

2013 PERIODIC REVIEW REPORT DELPHI HARRISON THERMAL SYSTEMS SITE SITE NUMBER 932113 LOCKPORT, NEW YORK

PREPARED FOR:

New York State Department of Environmental Conservation Division of Environmental Remediation Mr. Glenn May

PREPARED BY:

GZA GeoEnvironmental of New York Buffalo, New York

January 2014 Job No. 21.0056546.00 January 9, 2014 File No. 21.0056546.0

Mr. Glenn May
New York State Department of Environmental Conservation
Division of Environmental Remediation
270 Michigan Avenue
Buffalo, New York 14203

Re: Periodic Review Report Number 3 – January 2013 Delphi Harrison Thermal Systems Site Lockport, New York Registry Site No. 932113

Dear Mr. May:

GZA GeoEnvironmental of New York (GZA) prepared this 2013 Periodic Review Report (PRR) for the Delphi Harrison Thermal Systems Site (Site) as required by the Site Management Plan¹ (SMP) that was approved by the New York State Department of Environmental Conservation (NYSDEC) on October 13, 2011. The implementation of the SMP is a requirement of the Remedial Program Order on Consent and Administrative Settlement (Index #B9-0553-99-06) between GM Components Holdings, LLC (GMCH) and NYSDEC dated November 8, 2011.

GMCH is the current owner and operator of an automotive components manufacturing facility at 200 Upper Mountain Road, Lockport, New York. Delphi Automotive Systems LLC conveyed the facility to GMCH by deed dated October 6, 2009 and recorded in the Niagara County Clerk's Office on October 14, 2009. The Site, as defined by the environmental easement (Instrument # 2011-17072) recorded in the Niagara County Clerk's Office in October 2011, comprises approximately 22.7 acres located in the eastern portion of the facility as shown on Figure 1.

REGULATORY HISTORY SUMMARY

The following is a summary of the regulatory actions at the Site.

Building 8, located in the northern central portion of the facility, formerly housed degreasing operations that utilized trichloroethylene (TCE). An aboveground storage tank (AST) was formerly located outside the southeastern corner of Building 8 until it was decommissioned in May 1994. NYSDEC became involved in 1994 when Delphi Thermal Systems (Delphi) notified them of TCE detected in soil during an excavation to repair fire protection lines in the vicinity

¹ "Delphi Harrison Thermal Systems Site, Niagara County, New York, Site Management Plan, NYSDEC Site Number: 9-32-113" dated October 13, 2011

of the former TCE AST. NYSDEC assigned the incident Spill Number 9410972. Delphi removed the TCE-impacted soil from the excavation down to the top of bedrock and provided NYSDEC with a report of this removal action in a letter dated December 22, 1994.

- In March 1999, the Site was added to the NYSDEC Inactive Hazardous Waste Registry, Site Number 932113 as a Class 3 listing (does not present a significant threat to the public health or the environment action may be deferred).
- Delphi entered into a Remedial Investigation/Feasibility Study Order on Consent, Index #B9-0553-99-06 (RI/FS Order) in 2001 to determine the extent of TCE contamination and complete a Focused Feasibility Study.
- In March 2005, NYSDEC, in consultation with the New York State Department of Health (NYSDOH), issued a Record of Decision (ROD) based on the results of the Focused Remedial Investigation (FRI) and Focused Feasibility Study (FFS). The components of the selected remedy, as defined in the ROD, are as follows.
 - Monitored natural attenuation (MNA) with groundwater monitoring and sampling to ensure the continued effectiveness of the remedy.
 - Development of a contingency plan for groundwater control/treatment if natural attenuation processes can no longer be demonstrated as effective or if significant off-site groundwater contamination is observed.
 - Development of a site management plan to: (a) address residual contaminated soils that may be excavated from the site during future redevelopment, (b) evaluate the potential for vapor intrusion for all current site buildings and any developed on the site in the future, including provision for mitigation of any impacts identified; (c) provide for the operation and maintenance of the components of the remedy; (d) monitor site groundwater; and (e) identify any use restrictions on site development or groundwater use.
 - Imposition of an environmental easement to restrict groundwater use and ensure compliance with the approved site management plan.
 - Certification of the institutional and engineering controls.
- Annual MNA groundwater sampling was completed voluntarily at the Site from October 2006 through April 2011.
- In October 2011, an environmental easement (Instrument # 2011-17072) for the

Site was recorded in the Niagara County Clerk's Office.

- In November 2011, a Remedial Program Order on Consent and Administrative Settlement (Index #B9-0553-99-06) was executed between GMCH and NYSDEC.
- In April 2012, the Site was reclassified on NYSDEC Inactive Hazardous Waste Registry, to a Class 4 listing (site has been properly closed but that requires continued site management consisting of operation, maintenance and/or monitoring).
- Annual MNA groundwater sampling completed at the Site since April 2012 has been in accordance with the Remedial Program Order on Consent and Administrative Settlement (Index #B9-0553-99-06).
- There were no new regulatory actions taken within the reporting period.

2013 PERIODIC REVIEW REPORTING PERIOD

In accordance with Section 5.3 of the SMP, the following constitutes the Calendar Year 2013 PRR.

1. Results of the required Site inspections and severe weather condition inspections, if applicable

A Site inspection was completed on June 26, 2013, by Christopher Boron of GZA. The site inspection form was completed and a copy is included as Appendix A.

No severe weather condition inspections occurred during the reporting period.

2. All applicable inspection forms and other records generated for the Site during the reporting period in electronic format

- (a) A copy of the completed site inspection form from the June 26, 2013 site inspection is included in Appendix A and will be included as part of the electronic format of the PRR to be submitted to NYSDEC's Glenn May and Brian Sadowski (see page 40 of SMP).
- (b) Between late January and early February 2013, Delphi's contractor removed portions of two (2) concrete footers, the support beams and the associated overhead components of the utility trestle from the east end (near Upper Mountain Road) of the environmental easement area. This work was done in conjunction with the removal of the overhead trestle that crossed over and was located on the east side of Upper Mountain Road.

The concrete footers were mechanically broken to a depth of about 18 inches below grade. The concrete was removed and the area of the former footers was backfilled to grade with clean fill. The surface was reseeded and the vegetative cover has been restored. See Figure 2 in Appendix B for the location of the trestle work within the environmental easement area.

- (c) In April 2013, Delphi began the Building 6 utility separation project. The project included the installation of new underground water services, storm sewers, fire protection lines, sanitary force main, an approximate 1,080 square foot building addition, and a new electrical substation. NYSEG also installed six (6) new power poles to bring electricity to the new substation. Of the utility installations completed, the following were completed within the environmental easement area (see Figure C120 in Appendix B):
 - Approximately 550 linear feet of sanitary sewer force main;
 - Approximately 180 linear feet of new GMCH storm sewer line;
 - Approximately 1,150 linear feet of new Delphi storm sewer line;
 - Approximately 165 linear feet of fire protection line.

The excavation activities to install the underground water services, storm sewers, fire protection lines and sanitary force main required the removal of overburden soil and, in some intervals, bedrock to achieve the required grades for the utility installations.

GMCH recommended to Delphi that controlled low-strength material (e.g., flowable fill) backfill be used in lieu of traditional compacted stone bedding backfill along intervals where the excavation encountered groundwater and/or bedrock. If the excavation encountered either, controlled low-strength material would be placed to a minimum of 1 foot above the top of pipe or 1 foot above the top of bedrock, which ever was higher. This would reduce the potential for groundwater migration that would likely occur along the pipeline if an open-graded bedding stone was used.

Delphi had its contractor implement GMCH's recommendation for utility work completed within the environmental easement area and east of the environmental easement and GMCH property line along Upper Mountain Road to the sanitary force main tie-in near the southeastern portion of the GMCH property line. We note that groundwater was not observed in open excavations during Site visits completed within the environmental easement. GZA prepared summary emails for GMCH which included photographs from the Site visits. These summaries are included in Appendix B along with a figure identifying the manhole/catch basin structures.

Due to the size of this entire utility project, approximately 1.4 acres, and the fact that the work would disturb more than one acre of land surface, a NYSDEC State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity, Permit No. GP-0-10-001, was obtained by Delphi. According to the General Permit (GP-0-10-001), the project classifies as a project that only requires temporary erosion and sediment controls. A copy of the permit is included in Appendix B. A storm water pollution prevention plan (SWPPP) was prepared by Delphi and implemented during the utility separation work to provide the required documentation for coverage under the permit for stormwater discharges associated with the project.

(d) On September 9, 2013, GMCH's contractor completed an excavation on the exterior of the southeast corner of Building 8 to repair a fire protection line riser pipe that was leaking. The repair excavation was west and adjacent to an excavation Delphi's contractor had completed to tie the new GMCH fire protection line being installed in this area into the existing fire protection lines. The leak needed to be repaired before the tie in could be completed.

The excavation was completed to a depth of about 8 feet bgs, approximately 1 foot below the riser pipe repair location. Soil removed from the excavation was staged on polyethylene sheeting adjacent to the excavation. The staged soil was covered with polyethylene sheeting overnight and reused to backfill the excavation the following day. See Figure 2 in Appendix B for the location of the fire protection line riser work within the environmental easement area.

GZA field screened the soil being removed from the excavation with an organic vapor meter (OVM). OVM readings ranged from 0 to 0.5 parts per million (ppm). There were no olfactory, visual and/or field screening evidence of impact to the soil excavated during the repair project. A field summary report, including field screening results is included in Appendix C.

No other pertinent records were generated for the Site during the reporting period

- 3. A summary of any monitoring data and/or information generated during the Reporting Period with comments and conclusions
- (a) The most recent MNA groundwater sampling was completed in May 2013. A copy of the report is included with this PRR as Appendix D.

The conclusions of the May 2013 sampling event report were as follows:

Based on the results of the May 2013 sampling round within the framework of the historical results, natural attenuation of compounds of concern (COCs) is occurring via reductive dechlorination. GZA offers the following additional observations:

- The COC concentrations of the parent compounds are decreasing from the source area (MW-7) downgradient to the mid-point of the plume (MW-4 and MW-10), and from the mid-point and on to the downgradient portions of the Site (MW-11 through MW-13).
- There is an increase in daughter compound concentrations from the source area to the mid-point of the plume, with an overall decrease in total COC concentrations.
- The COC concentrations at the downgradient property line do not exceed the NYSDEC Class GA criteria.
- Ethene has been detected above the analytical reporting limit in groundwater samples collected from all eight (8) monitoring wells. Assuming the ethene represents the ultimate daughter product of chlorinated volatile organic compounds (cVOC) reductive dechlorination, its detection at each monitoring well is a direct line of evidence that cVOCs have been degraded to completion at the Site.

It should be noted that there is a temporal decreasing trend in TOC concentrations across the Site. TOC represents a surrogate measurement of the "fuel" driving reductive dechlorination and should continue to be monitored.

GZA recommends continuing the annual groundwater sampling event utilizing eight (8) monitoring wells (MW-4, -7, -10, -11, -12, -13, -14 and -15), as stated in the SMP, in the Spring of 2014. The natural attenuation analytical parameter list used during the 2013 sample round should also be used in the 2014 sample round with the exception of the analysis of sodium (Na), calcium (Ca), potassium (K) and volatile fatty acids (VFAs) as these parameters provide limited benefit in the further evaluation of MNA at this site.

In addition, given there appears to be a decreasing temporal trend in TOC concentrations across the Site, GZA recommends a treatability study to evaluate whether the addition of an organic carbon amendment might restimulate natural attenuation by reductive dechlorination. The study would involve deployment of *in-situ* microcosms (Bio-Trap®, manufactured by Microbial Insights, Inc. of Rockford, Tennessee) "baited" with an organic carbon additive to evaluate whether reductive dechlorination can be re-stimulated. A work plan for the treatability study will be provided to NYSDEC for review and approval prior to

implementation. The methods, results, conclusions, and recommendations of that study would be reported in a letter report to be prepared following conclusion of the treatability study and the 2014 groundwater sampling event.

- (b) In March 2013, prior to the start of the Building 6 utility separation project, Delphi contracted with Op-Tech to complete hand auger borings to collect soil samples for chemical analysis. Hand augers were reportedly completed at nine (9) locations within the environmental easement. A total of nine (9) samples, one (1) composite sample at each location were submitted for analysis. These nine (9) locations, B-1, -2, -3, -4, -5, -7, -8, -22 and -23 are shown on Figure C120 in Appendix B. The purpose of the sampling was to characterize the soil for landfill disposal. The analysis included the following.
 - Target Compound Leachate Procedure (TCLP) VOCs;
 - TCLP Metals;
 - TCLP SVOCs;
 - Polychlorinated biphenyls; and
 - Flashpoint.

During the utility installations, soil was generated that was not returned to the excavation due to the following.

- Soil was not suitable for reuse as backfill (e.g., contained buried debris (fence post, rebar, clay-tile pipe) or it contained significant amount of top soil) as it could not be compacted to achieve required compaction requirements.
- Soil was not suitable for reuse as backfill as the moisture content was too high and it could not be compacted to achieve required compaction requirements.
- Due to the placement of the utility piping and/or controlled lowstrength material within the excavation, excess soil was generated.

Due to these conditions identified above, approximately 4,468 tons of soil was removed from the Site and disposed of at the Modern Landfill in Model City, New York.

A summary table of the analytical results from the hand augers completed within the environmental easement and a figure showing their approximate location is included with this PRR as Appendix E. No compounds or analytes were detected above their respective thresholds.

(c) On September 9, 2013, GMCH's contractor completed an excavation on the exterior of the southeast corner of Building 8 to repair a fire protection line riser pipe that was leaking. GZA field screened the soil being

removed from the excavation with an organic vapor meter (OVM). OVM readings ranged from 0 to 0.5 parts per million (ppm). There were no olfactory, visual and/or field screening evidence of impact to the soil excavated during the repair project. A field summary report, including field screening results is included in Appendix C.

4. Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.

Data summary tables associated with the annual MNA groundwater sampling report are included in Appendix D.

A data summary table associated with the analytical data from the hand augers completed within the environmental easement areas is included in Appendix E.

5. Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format.

The electronic submission of the PRR will include the results of analyses, copies of laboratory data sheets, and the required laboratory data deliverables for samples collected during the reporting period for the 2013 MNA groundwater sampling event and the hand auger waste characterization sampling.

- 6. A Site evaluation, which includes the following:
 - Compliance with the requirements of the ROD Site-selected remedy;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Site Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Site Monitoring Plan; and
 - The overall performance and effectiveness of the remedy.

As discussed in 3(a) above, there appears to be a decreasing temporal trend in TOC concentrations, but the indicator parameters provide evidence that anaerobic biodegradation of the COCs is controlling migration of impacted groundwater downgradient.

At this time, there are no recommendations to change the Site remedy or the Site Monitoring Plan. The Site is in compliance with the ROD, and MNA is still an effective remedy.

7. Identification, assessment and certification of all ECs/ICs [Engineering Controls/Institutional Controls²] required by the Record of Decision Site-selected remedy

There are no Engineering Controls (ECs) required under the ROD and the Institutional Controls (ICs) that apply to the Site are set forth in the recorded Environmental Easement. The ICs for the Site restrict the use of groundwater and require compliance with the SMP. There have been no changes to the SMP since it was approved by NYSDEC on October 13, 2011.

Certification of the Institutional and Engineering Controls³

For each institutional or engineering control identified for the Site, I certify⁴ that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering controls employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this control;
- Access to the Site will continue to be provided to the Department (with valid Safety Protocol Program Card) to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document⁵;
- Use of the Site is compliant with the Environmental Easement;

² See definition for *Engineering Control* at 6 NYCRR § 375-1.2 (o) and for *Institutional Control* at 6 NYCRR § 375-1.2 (aa).

³ The required Certification of the Institutional and Engineering Controls is set forth in Section 5.2 of the NYSDEC-approved SMP. It is to be used for the Periodic Review Report in lieu of the certifications noted in DER-10 at section 6.3 (d).

⁴ Certify is defined as a statement or declaration of a professional opinion based on the information, data and/or facts known at the time such certification is made.

⁵ Note that no financial assurance mechanism is in place for the Site remedial program.

- Any engineering control systems that have been installed as part of the remedial programs for the Site are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the ROD Site's selected remedy and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.
- I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Bart A. Klettke, P.E. of GZA GeoEnvironmental of New York, am certifying as Owner's Designated Site Representative for the Site.

Bart A. Klettke, P.E.

Principal

GZA GeoEnvironmental of New York

Date: January 9, 2014

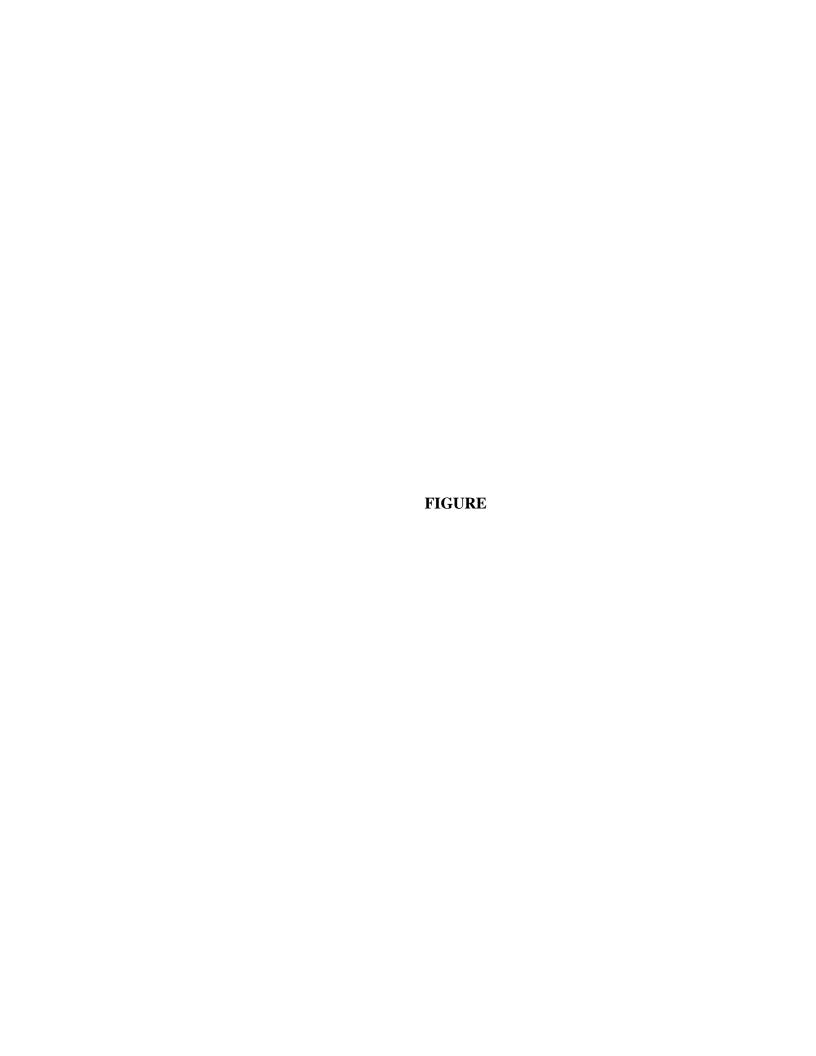
Figure 1: Site Plan

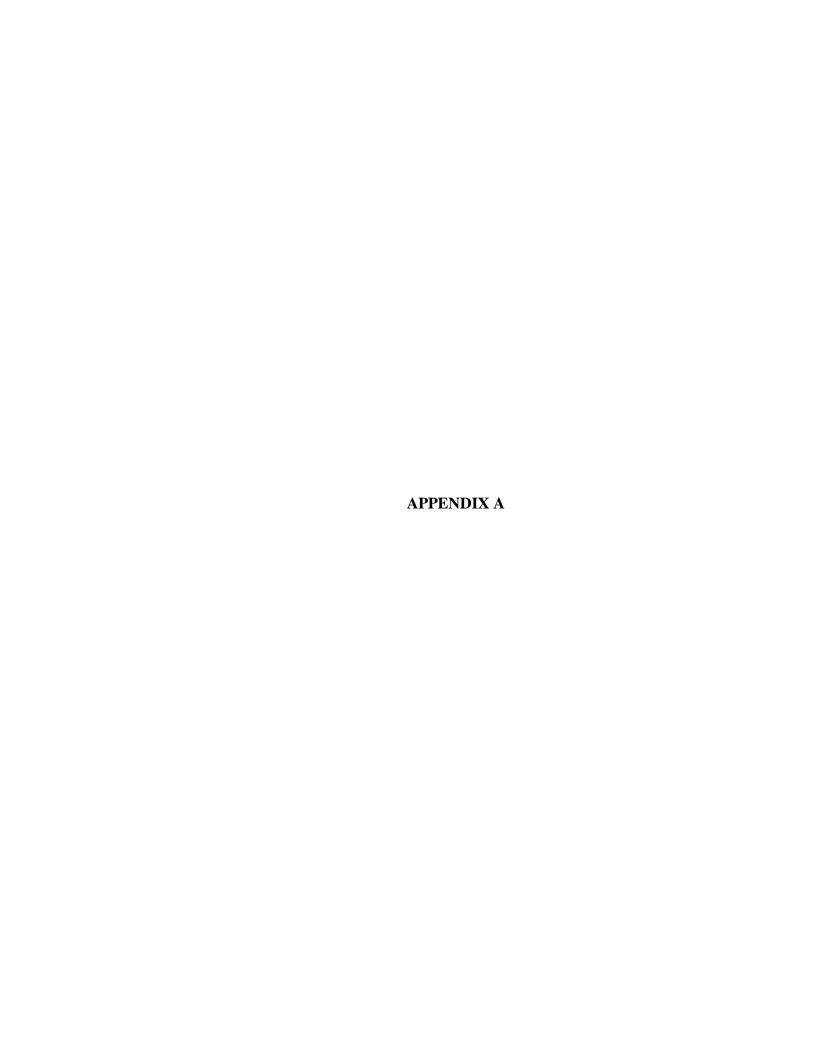
Appendix A: Site Inspection Form

Appendix B: Figure C120, Figure 2, NYSDEC SPDES Permit Acknowledgement and

Utility Separation Project Summaries & Photos

Appendix C: Fire Protection Line Riser Field Summary


Appendix D: May 2013 MNA Groundwater Sampling Report


Appendix E: Hand Auger Composite Sample Analytical Results Table & Lab Reports

cc: Brian Sadowski (NYSDEC, electronic copy only)

Jim Hartnett (GM, electronic copy only)

Roy Knapp (GMCH, electronic copy only)

		SITE DETAILS					
Site No.: 9-32-	113						
Site Name: Delph	ni Harrison Thermal Systems Site						
Site Address: 200 Upper Mountain Road, Lockport NY							
PERSON PERFORMING INSPECTION							
NAME: Christopher Boron OTHERS PRESENT: COMPANY: GZA GeoEnvironmental of NY		EMAIL: PHONE NUMBER:	716-844-7046	christopher.boron@gza.com 716-844-7046			
INSPECTION DATE AND SITE CONDITIONS							
INSPECTION DATE: WEATHER CONDITIONS:	6/26/2013 Sunny <u>mid-70s</u>	INSPECTION TIME:	1400				
REASON FOR SITE INSPECTION							
Scheduled Annual Inspection	YES	NO					
Inspection after a Severe Cor	ndition that could effect site contro	ols:	YES NO				
describe severe conditions triggering inspection:							
VERIFICATION OF SITE DETAILS							
Current Site Owner: GM Components Holdings, LLC (GMCH)							
Current Site Operators: GMCH							
Describe Current Site Use (cl	heck all that apply):						
Industrial	Commercial Reside	ntial Other					
briefly describe obser	ved site uses: Area within the	environmental easement was be	eing used as greenspace, par	king lot,			
material storage/staging area for the Building 6 utility separation project.							
Has some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since							
the initial/last inspecti		YES	NO				
If YES, is documentate	tion or evidence of documentation	submittal to NYSDEC attached	1?	YES			
Have any federal, state and/or local permits (e.g., building or discharge) been issued for the property since							
the initial/last inspecti	on?	YES	NO				
If YES, is documental	tion or evidence of documentation	submittal to NYSDEC attached	1?	YES			
Has a change in Site usage p	er NYCRR 375-1.11(d) occurred	since the last inspection?	YE	S NO			
	tion or evidence of documentation			YES			
Has any new information come to your attention to indicate that assumptions made in the qualitative exposure							
assessment for off-site contai		YES	NO				
If YES, is this informa	tion or evidence of submittal to N	YSDEC attached?		YES			
Note any additional pertinent information to Verification of Site Details (use additional pages if necessary):							

DESCRIPTION OF INSTITUTIONAL	ENGINE	RING CONTROLS				
Is Environmental Easement still in place?		NO				
If no, explain:						
Is the Site Management Plan in place? YES		NO				
If no, explain;						
AREAS IN NEED OF REPAIR	OR MAII	NTENANCE				
Area discussed in this section must be shown on a figure and have photograph						
At the time of the inspection, the Building 6 utility separation project was on-going. There are areas within the environmental easement						
where the ground has been distubed for the utility installation. As work progresses throughout the environmental easement area,						
measure are being taken backfill and restore ground surface conditions in the						
of the utility line installed within the environmental easement and photographs from various site visits.						
I INTRUSIVE ACTIVITIES PERFORMED AT SITE DURING INSPECTION PE	- DIOD	DATE	LOCATION			
Hand Auger Waste Chartacterization Sampling		March 28 & 29, 2013	Throughout Env Easement			
Removal of some Overhead Utility Trestle Lines and Footers		Late Feb - Early March 2013	East end of Env Easement			
Excavations for the Building 6 Utility Separation Project		April to Sept. 2013	Throughout Env Easement			
Excavation to Repair Leaking Fire Protection Line		Sept. 9 & 10, 2013	SE corner of Bldg 8			
REVIEW OF SITE F						
Are site records being properly generated and maintained?		YES	NO			
Provide summary of recordkeeping review and adequacy:						
GMCH Environmental Manager, Roy Knapp, maintains both hard copies and electronic copies of the site records per						
GM's Information Lifecycle Management system. The records are managed						
series ENV010, Hard copies are kept in a file cabinet in the Engineering office	ce and ele	ctronic copies reside on t	he environmental .			
shared ("S") drive						
ADDITIONAL NOTES & COMMENTS						
, is street, is a second secon						
Please note that figures, photographs and summaries for the various activites	s that occi	urred within the environme	ental easement area			
are included in Appendix B and C of the 2013 Periodic Review Report.						
INSPECTION CERTIFICATION						
INSPECTION CERTIFICATION						
hereby certly that the information included in this report is or	nmnlete an	d accurate to the best of my	knowledge			
I hereby certify that the information included in this report is complete and accurate to the best of my knowledge.						
Inspector Signature:	Date:	12/5/2013				
- I						

LEGEND:

APPROXIMATE LOCATION AND DESIGNATION OF MONITORING WELL

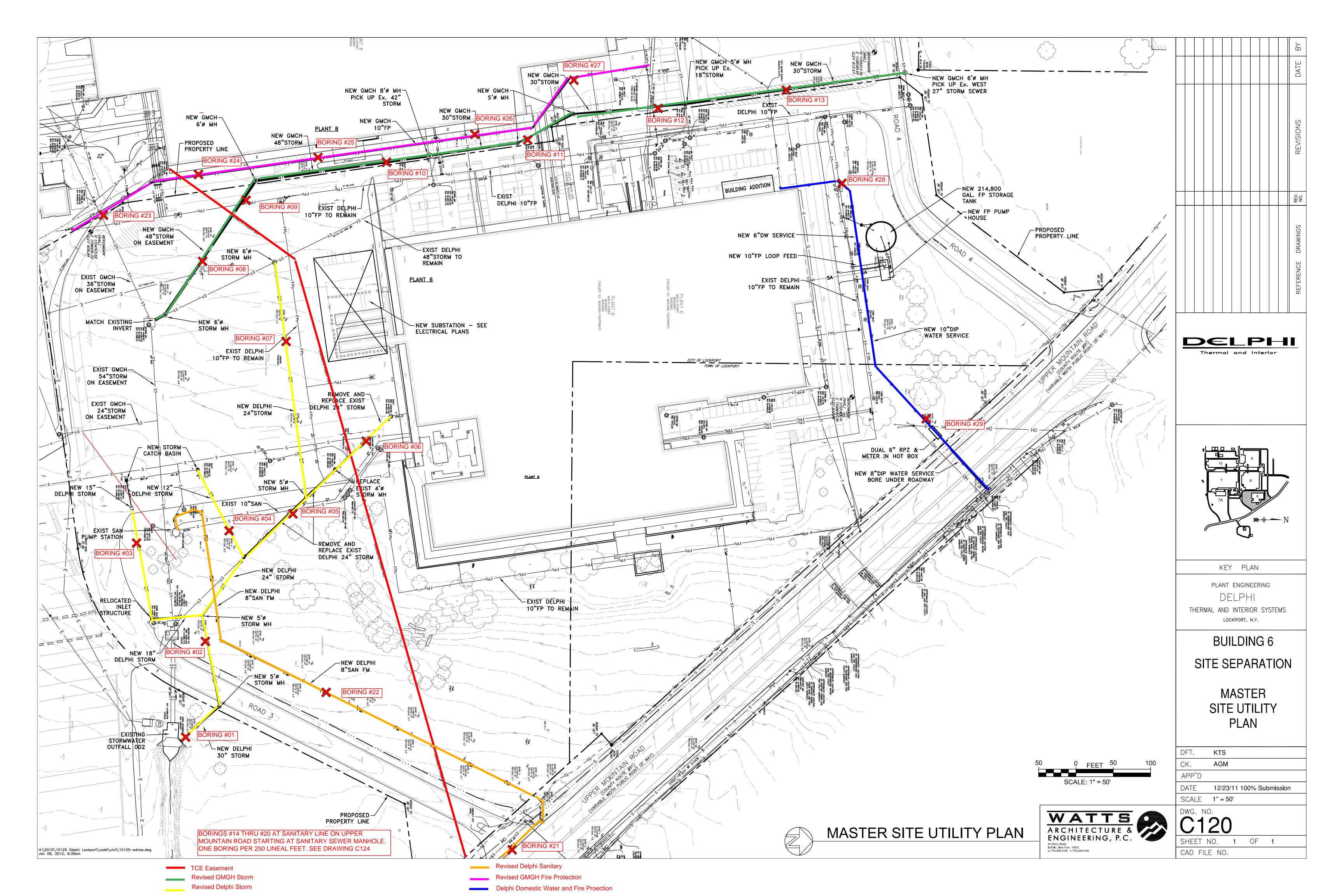
- 1. BASE MAP ADAPTED FROM A 2005 AERIAL PHOTOGRAPH DOWNLOADED FROM http://www.nysgis.state.ny.us/gateway/ mg/interactive_main.html AND SITE OBSERVATIONS.
- 2. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

DATE: DECEMBER 2013

DRAWN BY:

APPROXIMATE SCALE IN FEET

90


GM COMPONENTS HOLDINGS, LLC
PERIODIC REVIEW REPORT
DELPHI HARRISON THERMAL SYSTEMS SITE
200 UPPER MOUNTAIN ROAD, LOCKPORT, NEW YORK
SITE NUMBER 9-32-113

PROJECT No.

21.0056546.00

FIGURE No.

2

New York State Department of Environmental Conservation

Division of Water Permits 4th Flor

Bureau of Water Permits, 4th Floor

625 Broadway, Albany, New York 12233-3505 **Phone:** (518) 402-8111 • Fax: (518) 402-9029

Website: www.dec.ny.gov

4/12/2013

DELPHI AUTOMOTIVE SYSTEMS LLC STACEY JENNEVE 200 UPPER MOUNTAIN ROAD LOCKPORT NY 14094-

Re: ACKNOWLEDGMENT of NOTICE of INTENT for

Coverage Under SPDES General Permit for Storm

Water Discharges from CONSTRUCTION ACTIVITY General Permit No. GP-0-10-001

Dear Prospective Permittee:

This is to acknowledge that the New York State Department of Environmental Conservation (Department) has received a complete Notice of Intent (NOI) for coverage under General Permit No. GP-0-10-001 for the construction activities located at:

BUILDING 6 SITE SEPARATION 200 UPPER MOUNTAIN ROAD LOCKPORT NY 14094-

County: NIAGARA

Pursuant to Environmental Conservation Law (ECL) Article 17, Titles 7 and 8, ECL Article 70, discharges in accordance with GP-0-10-001 from the above construction site will be authorized 5 business days from 2/28/2013 which is the date we received your final NOI, unless notified differently by the Department.

The permit identification number for this site is: NYR 10W425. Be sure to include this permit identification number on any forms or correspondence you send us. When coverage under the permit is no longer needed, you must submit a Notice of Termination to the Department.

This authorization is conditioned upon the following:

- 1. The information submitted in the NOI received by the Department on 2/28/2013 is accurate and complete.
- 2. You have developed a Storm Water Pollution Prevention Plan (SWPPP) that complies with GP-0-10-001 which must be implemented as the first element of construction at the above-noted construction site.
- 3. Activities related to the above construction site comply with all other requirements of GP-0-10-001.

RECEIVED

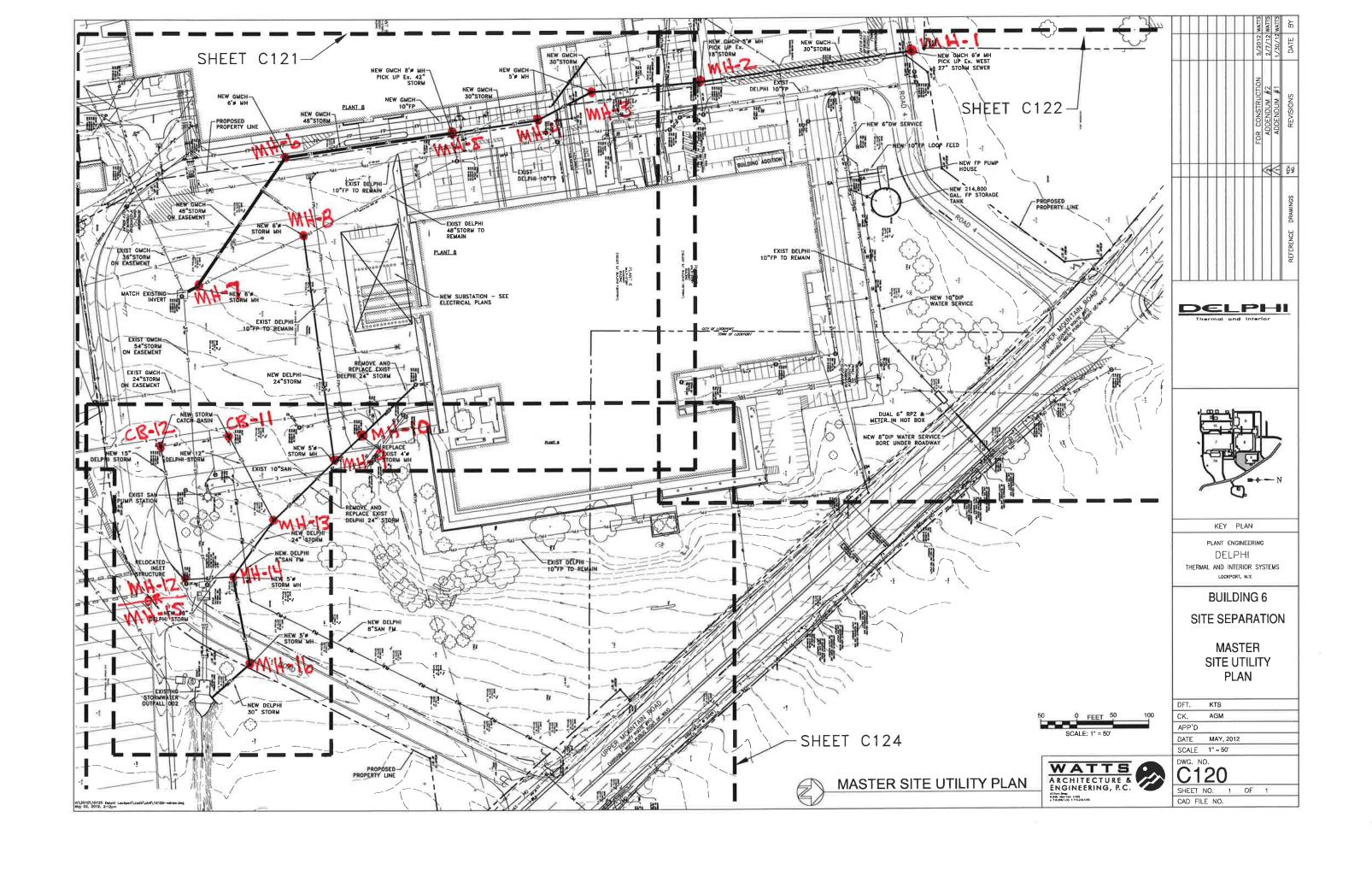
APR 18 2013

WATTS ARCHITECTURE & ENGINEERING

- 4. Payment of the annual \$100 regulatory fee, which is billed separately by the Department in the late fall. The regulatory fee covers a period of one calendar year. In addition, since September 1, 2004, construction stormwater permittees have been assessed an initial authorization fee which is now \$100 per acre of land disturbed and \$600 per acre of future impervious area. The initial authorization fee covers the duration of the authorized disturbance.
- 5. When applicable, project review pursuant to the State Environmental Quality Review Act (SEQRA) has been satisifed.
- 6. You have obtained all necessary Department permits subject to the Uniform Procedures Act (UPA). You should check with your Regional Permit Administrator for further information.
- *Note: Construction activities cannot commence until project review pursuant to SEQRA has been satisfied, when SEQRA is applicable; and, where required, all necessary Department permits subject to the UPA have been obtained.

Please be advised that the Department may request a copy of your SWPPP for review.

Should you have any questions regarding any aspect of the requirements specified in GP-0-10-001, please contact Dave Gasper at (518) 402-8114 or the undersigned at (518) 402-8109.


Sincerely,

low hoffe

Toni Cioffi
Environmental Program Specialist 1

cc: RWE - 9
SWPPP Preparer

WATTS ARCHITECTURE & ENGINEERING MATRICARDI ALAN 95 PERRY STREET, SUITE 300 BUFFALO NY 14203-

Christopher Boron

From: Christopher Boron

Sent: Wednesday, May 08, 2013 12:58 PM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: Structure Location Figure.pdf; Elevation difference from MH-12-15 and existing to be

abandon.JPG; MH-12 -15 and existing CB to be abandoned looking south.JPG

Hi Jim,

Just want to give you an update on the Bldg 6 Utility Separation project. We have been stopping out to the site on occasion since the start of work. Those dates are as follows: April 16th, 24th, 26th, 29th, May 2nd and 7th. I will send all the pictures we have taken during these visits by date once I have reduced their size (currently 3 MB or larger each).

The work areas during our visits consist of the following. I attached a figure with the structure locations hand written for ease of locating the various structures.

April 16th: Work between Outfall D002 and Road 3

April 24th: Asphalt patch of Road 3

April 26th: Work around MH-14 towards MH-13 and MH-12-15 April 29th: Work from MH-14 to MH-13 and MH-12-15 to CB-12.

May 2nd: Work north of MH-13

May 7th: Work north and west of MH-9

The contractor appears to be following the profiles that were provided, identifying the locations and height of CLSM placement. They have been encountering bedrock at heights above what was provided to them by Delphi from the boring that were previously completed. During my site visits, I have not observed anyone from SJB or Delphi onsite.

A concern we brought to their attention during the April 29th visit, which was also brought up during the April 30th Utility Separation Project conference call, was the height of MH-12-15 (it has two designations #12 or #15 depending on the drawing) relative to the existing catch basin that is going to be replaced. There is approximately 8 to 10 inches difference in elevation between to two structures (see attached photo). The new MH-12-15 will potentially require a slight change in Road 3 grade in order to get water to properly drain from the shoulder of the road in this area to avoid ponding. The top of MH-12-15 elevation is very close to the crown of the Road 3 elevation. Delphi was going to review the situation with the design engineer and assess the concern.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

Christopher Boron Senior Project Manager

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, New York 14203 716-844-7046 (Direct) 716-685-2300 Ext. 7046 (Office) 716-570-5990 (Cell) 716-685-3629 (Fax) christopher.boron@gza.com

4/16/2013: Concrete core from Outfall D002 Headwall

4/16/2013: Excavation north of Outfall D002 looking south

4/16/2013: Outfall D002 headwall pipe penetration

4/24/2013: Road 3 Cut Asphalt Repair

4/26/2013: Installing pipe from MH-14 to MH-12-15 looking east



4/26/2013: MH-14 & 24-inch diameter pipe looking southeast

4/26/2013: MH-14 looking east

4/26/2013: Outfall D002 to MH-16 backfilled looking north

4/29/2013: Backfill around MH-14

4/29/2013: Breaking bedrock near CB-12 looking west

4/29/2013: Elevation difference from MH-12-15 and existing to be abandoned

4/29/2013: Flowable fill around pipe from MH-14 to MH-13 looking northeast

4/29/2013: MH-12-15 and existing catch basin to be abandoned looking south

4/29/2013: MH-12-15 to CB-12 looking west – backfill and stone placement

4/29/2013: MH-13 and pipe to MH-14 with flowable fill around pipe looking southeast

4/29/2013: MH-13

5/2/2013: Backfill around pipe from MH-13 to MH-9

5/2/2013: Backfilling to grade near MH-13

5/2/2013: Excavating north of MH-9

5/2/2013: Excavation north of MH-9 looking south

5/2/2013: MH-9 looking west

5/2/2013: MH-13 looking southeast

5/2/2013: Pipe from MH-9 to MH-13 looking south

5/2/2013: Soil stockpile for excavation near MH-9

5/2/2013: Utility lines encountered south of MH-9

5/2/2013: Excavation north of MH-9 looking south

5/7/2013: Backfill from MH-9 to MH-10 looking north

5/7/2013: Broken bedrock in excavation from MH-9 to MH-8 looking west

5/7/2013: CB-11 looking east towards MH-13

5/7/2013: CB-11 looking west

5/7/2013: Flowable fill placement north of MH-10

5/7/2013: Flowable fill placement north of MH-10 looking northwest

5/7/2013: Excavation, backfill and pipe from MH-9 to MH-8 looking west

5/7/2013: Flowable fill placement around MH-9 looking east

5/7/2013: MH-10 & MH-9 and piping looking southeast

5/7/2013: Pipe north of MH-10 looking southeast

5/7/2013: Piping west of MH-9 looking east

Christopher Boron

From: Christopher Boron

Sent: Tuesday, May 14, 2013 2:02 PM
To: Jim Hartnett: Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: water divert from MH-B during tie in.JPG; approximate location MH-8 - to be installed looking

south.JPG; compacting fine grained soil east of MH-8 lloking northeast.JPG; compacting fine grained soin east of MH-8 looking east.JPG; excavation and piping up to MH-8-to be installed, looking west.JPG; excavation to tie into existing MH-B looking north.JPG; excavator over MH-B looking southeast.JPG; existing 48-inch concrete storm sewer in vicinity of MH-8 looking southwest.JPG; fine grain soil pile for backfill from excavation between MH-8 and 9 looking west.JPG; MH-9 looking northwest.JPG; MH-9 looking west.JPG; MH-14 and 13 looking

northwest.JPG

Jim/Roy,

I was on-site this morning to observe the Building 6 Utility Separation work. The contractor was working in two area:

- 1) between MHs-8 and 9 and
- 2) north of MH-10 in the vicinity of existing MH-B which will remain in place.

Photographs of the work are appended.

The contractor appears to be following the profiles that were provided, identifying the locations and height of CLSM placement. Bruce Witherel (R&P Oak Hill) indicated that yesterday (5/13/2013) was the first day they encountered finegrain soil that could be used as backfill while working on the storm line between east of MH-9 towards MH-8. SJB was onsite this morning taking moisture and density tests with a Troxler gauge of the backfilled fine-grain soil after compaction. Material was sent to SJB to establish a proctor for the testing.

Bruce also indicated that they ordered a new concrete top for MH-12-15 which will have a grated top built into the concrete. This will lower the elevation of this structure about 8 inches to address the concern we raised regarding the difference in elevation between the new MH-12-15 installed and the existing to be decommissioned. There will still be a need to raise the grade abound the new MH-12-15, but not as much with the new concrete top.

The contractor has mobilized a crusher to the site. The bedrock encountered and removed during the excavations is going to be crushed on-site and reused as the gravel backfill, rather than importing crushed stone from off-site. These activities have yet to begin.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

Christopher Boron
Senior Project Manager
GZA GeoEnvironmental of NY
535 Washington Street
11th Floor
Buffalo, New York 14203
716-844-7046 (Direct)
716-685-2300 Ext. 7046 (Office)
716-570-5990 (Cell)
716-685-3629 (Fax)

5/14/2013: Approximate location of MH-8 – to be installed looking south

5/14/2013: Compacting fine grained soil east of MH-8 looking northeast

5/14/2013: Compacting fine grained soil east of MH-8 looking east

5/14/2013: Excavation and piping up to MH-8 – to be installed looking west

5/14/2013: Excavation to tie into existing MH-B looking north

5/14/2013: Excavator over MH-B looking southeast

5/14/2013: Existing 48" concrete storm sewer in vicinity of MH-8 looking SW

5/14/2013: MH-9 looking northwest

5/14/2013: MH-14 and MH-13 looking northwest

5/14/2013: Fine grain soil pile for backfill from excavation between MH-8 and MH-9 looking west

5/14/2013: MH-9 looking west

5/14/2013: Water divert form MH-B during tie-in

Christopher Boron

From: Christopher Boron

Sent: Tuesday, May 21, 2013 9:58 AM

To: Jim Hartnett; Roy Knapp Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: Processed bedrock pile looking east.JPG; Area view of MH-12-15 looking NE.JPG; crushed

bedrock pile between MH-8 and MH-9 looking NE.JPG; crushed concrete and backfilled storm line from MH-8 towards MH-9 looking east.JPG; Existing MH-B towards MH-10 looking

SE.JPG; Fire Supression line encountered and repaired during work near MH-8 looking west.JPG; MH-8 and 42-inch concrete line looking east.JPG; MH-8 and connection to existing 42-inch diameter concrete storm line looking west.JPG; MH-8 and existing 42-inch diameter

line looking west.JPG; New grated top for MH-12-15 looking NE.JPG

Jim/Roy,

I was on-site Thursday, May 16th to observe the Building 6 Utility Separation work. The contractor was working on the storm water line in the vicinity of MH-8. They had tied into the existing 42-inch diameter concrete line, which now is connected to MH-8. The encountered a fire suppression line which was damaged and repaired while working in the vicinity of MH-8. The line was orientated in a north-south direction. Photographs of the work are appended.

They were going to finish up the work around MH-8 on Friday and begin work on MH-7 and the new GMCH store line on Monday (May 20th).

The new concrete top for MH-12-15 was delivered and installed, which lowered the elevation of this structure.

The contractor had crushed bedrock removed from the excavations. Piles were stockpile on the asphalt between MH-8 and MH-9. Bruce Witherel (R&P Oak Hill) indicated that this material will be used backfill excavation to within 1 to 2 feet of ground surface and runner crush stone will be brought in to finish grades before surface restoration.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

Christopher Boron
Senior Project Manager
GZA GeoEnvironmental of NY
535 Washington Street
11th Floor
Buffalo, New York 14203
716-844-7046 (Direct)
716-685-2300 Ext. 7046 (Office)
716-570-5990 (Cell)
716-685-3629 (Fax)
christopher.boron@gza.com

5/16/2013: Area view of MH-12-15 looking northeast

5/16/2013: Crushed bedrock pile between MH-8 and MH-9 looking northeast

5/16/2013: Crushed concrete and backfilled storm line from MH-8 towards MH-9 looking east

5/16/2013: Existing MH-B towards MH-10 looking southeast

5/16/2013: Fire suppression line encountered and repaired during work near MH-8 looking west

5/16/2013: MH-8 and 42-inch concrete line looking east

5/16/2013: MH-8 and connection to existing 42-inch diameter concrete storm line looking west

5/16/2013: MH-8 and existing 42-inch diameter line looking west

5/16/2013: New grated top for MH-12-15 looking northeast

5/16/2013: Processed bedrock pile looking east

From: Christopher Boron

Sent: Wednesday, May 22, 2013 11:43 AM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: Existing storm structure MH-A that was tied into with 48-inch storm line looking SW.JPG; fire

Supression line encountered in excavation between MH-7 and MH-6 looking west.JPG; flowable fill backfill between MH-6 and MH-7 looking SE.JPG; Gravel layer encountered near location of MH-6 looking west.JPG; Monitoring Well MW-4 looking NW.JPG; NYSEG pole and work near well G-1 looking NW.JPG; NYSEG work along Upper Mountain Road east of MW-14 looking NE.JPG; NYSEG work near monitoring well G-1 looking north.JPG; NYSEG work near monitoring well MW-15 looking SE.JPG; NYSEG work on east side of Upper Mountain Road looking east.JPG; placeing trench box in excavation in vicinity of MH-6 looking NW.JPG; profile of excavation adjacent to MW-4 looking NW.JPG; Soil being loaded out for landfill from excavation between MH-6 and MH-7 looking SE.JPG; Varios soil types encountered in excavation between MH-6 looking south JPG: 48-inch storm line and fire supression line within

between MH-7 and MH-6 looking south.JPG; 48-inch storm line and fire supression line within excavation between MH-6 and MH-7 looking SE.JPG; 48-inch storm lines entering and exiting MH-7.JPG; Backfill arounf MH-8 looking east.JPG; Backfilling excavation near MW-4 looking SE.JPG; compating backfill in vicinity of MH-7 looking SE.JPG; Delphi storm sewer discharge at headwall of Outfall D002 looking north.JPG; Density testing by SJB on backfill in vicinity of MH-7 looking south.JPG; Excavation backfill from MH-7 looking SE.JPG; Excavation between MH-6 and MH-7 looking NW.JPG; Excavation markout for storm line from MH-6 to MH-5

looking south.JPG

Hi Jim,

I visited the site this morning to observe the Building 6 Utility Separation work. The contractor was working on the new GMCH 48-inch storm water line between MH 7 and MH-6. They had tied into the existing structure, MH-A, and installed MH-7 on May 20th and 21st. They encountered a fire suppression line (orientated in a north-south direction) which crossed the excavation south of where MH-6 is to be installed. Water was observed leaking into the excavation from the backfill around the fire suppression line.

Bruce Witherel (R&P Oak Hill) indicated that the soil material being excavated between MH-7 and MH-6 was not going to be used for backfill. The fill material was non-cohesive soil containing random debris (topsoil, gravels, wire, wood, etc.) or in the case of the fine grained clayey soil encountered nears MH-6, they were too wet. The soil was being taken to Modern Disposal facility.

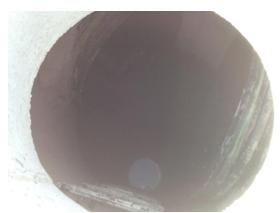
I observed some water entering the excavation from some gravelly soils encountered in the vicinity where MH-6 is to be installed. The fine grained clayey soil encountered nears MH-6, which were stockpile outside the excavation appeared to have a high moisture content. A trench box was installed by the contractor in this location because the side walls of the excavation were sliding into the excavation.

NYSEG were also on-site installing electric poles; in the vicinity of monitoring well G-1 (near Bldg 6), along Upper Mountain Road, east of MW-14, and the east side of Upper Mountain Road (across the street from the facility).

Photographs of the work are appended.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris


5/22/2013: 48-inch storm line and fire suppression line within excavation between MH- and MH-7 looking SE

5/22/2013: Backfill around MH-8 looking east

5/22/2013: Compacting backfill in vicinity of MH-7 looking southeast

5/22/2013: 48-inch storm lines entering and exiting MH-7

5/22/2013: Backfilling excavation near MW-4 looking southeast

5/22/2013: Density testing by SJB on backfill in vicinity of MH-7 looking south

5/22/2013: Excavation backfill from MH-7 looking southeast

5/22/2013: Excavation between MH-6 and MH-7 looking northwest

5/22/2013: Excavation markout for storm line from MH-6 to MH-5 looking south

5/22/2013: Excavation profile near location of MH-6 looking west

5/22/2013: Existing storm structure MH-A that was tied into with 48-inch storm line looking southwest

5/22/2013: Fire suppression line encountered in excavation between MH-7 and MH-6 looking west

5/22/2013: Flowable fill backfill between MH-6 and MH-7 looking south

5/22/2013: Gravel layer encountered near location of MH-6 looking west

5/22/2013: Monitoring well MW-4 looking northwest

5/22/2013: NYSEG pole and work near well G-1 looking northwest

5/22/2013: NYSEG work along Upper Mountain Road east of MW-14 looking northeast

5/22/2013: NYSEG work near monitoring well G-1 looking north

5/22/2013: NYSEG work near monitoring well MW-15 looking southeast

5/22/2013: Profile of excavation adjacent to MW-4 looking northwest

5/22/2013: Soil pile from excavation between MH-6 and MH-7 looking southeast

5/22/2013: Placement of trench box in excavation in vicinity of MH-6 looking northwest

5/22/2013: Soil being loaded out for landfill from excavation between MH-6 and MH-7 looking west

5/22/2013: Various soil types encountered in excavation between MH-7 and MH-6 looking south

From: Christopher Boron

Sent: Thursday, May 30, 2013 4:58 PM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: substation electrical trench to pole south of Bldg 6 looking east.JPG; 48-inch storm sewer

piping in storage area.JPG; Backfill around MH-7 looking northwest.JPG; barricaded strom sewer excavation north of MH-6 looking south.JPG; elecatrical conduit trench to new substation from power pole south of Bldg 6 looking east.JPG; Electrical conduit trench from pole to new substation south of Bldg 6 looking west.JPG; force main excavation northwest of existing pump station looking south.JPG; force main excavation northwest of MW-10 crossing under electrical conduit to pump station looking east .JPG; force main pipe placement north of pump station looking west.JPG; Guide wires installed to secure electric pole installed south of

MW-15.JPG; New substation excavation by Schuler Haas south of Bldg 6 looking north.JPG; storm sewer excavation and MH-6 looking south.JPG; storm sewer excavation north of MH-6

looking north.JPG

Hi Jim,

I visited the site yesterday afternoon to observe the Building 6 Utility Separation work. The contractor had stopped work for the day on the new GMCH 48-inch storm sewer line north of MH-6. They had encountered some gravely soils near Bldg 8 which were caving into the excavation. Due to the depth of the excavation and the gravelly soil conditions, they were waiting on some additional trench boxes before continuing the work in this area.

Steve Stang (foreman for Zoladz) indicated the soil encountered earlier in the day, north of MH-6, near the top of bedrock interface contained topsoil, barbed wire and other debris. He also indicated that the soil, near the bedrock, had an odor to it. He could not identify what the odor resembled but felt it was not a petroleum-type. I asked if the odor was sweet (similar to chlorinated solvents), he was certain it was not. There was none of this soil onsite at the time of my visit and it was difficult to see into the excavation with the trench box in place.

Because the excavation activities on the storm sewer had stopped, they began to work on the force main excavation in the area northeast of monitoring well, MW-10, and north of the existing pump station.

Schuler Haas had excavated in the vicinity of the new substation to be installed and the electrical conduit trench from the electric pole to the substation, south of Bldg 6. These activities were not ongoing at the time of my visit.

NYSEG has installed the support wires on the electrical poles at the site. These activities were not ongoing at the time of my visit.

Photographs of the work are appended.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

Christopher Boron
Senior Project Manager
GZA GeoEnvironmental of NY
535 Washington Street
11th Floor

5/29/2013: 48-inch storm piping in storage area

5/29/2013: Backfill around MH-7 looking northwest

5/29/2013: Barricaded storm sewer excavation north of MH-6 looking south

5/29/2013: Electrical conduit trench to new substation form power pole south of Bldg 6 looking east

5/29/2013: Electrical conduit trench from pole to new substation south of Bldg 6 looking west

5/29/2013: Force main excavation northwest of existing pump station looking south

5/29/2013: Force main excavation northwest of MW-10 crossing under electrical conduit to pump station looking east

5/29/2013: Guide wires installed to secure electric pole installed south of MW-15

5/29/2013: Force main excavation northwest of MW-10 crossing under electrical conduit to pump station looking east

5/29/2013: New substation excavation by Schuler Haas south of Bldg 6 looking north

5/29/2013: Storm sewer excavation north of MH-6 looking north

5/29/2013: Substation electrical trench to pole south of Bldg 6 looking east

From: Christopher Boron

Sent: Monday, June 10, 2013 9:35 AM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: asphalt and concrete cut looking south.JPG; Asphalt and concrete removed and replaced with

crushed bedrock to prevent ponding looking north.JPG; backfill along force main excavation looking east.JPG; backfill of force main excavation at Road 3 and Upper Mountain Road looking south.JPG; backfill of force man excavation at Road 3 and Upper Mountain Road looking north.JPG; backfilled force main area and silt fence looking west.JPG; backfilling electrical conduit for light pole looking south.JPG; backfilling force main area looking west .JPG; cleanout for force main near MH-10 looking east.JPG; elctrical conduit trench for light pole crossing over electrical conduit from pole to new substation looking east.JPG; electrical conduit placement and backfill looking south.JPG; force main excavation and lift station looking east.JPG; force main pipe to be tied into lift station looking south.JPG; MH-12-15 with elevated grades looking northeast.JPG; MW-8-4 near asphalt and concrete cut looking east.JPG; New GMCH 48-inch pipe between MH-5 and MH-6 looking south.JPG; powerline to pole installed & force main area looking east.JPG; Road sweeper Road 3 looking northwest.JPG; storm water swale south of Road 3 looking south.JPG; subsab prepation at new substation looking east.JPG; temporary silt dams in swale along Upper Mountain Road

looking south.JPG; temporary stormwater drainage in swale along Upper Mountain Road

looking southwest.JPG

Hi Jim.

I visited the site on Friday morning to observe the Building 6 Utility Separation work.

No excavation activities had occurred on the new GMCH 48-inch storm sewer line north of MH-6 since my last visit on May 29th. The contractor is still waiting on stackable trench boxes before proceeding. However, they did remove the asphalt and concrete present at ground surface for the 48-inch storm sewer line excavation. After, the asphalt and concrete were removed it was backfilled with crushed bedrock to prevent ponding of storm water.

The contractor continued to work on the force main line installation while waiting for the trench boxes. The force main line from the lift station (in the general vicinity of MW-10) east to Upper Mountain Road had been installed and backfilled. When I was onsite, they were finishing the backfill of the force main line that went under Road 3.

The contractor was also backfilling an electrical conduit line that went from the south side of Building 6 to a light pole in the central portion of the parking lot, south of Building 6. Work continues on the preparation of the sub-base of the new substation. NYSEG has installed the electrical line to the new electrical poles that have been installed.

Photographs of the work are appended.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

Christopher Boron
Senior Project Manager
GZA GeoEnvironmental of NY
535 Washington Street
11th Floor
Buffalo, New York 14203

6/7/2013: Asphalt and concrete removed and replaced with crushed bedrock to prevent ponding looking north

6/7/2013: Backfill of force main excavation at Road 3 and Upper Mountain Road looking south

6/7/2013: Backfilling electrical conduit for light pole looking south

6/7/2013: Force main pipe to be tied into lift station looking south

6/7/2013: New GMCH 48-inch pipe between MH-5 and MH-6 looking south

6/7/2013: Sub-slab preparation at new substation location looking east

From: Christopher Boron

Sent: Thursday, June 27, 2013 2:02 PM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: Asphalt patch on Road 3 looking north.JPG; Backfill along Upper Mountain Road looking

north.JPG; backfilled force main excavation along Upper Mountain Rd looking south.JPG; covering force main excavation with plates, end of day, looking south near Road 2.JPG; Flowable fill backfill in excavation along Upper Mountain Road between Roads 2 & 3 looking north.JPG; Force main installation along Upper mountain Rd between Roads 2 & 3 looking south.JPG; MW-13 in vicinity of force main looking south.JPG; Site prep work at substation looking east.JPG; soil stockpile south of Bldg 6 looking east.JPG; stockpile staging area south

of Bldg 6 looking southeast.JPG

Jim, Roy & Denis,

Please delete the last email and photo update I sent you earlier today. Some of the photographs and roads identified were mislabeled.

The attached photographs have been revised along with the text below. Sorry about that.

I visited the site on Tuesday, June 18th to observe the Building 6 Utility Separation work.

No additional excavation activities have occurred on the new GMCH 48-inch storm sewer line north of MH-6 since my last visit on May 29th. The contractor continued to work on the force main line installation between Roads 2 and 3. The excavation activities at the time of my visit were just north of Road 2. The contractor shifted the location of the force main line and avoided monitoring well, MW-13. When I was onsite, they were beginning to cleanup for the day and were covering the open excavation along Upper Mountain Road with steel plates.

Work continues on the preparation of the sub-base of the new substation. However, no activities were ongoing while I was on-site. Photographs of the work are appended.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

6/18/2013: Asphalt patch on Road 3 looking north

6/18/2013: Covering force main excavation with plates, end of work day, looking south near Road 2

6/18/2013: Flowable fill backfill in excavation along Upper Mountain Road between Roads 2 & 3 looking north

6/18/2013: MW-13 in vicinity of force main looking south

6/18/2013: Site preparation work at substation looking east

From: Christopher Boron

Sent: Thursday, June 27, 2013 2:14 PM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: Stone subbased installed in raodway cut at Road 1 looking south.JPG; Asphalt patch at Road

2 looking north.JPG; Breaking bedrock south of Road 1.JPG; Cleanout pipe installed north of Road 2 looking south.JPG; concrete pads and conduits installed in substation area looking northwest.JPG; Excavation backfill along Upper Mountain Road south of Road 2 looking south.JPG; Force main backfill and swale south of Road 1 looking south.JPG; force main installation, flowable fill and soil removal in excavation along Upper Mountain Rd south of Road 1 looking south.JPG; Ground cover restoration near electric pole within Env Easement area near Upper Mountain Rd looking east.JPG; Ground cover, tree removal within Env Easement Area looking north along Upper Mountain Rd.JPG; Large bedrock pieces removed from excavation along Upper Mountain Rd north of Road 1.JPG; Sediment traps installed in

swale along Upper Mountain Rd south of Road 1 looking south.JPG

Hi Jim,

I visited the site on Wednesday, June 26th to observe the Building 6 Utility Separation work.

No additional excavation activities have occurred on the new GMCH 48-inch storm sewer line north of MH-6 since my last visit on May 29th. The contractor continued to work on the force main line installation south of Road 1. The excavation activities at the time of my visit were just south of Road 1 approximately 200 feet from the tie-in location. The contractor indicated that the bedrock was about 18-inches higher and much harder in the area south of where the stream leaving the site goes under Upper Mountain Rd to the area they are working in south of Road 1.

Work continues on the preparation of the sub-base of the new substation. However, no activities were ongoing while I was on-site. Photographs of the work are appended.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

Christopher Boron Senior Project Manager

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, New York 14203 716-844-7046 (Direct) 716-685-2300 Ext. 7046 (Office) 716-570-5990 (Cell) 716-685-3629 (Fax) christopher.boron@gza.com

6/26/2013: Breaking bedrock south of Road 1

6/26/2013: Force main backfill and swale south of Road 1 looking south

6/26/2013: Sediment traps installed in swale along Upper Mountain Rd. south of Road 1 looking south

6/26/2013: Concrete pads and conduits installed in substation area looking northwest

6/26/2013: Force main installation, flowable fill and soil removal in excavation at Upper Mountain Rd. south of Road 1 looking south

6/26/2013: Stone subbase installed in roadway cut at Road 1 looking south

From: Christopher Boron

Sent: Monday, July 01, 2013 4:32 PM
To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: top of GMCH sanitary sewer looking west.JPG; flowable fill placement in force main

excavation south of Road 1 looking northwest.JPG; force main excavation broken and competent bedrock south of Road 1 looking east.JPG; force main installation south of Road 1 looking north.JPG; force main installation south of Road 1 looking southeast.JPG; GMCH sanitary sewer line and gas line exposed along Upper Mountain Rd looking east.JPG; hole observed on top of GMCH sanitary sewer line.JPG; looking into sanitary MH-1 looking west.JPG; pipe clamp used to connent corregated pipe on GMCH sanitary sewer line.JPG; Placing Sanitary MH-1 over GMCH sanitary line south of Road 1 looking south.JPG; removing fractured bedrock in vicinity of GMCH sanitary line looking south.JPG; removing MH-1 cover over top of GMCH sanitary sewer looking north.JPG; sand, gravel & fractured bedrock backfill around GMCH sanitary sewer .JPG; Sanitary MH-1 excavation final grade around GMCH

sanitary sewer looking south.JPG

Hi Jim,

I visited the site on Monday, July 1st to observe the Building 6 Utility Separation work.

No additional excavation activities have occurred on the new GMCH 48-inch storm sewer line north of MH-6 since my last visit on May 29th. The contractor continued to work on the force main line installation south of Road 1. The excavation activities at the time of my visit were at two locations; 1) approximately 100 feet from the sanitary tie-in location and 2) at the actual tie-in location. The contractors excavated to grade around the existing GMCH sanitary sewer line and placed MH#1 over the top in preparation for the tie-in.

A hole was observed on the top of the GMCH sanitary sewer line. It is pointed out in the photograph title "hole observed on top of GMCH sanitary sewer line". The contractor did not know if the hole was caused by the excavation activities to expose the line. The contractor use shovels to remove excess dirt from around the GMCH sanitary pipe. I spoke with the two gentlemen that removed the excess soil and they did not see any other holes or perforations in the GMCH sanitary line. I did not observe any others from the top of the excavation. The top portion of the pipe where the hole was observed will be removed to complete the tie-in, so it was not repaired.

The previous backfill around the existing GMCH sanitary sewer appeared to be a little sand and gravel type material and fractured bedrock. No odors or staining were observed in the area of this pipe.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

Christopher Boron
Senior Project Manager
GZA GeoEnvironmental of NY
535 Washington Street
11th Floor
Buffalo, New York 14203

7/1/2013: Force main installation south of Road 1 looking southeast

7/1/2013: GMCH sanitary sewer line and gas line exposed along Upper Mountain Rd. looking east

7/1/2013: Hole observed on top of GMCH sanitary sewer line

7/1/2013: Removing fractured bedrock in vicinity of GMCH sanitary line looking south

7/1/2013: Sand, gravel & fractured bedrock backfill around GMCH sanitary sewer line

7/1/2013: Placing sanitary MH-1 over GMCH sanitary line south of Road 1 looking south

From: Christopher Boron

Sent: Wednesday, July 10, 2013 1:37 PM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: substation area looking northeast.JPG; asphalt patch across Road 1 looking south.JPG;

drainage swale after force main backfill south of Road 1 looking south.JPG; drainage swale and top of swale south of Road 1 looking south.JPG; flowable fill placement around GMCH New 48-inch Storm sewer line looking south.JPG; force main new MH-1 (doghouse) south of Road 1 looking north.JPG; GMCH sanitary manhole near Upper Mountain Rd south of Road 1 looking east.JPG; MW-7-4 in vicinity of force main work area looking southeast.JPG; New GMCH 48-inch storm sewer line excavation looking north.JPG; processed and bedrock piles from force main excavation work looking southeast.JPG; Soil pile for disposal at Modern Landfill looking south.JPG: storm drain in swale south of Road 1 .JPG; substation area looking

east.JPG

Hi Jim,

I visited the site on Tuesday, July 9th to observe the Building 6 Utility Separation work.

Excavation activities have restarted on the new GMCH 48-inch storm sewer line north of MH-6, as the contractor had completed the force main installation along Upper Mountain Road. The excavation activities at the time of my visit were between MHs 5 & 6, east of Building 8 (in the vicinity of the entrance canopy). Flowable fill was being placed around the new 48-inch diameter pipe during the visit. Soil was also being loaded for disposal at Modern Landfill.

No activities were ongoing in the vicinity of the new substation while I was on-site, but it appears the pad preparation is near complete.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

7/9/2013: Flowable fill placement around GMCH new 48-inch storm sewer line looking south

7/9/2013: New GMCH 48-inch storm sewer line excavation looking north

7/9/2013: Soil pile for disposal at Modern Landfill looking south

7/9/2013: Substation area looking east

7/9/2013: Force main new MH-1 (doghouse) south of Road 1 looking south

7/9/2013: Drainage swale and top of swale south of Road 1 looking south

From: Christopher Boron

Sent: Friday, July 12, 2013 4:27 PM **To:** Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: welded steel pipe to be used for on-site stream crossing for force main pipe looking

north.JPG; backfilled excavation for GMCH 48-inch storm sewer line between Bldgs 6 and 8 looking north.JPG; breaking bedrock for GMCH 48-inch storm sewer line looking north.JPG; flowable fill and broken bedrock in excavation for GMCH 48-inch storm sewer line looking southeast.JPG; flowable fill around force main at Upper Mountain Road near on-site stream crossing looking east.JPG; MW-8-4 in vicinity of pavement cut for 48-inch GMCH storm sewer

looking south.JPG; sheepsfoot compacting GMCH 48-inch excavation backfill looking

northeast.JPG; trench box and flowable fill in GMCH 48-inch storm sewer excavation looking

north.JPG

Hi Jim,

I visited the site today, Friday, July 12th to observe the Building 6 Utility Separation work.

Excavation activities continued on the new GMCH 48-inch storm sewer line north of MH-6. The excavation activities at the time of my visit were between MHs 5 & 6, east of Building 8 (approximately 25 to 30 feet south of MH-5). Bedrock was being jack-hammered and removed from the excavation and previously placed pipe was being backfilled and compacted. Flowable fill is still being placed around the new 48-inch diameter pipe.

No activities were ongoing in the vicinity of the new substation while I was on-site.

The supervisor from Zoladz indicated that the storm manhole cover at MH-1 associated with the force main would be replaced by the end of day today. The a sanitary marked cover was on-site.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

7/12/2013: Backfilled excavation for GMCH 48-inch storm sewer line between Bldgs 6 and 8 looking north

7/12/2013: Breaking bedrock for GMCH 48-inch storm sewer line looking north

7/12/2013: Flowable fill and broken bedrock in excavation for GMCH 48inch storm sewer line looking southeast

7/12/2013: Flowable fill around force main at Upper Mountain Road near onsite stream crossing looking east

7/12/2013: Trench box and flowable fill in GMCH 48-inch storm sewer excavation looking north

7/12/2013: Welded steel pipe to be used for on-site stream crossing for force main pipe looking north

From: Christopher Boron

Sent: Wednesday, July 17, 2013 1:00 PM

To: Jim Hartnett; Roy Knapp

Cc:Hillie Ladue (hillie.ladue@gmch.com)Subject:Delphi Bldg 6 Separation Project

Attachments: sanitary sewer cover placed on MH-1 on force main .JPG; surface restoration north of Road 2

along Upper Mountain Rd looking west.JPG; surface restoration north of Road 2 looking north.JPG; 48-inch pipe, backfill and trench box south of MH-5 looking south.JPG; Installation of MH-5 on the 48-inch GMCH Storm sewer looking southwest.JPG; MH-5 looking south.JPG;

sanitary MH-1 looking north.JPG

Hi Jim,

I visited the site today, Wednesday, July 17th to observe the Building 6 Utility Separation work.

Excavation activities continued on the new GMCH 48-inch storm sewer line at MH-5. No excavation activities were ongoing at the time of my visit. Zoladz was working on installing MH-5.

No activities were ongoing in the vicinity of the new substation while I was on-site.

The manhole cover on the force main sanitary MH-1 was replaced with a proper sanitary sewer labeled cover.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

7/17/2013: 48-inch pipe, backfill and trench box south of MH-5 looking south

7/17/2013: Installation of MH-5 on the 48-inch GMCH storm sewer looking southwest

7/17/2013: Sanitary MH-1 looking north

7/17/2013: Sanitary sewer cover placed on MH-1 on force main

7/17/2013: Surface restoration north of Road 2 along Upper Mountain Rd. looking west

7/17/2013: Surface restoration north of Road 2 looking north

From: Christopher Boron

Sent: Tuesday, July 30, 2013 10:05 AM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: utility lines encountered north of MH-4 looking south.JPG; 48-inch storm sewer line and trench

box looking north.JPG; flowable fill placement south of MH-4 looking north.JPG; GMCH 48-inch storm sewer installation north of MH-4 looking north.JPG; GMCH 48-inch storm sewer installation north of MH-4 looking south.JPG; MH-4 looking west.JPG; MW-6-F-8 looking north.JPG; MW-6-F-8 with GMCH storm sewer excavation centerline markout looking south.JPG; MW-8-4 looking north.JPG; New GMCH 48-inch storm sewer excavation backfilled between MH-4 and MH-5 looking north.JPG; Separation Project

Staging Area looking northwest.JPG; utility lines encountered north of MH-4 looking

northwest.JPG

Hi Jim,

I visited the site on Tuesday, July 23rd to observe the Building 6 Utility Separation work

Excavation activities continued on the new GMCH 48-inch storm sewer line north of MH-4. MH-4 was also being installed at the time of the visit. Utility lines were encountered north of MH-4 at an elevation above the 48-inch storm sewer line. The new GMCH storm sewer line was to be installed under the utilities.

No activities were ongoing in the vicinity of the new substation while I was on-site.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

7/23/2013: Flowable fill placement south of MH-4 looking north

7/23/2013: GMCH 48-inch storm sewer installation north of MH-4 looking south

7/23/2013: MH-4 looking west

7/23/2013: New GMCH 48-inch storm sewer excavation backfilled between MH-4 and MH-5 looking north

7/23/2013: Utility lines encountered north of MH-4 looking northwest

7/23/2013: Utility lines encountered north of MH-4 looking south

From: Christopher Boron

Sent: Tuesday, July 30, 2013 10:19 AM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: 48-ich storm sewer line looking south in excavation.JPG; 48-inch storm line within

excavation.JPG; excavation side wall north of MH-3 looking north east.JPG; GMCH 48-inch storm sewer line excavation area north of MH-3 looking south.JPG; storm sewer excavation backfilled north of MH-3 and 4 looking north.JPG; storm sewer excavation backfilled north of MH-4 looking south.JPG; FW: GMCH 48-inch storm sewer excavation and monitoring well

Hi Jim,

I visited the site on Friday, July 26rd to observe the Building 6 Utility Separation work.

Excavation activities continued on the new GMCH 48-inch storm sewer line north of MH-3. The work was being completed just south of monitoring well MW-6-F-8. The excavator operator from Zoladz indicated he was going to be able to excavate around the monitoring well. However, before getting to the monitoring well location and after I had left the Site, electrical lines were encountered at a depth that is in line with the storm sewer line depth. Roy sent out an email regarding this on July 27th (it has been attached). Excavation activities north of MH-3 have stopped.

No activities were ongoing in the vicinity of the new substation while I was on-site.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

7/26/2013: 48-inch storm sewer line looking south in excavation

7/26/2013: 48-inch storm line within excavation

7/26/2013: Excavation side wall north of MH-3 looking northeast

7/26/2013: GMCH 48-inch storm sewer line excavation area north of MH-3 looking south

7/26/2013: Storm sewer excavation backfilled north of MH-3 and 4 looking north

7/26/2013: Storm sewer excavation backfilled north of MH-4 looking south

From: Christopher Boron

Sent: Tuesday, July 30, 2013 10:33 AM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: top soil placed south on Road 3 looking north west.JPG; concrete form and steel pipe for

creek crossing along Upper Mountain Rd looking north.JPG; spreading top soil along Upper Mountain Road south of Road 3 looking south west.JPG; stell pipe for force main crossing of

creek in place looking north.JPG

Hi Jim,

I stopped by the site on Monday, July 29th after collecting Bldg 10 SVE air samples to observe the Building 6 Utility Separation work.

Zoladz was placing top soil along upper Mountain Road south of Road 3. Excavation activities associated with the GMCH 48-inch storm sewer line north of MH-3 have stopped. Zoladz was planning to work on restoration activities along Upper Mountain Rd for the remainder of the week.

The concrete forms and steel pipe for the force main crossing of the creek at the east end of the property have been installed. Zoladz is waiting on a subcontractor to install the pipe and fill the annulus space before connecting to the force main pipe previously installed in the ground. Fire suppression line work may begin early next week according to Zoladz.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

7/29/2013: Concrete form and steel pipe for creek crossing along Upper Mountain Rd. looking north

7/29/2013: Spreading topsoil along Upper Mountain Road south of Road 3 looking southwest

7/29/2013: Steel pipe for force main crossing of creek in place looking north

7/29/2013: Topsoil placed south on Road 3 looking northwest

From: Christopher Boron

Friday, August 09, 2013 11:29 AM Sent:

To: Jim Hartnett: Rov Knapp

Cc: **Denis Conley**

Delphi Bldg 6 Separation Project Subject:

surface restoration and hydroseed along Upper Mountain Rd north of Road 2 looking Attachments:

south.JPG: compacting backfill over fire suppression line east of Bldg 8 looking south.JPG: crushed concrete and bedrock being used for fire suppression line excavation backfill lloking south JPG: crushed concrete and bedrock for use a excavation backfill in construction vard east of Bldg 8 looking east.JPG; discharge from Delphi stormwater system at Outfall D002 at time of site visit.JPG: drainage swale and hydroseed along Upper Mountain Rd south of Road

3 looking south JPG: excavation soil stockpile to be taken to Modern Landfill within

construction yard east of Bldg 8 looking south JPG; fire suppression line pipe end east of Bldg 8 looking west.JPG; MW-8-4 east of fire suppression line installation east of Bldg 8 looking west.JPG; placing crushed concrete and bedrock in fire suppression excavation east of Bldg 8 looking south.JPG; placing crushed stone beneath fire suppression line east of Bldg 8 looking south.JPG; placing water on stone backfill over fire suppression line excavation to help with compaction requirements looking north.JPG; silt fencing along Road 3 looking east.JPG; start of fire suppression line excavation near pedestrian bridge looking southeast.JPG; start of fire supression line excavation near pedestrian bridge east of Bldg 8 looking northwest.JPG

Hi Jim,

I stopped by the site on the afternoon of Wednesday, August 8th to observe the Building 6 Utility Separation work. Since my last visit July 29th, Zoladz had worked on the surface restoration of the drainage swales/ground surfaces along Upper Mountain Road and placed hydro seed on the ground surface. Grass was beginning to grow in some spots. Zoladz had also done some exploratory test pits associated with the fire suppression line.

They began the actual excavation work and installation of the fire suppression line east of Building 8 on August 8th. They started on the vicinity of the pedestrian bridge that goes from Building 8 to Building 6. The excavations are approximately 4 to 5 feet below ground surface and above the top of bedrock. Flowable fill was not required for backfill around these pipes.

Zoladz was using purchased crushed stone for placement under and adjacent to the fire suppression lines. Once the pipe was covered, they were using concrete and bedrock from the site excavation that they crushed on-Site. Bruce Witherel (R&P Oak-Hill) indicated that after the concrete and bedrock was crushed and mixed, SJB Services collected samples to provide them a proctor for compacting the material after placement. While on-site, water was being added to the material, as they could not achieve 95% compaction requirements. The moisture content at placement was around 3%. I do not know what is the optimum moisture content was from the testing SJB completed.

Zoladz is still waiting on a subcontractor to install the pipe and fill the annulus space for the force main crossing of the creek at the east end of the property before connecting to the force main piping previously installed along Upper Mountain Road.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

Christopher Boron, CPG Senior Project Manager GZA GeoEnvironmental of NY

8/8/2013: Compacting backfill over fire suppression line east of Bldg 8 looking south

8/8/2013: Placing crushed concrete and bedrock in fire suppression excavation east of Bldg 8 looking south

8/8/2013: Drainage swale and hydroseed alone Upper Mountain Rd south of Road 3 looking south

8/8/2013: Fire suppression line pipe end east of Bldg 8 looking west

8/8/2013: Placing water on stone backfill over fire suppression line excavation to help with compaction requirements looking north

8/8/2013: Start of fire suppression line excavation near pedestrian bridge east of Bldg 8 looking northwest

From: Christopher Boron

Sent: Friday, August 16, 2013 9:24 AM

To: Jim Hartnett; Roy Knapp

Cc: Denis Conley

Subject: Delphi Bldg 6 Separation Project

Attachments: water leak at fire suppression line risers at southeast corner of Bldg 8 looking west.JPG; Area

of former soil stockpile for disposal at Modern Landfill looking east.JPG; backfilled fire suppression line east of Bldg 8 lloking south 2.JPG; backfilled fire suppression line east of Bldg 8 looking south.JPG; backfilled fire suppression line excavation east of Bldg 8 looking north.JPG; electrical equipment at new substation area looking north west.JPG; electrical equipment within new substation area looking northeast.JPG; grass beginning to grow along northside of Road 3 within Environmental Easement Area looking east.JPG; termination of water from fire suppression leak at cooling towers looking west .JPG; water from fire suppression line leak located between SE corner of Bldg 8 and cooling towers looking

south.JPG

Hi Jim,

I stopped by the site yesterday afternoon, Thursday, August 15th to observe the Building 6 Utility Separation work. There were no on-going activities at the time of my visit. I spoke with Bruce Witherel (R&P Oak-Hill) and he indicated that Zoladz sent the crew to another site for Thursday (15th) and Friday (16th) as they were waiting on gaskets for the fire suppression system and there was not much else they could do in the meantime. There is about 110 feet of fire suppression line to be installed and they are anticipating starting back up on Monday, August 19th. The gaskets should be received today.

Some equipment has been installed at the new substation area by Schuler-Haas. Bruce Witherel indicated he spoke with Schuler-Haas and they thought the new substation would not be up and running until at least mid-September.

While walking the work area, I noticed water ponding in the vicinity of some existing fire suppression system risers near the southeast corner of Bldg 8. Bruce Witherel indicated it was not related to construction activities and he spoke to John Frandina about it on August 8th. John was going to speak to GMCH about the issue.

Photographs of the activities are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

Chris

8/15/2013: Backfilled fire suppression line east of Bldg 8 looking south

8/15/2013: Backfilled fire suppression line excavation east of Bldg 8 looking north

8/15/2013: Electrical equipment at new substation area looking northwest

8/15/2013: Grass beginning to grow along north side of Road 3 within Environmental Easement Area looking east

8/15/2013: Termination of water from fire suppression leak at cooling towers looking west

8/15/2013: Area of former soil stockpile for disposal at Modern Landfill looking east

From: Christopher Boron

Sent: Wednesday, October 23, 2013 10:23 AM

To: Jim Hartnett

Cc: Roy Knapp; Denis Conley
Subject: Delphi Bldg 6 Separation Project

Attachments: asphalt cut in vicinity of MH-12-15 looking north.JPG; asphalt subbase around new GMCH

MH-6 looking east.JPG; asphalt subbase placed east of Bldg 8 looking north.JPG; asphalt subbase placed east of Bldg 8 looking south.JPG; concrete island in Delphi parking lot looking east.JPG; MW-8-4.JPG; vegetative cover along Upper Mountain Road north of Road 2 looking north.JPG; vegetative cover along Upper Mountain Road south of Road 2 looking south.JPG; vegetative cover along Upper Mountain Road south of Road 3 looking south.JPG; vegetative

cover north of Road 3 looking east.JPG

Hi Jim,

I stopped by the site yesterday afternoon, Tuesday, October 22nd. There were no on-going activities at the time of my visit.

I took some photographs of the asphalt parking lot work completed to date and areas previously restored along Road 3 and Upper Mountain Road. It appears the vegetation is returning nicely. Note that the road box at MW-8-4 has been ruined during the asphalt stripping process and needs to be replaced.

Photographs are attached.

Let me know if you have any questions, comments or would like to discuss. Thanks.

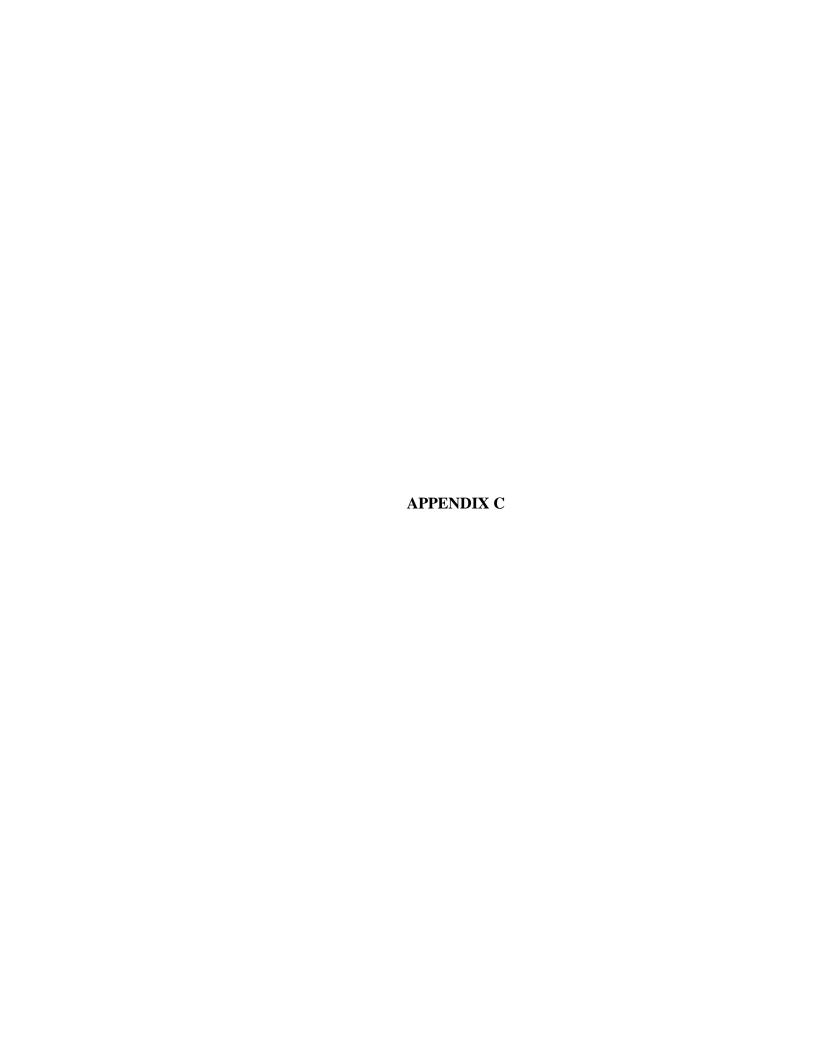
Regards, Chris

10/22/2013: Asphalt subbase around new GMCH MH-6 looking east

10/22/2013: Asphalt subbase placed east of Bldg 8 looking north

10/22/2013: Concrete island in Delphi parking lot looking east

10/22/2013: MW-8-4



10/22/2013: Vegetative cover along Upper Mountain Road south of Road 3 looking south

10/22/2013: Vegetative cover along Upper Mountain Road south of Road 2 looking south

DAILY FIELD SUMMARY

SHEET 1 OF 1

DATE: 9-9-2013 **FILE NO:** 21.0056546.0 **REPORT No:** 1

PROJECT: Bldg 8 Fire Riser LOCATION: GMCH Lockport Facility

Excavation

CONTRACTOR: CCI **WEATHER:** Sunny 70 degrees

<u>SITE ACTIVITIES:</u> GZA was on-site to field screen, with an organic vapor meter (OVM), soils excavated to expose the fire suppression lines that were leaking at the southeast exterior corner of Building 8. GMCH contractor CCI was performing the excavation work. Soil removed from the excavation was stockpiled on polyethylene sheeting adjacent to the excavation. The excavation was completed to a depth of approximately 8 feet bgs. Once the required depth of excavation was reached and no additional soil was to be removed from the excavation, GZA left the Site.

HEALTH & SAFETY:

Health & Safety Briefing: Chris Boron discussed GZA's role with Rick Haas (CCI Superintendent). GZA was on-site to field screen soils for organic vapors due to the requirements of the environmental easement associated with the Delphi Harrison Thermal System Site. CCI was responsible for monitoring the air quality conditions for its own employees, as the work required a confined space permit issued by GMCH. CCI did have a multi gas meter present and CCI employees wore confined space retrieval harnesses while inside the excavation.

Issues: None were noted.

Incidents: None were observed.

Near Misses: None were observed.

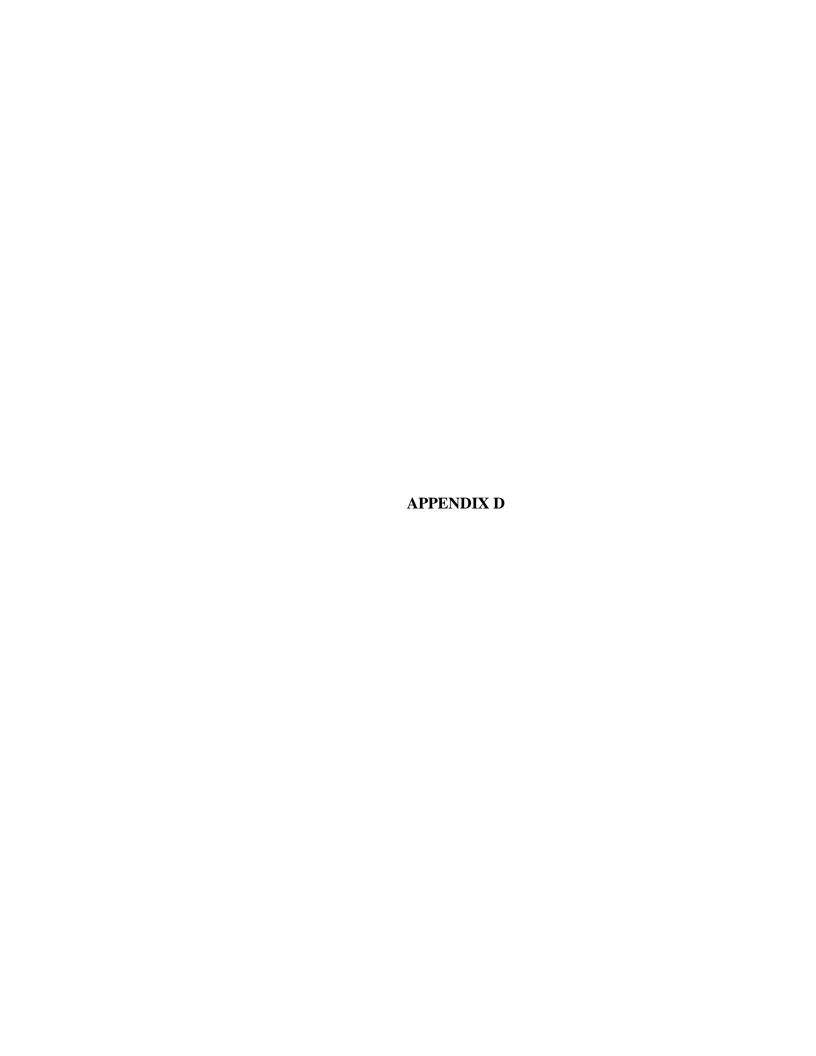
AIR MONITORING SUMMARY: GZA field screened the soil being removed from the excavation as it was being placed on the polyethylene sheeting, and the top of excavation work area (i.e. worker's breathing zone) with an OVM. Background concentrations prior to the start of work were 0 ppm. A summary of the readings as the excavations advanced with depth were as follows.

Ground surface to 3 feet below ground surface (bgs): 0 to 0.3 parts per million (ppm)

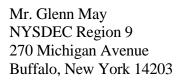
3 feet bgs to 6 feet bgs: 0 to 0.4 ppm

3 feet bgs to 6 feet bgs: 0 to 0.5 ppm

Top of excavation work area: 0 ppm


OVM calibration check was conducted at 1130 and indicated that the OVM was working properly. Calibration check reading was 109 ppm versus isobutylene gas concentration used which was 100 ppm.

EQUIPMENT: MiniRae 3000 and isobutylene calibration gas


OTHERS ITEMS:

Company	Personnel	Time On-site	Time Off-Site	Total On-site
GZA	Chris Boron	0830	1500	5.5

Prepared by: Chris Boron

July 25, 2013 File No. 21.0056546.00

535 Washington Street 11th Floor Buffalo, New York 14203 716-685-2300 FAX 716-685-3629

http://www.gza.com

Re: Results of May 2013 Monitored Natural Attenuation Groundwater Sampling Delphi Harrison Thermal Systems Site (Site) Lockport, New York Registry Site No. 932113

Dear Mr. May:

GZA GeoEnvironmental of New York (GZA) presents this letter report to summarize results of the May 2013 groundwater and monitored natural attenuation (MNA) parameter sampling event at the above-referenced Site. The groundwater sampling event conducted from May 1 through May 3, and May 16, 2013 included eight (8) monitoring wells (MW-4, -7, -10, -11, -12, -13, -14 and -15) that were sampled for the five (5) compounds of concern (COCs)¹ and MNA parameters as identified in the Site Management Plan² (SMP). In addition to the MNA parameters identified in the SMP, carbon dioxide, hydrogen, volatile fatty acids (VFAs), ethene and ethane were added to the sampling parameter list for 2013, consistent with the 2011 and 2012 sampling events.

BACKGROUND

In March 2005, NYSDEC issued a Record of Decision (ROD) for the Site, which selected MNA as the remedial alternative to address the COCs detected at the Site. Annual MNA groundwater sampling was completed voluntarily from October 2006 to May 2011. In November, GM Components Holdings, LLC (GMCH) entered into an Order on Consent and Administrative Settlement, discussed later in this section, which requires that annual sampling be conducted as part of the SMP.

Six (6) monitoring wells (MW-7, MW-11, MW-12, MW-13, MW-14 and MW-15) were monitored in October 2006, November 2007 and November 2008 (see Figure 1 for locations). MW-7 is located in the vicinity of the Area of Concern (AOC) and the other five wells, MW-11 through MW-15, are the downgradient monitoring locations.

¹ These five COCs are trichloroethylene, tetrachloroethylene, *cis*-1,2-dichloroethene, *trans*-1,2-dichloroethylene, and vinyl chloride.

² "Delphi Harrison Thermal Systems Site, Niagara County, New York, Site Management Plan, NYSDEC Site Number 9-32-113" dated October, 2011. Prepared for GM Components Holdings, LLC by GZA.

Based on the results of the groundwater sampling program through March 2009, the sampling program was expanded in July 2009 to include ten (10) monitoring well locations: MW-4, -7, -8, -9, -10, -11, -12, -13, -14 and -15.

The next groundwater sampling event completed in April 2010 indicated that natural attenuation is occurring with limited evidence of reductive dechlorination near the source area (MW-7) and midpoint (MW-4 and -10) of the groundwater plume. However, there was adequate to strong evidence for anaerobic biodegradation of COCs at the leading edge of the groundwater plume (MW-11 through -15). Given these conditions, coupled with the lack of evidence of an expanding plume, it appeared natural attenuation processes were effectively managing the COC plume migration..

Results of the April 2011 sampling round were similar to the April 2010 results *i.e.*, natural attenuation of COCs was occurring. However, there appeared to be a decreasing total organic carbon (TOC) concentration trend across the Site indicating that the "fuel" that drives reductive dechlorination may becoming depleted. GZA recommended continuing the annual groundwater sampling event utilizing eight (8) monitoring wells (MW-4, -7, -10, -11, -12, -13, -14 and -15), as stated in the SMP, in the Spring of 2012 and expanding the analyte list to include the following:

- Carbon dioxide;
- Alkalinity;
- Hydrogen;
- Volatile Fatty Acids (VFAs); and
- Ethene/Ethane.

In November 2011, GM Components Holdings, LLC (GMCH) entered into an Order on Consent and Administrative Settlement (Index #B9-0553-99-06) for the Site. The Final Engineering Report for the Site was submitted in March 2012 and a Certificate of Completion was issued by NYSDEC dated March 13, 2012. The Certificate of Completion required the following be completed:

- A record of notice for the Certificate of Completion must be filed with Niagara County within 30 days of issuance of the Certificate of Completion. The record of notice was recorded on April 10, 2012.
- A fact sheet must be issued describing the institutional and engineering controls that are required at the Site. The fact sheet was distributed by NYSDEC to their Listserv contact list in April 2012.
- The NYSDEC-approved SMP must be implemented.

The April 2012 groundwater sampling and natural attenuation parameter monitoring event was completed in accordance with the SMP.

The report of the April 2012 results indicated that natural attenuation of COCs is occurring via reductive dechlorination, and offered the following observations:

- The COC concentrations of the parent compounds were decreasing from the source area (MW-7) downgradient to the mid-point of the plume (MW-4 and MW-10) and on to the downgradient portions of the Site (MW-11 through MW-15).
- There was an increase in daughter compounds concentrations from the source area to the mid-point of the plume, with an overall decrease in total COC concentrations.
- The COC concentrations at the downgradient property line did not exceed the NYSDEC Class GA criteria.

There appears to be a temporal decreasing trend in TOC concentrations. TOC represents a surrogate measurement of the "fuel" that drives reductive dechlorination.

GZA recommended continuing the annual groundwater sampling event utilizing eight (8) monitoring wells (MW-4, -7, -10, -11, -12, -13, -14 and -15), as stated in the SMP, in the Spring of 2013, and utilize the natural attenuation analytical parameter list used during the 2012 testing in the 2013 sample round.

MAY 2013 GROUNDWATER MONITORING & SAMPLING

The May 2013 groundwater monitoring and sampling event was conducted in accordance with the SMP and included eight (8) monitoring wells (MW-4, -7, and -10 through -15, see Figure 1) from May 1 through May 3; and May 16, 2013. Hydrogen samples for 5 monitoring wells were recollected on May 16th due to an error at the laboratory.

METHODOLOGY

The groundwater monitoring and sampling was performed using low flow sampling techniques with a peristaltic pump, disposable polyethylene tubing and a water quality meter with a flow-through cell to collect water quality field parameters. The sampling technique and analytical parameters were consistent with the SMP.

The following is the list of the analytical parameters for this sampling event:

Field Measured Parameters: temperature, specific conductance, pH, turbidity,

dissolved oxygen (DO) and oxidation reduction

potential (ORP).

Compounds of Concerns: tetrachloroethylene (PCE), trichloroethylene (TCE),

cis-1,2-dichloroethylene (*cis*-DCE), *trans*-1,2-dichloroethylene (*trans*-DCE) and vinyl chloride

(VC).

Natural Attenuation Parameters: methane, iron, magnesium, manganese, potassium,

sodium, alkalinity, TOC, chloride, nitrate, nitrite, sulfate, sulfide, carbon dioxide, hydrogen, VFAs,

ethene, and ethane.

Groundwater pumping rates used during monitoring/sampling varied at the monitoring locations in order to establish a relatively stable water level. Once a stable water level was established within the monitoring well, flow rates were maintained during the monitoring/sampling period. Samples were collected for analysis after field-measured parameters stabilized, and a minimum of one (1) well volume was purged. It should be noted that a stable water level could not be established at well MW-7 (similar to previous rounds). Therefore, this location was purged to dry-like conditions and allowed to recharge until the recharge volume was sufficient to collect the sample parameters. Also, due to the lack of a stable water level, the hydrogen sample could not be collected. The Monitoring Well Observations & Groundwater Sampling Logs are included in Appendix A.

ANALYTICAL RESULTS & DISCUSSION

Analytical results for the COCs for the current sampling event along with the data from previous sample rounds are shown on Figure 1. A contour map of the Total COC concentrations is presented on Figure 2 and a groundwater elevation contour map of the groundwater elevation data collected is shown on Figure 3. It should be noted that the concentrations of *cis*-DCE and *trans*-DCE have been combined for presentation purposes as total 1,2-DCE in Figure 1, although the bulk of total 1,2-DCE mass includes the *cis* isomer. The analytical results for the COCs (current and historic) shown on Figure 1 have been graphically depicted and are included in Appendix B.

Analytical results for the MNA parameters are shown on Table 1, along with the data from previous sample rounds. The TestAmerica Laboratories, Inc. laboratory report is provided in Appendix C.

Compounds of Concern

Source Area Monitoring Well

MW-7:

The TCE concentrations at MW-7 are generally in the range of 500 to 800 mg/L from October 1996 through May 2013 with the exception of four contiguous sample rounds from April 2003 through November 2008, where the results ranged from 1.1 to 430 ppm. The TCE concentration graph in Appendix B indicates a downward temporal trend in concentrations from April 1996 to October 1999, which is consistent with natural attenuation. The TCE concentrations from November 2007 to May 2013 fluctuated with a near order of magnitude upward trend that may be attributed to the decrease in TOC concentrations.

The concentrations of the PCE, 1,2-DCE and VC appear to generally be consistent since the start of the sampling in 1996, with some minor fluctuation.

Mid Plume Monitoring Wells

MW-4: The concentrations of the TCE, PCE, and VC appear to generally be consistent since the start of the sampling in 1996, with some minor fluctuations.

Since 2003, there has been a consistent downward temporal trend of 1,2-DCE concentrations at MW-4, which may reflect the decreasing TOC concentration temporal trend that would drive the microbially-mediated transformation of TCE \rightarrow cis1,2-DCE.

MW-10: There is a downward temporal trend of TCE and 1,2-DCE concentrations at MW-10 since 1996, which is consistent with natural attenuation with some minor fluctuations. VC and PCE concentrations have been generally lower since 1999, also consistent with natural attenuation, with some fluctuation.

Downgradient Monitoring Wells

MW-11: The detected concentrations of PCE and TCE have been below method detection limits since the start of MW-11 sampling in 1997, generally consistent with natural attenuation.

The concentrations of 1,2-DCE have fluctuated from below method detection limits (multiple sample rounds) to 0.013 ppm (December 1998) with the majority of the detected concentrations (13 of 15 samples rounds) being below the NYSDEC Class GA criteria (0.005 ppm), including the 2013 sampling event.

The concentrations of VC have fluctuated from below method detection limits (multiple sample rounds) to 0.008 ppm (August 2001) in a temporal pattern generally similar to the 1,2-DCE. Results from the last nine (9) sample rounds have been at or below the NYSDEC Class GA criteria (0.002 ppm), including the 2013 sampling event, which was 0.0011 ppm.

MW-12: PCE and TCE were not detected above their respective Class GA criteria (0.005 ppm) from 2009 to 2013, TCE has been detected above the method detection limit but below the GA criteria four (4) of six (6) times and PCE two [2] of six [6] times..

The concentrations of 1,2-DCE have fluctuated from 0.011 ppm (November 2007) to 0.272 ppm (April 2010). The 1,2-DCE concentration for the 2013 sampling event was 0.151 ppm, which is above the average 1,2-DCE concentration detected at this location to date.

The concentrations of VC have fluctuated from 0.011 ppm (October 2001) to 0.190 ppm (August 1997). The VC concentration for the 2013 sampling event was 0.073 ppm, which is below the average VC concentration detected.

MW-13: The detected concentrations of PCE, TCE, 1,2-DCE and VC have been below method detection limits in all but one sample round (October 2006) since the start of MW-13 sampling in 2001. The results for 2013 were below method detection limits.

MW-14: The detected concentrations of TCE have been below method detection limits in nine (9) of the eleven (11) sample rounds conducted since the start of MW-14 sampling in 2001. The results for 2013 were below method detection limits.

The detected concentrations of PCE have all been below method detection limits since the start of MW-14 sampling in 2001.

The detected concentrations of 1,2-DCE have been below method detection limits or below its respective NYSDEC Class GA criteria in eight (8) of the eleven (11) sample rounds conducted since the start of MW-14 sampling in 2001. The concentration of 1,2-DCE during this round was below method detection limits.

The detected concentrations of VC have been below method detection limits in nine (9) of the eleven (11) sample rounds conducted since the start of MW-14 sampling in 2001. The one round where VC (0.003 ppm) did slightly exceed its respective NYSDEC Class GA criteria was in November 2008. The concentration of VC for this round was below method detection limits.

MW-15: The detected concentrations of TCE were below method detection limits (<0.005 ppm) in the first seven (7) of the eleven (11) sample rounds conducted since the start of MW-15 sampling in 2001. TCE has been detected in the past four (4) rounds at concentrations above the method detection limits (0.00064 to 0.0007 ppm), but below the NYSDEC Class GA criteria.

The detected concentrations of PCE have been above its NYSDEC Class GA criteria in the eleven (11) sample rounds conducted since the start of MW-15 sampling in 2001 ranging from 0.02 ppm (October 2001) to 0.0059 ppm (November 2008). There was a decrease in PCE concentrations in 2001, followed by asymptotic concentrations between about 0.005 and 0.01 mg/L thereafter. The detected concentration of PCE in the 2013 sample round was 0.0068, which is slightly above the NYSDEC Class GA criteria.

The detected concentrations of 1,2-DCE and VC have been below their method detection limits in the eleven (11) sampling rounds conducted since the start of MW-15 sampling in 2001.

Natural Attenuation Performance

GZA's review of the May 2013 groundwater analytical and water quality data is generally consistent with the substantive conclusions and trends noted in prior reports. During 2013, GZA used Wiedemeier *et. al.*'s (1998³) approach to evaluate the performance data to reassess the strength of the evidence supporting reductive dechlorination. Tables summarizing the results of that evaluation are included in Appendix D, and the results are tabulated below.

	STRENC	GTH OF NATURAL	ATTENUATION EV	IDENCE
WELL	INADEQUATE	LIMITED	ADEQUATE	STRONG
	EVIDENCE	EVIDENCE	EVIDENCE	EVIDENCE
Source Area Well				
MW-7		X		
Mid Plume Wells				
MW-4			X	
MW-10		X		
Downgradient Well	<u>s</u>			
MW-11		X		
MW-12			X	
MW-13	X			
MW-14		X		
MW-15	X			

Note: "X" indicates the respective strength of the evidence for natural attenuation by reductive dechlorination for the May 2013 groundwater monitoring round in accordance with Wiedemeier *et. al.*. (1998).

As summarized above in the embedded table, there is no strong evidence for natural attenuation by reductive dechlorination at any of the monitoring wells currently sampled annually during performance monitoring. There is adequate evidence for natural attenuation by reductive dechlorination at two (2) wells, limited evidence in the source area and at three (3) other wells, and inadequate evidence at two (2) wells. A decreasing TOC temporal trend may be limiting the effectiveness of natural attenuation by reductive dechlorination for managing cVOC migration at the Site.

CONCLUSIONS & RECOMMENDATIONS

Based on the results of the May 2013 sampling round within the framework of the historical results, natural attenuation of COCs is occurring via reductive dechlorination. GZA offers the following additional observations:

³ Wiedemeier, T.H., Swanson, M.A., Moutoux, D.E., Gordon, E.K., Wilson, J.T., Wilson, B.H., Kampbell, D.H., Haas, P.E., Miller, R.N., Hansen, J.E., and Chapelle, F.H., 1998, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, EPA/600/R-98/128, 78 p.

- The COC concentrations of the parent compounds are decreasing from the source area (MW-7) downgradient to the mid-point of the plume (MW-4 and MW-10), and from the mid-point and on to the downgradient portions of the Site (MW-11 through MW-13).
- There is an increase in daughter compound concentrations from the source area to the mid-point of the plume, with an overall decrease in total COC concentrations.
- The COC concentrations at the downgradient property line do not exceed the NYSDEC Class GA criteria.
- Ethene has been detected above the analytical reporting limit in groundwater samples collected from all eight (8) monitoring wells. Assuming the ethene represents the ultimate daughter product of cVOC reductive dechlorination, its detection at each monitoring well is a direct line of evidence that cVOCs have been degraded to completion at the Site.

It should be noted that there is a temporal decreasing trend in TOC concentrations across the Site. TOC, as discussed previously, represents a surrogate measurement of the "fuel" driving reductive dechlorination and should continue to be monitored.

GZA recommends continuing the annual groundwater sampling event utilizing eight (8) monitoring wells (MW-4, -7, -10, -11, -12, -13, -14 and -15), as stated in the SMP, in the Spring of 2014. The natural attenuation analytical parameter list used during the 2013 sample round should also be used in the 2014 sample round with the exception of the analysis of sodium (Na), calcium (Ca), potassium (K) and volatile fatty acids (VFAs) as these parameters provide limited benefit in the further evaluation of MNA at this site.

In addition, given there appears to be a decreasing temporal trend in TOC concentrations across the Site, GZA recommends a treatability study to evaluate whether the addition of an organic carbon amendment might re-stimulate natural attenuation by reductive dechlorination. The study would involve deployment of *in-situ* microcosms (Bio-Trap®, manufactured by Microbial Insights, Inc. of Rockford, Tennessee) "baited" with an organic carbon additive to evaluate whether reductive dechlorination can be re-stimulated. The methods, results, conclusions, and recommendations of that study would be reported in a letter report to be prepared following conclusion of the treatability study and the 2014 groundwater sampling event.

Please do not hesitate to contact the undersigned if you have any questions or require any additional information.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Thomas Bohlen Project Geologist

J. Richard Schoffer Jr.

I. Richard Schaffner, Jr., C.G.W.P.

Consultant Reviewer

Christopher Boron Senior Project Manager

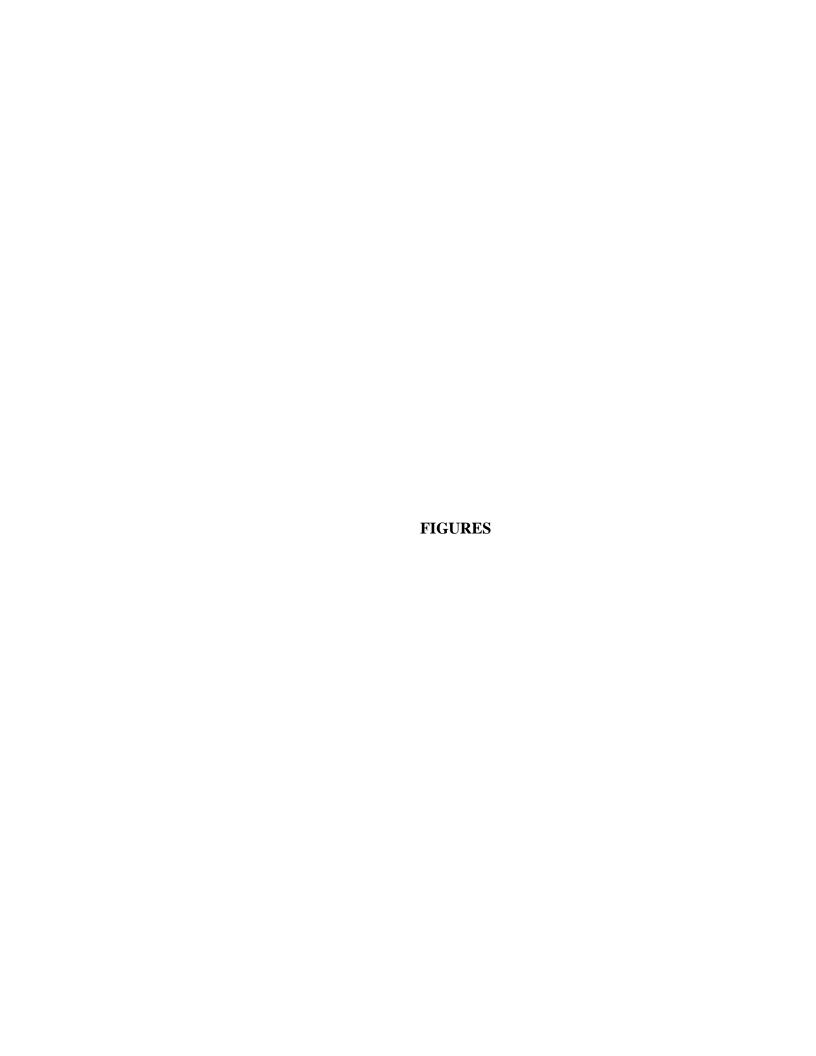
Bart A. Klettke, P.E.

Principal

Table 1 – Natural Attenuation Parameter Results

Figure 1 – Site Plan & Compound of Concern Analytical Data

Figure 2 – Total COC Contour Plan


Figure 3 – Groundwater Contour Plan

Appendix A: Monitoring Well Observations & Groundwater Sampling Logs

Appendix B: COC Data Graphs

Appendix C: Test America Analytical Laboratory Report

Appendix D: EPA cVOC Monitored Natural Attenuation Ranking System Results

GeoEnvironmental

GZA

2013

- 1. BASE MAP ADAPTED FROM A 2005 AERIAL PHOTOGRAPH DOWNLOADED FROM http://www.nysgis.state.ny.us/gateway/ mg/interactive main.html AND SITE OBSERVATIONS.
- 2. ANALYTICAL TESTING WAS COMPLETED BY TEST AMERICA LABORATORIES.
- 3. UNITS ARE LISTED IN MILLIGRAMS PER LITER (mg/l). (< - INDICATES COMPOUND NOT DETECTED ABOVE THE SPECIFIED DETECTION LIMIT)
- 4. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

LEGEND:

APPROXIMATE LOCATION AND DESIGNATION OF MONITORING WELL INSTALLED BY GZA

APPROXIMATE LOCATION AND \triangle SS-1 designation of stream

DENOTES AREA OF CONCERN

WATER SAMPLE

TCE = TRICHLOROETHENE

PCE = TETRACHLOROETHENE

1.2-DCE = TRANS & CIS1,2-DICHLOROETHENE

VC = VINYL CHLORIDE

GeoEnvironmental

DRAWN BY

New York

90

APPROXIMATE SCALE IN FEET

l S:I

RRISON THERMAL SYSTEM
UPPER MOUNTAIN ROAD

PROJECT No

21.0056546.00

FIGURE No.

GeoEnvironmental

GZA

- 1. BASE MAP ADAPTED FROM A 2005 AERIAL PHOTOGRAPH DOWNLOADED FROM http://www.nysgis.state.ny.us/gateway/ mg/interactive_main.html AND SITE OBSERVATIONS.
- 2, ANALYTICAL TESTING WAS COMPLETED BY TEST AMERICA LABORATORIES.
- 3. UNITS ARE LISTED IN MILLIGRAMS PER LITER (mg/l). (< -INDICATES COMPOUND NOT DETECTED ABOVE THE SPECIFIED DETECTION LIMIT)
- 4. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

LEGEND:

APPROXIMATE LOCATION AND CONCENTRATION OF TOTAL VOC CONTOUR

APPROXIMATE LOCATION AND DESIGNATION OF MONITORING WELL INSTALLED BY GZA SHOWN WITH TOTAL VOC CONCENTRATION

APPROXIMATE LOCATION AND \triangle SS-1 designation of stream WATER SAMPLE

AOC DENOTES AREA OF CONCERN

NS = NOT SAMPLED

DRAWN BY:

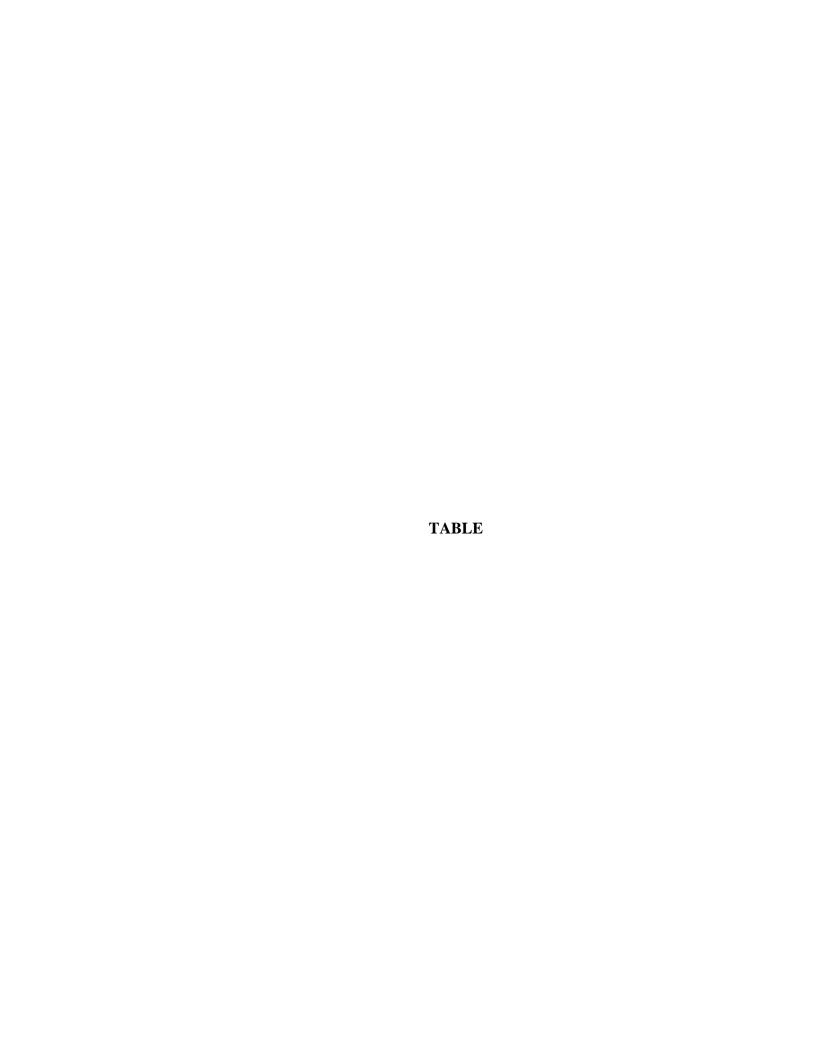
GeoEnvironmental

 $\mathbf{0}$

New York

APPROXIMATE SCALE IN FEET

SITE


VOC CONTOUR

COMPONENTS HOLDINGS, LL
HARRISON THERMAL SYSTEMS
200 UPPER MOUNTAIN ROAD
LOCKPORT, NEW YORK

PROJECT No.

21.0056546.00

FIGURE No.

Table 1 Summary of Groundwater Field Measurements and Analytical Test Results for Natural Attenuation Parameters May 2013 Groundwater Sampling Delphi Thermal Systems West Lockport Complex Lockport, New York

			Fie	ld Parameters																Analytical Te	est Results - Ir	norganic an	d Miscellan	eous Water	Quality Param	neters							
			Specific	ia i aiamotore						Carbon		Organic						Nitrate		, unarytical T		Dissolved	a moodian	Dissolved	Quality : unui!!	Dissolved		Dissolved		Dissolved		Dissolved	Volatile
Location	Sample	Temp.	Cond.	DO	ORP	pН	Methane	Ethane	Ethene		Hydrogen	Carbon	Alkalinity	Ammonia	Chloride	Nitrate	Nitrite	Nitrite	Sulfate	Sulfide		Calcium	Iron	Iron	Magnesium		Manganese	Manganese	Sodium	Sodium	Potassium	Potassium	Fatty Acids
	Date	(Deg. C)	(mS/cm)	(mg/L)	(mv)	(Std Units)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(nm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-4	12/2/1998	14.2	2.730	0.23	-56	6.6	2.9					19	354	1.23	986	0.30	<0.05		120	0.2	503	443	0.58	0.51	105	106	0.40	0.32	282	293	13.3	12.8	ļ
MW-4 DUP	12/2/1998	NA NA	NA	NA	NA	NA.	5.5					8	368	1.57	971	0.05	<0.05		120	0.2	431	335	0.59	0.52	107	100	0.39	0.34	282	306	13.2	13.5	
MW-4	10/7/1999	13.8	3.412	0.08	-92.8	6.7	4.2					47	360	1.03	1,010			0.08	110	0.3	269	318	0.42	0.45	98	116	0.23	0.34	240	305	10.4	13.1	1
MW-4	8/9/2001	12.6	3.420	0.12	-5.1	6.5	0.12					20.2	366 366	1.20	1,300	0.11	<0.05		190 160	0.2	371		1.01		107		0.54		384		12.7		l
MW-4 MW-4	10/31/2001 7/20/2009	13.8 17.7	3.444 1.263	0.10 0.28	-128.0 35.1	6.41	5.28					10.8	330	1.17 3.83	1,100 5,320	<0.05 <0.6	<0.05 <0.6		295	2.0	· · · · · · · · · · · · · · · · · · ·		0.77	3.21	102	193	0.46	2.64	358	2,100	12.3	50.5	ſ
MW-4	4/29/2010	15.0	9.664	0.26	-2.1	6.5	1.20					43	333	3.03 NA	3,510	<0.05	<0.05		272	<1.0				3.15		152		1.86		1,700		26.1	1
MW-4 DUP	4/22/2011	11.85	7.391	0.73	-349.0	6.77	2					0.6	343	1.9	3,260	<0.05	<0.05		370	<0.1	493		3.1	0.10	139		1.6	1.00	1420	1,700	17.8	20.1	í
MW-4	4/20/2012 ⁹	14.5	10.130	6.00	40.5	6.09	3.8	0.65	2.3	9.5	28	3.1	320	2.6	3,580	<0.05	<0.05		282	<0.1			2.7		138		1.5		1400		15.6		ND
MW-4	5/1/2013	14.5	13.320	0.18	-34.2	6.62	<0.22	<0.0049	<0.0052	23	0.63	2.8	329	3.4	4,300	<0.02	<0.02		268	<0.052			3.9		163		2.0		2080		20.2		ND
MW-6	12/2/1998	19.5	3740.000		-67	6.8	0.84					9	319	0.45	897	0.22	<0.05		160	0.2	161	156	7.98	1.13	35.6	28.8	0.48	0.29	619	638	9.64	9.51	
MW-6	10/7/1999	21.9	3283.000	0.12	-145.8	7.1	0.34					30	260	0.32	476			0.09	140	0.4	86.4	108	3.62	0.55	24	30.2	0.24	0.19	300	311	7.4	8.8	
MW-7	12/3/1998	17.3	3.130	0.33	-35	7.0	0.06					36	376	1.43	944	0.29	<0.05		200	0.4	382	375	0.14	0.02	118	136	<0.01	<0.01	288	351	20.5	23.0	
MW-7 ³	10/7/1999	19.4	3.049	0.69	-52	7.1	0.02					58	420	1.10	1,180			0.11	180	0.4	286	255	0.86	0.05	138	145	0.05	0.02	292	306	21.4	24.0	
MW-7	10/25/2006	17.4	2.620	1.08	-92	7.1	0.06					28	376	1.33	600	<0.05	<0.05		470	<0.01	l		0.23		112		0.02		237		19.4		
MW-7 MW-7	11/29/2007 11/4/2008	15.5 16.2	2.162 3.152	0.83 0.33	-195	7.2	0.13 0.11					4.4	322 348	1.14 0.08	430 980	<0.05 <0.05	<0.05 <0.05		519	0.8 <0.1	327		0.58 6.06		98.5		0.05 2.28		278 277		20.7		ſ
MW-7	2/24/2009	13.1	1.718	1.22	-68	7.3	0.04					NM	270	0.08	410	<0.05	<0.05		430	<0.1	193		0.09		86.7		0.04		213		14.2		1
MW-7	7/20/2009	16.4	2.558	0.88	32	7.1	0.07					28	310	1.28	452	<0.6	<0.6		460	2.4	133		0.00	0.03	00.7	84.9	0.04	0.03	210	230	17.2	24.1	1
MW-7	4/29/2010	15.0	1.540	3.14	-13.4	7.24	0.057					10.9	239	NA	280	<0.05	<0.05		479	<1.0				0.41		70.2		0.02		204		13.9	
MW-7	4/22/2011	10.4	1.241	3.75	-334	7.68	0.015					9.2	223	0.53	267	<0.05	<0.05		463	<0.1	121		0.20		60.1		0.025		3290		13.8		i
MW-7	4/20/2012	15.4	1.830	0	-34	7.49	0.046	0.017	0.098	1.6		8.7	240	0.77	416	<0.05	< 0.05		332	<0.1			0.06		67.1		0.024		193		13.2		Note 8.
MW-7	5/3/2013	13.2	2.530	2.05	-55.6	7.3	0.12	0.032	0.25	4.4		7.6	242	0.75	569	<0.02	<0.02		253	< 0.052			0.02		76		0.190		254		14.3		Note 8.
MW-8	12/2/1998	16.7	3.210	0.90	-68	6.9	0.09					12	300	0.40	138	<0.05	<0.05		550	0.2	215	227	0.33	0.17	76	78	0.31	0.32	102	114	6.31	6.67	l
MW-8	10/7/1999	19.7	1.640	0.08	-116.1	7.1	0.04					19	280	0.33	144			0.10	570	0.3	174	188	0.22	0.15	82.4	97.5	0.30	0.31	112	110	7.6	8.1	l'
MW-8 MW-8	7/15/2009 4/22/2011	16.3 9.39	2.408	0.20 4.56	-48.6 -334	7.26	2.0 0.018					22	300 244	0.76	457 683	<0.6 <0.05	<0.6 <0.05		588 562	<0.1	220		0.12	0.03	102	102	0.53	0.40	355	246	7.0	15.7	·
MW-9	12/2/1998	16.2	7.150	1.6	120	6.0	0.018					2	309	0.30	640	0.25	<0.05		680	<0.1	330	300	0.12	<0.01	89	84.5	1.74	0.93	444	445	5.52	5.91	$\overline{}$
MW-9	10/5/1999	18.7	4.042	0.08	103.5	6.9	0.04					24	330	0.20	963	0.25	<0.05		520	<0.1	250	283	0.33	0.02	63.8	89	1.36	0.99	476	535	4.6	26.5	1
MW-9 DUP	10/5/1999	NA	NA	NA	NA	NA	0.02					27	340	0.14	833	0.63	<0.05		490	<0.1	252	284	0.20	0.02	72	86	1.46	0.94	478	560	5.0	5.6	
MW-9	7/20/2009	17.8	8.381	0.41	109.1	6.7	0.03					17	290	0.26	3,100	<0.6	0.9		379	1.2				<0.01		117		0.31		1,600		19.0	1
MW-9	4/22/2011	9.49	7.263	0.24	-345	7.08	0.0069					<1	233	0.11	3,410	0.39	<0.05		362	<0.1	392		0.03		94.9		0.11		1,710		6.9		
MW-10	12/1/1998	14.5	4.100	0.40	-13.7	6.7	0.23					11	320	0.32	1,220	0.19	< 0.05		270	0.2	310	305	1.95	0.76	54.6	85.5	2.30	2.07	584	645	13.4	13.2	
MW-10	10/5/1999	14.2	4.775	0.07	-2.0	6.8	0.14					24	280	0.29	1,010	0.15	0.10		240	<0.1	39.8	254	0.73	0.04	9.94	102	0.99	1.12	33.2	635	18.8	10.1	
MW-10	8/9/2001	12.2	5.033	0.17	249.1	6.6	0.018					10.0	334	0.16	1,700	0.08	<0.05		330	0.1	330		0.14		98.9	99.6	1.66		857	845	9.2		
MW-10	10/31/2001	14.4	3.990	0.15	90.9	6.7	0.20					3.6	336	0.12	2,800	0.17	<0.05		280	1.6	ļ		0.05	0.00	92.1		0.91	0.00	720	4.050	7.6		·
MW-10 MW-10 (DUP)	7/15/2009 4/28/2010	13.2 11.0	9.579 3.741	0.76 0.35	79.6 16.2	6.6	0.36 0.14					33.0	330	0.27	4,260 1,460	<0.6 0.053	<0.6 <1.0		276	0.8 <1.0				0.08		103 35.0		2.63 1.31		1,950 890		21.1 4.57	·
MW-10 (DGF)	4/19/2012 ⁹	12.71	7.974	5.16	129.1	6.00	0.170	0.009	0.009	5.6	1	2.3	280	0.11	3,790	<0.05	<0.05		210	<0.1	·····		0.32	10.5	95.5	35.0	2.40	1.31	2110	090	7	4.57	ND
MW-10	5/1/2013	11.9	4.820	0.75	131.2	7.05	0.058	0.003	0.003	7.4	0.77	3.3	270	0.039	1,470	0.33			153	<0.052			0.32		31.8		1.50		845		3.4		ND
MW-11	12/1/1998	11.9	4.360	0.22	-271	7.6	0.01	5.00.				17	275	0.58	188	0.17	<0.05		110	0.2	122	97.3	1.00	0.26	39.0	36.4	0.11	0.08	116	129	8.88	10.1	1
MW-11	10/5/1999	11.9	5.228	2.34	-231	7.7	0.05					20	270	0.76	192	0.05	< 0.05		210	0.5	93.4	150	0.34	0.30	46.4	103	0.08	0.08	180	695	10.9	27	1
MW-11	8/8/2001	10.4	3.576	0.12	-73.6	7.4	<0.002					12	285	0.46	250	<0.05	< 0.05		140	0.1	111		0.14		43.2		0.12		130		8.0		1
MW-11	10/30/2001	12.0	4.126	0.04	-248.8	7.5	<0.002					3.1	265	0.46	230	<0.05	<0.05		110	2.8			0.02		38.7		0.41		120		9.1		·
MW-11	10/24/2006	13.1	8.000	1.61	-106	7.3	0.008					1.9	341	0.12	108	0.16	<0.05		66	<0.1			0.80		30.7		0.08		85		7.6		ı
MW-11	11/28/2007	10.7	1.390	0.38	-309	7.2	0.008					3	233	0.38	410	0.18	<0.05		144	1.0	ļ		0.74		42.1		0.08		235		12.3		ł
MW-11	11/4/2008	14.4	1.377	0.56	-200	7.3	0.005					2.38	249	0.28	200	<0.05	<0.05		101	0.2	95.6		0.38		38.8		0.08	0.11	134	400	8.4		l
MW-11	7/16/2009	13.7	1.143 1.145	0.33	-15.2	7.3	0.019					16	260	0.45 NA	246	<0.6	<0.6		112	2.0				0.11		41.3		0.11		138		11.4	l
MW-11 MW-11	4/28/2010 4/21/2011	9.2 7.5	0.807	1.72	-126.3 -325	7.56	0.013 0.0071					2.1	245 294	0.038	325 170	0.109	<0.05 <0.05		93.6 53.5	<1.0 <0.1	92.5		0.14	2.55	30.8	44.3	0.09	0.220	119	152	5.7	8.94	1
MW-11	4/18/2012	10.9	1.450	1.72	-75	7.50	0.0071	0.00099	0.0013	21	12	1 3	248	0.038	360	0.095	<0.05		98.9	0.053	32.0		0.14		48.5		0.09		143		8.7		ND
MW-11	5/2/2013	9.7	1,670	0.71	-101.9	7.41	0.04		0.0013	4.2	0.91	1.6	259	0.15	333				84.6	<0.052			0.70		47.0		0.17		151		9.0		ND.

- MW-11 5/2/2013 9.7 1.670 0.71 -101.9 7.41 0.04 0.001 0.0013

 Notes:

 1. In general the field parameters were stable with very little variation. However, as noted, some readings varied.

 2. Readings were collected using a low flow peristalic pump and water quality meter with flow through cell..

 3. Analytical Testing completed by TestAmerica Laboratories, Inc.

 4. <- Indicates compound not detected above the specified detection limit.

 5. Blank = Not tested.

 6. NM = not measured

 7. ND = non-detect for tested volatile fatty acids: acetic acid, formic acid, lactic acid, n-Butyric acid, propionic acid, and pyruvic acid.

 8. All tested volatile fatty acids = ND; except acetic acid (7.0 ppm).

 9. Water quality readings were recollected on 5/4/2012 due to lack of DO readings collected with initial water quality meter.

Table 1 Summary of Groundwater Field Measurements and Analytical Test Results for Natural Attenuation Parameters May 2013 Groundwater Sampling Delphi Thermal Systems West Lockport Complex Lockport, New York

			Fie	ld Parameter	S															Analytical T	est Results - I	norganic an	d Miscellar	neous Water	Quality Param	neters							
			Specific							Carbon		Organic						Nitrate				Dissolved		Dissolved		Dissolved		Dissolved		Dissolved		Dissolved	Volatile
Location	Sample	Temp.	Cond.	DO	ORP	pН	Methane	Ethane	Ethene	Dioxide	Hydrogen	Carbon	Alkalinity	Ammonia	Chloride	Nitrate	Nitrite	Nitrite	Sulfate	Sulfide		Calcium	Iron	Iron	Magnesium		Manganese		Sodium	Sodium	Potassium	Potassium	Fatty Aci
20041011	Date	(Deg. C)	(mS/cm)	(mg/L)	(mv)	(Std Units)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(nm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-12	12/1/1998	13.4	2.006	0.39	-41	6.0	0.5	(g, _)	(g/.2/	(g/.2)	()	7 (9, 2,	284	0.94	294			(g/.2)	73	0.0	110	104	7.48			25.3	4.41	4.40	183	197	4.1	3.81	3
MW-12	10/5/1999	15.8	1.849	0.10	-105.2	7.0	0.36					30	300	0.90	342	0.40	<0.05		66	0.2	104	126	<0.01	3.66	+	31.6	<0.01	4.90	166	226	4.1	5.01	
MW-12	8/8/2001	13.5	3.300	0.10	-38.5	6.6	0.50					13.9	336	1.77	920	<0.05	<0.05		160	<0.1	217	120	16.9		57.5	31.0	8.41	4.90	427	220	4.9	5.5	· · · · · · ·
MW-12 DUP	8/8/2001	NA	3.500 NA	NA	-50.c	NA NA	0.74					14.9	220	1.85		<0.05	<0.05		160	<0.1	217		14.8		56.2		8.14		433		6.0		ſ
MW-12 DOF	10/30/2001	14.2	2.850		-127.1	6.8	0.74					5.7	309	1.35	930 590		<0.05		110	3.5	217		4.73		37.0		4.69		342		5.0		r
MW-12	10/30/2001	13.7	3.500	1.26	-127.1	0.0	0.024	+				0.7	333	1.55	1,300	<0.05	<0.05		110	<0.1	<u> </u>		7.50	+	44.8		6.02		684		3.0		
MW-12	11/28/2007	11.2	3.307	0.18	-302	7 (0.024					4.0	274	1.47	1,300				70	<0.04			6.68		46.0		4.44		666		3.9		r
MW-12	11/4/2008	14.3	6.319	0.18	-302	6.7	0.012					2.74	332	2.08	2,000	<0.05	<0.05		138	<0.04	259		13.70		69.7		7.82		1110		5.9		
MW-12	3/16/2009	6.1	4.516	1.08	-48	6.6						2.74 NM	270	1.89	2,300				140	<0.1	269		11.50		81.7		8.60		1060		5.0		
MW-12	7/16/2009	14.5	6.493	0.64	-39.3	6.7	0.07					INIVI	360	2.57	2,300	<0.03	<0.05		140	0.1	209		11.50	15.10	01.7	79.1	8.00	9.07	1000	1.170	5.1	10.9	10
MW-12	4/28/2010	8.8	6.562	0.84	-39.3	6.6	0.9					- 14	315	2.57 NA	2,480				153	<1.0				14.0		98.0		10.40		1,170		5.22	5.:
					-46.	0.0		+				5.0		INA							227			14.0	+	96.0	7.1	10.40	050	1,470	0.7	5.22	5
MW-12	4/20/2011	8.83	6.320	0.00	-74	7.0	0.042	+	0.044	45	0.70	3.3	272	1.1	1,880	<0.05	<0.05		108	<1.0	221		10.0		65.1		9.1		956		3.7		
MW-12	4/18/2012	10.02	7.920	0.59 0.31	-48.3	6.8	0.3	0.011	0.011	15	0.76	3.7	280	1.8 1.2	2,900	<0.05	<0.05			<1.0)		12.7		84.3 76.4		7.4		1250 1260		3.7		N
MW-12	5/3/2013	9	7.300			0.0			0.0042	14	1.1	0.0	232		3,090				120	<0.052	209		0.1								3.9		r
MW-13	8/8/2001	15.4	5.742		-118.5	7.8	0.08					15.2	255	1.45	1,900	0.05			160	<0.1	209		2.59	-	49.6		2.67		1,200		12.1		1
MW-13	10/29/2001	15.5	6.625	0.20	-136	7.4	0.07					9.9	426	1.29	1,700	0.61			120	2.2	<u></u>		3.75		40.9		2.96		1,160		8.2		· · · · · · · · · · · · · · · · · · ·
MW-13	10/24/2006	15.2	6.090	2.67	-146	7.3	0.16	+				8.4	431	1.35	2,200	<0.05			98	<0.1			9.21		53.7		6.03		1,210		9.1		·
MW-13	11/28/2007	12.7	5.696	0.08	-274	7.3	0.003	3				7.0	420	1.74	2,200	0.05			95	0.4	100		7.83		50.8		4.95		1,250		9.6		t
MW-13	11/5/2008	7.08	6.782	0.12	-97	7.1	0.021					3.8	410	1.57	2,000	<0.05			91	<0.1	196		7.60		52.3		5.40		1,430		11.0		
MW-13	7/16/2009	16.0	6.476	0.60	-113.4	7.2	6.15					15	400	2.10	2,290	<0.6			112	<0.5				1.75		53.9		6.51		1,390		18.9	18
MW-13	4/28/2010	9.4	5.783	0.28	-133.5	7.2	0.17	}				6.1	382	NA NA	2,280	0.069	<0.05		102	<1.0)			9.12	2	59.9		7.18		1,380		11.2	11
MW-13	4/21/2011	7.64	5.023	0.34	-336	7.4	0.058					5.8	368	0.94	2,090	0.069	<0.05		105	<0.1	210		7.4	1	53.2		6.30		1,320		8.3		t
MW-13 DUP MW-13	4/19/2012 5/2/2013	10.7 10.5	5.480 5.410	0.00 1.27	-120 -71.2	7.4	0.093		0.008 <0.0052	4.5 3.7	0.79	3.8	360 382	0.96	1,490 1,590	0.081	<0.05 <0.02		71.3 62.7	<0.10			5.8	•	38.5 39.4		4.40		940 964		6.2		N
									<0.0052	3.7	0.69		002		,						4												N
MW-14	8/9/2001	11.5	2.064	3.66	330.7	7.2	30.002					14.1	328	0.19	680	0.08	<0.05		130	<0.1	144		0.18	3	64.1		0.04		394		6.4		t
MW-14	10/30/2001	13.2	2.478	0.80	-39.1	1.2	0.013	3				4.3	334	0.31	770	<0.05			120	2.5	-		0.06		64.8		0.06		466		7.3		·
MW-14	10/24/2006	12.9	4.310	3.11	-60.6	7.2	0.31					3.3	336	0.25	1,700	<0.05	<0.05		88	<0.1			0.15		94.9		0.20		831		10.5		1
MW-14	11/29/2007	10.3	4.402	1.27	-110	<u> </u>	0.16	+				4.0	371	0.53	1,800		<0.05		87	0.12			0.44		111		0.25		777				t
MW-14	11/4/2008	14.5	6.397 3.534	0.13	11.2	6.8	0.14					2.4	340	0.39	2,100	<0.05	<0.05		80	<0.1	320		0.39		138		0.28		1010		13.5		·
MW-14	2/24/2009	5.3		0.73	-34	7.2	0.15	+				NM	299	0.23	1,500	0.07	<0.05		68	<0.1	165		0.06		79.8		0.18		833		7.3		
MW-14	7/16/2009	11.6	5.970	1.87	72.6		0.465					51	380	0.69	2,430	<0.6	<0.6		81.4	1.2	<u> </u>			0.11		132		0.53		931		21.1	21
MW-14	4/27/2010	9.8	3.726		16.8	7.1	0.055					2.7	354	NA	1,450				65.7	<1.0)			0.06	j	70.2		0.194		870		6.22	6.2
MW-14	4/21/2011	7.72 10.85	3.779 5.460	2.45	-335	7.5	0.016	0.0000	0.0000			2.8	339	0.14	1,750	0.093	<0.05		78.2	<0.1	149		0.052		86.7		0.19		875 916		5.4		N
MW-14	4/19/2012				-9					2.9	6.7	1.5	328 361	0.25	1,720				88.2	<0.1			0.140				0.29				6.2		N
MW-14	5/3/2013	10.1	4.670	0.17	-1.8	7.3			<0.00052	6.2	16	1.7		0.15	1,340	0.061	<0.02		60	<0.052	2		0.038		59.4		0.20		850		5.1		I N
MW-15	8/8/2001	13.0	2011.000	0.20	289.1	6.7	<0.002	+				11.7	410	0.08	600				160	0.1	281		2.33		70.4		0.46		204		4.9		
MW-15	10/30/2001	14.6	1656.000	0.16	83.9	6.8	< 0.002	+				4.1	395	0.07	410	0.85			110	1.4	1		0.02		47.5		0.40		196		3.8		····
MW-15 DUP	10/30/2001	NA	NA 0.100	NA	N/	N/				 		3.7	386	0.05	450		<0.05		110	1.5	<u> </u>		0.03	3	47.6		0.39		198		4.0		
MW-15	10/24/2006	13.9	2.180	1.14	64.2	6.8	<0.002	<u> </u>				3.6	434	0.09	660	1.89	<0.05		84	<0.1	 		<0.02	<u>-</u>	62.3		0.27		311		4.7		
MW-15 DUP	11/4/2008	14.3	4.719	2.42	75	6.8	<0.002	2				1.77	345	0.07	1,900	0.34			110	<0.1	327		<0.02		82.3		0.82		594		6.1		t
MW-15	4/18/2012	10.95	3.537	4.77	385.1	7.1	0.00047		0.00064	11	0.82	2	384	<0.02	962	0.73	<0.02		111	<0.1			<0.05		54.4		0.24		424		3.3		N
MW-15	5/1/2013	11	2.950	0.19	88.3	6.9	<0.00022	<0.00049	<0.00052	15	0.75	2.1	415	<0.009	672	1.4	<0.02		74.7	<0.052	2		<0.019	9	43.7		0.21		384		3.2		N
TK-2	10/6/1999	13.3	7.02		66.9	7.5	<u> </u>						380		20.2						 				1								
Stream (SS-1)	12/2/1998	8.0	300	10.0	50	8.0)	ļ					ļ								 			ļ	ļl								1
Stream (SS-2)	10/7/1999	10.2	718	17.5	53.1	8.4	·	ļ								ļ					ļl												t
Stream (SS-3)	10/7/1999	8.5	1552	8.9	-28.9	7.7	1	1				ı	ı			ı	1																1

Stream (SS-2) 10/7/1999 10.2 718 17.5 53.1 8.4 Stream (SS-3) 10/7/1999 8.5 1552 8.9 -28.9 7.7 Notes:

1. In general the field parameters were stable with very little variation. However, as noted, some readings varied.

2. Readings were collected using a low flow peristalic pump and water quality meter with flow through cell..

3. Analytical Testing completed by TestAmerica Laboratories, Inc.

4. < Indicates compound not detected above the specified detection limit.

5. Blank = Not tested. 6. NM = not measured

Note: The included of the control o

APPENDIX A

MONITORING WELL OBSERVATION & GROUNDWATER SAMPLING LOGS

ECT NAME	Dolohit	larrison	Ther	mal	Suster	15 5	de		PROJE	CT NO.			546
PLING CREW ME	- 1	T. Bo							SUPER	VISOR		1	Boron
E OF SAMPLE CO	ILECTION	5/1/21	013 -	5/3	12013								
							[Note: For	2" dia. well	, 1 ft, =	0.14 gal	(imp) c	r 0.16 g	(al (us)]
Sample	Well	Measuring	Bottom	Water	Water	Well	Bailer	Volume	Field	Field	1		Sample
LD.	= No.	Point Elev.	Depth	Depth	Elevation	Volume	Volume	Purged	pН	Temp.	Cond.	Time	Description
Number		(ft. AMSL)	(ft. btoc)	(ft. btoc)	(ft. AMSL)	(gallons)	No. Bails	(gallons)					& Analysis
MW-10-	MW-10	594 NH	11 8>	111 78	579.X	8.91		3.0	ZAS	11.9	487	1215	MUA
050/13	/V[W-10	594.04	16.00	17,70	J / 1, 040	1.45	-	3.0	7,443	160/	1,000	100	
MW-4-	MW-4	613.07	24 88	0 =1	604.56	4.3		6.0	66)	14.5	12 27	1415	MNA
A50/13 MW-15-	7.1.40	012.07	37,86	0.1	bu 110	1. –							1.00
050113	MW-15	594.04	17.90	7.91	586.13	1,5		2,5	6.97	11.3	1.85	1558	MNX, H
6-1-													VOC,
05013	6-1	595.10	17.93	12.82	582.8	0,83		2.0	6.88	10.2	11.93	840	MNA
MW-11-	.44.4.4.4				1								MAN
050013	MW-11	590.10	24.10	5,58	584.52	3.0		5,0	6.98	9,7	1.67	1/20	
MW-13-		-00	7/		-04 77			0	_ 、_		e- , , ,	1240	MUA, HS
050213	MW-13	589.02	15.00	4.65	584.37	1.53	/	5.0	7.25	10.5	0.41	UPEL	
MW-D- 050313	MW-12	590.71	1510	-9A	584,73	170		3.0	191	90	7.50	058	NOC MNA, Ho
MW-14				2,10	2011	1.10							
050313	MW-14	59277	19.10	5.80	586.97	2.5		4,0	7.33	10.1	4.67	1158	X.852',
Additional Comm	ents:												

FMG MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

12 (B) 2 FARL C FAGORGAD? Review | Ottober 29, 2002

	SAMPLE							RSAMP	LINC	G PRC			4
DJECT NAME	Delphi +	larriso	n The	rmal	Systen	15 S	k_		PROJE	CT NO:		56.	546 Boron
VPLING CREW MI	Delphi t	T.B	ohler		_				SUPER	VISOR		6	Boron
TE OF SAMPLE CO		5/11						15					
							[Note: For	2" dia. wel	l, 1 ft. =	0.14 gal	(imp) o	r 0.16 g	(al (us)]
Sample	Well	Measuring	Bottom	Water	Water	Well	Bailer	Volume	Field		Field		Sample
I.D.	No.	Point Elev.	Depth	Depth	Elevation	Volume	Volume	Purged	pН	Temp.	Cond.	Time	Description
Number		(ft. AMSL)	(ft. btoc)	(ft. btoc)	(ft. AMSL)	(gallons)	No. Bails	(gallons)				_	& Analysis
MW-7- 050313	MW-7	613.86	28.94	7,02	606.84	3.6		4.2	7.30	13.1	323	1638	MNA
			250										
								13					
-		-											
Additional Comp	sun le	-											
Accurational Count	euro.												
Copies to:													

		М	ONITORIN	G WELL RECOI	RD FOR LOW-FLO	OW PURGIN	G			
Project Data:	45									
Project Name: Ref. No.:	Delphi 56546	Harrison		¥6 7 8			Date: Personnel:	5/1/13 T. Boh	len	
Monitoring Well Data:										
Well No.: Measurement Point:	MW-4	1063	<u> </u>		De _l	Screen of to Pump 1	Length (ft): ntake (ft) ^(f) :	17.5-3	33.5= 15	5 (
Constructed Well Depth (ft):	32.5					Well Diam	eter, D (in):	٠, "		
Measured Well Depth (it):	34,88				Well So	creen Volume	, V_s (mL) ⁽²⁾ :	26.3	7 - 4.	29991
Depth of Sediment (it).				•	f ₂	nitial Depth to	Water (ft):	8,51		
Pumping Rate Time (ml/min)	Depth to Water (ft)	Drawdozen from Initial Water Level ⁽¹⁾ (ft)	рΗ	Temperature **	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Volume Purged, V _P (mL)	No. of Well Screen Volumes Purged th
1150 110	8,79		6.98	14.7	12.33	85.1	7.49	6.24	0	0
1155	8,98		6.95	14.0	12.40	70.1	7.01	6.00	0.05	0
800	9.33		6.91	13.7	12,44	63.5	6.44	5.91	0.40	0
1005	9.47		6.75	13.6	12.84	53.9	3.94	500	0.50	0
1210	9.64		6.67	13.6	13.13	47.3	162	21.3	0.90	0
1215	9.88		6.65	14.0	13.31	43.5	1.49	33.9	1.0	0
1225	10.00		6.67	14.0	13.23	40.7	1.30	24.4	1.1	0
230	10.11		6.62	14.0	13.28	39.5	1.16	23.1	1.3	0
1235	10.26		6.62	13.9	13.30	39.6	1.10	32, 2	1.3	0
1300	10,51		6.62	13.9	1335	-2.9	0,54	14,6	2.1	0
1330	10.65		664	14.3	13.33	-4.1	1.44	10.3	3.0	0
1335	10.99	A STATE OF THE STATE OF	6.63	14.6	13.33	-10.9	0,36	10.1	3.4	0
(2) The well screen v (3) The drawdown f (4) Purging will con and appears to b stablizing), No. c	volume will be from the initial tinue until stab e clearing, or u of Well Screen V	based on a 5-foot so water level should r ilization is achieved nless stabilization po folumes Purged= V	reen length. V not exceed 0.3 or until 20 we arameters are p/Vs.	₅≃p*(D/2) ⁵ (5*12)⁴ ft. ell,screen volumes	have been purged (t	unless purge w tion critèria niv	ater remains d appear to b	visually turbid		E TOR

FF VENEZA PART C FMC), SELECT Reviewe November 29, 2002

roject Data	# · ·						W PURGIN				
	Project Name: Ref. No.:	Delphi			- 5 -			Date: Personnel:	5/1/13	,	
	Kel. No :	36546						rersonner.	I, Don	ier	
Aonitoring \	Well Data:		ą								
	Well No.:	MW-	t 2 ot	-'L .				Length (ft):	15		
	surement Point:	TOR	_		6	Dep	th to Pump I	ntake (ft) ^{er} : eter, D (in):	20		
	Well Depth (ft): Well Depth (ft):	32,5 34,8				Well'Sc			4.26 =	p/	
	of Sediment (ft):	37,0	0	-		In	itial Depth to	Water (ft):	8.51)	
	Pumping	Depth 10	Drawdown from Initial		,	7.3				Volume	No. of Well
Time	Rate (ml√min)	Water (ft)	Water Level (4) (ft)	рΗ	Temperature =	Conductivity (mS/cm)	- ORP (mV)	DO (mg/L)	Turbidity (NTU)	Purged, Vp (mL)	Screen Volumes Purged ⁽⁴⁾
1345	110	10.99		6.63	14.5	13.30	-31,1	0.19	7.50	3.9	0
1350		10.99		6.63	14.3	13,31	-34.0	0.18	7.50	4.1	1
14 DO		10.99		6.63	14,4	13.33	-34.1	0.19	7.49	4.4	l.
1405	<u>-</u>	10.99		6.62	14.5	(3.31	-34.2	0.18	7.50	4.6	
				-							
				-				-			
											
Notes									8		
1)						above any sediment	accumulated ;	nt the well bo	ttom.		
2) }}			based on a 5-foot sc water level should r	***		(2.54)		14			id
ł)						have been purged (m	ntess purge w	iter remains i	risually turbid		

	Project Name: Ref, No.:	Pelphi 565	HOUTH'SOM		- 2 e			Date: Personnel:	5/16/ T. Box	13	
mitoring	Well Data:				::			8			
		MW-4	<u>'</u>					Length (ft):		32.5=	15'
	surement Point:	TOK			i:	Dep	oth to Pump I	ntake (Ft)**: eter, D (in):	20.		
	Well Depth (ft):				ć.	T15-11 C	wen Diam zeen Volume				
	Well Depth (ft): of Sediment (ft):	34.8	6		•		itial Depth to		8.13		
Depur	n seannent (rt):				51	1.1	шия Бериги	s vratet (it).	0,1		
Time	Pumping Rate (mL/min)	Depth to Water (ft)	Drawdown from Initial Water Level ¹⁹ (ft)	рН	Temperature *	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Volume Purged, Vp (ml.)	No. of Well Screen Volumes Purged ¹⁹¹
928		8.42	ľ	6.77	13.6	13.75	25.0	1.70	7.57	0	0
943		8.69		6.70	13.4	13.80	18.5	0.90	7.53	0.1	0
948		9.05		6.69	13.3	13.20	16.6	0.48	7.53	0.2	0
958		9.17		6.76	13.3	13.79	16.1	0.30	7.52	0.5	0
003		9.30		6.80	13.4	13.78	16.0	0.44	7.41	0,6	0
008		9.39		6.80	13.4	13.76	16.0	0,23	7.45	0.7	0
				-							
									19		
tės,				L							L
C.34	The pump intake	will be placed	at the well screen m	iid-point or at	a minimum of 2 ft	above any sediment	accumulated	at the well bo	itom _{**}		
	The well screen v	olume will be l	based on a 5-foot ser	een length, V	_s =p*(D/2) ²⁻ (5*12)*	(2,54)					
			water level should n								
						have been purged (u Itside of the stablizat	ion seitisein ass	4 amission to be			
			idess sammzation pa folumes Purged= Vi		varying sugariy ou	uside of the stablizar	mar criticata and	ларрон по ос		TOR= bration	13

O 5 O 11	Symple Symple	3418	WATER VOLENCIAS	<u>3</u> .a	ACTUAL SCIENCE COME POR	
PEING FOUNDAT	DEDICATED (S) N (CIRCLE ONL)		81	SIPENG (QI	PAIRST DELK X	CIPA EFFER
KGING DEVICE	B A SUMMERSHER WALL	E - EK EK ET FOME E - EK EK ET FOME	OFFICE STANCES		Set September	E-52-3193
MPLING DEVICE	15 - other bearing	E-191Pok s-77°LE			will-West ##	ያኑ «ሞኮ ነን
APLING DEVICE	E - 1 9 STEP OP 12 A	ELECTION LENI		9	DEFORMABILIE	8 (NOTE: 181)
RURNG PEVICE	E v tarion	D=800211473134 kitch	F-SHICCESE		Sociality of the	
MILING DEVICE	E CIRCLE	E-IX (A THINLEN)	THE CONTRA MENT	PST	No SASSPARALDER	
TERING DEVICUSO 45	1 WHERES		CICALLIA			SIL ESTINE
		FIELD MEASUREN				
BHILITECAHON	1 6 (13 0)	(m. it)	GROUNDWATER ELEVATION	16	0014156	(m) H
DEPTH ROWATER	851	300-300	WELLDERTH		34188	(mor 3)
pH	TURBIDITY CONDUCTIVE	11 (0)	B) I I I I I I I I I I I I I I I I I I I		SAMPLE D	MPERATU 1 1 1
(43)	mstu L	Anasic Lawrence	yeV			
(483)	L L L L L L L L L L L L L L L L L L L	Janes I I	invi			
(59)}	into)	Atasi I I	may.		301	
193,12	min L L L	Anac LL	(IVV)			
Gidi	unitie					
	2 1	FIELD COMME			C 1	<u> </u>
RELEASE VAN DE ABIBLE SALED SY ATHIC COMMENTS	Associate Associated	None	494 L D 4	DV : VUIL		eas

EMOUND ON BOARD STATUS REPORTED AND A SECURITION AS A SECURIC PROPERTY OF A SECURITION OF A SE

					MC	NITORING	GWELL RECO	RD FOR LOW-FLO	OW PURGIN	G			
1	ı	Project Data	v:	61									
			Project Name: Ref. No.:	Delphil 5654	6MCH		¥ E			Date: Personnel:	570/13 T. Boh	en	
		Menitoring	Well Data:							0			
			Mall No.	MW-7		,			Saroan	Lanoth (ff):	1))-	17.2 = 15	< '
		Mea	surement Point:				6	Dep	oth to Pump I	ntake (ft) ⁽¹⁾ :	2,2	37/0-1-	-
			Well Depth (ft):						Well Diam	eter, D (in):	2,		
		Measured	Well Depth (ft):	28,94				Well Sc	reen Volume	$V_{s}(mL)^{(2)}$:	Iwell v	01 = 3,6	991.
		Depth	of Sediment (ft);					= In	uitial Depth to	Water (ft):	7.02		3
					Drawdown					A:	E.,		
			Pumping	Depth to	from Initial						74	Vohime	No. of Well
		72.1	Rate	Water	Water Level '		Temperature	Conductivity	ORP	DO	Turbidity	Purged, Vp	Screen Volumes Purged ⁽⁴⁾
		Time	(ml√min)	(ft)	(70)	pH	" C	(m\$/cm)	(mV)	(mg/L)	(NTU)	(mL)	rurgea
		1552		7.17		7.53	13.9	2.65	63.5	3.37	5.32	0	0
		1557		8.02		7.34	13.5 D.8	2.58	34.6	1.85	5,21	0.4	0
		1607		10.41		7.31	13.8	3.54	21.6	0.76	3:14	0.9	8
D	10	1612		11.84		7,30	12.4	2,56	-0.7	0.66	2.02	1,2	0
D	2	1617		15.01		7.29	12.2	2.53	-33,0	0.90	2.62	2.0	0
		1622		15.35		7.29	12.1	253	-51.4	1.26	2.51	5.5	0
	1	1637		18.64		7,28	12.3	2,5%	-58.8	1.79	2,45	3,8	0
		1637		22.15		7.30	13.2	2,53	-65.0	205	2.15	4.2	1
		1638		ADOU &			15.0		20,00	802	017.5	1.0	
13/	131	1406		7.15 -	samples	rech	word he	11					
		Notes			. (4)								
		(1)						t above any sediment	accumulated a	at the well bo	ttom		
		(2)			ased on a 5-foot sere			(2.54) ³					
	0	(3) (4)			rater level should no				C. =		ttl. hdst.d		
		(4)						have been purged (u utside of the stablizati					
					olumes Purgod= Vp		- min and antitude and	on one of the second se				-	3
											DV	M= 65 D	DM. Deak
)	x.c					6	MOT O

OSOAII 3	Parinten Parinten	3/12	WATER VOL. IN CAS N.C. KITER VOLLINGEN	WATER VEH SHEPPERED
EGING EQUIPMENT PED	KATEO E Ø	LVO AND SAMELING		Guty, aged — 128Mgg Da O Dalay
RGING DEVICE B	SACTOR SHAPE FOR THE SACTOR OF THE SAC	D DAS CRETEGO E-RECOFFICAR E-RECOFFICAR	G-9AIDER B-WAIGEZA)	5 (7) SA - (1) SE - (3) We
Roing DEVICE E	\$ - 18(3) (Fe	₽=Fc		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
MITTING DEVICE: E	0. 83477138 4377 2.3588774476 47	E-EGI VEZITVEENE		A STREET OF THE STREET
RGING DEVICE	C 1960-50 Series 5	IV-NOOLSEPHINE CANDIGUNESI	FASE ROOME 1. SCOMBROARDS TRAIC SARRY YPROFY FYE	The december of
TERING DEVICES 0.15	7 Date top 24	of the partial Ri		SOSUPERIO OTHER SPECIFI
WHILSTONAHON DEPTH IN WATER PH TURE FOR		in, ii) ini iii ii iii ii iii ii ii	I provi	DO SAMPLE TEMPERATE DO SAMPLE TEMPERATE THIS LOCATE CLEAK Surmy " #3

BARGAM PORR ATTA SASTAS ESTADA SENSO A SENSO A REPORT OF A VESTIGATION OF A SENSO A PROPERTY OF A PROPERTY OF A VESTIGATION O

Project Dat	a:	tî	MO	ONITORING	G WELL RECOI	RD FOR LOW-FL	OW PURGIN	G			
	Project Name: Ref. No.:	Delphi 56546			* 5			Date: Personnel:	3716/1 (BD)	13	
Monit <u>o</u> ring	Well Data:							12			10
Well No.: MW-/0 Measurement Point: TOR Constructed Well Depth (ff): 21-3					6	Screen Length (it): 135-213 - 8,8' Depth to Pump Intake (ft) ^(it) : 19' Well Diameter, D (in): 2					
Measured	Well Depth (it):					creen Volume		14/17			
Time	of Sediment (ft). Pumping Rute (mL/min)	Depth to Water (ft)	Drawdown from Initial Water Level ^(v) (ft)	ρН	Temperature	Conductivity (mS/cm)	nitial Depth to ORP (mV)	DO (my/L)	Turbidity (NTU)	Volume Purged, V p (mL)	No. of Well Screen Volumes Purged ⁽⁴⁾
842 849 854 859 904 909		14.58 14.58 14.58 14.58 14.58 14.58		7.06 7.03 7.03 7.09 7.09 7.06 7.06	11.7 11.9 11.9 11.9 12.1 12.1	5,47 5,76 5,95 6,05 6,07 6,10	194.7 127.3 118.2 112.5 108.5 106.3	3.19 1.02 0.91 0.87 0.82 0.79 0.83	3,44 3,21 2,90 2,85 3,73 2,71 2,70	0.2 1.4 0.6 0.8 1.0	0 0
					,						
Notes. (1) (2) (3) (4)	The well screen v The drawdown f Purging will cont and appears to be	rolume will be b rom the initial y tinue until stabi e clearing, or un	ased on a 5-foot ser vater level should n lization is achieved	een length. V of exceed 0.3 f or until 20 we trameters are	_s =p*(D/2) ² *(5*12)± ft. H screen volumes	above any sedimen (2.54) ³ have been purged (a diside of the stabliza	unless purge wa	ater remains	visually turbid		22

-resampling of Ho- collected HoD quality readings for to how equilibration time.

Project Data	ı:	3.65	М	ONITORING	G WELL RECO	RD FOR LOW-FL	OW PURGING				×
	Project Name: Ref. No.:	GNCK/ 21.005	Delphi 5346.00	vost J	4		r	Date: Personnel:	571/1= T. Bohl	3 en	
Monitoring	Well Data:							27			
Constructed Measured	Well No.; surement Point: Well Depth (ft): Well Depth (ft): of Sediment (ft):					Well S	Screen L opth to Pump In Well Diamel Screen Volume, initial Depth to	ter, D (in): V _s (mL) ⁽²⁾ :	1.45 =	al .	3'
Time	Pumping Rate (mL/min)	Depth to Water (ft)	Drawdown from Initial Water Level ⁽⁴⁾ (ft)	рН	Temperature **	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Volume Purged, V p (mL)	No. of Well Screen Volumes Purged ⁽⁴⁾
945 950 955 1000 1005 1010 1015	157	15.32	0.54	7.01 7.01 7.01 7.03 7.04 7.05 7.05	11.8 11.7 11.7 11.7 11.8 11.9	4.33 4.33 4.40 4.58 4.70 4.79 4.85	168.3 157.7 154.3 148.7 143.0 137.9 133.1	1.97 1.56 1.58 1.85 2.46 1.51 0.79	10.0 10.2 10.87 10.50 9.1 5.12 5.05	0.25 0.35 0.75 1	0 0
1036	J	<i>J</i>	V	7.05	11.9	4.82	1312	0.75	5,01	1,8	
(2) (3) (4)	The well screen v The drawdown h Purging will cont and appears to be stablizing), No. o.	olume will be l rom the initial sinue until stab a clearing, or u	at the well screen monased on a 5-foot screwater level should no lization is achieved aless stabilization parallely Victories Purged Victories	een length. V of exceed 0.3 f or until 20 we trameters are	g*p*(D/2) ²⁵ (5*12) ⁴ ft. ill.screen volumes varying slightly or	(2.54) ³ have been purged (itside of the stabliza	untess purge wat	or remains o	risually turbid		

OSO III	\$ [0.5.0] MM per	ELL PURGING INFO	WATER OFFERS	5	ACTUAL CONTRIBUTION OF THE POSITION OF THE POS
BOING EQUIPMENT 1	EDICATED TO		~	raipting fol	PMEAT DEEK ATED (C
PRGING PEVICE	S A SUMMESSINE PLANT BETTERSHENDER FLANT S T. ALADDIE FLANT	S CASCIFICATE FOR EXPERIENCE FOR EXPERIENCE	GAPARER M-WARERAR		WERGEN WHIEF SET IN
MPI INCLUEVICE	4 - Hotel 20	TORRES STATE			\$505 B.c. (80), espect
MULING DIVICE	E STAPELS SEL.	E-DAVERDARES			FUNDANCIONER PAPELLA NO DESCRIPTO DE LA CONTRA CONTRA LA CONTRA C
INGING DRVICE	E viteros	E-DESCRIPTION FRE	F-SILICUME TO COMBINATION		AT SOCIETY SAMPLE OF THE
MITTING DEVICE L	L I Maisenana	PLUTTO	C-VACUAL	1.1541	SAMPLING COTHER SPECIE
ETISCACIDI ACTUALI					
WELLIEVATION	1 16101417	FIELD MEASUREN	GROUNDWATER ELEVATION		5191012121 (0)
DESCRIPTION OF STREET		(10-37)	14 P.H. L. 1969		2369
pH I	URRIDITY CONDUCTIVI			DO	SAMPLE (EMPERA)
(40.5)	10100	4125 0	(nV)		
1 100	fintus .	AT 25 3		111	
1975	Lanne I I I I	Isesses	1 1 2 1	111	I Iso I I I
		1252	1 1 1 1	1. 1	
end)	(11)14	- A1250	1 (602)	1 1	
(41.1)	untu	ATZUC:	lla L		
		FIELD COMME	NTS		91
ASSES ASSES ASSES	600d	none-	poston C	eas 11	Clear
ELIMENOSO DOS	VINCESTRICE D - S	nab 0	W_MILITE	ofset by sittle	Sumy ~
TECHNOLOMMENTS					7

SAKS MOORRE ARE US AREST REACH ARRIVED BY A REVISION ROBOTTS FORM AFTER AREIT VED BY THE PROJECT MAY, NOTE

Project Data	E ii		al .		3	RD FOR LOW-FLO				-	
	Project Name: Ref. No.:		Harrison		Date: Personnel:				5/16/13 T. Bohlen		
Monitoring	Well Data:							-			
	Well No.:	MW-11				ľ	Screen	Length (ft):	9-21,6	1 (15.1)	
	surement Point:					rsef	em to rump i. Wolf Diam	eter, D (in):	/5		
	Well Depth (ft):					Well Sc	reen Volume				
Denth	Well Depth (ft): of Sediment (ft):	25,14					uitial Depth to		563		
Time	Pumping Rate (ml/min)	Depth to Water (ft)	Drawdown from Initial Water Level (4) (ft)	рН	Temperature C	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Volume Purged, V p (mL)	No. of Well Screen Volumes Purged ⁽⁴⁾
1140		5.97		7.43	11.0	1.81	86.7	0.83	1.19	0	0
1145		6.30		7.38	10.8	1.81	82.8	0.43	1.18	0.2	8
1155		6.25		7,38	10.8	1.71	37,1	0.24	1.15	0,4	0
1200		6.27		7.73	10.8	1.65	33,0	2021	1.12	0.6	0
1210		6.32		7.51	10.7	1,65	-67.8	0.23	1.10	0,7	0
1210		6.37		7:30	1017	1.63	71.7	0.02	11.10	078	
							-3			-	
									77.00		
Notes					52						
(1)						above any sediment	: accumulated	at the well bo	ettom.		
(2) (3)			oased on a 5-foot scr vater level should n			(4.94)					
(4)						have been purged (t	inless purge w	ater remains	visually turbic	1	
	and appears to be	clearing, or ur	dess stabilization po	itameters are v	rarying slightly or	rtside of the stablizat	ion criterio and	i appear to be	e		2
	stablizing), No-o	f Well Screen V	olumes Purged= Vp	7/Vs.					1.1.1	270R=1	

Project Dat	Project Name: Ref. No.:	De lohi Sp. 546	/GMCH		arc			Date: Personnel:	572/1	3 hlen			
Monitoring	Well Data:					k)		4.			(1		
	Well No.:	MW-1	(E.		Screen Length (ft). 9- Depth to Pump Intake (ft) ^{it)} : 15					7-21.4 (15.1)		
	Measurement Point: TOR			Deq	^		15						
	nstructed Well Depth (ft): 44.10		19		7.5	eter, D (in):	اره_	, ,	2 /				
	Well Depth (ft):	25.14					rgeen Volume		Iwell	10/, = 3,	dagl.		
Depth	of Sediment (ft):					I	nitial Depth to	Water (ft):	5,58'				
Time	Pumping Rate X (mL/min)	Depth to Water (ft)	Drawdozen from Initial Water Level ⁽¹⁾ ((t)	pH	Temperature **	Conductivity (mS/cm)	OŘP (mV)	DO (mg/L)	Turbidity (NTU)	Volume Purged, V p (ml.)	No. of Well Screen Volume: Purged (4)		
948	120 1	5.91		7.60	10.7	1.76	112.4	425	223	0	0		
953		6.06	\ \	7.48	10,5	1.67	105.5	3.65	2.12	0.1	0		
958		6.11	1	7.48	10.3	1.63	99.7	2.48	2.10	0.2	0		
1003		6.17		7.48	10.3	1.62	95.7	2.54	2.01	0,3	0		
1045		6.56	75.	7.43	9.9	1.69	79.4	0,95	2.00	1,9	0		
1100		6.69		7.39	9.8	1.69	-94.5	0.81	1.53	2.3	0		
11/0		6.98		7.41	9.7	1.67	-101.1	0.73	1.29	3.0	0		
1115		6.98		7.41	9.7	1.67	-102.2	0.71	1,25	3.2	1		
1120	M	6.98		7.41	9.7	1,67	-101.9	0.71	1-21	3.4	1		
			nia A	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
											 		
h?							L				L		
Notes: (1)	The numur intaks	will be placed	at the well screen m	id-mariat agai	a minimum of 7 (4)	almost any carlimon	Faccimulated :	of the well law	tterm				
(2)			based on a 5-foot ser				e accumumation (
(3)			water level should no			\							
(+)	Purging will conti	inue until stab	ilization is achieved o	oruntil 20 we	ll screen volumes								
			nless stabilization pa		varying slightly ou	tside of the stablizat	tion criteria aix	l appear to be					
	stablizing), No. of	í Well Screen V	olumes Purged≈ Vp	/Vs.					8011		2 2		

OSPAL PURCHDATE AMEDATE	3 050 SAPTE BASE P	12 V 2 ts	SATERIOL DECASA	s some	F24 C 24 C
EGING EQUIPMENT	DEDICATES ON N	ASC AST SAMELIN	-	MPENG LQIPMENT	5 delly, adept
RGING DEVICE	B A SCHAR SHIEFCAN	(A CLASSIC POLICE EXPENSE POLICE EXPENSE POLICE	ルッチ2月1日本 ログマスロスを表示中	X+	redo en Cristia
RoJNG DEVICE	Z telletics as standbashed	E-Ci E-E-Ci 2000/ENV		V	SELVACIONES SELVI
MIPLING DEVICE	E sommont s			80	स्वयः सम्बद्धाः
MPLING DEVICE	E 1 16605	B - IV TO THOSENS	THE CPASS ASSCERT TO GOTHER VICAN THE KOME	mar 🗸 🌉	este ound delin
HERING DEVICES 0.15	7. W DISERSON	GENERAL E PARSERA	Castotatat	5.00	simples entirel epela
WILL HELABOS SHAWAT HEED PH (25)		6 m m	GROUNDWATER ELEVATION WELL DEPTH	5 6 	SAMPLE TEMPERA
(64) (64)	Good	FIELD COMME	- 1	at meson	Clear

EMOREOUR ATTEC SATISFIES AS SEED AS A MESSAGE BY A SECSION ROOF IS LOUNCE AT DOUBLEST HILLING FOLLMAN WITH

Project Dat	a:	9	М	ONITORIN	G WELL RECO	RD FOR LOW-FL	OW PURGIN	₹G __			
	Project Name: Ref. No.:	Delphi 56546	Harrison		= = =			Date: Personnel:	5/3/16 T. Box	len	
Monitoring	Well Data:	6						1			70
		MW-12	7					Length (ft):	8-15	.1 7.1	(1)
	surement Point:				~ 3	De	pth to Pump l		14		
Constructed	Well Depth (ft):	15.1			-		Well Dian	neter, D (in):	9		
Measured	Well Depth (ft):	16.40				Well S	creen Volume	$\mathbf{z}, \mathbf{V}_{s} \left(\mathbf{mL} \right)^{(2)}$:	1 well	vol. = 1,7	anllons
Depth of Sediment (It):					• -	ſ	nitial Depth t	o Water (ft):	5,98		
Time	Pumping Rate A mI√min)	Depth 10 Water (ft)	Drawdozen from Initial Water Levet (4) (ft)	рΗ	Temperature " C	Conductivity (mS/cm)	ORP (mV)	DO (ing/L)	Turbidity (NTU)	Volume Purged, V p (mL)	No. of Well Screen Volumes Purged (4)
,		*	Aix		<u> </u>						
808	123	6.14		6.88	9.5	7.26	13.9	3.77	12.00	0	0
818	1	6.22		6.81	9,4	7.20	0.8	1.68	10.10	0.5	0
823		6.20		6.81	9.2	7.21	-14:6	1.52	18.2	0.7	0
828		6.22		6.82	9.3	7,24	-30,3	1.85	18.1	0.9	0
833		6.22		6.82	9.1	7.07	-37.0	0.83	13.9	7.1	0
838		6.22		6.82	9.1	7,17	1-41.8	0.65	13.5	12	0
843		6.22		6.82	9.2	7,17	-43.8	1.50	12.1	1,4	0
848		6,12		6.82	9.0	7.30	-47.4	0,34	4.81	1.6	0
853		6,22		6.82	9.0	7.29	-48.1	0.30	4.83	1.7	1
858	1	6.73		6.82	9.0	7.30	-48,3	0,31	4.81	1.9	/
Notes. (1) (2) (3) (4)	The well screen was the drawdown for a program will contain and appears to be	rolume will be rom the initial tinue until stab e clearing, or u	based on a 5-foot scr water level should n ilization is achieved	een length, V of exceed 0,3 or until 20 wa utameters are	"≠p" (D/2) ² " (5°12) ft. ell screen volumes	t above any sedimen *(2.54) ³ have been purged (u ulside of the stabliza	onless purge w	ater remains	visuaily turbid	OVM =	O.Kopme

O 5 0 3 /	105101 55501 55501		WATER OF THE ASSAGE STATES CALLES SA	A TEAL TO LEGE PURSON	
ABEGING EQUIPMENT	PEDRATED A 6	ING AND SAMPLIN	-	PENG EQIPMENT DELIK ATED (
PURCING DEVICE	B A SERVICE CONTROL OF THE SERVICE CONTROL OF	D LANGUAGE TARGETTE	G-FARM H-WARREAU	%	
SAMPLENAL DEVICE	Bushaman	FOR PERSONNEL		N-SAME, Reconstition of COMES.	-
PERSING PRYICE	E A-HOLES W STADE PROPERTY	1 - 11 (VETTOV, 124)		TURGING COTHER SPECIFO	-
SAMPLING DEVICE	B communica			5 MEIN, THE SPECIE	-
PURGING DEVEL: Sabiling device	E 8 1990%	to be expressionally belief to the tenters	TRALONATION THAT COMBINATION THAT COMBINATION	The same of the scale of	-
FILTERING DEVICES 0.15	L. Comment	SELECTION BETWEEN	F C-EACLOM	SUMPLE GUIDER SPE, IPA	
		FIELD MEASURE	MENTS		1
WHI 4115 A1609		(1a, ti)	GROUNDWATER FLEVATION	15814173 000	
CHEFFE ROWNED pH	TURBIDITY CONDECTIV	<u>б</u> (ав. 80 П ү О	WELL DEPTH (DO SAMPLE TEMPERATUR	- 1
1 1 102.5	nen	J 10,000 T 0	(evV)		30
10,6	(mus	Af 25 C	urvi []		30
(4.0)	mas 1	James S	Janes L		21
(861)	into	I was	10/41		±,4
1 1 1	10801	AT AT A	11/31		4.1
		HELD COMMI	NTS .		7
SANDS ENDER NOW B	Good		jietan Class	Con Suny 6	PLO
SECTION CONTINUES.	We water 5-10	TAME II N	SW_med_mates	S. O. C. Sunny ~ 6.	1
HARLING ALMIN TO BUILDING TO					

FMS MOURE AT ICAS ATORESE AS A COMPANIED BY A RECISION REQUISE FORM AT ROMEOTA THE TREBELL MAY AGE.

Project Data:		ə	МС	ONITORING	S WELL, RECOR	D FOR LOW-FLO	OW PURGIN	G			
Proje	ect Name: Ref. No.:	ephi/ 56546	GMCH.		*			Date: Personnel:	572/1. T. B.	3 hlen	
Monitoring Well C		MW-1=	3(MS/MSI	. (د			Screen	Length (ft):	8-15=	7'	# DE
Measurement Point: TOR Constructed Well Depth (ft): 15					Del	pth to Pump I Well Diam	12,				
Measured Well I Depth of Seda	Depth (it): 14.06										53 gal
Pu	19.	Depth to Water (ft)	Drawdoten from Initial Water Level (v (ft)	pН	Temperature C	Conductivity (mS/cm)	ORP (mV)	D() (mg/L)	Turbidity (NTU)	Volume Purged, V p (ml.)	No. of Well Screen Volumes Purged ⁽⁴⁾
1300 11 1305	18	4. 78		7.37	11.4	5.55 5.56 5.58	72.6 62.0 33.1	2.41 1.79	2.12	0.1	0
13/5				7.27	10.6	5.32 5.38	-57.4 -64.2	1.70	1.90	0.3	8
1330 1335 1340				7.27	10.5	5.43 5.4d 5.41	-69.5 -70.1	1,32	1.60	1.2	0
15 (0				T. 02	70		7.7.2				
											/4
 (2) The w (3) The d (4) Purgi 	rell screen vol rawdown fro ng will contin	lume will be l m the initial y we until stabi	at the well screen m pased on a 5-foot scr water level should no lization is achieved	een length, V of exceed 0.3 or until 20 wa	ş=p*(D/2) ² *(5*12)* ft. ell screen volumes!	(2.54) ³ save been purged (1	untess purge w	ater remains v	visually turbid		
			dess stabilization pa olumes Purged= Vp		varying signay ou	eside of the seabiled	more cripes in art	appear to the		1= 0.0	DDM

*- calculated w/ IL bothe & Stopuratch

Time (m1/min) (ft) (ft) pH "C (m3/cm) (mV) (my1.) (NTU) (ml.) [136] 4,79 7,27 12.0 58.7 1.20 1.63 0 [1341 4.79 7.27 11.8 5.71 59.6 0.49 1.61 0.2 [1346] 4,79 7.36 11.8 5.65 44.6 0.32 1.65 0.4 [1251 4.79 7.33 11.7 5.66 5.7 0.26 1.65 0.6 [1356] 4,79 7.40 11.8 5.61 -24.3 0.29 1.56 0.8 [1301 4.79 7.41 11.8 5.57 -23.2 0.35 1.41 1.0 [1306] 4,79 7.42 11.8 5.47 -27.8 0.61 1.53 1.2	
Measurement Point: Constructed Well Depth (ft): IS	# #
Constructed Well Depth (ft): 15	
Neasured Well Depth (if): 14, 66	
Depth of Sediment (ft).	
Pumping Rate Water Water Water Level	
1341 4.79 7.37 11.8 5.71 59.6 0.49 1.61 0.3 1346 4.79 7.36 11.8 5.65 44.6 0.32 1.65 0.4 1351 4.79 7.33 11.7 5.66 5.7 0.26 1.65 0.6 1356 4.79 7.40 11.8 5.61 -24.3 0.29 1.56 0.8 1301 4.79 7.41 11.8 5.57 -23.2 0.35 1.41 1.0 1306 4.79 7.42 11.8 5.47 -27.8 0.61 1.53 1.2	No. of Well creen Volumes Purged ⁽⁴⁾
1341 4.79 7.27 11.8 5.71 59.6 0.49 1.61 0.3 1346 4.79 7.36 11.8 5.65 44.6 0.32 1.65 0.4 1351 4.79 7.33 11.7 5.66 5.7 0.26 1.65 0.6 1356 4.79 7.40 11.8 5.61 -24.3 0.29 1.56 0.8 1301 4.79 7.41 11.8 5.57 -23.2 0.35 1.41 1.0 1306 4.79 7.42 11.8 5.47 -27.8 0.61 1.53 1.2	Ó
1346 4.79 7.36 11.8 5.65 44.6 0.32 1.65 0.7 1251 4.79 7.33 11.7 5.66 5.7 0.26 1.65 0.6 1256 4.79 7.40 11.8 5.61 -24.3 0.29 1.56 0.8 1301 4.79 7.41 11.8 5.57 23.2 0.35 1.41 1.0 1306 4.79 7.42 11.8 5.47 -27.8 0.61 1.53 1.2	0
1256 4.79 7.40 11.8 5.61 -24.3 0.29 1.56 0.8 1301 4.79 7.41 11.8 5.57 -23.2 0.35 1.41 1.0 1306 4.79 7.42 11.8 5.47 -27.8 0.61 1.53 1.2	0
1301 4.79 7.41 11.8 5.57 -33.2 0.35 1.41 1.0 1306 4.79 7.42 11.8 5.47 -27.8 0.61 1.53 1.2	0
1306 4,79 7.42 11.8 5.47 -27.8 0.61 1.53 1.2	0
	0
Notes	
(1) The pump intake will be placed at the well screen mid-point or at a minimum of 2 ft above any sediment accumulated at the well bottom.	
(2) The well screen volume will be based on a 5-foot screen length, $V_g = p^*(D/2)^{2*}(5^*12)^*(2.54)^3$	
(2) The drawdown from the initial water level should not exceed 0.3 ft. (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid	
and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be	

05021 PURVEDICE 191101013	84Mb	WELL PURGING INFO	RMA HON WATERVOLDST SEEC (CIPPERCALL) 85-1	M. M.M. William Princip.
EGENG EQUIPMENT	PUR DEDICATES W S JURCLEDNE	GING AND SAMPLING	-	STEATH OFFICE CARMING DECEMBER 1991 DECEMBER
RGING DEVICE MPLINA, DEVICE	B A SUMME SHE FORM	ESTRICTED STREET ESTREETE PROPERTY	11 437 (12 52 72)	A- APPENDATE OF THE APPENDIX O
RGING PEVICE	E valuation or symmetry data	A DATEMENT		CONTRACTOR OF A CONTRACTOR
RGING PEVICE	E 1 180025	D. POLY - OPVIEWE E. POLY - WHILENI	TREFOUNDED ABSTRACTOR TO A CONTRIBUTE VIOLE OF SERVICE	A STANDAY THE PRINT OF THE PRIN
MELLSTINATION TO PH	101/	FIELD MEASUREM	GROUNDWATER FLEVATION WELL DEPTH	5 8 4 3 7 cmd
(98.0 (97.3) (97.3) (97.3)	inno unto unto	Arzes	(10-74) (10-74) (10-74) (10-74)	
CHARACPANANA CARDEN COMPRESS HARACOMMENTS	600d 0-5	FIELD COMME	NTS Lleas	Clary Survey (18)

FARCING DIJE A DONAS DE SE DE A SE MINACIPE DE A MES SIÓN REQUEST E DENA ACEDITATION DE LE PRESENTA DE LA COMPE

Project Data:	835	NITORING	WELL RECOR	RD FOR LOW-FLO	JW PURGING				
Project Name:	elphi/GMCH				1	Date: Personnel:	5/3/1 T.Bol	Tan	
Monitoring Well Data:					S 1		01.10	1,1 = 10	i e
Well No.: M				Day	oth to Pump In	engui (11). take (fi) ⁽ⁱ⁾ .	171	1,7	
Measurement Point:	OR			Cel	Well Diame		27,,		
	7.1			Well Sc	creen Volume,			01. 2.5	
Measured Well Dopth (ft): Depth of Sediment (ft):	1.36				ritial Depth to		5.80	21. 4.0	241
Depart of Seament (it).	Drawdown								
Pumping De	epth to from Inifial							Volume	No. of Well
, 6	Vater Water Level (1)		Temperature :	Conductivity	ORP	DO	Turbidity	Purged, Vp	Screen Volumes
Time (ml/min)	(ft) (ft)	pH	"C	(mS/cm)	(mV)	(mg/L)	(NTU)	(1111)39	Purged (4)
1023 102 6	29	7.45	11.4	4.49	36. B	0.90	3.66	0	8
1033	7.17	7.31	11.1	4.23	16.3	0.30	371	0.2	0
1043		7.30	10.8	4.35	29.R	0.25	3.15	0.5	7
1053	8,16	7.30	10.6	4.62	26.7	0.28	3.01	1.5	8
	8.61	7.31	10.1	4.67	15,6	0.20	201	1.5	ð
	8.85	73)	10.0	4.67	7.5	0.18	1.92	2.1	0
	8.90	7.33	9.9	4.68	1.4	0.18	1,91	2.2	0
	8.93	7.34	10.2	4,68	-0.8	0.17	1,90	2.3	0
	8,96	7,33	10.1	4.67	1-1.7	0.18	1.90	2.4	D
	9.00	7.33	10.1	4.67	-1.9	0.18	1.91	2.5	
1158	9.03	7,33	10.1	4-67	-1.8	017	1.85	2.6	
Notes.						e store constitute o	860.00		
	be placed at the well screen mi				t accumulated a	t the wen bo	uom,		
, ,	ne will be based on a 5-foot ser			(2.59)					
	he initial water level should no			leave busin survey 1 %	mlove muran	lar visasalise s	eicuathe Inchid		
	until stabilization is achieved a ring, or unless stabilization pa								
	iring, or uniess saibinzation pa il Screen Volumes Purged= Vp		vorying sugarity or	naisie of the amonys	COLUMN CONTRACTOR ASSESSED	appear to the			
reserve and the second		r saffi					OVA	n=0,0 p	pmetoR

* Calculated using stopwarch & 12 bottle

CIRCLE ONLD RECING DEVICE RECING DEVICE OF RECING DEVICES OF RECING DEVICE OF RECING DEVICE OF RECING DEVICE OF RECING DEVICES OF RECING DEVI			ELL PURGING INFO	Λ.	_	
REING PURISH DEDUCATED REING DEVICE REING	PERCEDATE	SAMPLET	2374	WATER VOL. 15 CASC		
REING DEVICE A SERVICE FORD FOR EXPERIENCE FORD FORD FOR EXPERIENCE FORD FORD FOR EXPERIENCE FORD FORD FOR EXPERIENCE FORD FOR	EGING FORTIMENT	PEDRATES T	ING AND SAMPLIN	_	આર્થ કરતે કહ્યા	MEAT DEBOATED
RELING DEVICE RESING PENCE RESING DEVICE RESING DEVICE RESING DEVICE RESING DEVICE RESING DEVICES RES	RCING DEVICE				(5	N 1879 1 1911 191 191 191
REING DEVICE THE STATE SHOW FOR STATE SHOW FOR STATE SHOW SHOW SHOW SHOW SHOW SHOW SHOW SHOW	MPLINC DEVIK F			ATT MANAGEMENT	N	·-
RELING DEVICE RESTRICTED TO TO STATE OF THE	ROING BEFICE					
RELING DEVICE THE PROPERTY OF	MILING DEVICE	_	ESTECTOTHISE STATE		`	
TESTING DIASCUSSION STATE OF THE STATE OF TH	RUNG PEWCE	3 SEPTON	popolis symptosis	1 - 5H 85 TME	,	S CONTRACT STREET, SHIPSING
	MELING DEVICE 1		E IN COMPLEM		: rwr - y	PERSONAL PROPERTY.
FIELD MEASUREMENTS WELLSTEVATION 5 9 3 7 7 mm 20	TIPMAN INTERIOR			(Company		Samuel Combination
DEPTHERWATER 560 mcm Well DEPTH 13136 mcm PH TURBIDITY CONDUCTIVITY ORD DO SAMPLE TEMPERA (62) 100 mcm PH 100 mcm P	TEMAGOTA GOTA					
PH TURBIDITY CONDUCTIVITY ORP DO SAMPLE JEMPERA [1	WHETE MOS	5927	(m, tt)			586197
(2.5) (100) (27) (27) (27) (27) (27) (27) (27) (27	3477 W 24 H 24 G	158	/mc 115	WELL DEPORT		12111361 (m)
FIELD COMMENTS		1 1 1 1 1 1 1			1 1 1	SAMPLE LEMPERAL
FIELD COMMENTS	(20)	(mball	-			
FIELD COMMENTS CHEST SCHELD COMMENTS CHEST SCHELD COMMENTS	(4)6	(ieta		<u> </u>		
HELD COMMENTS Cleas Persons Cleas	(d.8)	untes	AND L			
HELD COMMENTS APPENDITURE VEXAS L. Good 15 Nove LEAS PUBLICAL CLASS	0.00	mbi 1	r or form	11.		
MELO COMMENTS MESSAGE VALVE I Good 11.9 Mars 1000 Clear Particular Clear	(4).1	1 1 000 1 1 1 1	1000	I I amen	ĪII	
representative to book 110 none part Clear minute Clear				NTS		
	V972 × 219 V2 V V V I	6md	none	were 66	as III	Clear
		10	101 H 50	V PSDEID	1897 OH	5 my - 70
FCIRC CONVENTS	ECRIC COSISTENES					7

 $\texttt{EMS}(\mathsf{MPORE}(\mathsf{ATA}) \land \mathsf{SMESE}(\mathsf{SE}(\mathsf{A})) \land \mathsf{MPASED}(\mathsf{ER}(\mathsf{A})) \land \mathsf{MPASED}(\mathsf{ER}(\mathsf{APPS}(\mathsf$

	Project Name: Ref. No.:	Delphi 5654	Harri son	(Date: Personnel:	5/16 T.B.	11.3	
Constructed Measured		MW15 TOR 1790 16.91			-	Well Sc	well Diam reen Volume	eter, D (m): , V_s (mL) ⁽²⁾ :	8-15 13'	= 7'	2
Time 1047 1052 1057	Pumping Rate (mL/min)	Depth 10 Water (ft) 8.35 8.35	Drawdozen from Initial Water Level ^{(v} (ft)	pH 6.99 6.90 6.90	Temperature C II. I II. O II. I	Conductivity (mS/cm) 1.92 2.90	ORP (mV)	DO (mg/L)	Turbidity (NYU) 1.96 1.95	Vähnne Purged, V p (ml.) O, (No. of Well Screen Volumes Purged ⁴⁴
1102		8.35 8.35 8.35 8.35		6.93	11, 1 11, 1 11, 0 11, 0	2.92 2.93 2.95 2.95	87.1 87.1 86.0 86.3	0,17	1.85	0.3	0
(2) (3)	The well screen v The drawdown fr	olume will be b om the initial w	ased on a 5-foot se vater level should r	reen length. V tot exceed 0,3	_ջ =ր [,] (D/2) ^{-,} (5×12) [,] ft.	above any sediment (2.54) ² have been purged (u					

Project Dat		~ ls!		ONITORIN	4	RD FOR LOW-FLO	JW I OKGIN		-4.00		
	Project Name: Rel. No.:	Delphi 5654	6 ONCH		-			Date: Personnel:	5/1/1 T. Bol	s Ilen	
Monitoring	Well Data:							V	5,		
		MW-15	5				Screen	Length (ft):	8-15	= 7	
	surement Point:				2	Dep	th to Pump I	Intake (ft) ⁽¹⁾ :	_/3		
	Well Depth (ft):				-		Well Diam	eter, D (in):	_0"		
	Well Depth (ft):	16.91				Well Sc	reen Volume	$v_s V_s (mL)^{(i)}$:	1.5 39	l'= lwe	ill vol.
Depth	of Sediment (ft):	100000			-	fr	itial Depth to	o Water (ft):	7.91		
	Pumping	Depth to	Drawdown from Initial							Volume <	No. of Well
	Rate	Water	Water Level (1)		Temperature	Conductivity	ORP	DO	Turbidity.	Purged, Vp	
Time	(ml/min)	(ft)	(ft)	pH	C	(mŝ/an)	(mV)	(mg/L)	(NTU)	(mL)	Purged (4)
1518	1118	8.15	T	7.30	12.5	2.85	84.4	3.28	2,32	0	0
1523				7.06	12.0	2,78	897	2.26	2,12	0.1	0
1598				7.00	11.4	2.78	89.4	1.02	2.21	0,2	0
1533				6.99	11.4	2,78	89.0	0,76	3.20	0.4	0
1538				6.97	11.5	2.79	88.1	0.51	221	0.6	0
1548			 	6.97	11.3	2.85	86.6	0.4/	3.30	1.3	0
1553				6.97	11.3	2,85	86.0	0,33	2,20	1. 3	0
1558		1		6.97	11.3	2.85	86.1	0.35	2,23	1.5	T T
									- n		
)				
	l				1				L	L	<u> </u>
Notes.			A 15								
(1)						above any sediment	accumulated	at the well be	ottoni		
(2)			based on a 5-foôt sei			(2.54)					
(3)			water level should r			0	,		. 11		
(+)						have been purged (u					
			niess stabilization pr /olumes Purged= Vi		varying sugnity or	itside of the stablizat	ion criteria ani	a appear to b	e		5.5
		· · · · · · · · · · · · · · · · · · ·	ciames i di Red. A	pre State					DVM= (7 DADW T	MA

OSO II	S. V.M. 43.15	WELL PURGING INF	WATERVOL BEGASING	G INTUM VOLUMERISCH	tr.
BEGING FOURMENT	PEDICATED CO		-	MPERAG EQFENENT — TOLDK, VUID EUR	(D)
MICING DEVICE	A SUBJE SPIE PLE BATTESTADE TUBE C BENDDER PLANT		11 - 12 1.16 11 - WAIL 25 An	2- 2-10-25-10-41-28-25	
ERGING DEVICE	E CHARLESS HELD	E-FOLYZHEYLEN	(#)	Sadir, Charles and Sadir a	ni ka
REING DEVICE	E CHEEN	DEPOLYCACION ESS ELIN EDEMINARAS SPICIENI	FOR INCOME OF COMMINATION THE CONTROL YERO FOR	N	THE
WELLTHA ARON DEPTH (OWATE) PH (#3) (#3) (#3) (#3)			GROUNDWATER HEVATION WIGH, DEPTH ORD [65] [65] [65]		(m.) (as/1) (sKA11)
MES RUEARNY I EARDER ONGITON RUER COMMENS	600d	FIELD COMM	Le Cle	Marson Clean	~6

FANG MEDIRK ATROMATICS AND SERRO COMPANIED BY A REASON ROPERTS FORM AFFROMOUT THE FRODGE MODIFIED FOR MADERICAL TO A REASON ROPERTS FOR MADERICAL TRANSPORT OF THE FRODGE MODIFIED FOR THE FRODGE MODIFIED F

	Project Name: Ref. No.:	Delphi	16WH	3				Date:	572//3	•	
	Ref. No.:	56546	,	11.				Personnel:	5/2/13 T. Bob	len	
unitoring	Well Data:			Alfar i					•		
Mea	Well No.: surement Point:				- 2	Den	Screen oth to Pump I	Length (ft):	151		
	Well Depth (it):	101			- yXi e	g Dej		eter, D (in):			
Measured	Well Depth (ft): of Sediment (ft).	17.9	3	sel "	• •		rreen Volume nitial Depth to	, V_s (mL) ⁽²⁾ :	0.830	sall well	/ vo /,
lime	Pumping Rate *(mL/min)	Depth to Water (ft)	Drawdozen from Initial Water Level (9 (ft)	рΗ	Temperature		ORP (mV)	DO (my/L)	Turbidity (NTU)	Volume Purged, V _P (mL)	No. of Well Screen Volumes Purged ⁽⁴⁾
800	90	12.95	T	7.17	10.5	11.77	157.6	8.77	2,2	0	
805				6.89	10.0	11.70	1630	8.01	2.1	0	0.
810				6.90	10.0	11.73	162.8	7.81	5.0	0.1	0
815				6.89	10,2	11.81	159.D	7.65	2.0	0.2	0
825				6.88	10.2	11.88	150.8	6.69	1.81	0.6	0
830				4.88	10.2	11.92	147.9	6.48	1.81	0.8	1 9
835				6.86	10.2	11.91	146.9	657	1.70	1.0	1
840		V		6.88	10.2	11.93	146.5	6.60	1.71	1. 2	1
					<u> </u>		-				
(otes. () () ()	The well screen ve	dume will be	at the well screen in based on a 5-foot scr water level should in	reen length. Y	s=p*(D/2)2*(5*12	ft above any sediment	accumulated 7	it the well bo	tfom.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	l'
1)	Furging will conti and appears to be	nue until stab clearing, or u	ilization is achieved	or until 20 wa utameters are	ell screen volume	s have been purged (v autside of the stablizat	mless purge wa ion criteria and	iter remains v Lappear to be	risually turbid e O VA		

Revision 3 (Applied 2) 2002

FMG MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

From Hurbid-Froductive well TOW = 17.73

HURCE DATE PANTODAY	3 (0.50 F	- 3. k	WALLENGE INVASAG	A HAT WE MERCHAN
RIGING FOURMENT	DEDICATED (S) N		SAMPLES	G TOPMENT DEBICATION OF THE CONTROL
RGING PEVICE	В деменение	B Laster Pute	Q+25116F	\- <u></u>
MPLISW: DEVICE	B - GESTELLE	E - CALLAGE PASSIC E - CALLAGE PASSIC	HAWAIREAE	TELESCOLOU SE SELBY:
RGING DEVICE	F N-10931 F	16-7%		* (187, 187, 2019) 189
MPLING DIFFICE	a statement a	F 17 3 5 - 1335 5 8761		म् अस्तर्भः स्थापक्षाक्षात्रः ॥५
WILLING DEVICE	E Tracelloller			Scotting, stock-sensity
RGING DEVICE	A THEFAN	ECIVELANTENE ECIVELANTINATENE	F-SILICOME CACCUMENATION	A-
MINIST DEVICE	E POSE	art (TE) i	HERECONFORT ALBERT 21 EVE	STATISTICS CONTROL STREET
LIERNG DIVICISE I	A: ENTENEDINGS		CONTROL OF	A MILENACINIE OF THE
		FIELD MEASUREN	HENTS	
WELL HEVAROS	1579511	lena (t)	GROWNOW STER ELEVATION	58226 mg
DEPTH AND ADJ	111518	J (m. (f)	WELL DEPTH	1793
pH	TURBIDITY CONDUCTIVE		RP [] [nevs]]]	DO SAMPLE (EMPERATOR
(2)	astro .	100 L	(rivi	
(4) (5)	ínte	AT 25 C		
1493)	antin	General Alizaria		84
1 1 100	1 I I rate	LINGSTON	1 1 1	1110 1111
(8),(1)	I must	Lucia Lucia	111,253	
	,	FIELD COMME	NTS	
	1		Clear	- HELDER Clear
OTHER PROPERTY OF THE	400d			
MENT CONTROLS	D-5	کے (clar tree کے	W PRETERIOR	Sunny ~80

 $\texttt{SMGMCORP}(A130) \times \texttt{SMCSE}(36, A+0) \times \texttt{PRAMID BY}(A280) \times \texttt{POQUEST FORMALL RECEIPED FOR EACH ALL ACTION AND A SMCORP AND A SMCORP$

Form FMG 5.	.1-01		GROUNDV	WATEDI	EVEI -	WELLNUMBER
			MONITOR			251
		111111	MONTAGE	XIIIG KEI		Page of
PROJECT	DIN	CH / JE	lighi Harrison	<u> </u>	PROJECT MANAGER	BIRDA
LOCATION CLIENT	Loc	Kent	<i>J</i> -4		FIELD REP.	Boh 61 511/13
	N REFEREN				DATE	5///3
P. L. P. A. F. P. C.	NEFFEREN		#			
Date	Time	Elapsed Time (days)	(TOR) in ft	Elevation of Water	Remarks	Read By
511/13	940	-	14.78		MW-10	A
**	1140	-	8,51		MW - 4	41
	1515		7.91		MW-15	"/
5/2/13			13.82		4-1	**
	945		5.58		MW-11	
	1097		8.39		MW-4	• '
	1025		14.94		MW-10	
	1029		7.97		MW-15	j. y.
	1036	-	4.65		MW-13	/*
-	1040		5.98		WM-19	
	1550	-	7.02		MU-7	
5/3/13			5.98		MW-12	.,
	1020	-	5.80		MW-14	',
	1406		7.15		MW-7	
		-				
					 	
					-	
					+	
					 	
					 	
				-		

Form FMG 5.	1-01		GROUNDY			WELL NUMBER
		, , , ,,	MONITOR	RING REF	PORT	Page of
PROJECT LOCATION CLIENT ELEVATIO			NISON Therm	a 1 Sysems	PROJECT MANAGER FIELD REP. DATE	C. Boron T. Boylen 5/16/13
Date	Time	Elapsed Time		E1	Remarks	Read By
			(TOR) infi	Elevation of Water		
5/16/3			14.22	·	MW-10	TB.
	935	-	8,13		MW-4	
	1028		6.75		MW-7	b (
	1040		8.05		MW-15	
	1178		5,63		MW-11	11
	Me	-	4.66		MW-13	t e
	1224	-	6.28		MW-14	*4
	1374		5.91		WM-19	.,
	1331		10,13		6-1	11
						=
·			——————————————————————————————————————		-	
	77				<u> </u>	
					<u> </u>	
-						

Form FMG 8.0-01	INSTR	UME	ENT CA	LIBRATION RE	CORD
PROJECT SMC LOCATION LOCK CLIENT SMC	H/Delphi port, NY H			PROJECT M. FIELD REP. DATE	ANAGER (B) OM T. B. M. EM 51/1/3-
Instrument	Date Calibrated	By	Standard Used	Decontamination, Maintenance, or Repair Performed	Remarks
Y51	5/1/13	B	cal. Solutions	Cal.	OK
OVM	64	VB	130. Gas	Gellt	ok
La Mothe	XX.	VB	(a) 501.	Cal.	8t
Y51	5/3/13	B	cal Solitions	Cal	ok
OVM	**	. 1	lso.	Callk	OK
LaMothe	18	# 4	(a 1. 50 1.	(a1	OK
YSI	5/3/13	AB	Cal Solutions	Cal.	OK
DVM	**	α, 	150. 695	Cal.	ok
Lamothe		12	(al 301.	Cal	ok
				#	14
Other Remarks:					
·					

Form FMG 8.0-01				LIBRATION RE	CORD
PROJECT Dela LOCATION LOC CLIENT	hi Harrisa Kport, A	n Then	rmal Sys	PROJECT MA FIELD REP. DATE	T. Bohlen 5716/13
Instrument	Date Calibrated	Ву	Standard Used	Decontamination, Maintenance, or Repair Performed	Remarks
OVM	5/16/13	AB	150. 6as.	Cal.	ok
YSI		14.0	Cal. Sols	>4	• •
OVM YST LaMoth	d	bf	Cal. Sol.	16	Ч
	0.0				
777		-			
•				a	
Other Remarks:	14				
-		- 0			

320 Scarlet Blvd. Oldsmar, FL 34677 (800) 910-0051 fax: (866) 755-8920

www.gascogas.com

CERTIFICATE OF ANALYSIS

Date: October 3, 2012 Order Number: PO00333

Lot Number: KAM-248-100-1

Customer: Eco-Rental Solutions

Use Before: 10/02/2016

Component

Specification (+/- 10%)

Analytical Result (+/- 2%)

Isobutylene

Air

100 PPM

97.3 PPM

Balance

Balance

Cylinder Size: 4.0 Cu. Ft.

Contents: 116 Liter (EcoSmart)

Valve: 5/8" -18UNF

Pressure: 1000 psig

The calibration gas prepared by Gasco is considered a certified standard. It is prepared by gravimetric, or partial pressure techniques. The calibration standard provided is certified against Gasco's G.M.I.S. (Gas Manufacturer's Intermediate Standard) which is either prepared by weights traceable to the National Institute of Standards and Technology (NIST) or by using NIST Standard Reference Materials where available.

Analyst:
Rebicca Otgo

Calibration Certificate

rev 8/9/11

Work Order No.: SE-004193 Date of Service: 04/18/13

Unit Under Test: Lamotte 2020WE Turbidity Meter

Asset No.: FA00413

Technician: TYLER HINTZ Initials:

Serial No: 2606-3812

TEST	Specification	Result	
Standard Calibration	Pass/Fail	PASS	

TEST STANDARDS USED:

TEST STATES AND COLDS		
DESCRIPTION	LOT No./EXPIRATION DATE	QUANTITY
Turbidity Free Water		1
10 NTU AMCO Turbidity	Lot No. C149164 Exp.	1
Standard	03/31/13	
1.0 NTU AMCO Turbidity	Lot No. C149163 Exp.	1
Standard	03/31/13	

TEST EQUIPMENT USED:

DESCRIPTION	ASSET NO.	SERIAL NO.	DATE OF LAST CAL	DATE CAL DUE

Test Equipment and standards are traceable to National standards.

GFS Chemicals, Inc. Columbus, Ohio 43223

LOT ANALYSIS

ITEM: 8578 AMCO CLEAR TURBIDITY STANDARD, 10 NTU for LAMOTTE 2020we

LOT#:C149164

Test	PASS/FAIL	NUMERICAL RESULT
Turbidity (LaMotte 2020we) 10 NTU	PASS	10 NTU
NIST Traceable (Average Particle Size)	PASS	SRM 1963
NIST Traceable (UV-Vis/concentration-distribution)	PASS	SRM 2031
Absorbance at 455nm (100mm pathlength)	PASS	0.1204
Traceable to fresh formazin dilution	PASS	Conforms
Expiration date (1 year from ship date)	PASS	See label

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Renita Smith

Quality Assured to Retest Point: 12 months from shipment

C/A Print Date: 07/23/2012

QC Supervisor: Joshua Crow

Not for direct use in food, cosmetics, finished pharmaceuticals or drug products. Supplier is not responsible for compliance with FDA Current Good Manufacturing Practice (CGMP) requirements, including without limitation those for finished drug products in 21 C.F.R Parts 210 and 211. Consult warranty limitations at www.gfschemicals.com/statics/documents/aboutus/termsandconditions.html For resale by GFS authorized distributors only.

GFS Chemicals, Inc. Columbus, Ohio 43223

LOT ANALYSIS

ITEM: 8577 AMCO CLEAR TURBIDITY STANDARD, 1 NTU for LAMOTTE 2020WE

LOT#:C149163

Test	PASS/FAIL	NUMERICAL RESULT
Test Turbidity (LaMotte 2020we) 1.0 NTU	PASS	1.0 NTU
NIST Traceable (Average Particle Size)	PASS	SRM 1963
NIST Traceable (UV-Vis concentration-distribution)	PASS	SRM 2031
Absorbance at 455nm (100mm pathlength)	PASS	0.0121
Traceable to fresh formazin dilution	PASS	Conforms
Expiration date (1 year from ship date)	PASS	See label

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Renita Smith

Quality Assured to Retest Point: 12 months from shipment

C/A Print Date: 07/23/2012

QC Supervisor: Joshua Crow

Not for direct use in food, cosmetics, finished pharmaceuticals or drug products. Supplier is not responsible for compliance with FDA Current Good Manufacturing Practice (CGMP) requirements, including without limitation those for finished drug products in 21 C.F.R Parts 210 and 211. Consult warranty limitations at www.gfschemicals.com/statics/documents/aboutus/termsandconditions.html For resale by GFS authorized distributors only.

Calibration Certificate

rev 8/9/11

Work Order No.: SE-004194 Date of Service: 04/18/13

Unit Under Test: YSI Pro Plus Quatro, 4m pH/ORP/Cond/Temp/DO

Asset No.: FA00002

Technician: TYLER HINTZ

Initials:

Serial No: 11K100528

TEST	Specification	Result
Standard Calibration	Pass/Fail	PASS
		S 2

TEST STANDARDS USED:

TEST STANDANDS OSED.		
DESCRIPTION	LOT No./EXPIRATION DATE	QUANTITY
Air Saturated Water		1
Sodium Sulfite/ Zero DO	N/A	1
Standard		
7.00 mS Conductivity	Lot No. 3AA758 exp.01/14	1
Standard Solution		
pH 7.00 Standard Solution	Lot No. 2AG534 Exp.	1
	07/31/14	
pH 10.00 Standard Solution	Lot No. C254458 Exp.	1
	07/19/14	
pH 4.00 Standard Solution	Lot No. C255426 Exp.	1
•	08/28/14	
ORP Standard Solution	Lot No. 11J100423 Exp.	1
	09/30/13	
EdgeTech DewMaster PPE-	sn 41891 cal due 10/23/13	1
0001		

TEST EQUIPMENT USED:

DESCRIPTION	ASSET NO.	SERIAL NO.	DATE OF LAST CAL	DATE CAL DUE

Test Equipment and standards are traceable to National standards.

Certificate Of Analysis

Product	Conductivity Standard, 7000 μS/cm	
Code cs7000		
Lot Number	2AJ581	
Specifications	7000 μS/cm +/- 1% @ 25C	
Lot Analysis 7000 µS/cm		
Expiration	10/13	
NIST STD used	SRM 3193	

We certify that the above referenced lot of reagent was manufactured per ASTM Standards or Standard Methods, 22nd edition. All glassware complies with Class A tolerance requirements. Balances are calibrated using NIST traceable mass standards. Chemicals used in the product are lot traceable. A quality control testing report is kept for each manufactured lot.

Luke Miller

Research Chemist

October 22, 2012

9 Barnhart Drive • Hanover, PA 17331 • 717 632 1291 Fax: 717 633 1285 • Email: sales@aquaphoenixsci.com

GFS Chemicals, Inc. Columbus, Ohio 43223

LOT ANALYSIS ITEM: 1634 BUFFER SOLUTION, pH 4.00, (COLOR CODED RED)

LOT#:C255426

Test	PASS/FAIL	NUMERICAL RESULT
pH (@ 25 C) 4.00 +/- 0.01	PASS	4.01
NIST Traceable	PASS	See Comments

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment: NIST SRM 185H, 186IG, 186IIG, 191-D-1 & 191-D-II

Reported by: Karen Hirsch

QC Supervisor: Robert Kramer

Quality Assured to Retest Point: 8/28/14

C/A Print Date: 10/01/2012

Not for direct use in food, cosmetics, finished pharmaceuticals or drug products. Supplier is not responsible for compliance with FDA Current Good Manufacturing Practice (CGMP) requirements, including without limitation those for finished drug products in 21 C.F.R Parts 210 and 211. Consult warranty limitations at www.gfschemicals.com/statics/documents/aboutus/termsandconditions.html For resale by GFS authorized distributors only.

GFS Chemicals, Inc. Columbus, Ohio 43223

LOT ANALYSIS

ITEM: 1645 BUFFER SOLUTION, pH 10.00, (COLOR CODED BLUE)

LOT#:C254458

Test	PASS/FAIL	NUMERICAL RESULT
pH (@ 25 C) 10.00 +/- 0.01	PASS	10.01
NIST Traceable	PASS	See Comments

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment: NIST SRM 186IG, 186IIG & 191C

Reported by: Karen Hirsch

Quality Assured to Retest Point: 7/19/14

C/A Print Date: 10/01/2012

OC Supervisor: Robert Kramer

Not for direct use in food, cosmetics, finished pharmaceuticals or drug products. Supplier is not responsible for compliance with FDA Current Good Manufacturing Practice (CGMP) requirements, including without limitation those for finished drug products in 21 C.F.R Parts 210 and 211. Consult warranty limitations at www.gfschemicals.com/statics/documents/aboutus/termsandconditions.html For resale by GFS authorized distributors only.

Certificate Of Analysis

Product	Buffer 7.00
Code	BU5007
Lot Number	2AG534
Specifications	7.00 +/- 0.01 @ 25C
Lot Analysis	6.99
Expiration	7/14
NIST STD used	SRM 191c

We certify that the above referenced lot of reagent was manufactured per ASTM Standards or Standard Methods, 22nd edition. All glassware complies with Class A tolerance requirements. Balances are calibrated using NIST traceable mass standards. Chemicals used in the product are lot traceable. A quality control testing report is kept for each manufactured lot.

Luke Miller Research Chemist

July 24, 2012

9 Barnhart Drive • Hanover, PA 17331 • 717 632 1291 Fax: 717 633 1285 • Email: sales@aquaphoenixsci.com

HC0090/MAR 08 REV-1

10 Hazelwood Drive

Amherst, NY 14228-2298

Phone (716) 691-2600 Fax (716) 691-7991

Olivert Information	Sampler:			Lab Pl							Carrier Tracking No(s): COC No				COC No:					
Client Information Client Contact:	Thomas Bohlen Phone:			E-Mail	, Melis	ssa L					\dashv						ł	Page:		
Mr. Christopher Boron	(716) 844-7050			melis	sa.dey	o@te	stame	ricaino	.com		\perp						_	Page of		
Company: GZA GeoEnvironmental, Inc.								А	nalys	sis F	Real	uest	ed					GZA Job #: 21,00565	46,00 Task 24	
Address:	Due Date Requested	1:			1 88	П			ΤÍ	\neg	寸	Т	Т	Т	Т			Preservation Codes:		
535 Washington Street 11th Floor City:	TAT Requested (day	/s)·																A - HCL	M - Hexane	
Buffalo	3 Weeks	٠,٠			No.			10	_			- 1		1				B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zip: NY, 14203									Vinyl Chl									D - Nitric Acid E - NaHSO4 F - MeOH	P - Na2O4S Q - Na2SO3 R - Na2S2SO3	
Phone: (716) 685-2300	PO #: 4047065	047065							cis), Vi					Sulfate)				G - Amchlor	S - H2SO4 T - TSP Dodecahydrale	
Email: christopher_boron@gza_com	WO #: 58507				No)	<u>.</u>		2 2	틸		then		<u>2</u>	S Sul			10	l - Ice J - DI Water	U - Acetone V - MCAA	
Project Name:	Project #:			_	Yes or N	loxic	sigs	Mn, Mg, K & Na	(trans	5	ne, E		ပို	ig e			containers	K - EDTA L - EDA	W - ph 4-5 Z - other (specify)	
058507, GM-Lockport Groundwater Sampling	48004014				yes Yes	l o	Fatty Acids	Ä,	👸	Carbon	Etha	g	Nitrai	. 울			onta	Other:	2 outer (opcomy)	
Systems Site	ssow#: 256015				Sam MSD (~		l e	i i	ganic	thane,	- Sulfide	itrite, l	- Anions (Chloride &			৳	other,		
Systems Site			Junipic	trix	itered MS/I	RSK_175_C02	VFA_IC - Volatile	- Ammon	- PCE, TCE, DCE	9060 - Total Organic	RSK_175 - Methane, Ethane, Ethene	SM4500_S2_D -	353.2, 353.2_Nitrite, Nitrate_	D-A	×		Total Number			
		Sample	Type (W=v S=er (C=comp, O=was	olld,	Field Fill Perform	5	VFA_IC	8	6	F	51	1200	2 3	300.0 Z8D	AM20GAX		N I	· y.,		
Sample Identification	Sample Date	Time	G=grab) BT=Tlasu		Fie Per	ş	VFA	550.1- 6010B	8260B	906	\rightarrow		353.2,	300	Ā		Ĕ	Special Ins	tructions/Note:	
	><	><	Preservation C	ode:	$\times\!\!\!\times\!\!\!\!\times$	N I	N S	D	A	A /	A	CB N	1 N	N			X	ALC: UNITED AND ADDRESS OF THE PARTY OF THE	Here I Helpfu	
MW-10-050113 MW-4-050113 MW-15-050113	5/1/13	1030	A Wa	ter	NN	K	CK	CK	K		K		\leq	X	X	1_		* Micro Dissolve	SCODS	
MW-4-050113		1415	Wa	ter	NN	1	X	2 C	X		8				X			Dissolve	d Hz	
MW-15-050113	4	1610	4		UN	K	<	CK	K			1		JK	X	1_				
			-																	
Trip Blank																	75			
1M.																	17			
į.					П															
					T				\Box	7	7	1		1			62			
			**:		-	\Box		+		7				+		П				
					+	\vdash		+	П	7	-	\dashv	-	1						
						\vdash		+		1	7	\dashv	+	+			100			
Possible Hazard Identification	L				Sa	mple i	Dispo	sal (A	fee n	nay b	e as	sess	ed if	samp	les a	re ret	aine	ed longer than 1 i	month)	
Non-Hazard Flammable Skin Irritant Poisc	on B Unknov	wn \square_R	adiological			\square_{Re}	turn 7	o Clier	nt	Þ	Di	sposa	al By i	ab			\rchi	ve For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	ecial li	nstruc	tions/G	C Re	quire	ment	S.								
Empty Kit Relinquished by:		Date:			Time:			Δ,		- 5		N	lelhod	of Ship						
From Bohlen	5//// 3	117	35 Compa	ZA	<u> </u>	Receiv	ved by:	(1)	VV	IL L	401	1/	_	Date	e/Time	*S/	1)	13 1735	Gompany A	
Relinquished by:	Date/Time:	///	Compa		M	Receiv	ved by:	- √ν	V 6	<i>u</i> ., <i>t</i>				_	e/Time			***************************************	Company	
Relinquished by:	Date/Time:		Compa	ny		Receiv	ved by:							Date	e/Time	:			Company	
Custody Seals Intact: Custody Seal No.:						Cooler	Tempe	erature(s	s) °C an	d Othe	er Ren	narks:								

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-7600 Fax (716) 691-7991

Client Information	Sampler: Lab PM: Thomas Bohlen Deyo, Melis				lissa L						Ċ	arrier	Frackir	g No(s):		COC No:				
Client Contact: Mr. Christopher Boron	Phone: (716) 844-7050			E-Mail melis		eyo@	testar	merica	ainc.	com									Page: Page of		
Company: GZA GeoEnvironmental, Inc.	N									nalys	is F	 Reau	ieste	ed					GZA Job #: 21 0056	546 00 Task 24	
Address: 535 Washington Street 11th Floor	Due Date Request	ed:			100	3		П	Ť		T		T	T	T				Preservation Co	ies:	
City:	TAT Requested (da	ays):		_	TO STATE OF														A - HCL B - NaOH	M - Hexane N - None	
Buffalo State, Zip:	3 Weeks				TSI)					훙									C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S	
NY, 14203 Phone:	P0 #:			_	STATE OF					Vinyl		-	\						E - NaHSO4 F - MeOH G - Amchlor	Q - Na2SO3 R - Na2S2SO3 S - H2SO4	
(716) 685-2300 Email:	4047065 WO#:			_	No)				Na	d cis),		ane.			Sulfate)				H - Ascorbic Acid	T - TSP Dodecal U - Acetone	nydrate
christopher.boron@gza.com	58507				S or					ns and	_	, Ethe	1 2	3	de & S			ers	J - DI Water K - EDTA	V - MCAA W - ph 4-5	
Project Name: 058507, GM-Lockport Groundwater Sampling	Project #: 48004014				le (Ye	Carbon dio	/ Acid		n, Mg	E (trans	Carbon	thane	ا و	5 S	hloric				L - EDA	Z - other (specify	')
Sile Delphi Harrison Thermal	SSOW#: 256015	6015					Volatile Fatty Acids	<u>.a</u>	Fe, M	CE, DCE	ganic C	hane, E	Sulfide	Ikalinit	ions (C			of co	Other:		
Systems site		Sample	Sample Ma Type (W=v S=s (C=comp, O=war	trix valer, olid, ste/oll,	Field Filtered	RSK_175_C02	VFA_IC - Volati	350.1 - Ammonia	6010B - Metals - Fe, Mn, Mg, K &	8260B - PCE, TCE,	9060 - Total Organic	RSK_175 - Methane, Ethane, Ethene	SM4500_S2_D -	232.2, 333.2 INITITIES INITIALE	300.0_28D - Anions (Chloride &	AM20GAX		Total Number of	****		
Sample Identification	Sample Date	Time	G=grab) BT=TIssu Preservation C			7						_			300	AM		ij	Special Ir	structions/No	te:
6-1-050213	5/2/13	850	7	ater	N	N X	N	S	D		A /		BN	N	The state of		-	7			
MW-11-050213	3/2/12		9	ater		1 2	1	2	C	2		1		1	4	A	H		X - Mio		<u> </u>
MW-13-050213 MS/MSD		1130			NA	10		8	싉	8		X 10			1	1		50	Dissoli	05000	
WW-12-020417 110111717	- V	1350	1	<u> </u>	N	1			~	_		-		10	1	1		4.0	١) ٥<5٦ دړ	ey n	
Trip Blank				-	H	+		H	-	\dashv	\dashv	+	+	+	+		H	50			
NIP Pank				-	H	+	\vdash			\dashv	+	+	+	+	+						
¥				_	H	+-				-	+	+	+	+	+						
					H	+	Н			-	+	-	+	-	+	1	H				
			246		H	+	\vdash	H	_	-	+	+	+	+	+	-					
					H		\vdash	H	-	-	+	2	+	+	+	-					
					H	-	\vdash	H	-	\dashv	+	+	+	+	+	-	\vdash				
Possible Hazard Identification					\sqcup_{s}	Sample	e Dis	posal	(A	fee n	av b	e as	sesse	ed if s	ampl	es ar	e reta	ine	d longer than 1	month)	-
Non-Hazard Flammable Skin Irritant Pois	on B Unkno	own D _F	Radiological			\Box_{F}	Return	1 To C	lient	f	7	Bis	posa	By L	ab				ve For	Months	7
Deliverable Requested: I, II, III, IV, Other (specify)					S	pecial	Instr	uction	s/Q(C Rec	ulrer	nent	5:						404	TA	\dashv
Empty Kit Relinquished by:		Date:			Time			Λ	J		1		n M	ethod o	f Shipn					Company	\dashv
Removished by: Thomas Bollen	Date/Time:	/ 17	30 G	žA		Rec	eived b	y:	IM	7/1	K	d	M		Date		_	_		Company	\perp
Relinquished by:	Date/Time:		Compa			Rec	eived b	у: 🗸	/V"·	J-V					Date/T	111167		_			
Relinquished by:	Date/Time:		Compa	ny	_	Rec	eived b	y: peralur	(-10	C and	Other	Rema	rks:								
Custody Seals Intact: Custody Seal No.:					_	c-	JIII	peralur	e(s)	O BITO	_			_							
Δ Yes Δ No				_		_	_										-				

10 Hazelwood Drive

Amherst, NY 14228-2298

Phone (716) 691-2600 Fax (716) 691-7991

Client Information	Sampler: Thomas Bohlen			Lab I Dey		M: Carrier Tracking No(s): , Melissa L					COC No:										
Client Contact: Mr. Christopher Boron	Phone: (716) 844-7050			E-Ma		yo@test	americ	cainc	.com	5	ヿ						P	Page:			
Company: GZA GeoEnvironmental, Inc.					T				naly	eie f	Zeni	iesta	-d					SZA Job #: 21,005	5546,00 Task 24		
Address:	Due Date Request	ed:			1 2					0.0.	104		1	Т			P	reservation Co	des:		
535 Washington Street 11th Floor City:	TAT Requested (da	ays):			- 2													A - HCL 3 - NaOH	M - Hexane N - None		
Buffalo State, Zip:	3 Weeks								- 등									C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S		
NY, 14203	PO #:								Vinyl (,					E F	E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2SC	03	
Phone: (716) 685-2300	4047065				(o)			_	cis),					lfate)			E +	3 - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dode	ecahydrate	
Email: christopher.boron@gza.com	WO #: 58507				5 6	e e		& Na	and		Ethene		aic aic	% Su				- Ice J - DI Water	U - Acetone V - MCAA		
Project Name: 058507, GM-Lockport Groundwater Sampling	Project #: 48004014				es or N	dioxide	8	Mg,	(trans	rbon	Ethane,	- '	ate 0,	loride				K - EDTA EDA	W - ph 4-5 Z - other (spe	ecify)	
Pelphi Harrison Thermal	ssow#: 256015				SD (Y	RSK_175_CO2 - Carbon dioxi		6010B - Metals - Fe, Mn, Mg, K &	8260B - PCE, TCE, DCE (trans and cis),	9060 - Total Organic Carbon	ane, Ett	SM4500_S2_D - Sulfide	353.2_Nitrite, Nitrate_Calc	300.0_28D - Anions (Chloride & Sulfate)			of con	Other:			
Systems Site			Sample Type (C=comp, G=grab)	Matrix	tered MS/M	CO2	Ammonia	Metals -	CE, TC	tal Org	RSK_175 - Methane,	S2_D-	353.2, 353.2_Nitrite, Nit	D - Ani	×		Total Number				
<u> </u>		Sample	Type (C=comp,	S=solid, O=waste/oil,	라 타	K 175	- - -	0B - I	908 - 8	00 - To	Ž.	4500	353.2, 35	2.0	AM20GAX		tal N	***			
Sample Identification	Sample Date	Time	G=grab) et	=Tissue, A=Air		1		1000		100	_	_	-0.0		A	_	빍	Special I	nstructions/l	Note:	
MW 11 6000010	5/3/13	208	rieservatio	Water	 	NN	S	D	A X	A	A C	CB N	N	N	مدا	-	\uparrow	R. Mic	rosed		
MW-12-050313	5/3/13	100	4		1/1/	177		1		2	쉬	(\cdot)	4	1	X		-	V INIC	rosee	11	
MW-14-050313		1200	+++	Water	NN	XX	YX		1	X	4	4		1	1	\vdash		Nissa	wed	42	
MW-7-0503 13	- J	1410	dr .	V	NN	XX	14	12	14			2	4	cle							
TINBLE					+			+		\vdash	\dashv	+	+	-			20				
TUP DIGITA					+		+	Η,	M	-	\dashv	+	+	+	-						
					+	$\vdash \vdash$	+	-	\vdash		\dashv	+	+	+-	\vdash	\vdash	2				
					H	\vdash	+-		H	\vdash	\dashv	\dashv	+	+	\vdash						
					#		+	Н			\dashv	-	+	+	\vdash		704				
			•		₩		4				-	\rightarrow	+		-		30				
-					₩	\vdash	_				_	-	-	-	\vdash						
					Щ	ـِلــــــــــــــــــــــــــــــــــــ		1/4	للِ				1/5					/ I	4451		
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Po	ison B Unkn	own \square_F	Radiological		Sa		i sposa urn To			navi	Di	sposa	e a it: il Bv l	samp .ab	es ar			i longer than e For	Months		
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	ecial Ins				quire	ment	is:									
Empty Kit Relinquished by:		Date:			Time:					,	n.	N	lethod	of Ship	ment:						
Thomas Bollen	5/3//_	< /12	50°	ompany		Receive	d by:		1	1//	hin	.ji		Dat	e/Time	5/1	3	1530	Company	BUHA	Č
Relinquished by:	Date/Time:		C	ompany		Regelve	d by.	1	1	yuz	THE T			_	e/Time:	_	6	- W	Company		Ĭ
Relinquished by:	D. I. C.					1/	1	11	_	_	_	_	_	Dat	e/Time:	_			Company		1
	Date/Time:		10	ompany	6	Receive	a Qy							l Dat	or mire.				Company		1

10 Hazelwood Drive

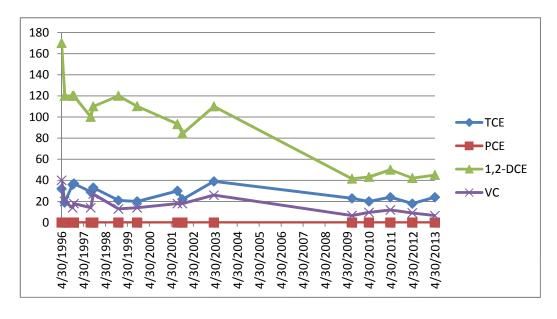
Amherst, NY 14228-2298

Phone (716) 691-2600 Fax (716) 691-7991

Client Information	Sampler: Lab PM: Thomas Bohlen Deyo, Mel					Nelissa L						Carrier Tracking No(s):						COC No:						
Client Information Client Contact:	Phone:	is bonien				eyo,		ssa L	_		_		_	\dashv						- 1	Page:			
Mr. Christopher Boron		344-7050						yo@	testar	neric	ainc.	com									Page of (
Company:						П					Δ,	alys	ie F	na?	ıeet						GZA Job #: 21,0056546,00 Task 24			
GZA GeoEnvironmental, Inc. Address:	Due Dat	e Request	ed:			+	// SN	1	T		$\stackrel{\frown}{}$	larys		tequ	1030		Т	T-		1983	Preservation Code	es:		
535 Washington Street 11th Floor						4		1											2			M - Hexane		
City: Buffalo	3 Wee	quested (da ks	ays):			- 1														1		N - None O - AsNaO2		
State, Zip:						- 1						동					1			4	D - Nitric Acid	P - Na2O4S		
NY, 14203 Phone:	PO #:					4						Vinyl	-	- -						10	F - MeOH	Q - Na2SO3 R - Na2S2SO3		
(716) 685-2300	40470	65										<u>(ŝ.</u>					Sulfate)	1				S - H2SO4 T - TSP Dodecahydrate		
Email:	WO #:					7	ž o	١.			N Na	and cis),		Jene		ا ،	Self	1		1	I - Ice	U - Acetone		
christopher,boron@gza.com Project Name:	58507 Project #	4.				_	Yes or	×ide	l s		x.	ans a	_	F. F.		<u>8</u>	de de			Sue	K - EDTA	V - MCAA W - ph 4-5		
058507, GM-Lockport Groundwater Sampling	48004							ğ	Acie		Mn, Mg, K & Na	E (‡	Carbon	than		trate	F		1	containers	L - EDA	Z - other (specify)		
Delphi Harrison Thermal Systems Site	ssow# 25601	56015 Jr. 1				RSK_175_CO2 - Carbon dioxide	VFA_IC - Volatile Fatty Acids	<u>.</u>	6010B - Metals - Fe, M	8260B - PCE, TCE, DCE (trans	9060 - Total Organic C	RSK_175 - Methane, Ethane, Ethene	SM4500_S2_D - Sulfide	353.2, 353.2_Nitrite, Nitrate_Calc	300.0_28D - Anions (Chloride			5	Other:					
Sustems Site				Sample	Matrix		MSW	02	/olati	350.1 - Ammonia	stals	Ä,	وِّ	Met	20		۱		1 1	Total Number				
35.				Туре	(W≃water, S=solid,		Field Filtered Perform MS/I	175	5		ž .	- P	<u>‡</u>	175-	8	. 1 53	288	AM20GAX		ž	80.			
Sample Identification	Same	ole Date	Sample Time	(C=comp, G=grab) B	O=waste/oll	٠. ا	erfo	Ϋ́	ξ	5.0	910	260E	990	X.	M45	53.2,	0,0	MZ0		otal	Special Inc	tructions/Note:		
Sample Identification	Same	ne Date	Time	Preservati		-4	XX	N	_		1200	A	-	_	CB N	200	N		1518	∇	Special IIIs	didelions/Note.		
1011/19 85/6/3	sli	1.2	912		Water	Ť	Ť	-	T.								1	X	7		W. 1 :-	colund		
1011-10-031013	7/7	413		-		-	+	-	┝	\vdash		-	+	+	+	+	-	1	\vdash	-	1 1-15	solved		
MW-10-051613 MW-4-051613			1008		Water		\perp			Ш								X				20		
MM-12-021613			1117			- 1												X		20.0	Mico	esceps		
MW-11-051613			1210			T	\top	\top	\Box					\neg		\top		X	\Box	16		7		
				2		-	+	+	+-			\rightarrow	-	-	\dashv	_	+-		\vdash	100				
MM-13-021P13	2		1306			_	1	-	┡			_		_	_	_	_	X		92)				
163							T																	
	-					+	+	+	\vdash	Н			_	+	\dashv	+	+	+	\vdash	OE9-		_		
						-	+	┿	├-	\vdash	_	-	-	-	-	-	+-	+	\vdash	35				
				*										ē.										
																				30				
						1	\top	1					7	_	7	_		1	\Box					
Possible Hazard Identification				<u> </u>			-	James!	Dic		1//	foor	21/ 6		5055	od if	2000	loc at		aine	d longer than 1 r	nonth)		
Non-Hazard Germination Non-Hazard Flammable Skin Irritant Poiso			D	Radiological			٦٠		Returr				٣			l By l	oh	162 41			ive For	_ Months		
Deliverable Requested: I, II, III, IV, Other (specify)	ט זונ	Ulikii	ר וזעעכ	autological		_	Sr					C Rec				пру	.au			AI CITI	ve ror	_ IVIOTILIS		
						_					_				72	2 2	1001							
Empty Kit Relinquished by:			Date:				Time			1					^^	lethod	of Shipi			1				
Relinguished Francis Rohlen	Date/Tin	16/1	3/16,	15 6	GZ/A	1		Rec	eived	Lut	1	7.	S	20			Date	e/Time	\$ /\u	di	3 1615	GZA Company		
Relinquished thy	Date/Tir	ne: 1	164	F5 0	G12	Λ		Rec	eived b		ĺ		11/	1 1			Date	e/Time	3	11	10/13	Company 45TA		
Relinquished by	Date/Tir		, vo		ompany	1		Ren	eived b	, 	W	W.	KO	M				e/Time		11	ر اله	Company		
1000100000	Jaco III				ompany			1,000	CITCU L	. j. 🐷							5.0	70.11110	2			CONTROL OF THE STATE OF THE STA		
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No								Coo	ler Ter	nperat	ure(s)	°C and	Othe	er Rem	narks:									

APPENDIX B GRAPHS OF MONITORING WELL ANALYTICAL DATA FOR THE COCs

MW-4 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

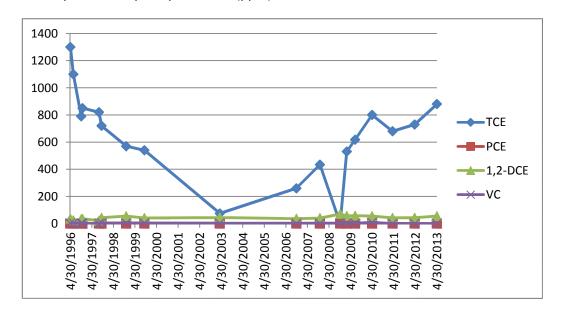

Date	TCE	PCE	1,2-DCE	VC
4/30/1996	32	<0.5	170	40
6/20/1996	19	<0.5	120	20
10/30/1996	36	<0.5	120	14
11/21/1996	37	<0.5	120	18
8/28/1997	29	<0.5	100	14
10/10/1997	33	<0.2	110	27
12/2/1998	21	<0.2	120	13
10/7/1999	20	<0.05	110.14	14
8/9/2001	30	0.003	93.28	18
10/31/2001	22	<0.002	84.25	18
4/7/2003	39	0.08	110	26
7/20/2009	23	<0.05	41.5	6.7
4/29/2010	20	0.0012	43.2	9.6
4/22/2011	24	0.0018	50	12
4/20/2012	18	0.0014	42.16	9.1
5/1/2013	24	<0.18	45	6.6

Notes:

Results are provided in parts per million (ppm)

Duplicate samples were collected from this location on 6/20/96, 10/30/96 and 12/2/98.

The higher of the two concentrations were recorded in this graph.

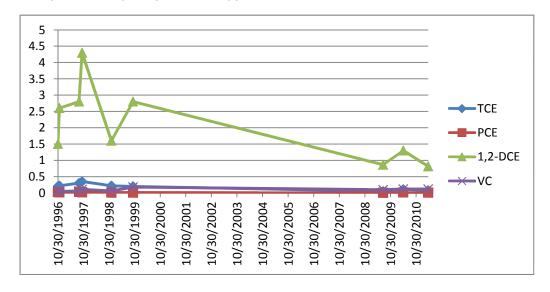


MW-7 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TCE	PCE	1,2-DCE	VC
4/30/1996	1300	<0.5	37	1.8
6/20/1996	1100	<0.5	24	2.4
10/30/1996	790	<0.5	32	2.3
11/21/1996	850	<0.5	35	3.1
8/28/1997	820	<0.2	22	1.1
10/10/1997	720	<0.2	43	4.8
12/3/1998	570	<0.2	55	4.2
10/7/1999	540	<0.5	41	3.5
4/7/2003	75	<0.2	45	3
10/25/2006	260	0.077	36	1.7
11/29/2007	434	0.049	40	3.2
11/5/2008	1.1	<0.2	70	2.6
2/24/2009	530	0.071	56	3.6
7/15/2009	618	0.112	58.3	2.5
4/29/2010	800	0.14	55.2	9
4/11/2011	680	<1.8	42	<4.5
4/20/2012	730	<1.8	43	<4.5
5/3/2013	880	<3.6	55	<9

Notes:

Results are provided in parts per million (ppm)

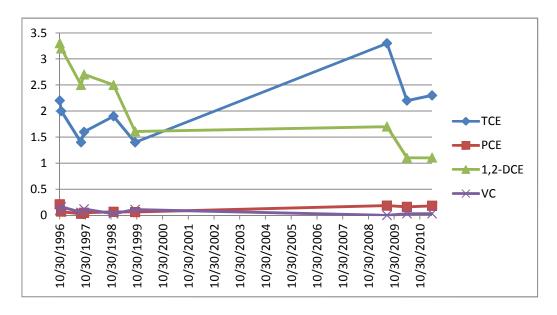


MW-8 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TCE	PCE	1,2-DCE	VC
10/30/1996	0.2	0.024	1.5	0.047
11/21/1996	0.22	0.022	2.6	0.049
8/28/1997	0.3	0.028	2.8	0.062
10/10/1997	0.35	0.018	4.3	0.11
12/2/1998	0.22	0.012	1.6	0.062
10/7/1999	0.2	0.011	2.802	0.18
7/15/2009	0.05	0.005	0.865	0.1
4/30/2010	0.11	0.013	1.3	0.12
4/22/2011	0.078	0.008	0.813	0.12

Notes:

Results are provided in parts per million (ppm)

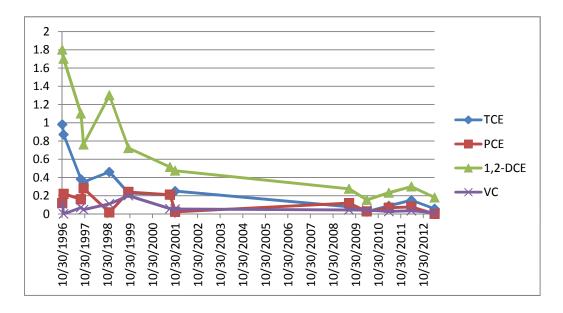

MW-9 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TCE	PCE	1,2-DCE	VC
10/30/1996	2.2	0.21	3.3	0.1
11/21/1996	2	0.07	3.2	0.16
8/28/1997	1.4	0.027	2.5	0.056
10/10/1997	1.6	0.047	2.7	0.12
12/2/1998	1.9	0.066	2.5	0.03
10/5/1999	1.4	0.062	1.608	0.11
7/20/2009	3.3	0.186	1.7	<0.05
4/30/2010	2.2	0.16	1.1	0.031
4/22/2011	2.3	0.18	1.105	0.032

Notes:

Results are provided in parts per million (ppm)

Duplicate samples were collected from this location on 11/21/96 and 10/5/99. The higher of the two concentrations were recorded in this graph.

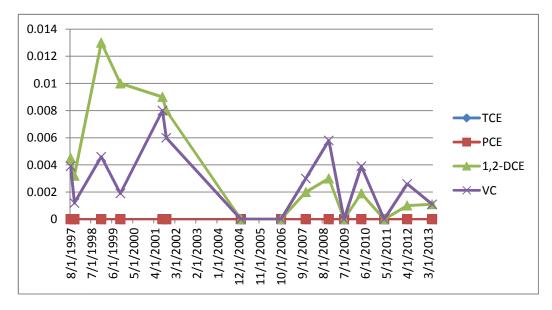


MW-10 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TCE	PCE	1,2-DCE	VC
10/30/1996	0.98	0.12	1.8	0.11
11/21/1996	0.87	0.22	1.7	<0.1
8/28/1997	0.38	0.16	1.1	0.07
10/10/1997	0.35	0.28	0.76	0.047
12/1/1998	0.46	0.016	1.3	0.11
10/6/1999	0.23	0.24	0.722	0.2
8/9/2001	0.21	0.21	0.514	0.057
10/31/2001	0.25	0.023	0.473	0.053
7/15/2009	0.079	0.118	0.275	0.044
4/28/2010	0.024	0.026	0.153	0.042
4/21/2011	0.088	0.067	0.232	0.027
4/19/2012	0.15	0.077	0.3	0.035
5/1/2013	0.056	< 0.0014	0.18	0.014

Notes:

Results are provided in parts per million (ppm)

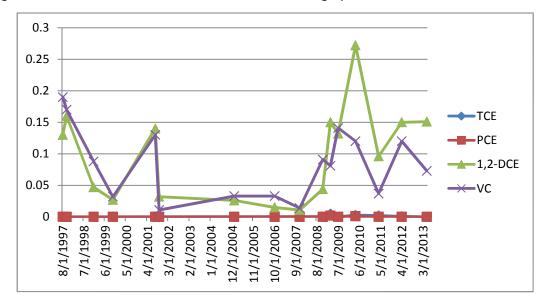

MW-11 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TCE	PCE	1,2-DCE	VC
8/28/1997	<0.0005	<0.0005	0.0045	0.0039
10/10/1997	<0.0005	<0.0005	0.0032	0.0012
12/1/1998	<0.0005	<0.0005	0.013	0.0046
10/5/1999	<0.0005	<0.0005	0.01	0.0019
8/8/2001	<0.002	<0.002	0.009	0.008
10/30/2001	<0.002	<0.002	0.008	0.006
1/12/2005	<0.002	<0.002	<0.002	<0.002
10/24/2006	<0.002	<0.002	<0.002	<0.002
11/28/2007	<0.002	<0.002	0.002	0.003
11/4/2008	<0.002	<0.002	0.003	0.0058
7/16/2009	<0.005	<0.005	<0.005	<0.005
4/28/2010	<0.0005	<0.0004	0.0019	0.0039
4/21/2011	<0.0005	<0.0004	<0.0008	<0.0009
4/19/2012	<0.0005	<0.0004	0.001	0.0026
5/2/2013	<0.00046	<0.00036	0.0011	0.0011

Notes:

Results are provided in parts per million (ppm)

Duplicate samples were collected from this location on 10/10/97. The higher of the two concentrations were recorded in this graph.


MW-12 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

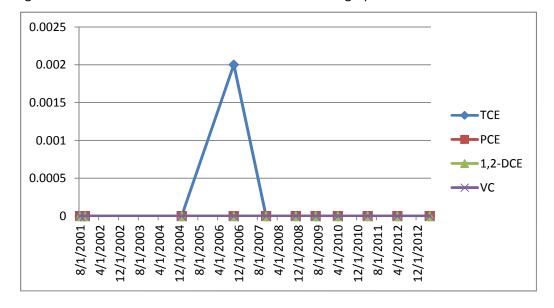
Date	TCE	PCE	1,2-DCE	VC
8/28/1997	<0.0005	<0.0005	0.13	0.19
10/10/1997	<0.0005	<0.0005	0.16	0.17
12/1/1998	<0.0005	<0.0005	0.047	0.088
10/6/1999	<0.0005	<0.0005	0.027	0.032
8/8/2001	<0.002	<0.002	0.14	0.13
10/30/2001	<0.002	<0.002	0.032	0.011
1/12/2005	<0.002	<0.002	0.026	0.033
10/25/2006	<0.002	<0.002	0.015	0.033
11/28/2007	<0.002	<0.002	0.011	0.014
11/14/2008	<0.002	<0.002	0.044	0.091
3/16/2009	0.005	0.002	0.15	0.081
7/16/2009	<0.005	<0.005	0.132	0.141
4/28/2010	0.0028	0.0011	0.272	0.12
4/20/2011	0.0021	<0.0004	0.096	0.037
4/18/2012	0.00083	<0.0004	0.15	0.12
5/3/2013	<0.002	<0.00036	0.151	0.073

Notes:

Results are provided in parts per million (ppm)

Duplicate samples were collected from this location on 8/28/97 and 8/8/01. The higher of the two concentrations were recorded in this graph.

MW-13 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

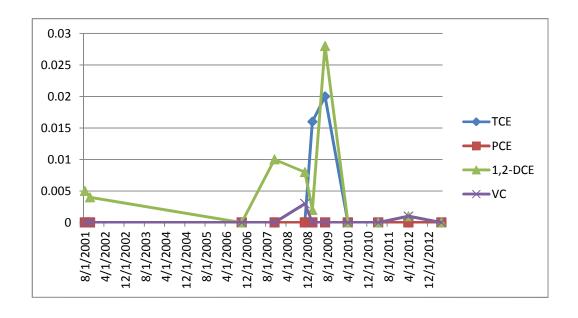

Date	TCE	PCE	1,2-DCE	VC
8/8/2001	<0.002	<0.002	<0.002	<0.002
10/29/2001	<0.002	<0.002	<0.002	<0.002
1/12/2005	<0.002	<0.002	<0.002	<0.002
10/24/2006	0.002	<0.002	<0.002	< 0.002
11/28/2007	<0.002	<0.002	<0.002	<0.002
11/5/2008	<0.002	<0.002	<0.002	<0.002
7/16/2009	<0.005	< 0.005	<0.005	< 0.005
4/28/2010	<0.0005	<0.0004	<0.0008	<0.0009
4/21/2011	<0.0005	<0.0004	<0.0008	<0.0009
4/19/2012	<0.0005	<0.0004	<0.0008	< 0.0009
5/2/2013	<0.00046	<0.00036	<0.00081	<0.0009

Notes:

Results are provided in parts per million (ppm)

A duplicate sample was collected from this location on 4/19/2012.

The higher of the two concentrations were recorded in this graph.

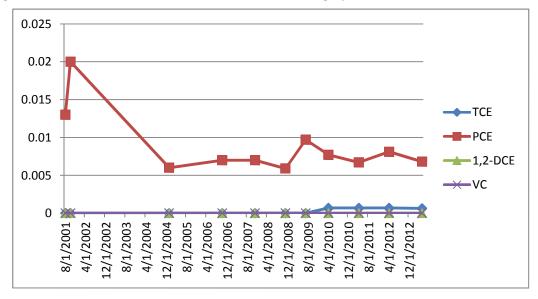


MW-14 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TCE	PCE	1,2-DCE	VC
8/10/2001	<0.002	<0.002	0.005	<0.002
10/30/2001	<0.002	<0.002	0.004	<0.002
10/24/2006	<0.002	<0.002	<0.002	<0.002
11/29/2007	<0.002	<0.002	0.01	< 0.002
11/4/2008	<0.002	<0.002	0.008	0.003
2/24/2009	0.016	<0.002	0.002	<0.002
7/19/2009	0.02	< 0.005	0.028	< 0.005
4/27/2010	<0.005	<0.0004	<0.0008	<0.0009
4/21/2011	<0.005	<0.0004	<0.0008	<0.0009
4/19/2012	<0.005	<0.0004	0.001	0.001
5/3/2013	<0.00046	<0.00036	<0.00081	<0.0009

Notes:

Results are provided in parts per million (ppm)


MW-15 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TCE	PCE	1,2-DCE	VC
8/8/2001	<0.002	0.013	<0.002	<0.002
10/30/2001	<0.002	0.02	<0.002	< 0.002
1/12/2005	<0.002	0.006	<0.002	<0.002
10/24/2006	<0.002	0.007	<0.002	< 0.002
11/28/2007	<0.002	0.007	<0.002	<0.002
11/4/2008	<0.002	0.0059	<0.002	<0.002
7/16/2009	<0.005	0.0097	<0.005	< 0.005
4/28/2010	0.0007	0.0077	<0.0008	<0.0009
4/21/2011	0.0007	0.0067	<0.0008	<0.0009
4/18/2012	0.0007	0.0081	<0.0008	<0.0009
5/1/2013	0.00064	0.0068	<0.00081	<0.0009

Notes:

Results are provided in parts per million (ppm)

Duplicate samples were collected from this location on 10/30/01. The higher of the two concentrations were recorded in this graph.

APPENDIX C TEST AMERICA ANALYTICAL LABORATORY REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-37417-1

Client Project/Site: 058507, GM-Lockport Groundwater

Sampling

For:

Conestoga-Rovers & Associates, Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, New York 14304

Attn: Kathleen Willy

Authorized for release by: 5/16/2013 9:51:49 AM
Rebecca Jones, Project Mgmt. Assistant rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	19
Lab Chronicle	22
Certification Summary	24
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	31

3

4

6

8

10

12

13

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
Qualifier	Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC VOA

Qualifier	Qualifier Description
-----------	-----------------------

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly	used abbreviations may	or may not be	present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

5/16/2013

Case Narrative

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Job ID: 480-37417-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-37417-1

Receipt

The samples were received on 5/1/2013 5:35 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.2° C.

GC/MS VOA

Method(s) 8260B: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-4-050113 (480-37417-2). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: MW-10-050113 (480-37417-1). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

IC

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-15-050113 (480-37417-3). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-10-050113 (480-37417-1), MW-15-050113 (480-37417-3), MW-4-050113 (480-37417-2). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

Metals

Method(s) 6010B: The Method Blank for batch 480-116383 contained total manganese above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples MW-10-050113 (480-37417-1), MW-15-050113 (480-37417-2) was not performed.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

4

5

6

9

10

12

15

TestAmerica Buffalo 5/16/2013

TestAmerica Job ID: 480-37417-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 058507, GM-Lockport Groundwater Sampling

Client Sample ID: MW-10-050113

Lab Sample ID: 480-37417-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	180		4.0	3.2	ug/L	4	8260B	Total/NA
Trichloroethene	56		4.0	1.8	ug/L	4	8260B	Total/NA
Vinyl chloride	14		4.0	3.6	ug/L	4	8260B	Total/NA
Ethane	0.71	J	7.5	0.49	ug/L	1	RSK-175	Total/NA
Ethene	1.2	J	7.0	0.52	ug/L	1	RSK-175	Total/NA
Methane	58		4.0	0.22	ug/L	1	RSK-175	Total/NA
Iron	0.48		0.050	0.019	mg/L	1	6010B	Total/NA
Magnesium	31.8		0.20	0.043	mg/L	1	6010B	Total/NA
Manganese	1.5	В	0.0030	0.00040	mg/L	1	6010B	Total/NA
Potassium	3.4		0.50	0.10	mg/L	1	6010B	Total/NA
Sodium	845		1.0	0.32	mg/L	1	6010B	Total/NA
Chloride	1470		10.0	5.6	mg/L	20	300.0	Total/NA
Sulfate	153		40.0	7.0	mg/L	20	300.0	Total/NA
Ammonia	0.039		0.020	0.0090	mg/L	1	350.1	Total/NA
Nitrate	0.33		0.050	0.020	mg/L	1	353.2	Total/NA
Total Organic Carbon	3.3		1.0	0.43	mg/L	1	9060	Total/NA
Total Alkalinity	270		5.0	0.79	mg/L	1	SM 2320B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D Method	Prep Type
Carbon dioxide	7400		1000	1000	ug/L	1	RSK-175	Total/NA

Client Sample ID: MW-4-050113

Lab Sample ID: 480-37417-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	45000		500	410	ug/L	500	_	8260B	Total/NA
Trichloroethene	24000		500	230	ug/L	500		8260B	Total/NA
Vinyl chloride	6600		500	450	ug/L	500		8260B	Total/NA
Iron	3.9		0.050	0.019	mg/L	1		6010B	Total/NA
Magnesium	163		0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	2.0	В	0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	20.2		0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	2080		1.0	0.32	mg/L	1		6010B	Total/NA
Chloride	4300		25.0	14.1	mg/L	50		300.0	Total/NA
Sulfate	268		100	17.5	mg/L	50		300.0	Total/NA
Ammonia	3.4		0.040	0.018	mg/L	2		350.1	Total/NA
Total Organic Carbon	2.8		1.0	0.43	mg/L	1		9060	Total/NA
Total Alkalinity	329		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	23000		1000	1000	ug/L	1	_	RSK-175	Total/NA

Client Sample ID: MW-15-050113

Lab Sample ID: 480-37417-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	6.8	1.0	0.36	ug/L	1	_	8260B	Total/NA
Trichloroethene	0.64 J	1.0	0.46	ug/L	1		8260B	Total/NA
Magnesium	43.7	0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	0.21 B	0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	3.2	0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	384	1.0	0.32	mg/L	1		6010B	Total/NA
Chloride	672	10.0	5.6	mg/L	20		300.0	Total/NA
Sulfate	74.7	10.0	1.7	mg/L	5		300.0	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 5 of 32

Detection Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Lab Sample ID: 480-37417-3

Client Sample ID: MW-15-050113 (Continued)

Analyte Nitrate	Result	Qualifier	RL 0.050	MDL 0.020		Dil Fac	<u>D</u>	Method 353.2	Prep Type Total/NA
Total Organic Carbon	2.1		1.0	0.43	mg/L	1		9060	Total/NA
Total Alkalinity	415		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	15000		1000	1000	ug/L	1	_	RSK-175	Total/NA

Client Sample ID: TRIP BLANK

No Detections.

Lab Sample ID: 480-37417-4

This Detection Summary does not include radiochemical test results.

Client: Conestoga-Rovers & Associates, Inc.

Client Sample ID: MW-10-050113

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Lab Sample ID: 480-37417-1

. Matrix: Water

Date Collected: 05/01/13 10:30 Date Received: 05/01/13 17:35

Pyruvic Acid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	180		4.0	3.2	ug/L			05/09/13 22:04	-
Tetrachloroethene	ND		4.0	1.4	ug/L			05/09/13 22:04	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			05/09/13 22:04	4
Trichloroethene	56		4.0	1.8	ug/L			05/09/13 22:04	
Vinyl chloride	14		4.0	3.6	ug/L			05/09/13 22:04	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	94		66 - 137					05/09/13 22:04	
4-Bromofluorobenzene (Surr)	102		73 - 120					05/09/13 22:04	
Toluene-d8 (Surr)	105		71 - 126					05/09/13 22:04	
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Ethane	0.71	J	7.5	0.49	ug/L			05/03/13 08:31	
Ethene	1.2	J	7.0	0.52	ug/L			05/03/13 08:31	
Methane	58		4.0	0.22	ug/L			05/03/13 08:31	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon dioxide	7400		1000	1000	ug/L			05/07/13 13:19	
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ron	0.48		0.050	0.019	mg/L		05/02/13 10:50	05/03/13 01:08	
Magnesium	31.8		0.20	0.043	mg/L		05/02/13 10:50	05/03/13 01:08	
Manganese	1.5	В	0.0030	0.00040	mg/L		05/02/13 10:50	05/03/13 01:08	
Potassium	3.4		0.50	0.10	mg/L		05/02/13 10:50	05/03/13 01:08	
Sodium	845		1.0	0.32	mg/L		05/02/13 10:50	05/03/13 01:08	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1470		10.0	5.6	mg/L			05/04/13 01:46	2
Sulfate	153		40.0	7.0	mg/L			05/04/13 01:46	2
Ammonia	0.039		0.020	0.0090	mg/L			05/02/13 13:18	
Nitrate	0.33		0.050	0.020	mg/L			05/02/13 08:12	
Vitrite	ND		0.050	0.020	mg/L			05/02/13 08:12	
Total Organic Carbon	3.3		1.0	0.43	mg/L			05/03/13 05:20	
Total Alkalinity	270		5.0	0.79	mg/L			05/07/13 02:53	
Sulfide	ND		0.10	0.052	mg/L			05/03/13 15:36	
Acetic acid	ND		1.0	0.15	mg/L			05/07/13 12:45	
ormic-acid	ND		1.0	0.11	mg/L			05/07/13 12:45	
_actic acid	ND		1.0		mg/L			05/07/13 12:45	
	ND		1.0	0.16	mg/L			05/07/13 12:45	
n-Butyric Acid Propionic acid	ND ND		1.0		mg/L mg/L			05/07/13 12:45 05/07/13 12:45	

05/07/13 12:45

1.0

0.080 mg/L

ND

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Lab Sample ID: 480-37417-2

TestAmerica Job ID: 480-37417-1

Matrix: Water

	_		
Cliant	Cample	ın.	MW-4-050113
CHEIL	Sallible	ID.	14144-4-000113

Date Collected: 05/01/13 14:15 Date Received: 05/01/13 17:35

Pyruvic Acid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	45000		500	410	ug/L			05/09/13 12:37	500
Tetrachloroethene	ND		500	180	ug/L			05/09/13 12:37	500
rans-1,2-Dichloroethene	ND		500	450	ug/L			05/09/13 12:37	500
[richloroethene	24000		500	230	ug/L			05/09/13 12:37	50
/inyl chloride	6600		500	450	ug/L			05/09/13 12:37	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
,2-Dichloroethane-d4 (Surr)	98		66 - 137					05/09/13 12:37	50
-Bromofluorobenzene (Surr)	100		73 - 120					05/09/13 12:37	50
Toluene-d8 (Surr)	104		71 - 126					05/09/13 12:37	50
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Ethane	ND		7.5	0.49	ug/L			05/03/13 11:29	
Ethene	ND		7.0	0.52	ug/L			05/03/13 11:29	
Methane	ND		4.0	0.22	ug/L			05/03/13 11:29	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon dioxide	23000		1000	1000	ug/L			05/07/13 13:28	
Analyte ron	Result 3.9	Qualifier	0.050 -	MDL 0.019	Unit mg/L	D	Prepared 05/02/13 10:50	Analyzed 05/03/13 01:10	Dil Fa
	3.9 163		0.050	0.019	•		05/02/13 10:50	05/03/13 01:10	
Magnesium Mangapaga	2.0	D	0.0030	0.00040			05/02/13 10:50	05/03/13 01:10	
Manganese Potassium	20.2		0.50		mg/L		05/02/13 10:50	05/03/13 01:10	
	2080		1.0		mg/L		05/02/13 10:50	05/03/13 01:10	
Sodium	2000		1.0	0.32	IIIg/L		03/02/13 10.30	03/03/13 01.10	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	4300		25.0	14.1	mg/L			05/04/13 01:56	5
Sulfate	268		100	17.5	mg/L			05/04/13 01:56	5
Ammonia	3.4		0.040	0.018	mg/L			05/02/13 14:20	
Nitrate	ND		0.050	0.020	mg/L			05/02/13 06:56	
Nitrite	ND		0.050	0.020	mg/L			05/02/13 06:56	
Total Organic Carbon	2.8		1.0		mg/L			05/03/13 05:48	
	329		5.0	0.79	mg/L			05/07/13 02:59	
Total Alkalinity	••			0.052	mg/L			05/03/13 15:36	
•	ND		0.10	0.052	9/ =			00/00/10 10:00	
Sulfide			0.10 1.0		mg/L			05/07/13 13:14	
Sulfide Acetic acid	ND			0.15	mg/L				
Sulfide Acetic acid Formic-acid	ND ND		1.0	0.15 0.11	•			05/07/13 13:14	
Sulfide Acetic acid Formic-acid .actic acid	ND ND ND		1.0 1.0	0.15 0.11 0.14	mg/L mg/L mg/L			05/07/13 13:14 05/07/13 13:14 05/07/13 13:14	
Total Alkalinity Sulfide Acetic acid Formic-acid Lactic acid n-Butyric Acid Propionic acid	ND ND ND		1.0 1.0 1.0	0.15 0.11 0.14 0.16	mg/L mg/L			05/07/13 13:14 05/07/13 13:14	

05/07/13 13:14

1.0

0.080 mg/L

ND

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Lab Sample ID: 480-37417-3

TestAmerica Job ID: 480-37417-1

Matrix: Water

Client Sample ID: MW-15-050113
Data Callegand, 05/04/42 40:40

Date Collected: 05/01/13 16:10 Date Received: 05/01/13 17:35

Pyruvic Acid

Method: 8260B - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	ND		1.0	0.81				05/09/13 12:59	
Tetrachloroethene	6.8		1.0	0.36				05/09/13 12:59	
rans-1,2-Dichloroethene	ND.		1.0		ug/L			05/09/13 12:59	
Frichloroethene	0.64		1.0		ug/L			05/09/13 12:59	
/inyl chloride	ND	•	1.0	0.90	-			05/09/13 12:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	97		66 - 137					05/09/13 12:59	
I-Bromofluorobenzene (Surr)	100		73 - 120					05/09/13 12:59	
Toluene-d8 (Surr)	104		71 - 126					05/09/13 12:59	
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	ND		7.5	0.49	ug/L			05/03/13 09:05	
Ethene	ND		7.0	0.52	ug/L			05/03/13 09:05	
Methane	ND		4.0	0.22	ug/L			05/03/13 09:05	
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Carbon dioxide	15000		1000	1000	ug/L			05/07/13 13:38	
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ron	ND		0.050	0.019	mg/L		05/02/13 10:50	05/03/13 01:13	
/lagnesium	43.7		0.20	0.043	mg/L		05/02/13 10:50	05/03/13 01:13	
Manganese	0.21	В	0.0030	0.00040	mg/L		05/02/13 10:50	05/03/13 01:13	
Potassium	3.2		0.50	0.10	mg/L		05/02/13 10:50	05/03/13 01:13	
Sodium	384		1.0	0.32	mg/L		05/02/13 10:50	05/03/13 01:13	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	672		10.0	5.6	mg/L			05/04/13 02:06	2
Sulfate	74.7		10.0		mg/L			05/03/13 01:28	
Ammonia	ND		0.020	0.0090				05/02/13 13:20	
Nitrate	1.4		0.050	0.020	mg/L			05/02/13 08:13	
Nitrite	ND		0.050	0.020	mg/L			05/02/13 08:13	
otal Organic Carbon	2.1		1.0	0.43	mg/L			05/03/13 06:16	
otal Alkalinity	415		5.0	0.79	mg/L			05/07/13 03:06	
Sulfide	ND		0.10	0.052	mg/L			05/03/13 15:36	
Acetic acid	ND		1.0	0.15	mg/L			05/07/13 13:43	
ormic-acid	ND		1.0	0.11	mg/L			05/07/13 13:43	
actic acid	ND		1.0	0.14	mg/L			05/07/13 13:43	
Lactic acid n-Butyric Acid	ND ND		1.0 1.0		mg/L mg/L			05/07/13 13:43 05/07/13 13:43	
				0.16	-				

05/07/13 13:43

1.0

0.080 mg/L

ND

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Lab Sample ID: 480-37417-4

05/09/13 13:21

Matrix: Water

CI	ient	Samp	le ID	: TR	IP B	LANK
----	------	------	-------	------	------	------

Date Collected: 05/01/13 00:00 Date Received: 05/01/13 17:35

Toluene-d8 (Surr)

Method: 8260B - Volatile Organic	Compounds (G	C/MS)							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/09/13 13:21	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/09/13 13:21	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/09/13 13:21	1
Trichloroethene	ND		1.0	0.46	ug/L			05/09/13 13:21	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/09/13 13:21	1
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		66 - 137			_		05/09/13 13:21	1
4-Bromofluorobenzene (Surr)	100		73 - 120					05/09/13 13:21	1

71 - 126

Surrogate Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Surrog	ate Recovery (Acceptance Limits)
		12DCE	BFB	TOL	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	
480-37417-1	MW-10-050113	94	102	105	
480-37417-2	MW-4-050113	98	100	104	
480-37417-3	MW-15-050113	97	100	104	
480-37417-4	TRIP BLANK	98	100	105	
LCS 480-117584/4	Lab Control Sample	97	102	104	
LCS 480-117784/4	Lab Control Sample	96	105	105	
MB 480-117584/5	Method Blank	99	99	105	
MB 480-117784/5	Method Blank	96	103	106	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Buffalo

2

4

5

7

0

10

11

14

14

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-117584/5

Matrix: Water

Analysis Batch: 117584

lient Samp	ole ID:	Meth	od Blani	k
	Prep '	Type:	Total/NA	1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/09/13 09:50	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/09/13 09:50	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/09/13 09:50	1
Trichloroethene	ND		1.0	0.46	ug/L			05/09/13 09:50	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/09/13 09:50	1

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137		05/09/13 09:50	1
4-Bromofluorobenzene (Surr)	99		73 - 120		05/09/13 09:50	1
Toluene-d8 (Surr)	105		71 - 126		05/09/13 09:50	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 117584

Matrix: Water

Lab Sample ID: LCS 480-117584/4

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 25.0 cis-1,2-Dichloroethene 30.2 121 74 - 124 ug/L 74 - 122 Tetrachloroethene 25.0 28.1 ug/L 113 trans-1,2-Dichloroethene 25.0 28.5 114 73 _ 127 ug/L Trichloroethene 25.0 27.2 ug/L 109 74 - 123

LCS LCS

Surrogate	%Recovery Qua	alifier Limits
1,2-Dichloroethane-d4 (Surr)	97	66 - 137
4-Bromofluorobenzene (Surr)	102	73 - 120
Toluene-d8 (Surr)	104	71 - 126

Lab Sample ID: MB 480-117784/5 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117784

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.0	0.81	ug/L			05/09/13 20:53	1
ND		1.0	0.36	ug/L			05/09/13 20:53	1
ND		1.0	0.90	ug/L			05/09/13 20:53	1
ND		1.0	0.46	ug/L			05/09/13 20:53	1
ND		1.0	0.90	ug/L			05/09/13 20:53	1
	Result ND ND ND ND	ND ND ND	Result Qualifier RL ND 1.0 ND 1.0 ND 1.0 ND 1.0	Result Qualifier RL MDL ND 1.0 0.81 ND 1.0 0.36 ND 1.0 0.90 ND 1.0 0.46	Result Qualifier RL MDL Unit ND 1.0 0.81 ug/L ND 1.0 0.36 ug/L ND 1.0 0.90 ug/L ND 1.0 0.46 ug/L	Result Qualifier RL MDL Unit D ND 1.0 0.81 ug/L ND 1.0 0.36 ug/L ND 1.0 0.90 ug/L ND 1.0 0.46 ug/L	Result Qualifier RL MDL unit D Prepared ND 1.0 0.81 ug/L ND 1.0 0.36 ug/L ND 1.0 0.90 ug/L ND 1.0 0.46 ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.81 ug/L 05/09/13 20:53 ND 1.0 0.36 ug/L 05/09/13 20:53 ND 1.0 0.90 ug/L 05/09/13 20:53 ND 1.0 0.46 ug/L 05/09/13 20:53

MB MB

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	66 - 137		05/09/13 20:53	1
4-Bromofluorobenzene (Surr)	103	73 - 120		05/09/13 20:53	1
Toluene-d8 (Surr)	106	71 - 126		05/09/13 20:53	1

TestAmerica Buffalo

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-117784/4

Matrix: Water Analysis Batch: 117784

Spike LCS LCS %Rec. babbA Result Qualifier %Rec Limits Analyte Unit cis-1,2-Dichloroethene 25.0 29.4 ug/L 118 74 - 124 Tetrachloroethene 25.0 26.8 ug/L 107 74 - 122 25.3 trans-1,2-Dichloroethene 25.0 ug/L 101 73 - 127Trichloroethene 25.0 26.2 ug/L 105 74 - 123

LCS LCS Limits Surrogate %Recovery Qualifier 1,2-Dichloroethane-d4 (Surr) 96 66 - 137 4-Bromofluorobenzene (Surr) 105 73 - 120 Toluene-d8 (Surr) 105 71 - 126

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 480-116579/2

Matrix: Water

Analysis Batch: 116579

Prep Type: Total/NA MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Ethane ND 7.5 0.49 ug/L 05/03/13 06:56 Ethene ND 7.0 0.52 ug/L 05/03/13 06:56 Methane ND 4.0 0.22 ug/L 05/03/13 06:56

Lab Sample ID: LCS 480-116579/3

Matrix: Water

Analysis Batch: 116579

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Ethane	14.4	13.4		ug/L	93	67 - 128	
Ethene	13.5	13.6		ug/L	101	60 - 137	
Methane	7.69	6.65		ua/L	86	48 - 174	

Lab Sample ID: MB 200-55142/3

Matrix: Water

Analysis Batch: 55142

мв мв

Analyte Result Qualifier RL RL Unit Prepared Analyzed Dil Fac ND 1000 1000 ug/L 05/07/13 12:16 Carbon dioxide

Lab Sample ID: LCS 200-55142/2

Matrix: Water

Analysis Batch: 55142

-		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Carbon dioxide		5010	4790		ug/L	_	96	70 - 130	

TestAmerica Buffalo

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 480-116383/1-A **Matrix: Water**

Analysis Batch: 116598

Client Sample ID: Method Blank Prep Type: Total/NA

05/03/13 00:15

05/03/13 00:15

Prep Batch: 116383

мв мв Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed ND 0.050 0.019 mg/L 05/02/13 10:50 05/03/13 00:15 ND 0.20 0.043 mg/L 05/02/13 10:50 05/03/13 00:15 0.000740 J 0.0030 0.00040 mg/L 05/02/13 10:50 05/03/13 00:15

0.10 mg/L

0.32 mg/L

Lab Sample ID: LCS 480-116383/2-A

Matrix: Water

Analyte

Magnesium

Manganese

Potassium

Sodium

Iron

Analysis Batch: 116598

Client Sample ID: Lab Control Sample

05/02/13 10:50

05/02/13 10:50

Prep Type: Total/NA

Prep Batch: 116383

- 1	7 maryone Batom 110000								
ı		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Iron	10.0	10.44		mg/L		104	80 - 120	
ı	Magnesium	10.0	10.47		mg/L		105	80 - 120	
ı	Manganese	0.200	0.211		mg/L		105	80 - 120	
İ	Potassium	10.0	10.43		mg/L		104	80 - 120	
	Sodium	10.0	10.27		mg/L		103	80 _ 120	
	_								

0.50

1.0

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-116467/52

Matrix: Water

Analysis Batch: 116467

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

мв мв Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac Chloride ND 0.50 0.28 mg/L 05/02/13 23:36 ND 2.0 05/02/13 23:36 Sulfate 0.35 mg/L

Lab Sample ID: LCS 480-116467/51

Matrix: Water

Analysis Batch: 116467

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 20.0	20.65		mg/L		103	90 - 110	
Sulfate	20.0	20.56		ma/l		103	90 110	

Lab Sample ID: MB 480-116748/52

Matrix: Water

Analysis Batch: 116748

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

мв мв

ND

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			05/04/13 01:36	1
Sulfate	ND		2.0	0.35	mg/L			05/04/13 01:36	1

Lab Sample ID: LCS 480-116748/51

Matrix: Water

Analysis Batch: 116748

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	20.0	20.43		mg/L		102	90 _ 110	

TestAmerica Buffalo

Prep Type: Total/NA

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Lab Sample ID: LCS 480-116748/51 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 116748** LCS LCS Spike %Rec.

Added Result Qualifier Limits Analyte Unit %Rec 20.0 102 Sulfate 20.38 90 - 110 mg/L

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-116492/123 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116492

MB MB Result Qualifier RL Analyte MDL Unit D Prepared Analyzed Dil Fac 0.020 Ammonia ND 0.0090 mg/L 05/02/13 13:16

Client Sample ID: Method Blank Lab Sample ID: MB 480-116492/171 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116492

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Ammonia 0.020 0.0090 mg/L 05/02/13 14:03 ND

Lab Sample ID: MB 480-116492/51 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116492 MR MR

Qualifier MDL Unit Prepared Analyzed Analyte Result RL Dil Fac 0.020 Ammonia ND 0.0090 mg/L 05/02/13 12:05

Lab Sample ID: MB 480-116492/99 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116492

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.020 05/02/13 12:52 Ammonia ND 0.0090 mg/L

MB MB

Lab Sample ID: LCS 480-116492/100 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 116492

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits Ammonia 1.00 0.957 mg/L 96 90 - 110

Lab Sample ID: LCS 480-116492/124 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116492

Spike LCS LCS %Rec. babbA Result Qualifier Analyte %Rec Limits Unit Ammonia 1.00 0.942 mg/L 94 90 - 110

TestAmerica Buffalo

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCS 480-116492/172 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116492

Spike LCS LCS %Rec. Added Analyte Result Qualifier Limits Unit D %Rec 1.00 90 - 110 Ammonia 0.941 mg/L 94

Lab Sample ID: LCS 480-116492/52 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116492

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Ammonia 1.00 0.942 mg/L 94 90 - 110

Lab Sample ID: 480-37417-2 DU Client Sample ID: MW-4-050113 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116492

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Ammonia 3.4 3.51 mg/L

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-116368/24 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116368

MB MB Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared ND 0.050 05/02/13 08:33 Nitrite 0.020 ma/L

Lab Sample ID: MB 480-116368/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116368

MB MB RL Result Qualifier MDL Unit Prepared Dil Fac Analyte Analyzed 0.050 Nitrite ND 0.020 mg/L 05/02/13 08:10

Lab Sample ID: LCS 480-116368/25 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116368

LCS LCS Spike %Rec. %Rec Analyte Added Result Qualifier Unit Limits Nitrite 1.50 1.44 mg/L 96 90 - 110

Lab Sample ID: LCS 480-116368/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116368

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec

Limits Nitrite 1.50 1.44 mg/L 96 90 - 110

RL

1.0

RL

1.0

Spike

Added

60.0

Spike

Added

60.0

MDL Unit

0.43 mg/L

MDL Unit

0.43 mg/L

Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

LCS LCS

LCS LCS

Result Qualifier

MDL Unit

0.79 mg/L

LCS LCS

95.82

Result Qualifier

Result

59.24

57.19

D

D

D

Prepared

Prepared

%Rec

%Rec

Prepared

%Rec

96

95

Client Sample ID: Method Blank

Analyzed

05/03/13 03:55

Client Sample ID: Method Blank

Analyzed

05/02/13 16:36

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 _ 110

Client Sample ID: Method Blank

Analyzed

05/07/13 01:35

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac

Dil Fac

Dil Fac

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-116737/27 **Matrix: Water**

Analysis Batch: 116737

мв мв Result Qualifier Analyte

ND

MB MB

MB MB

ND

Result Qualifier

ND

Result Qualifier

Total Organic Carbon Lab Sample ID: MB 480-116737/3

Matrix: Water

Analysis Batch: 116737

Analyte

Lab Sample ID: LCS 480-116737/28

Total Organic Carbon

Matrix: Water

Analysis Batch: 116737

Total Organic Carbon

Lab Sample ID: LCS 480-116737/4

Matrix: Water

Total Organic Carbon

Analysis Batch: 116737

Analyte

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-117105/6

Matrix: Water

Analysis Batch: 117105

Analyte **Total Alkalinity**

Lab Sample ID: LCS 480-117105/7

Matrix: Water

Analysis Batch: 117105

Analyte **Total Alkalinity**

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 480-116743/3

Matrix: Water

Analysis Batch: 116743

мв мв Analyte Result Qualifier

Sulfide ND

RL 0.10

Spike

Added

100

RL

5.0

MDL Unit 0.052 mg/L

Prepared

Analyzed 05/03/13 15:36

Prep Type: Total/NA

TestAmerica Buffalo

Dil Fac

QC Sample Results

Spike

Added

0.750

LCS LCS

0.750

Result Qualifier

mg/L

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Method: SM 4500 S2 D - Sulfide, Total (Continued)

Lab Sample ID: LCS 480-116743/4

Matrix: Water

Analyte

Sulfide

Analysis Batch: 116743

Client Sample ID: Lab Control Sample Prep Type: Total/NA

90 - 110

%Rec. %Rec Limits Unit

100

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography

Lab Sample ID: MB 480-117043/28

Matrix: Water

Analysis Batch: 117043

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.0	0.15	mg/L			05/07/13 05:27	1
ND		1.0	0.11	mg/L			05/07/13 05:27	1
ND		1.0	0.14	mg/L			05/07/13 05:27	1
ND		1.0	0.16	mg/L			05/07/13 05:27	1
ND		1.0	0.17	mg/L			05/07/13 05:27	1
ND		1.0	0.080	mg/L			05/07/13 05:27	1
	Result ND ND ND ND ND	ND ND ND ND	Result Qualifier RL ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	Result Qualifier RL MDL ND 1.0 0.15 ND 1.0 0.11 ND 1.0 0.14 ND 1.0 0.16 ND 1.0 0.17	Result Qualifier RL MDL Unit ND 1.0 0.15 mg/L ND 1.0 0.11 mg/L ND 1.0 0.14 mg/L ND 1.0 0.16 mg/L ND 1.0 0.17 mg/L	Result Qualifier RL MDL Unit D ND 1.0 0.15 mg/L ND 1.0 0.11 mg/L ND 1.0 0.14 mg/L ND 1.0 0.16 mg/L ND 1.0 0.17 mg/L	Result Qualifier RL MDL unit D Prepared ND 1.0 0.15 mg/L mg/L ND ND 1.0 mg/L nd nd <td>Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.15 mg/L 05/07/13 05:27 ND 1.0 0.11 mg/L 05/07/13 05:27 ND 1.0 0.16 mg/L 05/07/13 05:27 ND 1.0 0.16 mg/L 05/07/13 05:27 ND 1.0 0.17 mg/L 05/07/13 05:27</td>	Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.15 mg/L 05/07/13 05:27 ND 1.0 0.11 mg/L 05/07/13 05:27 ND 1.0 0.16 mg/L 05/07/13 05:27 ND 1.0 0.16 mg/L 05/07/13 05:27 ND 1.0 0.17 mg/L 05/07/13 05:27

Lab Sample ID: LCS 480-117043/27

Matrix: Water

Analysis Batch: 117043

Analysis Daton. 117045							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetic acid	10.0	9.46		mg/L		95	80 - 120
Formic-acid	10.0	9.60		mg/L		96	80 - 120
Lactic acid	10.0	9.90		mg/L		99	80 - 120
n-Butyric Acid	10.0	9.54		mg/L		95	80 - 120
Propionic acid	10.0	9.94		mg/L		99	80 - 120
Pyruvic Acid	10.0	10.33		mg/L		103	80 - 120

TestAmerica Buffalo

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

GC/MS VOA

Analysis Batch: 117584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-2	MW-4-050113	Total/NA	Water	8260B	
480-37417-3	MW-15-050113	Total/NA	Water	8260B	
480-37417-4	TRIP BLANK	Total/NA	Water	8260B	
LCS 480-117584/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-117584/5	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 117784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	8260B	
LCS 480-117784/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-117784/5	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 55142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	RSK-175	
480-37417-2	MW-4-050113	Total/NA	Water	RSK-175	
480-37417-3	MW-15-050113	Total/NA	Water	RSK-175	
LCS 200-55142/2	Lab Control Sample	Total/NA	Water	RSK-175	
MB 200-55142/3	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 116579

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	RSK-175	- ·
480-37417-2	MW-4-050113	Total/NA	Water	RSK-175	
480-37417-3	MW-15-050113	Total/NA	Water	RSK-175	
LCS 480-116579/3	Lab Control Sample	Total/NA	Water	RSK-175	
MB 480-116579/2	Method Blank	Total/NA	Water	RSK-175	

Metals

Prep Batch: 116383

Γ					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	3005A	
480-37417-2	MW-4-050113	Total/NA	Water	3005A	
480-37417-3	MW-15-050113	Total/NA	Water	3005A	
LCS 480-116383/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-116383/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 116598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	6010B	116383
480-37417-2	MW-4-050113	Total/NA	Water	6010B	116383
480-37417-3	MW-15-050113	Total/NA	Water	6010B	116383
LCS 480-116383/2-A	Lab Control Sample	Total/NA	Water	6010B	116383
MB 480-116383/1-A	Method Blank	Total/NA	Water	6010B	116383

TestAmerica Buffalo

Page 19 of 32

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.

TestAmerica Job ID: 480-37417-1

Project/Site: 058507, GM-Lockport Groundwater Sampling

Analy	sis	Batch	ո։ 11	6368
-------	-----	-------	-------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	353.2	
480-37417-3	MW-15-050113	Total/NA	Water	353.2	
LCS 480-116368/25	Lab Control Sample	Total/NA	Water	353.2	
LCS 480-116368/4	Lab Control Sample	Total/NA	Water	353.2	
MB 480-116368/24	Method Blank	Total/NA	Water	353.2	
MB 480-116368/3	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 116409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	353.2	
480-37417-2	MW-4-050113	Total/NA	Water	353.2	
480-37417-3	MW-15-050113	Total/NA	Water	353.2	

Analysis Batch: 116417

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-2	MW-4-050113	Total/NA	Water	353.2	

Analysis Batch: 116467

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-3	MW-15-050113	Total/NA	Water	300.0	
LCS 480-116467/51	Lab Control Sample	Total/NA	Water	300.0	
MB 480-116467/52	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 116492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	350.1	
480-37417-2	MW-4-050113	Total/NA	Water	350.1	
480-37417-2 DU	MW-4-050113	Total/NA	Water	350.1	
480-37417-3	MW-15-050113	Total/NA	Water	350.1	
LCS 480-116492/100	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-116492/124	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-116492/172	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-116492/52	Lab Control Sample	Total/NA	Water	350.1	
MB 480-116492/123	Method Blank	Total/NA	Water	350.1	
MB 480-116492/171	Method Blank	Total/NA	Water	350.1	
MB 480-116492/51	Method Blank	Total/NA	Water	350.1	
MB 480-116492/99	Method Blank	Total/NA	Water	350.1	

Analysis Batch: 116737

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	9060	
480-37417-2	MW-4-050113	Total/NA	Water	9060	
480-37417-3	MW-15-050113	Total/NA	Water	9060	
LCS 480-116737/28	Lab Control Sample	Total/NA	Water	9060	
LCS 480-116737/4	Lab Control Sample	Total/NA	Water	9060	
MB 480-116737/27	Method Blank	Total/NA	Water	9060	
MB 480-116737/3	Method Blank	Total/NA	Water	9060	

Analysis Batch: 116743

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	SM 4500 S2 D	

TestAmerica Buffalo

Page 20 of 32

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

General Chemistry (Continued)

Analysis Batch: 116743 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-37417-2	MW-4-050113	Total/NA	Water	SM 4500 S2 D
480-37417-3	MW-15-050113	Total/NA	Water	SM 4500 S2 D
LCS 480-116743/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 D
MB 480-116743/3	Method Blank	Total/NA	Water	SM 4500 S2 D

Analysis Batch: 116748

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	300.0	
480-37417-2	MW-4-050113	Total/NA	Water	300.0	
480-37417-3	MW-15-050113	Total/NA	Water	300.0	
LCS 480-116748/51	Lab Control Sample	Total/NA	Water	300.0	
MB 480-116748/52	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 117043

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	VFA-IC	
480-37417-2	MW-4-050113	Total/NA	Water	VFA-IC	
480-37417-3	MW-15-050113	Total/NA	Water	VFA-IC	
LCS 480-117043/27	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-117043/28	Method Blank	Total/NA	Water	VFA-IC	

Analysis Batch: 117105

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37417-1	MW-10-050113	Total/NA	Water	SM 2320B	
480-37417-2	MW-4-050113	Total/NA	Water	SM 2320B	
480-37417-3	MW-15-050113	Total/NA	Water	SM 2320B	
LCS 480-117105/7	Lab Control Sample	Total/NA	Water	SM 2320B	
MB 480-117105/6	Method Blank	Total/NA	Water	SM 2320B	

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Lab Sample ID: 480-37417-1

Matrix: Water

Client Sample ID: MW-10-050113

Date Collected: 05/01/13 10:30 Date Received: 05/01/13 17:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		4	117784	05/09/13 22:04	TRF	TAL BUF
Total/NA	Analysis	RSK-175		1	55142	05/07/13 13:19	NA	TAL BUR
Total/NA	Analysis	RSK-175		1	116579	05/03/13 08:31	JM	TAL BUF
Total/NA	Prep	3005A			116383	05/02/13 10:50	SS	TAL BUF
Total/NA	Analysis	6010B		1	116598	05/03/13 01:08	AH	TAL BUF
Total/NA	Analysis	353.2		1	116368	05/02/13 08:12	EGN	TAL BUF
Total/NA	Analysis	353.2		1	116409	05/02/13 08:12	EGN	TAL BUF
Total/NA	Analysis	350.1		1	116492	05/02/13 13:18	SB	TAL BUF
Total/NA	Analysis	9060		1	116737	05/03/13 05:20	KC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	116743	05/03/13 15:36	KS	TAL BUF
Total/NA	Analysis	300.0		20	116748	05/04/13 01:46	KC	TAL BUF
Total/NA	Analysis	VFA-IC		1	117043	05/07/13 12:45	KC	TAL BUF
Total/NA	Analysis	SM 2320B		1	117105	05/07/13 02:53	LK	TAL BUF

Client Sample ID: MW-4-050113

Date Collected: 05/01/13 14:15

Date Received: 05/01/13 17:35

Lab Sample ID	: 480-37417-2
---------------	---------------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		500	117584	05/09/13 12:37	RL	TAL BUF
Total/NA	Analysis	RSK-175		1	55142	05/07/13 13:28	NA	TAL BUR
Total/NA	Analysis	RSK-175		1	116579	05/03/13 11:29	JM	TAL BUF
Total/NA	Prep	3005A			116383	05/02/13 10:50	SS	TAL BUF
Total/NA	Analysis	6010B		1	116598	05/03/13 01:10	AH	TAL BUF
Total/NA	Analysis	353.2		1	116409	05/02/13 06:56	EGN	TAL BUF
Total/NA	Analysis	353.2		1	116417	05/02/13 06:56	EGN	TAL BUF
Total/NA	Analysis	350.1		2	116492	05/02/13 14:20	SB	TAL BUF
Total/NA	Analysis	9060		1	116737	05/03/13 05:48	KC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	116743	05/03/13 15:36	KS	TAL BUF
Total/NA	Analysis	300.0		50	116748	05/04/13 01:56	KC	TAL BUF
Total/NA	Analysis	VFA-IC		1	117043	05/07/13 13:14	KC	TAL BUF
Total/NA	Analysis	SM 2320B		1	117105	05/07/13 02:59	LK	TAL BUF

Date Received: 05/01/13 17:35

Client Sample ID: MW-15-050113	Lab Sample ID: 480-37417-3
Date Collected: 05/01/13 16:10	Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	117584	05/09/13 12:59	RL	TAL BUF
Total/NA	Analysis	RSK-175		1	55142	05/07/13 13:38	NA	TAL BUR

TestAmerica Buffalo

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Client Sample ID: MW-15-050113 Lab Sample ID: 480-37417-3

Date Collected: 05/01/13 16:10 Matrix: Water

Date Received: 05/01/13 17:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	RSK-175		1	116579	05/03/13 09:05	JM	TAL BUF
Total/NA	Prep	3005A			116383	05/02/13 10:50	SS	TAL BUF
Total/NA	Analysis	6010B		1	116598	05/03/13 01:13	AH	TAL BUF
Total/NA	Analysis	353.2		1	116368	05/02/13 08:13	EGN	TAL BUF
Total/NA	Analysis	353.2		1	116409	05/02/13 08:13	EGN	TAL BUF
Total/NA	Analysis	300.0		5	116467	05/03/13 01:28	KC	TAL BUF
Total/NA	Analysis	350.1		1	116492	05/02/13 13:20	SB	TAL BUF
Total/NA	Analysis	9060		1	116737	05/03/13 06:16	KC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	116743	05/03/13 15:36	KS	TAL BUF
Total/NA	Analysis	300.0		20	116748	05/04/13 02:06	KC	TAL BUF
Total/NA	Analysis	VFA-IC		1	117043	05/07/13 13:43	KC	TAL BUF
Total/NA	Analysis	SM 2320B		1	117105	05/07/13 03:06	LK	TAL BUF

Client Sample ID: TRIP BLANK Lab Sample ID: 480-37417-4

Date Collected: 05/01/13 00:00 Matrix: Water

Date Received: 05/01/13 17:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	117584	05/09/13 13:21	RL	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TestAmerica Buffalo

3

__

7

0

10

12

13

14

TestAmerica Job ID: 480-37417-1

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-13
California	NELAP	9	1169CA	09-30-13
Connecticut	State Program	1	PH-0568	09-30-14
Florida	NELAP	4	E87672	06-30-13
Georgia	State Program	4	N/A	03-31-14
Georgia	State Program	4	956	06-30-13
Georgia	State Program	4	956	03-31-14
Illinois	NELAP	5	200003	09-30-13
lowa	State Program	7	374	03-15-15
Kansas	NELAP	7	E-10187	01-31-14
Kentucky	State Program	4	90029	12-31-13
Kentucky (UST)	State Program	4	30	04-01-14
Louisiana	NELAP	6	02031	06-30-13
Maine	State Program	1	NY00044	12-04-13
Maryland	State Program	3	294	03-31-14
Massachusetts	State Program	1	M-NY044	06-30-13
Michigan	State Program	5	9937	04-01-13 *
Minnesota	NELAP	5	036-999-337	12-31-13
New Hampshire	NELAP	1	2973	09-11-13
New Hampshire	NELAP	1	2337	11-17-13
New Jersey	NELAP	2	NY455	06-30-13
New York	NELAP	2	10026	04-01-14
North Dakota	State Program	8	R-176	03-31-14
Oklahoma	State Program	6	9421	08-31-13
Oregon	NELAP	10	NY200003	06-09-13
Pennsylvania	NELAP	3	68-00281	07-31-13
Rhode Island	State Program	1	LAO00328	12-31-13
Tennessee	State Program	4	TN02970	04-01-14
Texas	NELAP	6	T104704412-11-2	07-31-13
USDA	Federal		P330-11-00386	11-22-14
Virginia	NELAP	3	460185	09-14-13
Washington	State Program	10	C784	02-10-14
West Virginia DEP	State Program	3	252	09-30-13
Wisconsin	State Program	5	998310390	08-31-13

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Connecticut	State Program	1	PH-0751	09-30-13
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-15
Florida	NELAP	4	E87467	06-30-13
L-A-B	DoD ELAP		L2336	10-26-13
Louisiana	NELAP	6	176292	06-30-13
Minnesota	NELAP	5	050-999-436	12-31-13
New Hampshire	NELAP	1	2006	12-18-13
New Jersey	NELAP	2	VT972	06-30-13
New York	NELAP	2	10391	04-01-14
Pennsylvania	NELAP	3	68-00489	04-30-14
USDA	Federal		P330-11-00093	02-17-14

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Buffalo

9

3

5

9

11

12

13

4 5

Certification Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Laboratory: TestAmerica Burlington (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Vermont	State Program	1	VT-4000	12-31-13
Virginia	NELAP	3	460209	12-14-13

0

9

11

14

Method Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Method	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
RSK-175	Dissolved Gases (GC)	RSK	TAL BUR
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
010B	Metals (ICP)	SW846	TAL BUF
00.0	Anions, Ion Chromatography	MCAWW	TAL BUF
50.1	Nitrogen, Ammonia	MCAWW	TAL BUF
53.2	Nitrogen, Nitrite	MCAWW	TAL BUF
53.2	Nitrate	EPA	TAL BUF
060	Organic Carbon, Total (TOC)	SW846	TAL BUF
M 2320B	Alkalinity	SM	TAL BUF
M 4500 S2 D	Sulfide, Total	SM	TAL BUF
FA-IC	Volatile Fatty Acids, Ion Chromatography	TestAmerica SOP	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique , RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica SOP = TestAmerica, Inc., Standard Operating Procedure

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

4

-5

4

6

_

9

11

Sample Summary

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37417-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-37417-1	MW-10-050113	Water	05/01/13 10:30	05/01/13 17:35
480-37417-2	MW-4-050113	Water	05/01/13 14:15	05/01/13 17:35
480-37417-3	MW-15-050113	Water	05/01/13 16:10	05/01/13 17:35
480-37417-4	TRIP BLANK	Water	05/01/13 00:00	05/01/13 17:35

1

6

8

9

11

12

14

TestAmerica	THE LEADER 'N ENVIRONMENTAL TESTING	COC No:	Page: Page / of /	GZA Job #: 21.0056546.00 Task 24	3	B - NaOH N - None C - Zn Acetate O - AsNaO2		F - MeOH R - Na2S2SO3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahvdrate	_		Other:		Special Instructions/Note:	V-Mirmson	Missilled Hr		 					are retained longer than 1 month) Archive For Months			13 1735 Company A	Company	Company	の日本し	2 3 4 5 6
	Record	Carrier Tracking No(s):		s Requested				oiv, (eic	e and o	E (transtronthane,	sinle C sinle C suffice, Ni kalinit, ons (C)	10B - Metals - 60B - PCE, TC 60 - Total Org 5K_175 - Meth 6500_ S2_D - 3.2, 363.2_Uit 60.0_28D - Ani 60.0_28D -	A R 35 30 30 31 A R 35 30	アイググイン		ZZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			Custody	480-3/41/	7	essed ir sampies oosal By Lab	Requirements:	Method of Shipment:	MINKAUM Date/Time: S/11/1	Date/Time:	Date/Time:	Cooler Temperature(s) °C and Other Remarks:	7 8 9 1(11
	Chain of Custody Record	Lab PM: Deyo, Melissa L	E-Mail: melissa.deyo@testamericainc.com		To and the		K 12322	(C)	(oN epi	xoib ne	SD (Y Carbo e Fatty	Sample Matrix Sample (W-yater, W-yater, Filter) MS/M MS/M MS/M MS/M MS/M MS/M MS/M MS/	ы <u>х</u>	Water N K K	Water N	ングスグラ						Sample Disposal Radiological Return To C	Special Instruction	Time:	35 Company A Received by:	Company Received by:	Corripany Received by:	Cooler Temperat	13
		Sampler. Thornas Bohlen	Phone: (716) 844-7050		Due Date Requested:	TAT Requested (days): 3 Weeks		PO#. 4047065	WO #: 58507	Project #: 48004014			Sample Date Time	5/1/2 1030	+	J (610						ant Poison B Unknown		Date:	Date/Time; 1/17	Date/Time:	Date/Time:		
TestAmerica Buffalo	Tu Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	Client Information	Client Contact: Mr. Christopher Boron	Company: GZA GeoEnvironmental, Inc.	Address: 535 Washington Street 11th Floor	City. Buffalo	State, Zip: NY, 14203	Phone: (716) 685-2300	Email: christopher.boron@gza.com	Project Name: 058507, GM-Lockport Groundwater Sampling	Delishi Harrison Thama	Site	Sample Identification	E11050-01-MW	MW-4-850113	MW-15-050113	K-ID Blank				Docetho Harry Howelflandian	Non-Hazard Flammable Skin Irritant	Deliverable Requested: I, II, III, IV, Other (specify	Empty Kit Relinquished by:	Remaished by. Romai Bohlan	kelinquished by:	Relinquished by:	Custody Seals Intact: Custody Seal No.:	

TestAmerica Buffalo										 -	4	*;
10 Hazelwood Drive			ပို	ain of	Cust	Chain of Custody Record	cord			낃	なえい	
Annelst, 197, 4226-2236 Phone (716) 691-2600 Fax (716) 691-7991						•				UT.	י גדאסנא איני	THE LITADER IN ENVIAONMENTAL TESTING
Client Information (Sub Contract Lab)	Sampler			Lab PM: Deyo, N	Lab PM: Deyo, Melissa L			Camor Tracking No(s)	(s)aN Bup	COC No 480-98	COC No 480-9852.1	
Client Contact: Shipping/Receiving	Phone;		- Awar	E-Mail.	devo@tk	E-Mall, melissa devo@testamericainc com	W05			Pago:	Pago: Pago: of 1	
Company:				-						# qor	5	
Address:	Out Date October				-	۲	Analysis Requested	quested		480-	480-37417-1	
30 Community Drive, Suite 11,	5/13/2013				-					Pres	Š	es:
City: South Burlington	TAT Requested (days):	2			'					(m (N - None
Sate, Zp. VT, 05403					-					O W	D - Nitne Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phono: 802-660-1990(Tel)	PO #;			(₽ O 3	,	R - Na2S2SO3 S - H2SO4
Enall	#Ow			N 10							3	U - Acotone V - MCAA
Project Name. 058507, GM-Lockport Groundwater Sampling	Project # 48004014			30X) 0							4	W - ph 4-5 Z - other (specify)
	SSOW#;			igms8						noo lo	Ľ	•
All 1 - P. Classes 19 - Charles and Charles and Charles				Matrix (www.ee. Swolld.	erform MS/M SK_175_CO2					raf Number		
	Sample Date	1	Preservation Code:	3	a X) <u>†</u> >	Special In	Special Instructions/Note:
MW-10-050113 (480-37417-1)	5/1/13		_	Water	×					<u>ه</u>		
MW 4-050113 (480-37417-2)	5/1/13	14:15 Fastem		Water	×					ю		
MW-15-050113 (480-37417-3)	5/1/13 E	16:10 Eastern		Water	×					6		- The state of the
The state of the s												
												Average and the second
The state of the s												大学の単
												700 2747 000
Possible Hazard Identification			_		Samole	Sample Disposal (4 fee may be accessed if camples are relatived to the most ()	e out year	o ji possos	a ove solome	pool podicte	to the to	
Unconfirmed						sturn To Client		Disposal By Lab	dinples are re	Archive For	er undir i me	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Special I	Special Instructions/QC Requirements:	Requirement	S:				
ıished by: ,	Date	te:		Tir	Time:			Method	Method of Shipmont:			
Relinguished by:	Dato/Time: 5~2~/3	188	<u>8</u> /-	Company Killer	Roce	Roceived by:	K. L		Dato/Timo:	12 10	750	Company
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Dato/Time:		Сотралу		Becel	Received by:			Dato/Time.			Company
	Date/Time′		Company	any	Recei	Received by:			Dato/Time:			Company
Custody Seals Intact Custody Seal No.:					S S S S S S S S S S S S S S S S S S S	Cooler Temporature(s) °C and Other Remarks	°C and Other Re	narks.				
					$\frac{1}{2}$							

3

<u>Э</u>

-5

6

7

9

10 11

12

14

1

THE STANDARD OVERNIGHT

Tof 2

The standard of the standard of

FRI – 03 MAY 3:00P ANDARD OVERNIGHT 05403 VT-US BTV

2 of 2

en 4 151254-354 RIT2 02/13 🕽

ORIGIN ID: DKKA (716) 691-2600 KEN KINECKI

Page 30 of 32

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 480-37417-1

Login Number: 37417 List Source: TestAmerica Buffalo

List Number: 1 Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

5

7

9

11

14

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 480-37417-1

Login Number: 37417
List Number: 1
List Source: TestAmerica Burlington
List Creation: 05/03/13 12:23 PM

Creator: Poucher, Stephanie A

seticity wealth about a decided an in- of- books around a management by a surror.	
activity wasn't checked or is = background as measured by a survey N/A</td <td>Lab does not accept radioactive samples.</td>	Lab does not accept radioactive samples.
poler's custody seal, if present, is intact.	709096, 097
e custody seals, if present, are intact.	
ooler or samples do not appear to have been compromised or True red with.	
es were received on ice.	
Temperature is acceptable.	
Temperature is recorded.	1.4°C, 4.6°C IR GUN ID 181. CF 0
s present. True	
s filled out in ink and legible.	
s filled out with all pertinent information.	
Field Sampler's name present on COC? N/A	Received project as a subcontract.
are no discrepancies between the containers received and the COC. True	
es are received within Holding Time.	
e containers have legible labels. True	
iners are not broken or leaking.	
e collection date/times are provided.	
priate sample containers are used.	
e bottles are completely filled. True	
e Preservation Verified.	
is sufficient vol. for all requested analyses, incl. any requested True SDs	
iners requiring zero headspace have no headspace or bubble is True (1/4").	
hasic samples are not present. True	
es do not require splitting or compositing.	
ual Chlorine Checked. N/A	Check done at department level as requir

F

O

10

10

13

2

3

7

9

12

14

41

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-37534-1

Client Project/Site: 058507, GM-Lockport Groundwater

Sampling

For:

Conestoga-Rovers & Associates, Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, New York 14304

Attn: Kathleen Willy

Authorized for release by: 5/15/2013 11:54:50 AM

Melissa Deyo, Project Manager I melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	24
Lab Chronicle	28
Certification Summary	30
Method Summary	32
Sample Summary	33
Chain of Custody	34
Receipt Checklists	37

3

4

e

Q

9

11

12

4 4

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description

F MS or MSD exceeds the control limits

GC VOA

Qualifier Qu	alifier Description
--------------	---------------------

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

F MS or MSD exceeds the control limits

Metals

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qua	ılifier	Qualifier Description
F		MS or MSD exceeds the control limits
F		RPD of the MS and MSD exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)

BOI Bracking Overtical insit

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Job ID: 480-37534-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-37534-1

Receipt

The samples were received on 5/2/2013 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.0° C.

GC/MS VOA

Method 8260B: The following samples were diluted to bring the concentration of target analytes within the calibration range: G-1-050213 (480-37534-1 DL). Elevated reporting limits (RLs) are provided.

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 118039 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

ic

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: G-1-050213 (480-37534-1), MW-11-050213 (480-37534-2), MW-13-050213 (480-37534-3), MW-13-050213 (480-37534-3 MS) and MW-13-050213 (480-37534-3 MSD). Elevated reporting limits (RLs) are provided.

Method 300.0: The matrix spike (MS) recovery for batch 116998 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method VFA-IC: The following samples were diluted due to the nature of the sample matrix: G-1-050213 (480-37534-1), (480-37534-1 MS), (480-37534-1 MSD) and MW-13-050213 (480-37534-3). Elevated reporting limits (RLs) are provided.

Method VFA-IC: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 117667 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC VOA

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-13-050213 (480-37534-3), MW-13-050213 (480-37534-3 MS) and MW-13-050213 (480-37534-3 MSD). Elevated reporting limits (RLs) are provided.

Method RSK-175: The matrix spike (MS) recovery for batch 55461 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

Metals

Method 6010B: The method blank for preparation batch 116635 contained Manganese above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No other analytical or quality issues were noted.

General Chemistry

Method SM 4500 S2 D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 116743 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

1

7

5

6

9

1 4

12

4 1

Detection Summary

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Client Sample ID: G-1-050213

Lab Sample ID: 480-37534-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	14		1.0	0.81	ug/L		_	8260B	Total/NA
Trichloroethene	21		1.0	0.46	ug/L	1		8260B	Total/NA
Tetrachloroethene - DL	110		2.0	0.72	ug/L	2		8260B	Total/NA
Iron	0.057		0.050	0.019	mg/L	1		6010B	Total/NA
Magnesium	101		0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	0.0071	В	0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	11.1		0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	2160		1.0	0.32	mg/L	1		6010B	Total/NA
Chloride	3810		50.0	28.2	mg/L	100		300.0	Total/NA
Sulfate	301		40.0	7.0	mg/L	20		300.0	Total/NA
Nitrate	1.3		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	1.4		1.0	0.43	mg/L	1		9060	Total/NA
Total Alkalinity	300		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	11000		1000	1000	ug/L		_	RSK-175	Total/NA

Client Sample ID: MW-11-050213

Lab Sample ID: 480-37534-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.1		1.0	0.81	ug/L	1	_	8260B	Total/NA
Vinyl chloride	1.1		1.0	0.90	ug/L	1		8260B	Total/NA
Ethane	1.0	J	7.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	1.3	J	7.0	0.52	ug/L	1		RSK-175	Total/NA
Methane	40		4.0	0.22	ug/L	1		RSK-175	Total/NA
Iron	0.70		0.050	0.019	mg/L	1		6010B	Total/NA
Magnesium	47.0		0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	0.17	В	0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	9.0		0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	151		1.0	0.32	mg/L	1		6010B	Total/NA
Chloride	333		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	84.6		2.0	0.35	mg/L	1		300.0	Total/NA
Ammonia	0.15		0.020	0.0090	mg/L	1		350.1	Total/NA
Nitrate	0.34		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	1.6		1.0	0.43	mg/L	1		9060	Total/NA
Total Alkalinity	259		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	4200		1000	1000	ug/L	1	_	RSK-175	Total/NA

Client Sample ID: MW-13-050213

Lab Sample ID: 480-37534-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methane	110		40	2.2	ug/L	10	_	RSK-175	Total/NA
Iron	4.7		0.050	0.019	mg/L	1		6010B	Total/NA
Magnesium	39.4		0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	4.3	В	0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	6.2		0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	964		1.0	0.32	mg/L	1		6010B	Total/NA
Chloride	1590		25.0	14.1	mg/L	50		300.0	Total/NA
Sulfate	62.7		10.0	1.7	mg/L	5		300.0	Total/NA
Ammonia	0.60		0.020	0.0090	mg/L	1		350.1	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 5 of 38

9

J

8

9

11

13

14

Detection Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Lab Sample ID: 480-37534-3

Client Sample ID: MW-13-050213 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nitrate	0.057		0.050	0.020	mg/L	1	_	353.2	Total/NA
Total Organic Carbon	3.8		1.0	0.43	mg/L	1		9060	Total/NA
Total Alkalinity	382		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	3700		1000	1000	ug/L	1	_	RSK-175	Total/NA

Client Sample ID: Trip Blank

Lab Sample ID: 480-37534-4

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Conestoga-Rovers & Associates, Inc.

Client Sample ID: G-1-050213

Date Collected: 05/02/13 08:50

n-Butyric Acid

Propionic acid

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Lab Sample ID: 480-37534-1

Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	14		1.0	0.81	ug/L			05/10/13 23:45	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/10/13 23:45	
Trichloroethene	21		1.0	0.46	ug/L			05/10/13 23:45	
Vinyl chloride	ND		1.0	0.90	ug/L			05/10/13 23:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		66 - 137					05/10/13 23:45	-
4-Bromofluorobenzene (Surr)	101		73 - 120					05/10/13 23:45	
Toluene-d8 (Surr)	103		71 - 126					05/10/13 23:45	
Method: 8260B - Volatile Orga	nic Compounds (GC/MS) - D	L						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Tetrachloroethene	110		2.0	0.72	ug/L			05/11/13 11:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	93		66 - 137					05/11/13 11:42	
4-Bromofluorobenzene (Surr)	107		73 - 120					05/11/13 11:42	
Toluene-d8 (Surr)	107		71 - 126					05/11/13 11:42	
Method: RSK-175 - Dissolved	Casas (CC)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Ethane	ND		7.5	0.49	ug/L			05/03/13 11:46	
Ethene	ND		7.0	0.52	ug/L			05/03/13 11:46	
Methane	ND		4.0	0.22	ug/L			05/03/13 11:46	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon dioxide	11000		1000	1000	ug/L			05/07/13 14:12	
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	0.057		0.050	0.019	mg/L		05/03/13 10:00	05/03/13 18:53	
Magnesium	101		0.20	0.043	mg/L		05/03/13 10:00	05/03/13 18:53	
Manganese	0.0071	В	0.0030	0.00040	mg/L		05/03/13 10:00	05/03/13 18:53	
Potassium	11.1		0.50	0.10	mg/L		05/03/13 10:00	05/03/13 18:53	
Sodium	2160		1.0	0.32	mg/L		05/03/13 10:00	05/03/13 18:53	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride	3810		50.0	28.2	mg/L			05/06/13 16:15	10
Sulfate	301		40.0	7.0	mg/L			05/04/13 13:59	2
Ammonia	ND		0.020	0.0090	mg/L			05/04/13 14:19	
Nitrate	1.3		0.050	0.020				05/02/13 23:57	
Nitrite	ND		0.050	0.020	-			05/02/13 23:57	
Total Organic Carbon	1.4		1.0		mg/L			05/04/13 10:24	
Total Alkalinity	300		5.0		mg/L			05/09/13 01:04	
Sulfide	ND.		0.10	0.052	-			05/03/13 15:36	
Acetic acid	ND		10.0		mg/L			05/07/13 14:12	
Formic-acid	ND		10.0		mg/L			05/07/13 14:12	
Lactic acid	ND ND		10.0		mg/L			05/07/13 14:12	1
Lactic acid	ND		10.0	1.4	mg/L			00/07/13 14.12	1

TestAmerica Buffalo

10

05/07/13 14:12

05/07/13 14:12

Page 7 of 38

10.0

10.0

1.6 mg/L

1.7 mg/L

ND

ND

5/15/2013

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Lab Sample ID: 480-37534-1

TestAmerica Job ID: 480-37534-1

Client Sample ID: G-1-050213

Date Collected: 05/02/13 08:50 Date Received: 05/02/13 17:30 ab campic ib. 400-07004-1

Matrix: Water

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyruvic Acid	ND		10.0	0.80	mg/L			05/07/13 14:12	10

Client Sample ID: MW-11-050213 Lab Sample ID: 480-37534-2

Matrix: Water

Date Collected: 05/02/13 11:30 Date Received: 05/02/13 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	1.1		1.0	0.81	ug/L			05/11/13 00:07	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/13 00:07	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/11/13 00:07	1
Trichloroethene	ND		1.0	0.46	ug/L			05/11/13 00:07	1
Vinyl chloride	1.1		1.0	0.90	ug/L			05/11/13 00:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137			-		05/11/13 00:07	1
4-Bromofluorobenzene (Surr)	102		73 - 120					05/11/13 00:07	1
Toluene-d8 (Surr)	105		71 - 126					05/11/13 00:07	1

Method: RSK-175 - Dissolve	ed Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.0	J	7.5	0.49	ug/L			05/03/13 12:03	1
Ethene	1.3	J	7.0	0.52	ug/L			05/03/13 12:03	1
Methane	40		4.0	0.22	ug/L			05/03/13 12:03	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	4200		1000	1000	ug/L			05/07/13 14:21	1

Method: 6010B - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron	0.70		0.050	0.019	mg/L		05/03/13 10:00	05/03/13 18:56	1	
Magnesium	47.0		0.20	0.043	mg/L		05/03/13 10:00	05/03/13 18:56	1	
Manganese	0.17	В	0.0030	0.00040	mg/L		05/03/13 10:00	05/03/13 18:56	1	
Potassium	9.0		0.50	0.10	mg/L		05/03/13 10:00	05/03/13 18:56	1	
Sodium	151		1.0	0.32	mg/L		05/03/13 10:00	05/03/13 18:56	1	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	333		2.5	1.4	mg/L			05/06/13 16:25	5
Sulfate	84.6		2.0	0.35	mg/L			05/04/13 14:09	1
Ammonia	0.15		0.020	0.0090	mg/L			05/04/13 14:20	1
Nitrate	0.34		0.050	0.020	mg/L			05/03/13 00:00	1
Nitrite	ND		0.050	0.020	mg/L			05/03/13 00:00	1
Total Organic Carbon	1.6		1.0	0.43	mg/L			05/04/13 11:25	1
Total Alkalinity	259		5.0	0.79	mg/L			05/09/13 01:11	1
Sulfide	ND		0.10	0.052	mg/L			05/03/13 15:36	1
Acetic acid	ND		1.0	0.15	mg/L			05/07/13 17:36	1
Formic-acid	ND		1.0	0.11	mg/L			05/07/13 17:36	1
Lactic acid	ND		1.0	0.14	mg/L			05/07/13 17:36	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/07/13 17:36	1
Propionic acid	ND		1.0	0.17	mg/L			05/07/13 17:36	1

TestAmerica Buffalo

Page 8 of 38

5

<u>+</u>

6

8

4.0

1 I

13

14

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Client Sample ID: MW-11-050213

Date Collected: 05/02/13 11:30 Date Received: 05/02/13 17:30 Lab Sample ID: 480-37534-2

TestAmerica Job ID: 480-37534-1

Matrix: Water

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyruvic Acid	ND		1.0	0.080	mg/L			05/07/13 17:36	1

Lab Sample ID: 480-37534-3 Client Sample ID: MW-13-050213

Matrix: Water

Date Collected: 05/02/13 13:50 Date Received: 05/02/13 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/11/13 00:29	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/13 00:29	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/11/13 00:29	1
Trichloroethene	ND		1.0	0.46	ug/L			05/11/13 00:29	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/11/13 00:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		66 - 137			-		05/11/13 00:29	1
4-Bromofluorobenzene (Surr)	102		73 - 120					05/11/13 00:29	1
Toluene-d8 (Surr)	106		71 - 126					05/11/13 00:29	1

Method: RSK-175 - Dissolved Gases	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		75	4.9	ug/L			05/03/13 13:39	10
Ethene	ND		70	5.2	ug/L			05/03/13 13:39	10
Methane	110		40	2.2	ug/L			05/03/13 13:39	10
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	3700		1000	1000	ug/L			05/13/13 14:08	1

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	4.7		0.050	0.019	mg/L		05/03/13 10:00	05/03/13 18:58	1
Magnesium	39.4		0.20	0.043	mg/L		05/03/13 10:00	05/03/13 18:58	1
Manganese	4.3	В	0.0030	0.00040	mg/L		05/03/13 10:00	05/03/13 18:58	1
Potassium	6.2		0.50	0.10	mg/L		05/03/13 10:00	05/03/13 18:58	1
Sodium	964		1.0	0.32	mg/L		05/03/13 10:00	05/03/13 18:58	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1590		25.0	14.1	mg/L			05/06/13 16:35	50
Sulfate	62.7		10.0	1.7	mg/L			05/04/13 14:19	5
Ammonia	0.60		0.020	0.0090	mg/L			05/04/13 14:23	1
Nitrate	0.057		0.050	0.020	mg/L			05/03/13 00:06	1
Nitrite	ND		0.050	0.020	mg/L			05/03/13 00:06	1
Total Organic Carbon	3.8		1.0	0.43	mg/L			05/04/13 14:00	1
Total Alkalinity	382		5.0	0.79	mg/L			05/09/13 01:18	1
Sulfide	ND		0.10	0.052	mg/L			05/03/13 15:36	1
Acetic acid	ND		1.0	0.15	mg/L			05/09/13 14:03	1
Formic-acid	ND		1.0	0.11	mg/L			05/09/13 14:03	1
Lactic acid	ND		1.0	0.14	mg/L			05/09/13 14:03	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/09/13 14:03	1
Propionic acid	ND		1.0	0.17	mg/L			05/09/13 14:03	1

TestAmerica Buffalo

Page 9 of 38

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Client Sample ID: MW-13-050213

Date Collected: 05/02/13 13:50 Date Received: 05/02/13 17:30 Lab Sample ID: 480-37534-3

TestAmerica Job ID: 480-37534-1

Matrix: Water

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyruvic Acid	ND		1.0	0.080	mg/L			05/09/13 14:03	1

Client Sample ID: Trip Blank

Lab Sample ID: 480-37534-4

Date Collected: 05/02/13 00:00 Matrix: Water

Date Received: 05/02/13 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/11/13 01:34	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/13 01:34	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/11/13 01:34	1
Trichloroethene	ND		1.0	0.46	ug/L			05/11/13 01:34	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/11/13 01:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137			_		05/11/13 01:34	1
4-Bromofluorobenzene (Surr)	101		73 - 120					05/11/13 01:34	1
Toluene-d8 (Surr)	105		71 - 126					05/11/13 01:34	1

3

4

5

7

8

9

11

12

Surrogate Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su
		12DCE	BFB	TOL
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)
480-37534-1	G-1-050213	99	101	103
480-37534-1 - DL	G-1-050213	93	107	107
480-37534-2	MW-11-050213	101	102	105
480-37534-3	MW-13-050213	102	102	106
480-37534-3 MS	MW-13-050213	95	98	100
480-37534-3 MSD	MW-13-050213	95	96	98
480-37534-4	Trip Blank	99	101	105
LCS 480-118039/5	Lab Control Sample	99	105	106
LCS 480-118065/4	Lab Control Sample	90	109	104
MB 480-118039/6	Method Blank	99	101	104
MB 480-118065/5	Method Blank	90	105	106

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Buffalo

_

7

10

40

13

14

TestAmerica Job ID: 480-37534-1

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-118039/6

Matrix: Water

Analysis Batch: 118039

Client Sample I	D: Meth	nod Blank
Pre	p Type	: Total/NA

ı		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/10/13 23:01	1
١	Tetrachloroethene	ND		1.0	0.36	ug/L			05/10/13 23:01	1
١	trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/10/13 23:01	1
١	Trichloroethene	ND		1.0	0.46	ug/L			05/10/13 23:01	1
١	Vinyl chloride	ND		1.0	0.90	ug/L			05/10/13 23:01	1
ł										

	1110	IND					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137	-		05/10/13 23:01	1
4-Bromofluorobenzene (Surr)	101		73 - 120			05/10/13 23:01	1
Toluene-d8 (Surr)	104		71 - 126			05/10/13 23:01	1

Lab Sample ID: LCS 480-118039/5 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 118039

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits cis-1,2-Dichloroethene 25.0 29.5 118 74 - 124 ug/L Tetrachloroethene 25.0 28.8 ug/L 115 74 - 122 trans-1,2-Dichloroethene 25.0 73 _ 127 28.1 ug/L 112 Trichloroethene 25.0 27.1 ug/L 108 74 - 123

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 99 66 - 137 4-Bromofluorobenzene (Surr) 105 73 - 120 Toluene-d8 (Surr) 106 71 - 126

Lab Sample ID: 480-37534-3 MS Client Sample ID: MW-13-050213 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 118039

Time your Date in Tree or									
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,2-Dichloroethene	ND		25.0	33.1	F	ug/L		132	74 - 124
Tetrachloroethene	ND		25.0	32.8	F	ug/L		131	74 - 122
trans-1,2-Dichloroethene	ND		25.0	32.3	F	ug/L		129	73 - 127
Trichloroethene	ND		25.0	31.1	F	ug/L		124	74 - 123

MS MS

Surrogate	%Recovery Qualif	ier Limits
1,2-Dichloroethane-d4 (Surr)	95	66 - 137
4-Bromofluorobenzene (Surr)	98	73 - 120
Toluene-d8 (Surr)	100	71 - 126

Lab Sample ID: 480-37534-3 MSD Client Sample ID: MW-13-050213

Matrix: Water Prep Type: Total/NA

Analysis Batch: 118039

,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1.2-Dichloroethene	ND		25.0	32 7	F	ua/l		131	74 _ 124	1	15

TestAmerica Buffalo

Page 12 of 38

5/15/2013

25.0

31.2 F

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Sample

Result

ND

ND

ND

Lab Sample ID: 480-37534-3 MSD

Matrix: Water

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

Analyte

Analysis Batch: 118039

Client Sample ID: MW-13-050213 Prep Type: Total/NA

74 - 123

125

Sample	Spike	MSD	MSD				%Rec.		RPD	5
Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
	25.0	32.6	F	ug/L		130	74 - 122	1	20	
	25.0	31.7		ug/L		127	73 - 127	2	20	

MSD MSD Qualifier Surrogate %Recovery Limits 1,2-Dichloroethane-d4 (Surr) 95 66 - 137 4-Bromofluorobenzene (Surr) 96 73 - 120 Toluene-d8 (Surr) 98 71 - 126

Lab Sample ID: MB 480-118065/5

Matrix: Water

Analysis Batch: 118065

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/11/13 10:34	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/13 10:34	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/11/13 10:34	1
Trichloroethene	ND		1.0	0.46	ug/L			05/11/13 10:34	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/11/13 10:34	1

MB MB Qualifier Limits Analyzed Dil Fac Surrogate %Recovery Prepared 1,2-Dichloroethane-d4 (Surr) 90 66 - 137 05/11/13 10:34 4-Bromofluorobenzene (Surr) 105 73 - 120 05/11/13 10:34 Toluene-d8 (Surr) 106 71 - 126 05/11/13 10:34

Lab Sample ID: LCS 480-118065/4

Matrix: Water

Analysis Batch: 118065

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	27.7		ug/L		111	74 - 124	
Tetrachloroethene	25.0	25.7		ug/L		103	74 - 122	
trans-1,2-Dichloroethene	25.0	23.9		ug/L		96	73 - 127	
Trichloroethene	25.0	24.7		ug/L		99	74 - 123	

	LCS L	cs	
Surrogate	%Recovery Q	ualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		66 - 137
4-Bromofluorobenzene (Surr)	109		73 - 120
Toluene-d8 (Surr)	104		71 - 126

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 480-116579/2 **Matrix: Water**

Analysis Batch: 116579

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

	11.10									
Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Ethane	ND		7.5	0.49	ug/L				05/03/13 06:56	1
Ethene	ND		7.0	0.52	ug/L				05/03/13 06:56	1
Methane	ND		4.0	0.22	ug/L				05/03/13 06:56	1
	Ethane Ethene	Ethane ND Ethene ND	Ethane ND Ethene ND	Ethane ND 7.5 Ethene ND 7.0	Ethane ND 7.5 0.49 Ethene ND 7.0 0.52	Ethane ND 7.5 0.49 ug/L Ethene ND 7.0 0.52 ug/L	Ethane ND 7.5 0.49 ug/L Ethene ND 7.0 0.52 ug/L	Ethane ND 7.5 0.49 ug/L Ethene ND 7.0 0.52 ug/L	Ethane ND 7.5 0.49 ug/L Ethene ND 7.0 0.52 ug/L	Ethane ND 7.5 0.49 ug/L 05/03/13 06:56 Ethene ND 7.0 0.52 ug/L 05/03/13 06:56

MR MR

Lab Sample ID: LCS 480-116579/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116579

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	 14.4	13.4		ug/L		93	67 - 128	
Ethene	13.5	13.6		ug/L		101	60 - 137	
Methane	7.69	6.65		ug/L		86	48 - 174	

Lab Sample ID: 480-37534-3 MS Client Sample ID: MW-13-050213

Matrix: Water

Analysis Batch: 116579

		Sample	Sample	Spike	MS	MS				%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Ethane	ND		144	163		ug/L		113	23 - 176	
ı	Ethene	ND		135	156		ug/L		116	29 - 178	
	Methane	110		76.9	193		ug/L		108	48 - 174	

Lab Sample ID: 480-37534-3 MSD Client Sample ID: MW-13-050213

Matrix: Water

Analysis Batch: 116579

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Ethane	ND		144	176		ug/L		122	23 - 176	8	50	
Ethene	ND		135	165		ug/L		122	29 - 178	5	50	
Methane	110		76.9	214		ug/L		135	48 - 174	10	50	

Lab Sample ID: MB 200-55142/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 55142

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	ND		1000	1000	ua/L			05/07/13 12:16	1

Lab Sample ID: LCS 200-55142/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 55142

	Spike	LCS	LCS				%Rec.	
Analyte A	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Carbon dioxide	5010	4790		ug/L	_	96	70 - 130	

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: MW-13-050213

Client Sample ID: MW-13-050213

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 116635

Prep Type: Total/NA

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: MB 200-55461/3

Matrix: Water

Analysis Batch: 55461

Prep Type: Total/NA

мв мв

Result Qualifier RL RL Unit Analyte D Prepared Analyzed Dil Fac 1000 1000 ug/L 05/13/13 13:43 Carbon dioxide ND

Lab Sample ID: LCS 200-55461/2

Matrix: Water

Analysis Batch: 55461

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits Carbon dioxide 5010 5660 ug/L 113 70 - 130

Lab Sample ID: 480-37534-3 MS

Matrix: Water

Analysis Batch: 55461

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit %Rec Limits Carbon dioxide 3700 5010 6430 F ug/L 70 - 130

Lab Sample ID: 480-37534-3 MSD

Matrix: Water

Analysis Batch: 55461

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon dioxide	3700		5010	7250		ug/L		71	70 - 130	12	30

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 480-116635/1-A

Matrix: Water

Analysis Batch: 116955

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.050	0.019	mg/L		05/03/13 10:00	05/03/13 18:48	1
Magnesium	ND		0.20	0.043	mg/L		05/03/13 10:00	05/03/13 18:48	1
Manganese	0.000490	J	0.0030	0.00040	mg/L		05/03/13 10:00	05/03/13 18:48	1
Potassium	ND		0.50	0.10	mg/L		05/03/13 10:00	05/03/13 18:48	1
Sodium	ND		1.0	0.32	ma/l		05/03/13 10:00	05/03/13 18:48	1

Lab Sample ID: LCS 480-116635/2-A

Matrix: Water

Analysis Batch: 116955							Prep B	atch: 116635
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	10.0	10.11		mg/L		101	80 - 120	
Magnesium	10.0	10.26		mg/L		103	80 _ 120	
Manganese	0.200	0.209		mg/L		104	80 - 120	
Potassium	10.0	10.05		mg/L		100	80 _ 120	
Sodium	10.0	9.85		mg/L		98	80 - 120	

TestAmerica Buffalo

5/15/2013

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 480-37534-3 MS

Matrix: Water

Analysis Batch: 116955

Client Sample ID: MW-13-050213

Prep Type: Total/NA

Prep Batch: 116635

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	4.7		10.0	14.44		mg/L		97	75 - 125	
Magnesium	39.4		10.0	48.14		mg/L		87	75 _ 125	
Manganese	4.3	В	0.200	4.36	4	mg/L		32	75 ₋ 125	
Potassium	6.2		10.0	16.78		mg/L		105	75 ₋ 125	
Sodium	964		10.0	947.0	4	mg/L		-172	75 - 125	

Lab Sample ID: 480-37534-3 MSD

Matrix: Water

Analysis Batch: 116955

Client Sample ID: MW-13-050213 Prep Type: Total/NA **Prep Batch: 116635**

Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier babbA Result Qualifier %Rec Limits RPD Limit Unit 10.0 Iron 4.7 14.53 mg/L 98 75 - 125 1 20 48.50 39.4 10.0 75 - 125 Magnesium 91 20 mg/L 0.200 Manganese 4.3 B 4.38 4 mg/L 43 75 - 125 0 20 Potassium 6.2 10.0 16.84 mg/L 106 75 - 125 0 20 Sodium 964 10.0 950.3 4 mg/L -139 75 - 125 0 20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-116750/76

Matrix: Water

Analysis Batch: 116750

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

мв мв

Analyte Re:	sult	Qu

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			05/04/13 11:47	1
Sulfate	ND		2.0	0.35	mg/L			05/04/13 11:47	1

Lab Sample ID: LCS 480-116750/75

Matrix: Water

Analysis Batch: 116750

	Орікс						/01100.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 20.0	20.32		mg/L		102	90 - 110	
Sulfate	20.0	20.35		mg/L		102	90 - 110	

Snike

LCS LCS

Lab Sample ID: 480-37534-3 MS

Matrix: Water

Analysis Batch: 116750

Client Sample ID: MW-13-050213

Client Sample ID: Lab Control Sample

%Roc

Prep Type: Total/NA

Client Sample ID: MW-13-050213

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	62.7		125	188.7		mg/L	_	101	90 - 110	

Lab Sample ID: 480-37534-3 MSD

Matrix: Water

Analysis Batch: 116750											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	62.7		125	200.2		mg/L		110	90 - 110	6	20

TestAmerica Buffalo

Prep Type: Total/NA

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 300.0 - Anions, Ion Chromatography (Continued)

MD MD

Lab Sample ID: MB 480-116998/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116998

	IND	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			05/06/13 14:03	1
Sulfate	ND		2.0	0.35	mg/L			05/06/13 14:03	1

Lab Sample ID: LCS 480-116998/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116998

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits Chloride 20.0 20.60 103 90 - 110 mg/L Sulfate 20.0 20.82 mg/L 104 90 - 110

Lab Sample ID: 480-37534-3 MS Client Sample ID: MW-13-050213 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116998

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	1590		1250	3018	F	mg/L		114	90 - 110	

Lab Sample ID: 480-37534-3 MSD Client Sample ID: MW-13-050213 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116998

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1590		1250	2900		mg/L		105	90 - 110	4	20

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-116849/99 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116849

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	ND		0.020	0.0090	mg/L			05/04/13 14:11	1

Lab Sample ID: LCS 480-116849/100 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116849

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia	 1.00	0.971		mg/L		97	90 - 110	

Lab Sample ID: 480-37534-3 MS Client Sample ID: MW-13-050213 Prep Type: Total/NA

Matrix: Water

Analysis Patch: 116949

Analysis Batch. 110049	Sample	Sample	Spike	MS	мѕ				%Rec.	
	Sample	Sample	Spike	IVIS	IVIS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia	0.60		0.200	0.797		mg/L		96	54 - 150	

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: 480-37534-3 MSD Client Sample ID: MW-13-050213 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116849

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Ammonia	0.60		0.200	0.823		mg/L		110	54 - 150	3	20	

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-116551/27 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116551

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite	ND		0.050	0.020	mg/L			05/03/13 00:04	1

Lab Sample ID: MB 480-116551/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116551

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nitrite 0.050 ND 0.020 mg/L 05/02/13 23:37

MR MR

Lab Sample ID: LCS 480-116551/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116551

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrite	 1.50	1.52		mg/L		101	90 - 110	

Lab Sample ID: LCS 480-116551/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116551

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrite	1.50	1.53		mg/L		102	90 - 110	

Lab Sample ID: 480-37534-1 MS Client Sample ID: G-1-050213 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116551

Sample Sample Spike %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec

Limits Nitrite ND 1.00 0.998 mg/L 100 90 - 110

Lab Sample ID: 480-37534-3 MS Client Sample ID: MW-13-050213 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116551

Spike Sample Sample MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Nitrite ND 1.00 1.01 mg/L 101 90 - 110

Client Sample ID: MW-13-050213

Client Sample ID: G-1-050213

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: MW-11-050213

Client Sample ID: MW-13-050213

Client Sample ID: MW-13-050213

Prep Type: Total/NA

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 353.2 - Nitrogen, Nitrite (Continued)

Lab Sample ID: 480-37534-3 MSD Matrix: Water

Analysis Batch: 116551

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrite	ND		1.00	1.02		mg/L		102	90 - 110	1	20

Lab Sample ID: 480-37534-1 DU

Matrix: Water

Analysis Batch: 116551

Analysis Batch. 110001	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Nitrite	ND		 ND		mg/L	_		NC	20

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-116925/4

Matrix: Water

Analysis Batch: 116925

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND	1.0	0.43 mg/L			05/04/13 07:51	1

Lab Sample ID: LCS 480-116925/5

Matrix: Water

Analysis Batch: 116925

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	 60.0	59.31		mg/L		99	90 - 110	

Lab Sample ID: 480-37534-2 MS

Matrix: Water

Analysis Batch: 116925

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	1.6		20.3	17.10		mg/L		77	54 - 131	

Lab Sample ID: 480-37534-3 MS

Matrix: Water

Analysis Batch: 116925

Analysis balcii. 110323											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Organic Carbon	3.8		20.3	20.39		ma/L		82	54 _ 131	 	•

Lab Sample ID: 480-37534-3 MSD

Matrix: Water

Analysis Batch: 116925											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon	3.8		20.3	20.33		mg/L		81	54 - 131	0	20

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

90 - 110

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Method: 9060 - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: 480-37534-1 DU Client Sample ID: G-1-050213 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116925

DU DU RPD Sample Sample Result Qualifier RPD Result Qualifier Limit Analyte Unit D **Total Organic Carbon** 1.4 1.51 mg/L 20

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-117560/6 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 117560

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 5.0 0.79 mg/L 05/09/13 00:52 **Total Alkalinity** ND

Lab Sample ID: LCS 480-117560/7 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117560

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits

100

Lab Sample ID: 480-37534-3 MS Client Sample ID: MW-13-050213

95.51

mg/L

Matrix: Water

Analysis Batch: 117560

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 382 100 433.6 Total Alkalinity 52 42 - 116 mg/L

Lab Sample ID: 480-37534-3 MSD Client Sample ID: MW-13-050213

Matrix: Water

Total Alkalinity

Analysis Batch: 117560

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit %Rec **Total Alkalinity** 382 100 450.0 mg/L 68 42 - 116 20

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 480-116743/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116743

MB MB Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Sulfide ND 0.10 0.052 mg/L 05/03/13 15:36

Lab Sample ID: LCS 480-116743/4 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 116743

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Sulfide 0.750 0.750 mg/L 100 90 - 110

TestAmerica Buffalo

Prep Type: Total/NA

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Client Sample ID: MW-13-050213

Method: SM 4500 S2 D - Sulfide, Total (Continued)

Lab Sample ID: 480-37534-3 MS

Matrix: Water

Analysis Batch: 116743

Client Sample ID: MW-13-050213 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added %Rec Result Qualifier Limits Unit Sulfide 0.500 90 - 110 ND 0.438 F mg/L 88

Lab Sample ID: 480-37534-3 MSD

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 116743

RPD Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Sulfide ND 0.500 0.441 F mg/L 88 90 - 110

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography

Lab Sample ID: MB 480-117043/28 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 117043

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND		1.0	0.15	mg/L			05/07/13 05:27	1
Formic-acid	ND		1.0	0.11	mg/L			05/07/13 05:27	1
Lactic acid	ND		1.0	0.14	mg/L			05/07/13 05:27	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/07/13 05:27	1
Propionic acid	ND		1.0	0.17	mg/L			05/07/13 05:27	1
Pyruvic Acid	ND		1.0	0.080	mg/L			05/07/13 05:27	1

Lab Sample ID: LCS 480-117043/27 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117043

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetic acid	10.0	9.46		mg/L		95	80 - 120
Formic-acid	10.0	9.60		mg/L		96	80 - 120
Lactic acid	10.0	9.90		mg/L		99	80 - 120
n-Butyric Acid	10.0	9.54		mg/L		95	80 - 120
Propionic acid	10.0	9.94		mg/L		99	80 - 120
Pyruvic Acid	10.0	10.33		mg/L		103	80 - 120

Lab Sample ID: 480-37534-1 MS Client Sample ID: G-1-050213 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117043

7 that you battern 1110 to										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	ND		100	100.9		mg/L		101	80 - 120	
Formic-acid	ND		100	97.12		mg/L		97	80 - 120	
Lactic acid	ND		100	97.84		mg/L		98	80 - 120	
n-Butyric Acid	ND		100	98.81		mg/L		99	80 - 120	
Propionic acid	ND		100	104.5		mg/L		104	80 - 120	
Pyruvic Acid	ND		100	91 66		ma/l		92	80 - 120	

TestAmerica Buffalo

Page 21 of 38

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography (Continued)

Lab Sample ID: 480-37534-1 MSD

Analysis Batch: 117043

Matrix: Water

Client Sample ID: G-1-050213

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetic acid	ND		100	99.15		mg/L		99	80 - 120	2	20
Formic-acid	ND		100	99.48		mg/L		99	80 - 120	2	20
Lactic acid	ND		100	99.45		mg/L		99	80 - 120	2	20
n-Butyric Acid	ND		100	101.3		mg/L		101	80 - 120	2	20
Propionic acid	ND		100	104.7		mg/L		105	80 - 120	0	20
Pyruvic Acid	ND		100	91.88		mg/L		92	80 - 120	0	20

Lab Sample ID: MB 480-117044/52 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117044

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND		1.0	0.15	mg/L			05/07/13 17:07	1
Formic-acid	ND		1.0	0.11	mg/L			05/07/13 17:07	1
Lactic acid	ND		1.0	0.14	mg/L			05/07/13 17:07	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/07/13 17:07	1
Propionic acid	ND		1.0	0.17	mg/L			05/07/13 17:07	1
Pyruvic Acid	ND		1.0	0.080	mg/L			05/07/13 17:07	1
<u></u>									

Lab Sample ID: LCS 480-117044/51 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117044

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	10.0	9.84		mg/L		98	80 - 120	
Formic-acid	10.0	9.85		mg/L		98	80 - 120	
Lactic acid	10.0	10.25		mg/L		103	80 - 120	
n-Butyric Acid	10.0	9.67		mg/L		97	80 - 120	
Propionic acid	10.0	10.31		mg/L		103	80 - 120	
Pyruvic Acid	10.0	10.39		mg/L		104	80 - 120	

Lab Sample ID: MB 480-117667/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117667

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Acetic acid ND 1.0 0.15 mg/L 05/09/13 12:07 Formic-acid ND 1.0 0.11 mg/L 05/09/13 12:07 Lactic acid ND 1.0 0.14 mg/L 05/09/13 12:07 n-Butyric Acid ND 1.0 0.16 mg/L 05/09/13 12:07 Propionic acid ND 1.0 0.17 mg/L 05/09/13 12:07

Lab Sample ID: LCS 480-117667/3 **Client Sample ID: Lab Control Sample**

1.0

0.080 mg/L

Matrix: Water Analysis Batch: 117667

Pyruvic Acid

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit %Rec 10.0 Acetic acid 9.68 mg/L 97 80 - 120

ND

TestAmerica Buffalo

Prep Type: Total/NA

05/09/13 12:07

Page 22 of 38

QC Sample Results

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-117667/3

Matrix: Water

Analysis Batch: 117667

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier %Rec Limits Unit Formic-acid 10.0 9.77 98 80 - 120 mg/L Lactic acid 10.0 10.47 mg/L 105 80 - 120 n-Butyric Acid 10.0 9.42 94 80 - 120 mg/L Propionic acid 10.0 10.75 mg/L 108 80 - 120 Pyruvic Acid 10.0 10.49 mg/L 105 80 - 120

Lab Sample ID: 480-37534-3 MS

Matrix: Water

Analysis Batch: 117667

Client Sample ID: MW-13-050213 Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	ND		10.0	10.72		mg/L		107	80 - 120	
Formic-acid	ND		10.0	10.76		mg/L		108	80 - 120	
Lactic acid	ND		10.0	10.61		mg/L		106	80 - 120	
n-Butyric Acid	ND		10.0	8.88		mg/L		89	80 - 120	
Propionic acid	ND		10.0	9.33		mg/L		93	80 - 120	
Pyruvic Acid	ND		10.0	7.72	F	mg/L		77	80 - 120	

Lab Sample ID: 480-37534-3 MSD

Matrix: Water

Analysis Batch: 117667

Client Sample ID:	MW-13-050213
Prep '	Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetic acid	ND		10.0	15.04	F	mg/L		150	80 - 120	34	20
Formic-acid	ND		10.0	11.58		mg/L		116	80 - 120	7	20
Lactic acid	ND		10.0	10.85		mg/L		108	80 - 120	2	20
n-Butyric Acid	ND		10.0	8.89		mg/L		89	80 - 120	0	20
Propionic acid	ND		10.0	10.72		mg/L		107	80 - 120	14	20
Pyruvic Acid	ND		10.0	7.78	F	mg/L		78	80 - 120	1	20

TestAmerica Buffalo

2

А

5

__

9

11

13

1 /

TestAmerica Job ID: 480-37534-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 058507, GM-Lockport Groundwater Sampling

GC/MS VOA

Analysis Batch: 118039

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	8260B	
480-37534-2	MW-11-050213	Total/NA	Water	8260B	
480-37534-3	MW-13-050213	Total/NA	Water	8260B	
480-37534-3 MS	MW-13-050213	Total/NA	Water	8260B	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	8260B	
480-37534-4	Trip Blank	Total/NA	Water	8260B	
LCS 480-118039/5	Lab Control Sample	Total/NA	Water	8260B	
MB 480-118039/6	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 118065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1 - DL	G-1-050213	Total/NA	Water	8260B	
LCS 480-118065/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-118065/5	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 55142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	RSK-175	
480-37534-2	MW-11-050213	Total/NA	Water	RSK-175	
LCS 200-55142/2	Lab Control Sample	Total/NA	Water	RSK-175	
MB 200-55142/3	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 55461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-3	MW-13-050213	Total/NA	Water	RSK-175	
480-37534-3 MS	MW-13-050213	Total/NA	Water	RSK-175	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	RSK-175	
LCS 200-55461/2	Lab Control Sample	Total/NA	Water	RSK-175	
MB 200-55461/3	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 116579

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	RSK-175	
480-37534-2	MW-11-050213	Total/NA	Water	RSK-175	
480-37534-3	MW-13-050213	Total/NA	Water	RSK-175	
480-37534-3 MS	MW-13-050213	Total/NA	Water	RSK-175	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	RSK-175	
LCS 480-116579/3	Lab Control Sample	Total/NA	Water	RSK-175	
MB 480-116579/2	Method Blank	Total/NA	Water	RSK-175	

Metals

Prep Batch: 116635

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	3005A	_
480-37534-2	MW-11-050213	Total/NA	Water	3005A	
480-37534-3	MW-13-050213	Total/NA	Water	3005A	
480-37534-3 MS	MW-13-050213	Total/NA	Water	3005A	

Page 24 of 38

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Metals (Continued)

Prep Batch: 116635 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-3 MSD	MW-13-050213	Total/NA	Water	3005A	
LCS 480-116635/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-116635/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 116955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	6010B	116635
480-37534-2	MW-11-050213	Total/NA	Water	6010B	116635
480-37534-3	MW-13-050213	Total/NA	Water	6010B	116635
480-37534-3 MS	MW-13-050213	Total/NA	Water	6010B	116635
480-37534-3 MSD	MW-13-050213	Total/NA	Water	6010B	116635
LCS 480-116635/2-A	Lab Control Sample	Total/NA	Water	6010B	116635
MB 480-116635/1-A	Method Blank	Total/NA	Water	6010B	116635

General Chemistry

Analysis Batch: 116551

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	353.2	
480-37534-1 DU	G-1-050213	Total/NA	Water	353.2	
480-37534-1 MS	G-1-050213	Total/NA	Water	353.2	
480-37534-2	MW-11-050213	Total/NA	Water	353.2	
480-37534-3	MW-13-050213	Total/NA	Water	353.2	
480-37534-3 MS	MW-13-050213	Total/NA	Water	353.2	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	353.2	
LCS 480-116551/28	Lab Control Sample	Total/NA	Water	353.2	
LCS 480-116551/4	Lab Control Sample	Total/NA	Water	353.2	
MB 480-116551/27	Method Blank	Total/NA	Water	353.2	
MB 480-116551/3	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 116552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	353.2	
480-37534-2	MW-11-050213	Total/NA	Water	353.2	
480-37534-3	MW-13-050213	Total/NA	Water	353.2	

Analysis Batch: 116743

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	SM 4500 S2 D	
480-37534-2	MW-11-050213	Total/NA	Water	SM 4500 S2 D	
480-37534-3	MW-13-050213	Total/NA	Water	SM 4500 S2 D	
480-37534-3 MS	MW-13-050213	Total/NA	Water	SM 4500 S2 D	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	SM 4500 S2 D	
LCS 480-116743/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
MB 480-116743/3	Method Blank	Total/NA	Water	SM 4500 S2 D	

Analysis Batch: 116750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	300.0	
480-37534-2	MW-11-050213	Total/NA	Water	300.0	

TestAmerica Buffalo

Page 25 of 38

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

General Chemistry (Continued)

Analysis Batch: 116750 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-3	MW-13-050213	Total/NA	Water	300.0	
480-37534-3 MS	MW-13-050213	Total/NA	Water	300.0	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	300.0	
LCS 480-116750/75	Lab Control Sample	Total/NA	Water	300.0	
MB 480-116750/76	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 116849

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	350.1	
480-37534-2	MW-11-050213	Total/NA	Water	350.1	
480-37534-3	MW-13-050213	Total/NA	Water	350.1	
480-37534-3 MS	MW-13-050213	Total/NA	Water	350.1	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	350.1	
LCS 480-116849/100	Lab Control Sample	Total/NA	Water	350.1	
MB 480-116849/99	Method Blank	Total/NA	Water	350.1	

Analysis Batch: 116925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	9060	_
480-37534-1 DU	G-1-050213	Total/NA	Water	9060	
480-37534-2	MW-11-050213	Total/NA	Water	9060	
480-37534-2 MS	MW-11-050213	Total/NA	Water	9060	
480-37534-3	MW-13-050213	Total/NA	Water	9060	
480-37534-3 MS	MW-13-050213	Total/NA	Water	9060	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	9060	
LCS 480-116925/5	Lab Control Sample	Total/NA	Water	9060	
MB 480-116925/4	Method Blank	Total/NA	Water	9060	

Analysis Batch: 116998

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	300.0	
480-37534-2	MW-11-050213	Total/NA	Water	300.0	
480-37534-3	MW-13-050213	Total/NA	Water	300.0	
480-37534-3 MS	MW-13-050213	Total/NA	Water	300.0	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	300.0	
LCS 480-116998/3	Lab Control Sample	Total/NA	Water	300.0	
MB 480-116998/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 117043

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	rep Batch
480-37534-1	G-1-050213	Total/NA	Water	VFA-IC	
480-37534-1 MS	G-1-050213	Total/NA	Water	VFA-IC	
480-37534-1 MSD	G-1-050213	Total/NA	Water	VFA-IC	
LCS 480-117043/27	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-117043/28	Method Blank	Total/NA	Water	VFA-IC	

Analysis Batch: 117044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-2	MW-11-050213	Total/NA	Water	VFA-IC	
LCS 480-117044/51	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-117044/52	Method Blank	Total/NA	Water	VFA-IC	

TestAmerica Buffalo

Page 26 of 38

6

3

6

Ŏ

10

12

13

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

General Chemistry (Continued)

Analysis Batch: 117560

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-1	G-1-050213	Total/NA	Water	SM 2320B	
480-37534-2	MW-11-050213	Total/NA	Water	SM 2320B	
480-37534-3	MW-13-050213	Total/NA	Water	SM 2320B	
480-37534-3 MS	MW-13-050213	Total/NA	Water	SM 2320B	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	SM 2320B	
LCS 480-117560/7	Lab Control Sample	Total/NA	Water	SM 2320B	
MB 480-117560/6	Method Blank	Total/NA	Water	SM 2320B	

Analysis Batch: 117667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37534-3	MW-13-050213	Total/NA	Water	VFA-IC	
480-37534-3 MS	MW-13-050213	Total/NA	Water	VFA-IC	
480-37534-3 MSD	MW-13-050213	Total/NA	Water	VFA-IC	
LCS 480-117667/3	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-117667/4	Method Blank	Total/NA	Water	VFA-IC	

TestAmerica Job ID: 480-37534-1

Project/Site: 058507, GM-Lockport Groundwater Sampling

Lab Sample ID: 480-37534-1

Matrix: Water

Client Sample ID: G-1-050213

Date Collected: 05/02/13 08:50 Date Received: 05/02/13 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	118039	05/10/13 23:45	TRF	TAL BUF
Total/NA	Analysis	8260B	DL	2	118065	05/11/13 11:42	RL	TAL BUF
Total/NA	Analysis	RSK-175		1	55142	05/07/13 14:12	NA	TAL BUR
Total/NA	Analysis	RSK-175		1	116579	05/03/13 11:46	JM	TAL BUF
Total/NA	Prep	3005A			116635	05/03/13 10:00	JM	TAL BUF
Total/NA	Analysis	6010B		1	116955	05/03/13 18:53	LH	TAL BUF
Total/NA	Analysis	353.2		1	116551	05/02/13 23:57	KS	TAL BUF
Total/NA	Analysis	353.2		1	116552	05/02/13 23:57	KS	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	116743	05/03/13 15:36	KS	TAL BUF
Total/NA	Analysis	300.0		20	116750	05/04/13 13:59	KC	TAL BUF
Total/NA	Analysis	350.1		1	116849	05/04/13 14:19	KS	TAL BUF
Total/NA	Analysis	9060		1	116925	05/04/13 10:24	KC	TAL BUF
Total/NA	Analysis	300.0		100	116998	05/06/13 16:15	KC	TAL BUF
Total/NA	Analysis	VFA-IC		10	117043	05/07/13 14:12	KC	TAL BUF
Total/NA	Analysis	SM 2320B		1	117560	05/09/13 01:04	LK	TAL BUF

Client Sample ID: MW-11-050213

Date Collected: 05/02/13 11:30

Date Received: 05/02/13 17:30

Lab Sample ID: 480-37534-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			118039	05/11/13 00:07	TRF	TAL BUF
Total/NA	Analysis	RSK-175		1	55142	05/07/13 14:21	NA	TAL BUR
Total/NA	Analysis	RSK-175		1	116579	05/03/13 12:03	JM	TAL BUF
Total/NA	Prep	3005A			116635	05/03/13 10:00	JM	TAL BUF
Total/NA	Analysis	6010B		1	116955	05/03/13 18:56	LH	TAL BUF
Total/NA	Analysis	353.2		1	116551	05/03/13 00:00	KS	TAL BUF
Total/NA	Analysis	353.2		1	116552	05/03/13 00:00	KS	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	116743	05/03/13 15:36	KS	TAL BUF
Total/NA	Analysis	300.0		1	116750	05/04/13 14:09	KC	TAL BUF
Total/NA	Analysis	350.1		1	116849	05/04/13 14:20	KS	TAL BUF
Total/NA	Analysis	9060		1	116925	05/04/13 11:25	KC	TAL BUF
Total/NA	Analysis	300.0		5	116998	05/06/13 16:25	KC	TAL BUF
Total/NA	Analysis	VFA-IC		1	117044	05/07/13 17:36	KC	TAL BUF
Total/NA	Analysis	SM 2320B		1	117560	05/09/13 01:11	LK	TAL BUF

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Lab Sample ID: 480-37534-3

Lab Sample ID: 480-37534-4

Matrix: Water

Matrix: Water

Date Collected: 05/02/13 13:50

Date Received: 05/02/13 17:30

Client Sample ID: MW-13-050213

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	118039	05/11/13 00:29	TRF	TAL BUF
Total/NA	Analysis	RSK-175		1	55461	05/13/13 14:08	NA	TAL BUR
Total/NA	Analysis	RSK-175		10	116579	05/03/13 13:39	JM	TAL BUF
Total/NA	Prep	3005A			116635	05/03/13 10:00	JM	TAL BUF
Total/NA	Analysis	6010B		1	116955	05/03/13 18:58	LH	TAL BUF
Total/NA	Analysis	353.2		1	116551	05/03/13 00:06	KS	TAL BUF
Total/NA	Analysis	353.2		1	116552	05/03/13 00:06	KS	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	116743	05/03/13 15:36	KS	TAL BUF
Total/NA	Analysis	300.0		5	116750	05/04/13 14:19	KC	TAL BUF
Total/NA	Analysis	350.1		1	116849	05/04/13 14:23	KS	TAL BUF
Total/NA	Analysis	9060		1	116925	05/04/13 14:00	KC	TAL BUF
Total/NA	Analysis	300.0		50	116998	05/06/13 16:35	KC	TAL BUF
Total/NA	Analysis	SM 2320B		1	117560	05/09/13 01:18	LK	TAL BUF
Total/NA	Analysis	VFA-IC		1	117667	05/09/13 14:03	KC	TAL BUF

Client Sample ID: Trip Blank

Date Collected: 05/02/13 00:00

Date Received: 05/02/13 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	118039	05/11/13 01:34	TRF	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-13
California	NELAP	9	1169CA	09-30-13
Connecticut	State Program	1	PH-0568	09-30-14
Florida	NELAP	4	E87672	06-30-13
Georgia	State Program	4	N/A	03-31-14
Georgia	State Program	4	956	06-30-13
Georgia	State Program	4	956	03-31-14
Illinois	NELAP	5	200003	09-30-13
lowa	State Program	7	374	03-15-15
Kansas	NELAP	7	E-10187	01-31-14
Kentucky	State Program	4	90029	12-31-13
Kentucky (UST)	State Program	4	30	04-01-14
Louisiana	NELAP	6	02031	06-30-13
Maine	State Program	1	NY00044	12-04-13
Maryland	State Program	3	294	03-31-14
Massachusetts	State Program	1	M-NY044	06-30-13
Michigan	State Program	5	9937	04-01-13 *
Minnesota	NELAP	5	036-999-337	12-31-13
New Hampshire	NELAP	1	2973	09-11-13
New Hampshire	NELAP	1	2337	11-17-13
New Jersey	NELAP	2	NY455	06-30-13
New York	NELAP	2	10026	04-01-14
North Dakota	State Program	8	R-176	03-31-14
Oklahoma	State Program	6	9421	08-31-13
Oregon	NELAP	10	NY200003	06-09-13
Pennsylvania	NELAP	3	68-00281	07-31-13
Rhode Island	State Program	1	LAO00328	12-31-13
Tennessee	State Program	4	TN02970	04-01-14
Texas	NELAP	6	T104704412-11-2	07-31-13
USDA	Federal		P330-11-00386	11-22-14
Virginia	NELAP	3	460185	09-14-13
Washington	State Program	10	C784	02-10-14
West Virginia DEP	State Program	3	252	09-30-13
Wisconsin	State Program	5	998310390	08-31-13

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Connecticut	State Program	1	PH-0751	09-30-13
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-15
Florida	NELAP	4	E87467	06-30-13
L-A-B	DoD ELAP		L2336	10-26-13
Louisiana	NELAP	6	176292	06-30-13
Minnesota	NELAP	5	050-999-436	12-31-13
New Hampshire	NELAP	1	2006	12-18-13
New Jersey	NELAP	2	VT972	06-30-13
New York	NELAP	2	10391	04-01-14
Pennsylvania	NELAP	3	68-00489	04-30-14
USDA	Federal		P330-11-00093	02-17-14

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Buffalo

5/15/2013

4

8

10

11

13

14

Certification Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Laboratory: TestAmerica Burlington (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Vermont	State Program	1	VT-4000	12-31-13
Virginia	NELAP	3	460209	12-14-13

2

4

9

11

12

13

14

Method Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Method	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
RSK-175	Dissolved Gases (GC)	RSK	TAL BUR
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
010B	Metals (ICP)	SW846	TAL BUF
00.0	Anions, Ion Chromatography	MCAWW	TAL BUF
50.1	Nitrogen, Ammonia	MCAWW	TAL BUF
53.2	Nitrogen, Nitrite	MCAWW	TAL BUF
53.2	Nitrate	EPA	TAL BUF
060	Organic Carbon, Total (TOC)	SW846	TAL BUF
M 2320B	Alkalinity	SM	TAL BUF
M 4500 S2 D	Sulfide, Total	SM	TAL BUF
FA-IC	Volatile Fatty Acids, Ion Chromatography	TestAmerica SOP	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique , RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica SOP = TestAmerica, Inc., Standard Operating Procedure

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

-

4

5

7

Ŏ

4 6

11

Sample Summary

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37534-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-37534-1	G-1-050213	Water	05/02/13 08:50	05/02/13 17:30
480-37534-2	MW-11-050213	Water	05/02/13 11:30	05/02/13 17:30
480-37534-3	MW-13-050213	Water	05/02/13 13:50	05/02/13 17:30
480-37534-4	Trip Blank	Water	05/02/13 00:00	05/02/13 17:30

2

Δ

6

8

9

11

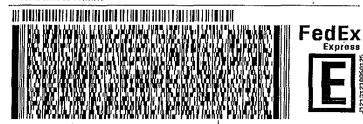
14

14

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2SO3
S - H2SO4
T - TSP Dodecahydrate THE LEADER IN ENVIRONMENTAL TESTING **TestAmerico** · Microseeps Special Instructions/Note: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Solsposal By Lab Archive For Month 3ZA Job #: 21.0056546.00 2000/000 Preservation Codes: Ascorbic Acid A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor I - Ice J - DI Water K - EDTA L - EDA ŏ, 480-37534 Chain of Custody Page ナリンナ Total Number of containers XA50SMA 方を表 Method of Shipment 300.02 Sulfate) and An Aniona & Sulfate) Õ 5320B - Total Alkalinity **Analysis Requested** 353.2, 353.2_Nitrite, Nitrate_Calc Cooler Temperature(s) °C and Other Remarks: 2M4500_52_D - Sulfide Return To Client Special Instructions/QC Requirements: 3SK_175 - Methane, Ethane, Ethene Chain of Custody Record melissa.deyo@testamericainc.com 82608 - PCE, TCE, DCE (trans and cls), Vinyl Chi sinommA - 1.088 Received by: Received by: VFA_IC - Volatile Fatty Acids Lab PM: Deyo, Melissa L E-Mait: RSK_175_CO2 - Carbon dioxide Z ス A William (W=water, S=solid, O=waste/oil, Preservation Coder Water Water Matrix Company Sompany Type (C=comp, G=grab) Radiological Sample 0 1730 1350 Sample 83 3 Date: Unknown TAT Requested (days): 3 Weeks ue Date Requested: Thomas Bohlen Phone: (716) 844-7050 M Sample Date Project #. 48004014 SSOW#: 256015 1775 PO#. 4047065 Date/Time: WO#. 58507 Poison B **SECTION** Skin Irritant eliverable Requested: I, II, III, IV, Other (specify) Project Name: 058507, GM-Lockport Groundwater Sampling Custody Seal No.: Phone (716) 691-2600 Fax (716) 691-7991 MW-13-0507(3 Harrison MW-11-050213 535 Washington Street 11th Floor Flammable -050213 Possible Hazard Identification Minney Bollow **TestAmerica Buffalo** christopher.boron@gza.com Blank Amherst, NY 14228-2298 empty Kit Relinquished by: 3ZA GeoEnvironmental, Systems Client Information Custody Seals Intact: △ Yes △ No Sample Identification Mr. Christopher Boron 10 Hazelwood Drive N/N/N Non-Hazard Phone: (716) 685-2300 elinquished by: State, Zip: NY, 14203 1 city: Buffalo ψ

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991			Chain o	f Custo	Chain of Custody Record		,		[estAmerica HILFASSER ALTWINGWEISTER TESTING
Client Information (Sub Contract Lab)	Samplor.		Lab PM Deyo,	Lab PM Deyo, Meíissa L		Сатег Tracking No(s)		COC No 480-9891.1	
Culant Contact. Shipping/Receiving	Phone:		E-Mail melis	sa.deyo@test	E-Mail: melissa.deyo@testamericainc.com		Pago: Page	Pago: Page 1 of 1	
Company. TestAmerica Laboratories, Inc.					Analysis Requested	equested	Job #.	Job #: 480-37534-1	
Address: 30 Community Drive, Suite 11,	Duo Date Requested: 5/14/2013						Pre	Preservation Codes	les:
City South Burlington	TAT Requested (days):						÷ က်ပ်	A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
520, 20: VT, 05403		:	·	180			<u> </u>		P - Na204S Q - Na2SO3
Phono: 802-860-1990(Tel)	#O#			/	400-57554 Chain of Gustody	ıstody	iοi		R - Na2S2SO3 S - H2SO4 T - TSP Dodocehyddaio
Email	# OM			(o)					U - Acotono V - MCAA
Project Name 058507, GM-Lockport Groundwater Sampling	Project # 48004014			JO \$8				K-EDTA L-EDA	W - ph 45 Z - other (specify)
Site:	#MOSS			y) asi				Other:	
Sample Identification - Citent ID (I ah ID)	Sample Date Time	Sample Type ple (C=comp,	Matrix (Wwwter, Swolld, Owwestwoll,	rak 11e con settorm WSIN jeld Filfered			otal Number	11.00	
	<u> </u>		ation Code:	ⅳ			<u> </u>	Special	Special instructions/Note:
G-1-050213 (480-37534-1)	5/2/13 08:50 Easterr	0.2	Water	×			<u>۳</u>		
MW-11-050213 (480-37534-2)	5/2/13 11:30 Eastern	0.0	Water	×			n		
MW-13-050213 (480-37534-3)	5/2/13 13:50 Eastern	o E	Water	×			Ф		
MW-13-050213 (480-37534-3MS)	5/2/13 13:50 Eastern	Sw WS	Water	×			8		
MW-13-050213 (480-37534-3MSD)	5/2/13 13:50 Eastern	OSM WSD	Water	×			8		
The second secon									
, and the second									
Possible Hazard Identification			-	Sample Di	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ssessed if samples	s are retained lon	ger than 1 mc	onth)
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)				Special Ins	Special Instructions/OC Requirements	Disposal By Lab	Archive For		Months
Empty Kit Relinquished by:	Date:			Time:		Method of Shipment	nent		
//sq pousinglings	Date/Time	0091	Company ()	M Received by	Dr. Call	Date	113 9	35	Company
Relinquished by/	Dato/Time:		Company	() Roccived by.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Date			Companty
- [Date/Time		Company	Received by:	d by:		Dato/Timo;		Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No				Cooler T	Cooler Temperature(s) °C and Other Remarks.	lemarks.			


ORÌGIN 10: DKKA (716) 691-2600 KEN KINECKI TESTAMERICA 10 HAZELWOOD DR

SHIP DATE: 03MAY13 ACTHGT: 27.0 LB MAN CAD: 735603/CAFE2608 DIMS: 26×15×14 IN

BILL RECIPIENT

TO MARK PHILLIPS TA BURLINGTON 30 COMMUNITY DRIVE

SOUTH BURLINGTON VT 05403 (802) 860-1990 DEPI: SAMPLE CONTROL

TRK# 4485 0264 3181

MON - 06 MAY 3:00P STANDARD OVERNIGHT

KS BTVA

05403 VT-US BTV

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 480-37534-1

Login Number: 37534 List Source: TestAmerica Buffalo

List Number: 1 Creator: Kolb, Chris M

Creator. Roll, Criris W	
Question	Answer Comment
Radioactivity either was not measured or, if measured, is at or below background	True
The cooler's custody seal, if present, is intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Sampling Company provided.	True
Samples received within 48 hours of sampling.	True
Samples requiring field filtration have been filtered in the field.	True

4

5

7

9

11

13

14

15

Chlorine Residual checked.

N/A

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 480-37534-1

Login Number: 37534
List Source: TestAmerica Burlington
List Number: 1
List Creation: 05/06/13 10:24 AM

Creator: Poucher, Stephanie A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey neter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	709086
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.0°C IR GUN ID 181. CF 0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
flultiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

2

4

5

7

q

44

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-37628-1

Client Project/Site: 058507, GM-Lockport Groundwater

Sampling

For:

Conestoga-Rovers & Associates, Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, New York 14304

Attn: Kathleen Willy

Authorized for release by: 5/16/2013 3:41:46 PM

Melissa Deyo, Project Manager I melissa.deyo@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at:www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	19
Lab Chronicle	23
Certification Summary	25
Method Summary	27
Sample Summary	28
Subcontract Data	29
Chain of Custody	38
Receipt Checklists	41

9

4

6

Q

10

11

13

15

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 480-37628-1

Qualifiers

GC VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
F	MS or MSD exceeds the control limits

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Case Narrative

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Job ID: 480-37628-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-37628-1

Receipt

The samples were received on 5/3/2013 3:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C.

GC/MS VOA

Method 8260B: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-12-050313 (480-37628-1 DL) and MW-7-050313 (480-37628-3) and Trip Blank (480-37628-4 DL). Elevated reporting limits (RLs) are provided.

Method 8260B: The following volatile samples were analyzed with headspace in the sample vial due to multiple injections and/or limited volume: Trip Blank (480-37628-4) and Trip Blank (480-37628-4 DL).

No other analytical or quality issues were noted.

IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-12-050313 (480-37628-1), MW-14-050313 (480-37628-2), MW-7-050313 (480-37628-3) and (480-37628-3 MS). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-12-050313 (480-37628-1 DL). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Metals

Method 6010B: The method blank for preparation batch 116862 contained Manganese above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No other analytical or quality issues were noted.

General Chemistry

Method 350.1: The method blank for batch 116849 contained Ammonia above the reporting limit (RL). The associated samples contained detects for this analyte at concentrations greater than 10 times the value found in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed

Method SM 4500 S2 D: The matrix spike (MS) recovery for batch 117205 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

TestAmerica Buffalo 5/16/2013

2

3

4

9

10

12

10

15

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 058507, GM-Lockport Groundwater Sampling TestAmerica Job ID: 480-37628-1

Client Sample ID: MW-12-050313

Lab Sample ID: 480-37628-1

Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Hydrogen	1.1		0.60	0.074	nm	1	_	AM20GAX	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	1.0		1.0	0.90	ug/L	1	_	8260B	Total/NA
Trichloroethene	2.0		1.0	0.46	ug/L	1		8260B	Total/NA
Vinyl chloride	73		1.0	0.90	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene - DL	150		2.0	1.6	ug/L	2		8260B	Total/NA
Ethane	3.1	J	7.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	4.2	J	7.0	0.52	ug/L	1		RSK-175	Total/NA
Methane - DL	200		40	2.2	ug/L	10		RSK-175	Total/NA
Iron	8.1	^	0.050	0.019	mg/L	1		6010B	Total/NA
Magnesium	76.4		0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	7.4	В	0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	3.9		0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	1260		1.0	0.32	mg/L	1		6010B	Total/NA
Chloride	3090		25.0	14.1	mg/L	50		300.0	Total/NA
Sulfate	120		10.0	1.7	mg/L	5		300.0	Total/NA
Ammonia	1.2	В	0.020	0.0090	mg/L	1		350.1	Total/NA
Total Organic Carbon	3.6		1.0	0.43	mg/L	1		9060	Total/NA
Total Alkalinity	323		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	14000		1000	1000	ug/L	1	_	RSK-175	Total/NA

Client Sample ID: MW-14-050313

Lab Sample ID: 480-37628-2

Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Hydrogen	16		0.60	0.074	nm	1	_	AM20GAX	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methane	50		4.0	0.22	ug/L	1	_	RSK-175	Total/NA
Iron	0.038	J	0.050	0.019	mg/L	1		6010B	Total/NA
Magnesium	59.4		0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	0.20	В	0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	5.1		0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	850		1.0	0.32	mg/L	1		6010B	Total/NA
Chloride	1340		10.0	5.6	mg/L	20		300.0	Total/NA
Sulfate	60.0		10.0	1.7	mg/L	5		300.0	Total/NA
Ammonia	0.15		0.020	0.0090	mg/L	1		350.1	Total/NA
Nitrate	0.061		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	1.7		1.0	0.43	mg/L	1		9060	Total/NA
Total Alkalinity	361		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	6200		1000	1000	ug/L		_	RSK-175	Total/NA

Client Sample ID: MW-7-050313

Lab Sample ID: 480-37628-3

Analyte	Result Qualifier	RL	MDL (Unit	Dil Fac	D Me	thod	Prep Type
cis-1,2-Dichloroethene	55000	10000	8100 i	ug/L	10000	82	60B	Total/NA
Trichloroethene	880000	10000	4600 u	ug/L	10000	82	60B	Total/NA
Ethane	32	7.5	0.49 ι	ug/L	1	RS	K-175	Total/NA
Ethene	250	7.0	0.52 ι	ug/L	1	RS	K-175	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 5 of 42

Detection Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 058507, GM-Lockport Groundwater Sampling TestAmerica Job ID: 480-37628-1

Lab Sample ID: 480-37628-3

Lab Sample ID: 480-37628-4

Client Sample ID: MW-7-050313 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methane	120		4.0	0.22	ug/L	1	_	RSK-175	Total/NA
Iron	0.021	J	0.050	0.019	mg/L	1		6010B	Total/NA
Magnesium	76.0		0.20	0.043	mg/L	1		6010B	Total/NA
Manganese	0.019	В	0.0030	0.00040	mg/L	1		6010B	Total/NA
Potassium	14.3		0.50	0.10	mg/L	1		6010B	Total/NA
Sodium	254		1.0	0.32	mg/L	1		6010B	Total/NA
Chloride	569		5.0	2.8	mg/L	10		300.0	Total/NA
Sulfate	253		10.0	1.7	mg/L	5		300.0	Total/NA
Ammonia	0.75	В	0.020	0.0090	mg/L	1		350.1	Total/NA
Total Organic Carbon	7.6		1.0	0.43	mg/L	1		9060	Total/NA
Total Alkalinity	242		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Acetic acid	7.0		1.0	0.15	mg/L	1		VFA-IC	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	4400		1000	1000	ug/L		_	RSK-175	Total/NA

Client Sample ID: Trip Blank

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	4.7	1.0	0.81 ug/L	1	8260B	Total/NA
Trichloroethene - DL	62	2.0	0.92 ug/L	2	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Conestoga-Rovers & Associates, Inc.

Client Sample ID: MW-12-050313

Date Collected: 05/03/13 09:00

Date Received: 05/03/13 15:30

Total Alkalinity

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Lab Sample ID: 480-37628-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/13 18:30	
rans-1,2-Dichloroethene	1.0		1.0	0.90	ug/L			05/11/13 18:30	
Trichloroethene	2.0		1.0	0.46	ug/L			05/11/13 18:30	
Vinyl chloride	73		1.0	0.90	ug/L			05/11/13 18:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)			66 - 137					05/11/13 18:30	
4-Bromofluorobenzene (Surr)	107		73 - 120					05/11/13 18:30	
Toluene-d8 (Surr)	103		71 - 126					05/11/13 18:30	
Method: 8260B - Volatile Organ	ic Compounds ((GC/MS) - D	L						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	150		2.0	1.6	ug/L			05/13/13 12:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	93		66 - 137					05/13/13 12:56	
4-Bromofluorobenzene (Surr)	97		73 - 120					05/13/13 12:56	
Toluene-d8 (Surr)	94		71 - 126					05/13/13 12:56	
Method: AM20GAX - Dissolved	Gases (GC)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Hydrogen	1.1		0.60	0.074	nm			05/09/13 13:00	
Method: RSK-175 - Dissolved G	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	3.1	J	7.5	0.49	ug/L			05/06/13 08:23	
Ethene	4.2	J	7.0	0.52	ug/L			05/06/13 08:23	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon dioxide	14000		1000	1000	ug/L			05/07/13 13:46	
Method: RSK-175 - Dissolved G	Gases (GC) - DL								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methane	200		40	2.2	ug/L			05/06/13 09:25	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ron	8.1	^	0.050	0.019	mg/L		05/06/13 07:40	05/06/13 21:59	
Magnesium	76.4		0.20	0.043	mg/L		05/06/13 07:40	05/06/13 21:59	
Manganese	7.4	В	0.0030	0.00040	mg/L		05/06/13 07:40	05/06/13 21:59	
Potassium	3.9		0.50	0.10	mg/L		05/06/13 07:40	05/06/13 21:59	
Sodium	1260		1.0	0.32	mg/L		05/06/13 07:40	05/06/13 21:59	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	3090		25.0	14.1	mg/L			05/07/13 21:05	5
Sulfate	120		10.0	1.7	mg/L			05/07/13 03:03	
Ammonia	1.2	В	0.020	0.0090				05/04/13 15:15	
Nitrate	ND		0.050	0.020				05/03/13 19:32	
Nitrite	ND		0.050	0.020	mg/L			05/03/13 19:32	

TestAmerica Buffalo

05/09/13 02:20

Page 7 of 42

5.0

323

0.79 mg/L

5/16/2013

Client: Conestoga-Rovers & Associates, Inc.

Analyte

Analyte

Project/Site: 058507, GM-Lockport Groundwater Sampling

Lab Sample ID: 480-37628-1

TestAmerica Job ID: 480-37628-1

Client Sample ID: MW-12-050313 Date Collected: 05/03/13 09:00 Matrix: Water

Date Received: 05/03/13 15:30

General Chemistry (Continue	ed)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfide	ND ND	0.10	0.052	mg/L			05/07/13 12:09	1
Acetic acid	ND	1.0	0.15	mg/L			05/07/13 19:33	1
Formic-acid	ND	1.0	0.11	mg/L			05/07/13 19:33	1
Lactic acid	ND	1.0	0.14	mg/L			05/07/13 19:33	1
n-Butyric Acid	ND	1.0	0.16	mg/L			05/07/13 19:33	1
Propionic acid	ND	1.0	0.17	mg/L			05/07/13 19:33	1
Pyruvic Acid	ND	1.0	0.080	mg/L			05/07/13 19:33	1

Client Sample ID: MW-14-050313 Lab Sample ID: 480-37628-2

Date Collected: 05/03/13 12:00 Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/11/13 18:57	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/13 18:57	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/11/13 18:57	1
Trichloroethene	ND		1.0	0.46	ug/L			05/11/13 18:57	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/11/13 18:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		66 - 137			=		05/11/13 18:57	1
4-Bromofluorobenzene (Surr)	106		73 - 120					05/11/13 18:57	1
Toluene-d8 (Surr)	100		71 - 126					05/11/13 18:57	1

Hydrogen	16	0.60	0.074	nm			05/09/13 13:00	1
Method: RSK-175 - Dissolved Gase	s (GC)							
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND	7.5	0.49	ug/L			05/06/13 08:40	1
Ethene	ND	7.0	0.52	ug/L			05/06/13 08:40	1
Methane	50	4.0	0.22	ug/L			05/06/13 08:40	1

RL

Unit

RL Unit

Prepared

Prepared

D

Analyzed

Analyzed

Dil Fac

Dil Fac

Result Qualifier

Result Qualifier

Carbon dioxide	6200		1000	1000	ug/L			05/07/13 13:55	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.038	J	0.050	0.019	mg/L		05/06/13 07:40	05/07/13 19:57	1
Magnesium	59.4		0.20	0.043	mg/L		05/06/13 07:40	05/06/13 22:02	1

RL

Mangai	ese 0.3	20 B	0.0030	0.00040	mg/L	05/06/13 07:40	05/06/13 22:02
Potass	um 5	5.1	0.50	0.10	mg/L	05/06/13 07:40	05/06/13 22:02
Sodium	8	50	1.0	0.32	mg/L	05/06/13 07:40	05/06/13 22:02

General Chemistry Analyte	Pecult	Qualifier	RL	MDL	Linit	D	Prepared	Analyzed	Dil Fac
Allalyte	Result	Qualifier	KL	MIDL	Ullit	U	Prepareu	Allalyzeu	DII Fac
Chloride	1340		10.0	5.6	mg/L			05/07/13 21:15	20
Sulfate	60.0		10.0	1.7	mg/L			05/07/13 03:13	5
Ammonia	0.15		0.020	0.0090	mg/L			05/08/13 11:29	1
Nitrate	0.061		0.050	0.020	mg/L			05/03/13 21:12	1

TestAmerica Buffalo

Page 8 of 42 5/16/2013

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Lab Sample ID: 480-37628-2

TestAmerica Job ID: 480-37628-1

Date Collected: 05/03/13 12:00

Date Received: 05/03/13 15:30

Client Sample ID: MW-14-050313

Matrix: Water

General Chemistry (Continued)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite	ND ND	0.050	0.020	mg/L			05/03/13 21:12	1
Total Organic Carbon	1.7	1.0	0.43	mg/L			05/07/13 17:54	1
Total Alkalinity	361	5.0	0.79	mg/L			05/09/13 02:28	1
Sulfide	ND	0.10	0.052	mg/L			05/07/13 12:12	1
Acetic acid	ND	1.0	0.15	mg/L			05/07/13 20:02	1
Formic-acid	ND	1.0	0.11	mg/L			05/07/13 20:02	1
Lactic acid	ND	1.0	0.14	mg/L			05/07/13 20:02	1
n-Butyric Acid	ND	1.0	0.16	mg/L			05/07/13 20:02	1
Propionic acid	ND	1.0	0.17	mg/L			05/07/13 20:02	1
Pyruvic Acid	ND	1.0	0.080	mg/L			05/07/13 20:02	1

Client Sample ID: MW-7-050313

Date Collected: 05/03/13 14:10

Date Received: 05/03/13 15:30

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-37628-3

05/13/13 13:19

05/13/13 13:19

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 10000 05/13/13 13:19 10000 cis-1,2-Dichloroethene 55000 8100 ug/L Tetrachloroethene ND 10000 3600 ug/L 05/13/13 13:19 10000 10000 trans-1,2-Dichloroethene ND 9000 ug/L 05/13/13 13:19 10000 10000 4600 ug/L 05/13/13 13:19 10000 **Trichloroethene** 880000 Vinyl chloride 10000 05/13/13 13:19 ND 9000 ug/L 10000 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 66 - 137 05/13/13 13:19 1,2-Dichloroethane-d4 (Surr) 103 10000

73 - 120

71 - 126

103

100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	32		7.5	0.49	ug/L			05/06/13 08:57	1
Ethene	250		7.0	0.52	ug/L			05/06/13 08:57	1
Methane	120		4.0	0.22	ug/L			05/06/13 08:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	4400		1000	1000	ug/L			05/07/13 14:02	1

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.021	J	0.050	0.019	mg/L		05/06/13 07:40	05/07/13 19:59	1
Magnesium	76.0		0.20	0.043	mg/L		05/06/13 07:40	05/06/13 22:05	1
Manganese	0.019	В	0.0030	0.00040	mg/L		05/06/13 07:40	05/06/13 22:05	1
Potassium	14.3		0.50	0.10	mg/L		05/06/13 07:40	05/06/13 22:05	1
Sodium	254		1.0	0.32	mg/L		05/06/13 07:40	05/06/13 22:05	1

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	569	5.0	2.8	mg/L			05/07/13 21:25	10
Sulfate	253	10.0	1.7	mg/L			05/07/13 03:24	5
Ammonia	0.75 B	0.020	0.0090	mg/L			05/04/13 15:17	1
Nitrate	ND	0.050	0.020	mg/L			05/03/13 19:34	1

TestAmerica Buffalo

Page 9 of 42

5/16/2013

10000

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Client Sample ID: MW-7-050313

Date Collected: 05/03/13 14:10 Date Received: 05/03/13 15:30

Lab Sample ID: 480-37628-3

TestAmerica Job ID: 480-37628-1

Matrix: Water

General Chemistry (Continued	i)							
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite	ND ND	0.050	0.020	mg/L			05/03/13 19:34	1
Total Organic Carbon	7.6	1.0	0.43	mg/L			05/07/13 18:25	1
Total Alkalinity	242	5.0	0.79	mg/L			05/09/13 02:34	1
Sulfide	ND	0.10	0.052	mg/L			05/07/13 12:17	1
Acetic acid	7.0	1.0	0.15	mg/L			05/07/13 20:31	1
Formic-acid	ND	1.0	0.11	mg/L			05/07/13 20:31	1
Lactic acid	ND	1.0	0.14	mg/L			05/07/13 20:31	1
n-Butyric Acid	ND	1.0	0.16	mg/L			05/07/13 20:31	1
Propionic acid	ND	1.0	0.17	mg/L			05/07/13 20:31	1
Pyruvic Acid	ND	1.0	0.080	mg/L			05/07/13 20:31	1

Client Sample ID: Trip Blank

Date Collected: 05/03/13 00:00

Date Received: 05/03/13 15:30

Toluene-d8 (Surr)

Lab Sample ID: 480-37628-4

05/14/13 02:28

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed 1.0 0.81 ug/L 05/13/13 13:42 cis-1,2-Dichloroethene 4.7 Tetrachloroethene ND 1.0 0.36 ug/L 05/13/13 13:42 ND 1.0 trans-1,2-Dichloroethene 0.90 ug/L 05/13/13 13:42 Vinyl chloride ND 1.0 0.90 ug/L 05/13/13 13:42 Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	
1,2-Dichloroethane-d4 (Surr)	102		66 - 137		05/13/13 13:42	-
4-Bromofluorobenzene (Surr)	109		73 - 120		05/13/13 13:42	
Toluene-d8 (Surr)	104		71 - 126		05/13/13 13:42	
_						

102

Method: 8260B - Volatile Orgai	nic Compounds ((GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	62		2.0	0.92	ug/L			05/14/13 02:28	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		66 - 137			-		05/14/13 02:28	2
4-Bromofluorobenzene (Surr)	106		73 - 120					05/14/13 02:28	2

71 - 126

Surrogate Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		12DCE	BFB	TOL			
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)			
480-37628-1	MW-12-050313	101	107	103			
480-37628-1 - DL	MW-12-050313	93	97	94			
480-37628-2	MW-14-050313	102	106	100			
480-37628-3	MW-7-050313	103	103	100			
480-37628-4	Trip Blank	102	109	104			
480-37628-4 - DL	Trip Blank	105	106	102			
LCS 480-118132/3	Lab Control Sample	105	108	103			
LCS 480-118211/4	Lab Control Sample	98	106	102			
LCS 480-118351/4	Lab Control Sample	101	111	106			
MB 480-118132/4	Method Blank	105	109	100			
MB 480-118211/5	Method Blank	99	103	98			
MB 480-118351/5	Method Blank	106	110	105			

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-118132/4

Matrix: Water

Analysis Batch: 118132

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	MD		1.0	0.81	ug/L			05/11/13 16:26	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/13 16:26	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/11/13 16:26	1
Trichloroethene	ND		1.0	0.46	ug/L			05/11/13 16:26	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/11/13 16:26	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	-	66 - 137			=		05/11/13 16:26	1

Lab Sample ID: LCS 480-118132/3

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 118132

4-Bromofluorobenzene (Surr)

Client Sample ID: Lab Control Sample

05/11/13 16:26

05/11/13 16:26

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	25.3		ug/L		101	74 - 124	
Tetrachloroethene	25.0	27.8		ug/L		111	74 - 122	
trans-1,2-Dichloroethene	25.0	26.4		ug/L		106	73 - 127	
Trichloroethene	25.0	25.6		ug/L		102	74 - 123	

73 - 120

71 - 126

LCS LCS

109

100

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105	66 - 137
4-Bromofluorobenzene (Surr)	108	73 - 120
Toluene-d8 (Surr)	103	71 - 126

Lab Sample ID: MB 480-118211/5

Matrix: Water

Analysis Batch: 118211

Client Sample ID: Method Blank	
Prep Type: Total/NA	

	MB	MB							
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/13/13 10:49	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/13/13 10:49	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/13/13 10:49	1
Trichloroethene	ND		1.0	0.46	ug/L			05/13/13 10:49	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/13/13 10:49	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		66 - 137		05/13/13 10:49	1
4-Bromofluorobenzene (Surr)	103		73 - 120		05/13/13 10:49	1
Toluene-d8 (Surr)	98		71 - 126		05/13/13 10:49	1

TestAmerica Job ID: 480-37628-1

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-118211/4

Matrix: Water

Analysis Batch: 118211

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Analyte Unit cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 25.0 26.8 Tetrachloroethene ug/L 107 74 - 122 25.0 25.5 trans-1,2-Dichloroethene ug/L 102 73 - 127Trichloroethene 25.0 24.1 ug/L 96 74 - 123

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 66 - 137 4-Bromofluorobenzene (Surr) 73 - 120 106 Toluene-d8 (Surr) 102 71 - 126

Lab Sample ID: MB 480-118351/5

Matrix: Water

Analysis Batch: 118351

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Analyte D cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 05/13/13 21:57 Tetrachloroethene ND 1.0 05/13/13 21:57 0.36 ug/L trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 05/13/13 21:57 Trichloroethene ND 1.0 05/13/13 21:57 0.46 ug/L Vinyl chloride ND 1.0 0.90 ug/L 05/13/13 21:57

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		66 - 137		05/13/13 21:57	1
4-Bromofluorobenzene (Surr)	110		73 - 120		05/13/13 21:57	1
Toluene-d8 (Surr)	105		71 - 126		05/13/13 21:57	1

Lab Sample ID: LCS 480-118351/4

Matrix: Water

Analysis Batch: 118351

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
25.0	27.7		ug/L		111	74 - 124	
25.0	30.1		ug/L		120	74 - 122	
25.0	26.2		ug/L		105	73 - 127	
25.0	28.4		ug/L		114	74 - 123	
	Added 25.0 25.0 25.0	Added Result 25.0 27.7 25.0 30.1 25.0 26.2	Added Result Qualifier 25.0 27.7 25.0 30.1 25.0 26.2	Added Result Qualifier Unit 25.0 27.7 ug/L 25.0 30.1 ug/L 25.0 26.2 ug/L	Added Result Qualifier Unit D 25.0 27.7 ug/L 25.0 30.1 ug/L 25.0 26.2 ug/L	Added Result Qualifier Unit D %Rec 25.0 27.7 ug/L 111 25.0 30.1 ug/L 120 25.0 26.2 ug/L 105	Added Result Qualifier Unit D %Rec Limits 25.0 27.7 ug/L 111 74 - 124 25.0 30.1 ug/L 120 74 - 122 25.0 26.2 ug/L 105 73 - 127

	LCS LC	cs	
Surrogate	%Recovery Qu	ualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		66 - 137
4-Bromofluorobenzene (Surr)	111		73 - 120
Toluene-d8 (Surr)	106		71 126

TestAmerica Job ID: 480-37628-1

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 480-116879/2

Matrix: Water

Analysis Batch: 116879

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		7.5	0.49	ug/L	_		05/06/13 07:17	1
Ethene	ND		7.0	0.52	ug/L			05/06/13 07:17	1
Methane	ND		4.0	0.22	ug/L			05/06/13 07:17	1

Lab Sample ID: LCS 480-116879/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116879

Spike LCS LCS %Rec. Result Qualifier Analyte Added Unit %Rec Limits Ethane 14.4 17.3 ug/L 120 67 - 128 Ethene 13.5 16.2 ug/L 120 60 - 137 Methane 7.69 8.73 ug/L 113 48 - 174

Lab Sample ID: LCSD 480-116879/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116879

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Ethane 14.4 17.1 ug/L 119 67 - 128 Ethene 13.5 16.2 ug/L 60 - 137 120 50 0 Methane 7.69 8.74 ug/L 114 48 - 174

Lab Sample ID: MB 200-55142/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 55142

мв мв

Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	ND	1000	1000	ug/L			05/07/13 12:16	1

Lab Sample ID: LCS 200-55142/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 55142

	Sı	oike LCS	LCS				%Rec.	
Analyte	Ad	ded Result	Qualifier	Unit	D	%Rec	Limits	
Carbon dioxide		010 4790		ug/L	_	96	70 - 130	

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 480-116862/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 117145 **Prep Batch: 116862**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.050	0.019	mg/L		05/06/13 07:40	05/06/13 21:22	1
Magnesium	ND		0.20	0.043	mg/L		05/06/13 07:40	05/06/13 21:22	1
Manganese	0.000570	J	0.0030	0.00040	mg/L		05/06/13 07:40	05/06/13 21:22	1
Potassium	ND		0.50	0.10	mg/L		05/06/13 07:40	05/06/13 21:22	1
Sodium	ND		1.0	0.32	mg/L		05/06/13 07:40	05/06/13 21:22	1

TestAmerica Buffalo

Page 14 of 42

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 058507, GM-Lockport Groundwater Sampling TestAmerica Job ID: 480-37628-1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-116862/2-A			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 117145			Prep Batch: 116862
	Spike	LCS LCS	%Rec.

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	10.0	10.66		mg/L		107	80 - 120	
Magnesium	10.0	10.42		mg/L		104	80 - 120	
Manganese	0.200	0.210		mg/L		105	80 - 120	
Potassium	10.0	10.89		mg/L		109	80 - 120	
Sodium	10.0	10.74		mg/L		107	80 - 120	

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-117004/76 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117004

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			05/07/13 02:13	1
Sulfate	ND		2.0	0.35	mg/L			05/07/13 02:13	1

Lab Sample ID: LCS 480-117004/75 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117004

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 20.0	20.67		mg/L		103	90 - 110	
Sulfate	20.0	20.76		mg/L		104	90 - 110	

Lab Sample ID: 480-37628-3 MS Client Sample ID: MW-7-050313 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 117004

	•	Sample	Sample	Spike	MS	MS					%Rec.
An	nalyte	Result	Qualifier	Added	Result	Qualifier	Unit	ľ	D	%Rec	Limits
Su	ılfate	253		125	376.3	-	ma/L			99	90 - 110

Lab Sample ID: MB 480-117251/28 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117251

	MB	MB									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Pı	epared	Analyzed	Dil Fac	
Chloride	ND		0.50	0.28	mg/L				05/07/13 20:24	1	
Sulfate	ND		2.0	0.35	mg/L				05/07/13 20:24	1	

Lab Sample ID: LCS 480-117251/27 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117251

	s	Spike	LCS LCS				%Rec.	
Analyte	Ad	dded Re	sult Qualif	fier Unit	D	%Rec	Limits	
Chloride		20.0 2	0.52	mg/L	_	103	90 - 110	
Sulfate		20.0 2	0.68	mg/L		103	90 - 110	

TestAmerica Buffalo

5/16/2013

TestAmerica Job ID: 480-37628-1

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-116849/147 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116849

мв мв RL Result Qualifier MDL Unit D Dil Fac Analyte Prepared Analyzed 0.020 Ammonia 0.0246 0.0090 mg/L 05/04/13 14:58

Lab Sample ID: LCS 480-116849/148 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116849

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Ammonia 1.00 0.975 mg/L 98 90 - 110

Lab Sample ID: MB 480-117465/27 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 117465 мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.020 0.0090 mg/L 05/08/13 11:17 Ammonia

Lab Sample ID: MB 480-117465/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 117465

MB MB Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed ND 0.020 05/08/13 10:54 Ammonia 0.0090 mg/L

Lab Sample ID: LCS 480-117465/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117465

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit Limits %Rec Ammonia 1.00 101 90 - 110 1.01 mg/L

Lab Sample ID: LCS 480-117465/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 117465

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Ammonia 1 00 1.01 mg/L 101 90 - 110

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-116782/27 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 116782

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrite ND 0.050 0.020 mg/L 05/03/13 20:58

Prep Type: Total/NA

Client: Conestoga-Rovers & Associates, Inc.

TestAmerica Job ID: 480-37628-1

Method: 353.2 - Nitrogen, Nitrite (Continued)

Project/Site: 058507, GM-Lockport Groundwater Sampling

Lab Sample ID: MB 480-116782/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116782

мв мв Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.050 Nitrite ND 0.020 mg/L 05/03/13 20:32

Lab Sample ID: LCS 480-116782/28 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 116782

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Nitrite 1.50 1.50 mg/L 100 90 - 110

Lab Sample ID: LCS 480-116782/4 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 116782

LCS LCS Spike %Rec.

Added Result Qualifier Unit D %Rec Limits Nitrite 1.50 1.51 mg/L 101

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-117408/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 117408

MB MB

Result Qualifier RL MDL Unit Analyzed Dil Fac Analyte Prepared ND 1.0 05/07/13 16:22 Total Organic Carbon 0.43 ma/L

Lab Sample ID: LCS 480-117408/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 117408

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits **Total Organic Carbon** 60.0 60.25 mg/L 100 90 - 110

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-117560/6 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 117560

MB MB Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Total Alkalinity ND 5.0 0.79 mg/L 05/09/13 00:52

Lab Sample ID: LCS 480-117560/7 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 117560

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Alkalinity 100 95.51 mg/L 96 90 - 110

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: MW-7-050313

Client Sample ID: MW-14-050313

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: SM 4500 S2 D - Sulfide, Total

Lab Sample ID: MB 480-117205/3

Matrix: Water

Analysis Batch: 117205

мв мв

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.10 Sulfide ND 0.052 mg/L 05/07/13 12:02

Lab Sample ID: LCS 480-117205/4

Matrix: Water

Analysis Batch: 117205

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Sulfide 0.750 0.714 mg/L 95 90 - 110

Lab Sample ID: 480-37628-3 MS

Matrix: Water

Analysis Batch: 117205

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Sulfide ND 0.500 0.382 F mg/L 90 - 110

Lab Sample ID: 480-37628-2 DU

Matrix: Water

Analysis Batch: 117205

DU DU Sample Sample RPD Result Qualifier Result Qualifier Analyte Unit Limit Sulfide ND ND mg/L NC 20

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography

Lab Sample ID: MB 480-117044/52

Matrix: Water

Analysis Batch: 117044

MB MB Analyte Result Qualifier

RL MDL Unit D Prepared Dil Fac Analyzed Acetic acid ND 1.0 0.15 mg/L 05/07/13 17:07 Formic-acid ND 1.0 0.11 mg/L 05/07/13 17:07 ND Lactic acid 1.0 0.14 mg/L 05/07/13 17:07 n-Butyric Acid ND 1.0 0.16 mg/L 05/07/13 17:07 ND Propionic acid 1.0 0.17 mg/L 05/07/13 17:07 Pyruvic Acid ND 1.0 0.080 mg/L 05/07/13 17:07

Lab Sample ID: LCS 480-117044/51

Matrix: Water

Analysis Batch: 117044

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	10.0	9.84		mg/L		98	80 - 120	
Formic-acid	10.0	9.85		mg/L		98	80 - 120	
Lactic acid	10.0	10.25		mg/L		103	80 - 120	
n-Butyric Acid	10.0	9.67		mg/L		97	80 - 120	
Propionic acid	10.0	10.31		mg/L		103	80 _ 120	
Pyruvic Acid	10.0	10.39		mg/L		104	80 _ 120	

TestAmerica Buffalo

Page 18 of 42

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

GC/MS VOA

Analysis Batch: 118132

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	8260B	
480-37628-2	MW-14-050313	Total/NA	Water	8260B	
LCS 480-118132/3	Lab Control Sample	Total/NA	Water	8260B	
MB 480-118132/4	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 118211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-37628-1 - DL	MW-12-050313	Total/NA	Water	8260B	_
480-37628-3	MW-7-050313	Total/NA	Water	8260B	
480-37628-4	Trip Blank	Total/NA	Water	8260B	
LCS 480-118211/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-118211/5	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 118351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-4 - DL	Trip Blank	Total/NA	Water	8260B	
LCS 480-118351/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-118351/5	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 55142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	RSK-175	
480-37628-2	MW-14-050313	Total/NA	Water	RSK-175	
480-37628-3	MW-7-050313	Total/NA	Water	RSK-175	
LCS 200-55142/2	Lab Control Sample	Total/NA	Water	RSK-175	
MB 200-55142/3	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 116879

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	RSK-175	
480-37628-1 - DL	MW-12-050313	Total/NA	Water	RSK-175	
480-37628-2	MW-14-050313	Total/NA	Water	RSK-175	
480-37628-3	MW-7-050313	Total/NA	Water	RSK-175	
LCS 480-116879/4	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-116879/5	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 480-116879/2	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 119010

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	AM20GAX	
480-37628-2	MW-14-050313	Total/NA	Water	AM20GAX	

Metals

Prep Batch: 116862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	3005A	
480-37628-2	MW-14-050313	Total/NA	Water	3005A	

TestAmerica Buffalo

Page 19 of 42

6

4

6

0

10

12

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 058507, GM-Lockport Groundwater Sampling TestAmerica Job ID: 480-37628-1

Metals ((Continued	I)
motaro ,	(00::::::::::::::::::::::::::::::::::::	•,

Prep Batch: 116862 (Continu	ed)
-----------------------------	-----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-3	MW-7-050313	Total/NA	Water	3005A	
LCS 480-116862/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-116862/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 117145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	6010B	116862
480-37628-2	MW-14-050313	Total/NA	Water	6010B	116862
480-37628-3	MW-7-050313	Total/NA	Water	6010B	116862
LCS 480-116862/2-A	Lab Control Sample	Total/NA	Water	6010B	116862
MB 480-116862/1-A	Method Blank	Total/NA	Water	6010B	116862

Analysis Batch: 117369

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-2	MW-14-050313	Total/NA	Water	6010B	116862
480-37628-3	MW-7-050313	Total/NA	Water	6010B	116862

General Chemistry

Analysis Batch: 116782

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-2	MW-14-050313	Total/NA	Water	353.2	
LCS 480-116782/28	Lab Control Sample	Total/NA	Water	353.2	
LCS 480-116782/4	Lab Control Sample	Total/NA	Water	353.2	
MB 480-116782/27	Method Blank	Total/NA	Water	353.2	
MB 480-116782/3	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 116786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	353.2	
480-37628-2	MW-14-050313	Total/NA	Water	353.2	
480-37628-3	MW-7-050313	Total/NA	Water	353.2	

Analysis Batch: 116787

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	353.2	
480-37628-3	MW-7-050313	Total/NA	Water	353.2	

Analysis Batch: 116849

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	350.1	
480-37628-3	MW-7-050313	Total/NA	Water	350.1	
LCS 480-116849/148	Lab Control Sample	Total/NA	Water	350.1	
MB 480-116849/147	Method Blank	Total/NA	Water	350.1	

Analysis Batch: 117004

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	300.0	
480-37628-2	MW-14-050313	Total/NA	Water	300.0	
480-37628-3	MW-7-050313	Total/NA	Water	300.0	

Page 20 of 42

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

General Chemistry (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-3 MS	MW-7-050313	Total/NA	Water	300.0	
LCS 480-117004/75	Lab Control Sample	Total/NA	Water	300.0	
MB 480-117004/76	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 117044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	VFA-IC	
480-37628-2	MW-14-050313	Total/NA	Water	VFA-IC	
480-37628-3	MW-7-050313	Total/NA	Water	VFA-IC	
LCS 480-117044/51	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-117044/52	Method Blank	Total/NA	Water	VFA-IC	

Analysis Batch: 117205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	SM 4500 S2 D	
480-37628-2	MW-14-050313	Total/NA	Water	SM 4500 S2 D	
480-37628-2 DU	MW-14-050313	Total/NA	Water	SM 4500 S2 D	
480-37628-3	MW-7-050313	Total/NA	Water	SM 4500 S2 D	
480-37628-3 MS	MW-7-050313	Total/NA	Water	SM 4500 S2 D	
LCS 480-117205/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 D	
MB 480-117205/3	Method Blank	Total/NA	Water	SM 4500 S2 D	

Analysis Batch: 117251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	300.0	
480-37628-2	MW-14-050313	Total/NA	Water	300.0	
480-37628-3	MW-7-050313	Total/NA	Water	300.0	
LCS 480-117251/27	Lab Control Sample	Total/NA	Water	300.0	
MB 480-117251/28	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 117408

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	9060
480-37628-2	MW-14-050313	Total/NA	Water	9060
480-37628-3	MW-7-050313	Total/NA	Water	9060
LCS 480-117408/4	Lab Control Sample	Total/NA	Water	9060
MB 480-117408/3	Method Blank	Total/NA	Water	9060

Analysis Batch: 117465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-2	MW-14-050313	Total/NA	Water	350.1	
LCS 480-117465/28	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-117465/4	Lab Control Sample	Total/NA	Water	350.1	
MB 480-117465/27	Method Blank	Total/NA	Water	350.1	
MB 480-117465/3	Method Blank	Total/NA	Water	350.1	

Analysis Batch: 117560

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-37628-1	MW-12-050313	Total/NA	Water	SM 2320B	
480-37628-2	MW-14-050313	Total/NA	Water	SM 2320B	
480-37628-3	MW-7-050313	Total/NA	Water	SM 2320B	

TestAmerica Buffalo

5/16/2013

Page 21 of 42

3

6

_

4.6

11

4.0

14

 ${\bf Client:\ Conestoga\hbox{-}Rovers\ \&\ Associates,\ Inc.}$

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

General Chemistry (Continued)

Analysis Batch: 117560 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-117560/7	Lab Control Sample	Total/NA	Water	SM 2320B	
MB 480-117560/6	Method Blank	Total/NA	Water	SM 2320B	

3

4

5

6

8

9

11

12

14

15

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 058507, GM-Lockport Groundwater Sampling

Client Sample ID: MW-12-050313

Date Collected: 05/03/13 09:00 Date Received: 05/03/13 15:30

Lab Sample ID: 480-37628-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	118132	05/11/13 18:30	CDC	TAL BUF
Total/NA	Analysis	8260B	DL	2	118211	05/13/13 12:56	RL	TAL BUF
Total/NA	Analysis	RSK-175		1	55142	05/07/13 13:46	NA	TAL BUR
Total/NA	Analysis	RSK-175		1	116879	05/06/13 08:23	JM	TAL BUF
Total/NA	Analysis	RSK-175	DL	10	116879	05/06/13 09:25	JM	TAL BUF
Total/NA	Analysis	AM20GAX		1	119010	05/09/13 13:00	СТВ	SC0015
Total/NA	Prep	3005A			116862	05/06/13 07:40	SS	TAL BUF
Total/NA	Analysis	6010B		1	117145	05/06/13 21:59	LH	TAL BUF
Total/NA	Analysis	353.2		1	116786	05/03/13 19:32	NH	TAL BUF
Total/NA	Analysis	353.2		1	116787	05/03/13 19:32	NH	TAL BUF
Total/NA	Analysis	350.1		1	116849	05/04/13 15:15	KS	TAL BUF
Total/NA	Analysis	300.0		5	117004	05/07/13 03:03	KC	TAL BUF
Total/NA	Analysis	VFA-IC		1	117044	05/07/13 19:33	KC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	117205	05/07/13 12:09	KJ	TAL BUF
Total/NA	Analysis	300.0		50	117251	05/07/13 21:05	KAC	TAL BUF
Total/NA	Analysis	9060		1	117408	05/07/13 17:23	KC	TAL BUF
Total/NA	Analysis	SM 2320B		1	117560	05/09/13 02:20	LK	TAL BUF

Client Sample ID: MW-14-050313

Date Collected: 05/03/13 12:00

Date Received: 05/03/13 15:30

Lab	Samp	le I	D:	480	-37	628-2	
-----	------	------	----	-----	-----	-------	--

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	118132	05/11/13 18:57	CDC	TAL BUF
Total/NA	Analysis	RSK-175		1	55142	05/07/13 13:55	NA	TAL BUR
Total/NA	Analysis	RSK-175		1	116879	05/06/13 08:40	JM	TAL BUF
Total/NA	Analysis	AM20GAX		1	119010	05/09/13 13:00	СТВ	SC0015
Total/NA	Prep	3005A			116862	05/06/13 07:40	SS	TAL BUF
Total/NA	Analysis	6010B		1	117145	05/06/13 22:02	LH	TAL BUF
Total/NA	Prep	3005A			116862	05/06/13 07:40	SS	TAL BUF
Total/NA	Analysis	6010B		1	117369	05/07/13 19:57	AH	TAL BUF
Total/NA	Analysis	353.2		1	116782	05/03/13 21:12	NH	TAL BUF
Total/NA	Analysis	353.2		1	116786	05/03/13 21:12	NH	TAL BUF
Total/NA	Analysis	300.0		5	117004	05/07/13 03:13	KC	TAL BUF
Total/NA	Analysis	VFA-IC		1	117044	05/07/13 20:02	KC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	117205	05/07/13 12:12	KJ	TAL BUF
Total/NA	Analysis	300.0		20	117251	05/07/13 21:15	KAC	TAL BUF
Total/NA	Analysis	9060		1	117408	05/07/13 17:54	KC	TAL BUF
Total/NA	Analysis	350.1		1	117465	05/08/13 11:29	SB	TAL BUF
Total/NA	Analysis	SM 2320B		1	117560	05/09/13 02:28	LK	TAL BUF

TestAmerica Buffalo

Page 23 of 42

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Lab Sample ID: 480-37628-3

Lab Sample ID: 480-37628-4

Matrix: Water

Client Sample ID: MW-7-050313 Date Collected: 05/03/13 14:10

Date Received: 05/03/13 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10000	118211	05/13/13 13:19	RL	TAL BUF
Total/NA	Analysis	RSK-175		1	55142	05/07/13 14:02	NA	TAL BUR
Total/NA	Analysis	RSK-175		1	116879	05/06/13 08:57	JM	TAL BUF
Total/NA	Prep	3005A			116862	05/06/13 07:40	SS	TAL BUF
Total/NA	Analysis	6010B		1	117145	05/06/13 22:05	LH	TAL BUF
Total/NA	Prep	3005A			116862	05/06/13 07:40	SS	TAL BUF
Total/NA	Analysis	6010B		1	117369	05/07/13 19:59	AH	TAL BUF
Total/NA	Analysis	353.2		1	116786	05/03/13 19:34	NH	TAL BUF
Total/NA	Analysis	353.2		1	116787	05/03/13 19:34	NH	TAL BUF
Total/NA	Analysis	350.1		1	116849	05/04/13 15:17	KS	TAL BUF
Total/NA	Analysis	300.0		5	117004	05/07/13 03:24	KC	TAL BUF
Total/NA	Analysis	VFA-IC		1	117044	05/07/13 20:31	KC	TAL BUF
Total/NA	Analysis	SM 4500 S2 D		1	117205	05/07/13 12:17	KJ	TAL BUF
Total/NA	Analysis	300.0		10	117251	05/07/13 21:25	KAC	TAL BUF
Total/NA	Analysis	9060		1	117408	05/07/13 18:25	KC	TAL BUF
Total/NA	Analysis	SM 2320B		1	117560	05/09/13 02:34	LK	TAL BUF

Client Sample ID: Trip Blank

Date Collected: 05/03/13 00:00

Date Received: 05/03/13 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	118211	05/13/13 13:42	RL	TAL BUF
Total/NA	Analysis	8260B	DL	2	118351	05/14/13 02:28	TRF	TAL BUF

Laboratory References:

SC0015 = Pittsburgh, PA, 220 William Pitt Way, Pittsburgh, PA 15238, TEL (412)826-5245

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Matrix: Water

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-13
California	NELAP	9	1169CA	09-30-13
Connecticut	State Program	1	PH-0568	09-30-14
Florida	NELAP	4	E87672	06-30-13
Georgia	State Program	4	N/A	03-31-14
Georgia	State Program	4	956	06-30-13
Georgia	State Program	4	956	03-31-14
Illinois	NELAP	5	200003	09-30-13
Iowa	State Program	7	374	03-15-15
Kansas	NELAP	7	E-10187	01-31-14
Kentucky	State Program	4	90029	12-31-13
Kentucky (UST)	State Program	4	30	04-01-14
Louisiana	NELAP	6	02031	06-30-13
Maine	State Program	1	NY00044	12-04-13
Maryland	State Program	3	294	03-31-14
Massachusetts	State Program	1	M-NY044	06-30-13
Michigan	State Program	5	9937	04-01-13 *
Minnesota	NELAP	5	036-999-337	12-31-13
New Hampshire	NELAP	1	2973	09-11-13
New Hampshire	NELAP	1	2337	11-17-13
New Jersey	NELAP	2	NY455	06-30-13
New York	NELAP	2	10026	04-01-14
North Dakota	State Program	8	R-176	03-31-14
Oklahoma	State Program	6	9421	08-31-13
Oregon	NELAP	10	NY200003	06-09-13
Pennsylvania	NELAP	3	68-00281	07-31-13
Rhode Island	State Program	1	LAO00328	12-31-13
Tennessee	State Program	4	TN02970	04-01-14
Texas	NELAP	6	T104704412-11-2	07-31-13
USDA	Federal		P330-11-00386	11-22-14
Virginia	NELAP	3	460185	09-14-13
Washington	State Program	10	C784	02-10-14
West Virginia DEP	State Program	3	252	09-30-13
Wisconsin	State Program	5	998310390	08-31-13

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Connecticut	State Program	1	PH-0751	09-30-13
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-15
Florida	NELAP	4	E87467	06-30-13
L-A-B	DoD ELAP		L2336	10-26-13
Louisiana	NELAP	6	176292	06-30-13
Minnesota	NELAP	5	050-999-436	12-31-13
New Hampshire	NELAP	1	2006	12-18-13
New Jersey	NELAP	2	VT972	06-30-13
New York	NELAP	2	10391	04-01-14
Pennsylvania	NELAP	3	68-00489	04-30-14
USDA	Federal		P330-11-00093	02-17-14

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Buffalo

3

0

10

-

12

1 (

Certification Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Laboratory: TestAmerica Burlington (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Vermont	State Program	1	VT-4000	12-31-13
Virginia	NELAP	3	460209	12-14-13

c

- 0

4

5

9

11

12

. .

15

Method Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
AM20GAX	Dissolved Gases (GC)	NONE	SC0015
RSK-175	Dissolved Gases (GC)	RSK	TAL BUR
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
6010B	Metals (ICP)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
9060	Organic Carbon, Total (TOC)	SW846	TAL BUF
SM 2320B	Alkalinity	SM	TAL BUF
SM 4500 S2 D	Sulfide, Total	SM	TAL BUF
/FA-IC	Volatile Fatty Acids, Ion Chromatography	TestAmerica SOP	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

NONE = NONE

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique , RSKSOP-175,

Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica SOP = TestAmerica, Inc., Standard Operating Procedure

Laboratory References:

SC0015 = Pittsburgh, PA, 220 William Pitt Way, Pittsburgh, PA 15238, TEL (412)826-5245

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TestAmerica Buffalo

2

5

7

a

10

12

13

Sample Summary

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-37628-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-37628-1	MW-12-050313	Water	05/03/13 09:00	05/03/13 15:30
480-37628-2	MW-14-050313	Water	05/03/13 12:00	05/03/13 15:30
480-37628-3	MW-7-050313	Water	05/03/13 14:10	05/03/13 15:30
480-37628-4	Trip Blank	Water	05/03/13 00:00	05/03/13 15:30

May 14, 2013

Melissa Deyo **Test America** 10 Hazelwood Drive

Buffalo, NY 14228

RE: 480-37628

Microseeps Workorder: 8902

Dear Melissa Deyo:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, May 07, 2013. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Zovern Rove 05/14/2013 C.t. 5/15/13 Robbin Robl

rrobl@microseeps.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service.

Please email info@microseeps.com.

Total Number of Pages ___

Report ID: 8902 - 382959

Page 1 of 8

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Microseeps, Inc.

Microseeps, Inc 220 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-5245 Fax: (412) 826-3433

Phone: (412) 826-5245 Fax: (412) 826-3433

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Pennsylvania Department of Environmental Protection, Bureau of Laboratories Accreditor:

Accreditation ID: 02-00538

NELAP Non-Potable Water and Solid & Hazardous Waste Scope:

Accreditor: NELAP: State of Florida, Department of Health, Bureau of Laboratories

Accreditation ID: E87832

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

South Carolina Department of Health and Environmental Control, Office of Environmental Accreditor:

Laboratory Certification

89009003 Accreditation ID:

Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA) Scope:

Accreditor: NELAP: State of Louisiana, Department of Environmental Quality

Accreditation ID: 04104

Scope: Solid and Chemical Materials; Non-Potable Water

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water; Solid and Chemical Materials

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water; Solid and Hazardous Waste

State of Connecticut, Department of Public Health, Division of Environmental Health Accreditor:

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX

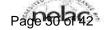
Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

Scope: Non-potable water

Accreditor: State of Georgia Accreditation ID: Chapter 391-3-26


As per the Georgia EPD Rules and Regulations for Commercial Laboratories, Microseeps is Scope:

accredited by the Pennsylvania Department of Environmental Protection Bureau of

Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 8902 - 382959

Page 2 of 8

Phone: (412) 826-5245

Fax: (412) 826-3433

SAMPLE SUMMARY

Workorder: 8902 480-37628

Lab ID	Sample ID	Matrix	Date Collected	Date Received
89020001	MW-12-050313(480-37628-1)	Bubble Strip	5/3/2013 09:00	5/7/2013 11:00
89020002	MW-14-050313(480-37628-2)	Bubble Strip	5/3/2013 12:00	5/7/2013 11:00

Report ID: 8902 - 382959

Page 3 of 8

CERTIFICATE OF ANALYSIS This report shall not be reproduced, except in full, without the written consent of Microseeps, Inc.

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 8902 480-37628

Lab ID: 89020001

Date Received: 5/7/2013 11:00

Matrix:

Bubble Strip

Sample ID:

MW-12-050313(480-37628-1)

Date Collected: 5/3/2013 09:00

Parameters

Results Units

PQL

MDL

DF Prepared

Ву Analyzed Ву

Qual

RISK - MICR

Analysis Desc: AM20GAX

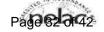
Analytical Method: AM20GAX

Hydrogen

1.1 nM

0.60 0.074 1

5/9/2013 13:00


GT

Report ID: 8902 - 382959

Page 4 of 8

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Microseeps, Inc.

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 8902 480-37628

Lab ID: Sample ID: 89020002

MW-14-050313(480-37628-2)

Date Received: 5/7/2013 11:00

Matrix:

Bubble Strip

Date Collected: 5/3/2013 12:00

Parameters

Results Units

PQL

MDL

DF Prepared

Analyzed

Ву

Ву

Qual

RISK - MICR

Analysis Desc: AM20GAX

Analytical Method: AM20GAX

Hydrogen

16 nM

0.60

0.074

1

5/9/2013 13:12

GT

Report ID: 8902 - 382959

Page 5 of 8

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Microseeps, Inc.

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS QUALIFIERS

Workorder: 8902 480-37628

DEFINITIONS/QUALIFIERS

Disclaimer: The Pennsylvania Department of Environmental Protection (PADEP) has decided to no longer recognize analyses that do not

produce data for primary compliance, for NELAP accreditation. The methods affected by this decision are AM20GAx, AM21G, SW846 7199 and AM4.02. The laboratory shall continue to administer the NELAP/TNI standard requirements in the performance

of these methods.

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL). J

Report ID: 8902 - 382959

Page 6 of 8

Phone: (412) 826-5245

Fax: (412) 826-3433

QUALITY CONTROL DATA

Workorder: 8902 480-37628

QC Batch:

DISG/2986

Analysis Method:

AM20GAX

QC Batch Method:

AM20GAX

Associated Lab Samples:

89020001, 89020002

METHOD BLANK: 20146

Blank

Reporting

Parameter

Units

Result

Limit Qualifiers

RISK

Hydrogen

nM

0.60 U

0.60

LABORATORY CONTROL SAMPLE & LCSD: 20147

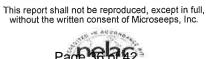
20148

Parameter	Units	Spike Conc.	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
RISK Hydrogen	nM	24	26	26	108	107	80-120	0.93	20	

Report ID: 8902 - 382959

Page 7 of 8

Phone: (412) 826-5245


Fax: (412) 826-3433

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 8902 480-37628

Report ID: 8902 - 382959

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
89020001	MW-12-050313(480-37628-1)			AM20GAX	DISG/2986
89020002	MW-14-050313(480-37628-2)			AM20GAX	DISG/2986

CERTIFICATE OF ANALYSIS

0 - ASNBO2 P - NB2O4S Q - NB2SO3 R - NB2S2SO3 S - H2SO4 T - TSP Dodecahydrate U - Acetone V - MCAA **TestAmerica** Special Instructions/Note: Z - other (specify) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Mont Preservation Codes G - Amchlor H - Ascorbic Acid D - Nitric Acid E - NaHSO4 F - MeOH COC No: 480-9913.1 Page: Page 1 of 1 480-37628-1 C - Zn Acetate I - Ice J - DI Water K - EDTA L - EDA Total Number of containers lethod of Shipment Analysis Requested Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: Chain of Custody Record Lab PM: Deyo, Melissa L E-Mail: melissa:deyo@testamericainc.com AM20GAX/ Hydrogen × \times Time: Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) Preservation Code: Matrix Water Water Sample (C=comb, G=grab) Type ଷ୍ପ Sample Eastern 00:60 'AT Requested (days): Due Date Requested: 5/15/2013 Sample Date 5/3/13 5/3/13 Project #: 48004014 SSOW#: Date/Time: Phone: Client Information (Sub Contract Lab) Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify) Project Name: 058507, GM-Lockport Groundwater Sampling Custody Seals Intact: Custody Seal No.: Sample Identification - Client ID (Lab ID) Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991 Possible Hazard Identification **TestAmerica Buffalo** MW-12-050313 (480-37628-1) MW-14-050313 (480-37628-2) Empty, Kit Relinquished, by A Yes A No 220 William Pitt Way, 10 Hazelwood Drive Shipping/Receiving Phone: 412-826-5245(Tel)

lient Contact

Microseeps

State, Zip: PA, 15238 Pittsburgh

	Samploc			ים ער	ļ		And the second second	N = / = /.	1000	
Client Information (Sub Contract Lab)				Deyo	Deyo, Melissa L	a.t.	B	(6)051	480-9916.1	•
Client Contact: Shipping/Receiving	Phone:			E-Mail melis	sa.deyo(E-Mail: melissa.deyo@testamericainc.com			Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.						Analy	Analysis Requested		Job #: 480-37528-1	
Addross: 30 Community Drive. Suite 11,	Due Date Requested: 5/15/2013	ë			-				Preservation Codes	des:
	TAT Requested (da) (§)							A - HCL B - NaOH C - Zn Acotate	M · Hoxane N · None O · AsNaO2
Sato, Zip: VT, 05403	T									P - Na2048 Q - Na2SO3
Phono: 802-660-1990(Tel)	₩ ₩				(0	480-3762	480-37628 Chain of Custody		F - MeOH G - Amchlor H - Ascorbic Acid	K - Nazszsos S - H2SO4 T - TSP Dodocahydrate
Email	*O				(oN					U - Acetono V - MCAA
Project Name: 058507, GM-Lockport Groundwater Sampling	Project #: 48004014				10 89	lxolb n				W - ph 4-5 Z - other (specify)
Sito;	SSOW#				A) as	Carbo		100 10	Other:	
		Sample		Matrix (Wwwter, Smolld, Owwatefoll,	beteilli ble MiSM miohe	2K_116_CON		otal Mumber		
Sample Identification - Client ID (Lab ID)	Sample Date		Preservation Code:	fr-Tlaus, A-Air)	a X	:8		1 X		Special Instructions/Note:
MW-12-050313 (480-37628-1)	5/3/13	09:00 Eastern		Water		×		8		
MW-14-050313 (480-37628-2)	5/3/13	12:00 Eastern		Water		×		e e		
MW-7-050313 (480-37628-3)	5/3/13	14:10 Eastern		Water		×		en .		
Madely										
								-		
Possible Hazard Identification Unconfirmed					Sam	ole Disposal (A fee r Return To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 morth)	mples are retained long	ed longer than 1 hive For	month)
Deliverable Requested: I, II, III, IV, Other (specify)					Spec	ial Instructions/QC Re	Special Instructions/QC Requirements:			
Empty Kit Relinquished by:		Date:			Time:		Mothod of	Mothod of Shipmont		
Relinguished by: TOUL!	Date/Timp;	2013	, @9 ₁	N ALEXA		Received by: A Las	An ha	Date/Time:	3 925	- Company
Reinquished-by	Date/Time.		<u> </u>	Company	<u>" </u>	Received dy.	Tab	Date/Time:)	Сотрапу
1 1	Date/Timo:			Company	œ.	Received by:		Date/Timo:		Company
Custody Seals Intact: Custody Seal No.:					0	Cooler Temperature(s) °C and Other Remarks:	d Other Remarks:			

TestAmerica

Chain of Custody Record

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

TestAmerica Buffalo

ORIGIN ID: DKKA (716) 691-2600 KEN KINECKI TESTAHERICA 10 HAZELWOOD DR

SHIP DATE: 03MAY13 ACTUGT: 27.0 LB MAN CAD: 735603/CAFE2608 DIMS: 26x15x14 IN

BIML RECIPIENT

TO MARK PHILLIPS TA BURLINGTON **30 COMMUNITY DRIVE**

SOUTH BURLINGTON VT 05403
(802) 880-1990
DEPT: SAMPLE CONTROL

TRK# 4485 0264 3181

MON - 06 MAY 3:00P STANDARD OVERNIGHT

KS BTVA

05403 vr-us BTV

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc. Job Number: 480-37628-1

Login Number: 37628 List Source: TestAmerica Buffalo

List Number: 1 Creator: Stau, Brandon

Question	Answer	Comm
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	gza
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

7

9

44

12

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 480-37628-1

List Source: TestAmerica Burlington
List Number: 1
List Creation: 05/06/13 10:24 AM

Creator: Poucher, Stephanie A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	709086
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.0°C IR GUN ID 181. CF 0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required

4

5

1

9

11

12

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-38450-1

Client Project/Site: 058507, GM-Lockport Groundwater

Sampling

For:

Conestoga-Rovers & Associates, Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, New York 14304

Attn: Kathleen Willy

Authorized for release by: 5/30/2013 10:39:51 AM
Rebecca Jones, Project Mgmt. Assistant rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Association Summary	7
Lab Chronicle	8
Certification Summary	9
Method Summary	10
Sample Summary	11
Subcontract Data	12
Chain of Custody	26
Receipt Chacklists	27

11

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-38450-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-38450-1

Job ID: 480-38450-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-38450-1

Comments

No additional comments.

Receipt

The samples were received on 5/16/2013 4:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.0° C.

No analytical or quality issues were noted.

3

4

5

6

1 በ

11

13

Detection Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-38450-1

Client Sample ID: MW-10	-051613					La	b Sample ID	: 480-38450-1
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
Hydrogen	0.77		0.60	0.074	nm	1	AM20GAX	Total/NA
Client Sample ID: MW-4-	051613					La	b Sample ID	: 480-38450-2
— Analyte	Result	Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
Hydrogen	0.63	 -	0.60	0.074	nm	1	AM20GAX	Total/NA
Client Sample ID: MW-15	-051613					La	b Sample ID	: 480-38450-3
— Analyte	Result	Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
Hydrogen	0.75		0.60	0.074	nm	1	AM20GAX	Total/NA
Client Sample ID: MW-11	-051613					La	b Sample ID	: 480-38450-4
	Result	Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
Hydrogen	0.91		0.60	0.074	nm	1	AM20GAX	Total/NA
Client Sample ID: MW-13	-051613					La	b Sample ID	: 480-38450-5
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
Hydrogen	0.69		0.60	0.074	nm	1	AM20GAX	Total/NA

2

3

6

9

11

12

13

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

Client Sample ID: MW-10-051613
Date Collected: 05/16/13 09:12
Date Received: 05/16/13 16:45

Client Sample ID: MW-10-051613
Matrix: Water

Method: AM20GAX - Dissolved Gas Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Hydrogen	0.77		0.60	0.074	nm			05/23/13 11:02	1
Client Sample ID: MW-4-05161	3						Lab San	nple ID: 480-3	8450-2
Date Collected: 05/16/13 10:08								Matrix	c: Water
Date Received: 05/16/13 16:45									

moundar / mizoo, bt Dioconto	u						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hydrogen	0.63	0.60	0.074 nm			05/23/13 11:15	1
Client Sample ID: MW-15-	051613				Lab San	nple ID: 480-3	8450-3
Date Collected: 05/16/13 11:17						Matrix	c: Water

Method: AM20GAX - Dissolved Ga	ises (GC)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Hydrogen	0.75		0.60	0.074	nm			05/23/13 11:27	1

Date Received: 05/16/13 16:45

Date Received: 05/16/13 16:45

Client Sample ID: MW-11-051613	Lab Sample ID: 480-38450-4
Date Collected: 05/16/13 12:10	Matrix: Water

Method: AM20GAX - Dissolved Ga	ses (GC)									
Analyte	Result	Qualifier	RL		Unit	D)	Prepared	Analyzed	Dil Fac
Hydrogen	0.91		0.60	0.074	nm				05/23/13 11:40	1

Client Sample ID: MW-13-051613	Lab Sample ID: 480-38450-5
Date Collected: 05/16/13 13:06	Matrix: Water
Date Received: 05/16/13 16:45	

Method: AM20GAX - Dissolved Gas	ses (GC)						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hydrogen	0.69	0.60	0.074 nm			05/23/13 15:14	1

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

GC VOA

Analysis Batch: 121001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-38450-1	MW-10-051613	Total/NA	Water	AM20GAX	
480-38450-2	MW-4-051613	Total/NA	Water	AM20GAX	
480-38450-3	MW-15-051613	Total/NA	Water	AM20GAX	
480-38450-4	MW-11-051613	Total/NA	Water	AM20GAX	
480-38450-5	MW-13-051613	Total/NA	Water	AM20GAX	

TestAmerica Job ID: 480-38450-1

TestAmerica Job ID: 480-38450-1

Client Sample ID: MW-10-051613

Lab Sample ID: 480-38450-1

Date Collected: 05/16/13 09:12 Date Received: 05/16/13 16:45 Matrix: Water

Batch

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	AM20GAX		1	121001	05/23/13 11:02	СТВ	SC0015

Client Sample ID: MW-4-051613 Lab Sample ID: 480-38450-2

Date Collected: 05/16/13 10:08 Matrix: Water

Date Received: 05/16/13 16:45

_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	AM20GAX			121001	05/23/13 11:15	СТВ	SC0015	

Client Sample ID: MW-15-051613 Lab Sample ID: 480-38450-3

Date Collected: 05/16/13 11:17 Matrix: Water

Date Received: 05/16/13 16:45

Date Received: 05/16/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	AM20GAX		1	121001	05/23/13 11:27	СТВ	SC0015

Client Sample ID: MW-11-051613 Lab Sample ID: 480-38450-4

Date Collected: 05/16/13 12:10

Method Number Prep Type Type Factor or Analyzed Analyst Run Lab Total/NA Analysis AM20GAX 121001 05/23/13 11:40 СТВ SC0015

Client Sample ID: MW-13-051613 Lab Sample ID: 480-38450-5

Date Collected: 05/16/13 13:06 Matrix: Water

Date Received: 05/16/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	AM20GAX			121001	05/23/13 15:14	CTB	SC0015

Laboratory References:

SC0015 = Pittsburgh, PA, 220 William Pitt Way, Pittsburgh, PA 15238, TEL (412)826-5245

Matrix: Water

Certification Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 058507, GM-Lockport Groundwater Sampling TestAmerica Job ID: 480-38450-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-13
California	NELAP	9	1169CA	09-30-13
Connecticut	State Program	1	PH-0568	09-30-14
Florida	NELAP	4	E87672	06-30-13
Georgia	State Program	4	N/A	03-31-14
Georgia	State Program	4	956	06-30-13
Georgia	State Program	4	956	03-31-14
Ilinois	NELAP	5	200003	09-30-13
owa	State Program	7	374	03-15-15
Kansas	NELAP	7	E-10187	01-31-14
Kentucky	State Program	4	90029	12-31-13
Kentucky (UST)	State Program	4	30	04-01-14
ouisiana.	NELAP	6	02031	06-30-13
Maine	State Program	1	NY00044	12-04-13
Maryland	State Program	3	294	03-31-14
Massachusetts	State Program	1	M-NY044	06-30-13
Michigan	State Program	5	9937	04-01-13 *
Minnesota	NELAP	5	036-999-337	12-31-13
New Hampshire	NELAP	1	2973	09-11-13
New Hampshire	NELAP	1	2337	11-17-13
lew Jersey	NELAP	2	NY455	06-30-13
lew York	NELAP	2	10026	04-01-14
North Dakota	State Program	8	R-176	03-31-14
Oklahoma	State Program	6	9421	08-31-13
Oregon	NELAP	10	NY200003	06-09-13
Pennsylvania	NELAP	3	68-00281	07-31-13
Rhode Island	State Program	1	LAO00328	12-31-13
ennessee	State Program	4	TN02970	04-01-14
exas	NELAP	6	T104704412-11-2	07-31-13
JSDA	Federal	•	P330-11-00386	11-22-14
/irginia	NELAP	3	460185	09-14-13
Vashington Vashington	State Program	10	C784	02-10-14
West Virginia DEP	State Program	3	252	09-30-13
Visconsin	State Program		998310390	08-31-13

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Buffalo

Method Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-38450-1

Method	Method Description	Protocol	Laboratory
AM20GAX	Dissolved Gases (GC)	NONE	SC0015

Protocol References:

NONE = NONE

Laboratory References:

SC0015 = Pittsburgh, PA, 220 William Pitt Way, Pittsburgh, PA 15238, TEL (412)826-5245

3

A

6

7

8

10

4.4

14

Sample Summary

Client: Conestoga-Rovers & Associates, Inc.
Project/Site: 058507, GM-Lockport Groundwater Sampling

TestAmerica Job ID: 480-38450-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-38450-1	MW-10-051613	Water	05/16/13 09:12	05/16/13 16:45
480-38450-2	MW-4-051613	Water	05/16/13 10:08	05/16/13 16:45
480-38450-3	MW-15-051613	Water	05/16/13 11:17	05/16/13 16:45
480-38450-4	MW-11-051613	Water	05/16/13 12:10	05/16/13 16:45
480-38450-5	MW-13-051613	Water	05/16/13 13:06	05/16/13 16:45

2

4

-

6

Q

9

11

45

13

May 28, 2013

Melissa Deyo Test America 10 Hazelwood Drive Buffalo, NY 14228 Microseeps, Inc 220 William Pitt Way Pittsburgh, PA 15238

Phone: (412) 826-5245 Fax: (412) 826-3433

4

5

6

Я

9

4 4

12

13

н

RE: **480-38450**

Microseeps Workorder: 9017

Dear Melissa Deyo:

Enclosed are the analytical results for sample(s) received by the laboratory on Friday, May 17, 2013. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Robbin Robl

2000in Roce CH. 5/28/13

rrobl@microseeps.com

Customer Service Representative

Enclosures

Report ID: 9017 - 388117

As a valued client we would appreciate your comments on our service.

Please email info@microseeps.com.

Total Number of Pages _____

Page 1 of 12

CERTIFICATE OF ANALYSIS

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor: Pennsylvania Department of Environmental Protection, Bureau of Laboratories

Accreditation ID: 02-00538

Scope: NELAP Non-Potable Water and Solid & Hazardous Waste

Accreditor: NELAP: State of Florida, Department of Health, Bureau of Laboratories

Accreditation ID: E87832

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: South Carolina Department of Health and Environmental Control, Office of Environmental

Laboratory Certification

Accreditation ID: 89009003

Scope: Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: State of Louisiana, Department of Environmental Quality

Accreditation ID: 04104

Scope: Solid and Chemical Materials; Non-Potable Water

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water; Solid and Chemical Materials

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water; Solid and Hazardous Waste

Accreditor: State of Connecticut, Department of Public Health, Division of Environmental Health

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

Scope: Non-potable water

Accreditor: State of Georgia
Accreditation ID: Chapter 391-3-26

Scope: As per the Georgia EPD Rules and Regulations for Commercial Laboratories, Microseeps is

accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

Report ID: 9017 - 388117 Page 2 of 12

2

3

4

_

7

Ö

10

12

Phone: (412) 826-5245 Fax: (412) 826-3433

SAMPLE SUMMARY

Workorder: 9017 480-38450

Report ID: 9017 - 388117

Lab ID	Sample ID	Matrix	Date Collected	Date Received
90170001	MW-10-051613(480-38450-1)	Bubble Strip	5/16/2013 09:12	5/17/2013 11:00
90170002	MW-4-051613(480-38450-2)	Bubble Strip	5/16/2013 10:08	5/17/2013 11:00
90170003	MW-15-051613(480-38450-3)	Bubble Strip	5/16/2013 11:17	5/17/2013 11:00
90170004	MW-11-051613(480-38450-4)	Bubble Strip	5/16/2013 12:10	5/17/2013 11:00
90170005	MW-13-051613(480-38450-5)	Bubble Strip	5/16/2013 13:06	5/17/2013 11:00

Page 3 of 12

5

8

10

46

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 9017 480-38450

Lab ID:

90170001

Date Received: 5/17/2013 11:00

Matrix:

Analyzed

Bubble Strip

Sample ID:

Parameters

MW-10-051613(480-38450-1)

Date Collected: 5/16/2013 09:12

DF Prepared

Ву Qual

RISK - MICR

Analysis Desc: AM20GAX

Analytical Method: AM20GAX

PQL

Hydrogen

0.77 nM

Results Units

0.60 0.074

MDL

5/23/2013 11:02

GT

Report ID: 9017 - 388117

Page 4 of 12

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 9017 480-38450

Lab ID: Sample ID: 90170002

MW-4-051613(480-38450-2)

Date Received: 5/17/2013 11:00

Matrix:

Analyzed

Bubble Strip

Ву

Date Collected: 5/16/2013 10:08

DF Prepared

Ву

Qual

RISK - MICR

Parameters

Analysis Desc: AM20GAX

Analytical Method: AM20GAX

PQL

Hydrogen

0.63 nM

Results Units

0.60 0.074

MDL

1

5/23/2013 11:15

GT

Report ID: 9017 - 388117

Page 5 of 12

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 9017 480-38450

Lab ID:

90170003

Date Received: 5/17/2013 11:00

Matrix:

Analyzed

Ву

Bubble Strip

Sample ID: Parameters MW-15-051613(480-38450-3)

Date Collected: 5/16/2013 11:17

DF Prepared

Ву

RISK - MICR

Analysis Desc: AM20GAX

Analytical Method: AM20GAX

PQL

Hydrogen

0.75 nM

Results Units

0.60 0.074

MDL

1

5/23/2013 11:27

Qual

Report ID: 9017 - 388117

Page 6 of 12

Phone: (412) 826-5245

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 9017 480-38450

Lab ID: Sample ID: 90170004

Date Received: 5/17/2013 11:00

Matrix:

Bubble Strip

Date Collected: 5/16/2013 12:10

Parameters

MW-11-051613(480-38450-4)

Results Units

PQL

DF Prepared MDL

Ву Analyzed Ву Qual

RISK - MICR

Analysis Desc: AM20GAX

Analytical Method: AM20GAX

Hydrogen

0.91 nM

0.60 0.074 1

5/23/2013 11:40 GT

Report ID: 9017 - 388117

Page 7 of 12

Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS

PQL

Analytical Method: AM20GAX

0.60

Lab ID:

Sample ID:

Parameters

RISK - MICR

Hydrogen

Analysis Desc: AM20GAX

Workorder: 9017 480-38450

90170005

MW-13-051613(480-38450-5)

Results Units

0.69 nM

Date Received: 5/17/2013 11:00

MDL

0.074

Ву

Matrix:

Analyzed

5/23/2013 15:14

Bubble Strip

Date Collected: 5/16/2013 13:06

DF Prepared

1

Ву Qual

GT

Report ID: 9017 - 388117

Page 8 of 12

Phone: (412) 826-5245 Fax: (412) 826-3433

ANALYTICAL RESULTS QUALIFIERS

Workorder: 9017 480-38450

DEFINITIONS/QUALIFIERS

Disclaimer: The Pennsylvania Department of Environmental Protection (PADEP) has decided to no longer recognize analyses that do not

produce data for primary compliance, for NELAP accreditation. The methods affected by this decision are AM20GAx, AM21G, SW846 7199 and AM4.02. The laboratory shall continue to administer the NELAP/TNI standard requirements in the performance

of these methods.

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

Report ID: 9017 - 388117

Page 9 of 12

Phone: (412) 826-5245

Fax: (412) 826-3433

QUALITY CONTROL DATA

Workorder: 9017 480-38450

QC Batch:

DISG/3011

Analysis Method:

AM20GAX

QC Batch Method:

AM20GAX

Associated Lab Samples:

90170001, 90170002, 90170003, 90170004

METHOD BLANK: 20387

Blank

Reporting

Parameter

Units

Result

Limit Qualifiers

RISK

RISK

Hydrogen

Hydrogen

nΜ

nΜ

0.60 U

24

0.60

LABORATORY CONTROL SAMPLE & LCSD: 20388

20389

Spike Parameter Units Conc.

25

LCS LCSD LCS LCSD Result % Rec % Rec Result

25

103

103

80-120

% Rec RPD Limit

Max

RPD Qualifiers

0 20

Report ID: 9017 - 388117

Page 10 of 12

Phone: (412) 826-5245

Fax: (412) 826-3433

QUALITY CONTROL DATA

Analysis Method:

AM20GAX

Workorder: 9017 480-38450

QC Batch:

DISG/3012

AM20GAX

Associated Lab Samples:

QC Batch Method:

90170005

METHOD BLANK: 20394

Blank Result Reporting Limit Qualifiers

Parameter Units

RISK

Hydrogen

nM 0.60 U 0.60

LABORATORY CONTROL SAMPLE & LCSD:

20396

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
RISK Hydrogen	nM	24	26	26	107	106	80-120	0.94	20	

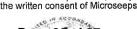
Report ID: 9017 - 388117

Page 11 of 12

CERTIFICATE OF ANALYSIS

Phone: (412) 826-5245

Fax: (412) 826-3433


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 9017 480-38450

Report ID: 9017 - 388117

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
90170001	MW-10-051613(480-38450-1)			AM20GAX	DISG/3011
90170002	MW-4-051613(480-38450-2)			AM20GAX	DISG/3011
90170003	MW-15-051613(480-38450-3)			AM20GAX	DISG/3011
90170004	MVV-11-051613(480-38450-4)			AM20GAX	DISG/3011
90170005	MW-13-051613(480-38450-5)			AM20GAX	DISG/3012

Page 12 of 12

	Sampler			I ah PM			Camer Tra	Camer Tracking No(s):	COC No.	
Client Information (Sub Contract Lab)				Deyo,	Deyo, Melissa L				480-10158.1	77
Client Contact. Shipping/Receiving	Phone:			E-Mail: meliss	a.deyo@te	E-Mail melissa deyo@testamericainc.com	ш		Page: Page 1 of 1	_
Company: Microseeps						Ank	Analysis Requested		Job #: 480-38450-1	
Pitt Way.	Due Date Requested: 5/29/2013	:pa							Preservation Codes	
	TAT Requested (da	ays):			MUS				A - HCL B - NaOH C - Zn Aceta	
State, ZIp. PA, 15238	r				小孩				D - Nitric Acid E - NaHSO4	d P - Na2O4S Q - Na2SO3 D - Na2SO2
Phone: 412-826-5245(Tel)	PO #:			10					G - Amchlor H - Ascorbic	
Email:	: MO #:			M 30 (
Project Name: 058507, GM-Lockport Groundwater Sampling	Project #: 48004014			, v,	NAME AND ADDRESS OF				entatro	w - pn 4-5 Z - other (specify)
Site:	SSOW#:			duts	A) as				oo to	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oil, BT=Tresue, A=Air)	Field Filtered Perform MS/M AM20GAX/ Hydi				1edmuN lstoT	Special Instructions/Note:
		X		Preservation Code:	X					
MW-10-051613 (480-38450-1)	5/16/13	09:12 Fastern		Water	×				N-S	
MW-4-051613 (480-38450-2)	5/16/13	10:08 Eastern		Water	×				-	
MW-15-051613 (480-38450-3)	5/16/13	11:17 Eastern		Water	×				, e	
MW-11-051613 (480-38450-4)	5/16/13	12:10 Eastern		Water	×					
MW-13-051613 (480-38450-5)	5/16/13	13:06 Eastern		Water	×				π.	
		æ								
200 11									54	
4.80										
									5 4	
									3114	
									1133	
Possible Hazard Identification					Sample	le Disposal (A f Petum To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Disposal By Lah Archive For	if samples are	retained longer i ☐ Archive For	than 1 month) Months
Oncommed Percentage I, II, III, IV, Other (specify)					Special	Instructions/QC	Special Instructions/QC Requirements:	and for		
Empty Kit Relingyished by:		Date:			Time:		Met	Method of Shipment:		
Relinquished by: (Macketter)	Date/Time: S	[6/13	8	Company	7	Received by:	129	Date/Time:	5.17.13	Company
Relinquished by:	Date/Time:	5		Company	Rece	Received by:		Date/Time:	711	Company (2)
Refinquished by:	Date/Time:			Сотрапу	Rece	Received by:		Date/Time:		Сотрапу
Custody Seals Infact: Custody Seal No.: Δ Yes Δ No					Cool	sr Temperature(s) °	Cooler Temperature(s) ^o C and Other Remarks:			

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Chain of Custody Record

2106

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

TestAmerica Buffalo

NON-CONFORMANCE FORM

			9017
Date: 5-17.13 Time of I	Receipt <u>// 00</u>	Receiver:	
Client TA			
REASON FOR NON-CONFORMAN		-	
No time of colle			
Time taken for	om coc		
			(d)
*			
			
**			
ON TAKEN:			
		Date:	Time:
name:		Date:	
		Date:	
name:			
āama:			
iama:			
aame:			
aame:			
iama:			
name:			
ON TAKEN: DE to proceed.			

Page 25 of 27

Customer Service Initials: RA

Date: 5/20/13

5/30/2013

2

3

0

8

10

12

lestAmerica bunalo				TectAmerica
10 Hazelwood Drive	ֹס	Chain of Custody Record		
Phone (716) 691-2600 Fax (716) 691-7991	,			the leader in environmental Teoting
Client Information	Sampler: Thomas Bohlen		Carrier Tracking No(s):	COC No:
Cilent Contact: Mr. Christopher Boron	Phone: (716) 844-7050	E-Mail: melissa.deyo@testamericainc.com		Page: Page (of (
Сотралу: GZA GeoEnvironmental, Inc.		Analysis Requested	pe	GZA Job #: 21.0056546.00 Task 24
Address: 535 Washington Street 11th Floor	Due Date Requested:			lš
City: Buffalo	TAT Requested (days): 3 Weeks		-	A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: NY, 14203		лл срі		
Phone: (716) 685-2300	PO#: 4047065	niV ,(si	(91£	3
Email: christopher.boron@gza.com	WO #: 58507	de Sand c	& Suff	2
Project Name: 058507, GM-Lockport Groundwater Sampling	Project #: 48004014	Acida Acida Ag, Mg, I (trans anton	əbinolr	
Sin Delohi Harrison Thermal	SSOW#: 256015	e Fatty 3 - Fe, Mr janic C: janic C: sane, Ei	kalinit <i>t</i>)	Other:
Site	_	Volatii Wetals Volatii Volatii Volatii	A lato] inA - Q X	
;	Sample (C=comp,	2K-175 260 - To 260 - To 560 - To 560 - To 560 - To 560 - To	75. , 35. 35. 36. 2. 38. 2. 38. 2. 38. 2. 38. 2. 38. 2. 38. 2. 38. 2. 38. 2. 38. 2. 38. 2. 38. 28. 28. 28. 28. 28. 28. 28. 28. 28. 2	
Sample Identification	Sample Date Time G=grab) 81*	N 35	1V Z	Special Instructions/Note:
MW-10-051613	टीक डामाड	Water	×	M. Dissolved
MW-4-051613	800)	Water	2 X	15 to
2 - MM - 12-021P13	1 1111			SVassassy
11-021PC3	120		*	/
519120-57-WM	4 (₹0¢		*	
			480-38450 Chain of	hain of Custody
Docethle Havard Identification		Samuel Diemoen / A from mary ho	od if complete and reference	of lowers then d manch)
Non-Hazard Planmable Skin Initant Poison B	son B Unknown Radiological	Return To Client By Lab	ed it samples are retained it By Lab	Archive For Months
Deliverable Requested: I, III, IV, Other (specify)		Special Instructions/QC Requirements:		
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	
Relinquist	116/13/1615	4	Date/Time;	425 Supplied 7191 5
Kelining weet at the control of the	STUDIES (LOAS)	Coppension A Received by: MTALK OULA	Date/Time: 5	VISH Company SID
G policiphum.				,
Custody Seals Intact: Custody Seal No.: △ Yes △ No		Cooler Temperature(s) °C and Other Remarks:	り、り、すり	(巨井(

TestAmerica

TestAmerica Buffalo

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 480-38450-1

Login Number: 38450 List Source: TestAmerica Buffalo

List Number: 1 Creator: Kolb, Chris M

Creator. Rolp, Criris W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

TestAmerica Buffalo

E

6

8

10

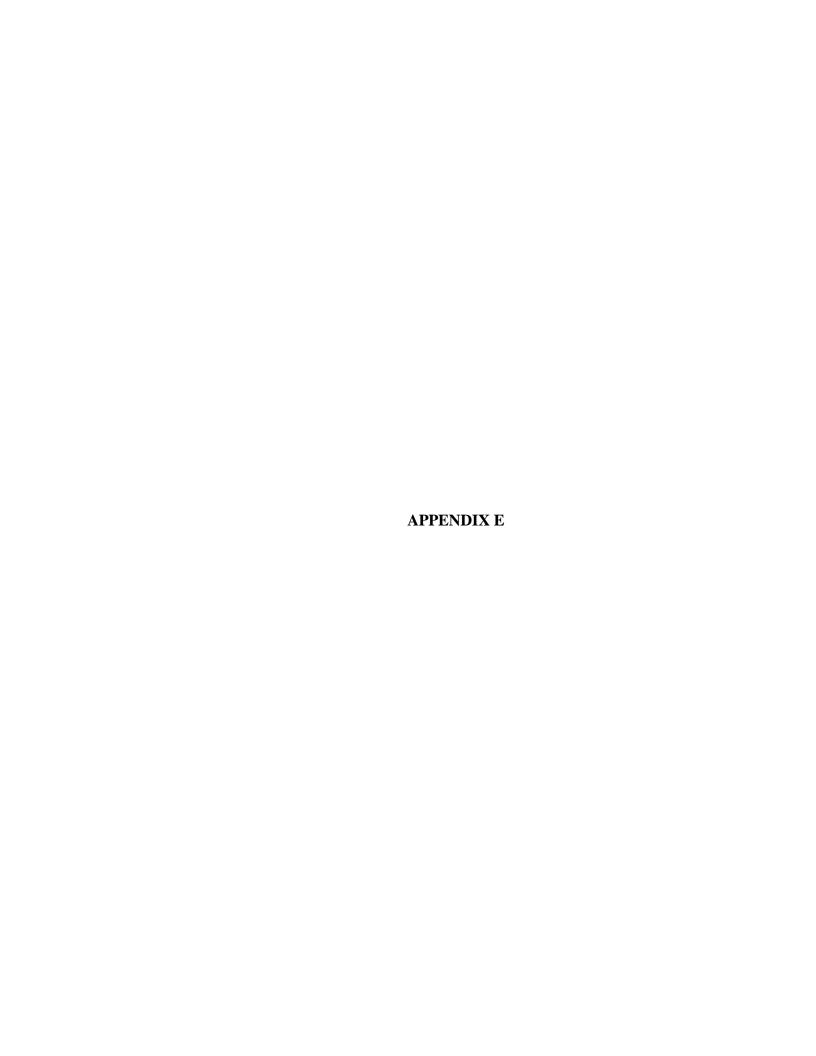
10

13

APPENDIX D ANAEROBIC BIODEGRADATION SCREENING TABLES

EPA CVOC MONITORED NATURAL ATTENUATION RANKING SYSTEM

Strength of Evidence Scorecard Delphi Harrison Thermal Systems Site GM Component Holdings, LLC Lockport, New York


Analysis	Concentration in Most Contaminated Zone	Value	EXAMPLE Lab or Field Analysis Value (mg/L)	EXAMPLE Score	MW-7	MW-4	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15
DO	<0.5 mg/L	3	3.5			3			3		3	3
DO	>5 mg/l	-3				3			3		3	3
Nitrate	<1 mg/L	2	ND	2	2	2	2	2	2	2	2	
Iron II	>1 mg/l	2	0.2			2			2	2		
Sulfate	<20 mg/L	2	243									
Sulfide	>1 mg/L	3	0.6									
Methane	<0.5 mg/L	0	0.26	0	0	0	0	0	0	0	0	0
Methane	>0.5 mg/L	3			U	U	0	0	U	U	U	0
ORP	<50 mV	1	-98.5	1	1	1		2	1	1	1	
ORP	<-100 mV	2			1	1		2	1	1	1	
рН	5< pH <9	0	6.8	0	0	0	0	0	0	0	0	0
рН	5> pH >10	-2			U	U	0	0	U	U	U	0
TOC	>20 mg/L	2	1.5									
Temp	> 20°C	1	20.4	1								
Carbon Dioxide	>2 times background (4.2)	1	6.8			1			1			1
Alkalinity	>2 times background (200)	1	372									1
Chloride	>2 times background (1440)	2	338			2			2			
Hydrogen	>1 nM	3	NT						3		3	
Hydrogen	<1nM	0	NT						3		3	
Volatile Fatty Acids	>0.1 mg/L	2	ND		2							
BTEX	>0.1 mg/L	2	ND									
PCE		0	ND									
TCE	If Daughter Product	2	190									
DCE	If Daughter Product	2	10,034	2	2	2	2	2	2			
VC	If Daughter Product	2	380.00	2	2	2	2	2	2			
1,1,1-TCA		0	ND									
DCA	If Daughter Product	2	ND									
Carbon Tetrachloride		0	ND									
Chloroethane	If Daughter Product	2	ND									
Ethene/Ethane	>0.01 mg/L or	2	0.0097		3							
Eulene/Eulane	>0.1 mg/L	3			3							
Chloroform	If Daughter Product	2	ND									
Dichloromethane	If Daughter Product	2	ND									
				8	12	15	6	8	18	5	9	5

Scoring Interpretation					
0 to 5	Inadequate evidence for anaerobic biodegradation* of chlorinated organics				
6 to 14	Limited evidence for anaerobic biodegradation* of chlorinated organics				
15 to 20	Adequate evidence for anaerobic biodegradation* of chlorinated organics				
>20	Strong evidence for anaerobic biodegradation* of chlorinated organics				
	*reductive dechlorination				

Values Taken from EPA Document **EPA/600/R-98/128**, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, 1998, Table 2.3 and Table 2.4

Notes:

- 1. ND=not detected
- 2. NT=not tested

Building 6 Utility Separation Project Hand Auger Waste Characterization Sample Results Delphi Harrison Thermal System Site Environmental Easement Area

Upper Mountain Road Lockport, New York

	NYSDEC Part	EPAs Maximum				HAND	AUGER LOC	CATION			
Parameter	375 Unrestricted Use SCOs	Concentration of Contaminants	B-1	B-2	В-3	B-4	B-5	В-7	B-8	B-22	B-23
Volatile Organic Compou	unds - EPA Method 8	260B -TCLP (mg/L)									
Benzene	NA	0.5	<	<	<	<	<	<	<	<	<
Carbon tetrachloride	NA	0.5	<	<	<	<	<	<	<	<	<
Chlorobenzene	NA	100	<	<	<	<	<	<	<	<	<
Chloroform	NA	6	<	<	<	<	<	<	<	<	<
1,2-Dichloroethane	NA	0.5	<	<	<	<	<	<	<	<	<
1,1-Dichloroethene	NA	0.7	<	<	<	<	<	<	<	<	<
2-Butanone (MEK)	NA	200	<	<	<	<	<	<	<	<	<
Tetrachloroethene	NA	0.7	<	<	<	<	<	<	<	<	<
Trichloroethene	NA	0.5	<	<	<	<	<	<	<	<	<
Vinyl chloride	NA	0.2	<	<	<	<	<	<	<	<	<
Semi-Volatile Organic Co	ompounds - EPA Met	thod 8270C-TCLP (n	ng/L)								
1,4-Dichlorobenzene	NA	7.5	<	<	<	<	<	<	<	<	<
2,4-Dinitrotoluene	NA	0.13	<	<	<	<	<	<	<	<	<
Hexachlorobenzene	NA	0.13	<	<	<	<	<	<	<	<	<
Hexachlorobutadiene	NA	0.5	<	<	<	<	<	<	<	<	<
Hexachloroethane	NA	3	<	<	<	<	<	<	<	<	<
3-Methylphenol	NA	200	<	<	<	<	<	<	<	<	<
2-Methylphenol	NA	200	<	<	<	<	<	<	<	<	<
4-Methylphenol	NA	200	<	<	<	<	<	<	<	<	<
Nitrobenzene	NA	2	<	<	<	<	<	<	<	<	<
Pentachlorophenol	NA	100	<	<	<	<	<	<	<	<	<
Pyridine	NA	5	<	<	<	<	<	<	<	<	<
2,4,5-Trichlorophenol	NA	400	<	<	<	<	<	<	<	<	<
2,4,6-Trichlorophenol	NA	2	<	<	<	<	<	<	<	<	<
Polychlorinated Bipheny											
PCB 1016	NV	NV NV	<	<	<	<	<	<	<	<	<
PCB 1221	NV	NV	<	<	<	<	<	<	<	<	<
PCB 1232	NV	NV	<	<	<	<	<	<	<	<	<
PCB 1242	NV	NV	<	<	<	<	<	<	<	<	<
PCB 1248	NV	NV	<	<	<	<	<	<	<	<	<
PCB 1254	NV	NV	<	<	<	<	<	<	<	<	<
PCB 1260	NV	NV	<	<	<	<	<	<	<	<	<
Total PCBs	0.1	NV	<	<	<	<	<	<	<	<	<
RCRA 8 Metals - EPA M											
Arsenic	NA	5	0.019	0.060	0.010	0.035	0.0089 J	0.057	0.0064 J	0.014	0.0083 J
Barium	NA	100	0.74 B	1.4 B	0.54 B	1.3 B	0.48 B	2.3 B	0.76 B	0.54 B	0.72 B
Cadmium	NA	1	0.0028	0.0049	0.0042	0.0049	0.0032	0.0029	0.0029	0.0014	0.0037
Chromium	NA	5	0.034 B	0.20 B	0.053 B	0.12 B	0.038 B	0.29 B	0.0049 B	0.037 B	0.011 B
Lead	NA	5	0.081	1.1	0.069	0.35	0.061	0.095 B	0.031 B	0.037 B	0.019
Selenium	NA	1	<	<	<	<	<	0.010 J	0.0089 J	< c	<
Silver	NA	5	<	<	<	<	<	<	<	<	<
Mercury	NA NA	0.2	<	0.00035	0.00032	<	<	<	<	<	<u> </u>
General Chemistry		V.2		0.00000	0.00002						
Flashpoint	NV	NV	>176	>176	>176	>176	>176	>176	>176	>176	>176
Tashpoint	14.4	1117	/1/0	/1/0	/1/0	/1/0	/1/0	/1/0	/1/0	/1/0	/1/0

Notes:

- 1. Analytical testing completed by Test America, Amherst, New York.
- 2. mg/kg = part per million, mg/L = parts per million
- 3. NA = Not Applicable, NV = No Value.
- 4. "J" qualifier = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.
- 5. "B" qualifier = Compound was found in the blank sample.
- 6. <= Sample result was not detected above respective method detection limits.
- 7. TCLP = Toxicity Characteristic Leaching Procedure.
- 8. PCB concentrations were compared to NYSDEC Part 375, Subpart 375-6: Unrestricted Use Soil Cleanup Objectives (SCOs).
- 9. Soil cleanup objective is for the sum of the Aroclor compound concentrations detected (Total PCBs).
- 10. TCLP concentrations were compared to the Environmental Protection Agency's (EPA) "Table 1 Maximum Concentration of Contaminants for the Toxicity Characteristic".

11. Samples were collected by Op-Tech on behalf of Delphi Corporation.

21.0056546.00 1 of 1

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-1

TestAmerica Job ID: 480-35180-1

Lab Sample ID: 480-35180-1

Matrix: Solid

Date Collected: 03/28/13 08:45 Date Received: 03/28/13 13:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			04/01/13 12:10	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			04/01/13 12:10	10
Chlorobenzene	ND		0.010	0.0075	mg/L			04/01/13 12:10	10
Chloroform	ND		0.010	0.0034	mg/L			04/01/13 12:10	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			04/01/13 12:10	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/01/13 12:10	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			04/01/13 12:10	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			04/01/13 12:10	10
Trichloroethene	ND		0.010	0.0046	mg/L			04/01/13 12:10	10
Vinyl chloride	ND		0.010	0.0090	mg/L			04/01/13 12:10	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		66 - 137			_		04/01/13 12:10	10
Toluene-d8 (Surr)	112		71 - 126					04/01/13 12:10	10
4-Bromofluorobenzene (Surr)	99		73 - 120					04/01/13 12:10	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/01/13 07:54	04/02/13 13:35	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/01/13 07:54	04/02/13 13:35	1
Hexachlorobenzene	ND	*	0.0050	0.00051	mg/L		04/01/13 07:54	04/02/13 13:35	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/01/13 07:54	04/02/13 13:35	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/01/13 07:54	04/02/13 13:35	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/01/13 07:54	04/02/13 13:35	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/01/13 07:54	04/02/13 13:35	1
4-Methylphenol	ND		0.010	0.00036	mg/L		04/01/13 07:54	04/02/13 13:35	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/01/13 07:54	04/02/13 13:35	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		04/01/13 07:54	04/02/13 13:35	1
Pyridine	ND		0.025	0.00041	mg/L		04/01/13 07:54	04/02/13 13:35	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/01/13 07:54	04/02/13 13:35	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/01/13 07:54	04/02/13 13:35	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	87		52 - 132	04/01/13 07:54	04/02/13 13:35	1
2-Fluorobiphenyl	91		48 - 120	04/01/13 07:54	04/02/13 13:35	1
2-Fluorophenol	45		20 - 120	04/01/13 07:54	04/02/13 13:35	1
Nitrobenzene-d5	94		46 - 120	04/01/13 07:54	04/02/13 13:35	1
p-Terphenyl-d14	102		67 - 150	04/01/13 07:54	04/02/13 13:35	1
Phenol-d5	32		16 - 120	04/01/13 07:54	04/02/13 13:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24	0.046	mg/Kg		03/29/13 14:31	04/01/13 11:16	1
PCB-1221	ND		0.24	0.046	mg/Kg	₽	03/29/13 14:31	04/01/13 11:16	1
PCB-1232	ND		0.24	0.046	mg/Kg	₽	03/29/13 14:31	04/01/13 11:16	1
PCB-1242	ND		0.24	0.046	mg/Kg	₽	03/29/13 14:31	04/01/13 11:16	1
PCB-1248	ND		0.24	0.046	mg/Kg	₽	03/29/13 14:31	04/01/13 11:16	1
PCB-1254	ND		0.24	0.11	mg/Kg	₽	03/29/13 14:31	04/01/13 11:16	1
PCB-1260	ND		0.24	0.11	mg/Kg	ф.	03/29/13 14:31	04/01/13 11:16	1

TestAmerica Buffalo

Page 6 of 29

4/2/2013

3

6

0

9

10

12

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Lab Sample ID: 480-35180-1

TestAmerica Job ID: 480-35180-1

Percent Solids: 91.3

Client Sample ID: B-1 Date Collected: 03/28/13 08:45 Matrix: Solid Date Received: 03/28/13 13:30

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl 69 47 - 176 03/29/13 14:31 04/01/13 11:16 Tetrachloro-m-xylene 104 46 - 175 03/29/13 14:31 04/01/13 11:16

Method: 6010B - TCLP RCRA	Metals - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.019		0.010	0.0056	mg/L		03/30/13 12:45	04/01/13 14:42	1
Barium	0.74	В	0.0020	0.00070	mg/L		03/30/13 12:45	04/01/13 14:42	1
Cadmium	0.0028		0.0010	0.00050	mg/L		03/30/13 12:45	04/01/13 14:42	1
Chromium	0.034	В	0.0040	0.0010	mg/L		03/30/13 12:45	04/01/13 14:42	1
Lead	0.081		0.0050	0.0030	mg/L		03/30/13 12:45	04/01/13 14:42	1
Selenium	ND		0.015	0.0087	mg/L		03/30/13 12:45	04/01/13 14:42	1
Silver	ND		0.0030	0.0017	mg/L		03/30/13 12:45	04/01/13 14:42	1

Method: 7470A - TCLP Mercury - TCL	.Р								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		04/01/13 07:30	04/01/13 15:01	1

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>176.0		50.0	50.0	Degrees F		-	03/29/13 08:45	1

Client Sample ID: B-2 Lab Sample ID: 480-35180-2

Date Collected: 03/28/13 09:10 Date Received: 03/28/13 13:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			04/01/13 12:38	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			04/01/13 12:38	10
Chlorobenzene	ND		0.010	0.0075	mg/L			04/01/13 12:38	10
Chloroform	ND		0.010	0.0034	mg/L			04/01/13 12:38	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			04/01/13 12:38	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/01/13 12:38	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			04/01/13 12:38	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			04/01/13 12:38	10
Trichloroethene	ND		0.010	0.0046	mg/L			04/01/13 12:38	10
Vinyl chloride	ND		0.010	0.0090	mg/L			04/01/13 12:38	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

ourroguic	miccovery	Qualifici	Lillies		rrepared	Analyzea	Dii i uc	
1,2-Dichloroethane-d4 (Surr)	121		66 - 137	_		04/01/13 12:38	10	
Toluene-d8 (Surr)	111		71 - 126			04/01/13 12:38	10	
4-Bromofluorobenzene (Surr)	99		73 - 120			04/01/13 12:38	10	

Method: 8270C - TCLP Semiv	olatiles - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/01/13 07:54	04/02/13 14:00	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/01/13 07:54	04/02/13 14:00	1
Hexachlorobenzene	ND	*	0.0050	0.00051	mg/L		04/01/13 07:54	04/02/13 14:00	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/01/13 07:54	04/02/13 14:00	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/01/13 07:54	04/02/13 14:00	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/01/13 07:54	04/02/13 14:00	1

TestAmerica Buffalo

Page 7 of 29

Matrix: Solid

4/2/2013

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-2

Flashpoint

TestAmerica Job ID: 480-35180-1

Lab Sample ID: 480-35180-2

Matrix: Solid

Date Collected: 03/28/13 09:10 Date Received: 03/28/13 13:30

Method: 8270C - TCLP Semiv Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/01/13 07:54	04/02/13 14:00	
4-Methylphenol	ND		0.010	0.00036	mg/L		04/01/13 07:54	04/02/13 14:00	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/01/13 07:54	04/02/13 14:00	1
Pentachlorophenol	ND		0.010	0.0022			04/01/13 07:54	04/02/13 14:00	1
Pyridine	ND		0.025	0.00041	mg/L		04/01/13 07:54	04/02/13 14:00	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/01/13 07:54	04/02/13 14:00	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/01/13 07:54	04/02/13 14:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	77		52 - 132				04/01/13 07:54	04/02/13 14:00	1
2-Fluorobiphenyl	73		48 - 120				04/01/13 07:54	04/02/13 14:00	1
2-Fluorophenol	41		20 - 120				04/01/13 07:54	04/02/13 14:00	1
Nitrobenzene-d5	76		46 - 120				04/01/13 07:54	04/02/13 14:00	
p-Terphenyl-d14	91		67 ₋ 150				04/01/13 07:54	04/02/13 14:00	1
Phenol-d5	29		16 - 120				04/01/13 07:54	04/02/13 14:00	1
Method: 8082 - Polychlorinate	ed Biphenvis (PCI	3s) by Gas (Chromatogran	hv					
Analyte		Qualifier	RL	-	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.040	mg/Kg	₩	03/29/13 14:31	04/01/13 11:31	1
PCB-1221	ND		0.21	0.040	mg/Kg	₩	03/29/13 14:31	04/01/13 11:31	1
PCB-1232	ND		0.21	0.040	mg/Kg	₩	03/29/13 14:31	04/01/13 11:31	1
PCB-1242	ND		0.21	0.040	mg/Kg	₽	03/29/13 14:31	04/01/13 11:31	1
PCB-1248	ND		0.21	0.040	mg/Kg	₩	03/29/13 14:31	04/01/13 11:31	1
PCB-1254	ND		0.21	0.096	mg/Kg	₩	03/29/13 14:31	04/01/13 11:31	1
PCB-1260	ND		0.21	0.096	mg/Kg	*	03/29/13 14:31	04/01/13 11:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	67		47 - 176				03/29/13 14:31	04/01/13 11:31	
Tetrachloro-m-xylene	103		46 - 175				03/29/13 14:31	04/01/13 11:31	1
Method: 6010B - TCLP RCRA									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.060		0.010	0.0056	mg/L		03/30/13 12:45	04/01/13 14:45	1
Barium	1.4	В	0.0020	0.00070	mg/L		03/30/13 12:45	04/01/13 14:45	1
Cadmium	0.0049		0.0010	0.00050	mg/L		03/30/13 12:45	04/01/13 14:45	1
Chromium	0.20	В	0.0040	0.0010	•		03/30/13 12:45	04/01/13 14:45	1
Lead	1.1		0.0050	0.0030			03/30/13 12:45	04/01/13 14:45	1
Selenium	ND		0.015	0.0087			03/30/13 12:45	04/01/13 14:45	1
Silver	ND		0.0030	0.0017	mg/L		03/30/13 12:45	04/01/13 14:45	1
Method: 7470A - TCLP Mercu	•						_		
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Method: 7470A - TCLP Mercur Analyte Mercury	•	Qualifier	RL 0.00020	MDL 0.00012		D	Prepared 04/01/13 07:30	Analyzed 04/01/13 15:03	Dil Fac
Analyte	Result 0.00035	Qualifier Qualifier		0.00012		<u>D</u>			

03/29/13 08:45

50.0

50.0 Degrees F

>176.0

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Lab Sample ID: 480-35180-3

TestAmerica Job ID: 480-35180-1

Matrix: Solid

Client Sample ID: B-3

PCB-1260

Date Collected: 03/28/13 09:25 Date Received: 03/28/13 13:30

Method: 8260B - TCLP Volatiles - TCLP Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Benzene ND 0.010 0.0041 mg/L 04/01/13 13:05 10 ND 0.010 Carbon tetrachloride 0.0027 mg/L 04/01/13 13:05 10 Chlorobenzene ND 0.010 0.0075 mg/L 04/01/13 13:05 10 Chloroform ND 0.010 0.0034 mg/L 04/01/13 13:05 10 1,2-Dichloroethane ND 0.010 0.0021 mg/L 04/01/13 13:05 10 1,1-Dichloroethene ND 0.010 0.0029 mg/L 04/01/13 13:05 10 2-Butanone (MEK) ND 0.050 0.013 mg/L 04/01/13 13:05 10 Tetrachloroethene ND 0.010 0.0036 mg/L 04/01/13 13:05 10 Trichloroethene ND 0.010 0.0046 mg/L 04/01/13 13:05 10 Vinyl chloride ND 0.010 0.0090 mg/L 04/01/13 13:05 10

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	124		66 - 137		04/01/13 13:05	10
١	Toluene-d8 (Surr)	112		71 - 126		04/01/13 13:05	10
l	4-Bromofluorobenzene (Surr)	99		73 - 120		04/01/13 13:05	10

Method: 8270C - TCLP Semiv	olatiles - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/01/13 07:54	04/02/13 14:26	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/01/13 07:54	04/02/13 14:26	1
Hexachlorobenzene	ND	*	0.0050	0.00051	mg/L		04/01/13 07:54	04/02/13 14:26	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/01/13 07:54	04/02/13 14:26	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/01/13 07:54	04/02/13 14:26	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/01/13 07:54	04/02/13 14:26	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/01/13 07:54	04/02/13 14:26	1
4-Methylphenol	ND		0.010	0.00036	mg/L		04/01/13 07:54	04/02/13 14:26	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/01/13 07:54	04/02/13 14:26	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		04/01/13 07:54	04/02/13 14:26	1
Pyridine	ND		0.025	0.00041	mg/L		04/01/13 07:54	04/02/13 14:26	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/01/13 07:54	04/02/13 14:26	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/01/13 07:54	04/02/13 14:26	1
·									

Analyzed	Dil Fac
04/02/13 14:26	1
04/02/13 14:26	1
04/02/13 14:26	1
04/02/13 14:26	1
04/02/13 14:26	1
04/02/13 14:26	1
	04/02/13 14:26 04/02/13 14:26 04/02/13 14:26 04/02/13 14:26 04/02/13 14:26

Method: 8082 - Polychlorinate	ed Biphenyls (PCBs	i) by Gas Chi	romatograph	y					
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND		0.33	0.064	mg/Kg		03/29/13 14:31	04/01/13 11:46	1
PCB-1221	ND		0.33	0.064	mg/Kg	₽	03/29/13 14:31	04/01/13 11:46	1
PCB-1232	ND		0.33	0.064	mg/Kg	₽	03/29/13 14:31	04/01/13 11:46	1
PCB-1242	ND		0.33	0.064	mg/Kg	*	03/29/13 14:31	04/01/13 11:46	1
PCB-1248	ND		0.33	0.064	mg/Kg	₽	03/29/13 14:31	04/01/13 11:46	1
PCB-1254	ND		0.33	0.15	mg/Kg	₩	03/29/13 14:31	04/01/13 11:46	1

0.33

0.15 mg/Kg

ND

TestAmerica Buffalo

04/01/13 11:46

03/29/13 14:31

Page 9 of 29

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

TestAmerica Job ID: 480-35180-1

Lab Sample ID: 480-35180-3

Matrix: Solid

Percent Solids: 69.1

C	lie	nt	Sa	ım	pΙ	e I	ID	÷	В	-	j
_		_						_		_	

Date Collected: 03/28/13 09:25 Date Received: 03/28/13 13:30

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	68		47 - 176			-	03/29/13 14:31	04/01/13 11:46	1
Tetrachloro-m-xylene	106		46 - 175				03/29/13 14:31	04/01/13 11:46	1
Method: 6010B - TCLP RCRA Metals Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.010		0.010	0.0056	mg/L		03/30/13 12:45	04/01/13 14:47	1
Barium	0.54	В	0.0020	0.00070	mg/L		03/30/13 12:45	04/01/13 14:47	1
Cadmium	0.0042		0.0010	0.00050	mg/L		03/30/13 12:45	04/01/13 14:47	1
Chromium	0.053	В	0.0040	0.0010	mg/L		03/30/13 12:45	04/01/13 14:47	1
Lead	0.069		0.0050	0.0030	mg/L		03/30/13 12:45	04/01/13 14:47	1
Selenium	ND		0.015	0.0087	mg/L		03/30/13 12:45	04/01/13 14:47	1
Silver	ND		0.0030	0.0017	mg/L		03/30/13 12:45	04/01/13 14:47	1

	Method: 7470A - TCLP Mercury - TC	LP								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.00032		0.00020	0.00012	mg/L		04/01/13 07:30	04/01/13 15:05	1
i										

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>176.0		50.0	50.0	Degrees F			03/29/13 08:45	1

Client Sample ID: B-4

Date Collected: 03/28/13 09:40

Lab Sample ID: 480-35180-4

Matrix: Solid

Date Received: 03/28/13 13:30

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			04/01/13 13:33	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			04/01/13 13:33	10
Chlorobenzene	ND		0.010	0.0075	mg/L			04/01/13 13:33	10
Chloroform	ND		0.010	0.0034	mg/L			04/01/13 13:33	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			04/01/13 13:33	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/01/13 13:33	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			04/01/13 13:33	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			04/01/13 13:33	10
Trichloroethene	ND		0.010	0.0046	mg/L			04/01/13 13:33	10
Vinyl chloride	ND		0.010	0.0090	mg/L			04/01/13 13:33	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	123		66 - 137			-		04/01/13 13:33	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/01/13 07:54	04/02/13 14:51	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/01/13 07:54	04/02/13 14:51	1
Hexachlorobenzene	ND	*	0.0050	0.00051	mg/L		04/01/13 07:54	04/02/13 14:51	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/01/13 07:54	04/02/13 14:51	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/01/13 07:54	04/02/13 14:51	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/01/13 07:54	04/02/13 14:51	1

71 - 126

73 - 120

112

TestAmerica Buffalo

04/01/13 13:33

04/01/13 13:33

Page 10 of 29

113

14

15

10

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

TestAmerica Job ID: 480-35180-1

Lab Sample ID: 480-35180-4

Matrix: Solid

Client Sample ID: B-4

Flashpoint

Date Collected: 03/28/13 09:40 Date Received: 03/28/13 13:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/01/13 07:54	04/02/13 14:51	
4-Methylphenol	ND		0.010	0.00036	mg/L		04/01/13 07:54	04/02/13 14:51	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/01/13 07:54	04/02/13 14:51	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		04/01/13 07:54	04/02/13 14:51	1
Pyridine	ND		0.025	0.00041	mg/L		04/01/13 07:54	04/02/13 14:51	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/01/13 07:54	04/02/13 14:51	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/01/13 07:54	04/02/13 14:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	85		52 - 132				04/01/13 07:54	04/02/13 14:51	1
2-Fluorobiphenyl	85		48 - 120				04/01/13 07:54	04/02/13 14:51	1
2-Fluorophenol	42		20 - 120				04/01/13 07:54	04/02/13 14:51	1
Nitrobenzene-d5	87		46 - 120				04/01/13 07:54	04/02/13 14:51	1
p-Terphenyl-d14	103		67 - 150				04/01/13 07:54	04/02/13 14:51	1
Phenol-d5	31		16 - 120				04/01/13 07:54	04/02/13 14:51	1
Method: 8082 - Polychlorina		Bs) by Gas C	Chromatograp RL	-	Unit	D	Prepared	Analyzed	Dil Fac
Analyte PCB-1016	ND		0.47	0.091		— 	03/29/13 14:31	04/01/13 12:13	1
					mg/Kg				•
PCB-1221	ND		0.47	0.091	mg/Kg	₩	03/29/13 14:31	04/01/13 12:13	1
PCB-1232	ND		0.47	0.091	mg/Kg		03/29/13 14:31	04/01/13 12:13	1
PCB-1242	ND		0.47	0.091	mg/Kg		03/29/13 14:31	04/01/13 12:13	1
PCB-1248	ND		0.47	0.091	mg/Kg	\$	03/29/13 14:31	04/01/13 12:13	1
PCB-1254 PCB-1260	ND ND		0.47		mg/Kg mg/Kg	· · · · · · · · · · · · · · · · · · ·	03/29/13 14:31 03/29/13 14:31	04/01/13 12:13 04/01/13 12:13	1 1
				0.22	mg/rtg				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	81		47 - 176				03/29/13 14:31	04/01/13 12:13	1
Tetrachloro-m-xylene	98		46 - 175				03/29/13 14:31	04/01/13 12:13	1
Method: 6010B - TCLP RCRA Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.035		0.010	0.0056	mg/L	— <u> </u>	03/30/13 12:45	04/01/13 14:50	1
Barium	1.3	В	0.0020	0.00070	mg/L		03/30/13 12:45	04/01/13 14:50	
Cadmium	0.0049	_	0.0010	0.00050	mg/L		03/30/13 12:45	04/01/13 14:50	1
Chromium	0.12	R	0.0040	0.0010			03/30/13 12:45	04/01/13 14:50	1
Lead	0.35	_	0.0050	0.0030	•		03/30/13 12:45	04/01/13 14:50	1
Selenium	ND		0.0050	0.0030			03/30/13 12:45	04/01/13 14:50	1
Silver	ND ND		0.0030	0.0007			03/30/13 12:45	04/01/13 14:50	' 1
			3.0000	0.0017	9, =		35/05/10 12.40	5 110 11 10 17.00	'
Method: 7470A - TCLP Mercı Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012			04/01/13 07:30	04/01/13 15:06	1
General Chemistry									
-	. .,	Ouglifien	DI.	DI.	I I mid	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	KL	Unit	D	Frepareu	Allalyzeu	DII Fac

03/29/13 08:45

50.0

>176.0

50.0 Degrees F

4

5

9

10

12

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

TestAmerica Job ID: 480-35185-1

Lab Sample ID: 480-35185-1

Matrix: Solid

Client Sample ID: B-5
Date Collected: 03/28/13 10:10
Date Received: 03/28/13 13:30

Method: 8260B - TCLP Volatile Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	0.010				гтератец		10
Benzene	ND			0.0041	Ü			04/01/13 14:00	
Carbon tetrachloride	ND		0.010	0.0027	mg/L			04/01/13 14:00	10
Chlorobenzene	ND		0.010	0.0075	mg/L			04/01/13 14:00	10
Chloroform	ND		0.010	0.0034	mg/L			04/01/13 14:00	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			04/01/13 14:00	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/01/13 14:00	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			04/01/13 14:00	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			04/01/13 14:00	10
Trichloroethene	ND		0.010	0.0046	mg/L			04/01/13 14:00	10
Vinyl chloride	ND		0.010	0.0090	mg/L			04/01/13 14:00	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		66 - 137			-		04/01/13 14:00	10
Toluene-d8 (Surr)	110		71 - 126					04/01/13 14:00	10
4-Bromofluorobenzene (Surr)	98		73 - 120					04/01/13 14:00	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/01/13 07:54	04/02/13 15:16	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/01/13 07:54	04/02/13 15:16	1
Hexachlorobenzene	ND	*	0.0050	0.00051	mg/L		04/01/13 07:54	04/02/13 15:16	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/01/13 07:54	04/02/13 15:16	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/01/13 07:54	04/02/13 15:16	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/01/13 07:54	04/02/13 15:16	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/01/13 07:54	04/02/13 15:16	1
4-Methylphenol	ND		0.010	0.00036	mg/L		04/01/13 07:54	04/02/13 15:16	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/01/13 07:54	04/02/13 15:16	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		04/01/13 07:54	04/02/13 15:16	1
Pyridine	ND		0.025	0.00041	mg/L		04/01/13 07:54	04/02/13 15:16	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/01/13 07:54	04/02/13 15:16	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/01/13 07:54	04/02/13 15:16	1

gate	%Recovery	Qualifier	Limits	Prepared	Analyzed
4,6-Tribromophenol	85		52 - 132	04/01/13 07:54	04/02/13 15:16
2-Fluorobiphenyl	87		48 - 120	04/01/13 07:54	04/02/13 15:16
2-Fluorophenol	48		20 - 120	04/01/13 07:54	04/02/13 15:16
Nitrobenzene-d5	93		46 - 120	04/01/13 07:54	04/02/13 15:16
p-Terphenyl-d14	102		67 - 150	04/01/13 07:54	04/02/13 15:16
Phenol-d5	34		16 - 120	04/01/13 07:54	04/02/13 15:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.29	0.057	mg/Kg	*	03/29/13 14:31	04/01/13 12:28	1
PCB-1221	ND		0.29	0.057	mg/Kg	₽	03/29/13 14:31	04/01/13 12:28	1
PCB-1232	ND		0.29	0.057	mg/Kg	₽	03/29/13 14:31	04/01/13 12:28	1
PCB-1242	ND		0.29	0.057	mg/Kg	₽	03/29/13 14:31	04/01/13 12:28	1
PCB-1248	ND		0.29	0.057	mg/Kg	₩	03/29/13 14:31	04/01/13 12:28	1
PCB-1254	ND		0.29	0.14	mg/Kg	₩	03/29/13 14:31	04/01/13 12:28	1
PCB-1260	ND		0.29	0.14	mg/Kg	ф.	03/29/13 14:31	04/01/13 12:28	1

TestAmerica Buffalo

Page 6 of 23

4

6

8

40

11

13

14

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-5

Date Collected: 03/28/13 10:10

Date Received: 03/28/13 13:30

TestAmerica Job ID: 480-35185-1

Lab Sample ID: 480-35185-1

Matrix: Solid

Percent Solids: 75.7

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	86		47 - 176				03/29/13 14:31	04/01/13 12:28	
Tetrachloro-m-xylene	115		46 - 175				03/29/13 14:31	04/01/13 12:28	
Method: 6010B - TCLP RCRA	A Metals - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.0089	J	0.010	0.0056	mg/L		03/30/13 12:45	04/01/13 14:52	
Barium	0.48	В	0.0020	0.00070	mg/L		03/30/13 12:45	04/01/13 14:52	
Cadmium	0.0032		0.0010	0.00050	mg/L		03/30/13 12:45	04/01/13 14:52	
Chromium	0.038	В	0.0040	0.0010	mg/L		03/30/13 12:45	04/01/13 14:52	
Lead	0.061		0.0050	0.0030	mg/L		03/30/13 12:45	04/01/13 14:52	
Selenium	ND		0.015	0.0087	mg/L		03/30/13 12:45	04/01/13 14:52	
Silver	ND		0.0030	0.0017	mg/L		03/30/13 12:45	04/01/13 14:52	
Method: 7470A - TCLP Merc	ury - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		04/01/13 07:30	04/01/13 15:08	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Flashpoint	>176.0		50.0	50.0	Degrees F			03/29/13 08:45	-

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-7

Date Collected: 03/29/13 08:55

TestAmerica Job ID: 480-35270-2

Lab Sample ID: 480-35270-2

Matrix: Solid

Date Received: 03/29/13 12:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			04/03/13 06:58	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			04/03/13 06:58	10
Chlorobenzene	ND		0.010	0.0075	mg/L			04/03/13 06:58	10
Chloroform	ND		0.010	0.0034	mg/L			04/03/13 06:58	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			04/03/13 06:58	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/03/13 06:58	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			04/03/13 06:58	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			04/03/13 06:58	10
Trichloroethene	ND		0.010	0.0046	mg/L			04/03/13 06:58	10
Vinyl chloride	ND		0.010	0.0090	mg/L			04/03/13 06:58	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		66 - 137			_		04/03/13 06:58	10
Toluene-d8 (Surr)	98		71 - 126					04/03/13 06:58	10
4-Bromofluorobenzene (Surr)	89		73 - 120					04/03/13 06:58	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/02/13 14:16	04/03/13 18:32	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/02/13 14:16	04/03/13 18:32	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		04/02/13 14:16	04/03/13 18:32	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/02/13 14:16	04/03/13 18:32	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/02/13 14:16	04/03/13 18:32	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/02/13 14:16	04/03/13 18:32	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/02/13 14:16	04/03/13 18:32	1
4-Methylphenol	ND		0.010	0.00036	mg/L		04/02/13 14:16	04/03/13 18:32	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/02/13 14:16	04/03/13 18:32	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		04/02/13 14:16	04/03/13 18:32	1
Pyridine	ND		0.025	0.00041	mg/L		04/02/13 14:16	04/03/13 18:32	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/02/13 14:16	04/03/13 18:32	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/02/13 14:16	04/03/13 18:32	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	97		52 - 132	04/02/13 14:16	04/03/13 18:32	1
2-Fluorobiphenyl	88		48 - 120	04/02/13 14:16	04/03/13 18:32	1
2-Fluorophenol	47		20 - 120	04/02/13 14:16	04/03/13 18:32	1
Nitrobenzene-d5	89		46 - 120	04/02/13 14:16	04/03/13 18:32	1
p-Terphenyl-d14	106		67 - 150	04/02/13 14:16	04/03/13 18:32	1
Phenol-d5	35		16 - 120	04/02/13 14:16	04/03/13 18:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.28	0.055	mg/Kg	₩	04/01/13 19:04	04/02/13 18:40	1
PCB-1221	ND		0.28	0.055	mg/Kg	₽	04/01/13 19:04	04/02/13 18:40	1
PCB-1232	ND		0.28	0.055	mg/Kg	₽	04/01/13 19:04	04/02/13 18:40	1
PCB-1242	ND		0.28	0.055	mg/Kg	₽	04/01/13 19:04	04/02/13 18:40	1
PCB-1248	ND		0.28	0.055	mg/Kg	₩	04/01/13 19:04	04/02/13 18:40	1
PCB-1254	ND		0.28	0.13	mg/Kg	₩	04/01/13 19:04	04/02/13 18:40	1
PCB-1260	ND		0.28	0.13	mg/Kg	\$	04/01/13 19:04	04/02/13 18:40	1

TestAmerica Buffalo

Page 6 of 30

4/4/2013

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

TestAmerica Job ID: 480-35270-2

03/30/13 10:50

Matrix: Solid

Client Sample ID: B-7 Lab Sample ID: 480-35270-2

Date Collected: 03/29/13 08:55 Matrix: Solid Date Received: 03/29/13 12:45 Percent Solids: 81.9

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	96		47 - 176				04/01/13 19:04	04/02/13 18:40	1
Tetrachloro-m-xylene	111		46 - 175				04/01/13 19:04	04/02/13 18:40	1
- Method: 6010B - TCLP RCRA	A Metals - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.057		0.010	0.0056	mg/L		04/02/13 12:55	04/03/13 11:42	1
Barium	2.3	В	0.0020	0.00070	mg/L		04/02/13 12:55	04/03/13 11:42	1
Cadmium	0.0029		0.0010	0.00050	mg/L		04/02/13 12:55	04/03/13 11:42	1
Chromium	0.29	В	0.0040	0.0010	mg/L		04/02/13 12:55	04/03/13 11:42	1
Lead	0.095	В	0.0050	0.0030	mg/L		04/02/13 12:55	04/03/13 11:42	1
Selenium	0.010	J	0.015	0.0087	mg/L		04/02/13 12:55	04/03/13 11:42	1
Silver	ND		0.0030	0.0017	mg/L		04/02/13 12:55	04/03/13 11:42	1
- Method: 7470A - TCLP Merci	ıry - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		04/02/13 13:15	04/02/13 15:53	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: B-6 Lab Sample ID: 480-35270-4

50.0

50.0 Degrees F

Date Collected: 03/29/13 09:35

>176.0

Date Received: 03/29/13 12:45

4-Bromofluorobenzene (Surr)

Flashpoint

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			04/03/13 07:22	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			04/03/13 07:22	10
Chlorobenzene	ND		0.010	0.0075	mg/L			04/03/13 07:22	10
Chloroform	ND		0.010	0.0034	mg/L			04/03/13 07:22	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			04/03/13 07:22	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/03/13 07:22	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			04/03/13 07:22	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			04/03/13 07:22	10
Trichloroethene	ND		0.010	0.0046	mg/L			04/03/13 07:22	10
Vinyl chloride	ND		0.010	0.0090	mg/L			04/03/13 07:22	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		66 - 137			-		04/03/13 07:22	10
Toluene-d8 (Surr)	100		71 - 126					04/03/13 07:22	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/02/13 14:16	04/03/13 17:46	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/02/13 14:16	04/03/13 17:46	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		04/02/13 14:16	04/03/13 17:46	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/02/13 14:16	04/03/13 17:46	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/02/13 14:16	04/03/13 17:46	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/02/13 14:16	04/03/13 17:46	1

73 - 120

04/03/13 07:22

Page 7 of 30

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-21

Date Collected: 03/29/13 08:25

Date Received: 03/29/13 12:45

TestAmerica Job ID: 480-35270-1

Lab Sample ID: 480-35270-1

Matrix: Solid

Percent Solids: 80.9

Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	83	47 - 176			04/01/13 19:04	04/02/13 18:25	1
Tetrachloro-m-xylene	87	46 - 175			04/01/13 19:04	04/02/13 18:25	1
Method: 6010B - TCLP RCRA Meta	als - TCLP						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0066	J	0.010	0.0056	mg/L		04/02/13 12:55	04/03/13 11:40	1
Barium	0.22	В	0.0020	0.00070	mg/L		04/02/13 12:55	04/03/13 11:40	1
Cadmium	0.0084		0.0010	0.00050	mg/L		04/02/13 12:55	04/03/13 11:40	1
Chromium	0.019	В	0.0040	0.0010	mg/L		04/02/13 12:55	04/03/13 11:40	1
Lead	0.44	В	0.0050	0.0030	mg/L		04/02/13 12:55	04/03/13 11:40	1
Selenium	ND		0.015	0.0087	mg/L		04/02/13 12:55	04/03/13 11:40	1
Silver	ND		0.0030	0.0017	mg/L		04/02/13 12:55	04/03/13 11:40	1

Method: 7470A - TCLP Mercury - TCLP									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		04/02/13 13:15	04/02/13 15:51	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>176.0		50.0	50.0	Degrees F			04/01/13 09:00	1

Client Sample ID: B-8

Lab Sample ID: 480-35270-3

Date Collected: 03/29/13 09:10

Matrix: Solid

Date Collected: 03/29/13 09:10
Date Received: 03/29/13 12:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			04/03/13 12:38	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			04/03/13 12:38	10
Chlorobenzene	ND		0.010	0.0075	mg/L			04/03/13 12:38	10
Chloroform	ND		0.010	0.0034	mg/L			04/03/13 12:38	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			04/03/13 12:38	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/03/13 12:38	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			04/03/13 12:38	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			04/03/13 12:38	10
Trichloroethene	ND		0.010	0.0046	mg/L			04/03/13 12:38	10
Vinyl chloride	ND		0.010	0.0090	mg/L			04/03/13 12:38	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	108		66 137			-		04/03/13 12:38	10

Surroyale	∕₀Recovery	Qualifier	Lillits	rrepareu	Allalyzeu	DII Fac	
1,2-Dichloroethane-d4 (Surr)	108		66 - 137		04/03/13 12:38	10	
Toluene-d8 (Surr)	97		71 - 126		04/03/13 12:38	10	
4-Bromofluorobenzene (Surr)	91		73 - 120		04/03/13 12:38	10	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/02/13 14:16	04/03/13 18:55	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/02/13 14:16	04/03/13 18:55	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		04/02/13 14:16	04/03/13 18:55	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/02/13 14:16	04/03/13 18:55	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/02/13 14:16	04/03/13 18:55	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/02/13 14:16	04/03/13 18:55	1

TestAmerica Buffalo

Page 8 of 37

4/4/2013

4

5

7

9

10

12

13

-

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-8

p-Terphenyl-d14

Phenol-d5

Date Collected: 03/29/13 09:10

Date Received: 03/29/13 12:45

Lab Sample ID: 480-35270-3

TestAmerica Job ID: 480-35270-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/02/13 14:16	04/03/13 18:55	1
4-Methylphenol	ND		0.010	0.00036	mg/L		04/02/13 14:16	04/03/13 18:55	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/02/13 14:16	04/03/13 18:55	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		04/02/13 14:16	04/03/13 18:55	1
Pyridine	ND		0.025	0.00041	mg/L		04/02/13 14:16	04/03/13 18:55	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/02/13 14:16	04/03/13 18:55	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/02/13 14:16	04/03/13 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	84		52 - 132				04/02/13 14:16	04/03/13 18:55	1
2-Fluorobiphenyl	76		48 - 120				04/02/13 14:16	04/03/13 18:55	1
2-Fluorophenol	42		20 - 120				04/02/13 14:16	04/03/13 18:55	1
Nitrobenzene-d5	79		46 - 120				04/02/13 14:16	04/03/13 18:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.28	0.055	mg/Kg	\	04/01/13 19:04	04/02/13 18:56	1
PCB-1221	ND		0.28	0.055	mg/Kg	₽	04/01/13 19:04	04/02/13 18:56	1
PCB-1232	ND		0.28	0.055	mg/Kg	₽	04/01/13 19:04	04/02/13 18:56	1
PCB-1242	ND		0.28	0.055	mg/Kg	₽	04/01/13 19:04	04/02/13 18:56	1
PCB-1248	ND		0.28	0.055	mg/Kg	₽	04/01/13 19:04	04/02/13 18:56	1
PCB-1254	ND		0.28	0.13	mg/Kg	₽	04/01/13 19:04	04/02/13 18:56	1
PCB-1260	ND		0.28	0.13	mg/Kg	₩	04/01/13 19:04	04/02/13 18:56	1

67 - 150

16 - 120

82

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	102		47 - 176	04/01/13 19:04	04/02/13 18:56	1
Tetrachloro-m-xylene	117		46 - 175	04/01/13 19:04	04/02/13 18:56	1

Method: 6010B - TCLP R Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0064	J	0.010	0.0056	mg/L		04/02/13 12:55	04/03/13 11:45	1
Barium	0.76	В	0.0020	0.00070	mg/L		04/02/13 12:55	04/03/13 11:45	1
Cadmium	0.0029		0.0010	0.00050	mg/L		04/02/13 12:55	04/03/13 11:45	1
Chromium	0.0049	В	0.0040	0.0010	mg/L		04/02/13 12:55	04/03/13 11:45	1
Lead	0.031	В	0.0050	0.0030	mg/L		04/02/13 12:55	04/03/13 11:45	1
Selenium	0.0089	J	0.015	0.0087	mg/L		04/02/13 12:55	04/03/13 11:45	1
Silver	ND		0.0030	0.0017	mg/L		04/02/13 12:55	04/03/13 11:45	1

Method: 7470A - TCLP Mercury - TC	LP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		04/02/13 13:15	04/02/13 15:55	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>176.0		50.0	50.0	Degrees F			04/01/13 09:00	1

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport Client Sample ID: B-20

Date Collected: 03/28/13 12:55

Date Received: 03/28/13 13:30

TestAmerica Job ID: 480-35186-1

Lab Sample ID: 480-35186-7

Matrix: Solid

Percent Solids: 85.5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	85		47 - 176				03/29/13 14:31	04/01/13 15:26	1
Tetrachloro-m-xylene	110		46 - 175				03/29/13 14:31	04/01/13 15:26	1
- Method: 6010B - TCLP RCRA N	Metals - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.010	0.0056	mg/L		04/02/13 12:55	04/03/13 12:37	1
Barium	0.21	В	0.0020	0.00070	mg/L		04/02/13 12:55	04/03/13 12:37	1
Cadmium	0.0061		0.0010	0.00050	mg/L		04/02/13 12:55	04/03/13 12:37	1
Chromium	0.0038	JB	0.0040	0.0010	mg/L		04/02/13 12:55	04/03/13 12:37	1
Lead	0.082	В	0.0050	0.0030	mg/L		04/02/13 12:55	04/03/13 12:37	1
Selenium	ND		0.015	0.0087	mg/L		04/02/13 12:55	04/03/13 12:37	1
Silver	ND		0.0030	0.0017	mg/L		04/02/13 12:55	04/03/13 12:37	1
- Method: 7470A - TCLP Mercury	/ - TCLP								
Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Mercury ND 0.00020 0.00012 mg/L 04/02/13 13:15 04/02/13 16:23

General Chemistry Analyte Result Qualifier Dil Fac RLRL Unit D Prepared Analyzed >176.0 50.0 50.0 Degrees F 04/01/13 09:00 Flashpoint

Client Sample ID: B-22 Lab Sample ID: 480-35186-8

Date Collected: 03/28/13 10:25 **Matrix: Solid** Date Received: 03/28/13 13:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			04/04/13 13:33	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			04/04/13 13:33	10
Chlorobenzene	ND		0.010	0.0075	mg/L			04/04/13 13:33	10
Chloroform	ND		0.010	0.0034	mg/L			04/04/13 13:33	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			04/04/13 13:33	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/04/13 13:33	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			04/04/13 13:33	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			04/04/13 13:33	10
Trichloroethene	ND		0.010	0.0046	mg/L			04/04/13 13:33	10
Vinyl chloride	ND		0.010	0.0090	mg/L			04/04/13 13:33	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	701 Tecovery	Qualifier	Lillits	rrepareu	Allalyzeu	Diriac	
1,2-Dichloroethane-d4 (Surr)	99		66 - 137	 	04/04/13 13:33	10	
Toluene-d8 (Surr)	117		71 - 126		04/04/13 13:33	10	
4-Bromofluorobenzene (Surr)	108		73 - 120		04/04/13 13:33	10	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/02/13 14:16	04/03/13 23:07	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/02/13 14:16	04/03/13 23:07	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		04/02/13 14:16	04/03/13 23:07	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/02/13 14:16	04/03/13 23:07	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/02/13 14:16	04/03/13 23:07	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/02/13 14:16	04/03/13 23:07	1

4/8/2013

Page 17 of 43

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-22

TestAmerica Job ID: 480-35186-1

Lab Sample ID: 480-35186-8

Matrix: Solid

Date Collected: 03/28/13 10:25 Date Received: 03/28/13 13:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/02/13 14:16	04/03/13 23:07	1
4-Methylphenol	ND		0.010	0.00036	mg/L		04/02/13 14:16	04/03/13 23:07	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/02/13 14:16	04/03/13 23:07	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		04/02/13 14:16	04/03/13 23:07	1
Pyridine	ND		0.025	0.00041	mg/L		04/02/13 14:16	04/03/13 23:07	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/02/13 14:16	04/03/13 23:07	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/02/13 14:16	04/03/13 23:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	88	-	52 - 132				04/02/13 14:16	04/03/13 23:07	1
2-Fluorobiphenyl	70		48 - 120				04/02/13 14:16	04/03/13 23:07	1
2-Fluorophenol	34		20 - 120				04/02/13 14:16	04/03/13 23:07	1
Nitrobenzene-d5	68		46 - 120				04/02/13 14:16	04/03/13 23:07	1
p-Terphenyl-d14	94		67 - 150				04/02/13 14:16	04/03/13 23:07	1
Phenol-d5	26		16 - 120				04/02/13 14:16	04/03/13 23:07	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.048	mg/Kg	*	03/29/13 14:31	04/01/13 15:41	1
PCB-1221	ND		0.25	0.048	mg/Kg	₽	03/29/13 14:31	04/01/13 15:41	1
PCB-1232	ND		0.25	0.048	mg/Kg	₽	03/29/13 14:31	04/01/13 15:41	1
PCB-1242	ND		0.25	0.048	mg/Kg	₽	03/29/13 14:31	04/01/13 15:41	1
PCB-1248	ND		0.25	0.048	mg/Kg	₽	03/29/13 14:31	04/01/13 15:41	1
PCB-1254	ND		0.25	0.11	mg/Kg	₽	03/29/13 14:31	04/01/13 15:41	1
PCB-1260	ND		0.25	0.11	mg/Kg	₽	03/29/13 14:31	04/01/13 15:41	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	89		47 - 176	03/29/13 14:31	04/01/13 15:41	1
Tetrachloro-m-xylene	131		46 - 175	03/29/13 14:31	04/01/13 15:41	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.014		0.010	0.0056	mg/L		04/02/13 12:55	04/03/13 12:39	1
Barium	0.54	В	0.0020	0.00070	mg/L		04/02/13 12:55	04/03/13 12:39	1
Cadmium	0.0014		0.0010	0.00050	mg/L		04/02/13 12:55	04/03/13 12:39	1
Chromium	0.037	В	0.0040	0.0010	mg/L		04/02/13 12:55	04/03/13 12:39	1
Lead	0.037	В	0.0050	0.0030	mg/L		04/02/13 12:55	04/03/13 12:39	1
Selenium	ND		0.015	0.0087	mg/L		04/02/13 12:55	04/03/13 12:39	1
Silver	ND		0.0030	0.0017	mg/L		04/02/13 12:55	04/03/13 12:39	1

Method: 7470A - TCLP Mercury - TCLP Analyte Mercury	Result ND	Qualifier	RL 0.00020	MDL 0.00012		<u>D</u>	Prepared 04/02/13 13:15	Analyzed 04/02/13 16:28	Dil Fac
General Chemistry Analyte Flashpoint	Result >176.0	Qualifier	RL 50.0		Unit Degrees F	<u>D</u>	Prepared	Analyzed 04/01/13 09:00	Dil Fac

TestAmerica Buffalo

2

6

8

10

12

13

14

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-23

Date Collected: 03/29/13 12:25

Date Received: 03/29/13 16:15

TestAmerica Job ID: 480-35274-1

Lab Sample ID: 480-35274-1

Matrix: Solid

Method: 8260B - TCLP Volatiles - TCLP Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene ND 0.010 0.0041 mg/L 04/04/13 13:55 10 ND 10 Carbon tetrachloride 0.010 0.0027 mg/L 04/04/13 13:55 Chlorobenzene ND 0.010 0.0075 mg/L 04/04/13 13:55 10 ND Chloroform 0.010 0.0034 mg/L 04/04/13 13:55 10 1,2-Dichloroethane ND 0.010 0.0021 mg/L 04/04/13 13:55 10 ND 0.010 0.0029 10 1.1-Dichloroethene mg/L 04/04/13 13:55 mg/L 2-Butanone (MEK) ND 0.050 0.013 04/04/13 13:55 10 0.0036 mg/L Tetrachloroethene ND 0.010 04/04/13 13:55 10 Trichloroethene ND 0.010 0.0046 mg/L 04/04/13 13:55 10 Vinyl chloride ND 0.010 0.0090 mg/L 04/04/13 13:55 10 Surrogate %Recovery Qualifier Limits Prepared Analyzed

Dil Fac 04/04/13 13:55 1,2-Dichloroethane-d4 (Surr) 100 66 - 137 10 Toluene-d8 (Surr) 118 71 - 126 04/04/13 13:55 10 04/04/13 13:55 4-Bromofluorobenzene (Surr) 110 73 - 120 10

Method: 8270C - TCLP Semivolatiles - TCLP Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.010 04/04/13 06:11 04/09/13 17:06 1,4-Dichlorobenzene 0.00046 mg/L 0.00045 2.4-Dinitrotoluene ND 0.0050 04/04/13 06:11 04/09/13 17:06 mg/L Hexachlorobenzene ND 0.0050 0.00051 mg/L 04/04/13 06:11 04/09/13 17:06 ND 0.00068 04/04/13 06:11 Hexachlorobutadiene 0.0050 mg/L 04/09/13 17:06 Hexachloroethane ND 0.0050 0.00059 mg/L 04/04/13 06:11 04/09/13 17:06 3-Methylphenol ND 0.00040 04/04/13 06:11 0.010 mg/L 04/09/13 17:06 2-Methylphenol ND 0.0050 0.00040 04/04/13 06:11 04/09/13 17:06 ma/L 4-Methylphenol ND 0.010 0.00036 04/04/13 06:11 04/09/13 17:06 ma/L Nitrobenzene ND 0.0050 0.00029 mg/L 04/04/13 06:11 04/09/13 17:06 0.010 Pentachlorophenol ND 0.0022 04/04/13 06:11 04/09/13 17:06 mg/L Pyridine ND 0.025 0.00041 mg/L 04/04/13 06:11 04/09/13 17:06 2,4,5-Trichlorophenol ND 0.0050 0.00048 mg/L 04/04/13 06:11 04/09/13 17:06 2,4,6-Trichlorophenol ND 0.0050 0.00061 mg/L 04/04/13 06:11 04/09/13 17:06

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	89	52 _ 132	04/04/13 06:11	04/09/13 17:06	1
2-Fluorobiphenyl	94	48 - 120	04/04/13 06:11	04/09/13 17:06	1
2-Fluorophenol	46	20 - 120	04/04/13 06:11	04/09/13 17:06	1
Nitrobenzene-d5	84	46 - 120	04/04/13 06:11	04/09/13 17:06	1
p-Terphenyl-d14	107	67 - 150	04/04/13 06:11	04/09/13 17:06	1
Phenol-d5	33	16 - 120	04/04/13 06:11	04/09/13 17:06	1

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Result Qualifier MDL Unit D Prepared Dil Fac Analyte RL Analyzed PCB-1016 ND 0.27 0.053 04/01/13 19:04 04/02/13 20:48 mg/Kg PCB-1221 ND 0.27 04/01/13 19:04 04/02/13 20:48 0.053 mg/Kg PCB-1232 ND 0.27 0.053 mg/Kg 04/01/13 19:04 04/02/13 20:48 ₽ PCB-1242 ND 0.27 04/01/13 19:04 04/02/13 20:48 0.053 mg/Kg PCB-1248 ND 0.27 0.053 mg/Kg ₽ 04/01/13 19:04 04/02/13 20:48 # PCB-1254 04/01/13 19:04 04/02/13 20:48 ND 0.27 0.13 mg/Kg PCB-1260 ND 0.27 0.13 mg/Kg 04/01/13 19:04 04/02/13 20:48

TestAmerica Buffalo

Client: Heritage Interactive Services LLC

Project/Site: Delphi Lockport

Client Sample ID: B-23

Lab Sample ID: 480-35274-1

TestAmerica Job ID: 480-35274-1

Matrix: Solid Percent Solids: 84.0

Date Collected: 03/29/13 12:25
Date Received: 03/29/13 16:15

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl 97 47 - 176 04/01/13 19:04 04/02/13 20:48 Tetrachloro-m-xylene 110 46 - 175 04/01/13 19:04 04/02/13 20:48

Method: 6010B - TCLP RCRA Metals - TCLP Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac **Arsenic** 0.0083 J 0.010 0.0056 mg/L 04/03/13 12:10 04/04/13 12:47 0.00070 mg/L 0.0020 04/03/13 12:10 04/04/13 12:47 **Barium** 0.72 0.0010 0.00050 mg/L 04/03/13 12:10 04/04/13 12:47 Cadmium 0.0037 0.0010 mg/L 0.0040 04/03/13 12:10 04/04/13 12:47 Chromium 0.011 0.019 Lead 0.0050 0.0030 mg/L 04/03/13 12:10 04/04/13 12:47 Selenium ND 0.015 0.0087 mg/L 04/03/13 12:10 04/04/13 12:47 Silver ND 0.0030 0.0017 mg/L 04/03/13 12:10 04/04/13 12:47

Method: 7470A - TCLP Mercury - TCLP Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.00020 0.00012 mg/L 04/03/13 12:45 04/03/13 15:33 Mercury

General ChemistryAnalyteResult PlashpointQualifierRL RL Unit PlashpointD Prepared Prepared Prepared O4/01/13 09:00Analyzed Dil Fac O4/01/13 09:00

Client Sample ID: B-27 Lab Sample ID: 480-35274-2

Date Collected: 03/29/13 12:45
Date Received: 03/29/13 16:15
Matrix: Solid

Method: 8260B - TCLP Volatiles - TCLP

Result Qualifier Analyte RL MDL Unit Dil Fac D Prepared Analyzed Benzene ND 0.010 0.0041 mg/L 04/04/13 14:16 10 Carbon tetrachloride ND 0.010 0.0027 ma/L 04/04/13 14:16 10 Chlorobenzene ND 0.010 0.0075 mg/L 04/04/13 14:16 10 Chloroform ND 0.010 0.0034 mg/L 04/04/13 14:16 10 1,2-Dichloroethane ND 0.010 0.0021 04/04/13 14:16 mg/L 10 1,1-Dichloroethene ND 0.010 0.0029 mg/L 04/04/13 14:16 10 ND 2-Butanone (MEK) 0.050 0.013 mg/L 04/04/13 14:16 10 ND Tetrachloroethene 0.010 0.0036 mg/L 04/04/13 14:16 10 Trichloroethene ND 0.010 0.0046 mg/L 04/04/13 14:16 10 Vinyl chloride ND 0.010 0.0090 mg/L 04/04/13 14:16 10

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 101 66 - 137 1,2-Dichloroethane-d4 (Surr) 04/04/13 14:16 Toluene-d8 (Surr) 117 04/04/13 14:16 10 71 - 126 4-Bromofluorobenzene (Surr) 109 73 - 120 04/04/13 14:16 10

Method: 8270C - TCLP Semivolatiles - TCLP

Method: 82/00 - 10LP Semivolati	ies - ICLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/04/13 06:11	04/09/13 17:29	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/04/13 06:11	04/09/13 17:29	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		04/04/13 06:11	04/09/13 17:29	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/04/13 06:11	04/09/13 17:29	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/04/13 06:11	04/09/13 17:29	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/04/13 06:11	04/09/13 17:29	1

TestAmerica Buffalo

Page 8 of 34

-

3

5

7

9

TU

12

1 1

15

4/10/2013

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

		Site Details	Box 1		
SI	te No.	932113			
Site Name Delphi Harrison Thermal Systems					
Site Address: 200 Upper Mountain Road Zip Code: 14094 City/Town: Lockport County: Niagara Site Acreage: 22.7 Taway 1, 2013 December 3(, Reporting Period: September 01, 2000 to December 16, 2013					
		of the state of th	YES	NO	
1.	Is the infor	matlon above correct?	D		
	If NO, Inclu	ide handwritten above or on a separate sheet.			
2.		or all of the site property been sold, subdivided, merged, or undergone a nendment during this Reporting Period?		×	
3,	Has there to (see 6NYC	been any change of use at the site during this Reporting Period RR 375-1.11(d))?		X	
4.		ederal, state, and/or local permits (e.g., bullding, discharge) been issued a property during this Reporting Period?	X	п	
		wered YES to questions 2 thru 4, include documentation or evidence mentation has been previously submitted with this certification form.			
5.	is the site o	currently undergoing development?		×	
	•		Box 2		
			YES	NO	
6.		ent site use consistent with the use(s) listed below?	X	0	
7.	Are all ICs/	ECs in place and functioning as designed?	X	0	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
Milliam Jon Fauland 1-9-14. Signature of Owner, Remedial Party or Designated Representative Date					
		9K			

SITE NO. 932113

Box 3

Description of Institutional Controls

Parcel

108.13-1-1

Owner

GM Components Holdings, LLC

Institutional Control

Site Management Plan Landuse Restriction Monitoring Plan

Ground Water Use Restriction Soil Management Plan IC/EC Plan

In March 2005, a Record of Decision was issued for this site. The selected remedy was Monitored Natural Attenuation (MNA). Long-term groundwater monitoring is required to evaluate the continued effectiveness of MNA at the site.

An Environmental Easement was filed with the Nlagara County Clerk's Office on October 6, 2011. This easement states that the Controlled Property may be used for commercial or industrial use as long as the following engineering controls are employed and the land use restrictions specified below are adhered to: (1) implement and comply with all elements of the Department approved Site Management Plan, (2) restrict use of groundwater at the Controlled Property as a source of potable or process water without necessary water quality treatment as determined by the Niagara County Department of Health, and (3) evaluate the potential for vapor intrusion into any buildings developed on the Controlled Property. Provision for mitigation (if determined to be necessary), such as installation of a vapor barrier and sub-slab vapor system or other engineering controls shall be implemented on all structures on the Controlled Property prior to occupancy.

Box 4

Description of Engineering Controls

Parcel Parcel

Engineering Control

108.13-1-1

Fencing/Access Control

Periodic Review Report (PRR) Certification Statements

- I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

- If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each institutional 2, or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

NO

Ö

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Rémedial Party or Designated Representative

IC CERTIFICATIONS SITE NO. 932113

Box 6

SITE OWNER OR DESIGNATED REPRESENTATION of the certify that all information and statements in Boxes 1,2, and 3 are to statement made herein is punishable as a Class "A" misdemeanor, penal Law.	rue. I understand that a false			
Penal Law. 30200 Mond Rd WC 480-111-11, William J Mc Farland at Warren, Michigan 48090 print name print business address				
am certifying as	(Owner or Remedial Party)			
for the Site named in the Site Details Section of this form.	6 8			
Mulliam J. M. Jarland Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	7-14 Date			

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all Information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name

am certifying as a Qualified Environmental Professional for the $\underline{\mathcal{O}}$

(Owner or Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

New York State Department of Environmental Conservation

Division of Water

Bureau of Water Permits, 4th Floor

625 Broadway, Albany, New York 12233-3505 **Phone:** (518) 402-8111 • **Fax:** (518) 402-9029

Website: www.dec.ny.gov

4/12/2013

DELPHI AUTOMOTIVE SYSTEMS LLC STACEY JENNEVE 200 UPPER MOUNTAIN ROAD LOCKPORT NY 14094-

Re: ACKNOWLEDGMENT of NOTICE of INTENT for

Coverage Under SPDES General Permit for Storm

Water Discharges from CONSTRUCTION ACTIVITY General Permit No. GP-0-10-001

Dear Prospective Permittee:

This is to acknowledge that the New York State Department of Environmental Conservation (Department) has received a complete Notice of Intent (NOI) for coverage under General Permit No. GP-0-10-001 for the construction activities located at:

BUILDING 6 SITE SEPARATION 200 UPPER MOUNTAIN ROAD LOCKPORT NY 14094-

County: NIAGARA

Pursuant to Environmental Conservation Law (ECL) Article 17, Titles 7 and 8, ECL Article 70, discharges in accordance with GP-0-10-001 from the above construction site will be authorized 5 business days from 2/28/2013 which is the date we received your final NOI, unless notified differently by the Department.

The permit identification number for this site is: NYR 10W425. Be sure to include this permit identification number on any forms or correspondence you send us. When coverage under the permit is no longer needed, you must submit a Notice of Termination to the Department.

This authorization is conditioned upon the following:

- 1. The information submitted in the NOI received by the Department on 2/28/2013 is accurate and complete.
- 2. You have developed a Storm Water Pollution Prevention Plan (SWPPP) that complies with GP-0-10-001 which must be implemented as the first element of construction at the above-noted construction site.
- 3. Activities related to the above construction site comply with all other requirements of GP-0-10-001.

RECEIVED

APR 18 2013

WATTS ARCHITECTURE & ENGINEERING

- 4. Payment of the annual \$100 regulatory fee, which is billed separately by the Department in the late fall. The regulatory fee covers a period of one calendar year. In addition, since September 1, 2004, construction stormwater permittees have been assessed an initial authorization fee which is now \$100 per acre of land disturbed and \$600 per acre of future impervious area. The initial authorization fee covers the duration of the authorized disturbance.
- 5. When applicable, project review pursuant to the State Environmental Quality Review Act (SEQRA) has been satisifed.
- 6. You have obtained all necessary Department permits subject to the Uniform Procedures Act (UPA). You should check with your Regional Permit Administrator for further information.
- *Note: Construction activities cannot commence until project review pursuant to SEQRA has been satisfied, when SEQRA is applicable; and, where required, all necessary Department permits subject to the UPA have been obtained.

Please be advised that the Department may request a copy of your SWPPP for review.

Should you have any questions regarding any aspect of the requirements specified in GP-0-10-001, please contact Dave Gasper at (518) 402-8114 or the undersigned at (518) 402-8109.

Sincerely,

Toni Cioffi

Environmental Program Specialist 1

cc: RWE - 9
SWPPP Preparer

WATTS ARCHITECTURE & ENGINEERING MATRICARDI ALAN 95 PERRY STREET, SUITE 300 BUFFALO NY 14203-