STL Buffalo - RECNY Job No: A00-6824 Sample ID: A0682412 ent Sample ID: LSVIWC020A1C No: | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|-----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | υ | | D020 | Chlordane | 30 | 2.0 | υ | | D012 | Endrin | 20 | 0.20 | ט | | D031 | Heptachlor | 8 | 0.20 | ט | | D031 | Heptachlor epoxide | 8 | 0.20 | ี บ | | D014 | Methoxychlor | 10000 | 0.20 | υ | | D015 | Toxaphene | 500 | . 8.0 | ט | ### Toxicity Characteristic Leaching Procedure RECNY Oratory: STL Buffalo Job No: A00-6824 Sample ID: A0682413 ent Sample ID: LSVIWC2023A1G No: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|---| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | ט | | D020 | Chlordane | 30 | 2.0 | ט | | D012 | Endrin | 20 | 0.20 | U | | D031 | Heptachlor | 8 | 0.20 | ט | | D031 | Heptachlor epoxide | 8 | 0.20 | U | | D014 | Methoxychlor | 10000 | 0.20 | U | | D015 | Toxaphene | 500 | 8.0 | U | ### Toxicity Characteristic Leaching Procedure STL Buffalo - RECNY Job No: A00-6824 Sample ID: A0682414 ent Sample ID: LSVIWC0401C NO: 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|---| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | U | | D020 | Chlordane | 30 | 2.0 | U | | D012 | Endrin | 20 | 0.20 | U | | D031 | Heptachlor | 8 | 0.20 | U | | D031 | Heptachlor epoxide | 8 | 0.20 | U | | D014 | Methoxychlor | 10000 | 0.20 | U | | D015 | Toxaphene | 500 | 8.0 | U | ### Toxicity Characteristic Leaching Procedure RECNY Job No: A00-6824 Sample ID: A0682415 ent Sample ID: LSVIWCBB05AC 08TCLP | EPA HW
Number | Parameter | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|-------------------------------|------------------|----| | D013 | gamma-BHC (Lindane) | 400 | 0.20 | ŭ | | D020 | Chlordane | 30 | 2.0 | U | | D012 | Endrin | 20 | 0.20 | טן | | D031 | Heptachlor | 8 | 0.20 | ט | | D031 | Heptachlor epoxide | 8 | 0.20 | ט | | D014 | Methoxychlor | 10000 | 0.20 | ט | | D015 | Toxaphene | 500 | 8.0 | ט | #### Toxicity Characteristic Leaching Procedure oratory: STL Buffalo - RECNY Job No: A00-6824 Job No: Sample ID: A0682410 ent Sample ID: LSVIWCSS06C 08TCLP | EPA HW
Number | Parameter | • | Regulatory
Level
(UG/L) | Result
(UG/L) | Q | |------------------|---------------------|---|-------------------------------|------------------|---| | D013 | gamma-BHC (Lindane) | | 400 | 0.20 | U | | D020 | Chlordane | • | 30 | 2.0 | ט | | D012 | Endrin | | 20 | 0.20 | U | | D031 | Heptachlor | | 8 | 0.20 | U | | D031 | Heptachlor epoxide | | 8 | 0.20 | U | | D014 | Methoxychlor | | 10000 | 0.20 | U | | D015 | Toxaphene | | 500 | 8.0 | υ | | | | | | | | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: Lab Job No: STL Buffalo - A00-6824 Lab Sample ID: A0682401 Client Sample ID: LSVIWC04WWC SDG No: 08TCLP RECNY Matrix: Soil: Leachate 09/26/2000 Sample Date: 09 Dilution Factor: 1 | EPA HW
Number | | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|------------------|-------------| |
D004
D005
D006
D007
D008
D009
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.00020
0.010 | 0.00020
0.010 | ດ
ດ
ດ | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: STL Buffalo - Lab Job No: A00-6824 Lab Sample ID: A0682401MD Client Sample ID: LSVIWC04WWC SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/26/2000 Dilution Factor: 1 | EPA HW
Number | | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|--|--|-------------| | D004
D005
D006
D007
D008
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.010 | 0.0070
0.99
0.0014
0.0020
0.010
0.010
0.0030 | บ
บ
บ | Matrix deplicate # Toxicity Characteristic Leaching Procedure TOTAL METALS RECNY Laboratory: Lab Job No: STL Buffalo - Matrix: Soil: Leachate A00-6824 A0682402 Sample Date: 09 Dilution Factor: 1 09/25/2000 Lab Sample ID: Client Sample ID: LSVIWC0408AC SDG No: 08TCLP | EPA HW
Number | | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|---|---| | D004
D005
D006
D007
D008
D009
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.00020
0.010 | 1.2
0.0030
0.0038
0.041
0.00024 | ប | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: STL Buffalo - Lab Job No: A00-6824 Lab Sample ID: A0682403 Client Sample ID: LSVIWC04WWAC SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/25/2000 | | | Method | Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|---|--|--|--|--|---|---|---------------------| | D005
D006
D007
D008
D009
D010 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total | 6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.00020
0.010 | 0.95
0.0016
0.0030
0.010
0.00020
0.010 | U
U
U
U | | D008
D009 | Lead - Total /
Mercury - Total | 6010
7470 | 10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/10/2000 | 5.0000
0.2000
1.0000 | 0.010
0.00020
0.010 | 0.0
0.0
0.0 |)10
)0020
)10 | # Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: Lab Job No: STL Buffalo - RECNY Matrix: Soil: Leachate A00-6824 A0682404 Sample Date: 09 Dilution Factor: 1 09/25/2000 Lab Sample ID: Client Sample ID: LSVIWC48WWAC SDG No: 08TCLP | EPA HW
Number | | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|---|----------------------------| | D005
D006
D007
D008
D009
D010 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0070
0.0010
0.0010
0.0020
0.010
0.00020
0.010
0.0030 | 0.82
0.0010
0.0020
0.010
0.00020
0.010 | ם
מ
מ
מ
מ
מ | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: STL Buffalo - Lab Job No: A00-6824 A0682405 Lab Sample ID: Client Sample ID: LSVIWC0408BC SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/25/2000 | EPA HW
Number | Parameter | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |------------------|------------------|--------|-------------------|------------------|-------------------------------|---------|------------------|-----| | D004 | Arsenic - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0070 | 0.0070 | ប | | D005 | Barium - Total | 6010 | | 10/13/2000 | | 0.0010 | 0.59 | | | D006 | Cadmium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.0010 | 0.0019 | | | D007 | Chromium - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0020 | 0.0020 | U | | D008 | Lead - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0,010 | 0.25 | | | D009 | Mercury - Total | 7470 | 10/10/2000 | 10/10/2000 | 0.2000 | 0.00020 | 0.00022 | | | D010 | Selenium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.010 | 0.010 | ן ט | | D011 | Silver - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0030 | 0.0030 | ប | | | | | | | | | | | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: Lab Job No: STL Buffalo - A00-6824 Lab Sample ID: A0682406 Client Sample ID: LSVIWC4808BC SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/25/2000 | EPA HW
Number | ! | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |------------------|------------------|--------|-------------------|------------------|-------------------------------|---------|------------------|--------| | i | Arsenic - Total | 6010 | | 10/13/2000 | | | 0.0070 | U | | D005 | Barium - Total | 6010 | | 10/13/2000 | | | 0.40 | 1 | | D006 | Cadmium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.0010 | 0.0014 | | | D007 | Chromium - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0020 | 0.0025 | | | D008 | Lead - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.010 | 0.017 | İ | | D009 | Mercury - Total | 7470 | 10/10/2000 | 10/10/2000 | 0.2000 | 0.00020 | 0.00020 | U | | D010 | Selenium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.010 | 0.010 | U | | D011 | Silver - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0030 | 0.0030 | Ü | | | | | | | | | | ·
L | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: Lab Job No: STL Buffalo - A00-6824 Lab Sample ID: A0682408 Client Sample ID: LSVIWC0502C SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/25/2000 | EPA HW
Number | Parameter | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |------------------|------------------
--------|-------------------|------------------|-------------------------------|---------|------------------|------------| | D004 | Arsenic - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0070 | 0.0070 | U | | D005 | Barium - Total | 6010 | 10/07/2000 | 10/13/2000 | 100.0000 | 0.0010 | 1.0 | | | D006 | Cadmium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.0010 | 0.0010 | U | | D007 | Chromium - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0020 | 0.0020 | י ט | | D008 | Lead - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.010 | 0.011 | | | D009 | Mercury - Total | 7470 | 10/10/2000 | 10/10/2000 | 0.2000 | 0.00020 | 0.00020 | บ | | D010 | Selenium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.010 | 0.010 | U | | D011 | Silver - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0030 | 0.0030 | U | | | | | | | | | | | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: Lab Job No: STL Buffalo - A00-6824 Lab Sample ID: A0682409 Client Sample ID: LSVIWC0503C SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/25/2000 | EPA HW
Number | · · | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|--|--------| | D004
D005
D006
D007
D008
D009
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.00020
0.010 | 1.0
0.0010
0.0029
0.010
0.00074
0.010 | n
n | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: Lab Job No: Lab Sample ID: STL Buffalo - A00-6824 A0682410 Client Sample ID: LSVIWC0504C SDG No: 08TCLP RECNY Matrix: Soil: Leachate 09/25/2000 Sample Date: 09 Dilution Factor: 1 | EPA HW
Number | į. | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |------------------|------------------|----------|-------------------|------------------|-------------------------------|---------|------------------|----------| | D004 | Arsenic - Total | 6010 | | 10/13/2000 | | | 0.0070 | ט | | D005 | Barium - Total | 6010 | | 10/13/2000 | | 0.0010 | 1.4 | | | D006 | Cadmium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.0010 | 0.0010 | U . | | D007 | Chromium - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0020 | 0.0020 | U | | D008 | Lead - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.010 | 0.025 | , | | D009 | Mercury - Total | 7470 | 10/10/2000 | 10/10/2000 | 0.2000 | 0.00020 | 0.00020 | บ | | D010 | Selenium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.010 | 0.010 | U | | D011 | Silver - Total | 6010 | 10/07/2000 | 10/13/2000 | 5.0000 | 0.0030 | 0.0030 | U | | | | <u> </u> | <u> </u> | <u> </u> | L | | | <u> </u> | ### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: STL Buffalo - Lab Job No: Lab Sample ID: A00-6824 Lab Sample ID: A0682411 Client Sample ID: LSVIWC0507C SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/25/2000 | EPA HW
Number | | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|--|------------------| | D004
D005
D006
D007
D008
D009
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.00020
0.010 | 1.0
0.0022
0.0020
0.027
0.00020
0.010 | U
U
U
U | ### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: STL Buffalo - Lab Job No: A00-6824 Lab Sample ID: A0682412 Client Sample ID: LSVIWC020A1C SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/26/2000 | EPA HW
Number | | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|---|-------------| | D004
D005
D006
D007
D008
D009
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0070
0.0010
0.0010
0.0020
0.010
0.00020
0.010
0.0030 | 0.72
0.0010
0.0024
0.010
0.00070
0.010 | บ
บ
บ | # Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: Lab Job No: STL Buffalo - A00-6824 Lab Sample ID: A0682413 Client Sample ID: LSVIWC2023A1G SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/26/2000 | EPA HW
Number | • | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|-------------------------|--------| | D004
D005
D006
D007
D008
D009
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.00020
0.010 | 1.4
0.0013
0.0036 | u
u | # Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: Lab Job No: STL Buffalo - Lab Job No: Lab Sample ID: A00-6824 A0682414 Client Sample ID: LSVIWC0401C SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/26/2000 | EPA HW
Number | Parameter | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|--|-------------| | D004
D005
D006
D007
D008
D009
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000
10/07/2000 |
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.00020
0.010 | 1.3
0.0028
0.0020
0.011
0.00020
0.010 | บ
บ
บ | # Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: STL Buffalo - RECNY Matrix: Soil: Leachate Lab Job No: Lab Sample ID: A00-6824 A0682415 09/26/2000 Client Sample ID: LSVIWCBB05AC Sample Date: 09 Dilution Factor: 1 SDG No: 08TCLP | EPA HW
Number | | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |--|--|--|--|--|--|---|--|---------------| | D004
D005
D006
D007
D008
D009
D010
D011 | Arsenic - Total Barium - Total Cadmium - Total Chromium - Total Lead - Total Mercury - Total Selenium - Total Silver - Total | 6010
6010
6010
6010
6010
7470
6010 | 10/07/2000
10/07/2000
10/07/2000
10/07/2000
10/10/2000
10/07/2000 | 10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/13/2000
10/10/2000
10/13/2000
10/13/2000 | 100.0000
1.0000
5.0000
5.0000
0.2000
1.0000 | 0.0010
0.0010
0.0020
0.010
0.00020
0.010 | 0.86
0.0010
0.0020
0.18
0.00020
0.010 | ממ
ממ
מ | #### Toxicity Characteristic Leaching Procedure TOTAL METALS Laboratory: STL Buffalo - Lab Job No: Lab Sample ID: A00-6824 A0682416 Client Sample ID: LSVIWCSS06C SDG No: 08TCLP RECNY Matrix: Soil: Leachate Sample Date: 09/26/2000 | EPA HW
Number | Parameter | Method | Digestion
Date | Analysis
Date | Regulatory
Level
(MG/L) | RL | Result
(MG/L) | Q | |------------------|-------------------------------------|--------------|-------------------|--------------------------|-------------------------------|--------|------------------|--------| | D004 | Arsenic - Total
Barium - Total | 6010
6010 | | 10/13/2000
10/13/2000 | | | 0.0070 | U | | D006 | Cadmium - Total | 6010 | 10/07/2000 | 10/13/2000 | 1.0000 | 0.0010 | 0.0015 | | | D007 | Chromium - Total
 Lead - Total | 6010
6010 | | 10/13/2000 | | | 0.0020 | ָ
ט | | | Mercury - Total
Selenium - Total | 7470
6010 | | 10/10/2000
10/13/2000 | | | 0.00020
0.010 | U
U | | | Silver - Total | 6010 | | 10/13/2000 | | 1 | | บ | | | | | | | | | | | #### BESEIVE OCT 23 2000 IN A SHY OF October 18, 2000 Mr. John Ruspantini NYSEG - Corporate Drive Kirkwood Industrial Park Binghamton, NY 13902-5224 RE: Analytical Results Dear Mr. Ruspantini: STL Buffalo 10 Hazelwood Drive Suite 106 Amherst, NY 14228 Tel: 716.691 2600 Fax: 716 691 7991 www.stl-inc.com Please find enclosed analytical results concerning the samples recently submitted by your firm. The pertinent information regarding these analyses is listed below: Project: NYSEG - Lockport State Road Former MGP Matrix: Soil Samples Received: 09/26/00 Sample Date: 09/26/00 If you have any questions concerning this data, please contact me at (716) 691-2600 and refer to the I.D. number listed below. It has been our pleasure to provide New York State Electric & Gas with environmental testing services. We look forward to serving you in the future. Sincerely, STL Buffalo Kenneth P. Kinecki Program Manager KPK/klc Enclosure I.D.#A00-6828 #NY0A8576 This report contains 41 pages which are individually numbered #### ANALYTICAL RESULTS Prepared for: New York State Electric & Gas Kirkwood Industrial Park Binghamton, NY 13902-5224 Prepared by: STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228-2298 #### **METHODOLOGY** The specific methodologies employed in obtaining the enclosed analytical results are indicated on the specific data tables. The method numbers presented refer to the following U.S. Environmental Protection Agency references: - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" (SW-846), Third Edition, Update III, December 1996, United States Environmental Protection Agency Office of Solid Waste. - Annual Book of ASTM Standards, American Society for Testing and Materials, 1991. #### **COMMENTS** Comments pertain to data on one or all pages of this report. The enclosed data has been reported utilizing data qualifiers (Q) as defined on the Data Comment Page. The coolers were received at temperatures of 4°C. Sample LSVIWC81208BC was listed on the Chain of Custody, however, no volume was received. #### **METHOD 8082** Samples LSVIWC04WWAC and LSVIWC48WWAC were analyzed at dilution factors of 5 due to elevated concentrations of Aroclor 1248. Samples LSVIWC0408BC, LSVIWC0408BC MS and LSVIWC0408BC SD exhibited percent recoveries for the surrogate, Decachlorobiphenyl, which were above quality control limits, suggesting matrix interference. The recoveries for Tetrachloro-m-xylene were within set limits. No other deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. #### WET CHEMISTRY The Laboratory Control Sample (A0B0804101) exhibited low recoveries for H2S Released From Waste and HCN Released From Waste. No other deviations from protocol that affected the acceptability of the analytical results were encountered during the analytical procedures. This data report shall not be reproduced, except in full, without the written authorization of STL Buffalo. #### DATA COMMENT PAGE #### **ORGANIC DATA QUALIFIERS** ND or U. Indicates compound was analyzed for, but not detected. - J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero. - C This flag applies to pesticide results where the identification has been confirmed by GC/MS. - B This flag is used when the analyte is found in the associated blank, as well as in the sample. - E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis. - D This flag identifies all compounds identified in an analysis at the secondary dilution factor. - N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results. - P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P". - A This flag indicates that a TiC is a suspected aldol-condensation product. - Indicates coelution. - Indicates analysis is not within the quality control limits. #### **INORGANIC DATA QUALIFIERS** ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value. - J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit: - N Indicates spike sample recovery is not within the quality control limits. - K Indicates the post digestion spike recovery is not within the quality control limits. - S Indicates value determined by the Method of Standard Addition. - M Indicates duplicate injection results exceeded quality control limits. - W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance. - E Indicates a value estimated or not reported due to the presence of interferences. - H Indicates analytical holding time exceedance. - Indicates analysis is not within the quality control limits. - + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: 1 •Rept: AN1178 000005 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSVIWC020A1C , Sample ID: A0682811 Date Collected: 09/26/2000 Time Collected: 10:36 | | | Detection | | | Date/Time | | |-------------------------------|--------|------------|-------|----------|------------------|---------| | Parameter | Result | Flag Limit | Units | Method | Analyzed | Analyst | | NYSEG-SOIL-SW8463 8082 - PCBS | | | | | | | | Aroctor 1016 | ND | 18 | UG/KG | 8082 | 10/03/2000 21:28 | NH | | Aroclor 1221 | ND | 18 | UG/KG | 8082 | 10/03/2000 21:28 | NH | | Aroclor 1232 | ND | 18 | UG/KG | 8082 | 10/03/2000 21:28 | NH | | Aroclor 1242 | , ND | 18 | UG/KG | 8082 | 10/03/2000 21:28 | NH | | Aroclor 1248 | .ND | 18 | UG/KG | 8082 | 10/03/2000 21:28 | NH | | Aroclor 1254 | ND - | 18 | UG/KG | 8082 | 10/03/2000 21:28 | NH | | Aroctor 1260 | ND | 18 | UG/KG | 8082 | 10/03/2000 21:28 | NH | | Wet Chemistry Analysis | · | | | | | | | Dry Weight | 95.0 | . 0 | % | D2216-90 | 10/16/2000 22:15 | TB | | Flashpoint | >200 | · . 0 | F | 1010 | 10/09/2000 18:40 | RM | | H2S Released From Waste | ND | 0 | MG/KG | SECT7.3 | 10/11/2000 18:30 | JS | | HCN Released From Waste | ND | 0 | MG/KG | SECT7.3 | 10/11/2000 18:30 | JS | | Leachable pH | 8.4 | 0 | s.u. | 9045 | 10/06/2000 | BC | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP -
WASTE Page: Rept: AN1178 000006 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSVIWC0401C Lab Sample ID: A0682813 Date Collected: 09/26/2000 Time Collected: 12:23 | | | | Detection | | | Date/Time | | |-------------------------------|--------|------|-----------|--------------|----------|------------------|--------| | Parameter | Result | Flag | Limit | <u>Units</u> | Method | Analyzed | Analys | | NYSEG-SOIL-SW8463 8082 - PCBS | | | | | | | | | Aroclor 1016 | ND | | 17 | UG/KG | 8082 | 10/03/2000 23:07 | NH | | Aroclor 1221 | ND | | 17 | UG/KG | 8082 | 10/03/2000 23:07 | NH | | Aroclor 1232 | ND | | 17 | UG/KG | 8082 | 10/03/2000 23:07 | NH | | Aroclor 1242 | , ND | • | 17 | UG/KG | 8082 | 10/03/2000 23:07 | NH | | Aroctor: 1248 | ND | | 17 | UG/KG | 8082 | 10/03/2000 23:07 | NH | | Aroclor 1254 | ND | | 17 | UG/KG | 8082 | 10/03/2000 23:07 | NH | | Aroclor 1260 | ND | | 17 | UG/KG | 8082 | 10/03/2000 23:07 | NH -1 | | Wet Chemistry Analysis | | | | | • | | , | | Dry Weight | 90.0 | | 0 | * | D2216-90 | 10/16/2000 22:15 | ТВ | | Flashpoint | >200 | | 0 | F | 1010 | 10/09/2000 18:40 | RM | | H2S Released From Waste | , ND | | 0 | MG/KG | SECT7.3 | 10/13/2000 20:10 | JS | | HCN Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/13/2000 20:10 | JS | | Leachable pH | 7.8 | | ō | s.u. | 9045 | 10/06/2000 | BC | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: Rept: AN1178 Sample ID: LSVIWC0408AC Sample ID: A0682802 Date Collected: 09/25/2000 Time Collected: 14:30 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 | | | Detection | | | Date/Time | e | | |-------------------------------|--------|---------------------------|--------------|----------|------------|----------|---------| | Parameter | Result | <u> Flag</u> <u>Limit</u> | <u>Units</u> | Method | Analyze | <u>d</u> | Analyst | | NYSEG-SOIL-SW8463 8082 - PCBS | | • | | | | | | | Aroclor 1016 | , ND | 24 | UG/KG | 8082 | 10/03/2000 | 16:56 | NH | | Aroclor 1221 | , ND | 24 | UG/KG | 8082 | 10/03/2000 | 16:56 | NH | | Aroclor 1232 | ND . | 24 | UG/KG | 8082 | 10/03/2000 | 16:56 | NH | | Aroclor 1242 | ND | 24 | UG/KG | 8082 | 10/03/2000 | 16:56 | NH | | Aroclor 1248 | ND | 24 | UG/KG | 8082 | 10/03/2000 | 16:56 | NH | | Aroclor 1254 | 38 | 24 | UG/KG | 8082 | 10/03/2000 | 16:56 | NH | | Aroclor 1260 | ND | 24 | UG/KG | 8082 | 10/03/2000 | 16:56 | NH | | ■Wet Chemistry Analysis | | | | | · | | | | Dry Weight | 88.6 | 0 | % | D2216-90 | 10/16/2000 | 22:15 | TB | | Flashpoint | >200 | 0 | F | . 1010 | 10/02/2000 | 21:45 | RM | | H2S Released From Waste | ND | 0 | MG/KG | SECT7.3 | 10/06/2000 | 20:05 | JS | | HCN Released From Waste | ND | 0 | MG/KG | SECT7.3 | 10/06/2000 | 20:05 | JS | | Leachable pH | 7.9 | 0 | s.u. | 9045 | 10/02/2000 | | RM · | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: Rept: AN11 800000 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSVIWCO408BC Lab Sample ID: A0682805 Date Collected: 09/25/2000 Time Collected: 16:00 | | | | Detection | | | Date/Time | - , | |-------------------------------|--------|------|-----------|------------|----------|------------------|----------------| | Parameter | Result | Flag | Limit | Units | Method | Analyzed | Analy | | NYSEG-SOIL-SW8463 8082 - PCBS | | | | | | | | | Aroclor 1016 | ND | | 19 | UG/KG | 8082 | 10/03/2000 18:10 | HIA C | | Aroclor 1221 | ND | | 19 | UG/KG | 8082 | 10/03/2000 18:10 | HA C | | Aroclor 1232 | ND | | 19 | UG/KG | 8082 | 10/03/2009 18:10 | HIA C | | Aroclor 1242 | ND | | 19 | UG/KG | 8082 | 10/03/2000 18:10 | HIA C | | Aroclor 1248 | ND | | 19 | UG/KG | 8082 | 10/03/2000 18:10 | HIA C | | Aroclor 1254 | ND | | . 19 | UG/KG | 8082 | 10/03/2000 18:10 |) NH | | Aroclor 1260 | ND . | | . 19 | UG/KG | 8082 | 10/03/2000 18:10 | NH C | | Wet Chemistry Analysis | | | | • | | | | | Dry Weight | 92.8 | | 0 | × | D2216-90 | 10/16/2000 22:15 | 5 TB | | Flashpoint | >200 | | . 0 | * F | 1010 | 10/02/2000 21:45 | 5 RM | | H2S Released From Waste | 10.6 | | 0 | MG/KG | SECT7.3 | 10/06/2000 20:05 | SL i | | HCN Released From Waste | ND | | . 0 | MG/KG | SECT7.3 | 10/06/2000 20:05 | JS | | Leachable pH | 7.9 | | 0 | S.U. | 9045 | 10/02/2000 | RM | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: Rept: AN1178 Sample ID: LSVIWC04WWAC > Sample ID: A0682803 Date Collected: 09/25/2000 Time Collected: 16:45 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 | | • | | Detection | | | | | |-------------------------------|--------|------|-----------|--------------|----------|------------------|---------| | Parameter | Result | Flag | Limit | <u>Units</u> | Method | Analyzed | Analyst | | NYSEG-SOIL-SW8463 8082 - PCBS | | | | | | | | | Aroclor 1016 | ND | | 98 | UG/KG | 8082 | 10/03/2000 17:21 | NH | | Aroclor 1221 | ND " | • | 98 | UG/KG | 8082 | 10/03/2000 17:21 | NH | | Aroclor 1232 | ND | | . 98 | UG/KG | 8082 | 10/03/2000 17:21 | NH | | Aroclor 1242 | ND | | 98 | UG/KG | 8082 | 10/03/2000 17:21 | NH | | Aroclor 1248 | 860 | | 98 - | UG/KG | 8082 | 10/03/2000 17:21 | NH | | Aroclor 1254 | ND | | 98 | UG/KG | 8082 | 10/03/2000 17:21 | NH | | Aroclor 1260 | ND | | 98 | UG/KG | 8082 | 10/03/2000 17:21 | NH | | Wet Chemistry Analysis | | | | | | | | | Dry Weight | 84.2 | | 0 | % | D2216-90 | 10/16/2000 22:15 | TB | | Flashpoint | >200 | | 0 | . F | 1010 | 10/02/2000 21:45 | RM | | H2S Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/06/2000 20:05 | SL | | HCN Released From Waste | ND | | 0 , | MG/KG | SECT7.3 | 10/06/2000 20:05 | JS | | Leachable pH | 7.9 | | . 0 | s.u. | 9045 | 10/02/2000 | RM | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Rept: AN1 D00010 Sample ID: LSVIWC04WWC Lab Sample ID: A0682801 Date Collected: 09/26/2000 Time Collected: 11:30 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Detection ---Date/Time-Parameter Result <u>Flag</u> Limit Units Method Analyzed NYSEG-SOIL-SW8463 8082 - PCBS Aroclor 1016 23 ND UG/KG 8082 10/03/2000 15:42 NH Aroclor 1221 23 ND UG/KG 8082 10/03/2000 15:42 Aroclor 1232 23 UG/KG 8082 10/03/2000 15:42 23 Aroclor 1242 ND UG/KG 8082 10/03/2000 15:42 NH Aroclor 1248 ND 23 UG/KG 8082 10/03/2000 15:42 NH Aroclor 1254 41 23 UG/KG 8082 10/03/2000 15:42 NH Aroclor 1260 ND 23 UG/KG 8082 10/03/2000 15:42 NH Wet Chemistry Analysis Dry Weight 83.7 0 × D2216-90 10/16/2000 22:15 TB >200 Flashpoint F 1010 10/09/2000 18:40 RM 0 H2S Released From Waste ND MG/KG SECT7.3 10/06/2000 20:05 JS HCN Released From Waste ND 0 MG/KG SECT7.3 10/06/2000 20:05 JS 7.5 Leachable pH s.u. 9045 10/02/2000 RM New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE . Page: 7 Rept: AN1178 000011 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSVIWC0502C , Sample ID: A0682807 Date Collected: 09/25/2000 Time Collected: 14:35 | | | | | | Detection | | | Date/Tim | —Date/Time—— | | |------------|-----------------------------|------|--------|--------|-----------|-------|----------|------------|--------------|---------| | | Parameter | | Result | Flag _ | Limit | Units | Method | Analyze | ed | Analyst | | ďΥ | SEG-SOIL-SW8463 8082 - PCBS | | | | | | | | _ | | | | Aroclor 1016 | | ND | | . 18 | UG/KG | 8082 | 10/03/2000 | 19:49 | NH | | _ | Aroclor 1221 | | ND | | . 18 | UG/KG | 8082 | 10/03/2000 | 19:49 | NH | | | Aroclor 1232 | | ND | | 18 | UG/KG | 8082 | 10/03/2000 | 19:49 | NH | | | Aroclor 1242 | | ND | | 18 | UG/KG | 8082 | 10/03/2000 | 19:49 | : NH | | | Aroclor 1248 | | ND | | 18 | UG/KG | 8082 | 10/03/2000 | 19:49 | NH | | | Aroclor 1254 | | ND | | 18 | UG/KG | 8082 | 10/03/2000 | 19:49 | NH | | | Aroclor 1260 | | ND | | 18 | UG/KG | 8082 | 10/03/2000 | 19:49 | NH | | H e | t Chemistry Analysis | | | | | | | • | | | | | Dry Weight | | 92.3 | | 0 | * | D2216-90 | 10/16/2000 | 22:15 | TB | | | Flashpoint | >200 | | | 0 | ` F | 1010 | 10/02/2000 | 21:45 | RM | | | H2S Released From Waste | | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 | 18:30 | JS | | | HCN Released From Waste | | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 | 18:30 | JS | | | Leachable pH | | 9.2 | | . 0 | s.u. | 9045 | 10/06/2000 | | ВС | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: Rept: AN1 000012 Sample ID: LSVIWC0503C Lab Sample ID: A0682808 Date Collected: 09/25/2000 Time Collected: 15:05 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 | | , | | Detection | | Date/Time | | | | |-------------------------------|--------|------|-----------|-------|-----------|------------------|--------|--| | Parameter | Result | Flag | Limit | Units | Method | Analyzed | Analys | | | NYSEG-SOIL-SW8463 8082 - PCBS | | | | | | | | | | Aroclor 1016 | ND | | 17 | UG/KG | 8082 | 10/03/2000 20:14 | . NH | | | Aroclor 1221 | ND | | 17 | UG/KG | 8082 | 10/03/2000 20:14 | NH | | | Aroclor 1232 | , ND | | 17 | UG/KG | 8082 | 10/03/2000 20:14 | NH | | | Aroclor 1242 | ND | | 17 | UG/KG | 8082 | 10/03/2000 20:14 | NH | | | Aroclor 1248 | ND | | 17 | UG/KG | 8082 | 10/03/2000 20:14 | NH | | | Aroclor 1254 | ND | | 17 | UG/KG | 8082 | 10/03/2000 20:14 | NH | | | Aroclor 1260 | ND . | | 17 | UG/KG | 8082 | 10/03/2000 20:14 | NH | | | Wet Chemistry Analysis | | | | • | | | | | | Dry Weight | 93.0 | | 0 | % | D2216-90 | 10/16/2000 22:15 | TB | | | Flashpoint | >200 | | 0 | F | 1010 | 10/09/2000 18:40 | RM | | | H2S Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 18:30 | JS | | | HCN Released From Waste | ND | | 0 . | MG/KG | SECT7.3 | 10/11/2000 18:30 | JS | | | Leachable pH | 8.0 | | 0 | s.u. | 9045 | 10/06/2000 | BC | | New York State Electric & Gas New York State Electric & Gas
NYSEG-Lockport State Rd Former MGP - WASTE Page: 9 Rept: AN1178 000013 Sample ID: LSVIWC0504C) Sample ID: A0682809 Date Collected: 09/25/2000 Time Collected: 15:43 Date Received: 09/26/2000 Project No: NY0A8576 Client No: L11252 | | | | Detection | | | — Date/Time | | |-------------------------------|--------|------|-----------|--------------|----------|------------------|----------------| | Parameter | Result | Flag | Limit | <u>Units</u> | Method | Analyzed | <u>Analyst</u> | | NYSEG-SOIL-SW8463 8082 - PCBS | | | • | | | e e | | | Aroclor 1016 | ND | | 17 | UG/KG | 8082 | 10/03/2000 20:38 | NH | | Aroclor 1221 | ND | | 17 | UG/KG | 8082 | 10/03/2000 20:38 | NH | | Aroclor 1232 | ND · | | 17 | UG/KG | 8082 | 10/03/2000 20:38 | NH | | Aroclor 1242 | ND | | - 17 | UG/KG | 8082 | 10/03/2000 20:38 | NH | | Aroclor 1248 | ND | | 17 | UG/KG | 8082 | 10/03/2000 20:38 | NH | | Aroclor 1254 | 160 | | 17 | UG/KG | 8082 | 10/03/2000 20:38 | ·NH | | Aroclor 1260 | ND - | | 17 | UG/KG | 8082 | 10/03/2000 20:38 | NH | | ■ Wet Chemistry Analysis | | | | | | | | | Dry Weight | 90.4 | | 0 | % | D2216-90 | 10/16/2000 22:15 | TB | | Flashpoint | >200 | | . 0 | F | 1010 | 10/09/2000 18:40 | RM | | H2S Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 18:30 | JS | | HCN Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 18:30 | JS | | Leachable pH | 7.8 | | 0 | s.u. | 9045 | 10/06/2000 | BC | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: Rept: AN11 000014 Sample ID: LSVIWC0507C Lab Sample ID: A0682810 Date Collected: 09/25/2000 Time Collected: 16:29 Date Received: 09/26/2000 / Project No: NYOA8576 Client No: L11252 | | | - | Detection | | | —Date/Time | | | | |-------------------------------|-------|-----------|--------------|--------------|----------|------------|-------|--------|--| | <u>Parameter</u> | Resul | t Flag | <u>Limit</u> | <u>Units</u> | Method | Analyze | d | Analys | | | NYSEG-SOIL-SW8463 8082 - PCBS | | | | | | | | | | | Aroclor 1016 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 21:03 | NH | | | Aroclor 1221 | - ND | | 17 | UG/KG | 8082 | 10/03/2000 | 21:03 | NH | | | Aroclor 1232 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 21:03 | NH | | | Aroclor 1242 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 21:03 | NH | | | Aroclor 1248 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 21:03 | NH | | | Aroclor 1254 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 21:03 | NH | | | Aroclor 1260 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 21:03 | NH, | | | Wet Chemistry Analysis | | • | | | | | | • | | | Dry Weight | 94. | 3 · · · · | 0 | × | D2216-90 | 10/16/2000 | 22:15 | ТВ | | | Flashpoint | >200 | | 0 | F | 1010 | 10/09/2000 | 18:40 | RM | | | H2S Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 | 18:30 | JS | | | HCN Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 | 18:30 | JS | | | Leachable pH | 8.0 | י | 0 | s.u. | 9045 | 10/06/2000 | | ВС | | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: 11 Rept: AN1178 000015 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSVIWC2023A1G .b Sample ID: A0682812 Date Collected: 09/26/2000 Time Collected: 11:00 | <u> </u> | | | Detection | | | Date/Time | | | | | |-------------------------------|--------|------|--------------|-------|----------|------------|-------|---------|--|--| | Parameter | Result | Flag | <u>Limit</u> | Units | Method | Analyze | d | Analyst | | | | NYSEG-SOIL-SW8463 8082 - PCBS | | | | | | | | | | | | Aroclor 1016 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 22:42 | NH | | | | Aroclor 1221 | ND | • | 17 | UG/KG | 8082 | 10/03/2000 | 22:42 | NH | | | | Aroclor 1232 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 22:42 | · NH | | | | Aroclor 1242 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 22:42 | NH | | | | Aroclor 1248 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 22:42 | NH | | | | Aroclor 1254 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 22:42 | NH. | | | | Aroclor 1260 | ND | | 17 | UG/KG | 8082 | 10/03/2000 | 22:42 | NH | | | | Wet Chemistry Analysis | | | | | | | | | | | | Dry Weight | 90.5 | | 0 | * | D2216-90 | 10/16/2000 | 22:15 | TB | | | | Flashpoint | >200 | | . 0 | F | 1010 | 10/09/2000 | 18:40 | RM · | | | | H2S Released From Waste | ND . | | 0 | MG/KG | SECT7.3 | 10/11/2000 | 18:30 | JS. | | | | HCN Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 | 18:30 | JS | | | | Leachable pH | 7.5 | | 0 | s.u. | 9045 | 10/06/2000 | | BC | | | New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: Rept: AN1 000016 Date Received: 09/26/2000 > Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSVIWC4808BC Lab Sample ID: A0682806 Date Collected: 09/25/2000 Time Collected: 16:10 | | | | - | Detection | | | Date/Time | _ | |-------------------------------|----------|--------|------|-----------|-------|-------------|------------------|--------| | Parameter | | Result | Flag | Limit | Units | Method | Analyzed | Analys | | NYSEG-SOIL-SW8463 8082 - PCBS | | , | | | | | | | | Aroclor 1016 | ٠,٠ | ND | | 17 | UG/KG | 8082 | 10/03/2000 19:24 | NH | | Aroclor 1221 | | ND | | 17 | UG/KG | 8082 | 10/03/2000 19:24 | NH | | Aroclor 1232 | | ND | | 17 | UG/KG | 8082 | 10/03/2000 19:24 | NH NH | | Aroclor 1242 | | ND | | 17 | UG/KG | 8082 | 10/03/2000 19:24 | NH. | | Aroclor 1248 | | ND | | 17. | UG/KG | 8082 | 10/03/2000 19:24 | NH | | Aroclor 1254 | . • | ND | | 17 | UG/KG | 8082 | 10/03/2000 19:24 | NH | | Aroclor 1260 | • | ŅD | , | 17 | UG/KG | 8082 | 10/03/2000 19:24 | , NH | | Wet Chemistry Analysis | | | | · - | | | | | | Dry Weight | <i>r</i> | 94.3 | | 0 | % | D2216-90 | 10/16/2000 22:15 | ТВ | | Flashpoint | >200 | • | | 0 | F | 1010 | 10/02/2000 21:45 | RM | | H2S Released From Waste | | ND | | 0 | MG/KG | SECT7.3 | 10/11/2000 18:30 | JS | | HCN Released From Waste | | ND | | . 0 | MG/KG | SECT7.3 | 10/11/2000 18:30 | JS | | Leachable pH | • | 7.7 | ٠ | 0 | s.u. | 9045 | 10/06/2000 | ВС | Date: 10/18/2000 Time: 16:35:56 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: 13 Rept: AN1178 00017 Sample ID: LSVIWC48WWAC Sample ID: A0682804 Date Collected: 09/25/2000 Time Collected: 16:45 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | | | | | Detection | | | Date/Time- | | |------|-----------------------------|--------|-------------|-----------|--------------|----------|----------------|-------------| | | <u>Parameter</u> | Result | <u>Flag</u> | Limit | <u>Units</u> | Method | Analyzed | Analyst | | , NY | SEG-SOIL-SW8463 8082 - PCBS | | | • | | | | | | | Aroclor 1016 | ND | | 97 | UG/KG | 8082 | 10/03/2000 17: | 45 NH | | | Aroclor 1221 | ND | | 97 | UG/KG | 8082 | 10/03/2000 17: | 45 NH | | ì | Aroclor 1232 | · ND | | 97 | UG/KG | 8082 | 10/03/2000 17: | 45 NH | | | Aroclor 1242 | ND | | 97 | UG/KG | 8082 | 10/03/2000 17: | 45 NH | | | Aroclor 1248 | 430 | | 97 | UG/KG | 8082 | 10/03/2000 17: | 45 NH | | | Aroclor 1254 | · ND | | 97 | UG/KG | 8082 | 10/03/2000 17: | 45 NH | | | Aroclor 1260 | ND | | 97 | UG/KG | 8082 | 10/03/2000 17 | 45 NH | | We | t Chemistry Analysis | | | | | | | | | | Dry Weight | 93.9 | | 0 | * | 02216-90 | 10/16/2000 22: | 15 . TB | | | Flashpoint | >200 | | 0 | ` F | 1010 | 10/02/2000 21: | 45 RM | | £4 . | H2S Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/06/2000 20: | 05 JS | | | HCN Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/06/2000 20: | 05 JS | | l, | Leachable pH | 7.9 | • | D | s.u. | 9045 | 10/02/2000 | RM | Date: 10/18/2000 Time: 16:35:56 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: Rept: AN11 0048 000018 Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: Sample ID: LSVIWCBB05AC Lab Sample ID: A0682814 Date Collected: 09/26/2000 Time Collected: 14:45 | | | | | Detection | | | Date/Time | | |-------------------------------|------|---------|-------------|-----------|--------------|----------|------------------|-------| | Parameter | | Resul t | <u>Flag</u> | Limit | <u>Units</u> | Method | Analyzed | Analy | | NYSEG-SOIL-SW8463 8082 - PCBS | | | | | , | | | Y | | Aroclor 1016 | | ND | | 18 | UG/KG | 8082 | 10/04/2000 12:45 | NH T | | Aroclor 1221 | | · ND | | 18 | UG/KG | 8082 | 10/04/2000 12:45 | NH , | | Aroclor 1232 | | ND | | 18 | UG/KG | 8082 | 10/04/2000 12:45 | NH | | Aroclor 1242 | | ND | | 18 | UG/KG | 8082 | 10/04/2000 12:45 | NH . | | Aroclor 1248 | 0 | ND | | 18 | UG/KG | 8082 | 10/04/2000 12:45 | NH 🤇 | | Aroclor 1254 | | ND | | 18 | UG/KG | 8082 | 10/04/2000 12:45 | NH (| | Aroclor 1260 | | ND | | 18 | UG/KG | 8082 | 10/04/2000 12:45 | NH | | Wet Chemistry Analysis | | | | | | | | • | | Dry Weight | | 73.7 | | 0 | * . | D2216-90 | 10/16/2000 22:15 | TB | | Flashpoint | >200 | - | | 0 | F | 1010 | 10/09/2000 18:40 | RM | | H2S Released From Waste | | ND | | . 0 | MG/KG | SECT7.3 | 10/13/2000 20:10 | JS 2 | | HCN Released From Waste | | ND . | | 0 | MG/KG | SECT7.3 | 10/13/2000 20:10 | JS | | Leachable pH | | 5.2 | | 0 | s.u. | 9045 | 10/06/2000 | BC 1 | Date: 10/18/2000 Time: 16:35:56 New York State Electric & Gas New York State Electric & Gas NYSEG-Lockport State Rd Former MGP - WASTE Page: Rept: AN1178 00001~ Date Received: 09/26/2000 Project No: NYOA8576 Client No: L11252 Site No: | | Sample | ID: | LSVIWCSS06C | |------|---------|------|-------------| |) | Sample | ID: | A0682815 | | υσιε | Collect | ted: | 09/26/2000 | | Time | Collect | ted: | 15:00 | | | | | Detection | | | Date/Time | | |-------------------------------|-------|--------|--------------|--------------|----------|------------------|--------| | Parameter | Resul | t Flag | <u>Limit</u> | <u>Units</u> | Method | Analyzed | Analys | | NYSEG-SOIL-SW8463 8082 - PCBS | | | , | | | | | | Aroclor 1016
 ND | | 18 | UG/KG | 8082 | 10/04/2000 13:10 | NH | | Aroclor 1221 | , ND | | 18 | UG/KG | 8082 | 10/04/2000 13:10 | . NH | | Aroclor 1232 | ND | , | - 18 | UG/KG | 8082 | 10/04/2000 13:10 | NH | | Aroclor 1242 | ND | - | 18 | UG/KG | 8082 | 10/04/2000 13:10 | NH | | Aroclor 1248 | ND | | 18 | UG/KG | 8082 | 10/04/2000 13:10 | NH | | Aroclor 1254 | ND | | 18 | UG/KG | 8082 | 10/04/2000 13:10 | NH | | Aroclor 1260 | ND | | 18 | UG/KG | 8082 | 10/04/2000 13:10 | NH | | ■ Wet Chemistry Analysis | | | | | | | | | Dry Weight | 77. | .2 | 0 | * | D2216-90 | 10/16/2000 22:15 | TB | | Flashpoint | >200 | - | 0 | F | 1010 | 10/09/2000 18:40 | RM | | H2S Released From Waste | ND | | 0 | MG/KG | SECT7.3 | 10/13/2000 20:10 | JS | | HCN Released From Waste | ND. | • | 0 | MG/KG | SECT7.3 | 10/13/2000 20:10 | JS | | Leachable pH | 7. | .4 | 0 | s.u. | 9045 | 10/06/2000 | BC | | • | | | | | | | | ### 000034 Client No. | LSVI23B5G | | |-----------|--| |-----------|--| ab Name: <u>STL Buffalo</u> Contract: <u>98-153</u> Case No.: ____ SAS No.: ____ SDG No.: 23B5G Lab Code: RECNY atrix: (soil/water) <u>SOIL</u> Lab Sample ID: A0682301 Sample wt/vol: <u>30.76</u> (g/mL) <u>G</u> Lab File ID: Z44605.RR evel: (low/med) LOW Date Samp/Recv: 09/26/2000 09/26/2000 CONCENTRATION UNITS: 200 1200 J J Date Extracted: 09/29/2000 Moisture: <u>10.0</u> decanted: (Y/N) N Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/13/2000 njection Volume: 2.00 (uL) Total PA1/12,48 Dilution Factor: 5.00 PC Cleanup: (Y/N) N pH: ____ Total class 1980 COMPOUND 53-70-3-----Dibenzo(a,h)anthracene 191-24-2----Benzo (ghi) perylene #### CAS NO. (ug/L or ug/Kg) <u>UG/KG</u> Q 83-32-9----Acenaphthene 18000 51-28-5----2,4-Dinitrophenol U 43000 100-02-7----4-Nitrophenol 43000 U 132-64-9-----Dibenzofuran 130CO U 121-14-2----2,4-Dinitrotoluene 18000 U 84-66-2----Diethyl phthalate U 18000 7005-72-3----4-Chlorophenyl phenyl ether 18000 U 86-73-7----Fluorene 18000 Ú 100-01-6----4-Nitroaniline U 43000 534-52-1----4,6-Dinitro-2-methylphenol U 43000 86-30-6----N-nitrosodiphenylamine 18000 U 101-55-3----4-Bromophenyl phenyl ether U 18000 118-74-1----Hexachlorobenzene U 18000 87-86-5----Pentachlorophenol U 43000 85-01-8-----Phenanthrene 300 J 120-12-7-----Anthracene U 18000 U 86-74-8-----Carbazole 18000 84-74-2-----Di-n-butyl phthalate U 18000 206-44-0----Fluoranthene J 1600 129-00-0----Pyrene 1900 J 85-68-7-----Butyl benzyl phthalate U 18000 91-94-1----3,3'-Dichlorobenzidine U 18000 56-55-3-----Benzo (a) anthracene 1700 J 218-01-9-----Chrysene J 1200 117-81-7----Bis (2-ethylhexyl) phthalate 18000 U U 117-84-0-----Di-n-octyl phthalate 18000 205-99-2----Benzo (b) fluoranthene J 2300 207-08-9----Benzo(k) fluoranthene 18000 U 50-32-8-----Benzo (a) pyrene J 1200 J 193-39-5----Indeno (1, 2, 3-cd) pyrene 880 # 000033 Client No. | | |
- | |-----------|-------------|-------| | LSVI23B5G | | | ab Name: STL Buffalo Contract: 98-153 ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G latrix: (soil/water) SOIL Lab Sample ID: A0682301 tample wt/vol: 30.76 (g/mL) G Lab File ID: Z44605.RR evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 10.0 decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 10000 (uL) Date Analyzed: 10/13/2000 njection Volume: 2.00 (uL) Dilution Factor: 5.00 PC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|------------------------------|-----------------|----------|-------------| | <u> </u> | | (43,2 01 43,19, | <u> </u> | | | 108-95-2 | | | 18000 | ָט | | | Bis(2-chloroethyl) ether_ | | 18000 | ַ ט | | | 2-Chlorophenol | | 18000 | Ų | | | 1,3-Dichlorobenzene | | 18000 | ַ | | | 1,4-Dichlorobenzene | | 18000 | ש | | | 1,2-Dichlorobenzene | | 18000 | שׁן | | | 2-Methylphenol | | 18000 | ַט | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane) | | 18000 | ט | | | 4-Methylphenol | | 18000 | ט | | | N-Nitroso-Di-n-propylamine | | 18000 | U | | 67-72-1 | Hexachloroethane | | 18000 | U | | 98-95-3 | Nitrobenzene | | 18000 | U | | 78-59-1 | Isophorone | | 18000 | U | | 88-75-5 | 2-Nitrophenol | | 18000 | ַ ען | | 105-67-9 | 2,4-Dimethylphenol | | 18000 | U | | 111-91-1 | Bis(2-chloroethoxy) methane | | 18000 | U | | 120-83-2 | 2,4-Dichlorophenol | | 18000 | ט | | 120-82-1 | 1,2,4-Trichlorobenzene | | 18000 | lυ | | 91-20-3 | Naphthalene | | 18000 | Ū | | 106-47-8 | 4-Chloroaniline | | 18000 | ט | | 87-68-3 | Hexachlorobutadiene | | 18000 | Ū | | 59-50-7 | 4-Chloro-3-methylphenol | | 18000 | Ū | | | 2-Methylnaphthalene | | 18000 | Ū | | | Hexachlorocyclopentadiene | | 18000 | Ū | | | 2,4,6-Trichlorophenol | | 18000 | טו | | | 2,4,5-Trichlorophenol | | 43000 | Ū | | | 2-Chloronaphthalene | | 18000 | บ | | · · | 2-Nitroaniline | | 43000 | Ū | | | Dimethyl phthalate | | 18000 | U | | | Acenaphthylene | | 18000 | U | | | 2,6-Dinitrotoluene | | 18000 | Ü | | | 3-Nitroaniline | | 43000 | Ü | | JJ-UJ-Z | 2-MICTOSTITITIE | | 43000 | ١٥ | ### 000032 Client No. | LSVI2 | 3 B3G | | | |-------|--------------|--|--| | 1 | | | | ab Name: SIL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G atrix: (soil/water) SOIL Lab Sample ID: A0682314 <u>Sample wt/vol: 30.65 (g/mL) G</u> <u>Lab File ID: Z44623.RR</u> Evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 9.5 decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 jection Volume: 2.00 (uL) TOWPAN 5.900 Dilution Factor: 10.00 PC Cleanup: (Y/N) N pH: ____ Total c | Mt 2,94) | 83-32-9Acenaphthene 3600 U 51-28-52,4-Dinitrophenol 8600 U 100-02-74-Nitrophenol 8600 U 132-64-9Dibenzofuran 3600 U 121-14-22,4-Dinitrotoluene 3600 U 121-14-22,4-Dinitrotoluene 3600 U 84-66-2Diethyl phthalate 3600 U 84-66-2Diethyl phthalate 3600 U 86-73-7Fluorene 25 J 100-01-64-Nitroaniline 8600 U 534-52-14,6-Dinitro-2-methylphenol 8600 U 86-30-6N-nitrosodiphenylamine 3600 U 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorobenzene 3600 U 118-74-1Hexachlorobenzene 3600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 35 J 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 3600 U 206-44-0Fluoranthene 3600 U 129-00-0Pyrene 980 J 85-68-7Butyl benzyl phthalate 3600 U 17-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 207-08-9Benzo (k) Fluoranthene 110 J 50-32-8 | CAS NO. | COMPOUND | (ug/L or ug/K | g) <u>UG/KG</u> | Q | |---|-----------|-----------------------------|---------------|-----------------|----------| | 100-02-74-Nitrophenol 3600 U 132-64-9Dibenzofuran 3600 U 121-14-22, 4-Dinitrotoluene 3600 U 121-14-22, 4-Dinitrotoluene 3600 U | 83-32-9 | Acenaphthene | | 3600 | U | | 132-64-9Dibenzofuran 3600 U 121-14-22, 4-Dinitrotoluene 3600 U 84-66-2Diethyl phthalate 3600 U 86-63-3 | 51-28-5 | 2,4-Dinitrophenol | | 8600 | ט | | 121-14-22,4-Dinitrotoluene 3600 U 84-66-2Diethyl phthalate 3600 U 7005-72-34-Chlorophenyl phenyl ether 3600 U 86-73-7Fluorene 25 J 100-01-64-Nitroanilline 8600 U 534-52-14,6-Dinitro-2-methylphenol 8600 U 86-30-6N-nitrosodiphenylamine 3600 U 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorophenol 8600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7Anthracene 35 J 84-74-2 | 100-02-7 | 4-Nitrophenol | | 8600 | U | | 84-66-2Diethyl phthalate 3600 U 7005-72-34-Chlorophenyl phenyl ether 3600 U 86-73-7Fluorene 25 J 100-01-64-Nitroaniline 8600 U 534-52-14,6-Dinitro-2-methylphenol 8600 U 86-30-6N-nitrosodiphenylamine 3600 U 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorophenol 8600 U 87-86-5Phenanthrene 630 J 120-12-7Anthracene 630 J 86-74-8 | 132-64-9 | Dibenzofuran | | 3600 | U | | 7005-72-34-Chlorophenyl phenyl ether 3600 U 86-73-7Fluorene 25 J 100-01-64-Nitroaniline 8600 U 534-52-14,6-Dinitro-2-methylphenol 8600 U 86-30-6N-nitrosodiphenylamine
3600 U 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorophenol 8600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7 | | | | 3600 | U | | 86-73-7Fluorene 25 J 100-01-64-Nitroaniline 8600 U 534-52-14,6-Dinitro-2-methylphenol 8600 U 86-30-6N-nitrosodiphenylamine 3600 U 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorophenol 8600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7Anthracene 35 J 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0 | | | | 3600 | 1 - | | 100-01-64-Nitroaniline 8600 U 534-52-14,6-Dinitro-2-methylphenol 8600 U 86-30-6N-nitrosodiphenylamine 3600 U 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorobenzene 3600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7Anthracene 110 J 86-74-8Phenanthrene 35 J 84-74-2Phenanthracene 35 J 84-74-2Phenanthracene 3600 U 206-44-0Phenanthracene 3600 U 206-44-0 | 7005-72-3 | 4-Chlorophenyl phenyl ether | | 3600 | U | | 534-52-14, 6-Dinitro-2-methylphenol 8600 U 86-30-6N-nitrosodiphenylamine 3600 U 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorobenzene 3600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7 | | | | | | | 86-30-6N-nitrosodiphenylamine 3600 U 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorobenzene 3600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7Anthracene 110 J 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0 | | | | | 1 | | 101-55-34-Bromophenyl phenyl ether 3600 U 118-74-1Hexachlorobenzene 3600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7Anthracene 110 J 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0 | | | | 8600 | U | | 118-74-1Hexachlorobenzene 3600 U 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7Anthracene 110 J 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0Pyrene 980 J 85-68-7 | | | | 3600 | U | | 87-86-5Pentachlorophenol 8600 U 85-01-8Phenanthrene 630 J 120-12-7Anthracene 110 J 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0Pyrene 980 J 85-68-7Butyl benzyl phthalate 3600 U 91-94-13,3'-Dichlorobenzidine 3600 U 56-55-3Benzo (a) anthracene 660 J 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8 | | | | 3600 | 1 | | 85-01-8Phenanthrene 630 J 120-12-7Anthracene 110 J 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0Pyrene 980 J 85-68-7Butyl benzyl phthalate 3600 U 91-94-13,3'-Dichlorobenzidine 3600 U 56-55-3 | | | | 3600 | _ | | 120-12-7Anthracene 110 J 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0Pyrene 980 J 85-68-7Butyl benzyl phthalate 3600 U 91-94-13,3'-Dichlorobenzidine 3600 U 56-55-3Benzo(a) anthracene 660 J 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1,2,3-cd) pyrene 160 J 53-70-3 | | | | 8600 | 1 - | | 86-74-8Carbazole 35 J 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0Pyrene 980 J 85-68-7Butyl benzyl phthalate 3600 U 91-94-13,3'-Dichlorobenzidine 3600 U 56-55-3Benzo (a) anthracene 660 J 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0 | | | | 630 | J | | 84-74-2Di-n-butyl phthalate 3600 U 206-44-0Fluoranthene 1000 J 129-00-0Pyrene 980 J 85-68-7Butyl benzyl phthalate 3600 U 91-94-13,3'-Dichlorobenzidine 3600 U 56-55-3Benzo (a) anthracene 660 J 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 207-08-9Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1,2,3-cd) pyrene 160 J 53-70-3Dibenzo (a, h) anthracene 35 J | | | | 110 | J | | 206-44-0Fluoranthene 1000 J 129-00-0Pyrene 980 J 85-68-7Butyl benzyl phthalate 3600 U 91-94-13,3'-Dichlorobenzidine 3600 U 56-55-3Benzo (a) anthracene 660 J 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1, 2, 3-cd) pyrene 160 J 53-70-3 | 86-74-8 | Carbazole | | 35 | J | | 129-00-0 | 84-74-2 | Di-n-butyl phthalate | | 3600 | U | | 85-68-7Butyl benzyl phthalate 3600 U 91-94-13,3'-Dichlorobenzidine 3600 U 56-55-3Benzo (a) anthracene 660 J 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9 | 206-44-0 | Fluoranthene | | 1000 | J | | 91-94-13,3'-Dichlorobenzidine 3600 U 56-55-3Benzo (a) anthracene 660 J 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1, 2, 3-cd) pyrene 160 J 53-70-3 | 129-00-0 | Pyrene | | 980 | J | | 56-55-3Benzo (a) anthracene 660 J 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1, 2, 3-cd) pyrene 160 J 53-70-3Dibenzo (a, h) anthracene 35 J | 85-68-7 | Butyl benzyl phthalate | | 3600 | U | | 218-01-9Chrysene 450 J 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1, 2, 3-cd) pyrene 160 J 53-70-3Dibenzo (a, h) anthracene 35 J | 91-94-1 | 3,3'-Dichlorobenzidine | | 3600 | U | | 117-81-7Bis (2-ethylhexyl) phthalate 3600 U 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1, 2, 3-cd) pyrene 160 J 53-70-3Dibenzo (a, h) anthracene 35 J | 56-55-3 | Benzo (a) anthracene | | 660 | J | | 117-84-0Di-n-octyl phthalate 3600 U 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1,2,3-cd) pyrene 160 J 53-70-3Dibenzo (a,h) anthracene 35 J | 218-01-9 | Chrysene | | 450 | J | | 205-99-2Benzo (b) fluoranthene 1000 J 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1,2,3-cd) pyrene 160 J 53-70-3Dibenzo (a,h) anthracene 35 J | 117-81-7 | Bis(2-ethylhexyl) phthalate | | 3600 | U | | 207-08-9Benzo (k) fluoranthene 110 J 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1,2,3-cd) pyrene 160 J 53-70-3Dibenzo (a,h) anthracene 35 J | 117-84-0 | Di-n-octyl phthalate | | 3600 | บ | | 50-32-8Benzo (a) pyrene 530 J 193-39-5Indeno (1,2,3-cd) pyrene 160 J 53-70-3Dibenzo (a,h) anthracene 35 J | 205-99-2 | Benzo (b) fluoranthene | | 1000 | J | | 193-39-5Indeno (1,2,3-cd) pyrene 160 J 53-70-3Dibenzo (a,h) anthracene 35 J | 207-08-9 | Benzo(k)fluoranthene | | 110 | J | | 193-39-5Indeno (1,2,3-cd) pyrene 160 J 53-70-3Dibenzo (a,h) anthracene 35 J | 50-32-8 | Benzo (a) pyrene | | 530 | J | | 53-70-3Dibenzo(a,h)anthracene 35 J | | | _ | 160 | J | | 191-24-2Benzo(ghi)perylene 180 J | | | | 35 | J | | | 191-24-2 | Benzo(ghi)perylene | | 180 | J | ### 000031 Client No. | LSVI23B3G | | | |-----------|--|--| ab Name: STL Buffalo Contract: 98-153 ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G atrix: (soil/water) SOIL Lab Sample ID: A0682314 evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 9.5 decanted: (Y/N) N Date Extracted: 09/29/2000 bncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 njection Volume: 2.00 (uL) Dilution Factor: 10.00 PC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|------------------------------
--|-------|-----| | 108-95-2 | | 1. The state of th | 3600 | บ | | | Bis(2-chloroethyl) ether_ | | 3600 | ש | | | 2-Chlorophenol | | 3600 | שׁ | | | 1,3-Dichlorobenzene | | 3600 | שן | | | 1,4-Dichlorobenzene | | 3600 | ַּט | | 95-50-1 | 1,2-Dichlorobenzene | | 3600 | υ. | | | 2-Methylphenol | | 3600 | ַ | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane) |) | 3600 | שׁן | | | 4-Methylphenol | | 3600 | ט | | 621-64-7 | N-Nitroso-Di-n-propylamine | | 3600 | ט | | 67-72-1 | Hexachloroethane | | 3600 | ט | | 98-95-3 | Nitrobenzene | | 3600 | ט | | 78-59-1 | Isophorone | | 3600 | ט | | 88-75-5 | 2-Nitrophenol | | 3600 | ט | | 105-67-9 | 2,4-Dimethylphenol | | 3600 | ט | | 111-91-1 | Bis(2-chloroethoxy) methane | | 3600 | ָּט | | 120-83-2 | 2,4-Dichlorophenol | | 3600 | ט | | 120-82-1 | 1,2,4-Trichlorobenzene | | 3600 | שו | | 91-20-3 | Naphthalene | | 3600 | ש | | 106-47-8 | 4-Chloroaniline | | 3600 | U | | 87-68-3 | Hexachlorobutadiene | | 3600 | U | | 59-50-7 | 4-Chloro-3-methylphenol | | 3600 | U | | 91-57-6 | 2-Methylnaphthalene | | 3600 | U | | 77-47-4 | Hexachlorocyclopentadiene | | 3600 | U | | | 2,4,6-Trichlorophenol | - | 3600 | ט | | | 2,4,5-Trichlorophenol | | 8600 | ט | | | 2-Chloronaphthalene | | 3600 | Ū | | | 2-Nitroaniline | | 8600 | ט | | | Dimethyl phthalate | | 3600 | Ū | | | Acenaphthylene | | 30 | J | | | 2,6-Dinitrotoluene | | 3600 | U | | | 3-Nitroaniline | | 8600 | Ū | # 000030 Client No. | • | | - | |---|---|---| | | • | • | ab Name: <u>STL Buffalo</u> Contract: <u>98-153</u> Case No.: ____ SAS No.: ____ SDG No.: 23B5G Lab Code: RECNY atrix: (soil/water) SOIL Lab Sample ID: A0682313 ample wt/vol: <u>30.51</u> (g/mL) <u>G</u> Lab File ID: Z44638.RR Level: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: 6.9 decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: <u>10/16/2000</u> njection Volume: 2.00 (uL) Total PAH 99.03 Dilution Factor: ___10.00 PC Clearup: (Y/N) N pH: ___ Toble?AH 33.60 #### CONCENTRATION UNITS: CAS NO COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q | | (49/12 01 49/19) | 00/100 | × | |-------------------------------------|------------------|--------|---| | 83-32-9Acenaphthene | | 2100 | J | | 51-28-52,4-Dinitrophenol | | 8400 | U | | 100-02-74-Nitrophenol | | 8400 | U | | 132-64-9Dibenzofuran | | 1900 | J | | 121-14-22,4-Dinitrotoluene | | 3500 | U | | 84-66-2Diethyl phthalate | | 3500 | U | | 7005-72-34-Chlorophenyl phenyl ethe | er | 3500 | U | | 86-73-7Fluorene | | 2200 | J | | 100-01-64-Nitroaniline | | 8400 | U | | 534-52-14,6-Dinitro-2-methylphenol | | 8400 | U | | 86-30-6N-nitrosodiphenylamine | | 3500 | U | | 101-55-34-Bromophenyl phenyl ether | | 3500 | U | | 118-74-1Hexachlorobenzene_ | | 3500 | U | | 87-86-5Pentachlorophenol | | 8400 | U | | 85-01-8Phenanthrene | | 14000 | | | 120-12-7Anthracene | | 4200 | | | 86-74-8Carbazole | | 1100 | J | | 84-74-2Di-n-butyl phthalate | | 3500 | U | | 206-44-0Fluoranthene | | 18000 | | | 129-00-0Pyrene | | 13000 | | | 85-68-7Butyl benzyl phthalate | | 3500 | U | | 91-94-13,3'-Dichlorobenzidine | | 3500 | U | | 56-55-3Benzo (a) anthracene | | 7500 | | | 218-01-9Chrysene | | 7100 | | | 117-81-7Bis(2-ethylhexyl) phthalat | e | 3500 | ע | | 117-84-0Di-n-octyl phthalate | | 3500 | ע | | 205-99-2Benzo (b) fluoranthene | | 7700 | | | 207-08-9Benzo(k)fluoranthene | | 2700 | J | | 50-32-8Benzo (a) pyrene | | 7100 | | | 193-39-5Indeno (1,2,3-cd) pyrene | | 3300 | J | | 53-70-3Dibenzo (a, h) anthracene | | 1200 | J | | 191-24-2Benzo (ghi) perylene | | 3700 | | | , - | | | 1 | ## 000029 Client No. | LSVI04B2G | • | |-----------|---| Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682313 Sample wt/vol: 30.51 (g/mL) G Lab File ID: Z44638.RR Level: (low/med) Low Date Samp/Recv: $\underline{09/26/2000}$ $\underline{09/26/2000}$ Moisture: 6.9 decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/16/2000 Injection Volume: 2.00 (uL) Dilution Factor: 10.00 GPC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|------------------------------|-----------------|-------|----| | 108-95-2 | Phenol | | 3500 | U | | | Bis(2-chloroethyl) ether | | 3500 | ט | | | 2-Chlorophenol | | 3500 | บ | | | 1,3-Dichlorobenzene | | 3500 | U | | | 1,4-Dichlorobenzene | | 3500 | Ü | | | 1,2-Dichlorobenzene | | 3500 | Ü | | | 2-Methylphenol | | 3500 | บ | | | 2,2'-Oxybis(1-Chloropropane) | | 3500 | Ū | | | 4-Methylphenol | | 3500 | lΰ | | I . | N-Nitroso-Di-n-propylamine | | 3500 | U | | | Hexachloroethane | | 3500 | Ū | | 4 | Nitrobenzene | | 3500 | U | | 1 | Isophorone | | 3500 | บี | | | 2-Nitrophenol | | 3500 | Ū | | | 2,4-Dimethylphenol | | 3500 | Ū | | | Bis(2-chloroethoxy) methane | | 3500 | Ū | | | 2,4-Dichlorophenol | | 3500 | Ū | | | 1,2,4-Trichlorobenzene | | 3500 | U | | I. | Naphthalene | | 1400 | J | | 106-47-8 | 4-Chloroaniline | | 3500 | U | | 87-68-3 | Hexachlorobutadiene | | 3500 | U | | 59-50-7 | 4-Chloro-3-methylphenol | | 3500 | U | | 91-57-6 | 2-Methylnaphthalene | | 1300 | IJ | | 77-47-4 | Hexachlorocyclopentadiene | | 3500 | U | | 88-06-2 | 2,4,6-Trichlorophenol | | 3500 | U | | 95-95-4 | 2,4,5-Trichlorophenol | | 8400 | U | | | 2-Chloronaphthalene | | 3500 | U | | | 2-Nitroaniline | | 8400 | U | | 131-11-3 | Dimethyl phthalate | | 3500 | U | | | Acenaphthylene | | 630 | J | | | 2,6-Dinitrotoluene | | 3500 | U | | 1 | 3-Nitroaniline | | 8400 | U | # 000027 Client No. | Ι | SVISS03C | | | |---|----------|--|--| | | | | | b Name: STL Buffalo Contract: 98-153 ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G trix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0682318</u> ample wt/vol: 5.19 (g/mL) G Lab File ID: H2802.RR Evel· (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Woisture: not dec. 10.9 Heated Purge: Y Date Analyzed: 10/04/2000 C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> il Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q |
--|----------------------------|---------------------------------------|--------------|----------| | 74-87-3 | Chloromethane | | 11 | U | | 74-83-9 | Bromomethane | | . 11 | ט | | 75-01-4 | Vinyl chloride | | 11 | ט | | 75-00-3 | Chloroethane | | 11 | ט | | 75-09-2 | Methylene chloride | | 4 | BJ | | 67-64-1 | Acetane | | 11 | ט | | 75-15-0 | Carbon Disulfide | | 11 | ט | | 75-35-4 | 1,1-Dichloroethene | | 11 | ט | | 75-34-3 | 1,1-Dichloroethane | | 11 | ט | | 540-59-0 | 1,2-Dichloroethene (Total) | | 11 | ט | | 67-66-3 | Chloroform | | 11 | ט | | 107-06-2 | 1,2-Dichloroethane | | 11 | ט | | | 2-Butanone | | 11 | ע | | 71-55-6 | 1,1,1-Trichloroethane | | 11 | ַ ט | | | Carbon Tetrachloride | · · · · · · · · · · · · · · · · · · · | 11 | U | | 75-27-4 | Bromodichloromethane | | 11 | U | | 78-87-5 | 1,2-Dichloropropane | | 11 | ט | | 10061-01-5- | cis-1,3-Dichloropropene | | 11 | ט | | 79-01-6 | Trichloroethene | | 3 | J | | 124-48-1 | Dibromochloromethane | | 11 | U | | 79-00-5 | 1,1,2-Trichloroethane | | 11 | ט | | 71-43-2 | Benzene | | 11 | ט | | 10061-02-6- | trans-1,3-Dichloropropene | | 11 | ט | | | Bromoform | | 11 | U | | | 4-Methyl-2-pentanone | | 11 | ט | | All controls and the second se | 2-Hexanone | | 11 | ט | | 1 | Tetrachloroethene | | 11 | บ | | 108-88-3 | | | 11 | ט | | | 1,1,2,2-Tetrachloroethane | | 11 | ט | | | Chlorobenzene | | 11 | ן ט | | | Ethylbenzene | | 11 | Ū | | 100-42-5 | * <u></u> | | 11 | Ū. | | | Total Xylenes | | 11 | Ü | | | | | | | 000026 Client No. | -l- 37 | - CTT Diffel | | Combos of 155 | | LSVIS | SS02C | | |---------|--------------------|-------------------|--|---------------------------------------|-------------------|--------------------------|-------------| | ad Nam | e: SIL BULLAIC | 2 | Contract: <u>98-153</u> | <u> </u> | , | | | | ab Code | e: <u>REONY</u> Ca | ase No.: | SAS No.: | SDG No.: <u>2</u> | 3B5G_ | | | | atrix: | (soil/water) | SOIL | | Lab Sample | ID: <u>A06823</u> | 320 | | | ample v | wt/vol: | | <u>G</u> | Lab File ID | <u> H2804</u> . | .RR | · · | | | (low/med) | | | Date Samp/R | ecv: 09/26/ | ′ 2000 09 |)/26/200 | | | | | d Purge: Y | Date Analyz | | | | | | | | | 2 | <u> </u> | <u> </u> | | | C Colum | m: <u>DB-624</u> | ID: <u>0.53</u> (| mm) | Dilution Fac | ctor:1. | 00 | | | oil Ext | tract Volume: | (பட) | | Soil Aliquo | Volume: | | (uL) | | | CAS NO. | COMPOUND | | CONCENTRATION UI
(ug/L or ug/Kg) | | Q | | | | 74-87-3 | Chlorometha | ne | | 13 | U | | | | 74-83-9 | Bromomethan | e | | 13 | Ū | | | | 75-01-4 | Vinyl chlor | ide | | 13 | Ū | | | | 175-00-3 | Chloroethan | e | | 13 | U | | | | 75-09-2 | Methylene d | hloride | | 4 | BJ | | | | | | | | 13 | ָ _֡ ֖֖֖֖֖֖֖֖֡ | | | | 75-15-0 | Carbon Disu | lfide | | 13 | ט | | | | 75-35-4 | 1,1-Dichlor | oethene | | 13 | ט | 1 | | | | 1,1-Dichlor | | | 13 | υ | | | | 540-59-0 | 1.2-Dichlor | oethene (Total) | | 13 | ϋ | 1 | | | 107 00 3 | Ch1 | | | 13 | บ | | | | 107-06-2 | 1 2-Dichlon | oethane | | 13 | lΰ | | | | 78-93-3 | 2-Butanone | occirii. | | 13 | Ü | | | | | 1,1,1-Trich | lomethane | | 13 | ט | | | | | Carbon Tetra | | | 13 | บ็ | | | | | Bramodichlo | | | 13 | บ็ | | | • | | 1,2-Dichlon | | | 13 | lΰ | Į. | | | | cis-1,3-Dic | | | 13 | Ü | | | | | Trichloroet | | <u> </u> | | J | I | | | 1 | | | · · · · · · · · · · · · · · · · · · · | 5 | 1 | | | | | Dibromochlo | | | 13
13 | U | | | | 79-00-5 | 1,1,2-Trich | TOTOGRIPINE | | 13 | U | | | | | | i alal assassassassassassassassassassassassass | | 13 | Ŭ | | | | 1 | • | ichloropropene | | 13 | Ŭ | | | | 75-25-2 | | · | | 13 | Ŭ | | | | 1 | 4-Methyl-2- | pentanone | | 13 | ַט | | | | 1591-78-6 | 2-Hexanone | | · | ં 13 | ITT | | 13 13 13 13 13 13 13 U U > U U U U U 127-18-4----Tetrachloroethene 108-90-7----Chlorobenzene 100-41-4----Ethylbenzene 1330-20-7----Total Xylenes 79-34-5----1,1,2,2-Tetrachloroethane 108-88-3----Toluene 100-42-5----Styrene # 000025 Client No. | Γ | | | | |---------|----|---|--| | LSVISS0 | IC | , | | ab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682317 Sample wt/vol: $\underline{5.02}$ (g/mL) \underline{G} Lab File \underline{ID} : $\underline{H2801.RR}$ revel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. <u>26.4</u> Heated Purge: Y Date Analyzed: <u>10/04/2000</u> GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.00 oil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. | COMPOUND (| ug/L or ug/Kg) | UG/KG | Q | |------------|----------------------------|-----------------|-------|----| | | Chloromethane | | 14 | U | | | | | 14 | ָט | | 75-01-4 | Vinyl chloride | | 14 | שׁ | | | Chloroethane | | 14 | U | | | Methylene chloride | | 5 | BJ | | | Acetone | | 14 | ש | | 75-15-0 | Carbon Disulfide | | 14 | U | | | 1,1-Dichloroethene | | 14 | שן | | | 1,1-Dichloroethane | | 14 | ט | | 540-59-0 | 1,2-Dichloroethene (Total) | | 14 | ט | | 67-66-3 | Chloroform | | 14 | שו | | 107-06-2 | 1,2-Dichloroethane | | 14 | U | | 78-93-3 | 2-Butanone | | 14 | υ | | 71-55-6 | 1,1,1-Trichloroethane | | 14 | ש | | 56-23-5 | Carbon Tetrachloride | | 14 | U | | 75-27-4 | Bromodichloromethane | Marie Alexandro | 14 | ט | | 78-87-5 | 1,2-Dichloropropane | | 14 | ט | | 10061-01-5 | cis-1,3-Dichloropropene | | 14 . | ט | | 79-01-6 | Trichloroethene | | 14 | ไซ | | 124-48-1 | Dibromochloromethane | | 14 | ט | | 79-00-5 | 1,1,2-Trichloroethane | | 14 | ט | | 71-43-2 | Benzene | | 14 | של | | 10061-02-6 | trans-1,3-Dichloropropene | | 14 | ט | | | Bromoform | | 14 | ט | | 108-10-1 | 4-Methyl-2-pentanone | | 14 | U | | | 2-Hexanone | | 14 | Ū | | | Tetrachloroethene | | 14 | Ū | | | Toluene | | 14 | Ü | | | 1,1,2,2-Tetrachloroethane | | 14 | U | | | Chlorobenzene | | 14 | U | | | Ethylbenzene | | 14 | Ū | | | Styrene | | 14 | Ü | | | Total Xylenes | | 14 | ΙÜ | | 100 20 7- | 20001 21y 101100 | | 7.3 | ٥ | # 000024 Client No. | LSVI21 | 23P4C | | |---------|--------|--| | 1724757 | .23046 | | ab Name: STL Buffalo Contract: 98-153 ab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682309 _evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> k Moisture: not dec. 13.8 Heated Purge: Y Date Analyzed: 10/04/2000 C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | | | CONCENTRATION | | | |------------|-----------------------------|---------------|-----------------|------| | CAS NO. | COMPOUND | (ug/L or ug/K | g) <u>UG/KG</u> | Q | | 74-87-3 | -Chloromethane | | 12 | U | | 74-83-9 | -Bromomethane | | 12 | ט | | 75-01-4 | -Vinyl chloride | | 12 | ט ו | | 75-00-3 | -Chloroethane | | 12 | ט | | 75-09-2 | -Methylene chloride | | 7 | BJ | | 67-64-1 | | | 12 | ט | | 75-15-0 | -Carbon Disulfide | | 12 | ט | | 75-35-4 | -1,1-Dichloroethene | | 12 | ט | | | -1,1-Dichloroethane | | 12 | ט | | 540-59-0 | -1,2-Dichloroethene (Total) | | . 12 | ן ט | | 67-66-3 | | | 12 | ט | | 107-06-2 | -1,2-Dichloroethane | | 12 | ט | | 78-93-3 | -2-Butanone | | 12 | ן ט | | 71-55-6 | -1,1,1-Trichloroethane | | 12 | U | | 56-23-5 | -Carbon Tetrachloride | | 12 | ען י | | 75-27-4 | -Bromodichloromethane | | 12 | U | | 78-87-5 | -1,2-Dichloropropane | | 12 | U | | 10061-01-5 | -cis-1,3-Dichloropropene | | 12 | U | | 79-01-6 | -Trichloroethene | | 2 | J | | 124-48-1 | -Dibromochloromethane | | 12 | U | | 79-00-5 | -1,1,2-Trichloroethane | | 12 | ן ט | | 71-43-2 | -Benzene | | 12 | ט | | 10061-02-6 | -trans-1,3-Dichloropropene | | 12 | ט | | 75-25-2 | -Bromoform | | 12 | U | | 108-10-1 | -4-Methyl-2-pentanone | | 12 | ן ט | | 591-78-6 | -2-Hexanone | | 12 | ט | | 127-18-4 | -Tetrachloroethene | | 12 | ט | | 108-88-3 | -Toluene | | 12 | ט | | 79-34-5 |
-1,1,2,2-Tetrachloroethane | | 12 | ט | | 108-90-7 | -Chlorcbenzene | | 12 | ט | | 100-41-4 | -Ethylbenzene | | 12 | U | | 100-42-5 | | | 12 | ט | | | -Total Xylenes | | 12 | U | # 000023 Client No. LSVI1719B4G A0682308 | Lab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G | ab Name: | SIL Buff | <u>:alo</u> | Contract: | <u>98-153</u> | - | , | | |---|----------|----------|-------------|-----------|---------------|--------------|-------|--| | | ab Code: | RECNY | Case No.: | SAS No. | ·: | SDG No.: | 23B5G | | atrix: (soil/water) SOIL Sample wt/vol: $\underline{5.07}$ (g/mL) \underline{G} Lab File ID: $\underline{H2812.RR}$ Sevel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. 10.7 Heated Purge: Y Date Analyzed: 10/04/2000 3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> oil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) #### CONCENTRATION UNITS: Lab Sample ID: | CAS NO. | COMPOUND | (ug/L or ug/I | (g) | <u>UG/KG</u> | Q | |------------|----------------------------|---------------|-----|--------------|----------| | 74-87-3 | Chloromethane | | | 11 | U | | 74-83-9 | Bromomethane | | | 11 | U | | 75-01-4 | Vinyl chloride | | | 11 | U | | | Chloroethane | | | 11 | ט | | | Methylene chloride | | | 6 | BJ | | 67-64-1 | | | | 11 | U | | 75-15-0 | Carbon Disulfide | | | 11 | U | | 75-35-4 | 1,1-Dichloroethene | | • | 11 | ט | | 75-34-3 | 1,1-Dichloroethane | | | 11 | U | | 540-59-0 | 1,2-Dichloroethene (Total) | | | 11 | U | | 67-66-3 | Chloroform | | | 11 | U | | 107-06-2 | 1,2-Dichloroethane | | | 11 | U | | 78-93-3 | 2-Butanone | | | 11 | U | | 71-55-6 | 1,1,1-Trichloroethane | | | .11 | שׁן | | | Carbon Tetrachloride | | | 11 | שׁ | | 75-27-4 | Bromodichloromethane | | | 11 | ש | | 78-87-5 | 1,2-Dichloropropane | | | 11 | U | | 10061-01-5 | cis-1,3-Dichloropropene | | | 11 | ַ | | 79-01-6 | Trichloroethene | | | 11 | ן ט | | 124-48-1 | Dibromochloromethane | | | .11 | שׁ | | 79-00-5 | 1,1,2-Trichloroethane | | | 11 | ט | | 71-43-2 | Benzene | | | 11 | ט | | 10061-02-6 | trans-1,3-Dichloropropene | | | 11 | Ū | | | Bromoform | | *, | 11 | ט | | 108-10-1 | 4-Methyl-2-pentanone | | - | 11 | U | | 1 | 2-Hexanone | | | 11 | ט | | | Tetrachloroethene | | | 11 | של | | 108-88-3 | | | | 2 | Ĵ | | | 1,1,2,2-Tetrachloroethane | | | 11 | ט | | | Chlorobenzene | | | 11 | Ū. | | 1 | Ethylbenzene | | | 1 | J | | 100-42-5 | * | | | 11 | Ū | | 1 | Total Xylenes | | | 2 | J | | 1220 20 / | 21, 20100 | | | ~ | | # 000022 Client No. LSVI1315B4G RE ab Name: STL Buffalo Contract: 98-153 ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G fatrix: (soil/water) SOIL Lab Sample ID: A0682307RI evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. 11.4 Heated Purge: Y Date Analyzed: 10/04/2000 C Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.00 ioil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |------------|----------------------------|-----------------|-------|------| | | Chloromethane | | 11 | U | | | Bromomethane | | 11 | U | | | Vinyl chloride | · | 11 | ן ט | | | Chloroethane | | 11 | U | | | Methylene chloride | | 7 | BJ | | 67-64-1 | | | 11 | ט | | | Carbon Disulfide | | 11 | U | | 1 | 1,1-Dichloroethene | | 11 | ן ט | | | 1,1-Dichloroethane | | 11 | U | | | 1,2-Dichloroethene (Total) | | 11 | ַ ט | | 67-66-3 | | | 11 | ט | | | 1,2-Dichloroethane | | 11 | ן ט | | 78-93-3 | | | 11 | ט | | | 1,1,1-Trichloroethane | | 11 | ן ט | | | Carbon Tetrachloride | | 11 | U | | | Bromodichloromethane | | 11 | ַ ט | | | 1,2-Dichloropropane | | 11 | ן ט | | | cis-1,3-Dichloropropene | | 11 | ן ט | | 1 | Trichloroethene | | 3 | J | | 124-48-1 | Dibromochloromethane | | 11 | ט | | 79-00-5 | 1,1,2-Trichloroethane | | 11 | ן ט | | 71-43-2 | -Benzene | | 11 | ן ט | | 10061-02-6 | -trans-1,3-Dichloropropene | | 11 | ט | | 75-25-2 | Bromoform | | 11 | ט | | 108-10-1 | -4-Methyl-2-pentanone | | 11 | ט | | 591-78-6 | -2-Hexanone | | 11 | U- | | 127-18-4 | -Tetrachloroethene | | 11 | ן ט | | 108-88-3 | Toluene | | 3 | J | | 79-34-5 | -1,1,2,2-Tetrachloroethane | | 11 | ט | | 108-90-7 | -Chlorobenzene | | 11 | ן טן | | 100-41-4 | -Ethylbenzene | | 4 | J | | 100-42-5 | -Styrene | | 11 | Ū | | | -Total Xylenes | | 7 | J | # 000021 Client No. | LSVI1315B4G | | | | |-------------|-------------|---|--| | | LSVI1315B4G | - | | ab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G atrix: (soil/water) SOIL Lab Sample ID: A0682307 Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. <u>11.4</u> Heated Purge: Y Date Analyzed: <u>10/03/2000</u> 3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> oil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. COMPOUN | I D | (ug/L or ug/k | | S/KG_ | Q | |-------------------|---------------------|---------------|-----|-----------|-----| | 74-87-3Chloror | | | 1 | .1 τ | J | | 74-83-9Bromome | | | 1 | .1 [1 | J . | | 75-01-4Vinyl o | | | 1 | .1 \[\tau | J . | | 75-00-3Chloroe | ethane | | 1 | .1 \ | J | | 75-09-2Methyle | | | 1 | .3 E | 3 | | 67-64-1Acetone | | | 1 | .1 [[| ן ז | | 75-15-0Carbon | | | 1 | .1 τ | ן ז | | 75-35-41,1-Did | | | . 1 | .1 [[| ן ו | | 75-34-31,1-Did | | | 1 | .1 [[| ן ד | | 540-59-01,2-Did | chloroethene (Total |) | 1 | .1 Լ | J | | 67-66-3Chlorof | | | 1 | .1 t | ן ז | | 107-06-21,2-Dic | hloroethane | | . 1 | .1 \[| J | | 78-93-32-Butar | | | 1 | .1) (| ן ל | | 71-55-61,1,1-7 | | | 1 | .1 t | J | | 56-23-5Carbon | | | .1 | .1 t | ן ל | | 75-27-4Bromodi | | | 1 | .1 Ն | J | | 78-87-51,2-Did | | | 1 | .1 Ն | J | | 10061-01-5cis-1,3 | | | 1 | .1 [| J | | 79-01-6Trichlo | proethene | | | 3 | J | | 124-48-1Dibrom | | | 1 | 1 [[| J | | 79-00-51,1,2-7 | richloroethane | | . 1 | .1 Ն | J | | 71-43-2Benzene | | | 1 | .1 [| J · | | 10061-02-6trans-1 | ,3-Dichloropropene | | 1 | .1 [t | J | | 75-25-2Bromofo | | | 1 | .1 [| J · | | 108-10-14-Methy | 1-2-pentanone | | 1 | .1 t | J | | 591-78-62-Hexar | one | | 1 | .1 t | J | | 127-18-4Tetrach | loroethene | | 1 | .1 \t | J | | 108-88-3Toluene | • | | | 2 3 | J | | 79-34-51,1,2,2 | | | . 1 | .1 [| J | | 108-90-7Chlorot | enzene | | . 1 | .1 t | J. | | 100-41-4Ethylbe | enzene | | | 2 | 7 | | 100-42-5Styrene | <u> </u> | | 1 | .1 \[| J | | 1330-20-7Total X | ylenes | | | 4 | J | # 000020 Client No. LSVI1213B1G ab Name: STL Buffalo Contract: 98-153 .ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682312 Sample wt/vol: $\underline{5.05}$ (g/mL) \underline{G} Lab File ID: $\underline{H2791.RR}$ evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. 9.7 Heated Purge: Y Date Analyzed: 10/04/2000 C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |------------|--|-----------------|-----------------|-------| | 74-87-3 | -Chloromethane | | 11 | U | | 74-83-9 | -Bromomethane | | $\overline{11}$ | บ้ | | 75-01-4 | -Vinyl chloride | | 11 | Ü | | 75-00-3 | -Chloroethane | | 11 | Ū | | 75-09-2 | -Methylene chloride | | 10 | BJ | | 67-64-1 | -Acetone | | 11 | U . | | 75-15-0 | -Carbon Disulfide | | 11 | ט | | 75-35-4 | -1,1-Dichloroethene | | 11 | של | | 75-34-3 | -1,1-Dichloroethane | | 11 | U | | 540-59-0 | -1,2-Dichloroethene (Total) | | - 11 | U | | 67-66-3 | | | 11 | U | | | -1,2-Dichloroethane | | 11 | U | | 78-93-3 | | | 11 | U | | 71-55-6 | -1,1,1-Trichloroethane | | 11 | U | | 56-23-5 | -Carbon Tetrachloride | | 11 | U | | 75-27-4 | -Bromodichloromethane | | 11 | U | | | -1,2-Dichloropropane | | 11 | U . | | 10061-01-5 | -cis-1,3-Dichloropropene | | 11 | U | | 79-01-6 | -Trichloroethene | | 2 | J | | 124-48-1 | -Dibromochloromethane | | 11 | U | | 79-00-5 | -1,1,2-Trichloroethane | | 11 | U | | 71-43-2 | -Benzene | | 11 | U | | 10061-02-6 | trans-1,3-Dichloropropene | | 11 | U | | 75-25-2 | | | 11 | lυ | | 108-10-1 | -4-Methyl-2-pentanone | | 11 | U | | 591-78-6 | | · | 11 | ָּט 👢 | | 127-18-4 | -Tetrachloroethene | | 11 | Ū | | 108-88-3 | | | 11 | U | | | 1,1,2,2-Tetrachloroethane | | 11 | Ū | | 108-90-7 | | | 11 | U | | 100-41-4 | ************************************** | | 11 | U | | 100-42-5 | | | 11 | Ū | | 1330-20-7 | | | 11 | บั | Client No. | LSVI1012B5G | | |-------------|--| Ab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G atrix: (soil/water) SOIL Lab Sample ID: A0682303 Sample wt/vol: 5.08 (g/mL) G Lab File ID: H2782.RR evel: (low/med) LOW Date Samp/Recv: 09/26/2000 Moisture: not dec. 9.4 Heated Purge: Y Date Analyzed: 10/03/2000 3C Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.00 oil Extract Volume: ____ (uL) • Soil Aliquot Volume: ____ (uL) | | | CONCENTRATION UNITS: | | | | |-------------|----------------------------|--|-------|-----|--| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | | | 74-87-3 | Chloromethane | | 11 | U | | | 74-83-9 | Bromomethane | | 11 | U | | | 75-01-4 | Vinyl chloride | | 11 | U | | | 75-00-3 | Chloroethane | | 11 | U | | | 75-09-2 | Methylene chloride | | 19 | В | | | 67-64-1 | Acetone | | 11 | U | | | 75-15-0 | Carbon Disulfide | | 11 | U | | | 75-35-4 | 1,1-Dichloroethene | | 11 | υ | | | 75-34-3 | 1,1-Dichloroethane | | 11 | ט | | | 540-59-0 | 1,2-Dichloroethene (Total) | , | 11 | של | | | 67-66-3 | Chloroform | | 11 | ט | | | 107-06-2 | 1,2-Dichloroethane | | 11 | U | | | | 2-Butanone | | 11 | ไป | | | 71-55-6 | 1,1,1-Trichloroethane | | 11 | U | | | 56-23-5 | Carbon Tetrachloride | | 11 | U | | | 75-27-4 | Bromodichloromethane | <u>, </u> | 11 | U | | | 78-87-5
| 1,2-Dichloropropane | <u> </u> | 11 | ะไบ | | | 10061-01-5- | cis-1,3-Dichloropropene | | 11 | ็บ | | | | Trichloroethene | | 3 | J | | | 124-48-1 | Dibromochloromethane | | 11 | U | | | 79-00-5 | 1,1,2-Trichloroethane | | 11 | U | | | 71-43-2 | · · | | 11 | U | | | 10061-02-6- | trans-1,3-Dichloropropene | | 11 | U | | | | Bromoform | | 11 | U | | | | 4-Methyl-2-pentanone | | 11 | Ū | | | | 2-Hexanone | | 11 | Ū | | | | Tetrachloroethene | | 11 | Ū | | | 108-88-3 | | | 11 | Ū | | | | 1,1,2,2-Tetrachloroethane | | 11 | Ū | | | | Chlorobenzene | | 11 | Ū | | | | Ethylbenzene | | 11 | Ū | | | 100-42-5 | - | | 11 | Ü | | | | Total Xylenes | | 11 | ΙŢ | | | 1550 20 7 | 10001191010 | | | | | Client No. | 1 | |
 | |---|-------------|------| | | LSVI1011B1G | 1 | ab Name: STL Buffalo Contract: 98-153 ab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>23B5G</u> atrix: (soil/water) SOIL Lab Sample ID: A0682311 ample wt/vol: 5.08 (g/mL) G Lab File ID: H2805.RR evel: (low/med) <u>IOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. 12.0 Heated Purge: Y Date Analyzed: 10/04/2000 C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> oil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | | | CONCENTRATION UNI | | _ | |------------|----------------------------|-------------------|--------------|------| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | | 74-87-3 | Chloromethane | | 11 | U | | 74-83-9 | Bromomethane | | 11 | U | | 75-01-4 | Vinyl chloride | | 11 | U | | 75-00-3 | Chloroethane | | 11 | ט | | 75-09-2 | Methylene chloride | | 6 | BJ | | 67-64-1 | Acetone | | 11 | שׁוֹ | | 75-15-0 | Carbon Disulfide | | 11 | ט | | 75-35-4 | 1,1-Dichloroethene | | 11 | lυ | | 75-34-3 | 1,1-Dichloroethane | | 11 | lυ | | | 1,2-Dichloroethene (Total) | | 11 | U | | | Chloroform | | 11 | ע | | 1 | 1,2-Dichloroethane | | 11 | U | | 1 | 2-Butanone | | 11 | שׁ | | | 1,1,1-Trichloroethane | | 11 | ַ ע | | | Carbon Tetrachloride | | 11 | ט | | | Bromodichloromethane | | 11 | U | | | 1,2-Dichloropropane | | 11 | U | | 10061-01-5 | cis-1,3-Dichloropropene | · | 11 | U | | | Trichloroethene | | 11 | U | | 124-48-1 | Dibromochloromethane | | 11 | U | | 79-00-5 | 1,1,2-Trichloroethane | | 11 | U | | 71-43-2 | | | 11 | U | | 10061-02-6 | trans-1,3-Dichloropropene | | 11 | U | | 75-25-2 | | | 11 | ט | | 108-10-1 | 4-Methyl-2-pentanone | | : 11 | U | | 591-78-6 | 2-Hexanone | | 11 | U | | 127-18-4 | Tetrachloroethene | | 11 | U | | 108-88-3 | Toluene | | 11 | U | | 79-34-5 | 1,1,2,2-Tetrachloroethane | | 11 | U | | 108-90-7 | Chlorobenzene | | 11 | U | | 100-41-4 | Ethylbenzene | | 11 | U | | 100-42-5 | Styrene | | 11 | U | | 1330-20-7 | Total Xylenes | | 11 | U | | | | | | 1 | ### 000017 Client No. LSVI89B4G RE ab Name: STL Buffalo Contract: 98-153 Lab Code: RECONY Case No.: ____ SAS No.: ____ SDG No.: 23B5G atrix: (soil/water) SOIL Lab Sample ID: A0682306RI Sample wt/vol: $\underline{5.10}$ (g/mL) \underline{G} Lab File ID: $\underline{H2807.RR}$ Sevel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. 10.5 Heated Purge: Y Date Analyzed: 10/04/2000 3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> oil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |-------------------------------------|-----------------|-------|-----| | 74-87-3Chloromethane | | 11 | U | | 74-83-9Bromomethane | | 11 | ט | | 75-01-4Vinyl chloride | | 11 | U | | 75-00-3Chloroethane | | 11 | ប | | 75-09-2Methylene chloride | | 7 | BJ | | 67-64-1Acetone_ | | 3.1 | U | | 75-15-0Carbon Disulfide | | 11 | ט | | 75-35-41,1-Dichloroethene | | 11 | ט | | 75-34-31,1-Dichloroethane | | 11 | U | | 540-59-01,2-Dichloroethene (Total |) | 11 | U | | 67-66-3Chloroform | · | 11 | U | | 107-06-21,2-Dichloroethane | | 11 | U | | 78-93-32-Butanone | | 11 | ט | | 71-55-61,1,1-Trichloroethane | | 11 | U | | 56-23-5Carbon Tetrachloride | | . 11 | ט | | 75-27-4Bromodichloromethane | | 11 | U | | 78-87-51,2-Dichloropropane | | 11 | U | | 10061-01-5cis-1,3-Dichloropropene | | . 11 | U | | 79-01-6Trichloroethene | | 4 | J | | 124-48-1Dibromochloromethane | | 11 | U | | 79-00-51,1,2-Trichloroethane | | 11 | U | | 71-43-2Benzene | | 11 | U | | 10061-02-6trans-1,3-Dichloropropene | | 11 | ש | | 75-25-2Bramoform | | 11 | שו | | 108-10-14-Methyl-2-pentanone | | 11 | שו | | 591-78-62-Hexanone | | 11 | ไบ | | 127-18-4Tetrachloroethene | | 11 | U | | 108-88-3Toluene | | 6 | J | | 79-34-51,1,2,2-Tetrachloroethane | | 11 | U | | 108-90-7Chlorobenzene | | 11 | Ū | | 100-41-4Ethylbenzene | | 7 | J | | 100-42-5Styrene | | 11 | U | | 1330-20-7Total Xylenes | | 14 | ١ | | 10001 11/1000 | | 7.3 | - 1 | ### 000016 Client No. | LSVI89B4G | | |-----------|--| | | | Lab Name: STL Buffalo Contract: 98-153 Vatrix: (soil/water) SOIL Lab Sample ID: A0682306 Sample wt/vol: $\underline{5.07}$ (g/mL) \underline{G} Lab File ID: $\underline{H2785.RR}$ evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. 10.5 Heated Purge: Y Date Analyzed: 10/03/2000 3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |------------|----------------------------|-----------------|-------|-----| | | Chloromethane | | 11 | U | | 74-83-9 | Bromomethane | | 11 | U | | 75-01-4 | Vinyl chloride | | 11 | ט | | | Chloroethane | | 11 | ש | | 75-09-2 | Methylene chloride | | 10 | BJ | | 67-64-1 | | - | 11 | ט | | 75-15-0 | Carbon Disulfide | | 11 | ט | | 75-35-4 | 1,1-Dichloroethene | | 11 | ן ט | | 75-34-3 | 1,1-Dichloroethane | | 11 | ט | | 540-59-0 | 1,2-Dichloroethene (Total) | | 11 | ט ' | | | Chloroform | | 11 | ט | | 107-06-2 | 1,2-Dichloroethane | | 11 | י ט | | 78-93-3 | 2-Butanone | - | 11 | ט | | 71-55-6 | 1,1,1-Trichloroethane | | 11 | ן ט | | 56-23-5 | Carbon Tetrachloride | | 11 | U | | | Bromodichloromethane | | 11 | U | | | 1,2-Dichloropropane | - | 11 | ָט | | 10061-01-5 | cis-1,3-Dichloropropene | | 11 | ט | | 79-01-6 | Trichloroethene | | 2 | J | | 124-48-1 | Dibromochloromethane | | 11 | ן ט | | 79-00-5 | 1,1,2-Trichloroethane | | 11 | ן ט | | 71-43-2 | Benzene | | 11 | ט | | 10061-02-6 | trans-1,3-Dichloropropene | | 11 | ט | | 75-25-2 | Bromoform | · | 11 | ט | | 108-10-1 | 4-Methyl-2-pentanone | | 11 | ן ט | | | 2-Hexanone | | 11 | ט | | 127-18-4 | Tetrachloroethene | | 11 | ט | | 108-88-3 | Toluene | | 4 | J | | 79-34-5 | 1,1,2,2-Tetrachloroethane | | 11 | ַ ט | | | Chlorobenzene | | 11 | ט | | | Ethylbenzene | | 5 | J | | 100-42-5 | <u> </u> | | 11 | บ | | i . | Total Xylenes | | 9 | J | | | | | | | ### 000015 Client No. | - | | | |-----------|--|--| | LSVI78B5G | | | | | | | ab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G atrix: (soil/water) SOIL Lab Sample ID: A0682302 evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. 10.2 Heated Purge: Y Date Analyzed: 10/03/2000 GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> oil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | · Q | |------------|----------------------------|-----------------|-----------|-----| | 74-87-3 | Chloromethane | | 11 | ט | | 74-83-9 | Bromomethane | | 11 | ש | | 75-01-4 | Vinyl chloride | | 11 | - U | | | Chloroethane | 1 | . 11 | U | | 75-09-2 | Methylene chloride | | 29 | В | | 67-64-1 | Acetone | | 11 | שׁן | | 75-15-0 | Carbon Disulfide | | 11 | U | | 75-35-4 | 1,1-Dichloroethene | | 11 | ש | | 75-34-3 | 1,1-Dichloroethane | | 11 | ש | | 540-59-0 | 1,2-Dichloroethene (Total) | | 11 | U | | 67-66-3 | Chloroform | | 11 | U | | 107-06-2 | 1,2-Dichloroethane | | 11 | U | | 78-93-3 | 2-Butanone | | 11 | U | | 71-55-6 | 1,1,1-Trichloroethane | | 11 | U | | 56-23-5 | Carbon Tetrachloride | | 11 | U | | 75-27-4 | Bromodichloromethane | | 11 | ט | | 78-87-5 | 1,2-Dichloropropane | | 11 | ַ ע | | 10061-01-5 | cis-1,3-Dichloropropene | | 11 | Įυ | | 79-01-6 | Trichloroethene | | 2 | J | | 124-48-1 | Dibromochloromethane | | 11 | U | | 79-00-5 | 1,1,2-Trichloroethane | | 11 | U | | 71-43-2 | Benzene | | 11 | lυ | | 10061-02-6 | trans-1,3-Dichloropropene | | 11 | U | | | Bromoform | | 11 | υ | | 108-10-1 | 4-Methyl-2-pentanone | | 11 | U | | | 2-Hexanone | | 11 | U | | 127-18-4 | Tetrachloroethene | | 11 | U | | 108-88-3 | Toluene | | 11 | Ū | | 79-34-5 | 1,1,2,2-Tetrachloroethane | | 11 | Ū | | | Chlorobenzene | | 11 | Ū | | | Ethylbenzene | | 11 | Ū | | | Styrene | | 11 | Ü | | | Total Xylenes | | 11 | U | | | | | . | 1 | Client No. | | | LSVI78B1G | |---|------------------|-----------------------| | ab Name: STL Buffalo Contract: 98-153 | | | | ab Code: RECNY Case No.: SAS No.: | SDG No.: 23B5G | | | atrix: (soil/water) <u>SOIL</u> | Lab Sample ID: | A0682319 | | ample wt/vol: $\underline{5.12}$ (g/mL) \underline{G} | Lab File ID: | H2803 .RR | | evel: (low/med) <u>LOW</u> | Date Samp/Recv: | 09/26/2000 09/26/2000 | | Moisture: not dec. 8.5 Heated Purge: Y | Date Analyzed: | 10/04/2000 | | C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) | Dilution Factor: | 1.00 | Soil Extract Volume: ____ (uL) CONCENIRATION UNITS: Soil Aliquot Volume: _____ (uL) | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |------------|----------------------------|---------------------------------------|-------|------------| | 74-87-3 | Chloromethane | | 11 | U | | | Bromomethane | | 11 | Ü | | | Vinyl chloride | | 11 | Ū | | | Chloroethane | | 11 | บ | | | Methylene chloride | | 7 | BJ | | 67-64-1 | | | 3 | J | | | Carbon Disulfide | | 11 | Ū | | 75-35-4 | 1,1-Dichloroethene | | 11 | Ū | | B . | 1,1-Dichloroethane | · · · · · · · · · · · · · · · · · · · | 11 | Ū | |
 1,2-Dichloroethene (Total) | | 11 | บ | | | Chloroform | | 11 | บ | | 107-06-2 | 1,2-Dichloroethane | | 11 | Ū | | | 2-Butanone | | 11 ' | lυ | | 71-55-6 | 1,1,1-Trichloroethane | | 11 | <u>ี</u> บ | | | Carbon Tetrachloride | | 11 | Ū. | | 75-27-4 | Bromodichloromethane | | 11 | ט | | 78-87-5 | 1,2-Dichloropropane | | 11 | U | | | cis-1,3-Dichloropropene | | 11 | ט | | | Trichloroethene | | 9 | J | | 124-48-1 | Dibromochloromethane | | 11 | Ū | | | 1,1,2-Trichloroethane | | 11 | Ū | | 71-43-2 | | | 11 | U | | 10061-02-6 | trans-1,3-Dichloropropene | | 11 | lŪ | | 75-25-2 | | 1 | 11 | Ū | | | 4-Methyl-2-pentanone | | 11 | Ū | | | 2-Hexanone | | 11 | Ū | | | Tetrachloroethene | | 11 | Ū | | 108-88-3 | | | 11 | Ū | | | 1,1,2,2-Tetrachloroethane | | 11 | Ū | | | Chlorobenzene | | 11 | Ü | | | Ethylbenzene | | 11 | Ū | | 100-42-5 | | | 11 | Ü | | | Total Xylenes | | 11 | Ü | | 2000 20 7 | | | | | # 000013 LSVITETRAG U J. U U J U U U U J U U U 11 6 11 11 11 11 11 11 2 20 11 11 28 11 42 4 Client No. | ab Nam | e: <u>STL Buf</u> | falo | Contract: 98-1 | 53 | 20120 | | | |-------------------|-------------------|----------------------|------------------|------------------------------|---------------------|-----------|----------| | ∌
Lab Cod
• | e: <u>RECNY</u> | Case No.: | _ SAS No.: | SDG No.: 2 | 23B5G | | | | atrix: | (soil/wat | er) <u>SOIL</u> | -
- | Lab Sample | ID: <u>A06823</u> | 05 | | | Sample ' | wt/vol: | 5.03 (g/mL |) <u>G</u> | Lab File II | D: <u>H2784</u> . | RR | | | evel: | (low/med |) <u>LOW</u> | | Date Samp/F | Recv: <u>09/26/</u> | 2000 09 | /26/2000 | | Moist | ure: not d | ec. <u>12.7</u> Heat | ed Purge: Y | Date Analyz | zed: <u>10/03/</u> | 2000 | | | X Colu | mn: <u>DB-624</u> | ID: <u>0.53</u> | (mm) | Dilution Fa | actor: <u>1.</u> | <u>00</u> | | | oil Ex | tract Volu | me: (uL) | | Soil Alique | ot Volume: | | (uL) | | ,
 | CAS NO. | COMPOUND | | CONCENTRATION (ug/L or ug/Kg | | Q | | | _ | | Chlorometh | | | 11 | U | | | • | | Bramametha | | · | 11 | [ט | | | | 75-01-4- | Vinyl chlo | ride | | 11 | ט | | | | 75-00-3- | Chloroetha | ne | | 11 | שן | 1 | | | 75-09-2- | Methylene | chloride | | 11 | В | | | ` | | Acetone | | · | 11 | U | | | 7 | | Carbon Dis | | | 11 | ט | 1 | | | | 1,1-Dichlo | | | 11 | U | | | | | 1,1-Dichlo | | | 11 | שׁן | | | | | | roethene (Total) | | 11 | ט | | | | | Chloroform | | | 11 | טן | | | | 107-06-2 | 1,2-Dichlo | roethane | | 11 | ט | 1 | | | 78-93-3- | 2-Butanone | | | 11 | U | | | | 71-55-6- | 1,1,1-Tric | hloroethane | | 11 | ַ ט | | | - | | Carbon Tet | | | 11 | U | | | | | Bromodichl | | | 11 | טן |) | | | 178-87-5- | 1 2-Dichlo | mmmane | 1 | 11 | 111 | 1 | 10061-01-5---cis-1,3-Dichloropropene 124-48-1----Dibromochloromethane 108-10-1----4-Methyl-2-pentanone 127-18-4----Tetrachloroethene 79-00-5----1,1,2-Trichloroethane 10061-02-6---trans-1,3-Dichloropropene 79-34-5----1,1,2,2-Tetrachloroethane 79-01-6----Trichloroethene 71-43-2----Benzene 75-25-2----Bromoform 591-78-6----2-Hexanone 108-90-7-----Chlorobenzene 100-41-4----Ethylbenzene 1330-20-7----Total Xylenes 108-88-3----Toluene 100-42-5----Styrene Client No. | | |
 | |-----------|-----|------| | LSVI56B3C | } . | | ab Name: SIL Buffalo Contract: 98-153 ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682315 Sample wt/vol: $\underline{5.04}$ (g/mL) \underline{G} Lab File ID: $\underline{H2794.RR}$ _evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. 10.4 Heated Purge: Y Date Analyzed: 10/04/2000 C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) #### CONCENTRATION INTEG. | · · · · · · · · · · · · · · · · · · · | ITS: | | | |---------------------------------------|-----------------|--------------|----------------| | CAS NO. COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | | 74-87-3Chloromethane | | 11 | ט | | 74-83-9Bromomethane | | 11 | U | | 75-01-4Vinyl chloride | | 11 | ט | | 75-00-3Chloroethane | | 11 | ט | | 75-09-2Methylene chloride | | 7 | BJ | | 67-64-1Acetone | | 11 | ָּט | | 75-15-0Carbon Disulfide | | 11 | ט | | 75-35-41,1-Dichloroethene | | . 11 | ט ו | | 75-34-31,1-Dichloroethane | | 11 | ט | | 540-59-01,2-Dichloroethene (| Total) | 11 | ט | | 67-66-3Chloroform | | 11 | U | | 107-06-21,2-Dichloroethane | | 11 . | ַ ט | | 78-93-32-Butanone | | 11 | ט | | 71-55-61,1,1-Trichloroethan | e | 11 | ט | | 56-23-5Carbon Tetrachloride | | 11 | U | | 75-27-4Bromodichloromethane | | 11 | ט - | | 78-87-51,2-Dichloropropane | | 11 | ט - | | 10061-01-5cis-1,3-Dichloroprop | ene | 11 | ט | | 79-01-6Trichloroethene | | 4 | J | | 124-48-1Dibromochloromethane | | 11 | ן ט | | 79-00-51,1,2-Trichloroethan | e | 11 | ט | | 71-43-2Benzene | | 11 | ט | | 10061-02-6trans-1,3-Dichloropn | opene | 11 | ט | | 75-25-2Bromoform | | 11 | Ū | | 108-10-14-Methyl-2-pentanone | | 11 | Ū | | 591-78-62-Hexanone | | 11 | Ū | | 127-18-4Tetrachloroethene | | 11 | Ū | | LO8-88-3Toluene | | 11 | ָ [ָ] | | 79-34-51,1,2,2-Tetrachloroe | thane | 11 | Ū | | 108-90-7Chlorobenzene | | 11 | Ū | | L00-41-4Ethylbenzene | | 11 | Ū | | 100-42-5Styrene | | - 11 | ับ | | 1330-20-7Total Xylenes | | 11 | บ | | | | | | Client No. | | | LSVI34B1G | } | |--|---------------------------------------|----------------------|------------| | ab Name: STL Buffalo Contract: 98-153 | · · · · · · · · · · · · · · · · · · · | <u> </u> | | | ab Code: RECNY Case No.: SAS No.: | SDG No.: 23B5G | | | | atrix: (soil/water) <u>SOIL</u> | Lab Sample ID: | A0682310 | | | ample wt/vol: <u>5.08</u> (g/mL) <u>G</u> | Lab File ID: | H2810.RR | | | evel: (low/med) <u>LOW</u> | Date Samp/Recv: | 09/26/2000 | 09/26/2000 | | Moisture: not dec. <u>6.2</u> Heated Purge: Y | Date Analyzed: | 10/04/2000 | ! | | C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) | Dilution Factor: | 1.00 | | | oil Extract Volume: (uL) | Soil Aliquot Vol | ume: | (uL) | | Cas no. compound | CONCENTRATION UNITS: (ug/L or ug/Kg) | | Q | | 74-87-3Chloromethane
74-83-9Bromomethane
75-01-4Vinyl chloride | | 10 U
10 U
10 U | 1 | | 75-00-3Chloroethane
75-09-2Methylene chloride | | 10 U | 1 | # 000010 #### NEW YORK STATE ELECTRIC & GAS NYSEG-ASP91-1 - VOLATTLES ANALYSIS DATA SHEET Client No. | | - | | | | |----|------|-----|---|------| | | | | |
 | | LS | /I24 | B4G | } | | | | | | | - 1 | Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Vatrix: (soil/water) SOIL Lab Sample ID: A0682304 Sample wt/vol: $\underline{5.07}$ (g/mL) \underline{G} Lab File ID: $\underline{H2783.RR}$ Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> k Moisture: not dec. 13.0 Heated Purge: Y Date Analyzed: 10/03/2000 3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) UG/KG 0 74-87-3-----Chloromethane 11 U 74-83-9-----Bromomethane 11 U 75-01-4-----Vinyl chloride 11 U 75-00-3-----Chloroethane 11 U 75-09-2-----Methylene chloride 13 В U 11 75-15-0-----Carbon Disulfide 11 U 75-35-4----1,1-Dichloroethene 11 U 75-34-3----1,1-Dichloroethane 11 U 540-59-0----1,2-Dichloroethene (Total) 11 U 67-66-3-----Chloroform IJ 11 107-06-2----1,2-Dichloroethane 11 IJ 78-93-3----2-Butanone U 11 71-55-6----1,1,1-Trichloroethane 11 IJ 56-23-5-----Carbon Tetrachloride 11 IJ 75-27-4----Bromodichloromethane 11 U 78-87-5----1,2-Dichloropropane U 11 10061-01-5---cis-1,3-Dichloropropene 11 U 79-01-6----Trichloroethene 11 U 124-48-1----Dibromochloromethane U . 11 79-00-5----1,1,2-Trichloroethane U 11 71-43-2----Benzene U 11 10061-02-6---trans-1,3-Dichloropropene U 11 75-25-2----Bromoform 11 U 108-10-1----4-Methyl-2-pentanone 11 IJ U 591-78-6----2-Hexanone 11 U 127-18-4----Tetrachloroethene 11 108-88-3----Toluene 11 IJ 79-34-5----1,1,2,2-Tetrachloroethane IJ 11 108-90-7-----Chlorobenzene 11 U 100-41-4----Ethylbenzene IJ 11 100-42-5----Styrene 11 U 1330-20-7----Total Xylenes U 11 # 000009 Client No. ab Name: SIL Buffalo Contract: 98-153 atrix: (soil/water) SOIL Lab Sample ID: A0682301 evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. <u>4.5</u> Heated Purge: Y Date Analyzed: <u>10/03/2000</u> C Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.00 oil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. | COMPOUND | (ug/L or ug/K | ig) I | UG/KG | Q | |-------------|----------------------------|---------------------------------------|-------|-------|------| | 74-87-3 | Chloromethane | | | 10 | ט | | 74-83-9 | Bromomethane | | | 10 | ן טן | | 75-01-4 | Vinyl chloride | | | 10 | ן ע | | 75-00-3 | Chloroethane | | | 10 | ן טן | | 75-09-2 | Methylene chloride | | | 16 | B | | 67-64-1 | Acetone | | | 10 | ן טן | | 75-15-0 | Carbon Disulfide | | | 10 | υi | | 75-35-4 | 1,1-Dichloroethene | | | 10 | ן טן | | 75-34-3 | 1,1-Dichloroethane | | | 10 | ן מן | | 540-59-0 | 1,2-Dichloroethene (Total) | | | 10 | U. | | 67-66-3 | Chloroform | | | 10 | ן ט | | 107-06-2 | 1,2-Dichloroethane | | | 10 | ן ט | | 78-93-3 | 2-Butanone | | | 10 | ט ו | | 71-55-6 | 1,1,1-Trichloroethane | · · · · · · · · · · · · · · · · · · · | | 10 | ן ט | | 56-23-5 | Carbon Tetrachloride | | | 10 | ט | | 75-27-4 | Bromodichloromethane | | | 10 | ן ח | | 78-87-5 | 1,2-Dichloropropane | | | 10 | ט | | 10061-01-5- | cis-1,3-Dichloropropene | | | 10 | U | | 79-01-6 | Trichloroethene | | | 10 | U | | 124-48-1 | Dibromochloromethane | | • | 10 | ט ו | | 79-00-5 | 1,1,2-Trichloroethane | | | 10 | U | | 71-43-2 | | | | 10 | ט | | 10061-02-6- | trans-1,3-Dichloropropene | | | 10 | ן ט | | 75-25-2 | Bromoform | | | 10 | ט | | 108-10-1 | 4-Methyl-2-pentanone | | | 10 | ן מ | | | 2-Hexanone | | | 10 | ט ו | | 127-18-4 |
Tetrachloroethene | | | 10 | ן ט | | 108-88-3 | | | | 10 | Ū | | | 1,1,2,2-Tetrachloroethane | | | 10 | Ū | | - | Chlorobenzene | · · · · · · · · · · · · · · · · · · · | | 10 | Ū | | | Ethylbenzene | · · · · · · · · · · · · · · · · · · · | | 10 | U | | 100-42-5 | | | • | 10 | Ū | | | Total Xylenes | | | 10 | U | | | | | | | | ## 800000 Client No. | LSVI23B3G | . ' | |-----------|-----| | | | ab Name: STL Buffalo Contract: 98-153 _ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Vatrix: (soil/water) SOIL Lab Sample ID: A0682314 Sample wt/vol: $\underline{5.11}$ (g/mL) \underline{G} Lab File ID: $\underline{H2793.RR}$ Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> k Moisture: not dec. 8.7 Heated Purge: Y Date Analyzed: 10/04/2000 3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CONCENTRATION UNITS: | | | | | |----------------------|----------------------------|-----------------|-------|----------| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | | 74-87-3 | Chloromethane | | 11 | ט | | 74-83-9 | Bromomethane | | 11 | ט | | 75-01-4 | Vinyl chloride | | 11 | Ŭ΄ | | | Chloroethane | | 11 | ַ ט | | | Methylene chloride | | 8 | BJ | | 67-64-1 | | | 11 | U | | | Carbon Disulfide | | 11 | Ŭ | | 75-35-4 | 1,1-Dichloroethene | | 11 | U | | 75-34-3 | 1,1-Dichloroethane | | 11 | U | | | 1,2-Dichloroethene (Total) | | 11 | U | | | Chloroform | | 11 | U | | 107-06-2 | 1,2-Dichloroethane | | 11 | ע | | 78-93-3 | 2-Butanone | | 11. | ט | | 71-55-6 | 1,1,1-Trichloroethane | | 11 | ט | | 56-23-5 | Carbon Tetrachloride | | 11 | ָט י | | 75-27-4 | Bromodichloromethane | | 11 | U | | 78-87-5 | 1,2-Dichloropropane | | 11 | ט | | 10061-01-5- | cis-1,3-Dichloropropene | | 11 | ַ | | 79-01-6 | Trichloroethene | | 3 | J | | 124-48-1 | Dibromochloromethane | | 11 | ט | | 79-00-5 | 1,1,2-Trichloroethane | | 11 | U | | 71-43-2 | Benzene | | 11 | ט | | 10061-02-6- | trans-1,3-Dichloropropene | | 11 | ט | | 75-25-2 | Bromoform | | 11 | ט | | 108-10-1 | 4-Methyl-2-pentanone | | 11 | ט ו | | 591-78-6 | 2-Hexanone | | 11 | ע | | 127-18-4 | Tetrachloroethene | | 11 | ע | | 108-88-3 | Toluene | | - 11 | ט | | 79-34-5 | 1,1,2,2-Tetrachloroethane | | 11 | U | | | Chlorobenzene | | 11 | ט | | | Ethylbenzene | | 11 | ָּט | | 100-42-5 | | | 11 | U | | | Total Xylenes | | 11 | U | ### 000007 Client No. LSVI04B2G ab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G atrix: (soil/water) SOIL Lab Sample ID: A0682313 Sample wt/vol: 5.08 (g/mL) G Lab File ID: <u>H2811.RR</u> evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: not dec. <u>6.7</u> Heated Purge: Y Date Analyzed: <u>10/04/2000</u> 3C Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: <u>1.00</u> bil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL) | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------------------|----------------------------|-----------------|-------|--------------| | | Chloromethane | | 10 | ט | | | Bromomethane | | 10 | \ U - | | 75-01-4 | Vinyl chloride | | 10 | ט | | | Chloroethane | | 10 | ַ | | ¹ 75-09-2 | Methylene chloride | | 7 | BJ - | | 67-64-1 | | | 10 | ן ט | | 75-15-0 | Carbon Disulfide | | 10 | U | | 75-35-4 | 1,1-Dichloroethene | | 10 | U | | 75-34-3 | 1,1-Dichloroethane | | 10 | ַ | | 540-59-0 | 1,2-Dichloroethene (Total) | | 10 | ַ <u>ט</u> | | 67-66-3 | Chloroform | | 10 | U | | 107-06-2 | 1,2-Dichloroethane | | 10 | U | | 78-93-3 | 2-Butanone | | 10 | ַטן | | 71-55-6 | 1,1,1-Trichloroethane | , | · 10 | ש | | 56-23-5 | Carbon Tetrachloride | , | 10 | ט | | 75-27-4 | Bromodichloromethane | | 10 | ט | | 78-87-5 | 1,2-Dichloropropane | | 10 | ש | | 10061-01-5 | cis-1,3-Dichloropropene | | 10 | ַ | | 79-01-6 | Trichloroethene | | 9 | J | | 124-48-1 | Dibromochloromethane | | 10 | U | | 79-00-5 | 1,1,2-Trichloroethane | | 10 | U | | 71-43-2 | Benzene | _ | 10 | ַ | | 10061-02-6 | trans-1,3-Dichloropropene | | 10 | ַ | | 75-25-2 | | | 10 | ט | | | 4-Methyl-2-pentanone | | 10 | U | | | 2-Hexanone | | 10 | ט | | 1 | Tetrachloroethene | , | 10 | ַ ט | | 108-88-3 | Toluene | | 10 | ט | | | 1,1,2,2-Tetrachloroethane | | 10 | U | | | Chlorobenzene | | 10 | Ū | | | Ethylbenzene | | 10 | ט | | 100-42-5 | | | 10 | Ū | | | Total Xylenes | | 10 | Ū | | | | | | | #### DATA COMMENT PAGE #### ORGANIC DATA QUALIFIERS ND or U Indicates compound was analyzed for, but not detected. - J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero. - C This flag applies to pesticide results where the identification has been confirmed by GC/MS. - B This flag is used when the analyte is found in the associated blank, as well as in the sample. - E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis. - D This flag identifies all compounds identified in an analysis at the secondary dilution factor. - N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results. - P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on the data page and flagged with a "P". - A This flag indicates that a TIC is a suspected aldol-condensation product. - Indicates coelution. - Indicates analysis is not within the quality control limits. #### INORGANIC DATA QUALIFIERS ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value. - J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit, detection limit. - N Indicates spike sample recovery is not within the quality control limits. - K Indicates the post digestion spike recovery is not within the quality control limits. - S Indicates value determined by the Method of Standard Addition. - M Indicates duplicate injection results exceeded quality control limits. - W Post digestion spike for Furnace AA analysis is out of quality control limits (85-115%) while sample absorbance is less than 50% of spike absorbance. - E Indicates a value estimated or not reported due to the presence of interferences. - H Indicates analytical holding time exceedance. - Indicates analysis is not within the quality control limits. - + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995. "I certify that this data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Director or her designee, as verified by the following signature." Susan L. Tinsmith Laboratory Director This data report shall not be reproduced, except in full, without the written authorization of STL Buffalo. #### Dilutions Con't: | Sample ID | Dilution | | |--------------|----------|--| | LSVI1213B1G | 10 | | | LSVI1719B4G | 10 | | | LSVISS01C | 10 | | | LSVISS02C | 10 | | | LSVISS03C | 10 | | | LSVISS04C | 10 | | | LSVI23B5G MS | 5** | | | LSVI23B5G SD | 5** | | Sample LSVI56B3G contained one or more target compounds in amounts exceeding the instrument calibration range ("E" qualifiers). The sample exhibited internal standard recovery results above quality control limits for Phenanthrene-D10 and was initially analyzed at a dilution factor of 5. The sample was reanalyzed at a dilution factor of 20 and exhibited compliant internal standard recoveries. The surrogates were diluted out of both samples. Both sets of data are reported. The Matrix Spike Blank (MSB)(A0B0765402) exhibited spike recovery results slightly above quality control limits for 4-Nitrophenol, 2,4-Dinitrotoluene, and Pentachlorophenol. Those compounds were not detected in the associated samples. #### **METALS** The results of soil samples have been corrected for percent solids and are reported on a dry weight basis. Sample LSVI23B5G exhibited spike recovery results outside quality control limits for Antimony and Mercury. The prep blank exhibited results for Lead above the CRDL. However, all associated samples results were greater than ten times that of the prep blank. #### WET CHEMISTRY The Laboratory Control Sample (LCS) exhibited spike recovery results above quality control limits for Cyanide. #### **COMMENTS** Comments pertain to data on one or all pages of this report. The enclosed data has been reported utilizing data qualifiers (Q) as defined on the Data Comment Page. Three coolers were received at temperatures of 4°C. #### <u>METHOD 8260</u> VBLK34 and VBLK35 exhibited positive results for Methylene chloride. Affected samples are flagged with "B" qualifiers. Samples LSVI1315B4G and LSVI89B4G exhibited surrogate recovery results below quality control limits for Toluene-D8. The samples were reanalyzed outside of holding time and exhibited compliant recoveries. Both sets of data are reported. During analysis, the analyst followed ASP95 holding times instead of the required ASP91. The following samples were analyzed outside of holding time (one day outside of ASP95 holding time): LSVI1719B4G, LSVI213B4G, LSVI34B1G, LSVI1011B1G, LSVI213B1G, LSVI04B2G, LSVI23B3G, LSVI56B3G, LSVISS04C, LSVISS01C, LSVI03C, LSVI78B1G, and LSVISS02C. #### METHOD 8270 Due to sample matrix, the
following samples were analyzed at the indicated dilutions (* surrogates were diluted out; ** spikes were diluted out): | Dilution | | |----------|--| | 10 | | | 10 | | | 5* | | | 10* | | | 10 | | | 10 | | | 10 | | | 10 | | | 5 | | | 5 | | | 5 | | | 10 | | | | | STL Buffalo #### SDG NARRATIVE Laboratory Name: STL Buffalo Laboratory Code: STL Buffalo Contract Number: NY00-167 SDG Number: 23B5G Sample Identifications: LSVI04B2G LSVI1011B1G LSVI1012B5G LSVI1213B1G LSVI1315B4G LSVI1719B4G LSVI2123B4G LSVI23B3G LSVI23B5G LSVI24B4G LSVI34B1G LSVI56B3G LSVI67B4G LSVI78B1G LSVI78B5G LSVI89B4G LSVISS01C LSVISS02C LSVISS03C LSVISS04C #### **METHODOLOGY** The specific methodology employed in obtaining the enclosed analytical results is indicated on the specific data tables. The method number presented refers to the following U.S. Environmental Protection Agency reference: "Analytical Services Protocol", New York State Department of Environmental Conservation, Document No. 0102, Volumes 1-10, September 1989 with 12/91 and 12-95 Revisions and updates. SAMPLE DATA SUMMARY PACKAGE October 30, 2000 Mr. John Ruspantini NYSEG - Corporate Drive Kirkwood Industrial Park Binghamton, NY 13902-5224 RE: Analytical Results Dear Mr. Ruspantini: STL Buffalo 10 Hazelwood Drive Suite 106 Amherst, NY 14228 Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com Please find enclosed analytical results concerning the samples recently submitted by your firm. The pertinent information regarding these analyses is listed below: Project: NYSEG - Lockport State Road Former MGP Matrix: Soil Samples Received: 09/26/00 Sample Date: 09/26/00 If you have any questions concerning this data, please contact me at (716) 691-2600 and refer to the I.D. number listed below. It has been our pleasure to provide New York State Electric & Gas with environmental testing services. We look forward to serving you in the future. Sincerely, STL Buffalo Kenneth P. Kinecki Program Manager Susan L. Tinsmith Laboratory Manager KPK/SLT/rtv Enclosure I.D.#A00-6823 #NY0A8576 This report contains _____ pages which are individually numbered # **Analytical Report for Table 4** Client No. | LSVI24B4G | | |-----------|--| | | | ab Name: SIL Buffalo Contract: 98-153 atrix: (soil/water) SOIL Lab Sample ID: A0682304 Sample wt/vol: 30.55 (g/mL) G Lab File ID: Z44613.RR evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> k Moisture: 8.1 decanted: (Y/N) N Date Extracted: 09/29/2000 bncentrated Extract Volume: 10000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) Dilution Factor: 10.00 GPC Clearup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ua/L or ug/Kg) | | Q | |----------|------------------------------|-----------------|---------|-----| | 108-95-2 | Phenol | | 35000 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 35000 | U | | | 2-Chlorophenol | | 35000 | U | | 541-73 1 | 1,3-Dichlorobenzene | | 35000 | U | | 106-46-7 | 1,1-Dichlorobenzene | | 35000 | U | | 1 | 1,2-Dichlorobenzene | - | 35000 | U | | | 2-Methylphenol | | 35000 | ן ט | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane) | | 35000 | U | | | 4-Methylphenol_ | | `35000 | ט | | | N-Nitroso-Di-n-propylamine | | 35000 | U | | 67-72-1 | Hexachloroethane | | 35000 | ן ט | | 98-95-3 | Nitrobenzene | | 35000 | U | | 78-59-1 | Isophorone | | 35000 | U | | | 2-Nitrophenol | | 35000 | U | | | 2,4-Dimethylphenol | | 35000 | U | | 111-91-1 | Bis(2-chloroethoxy) methane | | 35000 . | U | | | 2,4-Dichlorophenol_ | | 35000 | U . | | 120-82-1 | 1,2,4-Trichlorobenzene | | 35000 | U | | 91-20-3 | Naphthalene | | 35000 | U | | 106-47-8 | 4-Chloroaniline | | 35000 | ַּט | | 87-68-3 | Hexachlorobutadiene | | 35000 | U | | 59-50-7 | 4-Chloro-3-methylphenol | | 35000 | U | | 91-57-6 | 2-Methylnaphthalene | , | 35000 | U | | 77-47-4 | Hexachlorocyclopentadiene | | 35000 | ט | | 88-06-2 | 2,4,6-Trichlorophenol | | 35000 | ט | | 95-95-4 | 2,4,5-Trichlorophenol | | 86000 | ט | | 91 53-7 | 2-Chloronaphthalene | | 35000 | ט | | 88-74-4 | 2-Nicroaniline | | 86000 | ַט | | 131-11-3 | Dimethyl phthalate | | 35000 | ט | | | Acenaphthylene | | 35000 | ט | | | 2,6-Dinitrotoluene | | 35000 | U | | | 3-Nitroaniline | | 86000 | U . | # 000036 Client No. | LSVI24B4G | | |-----------|--| | <u> </u> | | Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 23B5G Vatrix: (soil/water) SOIL Lab Sample ID: A0682304 Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> % Moisture: 8.1 decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) John OAF 11.40 Dilution Factor: 10.00 FPC Cleanup: (Y/N) N pH: ___ Told c(Alt 5.)30 | | | CONCENTRATION UNITS: | | | |----------|------------------------------|----------------------|--------------|----------| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | | | Acenaphthene | | 35000 | U | | | 2,4-Dinitrophenol | | 86000 | ט | | | 4-Nitrophenol | | 86000 | ַ ט | | t — - | Dibenzofuran_ | | 35000 | ט | | | 2,4-Dinitrotoluene | | 35000 | ַ ט | | | Diethyl phthalate | | 35000 | ט | | | 4-Chlorophenyl phenyl ether | | 35000 | ע | | 86-73-7 | | | 35000 | U | | 1 | 4-Nitroaniline | | 86000 | ע | | | 4,6-Dinitro-2-methylphenol_ | | 86000 | ַ | | | N-nitrosodiphenylamine | | 35000 . | ַ | | | 4-Bromophenyl phenyl ether | | 35000 | ַ ע | | | Hexachlorobenzene | | 35000 | ע | | | Pentachlorophenol | | 86000 | ן ט | | | Phenanthrene | | 1400 | J | | 120-12-7 | | | 35000 | U | | 86-74-8 | | | 35000 | U | | | Di-n-butyl phthalate | | 35000 | ַ | | | Fluoranthene | | 2400 | J | | 129-00-0 | | | 2100 | J | | | Butyl benzyl phthalate | | 35000 | ט | | 91-94-1 | 3,3'-Dichlorobenzidine | | 35000 | ט | | 56-55-3 | Benzo (a) anthracene | | 1400 | J. | | 218-01-9 | Chrysene | | 920 | J | | 117-81-7 | -Bis(2-ethylhexyl) phthalate | | 35000 | ן ט | | 117-84-0 | Di-n-octyl phthalate | | 35000 | ן ט | | 205-99-2 | Benzo (b) fluoranthene | | 1500 | J | | 207-08-9 | Benzo(k)fluoranthene | | 35000 · | ע | | 50-32-8 | -Benzo (a) pyrene | | 920 | J | | 193-39-5 | -Indeno(1,2,3-cd)pyrene | | 490 | J | | | -Dibenzo (a, h) anthracene | | 35000 | ן ט | | 1 | -Benzo(ghi)perylene | | 470 | J | ### 000037 Client No. | LSVI34B1G | | | |-----------|--|--| | · | | | ab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: <u>23B5G</u> atrix: (soil/water) SOIL Lab Sample ID: A0682310 Sample wt/vol: 30.92 (g/mL) G Lab File ID: Z44619.RR evel: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: 8.3 decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 njection Volume: 2.00 (uL) Dilution Factor: ___10.00 GPC Cleanup: (Y/N) N pH: _ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|--|---|--------------|----| | 108-95-2 | Phenol | | 3500 | U | | | Bis(2-chloroethyl) ether | | 3500 | U | | | 2-Chlorophenol | | 3500 | U | | 541-73-1 | 1,3-Dichlorobenzene | | 3500 | U | | 106-46-7 | 1,4-Dichlorobenzene | , | 3500 | U | | 95-50-1 | 1,2-Dichlorobenzene | , , | 3500 | U | | 95-48-7 | 2-Methylphenol | | 3500 | U | | 108-60-1 | 2,2'-Oxybis(1-Chloropropar | ne) | 3500 | U | | 106-44-5 | 4-Methylphenol | | 3500 | U | | | N-Nitroso-Di-n-propylamine | 9 | 3500 | U | | 67-72-1 | Hexachloroethane | | 3500 | U | | 98-95-3 | Nitrobenzene | | 3500 | Įυ | | 78-59-1 | Isophorone | | 3500 | U | | 88-75-5 | 2-Nitrophenol | | 3500 | U | | 105-67-9 | 2,4-Dimethylphenol | | 3500 | U | | 111-91-1 | Bis (2-chloroethoxy) methan | ne | 3500 | U | | 120-83-2 | 2,4-Dichlorophenol | | 3500 | ע | | 120-82-1 | 1,2,4-Trichlorobenzene | | 3500 | U | | | Naphthalene | | 3500 | U | | | 4-Chloroaniline | | 3500 | U | | | Hexachlorobutadiene | | 3500 | U | | | 4-Chloro-3-methylphenol | | 3500 | U | | | 2-Methylnaphthalene | | 3500 | U | | | Hexachlorocyclopentadiene | | 3500 | U. | | | 2,4,6-Trichlorophenol | | 3500 | U | | | 2,4,5-Trichlorophenol | | 8500 | U | | | 2-Chloronaphthalene | | 3500 | יט | | | 2-Nitroaniline | | 8500 | U | | | Dimethyl phthalate | | 3500 | Ū. | | 1 - | Acenaphthylene | | 3500 | Ū | | | 2,6-Dinitrotoluene | | 3500 | บ | | 99-09-2 | 3-Nitroaniline | | 850 0 | IJ | | 33-03-2 | J 141 C1 CM 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 3300 | - | # 000038 Client No | | | . * | |-----------|----|-----| | LSVI34B1G | 4. | | Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: SDG No.: 23B5G Lab Sample ID: Matrix: (soil/water) SOIL A0682310 Sample wt/vol: 30.92 (g/mL) G Lab File ID: Z44619.RR Level: (low/med) LOW Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: <u>8.3</u> decanted: (Y/N) <u>N</u> Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) Dilution Factor: ___10.00 Total PAHO.684 GPC Cleanup: (Y/N) N pH: _____ Total c PAH 0,354 | | | CONCENTRATION UN | NITS: | • | |----------|-----------------------------|---------------------------------------|--------------|----------| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | | | Acenaphthene | | 3500 | U | | | 2,4-Dinitrophenol | | 8500 | ט | | | 4-Nitrophenol_ | | 8500 | ט | | | Dibenzofuran | | 3500 | ן ט | | | 2,4-Dinitrotoluene | · | 3500 | ַן ט | | | Diethyl phthalate | | 3500 | U | | | 4-Chlorophenyl phenyl ethe | r | 3500 | ש | | | Fluorene | | 3500 | U | | | 4-Nitroaniline | | 8500 | U | | | 4,6-Dinitro-2-methylphenol | | 8500 | U | | | N-nitrosodiphenylamine | | 3500 | ַ ט | | | 4-Bromophenyl phenyl ether | | 3500 | ע ו | | | Hexachlorobenzene | | 3500 | ט | | 87-86-5 | Pentachlorophenol | · · · | 8500 | ט | | | Phenanthrene | | 62 | Ĵ | | | Anthracene | | 3500 | ט | | | Carbazole | | 3500 | U | | 84-74-2 | Di-n-butyl phthalate | | 3500 | U | | 206-44-0 | Fluoranthene | | 120 | J | | 129-00-0
| Pyrene | | 120 | J | | 85-68-7 | Butyl benzyl phthalate | | 3500 | U | | 91-94-1 | 3,3'-Dichlorobenzidine | | 3500 | U | | 56-55-3 | Benzo (a) anthracene | , | 93 | J | | 218-01-9 | Chrysene | | 53 | J | | 117-81-7 | Bis(2-ethylhexyl) phthalate | 3 | 3500 | ט | | | Di-n-octyl phthalate | | 3500 | ט | | | Benzo(b)fluoranthene | | 120 | J | | | Benzo(k)fluoranthene | | 3500 | Ū | | | Benzo(a) pyrene | | - 69 | J | | | Indeno(1,2,3-cd)pyrene | | 19 | J | | | Dibenzo (a, h) anthracene | | 3500 | Ū | | _ | Benzo (ghi) perylene | | 28 | J | | | = | · · · · · · · · · · · · · · · · · · · | | 1 | # 000039 Client No. | LSVI56B3G | | |-----------|--| | | | b Name: STL Buffalo Contract: 98-153 ab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 23B5G trix: (soil/water) SOIL Lab Sample ID: A0682315 ample wt/vol: 30.89 (g/mL) G Lab File ID: Z44624.RR vel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 9.5 decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 10000 (uL) Date Analyzed: 10/14/2000 jection Volume: 2.00 (uL) Dilution Factor: 5.00 FC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|-----------------------------|-----------------|-------|-----| | 108-95-2 | Phenol | | 18000 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 18000 | U | | 95-57-8 | 2-Chlorophenol | | 18000 | U | | 541-73-1 | 1,3-Dichlorobenzene | | 18000 | U | | 106-46-7 | 1,4-Dichlorobenzene | | 18000 | U | | | 1,2-Dichlorobenzene | | 18000 | שן | | | 2-Methylphenol | | 18000 | U | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane |) | 18000 | ט | | | 4-Methylphenol | | 18000 | ט | | 621-64-7 | N-Nitroso-Di-n-propylamine | | 18000 | U | | | Hexachloroethane | | 18000 | U | | 98-95-3 | Nitrobenzene | | 18000 | U | | 78-59-1 | Isophorone | | 18000 | - U | | | 2-Nitrophenol | | 18000 | U | | | 2,4-Dimethylphenol | | 18000 | U | | | Bis(2-chloroethoxy) methane | | 18000 | U | | | 2,4-Dichlorophenol | | 18000 | U | | | 1,2,4-Trichlorobenzene | | 18000 | lυ | | | Naphthalene | | 12000 | J | | | 4-Chloroaniline | | 18000 | U | | | Hexachlorobutadiene | | 18000 | U | | | 4-Chloro-3-methylphenol | | 18000 | U | | | 2-Methylnaphthalene | | 11000 | J | | | Hexachlorocyclopentadiene | | 18000 | Ū | | | 2,4,6-Trichlorophenol | | 18000 | Ū | | _ | 2,4,5-Trichlorophenol | | 43000 | U | | | 2-Chloronaphthalene | | 18000 | U | | | 2-Nitroaniline | | 43000 | Ū | | | Dimethyl phthalate | | 18000 | Ū | | | Acenaphthylene | | 6400 | J | | | 2,6-Dinitrotoluene | | 18000 | U | | | 3-Nitroaniline | | 43000 | บ | # 000040 Client No | LSVI56B3G | | |-----------|--| | | | ab Name: STL Buffalo Contract: <u>98-153</u> ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G latrix: (soil/water) SOIL Lab Sample ID: A0682315 $\frac{30.89}{\text{cmple wt/vol}}$: $\frac{30.89}{\text{cm}}$ (g/mL) $\frac{\text{G}}{\text{cm}}$ Lab File ID: Z44624.RR Date Samp/Recv: 09/26/2000 09/26/2000 evel: (low/med) LOW : Moisture: 9.5 decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 10000 (uL) Date Analyzed: 10/14/2000 njection Volume: 2.00 (uL) Dilution Factor: _____5.00 PC Cleanup: (Y/N) N pH: _ # ביצדדתו ואידדית פידותי | * | • | CONCENTRATION (| INITS: | | |----------|------------------------------|-----------------|-----------------|-----| | CAS NO. | COMPOUND | (ug/L or ug/Kg | g) <u>UG/KG</u> | Q | | | Acenaphthene | | 15000 | J | | | 2,4-Dinitrophenol_ | | 43000 | U | | | 4-Nitrophenol | | 43000 | ַ | | | Dibenzofuran | | 41000 | | | | 2,4-Dinitrotoluene | | 18000 | Ü | | | Diethyl phthalate | | 18000 | ט | | | 4-Chlorophenyl phenyl ether_ | | 18000 | ָט | | 86-73-7 | · | | 42000 | | | | 4-Nitroaniline | | 43000 | ט | | | 4,6-Dinitro-2-methylphenol_ | | 43000 | ע | | | N-nitrosodiphenylamine | | 18000 | ט | | | 4-Bromophenyl phenyl ether_ | | 18000 | ט | | | Hexachlorobenzene | | 18000 | U | | | Pentachlorophenol_ | | 43000 | U | | | Phenanthrene | | 240000 | E | | | Anthracene_ | | 42000 | | | 86-74-8 | | | 26000 | | | | Di-n-butyl phthalate | | 18000 | ט | | 1 | Fluoranthene | - | 200000 | E | | 129-00-0 | | | 170000 | E | | | Butyl benzyl phthalate | | 18000 | U | | 91-94-1 | 3,3'-Dichlorobenzidine | | 18000 | U | | 56-55-3 | Benzo (a) anthracene | | 76000 | | | 218-01-9 | | | 65000 | | | 117-81-7 | Bis(2-ethylhexyl) phthalate | | 18000 | ע | | 117-84-0 | Di-n-octyl phthalate | | 18000 | ן ט | | 205-99-2 | Benzo (b) fluoranthene | | 120000 | | | 207-08-9 | Benzo(k)fluoranthene | | 18000 | U | | 50-32-8 | Benzo (a) pyrene | | 66000 | | | 193-39-5 | Indeno (1,2,3-cd) pyrene | | 14000 | J | | | Dibenzo(a,h)anthracene | | 1500 | J | | | Benzo(ghi)perylene | | 1200 0 | J | | | | | · | | # 000041 Client No. ab Name: STL Buffalo Contract: 98-153 LSVI56B3G DL b Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G trix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0682315DL</u> Sample wt/vol: 30.89 (g/mL) G Lab File ID: 244640.RR vel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 9.5 decanted: (Y/N) N Date Extracted: 09/29/2000 ncentrated Extract Volume: 10000 (uL) Date Analyzed: 10/16/2000 Dilution Factor: 2.00 (uL) Dilution Factor: 20.00 FPC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|-----------------------------|-----------------|--------|------| | 108-95-2 | Phenol | • | 71000 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 71000 | lυ | | | 2-Chlorophencl | | 71000 | U | | 541-73-1 | 1,3-Dichlorobenzene | | 71000 | U | | 106-46-7 | 1,4-Dichlorobenzene | | 71000 | ĺυ | | 95-50-1 | 1,2 Dichlorobenzene | | 71000 | Įυ | | 95-48-7 | 2-Methylphenol | , | 71000 | U | | 103-60-1 | 2,2'-Oxybis(1-Chloropropane |) | 71000 | U | | | 4-Methylphenol | | 71000 | ע | | 621-64-7 | N-Nitroso-Di-n-propylamine | | 71000 | ען י | | | Hexachloroethane | | 71000 | שׁ | | 98-95-3 | Nitrobenzene | | 71000 | ש | | 78-59-1 | Isophorone | | 71000 | ט | | 88-75-5 | 2-Nitrophenol | | 71000 | ש | | | 2,4-Dimethylphenol | | 71000 | ั บ | | 111-91-1 | Bis(2-chloroethoxy) methane | - | 71000 | ט | | 120-83-2 | 2,4-Dichlorophenol | | 71000 | ט | | 120-82-1 | 1,2,4-Trichlorobenzene | | 71000 | ט | | 91-20-3 | Naphthalene | | 11000 | M | | 106-47-8 | 4-Chloroaniline | | 71000 | ט | | 87-68-3 | Hexachlorobutadiene | | 71000 | ע - | | 59-50-7 | 4-Chloro-3-methylphenol | | 71000 | U | | 91-57-6 | 2-Methylnaphthalene | | 8600 | M | | 77-47-4 | Hexachlorocyclopentadiene | | 71000 | JU | | | 2,4,6-Trichlorophenol | | 71000 | U | | 95-95-4 | 2,4,5-Trichlorophenol | | 170000 | U | | | 2-Chloronaphthalene | | 71000 | U | | | 2-Nitroaniline | | 170000 | U | | | Dimethyl phthalate | | 71000 | U | | | Acenaphthylene | | 6400 | עם | | | 2,6-Dinitrotoluene | | 71000 | U | | | 3-Nitroaniline | | 170000 | Ū | # 000042 Client No. LSVI56B3G DL Lab Name: STL Buffalo Contract: <u>98-153</u> pH: GPC Cleanup: (Y/N) N Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: _ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682315DL Sample wt/vol: 30.89 (g/mL) G Lab File ID: Z44640.RR 09/26/2000 09/26/2000 Level: (low/med) Date Samp/Recv: % Moisture: <u>9.5</u> decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/16/2000 Injection Volume: 2.00 (uL) Dilution Factor: ____20.00 Total PArt 1228 Total CPArt 359.7 | | V- | CONCENTRATION U | | | |----------|------------------------------|-----------------|----------------|----------| | CAS NO. | COMPOUND | (ug/L or ug/Kg |) <u>UG/KG</u> | Q | | 83-32-9 | -Acenaphthene | | 13000 | מ | | | 2,4-Dinitrophenol | | 170000 | U | | | -4-Nitrophenol | | 170000 | ט | | | -Dibenzofuran | | 37000 | DJ . | | | -2,4-Dinitrotoluene | | 71000 | ע . | | | -Diethyl phthalate | | 71000 | U | | | -4-Chlorophenyl phenyl ether | | 71000 | Ū | | 86-73-7 | | | 35000 | DJ | | | -4-Nitroaniline | | 170000 | U | | | -4,6-Dinitro-2-methylphenol_ | | 170000 | ַ | | | -N-nitrosodiphenylamine | | 71000 | ַ ע | | | -4-Bromophenyl phenyl ether_ | | 71000 | ע | | | -Hexachlorobenzene | | 71000 | ָּט | | | -Pentachlorophenol | - | 170000 | U | | - II | -Phenanthrene | | 250000 | D | | 120-12-7 | | | 41000 | M | | 86-74-8 | | | 23000 | M | | | -Di-n-butyl phthalate | | 71000 | U | | | -Fluoranthene | | 280000 | D | | 129-00-0 | | | 160000 | D | | 85-68-7 | -Butyl benzyl phthalate | | 71000 | U | | 91-94-1 | -3,3'-Dichlorobenzidine | | 71000 | U | | 56-55-3 | -Benzo (a) anthracene | | 86000 | D | | 218-01-9 | -Chrysene | | 73000 | D | | 117-81-7 | -Bis(2-ethylhexyl) phthalate | | 71000 | U | | 117-84-0 | -Di-n-octyl phthalate | | 71000 | ַ ע | | 205-99-2 | -Benzo (b) fluoranthene | | 76000 | D | | | -Benzo(k) fluoranthene | | 31000 | M | | 50-32-8 | -Benzo(a) pyrene | | 61000 | M | | | -Indeno(1,2,3-cd)pyrene | | 25000 | M | | | -Dibenzo (a, h) anthracene | | 7700 | M | | | -Benzo(ghi)perylene | | 26000 | מ | Client No. | | ·· - · · · · · · · · · · · · · · · · · | | |-----------|--|--| | LSVI67B4G | | | ab Name: STL Buffalo Contract: 98-153 Atrix: (soil/water) SOIL Lab Sample ID: A0682305 Sample wt/vol: 30.12 (g/mL) G Lab File ID: Z44614.RR rvel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 10.9 decanted: (Y/N) N Date Extracted: 09/29/2000 Ioncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 njection Volume: 2.00 (uL) Dilution Factor: 10.00 PC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND / | (ug/L or ug/Kg) | UG/KG | Q | |----------|-------------------------------|-----------------|-------|-----| | 108-95-2 | -Phenol | | 130 | J | | 111-44-4 | -Bis(2-chloroethyl) ether | | 3700 | U | | 95-57-8 | -2-Chlorophenol | | 3700 | U | | | -1,3-Dichlorobenzene | | 3700 | U | | | -1,4-Dichlorobenzene | | 3700 | U | | 95-50-1 | -1,2-Dichlorobenzene | | 3700 | U | | | -2-Methylphenol | | 3700 | U | | 108-60-1 | -2,2'-Oxybis(1-Chloropropane) | | 3700 | U | | 106-44-5 | -4-Methylphenol | | 180 | J | |
621-64-7 | -N-Nitroso-Di-n-propylamine | | 3700 | ַט | | 67-72-1 | -Hexachloroethane | | 3700 | ַ | | 98-95-3 | -Nitrobenzene | | 3700 | U | | 78-59-1 | -Isophorone | | 3700 | U | | 88-75-5 | -2-Nitrophenol | | 3700 | U | | 105-67-9 | -2,4-Dimethylphenol | | 27 | J. | | 111-91-1 | -Bis(2-chloroethoxy) methane | | 3700 | U . | | | -2,4-Dichlorophenol | | 3700 | U | | | -1,2,4-Trichlorobenzene | | 3700 | U | | 91-20-3 | | | 8000 | 1 | | | -4-Chloroaniline | | 3700 | U | | | -Hexachlorobutadiene | - | 3700 | เบ | | | -4-Chloro-3-methylphenol | | 3700 | U | | 1 — | -2-Methylnaphthalene | | 2900 | J. | | | -Hexachlorocyclopentadiene | | 3700 | ไป | | | -2,4,6-Trichlorophenol | | 3700 | ט | | | -2,4,5-Trichlorophenol | | 8900 | U | | | -2-Chloronaphthalene | | 3700 | Ū | | | -2-Nitroaniline | | 8900 | ĺΰ | | | -Dimethyl phthalate | | 3700 | Ū | | | -Acenaphthylene | | 470 | J | | | -2,6-Dinitrotoluene | | 3700 | U | | | -3-Nitroaniline | | 8900 | U | | 00 2 | | | | | # 000044 Client No | 1 | | | |---|-----------|--| | | LSVI67B4G | | | | | | ab Name: STL Buffalo Contract: <u>98-153</u> PC Cleanup: (Y/N) N pH: _ Case No.: ____ SAS No.: _ ab Code: RECNY SDG No.: <u>23B5G</u> latrix: (soil/water) SOIL Lab Sample ID: A0682305 30.12 (g/mL) G iample wt/vol: Lab File ID: Z44614.RR (low/med) evel: TOM Date Samp/Recv: 09/26/2000 09/26/2000 decanted: (Y/N) N : Moisture: <u>10.9</u> Date Extracted: <u>09/29/2000</u> Date Analyzed: 10/14/2000 bncentrated Extract Volume: 1000 (uL) njection Volume: 2.00 (uL) Dilution Factor: ___10.00 Total PATE 139.0 Total CPAH 41.00 | 1.2 1 2 1 1 1 1 | CONCENTRATION UN | ITS: | | |--------------------------------------|------------------|-------|----------| | CAS NO. COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | | 83-32-9Acenaphthene | | 5400 | | | 51-28-52,4-Dinitrophenol | | 8900 | U | | 100-02-74-Nitrophenol | | 8900 | ט | | 132-64-9Dibenzofuran | | 4500 | | | 121-14-22,4-Dinitrotoluene | | 3700 | U | | 84-66-2Diethyl phthalate | | 3700 | U | | 7005-72-34-Chlorophenyl phenyl ether | | 3700 | U | | 86-73-7Fluorene | | 5000 | | | 100-01-64-Nitroaniline | | 8900 | U | | 534-52-14,6-Dinitro-2-methylphenol_ | | 8900 | U | | 86-30-6N-nitrosodiphenylamine | | 3700 | U | | 101-55-34-Bromophenyl phenyl ether | | 3700 | U. | | 118-74-1Hexachlorobenzene | | 3700 | U | | 87-86-5Pentachlorophenol | | 8900 | U | | 85-01-8Phenanthrene | | 25000 | ľ | | 120-12-7Anthracene | | 6300 | [| | 86-74-8Carbazole | | 2600 | J | | 84-74-2Di-n-butyl phthalate | | 3700 | U | | 206-44-0Fluoranthene | | 18000 | | | 129-00-0Pyrene | | 18000 | | | 85-68-7Butyl benzyl phthalate | | 3700 | ט | | 91-94-13,3'-Dichlorobenzidine | | 3700 | U | | 56-55-3Benzo (a) anthracene | | 8800 | | | 218-01-9Chrysene | | 6400 | | | 117-81-7Bis(2-ethylhexyl) phthalate | | 3700 | U | | 117-84-0Di-n-octyl phthalate | | 3700 | ט | | 205-99-2Benzo (b) fluoranthene | | 9100 | | | 207-08-9Benzo(k) fluoranthene | | 3200 | J | | 50-32-8Benzo (a) pyrene | | 8400 | | | 193-39-5Indeno (1, 2, 3-cd) pyrene | | 4000 | | | 53-70-3Dibenzo (a, h) anthracene | | 1100 | J | | 191-24-2Benzo (ghi) perylene | | 4400 | | | | | | | # 000045 Client No. | ab Name: SIL | Duffalo | Contract: 98-153 | | LSVI78B1G | |---------------|-------------|------------------|----------------|-----------| | to Marie: 210 | Burraro | WILLIACL: 30-133 | | | | ab Code: RECN | Y Case No.: | SAS No.: | SDG No.: 23B5G | | trix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0682319</u> Sample wt/vol: 30.12 (g/mL) <u>G</u> Lab File ID: <u>Z44628.RR</u> rvel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 6.5 decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 njection Volume: 2.00 (uL) Dilution Factor: 10.00 FPC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | |----------|------------------------------|-----------------|--------------|------------| | 108-95-2 | Phenol | | 3500 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 3500. | U ` | | 95-57-8 | 2-Chlorophenol | | 3500 | U | | 541-73-1 | 1,3-Dichlorobenzene | | 3500 | ן ט | | 106-46-7 | 1,4-Dichlorobenzene | | 3500 | U | | 95-50-1 | 1,2-Dichlorobenzene | | 3500 | U | | | 2-Methylphenol | | 3500 | U | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane) | | 3500 | ט | | 106-44-5 | 4-Methylphenol | | 3500 | U | | 621-64-7 | N-Nitroso-Di-n-propylamine_ | | 3500 | ע | | 67-72-1 | Hexachloroethane | | 3500 | U | | 98-95-3 | Nitrobenzene | | 3500 | U | | 78-59-1 | Isophorone | | 3500 | U | | 88-75-5 | 2-Nitrophenol | | 3500 | ע | | 105-67-9 | 2,4-Dimethylphenol | | 3500 | Įυ | | 111-91-1 | Bis(2-chloroethoxy) methane | | 3500 | U | | 120-83-2 | 2,4-Dichlorophenol | | 3500 | U | | 120-82-1 | 1,2,4-Trichlorobenzene | | 3500 | U | | 91-20-3 | Naphthalene | | 280 | J | | 106-47-8 | 4-Chloroaniline | | 3500 | U | | 87-68-3 | Hexachlorobutadiene | | 3500 | U | | 59-50-7 | 4-Chloro-3-methylphenol | | 3500 | ע | | 91-57-6 | 2-Methylnaphthalene | | 200 | J | | 77-47-4 | Hexachlorocyclopentadiene | | 3500 | U - | | | 2,4,6-Trichlorophenol | | 3500 | U . | | 95-95-4 | 2,4,5-Trichlorophenol | | 8500 | ַ | | | 2-Chloronaphthalene | | 3500 | ע | | 88-74-4 | 2-Nitroaniline | | 8500 | ען ּ | | | Dimethyl phthalate | | 3500 | U | | | Acenaphthylene | | 470 | J | | | 2,6-Dinitrotoluene | | 3500 | Ū | | | 3-Nitroaniline | | 8500 | ប | Client No LSVI78B1G Lab Name: STL Buffalo Contract: 98-153 GPC Cleanup: (Y/N) N pH: ____ Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: <u>23B5G</u> Matrix: (soil/water) SOIL Lab Sample ID: A0682319 _30.12 (g/mL) <u>G</u> Sample wt/vol: Lab File ID: Z44628.RR Level: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/200 % Moisture: 6.5 decanted: (Y/N) N Date Extracted: <u>09/29/2000</u> Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) Dilution Factor: ___10.00 Total PAH 34,15 | | | CONCENTRATION UN | | | |-----------|-----------------------------|------------------|--------------|-------| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q · | | | Acenaphthene | | 1300 | J | | 51-28-5 | 2,4-Dinitrophenol | | 8500 | ט | | 100-02-7 | 4-Nitrophenol | | 8500 | ט | | | Dibenzofuran | | 1500 | J | | 121-14-2 | 2,4-Dinitrotcluene | | 3500 | ט | | | Diethyl phthalate | | 3500 | ש | | 7005-72-3 | 4-Chlorophenyl phenyl ether | | 3500 | ָ ע · | | 86-73-7 | | | 3200 | J | | | 4-Nitroaniline | | 8500 | ָ ע | | | 4,6-Dinitro-2-methylphenol_ | | 8500 | ש | | | N-nitrosodiphenylamine | | 3500 | ט | | 101-55-3 | 4-Bromophenyl phenyl ether | | 3500 | ָ ע | | 118-74-1 | Hexachlorobenzene | | 3500 | ָּט | | 87-86-5 | Pentachlorophenol | | 8500 | U | | 85-01-8 | Phenanthrene | | 17000 | | | 120-12-7 | Anthracene | | 5000 | | | 86-74-8 | Carbazole | | 1400 | J | | 84-74-2 | Di-n-butyl phthalate | | 3500 | ַ ט | | 206-44-0 | Fluoranthene | | 18000 | | | 129-00-0 | Pyrene | | 15000 | | | 85-68-7 | Butyl benzyl phthalate | | 3500 | ט | | | 3,3'-Dichlorobenzidine | | 3500 | שו | | 56-55-3 | Benzo (a) anthracene | | 8200 | | | 218-01-9 | Chrysene | | 5600 | | | | Bis(2-ethylhexyl) phthalate | | 3500 | U | | | Di-n-octyl phthalate | | 3500 | Ū | | | Penzo (b) fluoranthene | | 9700 | | | | Benzo(k) fluoranchene | | 3000 | J | | | Benzo (a) pyrene | | 6200 | | | | Indeno (1,2,3-cd) pyrene | | 1300 | J | | | Dibenzo (a, h) anthracene | | 150 | J | | | Benzo (ghi) perylene | | 1100 | J | | | | | | | Client No. | | _ | | |-----------|---|--| | 1 | | | | 1 | | | | LSVI78B5G | | | ab Name: STL Buffalo Contract: 98-153 b Code: RECNY Case No.: _____ SAS No.: ____ SDG No.: 23B5G trix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0682302</u> ample wt/vol: 30.78 (g/mL) <u>G</u> Lab File ID: <u>Z44608.RR</u> vel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 8.0 decanted: (Y/N) N Date Extracted: 09/29/2000 ncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/13/2000 jection Volume: 2.00 (uL) Dilution Factor: 10.00 PC Cleanup: (Y/N) N pH: ____ | CAS NO. COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |---|-----------------|-------|-----| | 108-95-2Phenol | | 3500 | U | | 111-44-4Bis(2-chloroethyl) ether | | 3500 | U | | 95-57-82-Chlorophenol | | 3500 | U | | 541-73-11,3-Dichlorobenzene | | 3500 | U | | 106-46-71,4-Dichlorobenzene | | 3500 | U | | 95-50-11,2-Dichlorobenzene | | 3500 | U | | 95-48-72-Methylphenol | | 3500 | U | | 108-60-12,2'-Oxybis(1-Chloroproproproproproproproproproproproprop | pane) | 3500 | U | | 106-44-54-Methylphenol | | 3500 | U | | 621-64-7N-Nitroso-Di-n-propylami | ine | 3500 | U | | 67-72-1Hexachloroethane | | 3500° | ט | | 98-95-3Nitrobenzene | | 3500 | U | | 78-59-1Isophorone | | 3500 | U | | 88-75-52-Nitrophenol | | 3500 | U | | 105-67-92,4-Dimethylphenol | | 3500 | U | | 111-91-1Bis(2-chloroethoxy) meth | nane | 3500 | U | | 120-83-22,4-Dichlorophenol | | 3500 | U | | 120-82-11,2,4-Trichlorobenzene | | 3500 | U | | 91-20-3Naphthalene | | 19 | J | | 106-47-84-Chloroaniline | , | 3500 | U | | 87-68-3Hexachlorobutadiene | | 3500 | ַט | | 59-50-74-Chloro-3-methylphenol | : | 3500 | U | | 91-57-62-Methylnaphthalene | | 3500 | U . | | 77-47-4Hexachlorocyclopentadier | ne | 3500 | U | | 88-06-22,4,6-Trichlorophenol | | 3500 | Ų | | 95-95-42,4,5-Trichlorophenol | | 8500 | U | | 91-58-72-Chloronaphthalene | | 3500 | U | | 88-74-42-Nitroaniline | • | 8500 | U | | 131-11-3Dimethyl phthalate | | 3500 | U | | 208-96-8Acenaphthylene | | 210 | J | | 606-20-22,6-Dinitrotoluene | | 3500 | U | | 99-09-23-Nitroaniline | | 8500 | U | 000048 Client No. LSVI78B5G Lab Name: SIL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682302 Sample wt/vol: 30.78 (g/mL) G Lab File ID: Z44608.RR _evel: (low/med) Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: 8.0 decanted: (Y/N) N Date Extracted:
09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/13/2000 Injection Volume: 2.00 (uL) Dilution Factor: _ 10.00 Total PAH 11.18 FPC Cleanup: (Y/N) N pH: Total CPAH 5.570 | CAS NO. | COMPOUND | (ug/L or ug/Kg | | Q | |-----------|-----------------------------|----------------|-------|-----| | 83-32-9 | Acenaphthene | | 3500 | U | | | 2,4-Dinitrophenol | | 8500 | ľu | | | 4-Nitrophenol | · · | 8500 | Ū | | 132-64-9 | Dibenzofuran | | 38 | J | | 121-14-2 | 2,4-Dinitrotoluene | | 3500 | Ū | | | Diethyl phthalate | | 3500 | Ū | | 7005-72-3 | 4-Chlorophenyl phenyl ether | | 3500 | U | | 86-73-7 | | | 140 | J | | | 4-Nitroaniline | | 8500 | ַ ט | | | 4,6-Dinitro-2-methylphenol_ | | 8500° | ט | | 86-30-6 | N-nitrosodiphenylamine | | 3500 | [ט | | | 4-Bromophenyl phenyl ether | | 3500 | שׁן | | | Hexachlorobenzene | | 3500 | ַ | | | Pentachlorophenol | | 8500 | Ū | | 85-01-8 | Phenanthrene | | 1800 | J | | 120-12-7 | Anthracene | <u>·</u> | 260 | J. | | 86-74-8 | | | 120 | J | | 84-74-2 | Di-n-butyl phthalate | | 3500 | ָ ט | | 206-44-0 | Fluoranthene | | 2300 | J | | 129-00-0 | | | 1900 | J | | 85-68-7 | Butyl benzyl phthalate | | 3500 | ָ ט | | 91-94-1 | 3,3'-Dichlorobenzidine | | 3500 | ט | | 56-55-3 | Benzo (a) anthracene | | 1400 | J | | 218-01-9 | Chrysene | | 860 | J | | 117-81-7 | Bis(2-ethylhexyl) phthalate | | 3500 | ט | | | Di-n-octyl phthalate | | 3500 | บ | | | Benzo (b) fluoranthene | | 1700 | J | | 207-08-9 | Benzo(k) fluoranthene | | 3500 | ט | | 50-32-8 | Benzo (a) pyrene | | 940 | J | | | Indeno (1,2,3-cd) pyrene | | 530 | J | | | Dibenzo (a, h) anthracene | | 140 | J | | 191-24-2 | Benzo (ghi) perylene | | 560 | J | # 000049 Client No. | LSVI89B4G | |-----------| ab Name: STL Buffalo Contract: 98-153 ktrix: (soil/water) SOIL Lab Sample ID: A0682306 rvel: (1cw/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 8.9 decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/16/2000 pjection Volume: 2.00 (uL) Dilution Factor: 5.00 FPC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | |----------|------------------------------|-----------------|--------------|------| | 108-95-2 | | | 38 | J | | 111-44-4 | Bis(2-chloroethyl) ether | | 1800 | U | | | 2-Chlorophenol | | 1800 | II · | | 541-73-1 | 1,3-Dichlorobenzene | | 1820 | U | | | 1,4-Dichlorobenzene | | 1800 | U | | | 1,2-Dichlorobenzere | | 1800 | U | | 95-48-7 | 2-Methylphenol | | 1800 | U | | | 2,2'-Oxybis(1-Chloropropane) | | 1800 | U | | | 4-Methylphenol | | 30 | J | | 621-64-7 | N-Nitroso-Di-n-propylamine | | 1800 | U | | | Hexachloroethane | | 1800 | U | | 98-95-3 | Nitrobenzene | | 1800 | U | | 78-59-1 | Isophorone | | 1800 | U | | | 2-Nitrophenol | | 1800 | ַ ע | | | 2,4-Dimethylphenol | | 1800 | U | | | Bis(2-chloroethoxy) methane | | 1800 | U | | | 2,4-Dichlorophenol | | 1800 | U | | 120-82-1 | 1,2,4-Trichlorobenzene | | 1800 | U | | | Naphthalene | | 2200 | | | 106-47-8 | 4-Chloroaniline | | 1800 | U | | | Hexachlorobutadiene | | 1800 | U | | | 4-Chloro-3-methylphenol | | 1800 | U | | | 2-Methylnaphthalene | | 820 | J | | 77-47-4 | Hexachlorocyclopentadiene | | 1800 | U | | | 2,4,6-Trichlorophenol_ | | 1800 | U | | | 2,4,5-Trichlorophenol | | 4300 | U | | 91-58-7 | 2-Chloronaphthalene | | 1900 | U | | 88-74-4 | 2-Nitroaniline | | 4300 | U | | 131-11-3 | Dimethyl phthalate | | 1800 | U | | 208-96-8 | Acenaphthylene | | 420 | J. | | 606-20-2 | 2,6-Dinitrotoluene | | 1800 | ט | | | 3-Nitroaniline | | 4300 | U | Client No. | |
 | | |---------|------|--| | | | | | TIROPAC | | | Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Watrix: (soil/water) SOIL Lab Sample ID: A0682306 Sample wt/vol: 30.82 (g/mL) G Lab File ID: <u>Z44636.RR</u> Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 8.9 decanted: (Y/N) N Date Extracted: 09/29/2000 Date Analyzed: 10/16/2000 Injection Volume: 2.00 (uL) jobul 1/ht 54,45 Dilution Factor: 5.00 FPC Cleanup: (Y/N) N pH: ___ (Jud cl/AH 18.71 | | | CONCENIRATION UNI | ITS: | | |----------|-------------------------------|-------------------|--------------|----------| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | <u>UG/KG</u> | Q | | | -Acenaphthene | | 1200 | J | | | -2,4-Dinitrophenol | | 4300 | U . | | | -4-Nitrophenol | | 4300 | U | | | -Dibenzofuran | | 1200 | J | | | -2,4-Dinitrotoluene | | 1800 | U | | | -Diethyl phthalate | | 1800 | U | | | -4-Chlorophenyl phenyl ether_ | | 1800 | ט ו | | 96-73-7 | | | 1300 | J | | | -4-Nitroaniline | | 4300 | U | | | -4,6-Dinitro-2-methylphenol | | 4300 | U | | | -N-nitrosodiphenylamine | | 1800 | ע | | | -4-Bromophenyl phenyl ether | | 1800 | U | | | -Hexachlorobenzene | | 1800 | ט | | | -Pentachlorophenol | | 4300 | ָ ט | | 1 | -Phenanthrene | | 7400 | | | 120-12-7 | | | 2400 | ŀ | | 86-74-8 | | | 950 | J | | | -Di-n-butyl phthalate | | 1800 | ַ ט | | 206-44-0 | | | 10000 | | | 129-00-0 | | | 6700 | | | | -Butyl benzyl phthalate | | 1800 | ט | | | -3,3'-Dichlorobenzidine | | 1800 | ט | | 56-55-3 | -Benzo (a) anthracene | | 4200 | | | 218-01-9 | | | 3600 | | | | -Bis(2-ethylhexyl) phthalate | | 1800 | ט | | 117-84-0 | -Di-n-octyl phthalate | | 1800 | ט | | 205-99-2 | -Benzo (b) fluoranthene | | 4000 | | | 207-08-9 | -Benzo(k)fluoranthene | | 1200 | J | | 50-32-8 | -Benzo (a) pyrene | | 3400 | | | | -Indeno(1,2,3-cd)pyrene | | 1700 | J | | 53-70-3 | -Dibenzo (a, h) anthracene | | 610 | J | | 191-24-2 | -Benzo(ghi)perylene | | 2100 | | # 000051 Client No. LSVI10I1BIG ab Name: STL Buffalo Contract: 98-153 b Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G trix: (soil/water) SOIL Lab Sample ID: A0682311 ample wt/vol: 30.27 (g/mL) G Lab File ID: Z44620.RR vel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> _Moisture: <u>12.4</u> decanted: (Y/N) N Date Extracted: <u>09/29/2000</u> hcentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 jection Volume: 2.00 (uL) Dilution Factor: 5.00 PC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|------------------------------|-----------------|--------|----------| | 108-95-2 | Phenol | | 1900 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 1900 | ט | | 95-57-8 | 2-Chlorophenol | | 1900 | ַ טּ | | 541-73-1 | 1,3-Dichlorobenzene | | 1900 | U | | 106-46-7 | 1,4-Dichlorobenzene | | 1900 | ש | | 95-50-1 | 1,2-Dichlorobenzene | | 1900 | U | | | 2-Methylphenol | | 1900 | U | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane) | | 1900 | ט | | 106-44-5 | 4-Methylphenol | | 1900 | ַד | | | N-Nitroso-Di-n-propylamine | | 1900 | - ט | | 67-72-1 | Hexachloroethane | | 1900 | U | | 98-95-3 | Nitrobenzene | | 1900 | U. | | 78-59-1 | Isophorone | | 1900 | U | | 88-75-5 | 2-Nitrophenol | | 1900 | U | | | 2,4-Dimethylphenol | | 1900 | U | | | Bis(2-chloroethoxy) methane | | 1900 | U | | 120-83-2 | 2,4-Dichlorophenol_ | | 1900 | U | | | 1,2,4-Trichlorobenzene | | 1900 | U | | 91-20-3 | Naphthalene | | 1900 - | U | | 106-47-8 | 4-Chloroaniline | | 1900 | שׁ | | 87-68-3 | Hexachlorobutadiene | | 1900 | שׁ | | 59-50-7 | 4-Chloro-3-methylphenol | | 1900 | ש | | 91-57-6 | 2-Methylnaphthalene | | 1900 | U | | 77-47-4 | Hexachlorocyclopentadiene | | 1900 | U | | 88-06-2 | 2,4,6-Trichlorophenol | | 1900 | שׁ | | | 2,4,5-Trichlorophenol | | 4500 | U | | | 2-Chloronaphthalene | | 1900 | ש | | | 2-Nitroaniline | | 4500 | ט | | | Dimethyl phthalate | | 1900 | บ | | | Acenaphthylene | | 17 | J | | | 2,6-Dinitrotoluene | ····· | 1900 | ט | | | 3-Nitroaniline | | 4500 | Ū | | | | | | | ## 000052 Client No. | LSVI1011B1G | - | • | | |-------------|---|---|--| | | | | | ab Name: STL Buffalo Contract: 98-153 .ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682311 Sample wt/vol: 30.27 (g/mL) G Lab File ID: <u>Z44620.RR</u> evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 12.4 decanted: (Y/N) N Date Extracted: 09/29/2000 loncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 injection Volume: 2.00 (uL) Tolul Pht 2,140 Dilution Factor: 5.00 FC Cleanup: (Y/N) N pH: _____ | | | CONCENTRATION U | NITS: | | |----------|-----------------------------|-----------------|----------------|------------| | CAS NO. | COMPOUND | (ug/L or ug/Kg |) <u>UG/KG</u> | Q | | 83-32-9 | Acenaphthene | | 1900 | บ | | | 2,4-Dinitrophenol | | 4500 | U | | | 4-Nitrophenol | | 4500 | U | | | Dibenzofuran | | 1900 | U | | | 2,4-Dinitrotoluene | | 1900 | U | | | Diethyl phthalate | | 1900 | U | | | 4-Chlorophenyl phenyl ether | | 1900 | U | | 86-73-7 | | | 19 | J | | | 4-Nitroaniline | | 4500 | U | | | 4,6-Dinitro-2-methylphenol | | 4500 | U | | | N-nitrosodiphenylamine | | 1900 | U | | | 4-Bromophenyl phenyl ether | | 1900 | U | | | Hexachlorobenzene | | 1900 | U | | | Pentachlorophenol | | 4500 | ן ט | | | Phenanthrene | | 270 | J. | | 120-12-7 | | | 41 | J | | 86-74-8 | | | 17 | J | | | Di-n-butyl phthalate | | 1900 | U | | | Fluoranthene | | 420 | J | | 129-00-0 | | | 400 | J | | 85-68-7 | Butyl benzyl phthalate | | 1900 | ט | | 91-94-1 | 3,3'-Dichlorobenzidine | | 1900 | שׁן | | 56-55-3 | Benzo (a) anthracene | | 250 | J | | 218-01-9 | | | 160 | J. | | 117-81-7 | Bis(2-ethylhexyl) phthalate | | 1900 | U | | 117-84-0 | Di-n-octyl phthalate | | 1900 | υ . | | 205-99-2 | Benzo (b) fluoranthene | | 300 | J | | 207-08-9 | Benzo(k)fluoranthene | | 1900 | ָ ט | | 50-32-8 | Benzo (a) pyrene | | 160 | J | | 193-39-5 | Indeno(1,2,3-cd)pyrene | | 54 | J | | | Dibenzo (a, h) anthracene | | 1900 | U | | | Benzo(ghi)perylene | | 49 | J | ## 000053 Client No. LSVI1012B5G ab Name: STL Buffalo Contract: 98-153 Pab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G atrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0682303</u> Sample wt/vol: 30.31 (g/mL) G Lab File ID: Z44612.RR evel: (low/med) <u>LOW</u> Date Samp/Recv:
<u>09/26/2000</u> <u>09/26/2000</u> k Moisture: 13.6 decanted: (Y/N) N Date Extracted: 09/29/2000 Soncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 hjection Volume: 2.00 (uL) Dilution Factor: 5.00 GPC Cleanup: (Y/N) N pH: ____ | CAS NO. COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |---------------------------------|-----------------|--------|-----| | 108-95-2Phenol | | 1900 | U | | 111-44-4Bis(2-chloroethyl) eth | ner | 1900 | שׁ | | 95-57-82-Chlorophenol | | 1900 | U | | 541-73-11,3-Dichlorobenzene | | 1900 | U | | 106-46-71,4-Dichlorobenzene | | 1900 | ַט | | 95-50-11,2-Dichlorobenzene | | 1900 | ַ ט | | 95-48-72-Methylphenol | | 1900 | ַט | | 108-60-12,2'-Oxybis(1-Chloropi | ropane) | 1900 | ן ט | | 106-44-54-Methylphenol | · | 1900 | ע | | 621-64-7N-Nitroso-Di-n-propyla | amine | 1900 | U | | 67-72-1Hexachloroethane | | 1900 | ע ו | | 98-95-3Nitrobenzene | | 1900 | U | | 78-59-1Isophorone | | 1900 | ַ | | 88-75-52-Nitrophenol | | 1900 | U | | 105-67-92,4-Dimethylphenol_ | | 1900 | ע | | 111-91-1Bis (2-chloroethoxy) ma | ethane | 1900 | ט | | 120-83-22,4-Dichlorophenol | | 1900 | ע | | 120-82-11,2,4-Trichlorobenzene | 9 | 1900 | ַּט | | 91-20-3Naphthalene | | 1900 | U | | 106-47-84-Chloroaniline | | 1900 | U | | 87-68-3Hexachlorobutadiene | | 1900 | ַּע | | 59-50-74-Chloro-3-methylphen | ol | 1900 | U | | 91-57-62-Methylnaphthalene | | 1900 | טן | | 77-47-4Hexachlorocyclopentad | iene | 1900 | U | | 88-06-22,4,6-Trichlorophenol | | 1900 · | ַ | | 95-95-42,4,5-Trichlorophenol | | 4600 | ַ | | 91-58-72-Chloronaphthalene | | 1900 | U | | 88-74-42-Nitroaniline | | 4600 | U | | 131-11-3Dimethyl phthalate | | 1900 | ט | | 208-96-8Acenaphthylene | | 130 | J | | 606-20-22,6-Dinitrotoluene | | 1900 | ט | | 99-09-23-Nitroaniline | | 4600 | U | | | | | 1 | # 000054 Client No. ______ | ab Name: | STL Bufi | Ealo | | Contract: | 98-153 | | | LSVI | 1012B5 | 5G
 | | |----------|----------|-------------|------|-------------|--------|----------|-------|------|--------|--------|--| | | , | | | | | _ | | | , | | | | ab Code: | RECNY | Case | No.: |
SAS No. | . : | SDG No.: | 23B5G | | | | | Watrix: (soil/water) SOIL Lab Sample ID: A0682303 Sample wt/vol: 30.31 (g/mL) G Lab File ID: Z44612.RR Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> ${\tt k}$ Moisture: 13.6 decanted: (Y/N) ${\tt N}$ Date Extracted: 09/29/2000 loncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) Dilution Factor: 5.00 | | COMCAPH 10:20 | CONCENTRATION UNI | т с . | | |----------|-----------------------------|-------------------|--------------|-----| | CAS NO. | COMPOUND | (ug/L or ug/Kg) | | Q | | 83-32-9 | Acenaphthene | | 180 | J | | 51-28-5 | 2,4-Dinitrophenol | | 4600 | U | | 100-02-7 | 4-Nitrophenol | | 4600 | U | | 1 | Dikenzofuran | | 110 | J | | | 2,4-Dinitrotoluene | | 1900 | U | | | Diethyl phthalate | | 1900 | U | | | 4-Chlorophenyl phenyl ether | | 1900 | U | | 86-73-7 | | | 210 | J | | | 4-Nitroaniline | | 4600 | U | | | 4,6-Dinitro-2-methylphenol_ | | 4600 | U | | | N-nitrosodiphenylamine | | 1900 | ַ ע | | | 4-Bromophenyl phenyl ether | | 1900 | ש | | | Hexachlorobenzene | | 1900 | U | | | Pentachlorophenol | | 4600 | ับ | | 85-01-8 | Phenanthrene | | 3200 | 1. | | 1 | Anthracene | | 710 | J | | 86-74-8 | | | 250 | J | | 84-74-2 | Di-n-butyl phthalate | | 1900 | U | | | Fluoranthene | | 4400 | | | 129-00-0 | | | 4000 | 1 | | | Butyl benzyl phthalate | | 1900 | U . | | 91-94-1 | 3,3'-Dichlorobenzidine | | 1900 | U | | 56-55-3 | Benzo (a) anthracene | | 2300 | } | | 218-01-9 | Chrysene | | 1700 | J | | 117-81-7 | Bis(2-ethylhexyl) phthalate | | 10 | J | | 117-84-0 | Di-n-octyl phthalate | | 1900 | ט | | 205-99-2 | Benzo (b) fluoranthene | | 2400 | | | 207-08-9 | Benzo(k) fluoranthene | | 710 | J | | 50-32-8 | Benzo (a) pyrene | | 1800 | J | | 193-39-5 | Indeno(1,2,3-cd)pyrene | - | 1000 | J | | | Dibenzo (a, h) anthracene | | 290 | J | | | Benzo(ghi)perylene | | 1300 | J | | L | | <u></u> | | | ## 000055 Client No. LSVI1315B4G Lab Name: STL Buffalo Contract: 98-153 Tab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G trix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0682307</u> Sample wt/vol: 30.78 (g/mL) G Lab File ID: Z44616.RR vel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 10.9 decanted: (Y/N) N Date Extracted: 09/29/2000 Encentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 jection Volume: 2.00 (uL) Dilution Factor: 10.00 SPC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|------------------------------|-----------------|-------|----------| | 108-95-2 | | | 3600 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 3600 | U | | 95-57-8 | 2-Chlorophenol | | 3600 | U | | 541-73-1 | 1,3-Dichlorobenzene | | 3600 | ט | | 106-46-7 | 1,4-Dichlorobenzene | | 3600 | U | | 95-50-1 | 1,2-Dichlorobenzene | | 3600 | <u>ប</u> | | | 2-Methylphenol | | 3600 | U | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane) | | 3600 | U | | | 4-Methylphenol | | 3600 | ַ | | 621-64-7 | N-Nitroso-Di-n-propylamine | | 3600 | ប | | 67-72-1 | Hexachloroethane | • | 3600 | U | | 98-95-3 | Nitrobenzene | | 3600 | ט | | 78-59-1 | Isophorone | | 3600 | U | | 88-75-5 | 2-Nitrophenol | | 3600 | U | | 105-67-9 | 2,4-Dimethylphenol | | 3600 | lυ | | 111-91-1 | Bis(2-chloroethoxy) methane | | 3600 | U | | 120-83-2 | 2,4-Dichlorophenol | | 3600 | U . | | 120-82-1 | 1,2,4-Trichlorobenzene | | 3600 | ับ | | 91-20-3 | Naphthalene | | 930 | J | | 106-47-8 | 4-Chloroaniline | | 3600 | U | | 87-68-3 | Hexachlorobutadiene | | 3600 | U | | 59-50-7 | 4-Chloro-3-methylphenol | | 3600 | U | | 91-57-6 | 2-Methylnaphthalene | | 320 | J | | 77-47-4 | Hexachlorocyclopentadiene | | 3600 | U | | | 2,4,6-Trichlorophenol | | 3600 | U | | 95-95-4 | 2,4,5-Trichlorophenol | | 8800 | ט | | 91-58-7 | 2-Chloronaphthalene | | 3600 | ט | | 88-74-4 | 2-Nitroaniline | | 8800 | U | | 131-11-3 | Dimethyl phthalate | | 3600 | υ | | | Acenaphthylene | | 4500 | | | | 2,6-Dinitrotoluene | | 3600 | ไบ | | | 3-Nitroaniline | | 8800 | Ū | # 000056 Client No. LSVI1315B4G ab Name: STL Buffalo Contract: <u>98-153</u> Matrix: (soil/water) SOIL 30.78 (g/mL) G Lab Sample ID: A0682307 Sample wt/vol: Lab File ID: Z44616.RR evel: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: 10.9 decanted: (Y/N) <u>N</u> Date Analyzed: Date Extracted: 09/29/2000 bncentrated Extract Volume: 1000 (uL) Dilution Factor: ___10.00 10/14/2000 njection Volume: 2.00 (uL) Total PA+ 36.69 IPC Cleanup: (Y/N) N pH: ___ www.17.14 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 83-32-9-----Acenaphthene 570 J 51-28-5----2,4-Dinitrophenol 8800 U 100-02-7----4-Nitrophenol 8800 U 132-64-9----Dibenzofuran J 510 121-14-2----2,4-Dinitrotoluene U 3600 84-66-2----Diethyl phthalate 3600 U 7005-72-3----4-Chlorophenyl phenyl ether 3600 U 86-73-7----Fluorene 720 J 100-01-6----4-Nitroaniline 8800 U 534-52-1----4,6-Dinitro-2-methylphenol 8800 U 86-30-6----N-nitrosodiphenylamine 3600 U 101-55-3----4-Bromophenyl phenyl ether U 3600 118-74-1----Hexachlorobenzene U 3600 87-86-5----Pentachlorophenol 8800 U 85-01-8-----Phenanthrene 3000 J 120-12-7----Anthracene 1100 J 86-74-8-----Carbazole 360 J 84-74-2----Di-n-butyl phthalate 3600 U 206-44-0----Fluoranthene J 2300 129-00-0----Pyrene J 3000 85-68-7----Butyl benzyl phthalate 3600 U 91-94-1----3,3'-Dichlorobenzidine U 3600 56-55-3-----Benzo (a) anthracene 3600 218-01-9----Chrysene 3600 U 117-81-7----Bis(2-ethylhexyl) phthalate 3600 U 117-84-0-----Di-n-octyl phthalate 3600 IJ 205-99-2----Benzo (b) fluoranthene 5500 207-08-9----Benzo(k) fluoranthene U 3600 50-32-8-----Benzo (a) pyrene 5800 193-39-5----Indeno (1, 2, 3-cd) pyrene 2000 J 53-70-3-----Dibenzo (a, h) anthracene 240 J 191-24-2----Benzo (ghi) perylene 2600 # 000057 Client No. LSVI1213B1G ab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 23B5G atrix: (soil/water) <u>SOIL</u> Lab Sample ID: A0682312 Lab File ID: Z44621.RR Sample wt/vol: 30.47 (g/mL) G evel: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: 11.5 decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: <u>10/14/2000</u> njection Volume: 2.00 (uL) Dilution Factor: 10.00 GPC Cleanup: (Y/N) N pH: _ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |------------|------------------------------|-----------------|-------|------| | 108-95-2 | Phenol | | 3700 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 3700 | U | | 95-57-8 | 2-Chlorophenol | | 3700 | U | | 541-73-1 | 1,3-Dichlorobenzene | | 3700 | Įυ | | 106-46-7 | 1,4-Dichlorobenzene | | 3700 | U | | 95-50-1 | 1,2-Dichlorobenzene | | 3700 | U | | | 2-Methylphenol | | 3700 | U | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane) | | 3700 | U | | 106-44-5 | 4-Methylphenol | | 3700 | U | | 621-64-7 | N-Nitroso-Di-n-propylamine | | 3700 | U | | 67-72-1 | Hexachloroethane | | 3700 | ט | | 98-95-3 | Nitrobenzene | · | 3700 | U | | 78-59-1 | Isophorone | | 3700 | U | | 88-75-5 | 2-Nitrophenol | | 3700 | U | | 105-67-9 | 2,4-Dimethylphenol | - | 3700 | שׁן | | 111-91-1 | Bis(2-chloroethoxy) methane | | 3700 | U | | 120-83-2 | 2,4-Dichlorophenol | | 3700 | U | | 120-82-1 | 1,2,4-Trichlorobenzene | | 3700 | U | | 91-20-3 | Naphthalene | | 140 | J | | 106-47-8 | 4-Chloroaniline | | 3700 | U | | 87-68-3 | Hexachlorobutadiene | | 3700 | U | | 59-50-7 | 4-Chloro-3-methylphenol | | 3700 | U | | | 2-Methylnaphthalene | | 43 | J | | | Hexachlorocyclopentadiene | | 3700 | ีบ | | | 2,4,6-Trichlorophenol | | 3700 | . U | | | 2,4,5-Trichlorophenol | | 8900 | ט | | | 2-Ciloronaphthalene | | 3700 | Ū | | | 2-Nitroaniline | | 8900 | טו | | | Dimethyl phthalate | | 3700 | JŪ | | | Acenaphthylene | | 420 | J | | | 2,6-Dinitrotoluene | | 3700 | . บั | | | 3-Nitroaniline | | 8900 | บ | | JJ-0J-Z-3- | J MICE CALLED THE | | 0,00 | ١ | Client No. ______ LSVI1213B1G Lab
Name: STL Buffalo Contract: 98-153 GPC Cleanup: (Y/N) N pH: ____ Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682312 Sample wt/vol: 30.47 (g/mL) G Lab File ID: Z44621.RR Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000 09/26/2000</u> Moisture: 11.5 decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) Dilution Factor: 10.00 Total PAH 37.72 Thuckart 13,93 CONCENTRATION UNITS: | CAS NO. COMPOUND (ug/L or ug/Kg) UG/K 83-32-9 | | |--|-------| | 51-28-52,4-Dinitrophenol 8900 100-02-74-Nitrophenol 8900 | | | 100-02-74-Nitrophenol 8900 | J. | | i | ט | | | ט | | 132-64-9Dibenzofuran 380 | J | | 121-14-22,4-Dinitrotoluene 3700 | ט | | 84-66-2Diethyl phthalate 3700 | ט | | 7005-72-34-Chlorophenyl phenyl ether 3700 | ט | | 86-73-7Fluorene 790 | J | | 100-01-64-Nitroaniline 8900 | י ט | | 534-52-14,6-Dinitro-2-methylphenol 8900 | ט | | 86-30-6N-nitrosodiphenylamine 3700 | υ | | 101-55-34-Bromophenyl phenyl ether 3700 | שׁוֹי | | 118-74-1Hexachlorobenzene 3700 | ט | | 87-86-5Pentachlorophenol 8900 | ט | | 85-01-8Phenanthrene 5900 | | | 120-12-7Anthracene 1200 | J | | 86-74-8Carbazole 650 | J | | 84-74-2Di-n-butyl phthalate 3700 | ט | | 206-44-0Fluoranthene 7900 | ŀ | | 129-00-0Pyrene 6000 | | | 85-68-7Butyl benzyl phthalate 3700 | ΰ | | 91-94-13,3'-Dichlorobenzidine 3700 | ָט | | 56-55-3Benzo (a) anthracene 3000 | J | | 218-01-9Chrysene 2900 | J | | 117-81-7Bis(2-ethylhexyl) phthalate 3700 | ט | | 117-84-0Di-n-octyl phthalate 3700 | ט | | 205-99-2Benzo (b) fluoranthene 3400 | J | | 207-08-9Benzo (k) fluoranthene 1200 | J | | 50-32-8Benzo (a) pyrene 2400 | J | | 193-39-5Indeno (1, 2, 3-cd) pyrene 790 | J | | 53-70-3Dibenzo (a, h) anthracene 240 | J | | 191-24-2Benzo (ghi) perylene 770 | J | Client No. _____ LSVI1719B4G ab Name: STL Buffalo Contract: 98-153 trix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>A0682308</u> Ample wt/vol: 30.73 (g/mL) G Lab File ID: Z44637.RR vel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 7.4 decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/16/2000 jection Volume: 2.00 (uL) Dilution Factor: 10.00 #PC Cleanup: (Y/N) N pH: ____ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | | Q | |----------|------------------------------|---------------------------------------|--------|----------| | 108-95-2 | | | 3500 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 3500 | Ŭ | | 95-57-8 | 2-Chlorophenol | | 3500 | U | | | 1,3-Dichlorobenzene | | 3500 | U | | | 1,4-Dichlorobenzene | | 3500 | ע | | | 1,2-Dichlorobenzene | · · · · · · · · · · · · · · · · · · · | 3500 | ע | | | 2-Methylphenol | | 3500 | ן ט | | | 2,2'-Oxybis(1-Chloropropane) | | 3500 | U | | | 4-Methylphenol | | 3500 | U | | 621-64-7 | N-Nitroso-Di-n-propylamine | , | 3500 | U | | | Hexachloroethane | | 3500 ° | U | | 98-95-3 | Nitrobenzene | | 3500 | U | | 78-59-1 | Isophorone | | 3500 | ַ ט | | 88-75-5 | 2-Nitrophenol | | 3500 | U | | | 2,4-Dimethylphenol | | 3500 | U | | 111-91-1 | Bis(2-chloroethoxy) methane_ | | 3500 | U | | 120-83-2 | 2,4-Dichlorophenol | | 3500 | U | | 120-82-1 | 1,2,4-Trichlorobenzene | | 3500 | U | | 91-20-3 | Naphthalene | | 560 | J | | | 4-Chloroaniline | | 3500 | ש | | 87-68-3 | Hexachlorobutadiene | | 3500 | U | | 59-50-7 | 4-Chloro-3-methylphenol | | 3500 | U | | 91-57-6 | 2-Methylnaphthalene | | 170 | J | | 77-47-4 | Hexachlorocyclopentadiene | | 3500 | U | | 88-06-2 | 2,4,6-Trichlorophenol | | 3500 | U | | 95-95-4 | 2,4,5-Trichlorophenol | | 8400 | U | | | 2-Chloronaphthalene | | 3500 | U | | | 2-Nitroaniline | | 8400 | U | | | Dimethyl phthalate | | 3500 | ט | | | Acenaphthylene | | 4300 | | | | 2,6-Dinitrotoluene | | 3500 | U | | | 3-Nitroaniline | | 8400 | Ū | Client No | | | |
 | |------|------|-------------------|------| | *** | 77.0 | 040 | | | SVII | 719 | H41(- | | Lab Name: STL Buffalo Contract: 98-153 Case No.: ____ SAS No.: ____ Lab Code: RECNY SDG No.: <u>23B5G</u> Matrix: (soil/water) SOIL Lab Sample ID: A0682308 Sample wt/vol: _30.73 (g/mL) G Lab File ID: Z44637.RR (low/med) evel: Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: 7.4 decanted: (Y/N) N Date Extracted: 09/29/2000 loncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/16/2000 Injection Volume: 2.00 (uL) Dilution Factor: 10.00 Total A4+ 31,39 PC Cleanup: (Y/N) N pH: Total Class 15,93 INCENIRATION UNITS: CAS NO. COMPOUND UG/KG (ug/L or ug/Kg) 0 83-32-9-----Acenaphthene 320 51-28-5----2,4-Dinitrophenol 8400 U 100-02-7----4-Nitrophenol 8400 U 132-64-9-----Dibenzofuran 230 J 121-14-2----2,4-Dinitrotoluene U 3500 84-66-2----Diethyl phthalate 3500 U 7005-72-3----4-Chlorophenyl phenyl ether 3500 U 86-73-7----Fluorene 510 J 100-01-6----4-Nitroaniline 8400 U 534-52-1----4,6-Dinitro-2-methylphenol 8400 U 86-30-6----N-nitrosodiphenylamine 3500 U 101-55-3----4-Bromophenyl phenyl ether U 3500 118-74-1----Hexachlorobenzene U 3500 87-86-5----Pentachlorophenol 8400 U 85-01-8----Phenanthrene 1500 J 120-12-7-----Anthracene J 970 86-74-8-----Carbazole J 210 84-74-2----Di-n-butyl phthalate U 3500 206-44-0----Fluoranthene J 1800 129-00-0----Pyrene 2100 J 85-68-7-----Butyl benzyl phthalate 3500 U 91-94-1----3,3'-Dichlorobenzidine Ù 3500 56-55-3-----Benzo (a) anthracene 1400 J 218-01-9----Chrysene J 1900 117-81-7----Bis(2-ethylhexyl) phthalate U 3500 117-84-0----Di-n-octyl phthalate 3500 U 205-99-2----Benzo (b) fluoranthene 4400 207-08-9----Benzo (k) fluoranthene 3500 U 50-32-8-----Benzo (a) pyrene 5500 193-39-5----Indeno (1, 2, 3-cd) pyrene 2100 J 53-70-3-----Dibenzo (a, h) anthracene 630 J 191-24-2----Benzo (ghi) perylene 3000 # 000061 Client No. LSVI2123B4G Lab Name: STL Buffalo . Contract: <u>98-153</u> ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682309 Sample wt/vol: <u>30.82</u> (g/mL) <u>G</u> Lab File ID: Z44618.RR evel: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: 17.2 decanted: (Y/N) N Date Extracted: 09/29/2000 concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 njection Volume: 2.00 (uL) Dilution Factor: 1.00 GPC Cleanup: (Y/N) N pH: _ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|-----------------------------|-----------------|-------|------| | 108-95-2 | Phenol | | 7 | J | | | Bis(2-chloroethyl) ether | | 390 | ט | | 95-57-8 | 2-Chlorophenol | | 390 | ט | | 541-73-1 | 1,3-Dichlorobenzene | | 390 | υ | | 106-46-7 | 1,4-Dichlorobenzene | | 390 | ַט | | 95-50-1 | 1,2-Dichlorobenzene | | 390 | ט | | 95-48-7 | 2-Methylphenol | | 390 | ט | | | 2,2'-Oxybis(1-Chloropropane | :) | 390 | ט | | 106-44-5 | 4-Methylphenol | | 390 | ן ט | | | N-Nitroso-Di-n-propylamine | | 390 | יט | | 67-72-1 | Hexachloroethane | | 390 | ט | | 98-95-3 | Nitrobenzene | | 390 | ט | | 78-59-1 | Isophorone | | 390 | שו | | 88-75-5 | 2-Nitrophenol | | ´ 390 | ט | | 105-67-9 | 2,4-Dimethylphenol | | 390 | ט | | | Bis(2-chloroethoxy) methane | : | 390 | ט | | 120-83-2 | 2,4-Dichlorophenol | | 390 | ָן ט | | 120-82-1 | 1,2,4-Trichlorobenzene | | 390 | บ | | 91-20-3 | Naphthalene | | 70 | IJ | | 106-47-8 | 4-Chloroaniline | | 390 | ן ט | | 87-68-3 | Hexachlorobutadiene | | 390 | lυ | | 59-50-7 | 4-Chloro-3-methylphenol | | 390 | U | | | 2-Methylnaphthalene | | 21 | J | | | Hexachlorocyclopentadiene | · . | 390 | บั | | | 2,4,6-Trichlorophenol | | 390 | U | | | 2,4,5-Trichlorophenol | ` | 940 | Ū | | ľ | 2-Chloronaphthalene | | 390 | บ | | | 2-Nitroaniline | ···· | 940 | Ū | | | Dimethyl phthalate | - | 390 | Ü | | | Acenaphthylene | | 43 | J | | | 2,6-Dinitrotoluene | | 390 | ט | | | 3-Nitroaniline | | 940 | บ | | 75.05.2 | J 112 CE COMMERCE | | フュロ | ا | Client No LSVI2123B4G Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682309 Sample wt/vol: 30.82 (g/mL) G Lab File ID: Z44618.RR Level: (low/med) 09/26/2000 09/26/2000 Date Samp/Recv: decanted: (Y/N) N % Moisture: <u>17.2</u> Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) Dilution Factor: ____1.00 Total PAH 1. 811 GPC Cleanup: (Y/N) N pH: ThicPAH 1.693 CONCENIRATION UNITS: COMPOUND CAS NO. (ug/L or ug/Kg) UG/KG | <u> </u> | | (49/11 01 49/149/ | <u>00/100</u> | | |----------|------------------------------|-------------------|---------------|------------| | 83-32-9 | -Acenaphthene | | 38 | J | | | -2,4-Dinitrophenol | | 940 | U . | | 100-02-7 | -4-Nitrophenol | | 940 | ט | | | -Dibenzofuran | | 31 | J | | | -2,4-Dinitrotoluene | | 390 | ט | | | -Diethyl phthalate | | 390 | ט | | | -4-Chlorophenyl phenyl ether | | 390 | ט | | 86-73-7 | | | 28 | J | | | -4-Nitroaniline | | 940 | ע ו | | 534-52-1 | -4,6-Dinitro-2-methylphenol_ | | 940 | ט | | 86-30-6 | -N-nitrosodiphenylamine | | 390 | ט | | 101-55-3 | -4-Bromophenyl phenyl ether | | 390 | ט | | | -Hexachlorobenzene | | 390 | ט | | | -Pentachlorophenol | | 940 | ט | | | -Phenanthrene | | 260 | J ' | | 120-12-7 | | | 62 | J | | 86-74-8 | | | 23 | J | | | -Di-n-butyl phthalate | | 390 | ט | | • | -Fluoranthene | | 230 | J | | 129-00-0 | <u> </u> | | 260 | J | | | -Butyl benzyl phthalate | | 390 | ט | | 1 . | -3,3'-Dichlorobenzidine | | 390 | ע | | | -Benzo (a) anthracene | | 140 | J | | 218-01-9 | | | 100 | J | | | -Bis(2-ethylhexyl) phthalate | | 24 | J | | 117-84-0 | -Di-n-octyl phthalate | | -5 | J | | | -Benzo (b) fluoranthene | | 230 | J | | 207-08-9 | -Benzo(k)fluoranthene | | 390 | U | | 50-32-8 | -Benzo (a) pyrene | | 140 | J | | 193-39-5 | -Indeno(1,2,3-cd)pyrene | | 67 | J | | | -Dibenzo (a, h) anthracene | | 16 | J | | 191-24-2 | -Benzo(ghi)perylene | | 75 | J | | | | | | | # 000063 Client No. | 1 | | | |---|-----------|--| | | LSVISS0IC | | | | | | b Name:
<u>STL Buffalo</u> Contract: <u>98-153</u> ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G trix: (soil/water) <u>SOIL</u> Lab Sample ID: A0682317 Sample wt/vol: _30.05 (g/mL) <u>G</u> Lab File ID: Z44626.RR vel: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: 5.5 decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 1000 (uL) Date Analyzed: <u>10/14/2000</u> jection Volume: 2.00 (uL) Dilution Factor: 10.00 FPC Cleanup: (Y/N) N pH: _ | CAS NO. | COMPOUND | (ug/L or ug/Kg) | UG/KG | Q | |----------|------------------------------|-----------------|-------|--------| | 108-95-2 | Phenol | | 3500 | U | | 111-44-4 | Bis(2-chloroethyl) ether | | 3500 | ט | | 95-57-8 | 2-Chlorophenol | | 3500 | ַ ט | | | 1,3-Dichlorebenzene | , | 3500 | U | | 106-46-7 | 1,4-Dichlorobenzene | | 3500 | ַ ען | | 95-50-1 | 1,2-Dichlorobenzene | | 3500 | ט | | | 2-Methylphenol | | 3500 | ש | | 108-60-1 | 2,2'-Oxybis(1-Chloropropane) | V | 3500 | ַ | | 106-44-5 | 4-Methylphenol | | 3500 | U | | 621-64-7 | N-Nitroso-Di-n-propylamine | | 3500 | ַ ען 🖈 | | 67-72-1 | Hexachloroethane | | 3500 | U | | 98-95-3 | Nitrobenzene | | 3500 | ש | | | Isophorone | | 3500 | U | | 88-75-5 | 2-Nitrophenol | | 3500 | U | | | 2,4-Dimethylphenol | | 3500 | ע | | 111-91-1 | Bis(2-chloroethoxy) methane | | 3500 | U | | | 2,4-Dichlorophenol_ | | 3500 | U | | 120-82-1 | 1,2,4-Trichlorobenzene | | 3500 | U | | 91-20-3 | Naphthalene | | 3500 | U | | 106-47-8 | 4-Chloroaniline | | 3500 | U | | 87-68-3 | Hexachlorobutadiene | | 3500 | U | | 59-50-7 | 4-Chloro-3-methylphenol | | 3500 | U | | 91-57-6 | 2-Methylnaphthalene | | 3500 | U | | 77-47-4 | Hexachlorocyclopentadiene | | 3500 | U | | 88-06-2 | 2,4,6-Trichlorophenol | | 3500 | U | | 95-95-4 | 2,4,5-Trichlorophenol | | 8400 | ע - | | 91-58-7 | 2-Chloronaphthalene | | 3500 | U | | | 2-Nitroaniline | | 8400 | U | | | Dimethyl phthalate | | 3500 | υ | | | Acenaphthylene | | 51 | J | | | 2,6-Dinitrotoluene | | 3500 | U | | | 3-Nitroaniline | | 8400 | ט | # 000064 Client No. LSVISS01C Lab Name: STL Buffalo Contract: 98-153 Lab Code: RECNY Case No.: ____ SAS No.: _ SDG No.: <u>23B5G</u> Matrix: (soil/water) SOIL Lab Sample ID: Sample wt/vol: _30.05 (g/mL) <u>G</u> Lab File ID: Z44626.RR A0682317 J 100 Level: (low/med) Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: 5.5 decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) CAS NO. 83-32-9-----Acenaphthene 132-64-9----Dibenzofuran 100-01-6----4-Nitroaniline 86-73-7----Fluorene 51-28-5----2,4-Dinitrophenol 121-14-2----2,4-Dinitrotoluene 84-66-2----Diethyl phthalate 118-74-1----Hexachlorobenzene 87-86-5----Pentachlorophenol 56-55-3-----Benzo (a) anthracene 50-32-8-----Benzo (a) pyrene 191-24-2----Benzo (ghi) perylene 85-01-8----Phenanthrene 206-44-0----Fluoranthene 120-12-7----Anthracene 86-74-8-----Carbazole 129-00-0----Pyrene 218-01-9-----Chrysene 100-02-7----4-Nitrophenol TOPAH 5.899 Dilution Factor: ___10.00 GPC Cleanup: (Y/N) N COMPOUND. pH: ___ ToLUCPAH 2.600 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q 21 84û0 U 8400 U U 3500 U 3500 U 3500 7005-72-3----4-Chlorophenyl phenyl ether 3500 Ū J 47 8400 U 534-52-1----4,6-Dinitro-2-methylphenol 8400 U 86-30-6----N-nitrosodiphenylamine 3500 U 101-55-3----4-Bromophenyl phenyl ether 3500 U U 3500 U 8400 780 J J 150 J 75 84-74-2----Di-n-butyl phthalate 3500 U 950 J J 1200 85-68-7----Butyl benzyl phthalate Ū 3500 91-94-1----3,3'-Dichlorobenzidine 3500 U 600 J 440 J 117-81-7----Bis(2-ethylhexyl) phthalate U 3500 117-84-0-----Di-n-octyl phthalate U 3500 205-99-2----Benzo (b) fluoranthene 950 J 207-08-9----Benzo (k) fluoranthene U 3500 490 J 193-39-5----Indeno (1, 2, 3-cd) pyrene 120 J 53-70-3-----Dibenzo (a, h) anthracene 3500 U Client No. | · · · · · · · · · · · · · · · · · · · | | |---------------------------------------|--| | ! | , | | LSVISS02C | • | | 1720772 | | | | and the second s | ab Name: STL Buffalo Contract: 98-153 ab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G atrix: (soil/water) SOIL Lab Sample ID: A0682320 Sample wt/vol: 30.31 (g/mL) G Lab File ID: Z44629.RR evel: (low/med) <u>LOW</u> Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> Moisture: 20.3 decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 hjection Volume: 2.00 (uL) Dilution Factor: 10.00 FPC Cleanup: (Y/N) N pH: ____ | CAS NO. COMPOUND | | ncentration uni
ng/L or ug/Kg) | UG/KG | Q | |---------------------|-------------------|-----------------------------------|-------|----------| | 108-95-2Phenol | | - | 4100 | U | | 111-44-4Bis(2-chlor | oethyl) ether | | 4100 | ַ ט | | 95-57-82-Chlorophe | | | 4100 | ี บ | | 541-73-11,3-Dichlor | obenzene | | 4100 | ַ ט | | 106-46-71,4-Dichlor | obenzene | | 4100 | ָּט | | 95-50-11,2-Dichlor | obenzene | | 4100 | ַט | | 95-48-72-Methylphe | nol | | 4100 | ַ ט | | 108-60-12,2'-Oxybis | (1-Chloropropane) | | 4100 | ַ | | 106-44-54-Methylphe | nol | | 4100 | שׁ | | 621-64-7N-Nitroso-D | i-n-propylamine | | 4100 | ש | | 67-72-1Hexachloroe | thane | | 4100 | שׁן | | 98-95-3Nitrobenzen | e | | 4100 | ט | | 78-59-1Isophorone | | | 4100 | ען∷ | | 88-75-52-Nitrophen | ol | | 4100 | ַ ט | | 105-67-92,4-Dimethy | | | 4100 | U | | 111-91-1Bis(2-chlor | oethoxy) methane | | 4100 | U | | 120-83-22,4-Dichlor | ophenol . | | 4100 | U | | 120-82-11,2,4-Trich | lorobenzene | | 4100 | U | | 91-20-3Naphthalene | | | 4100 | ע | | 106-47-84-Chloroani | line | | 4100 | U | | 87-68-3Hexachlorob | utadiene | | 4100 | U . | | 59-50-74-Chloro-3- | methylphenol | | 4100 | U | | 91-57-62-Methylnap | hthalene | | 4100 | U | | 77-47-4Hexachloroc | yclopentadiene | | 4100 | U | | 88-06-22,4,6-Trich | lorophenol | | 4100 | U | | 95-95-42,4,5-Trich | lorophenol | | 9900 | U | | 91-58-72-Chloronap | hthalene | | 4100 | U | | 88-74-42-Nitroanil | ine | | 9900 | U | | 131-11-3Dimethyl ph | thalate | | 4100 | ַ ט | | 208-96-8Acenaphthyl | | | 4100 | U | | 606-20-22,6-Dinitro | | | 4100 | ט | | 99-09-23-Nitroanil | | | 9900 | U | # 000066 Client No. | LSVISS02C | |-----------| |-----------| Lab Name: SIL Buffalo Contract: <u>98-153</u> SDG No.: <u>23B5G</u> Lab Code: RECNY Case No.: ____ SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: A0682320 30.31 (g/mL) G Sample wt/vol: Lab File ID: Z44629.RR Date Samp/Recv: 09/26/2000 09/26/2000 (low/med) .evel: Date Extracted: 09/29/2000 decanted: (Y/N) N * Moisture: 20.3 loncentrated Extract Volume: 1000 (uL) Date Analyzed: 10/14/2000 Injection Volume: 2.00 (uL) Dilution Factor: 10.00 Total PAH 7,393 FPC Clearup: (Y/N) N pH: _ 16hu CPAH 3.546 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 83-32-9-----Acenaphthene U 4100 51-28-5----2,4-Dinitrophenol 9900 U 100-02-7----4-Nitrophenol 9900 U 132-64-9-----Dibenzofuran 4100 U 121-14-2----2,4-Dinitrotoluene 4100 U 84-66-2----Diethyl phthalate 4100 IJ 7005-72-3----4-Chlorophenyl phenyl ether 4100 U 86-73-7----Fluorene J 27 100-01-6----4-Nitroaniline 9900 U 534-52-1----4,6-Dinitro-2-methylphenol 9900 U 86-30-6----N-nitrosodiphenylamine U 4100 101-55-3----4-Bromophenyl phenyl ether 4100 U 118-74-1----Hexachlorobenzene 4100 U 87-86-5----Pentachlorophenol U 9900 85-01-8----Phenanthrene 780 J 120-12-7-----Anthracene 110 J 86-74-8-----Carbazole U 4100 84-74-2----Di-n-butyl phthalate 4100 U 206-44-0----Fluoranthene 1400 J 129-00-0----Pyrene 1400 J 85-68-7----Butyl benzyl phthalate U 4100 91-94-1----3,3'-Dichlorobenzidine U 4100 56-55-3----Benzo (a) anthracene J 740 218-01-9-----Chrysene J 590 117-81-7----Bis(2-ethylhexyl) phthalate U 4100 117-84-0-----Di-n-octyl phthalate 4100 U 205-99-2----Benzo (b) fluoranthene J 1400 207-08-9----Benzo(k) fluoranthene U 4100 50-32-8-----Benzo (a) pyrene J 660 193-39-5----Indeno (1, 2, 3-cd) pyrene J 130 53-70-3-----Dibenzo (a, h) anthracene J 26 191-24-2----Benzo (ghi) perylene J 130 # 000067 Client No. | T | | | |-----
----------|--| | 112 | SVISS03C | | | I | 74100000 | | ab Name: STL Buffalo Contract: <u>98-153</u> ab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G trix: (soil/water) <u>SOIL</u> Lab Sample ID: A0682318 Sample wt/vol: <u>30.21</u> (g/mL) <u>G</u> Lab File ID: <u>Z44627.RR</u> vel: (low/med) <u>LOW</u> Date Samp/Recv: 09/26/2000 09/26/2000 Moisture: <u>28.2</u> decanted: (Y/N) N Date Extracted: 09/29/2000 oncentrated Extract Volume: 1000 (uL) Date Analyzed: <u>10/14/2000</u> jection Volume: 2.00 (uL) Dilution Factor: ___10.00 SPC Cleanup: (Y/N) N pH: ____ | | CAS NO. COMPOUND (ug/L or ug | /Kg) <u>UG/KG</u> | . (| Q | |---|--------------------------------------|-------------------|-----|-----| | | 108-95-2Phenol | 4600 | U | | | | 111-44-4Bis(2-chloroethyl) ether | 4600 | บ | | | | 95-57-82-Chlorophenol | 4600 | ש | - 1 | | | 541-73-11,3-Dichlorobenzene | 4600 | ַט | - { | | | 106-46-71,4-Dichlorobenzene | 4600 | ט | ļ | | | 95-50-11,2-Dichlorobenzene | 4600 | ט | İ | | | 95-48-72-Methylphenol | 4600 | ט | 1 | | | 108-60-12,2'-Oxybis(1-Chloropropane) | 4600 | ט | - 1 | | | 106-44-54-Methylphenol | 4600 | ש | . | | | 621-64-7N-Nitroso-Di-n-propylamine | 4600 | ש | | | | 67-72-1Hexachloroethane | 4600 | U | | | | 98-95-3Nitrobenzene | 4600 | U | - 1 | | | 78-59-1Isophorone | 4600 | ט | 1 | | | 88-75-52-Nitrophenol_ | 4600 | υ | ļ | | | 105-67-92,4-Dimethylphenol | 4600 | U | | | | 111-91-1Bis(2-chloroethoxy) methane | 4600 | ט | | | | 120-83-22,4-Dichlorophenol | 4600 | U | .] | | | 120-82-11,2,4-Trichlorobenzene | 4600 | ַע | | | - | 91-20-3Naphthalene | 4600 | ַ ע | 1 | | | 106-47-84-Chloroaniline | 4600 | ש | | | | 87-68-3Hexachlorobutadiene | 4600 | שן | - | | | 59-50-74-Chloro-3-methylphenol | 4600 | ש | 1 | | | 91-57-62-Methylnaphthalene | 4600 | - U | ŀ | | | 77-47-4Hexachlorocyclopentadiene | 4600 | ע | | | | 88-06-22,4,6-Trichlorophenol | 4600 | U | | | | 95-95-42,4,5-Trichlorophenol | 11000 | ע | ĺ | | | 91-58-72-Chlcronaphthalene | 4600 | Ū | | | | 88-74-42-Nitroaniline | 11000 | U | - | | | 131-11-3Dimethyl phthalate | 4600 | U | | | | 208-96-8Acenaphthylene | 64 | J | | | | 606-20-22,6-Dinitrotoluene | 4600 | U | | | | 99-09-23-Nitroaniline | 11000 | U | Ì | | | | - | - 1 | - [| # 000068 Client No LSVISS03C Lab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix: (soil/water) SOIL Lab Sample ID: A0682318 Sample wt/vol: 30.21 (g/mL) G Lab File ID: Z44627.RR Level: (low/med) LOW Date Samp/Recv: 09/26/2000 09/26/2000 % Moisture: <u>28.2</u> decanted: (Y/N) N Date Extracted: 09/29/2000 Concentrated Extract Volume: 1000 (uL) Date Analyzed: <u>10/14/2000</u> Injection Volume: 2.00 (uL) Total PArt 8,135 Dilution Factor: 10.00 GPC Cleanup: (Y/N) N pH: ___ Total CPAH 4,146 CONCENIRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Ò 83-32-9-----Acenaphthene 4600 51-28-5----2,4-Dinitrophenol 11000 U 100-02-7----4-Nitrophenol____ 11000 U 13?-64-9-----Dibenzofuran 4600 U 121-14-2----2,4-Dinitrotoluene 4600 U 84-66-2----Diethyl phthalate 4600 U 7005-72-3----4-Chlorophenyl phenyl ether 4600 U 86-73-7----Fluorene 4600 U 100-01-6----4-Nitroaniline 11000 U 534-52-1----4,6-Dinitro-2-methylphenol 11000 U 86-30-6----N-nitrosodiphenylamine 4600 U 101-55-3----4-Bromophenyl phenyl ether 4600 U 118-74-1----Hexachlorobenzene 4600 U 87-86-5-----Pentachlorophenol 30 J 85-01-8-----Phenanthrene 530 · J 120-12-7----Anthracene 91 J 86-74-8-----Carbazole 4600 U 84-74-2----Di-n-butyl phthalate 4600 U 206-44-0----Fluoranthene 1500 J 129-00-0----Pyrene 1600 J 85-68-7-----Butyl benzyl phthalate 4600 U 91-94-1----3,3'-Dichlorobenzidine 4600 U 56-55-3----Benzo (a) anthracene 960 J 218-01-9-----Chrysene J 660 117-81-7----Bis(2-ethylhexyl) phthalate 24 J 117-84-0----Di-n-octyl phthalate 4600 U 205-39-2----Benzo (b) fluoranthene 1500 J 207-08-9-----Benzo(k)fluoranthene 4600 U 50-32-8-----Benzo (a) pyrene 760 J 193-39-5----Indeno (1, 2, 3-cd) pyrene 220 J 53-70-3-----Dibenzo (a, h) anthracene 40 J 191-24-2----Benzo (ghi) perylene J 210 ### -1-INORGANIC ANALYSIS DATA SHEET | SAMPLE | NO. | |--------|-----| |--------|-----| | ontract: | | | LSV104B2G | |--------------------|-----------|------------------|----------------| | ab Code: STL | Case No.: | SAS No.: | SDG NO.: 23B5G | | trix (soil/water): | SOIL | _ Lab Sample ID: | : AD016966 | | evel (low/med): L | OW | Date Received: | 9/26/00 | | calida. 03 | • | | | | | | • | - | | | |-----------|------------|---------------|----------|------------|----| | CAS No. | Analyte | Concentration | С | Ω | М | | 7429-90-5 | Aluminum | 3350 | 1 | * | P | | 7440-36-0 | Antimony | 2.2 | В | N | P | | 7440-38-2 | Arsenic | 5.7 | 1. | 1 | P | | 7440-39-3 | Barium | 68.2 | | ł | P | | 7440-41-7 | Beryllium | 0.43 | В | 1 | P | | 7440-43-9 | Cadmium | 0.21 | В | 1 | P | | 7440-70-2 | Calcium | 62500 | 1 | E | P | | 7440-47-3 | Chromium | 7.2 | 1 | * | P | | 7440-48-4 | Cobalt | 4.1 | B | 1 | Ź | | 7440-50-8 | Copper | 30.7 | · . | | P | | 7439-89-6 | Iron | 10600 | 1 | 1 | P | | 7439-92-1 | Lead | 130 | 1 | 1 . | P | | 7439-95-4 | Magnes jum | 9150 | 1 | * | P | | 7439-96-5 | Manganese | 318 | 1. | * | P | | 7440-02-0 | Nickel | 10.6 | | | P | | 7440-09-7 | Potassium | 546 | В | 1 | P | | 7782-49-2 | Selenium | 1.8 | | | P | | 7439-97-6 | Mercury | 0.28 | | N | cv | | 7440-22-4 | Silver | 0.32 | סן | 1 | P | | 7440-23-5 | Sodium | 175 | В | 1 | P | | 7440-28-0 | Thallium | 1.1 | מ | 1 | P | | 7440-62-2 | Vanadium | 8.7 | В | 1 | P | | 7440-66-6 | Zinc | 86.0 | | | P | | | | | _ | | | | Color Before: | BLACK | Clarity Before: | | Texture: | MEDIUM | | |---------------|--------|-----------------|-------|------------|--------|-------| | or After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | · · · | | Comments: | · . | | | | | | | | | | | | | | ### **INORGANIC ANALYSIS DATA SHEET** | 92 | ME | T.T | NO | | |------|----|-----|----|--| | - 25 | | - | NU | | | LSVI | 10 | 11B1 | G | | |------|----|------|---|--| | | | | | | Contract: Lab Code: STL Case No.: SAS No.: SDG NO .: 23B5G Matrix (soil/water): Lab Sample ID: AD016964 Level (low/med): Date Received: 9/26/00 3 Solids: 88 | | | | | | <u>. </u> | |-----------|-----------|---------------|----------|---|--| | CAS No. | Analyte | Concentration | C | Q | М | | 7429-90-5 | Aluminum | 7930 | | * | P | | 7440-36-0 | Antimony | 2.2 | В | N | P | | 7440-38-2 | Arsenic | 4.2 | 1 | 1 | P | | 7440-39-3 | Barium | 76.6 | .[_] | 1 | P | | 7440-41-7 | Beryllium | 0.69 | В | 1 | P | | 7440-43-9 | Cadmium | 0.31 | В | 1 | P | | 7440-70-2 | Calcium | 61000 | 1 | E | P | | 7440-47-3 | Chromium | 11.0 | <u> </u> | * | P | | 7440-48-4 | Cobalt | 6.5 | E | | P | | 7440-50-8 | Copper | 22.7 | 1 | ! | P | | 7439-89-6 | Iron | 15200 | | 1 | P | | 7439-92-1 | Lead | 82.4 | | 1 | P | | 7439-95-4 | Magnesium | 12700 | <u> </u> | * | P | | 7439-96-5 | Manganese | 771 | | * | P | | 7440-02-0 | Nickel | 13.4 | <u> </u> | 1 | P | | 7440-09-7 | Potassium | 1090 | В | 1 | P. | | 7782-49-2 | Selenium | 1.7 | 1 | | P | | 7439-97-6 | Mercury | 0.13 | Ī | N | cv | | 7440-22-4 | Silver | 0.34 | טן | 1 | P | | 7440-23-5 | Sodium | 119 | В | | P | | 7440-28-0 | Thallium | 1.1 | טן | | P | | 7440-62-2 | Vanadium | 16.3 | [| 1 | P | | 7440-66-6 | Zinc | 146 | | 1 | P | | | | | | | | | Color Before: | BROWN | Clarity Before | • | Texture: | MEDIUM | |---------------|--------|----------------|-------|------------|--------| | Color After: | XELTOM | Clarity After: | CLEAR | Artifacts: | | | Comments: | | | | | | | | | | | | | ### INORGANIC ANALYSIS DATA SHEET | ALY | 212 | DAI. | A SI | ILL | I. | | | |-----|-----|------|------|-----|----|--------|----| | | | | | | | SAMPLE | NO | | ontract: | | | LSVI1012B5G | | | |---------------------|-----------|---------------|----------------|---|--| | ab Code: STL | Case No.: | SAS No.: | SDG NO.: 23B5G | _ | | | trix (soil/water): | SOIL | Lab Sample II | D: AD016956 | • | | | evel (low/med): LOW | | Date Received | i: 9/26/00 | | | | | * | | | | |-----------|---|----------|------------|----------| | Analyte | Concentration | С | Q | м | | Aluminum | 11100 | | * | P | | Antimony | 2.5 | В | N | P | | Arsenic | 5.4 | 1 | 1 | P | | Barium | 96.7 | | <u> </u> | P | | Beryllium | 0.85 | В | | P | | Cadmium | 0.14 | ם | 1 | P | | Calcium | 32600 | 1 | E | P | | Chromium | 16.6 | 1 | * | P | | Cobalt | 9.1 | B | | P | | Copper | 33.6 | 1 | <u> </u> | P | | Iron | 19100 | <u> </u> | 1 | P | | Lead | 50.0 | | 1 | P | | Magnesium | 7860 | <u> </u> | * | P | | Manganese | 603 | | * | P | | Nickel | 20.3 | <u> </u> | 1 | P | | Potassium | 1290 | | | P | | Selenium | 1.3 | 1. | | P | | Mercury | 0.10 | <u> </u> | N | cv | | Silver | 0.35 | טן | | P | | Sodium | 89.4 | В | | 2 | | Thallium | 1.2 | טן | | P | | Vanadium | 21.4 | | 1 | P | | Zinc | 77.0 | | | P | | | Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Mercury Silver Sodium Thallium Vanadium | Aluminum | Aluminum | Aluminum | | Color Before: | BROWN | Clarity Before: | | Texture: | MEDIUM | ·
— | |---------------|--------|-----------------|-------|------------|----------|--------| | or After: | YELLOW | Clarity After: | CLEAR | Artifacts: | <u> </u> | | | Comments: | | | | | | | | | | | | | | | ### **INORGANIC ANALYSIS DATA SHEET** SAMPLE NO. | • | Con | tra | ct | : | |---|-----|-----|----|---| |---|-----|-----|----|---| Lab Code: STL Case No.: SAS No.: SDG NO:: 23B5G Matrix (soil/water): SOIL Lab Sample ID: AD016965 Level (low/med): Date Received: 9/26/00 % Solids: 89 | CAS No. | Analyte | Concentration | C | Ω | м | |-----------|-----------|---------------|----|----------|-------|
 7429-90-5 | Aluminum | 6200 | | * | P | | 7440-36-0 | Antimony | 1.3 | В | N | P | | 7440-38-2 | Arsenic | 4.4 | 1 | | P | | 7440-39-3 | Barium | 55.1 | | | P | | 7440-41-7 | Beryllium | 0.61 | В | 1. | P | | 7440-43-9 | Cadmium | 0.21 | В | | P | | 7440-70-2 | Calcium | 93200 | | E | P | | 7440-47-3 | Chromium | 14.0 | 1 | * | P | | 7440-48-4 | Cobalt | 5.0 | В | | P | | 7440-50-8 | Copper | 16.8 | | | P | | 7439-89-6 | lron | 12200 | 1 | | P | | 7439-92-1 | Lead | 66.2 | | 1 | P | | 7439-95-4 | Magnesium | 32200 | 1 | # | P | | 7439-96-5 | Manganese | 805 | | * | P | | 7440-02-0 | Nickel | 14.0 | 1 | | P | | 7440-09-7 | Potassium | 1090 | B | <u> </u> | P | | 7782-49-2 | Selenium | 1.7 | 1 | | P | | 7439-97-6 | Mercury | 0.56 | | N | المتا | | 7440-22-4 | Silver | 0.34 | שן | | P | | 7440-23-5 | Sodium | 196 | В | - | P | | 7440-28-0 | Thallium | 1.1 | טן | | P | | 7440-62-2 | Vanadium | 13.2 | | | P | | 7440-66-6 | Zinc | 74.1 | | 1 | P | | | | | | | | | Color | Before: | BROWN | Clarity Before: | | Texture: | MEDIUM | |--------|---------|--------|-----------------|-------|------------|----------| | Color | After: | AETIOM | Clarity After: | CLEAR | Artifacts: | | | Commer | its: | | | | | <u> </u> | | | · | | | | | | ## INORGANIC ANALYSIS DATA SHEET | SAMPLE NO. | | | |-------------|--|--| | | | | | LSVI1315B4G | | | | ntract: | | | · · · · · · · · · · · · · · · · · · · | | | | | | | |------------|-----------|----------|---------------------------------------|-----|------|------------|----------|-------|--| | ab Code: | STL | Case No. | | SAS | No.: | | SDG NO.: | 23B5G | | | trix (soi | 1/water): | SOIL | · . | : | Lab | Sample ID: | AD016960 | | | | evel (low/ | med): LOW | ·
 | | | Date | Received: | 9/26/00 | | | | Solids: 8 | 39 | | • | | | | | | | | CAS No. | Analyte | Concentration | C | Q | М | |-----------|-----------|---------------|-------------------------|----------|----| | | <u> </u> | | <u> </u> | ļ | | | 7429-90-5 | Aluminum | 4200 | 1 | * | P | | 7440-36-0 | Antimony | 1.8 | B | N | P | | 7440-38-2 | Arsenic | 3.1 | <u> </u> | <u> </u> | P | | 7440-39-3 | Barium | 64.5 | | <u> </u> | P | | 7440-41-7 | Beryllium | 0.43 | B | L | P | | 7440-43-9 | Cadmium | 0.13 | n | 1 | P | | 7440-70-2 | Calcium | 39700 | | E | P | | 7440-47-3 | Chromium | 6.9 | 1 | | P | | 7440-48-4 | Cobalt | 5.1 | В | 1 | P | | 7440-50-8 | Copper | 19.3 | | ł | P | | 7439-89-6 | Iron | 11000 | Ī | 1 | P | | 7439-92-1 | Lead | 17.1 | 1. | | P | | 7439-95-4 | Magnesium | 7260 | | * | P | | 7439-96-5 | Manganese | 624 | | * | P | | 7440-02-0 | Nickel | 9.6 | $\overline{\mathbb{L}}$ | l | P | | 7440-09-7 | Potassium | 888 | B | 1 | P | | 7782-49-2 | Selenium | 1.4 | Ţ | T - | P | | 7439-97-6 | Mercury | 0.02 | ס | N | cv | | 7440-22-4 | Silver | 0.33 | ט | l | P | | 7440-23-5 | Sodium | 161 | B | 1 | P | | 7440-28-0 | Thallium | 1.1 | ס | 1 | P | | 7440-62-2 | Vanadium | 10.7 | В | 1 | P | | 7440-66-6 | Zinc | 33.8 | | | P | | Color Before: | BROWN | Clarity Before: | | Texture: | MEDIUM | |---------------|--------|-----------------|-------|------------|--------| | C lor After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | Comments: | | | | | | | | | | | | | #### -1- ### INORGANIC ANALYSIS DATA SHEET | ~ 7 | MPT.I | | _ | |-----|----------|-------|---| | | LM P 1.1 | M. IN | | | LSVI1719B4G | | | |-------------|--|--| | 724TT/13P4G | | | | C | on | tr | ac | :t: | |---|----|----|----|-----| | | | | | | Lab Code: STL Case No.: SAS No.: SDG NO.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: AD016961 Date Received: 9/26/00 Level (low/med): 8 Solids: 93 | | · | | | | | |-----------|-----------|---------------|----------|-----|----| | CAS No. | Analyte | Concentration | С | Q | м | | 7429-90-5 | Aluminum | 4770 | | * | P | | 7440-36-0 | Antimony | 1.1 | В | N | P | | 7440-38-2 | Arsenic | 3.8 | | | P | | 7440-39-3 | Barium | 58.4 | | | P | | 7440-41-7 | Beryllium | 0.47 | B | | P | | 7440-43-9 | Cadmium | 0.13 | Ū | ! | P | | 7440-70-2 | Calcium | 51400 | | E | P | | 7440-47-3 | Chromium | 7.9 | ! | * | P | | 7440-48-4 | Cobalt | 5.5 | В | | P | | 7440-50-8 | Copper | 21.7 | i | , | P | | 7439-89-6 | liron | 13900 | <u> </u> | 1 | P | | 7439-92-1 | Lead | 27.5 | | | P | | 7439-95-4 | Magnesium | 7200 | | * | P | | 7439-96-5 | Manganese | 624 | | * . | P | | 7440-02-0 | Nickel | 11.3 | | 1 | P | | 7440-09-7 | Potassium | 936 | В | | P | | 7782-49-2 | Selenium | 1.4 | | 1 | P | | 7439-97-6 | Mercury | 0.04 | В | N | cv | | 7440-22-4 | Silver | 0.32 | Ū | | P | | 7440-23-5 | Sodium | 132 | В | | P | | 7440-28-0 | Thallium | 1.1 | ם | 1 | P | | 7440-62-2 | Vanadium | 11.2 | 1 | | P | | 7440-66-6 | Zinc | 40.4 | | | P | | | | | | | | | Color Before: | BROWN | Clarity Before: | | Texture: | MEDIUM | |---------------|--------|-----------------|-------|------------|--------| | Color After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | Comments: | | | | | | | | | | | | | #### -1-INORGANIC ANALYSIS DATA SHEET | SAMPLE | NO. | | |--------|-----|---| | | | _ | | ontract: | | | | | , | | | LSVI | 2123B4G | | | |------------|------------|---------------|------------|---------|---------|-----|-------|-------|---------------|-----|---| | Lab Code: | STL | Case No.: | SA | S No.: | | | SD | G NO. | : 23B5G | | | | trix (so | il/water): | SOIL | <u> </u> | Lab | Sample | ID: | AD016 | 962 | | | | | Level (low | /med): LO | 7 | | Date | Receiv | ed: | 9/26/ | 00 | , | | | | Solids: | 83 | | | • | | | - | | | | • | | | | Concentration | units (ug/ | Lormg/ | kg dry | wei | ght): | MG/K | G | | | | | | CAS No. | Analyte | Concent | tration | C | Ω. | м | | | | | | | 7429-90-5 | Aluminum | | 6040 | 1 | * | P | | | • | | | , | 7440-36-0 | Antimony | 1 | 1.9 | В | N | P | | | | | _ | | 7440-38-2 | Arsenic | Ī | 6.3 | | 1 | P | | | | | | | 7440-39-3 | Barium | 1 | 82.8 | 1. | 1 | P | • | | | | - | | 7440-41-7 | Beryllium | 1 | 0.62 | B | | P | | - | | | | | 7440-43-9 | Cadmium | 1 | 0.15 | טן | 1 | P | | | | | | | 7440-70-2 | Calcium | 1 | 28300 | I | E | P | | | | | | | 7440-47-3 | Chromium | | 11.1 | | * | P | | | | | _ | | 7440-48-4 | Cobalt | 1 | 5.5 | B | 1 | P | | ř | ~ | | | | 7440-50-8 | Copper | 1 | 27.2 | 1 | 1 | P | | - | | | • • • | | 7439-89-6 | Iron | 1 | 16500 | 1 | 1 | P | | ** | | | _ | | 7439-92-1 | Lead | 1 | 81.4 | Ī | | P | | | | | | | 7439-95-4 | Magnesium | 1 | 4510 | T | * | P | | | | | | | 7439-96-5 | Manganese | 1 | 583 | Π | * | P | | * . | | 11.2 919 B 1.2 ס| B ס 0.07 0.36 147 1.2 15.5 50.9 P P CV P P P P 7440-02-0 7440-09-7 7782-49-2 7439-97-6 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6 Nickel Potassium Selenium Mercury Silver Sodium Zinc Thallium Vanadium Color Before: BROWN Clarity Before: Texture: MEDIUM lor After: YELLOW Clarity After: CLEAR Artifacts: Comments: ## INORGANIC ANALYSIS DATA SHEET | LSVI23B3G | | |-----------|--| | | | Contract: Lab Code: STL Case No.: SAS No.: SDG NO.: 23B5G datrix (soil/water): SOIL Lab Sample ID: AD016967 Level (low/med): Date Received: 9/26/00 | Solids: 91 | CAS No. | Analyte | Concentration | С | Ω | M | |-----------|-----------|---------------|----|---|----| | 7429-90-5 | Aluminum | 6000 | | * | P. | | 7440-36-0 | Antimony | 2.0 | B | N | P | | 7440-38-2 | Arsenic | 5.2 | | | P | | 7440-39-3 | Barium | 81.2 | , | 1 | P | | 7440-41-7 | Beryllium | 0.62 | B | | P | | 7440-43-9 | Cadmium | 0.42 | В | 1 | P | | 7440-70-2 | Calcium | 70400 | | E | P | | 7440-47-3 | Chromium | 10.8 | | * | P | | 7440-48-4 | Cohalt | 5.8 | В | 1 | P | | 7440-50-8 | Copper | 169 | 1 | | P | | 7439-89-6 | lron | 13100 | I | 1 | P | | 7439-92-1 | Lead | 133 | | | P | | 7439-95-4 | Magnesium | 19200 | | * | P | | 7439-96-5 | Manganese | 589 | | * | P | | 7440-02-0 | Nickel | 14.2 | | l | P | | 7440-09-7 | Potassium | 1020 | В | 1 | P | | 7782-49-2 | Selenium | 1.2 | 1 | | P | | 7439-97-6 | Mercury | 0.10 | | N | CV | | 7440-22-4 | Silver | 0.52 | B | 1 | P | | 7440-23-5 | Sodium | 166 | В | | P | | 7440-28-0 | Thallium | 1.1 | סן | | P | | 7440-62-2 | Vanadium | 14.5 | Ī | | P | | 7440-66-6 | Zinc | 436 | 1 | 1 | P | | Color I | Before: | BROWN | Clarity Pefore: | | Texture: | MEDIUM | |---------|---------|--------|-----------------|-------|---------------------------------------|--------| | Color A | After: | YELLOW | Clarity After. | CLEAR | Artifacts: | | | Comment | ts: | | | | · · · · · · · · · · · · · · · · · · · | | #### _ ### **INORGANIC ANALYSIS DATA SHEET** | SAMPLE | NO. | | |---------|------------|--| | LSVI23B | 5 G | | | ontract: | | | | |----------------------|-----------|-------------------------|---| | Lab Code: STL | Case No.: | SAS No.: SDG NO.: 23B5 | G | | atrix (soil/water): | SOIL | Lab Sample ID: AD016952 | | | Level (low/med): LOW | <u> </u> | Date Received: 9/26/00 | | | solida. 00 | | | • | | CAS No. | Analyte | Concentration | C | Q | × | |-----------|-----------|---------------|----|----------|----| | 7429-90-5 | Aluminum | 9120 | 1 | * | P | | 7440-36-0 | Antimony | 1.9 | В | N | P | | 7440-38-2 | Arsenic | 4.4 | 1 | | P | | 7440-39-3 | Barium | 60.6 | | | P | | 7440-41-7 | Beryllium | 0.70 | B | 1 | P | | 7440-43-9 | Cadmium | 0.13 | ט | <u> </u> | P | | 7440-70-2 | Calcium | 59000 | | E | P | | 7440-47-3 | Chromium | 13.0 | 1 | *: | P | | 7440-48-4 | Cobalt | 7.2 | В | | P | | 7440-50-8 | Copper | 18.0 | j | | P | | 7439-89-6 | Iron | 16700 | | | P | | 7439-92-1 | Lead | 48.5 | | <u> </u> | P | | 7439-95-4 | Magnesium | 18300 | Ī | * | P | | 7439-96-5 | Manganese | 636 | | * | P | | 7440-02-0 | Nickel | 15.1 | | <u> </u> | P | | 7440-09-7 | Potassium | 1290 | 1 | 1 | P | | 7782-49-2 | Selenium | 1.6 | | | P | | 7439-97-6 | Mercury | 0.09 | | N | cv | | 7440-22-4 | Silver | 0.33 | ט | | P | | 7440-23-5 | Sodium | 122 | В | 1 | P | | 7440-28-0 | Thallium | 1.1 | טן | <u> </u> | P | | 7440-62-2 | Vanadium | 18.3 | | 1 | P | | 7440-66-6 | Zinc | 69.8 | | | P | | Color Before: | BROWN | Clarity Before: |
· | Texture: | MEDIUM | |---------------|--------|-----------------|----------|-------------|--------| | Color After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | Comments: | | | | | | | | | | <u> </u> | | | ### -1-INORGANIC ANALYSIS DATA SHEET | SAMPLE | NO. | |--------|-----| |--------|-----| | | | | LSVI24B4G | | |--------------|-----------|----------|----------------|--| | Contract: | | | | | | ab Code: STL | Case No.: | SAS No.: | SDG NO : 23R5G | | Matrix (soil/water): SOIL Lab Sample ID: AD016957 Level (low/med): LOW Date Received: 9/26/00 % Solids: 92 | CAS No. | Analyte | Concentration | С | Q | м | |-----------|-----------|---------------|---|----------|----| | 7429-90-5 | Aluminum | 6860 | | * | P | | 7440-36-0 | Antimony | 1.9 | В | N_ | P | | 7440-38-2 | Arsenic | 4.9 | | | P | | 7440-39-3 | Barium | 62.4 | | 1 | P | | 7440-41-7 | Beryllium | 0.62 | В | 1 | P | | 7440-43-9 | Cadmium | 0.99 | В | | P | | 7440-70-2 | Calcium | 99600 | | E | P | | 7440-47-3 | Chromium | 13.2 | | * | P | | 7440-48-4 | Cobalt | 6.1 | В | l . | P | | 7440-50-8 | Copper | 28.3 | | <u> </u> | P | | 7439-89-6 | liron | 16800 | | | P | | 7439-92-1 | Lead | 78.2 | | | P | | 7439-95-4 | Magnesium | 21700 | | * | P | | 7439-96-5 | Manganese | 547 | | * | P | | 7440-02-0 | Nickel | 16.2 | | | P | | 7440-09-7 | Potassium | 1100 | 1 | - | P | | 7782-49-2 | Selenium | 1.9 | 1 | | P | | 7439-97-6 | Mercury | 0.39 | | N _ | CV | | 7440-22-4 | Silver | 0.32 | ש | 1 | P | | 7440-23-5 | Sodium | 95.9 | В | | P | | 7440-28-0 | Thallium | 1.1 | ט | | P | | 7440-62-2 | Vanadium | 16.2 | 1 | <u> </u> | P | | 7440-66-6 | Zinc | 210 | | | P | | Color | Before: | BROWN | Clarity Before: | | Texture: | MEDIUM | |--------|---------|--------|-----------------|-------|------------|--------| | Color | After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | Commen | its: | | | | | | | | | | | | | | ### INORGANIC ANALYSIS DATA SHEET | | SAMPLE NO. | | | |---|------------|--|--| | ļ | | | | | 1 | LSVI34B1G | | | | | - | -+ | | |--------------|-----------|-----|---| | \mathbf{n} | tra | ıct | : | Lab Code: STL Case No.: SAS No.: SDG NO.: 23B5G atrix (soil/water): SOIL Lab Sample ID: AD016963 Level (low/med): Date Received: 9/26/00 Solids: 92 | CAS Mo. | Analyte | Concentration | C | Q | м | |-----------|-----------|---------------|----------|--|----| | 7429-90-5 | Aluminum | 4300 | | * | P | | 7440-36-0 | Antimony | 2.0 | В | N | P | | 7440-38-2 | Arsenic | 3.4 | | | P | | 7440-39-3 | Barium | 60.7 | | l | P | | 7440-41-7 | Beryllium | 0.43 | В | 1 | P | | 7440-43-9 | Cadmium | 1.8 | 1 | [· | P | | 7440-70-2 | Calcium | 68500 | 1 | E | P | | 7440-47-3 | Chromium | 7.8 | | * | P | | 7440-48-4 | Cobait | 4.2 | В | 1 | P | | 7440-50-8 | Copper | 28.6 | 1- | 1 | P | | 7439-89-6 | liron | 9750 | 1 | | P | | 7439-92-1 | Lead | 65.2 | <u> </u> | 1 | P | | 7439-95-4 | Magnesium | 28300 | 1 | * | P | | 7439-96-5 | Manganese | 658 | | * | P | | 7440-02-0 | Nickel | 12.6 | | | P | | 7440-09-7 | Potassium | 868 | B | | P | | 7782-49-2 | Selenium | 1.1 | ם | 1 | P | | 7439-97-6 | Mercury | 0.06 | 1 | N | CV | | 7440-22-4 | Silver | 0.32 | טן | | P | | 7440-23-5 | Sodium | 167 | B | 1 | P | | 7440-28-0 | Thallium | 1.1 | ש | | P | | 7440-62-2 | Vanadium | 10.4 | В | <u> </u> | P | | 7440-66-6 | Zinc | 294 | 1 | | P | | Color Before: | BROWN | Clarity Bofore: | | Texture: | MEDIUM | |---------------|--------|-----------------|---------------------------------------|------------|--------| | Color After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | Comments: | | | · · · · · · · · · · · · · · · · · · · | | · | ### -1-INORGANIC ANALYSIS DATA SHEET | SAM | PLE | NO. | | |-----|-----|-----|------| | | | |
 | | Contract: | | | | | | LSVI561 | 33G
 | <u>.</u> | | |------------|------------|-----------|----|--------|-------------|----------|---------|----------|--| | Lab Code: | STL | Case No.: | SA | S No.: | | SDG NO.: | 23B5G | | | | datrix (so | il/water): | SOIL | | Lab S | sample ID: | AD016968 | | | | | Level (low | /med): LO | W | | Date | Received: | 9/26/00 | 1 | * | | | Solids: | 91 | | 4 | | | - | · . | | | | | | 1 | | | | |-----------|-----------|---------------|--------|------------|----| | CAS No. | Analyte | Concentration | С | Q | м | | 7429-90-5 | Aluminum | 5100 | \top | * | P | | 7440-36-0 | Antimony | 2.8 | B | N | P | | 7440-38-2 | Arsenic | 6.3 | | 1 . | P | | 7440-39-3 | Barium | 945 | 1 | j | P | | 7440-41-7 | Beryllium | 0.63 | В | 1 | P | | 7440-43-9 | Cadmium | 0.46 | В | 1 | P | | 7440-70-2 | Calcium | 72000 | 1 | E | P | | 7440-47-3 | Chromium | 23.8 | | + | P | | 7440-48-4 | Cobal+ | 5.0 | В | | P | | 7440-50-8 | Copper | 72.0 | | <u> </u> | P | | 7439-89-6 | Iron | 20400 | | 1 | P | | 7439-92-1 | Lead | 261 | | 1 | P | | 7439-95-4 | Magnesium | 31800 | | * | P | | 7439-96-5 | Manganese | 566 | | * | P | | 7440-02-0 | Nickel | 16.1 | | 1 | P- | | 7440-09-7 | Potassium | 925 | B | 1 | P | | 7782-49-2 | Selenium | 2.3 | | 1 | P | | 7439-97-6 | Mercury | 0.55 | | N | cv | | 7440-22-4 | Silver | 1.2 | В | 1 | P | | 7440-23-5 | Sodium | 258 | В | 1 | P | | 7440-28-0 | Thallium | 1.1 | ס | 1 | P | | 7440-62-2 | Vanadium | 16.3 | | | P | | 7440-66-6 | Zinc | 550 | Ī | t | P | | | | | | | | | Color | Before: | EROWN | Clarity E | Sefore: | | Texture: | MEDIUM | |--------|---------|---------------|-----------|---------|-------|------------|--------| | Color | After: | <u>YELLOW</u> | Clarity A | After: | CLEAR | Artifacts: | | | Commer | ats: | | | · · | | · | | | | | | | | | | | ### **INORGANIC ANALYSIS DATA SHEET** | : | | | |-----|---------|-----| | CA | MPLE | NO | | 2.1 | 11F 14E | MU. | | ontract: | | | 257107 | | |---------------------------------------|------------|----------------|----------|-------| | ab Code: STL | Case No.: | SAS No.: | SDG NO.: | 23B5G | | atrix (soil/wat | cer): SOIL | Lab Sample ID: | AD016958 | | | evel (low/med): | LOW | Date Received: | 9/26/00 | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | _ | | | |-----------|-----------|---------------|---|-----|----| | CAS No. | Analyte | Concentration | С | Q | М | | 7429-90-5 | Aluminum | 4310 | 1 | * | P | | 7440-36-0 | Antimony | 2.2 | В | N | P | | 7440-38-2 | Arsenic | 10.0 | I | 1 | P | | 7440-39-3 | Barium | 73.8 | 1 | | P | | 7440-41-7 | Beryllium | 0.58 | В | 1 | P. | | 7440-43-9 | Cadmium | 0.14 | ט | | P | | 7440-70-2 | Calcium | 137000 | 1 | E | P | | 7440-47-3 | Chromium | 7.9 | I | * | P | | 7440-48-4 | Cobalt | 4.6 | В | 1 | P | | 7440-50-8 | Copper | 33.5 | | 1 | P | | 7439-89-6 | liron | 18300 | | 1 | P | | 7439-92-1 | Lead | 235 | 1 | , I | P | | 7439-95-4 | Magnesium | 11900 | 1 | * | 1 | | 7439-96-5 | Manganese | 437 | | * | P | | 7440-02-0 | Nickel | 9.5 | 1 | | P | | 7440-09-7 | Potassium | 986 | В | 1 | P | | 7782-49-2 | Selenium | 2.4 | 1 | 1 | P | | 7439-97-6 | Mercury | 0 14 | 1 | N | cv | | 7440-22-4 | Silver | 0.34 | ס | 1 | P | | 7440-23-5 | Sodium | 241 | B | | P | | 7440-28-0 | Thallium | 1.1 | ם | | P | | 7440-62-2 | Vanadium | 13.5 | 1 | | P | | 7440-66-6 | Zinc | 89.4 | | 1 | P | | | | | | | | | Color Before: | BROWN | Clarity Before: | | Texture: | MEDIUM | |---------------|--------|-----------------|-------|------------|--------| | ·lor After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | | | | | | | | Comments: | | | | 4 | | | | | | | | | | | | | | | | ## INORGANIC ANALYSIS DATA SHEET SAMPLE NO. LSVI78B1G Lab Code: STL Case No.: SAS No.: SDG NO.: 23B5G Matrix (soil/water): SOIL LOW Lab Sample ID: AD016972 Date Received: 9/26/00 Level (low/med): | Solids: 94 | | | | • | | | |-----------|-----------|---------------|---|-------------|----| | CAS No. | Analyte | Concentration | С | Q | M | | 7429-90-5 | Aluminum | 8270 | 1 | * | P | | 7440-36-0 | Antimony | 1.7 | В | N | P | | 7440-38-2 | Arsenic | 4.2 | | 1 | P | | 7440-39-3 | Barium | 96.3 | 1 | 1 | P | | 7440-41-7 | Beryllium | 0.70 | В | 1 - | P | | 7440-43-9 | Cadmium | 0.13 | ט |] | P | | 7440-70-2 | Calcium | 54600 | | E | P | | 7440-47-3 | Chromium | 12.0 | | * | P | | 7440-48-4 | Cobalt | 6.8 | В | 1. | P | | 7440-50-8 | Copper | 27.1 | | | P | | 7439-89-6 | Iron | 14800 | 1 | | P | | 7439-92-1 | Lead | 87.7 | | 1 | P | | 7439-95-4 | Magnesium | 9800 | | *. | P | | 7439-96-5 | Manganese | 538 | | * | P | | 7440-02-0 | Nickel | 14.6 | | | P | | 7440-09-7 | Potassium | 1280 | ı | 1 | P. | | 7782-49-2 | Selenium | 2.3 | | | P | | 7439-97-6 | Mercury | 0.27 | 1 | N | cv | | 7440-22-4 | Silver | 0.32 | ט | l T | P | | 7440-23-5 | Sodium | 99.9 | В | 1 | P | | 7440-28-0 | Thallium | 1.1 | ט | | P | | 7440-62-2 | Vanadium | 17.0 | 1 | | P | | 7440-66-6 | Zinc | 78.6 | Π | 1 | P | | | | | | | | | Color Before: | BROWN | Clarity Before: | | Texture: | MEDIUM | |---------------|--------|-----------------|-------|------------|---------------------------------------| | Color After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | Comments: | | | . • . | | · · · · · · · · · · · · · · · · · · · | | | | | | | | ### **INORGANIC ANALYSIS DATA SHEET** SAMPLE NO. | | | - | | |-----------|--|---|--| | LSVI78B5G | | | | | | | | | | | | | | | | ٠. | - | _ | _ | • | ٠ | |---|----|---|---|---|---|---| | u | ٠. | С | | C | L | ٠ | | | | | | | | | ab Code: STL Case No.: SAS No.: SDG NO.: 23B5G rix (soil/water): SOIL Lab Sample ID: AD016955 evel (low/med): LOW Date Received: 9/26/00 olids: 92 | CAS No. | Analyte | Concentration | С | Q | М | |-----------|-----------|---------------|----|-----------|----| | 7429-90-5 | Aluminum | 9920 | | * | P | | 7440-36-0 | Antimony | 1.2 | В | N | P | | 7440-38-2 | Arsenic | 4.6 | | | P | | 7440-39-3 | Barium | 76.4 | 1 | | P | | 7440-41-7 | Beryllium | 0.80 | В | <u>i</u> | P | | 7440-43-9 | Cadmium | 0.13 | В | <u> </u> | P | | 7440-70-2 | Calcium | 28500 | | E | P | | 7440-47-3 | Chromium | 14.0 | | * |
P | | 7440-48-4 | Cobalt | 8.2 | В | 1 | P | | 7440-50-8 | Copper | 24.9 | 1- | <u> </u> | P. | | 7439-89-6 | Iron | 17400 | | <u> </u> | P | | 7439-92-1 | Lead | 103 | | 1 | P | | 7439-95-4 | Magnesium | 10500 | | * | P | | 7439-96-5 | Manganese | 677 | 1 | * | P | | 7440-02-0 | Nickel | 20.1 | | <u> -</u> | P | | 7440-09-7 | Potassium | 1270 | i | <u> </u> | P | | 7782-49-2 | Selenium | 1.5 | | i | P | | 7439-97-6 | Mercury | 0.09 | | N. | CV | | 7440-22-4 | Silver | 0.32 | ט | 1 | P | | 7440-23-5 | Sodium | 121 | В | | P | | 7440-28-0 | Thallium | 1.1 | ט | | P | | 7440-62-2 | Vanadium | 20.0 | | | P | | 7440-66-6 | Zinc | 90.6 | | | P | | Color Before | : EROWN | Clarity Before: | ·
. —————— | Texture: | MEDIUM | <u> </u> | |--------------|---------|-----------------|---------------|------------|--------|----------| | or After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | | comments: | | | | | ···. | | | | | | | | | | ## **INORGANIC ANALYSIS DATA SHEET** | SAMPLE | NU. | | |---------|------|-------------| | | | | | 1. | | | | LSVI89B | lG ' | | Contract: Lab Code: STL Case No.: SAS No.: SDG NO.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: AD016959 Level (low/med): Date Received: 9/26/00 Solids: | | <u> </u> | <u> </u> | | | | |-----------|-----------|---------------|----|------------|----| | CAS No. | Analyte | Concentration | C | Q | M | | 7429-90-5 | Aluminum | 5010 | | * | P | | 7440-36-0 | Antimony | 1.8 | В | N | P | | 7440-38-2 | Arsenic | 6.1 | | 1 | P | | 7440-39-3 | Barium | 60.2 | | | P | | 7440-41-7 | Beryllium | 0.64 | B | 1 | P | | 7440-43-9 | Cadmium | 0.13 | ט | | P | | 7440-70-2 | Calcium | 87100 | | E | P | | 7440-47-3 | Chromium | 8.5 | 1 | * | P | | 7440-48-4 | Cobalt | 5.8 | В | | P | | 7440-50-8 | Copper | 33.2 | 1 | 1 | P | | 7439-89-6 | Iron | 20900 | | | P | | 7439-92-1 | Lead | 141 | | 1 | P | | 7439-95-4 | Magnesium | 20500 | | * | P | | 7439-96-5 | Manganese | 859 | | * | P | | 7440-02-0 | Nickel | 10.9 | 1 | 1 | P | | 7440-09-7 | Potassium | 1200 | 1 | 1 | P | | 7782-49-2 | Selenium | 1.1 | | | P | | 7439-97-6 | Mercury | 0.29 | | N | CV | | 7440-22-4 | Silver | 0.33 | טן | | P | | 7440-23-5 | Sodium | 208 | В | | P | | 7440-28-0 | Thallium | 1.1 | ַט | | P | | 7440-62-2 | Vanadium | 10.9 | В | | P | | 7440-66-6 | Zinc | 83.6 | 1 | 1 | P | | Color Be | fore: | PROWN | Clarity Befo | ore: | · | Texture: | MEDIUM | |-----------|-------|--------|--------------|------|-------|------------|---------| | Color Af | ter: | YELLOW | Clarity Afte | er: | CLEAR | Artifacts: | · · · · | | Comments: | · | | | | | | | | | | · | | | | | | ## INORGANIC ANALYSIS DATA SHEET | SAMPLE NO | • | |-----------|---| | | ` | | LSVISS0IC | | | Contract: | | LSVISSOIC | |---------------------------|----------------|----------------| | Lab Code: STL Case No.: | SAS No.: | SDG NO.: 23B5G | | Matrix (soil/water): SOIL | Lab Sample ID: | AD016970 | | Level (low/med): LOW | Date Received: | 9/26/00 | | C-1:4 05 | | | | CAS No. | Analyte | Concentration | С | Q | M | |-----------|-----------|---------------|----------|----------|----| | 7429-90-5 | Aluminum | 5400 | | * | P | | 7440-36-0 | Antimony | 1.2 | B | N | P | | 7440-38-2 | Arsenic | 3.3 | 1 | 1 | P | | 7440-39-3 | Barium | 49.2 | | 1 | P | | 7440-41-7 | Beryllium | 0.54 | В | 1 | P | | 7440-43-9 | Cadmium | 0.23 | B | | P | | 7440-70-2 | Calcium | 28800 | | E | P | | 7440-47-3 | Chromium | 13.9 | <u> </u> | * | P | | 7440-48-4 | Cobalt | 6.4 | В | | P | | 7440-50-8 | Copper | 20.2 | 1 | <u> </u> | P | | 7439-89-6 | Iron | 10800 | 1 | 1 | P | | 7439-92-1 | Lead | 49.8 | 1 | | P | | 7439-95-4 | Magnesium | 7410 | | * | P | | 7439-96-5 | Manganese | 440 | | * | P | | 7440-02-0 | Nickel | 32.2 | | | P | | 7440-09-7 | Potassium | 1090 | 1 | 1 | P | | 7782-49-2 | Selenium | 1.6 | | 1 | P | | 7439-97-6 | Mercur: | 0.10 | | И | CV | | 7440-22-4 | Silver | 0.31 | ט | 1 | P | | 7440-23-5 | Sodium | 77.4 | ט | [| P | | 7440-28-0 | Thallium | 1.0 | ט | | P | | 7440-62-2 | Vanadium | 12.8 | | | P | | 7440-66-6 | Zinc | 75.6 | | 1 | P | | Color Before: | BLACK | Clarity Before: | | Texture: | MEDIUM | |---------------|---------------------------------------|-----------------|-------|------------|----------| | C lor After: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | Comments: | | | · | | | | | · · · · · · · · · · · · · · · · · · · | | | | <u> </u> | # **INORGANIC ANALYSIS DATA SHEET** | SAMPLE | NO. | |--------|-----| |--------|-----| | LSVISS02C | • | |-----------|---| | | | Contract: Lab Code: STL Case No.: SAS No.: SDG NO.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: AD016973 Level (low/med): LOW Date Received: 9/26/00 8 Solids: 80 | | | | | <u> </u> | | |-----------|--------------|---------------|----------|----------|----| | CAS No. | Analyte | Concentration | C | Q | M | | 7429-90-5 | Aluminum | 6370 | | * | P | | 7440-36-0 | Antimony | 1.5 | В | N | P | | 7440-38-2 | Arsenic | 6.2 | - | | P | | 7440-39-3 | Barium | 90.8 | | 1 | P | | 7440-41-7 | Beryllium | 0.67 | В | 1 | P | | 7440-43-9 | Cadmium | 0.33 | В | <u> </u> | P | | 7440-70-2 | Calcium | 59200 | | E | P | | 7440-47-3 | Chromium | 12.1 | ! | + | P | | 7440-48-4 | Cobalt | 5.9 | В | | P. | | 7440-50-8 | Copper | 27.1 | | | P | | 7439-89-6 | lron | 16100 | | 1 | P | | 7439-92-1 | Lead | 72.0 | <u>.</u> | | P | | 7439-95-4 | i Magnesi un | 37300 | 1 | * | P | | 7439-96-5 | Manganese | 765 | <u> </u> | * | P | | 7440-02-0 | Nickel | 19.9 | | | P | | 7440-09-7 | Potassium | 1560 | _ | <u> </u> | P | | 7782-49-2 | Selenium | 2.0 | <u> </u> | | P. | | 7439-97-6 | Mercury | 0.11 | | N . | cv | | 7440-22-4 | Silver | 0.40 | В | 1 | P | | 7440-23-5 | Sodium | 173 | В | 1 | P | | 7440-28-0 | Thallium | 1.3 | ס | | P | | 7440-62-2 | Vanadium | 17.2 | 1. | 1 | P | | 7440-66-6 | Zinc | 86.3 | | | P | | | | | | | | | Color After: YELLOW Clarity After: CLEAR Artifacts: | Color | Before: | BROWN | Clarity Before: | | Texture: | MEDIUM | |---|-------|---------|--------|-----------------|-------|------------|--------| | Comments | Color | After: | AETTOM | Clarity After: | CLEAR | Artifacts: | | | | Comme | nts: | · | · | | <u> </u> | | ### INORGA | NIC ANAL | YSIS DATA SHEET | | | |----------|-----------------|--------|-----| | • | | SAMPLE | NO. | | ntract: | | | | LSVISS0 | 3C | |--------------|---------|-----------|------------|--------------|-------| | b Code: STL | | Case No.: | SAS No.: | SDG NO.: | 23B5G | | trix (soil/v | water): | SOIL | Lab Sample | ID: AD016971 | | evel (low/med): LOW Date Received: 9/26/00 72 Solids: | CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 3780 * P 7440-36-0 Antimony 4.0 B N P 7440-38-2 Arsenic 9.4 P P 7440-39-3 Barium 53.0 B P 7440-41-7 Beryllium 0.69 B P 7440-41-7 Beryllium 0.36 B P 7440-43-9 Cadmium 0.36 B P 7440-70-2 Calcium 98300 E P 7440-47-3 Chromium 19.8 * P 7440-48-4 Cobalt 6.4 B P 7440-48-4 Cobalt 6.4 B P 7439-89-6 Iron 42100 P 7439-99-1 Lead 83.5 P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<> | | | | | | | |--|-----------|-----------|---------------|-------|----------|----| | 7440-36-0 Antimony 4.0 B N P 7440-38-2 Arsenic 9.4 P 7440-39-3 Barium 53.0 B P 7440-41-7 Beryllium 0.69 B P 7440-43-9 Cadmium 0.36 B P 7440-70-2 Calcium 98300 E P 7440-47-3 Chromium 19.8 * P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7440-02-0 Nickel 33.5 P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7440-22-4 Silver 0.08 N CV 7440-23-5 <t< td=""><td>CAS No.</td><td>Analyte</td><td>Concentration</td><td>С</td><td>Q</td><td>м</td></t<> | CAS No. | Analyte | Concentration | С | Q | м | | 7440-38-2 Arsenic 9.4 P 7440-39-3 Barium 53.0 B P 7440-41-7 Beryllium 0.69 B P 7440-43-9 Cadmium 0.36 B P 7440-70-2 Calcium 98300 E P 7440-47-3 Chromium 19.8 * P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 <td< td=""><td>7429-90-5</td><td>Aluminum</td><td>3780</td><td></td><td>*</td><td>P</td></td<> | 7429-90-5 | Aluminum | 3780 | | * | P | | 7440-39-3 Barium 53.0 B P 7440-41-7 Beryllium 0.69 B P 7440-43-9 Cadmium 0.36 B P 7440-70-2 Calcium 98300 E P 7440-47-3 Chromium 19.8 * P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7440-02-0 Nickel 33.5 P 7440-02-0 Nickel 33.5 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 V |
7440-36-0 | Antimony | 4.0 | В | N | P | | 7440-41-7 Beryllium 0.69 B P 7440-43-9 Cadmium 0.36 B P 7440-70-2 Calcium 98300 E P 7440-47-3 Chromium 19.8 * P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7440-02-0 Nickel 33.5 P 7440-02-0 Nickel 33.5 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7440-38-2 | Arsenic | 9.4 | ·] · | | P | | 7440-43-9 Cadmium 0.36 B P 7440-70-2 Calcium 98300 E P 7440-47-3 Chromium 19.8 * P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-28-0 Vanadium 20.7 P | 7440-39-3 | Barium | 53.0 | В | | P | | 7440-70-2 Calcium 98300 E P 7440-47-3 Chromium 19.8 * P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7440-41-7 | Beryllium | 0.69 | В | l | P | | 7440-47-3 Chromium 19.8 * P 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-28-0 Vanadium 20.7 P | 7440-43-9 | Cadmium | 0.36 | В | 1 | P | | 7440-48-4 Cobalt 6.4 B P 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P P 7440-09-7 Potassium 1190 B P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7440-70-2 | Calcium | 98300 | 1 | E | P | | 7440-50-8 Copper 53.2 P 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7782-49-2 Selenium 3.7 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-22-2 Vanadium 20.7 P | 7440-47-3 | Chromium | 19.8 | 1 | * | P | | 7439-89-6 Iron 42100 P 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7782-49-2 Selenium 3.7 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7440-48-4 | Cobalt | 6.4 | В | 1 | P | | 7439-92-1 Lead 83.5 P 7439-95-4 Magnesium 81000 * P 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7782-49-2 Selenium 3.7 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7440-50-8 | Copper | 53.2 | 1 | 1 | P | | 7439-95-4 Magnesium 81000 * P 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7782-49-2 Selenium 3.7 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7439-89-6 | Iron | 42100 | 1 | <u> </u> | P | | 7439-96-5 Manganese 1250 * P 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7782-49-2 Selenium 3.7 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7439-92-1 | Lead | 83.5 | | | P | | 7440-02-0 Nickel 33.5 P 7440-09-7 Potassium 1190 B P 7782-49-2 Selenium 3.7 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7439-95-4 | Magnesium | 81000 | | * | P | | 7440-09-7 Potassium 1190 B P 7782-49-2 Selenium 3.7 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7439-96-5 | Manganese | 1250 | 1 | * | P | | 7782-49-2 Selenium 3.7 P 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7440-02-0 | Nickel | 33.5 | 1 | | P | | 7439-97-6 Mercury 0.08 N CV 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7440-09-7 | Potassium | 1190 | В | <u> </u> | P | | 7440-22-4 Silver 0.47 B P 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7782-49-2 | Selenium | 3.7 | 1 | <u> </u> | P | | 7440-23-5 Sodium 231 B P 7440-28-0 Thallium 1.4 B P 7440-62-2 Vanadium 20.7 P | 7439-97-6 | Mercury | 0.08 | | N | CV | | | 7440-22-4 | Silver | 0.47 | В | | P | | 7440-62-2 Vanadium 20.7 P | 7440-23-5 | Sodium | 231 | В | | P | | | 7440-28-0 | Thallium | 1.4 | В | | P | | 7440-66-6 Zinc 113 P | 7440-62-2 | Vanadium | 20.7 | | 1 | P | | , | 7440-66-6 | Zinc | 113 | -[| | P | | Color Before | BROWN | Clarity Before: | | Texture: | MEDIUM | · | |--------------|--------|-----------------|-------|------------|--------|---| | or Aiter: | YELLOW | Clarity After: | CLEAR | Artifacts: | | | | Comments: | | | | | | · | | | | | | | | | | - | | | - | | | | | | | | | | | ` | critetic squibte | 5 IVO. | | |-----------|-------------|---|---|-------------|-------|---|------------------|--------|--| | - | | • | | • | | | LSVI04B2G | | | | Lab Name: | SIL Buffalo | | C | bntract: 98 | 3-153 | L | | | | | | | | | | | | | | | SAS No.: _ Matrix (scil/water): SOIL Lab Code: <u>RECNY</u> Lab Sample ID: A0682313 % Solids: Case No.: ____ Date Samp/Recv: 09/26/2000 09/26/2000 SDG No.: <u>23B5G</u> | | Units of
Measure | Result | С | Q | M | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 15.7 | | | | CLP-WC | 10/02/2000 | | romanta. | | | |-----------|------|--| | Comments: | | | | |
 | | | | | | Client Sample No. | | • | | |-----|--------------|-------| | | |
_ | | | | | | - 1 | | | | - 4 | T CT CODOC | | | | 1.601.531536 | | | | TRATE SEGRE | | | | | | Name: STL Buffalo Contract: <u>98-153</u> ab Code: <u>RECNY</u> Case No.: _ SAS No.: _ SDG No.: <u>23B5G</u> Matrix (soil/water): SOIL Lab Sample ID: A0682314 Solids: Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> | | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.78 | | | | CLP-WC | 10/02/2000 | | Comme | ents: | | | | | | | |-------|-------|--|-------|-------|---|--|--| | | | |
• | | • | | | | | | ······································ | | | | | | | | | | | | | | | | | | |
 |
- | | | | 000033 Client Sample No. | | | , | |
 | |-----|-----------|---|--|------| | 1 | LSVI23B5G | | | | | - 1 | | | | ł | Lab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: <u>A0682301</u> % Solids: | 1 | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.50 | Ū | | | CLP-WC | 10/02/2000 | | Comme | ents: | | | ·. | | : | | | | : | |-------|-------|--|-----|----|-----|---|------|--|------|---| | . , | | | | | ``. | |
 | | • •. | | | | | | | | | | | | | | | | | | -11 | - | | |
 | | | | | | | | | | | | | | | | 000001 Client Sample No. | 1 | | | _ | |---|-------------|---|---| | | LSVI24B4G | • | | | | | | | Name: STL Buffalo Contract: <u>98-153</u> Lab Code: <u>RECNY</u> Case No.: ___ SAS No.: _____ SDG No.: <u>23B5G</u> Matrix (soil/water): SOIL Lab Sample ID: A0682304 Solids: | Parameter Name | Units of
Measure | Result | C | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 2.0 | | | | CLP-WC | 10/02/2000 | | Comments: | | · | | | | |-----------|---|---|---|--|--| | | · | | · | | | | | | | | | | | | | | | | | | | , | | | | | Client Sample No. LSVI34B1G Lab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: SAS No.: ____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: <u>A0682310</u> % Solids: Date Samp/Recv: <u>09/26/2000</u> <u>09/26/2000</u> | | Units of
Measure | kesult | С | Q | M | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.50 | Ū | - | | CLP-WC | 10/02/2000 | | | • | | | • | ٠. | |-----------|---|-----|--|---|----| | Comments: | | | | | • | | | | | | | | | | | | | | · | | | | · . | | | | 000095 Client Sample No. LSVI56B3G | سغد | Name: | SIL | <u>Buffalo</u> | |-----|-------|-----|----------------| | | | | | Contract: <u>98-153</u> ab Code: <u>REONY</u> Case No.: ____ SAS No.: ____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682315 _____ Solids: 90.5 | Parameter Name | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 1.7 | | | | CLP-WC | 10/02/2000 | | σπ | ments: | • • | | | ٠. | | | | | |----|--------|-----|---|----|----|-----|------|-------------------|--| | • | | | • | ٠. | .* | • . | | • • • • • • • •
• | | | • | • | | | | | |
 | | | | • | | | | | | | | | | | • | | | | | | | | | | 000037 Client Sample No. | F | | |---------------------------|-------------| | LSVI67B4G | | | 172/16/1 23 /2 | 1 | Lab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: _ ____ SAS No.: ____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682305 % Solids: <u>89.1</u> | | Units of
Measure | | C | Q | м | Method
Number | Analyzed
Date | |-----------------|---------------------|------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 12.5 | | | | CLP-WC | 10/02/2000 | | æ | ments: | | | | | V | | • | | |---|--------|---|------|--|---|----------|-----|---|---| | | | • | | | , | • | .11 | | ~ | | | | | · |
 | | | | | | | ### 000033 New York State Electric & Gas Wet Chemistry Analysis Client Sample No. | LSVI78B1G | • | | |-----------|---|--| | | | | Name: STL Buffalo Contract: <u>98-153</u> ab Code: <u>RECNY</u> Case No.: SAS No.: ____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: <u>A0682319</u> Solids: <u>93.5</u> | Parameter Name | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.50 | Ū | | | CLP-WC | 10/02/2000 | | omments: | | ** | | | | | | , | | |----------|---------------------------------------|----|---|------------------|---|----------|----|------|----------| | · . | · · · · · · · · · · · · · · · · · · · | | | . , - | | ·. | |
 | <u>·</u> | | | | | • |
 | · | <u> </u> | | | | | | | | |
 | | | 4. | | | | | | | | | | | | | | ### 060000 ### New York State Electric & Gas Wet Chemistry Analysis Client Sample No. | | | | | |-----------|---|-------------|--| | LSVI78B5G | • | | | Lab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: <u>23B5G</u> Matrix (soil/water): SOIL Lab Sample ID: <u>A0682302</u> % Solids: <u>92.0</u> | | | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |---|-----------------|---------------------|--------|---|---|---|------------------|------------------| | c | Cyanide - Total | MG/KG | 0.50 | | | | CLP-WC | 10/02/2000 | | | | • | | | |-----------|------|---|--|--| | Comments: | | | | | | V | • | | | | | | | | | | | | | | | | | |
 | | | | 000200 Client Sample No. | | | | | | LSVI89B4G | |---|-------|-------------|-----|-------------------------|-----------| | ţ | Name: | STL Buffalo | | Contract: <u>98-153</u> | | | | | | • " | <i>'</i> . | • | Lab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682306 Solids: 91.1 Date Samp/Recv: 09/26/2000 09/26/2000 | | • | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |---------|---------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide | - Total | MG/KG | 3.0 | | | | CLP-WC | 10/02/2000 | | Comme | ents: | | * | | | | | | |-------|-------|-------|----|--|------|-----|---|--| | | |
- | • | | | | | | | . — | | | | | ` 1_ | 1.0 | 1 | | |] | | | | | | | | | | | | | *, | | | | | | Client Sample No. LSVI1011B1G Lab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: <u>RECNY</u> Case No.: _ SAS No.: _____ SDG No.: 23B5G Matrix (soil/water): SOIL % Solids: Lab Sample ID: <u>A0682311</u> | 1 | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.50 | Ū | • | | CLP-WC | 10/02/2000 | | Comments: | | | | | | |-----------|---------------------------------------|-----|---|---------------------------------------|---| | · | | | | |
· · · · · · · · · · · · · · · · · · · | | | | · . | | | | | | | | | : |
 | | | · · · · · · · · · · · · · · · · · · · | | • | · · · · · · · · · · · · · · · · · · · |
 | Client Sample No. | | | |
 | |-------|-------|----|------| | LSVI1 | 012B5 | 5G | | Name: STL Buffalo Contract: <u>98-153</u> ab Code: <u>RECNY</u> Case No.: ____ SAS No.: ___ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682303 Solids: 86.4 | Parameter Name | Units of
Measure | Result | С | Q | M | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.50 | U | | | CLP-WC | 10/02/2000 | | omment | ts: | | | | | ٠. | | | |--------|-----|--|---------|------|----|----|---|---| | | , | | | | ** | * | • | | | | · | | | | | | | _ | | * | | |
• . |
 | | | | _ | | | | | · | | | | | _ | Client Sample No. | LSVI1213B1G | ٠. | | |-------------|----|--| Lab Name: STL Buffalo Contract: 98-153 Lab Code: <u>RECNY</u> Case No.: SAS No.: ____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682312 % Solids: | | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 1.3 | | | | CLP-WC | 10/02/2000 | | ments: | * | | | | | | | | | |--------|---|-----|---|--|------|------|-------|--|---| | | • | | * | | | | | | , | | · | | ` . | | ······································ | |
 |
- | | | | | | | | | | | | | | | • | | | | |
 | | | | | ### 000104 Client Sample No. | 1 | | |--------------|---| | ILSVI1315B4G | : | | | | Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: SAS No.: SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682307 Solids: | Parameter Name | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 2.5 | | | | CLP-WC | 10/02/2000 | | Com | ments: | | | | | |------------|--------|-------------|---|---|----| | ,
, | | , | | | | | | | | · | , | - | | • | | | | | | | } - | | | | | `` | ### 000105 ### New York State Electric & Gas Wet Chemistry Analysis Client Sample No. LSVI1719B4G Lab Name: STL Buffalo Contract: <u>98-153</u> Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682308 % Solids: <u>92.6</u> | | Parameter Name | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |---------------|----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Tot | al | MG/KG | 3.0 | | · | | CLP-WC | 10/02/2000 | | œ | mments: | | |
 | | | | | | |---|---------|---|---|------|--|--|---|---------------------------------------|------| | | | | | | | | - · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
 | | | - | | | | | | | | | | • | | , | - | | | | | ·, |
 | ### 000106 Client Sample No. | | and the second s | | | |-----|--|---|---| | - 1 | | | - | | - 1 | | | | | | TOTTOTOTOT | * | | | | T.SVT2123B4G | | | | | | | | Name: STL Buffalo Contract: <u>98-153</u> Lab Code: <u>RECNY</u> Case No.: _ SAS No.: _____ SDG No.: 23B5G Matrix (soil/water): SOIL Lab Sample ID: A0682309 Solids: 82.8 | Parameter Name | Units of
Measure | · · | C | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|-----|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 10 | | | | CLP-WC | 10/02/2000 | | comments: | | | | |-----------|--|---------------------------------------|-----| | | | | · . | | - | | | | | | | · · · · · · · · · · · · · · · · · · · | | ##
000107 Client Sample No. LSVISSOIC Lab Name: STL Buffalo Contract: 98-153 Matrix (soil/water): SOIL SAS No.: _____ SDG No.: 23B5G - Lab Sample ID: A0682317 % Solids: 94.5 Lab Code: RECNY Case No.: ____ SAS No.: ____ | | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.99 | | | | CLP-WC | 10/06/2000 | | Comments: | | | - , | |-----------|-----|--|-----| | Miletics. | | | | | | | | | | | | | | | | , - | | | #### New York State Electric & Gas Wet Chemistry Analysis Client Sample No. | f |
 | |-----------|------| | LSVISS02C | | | 172012C | | | | | Name: STL Buffalo Contract: <u>98-153</u> ab Code: <u>RECNY</u> Case No.: SAS No.: _____ SDG No.: <u>23B5G</u> Matrix (soil/water): SOIL Lab Sample ID: A0682320 Solids: Date Samp/Recv: 09/26/2000 09/26/2000 | | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.83 | | | | CLP-WC | 10/06/2000 | | Om | ments: | | | | | | | |------------|--------|--|---------------------------------------|---|------|------|----------| |) <u>.</u> | | | · · · · · · · · · · · · · · · · · · · | | | | <u> </u> | | | | | | • |
 | | | | - | | | | | | | | | • | | | | | |
 | | #### New York State Electric & Gas Wet Chemistry Analysis 000109 | | | Client Sample No |). | |----------------------------|-------------|------------------------------------|-----------| | Lab Name: <u>STL Buffa</u> | lo | Contract: 98-153 | 1 | | Lab Code: <u>RECNY</u> | Case No.: | SAS No.: SDG No.: 23B5G | : | | Matrix (soil/water) | : SOIL | Lab Sample ID: A0682318 | | | % Solids: | <u>71.8</u> | Date Samp/Recv: 09/26/2000 09/26/2 | 000 | | Parameter Name | Units of
Measure | Result | С | Q | М | Method
Number | Analyzed
Date | |-----------------|---------------------|--------|---|---|---|------------------|------------------| | Cyanide - Total | MG/KG | 0.50 | U | | | CLP-WC | 10/06/2000 | | Comments: | • | - | \$
 | | |-------------|---|---|--------|---------------------------------------| | oments: | | | | ÷. | | | | |
 | · · · · · · · · · · · · · · · · · · · | | | | | | | ## **APPENDIX B** CITIZ**E**N PARTICIPATION PLAN (CPP) ## NYSEG #### **NEW YORK STATE ELECTRIC & GAS CORPORATION** Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902-5224 #### **INTERIM REMEDIAL MEASURES** NEW YORK STATE DEPARTMENT OF TRANSPORTATION PROSPECT STREET OVER ERIE CANAL PROJECT ## CITIZEN PARTICIPATION PLAN FOR ACTIVITIES ON AND ADJACENT TO LOCKPORT STATE ROAD FORMER MANUFACTURED GAS PLANT SITE City of Lockport, Niagara County, New York **JUNE 2002** Prepared By: NYSEG Licensing & Environmental Operations Department Reviewed and Approved By: New York State Department of Environmental Conservation #### **TABLE OF CONTENTS** | 1.0 | INTRODUCTION | |-------|--| | 2.0 | BASIC SITE INFORMATION | | 3.0 | SITE INVESTIGATIONS | | 4.0 | PROJECT DESCRIPTION 3 | | 5.0 | INTERESTED/AFFECTED PUBLIC | | 6.0 | DOCUMENT REPOSITORY4 | | 7.0 | DESCRIPTION OF CITIZEN PARTICIPATION ACTIVITIES FOR EACH MAJOR ELEMENT OF THE INTERIM REMEDIAL MEASURE (IRM) PROGRAM | | 8.0 | ADDITIONAL INFORMATION | | ATTA | CHMENTS | | FIGUI | RE 1 LOCATION MAP | IRM Citizen Participation Plan #### 1.0 INTRODUCTION NYSEG has developed this *Citizen Participation Plan (CPP*) to facilitate communication with individuals, groups, and organizations which have expressed an interest in the Lockport State Road former manufactured gas plant (MGP) site or surrounding areas. The *CPP* will provide information to those in the community who may be interested in the MGP Site's remediation project. The *CPP* will detail the citizen participation activities that will be implemented in association with this MGP Site. An Interim Remedial Measures (IRM) Work Plan for Activities on and adjacent to Lockport State Road Former Manufactured Gas Plant Site has been produced. The proposed remedial measures will involve excavation and off site disposal or thermal treatment of MGP structures, their contents and surrounding coal tar contaminated soil, as detailed in Section 4.0. The Work Plan will be conducted according to the requirements of a March 25, 1994 Order on Consent between NYSEG and the New York State Department of Environmental Conservation (NYSDEC). The Order on Consent is a legal document between NYSEG and the NYSDEC which defines the requirements of each party for conducting site investigations and remediations. The Order on Consent requires that all work at the Site be performed under the oversight of the NYSDEC and the New York State Department of Health (NYSDOH). #### 2.0 BASIC SITE INFORMATION The State Road Site is the location of the former State Road Tar Works in the City of Lockport, Niagara County, New York. The State Road Tar Works was established as a secondary processing plant for tar generated at the Transit Street MGP Site. The Transit Street MGP was located approximately one block east of the State Road Tar Works in Lockport. The 1898 Sanborn Map showed State Road Site occupied by several warehouses that were owned by Lockport Gas Light Company. The State Road Tar Works was identified on the 1903 Sanborn Map. Several tar tanks and ammonia tanks are also depicted. Lockport Light, Heat and Power Company acquired the site in 1907. The site remained essentially unchanged between 1903 and 1919. The 1928 Sanborn Map documented the construction of a 500,000 cubic foot gas holder northeast of the warehouse building between 1919 IRM Citizen Participation Plan and 1928. In 1929, NYSEG acquired the Lockport Light, Heat and Power Company, and in the process, the property now referred to as the State Road Site. The old stone building, adjacent to State Road and north west of the holder, was added onto and converted into a gas compressor building by 1938. By-products of gas manufacturing include coal tars, light oils and spent purifying materials. These products were often left behind when the plants closed. Purifier wastes are the spent materials (i.e. wood chips or other organic material with iron filings) used to remove impurities like hydrogen sulfide and cyanide from the gas produced by the MGP. Petroleum products were used on-site as a fuel source for the MGP and to increase the heat content of the manufactured gas. These products were potentially discharged on-site as a result of material handling practices. #### 3.0 PREVIOUS INVESTIGATION In May 1991, NYSEG's consultant Atlantic Environmental Services, Inc. completed a *Manufactured Gas Plant Site Screening Report*. This investigation was completed prior to NYSEG signing the Order on Consent and were not done under NYSDEC oversight. In September 2000, NYSEG completed a *Pre-Construction/Remediation In Situ Sampling & Analysis Work Plan* with NYSDEC oversight. #### 4.0 PROJECT DESCRIPTION The overall objectives of the proposed *IRM* will be to support the Prospect Street over Erie Canal Construction Project (BIN 4454180) proposed by the NYSDOT. This work will include the excavation, handling, disposal of coal tar contaminated soil and handling, collection, disposal of contaminated construction water and groundwater, as required to complete the *IRM*. This *IRM* is scheduled to be initiated during the Fall of 2002. #### 5.0 INTERESTED/AFFECTED PUBLIC A mailing list has been developed which includes adjacent property owners and businesses, local and State elected officials, local media, and other identified interested parties. Parties wishing to be added to the mailing list can do so by contacting any of the individuals listed below in Section 8.0 - Additional Information, or by completing a "mailer" which is included with all mailings. #### 6.0 DOCUMENT REPOSITORY Documents associated with the previous investigations and this *IRM* are available for public review at the following document repositories: Lockport Public Library 23 East Street Lockport, New York Attn.: Margaret Lynch Phone: (716 (716) 433-5935 New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203-2999 Attn.: Martin Doster Phone: (716) 851-7220 NYSEG (New York State Electric & Gas Corporation) 6544 Lincoln Avenue Lockport, New York 14095 Attn.: Frank B. Inglese Phone: (716) 438-9803, Ext. 367 # 7.0 DESCRIPTION OF CITIZEN PARTICIPATION ACTIVITIES FOR EACH MAJOR ELEMENT OF THE INTERIM REMEDIAL MEASURE (IRM) PROGRAM To facilitate the *IRM* process, NYSEG in cooperation with NYSDEC, NYSDOH and NYSDOT, will inform the public and local officials of planned remedial activities and address concerns raised by the community. The *CPP* will include at least the following: - a fact sheet describing the planned remedial activities. The fact sheet will be distributed to those identified in Section 5.0 of this document. - a telephone number for the public to call with any questions or concerns which may arise during the Project¹. #### 8.0 Additional Information #### Contacts for additional information: NYSEG: Mr. David N. Greenfield Community Outreach Manager **NYSEG** 150 Erie Street Lancaster, NY 14086 Phone: (716) 651-5226 E-mail: dngreenfield@nyseg.com NYSDEC: Mr. David L. Crosby, P.E. Project Manager NYSDEC 625 Broadway Albany, New York 12233 1-800-342-9296 or (518) 402-9813 E-mail: dacrosby@gw.dec.state.ny.us NYSDOH: Mr. Mark VanValkenburg Community Health & Safety Oversight NYSDOH Flannigan Square 547 River Street Troy, New York 12180-2216 (518) 402-7890 E-mail: mev05@health.state.ny.us A call to the posted phone number (1-800-572-1111) during normal business hours will be answered by one of a specially trained group of
operators who can provide information from the fact sheet. If additional information is required, the operator can contact members of the project team from a call list. After normal business hours, for emergencies, this phone number (1-800-572-1121) rings directly to a dedicated trained answering service which will contact a project team member directly from the call list. ## **APPENDIX C** CONSTRUCTION QUALITY ASSURANCE PLAN (CQAP) ## NYSEG #### **NEW YORK STATE ELECTRIC & GAS CORPORATION** Licensing & Environmental Operations Department Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902-5224 #### INTERIM REMEDIAL MEASURES NEW YORK STATE DEPARTMENT OF TRANSPORTATION PROSPECT STREET OVER ERIE CANAL PROJECT # CONSTRUCTION QUALITY ASSURANCE PLAN (CQAP) FOR ACTIVITIES ON AND ADJACENT TO LOCKPORT STATE ROAD FORMER MANUFACTURED GAS PLANT SITE City of Lockport, Niagara County, New York **JUNE 2002** Prepared By: NYSEG Licensing & Environmental Operations Department ## TABLE OF CONTENTS | 1.0 INTRODUCTION | | |---|-----------------------| | 2.0 RESPONSIBILITY AND AUTHORITY 2.1 Contractor 2.2 Construction Quality Assurance Officer 2.3 Sampling Quality Assurance Officer 2.4 Construction Quality Control Representative 2.5 Sampling Representative |
2
2
3
4 | | 3.0 FIELD QUALITY CONTROL INSPECTIONS, TESTING, AND SAMPL REQUIREMENTS 3.1 Site Preparation 3.2 Equipment Set-up 3.3 Staging of Materials 3.4 Loading of Material for Destruction 3.5 Excavation of Existing MGP Residue 3.6 Site Restoration |
7
7
7
8 | | 4.0 DOCUMENTATION AND REPORTING REQUIREMENTS FOR CQARACTIVITIES 4.1 Inspection Reports 4.2 Daily Field Construction Report 4.3 Photo Log 4.4 Daily Sampling Log 4.5 Variances to IRM Work Plan 4.6 Final Engineering Report |
9
9
9
10 | #### 1.0 INTRODUCTION This Construction Quality Assurance Plan (CQAP) is designed to assure the quality of the project by monitoring, inspecting, and testing the processes and materials associated with the Interim Remedial Measure (ÎRM) to be completed at New York State Electric and Gas Corporation's (NYSEG's) Lockport State Road Former Manufactured Gas Plant site (MGP), City of Lockport, Niagara County, New York. This Construction Quality Assurance Plan supplements the IRM Work Plan, dated June 2002. #### 1.1 Construction Quality Assurance Plan (CQAP) Objectives The objective of this *CQAP* is to identify and standardize measures to provide confidence that activities in all phases of the project will be completed in accordance with the *IRM Work Plan*, applicable local, state and federal regulations and appropriate industry standards. The CQAP will be implemented through inspection, sampling, testing, review of services, workmanship, and materials. Specific objectives of this plan establish protocols and procedures for the following components: - 1. Responsibility and Authority The responsibility and authority of the key personnel involved in the completion of the project. - 2. Inspection and Testing Activities Establish the observations and implement inspections and tests that will be used to ensure that the construction activities for the project meet or exceed all design criteria, (i.e., IRM Work Plan, and local, state and federal regulations). - 3. Sampling Strategies Establish responsibility for sampling activities and methods including frequency and acceptance criteria for ensuring that sampling meets criteria in the *IRM Work Plan*, local, state and federal regulations. - 4. Documentation and Reporting Establish appropriate field documents (i.e.,daily field construction reports, photographic log, sampling log, and variances to the *IRM Work Plan*). #### 2.0 RESPONSIBILITY AND AUTHORITY Responsibilities of each member of the construction project team are described below. #### 2.1 NYSDOT Contractor The contractor is responsible for coordinating field operations of the *IRM*, including coordination of subcontractors, to comply with the requirements of the *IRM Work Plan* and permitting agencies. The Contractor is responsible for completing and submitting documentation required by the *CQAP* and also has the authority to accept or reject the materials and workmanship of any subcontractors at the site. The contractor is also responsible to ensure a functional construction quality control organization is active during the project and provide support for the construction quality control system to perform inspections, tests and retesting in the event of failure of any item of work, including that of the subcontractors, and to assure compliance with the contract provisions. The construction quality control system includes, but is not limited to, the inspections and tests required in the technical provisions of the *IRM Work Plan*, and will cover all project operations. #### 2.2 Construction Quality Assurance Officer: Bert W Finch NYSEG Project Manager The responsibility of the construction quality assurance officer is to perform those activities in this *CQAP* deemed necessary to assure the quality of construction and support quality control efforts. The construction quality assurance officer will be onsite as required during construction activities. The responsibility of the construction quality assurance officer is to ensure the quality of construction meets or exceeds that defined by the *IRM Work Plan* and identified in the *Quality Assurance Plan* (*QAPP*). Specific responsibilities of the construction quality assurance officer include: Directing and supporting the construction quality control representative inspection personnel in performing observations and tests by verifying that the data are properly recorded, validated, reduced, summarized, and inspected. - Evaluating the construction activities and the construction quality control representative's efforts - Evaluating sampling activities and efforts of the sampling quality assurance officer - Educating construction quality control inspection personnel on construction quality control requirements and procedures - Scheduling and coordinating construction quality assurance inspection activities # 2.3 Sampling Quality Assurance Officer: Walter Savichky NYSEG Sampling Oversight The responsibility of the sampling quality assurance officer is to perform those activities in this *CQAP*, *IRM Work Plan and QAPP* deemed necessary to assure the quality of sampling and testing and support quality control efforts. To avoid conflicts of interest, the sampling quality assurance is performed by an entity other than the construction quality control, and provides the permitting agency an assurance that all sampling efforts, for both field and laboratory analysis, meet or exceed that defined by the *IRM Work Plan* and identified in the *CQAP*. The sampling quality assurance officer will be on-site as required during the project. The sampling quality assurance officer will report directly to the construction quality assurance officer. Specific responsibilities of the sampling quality assurance officer include: - confirming that the test data are properly recorded and maintained (this may involve selecting reported results and backtracking them to the original observation and test data sheets); - confirming that the testing equipment, personnel, and procedures do not change over time or making sure that any changes do not adversely impact the inspection process; and - confirming that regular calibration of testing equipment occurs and is properly recorded. - Providing the construction quality control officer with up to date sampling results. #### 2.4 Construction Quality Control Representative: NYSDOT Contractor Construction Supervisor A construction quality control representative, supplemented as necessary by additional personnel, is to be on the work site during the construction process, with complete authority to take any action necessary to ensure compliance with the *IRM Work Plan* as necessary to achieve quality in the constructed facility. The construction quality control representative will be the field engineer. Specific responsibilities of the construction quality control representative include: - *IRM Work Plan* for clarity and completeness so that the construction activities can be effectively implemented. - Verifying that a contractor's construction quality is in accordance with CQAP. - Performing on-site inspection of the work in progress to assess compliance with the *IRM Work Plan*. - Prepare and log material shipping manifest for transportation of nonhazardous and Hazardous materials. - perform the duties of the health & safety officer. - Reporting the results of all observations and tests as the work progresses, modify materials and work to comply with IRM Work Plan. This includes: - 1. Providing reports on daily field construction, material shipments, and inspection results. - 2. Review and interpretation of all data sheets and reports. - 3. Identification of work that should be accepted, rejected, or uncovered for observation, or that may require special testing, inspection, or approval. - 4. Rejection of defective work and verification that corrective measures are implemented. - 5. Make observations and records that will aid in finalization of the *RI* Report. - Reporting to the construction quality assurance officer results of all inspections including work that is not of acceptable quality or that fails to meet the IRM Work Plan. - Verifying that the equipment used in testing meets the test requirements and that the test are conducted according to the proper standardized procedures. - Verifying that materials are installed as specified, except where necessary field modifications were required. The construction quality
control representative will report directly to the quality assurance officer. 2.5 Sampling Representative: NYSEG Brian Balchikonis NYSEG Tom Sienkiewicz NYSDOT Contractor Sampling Technician A sampling representative, supplemented as necessary by additional personnel, is to be on the work site at all times during the construction process. The sampling representative reports directly to the sampling quality assurance officer. Specific responsibility of the sampling representative include: Set up and operation of the weather station. Daily recording of meteorological data. - Daily calibration and operation of real time total volatile organic compound and suspended particulate air monitoring equipment. Daily recording of real time air quality data. Informs construction supervisor and on-site New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) representatives when concentration of air contaminants approaches or exceeds action levels specified in the *IRM Work Plan*. Faxing or e-mailing real-time air quality data to the (NYSDOH) representative and Sampling Quality Assurance Officer daily. - Daily calibration and operation of the portable GC (Perkin-Elmer Voyager) per guidelines specified in the QAPP and IRM Work Plan. Compiling calibration and results data into spreadsheets. E-mailing compiled data along with chromatograms to Sampling Quality Assurance Officer daily. - Collection, packaging and shipment soil and water samples per guidelines specified in the QAPP and IRM Work Plan. Maintaining master log of all air, water and soil samples collected. Faxing copies of the chain of custody sheets to the Sampling Quality Assurance Officer daily. Tracking confirmation sample points and construct a map depicting confirmation sample point locations. - Consultation with Sampling Quality Assurance Officer for all technical questions, problems, considerations, or requests for supplies or equipment. - Maintaining and organizing on-site field specialist equipment and supplies storage area. - Performing the duties of Assistant Health & Safety Officer. # 3.0 FIELD QUALITY CONTROL INSPECTIONS, TESTING, AND SAMPLING REQUIREMENTS The definable features of work identified below are described in section 4 of the *IRM Work Plan*. This section of the *CQAP* describes the anticipated inspection, testing, and sampling requirements of these definable feature works. #### 3.1 Site Preparation Elements of the site preparation, including clearing, grubbing, fencing, and entrance road construction, will be inspected as they occur to assure compliance with the *IRM Work Plan*. Inspection of the siltation fence shall confirm that it is contiguous and its skirt is embedded along its length. #### 3.2 Equipment Set-up All materials and equipment are designed to meet specific project needs. Each delivery of materials and/or equipment will be inspected upon arrival by the construction quality control representative and stored at a designated area of the site. Equipment will be set-up per the work plan design and drawings. #### 3.3 Staging of Materials Material will be transported to storage area. Piles will be inspected a minimum of once per day to assure that covers are in place and intact, and standing water is removed from the liner as needed. Covers will be replaced as needed to prevent precipitation from contacting the material and dust from being generated by the material. #### 3.4 Loading of Material for Transportation Staged products will be loaded with a rubber tired articulated wheel loader into dump trailers for transportation to permitted disposal facility. Polyethylene sheeting will be placed between the pile and the truck to retain any material spilled from the loader. The spilled material will be added back to the pile following completion of loading of each truck. The loading area will be visually inspected to confirm that material remains within the bermed stockpile area. #### 3.5 Excavation of Existing MGP Residue MGP residue will be excavated from the former gas holder, piping and surface soil in accordance with the *IRM Work Plan*. All excavation activities will be observed and recorded by the construction quality control representative noting soil type, color, moisture, foreign objects, odor and any other noticeable characteristics. Limits of the excavation will be measured by the construction quality control representative upon completion of the excavation for documentation drawings. Sampling of the excavated materials and residual soils is covered in a separate sampling assurance plan. #### 3.6 Site Restoration Site restoration will be observed by the construction quality control representative. The excavation noted above will be backfilled with as specified in the *IRM Work Plan*, and the surface will match the existing surfacing material. Clean imported backfill material will be inspected upon arrival. Backfilling and compacting of the excavation will be observed and documented by the construction quality control representative. All liners will be removed and disposed. No stockpiles will remain on-site at the end of the project. All affected areas will be graded to match existing grades. The finish surface will match the existing stone. Visual inspections will confirm that the site surfacing meets owner approval. # 4.0 DOCUMENTATION AND REPORTING REQUIREMENTS FOR CQAP ACTIVITIES The value of the *CQAP* will be assured by proper documentation techniques. The construction quality assurance plan inspection team will be guided by data sheets, schedules and checklists. The documentation of the inspection activities will facilitate the adherence to the design documents and maintain the level of reporting required by the parties involved in the project. #### 4.1 Inspection Reports In general, documentation may involve daily summary and photographic reports including sketches of a particular section or activity, inspection log, corrective measure summary, or schedule summary. Specific documentation procedures are listed in the following subsections. The construction quality control representative will ensure that one set of full sized contract drawings are marked on a daily basis to record deviations from the contract drawings, including buried or concealed structures and utilities which are revealed during the course of site work. The construction quality control representative shall initial each variation or revision. The construction quality control representative shall, upon completion of site work, certify the accuracy of the record drawings, and submit them to the project manager. #### 4.2 Daily Field Construction Report The construction quality control representative shall prepare a Daily Field Construction Report (DFCR) identifying work force and their labor hours, location and description of work performed, lost time accidents, equipment left on job site, equipment/materials received and if applicable, submittal status, non-compliance notices received, errors and/or omission in plans and specifications, visitors to the job site, weather conditions and temperatures, and any other pertinent information. #### 4.3 Photo Log The photo log is designed to document construction activities by still photos. Photo log may also be used to photographically record activities recorded in a daily construction log or an as-built sketch log. Photos will be collected by the construction quality control representative. #### 4.4 Daily Sampling Log The daily sampling log is designed to document all sampling activities and how they correspond to the *IRM Work Plan*. All observations, field and/or laboratory tests will be recorded on a daily sampling log. It is important to note recorded field observations may take the form of notes, charts, sketches, or photographs. The daily sampling log will be completed by the sampling technician. Lockport State Road Former MGP Site, Lockport, New York Construction Quality Assurance Plan #### 4.5 Variances to IRM Work Plan Required changes to the *IRM Work Plan* will be processed through the use of a variance log. Approval from the construction quality assurance officer is required to recommend a change to the *IRM Work Plan*. Once an approved recommended plan change is received from all parties an addendum to the *IRM Work Plan* can be completed and returned to the job site. #### 4.6 Final Engineering Report At the completion of the project the Project Manager/construction quality assurance officer will prepare and submit a Final Engineering Report to the NYSDEC. This report will include a summary of all of the DFCR's, Photographic Log, Sampling Log, Meeting Log, Material Disposition Log, and Variances to *IRM Work Plan*. The Final Engineering Report will be signed by the construction quality assurance officer and sampling quality assurance office. In addition, the Final Engineering Report will be signed and certified by a professional engineer that all activities that comprised the IRM were performed in full accordance with NYSDEC approved *IRM Work Plan* and the NYSDEC Order on Consent Index #D0-0002-9309. ## APPENDIX D QUALITY ASSURANCE PROJECT PLAN (QAPP) ## NYSEG #### **NEW YORK STATE ELECTRIC & GAS CORPORATION** Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902-5224 #### INTERIM REMEDIAL MEASURES NEW YORK STATE DEPARTMENT OF TRANSPORTATION PROSPECT STREET OVER ERIE CANAL PROJECT # QUALITY ASSURANCE PROJECT PLAN (QAPP) FOR ACTIVITIES ON AND ADJACENT TO LOCKPORT STATE ROAD FORMER MANUFACTURED GAS PLANT SITE City of Lockport, Niagara County, New York **JUNE 2002** Prepared By: NYSEG Licensing & Environmental Operations Department | Sectio | on Pag | je | |--------
---|------------------------------| | 1.0 | INTRODUCTION | 1 | | 2.0 | DATA QUALITY OBJECTIVES | 1 | | 3.0 | SAMPLE COLLECTION 3.1 Soils 3.2 Wastewater Sampling 3.3 Sampling Containers and Preservation 3.4 Sampling Holding Times | 2
2
3 | | 4.0 | SAMPLE CUSTODY, IDENTIFICATION & TRACKING 4.1 Holding Times and Sample Transport 4.2 Chain of Custody 4.2.1 Sample Identification 4.3 Laboratory Sample Tracking | 5
6
6 | | 5.0 | CALIBRATION PROCEDURES | 7 ' | | 6.0 | ANALYTICAL PROCEDURES 6.1 Laboratory Analyses 6.2 Laboratory Selection | .8 | | 7.0 | DATA REDUCTION VALIDATION AND REPORTING 1 7.1 Data Reduction 1 7.1.1 Field Data Collection 1 7.1.2 Laboratory Data Collection and Reduction 1 7.2 Data Review 1 7.3 Full Data Validation 1 7.4 Data Usability Summary Report (DUSR) 1 7.5 Reporting 1 | 10
10
10
10
. 10 | | 8.0 | QUALITY CONTROL CHECKS 1 8.1 Field Quality Control 1 8.1.1 Decontamination Procedures for Confirmation Sampling 1 8.2 Laboratory Quality Control (QC) 1 | 2
 2 | | 9.0 | PREVENTATIVE MAINTENANCE 9.1 Field Instruments and Equipment 9.2 Laboratory Instruments and Equipment 9.2.1 Instrument Maintenance 9.2.2 Equipment Monitoring 1 | 13
13
13 | #### Attachments - 1. - Chain of Custody Sample Identification Naming Convention 2. #### 1.0 INTRODUCTION This Ouality Assurance Project plan (*QAPP*) provides a description of the sampling and laboratory procedures/protocols to be used in support of the Interim Remedial Measures (*IRM*) project at the Lockport State Road Former Manufactured Gas Plant (MGP) Site, City of Lockport, Niagara County, New York. The fundamental purpose of the *QAPP* is to ensure that quality analytical data will be generated to support the project in a manner consistent with the Data Ouality Objectives (*DQOs*) as specified herein. This *QAPP* is designed to be used in conjunction with a New York State Department of Environmental Conservation (NYSDEC) approved *IRM Work Plan* with regards to specific project objectives and field sampling activities. To the extent that discrepancies exist between this *QAPP* and the *IRM Work Plan*, the *IRM Work Plan* shall control. #### 2.0 DATA QUALITY OBJECTIVES Data quality objectives (*DQOs*) are statements, expressed in either qualitative or quantitative terms, which address the appropriate level of data quality for a project. The quality of data generated must be suitable to support the decisions used to achieve the overall goals as delineated in the *IRM Work Plan*. The general project *DQOs* are summarized in this section, with detailed information given throughout this *QAPP* and associated sections of the specific project *IRM Work Plan*. The overall *DQOs* of the project are: - To ensure that samples collected are representative of the sample population. - To provide detection limits for the selected analytical methods which are below the established cleanup objectives or regulatory limits. - To measure and document precision and accuracy using procedures established by the laboratories, the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) and U.S. Environmental Protection Agency (EPA) approved analytical methods. - To ensure that all soil/residues and wastewater analyses will be conducted by a NYSDOH ELAP and NYSDOH ELAP CLP certified laboratory. - To ensure that all final site verification samples (confirmatory samples) are reported with ASP Category B deliverables. #### 3.0 SAMPLE COLLECTION #### 3.1 Soils Soil samples will be collected as described in the appropriate sections of the *IRM* Work Plan or the Pre-Remediation In Situ Sampling and Analysis Work Plan. These sections describe the collection procedures, sampling equipment, locations and frequencies for the soil samples. These schedules are based on the requirements for soil disposal or confirmation of excavation endpoint. All sampling equipment will be properly disposed or decontaminated before being reused (see Section 9.1.1). Samples will be collected and placed in pre-cleaned sample containers provided by the laboratory performing the analysis. All necessary preservatives will be added to the sample containers at the laboratory prior to being shipped to the site (see Section 3.3). Samples will be stored at 4 degrees Centigrade until delivered to, and analyzed by the laboratory. If required by laboratory a temperature blank will be placed inside the sample cooler to facilitate temperature measurement. This will be accomplished by utilization of an on-site refrigerator and/or coolers with ice. (When collecting composite samples for TCLP volatile analysis, volatilization will be minimized by covering the sample compositing container and placing it within a cooler filled with ice between grab sample additions.) #### 3.2 Wastewater Sampling Wastewater samples will be collected as described in the appropriate sections of the *IRM Work Plan*. These sections describe the collection procedures, sampling equipment, locations and frequencies for the wastewater samples. Samples of wastewater will be analyzed before being transported to a permitted facility for proper treatment and disposal. Samples will be transferred directly into pre-cleaned sample collection containers which are supplied by the laboratory performing the analyses. All necessary preservatives will be added to the sample containers at the laboratory prior to being shipped to the site (see Section 3.3). Samples will be stored at 4 degrees Centigrade until delivered to, and analyzed by the laboratory. This will be accomplished by utilization of an on-site refrigerator and/or coolers with ice. #### 3.3 Sample Containers and Preservatives Sample containers and preservatives will be provided by the contracted laboratories and stored on-site in a clean and dry location. Sample containers and preservatives by matrix and analysis are listed in the table below. | TABLE A (Continued on next page) SAMPLE CONTAINERS & PRESERVATIVES | | | | | | | |--|------------|---------------------|--------------------------------|--|--|--| | Analysis | Matrix | Container | Preservative | | | | | TCLP Semivolatiles | Soil | 500 ml glass* | 4 degrees C | | | | | TCLP Metals | Soil | 500 ml glass* | 4 degrees C | | | | | TCLP Pesticides/Herbicides | Soil | 500 ml glass* | 4 degrees C | | | | | Reactive Cyanide | Soil | 500 ml glass* | 4 degrees C | | | | | Reactive Sulfide | Soil | 500 ml glass* | 4 degrees C | | | | | TCLP Volatiles | Soil | 20 ml glass | 4 degrees C | | | | | Total PAHs | Soil | 250 ml glass | 4 degrees C | | | | | Total BTEX (benzene, toluene, ethylbenzene, xylenes) | Soil | 125 ml glass | 4 degrees C | | | | | Total Metals | Soil | 250 ml glass** | 4 degrees C | | | | | Total Metals | Water | 500 ml plastic | HNO ₃ to pH < 2 | | | | | Semivolatiles | Water | 1000 ml amber glass | 4 degrees C | | | | | Pesticides/Herbicides | Water | 1000 ml amber glass | 4 degrees C | | | | | Volatiles | Water | 40 ml glass | 4 degrees C or
HCl to pH <2 | | | | | Paint Filter | Water | 500 ml glass | 4 degrees C | | | | | Total Cyanide | Water | 500 ml plastic | 4 degrees C
NaOH to pH >12 | | | | | Percent Sulfur | Soil | 250 ml glass** | 4 degrees C | | | | | PCBs | Soil | 500 ml glass*** | 4 degrees C | | | | | Ignitability | Soil | ្ធ 500 ml glass*** | 4 degrees C | | | | | BTU/lb | Soil | 500 ml glass*** | 4 degrees C | | | | | Flashpoint | Soil | 500 ml glass*** | 4 degrees C | | | | | Reactivity | Soil/Water | 500 ml glass*** | 4 degrees C | | | | | TABLE A (Continued from previous page) SAMPLE CONTAINERS & PRESERVATIVES | | | | | | |--|------------|-----------------|--------------|--|--| | Analysis | Matrix | Container | Preservative | | | | Corrosivity | Soil/Water | 500 ml glass*** | 4 degrees C | | | | Percent Solids | Soil | 500 ml glass*** | 4 degrees C | | | | рН | Soil | 500 ml glass*** | 4 degrees C | | | * May be analyzed from same sample container and/or extract. ** May be analyzed from same sample container. *** May be analyzed from same sample container. Note: All glass containers will be sealed with Teflon lined caps. All water samples for organic fractions will be collected in duplicate. #### Sampling Holding Times 3.4 The following identifies samples by type and matrix and their related holding times. | TABLE B WASTE CHARACTERIZATION SAMPLES | | | | | | |--|--------|---|--|--|--| | Sample Type | Matrix | Holding Time* | | | | | TCLP Pest./Herb. | Soil | 5 days (extraction)
40 days (after extraction) | | | | | TCLP Semivolatiles | Soil | 5 days (extraction)
40 days (after extraction) | | | | | TCLP Mercury | Soil | 5 days (extraction)
28 days (after extraction) | | | | | TCLP Metals | Soil | 180 days | | | | | TCLP Volatiles | Soil | 14 days | | | | | Reactive Sulfide | Soil | 7 days | | | | | Reactive Cyanide | Soil | 14 days | | | | | PCBs | Soil | 5 days (extraction)
40 days (after extraction) | | | | | Ignitability | Soil | N/A | | | | | Reactivity | Soil • | Cyanide 14 days
Sulfide 7 days | | | | | Corrosivity | Soil | 2 days | | | | | Percent Solids | Soil | N/A | | | | Samples will be analyzed on a priority basis and reported within 10 days of collection or the maximum holding time, whichever is less. | WASTEWATER SAMPLES | | | | | |--------------------|---------|---|--|--| | Sample Type | Matrix | Holding Time*
 | | | Semivolatiles | Water . | 5 days (extraction)
40 days (after extraction) | | | | Mercury | Water | 26 days | | | | Metals | Water | 180 days | | | | Total Cyanide | Water | 14 days | | | | Paint Filter | Water | ` N/A | | | | Reactivity | Water | Cyanide 14 days
Sulfide 7 days | | | | Corrosivity | Water | Analyze immediately | | | | Volatiles | Water | 14 days | | | | TABLE D POST REMEDIATION CONFIRMATORY SAMPLES | | | | |---|--------|--|--| | Sample Type | Matrix | Holding Time | | | Total Benzene | Soil | 7 days | | | PAHs | Soil | 5 days to extraction
40 days after extraction | | | TCL Volatiles | Soil | 7 days | | | TCL Semivolatiles | Soil | 5 days to extraction
40 days after extraction | | | Total-Mercury | Soil | 26 days | | | -Total Lead- | Soil | 26 days | | - ASP Category B deliverables required. Duplicates, matrix spike, and matrix spike duplicate samples will be collected at a rate of ten percent. - Samples will be analyzed on a priority basis and reported within 48 hours or the maximum holding time, whichever is less. - TCL volatiles and semi-volatiles will be determined at a minimum rate of 1 per every group of 10 confirmation samples or portion thereof. #### 4.0 SAMPLE CUSTODY, IDENTIFICATION & TRACKING #### 4.1 Holding Times and Sample Transport Since the samples will be analyzed at priority turn around, no exceedances of holding time are expected. Holding times will be calculated from the time the sample is collected to the subsequent extraction, if necessary, or analysis. All samples will be delivered to the laboratory by same day courier or overnight delivery in sealed coolers with ice. #### 4.2 Chain of Custody All samples will be accompanied by a Chain of Custody (COC) form the point of sampling to delivery of the samples to the laboratory. The COC will be a record of the location where the sample was collected, the date and time collected, number of containers collected, type(s) of analyses requested, special remarks or requests, and the signature of each custodian of the samples. The completed COC will be included in all hard copies of reports. See Attachment 1 for a sample COC Form. Upon sample receipt, laboratory personnel will be responsible for sample custody. The laboratory sample custodian will record the cooler temperature on the COC form, verify sample integrity and compare the cooler contents against the field chain of custody. If a sample container is broken or leaking it will be noted on the COC form and NYSEG project personnel will be immediately notified. If any labeling or descriptive errors are observed by the sample custodian, NYSEG project personnel will be contacted immediately to resolve any discrepancies. After all discrepancies (if any) are resolved, the laboratory will acknowledge receipt of the samples (i.e., by signing and dating the COC) and the completed COC will be included in all hard copies of reports and become a permanent part of the project records. #### 4.2.1 Sample Identification Each sample collected during the project will have a unique identification number. This number, date of collection and type of analysis will be placed on each sample container after the sample is collected. See Attachment 2 for sample identification naming convention for air, water and confirmatory samples. A Site map will be used throughout the project to denote the area or point that a confirmatory sample represents. Each confirmatory sample will be assigned a sample point number which will appear as characters 9 & 10. #### 4.3 Laboratory Sample Tracking Each laboratory has an internal tracking mechanism to ensure that each sample received has a unique identification number and that results generated and reported for each sample correspond to the identification number assigned at the laboratory. #### 5.0 CALIBRATION PROCEDURES Each analysis will be performed in accordance with NYSDOH ELAP (Environmental Laboratory Approval Program) sanctioned methods or equivalent U.S. EPA analytical procedures. Each procedure specifies the method and frequency of calibration necessary to perform accurate and precise analyses. Each analytical instrument verifies the Minimum Detection Limit at least every six months as prescribed by the NYSDOH ELAP. The calibration of the instruments are verified at the beginning and end of each auto sampler run. Gas Chromatograph/Mass Spectrometers are tuned and calibrated every 12 hours, at a minimum. All field equipment, for real time and speciated real time air analyses will be calibrated daily, in accordance with manufacturer's recommendations. All equipment will be calibrated more frequently if conditions warrant. The HNu meter used to measure Volatile Organic Vapors will be calibrated to a benzene standard. The Mini Ram used to measure particulates will be calibrated to zero with filtered air. The portable GC unit will be used to measure the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds and will be calibrated to a BTEX standard. #### 6.0 **ANALYTICAL PROCEDURES** #### 6.1 Laboratory Analyses The following charts shows the analytical method to be used for each analyte or group of analytes for the IRM Project: | TABLE E ANALYTICAL METHODS | | | | |--|--------------------------------|--|--| | Analyte | Analytical Method | | | | TCLP Extractions | SW 846 Method 1311 | | | | TCLP Volatiles | SW 846 Method 8260 | | | | TCLP Semivolatiles | SW 846 Method 8270 | | | | TCLP Metals | SW 846 Method 6000/7000 Series | | | | TCLP Pesticides/Herbicides | SW 846 Method 8080/8151 | | | | Polycyclic Aromatic Hydrocarbons (Table F) | SW 846 Method 8270 | | | | Total Volatiles | SW 846 Method 8260 | | | | Total Semivolatiles | SW 846 Method 8270 | | | | Total Metals | SW 486 Method 6000/7000 Series | | | | PCBs | SW 846 Method 8082 | | | | Reactive Sulfide | SW 846 Chapter 7.3.4.2 | | | | Reactive Cyanide | SW 846 Section 7.3.3.2 | | | | Percent Sulfur | ASTM D-129 | | | | BTU/lb | ASTM D-215 | | | | Flashpoint | ASTM D-93 | | | | Ignitability | SW 846 Method 1030 | | | | Reactivity | SW 846 Section 7 | | | | Corrosivity | SW 846 Section 7 | | | | Percent Solids | ASP Method D-V-Section IX | | | | рН | SW 846 Method 9045 | | | | Total Cyanide | SW 846 9012 | | | | Paint Filter Test | SW 846 9095 | | | | TABLE F | | | | |--|--|--|--| | Polycyclic Aromatic Hydrocarbon (PAH) Analyte List | | | | | PARAMETER | | | | | Naphthalene | | | | | 2-Methylnaphthalene | | | | | Acenaphthene | | | | | Acenaphthylene | | | | | Fluorene | | | | | Phenanthrene | | | | | Anthracene | | | | | Fluoranthene | | | | | Dibenzofuran | | | | | Pyrene | | | | | Benzo (g,h,i) perylene | | | | | Benzo (a) anthracene* | | | | | Chrysene* | | | | | Benzo (b) fluoranthene* | | | | | Benzo (k) fluoranthene* | | | | | Benzo (a) pyrene* | | | | | Indeno (1,2,3 cd) pyrene* | | | | | Dibenzo (a, h) anthracene* | | | | | *Carcinogenic PAHs (cPAH) | | | | #### 6.2 Laboratory Selection The laboratory chosen for the project must be certified, and maintain certification, under the NYSDOH ELAP and NYSDOH ELAP CLP for analyses of solid and hazardous waste. Only analytical laboratories that have experience in MGP projects or similar projects will be considered for use. #### 7.0 DATA REDUCTION VALIDATION AND REPORTING #### 7.1 Data Reduction #### 7.1.1 Field Data Collection Real time field data collected during sampling events will include qualitative information regarding the texture, appearance, odors, and any other observations made while soil and water samples are being collected. Meteorological data and current site activity will be noted while collecting data for real time air monitoring. These observations will be recorded in the field log book. #### 7.1.2 Laboratory Data Collection and Reduction A significant portion of the analyses performed require the use of automated laboratory instrumentation. Raw data collected from the instruments detectors will be converted to standard units of mg/Kg for solid matrices and mg/L for water. All raw data will be stored in electronic form and in laboratory notebooks, in case the analysis needs to be recreated. Raw data for all analyses will be archived for a minimum of four years. #### 7.2 Data Review All analytical data will be verified for precision and accuracy utilizing the laboratory's in-house Quality Assurance/Quality Control programs. In addition, all data packages will be reviewed by NYSEG project personnel to ensure that all data deliverables have been properly provided. #### 7.3 Full Data Validation The full third party data validation process consists of a formal systematic review of analytical results and quality control documentation with regards to the parameters cited in section 8.3. On the basis of this review, a third party data validator will make judgements and express concerns on the quality and limitations of the specific data and the validity of the data package as a whole. The data validator prepares documentation of his or her review using the standard USEPA Inorganics Regional assessment and Organics Regional assessment forms to summarize deficiencies and general laboratory performance. These forms are accompanied by appropriate supplementary documentation which identifies specific problems. IRM Quality Assurance Project Plan Since a full data validation would typically be used for the purposes of litigation, this level of review may surpass the scope of work necessary for the project. Therefore, any full data validation for analytical results of confirmatory samples will be performed at NYSEG's discretion. Confirmatory sampling data will be archived in the event that it becomes necessary to perform a full data validation at a future date. ### 7.4 Data Usability Summary Report (DUSR) A Data Usability Summary Report (DUSR) provides
a thorough review and evaluation of analytical data without the formality of a full third party data validation. A DUSR for the analytical results of confirmatory samples will be generated in lieu of a full data validation to verify that the proper data deliverables and procedures have been rendered in accordance with the data quality objectives of the *IRM*. ### 7.5 Reporting Final reports for analytical data will be reviewed and accepted by NYSEG prior to submission to the NYSDEC. Reports for analyses performed under the ELAP protocol will contain results sheet for the sample analyzed. These reports must include at a minimum: - NYSEG Sample ID number; - Laboratory sample ID number; - Sample collection date: - Extraction or digestion date (if applicable); - Date Analyzed; - Analytical method: - Analytical results (with units clearly identified); - Results of laboratory blank and field blanks; - Results of spikes, matrix spikes and duplicates; - Surrogate recoveries (if applicable); - Completed Chain of Custody forms; and - Field log sheets (if available) IRM Quality Assurance Project Plan ### 8.0 QUALITY CONTROL CHECKS ### 8.1 Field Quality Control ### 8.1.1 Decontamination Procedures for Confirmation Sampling The following decontamination procedure will be followed for all non-disposable sampling equipment before being reused. - Equipment will be washed thoroughly with a non-phosphate detergent. - The equipment will then be rinsed with analyte-free water. - The equipment will be rinsed with a reagent grade methanol solution diluted with analyte-free water. - If the equipment is being used for the collection of samples for metals analyses it will then be rinsed with a 10% reagent grade nitric acid solution. - The equipment will be rinsed with analyte-free water. After decontamination, equipment will be carefully stored to avoid contamination between sampling events. ### 8.2 Laboratory Quality Control (QC) Each laboratory is NYSDOH Certified for the analyses they will perform. Each analyst must complete a start-up proficiency procedure to demonstrate their capability to perform accurate and precise analyses on each type of instrument they operate. In addition, each laboratory must accurately analyze samples provided by NYSDOH on a semi annual basis to maintain certification. The laboratories have internal quality control officers that review all methodologies and implement corrective action, including reanalyzing samples which do not pass established laboratory quality control (QC) criteria. Laboratory quality control procedures are specified in the analytical methods. These specifications include the type of QC check required, compounds and concentrations to be used, and QC acceptance criteria. QC checks will include (where specified by method): - Calibration Standards - Methods Blanks - Matrix Spike/Matrix Spike Duplicates IRM Quality Assurance Project Plan - Surrogate Spikes - Internal Standards - Laboratory Duplicates - Calibration Check Standards - Laboratory Control Samples #### 9.0 PREVENTATIVE MAINTENANCE ### 9.1 Field Instruments and Equipment Equipment, instruments, tools, gauges, and other items requiring preventive maintenance will be serviced in accordance with the manufacturer's specified recommendations or written procedures developed by the operators. All field equipment service will be conducted by qualified personnel. Prior to any field sampling, each piece of field equipment will be inspected to ensure that it is operational, if the equipment is not operational, it must be repaired prior to use. All equipment which require charging or batteries will be fully charged or have fresh batteries at the start of the project. An equipment repair/maintenance log will be kept for each field instrument. Any non-operational/non-repairable field equipment will be replaced. ### 9.2 Laboratory Instruments and Equipment Each laboratory has an instrument/equipment maintenance program which includes procedures for daily, weekly, monthly, or annual routine maintenance. In addition, maintenance is performed if the accuracy and/or precision of the instrument is in question. ### 9.2.1 Instrument Maintenance Preventive maintenance of laboratory instruments will be conducted in accordance with the manufacturer's guidelines or written procedures developed by the operators. All instrument service will be performed by qualified personnel. To minimize potential downtime, the laboratory will maintain a sufficient supply of critical spare parts for its instruments and, where practical, maintain a service contract for rapid instrument repair. Wherever possible, the laboratory will retain backup instrumentation. An instrument repair/maintenance log will be maintained for each instrument. Lockport State Road (Lockport) Former MGP Site, Lockport , NY IRM Quality Assurance Project Plan ## 9.2.2 Equipment Monitoring On a daily basis, the operation of the laboratory equipment (i.e., balances, ovens, refrigerators, water purification systems, etc.) Will be checked and documented. Any discrepancies will be immediately reported to the appropriate laboratory personnel for resolution. # ATTACHMENT 1 | 111/1 | | • | |-------|----------------|-----------| | NYSLG | CHAIN OF CUSTO | DY RECORD | Laboratory_ | Project Location:
Samplers:
Affiliation: | | | | | . / | / | | / | | | | // | 1 / L | | | |--|-------------|---|-------------------------|---------------------------|----------|----------|----------|----------|----------|------------|--------------|------|------------|----------|---------------------------------------| | Sample ID Code | Type | Matrix | Collection
Date/Time | No. of
Con-
tainers | <u> </u> | | _ | _ | _ | | <u>/</u> | | | <u> </u> | Remarks | | | | | | | | | | | | | ļ | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | <u> </u> | | | | · · · · · · · · · · · · · · · · · · · | - | - <u>·</u> | | - | · | | | | | | | | | | | | | | | | | | | l | | | | | | | | | | | | | | | | | | ļ | | | | <u> </u> | | | | | | | | | | | <u> </u> | <u></u> | <u> </u> | | <u> </u> | | | | Matrix Code: L=Liquid; S= | =Solid; A=A | Air | | • | | | | | | • | | | | | | | Relinquished by: | | | Lou: | | Date | | | | Tim | | | | | tact | | | Received by: | | | Loc: | | Date | <u>:</u> | | | Time | e: | | Y | <u>N N</u> | <u>A</u> | | | Relinquished by: | , | | Loc: | | Date | | | | Time | | | | | tact | | | Received by: | | | Loc: | | Date | : | | | Tlm | <u>e:</u> | | Y | <u>N N</u> | Α | | | Special Instructions / | Remarks: | | | | | | | | | | | | | | | | Delivery Method: | | In Pers | on | Commo | ı Car | rier(s | spec | fy) | | Lab | Cou | rier | | | Other(specify) | # ATTACHMENT 2 ### SYSTEM CODING SYSTEM CODING IS DERIVED FROM A 10 CHARACTER CODE WITH THE 11 CODE DECLARING SAMPLE TYPE. HOW THE 10 CHARACTER CODING SYSTEM WORKS: $\overline{12}$ $\overline{3}$ $\overline{4}$ $\overline{56}$ $\overline{78}$ $\overline{910}$ EX. OWEGO WELLPOINT 81-01 SH FIRST TWO CHARACTERS = SITE THIRD CHARACTER = SOURCE FOURTH CHARACTER = RELATIVE LOCATION FIFTH AND SIXTH CHARACTER = LOCATION SEVENTH & EIGHTH CHARACTER = YEAR OF LOCATION/WELL (XX, IF NOT APPLICABLE) NINTH & TENTH CHARACTER = NUMBER OF SAMPLING POINT/CONSECUTIVE # IF MORE THAN ONE SAMPLE FROM SAME LOCATION (XX, IF NOT APPLICABLE) PAGE 1 & 2.....SITE PAGE 3SOURCE PAGE 4....RELATIVE LOCATION PAGE 5,6 &7....LOCATION PAGE 8.....TYPE # ENVIRONMENTAL QUALITY ANALYSIS SYSTEM CLASS: SITE | CODE | DESCRIPTION | |----------|--| | AC | AUBURN CLARK STREET MGP | | AF | AFTON ASH DISPOSAL SITE | | AG | AUBURN GREEN STREET MGP HOLDER | | AL | ALBION MGP | | AM | AUBURN MCMASTER STREET MGP | | BC | BORDER CITY MGP | | CA | CANANDAIGUA MGP | | CH | CORTLAND/HOMER MGP | | CL | CLYDE MGP | | CO | COOPERSTOWN MGP | | CR | CORNING MGP | | CS
DR | CLIFTON SPRINGS MGP | | DK
DV | DAVIS ROAD ASH DISPOSAL SITE DANSVILLE MGP | | EL | ELMIRA MGP | | EW | ELMIRA MGP ELMIRA WATER STREET MGP | | GS | GOSHEN MGP | | GV
GV | GRANVILLE MGP | | HN | HORNELL MGP | | IC. | ITHACA COURT ST MGP | | JF | ITHACA FIRST STREET MGP | | ;;
[[| ITHACA CAYUGA INLET MGP STORAGE AREA | | i.
LP | LOCKPORT MGP | | LS | LOCKPORT STATE STREET MGP HOLDER | | LY | LYONS MGP | | MC | MECHANICVILLE COONS CROSSING MGP DISPOSAL AREA | | MD | MEDINA MGP | | ME | MECHANICVILLE CENTRAL AVE MGP | | MW | MECHANICVILLE WILLOW GLEN MGP DISPOSAL AREA | | NO | NORWICH MGP | ## ENVIRONMENTAL QUALITY ANALYSIS SYSTEM CLASS: SITE | CODE | DESCRIPTION | |------|----------------------------------| | NW | NEWARK MGP | | ON | ONEONTA MGP | | OW | OWEGO MGP | | PA | PALMYRA MGP | | PB . | PLATTSBURGH BRIDGE STREET MGP | | PJ | PENN YAN JACKSON STREET MGP | | PL | PLATTSBURGH SARANAC STREET MGP | | PP | POZZOLANA PARK ASH DISPOSAL SITE | | PY | PENN YAN MGP | | RE | (FOR "REASON9999" LIMITS) | | SF | SENECA FALLS MGP | | WA | WARSAW MGP | | WR | WATERLOO MGP HOLDER | | WT | WATERVILLE MGP | | WW | GENEVA WADSWORTH STREET MGP | # ENVIRONMENTAL QUALITY ANALYSIS SYSTEM CLASS: SOURCE | CODE | DESCRIPTION | |------|----------------------------| | Α | AIR SAMPLE | | D , | DRINKING WATER | | E | LEAK DETECTION SYSTEM | | F | FLY ASH | | G . | GROUND WATER | | Н | LEACHATE COLLECTION SYSTEM | | 1 | BIOLOGICAL | | L . | LABORATORY | | M | STORMWATER DISCHARGE | | 0 | (FOR "GROUND9999" LIMITS) | | P | PROCESS STREAM | | Q | LIQUID WASTE | | S | SURFACE WATER | | Т | SEDIMENT SAMPLE | | U · | SURFACE SOILS | | V | SUBSURFACE SOILS | | W | SOLID WASTE | | X | SLUDGE SAMPLE | | Z | PIEZOMETER | # ENVIRONMENTAL QUALITY ANALYSIS SYSTEM CLASS: RELATIVE LOCATION
| CODE | DESCRIPTION | |--------|--| | A
C | AMBIENT
CROSSGRADIENT | | D | DOWNGRADIENT | | Ţ | IN FILL (TAKEN OUT OF A PILE) OR IN SOURCE | | L
b | LOWER
UPPER | | S | (FOR "REASON9999" LIMITS) | | Ü | UPGRADIENT | | W | WASTEWATER | | X | N/A | # ENVIRONMENTAL QUALITY ANALYSIS SYSTEM CLASS: LOCATION | CODE | DESCRIPTION | |------|---| | Α- | DENOTES A WELL | | Al | AIR INDOOR | | AO | AIR OUTDOOR | | AS | AIR SAMPLING LOCATION | | B- | BORING | | BD | BOTTOM ASH POND DISCHARGE - NOT TREATED | | BI | SETTLING BASIN INFLUENT | | CK | SINK | | CN | CANAL | | CR | COAL TAR TANK | | D | DEEP | | DS | DISTRIBUTION SYSTEM | | DU. | REPLICATE | | E- | EAST | | FB | FIELD BLANK | | FL | FLOOR DRAIN | | FO | DRINKING WATER FOUNTAIN | | GD . | GROUND WATER DRAIN | | GH | GAS HOLDER | # ENVIRONMENTAL QUALITY ANALYSIS SYSTEM CLASS: LOCATION | CODE | DESCRIPTION | |----------|--| | 1- | INSIDE LOCATION AREA | | L- | LOWER | | LA | LAGOON | | LD | LEAK DETECTION DRAIN | | LE | ASH LEACHATE | | LS | LIFT STATION - PUMPING STATION | | MD | MATRIX SPIKE DUPLICATE | | MH | MANHOLE | | MS | MATRIX SPIKE | | N- | NORTH | | ND | (FOR "GROUND9999" LIMITS) | | ON | (FOR "REASON9999" LIMITS) | | OS | OIL STORAGE AREA | | PB. | PURIFIER BOX | | PD | PERIPHERAL DRAINAGE DITCH - AROUND LANDFILL, | | DO | NO DIRECT DISCHARGE | | PO
PW | POND | | PVV | PROCESS WATER TREATMENT PLANT DISCHARGE - | | R- | FINAL DISCHARGE FROM TREATMENT FACILITY DENOTES REPLACEMENT WELL | | RF | ROLLOFF CONTAINER | | RO | ROOF DRAIN | | S- | SOUTH | | SD | SEDIMENTATION POND DISCHARGE | | SE | STORAGE PILE | | SF | SURFACE | | SP | SPRING | | SH | SHALLOW | | SP | SEDIMENTATION POND | | | | # ENVIRONMENTAL QUALITY ANALYSIS SYSTEM CLASS: LOCATION | CODE | DESCRIPTION | |------|------------------------------------| | SR | WATER | | SS | STREAM | | ST | SANITARY TREATMENT PLANT DISCHARGE | | SW | DRAINAGE SWALE AREA - LOW SPOT FOR | | | WATER COLLECTION | | TB | TRIP BLANK | | TD | TOE DRAIN | | TK | TRUCK | | TP | TEST PIT | | TR | TRANSFORMER | | TT | TELLTALE | | U- | UPPER | | UD | UNDERDRAIN | | W- | WEST | | WK | WATER TANK | | WO. | WASTE OIL CONTAINMENT STRUCTURE | | WS | WATER SUPPLY WELL | | WT | WATER TREATMENT WASTES | | XX | N/A | | YR | YARD ROOF DRAINS | ## ENVIRONMENTAL QUALITY ANALYSIS SYSTEM $\underline{\mathsf{CLASS: TYPE}}$ | CODE | DESCRIPTION | |--------|---| | A
B | GAS SAMPLER
BAILER | | C
D | COMPOSITE OVER THE TIME AT ONE LOCATION PROBE | | G
H | GRAB-SINGLE SAMPLE HNU SAMPLE | | L | COMPOSITE OF GRAB SAMPLES COLLECTED AT MULT. LOCS | | Q
V | QUALITY ASSURANCE SAMPLE
OVA SAMPLE | | | | ## **APPENDIX E** TRANSPORTATION OF SOLID AND/OR LIQUID WASTE ## NYSEG ### **NEW YORK STATE ELECTRIC & GAS CORPORATION** Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902-5224 ### INTERIM REMEDIAL MEASURES NEW YORK STATE DEPARTMENT OF TRANSPORTATION PROSPECT STREET OVER ERIE CANAL PROJECT # TRANSPORTATION OF SOLID AND/OR LIQUID WASTE FOR ACTIVITIES ON AND ADJACENT TO LOCKPORT STATE ROAD FORMER MANUFACTURED GAS PLANT SITE City of Lockport, Niagara County, New York **JUNE 2002** Prepared By: NYSEG Licensing & Environmental Operations Department IRM Transportation of Solid and/or Liquid Materials #### 1.0 SCOPE OF WORK This specification is for the transportation of solid and/or liquid nonhazardous and hazardous waste for Lockport State Road former manufactured gas plant (MGP) site, City of Lockport, Niagara County, New York as detailed herein. All transportation must be in accordance with the Order on Consent Index No. D0-0002-9309 with New York State Department of Environmental Conservation, and any other applicable Federal, State, and Local Laws. ### 2.0 WORK BY CONTRACTOR The transporter shall provide all necessary training, permits, manifests (when required), labor, personal protective equipment (PPE), tools, equipment, consumable materials, and expendable materials, to transport solid and/or liquid waste as detailed herein. ### 3.0 GENERAL WORK CONDITIONS - 3.1 The transporter shall comply with all applicable provisions of New York State Department of Environmental Conservation Regulation, 6 NYCRR Part 364 "Waste Transporters Permit", Title 6 of the Official Compilation of Codes, Rules and Regulations. - 3.2 The transporter shall comply with all applicable provisions of New York State Department of Environmental Conservation Regulation 6 NYCRR Part 372 "Hazardous Waste Manifest System and Related Standards for Generators, Transporters and Facilities", Title 6 of the Official Compilation of Codes, Rules and Regulations. - 3.3 The transporter shall comply with all applicable provisions of New York State Department of Transportation (NYSDOT), the New York State Department of Motor Vehicle (NYSDMV), and/or any other applicable Federal, State, and Local Laws. - The transporter shall comply with applicable provisions of OSHA 29 CFR 1910.120 "Hazardous Waste Operations Health & Emergency Response". - 3.5 The transporter shall develop and implement a written Health & Safety Plan for their drivers which addresses potential exposure to MGP residuals. - 3.6 The transporter shall adhere to the following rules while working on an MGP Site and waste disposal facility. - 3.6.1 Any truck found unacceptable by NYSEG's field representative and/or the Site's Health & Safety Officer may be rejected. Any cost for rejected trucks shall be born by the transporter. If the NYSDEC representative finds any truck unacceptable, they should bring it to the attention of NYSEG field representative. - 3.6.2 The truck drivers will report their arrival to NYSEG's Field Representative and/or the MGP Site's Health & Safety Officer. - 3.6.3 Truck drivers are generally restricted to their trucks and the designated waiting areas. Drivers are not permitted access to the MGP Sites without express permission from a representative of NYSEG. - 3.6.4 Truck drivers will don hard hats, safety glasses, safety shoes, and gloves, as a minimum for personal protection. When required drivers may be required to don rubber boots and tyvek suits. - 3.6.5 All trucks and roll off containers transporting hazardous solid material will have the driver line the entire box (to top of side boards) with 6-mil thick polyethylene sheets (poly sheets). Trucks transporting non hazardous material may be lined as previously stated. All trucks will also have a gasket between the box and tailgate. - 3.6.6 All trucks require working audible and visual backup signals. - 3.6.7 When loading or when directed by a representative on site, the truck engine should be shut off. Each truck may be restarted and driven away only after receiving the "all clear" direction from the loader operator, or a Site representative. | 3.6.8 | Truck engines are not allowed to idle in residential or other areas where the exhaust and/or noise could be a nuisance. | |--------|--| | 3.6.9 | No trucks will be loaded above the side boards and no material will be spilling out of the truck. The trucks' exteriors will be cleaned (by others) from material being loaded before they leave the loading area. | | 3.6.10 | The NYSEG's remedial workers will cover trucks with tarps inside the loading area. No driver will walk over the load. | | 3.6.11 | Obey traffic signs and notices (obey the posted speed limit). | | 3.6.12 | Obey rules posted on the site and/or any site specific Health & Safety Plan for all employees. | | 3.6.13 | Report any accidents to the NYSEG's Field Representative and/or the MGP Site's Health & Safety Officer and cooperate with any subsequent accident investigation. | | 3.6.14 | No children under 16 years of age are allowed on MGP Sites. Drivers are not allowed in the exclusion zones. No passengers are allowed either in the contamination reduction zones or exclusion zone. | | 3.6.15 | Slow down and be extra cautious during times of poor weather (rain, fog, and snow). | | 3.6.16 | Take extra care around blind corners (watch for construction equipment and pedestrians). | | 3.6.17 | Smoking, eating, and/or drinking is not permitted within the security fence (Contamination Reduction Zone and Exclusion Zone). Smoking, eating, and/or drinking is permitted only in designated areas. | | 3.6.18 | After disposal of material, the transporter is responsible for properly decontaminating their truck and/or equipment. | IRM Transportation of Solid and/or Liquid Materials ### 4.0 TRANSPORTATION ROUTE ### 4.1 Arrival Trucks will exit New York State Thruway I-90 (Exit 49) and proceed to NYS Route 78; turn north onto NYS Route 78(South Transit Road) and proceed to Lockport; in the City of Lockport turn left onto West High Street and proceed to State Road; Turn right onto State Road and proceed to MGP Site; and turn left into MGP site. ### 4.2 Departure Trucks will exit the MGP site by turning right onto State Road and proceed to West high Street; Turn right onto west High Street and proceed to NYS Route 78(South Transit Road); Turn right onto NYS Route 78(South Transit Road) and proceed to New York State Thruway I-90 (Exit 49). ## **APPENDIX F** # NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL ORDER ON CONSENT ## **NYSDEC** # NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 Broadway Albany, New York 12233-7013 ## ORDER ON CONSENT INDEX # D0-0002-9309 ## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION | In the Matter of the Development | (| |--|---| | and Implementation of a Former |] | | Manufactured Gas Plant (MGP) Sites | | |
Investigation and Remediation Program | | | by New York State Electric & Gas Corporation | 1 | ORDER ON CONSENT Index #D0-0002-9309 ### WHEREAS: - 1. The New York State Department of Environmental Conservation (the "Department") is responsible for enforcement of the Environmental Conservation Law, which, inter alia, requires the Department to carry out the environmental policy of the State set forth of the ECL 1-0101. ECL 3-0301.1. - 2. The New York State Electric & Gas Corporation ("Respondent") is a business corporation organized under the laws of the State of New York. - 3. Respondent is aware of former manufactured gas plant ("MGP") sites at the locations listed in Table "A" of Paragraph I of this Order at which coal tar and associated hazardous substances ("MGP wastes") were, or which may have been, disposed at various times in the past by Respondent or its predecessors or affiliates (individually, "the Site;" collectively, "the Sites"). Respondent also is the owner of other former MGP sites. - 4. The Department asserts that its authority to require abatement and remediation of releases of, inter alia, hazardous substances as that term is defined in 42 U.S.C. 9601(14), including MGP wastes, that are in violation of law or that exceed State environmental quality standards (as those set forth in 6 NYCRR Part 703) ("hazardous substances"), is varied, including, but not limited to, ECL 1-0101, 3-0301, 71-1929, 71-2703, and 71-2705. In addition, the Department asserts that it has the power, inter alia, to provide for the prevention and abatement of all water, land, and air pollution caused by, inter alia, the release of hazardous substances into the environment. ECL 3-0301.1.i. Furthermore, the Department asserts that it has authority to require abatement and remediation of significant threats to the public health or the environment caused by threatened releases of hazardous substances that are hazardous wastes as that term is defined in ECL 27-1301. - 5. The Department and Respondent agree that the goals of this Order are for Respondent to (i) gather and provide data pertaining to each of the Sites (other than Mechanicville [Central Avenue] and Owego) sufficient to constitute a Preliminary Site Assessment ("PSA") that will enable the Department to characterize hazardous substances, as that term is defined in 42 USC 9601(14) (including MGP wastes) which are or may be present at the Site and to enable the Department to determine whether such hazardous substances constitute a significant threat to public health or the environment necessitating remediation; (ii) develop and implement a Remedial Investigation ("RI") and prepare a Feasibility Study ("FS") for any Site the Department determines, based upon the results of the PSA, to require the more comprehensive evaluations and assessments that would be provided through the Remedial Investigation/Feasibility Study ("RI/FS") process; (iii) remediate each Site that the Department determines is in need of remediation on a schedule and to an extent acceptable to the Department, including authorizing Respondent to develop and implement Interim Remedial Measures ("IRMs") that the Department determines to be appropriate; (iv) develop and implement acceptable methods of treating and disposing of nonhazardous coal tar soils ("CTS") that minimize any future impacts on public health and the environment and minimize cost, including, as appropriate, the burning of CTS in Respondent's existing utility steam generating facilities including but not limited to Respondent's Hickling and Jennison Stations; and (v) pay for the State's reasonable administrative and oversight costs associated with implementation of this Order. - 6. Respondent, without admitting or denying the Department's authority to require investigation and remediation of hazardous substances at the sites listed in Table "A" of Paragraph I of this Order and having waived its right to a hearing herein as provided by law, and having consented to the issuance and entry of this Order, agrees to be bound by its terms. Respondent consents to and agrees not to contest the authority or jurisdiction of the Department to issue or enforce this Order; and agrees not to contest the validity of this Order or its terms. However, should the Department request that this Order be revised, Respondent reserves all of its rights provided by law and the New York Environmental Conservation Law. - 7. Respondent and the Department agree that Respondent shall not be responsible under this Order to investigate, gather data concerning, or remediate those hazardous substances that may exist at or originate from any Site listed in Table "A" of Paragraph I of this Order if, respecting that Site, all the following criteria are met: - a. Respondent no longer owns or controls the Site where the hazardous substances are found; - b. the original disposal and release of the hazardous substances occurred after Respondent or its predecessors or affiliates sold or returned control of the Site to its owner; - c. the hazardous substances were not generated, stored, treated, or disposed at the Site while Respondent or its predecessors or affiliates owned or controlled the Site; and d. investigation and remediation of the hazardous substances would require Respondent to perform activities and incur costs not necessary to study, characterize, and remediate hazardous substances at the Site that were generated, treated, stored, or disposed at the Site during the ownership or control of Respondent or any of its predecessors or affiliates. NOW, having considered this matter and being duly advised, IT IS ORDERED THAT: ### I. <u>Initial Submittals</u> Unless otherwise agreed with respect to specific Sites, no later than 45 days after the effective date of this Order, Respondent shall submit to the Department all data and information it has respecting each Site listed in Table "A" of this Paragraph. The data and other information shall include, at a minimum: - A. A brief history and description of the Site, including the types, quantities, physical state, location, and, if applicable, dates of disposal of MGP wastes, including methods of disposal and spillage of such wastes; - B. A comprehensive list and copies of all existing relevant reports with titles, authors, and subject matter, as well as a description of the results of all previous investigations of each Site and areas in the vicinity of each Site, including copies of all available topographic and property surveys, engineering studies and aerial photographs; and - C. An 8.5 inch by 11 inch portion of a United States Geological Survey topographic map of the Site which contains the name of the quadrangle and an arrow indicating the orientation of a northern compass point. #### TABLE "A" - 1. Auburn (Clark Street) - 2. Auburn (Green Street) - 3. Auburn (McMaster Street) - 4. Clyde - 5. Cortland/Homer - 6. Dansville - 7. Elmira (Madison Avenue) - 8. Elmira (Water Street) - 9. Geneva (Border City) - 10. Geneva (Wadsworth Street) - 11. Goshen - 12. Granville - 13. Ithaca (Cayuga Inlet) - 14. Ithaca (Court Street) - 15. Ithaca First Street) - 16. Lockport (State Road) - 17. Lockport (Transit Road) - 18. Lyons - 19. Mechanicville (Central Avenue) - 20. Mechanicville (Coon's Crossing) - 21. Newark - 22. Norwich - 23. Oneonta - 24. Owego - 25. Palmyra - 26. Penn Yan (Jackson Street) - 27. Penn Yan (Water Street) - 28. Plattsburgh (Bridge Street) - 29. Plattsburgh (Saranac Street) - 30. Seneca Falls - 31. Warsaw - 32. Waterloo - 33. Waterville ### II. Preliminary Site Assessment A. The Department shall review the data and information Respondent shall submit under Paragraph I of this Order for the purpose of determining whether additional data need to be obtained to enable it to characterize the nature and extent of distribution of any hazardous substances at the Site and to determine whether such substances constitute a significant threat to public health or the environment necessitating remediation. For those Sites pertaining to which the Department determines that there exist sufficient data to enable it to make such characterization and determination, the Department shall inform Respondent of its determination, and if the Department determines that the hazardous substances found at the Site constitute a significant threat to the environment, Respondent shall undertake an RI/FS for such Site as described in this Order. For those Sites pertaining to which the Department determines that more data must be acquired to enable it to make such characterization and determination, the Department shall inform Respondent in writing of its determination and identify the information which must be obtained, and Respondent shall undertake such additional investigation (referred to below as a "Preliminary Site Assessment," or "PSA") as the Department shall require in accordance with a schedule the Department shall determine in consultation with Respondent. Such schedule shall include the date by which Respondent shall submit to the Department a work plan to acquire the information the Department shall require and a date by which field work necessary to develop such information shall commence ("PSA Work Plan"). - B. The Department may revise the PSA Work Plan submittal date and the field work start date, or either of them, for any Site identified in Table "A" of Paragraph I if information is developed, or otherwise becomes available, indicating the existence of a condition or circumstance justifying immediate or near-term evaluation or response at that Site which otherwise would not be addressed until a later time. - C. Each Site's PSA Work Plan shall describe the methods and procedures to be implemented in undertaking a study at the Site to which it pertains that will cause the generation of information sufficient to enable the Department to characterize the nature and extent of distribution of any hazardous substances at the Site
and to determine whether such substances constitute a significant threat to public health or the environment necessitating remediation. Hence, each Site's PSA Work Plan shall include, but not be limited to, the following: - (1) A chronological description of the anticipated investigative activities together with a schedule for the performance of these activities. Such schedule shall take into account, at a minimum, the submission of draft documents, Department review of such documents, and submission of final approvable documents; ### (2) A Sampling and Analysis Plan that shall include: - (a) A quality assurance project plan that describes the quality assurance and quality control protocols necessary to achieve the initial data quality objectives. This plan shall designate a data validation expert and must describe such individual's qualifications and experience, and - (b) A field sampling plan that defines sampling and data gathering methods in a manner consistent with appropriate provisions of the "Compendium of Superfund Field Operations Method" (EPA/540/P-87/001, OSWER Directive 9355.0-14, December 1987) as supplemented by the Department; and - (3) A health and safety plan to protect persons at and in the vicinity of the Site during the performance of the investigation, which shall be prepared in accordance with 29 CFR 1910 and all other applicable standards by a certified health and safety professional. Respondent shall add supplemental items to this plan if necessary to ensure the health and safety of all persons at or in the vicinity of the Site during the performance of any work pursuant to this Order. - D. If after review of the data generated during and after implementation of the Department-approved PSA Work Plan for a particular Site the Department determines that the hazardous substances found at the Site constitute a significant threat to the environment and that response actions are needed in addition to any IRMs the Department may approve or may have approved for the Site under Paragraph III of this Order to address adverse environmental conditions at the Site, the Department shall notify Respondent of that determination and within 90 days after receipt of that notification, Respondent shall submit to the Department a work plan for that Site that shall incorporate all appropriate elements of an RI/FS as set forth in the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 ("CERCLA") [42 USC 9601 et seq.], as amended; the National Contingency Plan ("NCP") of March 8, 1990 [40 CFR Part 300]; the USEPA guidance document entitled "Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA," dated October 1988 and any subsequent revisions to that guidance document in effect at the time the RI/FS Work Plan is submitted; and appropriate USEPA and Department technical and administrative guidance documents (the "RI/FS Work Plan" for that particular Site). (However, Respondent shall undertake RI/FSs for Mechanicville [Central Avenue] [546033] and Owego [754008] under the terms of, respectively, Department Orders on Consent A5-0276-91-10 dated 23 February 1993 and A7-0150-88-09 dated 2 January 1991.) ### III. IRMs - A. (1) Respondent may propose one or more IRMs for any Site. Respondent may propose a treatability study as an IRM. - (2) In proposing each IRM, Respondent shall submit to the Department a work plan that includes a chronological description of the anticipated IRM activities together with a schedule for performance of those activities (an "IRM Work Plan" for that Site). - (3) Upon the Department's determination that the proposal is an appropriate IRM and upon the Department's approval of such work plan, the IRM Work Plan shall be incorporated into and become an enforceable part of this Order; and Respondent shall submit to the Department for its review and (as appropriate) approval, in accordance with the schedule contained in the Department-approved IRM Work Plan, detailed documents and specifications prepared, signed, and sealed by a professional engineer to implement the Department-approved IRM. Such documents shall include a health and safety plan, contingency plan, and (if the Department requires such) a citizen participation plan that incorporates appropriate activities outlined in the Department's publication, "New York State Inactive Hazardous Waste Citizen Participation Plan." dated August 30, 1988, and any subsequent revisions thereto. Respondent shall then carry out such IRM in accordance with the requirements of the approved IRM Work Plan, detailed documents and specifications, and this Order. Respondent shall notify the Department of any significant difficulties that may be encountered in implementing the Department-approved work plan, detailed documents, or specifications and shall not modify any obligation unless first approved by the Department. - (4) During implementation of all construction activities identified in the Department-approved IRM Work Plan, Respondent shall have on-Site a full-time representative who is qualified to supervise the work done. - (5) Within the schedule contained in the Department-approved IRM Work Plan, Respondent shall submit to the Department a final engineering report prepared by a professional engineer that includes a certification by that individual that all activities that comprised the IRM were performed in full accordance with the Department-approved IRM Work Plan, detailed documents and specifications, and this Order. - (i) If the performance of the Department-approved IRM encompassed construction activities, the final engineering report shall include a detailed post-remedial operation and maintenance plan ("O & M Plan"); "as-built" drawings and a final engineering report (each including all changes made to the Remedial Design during construction); and a certification by a professional engineer that the IRM was implemented and all construction activities were completed in accordance with the Department-approved detailed documents and specifications for the IRM. The O & M Plan, "as built" drawings, final engineering report, and certification must be prepared, signed, and sealed by a professional engineer. - (ii) Upon the Department's approval of the O & M Plan, Respondent shall implement the O & M Plan in accordance with the requirements of the Department-approved O & M Plan. - (6) After receipt of the final engineering report and certification, the Department shall notify Respondent in writing whether the Department is satisfied that the IRM was completed in compliance with the Department-approved IRM Work Plan and design. - B. (1) In implementing any IRM approved by the Department under this Order, Respondent shall be exempt from the requirement to obtain any permit issuable by the Department for an activity satisfying the criteria set out in Subparagraph III.B(2) of this Order. - (2) The following criteria must be met: Site, or - (i) The activity is conducted on the Site. For purposes of this Order, an activity is on the Site: - (\underline{a}) if it is conducted on the same premises as the - (b) if it is conducted on different premises that are under common control or are contiguous to or physically connected with the Site and the activity manages exclusively hazardous substances for which Respondent is liable (except in situations where the PSA discloses the existence of off-Site hazardous substance deposits derived from, or otherwise related to materials deposited on-Site, in which case such deposits shall be deemed "on-Site" and subject to this Order to the extent Respondent is able to obtain access for purposes of investigation and/or removal); and (c) the activity is conducted in a manner which satisfies all substantive technical requirements applicable if the activity were conducted pursuant to a permit issued by the Department. ### IV. Performance and Reporting of PSA and of Remedial Investigation - A. (1) In accordance with the schedule contained in a Site's Department-approved PSA Work Plan, Respondent shall commence that Site's PSA. - (2) Respondent shall perform the PSA in accordance with that Site's Department-approved PSA Work Plan. - (3) During the performance of that Site's Department-approved PSA, Respondent shall have at such Site a full-time representative who is qualified to supervise the work done. Respondent's designated representative may be a qualified employee of a consultant or contractor. - (4) In accordance with the schedule contained in a particular Site's Department-approved PSA Work Plan, Respondent shall prepare a PSA Report pertaining to that Site that shall: - (i) include all data generated and all other information obtained during the investigation of that Site; - (ii) provide all appropriate assessments and evaluations set forth in CERCLA, the NCP, and the guidance documents identified in Subparagraph II.D of this Order; and - (iii) include a certification by the individual or firm with primary responsibility for the day to day performance of the PSA for that Site that all activities that comprised the Investigation were performed in full accordance with the Department-approved PSA Work Plan for that Site. - B. This Subparagraph applies only to those Sites identified in Table "A" of Paragraph I of this Order concerning which the Department determines under this Order that an RI/FS must be prepared. (Respondent shall undertake RI/FSs for Mechanicville [Central Avenue] [546033] and Owego [754008] under the terms of, respectively, Department Orders on Consent A5-0276-91-10 dated 23 February 1993 and A7-0150-88-09 dated 2 January 1991.) - (1) In accordance with the schedule contained in a particular Site's Department-approved RI/FS Work Plan, Respondent shall commence that Site's Remedial Investigation. - (2) Respondent shall perform the Remedial Investigation in accordance with that Site's Department-approved RI/FS Work Plan. - (3) During the
performance of that Site's Remedial Investigation, Respondent shall have at such Site a full-time representative who is qualified to supervise the work done. Respondent's designated representative may be a qualified employee of a consultant or contractor. - (4) In accordance with the schedule contained in a particular Site's Department-approved RI/FS Work Plan, Respondent shall prepare a Remedial Investigation Report pertaining to that Site that shall: - (i) include all data generated and all other information obtained during the remedial investigation of that Site; - (ii) identify any additional data that must be collected; and - (iii) provide all appropriate assessments and evaluations set forth in CERCLA, the NCP, and the guidance documents identified in Subparagraph II.D of this Order; and - (iv) include a certification by the individual or firm with primary responsibility for the day to day performance of the Remedial Investigation at that Site that all activities that comprised the Remedial Investigation were performed in full accordance with the Department-approved RI/FS Work Plan for that Site. - C. As an element of the Feasibility Study pertaining to a Site, Respondent may undertake a treatability study of remedial alternatives for potential use at such Site, including two EPRI-sponsored demonstration projects, one involving a clean soil process and another involving a contaminated groundwater biotreatment demonstration project (the "study"). The Department agrees with Respondent that the data generated during the course of the study will be beneficial to both Respondent and the Department. In implementing the study, Respondent shall be exempt from the requirement to obtain any permit issuable by the Department for an activity that is conducted on the Site. For purposes of this Order, an activity is on the Site: - 1. if it is conducted on the same premises as the Site, or - 2. if it is conducted on different premises that are under common control or are contiguous to or physically connected with the Site and the activity manages exclusively hazardous substance for which Respondent is liable (except in situations where the PSA discloses the existence of off-Site hazardous substance deposits derived from, or otherwise related to materials deposited on-Site, in which case such deposits shall be deemed "on-Site" and subject to this Order and this Subparagraph to the extent Respondent is able to obtain access for purposes of investigation and/or removal); and 3. the activity satisfies all substantive technical requirements applicable to like activity conducted pursuant to a permit as determined by the Department. Respondent, under the provisions of the Freedom of Information Law, may request that the Department treat as confidential any technology descriptions and data submitted to the Department as part of the study; and the Department, under the provisions of the Freedom of Information Law, shall maintain as confidential any of those descriptions or data that the Department determines is confidential. ### V. Feasibility Study This Paragraph applies only to those Sites identified in Table "A" of Paragraph I of this Order concerning which the Department determines under this Order that an RI/FS must be prepared. (Respondent shall undertake RI/FSs for Mechanicville [Central Avenue] [546033] and Owego [754008] under the terms of, respectively, Department Orders on Consent A5-0276-91-10 dated 23 February 1993 and A7-0150-88-09 dated 2 January 1991.) A. Within 150 days after receipt of the Department's approval of the Remedial Investigation Report pertaining to a particular Site, Respondent shall submit a Feasibility Study evaluating on-Site and off-Site remedial actions to eliminate, to the maximum extent practicable, all health and environmental hazards and potential hazards attributable to hazardous substance disposal at that Site. Such evaluation may include remediation cleanup levels based upon a Site-specific risk assessment that shall consider a range of exposure scenarios and assumptions that take into account the form, nature, biodegradation, fate, and transport of the contaminant present, and available toxicological data that are based upon generally accepted and peer-reviewed scientific evidence or methodologies. Such Site-specific risk assessment shall be consistent with guidance and regulations for exposure assessment developed by the United States Environmental Protection Agency pursuant to CERCLA and other statutory authorities as applicable; and any proposed remediation cleanup level based upon a Site-specific risk assessment shall be protective of the public health and safety and of the environment. In the event that Respondent intends to undertake such evaluation using a Site-specific risk assessment, Respondent shall submit such risk assessment to the Department for its review no later than 90 days before Respondent shall be required to submit the Feasibility Study for the Site. Unless the Department determines that such risk assessment is not consistent with peer-reviewed scientific evidence or methodologies, or appropriate guidance and regulations—in which case, the Department shall provide Respondent with a written explanation of the basis for such a determination—the Site-specific risk-based remediation cleanup level determined by application of the risk assessment shall be approved by the Department and shall be used for purposes of selecting the remedial alternative for the Site. Such evaluation also shall take into account any and all Department-approved IRMs that were implemented at the Site. The Feasibility Study shall be prepared by and have the signature and seal of an individual licensed and registered to practice professional engineering in the State of New York who shall certify that the Feasibility Study was prepared in accordance with this Order. - B. Unless the Department otherwise specifies for a particular Site, Respondent shall perform and prepare the Feasibility Study in accordance with the Department-approved RI/FS Work Plan in a manner consistent with appropriate sections of CERCLA, the NCP, and the guidance documents identified in Subparagraph II.D of this Order. If the Department specifies otherwise for a particular Site, Respondent shall perform and prepare the Feasibility Study in accordance with the Department's specifications. - C. (1) Within 30 days after the Department's approval of the Feasibility Study, Respondent shall cooperate and assist the Department in soliciting public comment on the RI/FS and the proposed remedial action plan identified therein, in accordance with appropriate provisions of CERCLA, the NCP, the guidance documents identified in Subparagraph II.D of this Order, and with any Department policy and guidance documents in effect at the time the public comment period is initiated. - review and comment upon the proposed remedial action plan for a Site before its release to the public using the following procedure: the Department shall prepare a proposed remedial action plan and shall mail a copy of same to Respondent at least fifteen business days before the scheduled date of the publication of the notice of availability of the document. Respondent shall have ten business days to meet with the Department to discuss it. In the event that Respondent disputes the proposed remedial action plan, within that ten day period, it may request in writing a resolution of its dispute using the procedures contained in Subparagraph XVII.A of this Order. Any resolution of the dispute through the use of those procedures shall concern only the contents of the proposed remedial action plan to be released to the public and shall not preclude the Department from selecting a final remedial alternative for the Site that may be inconsistent with the contents of the proposed remedial action plan that shall have been released to the public. - (3) After the close of the public comment period, the Department shall select a final remedial alternative for the Site in a Record of Decision ("ROD"). The ROD shall be incorporated into and become an enforceable part of this Order. ### VI. Remedial Design This Paragraph applies only to those Sites concerning which the Department determines under this Order that an RI/FS must be prepared, and to Mechanicville (Central Avenue) (546033) and Owego (754008). A. Unless the ROD selects the "no action" alternative, within 180 days after the ROD is signed, or as otherwise specified in the ROD, Respondent shall submit to the Department a remedial design to implement the remedial alternative for the Site selected by the Department in the ROD (the "Remedial Design"). The Remedial Design shall be prepared by and have the signature and seal of a professional engineer who shall certify that the Remedial Design was prepared in accordance with this Order. ### B. The Remedial Design shall include the following: - (1) A detailed description of the remedial objectives and the means by which each essential element of the selected remedial alternative will be implemented to achieve those objectives, including, but not limited to: - (i) the construction and operation of any structures; - (ii) the collection, destruction, treatment, and/or disposal of hazardous substances and their constituents and degradation products, and of any soil or other materials contaminated thereby; - (iii) the collection, destruction, treatment, and/or disposal of contaminated groundwater, leachate, and air; - (iv) physical security and posting of the Site; - (v) health and safety of persons living and/or working at or in the vicinity of the Site; - (vi) quality control and quality assurance procedures and protocols to be applied during implementation of the Remedial Design; and - (vii) monitoring which integrates needs which are present on-Site and off-Site during implementation of the Department-selected remedial alternative. - (2) "Biddable quality" documents for the
Remedial Design including, but not limited to, documents and specifications prepared, signed, and sealed by a professional engineer. These plans shall satisfy all applicable local, state and federal laws, rules and regulations; - (3) A time schedule to implement the Remedial Design; - (4) The parameters, conditions, procedures, and protocols to determine the effectiveness of the Remedial Design, including, if the Remedial Design encompasses groundwater monitoring, a schedule for periodic sampling of groundwater monitoring wells on-Site and off-Site; - (5) A description of operation, maintenance, and monitoring activities to be undertaken after the Department has approved construction of the Remedial Design, including the number of years during which such activities will be performed; - (6) A contingency plan to be implemented if any element of the Remedial Design fails to achieve any of its objectives or otherwise fails to protect human health or the environment; - (7) A health and safety plan for the protection of persons at and in the vicinity of the Site during construction and after completion of construction. This plan shall be prepared in accordance with 29 CFR 1910 by a certified health and safety professional; and - (8) A citizen participation plan which incorporates appropriate activities outlined in the Department's publication, "New York State Inactive Hazardous Waste Citizen Participation Plan," dated August 30, 1988, and any subsequent revisions thereto. #### VII. Remedial Construction This Paragraph applies only to those Sites concerning which the Department determines under this Order that an RI/FS must be prepared, and to Mechanicville (Central Avenue) (546033) and Owego (754008). - A. Within such time as identified in the Department's approval of the Remedial Design (such time being determined in consultation with Respondent), Respondent shall commence construction of the Remedial Design. The Department will extend this period if reasonably necessary to accommodate weather-related limitations or other restrictions upon the construction season. - B. Respondent shall implement the Remedial Design in accordance with the Department-approved Remedial Design. - C. During implementation of all construction activities identified in the Remedial Design, Respondent shall have on-Site a full-time representative who is qualified to supervise the work done. - D. Within 90 days after completion of the construction activities identified in the Remedial Design, Respondent shall submit to the Department a detailed post-remedial operation and maintenance plan ("O & M Plan"); "as-built" drawings and a final engineering report (each including all changes made to the Remedial Design during construction); and a certification by a professional engineer that the Remedial Design was implemented and all construction activities were completed in accordance with the Department-approved Remedial Design. The O & M Plan, "as built" drawings, final engineering report, and certification must be prepared, signed, and sealed by a professional engineer. - E. Upon the Department's approval of the O & M Plan, Respondent shall implement the O & M Plan in accordance with the requirements of the Department-approved O & M Plan. - F. After receipt of the "as-built" drawings, final engineering report, and certification, the Department shall notify Respondent in writing whether the Department is satisfied that all construction activities have been completed in compliance with the approved Remedial Design. - G. If the Department concludes that any element of the Remedial Program fails to achieve its objectives or otherwise fails to protect human health or the environment, Respondent shall take whatever action the Department determines necessary to achieve those objectives or to ensure that the Remedial Program otherwise protects human health and the environment. # VIII. Progress Reports and Meetings - A. Respondent shall submit to each of the parties set forth in Paragraph XVI of this Order two copies of written monthly progress reports that: - 1. describe the actions which have been taken toward achieving compliance with this Order during the previous month; - 2. identify all work plans, reports, and other deliverables required by this Order that were completed and submitted during the previous month; - 3. describe all actions, including, but not limited to, data collection and implementation of work plans, that are scheduled for the next month and provide other information relating to the progress at each Site; - 4. include information regarding percentage of completion, unresolved delays encountered or anticipated that may affect the future schedule for implementation of the Respondent's obligations under the Order, and efforts made to mitigate those delays or anticipated delays; and - 5. include any modifications to any work plans that Respondent has proposed to the Department or that the Department has approved. Respondent shall submit these progress reports to the Department with respect to each Site by the 10th day after the end of the month to which the report pertains. - B. Respondent shall allow the Department to attend, and shall provide the Department at least seven days advance notice of the occurrence of, any of the following: prebid meetings, job progress meetings, substantial completion meeting and inspection, and final inspection and meeting; provided, however, that if circumstances are such as to prevent Respondent from providing the Department with such seven day notice period, Respondent shall provide as much advance notice as possible, under the circumstances. ## IX. Review of Submittals - A. (1) The Department shall review each of the submittals Respondent is required to make pursuant to this Order to determine whether it was prepared, and whether the work done to generate the data and other information in the submittal was done, in accordance with this Order and generally accepted technical and scientific principles. Respondent shall include all results of sampling and tests and all other data received or generated by Respondent or Respondent's contractors or agents, including quality assurance/quality control information, whether conducted pursuant to this Order or conducted independently by Respondent, in the submittal to which such sampling, tests, and other data pertain. The Department shall notify Respondent in writing of its approval or disapproval of the submittal, except for the health and safety plans identified in Paragraph III and in Subparagraphs II.C(3) and VI.B(7) of this Order. All Department-approved submittals shall be incorporated into and become an enforceable part of this Order. - (2) (i) If the Department disapproves a submittal, it shall so notify Respondent in writing and shall specify the reasons for its disapproval. Within 30 days after receiving written notice that Respondent's submittal has been disapproved, Respondent shall make a revised submittal to the Department that addresses and resolves all of the Department's stated reasons for disapproving the first submittal. - (ii) Within a reasonable time after receipt of the revised submittal so as to not cause Respondent to be unable to comply with subsequent obligations and schedule deadlines as presented in Department-approved work plans, the Department shall notify Respondent in writing of its approval or disapproval. If the Department disapproves the revised submittal, Respondent shall be in violation of this Order and the Department may take any action or pursue whatever rights it has pursuant to any provision of statutory or common law, unless Respondent exercises the dispute resolution procedure described in Subparagraph XVII.A of this Order. If the Department approves the revised submittal, it shall be incorporated into and become an enforceable part of this Order. B. The Department may require Respondent to modify and/or amplify and expand a submittal if the Department determines, as a result of reviewing data generated by an activity required under this Order or as a result of reviewing any other data or facts, that further work is necessary. ## X. Penalties - A. Respondent's failure to comply with any term of this Order constitutes a violation of this Order and the ECL. - B. Respondent shall not suffer any penalty under this Order or be subject to any proceeding or action for enforcement of this Order if it cannot comply with any requirement hereof because of war, riot, or an unforeseeable disaster which the exercise of ordinary human prudence could not have prevented. Respondent shall, within five days of when it obtains knowledge of any such condition, notify the Department in writing. Respondent shall include in such notice the measures taken and to be taken by Respondent to prevent or minimize any delays and shall request an appropriate extension or modification of this Order. Failure to give such notice within such five-day period constitutes a waiver of any claim that a delay is not subject to penalties. Respondent shall have the burden of proving that an event is a defense to compliance with this Order. # XI. Entry upon Site Subject to conditions that may be described in a particular Site's health and safety plan, Respondent hereby consents to the entry upon the Site or areas in the vicinity of the Site which may be under the control of Respondent by any duly designated employee, consultant, contractor, or agent of the Department or any State agency for purposes of inspection, sampling, and testing and to ensure Respondent's compliance with this Order. ## XII. Payment of State Costs The Department shall establish an interest-bearing account into which the Department shall place all monies received from Respondent under the provisions of this Paragraph in order to pay for the State's expenses (including, but not limited to, direct labor and fringe benefits, overhead, travel, analytical costs, and contractor costs) incurred
by the State of New York to fund environmental monitors for work associated with reviewing and revising submittals made pursuant to this Order, overseeing activities conducted pursuant to this Order, collecting and analyzing samples, and administrative costs associated with administering the requirements of this Order. Respondent shall make payments to the Department as follows: - A. Respondent shall submit to the Department the sum of \$310,000, which shall represent the State's estimate of the first year expenses (including, but not limited to, direct labor and fringe benefits, overhead, travel, analytical costs, and contractor costs) incurred by the State of New York to fund environmental monitors for work associated with reviewing and revising submittals made pursuant to this Order to date, overseeing activities conducted pursuant to this Order, collecting and analyzing samples, and administrative costs associated with administering the requirements of this Order. The \$310,000 shall be submitted as follows: \$110,000 on or before the effective date of this Order; \$100,000 on or before the 60th day after the effective date of this Order; and \$100,000 on or before the 120th day after the effective date of this Order. Respondent shall make subsequent quarterly payments to the Department for the duration of this Order in order to maintain an account balance sufficient to meet the next nine months' anticipated above-described State costs, however, not exceeding on an annual basis \$310,000 (which amount may be increased on an annual basis based upon increases in the Consumer Price Index). Each quarterly billing will be based on expenditures incurred to date. The quarterly billing will take into account matters such as inflation, salary increases, accrued interest to be applied to the balance, changes in operating hours and procedures and the need for additional personnel and supervision of such personnel by full-time supervisors. Costs and expenses to be covered by this account include: - (1) Direct personal service costs and fringe benefits of the State's staff assigned to work associated with reviewing and revising submittals made pursuant to this Order, overseeing activities conducted pursuant to this Order, collecting and analyzing samples, and administrative costs associated with administering the requirements of this Order, including their supervisors and including the costs of replacement personnel for the person, regularly assigned to these duties; - (2) Direct non-personal service costs, including but not limited to purchase of a vehicle if necessary and its full operating costs, any appropriate chemical sampling and analysis, travel, supplies, and contractual costs; - (3) Indirect support or overhead costs at the annually approved indirect support cost rate; and # (4) Consultant services. B. The Department shall notify Respondent in writing when a quarterly payment is due by submitting a quarterly billing. Respondent shall make such payment in the form of a check payable to the order of the New York State Department of Environmental Conservation and shall submit such payment to the Department at the following address no later than 30 days from receipt of such billing: New York State Department of Environmental Conservation 50 Wolf Road, Room 608 Albany, NY 12233-1510 ATTENTION: Director of Environmental Monitors Payments are to be in advance of the period in which they will be expended. Respondent may dispute a quarterly billing by informing the Department in writing within 30 days of receipt of such billing that the amount of such billing is unreasonable. For purposes of this Order, the sole grounds for determining that a billing is unreasonable are that it contains clerical errors; and that all or a portion of a billing cannot be substantiated by the documentation identified in Subparagraph XII.D or XII.E, as appropriate, of this Order. The procedures contained in Subparagraph XVII.A of this Order shall be used to resolve such dispute, and Respondent shall pay the amount as those procedures shall determine Respondent shall pay, within the time period they shall require. - C. Upon the later termination of this Order and upon payment of any outstanding costs and expenses, the Department shall return the unexpended balance, including interest, to Respondent. - D. Actual personal service costs will be based on Site-specific time and activity ("T&A") costs. Non-personal service costs will be prorated based on the type of cost incurred: general costs (such as, supplies and equipment) will be prorated evenly among the Sites subject to this Order; while other project-related costs will be prorated based on the percentage of T&A incurred for each Site subject to this Order for that time period. - E. Actual costs incurred will be documented by quarterly T&A reports for personal service costs. Copies of actual invoices will not be provided but shall be made available for auditing purposes. # XIII. Department Reservation of Rights - A. Nothing contained in this Order shall be construed as barring, diminishing, adjudicating, or in any way affecting any of the Department's rights. - B. Nothing contained in this Order shall be construed to prohibit the Commissioner or his duly authorized representative from exercising any summary abatement powers. #### XIV. Indemnification Respondent shall indemnify and hold the Department, the State of New York, and their representatives and employees harmless for all claims, suits, actions, damages, and costs of every name and description arising out of or resulting from the fulfillment or attempted fulfillment of this Order by Respondent, and/or Respondent's directors, officers, employees, servants, agents, successors, and assigns; provided, however, that Respondent shall not indemnify the Department, the State of New York, and their representatives and employees in the event that such claim, suit, action, damages, or cost relate to or arise from any unlawful, willful, grossly negligent, or malicious acts or omissions on the part of the Department, the State of New York, or their representatives and employees. # XV. Public Notice A. Within 30 days after the effective date of this Order with respect to each Site Respondent owns as of the effective date of this Order, or within 30 days after Respondent acquires ownership in any Site, Respondent shall file, with respect to each Site, a Declaration of Covenants and Restrictions with the Clerk of the County within which each such Site is located to give all parties who may acquire any interest in such Site notice of this Order. B. If Respondent proposes to convey the whole or any part of Respondent's ownership interest in any Site, Respondent shall, not fewer than 60 days before the date of conveyance, notify the Department in writing of the identity of the transferee and of the nature and proposed date of the conveyance of the Site in question and shall notify the transferee in writing, with a copy to the Department, of the applicability of this Order and shall accompany such notification with a copy of this Order. #### XVI. Communications A. All written communications required by this Order shall be transmitted by United States Postal Service, by private courier service, or hand delivered as follows: Communication from Respondent shall be sent to: Charles N. Goddard, P.E. Assistant Director Division of Hazardous Waste Remediation New York State Department of Environmental Conservation Wolf Road Albany, New York 12233-7010 - (2) Director, Bureau of Environmental Exposure Investigation New York State Department of Health 2 University Place Albany, New York 12203 - (3) Department Regional Director in whose Region the Site in question is located - (4) Charles E. Sullivan, Jr. Division of Environmental Enforcement New York State Department of Environmental Conservation 50 Wolf Road, Room 609 Albany, New York 12233-5500 - B. Copies of work plans and reports shall be submitted as follows: - (1) Six copies (one unbound) to Mr. Goddard - (2) Two copies to the Director, Bureau of Environmental Exposure Investigation - (3) One copy to Mr. Sullivan - C. Within 30 days of the Department's approval of any report submitted pursuant to this Order, Respondent shall submit to Mr. Goddard a computer readable magnetic media copy of the approved report in American Standard Code for Information Interchange (ASCII) format. This requirement shall not apply to past reports that will be submitted to the Department but have already been completed by Respondent. - D. Communication to be made from the Department to Respondent shall be sent to: Phillip M. Murphy, Manager--Alternative Methods Environment & Research Department New York State Electric & Gas Corporation Corporate Drive, Kirkwood Industrial Park P.O. Box 5227 Binghamton, New York 13902-5227 E. The Department and Respondent reserve the right to designate additional or different addressees for communication or written notice to the other. #### XVII. Miscellaneous - A. (1) This Subparagraph applies only to those Sites identified in Table "A" of Paragraph I of this Order concerning which the Department determines under this Order that an RI/FS must be prepared. - (2) If after conferring in good faith, there remains a dispute between Respondent and the Department concerning a provision of this Order identified as subject to this Subparagraph's procedures, within the time period provided in that provision Respondent serve on the Department a request for an appointment of an Administrative Law Judge ("ALJ"), and a written statement of the issues in dispute, the relevant facts upon which the dispute is based, and factual data, analysis, or opinion supporting its position, and all supporting documentation on which Respondent relies (hereinafter called the "Statement of Position"). The Department shall serve upon Respondent its Statement of Position, including supporting documentation no later than ten
(10) business days after receipt of Respondent's Statement of Position. Respondent shall have five (5) business days after receipt of the Department's Statement of Position within which to serve upon the Department a reply to the Department's Statement of Position, and in the event Respondent serves such a reply, the Department shall have five (5) business days after receipt of Respondent's reply to the Department's Statement of Position within which to serve upon Respondent the Department's reply to Respondent's reply to the Department's Statement of Position. In the event that the periods for exchange of Statements of Position and replies may cause a delay in the work being performed under this Order, the time periods may be shortened upon and in accordance with notice by the Department as agreed to by Respondent. - (3) The Department shall maintain an administrative record of any dispute being addressed under this Subparagraph. The record shall include the Statement of Position of each party served pursuant to Subparagraph XVII.A(2) and any relevant information. The record shall be available for review of all parties and the public. - (4) Upon review of the administrative record as developed pursuant to this Subparagraph, the ALJ shall issue a final decision and order resolving the dispute. If the matter in dispute concerns a submittal, - (i) Respondent shall revise the submittal in accordance with the Department's specific comments, as may be modified by the ALJ and except for those which have been withdrawn by the ALJ, and shall submit a revised submittal. The period of time within which the submittal must be revised as specified by the Department in its notice of disapproval shall control unless the ALJ revises the time frame in the ALJ's final decision and order resolving the dispute. - (ii) After receipt of the revised submittal, the Department shall notify Respondent in writing of its approval or disapproval of the revised submittal. (iii) If the revised submittal fails to address the Department's specific comments, as may be modified by the ALJ, and the Department disapproves the revised submittal for this reason, Respondent shall be in violation of this Order and the ECL. - (5) In review by the ALJ of any dispute pursued under this Subparagraph, Respondent shall have the burden of proving by a preponderance of the evidence that the Department's position should not prevail. - (6) a deadline involving any matter that is the subject of the dispute resolution process described in this Subparagraph shall be held in abeyance while it is the subject of the dispute resolution process unless the Department and Respondent otherwise agree in writing. The invocation of the procedures stated in this Subparagraph shall constitute an election of administrative remedies by Respondent, and such election of this remedy shall constitute a waiver of any and all other administrative remedies which may otherwise be available to Respondent regarding the issue in dispute. - B. All activities and submittals required by this Order shall address both on-Site and off-Site contamination resulting from the disposal of hazardous substances at each Site. - C. Respondent shall retain professional consultants, contractors, laboratories, quality assurance/quality control personnel, and data validators acceptable to the Department to perform the technical, engineering, and analytical obligations required by this Order. Within 30 days after completion of Respondent's retainer process resulting in the selection of a particular firm or individual to perform any of such obligations, Respondent shall submit to the Department a summary of the experience, capabilities, and qualifications of the firm or individual retained. Respondent must obtain the Department's approval of these firms or individuals before the initiation of any activities for which Respondent and such firms or individuals will be responsible. - D. The Department shall have the right to obtain split samples, duplicate samples, or both, of all substances and materials sampled by Respondent, and the Department also shall have the right to take its own samples. Respondent shall have the right to obtain split samples, duplicate samples, or both, of all substances and materials sampled by the Department, and Respondent also shall have the right to take its own samples. Respondent shall make available to the Department the results of all sampling and/or tests or other data generated by Respondent with respect to implementation of this Order, including a tabular summary of any such results in any report submitted pursuant to this Order requiring such results. - E. Respondent shall notify the Department at least 10 working days in advance of any field activities to be conducted pursuant to this Order. The Department's project manager is hereby authorized to approve any modification to an activity to be conducted under a Department-approved work plan in order to adapt the activities to be undertaken under such work plan to the conditions actually encountered in the field. - F. Respondent shall use reasonable efforts to obtain whatever permits, easements, rights-of-way, rights-of-entry, approvals, or authorizations are necessary to perform Respondent's obligations under this Order. If Respondent is unable, after exhaustion of such reasonable efforts, to obtain any such permissions, the Department will exercise whatever authority is available to it, in its discretion, to obtain same. In no event will Respondent be determined to be in violation of this Order if it fails to obtain any such permissions after exhausting reasonable efforts to obtain same. This is in recognition of the fact that, with respect to certain Sites, the New York State Electric and Gas Corporation is the current owner of only part of the potential area of disposal of MGP wastes, and may in fact, as to certain Sites, not be the owner of any portion of the Site. Significant impediments may, therefore, be encountered as to Respondent's ability to obtain access for purposes of carrying out the requirements of this Order. - G. If Respondent determines, in connection with any given Site, that a valid claim exists in favor of Respondent as against any other potentially responsible party, for contribution toward response costs deemed necessary by the Department in connection with such Site (or for recovery of an appropriate portion of such costs previously incurred by Respondent), the Department shall provide, in a timely manner, information responsive to any reasonable request (otherwise in conformity with Freedom of Information Law requirements) by such party related to conditions at the Site and any other relevant information that may be helpful in substantiating Respondent's claim. Similarly, if Respondent requests access to non-privileged and otherwise disclosable information in the Department's possession and relevant to the potential liability of any person or entity who may be subject to such claim by Respondent for contribution or cost recovery, the Department will take reasonable steps to expedite Respondent's access to such information. - H. Respondent and its successors and assigns shall be bound by this Order. Any change in ownership or corporate status of Respondent including, but not limited to, any transfer of assets or real or personal property shall in no way alter Respondent's responsibilities under this Order. Respondent's officers, directors, employees, servants, and agents shall be obliged to comply with the relevant provisions of this Order in the performance of their designated duties on behalf of Respondent. - I. Respondent shall provide a copy of this Order to each contractor hired to perform work required by this Order and to each person representing Respondent with respect to the Site and shall condition all contracts entered into hereunder upon performance in conformity with the terms of this Order. Respondent or Respondent's contractors shall provide written notice of this Order to all subcontractors hired to 23 perform any portion of the work required by this Order. Respondent shall nonetheless be responsible for ensuring that Respondent's contractors and subcontractors perform the work to be done under this Order in accordance with this Order. - J. All references to "professional engineer" in this Order are to an individual licensed and registered to practice professional engineering in accordance with Article 145 of the New York State Education Law. - K. All references to "days" in this Order are to calendar days unless otherwise specified. - L. The section headings set forth in this Order are included for convenience of reference only and shall be disregarded in the construction and interpretation of any of the provisions of this Order. - M. (1) The terms of this Order shall constitute the complete and entire Order between Respondent and the Department concerning the Site. No term, condition, understanding, or agreement purporting to modify or vary any term of this Order shall be binding unless made in writing and subscribed by the party to be bound. No informal advice, guidance, suggestion, or comment by the Department regarding any report, proposal, plan, specification, schedule, or any other submittal shall be construed as relieving Respondent of Respondent's obligation to obtain such formal approvals as may be required by this Order. However, in the event that Respondent determines that it cannot continue burning CTS at either its Jennison Station or Hickling Station, then Respondent may request that the Department modify its obligations regarding the Sites listed in Table "A" of Paragraph I of this Order. The Department's decision on whether to grant Respondent's request shall not be unreasonably denied and shall consider, but not be limited to, Respondent's costs of proceeding with its obligations under this Order. - (2) If Respondent desires that any provision of this Order be
changed, Respondent shall make timely written application, signed by the Respondent, to the Commissioner setting forth reasonable grounds for the relief sought. Copies of such written application shall be delivered or mailed to Messrs. Goddard and Sullivan. N. The effective date of this Order shall be the date it is signed by the Commissioner or his designee. DATED: Mych Bo, 1994 Acting Commissioner New York State Department of Environmental Conservation # CONSENT BY RESPONDENT Respondent hereby waives its right to a hearing herein as provided by law; consents to the issuance and entry of this Order; and agrees to be bound by its terms, not to contest the authority or jurisdiction of the Department to issue or enforce this Order, and not to contest the validity of this Order or its terms. NEW YORK STATE ELECTRIC & GAS CORPORATION | Vencent W Rider | | |--|---| | Typed name of signer: vincent w. Rider | | | Title of signer: vice President - Electric Generation | • | | Date signed: March 25, 1994 | | | | <i>:</i> | | STATE OF NEW YORK) | | |) ss:
COUNTY OF <u>Bicome</u>) | | | On this 25 day of March, 1994, before me personally fined w. Ride , to me known, who, being duly sworn, did dep to resides in Endured Men for the New York State Electron Corporation; that he executed the foregoing instrument on behalf of the State Electric & Gas Corporation; that he knew the seal of said corporate affixed to said instrument was such corporate seal; that it was so a the Board of Directors of said corporation; and that he signed he nationally. | ose and say that tric & Gas he New York oration; that the officed by order of | | Notary Public State of New York Registration number: 5003473 My commission expires: 40/34/644 Residing in Broome County | | (oNYSEG2.cst) # **APPENDIX G** **ORGANIZATION STRUCTURE** # ORGANIZATION STRUCTURE FOR ACTIVITIES AT LOCKPORT STATE ROAD FORMER MGP SITE NYSDOT PROSPECT STREET OVER ERIE CANAL PROJECT # APPENDIX H VAPOR EMISSION RESPONSE PLAN # LOCKPORT STATE ROAD MGP SITE VAPOR EMISSION RESPONSE PLAN # **APPENDIX I** CONTINGENCY PLAN # NYSEG # **NEW YORK STATE ELECTRIC & GAS CORPORATION** Licensing & Environmental Operations Department Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224 Binghamton, New York 13902-5224 ### **INTERIM REMEDIAL MEASURES** NEW YORK STATE DEPARTMENT OF TRANSPORTATION PROSPECT STREET OVER ERIE CANAL PROJECT # **CONTINGENCY PLAN** FOR ACTIVITIES ON AND ADJACENT TO LOCKPORT STATE ROAD FORMER MANUFACTURED GAS PLANT SITE City of Lockport, Niagara County, New York **JUNE 2002** Prepared By: NYSEG Licensing & Environmental Operations Department # **TABLE OF CONTENTS** | 1.0 | | SENCY PLAN | | |-----|-------------|--|---| | | 1.1 Identif | fying the Hazards and Assessing the Risk | 1 | | | 1.2 Condi | tions for Implementing a Contingency Plan | 2 | | | 1.2.1 | Fire and/or Explosion Conditions | 2 | | | 1,.2.2 | Spill or Material Release Conditions | 3 | | | 1.2.3 | Severe Weather Conditions | 3 | | 5 | 1.2.4 | Physical or Chemical Injury Conditions | 4 | | | 1.3 Contin | ngency Procedures | | | | 1.3.1 | Contingency Procedures for Fire/Explosion | 4 | | | 1.3.2 | Contingency Procedures for Spills or Material Releases | 5 | | | 1.3.3 | Contingency Procedures for Severe Weather | 5 | | | 1.3.4 | Contingency Procedures for Physical Injury to Workers | 6 | | | 1.3.5 | Contingency Procedures for Chemical Injury to Workers | | | 2.0 | EMERGEI | NCY EVACUATION PROCEDURES | 7 | | | 2.1 Site E | vacuation Procedures | 7 | | | 2.2 Off-Sit | te Evacuation Procedures | õ | #### 1.0 CONTINGENCY PLAN This Contingency Plan is designed to address potential emergencies that may arise as a result of operations during the Interim_Remedial Measure (IRM) to be completed at NYSEG's (New York State Electric and Gas Corporation's) Lockport State Road Former Manufactured Gas Plant (MGP) site, City of Lockport, Niagara County, New York. This Plan supplements the IRM Work Plan and the IRM Health and Safety Plan. The New York State Department of Transportation (NYSDOT) contractors and subcontractors providing major services will each produce contingency plans addressing potential emergencies that may arise as a result of their operations. The Site Safety Officer (SSO) will be made aware of the emergencies and coordinate any response activities carried out at the site. The SSO will serve as the overall Project Emergency Coordinator (PEC) and have the ultimate authority in specifying and facilitating any contingency action. If the SSO is not able to perform these duties, he will specify another senior individual to serve in this capacity. The PEC will become familiar with contingency plans developed by each contractor and subcontractor. # 1.1 Identifying the Hazards and Assessing the Risk The objectives during any emergency shall be to protect human health and safety and then the environment. Possible hazards to human health or environment that may result from any emergency situation will be identified by the PEC. The PEC must take into consideration both direct and indirect effects of the incident. The PEC will then access the possible risks to human health or the environment that may result from the emergency (e.g., release, fire, explosion, or severe weather conditions). He will make this assessment by: - identifying the materials involved in the incident; - consulting the appropriate Occupational Health Guideline or MSDS to determine the potential effects of exposure/release, and appropriate safety precautions; and Lockport State Road Former MGP Site, Lockport, NY IRM Contingency Plan identifying the exposure and/or release pathways and the quantities of materials involved. Based on this information the PEC will determine the best course of action for dealing with the emergency, and possible follow-up requirements that may result from implementing those actions (e.g., equipment repair, material disposal, etc.). If the incident cannot be controlled by operating personnel without incurring undue risk, the PEC will implement the Site Evacuation Procedures (Section 2.1) If off-site neighboring population is at risk the Off-Site Evacuation Procedures (Section 2.2) will be implemented. The PEC will notify NYSEG project manager and the appropriate government agencies and departments that a situation resulting in evacuation has occurred. Should emergency assistance in treating injuries or carrying out the evacuation be required, the PEC will request assistance of the appropriate parties. # 1.2 Conditions for Implementing a Contingency Plan Some of the conditions under which the contingency plan would be implemented are: - fire or explosion; - occurrence of a spill or material release; - severe weather conditions; and - physical or chemical injury to a worker. # 1.2.1 Fire and/or Explosion Conditions Contingency procedures will immediately be implemented upon notification that any of the following scenarios involving fire and/or explosion is imminent or has occurred: - a fire that causes, or could cause, the release of toxic fumes; - a fire that could possible ignite nearby flammable or could cause heatinduced explosions; - a fire that could possibly spread to off-site areas; - a danger exists that an explosion could occur causing a safety or health hazard; and - an explosion has occurred. # 1.2.2 Spill or Material Release Conditions Any of the following scenarios involving a spill or material release, whether imminent or having already occurred, will cause implementation of contingency procedures: - a spill or material release that could result in the release of flammable liquids or vapors, thus causing a fire or gas explosion hazard; - a spill or material release that could cause the release of toxic vapors or fumes into the atmosphere in concentrations higher than the OSHA Permissible Exposure Limits (PELs); - a spill or material release that can be contained on-site where a potential exists for groundwater or surface water contamination; and - a spill or material release that cannot be contained on-site, resulting in a potential for off-site soil contamination and/or groundwater or surface water pollution. The PEC (or sub-contractor's emergency coordinator) will immediately identify the character, source, amount, and extent of any release. Spills or material releases shall be reported immediately to the PEC. Initial identification will be based on visual analysis of the material and location of the release. If the release material cannot be identified, samples will be taken for analysis. #### 1.2.3 Severe Weather Conditions The following severe weather conditions, whether imminent or having occurred, may cause implementation of contingency procedures. - a tornado has been sighted in the area; - a tornado warning is in effect for the area; - a lightning storm is underway in the area (storm center less than 5 miles away); and - other severe weather or weather induced conditions (e.g., hurricane or flood). # 1.2.4 Physical or Chemical Injury Conditions The following worker injuries may cause implementation of the Contingency Plan: - major physical injuries; - chemical injuries; and - severe symptoms of chemical overexposure. # 1.3 Contingency Procedures If any of the aforementioned conditions for implementing the Contingency Plan are met, the appropriate following contingency procedure(s) shall be performed. # 1.3.1
Contingency Procedures for Fire/Explosion When fire or explosion appear imminent or have occurred, all normal activity in affected areas will cease. The PEC will make an assessment of the potential risk and severity of the situation to decide whether the emergency event will or will not be readily controllable with existing portable fire extinguishers or site equipment and materials at hand. Fire fighting will not be done at the risk to site workers. Local fire departments will be contacted in all situations in which fires and/or explosions have occurred. The following steps will be taken for localized fire. - contact local fire departments; - move all personnel to an upwind location at an appropriately safe distance away; - determine if fire is within on-site personnel capabilities to attempt initial fire fighting; - if the fire is within on-site personnel capabilities, utilize most appropriate means of extinguishing fire (e.g., fire extinguishers, water, covering with soil, etc.); and - once fire is extinguished, containerize and properly dispose of any spilled material, runoff, or soil. If the situation appears uncontrollable and poses a direct threat to human life, fire departments will be contacted and the Evacuation Plan will be implemented. If the chances of an impending explosion are high, the entire area within a 1,000-foot radius of the fire source will be evacuated. The PEC will alert personnel when all danger has passed, as determined by the chief fire fighter from the responding fire department. All equipment used in the emergency will be cleaned and refurbished as soon as possible after the emergency has passed so that it will be ready for use in the event of any future emergency. # 1.3.2 Contingency Procedures for Spills or Material Releases If a hazardous waste spill or material release or process upset resulting in probable vapor release is identified, the PEC will immediately assess the magnitude and potential seriousness of the spill or release based upon; - MSDS for the material spilled or released; - source of the release or spillage of hazardous material; - an estimate of the quantity released and the rate at which it is being released; - the direction in which the spill or air release is moving; - personnel who may be or may have been in contact with material, or air release, and possible injury or sickness as a result; - potential for fire and/or explosion resulting from the situation; and - estimates of area under influence of release. If the spill or release is determined to be within the on-site emergency response capabilities, the PEC will ensure implementation of the necessary remedial action. If the accident is beyond the capabilities of the operating crew, all personnel not involved with emergency response activity will be evacuated from the immediate area and the appropriate emergency response group(s) will be contacted. # 1.3.3 Contingency Procedures for Severe Weather When a tornado is sighted in the area, when a tornado warning has been issued, or when a lightning storm occurs, the information will be immediately relayed to the PEC. In the case of a tornado sighting, the PEC will then institute emergency shutdown procedures, and all personnel will be directed to proceed indoors after completing appropriate shutdown procedures. In the case of a tornado warning, or lightning storm, the PEC will have operations stopped and direct all personnel to stand by for emergency procedures. Other types of weather or weather inducted conditions (e.g., hurricane or flooding) for which long range prediction is available may also require positive action as identified herein. Lockport State Road Former MGP Site, Lockport, NY IRM Contingency Plan When the severe weather has passed, the PEC will direct all contractor's to inspect on-site equipment to ensure its readiness for operation prior to restarting operations. If an inspection indicates a fire, explosion, or release has occurred as the result of a severe weather condition, the procedures for those events will be followed. # 1.3.4 Contingency Procedures for Physical Injury to Workers Regardless of the nature and degree of the injury, the PEC will be apprised of <u>all</u> injuries requiring first aid of any kind. A report of the injury or incident will be completed as required by *IRM Health and Safety Plan*. Upon notification that worker has been injured, the PEC will immediately determine the severity of the accident, and whether the victim can be safely moved from the incident site. Appropriate medical assistance will be summoned immediately. Minor injuries sustained by workers will be treated on-site using materials from the first aid kits. Whenever possible, such treatment will be administered by trained personnel in a "clean zone". Examples of minor injuries include small scrapes and blisters. Minor injuries would not be expected to trigger implementation of the contingency plan. Major injuries sustained by workers will require professional medical attention at a hospital. The PEC will immediately summon an ambulance and contact the hospital to which the injured worker will be transported. The PEC will notify NYSEG project manager as soon as practical. The hospital and ambulance should be advised of: - the nature of the injury; - whether the injured worker will be decontaminated prior to transport; - when and where the injury was sustained; and - the present condition of the injured work (e.g., conscious, breathing). # 1.3.5 Contingency Procedures for Chemical Injury to Workers Injuries involving hazardous chemicals or symptoms of severe chemical overexposure will automatically trigger implementation of the contingency plan. Upon notification that a chemical injury has been sustained or severe symptoms of chemical exposure are being experienced, the PEC will notify the hospital and ambulance of the occurrence. The PEC will provide, to the extent possible, the following information: - the nature of the injury (e.g., eyes contaminated); - the chemical(s) involved; - the present condition of the injured worker (e.g., conscious, breathing); - whether the injured worker will be decontaminate prior to transport; and - when and where the injury was sustained. Steps will immediately be taken to remove the victim from the incident site using whatever personal protective equipment (PPE) and safety equipment is necessary. Rescuers will check for vital signs and, if possible, remove contaminated outer clothing. If the victim's eyes have been contaminated, personnel trained in administering first aid will flush the victim's eyes with eyewash solution until the emergency response team arrives. Details on the nature of the contaminant and methods for treating exposure or injury can be obtained from the MSDSs or Occupational Health Guidelines as provided in the *IRM Health and Safety Plan*. #### 2.0 EMERGENCY EVACUATION PROCEDURES ### 2.1 Site Evacuation Procedures If an emergency occurs that requires the evacuation of an area to ensure personnel safety, including (but not limited to) fire, explosion, severe weather or hazardous waste/material spills, or a significant release of vapors into the atmosphere, an air horn will be sounded on the site by the nearest person aware of the event. The horn will sound continuously for approximately 15 seconds, signaling that immediate evacuation of all personnel from the area is necessary as a result of some existing or impending danger. In areas where only two or three people are working side by Lockport State Road Former MGP Site, Lockport, NY IRM Contingency Plan side, and the need to evaluate can be communicated verbally, the air horn will not be necessary by the nearest person aware of the event. All heavy equipment in the area will be shutdown. Under no circumstances will incoming visitors (other than emergency response personnel) be allowed to enter any area where an emergency is occurring. Visitors or observers and all non-essential personnel present in the area of an emergency will be instructed to evacuate the area immediately. Contractor and subcontractor emergency coordinators and/or health and safety officers (as designated) will be responsible for ensuring that emergency response requirements specific to their own operations are carried out. These parties will report their activities to the PEC. The PEC, however, has final authority regarding all emergency response activities. All non-essential personnel shall evacuate the emergency areas and notify personnel in adjacent areas to evacuate also. The evacuated workers will assemble at the primary assembly area at the site construction office trailer, where the PEC will give directions for implementing necessary actions. In the event that the primary assembly area is involved, unapproachable, or unsafe due to the event, evacuated workers shall assemble at the alternate assembly area at the intersection of state Road and High Street. The PEC will phone for backup assistance. Personnel are to avoid encountering smoke/gas plumes as practicable during evacuation and assembling. The PEC will take charge of all emergency response activities and dictate the procedures that will be followed until emergency personnel arrive. The PEC will assess the seriousness of the situation, and direct whatever efforts are necessary until the emergency response units arrive. After initiating emergency response procedures, the PEC will assign appropriate personnel to check and attempt to ensure that access roads are not obstructed. If traffic control is necessary, as in the event of a fire or explosion, personnel who have been trained in these procedures and designated at the project safety meeting will take over these duties until emergency units arrive. The PEC will remain at the site to provide any assistance requested by emergency-response squads as they arrive to deal with the situation. The PEC will have the authority to shut down any part or all of the project after
an emergency until he deems it safe to continue operations. He will dictate any changes in project safety practices which are made necessary by the emergency that has occurred or are required for preventing further emergencies. ## 2.2 Off-Site Evacuation Procedures If the PEC deems that humans outside of the site are at risk, he will notify the appropriate agencies and departments (e.g., NYSEG project manager, Lockport police department, New York State Department of Environmentai Conservation and New York State Department of Health, etc.) of the need or potential need to institute off-site evacuation procedures. The PEC will provide, at a minimum, the following information: - his or her name and telephone number; - name and address of facility; - time and type of incident (e.g., release, fire, etc.) - name and quantity of materials or materials involved, to the extent this information is known; - the extent of injuries, if any; and - the possible hazards to human health or environment, and cleanup procedures. # **APPENDIX J** # NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION APPROVAL LETTER ## RECEIVED LEO DEPT. # New York State Department of Environmental Conservation 2 6 2002 Division of Environmental Remediation Bureau of Construction Services, 12th Floor 625 Broadway, Albany, New York 12233-7013 Phone: (518) 402-9814 • FAX: (518) 402-9819 Website: www.dec.state.ny.us JUL 2 3 2002 #### **FAX** Mr. Bert Finch Project Manager New York State Electric and Gas Corporation Corporate Drive-Kirkwood Industrial Park P.O. Box 5224 Binghamton, New York 13902-5224 Dear Mr. Finch: Re: Lockport State Street Former MGP Site Interim Remedial Measures - Work Plan The New York State Department of Environmental Conservation has reviewed the revised Interim Remedial Measures Work Plan for Activities at the Lockport State Street MGP Site, Prospect Street Over Erie Canal Project, prepared by the New York State Electric and Gas Corporation (NYSEG), dated June 2002. The revised work plan adequately addresses the Departments comments and the work plan is approved. When available, please provide the Department with a project schedule so we can arrange for field oversight. The Department appreciates NYSEG's continuing effort to conduct a remedial program at the Lockport State Street Former MGP site. If you have any questions, please feel free to contact me at (518) 402-9813. Sincerely, David A. Crosby, P.E. Lavid a lust Senior Environmental Engineer Central Field Services Section Bureau of Construction Services Division of Environmental Remediation cc: J. Simone - NYSEG T. Wheeler - NYSDOT-Buffalo Office M. Forcucci - NYSDOH, Buffalo Office M. VanValkenburg - NYSDOH, Troy Office