

GEOTECHNICAI

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 300 Pearl Street Suite 700 Buffalo, NY 14202 T: 716.685.2300 F: 716.248.1472

www.gza.com

VIA EMAIL

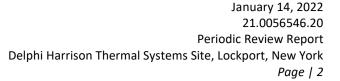
January 14, 2022 File No. 21.0056546.20

Glenn May, CPG
New York State Department of Environmental Conservation
Division of Environmental Remediation
270 Michigan Avenue
Buffalo, New York 14203
e-mail: glenn.may@dec.ny.gov

Re: **Periodic Review Report** - Number 11 – January 2022 Delphi Harrison Thermal Systems Site - Registry Site No. 932113 Lockport, New York

Dear Glenn:

GZA GeoEnvironmental of New York (GZA) prepared this 2021 Periodic Review Report (PRR) for the Delphi Harrison Thermal Systems Site (Site) as required by the Site Management Plan¹ (SMP) that was approved by the New York State Department of Environmental Conservation (NYSDEC) on October 13, 2011. The implementation of the SMP is a requirement of the Remedial Program Order on Consent and Administrative Settlement (Index #B9-0553-99-06) between GM Components Holdings, LLC (GMCH) and NYSDEC dated November 8, 2011.


GMCH is the current owner and operator of an automotive components manufacturing facility at 200 Upper Mountain Road, Lockport, New York. The Site, as defined by the environmental easement (Instrument # 2011-17072) recorded in the Niagara County Clerk's Office in October 2011, comprises approximately 22.7 acres located in the eastern portion of the facility as shown on **Figure 1**. In 2014, a portion of the Site was conveyed to Delphi Properties Management LLC. On June 30, 2015 that same portion of the Site was transferred from Delphi Properties Management LLC to MAHLE Manufacturing Management Inc., now called MAHLE BEHR USA INC.

REGULATORY HISTORY SUMMARY

The following is a summary of the regulatory actions at the Site.

• Building 8, located in the northern central portion of the facility, formerly housed degreasing operations that utilized trichloroethylene (TCE). An aboveground storage tank (AST) was formerly located outside the southeastern corner of Building 8 until it was decommissioned in May 1994. Delphi Thermal Systems (Delphi) notified the NYSDEC in 1994

¹ "Delphi Harrison Thermal Systems Site, Niagara County, New York, Site Management Plan, NYSDEC Site Number: 9-32-113" dated October 13, 2011

that TCE was detected in soil during an excavation to repair fire protection lines in the vicinity of the former AST. NYSDEC assigned the incident Spill Number 9410972. Delphi removed the TCE-impacted soil from the excavation down to the top of bedrock and provided NYSDEC with a report of this removal action in a letter dated December 22, 1994.

- In March 1999, the Site was added to the NYSDEC Inactive Hazardous Waste Registry, Site Number 932113 as a Class 3 listing (does not present a significant threat to the public health or the environment action may be deferred).
- In 2001, Delphi entered into a Remedial Investigation/Feasibility Study Order on Consent, Index #B9-0553-99-06 (RI/FS Order) to determine the extent of TCE contamination and complete a Focused Feasibility Study.
- In March 2005, NYSDEC, in consultation with the New York State Department of Health (NYSDOH), issued a Record of Decision (ROD) based on the results of the Focused Remedial Investigation (FRI) and Focused Feasibility Study (FFS). The components of the selected remedy, as defined in the ROD, are as follows.
 - Monitored natural attenuation (MNA) with groundwater monitoring and sampling to check the continued effectiveness of the remedy.
 - Development of a contingency plan for groundwater control/treatment if natural attenuation processes
 can no longer be demonstrated as effective or if significant off-site groundwater contamination is
 observed.
 - Development of a site management plan to: (a) address residual contaminated soils that may be excavated from the site during future redevelopment, (b) evaluate the potential for vapor intrusion for all current site buildings and those developed on the site in the future, including provision for mitigation of impacts identified; (c) provide for the operation and maintenance of the components of the remedy; (d) monitor site groundwater; and (e) identify use restrictions on site development or groundwater use.
 - Imposition of an environmental easement to restrict groundwater use and check compliance with the approved site management plan.
 - Certification of the institutional and engineering controls.
- Annual MNA groundwater sampling was completed voluntarily at the Site from October 2006 through April 2011.
- In October 2011, an environmental easement (Instrument # 2011-17072) for the Site was recorded in the Niagara County Clerk's Office.
- In November 2011, a Remedial Program Order on Consent and Administrative Settlement (Index #B9-0553-99-06) was executed between GMCH and NYSDEC.
- In April 2012, the Site was reclassified on the NYSDEC Inactive Hazardous Waste Registry, to a Class 4 listing (site has been properly closed but requires continued site management consisting of operation, maintenance

January 14, 2022 21.0056546.20 Periodic Review Report Delphi Harrison Thermal Systems Site, Lockport, New York Page | 3

and/or monitoring).

- Since April 2012, groundwater sampling has been completed at the Site in accordance with the Remedial Program Order on Consent and Administrative Settlement (Index #B9-0553-99-06).
- There were no additional regulatory actions taken during the reporting period.

2021 PERIODIC REVIEW REPORTING PERIOD

In accordance with Section 5.3 of the SMP, the following constitutes the Calendar Year 2021 PRR:

- 1. Results of the required Site inspections and severe weather condition inspections, if applicable
 - (a) The annual inspection of the Site and Site Cover was completed on December 15, 2021 by Thomas Bohlen of GZA. The annual site inspection form was completed, a copy of which is provided as **Appendix A** along with a photo log associated with that inspection.
 - (b) A post-high-wind inspection of the Site cover was also completed on December 15, 2021 by Thomas Bohlen. The post weather event inspection form was completed and is also provided in Appendix A.
- 2. All applicable inspection forms and other records generated for the Site during the reporting period in electronic format

A copy of the completed site inspection forms from the two December 15, 2021 site inspections are included in **Appendix A**. Also, included as part of the electronic submittal is a copy of the Delphi Harrison Thermal Systems Site 2021 NYSDEC Site Management Periodic Review Report Institutional and Engineering Controls Certification Form. A copy of this Form is attached to the PRR as **Appendix B**.

3. A summary of any monitoring data and/or information generated during the Reporting Period with comments and conclusions

The most recent groundwater sampling was completed in August 2021. A copy of the GZA report is included with this PRR as **Appendix C.** The report provides the conclusions and recommendations presented below.

CONCLUSIONS:

Based on the results of the August 2021 sampling round within the framework of the historical results, natural attenuation of COCs is occurring via reductive dechlorination. GZA offers the following additional observations relative to the 2021 sampling round:

• The concentrations of the parent compounds decrease significantly from the source area (MW-7) downgradient to the mid-point of the plume (MW-4 and MW-10), and from the mid-point on to the downgradient portions of the Site (MW-11 through MW-15). The decrease in concentrations is as much

January 14, 2022 21.0056546.20 Periodic Review Report Delphi Harrison Thermal Systems Site, Lockport, New York

as five orders of magnitude from the source area to the most downgradient wells where COCs are not detected.

- There is an increase in daughter compound concentrations from the source area to the mid-point of the plume, with an overall decrease in total COC concentrations.
- The COCs were not detected above NYSDEC Class GA groundwater standards at the down-gradient property line at wells MW-11, MW-13, and MW-14.

RECOMMENDATIONS

Based on the results of the August 2021 and previous sampling events and supported by the findings of the 2014 treatability study, current conditions mid-plume at well MW-4 show potential for complete reductive dechlorination of the COCs to ethene. COCs were not detected or were detected at concentrations below NYSDEC TOGS 1.1.1 GA standards in groundwater collected from the downgradient Site boundary, providing additional confirmation of continued natural attenuation.

On June 18, 2021, GMCH requested the removal of MW-10 from the groundwater monitoring well locations to be sampled during future monitoring events. If acceptable to the Department, the 2022 monitoring event should include the collection of representative groundwater samples for the analysis of COC and natural attenuation parameters at a total of seven wells (MW-4, -7, -11, -12, -13, -14 and -15). The COC and natural attenuation analytical parameters measured during the 2021 sampling round should also be measured during the 2022 sampling round.

4. Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.

Data summary tables and graphs associated with the annual MNA groundwater sampling report are included in **Appendix C**.

5. Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format.

The electronic submission of this PRR will include the results of analyses, copies of laboratory data sheets, and the required laboratory data deliverables for samples collected during the reporting period for the 2021 MNA groundwater sampling event.

- 6. A Site evaluation, which includes the following:
 - Compliance with the requirements of the ROD Site-selected remedy;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Site Monitoring Plan for the media being monitored;

- Recommendations regarding any necessary changes to the remedy and/or Site Monitoring Plan; and
- The overall performance and effectiveness of the remedy.

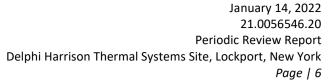
As discussed in Item 3 above, the results of the groundwater sampling provide evidence that anaerobic biodegradation of the COCs is controlling migration of impacted groundwater downgradient from the Site.

The Site is in compliance with the ROD, and MNA is still an effective remedy.

7. Identification, assessment and certification of all ECs/ICs [Engineering Controls/Institutional Controls²] required by the Record of Decision Site-selected remedy

There are no Engineering Controls (ECs) required under the ROD and the Institutional Controls (ICs) that apply to the Site are set forth in the recorded Environmental Easement. The ICs for the Site restrict the use of groundwater and require compliance with the SMP. There have been no changes to the SMP since it was approved by NYSDEC on October 13, 2011.

CERTIFICATION OF THE INSTITUTIONAL AND ENGINEERING CONTROLS³


For each institutional or engineering control identified for the Site, I certify⁴ the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering controls employed at this Site are unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this control;
- Access to the Site will continue to be provided to the Department (with valid Safety Protocol Program Card) to evaluate the remedy, including access to evaluate the continued maintenance of this control;

² See definition for Engineering Control at 6 NYCRR § 375-1.2 (o) and for Institutional Control at 6 NYCRR § 375-1.2 (aa).

³ The required Certification of the Institutional and Engineering Controls is set forth in Section 5.2 of the NYSDEC-approved SMP. It is to be used for the Periodic Review Report in lieu of the certifications noted in DER-10 at section 6.3 (d).

⁴ Certify is defined as a statement or declaration of a professional opinion based on the information, data and/or facts known at the time such certification is made.

- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document⁵;
- Use of the Site is compliant with the Environmental Easement;
- Engineering control systems that have been installed as part of the remedial programs for the Site (*if applicable*) are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification
 are in accordance with the requirements of the ROD Site's selected remedy and generally
 accepted engineering practices; and
- The information presented in this report is accurate and complete.
- I certify that the information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Bart A. Klettke, P.E. of GZA GeoEnvironmental of New York, am certifying as Owner's Designated Site Representative for the Site.

Bart A. Klettke, P.E.

Principal

Date: January 10, 2022 GZA GeoEnvironmental of New York

Figure 1: Site Locus

Figure 2: Photograph Orientation Map

Appendix A: 2021 Site Inspection Forms and Inspection Photograph Log

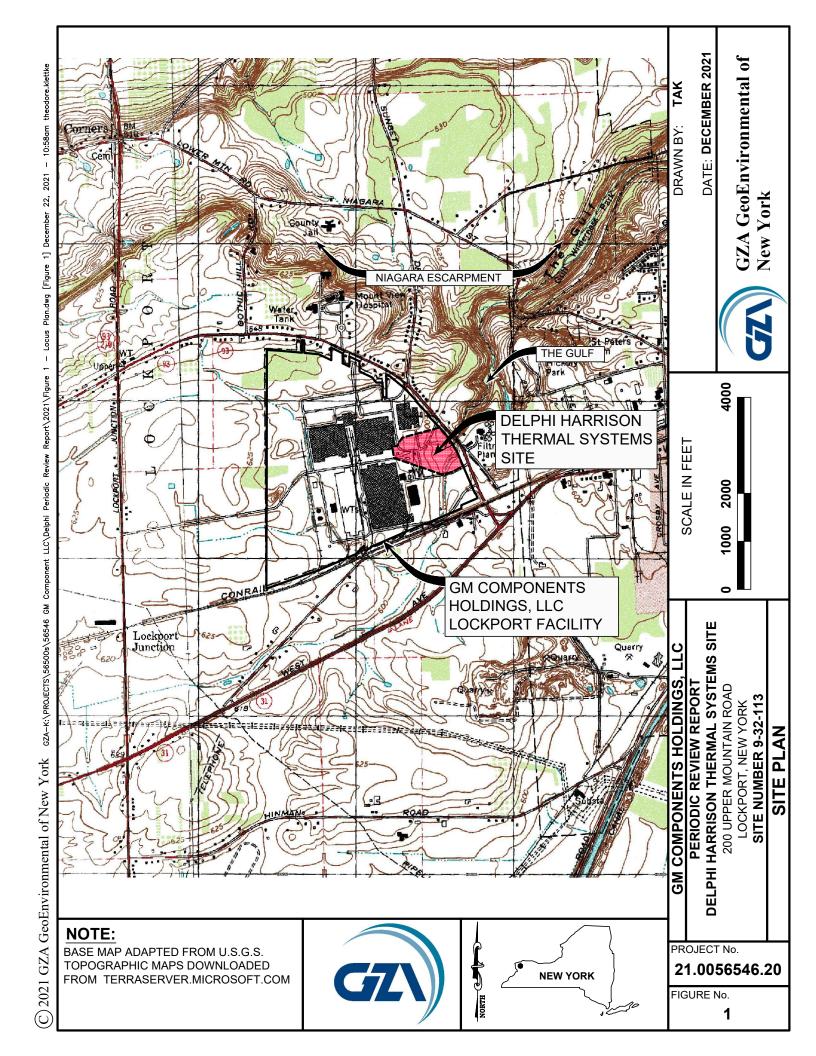
Appendix B: Delphi 2021 – NYSDEC Site Management Periodic Review Report Notice Institutional and Engineering

Controls Certification Form

Appendix C: August 2021 MNA Groundwater Sampling Report

cc: Jim Hartnett (GM, electronic copy only)

Cynthia Tudor-Schultz (GMCH, electronic copy only)


Denis Conley (H&A, electronic copy only)

⁵ Note that no financial assurance mechanism is in place for the Site remedial program.

January <mark>14</mark>, 2022 21.0056546.20 Periodic Review Report Delphi Harrison Thermal Systems Site, Lockport, New York Page | 7

FIGURES

2021 GZA GeoEnvironmental of New York

APPROXIMATE LOCATION AND ORIENTATION OF INSPECTION PHOTOGRAPHS TAKEN ON 12/15/2021 (SEE APPENDIX A)

APPROXIMATE LOCATION AND **DESIGNATION OF MONITORING WELL**

DRAWN BY:

DATE: DECEMBER 2021

GZA GeoEnvironmental

 $\mathbf{0}$

APPROXIMATE SCALE IN FEET

90

PHOTOGRAPH ORIENTATION MAP

PROJECT No.

21.0056546.20

FIGURE No. 2

1. BASE MAP ADAPTED FROM A 2016 AERIAL PHOTOGRAPH DOWNLOADED USING GOOGLE EARTH PRO AND SITE OBSERVATIONS.

2. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

January 14, 2022 21.0056546.20 Periodic Review Report Delphi Harrison Thermal Systems Site, Lockport, New York Page | 8

APPENDIX A:

2021 SITE INSPECTION FORM and INSPECTION PHOTO LOG

SITE DET	AILS			
Site No.: 9-32-113				
Site Name: Delphi Harrison Thermal Systems Site				
Site Address: 200 Upper Mountain Road, Lockport NY				
PERSON PERFORMI	NG INSPECTION			
NAME: Thomas Bohlen EMA		thomas.bohlen@gza.com	<u>n</u>	
	ONE NUMBER:	716-844-7050		
COMPANY: GZA GeoEnvironmental of NY				
INSPECTION DATE AND	SITE CONDITIONS			
INCRECTION DATE: 40/45/2004 INC	DECTION TIME.	42.20 Hrs		
	PECTION TIME:	13:30 Hrs	_	
WEATHER CONDITIONS: Overcast, 48 degrees F, winds from	1 South at 15 MPH.			
REASON FOR SITE	INSPECTION			
Scheduled Annual Inspection?:		YES	NC	
Inspection after a Severe Condition that could effect site controls?:		YES		
	prior Saturday and Sund			
VERIFICATION OF	SITE DETAILS			
Current Site Owner: GM Components Holdings, LLC (GMCH) and MAH	LE Manufacturing Manag	gement Inc.		
Current Site Operators: GM Components Holdings, LLC (GMCH) and MAH	LE Manufacturing Manag	gement Inc.		
Describe Current Site Use (check all that apply):				
Industrial Commercial Residential	Other			
briefly describe observed site uses: Area within the environment	tal easement is used as	parking lots, site roads, and	greenspace.	
Has some or all of the Site property been sold, subdivided, merged, or und	ergone a tax map ameno			
the initial/last inspection?		YES		
If YES, is documentation or evidence of documentation submittal to		YES	N/A NO	
Have any federal, state and/or local permits (e.g., building or discharge) be	en issued for the proper	y since		
the initial/last inspection?		\ <u></u>	NO	
If YES, is documentation or evidence of documentation submittal to		YES		
Has a change in Site usage per NYCRR 375-1.11(d) occurred since the las		YES		
If YES, is documentation or evidence of documentation submittal to		YES	N/A NC	
Has any new information come to your attention to indicate that assumption	is made in the qualitative	e exposure YES	NC	
assessment for off-site contamination are no longer valid? If YES, is this information or evidence of submittal to NYSDEC atta	ched?	YES		
DESCRIPTION OF INSTITUTIONA			IV/A IVC	
Is Environmental Easement still in place?		YES	NC	
If no, explain:		120	110	
Is the Site Management Plan in place?		YES	NO	
If no, explain:				
AREAS IN NEED OF REPA	IR OR MAINTENANCE			
Area discussed in this section must be shown on a figure and have photog	raphic documentation.			
None No areas in need of repair observed	d.			
INTRUSIVE ACTIVITIES PERFORMED AT SITE DURING INSPECTION F	PERIOD DA	TE LO	CATION	
None	N/A	N/A		
REVIEW OF SITE	RECORDS			
Are site records being properly generated and maintained?	YES	S NO		
Provide summary of recordkeeping review and adequacy:				
GMCH Environmental Engineer, Cindy Tudor Schultz, maintains both hard	•			
GM's Information Lifecycle Management system. The records are manage		•		
series ENV010. Hard copies are kept in a file cabinet in the Engineering of	fice and electronic copie	s reside on the environmen	tal	
shared ("S") drive				
ADDITIONAL NOTES & COMMENTS				
See attached representative site photos from the PRR Site inspection.				
INSPECTION CERTIFICATION				
I hereby certfy that the information included in this report is complete and accurate to the best of my knowledge.				
Inspector Signature:	Date: 12/1	5/2021		
	Date. 12/1:	5/2021		

SITE INSPECTION FORM

. SITE DETAILS		
ite No.: C932138		
ite Name: GM Components Holdings LLC		
te Address: 200 Upper Mountain Road, Lockport NY		
PERSON PERFORMING INSPECTION		
AME: Thomas Bohlen EMAIL: thomas.bohlen@gza.com		
THERS PRESENT: None PHONE NUMBER: 716-844-7050		
OMPANY: GZA		
INSPECTION DATE AND SITE CONDITIONS		
ISPECTION DATE: 12/15/2021 INSPECTION TIME: 1:30 PM		
EATHER CONDITIONS: Overcast, Temp ~ 48 F, wind 15 mpg from the South		
REASON FOR SITE INSPECTION		
cheduled Annual Inspection: YES NO		
spection after a Severe Condition that could effect site controls: YES NO		
VERIFICATION OF SITE DETAILS		
urrent Site Owner: GMCH		
urrent Site Operators: GMCH		
escribe Current Site Use (check all that apply):		
Describe Current Site Use (check all that apply): Industrial Commercial Residential Other Industrial observed site uses: GM Lockport manufacturing Plant		
riefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last	YES	<u>NO</u>
riefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection?	YES YES	<u>NO</u>
dustrial Commercial Residential Other describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? ave any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last		NO NO
dustrial Commercial Residential Other riefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? ave any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection?	YES	
A Residential Other Triefly describe observed site uses: GM Lockport manufacturing Plant The sas some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? The save any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached?	YES YES	
A Residential Other Triefly describe observed site uses: GM Lockport manufacturing Plant The sas some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? The save any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? The same of the same of the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? The same of the same of the initial/last spection?	YES YES YES	<u>NO</u>
Adustrial Commercial Residential Other Triefly describe observed site uses: GM Lockport manufacturing Plant The sas some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? The save any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? The save and the save	YES YES YES	<u>NO</u>
riefly describe observed site uses: GM Lockport manufacturing Plant It is some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last isspection? If YES, is documentation or evidence of documentation submittal to NYSDEC attached? It is a company to the initial/last isspection? If YES, is documentation or evidence of documentation submittal to NYSDEC attached? If YES, is documentation or evidence of documentation submittal to NYSDEC attached? If YES, is documentation or evidence of documentation submittal to NYSDEC attached? If YES, is documentation or evidence of documentation submittal to NYSDEC attached? If YES, is documentation or evidence of documentation submittal to NYSDEC attached? If YES, is documentation come to your attention to indicate that assumptions made in the qualitative exposure assessment for office contamination are no longer valid? If YES, is this information or evidence of submittal to NYSDEC attached?	YES YES YES YES	NO NO
dustrial Commercial Residential Other diefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? ave any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as a change in Site usage per NYCRR 375-1.11(d) occurred since the last inspection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as any new information come to your attention to indicate that assumptions made in the qualitative exposure assessment for off-ter contamination are no longer valid? YES, is this information or evidence of submittal to NYSDEC attached?	YES YES YES YES YES YES	NO NO
dustrial Commercial Residential Other iefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? ave any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as a change in Site usage per NYCRR 375-1.11(d) occurred since the last inspection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as any new information come to your attention to indicate that assumptions made in the qualitative exposure assessment for off- te contamination are no longer valid? YES, is this information or evidence of submittal to NYSDEC attached? Ste any additional pertinent information to Verification of Site Details (use additional pages if necessary):	YES YES YES YES YES YES	NO NO
dustrial Commercial Residential Other iefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? ave any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as a change in Site usage per NYCRR 375-1.11(d) occurred since the last inspection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as any new information come to your attention to indicate that assumptions made in the qualitative exposure assessment for offectontamination are no longer valid? YES, is this information or evidence of submittal to NYSDEC attached? other any additional pertinent information to Verification of Site Details (use additional pages if necessary): DESCRIPTION OF INSTITUTIONAL/ENGINEERING CONTROLS Environmental Easement still in place? YES NO	YES YES YES YES YES YES	NO NO
dustrial Commercial Residential Other idefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? ave any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as a change in Site usage per NYCRR 375-1.11(d) occurred since the last inspection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as any new information come to your attention to indicate that assumptions made in the qualitative exposure assessment for off- tie contamination are no longer valid? YES, is this information or evidence of submittal to NYSDEC attached? other any additional pertinent information to Verification of Site Details (use additional pages if necessary): DESCRIPTION OF INSTITUTIONAL/ENGINEERING CONTROLS Environmental Easement still in place? YES NO no, explain:	YES YES YES YES YES YES	NO NO
dustrial Commercial Residential Other iefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as a change in Site usage per NYCRR 375-1.11(d) occurred since the last inspection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as a change in Site usage per NYCRR 375-1.11(d) occurred since the last inspection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as any new information come to your attention to indicate that assumptions made in the qualitative exposure assessment for off-tie contamination are no longer valid? YES, is this information or evidence of submittal to NYSDEC attached? Interval, the information of evidence of submittal to NYSDEC attached? Interval, the information of evidence of submittal to NYSDEC attached? Interval, the information of evidence of submittal to NYSDEC attached? Interval, the information of evidence of submittal to NYSDEC attached? Interval, the information of evidence of submittal to NYSDEC attached? Interval, the information of evidence of submittal to NYSDEC attached? Interval, the interval int	YES YES YES YES YES YES	NO NO
Adustrial Commercial Residential Other riefly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? ave any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as a change in Site usage per NYCRR 375-1.11(d) occurred since the last inspection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as any new information come to your attention to indicate that assumptions made in the qualitative exposure assessment for off-tee contamination are no longer valid? YES, is this information or evidence of submittal to NYSDEC attached? ote any additional pertinent information to Verification of Site Details (use additional pages if necessary): DESCRIPTION OF INSTITUTIONAL/ENGINEERING CONTROLS Environmental Easement still in place? YES NO no, explain: the Cover System in place and functioning as intended? YES NO if no, explain:	YES YES YES YES YES YES	NO NO
Adustrial Commercial Residential Other irelly describe observed site uses: GM Lockport manufacturing Plant as some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? ave any federal, state and/or local permits (e.g., building or discharge) been issued for the property since the initial/last spection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as a change in Site usage per NYCRR 375-1.11(d) occurred since the last inspection? YES, is documentation or evidence of documentation submittal to NYSDEC attached? as any new information come to your attention to indicate that assumptions made in the qualitative exposure assessment for off-tee contamination are no longer valid? YES, is this information or evidence of submittal to NYSDEC attached? ote any additional pertinent information to Verification of Site Details (use additional pages if necessary): DESCRIPTION OF INSTITUTIONAL/ENGINEERING CONTROLS Environmental Easement still in place? YES NO no, explain: the Site Management Plan in place and functioning as intended? YES NO if no, explain or operations as intended? YES NO if no, explain or operations as intended?	YES YES YES YES YES YES YES	NO NO NO oelow:

6A. AREAS IN NEED OF REPAIR OR MAINT	ENANCE		
Area discussed in this section must be shown	on a figure and have photographic documen	ntation. (Photos collected must fol	llow GMCH approved protocols).
Building Structures/ Concrete Sidewalks			
Not Applicable			
Pavement			
Not Applicable			
Soil Cover			
Not Applicable			
Sub-Slab Depressurization System			
Not Applicable			
6B. HAVE INTRUSIVE ACTIVITIES BEEN PERFORMED AT THE SITE THAT IMPACTED THE COVER SYSTEM (if "Yes" Describe below)	LOCATION	DATE	WAS SMP FOLLOWED FOR THESE ACTIVITIES (YES or NO)
No			
7. REVIEW OF SITE RECORDS			
Are site records being properly generated and Provide summary of recordkeeping review and		Applicable	
8. ADDITIONAL NOTES & COMMENTS			
Inspected exterior soil cover system. No uprooted	trees or impact to the soil cover observed.		
9. INSPECTION CERTIFICATION			
I hereby certify that the information included in		pest of my knowledge.	
Inspector Signature: Thomas	Bohlen Date:	12/15/21	

END OF INSPECTION FORM

Client Name: General Motors Components Holdings

Lockport, NY

Project No. 21.0056546.20

Photo No.

Date: 12/15/21

Direction Photo Taken:

NE

Description:

Creek and lawn area north of Site Road #2.

Site Location: Delphi Harrison Thermal Systems,

Photo No.

2

Date: 12/15/21

Direction Photo Taken:

NNE

Description:

Lawn area north of Site Road #2.

Client Name: General Motors Components Holdings

Site Location: Delphi Harrison Thermal Systems, Lockport, NY

Project No. 21.0056546.20

Photo No.

Date: 12/15/21

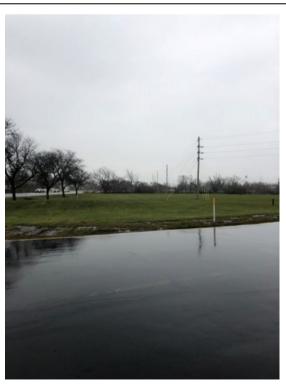
Direction Photo Taken:

West

Description:

Eastern end of lawn area.

Photo No.


No. Date: 12/15/21

Direction Photo Taken:

SE

Description:

Northern end of eastern lawn area.

Client Name: General Motors Components Holdings

Site Location: Delphi Harrison Thermal Systems, Lockport, NY

Project No. 21.0056546.20

Photo No.

Date: 12/15/21

Direction Photo Taken:

NW

Description:

Northern Site lawn and east wall of Building 6.

Photo No.

Date:

6

12/15/21

Direction Photo Taken:

NW

Description:

North lawn area and SE corner of Building 6.

Client Name: General Motors Components Holdings

Site Location: Delphi Harrison Thermal Systems, Lockport, NY

Project No. 21.0056546.20

Photo No.

Date: 12/15/21

Direction Photo Taken:

East

Description:

View of eastern lawn area from Site Road #3.

Photo No.

Date:

12/15/21

Direction Photo Taken:

West

SE

Description:

GM Parking area from Site Road #3.

Client Name: General Motors Components Holdings

Site Location: Delphi Harrison Thermal Systems, Lockport, NY

Project No. 21.0056546.20

Photo No.

Date: 12/15/21

Direction Photo Taken:

South

Description:

GM parking area from Site Road #3.

Photo No.

Date:

10

12/15/21

Direction Photo Taken:

West

Description:

Site Road #3, western end of Site, and SE corner of Building 8.

Client Name: General Motors Components Holdings

Site Location: Delphi Harrison Thermal Systems, Lockport, NY

Project No. 21.0056546.20

Photo No.

Date: 12/15/21

Direction Photo Taken:

East

Description:

MAHLE Parking area south of Building 6.

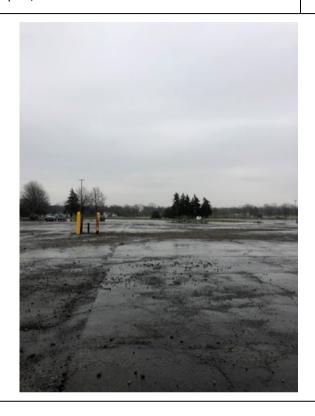


Photo No.

Date:

12 12/15/21

Direction Photo Taken:

SE

Description:

GM Parking area.

January 14, 2022 21.0056546.20 Periodic Review Report Delphi Harrison Thermal Systems Site, Lockport, New York Page | 9

APPENDIX B

INSTATUTIONAL AND ENGINEERING CONTROL CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site		Site Details	Box 1	
Site	Name Delphi Harrison Thermal System	ns.		
City/ Cour	Address: 200 Upper Mountain Road Fown: Lockport ity: Niagara Acreage: 22.7	Zip Code: 14094		*
Repo	orting Period: December 16, 20)20 to December 16, 2021		
	· *:	·	YES	NO
1. I	s the information above correct?		\$	
1	f NO, include handwritten above or on a se	eparate sheet.	•	
	Has some or all of the site property been s ax map amendment during this Reporting		П	×
	has there been any change of use at the sale 6NYCRR 375-1.11(d))?	ite during this Reporting Period	0	×
	lave any federal, state, and/or local permi or or at the property during this Reporting			×
	f you answered YES to questions 2 thru hat documentation has been previously			
5. I	s the site currently undergoing developme	nt?		×
			Box 2	
			YES	NO
	s the current site use consistent with the u commercial and industrial	se(s) fiated below?	×	
7. A	re all ICs/ECs in place and functioning as	designed?	×	0
à.	IF THE ANSWER TO EITHER QUESTION DO NOT COMPLETE THE REST C	ON 6 OR 7 IS NO, sign and date below and OF THIS FORM. Otherwise continue.		
Correcti	ve Messures Work Plan must be submitt	ed slong with this form to address these lesu	106 .	
Signat	ure of Owner, Remedial Party or Designate	d Representative Date	-	

SITE NO. 932113

Box 3

Description of Institutional Controls

Parcel

Owner

108.13-1-1

GM Components Holdings LLC

Institutional Control
Site Management Plan

Landuse Restriction
Monitoring Plan

Ground Water Use Restriction

Soil Management Plan

IC/EC Plan

In March 2005, a Record of Decision was issued for this site. The selected remedy was Monitored Natural Attenuation (MNA). Long-term groundwater monitoring is required to evaluate the continued effectiveness of MNA at the site.

An Environmental Easement was filed with the Niagara County Clerk's Office on October 6, 2011. This easement states that the Controlled Property may be used for commercial or industrial use as long as the following engineering controls are employed and the land use restrictions specified below are adhered to: (1) implement and comply with all elements of the Department approved Site Management Plan, (2) restrict use of groundwater at the Controlled Property as a source of potable or process water without necessary water quality treatment as determined by the Niagara County Department of Health, and (3) evaluate the potential for vapor intrusion into any buildings developed on the Controlled Property. Provision for mitigation (if determined to be necessary), such as installation of a vapor barrier and sub-slab vapor system or other engineering controls shall be implemented on all structures on the Controlled Property prior to occupancy.

Description of Engineering Controls

.

None Required

Not Applicable/No EC's

Box 4

Periodic Review Report (PRR) Certification Statements

1.	I certify by checking "YES" below that:	
	 a) the Periodic Review report and all attachments were prepared under the direction of reviewed by, the party making the certification; 	and
	b) to the best of my knowledge and belief, the work and conclusions described in this care in accordance with the requirements of the site remedial program, and generally accordance with the information processed in accordance with the information processed in accordance.	ertification cepted
	engineering practices; and the information presented is accurate and compete. YES	NO
	×	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Ir or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of t following statements are true:	stitutional he
	 (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchathed that the Control was put in-place, or was last approved by the Department; 	nged since
	(b) nothing has occurred that would impair the ability of such Control, to protect public the environment;	ealth and
	 (c) access to the site will continue to be provided to the Department, to evaluate the rer including access to evaluate the continued maintenance of this Control; 	nedy,
	(d) nothing has occurred that would constitute a violation or failure to comply with the S Management Plan for this Control; and	ite
	(e) if a financial assurance mechanism is required by the oversight document for the sit mechanism remains valid and sufficient for its intended purpose established in the docu	e, the ment.
	YES	NO
	×	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these iss	ues.
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. 932113

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

| SAMCS F. HARNOTT at 30400 VAN DUKE AVONCE, WARROW MI print name print business address

am certifying as MARGOR, ROMOVATION SERVICES (Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

| Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

ICIEC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

KLETTKE at 300 PEARL STREET SUITE 700 BUFFALO, NY 14202.

print business address

am certifying as a Qualified Environmental Professional for the GM Components Holbins, LLC

Date

Stamp

(Required for PE)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

January 14, 2022 21.0056546.20 Periodic Review Report Delphi Harrison Thermal Systems Site, Lockport, New York Page | 10

APPENDIX C

RESULTS OF AUGUST 2021 MONITORED NATURAL ATTENUATION GROUNDWATER SAMPLING REPORT

Proactive by Design

RESULTS OF AUGUST 2021 MONITORED NATURAL ATTENUATION GROUNDWATER SAMPLING DELPHI HARRISON THERMAL SYSTEMS SITE Registry Site No. 932113 GM COMPONENTS HOLDINGS, LLC Lockport, New York

Submitted January 14, 2022 File No. 21.0056546.20

PREPARED FOR:

New York State Department of Environmental Conservation

GZA GeoEnvironmental of New York

300 Pearl St. Suite 700 | Buffalo, NY 14202 716-685-2300 31 Offices Nationwide www.gza.com

Copyright© 2022 GZA GeoEnvironmental, Inc.

Known for excellence. Built on trust.

GEOTECHNICA

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 300 Pearl Street

Suite 700

Buffalo, NY 14202

T: 716.685.2300

F: 716.248.147

www.gza.com

VIA E-MAIL

January 14, 2022

File No: 21.0056546.20

Mr. Glenn May, CPG New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9 270 Michigan Ave. Buffalo, NY 14203-2915

RE: Results of August 2021 Monitored Natural Attenuation Groundwater Sampling Event Delphi Harrison Thermal Systems Site (Site) - Registry Site No. 932113 Lockport, New York

Dear Glenn:

GZA GeoEnvironmental of New York (GZA) is pleased to provide the attached Report of the August 2021 Monitored Natural Attenuation (MNA) Groundwater Sampling event for the above reference Site.

We hope this report satisfies your present needs. If you need any additional site-specific information, please contact Jim Richert at 716-844-7048

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

Aim Richart

James J. Richert, P.G

Sr. Project Manager

Bart A. Klettke, P.E.

Principal

Karen Kinsella, Ph.D

Sr. Technical Specialist/Consultant Reviewer

Karen Krusella

TABLE OF CONTENTS

	<u>Page</u>
1.00 INTR	DDUCTION AND BACKGROUND1
2.00 2020	GROUNDWATER MONITORING AND SAMPLING2
3.00 ANAL	YTICAL RESULTS AND DISCUSSION3
4.00 GROU	JNDWATER MONITORING CONCLUSIONS AND RECOMMENDATIONS6
TABLES	
TABLE 1	SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS
TABLE 2	SUMMARY OF NATURAL ATTENUATION PARAMETER RESULTS
FIGURES	
FIGURE 1	GROUNDWATER ANALYTICAL SUMMARY
FIGURE 2	TOTAL COC CONTOUR MAP
FIGURE 3	GROUNDWATER ISOPOTENTIAL MAP
APPENDIC	ES CONTRACTOR OF THE PROPERTY
APPENDIX	A GROUNDWATER SAMPLING FIELD FORMS
APPENDIX	B COCS, TOTAL VOCS, AND TOC DATA GRAPHS
APPENDIX	C RESULTS OF EPA CVOC MONITORED NATURAL ATTENUATION RANKING SYSTEM
APPENDIX	D DATA VALIDATION AND ANALYTICAL LABORATORY REPORTS

1.0 INTRODUCTION AND BACKGROUND

GZA GeoEnvironmental of New York (GZA) presents this report to summarize results of the August 2021 groundwater and monitored natural attenuation (MNA) parameter sampling event at the above-referenced Site. The groundwater sampling event was conducted from August 17th through August 20th, and included eight monitoring wells (MW-4, -7, -10, -11, -12, -13, -14 and -15). All eight wells were sampled for the five compounds of concern (COCs)¹ and MNA parameters as identified in the Site Management Plan² (SMP). In addition to the MNA parameters identified in the SMP, carbon dioxide, hydrogen, ethene, and ethane were added to the sampling parameter list starting in 2014.

2005

In March 2005, NYSDEC issued a Record of Decision (ROD) for the Site, which selected MNA as the remedial alternative to address the COCs present at the Site. Annual MNA groundwater sampling was completed voluntarily from October 2006 to May 2011.

2006 to 2011

Six monitoring wells (MW-7, MW-11, MW-12, MW-13, MW-14 and MW-15) were monitored in October 2006, November 2007, November 2008, and March 2009 (Figure 1). MW-7 is in the vicinity of the Area of Concern (AOC) and the other five wells, MW-11 through MW-15, are down-gradient monitoring locations. Based on the results of the groundwater sampling program through March 2009, the sampling program was expanded in July 2009 to include two mid-plume wells (MW-4 and MW-7) and two cross-gradient wells (MW-8 and MW-9). Results of the 2010 event indicated that natural attenuation is occurring with limited evidence of reductive dechlorination near the source area (MW-7) and midpoint (MW-4 and -10) of the groundwater plume. However, there was adequate to strong evidence for anaerobic biodegradation of COCs at the leading edge of the groundwater plume (MW-11 through -15). Given these conditions, coupled with the lack of evidence of an expanding plume, it appeared that natural attenuation processes were effectively managing the COC plume migration.

2012 to 2014

In November 2011, GMCH entered into an Order on Consent and Administrative Settlement (Index #B9-0553-99-06) for the Site which requires that annual sampling be conducted as part of the SMP. The 2012 to 2014 annual sampling included eight monitoring wells (MW-4, -7, -10, -11, -12, -13, -14 and -15) with the mid-plume wells MW-8 and MW-9 no longer sampled. Groundwater sampling results through 2014, as stated in the SMP and collectively, resulted in the following conclusions:

- Natural attenuation of COCs is occurring via reductive dechlorination;
- The COC concentrations of the parent compounds were decreasing and the concentrations of daughter compounds increasing from the source area (MW-7) down-gradient to the mid-point of the plume (MW-4 and MW-10) and on to the down-gradient portions of the Site (MW-11 through MW-15); and

¹ The five COCs are trichloroethylene, tetrachloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride.

² "Delphi Harrison Thermal Systems Site, Niagara County, New York, Site Management Plan, NYSDEC Site Number 9-32-113" dated October 2011. Prepared for GM Components Holdings, LLC by GZA.

 The COC concentrations at the most down-gradient well (MW-13) along the property line did not exceed the NYSDEC Class GA criteria.

Also, the 2013 data indicated that ethene was detected in groundwater samples collected from all eight monitoring wells. Assuming the ethene represents the end-product of chlorinated volatile organic compounds (cVOC) reductive dechlorination, its detection at each monitoring well was a direct line of evidence that cVOCs have been degraded to completion at the Site.

The temporal decreasing trend in TOC concentrations continued through the 2013 monitoring event. GZA recommended a treatability study to evaluate whether the addition of an organic carbon amendment might re-stimulate natural attenuation by reductive dechlorination. The recommended study involved deployment of *in-situ* microcosms (Bio-Trap[®] In-Situ Microcosms, manufactured by Microbial Insights, Inc. of Knoxville, Tennessee) "baited" or "BioStim" unit with an organic carbon additive to evaluate whether reductive dechlorination can be re-stimulated.

Conclusions of the 2014 Treatability Study:

At the source area (MW-7):

- *Dehalococcoides* populations were detected in both the control and carbon amendment units. However, population counts were below the concentration at which an effective rate of dechlorination generally occurs.
- Addition of the organic carbon amendment at the source location did not substantially enhance growth of dechlorinating bacteria and increase reductive dechlorination during the study period.

At the mid-plume location (MW-4):

 High concentrations of *Dehalococcoides* and both vinyl chloride reductase enzyme genes were detected in the MNA unit, indicating the potential for complete reductive dechlorination of TCE to ethene under existing site conditions.

The *Dehalococcoides* population in the BioStim unit, in which the organic carbon was added, was an order of magnitude higher compared to the MNA unit. Vinyl chloride reductase genes were also higher in this unit compared to MNA levels, suggesting that the carbon amendment enhanced growth of dechlorinating bacteria within the study period. Contaminant concentrations and geochemistry, however, were not substantially different from those in the MNA unit.

2.0 2021 GROUNDWATER MONITORING AND SAMPLING

The 2021 groundwater monitoring and sampling event was conducted from August 17 through August 20, 2021, in accordance with the SMP, and included eight monitoring wells (MW-4, MW-7, and MW-10 through MW-15 (Figure 1).

Methodology

The groundwater monitoring and sampling was performed using low flow sampling techniques with a peristaltic pump, disposable polyethylene tubing and a water quality meter with a flow-through cell to collect water quality field parameters. The sampling technique and analytical parameters were consistent with the SMP.

Field Measured Parameters: temperature, specific conductance, pH, turbidity, dissolved oxygen (DO), and oxidation reduction potential (ORP).

Compounds of Concern: tetrachloroethylene (PCE), trichloroethylene (TCE), *cis*-1,2-dichloroethylene (*cis*-DCE), *trans*-1,2-dichloroethylene (*trans*-DCE) and vinyl chloride (VC).

Natural Attenuation Parameters: iron, magnesium, manganese, potassium, sodium, alkalinity, TOC, chloride, ammonia, nitrate, nitrite, sulfate, carbon dioxide, hydrogen, methane, ethene, and ethane.

Groundwater pumping rates varied from one well to another during monitoring/sampling to establish a stable water level. Once a stable water level (constant head) was established within the monitoring well, flow rates were maintained during the monitoring/sampling period. Samples were collected for analysis after field-measured parameters stabilized. It should be noted that a stable water level could not be established at well MW-7 (as experienced in previous sampling rounds). Therefore, this location was purged to dry-like conditions and allowed to recharge until the recharge volume was sufficient to collect the samples. Also, due to the lack of a stable water level in this well, the dissolved hydrogen sample could not be collected. The Monitoring Well Observations and Groundwater Sampling field forms are included in **Appendix A**.

3.0 ANALYTICAL RESULTS AND DISCUSSION

Analytical results of the COCs show an overall downward trend in total COC concentrations over time. Analytical results of the 2021 sampling round are summarized in **Table 1** and shown on **Figure 1**. The analytical results for the COCs (current and historical) shown on **Figure 1** as well as total COCs and TOC have been graphically depicted and are included in **Appendix B**. It should be noted that the concentrations of *cis*-DCE and *trans*-DCE have been combined for presentation purposes as total 1,2-DCE in **Figure 1** and on the graphs in **Appendix B**. A contour map of the Total COC concentrations is presented on **Figure 2** and a contour map of the 2021 groundwater elevation data is provided on **Figure 3**.

The Eurofins Test America, Buffalo laboratory report and the third-party data validation report are provided in **Appendix**

Compounds of Concern

Source Area Monitoring Well (MW-7)

MW-7: The TCE concentrations over time at MW-7 have generally been in the range of 530 to 880 mg/L from October 1996 through June 2020 except for four contiguous sample rounds from April 2003 through November 2008, where the results ranged from 1.1 to 434 mg/L. The August 2021 TCE concentration of 400 mg/L, as shown on the graph in **Appendix B** is less than half of that detected in June 2020.

The concentrations of the PCE, 1,2-DCE and VC appear to generally be consistent since the start of the sampling in 1996, with some minor fluctuations.

Mid Plume Monitoring Wells (MW-4 and MW-10)

MW-4: The concentrations of the PCE, TCE and VC generally have been consistent since the start of the sampling in 1996, with some minor fluctuations. 1,2-DCE showed a decreasing trend until approximately 2009 after which the decrease in concentrations has slowed notably. This may be reflected in the decreased available organic carbon concentration trend that would drive the microbially-mediated transformation of TCE→1,2-DCE→VC.

MW-10: There has been a slight downward trend of TCE and 1,2-DCE concentrations at MW-10 since 1996 with some minor fluctuations, which is consistent with natural attenuation. PCE concentrations have been non-detect since 2013. VC concentrations remain in a range between 0.007 and 0.48 mg/L.

Down-gradient Monitoring Wells (MW-11 through MW-15)

MW-11: None of the COCs tested were present above method detection limits in 2021. This has been the case for five of the last six years. In 2020, TCE was detected at a concentration below its Class GA Criteria.

MW-12: With just one exception in 2014. PCE and TCE have not been detected above their respective Class GA criteria (0.005 ppm) since sampling began in 1997. In 2014 TCE was detected in at a concentration of 0.0074 mg/L. Most years TCE and PCE are not detected above their respective MDLs. 1,2-DCE was detected at a concentration of 0.056 mg/L in 2021, slightly above its NYSDEC TOGS 1.1.1 Class GA standard of 0.005 mg/L. Concentrations of VC have fluctuated from 0.011 mg/L (October 2001) to 0.190 mg/L (August 1997). VC was detected at a concentration of 0.0059 mg/L in 2021, above its NYSDEC Class GA standard of 0.002 mg/L but much less than that seen in the last three years. Both 1,2-DEC and VC are TCE degradation products that are biodegraded by many different groups of environmental bacteria. The MNA geochemistry and the fact that both 1,2-DCE and VC are not detected in downgradient well MW-13 provide evidence that these cVOCs are degrading.

MW-13: None of the COCs tested were present above method detection limits in 2021. PCE, 1,2-DCE and VC have been below method detection limits in all sampling rounds since the start of sampling in 2001. TCE was detected on only two occasions (October 2006 and May 2019) at concentrations above the method detection limit but well below the reporting limit of 0.001 and its NYSDEC Class GA standard of 0.005 mg/L.

MW-14: None of the COCs tested were present above method detection limits in from 2016 to 2020. For the first time since 2015, 1,2, DCE was detected at a concentration of 0.0013 mg/L, below its Class GA criteria (0.005 ppm)

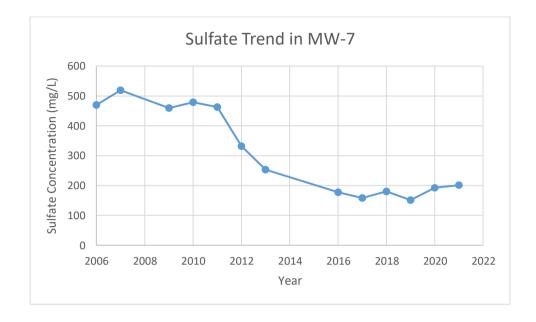
MW-15: Concentrations of TCE were below method detection limits in the first 7 of the 19 sample events since the start of sampling in 2001. Between 2010 and 2018 TCE has been detected in nine consecutive sampling events at concentrations above the method detection limits (0.00064 to 0.001 mg/L), but below the NYSDEC Class GA criterion. In 2019 TCE was not detected above the method detection limit but was again present in 2020 and now again in 2021 at a concentration below the NYSDEC Class GA criterion.

The detected concentrations of PCE have been slightly above its NYSDEC Class GA criterion from the start of sampling in 2001 up until 2019, with the highest concentration of 0.02 mg/L (October 2001). The 2020 concentration of PCE (0.0039 mg/L was the lowest concentration detected at this location to date and was, for the first time, below the NYSDEC Class GA criterion. The 2021 detected concentration (0.0058 mg/L) of PCE is a slight increase from the 2020 concentration and is again greater than the NYSDEC Class GA criterion of (0.005 mg/L).

Concentrations of VC have been below their method detection limits in all sampling events completed since 2001. 1,2-DCE was not detected above the method detection limit here in 2021 as has been the case 16 of the 19 times sampled.

Natural Attenuation Performance

Findings of the June 2021 groundwater analytical and water quality data are generally consistent with the substantive conclusions and trends noted in prior reports. During 2021, GZA used Wiedemeier *et al.'s* (1998³) approach to evaluate the performance data to re-assess the strength of the evidence supporting reductive dechlorination. A table summarizing the results of that evaluation is included in **Appendix C**, and the results are tabulated below. Notably, a comparison of the 2020 summary of strength of natural attenuation evidence with that of 2021 reveals that well MW-12 moved from being "Adequate" in 2020 to "Strong" in 2021 and MW-14 moved from "Limited" in 2020 to Adequate in 2021. The other six wells were unchanged by category year over year.


	STRENGTH OF NATURAL ATTENUATION EVIDENCE						
WELL	INADEQUATE	LIMITED	ADEQUATE	STRONG			
	EVIDENCE	EVIDENCE	EVIDENCE	EVIDENCE			
Source Area Well	Source Area Well						
MW-7		X					
Mid Plume Wells							
MW-4				X			
MW-10			Х				
Down-gradient W	Down-gradient Wells						
MW-11		X					
MW-12				Х			
MW-13		Х					
MW-14			Х				
MW-15		Х					

Note: "X" indicates the respective strength of the evidence for natural attenuation by reductive dechlorination for the June 2020 groundwater monitoring round in accordance with Wiedemeier *et al.* (1998).

_

³ Wiedemeier, T.H., Swanson, M.A., Moutoux, D.E., Gordon, E.K., Wilson, J.T., Wilson, B.H., Kampbell, D.H., Haas, P.E., Miller, R.N., Hansen, J.E., and Chapelle, F.H., 1998, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, EPA/600/R-98/128, 78 p.

The decline in sulfate concentrations over time in source area monitoring well MW-7 illustrated above provides additional evidence in support of natural attenuation. Sulfide produced by native sulfate-reducing bacteria can combine with iron to form reactive ferrous sulfide which degrades TCE abiotically by direct electron donation. The concurrent decrease in dissolved iron concentrations, which were three times lower 2012-2021 than 2006-2011, supports the probability that abiotic reduction of TCE is contributing to natural attenuation in the source area.

4.0 GROUNDWATER MONITORING CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

Based on the results of the August 2021 sampling round within the framework of the historical results, natural attenuation of COCs is occurring via reductive dechlorination. GZA offers the following additional observations relative to the 2021 sampling round:

- The concentrations of the parent compounds decrease significantly from the source area (MW-7) downgradient
 to the mid-point of the plume (MW-4 and MW-10), and from the mid-point on to the downgradient portions of
 the Site (MW-11 through MW-15). The decrease in concentrations is as much as five orders of magnitude from
 the source area to the most downgradient wells where COCs are not detected.
- There is an increase in daughter compound concentrations from the source area to the mid-point of the plume, with an overall decrease in total COC concentrations.
- The COCs were not detected above NYSDEC Class GA groundwater standards at the down-gradient property line at wells MW-11, MW-13, and MW-14.

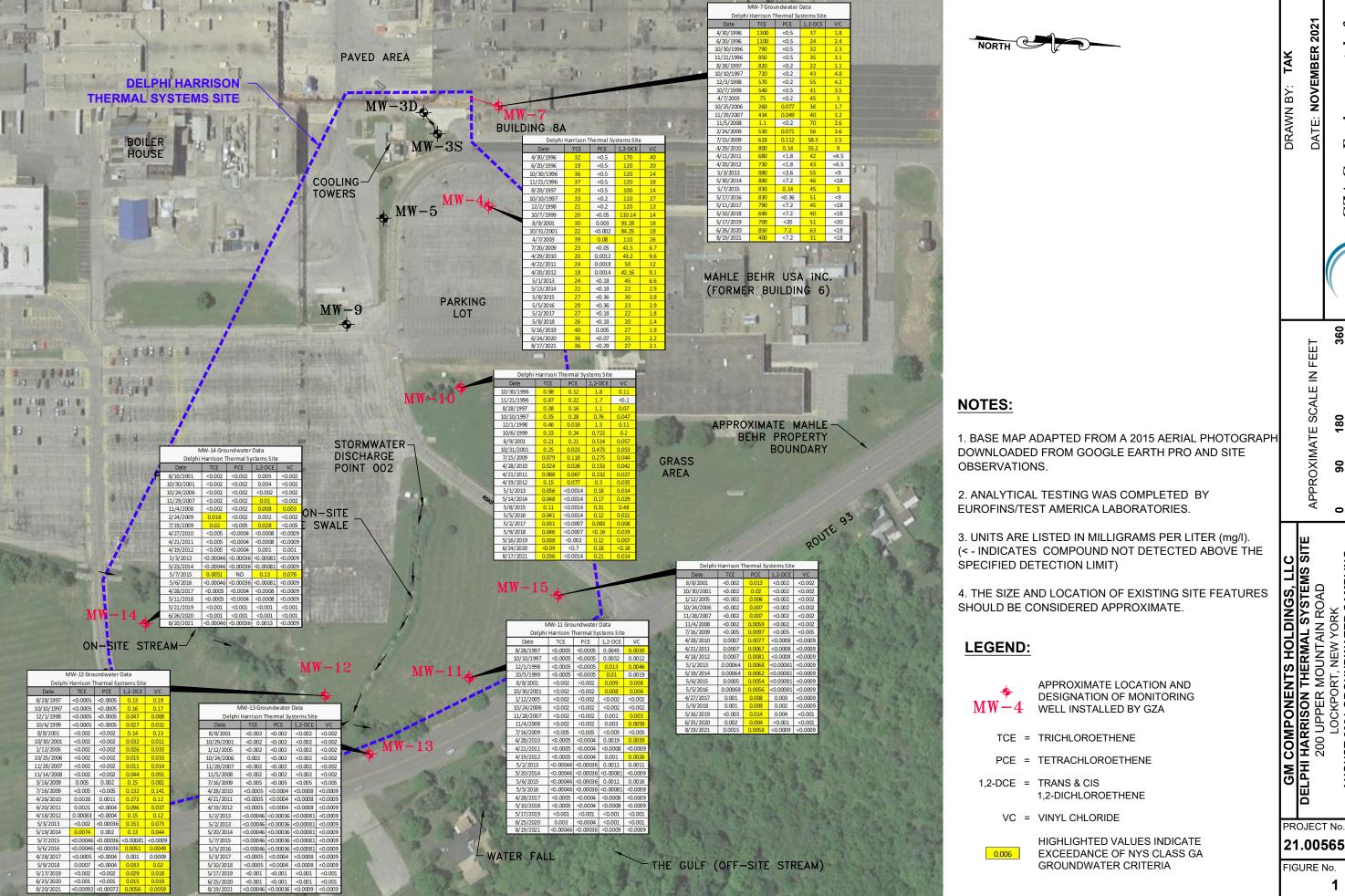
RECOMMENDATIONS

Based on the results of the August 2021 and previous sampling events and supported by the findings of the 2014 treatability study, current conditions mid-plume at well MW-4 show potential for complete reductive dechlorination of the COCs to ethene. COCs were not detected or were detected at concentrations below NYSDEC TOGS 1.1.1 GA standards in groundwater collected from the downgradient Site boundary, providing additional confirmation of continued natural attenuation.

On June 18, 2021, GMCH requested the removal of MW-10 from the groundwater monitoring well locations to be sampled during future monitoring events. If acceptable to the Department, the 2022 monitoring event should include the collection of representative groundwater samples for the analysis of COC and natural attenuation parameters at a total of seven wells (MW-4, -7, -11, -12, -13, -14 and -15). The COC and natural attenuation analytical parameters measured during the 2021 sampling round should also be measured during the 2022 sampling round.

TABLES

Table 1 Summary of Groundwater Sample Analytical Results Delphi Harrison Thermal Systems Site Site No. C932113


				DEI	PHI HARRISON GR	OUNDWATER WEL	LLS		
Sample Location Sample Date	Class GA Criteria	MW-4 8/17/2021	MW-7 8/19/2021	MW-10 8/17/2021	MW-11 8/19/2021	MW-12 8/20/2021	MW-13 8/19/2021	MW-14 8/20/2021	MW-15 8/19/2021
VOC Compounds of Concern (ug/L)									
cis-1,2-Dichloroethene	5	27,000	31,000	210	0.81 U	5.6	0.81 U	1.3	0.81 U
Tetrachloroethene	5	290.0 U	7,200 U	1.4 U	0.36 U	0.72 U	0.36 U	0.36 U	5.8
trans-1,2-dichloroethene	5	720 U	18,000 U	3.6 U	0.90 U	1.80 U	0.90 U	0.90 U	0.90 U
Trichloroethene	5	36,000	400,000	36	0.46 U	0.92 U	0.46 U	0.46 U	1.5
Vinyl Chloride	2	2,100	18,000 U	14	0.90 U	5.9	0.90 U	0.90 U	0.90 U
Total VOCs		65,100	431,000	260	0.0	11.5	0.00	1.3	7.3
Field Parameters									
Temperature (Deg. C)	NV	19.4	18.3	17.5	17.7	17	20.8	20.1	18.4
Specific Conductance (mS/cm)	NV	9.202	2.182	6.22	1.153	9.122	5.881	8.711	2.972
Dissolved Oxygen (mg/L)	NV	0.43	2.65	0.4	0.19	0.21	0.8	0.28	0.14
Oxygen Reduction Potential (mv)	NV	-3.5	-9	117	-107.8	-55.6	110.2	-21.8	90.5
pH (std. units)	NV	6.82	7.25	7.07	7.35	6.79	6.97	6.98	6.93
Turbidity (NTUs)	NV	3.76	35.32	2.46	5.01	3.01	3.09	48.01	6.51
Inorganics (mg/L)									
Iron	0.3	1.20	0.019 U	0.071	0.38	10.8	0.24	1.1	0.019 U
Magnesium	35 Note 4	91.3	46.6	35.3	33.4	58.8	40.6	98.7	44.7
Manganese	NV	0.51 B	0.012	0.75 B	0.15	6.8	0.38	0.67	0.36
Potassium	NV	20.7	11.6	3.1	8.0	5.1	10.2	7.4	4.3
Sodium	20	1480	229	1,140	118	1,570	1,010	1,310	369
Miscellaneous Water Quality Param	eters								
Methane (ug/L)	NV	1,100	77	86	29.0	260	1.0 U	200.0	1.0 U
Ethane (ug/L)	NV	33 J	46 J	1.5 U					
Ethene (ug/L)	NV	350	820	1.5 U					
Carbon Dioxide (ug/L)	NV	39,000	16,000	36,000	16,000	74,000	56,000	47,000	60,000
Total Organic Carbon (mg/L)	NV	2.3	12.1	3.6	1.3	6	2.3	3.2	1.9
Alkalinity (mg/L)	NV	309	253 J F1	356 F1	260 J	373 J	460 J	355 J	399 J
Ammonia (mg/L)	NV	1.5	0.51 J F1	0.009 U	0.160 J	1.5 J	0.061 J F1	0.3 J	0.009 J U
Chloride (mg/L)	NV	4,030 J F1	391	1,810 J	189	2910	1,700	2,680	716
Nitrate (mg/L)	NV	0.020 U	0.020 U	0.13	0.020 U	0.020 U	0.53	0.045 J	0.65
Nitrite (mg/L)	NV	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Sulfate (mg/L)	NV	777	201	316	104	131	114	77.3	68.4
Hydrogen (nm)	NV	16	NT	2.9	4.4	3.4	3.6	4.6	4.0

Notes:

- 1. Only compounds detected in one or more of the groundwater samples are presented in this table.
- 2. "<" indicates compound was not detected above the method detection limit.
- 3. Analytical testing completed by TestAmerica in Amherst, New York.
- 4. Criteria is a guidance value.
- 5. Laboratory qualifiers: B = compound was found in the blank and sample; J = result is less than the RL but greater than or equal to the MDL and the concentration is an approximation; * LCS or LCSD exceeds the control limits. H=Sample prepped or analyzed beyond holding time.F1=MS and/or MSD Recovery is outside acceptance limits. F2 = MS/MSD RPD exceeds control limits. ^ = Instrument related quality control is outside of acceptable range. E = Result exceeded calibration range.
- 6. mg/L = parts per million; ug/L = parts per billion
- 7. NYSDEC Class GA Groundwater Criteria as promulgated in 6 NYCRR 703; Table 1 in Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated October 1993; revised June 1998; errata dated January 1999; addendum dated April 2000.
- 8. NV = no value, NT = not tested, NA = not applicable U = below Method Detectable Limit
- 9. Shaded concentrations exceed Class GA criteria.

FIGURES

GeoEnvironmental of New

GZA

2020

 \mathbf{of}

GeoEnvironmental

York

90

RESULTS

ANALYTICAL GROUNDWATER

21.0056546.20

2020 GZA

- 1. BASE MAP ADAPTED FROM A 2005 AERIAL PHOTOGRAPH DOWNLOADED FROM http://www.nysgis.state.ny.us/gateway/ mg/interactive_main.html AND SITE OBSERVATIONS.
- 2. ANALYTICAL TESTING WAS COMPLETED BY EUROFINS/TEST AMERICA LABORATORIES.
- 3. UNITS ARE LISTED IN MILLIGRAMS PER LITER (mg/l). (< -INDICATES COMPOUND NOT DETECTED ABOVE THE SPECIFIED DETECTION LIMIT)
- 4. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

LEGEND:

APPROXIMATE LOCATION AND CONCENTRATION OF TOTAL VOC CONTOUR

APPROXIMATE LOCATION AND DESIGNATION OF MONITORING WELL INSTALLED BY GZA SHOWN WITH TOTAL VOC CONCENTRATION

NS = NOT SAMPLED ND = NON-DETECT

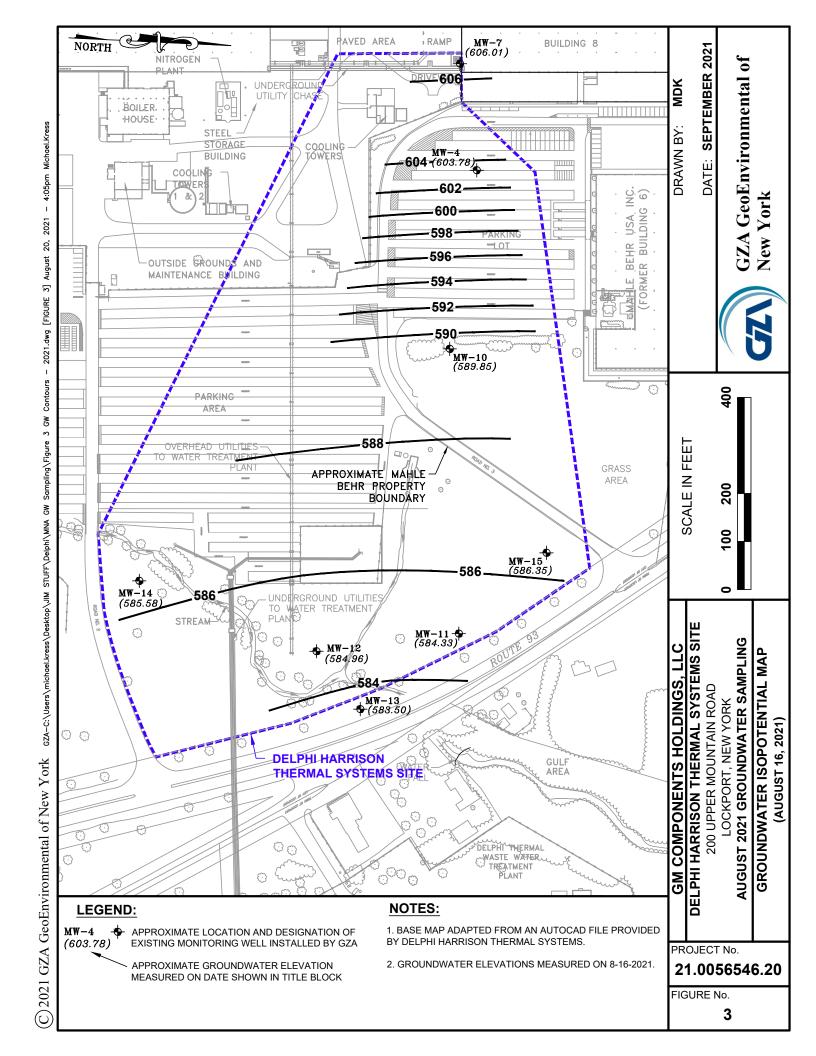
DATE: NOVEMBER DRAWN BY:

GeoEnvironmental

 \mathbf{of}

APPROXIMATE SCALE IN FEET

90


COMPONENTS HOLDINGS, LLC I HARRISON THERMAL SYSTEMS SITE 200 UPPER MOUNTAIN ROAD

COC CONTOUR MAP

PROJECT No. 21.0056546.20

FIGURE No.

2

APPENDIX A

GROUNDWATER FIELD FORMS

ECI NAME	Delphi H	larrisc	on Th	nerma	1 Sy	stems	s Site	-	PROJEC	T NO.	-	565	46.20 7
PLING CREW M	EMBERS	Margon	n Bo	own					SUPER	VISOR		Ric	hert
E OF SAMPLE CO	OLLECTION	8-17-	١٢ -	- 8-	20-21								
							Note: For	2 dia, well	, 1 ft. =	0.14 gal	(imp) o	r 0.16 ş	gal (us)]
Sample	Well	Measuring	Bottom	Water	Water	Well	Bailer	Volume	Field	Carried States	Field		Sample
LD. Number	No.	Point Elev. (ft. AMSL)	Depth (ft. btoc)	Depth (ft. btoc)	Elevation (ft. AMSL)	Volume (gallons)	Volume No. Bails	Purged (gallons)	pН	Temp.	Cond.	Time	Description & Analysis
MW-4	453.4 .1		06				/ / /	1 9	1 47	10 11	0 767	000	YOU MWA
081721	MW-4	613.07	34.93	9.24	603.83	4.2		lod	600C	19-4	7.002	1197	H. VFA
MW-7 082021	MW-7	613.86	28.98	7.75	606.11	3.5		5.1	7.25	18.3	2.182	1316	VOC MNA VFA
MW-10 081721	MW-10	604.70	23.71	14.82	589.88	1.5		1.0	7.07	17.5	6.20	1517	YOC MWA
MW-11 081921	MW-11	590,16	15.19	6.01	584.15	1.5		1.2°	7.35	17.7	1.153	1226	VOC MWA
MW-12	MW-12		16.40	5.73	584.98	1.7		0.9	6.79	17.0	9.172	0819	VOC MNA
MW-13 081921	MW-13		14.06	5.46	583.56	1-4				28.8	5.981	1535	VOC MIND
MW-14 082021	MW-14				571.39			1.3	6.98	20.1	8.711	1057	YOC MUD
MW-15 081921	MW-15	4			586.34	1.5		1.2	6.93	18.4	2.972	1020	HZ VFD
Additional Comp													
Copies to:													

Project Date			М	ONITORING	WELL RECOI	RD FOR LOW-FLO	W PURGIN	G			
Froject Date			, .	-1 1	c l	site		130	0-17	71	
	Project Name: Ref. No.:	Delphi H 56546	arrison Tas	hermal E4	Systems	32110		Personnel:	Morgan	Z1 Brown	
Monitoring	Well Data:							88			
	Well No.: surement Point:	MW-	H				Screen	Length (ft):	17.5	32.5=	17
Meas	surement Point	TOR				Dep	th to Pump I Well Diam	ntake (ft) ⁽¹⁾ .	26		
Constructed	Well Depth (ft):	32.5									
	Well Depth (ft):		100			Well Sc	wen Volume	V. (ML)(2).	4-2		
	of Sediment (ft):				0	Est	itial Depth to	Water (II):	4.24		
Deput	Pumping	Depth to	Drawdown from Initial				,			Volume	No. of Well
	Rette	Water	Water Level to		Temperature	Conductivity	ORP	DO	Turbidity	Purged, Vp	Serven Volumes
Time	(mL/min)	(ft)	(ft)	pH	°C	(mS/cm)	(mV)	(mg/L)	(NTU)	(4H.)67	Purged 44
1114	87*	9.41	T	6.86	20.5	9,250	12.4	1.11	2.47	0	
1170		9.41		6.77	0.19	9.226	8.2	0.63	2.08	0.1	
1125		9.69		6.75	19.0	9.211	7.1	0.53	246	0.2	
1130		10.15		16075	18-8	9.206	4.6	0.47	2.70	0.3	
1135		10.15		6.77	19.5	9.210	2.7	0.45	2.35	0.4	
1140		10.15		6.79	19.4	9.220	1.0-1	0.45	2.78	0.5	
1147		10.15		6-81	19.6	9,215	-2.5	0.43	3-48	0.7	
1152		10.15		6.82	19.4	9.202	-3.5	0.43	3.76	0.9	
	ļ	-		-			-				
	1			1							
53.3	1		L	1		Name and the same					
Notes. (1)	The numer intel	a will be place!	at the wall correspond	antimorna or a	× manimum of 2	ft above any sediment	t accumulated	at the well be	ston.		
			hased on a 5-foot sc				The second second				
(2)						(4-71)					
(3)			water level should			L	unlaw range	akon mana airen	vicually turbid		
(4)						s have been purged (t					
			niess stabilization p Volumes Purged= V		varying siigntly c	outside of the stablizat	CONTRACTOR ALL	u appear are			
40	Statistizings, No.	•	Contract to the contract of th	B. v.							

D 8 L 772 PURGE DATE (MM DD YY)	11)	6 6 1 1 5 6 6 1 5 6 6 6 6 6 6 6 6 6 6 6		WATER VOL. IN CASH		ACTUAL COLUMN	
PURGING FQUIPMENT.	_DEDICATED (C	77	ING AND SAMPLIN		AMPLING ÉQIP	MENT DEDIC	ATED (CIRCLE ONE
PUKGING DEVICE	B-PORI	MERSIBLE PUMP STALTIC PUMP	D. GAS LIFT PUMP F - PURGE PUMP	C - BAILER H - WATERRAY	×	PURGING OF	tEE (SPECIPY)
SAMPLING DEVICE		DDEF FULLY	F - DUTTER BOTTLE		X	5ASIPIJING SI	HER OPECIFYS
PERGING DEVICE		MLESS STEEL MLESS STEEL	E POLYETHYSENE		`` x	PERGINCION	thir (eaft, llet)
PURGING DEVICE	E A. 168	ЮN	D - PCC A PROPYLENE	F + SILICONE	x	- PYZUJINO CA	
SAMPLING DEVICE	E C ROP	S 84	E. POLYPTHYLEN	COMMINATION TEFLON/FOLYPROPY	t to sta	PURGING OH SAMPLING OF	
FILTERING DEVICES 0.45		IN-LINE DISTORA		C - VACUUM		2000 000	Marks Marks Mark
WELL ELEVATION DEPTH TO WATER	R	1/13101 1 f(121	FIELD MEASUREM (in/:t) (in/:t)	GROUNDWATER FLEVATION WELL DEP'(H		19171813	(m/n) (m/n)
PH (etd)	TURBIDITY (niu)	CONDUCTIVE	(umyern) (umyern) (umyern)	(mV)	DO I	SAMPLE I	TEMPERATURI
(atd)	(n/u)		AT 25°C	(rrV)	111	[ma to]	
(363)	(m(n)		(servern) A7 25/0 (privern) A7 25/0	I I I I I I I I I I I I I I I I I I I		1/42/1 :	1 1 10
SAMPLE APPEARS SUF WEATHER CONDITIONS SPECIFIC COMMENTS	Cood	O-S	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	_ case _ <u>cle</u>	oC n	ener de	ar /

				МО	NITORING	WELL RECOR	D FOR LOW-FLO	OW PURGING	G			
	Project Date											
		Project Name: Ref. No.:	Delphi He 56546	arrison T	hermal	Systems	Site		Date: Personnel:	8-19 M. B	- 21 nwo	
	Monitoring	Well Data:							14			
		Well No	MW-	7				Screen I	Length (ft):	15		
	Moa	surement Point:					Der	oth to Pump Ir		NA		
		Well Depth (ft):						Well Diame		2		
		Well Depth (ft):					Well Sc	reen Volume,		3.5		
								nitial Depth to				
	Depth	of Sediment (ft):					112	man pepas to	The state of	1. 10		
	Time	Pumping Rate (ntl/min)	Depth to Water (ft)	Drawdown from Initial Water Level ^{to} (ft)	pН	Temperature ° C	Conductivity (mS/cm)	ORP (mV)	DO (ing/L)	Turbidity (NTU)	Volume Purged, V p (mt.) G	No. of Weli Screen Volumes Purged 149
	0739	T	8,51		7.19	18.8	2.210	24.0	18-0	4.38	0.0	
R	0744		9,43		7.14	18.4	2.175	-2.2	0.49	42.20	6.2	
61	3750		10.45		7.14	18.5	7.058	1-21.8	0.44	163.64	0.4	ļi
7	0800		11.26		7.16	18.7	2.042	-30.8	0.42	233.71	0.8	
	0805		11.77		7.17	18,9	2.006	-34.5	6.40	228.04	1.1	-
	0815		14.05	0 8	7.16	18.5	1.975	-33.0	0.33	270.46	1-8	
	0825		16-29		7.18	18.5	1.990	- 37.3	0.55	302.10	7.5	
	0835		18.90		7.20	18-4	2.054	-28.6	2.23	28.45	4.1	-
	0842	1	20-91		7.19	18.0	2.145	-17-0	2.65	35.32	5.1	
4	0847	94	22.10		7.25	18.3	2.182	-9.0	2.65	23.00	2.1	1
20	1316	 	8.2		7.36	22.0	2.615	87.4	6.40	7-17	0-1	
0			(4.2)	L	}				l			
	Notes:								15.1			
	(1)			at the well screen m				it accumulated	at the well be	mom.		
	(2)	The well screen	volume will be	based on a 5-foot scr	een length. V	s=p*(D/2)2*(5*12)	*(2.54) ³					
	(3)			water level should n								
	(4)	Purging will con	tinue until stal	ilization is achieved	or until 20 w	ell screen volumes	have been purged (unless purge w	ater remains	visually turbid		
				nless stabilization pa		varying slightly o	utside of the stabliza	ation criteria an	d appear to b	ie		
		stablizing), No.	of Well Screen \	√olumes Purged≃ V _I	o/Vs.							

				RM hearnest			
O 18 1 19 17 PURGE DATE (SIM OD YY)		SAMPLE DATE (YZ GO VAK)	W	ATER VOL IN CASING		CTUAL VOLUME PUR (LITRES/GALLONS	
PURGING EQUIPMENT		N CLE ONE)	** ************************************		MPLING EQIPM		ED (D) N RCLE ONE)
PURGING DEVICE		LTIC PUNIF B-PUR	GEPUNIP H	BAILER WATERRAM	X-	PURGING OTHER	(SPECIFY)
SAMPLING DEVICE	C SLADDI		ZER BOTTLE		N-,	SAMPLING OTHER	SPECIFY
PURGING DEVICE	B-STAING	ESS STEEL E - POL	YETHYLENE	ž.	X-	PURGING OTHER	(SPECIFY)
PURGING DEVICE	E A HIFLON		YPROPYLENE F	SILICONE	x-	SAMPLING OTHER	(SPECIFY)
SAMPLING DEVICE	E C-ROPE	xE-PCX	######################################	COMBINATION FLON/POLYPROPYI	RNE X-	PURGING OTHER SAMPLING OTHER	NEW HEREITH COMMEN
FILTERING DEVICES 0.45	A - IN	(SPECIFY) -LINE DISPOSABLE	B-PRESSURE	C-VACUUM		JAMI LING OTTEN	
WELL ELEVATION DEPTH TO WATE	r III	318 6 11 17 7 5 11 1 1 1 1 1 1 1	n/ft) n/ft) ORP	ROUNDWATER ELEVATION WELL DEPTH	DO DO	0 6 1 1 1 1 2 8 1 9 1 8 1 SAMPLE TEM	(m/H) (m/H) PERATURE
(std)	(ntu)	AT 28"		(mV)		(mg/T)	1 (*c
(bid)	(ntu) (ntu)	AT 26"	c	(mv)		(65c/1)	1 60
SAMPLE APPEARANCE WEATHER CONDITIONS SPECIFIC COMMENTS	Crops Purges	000x S0	1/1	non cle	ON Y/N OUTLO	0K N -20-51	<

FMG MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

			МС	ONITORING	G WELL RECOI	RD FOR LOW-FLO	W PURGING	G			
Project Data:						1					
	Project Name: Ref. No.:	Delphi Hu 56546	arrison 7	hermal E4	Systems	site		Date: _ Personnel: _	08-17 M. Bro	7-21	
Monitoring V	Vell Data:							() -	79	***************************************	
	Wall No.	M W/-	10				Screen l	Length (ft):	8.8		
More	Well No.: urement Point:	TAR				Der	oth to Pump li	ntake (ft) ^{ft)} :	N171		
anetmetad I	Vell Depth (ft):	7/3			c.		Well Diame	eter, D (in):	2		
			yn		5	Well S	reen Volume	V. (100)	15		
	Vell Depth (ft):					I.	rreen Volume, uitial Depth to	w991	11 87		
Depth o	f Sediment (ft):				£1	52	ана вери ю	mater (it).	17.00		
Time	Pumping Rate (mL/min)	Depth to Water (ft)	Drawdown from Initial Water Level ⁽³⁾ (ft)	pН	Temperature C	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Volume Purged, V p (ﷺ)	No. of Well Screen Volumes Purged (4)
1434	86 k	15.17		7.10	17.8	6.053	176.9	0.88	2.09	0.0	
1439	00	15.17		7.06	17.2	5.993	130.3	0.57	1.76	0.1	(4)
1445		15.17		7.06	18.4	6.015	128.3	0.56	1.96	0.2	
1450		15.21		7.06	17.4	6.030	127.3		7.23	0.3	
1465		15-24		7.06	16.9	6.095	125.3		2.21	0.4	
1502	V.	15.24		7.06	17.0	6.131	122.5		2.03	0.5	
1607		15.24		7-06		6.143	121.0		7.10	0.6	
1512		15.24		7.07	17.2	6.186	118.7	0.40	2-40	0.8	
1517		15.24		7.07	17-5	6.220	117.0	0.40	2.46	1.0	-
		-			-		+	 		-	
		 	 	 	 					1	
		1	-	1							
		L	1			L					
Notes:			v .4			to alcourage and another a	st agricumulated	at the wall be	dtom		
(1)						ft above any sedimer	u accumulated	active well be	ALL THE		
(2)			based on a 5-foot se			(2.54)					
(3)			water level should			v v			10 M		
(4)	and appears to	be clearing, or u	nless stabilization p	arameters an	ell screen volume varying slightly o	s have been purged (outside of the stabliza	uniess purge w ation criteria an	ater remains d appear to b	visually furbic e	ı	
4	stablizing), No.		/olumes Purged= V S&EA	p/Vs.							

WELL PURG SITE/PROJEC	ING FIELD INF	dems Six	Thermal	JOB# 56546 - 20 WELL# MW-10
O 8 U 7 2 PURCE DATE (MM DD YY)	SAN (N P	WELL PURGING INFO MPLE DATE MIDD TY) URGING AND SAMPLIF	WATER VOL IN CASING (LITRES/CALLONS) NG EQUIPMENT	ACTUAL VOLUME PURGED (LITRES/GATLONS) IPLING EQIPMENTDEDICATED N
PURGING EQUIPMENT	(CIRCLE ON	E)		(CIRCLE ONE)
PURGING DEVICE	B - PERISTALTIC PU	MIP E-PURGE PUMIP	C. BAILER	PURGING OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP	F - DIPPER BOTTLE		SAMPLING CYTHER (SPECIFY)
PURGING DEVICE	E A - TEFLON B - STAINLESS STEE			Y- PURGING OTHER (SPECIFY)
SAMPLING DEVICE	E C - POLYPROPYLIEN	Ti.	=:	SAMPLING OTHER (SPECIFY)
PURGING DEVICE	A - TEFLON	D - POLYPROPYLENE	C) - COMBINATION	Y- PURGING OTHER (SPECIFY)
SAMPLING DEVICE	E C ROPE *-	(SPECIFY)	TEFLON/ POLYPROPYI I	SAMPLING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DE		RE C - VACUUM	
DEPTH TO WATE PH (std) (std) (std) (std) (std) (std) (std) SAMPLE APPEARANCE WEATHER CONDITIONS SPECIFIC COMMENTS		(universi) A7 25°C FIELD COMN ODOR None	GROUNDWATER ELEVATION WELL DEPTH DRP (mV) (mV) (mV) (mV) (m	58988 (m/11) DO SAMPLE TEMPERATURE (mg/1) (c) (mg/1) (c) (mg/1) (c) (mg/1) (c) (mg/1) (c) (mg/1) (c) (mg/1) (c)
	FY THAT SAMPLING PROXEDUR 17-21 MORE PRINT (es were in accordance wi	TH APPLICABLE CM PROTEX SIGNATURE	ious La

FMG MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

PID@ TOR = ON

PID@ Breathing = 0,0

			М	ONITORING	WELL RECOI	RD FOR LOW-FLO	OW PURGING	3			
Project Data									1		
		N / 12 11	arrison 7	rl 1	Sudens	Site		Date:	8-19-	21	
	Project Name:	<u>Delprii ri</u>	actison i	nermal	2931411-	3 21 60		Personnel:		DWN	
	Rel. No.:	36546	0.20 125						11201	<u></u>	
Monitoring \	Well Data:							9			
		AA 14/	rT :				Carnon 1	anath (ft):	9-2	14	
	Well No.:	MW-				Day	oth to Pump Ir	tako (H)(1).	15	L	
Meas	surement Point:	TOR				(ve)	Well Diame		1.75		
	Well Depth (ft):										
	Well Depth (ft):				es.		creen Volume,				
Depth o	of Sediment (ft):					I2	nitial Depth to	water (It):	6.01		
Time	Pumping Rate (mL/min)	Depth to Water (ft)	Drawdoten from Initial Water Level ⁽²⁾ (ft)	рΗ	Temperature ^o C	Conductivity (mS/cm)	ORP (mV)	DO (111g/L)	Turbidity (NTU)	Volume Purged, V p	No. of Well Screen Volumes Purged (4)
115/9	90	6.31	T	7.50	18.3	1.181	-93.6	0.63	1.88	0.0	
1154		6.56	-	7.44	17.8	1.169	-98.0	0.31	1.82	0.1	1040
1201		6.81		7.42	17.6	1.159	-90.2	0.23	2.32	0-2	
17 11		6.91		7.40	17.6	1.106	-95.8	0.19	3.74	0.4	
1216		7.01	1	7.36	17.5	1.152	-99.8	0.20	3.61	0.5	
1221		7.08		7.36	17.0	1.159	-[0[.]	0.19	4.53	0.6	
9221		7.09		7.35	17-7	1.153	-107.8	0.19	5.01	0.7	-
				-			+		-		1
		-		-			+				
	 	-	†	1							
		1	†								
											1
Notes:											
(1)	The pump intak	e will be placed	i at the well screen i	nid-point or a	ta minimum of 2	ft above any sedimer	it accumulated	at the well b	ottom.		
(2)			based on a 5-foot so								
(3)			water level should								
(4)	Purging will con	ntinue until stal	bilization is achieve	d or until 20 w	ell screen volume	s have been purged (unless purge w	ater remains	visually turbic	2	
	and appears to	be clearing, or t	anless stabilization p	oarometers are	varying slightly	outside of the stabliza	ation criteria an	d appear to l	00		
			Volumes Purged= V								

PURGING EQUIPMENT PURGING DEVICE SAMPLING DEVICE PURGING DEVICE	DEDICATED ON N (CIRCL) A - SUBMERSH B - PERISTALT R C - SLADDER	E ONE)	MPLING EQUIPMENT			
SAMPLING DEVICE	B-PERISTALT	4 21 27 4 49		SAMPLING EQI	PMENT DEDICAT	EDØ N STRCLE ONE)
					X- PURGING OTHER	(SPECUPY)
PURGING DEVICE			STILE		SAMPLING UTHER	R (SPECIFY)
	E A - TRIFLON B - STAINLESS		ILIGNE	W.	Y* PURGING OTHER	(SPECIFY)
SAMPLING DEVICE	E C. POLYPROI	YLENE			SAMPLING OTHER	R (SPECIFY)
PURGING DEVICE	A - TEFLON	D - POLYPRO E - POLYETH	TYLENE CL-COMBINATIO		PURGING OTHER	(SPECIFY)
SAMPLING DEVICE	E C-ROPE	x- (SPECIFY)	TEFLON/ POLYP	ROPYLENE	SAMPLING COTHE	R (SPECIFY)
FILTERING DEVICES 0.45	A - IN-L1	THE DIST OWNER.	PRESSURE C-VACUU	M		
WELL ELEVATION DEPTH TO WATEI pH (std) (std) (std) (std) (std) (std)	×		Limit Com	DN LLL	5 8 4 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	(m/fl) (m/fl) (m/fl) MPERATURI (*C
SAMPLE APPEARANCE WEATHER CONDITIONS SPECIFIC COMMENTS	WIND SPRED O	ODOR NOT	11.1	CLEOT IN OU	PURBIDITY CLE PLOOK N	SC

FMG MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

PID@ TOR = O.O

PID@ Breathing = 0.0

Project Date	7:		МО	NITORING	G WELL RECOI	RD FOR LOW-FLO	W PURGING	3			
	Project Name: Rel. No.:	Delphi H 56546	arrison T	hermal	Systems	ssite		Date: Personnel:	8-20 M.B	-21 nun	
Monitoring	Well Data:							::-			
	Well No.: surement Point:	MW-	ld	101				ength (ft):			
Mea	surement Point:	TOR				Dep	oth to Pump Ir				
	Well Depth (ft):						Well Diame				
Measured	Well Depth (ft):	11- 40				Well Sc	reen Volume,	V s (MCL)(2):	1.7		
	of Sediment (ft):				*#		nitial Depth to				
Time	Pumping Rate (mL/min)	Depth to Water (ft)	Drawdown from Initial Water Level ^{to} (ft)	pH	Temperature ^o C	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Volume Purged, V p	No. of Well Screen Volumes Purged ⁶⁴
0734	85	6.18		6.74	16.9	8.374	3.0	0.75	11.03	0.0	
0744		6-12		6.73	17.3	8.675	1-31.9	0.45	5.20	0.	10
0749		6.16		6.75	17.1	8.796	-37.8	0.35	5,32	0.2	
0754		6,20		6.76	17.1	8,958	-44.3	6.30	3.56	6.3	
0804		6.21		6.77	17.1	9.057	-49-6	0.26	3.03	0.4	
0809		6.24		6.78	17.1	9-110	-53.4	22.0	3.06	0.5	
08 14		6.24		6.78	17.2	9-125	-54.3	0.22	3.08	0.6	
0819		6.26		6.79	17.0	9.122	-65.6	0.21	3.01	0.7	-
							-			-	-
					-		-		-		
	-		-	-			+			<u> </u>	†
			-	-	-		+				
				1	1			1	1	L	-
Notes:						2002			11.000		
(1)						ft above any sedimer	nt accumulated.	at the well b	ouom.		
(2)	The well screen	volume will be	based on a 5-foot ser	reen length. \	/ _s =p*(D/2)-1(5*12)*(2.54)*					
(3)			water level should r						10		
(4)	and appears to	be clearing, or t	oilization is achieved inless stabilization p Volumes Purged∞ V	arameters are	ell screen volume varying slightly (s have been purged (outside of the stabliza	unless purge w ation criteria an	ater remains d appear to l	visually turbic *	1	

WELL PURG SITE/PROJEC	T NAME:	SUSTIE	73 211		1	ELL# M	546 W-1	عال
PURGE DATE (MM DD YY)		0 5 2 0 SAMPLE DA 7 DO 14M)	ATE	WATER VOLUNC	WISD .	(I	JAL VOLUME PULITRES/GALLONS	D TED O N
PORGING EQUIPMENT.	(CIR	CLE ONE)					(C	IRCLE ONE)
PURGING DEVICE	- Australia	rsible pump altic pump	D - GAS LIFT PUMP E - PURGE PUMP	G - BAILER H - WATERRAD		×	PURGING OTHER	(SPECIPY)
SAMPLING DEVICE	B C. BLADD		F . DIPPER BOTTLE			X	SAMPLING OTHE	R (SPECUPY)
PURGING DEVICE	E A-TEPLOP		D - PVC E - POLYETHYLENE			X	PURGING OTHER	t (SPECIFY)
SAMPLING DEVICE	E C. POLYPI	ROPYLENG				×	SAMPLING OTHE	R (SPECIFY)
PURGING DEVICE	E A-TEPLOI		D - POLYPROPYLENE	F - SILICONE C - COMBINATIO		×	PURGING OTHER	R (SPBCIFY)
SAMPLING DEVICE	E C ROPE	X+	PECIFY	TEFLON/ POLYPE	COPYL NOR	N	SAMPLING CITHE	R (SPECIFY)
FILTERING DEVICES 0.45] A.W	I-LINE DISPOSAB		RE C-VACUUM	J		ewstation.com in	
WELL ELEVATION DEPTH TO WATE PH (std) (std) (std) (std) (std)	R	9 0 7 1 5 7 6 CONDUCTIVIT	(univern) AT 25°C (punivern) AT 25°C (punivern) AT 25°C (punivern) AT 25°C (punivern) AT 25°C	OROUNDWATE ELEVATION WELL DEPTORP (m/v) (m/v) (m/v) (m/v) (m/v) (m/v) (m/v) (m/v)	DN L	1518 00 1 1 1	SAMPLE TES (mg/t) (mg/t)	(m/II) (m/II) MPERATURE
SAMPLE APPEARANCE WEATHER CONDITIONS SPECIFIC COMMENTS		ODOR S		COLORPRECI	Yellow PRIATION V	TURBIC N OUTLCXW		91
	EY THAT SAMPLING PE 20 - 21	MOYUM PRINT (EIN ACCORDANCE WI	TH APPLICABLE CALL SIGN/	TURE B	~		www

FMG MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

			МО	NITORING	WELL RECOI	RD FOR LOW-FLO	OW PURGING	3			
Project Data		Delphi H	arrison T	hermal	Systems	ssite		Date: _ Personnel:	8-19-	21	
Monitoring \	Well Data:						Screen I	ength (ft):	7		
Meas	surement Point:	TOR	13			Dep	oth to Pump In Well Diame				
	Well Depth (ft):				Well Screen Volume, Vs (MC) [2]:						
	Well Depth (ft): of Sediment (ft):					I	nitial Depth to	Water (it):	5.46		
Time	Pumping Rate (mL/min)	Depth to Water (ft)	Drawdown from Initial Water Level ^{1,0} (ft)	рН	Temperature °C	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Volume Purged, Vy (★) G	No. of Well Screen Volumes Purged ⁽⁴⁾
1456	96	5.76		7.00	20.4	5.378	119.2	2.60	2.76	0.0	
1506		5.74		6.97	20.4	5.559	119.2	1.70	2.43	0.1	
1514		3.66		6.97	21.2	5.900	5.211	1,14	2.45	0.4	
1519		5.65		6.98	22.5	5.704	111.8	1.22	3.51	0.5	
1930		5.45		6.97	20.5	5.837	111.8		3.08	6.7	
1536		5.68		6.97	20.8	5.881	110.2	0.80	3.09	0.8	
-	-										
		 	+								
									L		1
Notes:					W 15540 -			at the mall b	alkare.		
(1)	The pump intak	e will be placed	i at the well screen n	nid-point or a	t a minimum of 2	ft above any sedime	nt accumulated	as are west or	partin.		
(2)			based on a 5-foot sc			(46.3)					
(3)	The drawdown	from the initial	water level should i	not exceed 0.3	fit.	. L L	fundace ouron o	rator namaine	visually turbic		
(4)	Purging will con	ntinue until sta	Inlization is achieved	i or until 20 v	reil serven volume	es have been purged outside of the stabliz	ation criteria an	d appear to b	e		
			uniess stabilization p Volumes Purged= V		e sarying sugarity	DECREE OF THE SHIPE.	guest Canon di tut				

SHEFFRUJE	CT NAME: 34	sdems Si		WELL#	1,10	
CHIES IN NEADER OF BREAKING AS	n or will sometime some	WELL PURGING IN	FORMATION	И.	1.9.	
0 8 1 9 2 PURGE DATE (XIM DD YY)	S	AMPLEDATE (MALDD YY)	WATER VOL. IN CAS (LITRES/GALLON)	2000 Feb.	ACTUAL VOLUME PURGET (LETRISAGALLONS)	S
PURGING EQUIPMENT.	,dedicated Ø N	PURGING AND SAMPL NE)	ING EQUIPMENT	AMPLING EQIPM	MENT DEDICATED((CIRC	(2) LE ONI
PURGING DEVICE	A - SUBMERSIBLE			×-	PURGING OTHER (SP	re tura)
SAMPLING DEVICE	B - PERISTALTIC I		H - WATERRA®	х-		
PURGING DEVICE	A - TRIFLON	D - PVC		X+		n-Monoche -
	B - STAINLESS ST		Ŕ	V.	PURGING OTHER (SPI	(CIFY)
SAMPLING DEVICE	E C-POLYPROPYLI		NE F-SILICONS	X- X-	SAMPLING OTHER (SP	ECIFY)
PURGING DEVICE	A - TRIFLON	D - POLYPROPYLS		0	PURGING OTHER (SPI	SCIFY)
SAMPLING DEVICE	E C-ROPE x	(SPRCJFY)	TEFLON/POLYPROP	YI ENE X-	SAMPLING OTHER ISP	ECIFY)
FILTERING DEVICES 0.45	A - IN-LINE	DISPOSABLE B - PRESS	IURE C-VACUUM			
WELL ELEVATIO DEPTH TO WATH pH (std) (std) (std) (std) (std) (std)	R IIIS	FIELD MEASU! (m/ft)	GROUNDWATER ELEVATION WELL DEPTH ORP (miv) (miv) (miv) (miv)	DO	SAMPLE TEMPER [mg,t] [mg,t] [mg,t] [mg,t]	
SAMPLE APPEARANCE WEATHER CONDITIONS SPECIFIC COMMENTS	WIND SPRED 0 =	ODOR NONE	COLOR C	CCAS TOP	SBIDTI Clev	
	FY THAT SAMPLING PROCEDU 19-21 M 5 PRINT	RESIVERE IN ACCORDANCE IN	TITH APPLICABLE CM PROT	you K	31/-2	

FAIG MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

n d an			МС	ONITORING	WELL RECOR	D FOR LOW-FLO	OW PURGING	3			
Project Data:		Delphi H 36546	arrison 7	hermal E4	Systems	site		Date: Personnel:	08-20 M.E	15-0	
Constructed V Measured V		19.1				Well So	Screen I oth to Pump Ir Well Diame creen Volume, vitial Depth to	take (ft) ⁽¹⁾ : eter, D (in): V _s (st.) ⁽²⁾ :	9.1-1	9.1	
Time	Pumping Rate (mL/min)	Depth to Water (ft)	Drawdown from Initial Water Level ^{1,0} (ft)	рН	Temperature C	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NIU)	Volume Purged, V p (🖦) G	No. of Well Screen Volumes Purged ¹⁴⁹
1005 1012 1022 1027 1037 1042 1047	% 8	7.15 7.22 8.25 8.31 8.61 4.61 8.65 8.45		7.15	19.9 21.4 18.9 19.5 19.5 20.3	6.848 6.845 6.971 7.671 7.671 7.881 8.173	109.2 106.1 39.5 7.4 -4.8 -12.5 -16.8	0.55 0.57 0.49 0.67 0.83 0.95 0.47	5.82 5.71 9.20 13.54 18.81 72.22 78.06 38.36	0.0 1.0 4.0 7.0 8.0	
1052		8.65		6.98	19.9	8.704	- 21.8		望る。40 48.61	1.3	
Notes: (1) (2) (3) (4)	The well screen The drawdown Purging will cor and appears to b	volume will be from the initial stinue until stal se clearing, or u	based on a 5-foot so water level should o dization is achieved	reen length. V not exceed 0.3 d or until 20 w oarameters are	's=p*(D/2) ^{2*} (5*12) ft. ell screen volume	it above any sediment (2.54) ³ s have been purged (outside of the stabliz.	unless purge w	aler remains	visually turbid	r	

		The state of the s	ELL PURGING INFO	ORM Thermal			
PURGE DATE (XIM DD YY)	__	SAMPLE C DO 14M)	DATE	WATER VOL IN CASE (LITRES/CALLONS G EQUIPMENT	NG D	ACTUAL VOLUME P (LITRES/GALLO	NSP
PURGING EQUIPMENT) N EIRCLE ONE)	7.718.24 (1) 11.73 (2) (3) 4 (4) 1.72 (1) 1.70 (2) 1.70 (S,	AMPLING EQIP	MENTDEDIC	CIRCLE ONE
PURGING DEVICE	B-PERE	MERSIBLE PUMP STALTIC PUMP DDER PUMP	D - GAS LIFT PUMP E - PURCE PUMP P - DIPPER BOTTLE	C. BAILER FI - WATERRA®	×	PURGING OTH	er (specipt)
PURGING DEVICE	A-TREF	ON NLESS STEEL	D - PVC E - POLYETHYLENE		×	SAMPLING OTF	
SAMPLING DEVICE	E A-TERI	YPROPYLENE	D. POLYPROPYLENE	F-SILICONE	············ ,	SAMPLING OTH	ier (Specify)
PURGING DEVICE SAMPLING DEVICE	E c ROP	ON E x	E - POLYETHYLENE	C) - COMBINATION TEFLON/ POLYPROPY	A BNE >	PURGING OTH SAMPLING OTH	
FILTERING DEVICES 0.45	A	IN-LINE DISPOSA	BLE B-PRESSURI				
WELL ELEVATIO	1 1 1	191171	(m/ft) (m/ft)	GROUNDWATER ELEVATION WELL DEPTH		51711319	(m/ti)
pH (std)	TURBIDITY (ntu) (ntu)	CONDUCTIVIT	TY O (unvlern) AT 25°C (pmvlern) AT 25°C	R.P		SAMPLE T	EMPERATURI CC (CC
(std)	(atu)		(pervision) AT 25°G (pervision) AT 25°G	(mV) L	+++	trog/ta	
(otal)	(niu)		FIELD COMME	NTS L		100%(1)	
SAMPLE APPEARANCE WEATHER CONDITIONS SPECIFIC COMMENTS	MIND SHEED C) - S	DIRECTION S		ECT N TION YN OUTI	- A	or c
		Manager of the same of the sam					

FING MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

PID@ TOR = 0.0

PID@ Breathing = 0,0

			МС	NITORING	G WELL RECOI	RD FOR LOW-FLO	OW PURGING	G			
Project Data:											
	Project Name: Rel. No.:	Delphi Ho 56546	arrison 7	hermal E4	Systems	site		Date: Personnel:	8-10 M.Ba	1-20 wn	
Monitoring V	Well Data:							ः			
	Well No.: urement Point	MW-	15		e:	D	Screen : oth to Pump Ir	Length (ft):	7		
Meas	urement Point	TOR			el .	176	Well Diame		13		
	Vell Depth (ft):				•8	IMAII C	reen Volume,		1.5		
	Vell Depth (ft):	16.77			•6		nitial Depth to		7.7		
Time	f Sediment (ft): Pumping Rate (mL/min)	Depth to Water (ft)	Drawdown from Initial Water Level ^{to} (ft)	pН	Temperature °C	Conductivity (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NIU)	Volume Purged, V p	No. of Well Screen Volumes Purged (4)
0940	96	7.87		6.96	19.1	7.959	100.3	0.75	1.67	0.0	
0995		7.92		6.95	17-9	2.946	98.4	0.29	1.39	0.1	10
0953		7.92		6.93	17-8	2852	97.9	0.22	1.49	2.0	
1000		7.92		6,97	17.2	7.967	96.0	0.16	7-10	0.3	-
10 10		7,92		6.92	19.8	2.970	93.4	0.14	5.10	0.6	-
1015		7.94		6.92	18.4	2.969	93.0	0-14	6.51	0.6	
ED CO		6817		10:32	1011	5,175	10.5				
							-				
-					-		+				
							1				
L								1	l		
Notes. (1) (2) (3) (4)	The well screen to The drawdown in Purging will con-	volume will be from the initial stinue until stab	based on a 5-foot se water level should r ilization is achieved	reen length, \ not exceed 0.3 For until 20 w	/ _s =p*(D/2) ^{2*} (5*12) ft. rell screen volume	s have been purged (unless parge w	ater remains	visually turbic	ſ	
2.000	and appears to b	e clearing, or u	nless stabilization p Volumes Purged= V	arameters are	varying slightly o	utside of the stabiliza	ition criteria an	d appear to b	ne.		

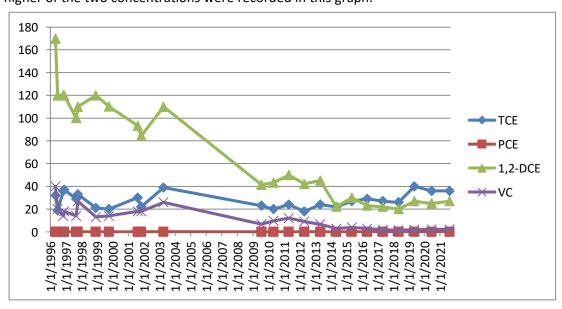
WELL PURG SITE/PROJEC	CT NAME: _	System	s site		WELL#	M W - I	5
DISTURE DATE (MM DD YY)		SAMPLE DATE (MM DD YY) PURGING		WATER VOL IN CAS (LITRES/CALLON IG EQUIPMENT	58	ACTUAL VOLUME PU (LITRES/GALLON	575
PURGING EQUIPMENT		N CLE ONE)					CIRCLE ONE)
PURGING DEVICE	0-0	ALTIC PUNID F	- GAS LIFT PUMP - PURGE PUMP - DIPPER BOTTLE	G - BAILER H - WATERRA®	3	PURGING OTHER	y atronomic and
PURGING DEVICE	E A-THELON B-STAINL F C-POLYPE	ess sterl e	POLYETHYLENE			SAMPLING OTHER PURGING OTHER C-	
SAMPLING DEVICE	A - TEFLON	i D	- POLYPROPYLENE	F - SILICONE G - COMBINATION TEFLON/FOLYPROF		5AMPLING OTHE K- PURGING OTHER	
SAMPLING DEVICE FILTERING DEVICES 0.45	C ROPE	SPECI (SPECI -LINE DISPOSABLE	PY) B - PRESSUI			SAMPLING OTHE	R (SPECIFY)
WELL, ELEVATION DEPTH TO WATE pH (std) (std) (std) (std) (std) (std) (std)	R LLL	9 4 0 4 777 0 0NDUCTIVITY	(m/ft) (m	MENTS GROUNDWATER ELEVATION WELL DEPTH ORP (m/v) (m/v) (m/v)	DO L	SAMPLE TES 100,13 4 100,13 1 100,15	(m/fi) (m/fi) VIPERATURE (*C) (*C) (*C) (*C) (*C) (*C) (*C) (*C
SAMPLE APPEARANCE WEATHER CONDITIONS SPECIFIC COMMENTS	C1000 WIND SPEED _ O	- 6 D	FIELD COMM World	_colorC	<u>CO-S</u> TI VITON Y/N OUT	URBIDITY Kles	<u> </u>

FMG MODIFICATIONS MUST BE ACCOMPANIED BY A REVISION REQUEST FORM APPROVED BY THE PROJECT MANAGER

APPENDIX B

COCs, Total VOCs and TOC DATA GRAPHS

MW-4 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

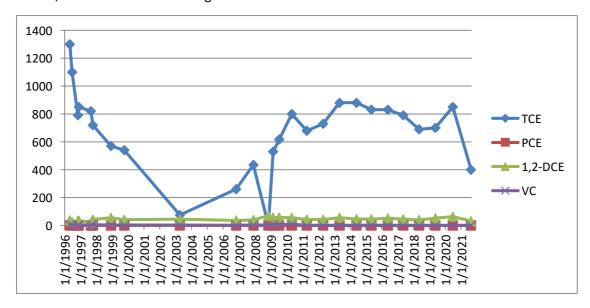

Date	TCE	PCE	1,2-DCE	VC
4/30/1996	32	<0.5	170	40
6/20/1996	19	<0.5	120	20
10/30/1996	36	<0.5	120	14
11/21/1996	37	<0.5	120	18
8/28/1997	29	<0.5	100	14
10/10/1997	33	<0.2	110	27
12/2/1998	21	<0.2	120	13
10/7/1999	20	<0.05	110.14	14
8/9/2001	30	0.003	93.28	18
10/31/2001	22	<0.002	84.25	18
4/7/2003	39	0.08	110	26
7/20/2009	23	<0.05	41.5	6.7
4/29/2010	20	0.0012	43.2	9.6
4/22/2011	24	0.0018	50	12
4/20/2012	18	0.0014	42.16	9.1
5/1/2013	24	<0.18	45	6.6
5/13/2014	22	<0.18	22	2.9
5/8/2015	27	<0.36	30	3.8
5/5/2016	29	<0.36	23	2.9
5/2/2017	27	<0.18	22	1.8
5/8/2018	26	<0.18	20	1.4
5/16/2019	40	0.005	27	1.9
6/24/2020	36	<0.072	25	2.2
8/17/2021	36	<0.29	27	2.1

Notes:

Results are provided in parts per million (ppm)

Non Detect values expressed with "<" and MDL. 1,2 DCE value includes total cis-1,2 DCE and trans 1,2 DCE. If "<" value, the listed value is the higher of the two method detection limits.

Duplicate samples were collected from this location on 6/20/96, 10/30/96 and 12/2/98. The higher of the two concentrations were recorded in this graph.

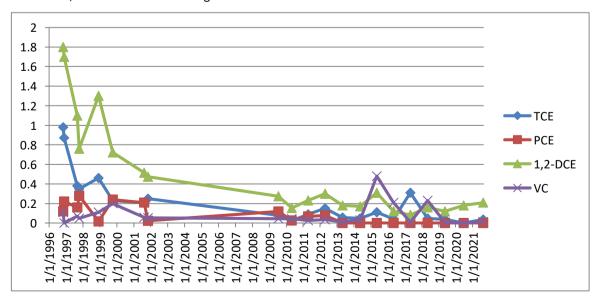

MW-7 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

Date	TCE	PCE	1,2-DCE	VC
4/30/1996	1300	<0.5	37	1.8
6/20/1996	1100	<0.5	24	2.4
10/30/1996	790	<0.5	32	2.3
11/21/1996	850	<0.5	35	3.1
8/28/1997	820	<0.2	22	1.1
10/10/1997	720	<0.2	43	4.8
12/3/1998	570	<0.2	55	4.2
10/7/1999	540	<0.5	41	3.5
4/7/2003	75	<0.2	45	3
10/25/2006	260	0.077	36	1.7
11/29/2007	434	0.049	40	3.2
11/5/2008	1.1	<0.2	70	2.6
2/24/2009	530	0.071	56	3.6
7/15/2009	618	0.112	58.3	2.5
4/29/2010	800	0.14	55.2	9
4/11/2011	680	<1.8	42	<4.5
4/20/2012	730	<1.8	43	<4.5
5/3/2013	880	<3.6	55	<9
5/30/2014	880	<7.2	46	<18
5/7/2015	830	0.14	45	3
5/17/2016	830	<3.6	51	<9
5/11/2017	790	<7.2	45	<18
5/10/2018	690	<7.2	40	<18
5/17/2019	700	<7.2	51	<18
6/26/2020	850	<7.2	63	<18
8/19/2021	400	<7.2	31	<18

Notes:

Results are provided in parts per million (ppm)

Non Detect values expressed with "<" and MDL. 1,2 DCE value includes total cis-1,2 DCE and trans 1,2 DCE. If "<" value, the listed value is the higher of the two method detection limits.


MW-10 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

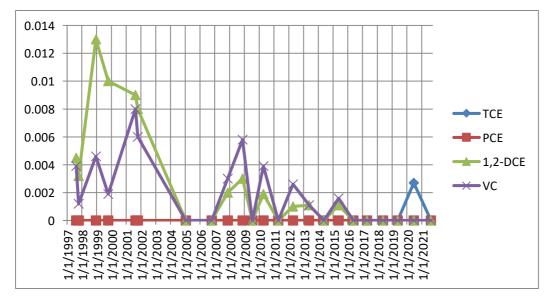
Date	TCE	PCE	1,2-DCE	VC
10/30/1996	0.98	0.12	1.8	0.11
11/21/1996	0.87	0.22	1.7	<0.1
8/28/1997	0.38	0.16	1.1	0.07
10/10/1997	0.35	0.28	0.76	0.047
12/1/1998	0.46	0.016	1.3	0.11
10/6/1999	0.23	0.24	0.722	0.2
8/9/2001	0.21	0.21	0.514	0.057
10/31/2001	0.25	0.023	0.473	0.053
7/15/2009	0.079	0.118	0.275	0.044
4/28/2010	0.024	0.026	0.153	0.042
4/21/2011	0.088	0.067	0.232	0.027
4/19/2012	0.15	0.077	0.3	0.035
5/1/2013	0.056	<0.0014	0.18	0.014
5/14/2014	0.048	<0.0014	0.17	0.029
5/8/2015	0.11	<0.0014	0.31	0.48
5/5/2016	0.041	<0.0014	0.12	0.21
5/2/2017	0.31	<0.0007	0.083	0.008
5/9/2018	0.046	<0.0007	0.16	0.23
5/16/2019	0.038	<0.00072	0.12	0.007
6/24/2020	<0.092	<0.072	0.18	<0.18
8/17/2021	0.036	<0.0014	0.21	0.014

Notes:

Results are provided in parts per million (ppm)

Non Detect values expressed with "<" and MDL. 1,2 DCE value includes total cis-1,2 DCE and trans 1,2 DCE. If "<" value, the listed value is the higher of the two method detection limits.

MW-11 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York


Date	TCE	PCE	1,2-DCE	VC
8/28/1997	<0.0005	<0.0005	0.0045	0.0039
10/10/1997	<0.0005	<0.0005	0.0032	0.0012
12/1/1998	<0.0005	<0.0005	0.013	0.0046
10/5/1999	<0.0005	<0.0005	0.01	0.0019
8/8/2001	<0.002	<0.002	0.009	0.008
10/30/2001	<0.002	< 0.002	0.008	0.006
1/12/2005	<0.002	<0.002	<0.002	<0.002
10/24/2006	<0.002	< 0.002	<0.002	<0.002
11/28/2007	<0.002	<0.002	0.002	0.003
11/4/2008	<0.002	<0.002	0.003	0.0058
7/16/2009	<0.005	<0.005	<0.005	<0.005
4/28/2010	<0.0005	<0.0004	0.0019	0.0039
4/21/2011	<0.0005	<0.0004	<0.0008	<0.0009
4/19/2012	<0.0005	<0.0004	0.001	0.0026
5/2/2013	<0.00046	<0.00036	0.0011	0.0011
5/20/2014	<0.00046	<0.00036	<0.00081	<0.0009
5/6/2015	<0.00046	<0.00036	0.0011	0.0016
5/5/2016	<0.00046	<0.00036	<0.0009	<0.0009
4/28/2017	<0.00046	<0.00036	<0.00090	<0.0009
5/10/2018	<0.00046	<0.00036	<0.00090	<0.0009
5/17/2019	< 0.0005	<0.0004	<0.0009	<0.0009
6/25/2020	0.0027	<0.00036	<0.0009	<0.0009
8/19/2021	<0.00046	<0.00036	<0.0009	<0.0009

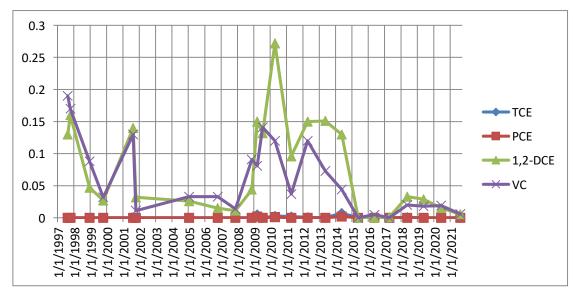
Notes:

Results are provided in parts per million (ppm)

Non Detect values expressed with "<" and MDL. 1,2 DCE value includes total cis-1,2 DCE and trans 1,2 DCE. If "<" value, the listed value is the higher of the two method detection limits.

Duplicate samples were collected from this location on 10/10/97. The higher of the two concentrations were recorded in this graph.

MW-12 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York


Date	TCE	PCE	1,2-DCE	VC
8/28/1997	<0.0005	<0.0005	0.13	0.19
10/10/1997	<0.0005	<0.0005	0.16	0.17
12/1/1998	<0.0005	<0.0005	0.047	0.088
10/6/1999	<0.0005	<0.0005	0.027	0.032
8/8/2001	<0.002	<0.002	0.14	0.13
10/30/2001	<0.002	<0.002	0.032	0.011
1/12/2005	<0.002	<0.002	0.026	0.033
10/25/2006	<0.002	<0.002	0.015	0.033
11/28/2007	<0.002	<0.002	0.011	0.014
11/14/2008	<0.002	<0.002	0.044	0.091
3/16/2009	0.005	0.002	0.15	0.081
7/16/2009	<0.005	<0.005	0.132	0.141
4/28/2010	0.0028	0.0011	0.272	0.12
4/20/2011	0.0021	<0.0004	0.096	0.037
4/18/2012	0.00083	<0.0004	0.15	0.12
5/3/2013	<0.002	<0.00036	0.151	0.073
5/19/2014	0.0074	0.002	0.13	0.044
5/7/2015	<0.00046	<0.00036	<0.00081	<0.0009
5/6/2016	<0.00046	<0.00036	<0.0051	0.0049
4/28/2017	<0.00046	<0.00036	0.001	<0.0009
5/9/2018	0.0007	<0.00036	0.033	0.02
5/17/2019	<0.00092	<0.00072	0.029	0.018
6/26/2020	<0.00092	<0.00072	0.015	0.019
8/20/2021	<0.00092	<0.00072	0.0056	0.0059

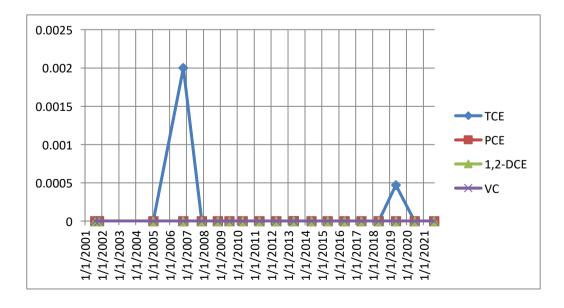
Notes:

Results are provided in parts per million (ppm)

Non Detect values expressed with "<" and MDL. 1,2 DCE value includes total cis-1,2 DCE and trans 1,2 DCE. If "<" value, the listed value is the higher of the two method detection limits.

Duplicate samples were collected from this location on 8/28/97 and 8/8/01. The higher of the two concentrations were recorded in this graph.

MW-13 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

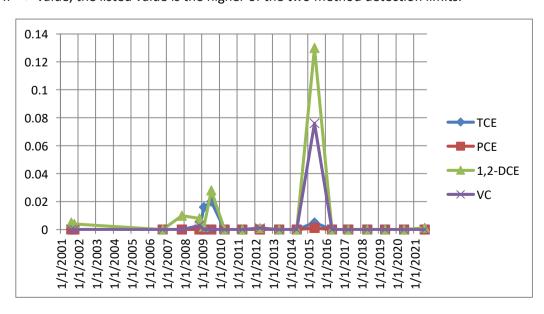

Date	TCE	PCE	1,2-DCE	VC
8/8/2001	<0.002	<0.002	<0.002	<0.002
10/29/2001	<0.002	<0.002	<0.002	<0.002
1/12/2005	<0.002	<0.002	<0.002	<0.002
10/24/2006	0.002	<0.002	<0.002	<0.002
11/28/2007	<0.002	<0.002	<0.002	<0.002
11/5/2008	<0.002	<0.002	<0.002	<0.002
7/16/2009	<0.005	<0.005	<0.005	<0.005
4/28/2010	<0.0005	<0.0004	<0.0008	<0.0009
4/21/2011	<0.0005	<0.0004	<0.0008	<0.0009
4/19/2012	<0.0005	<0.0004	<0.0008	<0.0009
5/2/2013	<0.00046	<0.00036	<0.00081	<0.0009
5/2/2013	<0.00046	<0.00036	<0.00081	<0.0009
5/20/2014	<0.00046	<0.00036	<0.00081	<0.0009
5/7/2015	<0.00046	<0.00036	<0.00081	<0.0009
5/5/2016	<0.00046	<0.00036	< 0.0009	<0.0009
5/3/2017	<0.00046	<0.00036	< 0.0009	<0.0009
5/10/2018	<0.00046	<0.00036	<0.0009	<0.0009
5/17/2019	0.00047	<0.00036	<0.0009	<0.0009
6/25/2020	<0.00046	<0.00036	<0.0009	<0.0009
8/19/2021	<0.00046	<0.00036	<0.0009	<0.0009

Notes:

Results are provided in parts per million (ppm)

Non Detect values expressed with "<" and MDL. 1,2 DCE value includes total cis-1,2 DCE and trans 1,2 DCE. If "<" value, the listed value is the higher of the two method detection limits.

A duplicate sample was collected from this location on 4/19/2012. The higher of the two concentrations were recorded in this graph.


MW-14 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

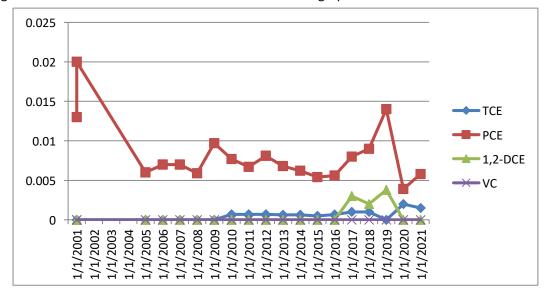
Date	TCE	PCE	1,2-DCE	VC
8/10/2001	<0.002	<0.002	0.005	<0.002
10/30/2001	<0.002	<0.002	0.004	<0.002
10/24/2006	<0.002	<0.002	<0.002	<0.002
11/29/2007	<0.002	<0.002	0.01	<0.002
11/4/2008	<0.002	<0.002	0.008	0.003
2/24/2009	0.016	<0.002	0.002	<0.002
7/19/2009	0.02	<0.005	0.028	<0.005
4/27/2010	<0.005	<0.0004	<0.0008	<0.0009
4/21/2011	<0.005	<0.0004	<0.0008	<0.0009
4/19/2012	<0.005	<0.0004	0.001	0.001
5/3/2013	<0.00046	<0.00036	<0.00081	<0.0009
5/23/2014	<0.00046	<0.00036	<0.00081	<0.0009
5/7/2015	0.0051	0.0011	0.13	0.076
5/6/2016	<0.00046	<0.00036	<0.0009	<0.0009
4/28/2017	<0.00046	<0.00036	<0.0009	<0.0009
5/11/2018	<0.00046	<0.00036	<0.0009	<0.0009
5/21/2019	<0.00046	<0.00036	<0.0009	<0.0009
6/26/2020	<0.00046	<0.00036	<0.0009	<0.0009
8/20/2021	<0.00046	<0.00036	0.0013	<0.0009

Notes:

Results are provided in parts per million (ppm)

Non Detect values expressed with "<" and MDL. 1,2 DCE value includes total cis-1,2 DCE and trans 1,2 DCE. If "<" value, the listed value is the higher of the two method detection limits.

MW-15 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

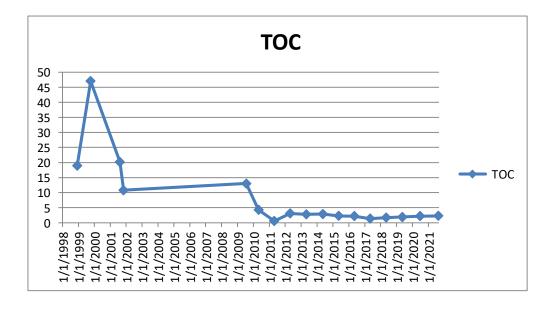

Date	TCE	PCE	1,2-DCE	VC
8/8/2001	<0.002	0.013	<0.002	<0.002
10/30/2001	<0.002	0.02	<0.002	<0.002
1/12/2005	<0.002	0.006	<0.002	<0.002
10/24/2006	<0.002	0.007	<0.002	<0.002
11/28/2007	<0.002	0.007	<0.002	<0.002
11/4/2008	<0.002	0.0059	<0.002	<0.002
7/16/2009	<0.005	0.0097	<0.005	<0.005
4/28/2010	0.0007	0.0077	<0.0008	<0.0009
4/21/2011	0.0007	0.0067	<0.0008	<0.0009
4/18/2012	0.0007	0.0081	<0.0008	<0.0009
5/1/2013	0.00064	0.0068	<0.00081	<0.0009
5/19/2014	0.00064	0.0062	<0.00081	<0.0009
5/6/2015	0.0005	0.0054	<0.00081	<0.0009
5/5/2016	0.00068	0.0056	<0.0009	<0.0009
4/27/2017	0.001	0.008	0.003	<0.0009
5/9/2018	0.001	0.009	0.002	<0.0009
5/16/2019	< 0.0026	0.014	0.0038	<0.0009
6/25/2020	0.002	0.0039	<0.0009	<0.0009
8/19/2021	0.0015	0.0058	<0.0009	<0.0009

Notes:

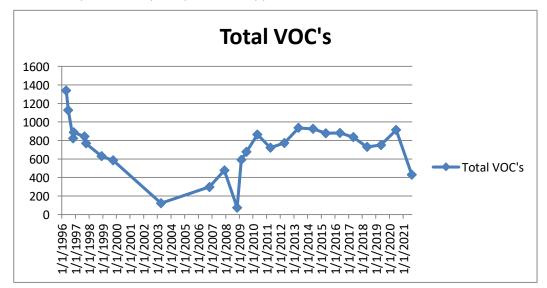
Results are provided in parts per million (ppm)


Non Detect values expressed with "<" and MDL. 1,2 DCE value includes total cis-1,2 DCE and trans 1,2 DCE. If "<" value, the listed value is the higher of the two method detection limits.

Duplicate samples were collected from this location on 10/30/01. The higher of the two concentrations were recorded in this graph.


	ndwater Data	
Delphi Harrison Thermal Systems Site		
·	nts Holdings, LLC	
Lockport	, New York	
Date	Total VOCs	
4/30/1996	242	
6/20/1996	159	
10/30/1996	170	
11/21/1996	175	
8/28/1997	143	
10/10/1997	170	
12/2/1998	154	
10/7/1999	144.14	
8/9/2001	141.283	
10/31/2001	124.25	
4/7/2003	175.08	
7/20/2009	71.2	
4/29/2010	72.8012	
4/22/2011	86.0018	
4/20/2012	69.2614	
5/1/2013	75.6	
5/13/2014	46.9	
5/8/2015	60.8	
5/5/2016	54.9	
5/2/2017	50.8	
5/8/2018	47.4	
5/16/2019	68.905	
6/24/2020	63.2	
8/17/2021	65.1	

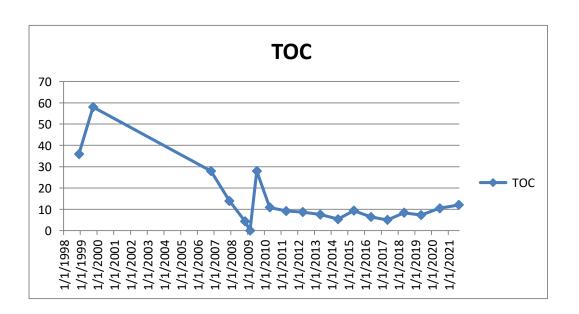
Notes: Results are provided in parts per million (ppm)


MW-4 Groundwater Data		
Delphi Harrison Thermal Systems Site		
GM Components Holdings, LLC		
New York		
TOC		
19		
47		
20.2		
10.8		
13		
4.3		
0.6		
3.1		
2.8		
2.9		
2.3		
2.2		
1.4		
1.7		
1.9		
1.9		
2.2		
2.3		

Results are provided in parts per million (ppm)

MW-7 Groundwater Data		
Delphi Harrison Th	ermal Systems Site	
GM Componen	ts Holdings, LLC	
Lockport,	New York	
Date	Total VOC's	
4/30/1996	1338.8	
6/20/1996	1126.4	
10/30/1996	824.3	
11/21/1996	888.1	
8/28/1997	843.1	
10/10/1997	767.8	
12/3/1998	629.2	
10/7/1999	584.5	
4/7/2003	123	
10/25/2006	297.777	
11/29/2007	477.249	
11/5/2008	73.7	
2/24/2009	589.671	
7/15/2009	678.912	
4/29/2010	864.34	
4/11/2011	722	
4/20/2012	773	
5/3/2013	935	
5/30/2014	926	
5/7/2015	878.14	
5/17/2016	881	
5/11/2017	835	
5/10/2018	730	
5/17/2019	751	
6/26/2020	913	
8/19/2021	431	

Notes:
Results are provided in parts per million (ppm)

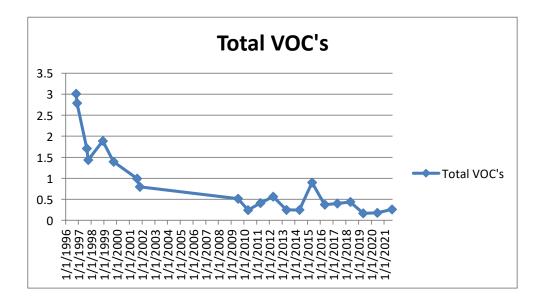


MW-7 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York Date TOC 12/3/1998 36 10/7/1999 58 10/25/2006 28 11/29/2007 14 11/4/2008 4.4 2/24/2009 NM 7/20/2009 28 4/29/2010 10.9 4/22/2011 9.2 4/20/2012 8.7 5/3/2013 7.6 5.4 5/30/2014 5/7/2015 9.4 5/17/2016 6.5 5/11/2017 5 5/10/2018 8.4 5/17/2019 7.3 6/26/2020 10.5

Notes:

8/19/2021

Results are provided in parts per million (ppm)

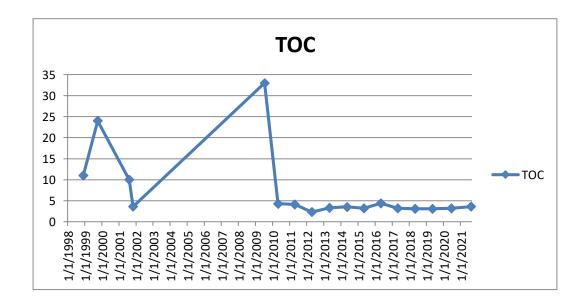


12.1

MW-10 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

Date	Total VOC's
10/30/1996	3.01
11/21/1996	2.79
8/28/1997	1.71
10/10/1997	1.437
12/1/1998	1.886
10/6/1999	1.392
8/9/2001	0.991
10/31/2001	0.799
7/15/2009	0.516
4/28/2010	0.245
4/21/2011	0.414
4/19/2012	0.562
5/1/2013	0.25
5/14/2014	0.247
5/8/2015	0.9
5/5/2016	0.371
5/2/2017	0.401
5/9/2018	0.436
5/16/2019	0.165
6/24/2020	0.18
8/17/2021	0.26

Notes: Results are provided in parts per million (ppm)



MW-10 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

Date	TOC
12/1/1998	11
10/5/1999	24
8/9/2001	10
10/31/2001	3.6
7/15/2009	33
4/28/2010	4.3
4/21/2011	4.1
4/19/2012	2.3
5/1/2013	3.3
5/14/2014	3.5
5/8/2015	3.2
5/5/2016	4.4
5/2/2017	3.2
5/9/2018	3.1
5/16/2019	3.1
6/24/2020	3.2
8/17/2021	3.6

Notes:

Results are provided in parts per million (ppm)

MW-11 Groundwater Data					
Delphi Harrison Thermal Systems Site					
GM Components Holdings, LLC					
Lockport, New York					
Date	Total VOC's				
8/28/1997	0.0084				
10/10/1997	0.0044				
12/1/1998 0.0176					
10/5/1999	0.0119				
8/8/2001	0.017				
10/30/2001	0.014				
1/12/2005	0				
10/24/2006	0				
11/28/2007	0.005				
11/4/2008	0.0088				
7/16/2009	0				
4/28/2010	0.0058				
4/21/2011	0				
4/19/2012	0.0036				
5/2/2013	0.0022				
5/20/2014	0				
5/6/2015 0.0027					
5/2/2013 0.0022 5/20/2014 0					

Notes: Results are provided in parts per million (ppm)

5/5/2016

4/28/2017

5/10/2018

5/17/2019

6/25/2020

8/19/2021

0

0

0

0

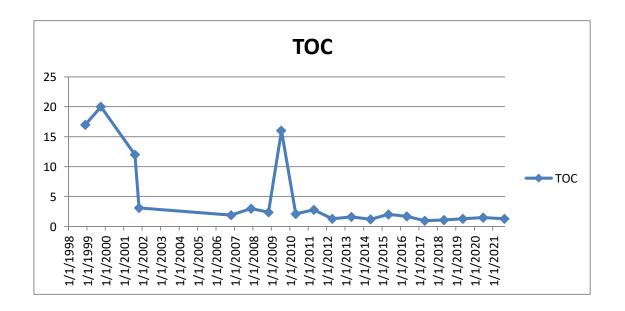
0.0027

MW-11 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York Date TOC 12/1/1998 17 10/5/1999 20 8/8/2001 12 10/30/2001 3.1 10/24/2006 1.9 11/28/2007 3 11/4/2008 2.38 7/16/2009 16 4/28/2010 2.1 4/21/2011 2.8 4/18/2012 1.3 5/2/2013 1.6 5/20/2014 1.2 5/6/2015 2

Notes:

5/5/2016

4/28/2017


5/10/2018

5/17/2019

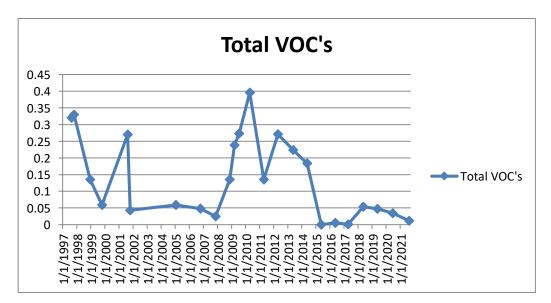
6/25/2020

8/19/2021

Results are provided in parts per million (ppm)

1.7 0.96

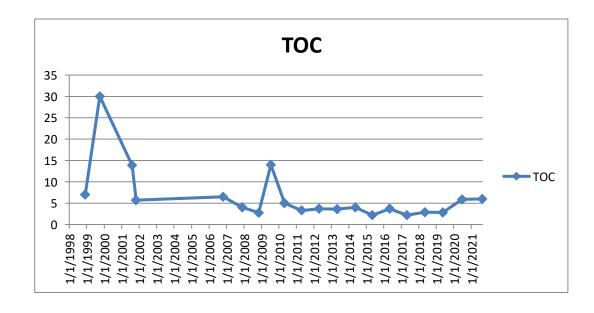
1.1


1.3

1.5

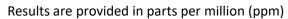
1.3

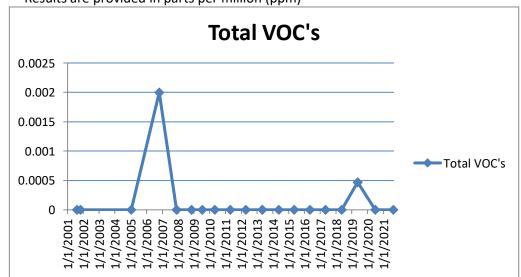
MW-12 Groundwater Data					
Delphi Harrison Thermal Systems Site					
GM Components Holdings, LLC					
Lockport,	New York				
Date Total VOC's					
8/28/1997	0.32				
10/10/1997	0.33				
12/1/1998	0.135				
10/6/1999 0.059					
8/8/2001 0.27					
10/30/2001 0.043					
1/12/2005 0.059					
10/25/2006	0.048				
11/28/2007	0.025				
11/14/2008	0.135				
3/16/2009	0.238				
7/16/2009	0.273				
4/28/2010	0.3959				
4/20/2011	0.1351				
4/18/2012	0.27083				
5/3/2013	0.224				
5/19/2014	0.1834				
5/7/2015	0				
5/6/2016	0.0049				
4/28/2017	0.001				
5/9/2018	0.0537				
5/17/2019	0.047				
6/26/2020	0.034				
8/20/2021 0.0115					


Notes: Results are provided in parts per million (ppm)

MW-12 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TOC
12/1/1998	7
10/5/1999	30
8/8/2001	13.9
10/30/2001	5.7
10/25/2006	6.5
11/28/2007	4
11/4/2008	2.74
7/16/2009	14
4/28/2010	5
4/20/2011	3.3
4/18/2012	3.7
5/3/2013	3.6
5/19/2014	4
5/7/2015	2.2
5/6/2016	3.7
4/28/2017	2.2
5/9/2018	2.9
5/17/2019	2.8
6/26/2020	5.9
8/20/2021	6

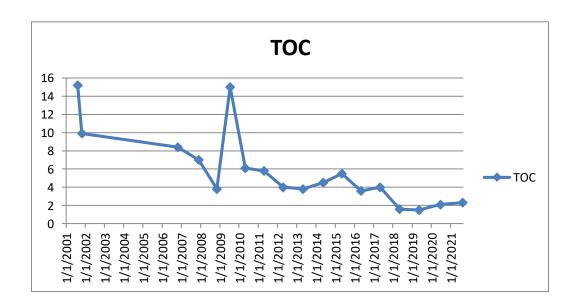

Notes:



MW-13 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

Date	Total VOC's
8/8/2001	0
10/29/2001	0
1/12/2005	0
10/24/2006	0.002
11/28/2007	0
11/5/2008	0
7/16/2009	0
4/28/2010	0
4/21/2011	0
4/19/2012	0
5/2/2013	0
5/2/2013	0
5/20/2014	0
5/7/2015	0
5/5/2016	0
5/3/2017	0
5/10/2018	0
5/17/2019	0.00047
6/25/2020	0
8/19/2021	0

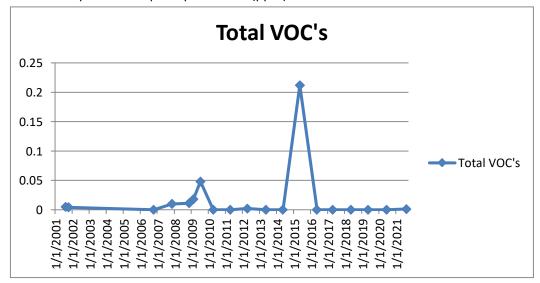
Notes:



MW-13 Groundwater Data Delphi Harrison Thermal Systems Site GM Components Holdings, LLC Lockport, New York

Date	TOC			
8/8/2001	15.2			
10/29/2001	9.9			
10/24/2006	8.4			
11/28/2007	7			
11/5/2008	3.8			
7/16/2009	15			
4/28/2010	6.1			
4/21/2011	5.8			
4/19/2012	4			
5/2/2013	3.8			
5/20/2014	4.5			
5/13/2015	5.5			
5/5/2016	3.6			
5/3/2017	4			
5/10/2018	1.6			
5/17/2019	1.5			
6/25/2020	2.1			
8/19/2021	2.3			

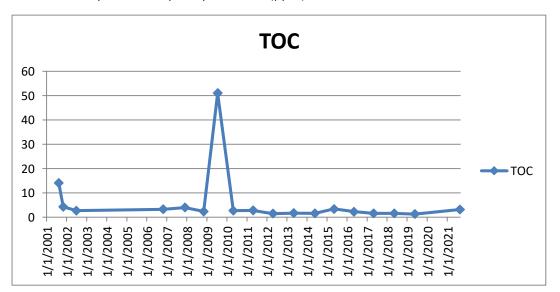
Notes:



MW-14 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

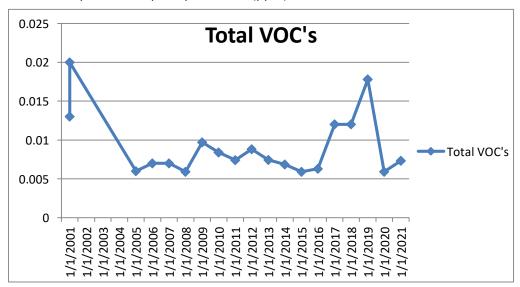
Date	Total VOC's
8/10/2001	0.005
10/30/2001	0.004
10/24/2006	0
11/29/2007	0.01
11/4/2008	0.011
2/24/2009	0.018
7/19/2009	0.048
4/27/2010	0
4/21/2011	0
4/19/2012	0.002
5/3/2013	0
5/23/2014	0
5/7/2015	0.2122
5/6/2016	0
4/28/2017	0
5/11/2018	0
5/21/2019	0
6/26/2020	0
8/20/2021	0.0013

Notes:


Results are provided in parts per million (ppm)

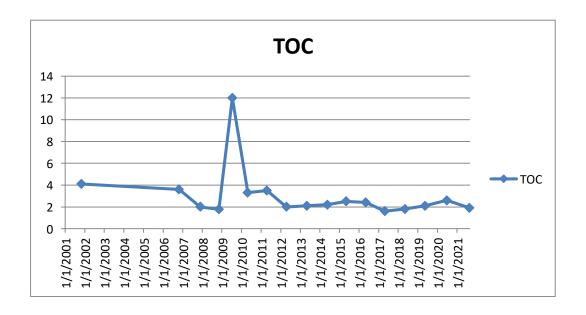
MW-14 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

Date	TOC
8/9/2001	14.1
10/30/2001	4.3
10/24/2006	3.3
11/29/2007	4
11/4/2008	2.4
7/16/2009	51
4/27/2010	2.7
4/21/2011	2.8
4/19/2012	1.5
5/3/2013	1.7
5/23/2014	1.6
5/7/2015	3.4
5/6/2016	2.3
4/28/2017	1.6
5/11/2018	1.6
5/21/2019	1.3
6/26/2002	2.7
8/20/2021	3.2


Notes:

MW-15 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

Date	Total VOC's
8/8/2001	0.013
10/30/2001	0.02
1/12/2005	0.006
10/24/2006	0.007
11/28/2007	0.007
11/4/2008	0.0059
7/16/2009	0.0097
4/28/2010	0.0084
4/21/2011	0.0074
4/18/2012	0.0088
5/1/2013	0.00744
5/19/2014	0.00684
5/6/2015	0.0059
5/5/2016	0.00628
4/27/2017	0.012
5/9/2018	0.012
5/16/2019	0.0178
6/25/2020	0.0059
8/19/2021	0.0073


Notes: Results are provided in parts per million (ppm)

MW-15 Groundwater Data
Delphi Harrison Thermal Systems Site
GM Components Holdings, LLC
Lockport, New York

Date	TOC					
10/30/2001	4.1					
10/24/2006	3.6					
11/28/2007	2					
11/4/2008	1.77					
7/16/2009	12					
4/28/2010	3.3					
4/21/2011	3.5					
4/18/2012	2					
5/1/2013	2.1					
5/19/2014	2.2					
5/6/2015	2.5					
5/4/2016	2.4					
4/27/2017	1.6					
5/9/2018	1.8					
5/16/2019	2.1					
6/25/2020	2.6					
8/19/2021	1.9					

Notes:

APPENDIX C

RESULTS EPA CVOC MONITORED NATURAL ATTENUATION RANKING SYSTEM

EPA CVOC MONITORED NATURAL ATTENUATION RANKING SYSTEM

2021 Strength of Evidence Scorecard
Delphi Harrison Thermal Systems Site
GM Component Holdings, LLC
Lockport, New York

Analysis	Concentration in Most Contaminated Zone	Value	EXAMPLE Lab or Field Analysis Value (mg/L)	EXAMPLE Score	MW-4	MW-7	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15										
DO	<0.5 mg/L	3	3.5		3	0	3	3	3	0	3	3										
DO	>5 mg/l	-3			J	U	3	3	J	U	J	3										
Nitrate	<1 mg/L	2	ND	2	2	2	2	2	2	2	2	2										
Iron II	>1 mg/l	2	0.2		2	0	0	0	2	0	2	0										
Sulfate	<20 mg/L	2	243		0	0	0	0	0	0	0	0										
Sulfide	>1 mg/L	3	0.6		NT	NT	NT	NT	NT	NT	NT	NT										
Methane	<0.5 mg/L	0	0.26	0	3	0	0	0	0	0	0	0										
Methane	>0.5 mg/L	3			3	U	U	U	U	U	U	U										
ORP	<50 mV	1	-98.5	1	1	1	0	2	1	0	1	0										
ORP	<-100 mV	2			1	1	U	2				0										
рН	5< pH <9	0	6.8	0	0	0	0	0	0	0	0	0										
рН	5> pH >10	-2			U	U		U	U	0	0	0										
TOC	>20 mg/L	2	1.5		0	0	0	0	0	0	0	0										
Тетр	> 20°C	1	20.4	1	0	0	0	0	0	1	1	0										
Carbon Dioxide	>2 times background (4.2)	1	6.8		1	1	1	1	1	1	1	1										
Alkalinity	>2 times background (200)	1	372		1	1	1	1	1	1	1	1										
Chloride	>2 times background (1440)	2	338		2	0	2	0	2	2	2	0										
Hydrogen	>1 nM	3	NT		2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	3 NT	3	3	3	3	3	3
Hydrogen	<1nM	0	NT		J	INI	3	3	3	3	3	3										
Volatile Fatty Acids	>0.1 mg/L	2	ND		NT	NT	NT	NT	NT	NT	NT	NT										
BTEX	>0.1 mg/L	2	ND		NT	NT	NT	NT	NT	NT	NT	NT										
PCE		0	ND		0	0	0	0	0	0	0	0										
TCE	If Daughter Product	2	190		2	2	2	0	2	0	0	0										
DCE	If Daughter Product	2	10,034	2	2	2	2	0	2	0	0	0										
VC	If Daughter Product	2	380.00	2	2	0	2	0	2	0	0	0										
1,1,1-TCA		0	ND		NT	NT	NT	NT	NT	NT	NT	NT										
DCA	If Daughter Product	2	ND		NT	NT	NT	NT	NT	NT	NT	NT										
Carbon Tetrachloride		0	ND		NT	NT	NT	NT	NT	NT	NT	NT										
Chloroethane	If Daughter Product	2	ND		NT	NT	NT	NT	NT	NT	NT	NT										
Ethene/Ethane	>0.01 mg/L or	2	0.0097		3	3	0	0	0	0	0	0										
Durene/ Dulane	>0.1 mg/L	3			J	J	U	U	U		U	U										
Chloroform	If Daughter Product	2	ND		NT	NT	NT	NT	NT	NT	NT	NT										
Dichloromethane	If Daughter Product	2	ND		NT	NT	NT	NT	NT	NT	NT	NT										
				8	27	12	18	12	21	10	16	10										

Scoring Interpretation				
0 to 5	Inadequate evidence for anaerobic biodegradation* of chlorinated organics			
6 to 14	Limited evidence for anaerobic biodegradation* of chlorinated organics			
15 to 20	Adequate evidence for anaerobic biodegradation* of chlorinated organics			
>20	Strong evidence for anaerobic biodegradation* of chlorinated organics			
*reductive dechlorination				
Values Taken from EPA Document EPA/600/R-98/128, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, 1998, Table 2.3 and Table 2.4				

Notes:

- 1. ND=not detected
- 2. NT=not tested

APPENDIX D

DATA VALIDATION AND ANALYTICAL LABORATORY REPORTS

Technical Memorandum

November 08, 2021

То	Denis Conley [dconley@haleyaldrich.com]	Tel	773-380-9241
Copy to	Claire Mondello [cmondello@haleyaldrich.com] Tom Bohlen [Thomas.bohlen@gza.com] Kathy Willy	Email	nancy.bergstrom@ghd.com
From	Nancy Bergstrom/cs/298-NF	Ref. No.	058507-256043
Subject	Analytical Results and Reduced Validation Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021		

1. Introduction

This document details a reduced validation of analytical results for groundwater samples collected in support of the Annual Groundwater Monitoring at the Delphi Harrison Thermal Systems Site, NYSDEC Site No. 9-32-113 during August 2021. Samples were submitted to Eurofins TestAmerica located in Amherst, New York. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody forms, finished report forms, method blank data, duplicate data, recovery data from surrogate spikes/laboratory control samples (LCS)/matrix spikes (MS), and field QA/QC samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 3 and applicable guidance from the documents entitled:

- i) "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review", United States Environmental Protection Agency (USEPA)-540-R-10-011, January 2010.
- ii) "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", USEPA 540-R-08-01, June 2008.

These items will subsequently be referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criteria for the analyses are summarized in Table 3. Sample chain of custody documents and analytical reports were used to determine sample holding times. All samples were prepared and analyzed within the required holding times.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature (0-6°C).

3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

Manganese and sodium were detected in one metal method blank. The investigative samples associated with the low-level detections reported concentrations significantly greater than the associated laboratory blank concentrations for the analytes of interest. These sample results were not impacted by the contamination detected. The remaining method blank results were non-detect, indicating laboratory contamination was not a factor for this investigation.

4. Surrogate Spike Recoveries - Organic Analyses

In accordance with the methods employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for volatile organic compound (VOC) determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory control limits. All surrogate recoveries were within the laboratory control limits.

5. Laboratory Control Sample Analyses

LCS and/or laboratory control sample duplicates (LCSD) are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects. The relative percent difference (RPD) of the LCS/LCSD recoveries is used to evaluate analytical precision.

For this study, LCS/LCSD were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

Organic Analyses

The LCS/LCSD contained all compounds of interest. All LCS recoveries and RPDs were within the laboratory control limits, demonstrating acceptable analytical accuracy and precision.

Inorganic Analyses

The LCS contained all analytes of interest. LCS recoveries were assessed per the "Guidelines". All LCS recoveries were within the control limits, demonstrating acceptable analytical accuracy.

6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the preparation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analyte of concern and analyzed as MS/MSD samples. The RPD between the MS and MSD is used to assess analytical precision. If the original sample concentration is significantly greater than the spike concentration, the recovery is not assessed. If only the MS or MSD recovery was outside of control limits, no qualification of the data was performed based on the acceptable recovery of the companion spike and the acceptable RPD.

The laboratory performed site-specific MS/MSD analyses internally.

Organic Analyses

No project samples were used for organic MS/MSD analyses; therefore, they were not used to assess project accuracy or precision.

Inorganic Analyses

The MS/MSD samples were spiked with the analytes of interest, and the results were evaluated using the "Guidelines". With the exception of chloride, all percent recoveries and RPD values were within the laboratory control limits. Table 4 lists outlying MS/MSD recoveries. Associated data are qualified as noted in the table.

7. Matrix Spike Analyses

To evaluate the effects of sample matrices on the preparation, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analyte of concern and analyzed as MS samples. For this study, MS samples for inorganic analyses were prepared and analyzed by the laboratory.

The MS results were evaluated per the "Guidelines".

With the exception of alkalinity and ammonia, all MS analyses performed were acceptable, demonstrating acceptable analytical accuracy. Table 5 lists outlying MS recoveries. Associated sample data are qualified as noted in the table.

8. Duplicate Sample Analyses

Analytical precision is evaluated based on the analysis of laboratory duplicate samples. For this study, duplicate samples were prepared and analyzed by the laboratory for inorganic analyses. The duplicate results were evaluated per the "Guidelines". All duplicate analyses performed were acceptable, demonstrating acceptable analytical precision.

9. Field QA/QC Samples

The field QA/QC consisted of three trip blank samples.

Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, three trip blank samples were submitted to the laboratory for VOC analysis. All results were non-detect for the compounds of interest.

10. Analyte Reporting

The laboratory reported detected results down to the laboratory's method detection limit (MDL) for each analyte. Positive analyte detections less than the RL but greater than the MDL were reported as estimated (J) in Table 2 unless qualified otherwise in this memorandum. Non-detect results were presented as non-detect at the RL in Table 2.

11. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Table 2 are acceptable with the specific qualifications noted herein.

Regards,

Nancy Bergstrom

Mercy M. Bugstan

Digital Intelligence - Data Management - Data Validator

Table 1

Sample Collection and Analysis Summary Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021

Analysis/Parameters

Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	Select VOC	Dissolved Gases	Select Metals	Chloride, Sulfate	Ammonia	Nitrate, Nitrite	тос	Alkalinity	Sulfide	VFA	Hydrogen	Comments
MW-4-081721	MW-4	Water	08/17/2021	12:00	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	
MW-10-081721	MW-10	Water	08/17/2021	15:30	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
TRIP BLANK-081721	-	Water	08/17/2021	-	Х											Trip Blank
MW-11-081921	MW-11	Water	08/19/2021	12:30	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-13-081921	MW-13	Water	08/19/2021	15:35	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-15-081921	MW-15	Water	08/19/2021	10:20	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
TRIP BLANK-081921	=	Water	08/19/2021	-	Х											Trip Blank
MW-12-082021	MW-12	Water	08/20/2021	08:20	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-14-082021	MW-14	Water	08/20/2021	10:57	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
MW-7-082021	MW-7	Water	08/20/2021	13:16	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ		
TRIP BLANK-082021	-	Water	08/20/2021	-	Χ											Trip Blank

Notes:

VOC - Volatile Organic Compounds

TOC - Total Organic Carbon
VFA - Volatile Fatty Acids
- Not applicable

Table 2 Page 1 of 4

Validated Analytical Results Summary Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021

	Location ID:	MW-4 MW-4-081721	MW-7	MW-10 MW-10-081721	MW-11 MW-11-081921	MW-12 MW-12-082021	MW-13 MW-13-081921
	Sample Name: Sample Date:	08/17/2021	MW-7-082021 08/20/2021	08/17/2021	08/19/2021	08/20/2021	08/19/2021
	Depth:						
Parameters	Uni	t					
Volatile Organic Compounds							
cis-1,2-Dichloroethene	μg/l	27000	31000	210	1.0 U	5.6	1.0 U
Tetrachloroethene	μg/l	_ 800 U	20000 U	4.0 U	1.0 U	2.0 U	1.0 U
trans-1,2-Dichloroethene	μg/l	_ 800 U	20000 U	4.0 U	1.0 U	2.0 U	1.0 U
Trichloroethene	μg/l	_ 36000	400000	36	1.0 U	2.0 U	1.0 U
Vinyl chloride	μg/l	_ 2100	20000 U	14	1.0 U	5.9	1.0 U
Dissolved Gases							
Carbon dioxide	μg/l	39000	16000	36000	16000	74000	56000
Ethane	μg/l	_ 33 J	46 J	7.5 U	7.5 U	170 U	7.5 U
Ethene	μg/l	_ 350	820	7.0 U	7.0 U	150 U	7.0 U
Methane	μg/l	_ 1100	77	86	29	260	4.0 U
Metals							
Iron	mg/	L 1.2	0.050 U	0.071	0.38	10.8	0.24
Magnesium	mg/	L 91.3	46.6	35.3	33.4	58.8	40.6
Manganese	mg/	L 0.51	0.012	0.75	0.15	6.8	0.38
Potassium	mg/	L 20.7	11.6	3.1	8.0	5.1	10.2
Sodium	mg/	L 1480	229	1140	118	1570	1010

Table 2 Page 2 of 4

Validated Analytical Results Summary Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021

	Location ID: Sample Name: Sample Date: Depth:	MW-4 MW-4-081721 08/17/2021 	MW-7 MW-7-082021 08/20/2021 	MW-10 MW-10-081721 08/17/2021 	MW-11 MW-11-081921 08/19/2021 	MW-12 MW-12-082021 08/20/2021 	MW-13 MW-13-081921 08/19/2021
Parameters	Unit						
General Chemistry							
2-Hydroxypropanoic acid	mg/L	50.0 U	5.0 U	20.0 U	5.0 U	50.0 U	20.0 U
Acetic acid	mg/L	50.0 U	1.6 J	20.0 U	5.0 U	50.0 U	20.0 U
Alkalinity, total (as CaCO3)	mg/L	309	253 J	356	260 J	373 J	460 J
Ammonia-N	mg/L	. 1.5	0.51 J	0.020 U	0.16 J	1.5 J	0.061 J
Butanoic acid	mg/L	50.0 U	5.0 U	20.0 U	5.0 U	50.0 U	20.0 U
Chloride	mg/L	4030 J	391	1810 J	189	2910	1700
Formic acid	mg/L	50.0 U	5.0 U	20.0 U	5.0 U	50.0 U	20.0 U
Nitrate (as N)	mg/L	0.050 U	0.050 U	0.13	0.050 U	0.050 U	0.53
Nitrite (as N)	mg/L	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
Propionic acid	mg/L	50.0 U	5.0 U	20.0 U	5.0 U	50.0 U	20.0 U
Pyruvic acid	mg/L	. 75.0 U	7.5 U	30.0 U	7.5 U	75.0 U	30.0 U
Sulfate	mg/L	. 777	201	316	104	131	114
Sulfide	mg/L	. 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total organic carbon (TOC)	mg/L	2.3	12.1	3.6	1.3	6.0	2.3

Table 2 Page 3 of 4

Validated Analytical Results Summary Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021

	Location ID: Sample Name: Sample Date: Depth:	MW-14 MW-14-082021 08/20/2021 	MW-15 MW-15-081921 08/19/2021 	TRIP BLANK TRIP BLANK-081721 08/17/2021	TRIP BLANK TRIP BLANK-081921 08/19/2021	TRIP BLANK TRIP BLANK-082021 08/20/2021
Parameters	Unit					
Volatile Organic Compounds cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Dissolved Gases Carbon dioxide Ethane Ethene Methane	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1.3 1.0 U 1.0 U 1.0 U 1.0 U 47000 7.5 U 7.0 U 200	1.0 U 5.8 1.0 U 1.5 1.0 U 60000 7.5 U 7.0 U 4.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U
Metals Iron Magnesium Manganese Potassium Sodium	mg/L mg/L mg/L mg/L	1.1 98.7 0.67 7.4 1310	0.050 U 44.7 0.36 4.3 369	 	 	

Table 2 Page 4 of 4

Validated Analytical Results Summary Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021

	Location ID: Sample Name: Sample Date: Depth:	MW-14 MW-14-082021 08/20/2021 	MW-15 MW-15-081921 08/19/2021 	TRIP BLANK TRIP BLANK-081721 08/17/2021	TRIP BLANK TRIP BLANK-081921 08/19/2021	TRIP BLANK TRIP BLANK-082021 08/20/2021
Parameters	Unit					
General Chemistry						
2-Hydroxypropanoic acid	mg/L	20.0 U	10.0 U			
Acetic acid	mg/L	20.0 U	10.0 U			
Alkalinity, total (as CaCO3)	mg/L	355 J	399 J			
Ammonia-N	mg/L	0.30 J	0.020 UJ			
Butanoic acid	mg/L	20.0 U	10.0 U			
Chloride	mg/L	2680	716			
Formic acid	mg/L	20.0 U	10.0 U			
Nitrate (as N)	mg/L	0.045 J	0.65			
Nitrite (as N)	mg/L	0.050 U	0.050 U			
Propionic acid	mg/L	20.0 U	10.0 U			
Pyruvic acid	mg/L	30.0 U	15.0 U			
Sulfate	mg/L	77.3	68.4			
Sulfide	mg/L	1.0 U	1.0 U			
Total organic carbon (TOC)	mg/L	3.2	1.9			

Notes:

- J Estimated concentration
- U Not detected at the associated reporting limit
- UJ Not detected, associated reporting limit is estimated
- -- Not applicable
- N Nitrogen

Table 3

Analytical Methods Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021

Parameter	Method	Matrix	Holding Time Collection to Analysis (Days)
Select Volatile Organic Compounds (VOCs)	SW-846 8260C	Water	14
Methane, Ethane, Ethene, Carbon dioxide	RSK 175	Water	14
Select Metals	SW-846 6010C	Water	180
Chloride, Sulfate	EPA 300.0	Water	28
Ammonia -N	EPA 350.1	Water	28
Nitrate, Nitrite	EPA 353.2	Water	48 hours
Total Organic Carbon (TOC)	SW 846 9060A	Water	28
Alkalinity	SM 2320B	Water	14
Sulfide	SM 4500 S2 F	Water	7
Volatile Fatty Acids (VFA)	VFA-IC	Water	7
Hydrogen	AM20GAX	Water	14

Notes:

I - Nitrogen

Method References:

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

SM - "Standard Methods for the Examination of Water and Wastewater", 18th Edition, 1992, with subsequent revisions

EPA - "Methods for Chemical Analysis of Water and Wastes", USEPA-600/4-79-020, March 1983 with subsequent revisions

USEPA - United States Environmental Protection Agency

RSK 175 - Sample Prep and Calculations for Dissolved Gas Analysis in Water Samples Using a GC Headspace Equilibration Technique,

RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

VFA-IC - Eurofins TestAmerica In-house Method for Volatile Fatty Acids, Ion Chromatography

AM20GAX - Pace Analytical In-house Method for Dissolved Gases

Table 4

Qualified Sample Results Due to Outlying MS/MSD Results Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021

			MS	MSD	RPD	Control Li	mits	Qualified	
Parameter	Sample ID	Analyte	% Recovery	% Recovery	(percent)	% Recovery	RPD	Result	Units
General Chemistry	MW-4-081721	Chloride	71	52	8	81-120	15	4030 J	mg/L
	MW-10-081721							1810 J	mg/L

Notes:

MS - Matrix Spike

MSD - Matrix Spike Duplicate

RPD - Relative Percent Difference

J - Estimated concentration

Table 5

Qualified Sample Results Due to Outlying MS Results Annual Groundwater Monitoring Delphi Harrison Thermal Systems Site NYSDEC Site No. 9-32-113 Lockport, New York August 2021

Spiked Sample ID	Analyte	MS % Recovery	Control Limits % Recovery	Associated Sample IDs	Qualified Result	Units
MW-13-081921	Ammonia-N	79	90 - 110			mg/L
				MW-13-081921	0.061 J	mg/L
				MW-15-081921	0.020 UJ	mg/L
MW-7-082021	Ammonia-N	87	90 - 110	MW-12-082021	1.5 J	mg/L
				MW-14-082021	0.30 J	mg/L
				MW-7-082021	0.51 J	mg/L
MW-10-081721	Alkalinity	58	90 - 110	MW-4-081721	309 J	mg/L
				MW-10-081721	356 J	mg/L
MW-13-081921	Alkalinity	44	90 - 110	MW-11-081921	260 J	mg/L
MW-7-082021	Alkalinity	28	90 - 110	MW-13-081921	460 J	mg/L
				MW-15-081921	399 J	mg/L
				MW-12-082021	373 J	mg/L
				MW-14-082021	355 J	mg/L
				MW-7-082021	253 J	mg/L
	MW-13-081921 MW-7-082021 MW-10-081721 MW-13-081921	MW-13-081921 Ammonia-N MW-7-082021 Ammonia-N MW-10-081721 Alkalinity MW-13-081921 Alkalinity	Spiked Sample ID Analyte % Recovery MW-13-081921 Ammonia-N 79 MW-7-082021 Ammonia-N 87 MW-10-081721 Alkalinity 58 MW-13-081921 Alkalinity 44	Spiked Sample ID Analyte % Recovery % Recovery MW-13-081921 Ammonia-N 79 90 - 110 MW-7-082021 Ammonia-N 87 90 - 110 MW-10-081721 Alkalinity 58 90 - 110 MW-13-081921 Alkalinity 44 90 - 110	Spiked Sample ID Analyte % Recovery % Recovery Associated Sample IDs MW-13-081921 Ammonia-N 79 90 - 110 MW-11-081921 MW-13-081921 MW-15-081921 MW-7-082021 Ammonia-N 87 90 - 110 MW-12-082021 MW-14-082021 MW-7-082021 MW-10-081721 Alkalinity 58 90 - 110 MW-4-081721 MW-10-081721 MW-13-081921 Alkalinity 44 90 - 110 MW-11-081921 MW-15-081921 MW-15-081921 MW-15-081921 MW-15-081921 MW-12-082021 MW-14-082021	Spiked Sample ID Analyte % Recovery % Recovery Associated Sample IDs Result MW-13-081921 Ammonia-N 79 90 - 110 MW-11-081921

Notes:

MS - Matrix Spike

J - Estimated concentration

UJ - Not detected; associated reporting limit is estimated

N - Nitrogen

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-188404-1

Laboratory Sample Delivery Group: Delphi Harrison Client Project/Site: 058507, GM Lockport SSOW 256043

For:

eurofins :

GHD Services Inc. 2055 Niagara Falls Blvd., Suite 3 Niagara Falls, New York 14304

Attn: Kathleen Willy

Authorized for release by: 9/12/2021 2:55:16 PM

Denise Heckler, Project Manager II

ense DHeckler

(330)966-9477

Denise.Heckler@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

0

9

10

12

13

15

16

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	9
Surrogate Summary	18
QC Sample Results	19
QC Association Summary	37
Lab Chronicle	44
Certification Summary	49
Method Summary	50
Sample Summary	51
Subcontract Data	52
Chain of Custody	82
Receipt Checklists	85

7

Definitions/Glossary

Client: GHD Services Inc. Job ID: 480-188404-1

Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Qualifiers

\sim	1/0
121	V()A
\mathbf{u}	VUA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
F1	MS and/or MSD recovery exceeds control limits

F1 MS and/or MSD recovery exceeds control limits

1 1	WIG and/or Wight recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitati

PQL Practical Quantitation Limit
PRES Presumptive

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

9/12/2021

Page 3 of 90

-1

3

4

5

6

Q

10

10

13

14

П

Case Narrative

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Job ID: 480-188404-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-188404-1

Comments

No additional comments.

Receipt

The samples were received on 8/17/2021 5:00 PM, 8/19/2021 5:37 PM and 8/20/2021 3:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.8° C, 3.5° C and 5.4° C.

Receipt Exceptions

No VFA volume received for sample point "MW-7". Method not assigned.

GC/MS VOA

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-4-081721 (480-188404-1). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-10-081721 (480-188404-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: MW-12-082021 (480-188572-1). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-7-082021 (480-188572-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-4-081721 (480-188404-1) and MW-10-081721 (480-188404-2). Elevated reporting limits (RLs) are provided.

Method VFA-IC: The following samples were diluted due to sample matrix interference: MW-4-081721 (480-188404-1) and MW-10-081721 (480-188404-2). Elevated reporting limits (RLs) are provided.

Method VFA-IC: The following samples were diluted due to sample matrix interference: MW-11-081921 (480-188531-1), MW-13-081921 (480-188531-2), MW-15-081921 (480-188531-3), MW-12-082021 (480-188572-1), MW-14-082021 (480-188572-2) and MW-7-082021 (480-188572-3). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-11-081921 (480-188531-1), MW-13-081921 (480-188531-2), MW-15-081921 (480-188531-3), MW-12-082021 (480-188572-1), MW-14-082021 (480-188572-2) and MW-7-082021 (480-188572-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method RSK-175: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-4-081721 (480-188404-1). Elevated reporting limits (RLs) are provided.

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-12-082021 (480-188572-1) and MW-7-082021 (480-188572-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Case Narrative

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1

SDG: Delphi Harrison

Job ID: 480-188404-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

SDG: Delphi Harrison

Job ID: 480-188404-1

Client Sample ID: MW-4-081721

Lab Sample ID: 480-188404-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	27000		800	650	ug/L	800	8260C	Total/NA
Trichloroethene	36000		800	370	ug/L	800	8260C	Total/NA
Vinyl chloride	2100		800	720	ug/L	800	8260C	Total/NA
Carbon dioxide	39000		5000	5000	ug/L	1	RSK-175	Total/NA
Ethane	33	J	83	17	ug/L	11	RSK-175	Total/NA
Ethene	350		77	17	ug/L	11	RSK-175	Total/NA
Methane	1100		44	11	ug/L	11	RSK-175	Total/NA
Iron	1.2		0.050	0.019	mg/L	1	6010C	Total/NA
Magnesium	91.3		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	0.51	В	0.0030	0.00040	mg/L	1	6010C	Total/NA
Potassium	20.7		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	1480		5.0	1.6	mg/L	5	6010C	Total/NA
Chloride	4030	F1	25.0	14.1	mg/L	50	300.0	Total/NA
Sulfate	777		100	17.5	mg/L	50	300.0	Total/NA
Ammonia	1.5		0.020	0.0090	mg/L	1	350.1	Total/NA
Total Organic Carbon	2.3		1.0	0.43	mg/L	1	9060A	Total/NA
Total Alkalinity	309		5.0	0.79	mg/L	1	SM 2320B	Total/NA

Client Sample ID: MW-10-081721

Lab Sample ID: 480-188404-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	210		4.0	3.2	ug/L	4	_	8260C	Total/NA
Trichloroethene	36		4.0	1.8	ug/L	4		8260C	Total/NA
Vinyl chloride	14		4.0	3.6	ug/L	4		8260C	Total/NA
Carbon dioxide	36000		5000	5000	ug/L	1		RSK-175	Total/NA
Methane	86		4.0	1.0	ug/L	1		RSK-175	Total/NA
Iron	0.071		0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	35.3		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.75	В	0.0030	0.00040	mg/L	1		6010C	Total/NA
Potassium	3.1		0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	1140		5.0	1.6	mg/L	5		6010C	Total/NA
Chloride	1810		10.0	5.6	mg/L	20		300.0	Total/NA
Sulfate	316		40.0	7.0	mg/L	20		300.0	Total/NA
Nitrate	0.13		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	3.6		1.0	0.43	mg/L	1		9060A	Total/NA
Total Alkalinity	356	F1	5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: TRIP BLANK-081721

Lab Sample ID: 480-188404-3

Lab Sample ID: 480-188531-1

300.0

300.0

No Detections.

Chloride

Sulfate

Client Sample ID: MW-11-081921

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	16000		5000	5000	ug/L	1	_	RSK-175	Total/NA
Methane	29		4.0	1.0	ug/L	1		RSK-175	Total/NA
Iron	0.38		0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	33.4		0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.15		0.0030	0.00040	mg/L	1		6010C	Total/NA
Potassium	8.0		0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	118		1.0	0.32	mg/L	1		6010C	Total/NA

2.5

10.0

1.4 mg/L

1.7 mg/L

This Detection Summary does not include radiochemical test results.

189

104

Page 6 of 90

Eurofins TestAmerica, Buffalo

Total/NA

Total/NA

Detection Summary

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Client Sample ID: MW-11-081921 (Continued) Lab Sample ID: 480-188531-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ammonia	0.16	0.020	0.0090	mg/L	1	_	350.1	Total/NA
Total Organic Carbon	1.3	1.0	0.43	mg/L	1		9060A	Total/NA
Total Alkalinity	260	5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-13-081921

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Carbon dioxide	56000	5000	5000	ug/L	1	_	RSK-175	Total/NA
Iron	0.24	0.050	0.019	mg/L	1		6010C	Total/NA
Magnesium	40.6	0.20	0.043	mg/L	1		6010C	Total/NA
Manganese	0.38	0.0030	0.00040	mg/L	1		6010C	Total/NA
Potassium	10.2	0.50	0.10	mg/L	1		6010C	Total/NA
Sodium	1010	2.0	0.65	mg/L	2		6010C	Total/NA
Chloride	1700	10.0	5.6	mg/L	20		300.0	Total/NA
Sulfate	114	40.0	7.0	mg/L	20		300.0	Total/NA
Ammonia	0.061 F1	0.020	0.0090	mg/L	1		350.1	Total/NA
Nitrate	0.53	0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	2.3	1.0	0.43	mg/L	1		9060A	Total/NA
Total Alkalinity	460	5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-15-081921

Client Sample ID: MW-	15-081921					Lab San	nple ID: 48	30-188531-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	5.8		1.0	0.36	ug/L	1	8260C	Total/NA
Trichloroethene	1.5		1.0	0.46	ug/L	1	8260C	Total/NA
Carbon dioxide	60000		5000	5000	ug/L	1	RSK-175	Total/NA
Magnesium	44.7		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	0.36		0.0030	0.00040	mg/L	1	6010C	Total/NA
Potassium	4.3		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	369		1.0	0.32	mg/L	1	6010C	Total/NA
Chloride	716		5.0	2.8	mg/L	10	300.0	Total/NA
Sulfate	68.4		20.0	3.5	mg/L	10	300.0	Total/NA
Nitrate	0.65		0.050	0.020	mg/L	1	353.2	Total/NA
Total Organic Carbon	1.9		1.0	0.43	mg/L	1	9060A	Total/NA
Total Alkalinity	399		5.0	0.79	mg/L	1	SM 2320B	Total/NA

Client Sample ID: TRIP BLANK-081921

No Detections.

Client Sample ID: MW-12-082021

<u> </u>						•	
Analyte	Result Q	ualifier RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	5.6	2.0	1.6	ug/L		8260C	Total/NA
Vinyl chloride	5.9	2.0	1.8	ug/L	2	8260C	Total/NA
Carbon dioxide	74000	5000	5000	ug/L	1	RSK-175	Total/NA
Methane	260	88	22	ug/L	22	RSK-175	Total/NA
Iron	10.8	0.050	0.019	mg/L	1	6010C	Total/NA
Magnesium	58.8	0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	6.8	0.0030	0.00040	mg/L	1	6010C	Total/NA
Potassium	5.1	0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	1570	5.0	1.6	mg/L	5	6010C	Total/NA
Chloride	2910	25.0	14.1	mg/L	50	300.0	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 480-188404-1 SDG: Delphi Harrison

Lab Sample ID: 480-188531-2

Lab Sample ID: 480-188531-4

Lab Sample ID: 480-188572-1

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Lab Sample ID: 480-188572-1

Client Sample ID: MW-12-082021 (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	131	100	17.5	mg/L	50	_	300.0	Total/NA
Ammonia	1.5	0.020	0.0090	mg/L	1		350.1	Total/NA
Total Organic Carbon	6.0	1.0	0.43	mg/L	1		9060A	Total/NA
Total Alkalinity	373	5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-14-082021	Lab Sample ID: 480-188572-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	1.3		1.0	0.81	ug/L		8260C	Total/NA
Carbon dioxide	47000		5000	5000	ug/L	1	RSK-175	Total/NA
Methane	200		4.0	1.0	ug/L	1	RSK-175	Total/NA
Iron	1.1	(0.050	0.019	mg/L	1	6010C	Total/NA
Magnesium	98.7		0.20	0.043	mg/L	1	6010C	Total/NA
Manganese	0.67	0.	0030	0.00040	mg/L	1	6010C	Total/NA
Potassium	7.4		0.50	0.10	mg/L	1	6010C	Total/NA
Sodium	1310		5.0	1.6	mg/L	5	6010C	Total/NA
Chloride	2680		10.0	5.6	mg/L	20	300.0	Total/NA
Sulfate	77.3		40.0	7.0	mg/L	20	300.0	Total/NA
Ammonia	0.30	(0.020	0.0090	mg/L	1	350.1	Total/NA
Nitrate	0.045	J (0.050	0.020	mg/L	1	353.2	Total/NA
Total Organic Carbon	3.2		1.0	0.43	mg/L	1	9060A	Total/NA
Total Alkalinity	355		5.0	0.79	mg/L	1	SM 2320B	Total/NA

Client Sample ID: MW-7-082021

Lab Sample ID: 480-188572-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	l lethod	Prep Type
cis-1,2-Dichloroethene	31000		20000	16000	ug/L	20000	8	260C	Total/NA
Trichloroethene	400000		20000	9200	ug/L	20000	8	260C	Total/NA
Carbon dioxide	16000		5000	5000	ug/L	1	R	RSK-175	Total/NA
Ethane	46	J	83	17	ug/L	11	R	RSK-175	Total/NA
Ethene	820		77	17	ug/L	11	R	RSK-175	Total/NA
Methane	77		44	11	ug/L	11	R	RSK-175	Total/NA
Magnesium	46.6		0.20	0.043	mg/L	1	6	010C	Total/NA
Manganese	0.012		0.0030	0.00040	mg/L	1	6	010C	Total/NA
Potassium	11.6		0.50	0.10	mg/L	1	6	010C	Total/NA
Sodium	229		1.0	0.32	mg/L	1	6	010C	Total/NA
Chloride	391		2.5	1.4	mg/L	5	3	0.00	Total/NA
Sulfate	201		10.0	1.7	mg/L	5	3	0.00	Total/NA
Ammonia	0.51	F1	0.020	0.0090	mg/L	1	3	50.1	Total/NA
Total Organic Carbon	12.1		1.0	0.43	mg/L	1	9	060A	Total/NA
Total Alkalinity	253	F1	5.0	0.79	mg/L	1	S	SM 2320B	Total/NA
Acetic acid	1.6	J	5.0	1.5	mg/L	5	V	/FA-IC	Total/NA

Client Sample ID: TRIP BLANK-082021

Lab Sample ID: 480-188572-4

No Detections.

This Detection Summary does not include radiochemical test results.

9/12/2021

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Client Sample ID: MW-4-081721 Lab Sample ID: 480-188404-1

Date Collected: 08/17/21 12:00 **Matrix: Water** Date Received: 08/17/21 17:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	27000		800	650	ug/L			08/18/21 18:46	800
Tetrachloroethene	ND		800	290	ug/L			08/18/21 18:46	800
trans-1,2-Dichloroethene	ND		800	720	ug/L			08/18/21 18:46	800
Trichloroethene	36000		800	370	ug/L			08/18/21 18:46	800
Vinyl chloride	2100		800	720	ug/L			08/18/21 18:46	800
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					08/18/21 18:46	800
4-Bromofluorobenzene (Surr)	100		73 - 120					08/18/21 18:46	800
Toluene-d8 (Surr)	101		80 - 120					08/18/21 18:46	800
Dibromofluoromethane (Surr)	108		75 - 123					08/18/21 18:46	800
- Method: RSK-175 - Dissolv	ed Gases (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	39000		5000	5000	ug/L			08/24/21 10:11	1
Ethane	33	J	83	17	ug/L			08/18/21 15:05	11
Ethene	350		77	17	ug/L			08/18/21 15:05	11
Methane	1100		44	11	ug/L			08/18/21 15:05	11
Method: 6010C - Metals (IC	P)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	1.2		0.050	0.019	mg/L		08/19/21 06:03	08/19/21 19:48	1
Magnesium	91.3		0.20	0.043	mg/L		08/19/21 06:03	08/19/21 19:48	1
Manganese	0.51	В	0.0030	0.00040	mg/L		08/19/21 06:03	08/19/21 19:48	1
Potassium	20.7		0.50	0.10	mg/L		08/19/21 06:03	08/20/21 15:52	1
Sodium	1480		5.0	1.6	mg/L		08/19/21 06:03	08/20/21 15:56	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4030	F1	25.0	14.1	mg/L			08/18/21 15:55	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4030	F1	25.0	14.1	mg/L			08/18/21 15:55	50
Sulfate	777		100	17.5	mg/L			08/18/21 15:55	50
Ammonia	1.5		0.020	0.0090	mg/L			08/18/21 13:35	1
Nitrate	ND		0.050	0.020	mg/L			08/18/21 16:54	1
Nitrite	ND		0.050	0.020	mg/L			08/18/21 16:54	1
Total Organic Carbon	2.3		1.0	0.43	mg/L			08/20/21 22:41	1
Total Alkalinity	309		5.0	0.79	mg/L			08/19/21 12:46	1
Sulfide	ND		1.0	0.67	mg/L			08/24/21 16:45	1
Acetic acid	ND		50.0	14.5	mg/L			08/19/21 00:01	50
Formic-acid	ND		50.0	13.0	mg/L			08/19/21 00:01	50
Lactic acid	ND		50.0	15.5	mg/L			08/19/21 00:01	50
n-Butyric Acid	ND		50.0	13.0	mg/L			08/19/21 00:01	50
Propionic acid	ND		50.0	17.5	mg/L			08/19/21 00:01	50
Pyruvic Acid	ND		75.0	18.5	mg/L			08/19/21 00:01	50

Client Sample ID: MW-10-081721 Lab Sample ID: 480-188404-2

Date Collected: 08/17/21 15:30 Date Received: 08/17/21 17:00

Method: 8260C - Volatile Organ	nic Compounds by G	C/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	210	4.0	3.2	ug/L			08/19/21 14:23	4

Eurofins TestAmerica, Buffalo

Matrix: Water

Page 9 of 90 9/12/2021

Client: GHD Services Inc. Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Client Sample ID: MW-10-081721

Lab Sample ID: 480-188404-2 Date Collected: 08/17/21 15:30

Matrix: Water

Date Received: 08/17/21 17:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		4.0	1.4	ug/L			08/19/21 14:23	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			08/19/21 14:23	4
Trichloroethene	36		4.0	1.8	ug/L			08/19/21 14:23	4
Vinyl chloride	14		4.0	3.6	ug/L			08/19/21 14:23	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					08/19/21 14:23	4
4-Bromofluorobenzene (Surr)	98		73 - 120					08/19/21 14:23	4
Toluene-d8 (Surr)	101		80 - 120					08/19/21 14:23	4
Dibromofluoromethane (Surr)	104		75 - 123					08/19/21 14:23	4

Method: RSK-175 - Dissolved Gases (GC)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	36000	5000	5000	ug/L			08/24/21 10:26	1
Ethane	ND	7.5	1.5	ug/L			08/18/21 17:54	1
Ethene	ND	7.0	1.5	ug/L			08/18/21 17:54	1
Methane	86	4.0	1.0	ug/L			08/18/21 17:54	1

Method: 6010C - Metals (ICP) Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.071	0.050	0.019	mg/L		08/19/21 06:03	08/19/21 19:52	1
Magnesium	35.3	0.20	0.043	mg/L		08/19/21 06:03	08/19/21 19:52	1
Manganese	0.75 B	0.0030	0.00040	mg/L		08/19/21 06:03	08/19/21 19:52	1
Potassium	3.1	0.50	0.10	mg/L		08/19/21 06:03	08/20/21 16:00	1
Sodium	1140	5.0	1.6	mg/L		08/19/21 06:03	08/20/21 16:03	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1810		10.0	5.6	mg/L			08/18/21 17:42	20
Sulfate	316		40.0	7.0	mg/L			08/18/21 17:42	20
Ammonia	ND		0.020	0.0090	mg/L			08/18/21 13:36	1
Nitrate	0.13		0.050	0.020	mg/L			08/18/21 19:05	1
Nitrite	ND		0.050	0.020	mg/L			08/18/21 19:05	1
Total Organic Carbon	3.6		1.0	0.43	mg/L			08/20/21 23:44	1
Total Alkalinity	356	F1	5.0	0.79	mg/L			08/19/21 13:00	1
Sulfide	ND		1.0	0.67	mg/L			08/24/21 16:45	1
Acetic acid	ND		20.0	5.8	mg/L			08/19/21 00:30	20
Formic-acid	ND		20.0	5.2	mg/L			08/19/21 00:30	20
Lactic acid	ND		20.0	6.2	mg/L			08/19/21 00:30	20
n-Butyric Acid	ND		20.0	5.2	mg/L			08/19/21 00:30	20
Propionic acid	ND		20.0	7.0	mg/L			08/19/21 00:30	20
Pyruvic Acid	ND		30.0	7.4	mg/L			08/19/21 00:30	20

Client Sample ID: TRIP BLANK-081721 Lab Sample ID: 480-188404-3

Date Collected: 08/17/21 00:00 Date Received: 08/17/21 17:00

Method: 8260C - Volatile Organ	nic Compou	nds by GC/	MS						
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/18/21 19:31	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/18/21 19:31	1

Eurofins TestAmerica, Buffalo

Page 10 of 90

Matrix: Water

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Client Sample ID: TRIP BLANK-081721

Lab Sample ID: 480-188404-3 Date Collected: 08/17/21 00:00 **Matrix: Water**

Date Received: 08/17/21 17:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/18/21 19:31	1
Trichloroethene	ND		1.0	0.46	ug/L			08/18/21 19:31	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/18/21 19:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		77 - 120					08/18/21 19:31	1
4-Bromofluorobenzene (Surr)	100		73 - 120					08/18/21 19:31	1
	101		80 - 120					08/18/21 19:31	1
Toluene-d8 (Surr)	101		00 - 120					00/10/21 19.51	,

Lab Sample ID: 480-188531-1 Client Sample ID: MW-11-081921

Date Collected: 08/19/21 12:30

Date Received: 08/19/21 17:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/25/21 02:09	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/25/21 02:09	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/25/21 02:09	1
Trichloroethene	ND		1.0	0.46	ug/L			08/25/21 02:09	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/25/21 02:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					08/25/21 02:09	1
4-Bromofluorobenzene (Surr)	94		73 - 120					08/25/21 02:09	1
Toluene-d8 (Surr)	97		80 - 120					08/25/21 02:09	1
Dibromofluoromethane (Surr)	103		75 - 123					08/25/21 02:09	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	16000	5000	5000	ug/L			08/26/21 19:44	1
Ethane	ND	7.5	1.5	ug/L			08/24/21 20:55	1
Ethene	ND	7.0	1.5	ug/L			08/24/21 20:55	1
Methane	29	4.0	1.0	ug/L			08/24/21 20:55	1

Method: 6010C - Metals	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.38		0.050	0.019	mg/L		08/21/21 11:58	08/23/21 18:20	1
Magnesium	33.4		0.20	0.043	mg/L		08/21/21 11:58	08/23/21 18:20	1
Manganese	0.15		0.0030	0.00040	mg/L		08/21/21 11:58	08/23/21 18:20	1
Potassium	8.0		0.50	0.10	mg/L		08/21/21 11:58	08/23/21 18:20	1
Sodium	118		1.0	0.32	mg/L		08/21/21 11:58	08/23/21 18:20	1

General Chemistry Analyte	Result 0	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	189		2.5		mg/L		Trepared	08/23/21 17:38	5
Sulfate	104		10.0		mg/L			08/23/21 17:38	5
Ammonia	0.16		0.020	0.0090	U			08/23/21 07:58	1
Nitrate	ND		0.050	0.020	mg/L			08/20/21 17:14	1
Nitrite	ND		0.050	0.020	mg/L			08/20/21 17:14	1
Total Organic Carbon	1.3		1.0	0.43	mg/L			08/27/21 00:34	1

Page 11 of 90

Job ID: 480-188404-1

Matrix: Water

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Client Sample ID: MW-11-081921

Date Collected: 08/19/21 12:30 Date Received: 08/19/21 17:37 Lab Sample ID: 480-188531-1

Matrix: Water

Job ID: 480-188404-1

SDG: Delphi Harrison

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity	260	5.0	0.79	mg/L			08/24/21 16:03	1
Sulfide	ND	1.0	0.67	mg/L			08/24/21 16:45	1
Acetic acid	ND	5.0	1.5	mg/L			08/23/21 18:31	5
Formic-acid	ND	5.0	1.3	mg/L			08/23/21 18:31	5
Lactic acid	ND	5.0	1.6	mg/L			08/23/21 18:31	5
n-Butyric Acid	ND	5.0	1.3	mg/L			08/23/21 18:31	5
Propionic acid	ND	5.0	1.8	mg/L			08/23/21 18:31	5
Pyruvic Acid	ND	7.5	1.9	mg/L			08/23/21 18:31	5

Client Sample ID: MW-13-081921

Date Collected: 08/19/21 15:35

Date Received: 08/19/21 17:37

Lab Sample ID: 480-188531-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/25/21 02:31	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/25/21 02:31	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/25/21 02:31	1
Trichloroethene	ND		1.0	0.46	ug/L			08/25/21 02:31	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/25/21 02:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120					08/25/21 02:31	1
4-Bromofluorobenzene (Surr)	93		73 - 120					08/25/21 02:31	1
Toluene-d8 (Surr)	97		80 - 120					08/25/21 02:31	1
Dibromofluoromethane (Surr)	102		75 - 123					08/25/21 02:31	1

Method: RSK-175 - Diss	olved Gases (GC)							
Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	56000	5000	5000	ug/L			08/26/21 19:53	1
Ethane	ND	7.5	1.5	ug/L			08/25/21 16:22	1
Ethene	ND	7.0	1.5	ug/L			08/25/21 16:22	1
Methane	ND	4.0	1.0	ug/L			08/25/21 16:22	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.24		0.050	0.019	mg/L		08/21/21 11:58	08/23/21 18:35	1
Magnesium	40.6		0.20	0.043	mg/L		08/21/21 11:58	08/23/21 18:35	1
Manganese	0.38		0.0030	0.00040	mg/L		08/21/21 11:58	08/23/21 18:35	1
Potassium	10.2		0.50	0.10	mg/L		08/21/21 11:58	08/23/21 18:35	1
Sodium	1010		2.0	0.65	mg/L		08/21/21 11:58	08/25/21 15:41	2

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1700		10.0	5.6	mg/L			08/23/21 17:56	20
Sulfate	114		40.0	7.0	mg/L			08/23/21 17:56	20
Ammonia	0.061	F1	0.020	0.0090	mg/L			08/23/21 08:00	1
Nitrate	0.53		0.050	0.020	mg/L			08/20/21 19:24	1
Nitrite	ND		0.050	0.020	mg/L			08/20/21 19:24	1
Total Organic Carbon	2.3		1.0	0.43	mg/L			08/27/21 01:05	1
Total Alkalinity	460		5.0	0.79	mg/L			08/24/21 16:17	1

Eurofins TestAmerica, Buffalo

Page 12 of 90

2

3

5

4.0

11

3

1 – 1 –

16

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Client Sample ID: MW-13-081921

Lab Sample ID: 480-188531-2 Date Collected: 08/19/21 15:35 **Matrix: Water** Date Received: 08/19/21 17:37

General Chemistry (Continued	i)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfide	ND	1.0	0.67	mg/L			08/24/21 16:45	1
Acetic acid	ND	20.0	5.8	mg/L			08/23/21 19:00	20
Formic-acid	ND	20.0	5.2	mg/L			08/23/21 19:00	20
Lactic acid	ND	20.0	6.2	mg/L			08/23/21 19:00	20
n-Butyric Acid	ND	20.0	5.2	mg/L			08/23/21 19:00	20
Propionic acid	ND	20.0	7.0	mg/L			08/23/21 19:00	20
Pyruvic Acid	ND	30.0	7.4	mg/L			08/23/21 19:00	20

Lab Sample ID: 480-188531-3 Client Sample ID: MW-15-081921

Date Collected: 08/19/21 10:20 **Matrix: Water**

Date Received: 08/19/21 17:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/25/21 02:53	1
Tetrachloroethene	5.8		1.0	0.36	ug/L			08/25/21 02:53	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/25/21 02:53	1
Trichloroethene	1.5		1.0	0.46	ug/L			08/25/21 02:53	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/25/21 02:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					08/25/21 02:53	1
4-Bromofluorobenzene (Surr)	94		73 - 120					08/25/21 02:53	1
Toluene-d8 (Surr)	98		80 - 120					08/25/21 02:53	1
Dibromofluoromethane (Surr)	105		75 - 123					08/25/21 02:53	1

Method: RSK-175 - Diss	olved Gases (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	60000	5000	5000	ug/L			08/26/21 20:02	1
Ethane	ND	7.5	1.5	ug/L			08/24/21 21:33	1
Ethene	ND	7.0	1.5	ug/L			08/24/21 21:33	1
Methane	ND	4.0	1.0	ug/L			08/24/21 21:33	1

Method: 6010C - Metals (ICP)								
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	0.050	0.019	mg/L		08/21/21 11:58	08/23/21 18:39	1
Magnesium	44.7	0.20	0.043	mg/L		08/21/21 11:58	08/23/21 18:39	1
Manganese	0.36	0.0030	0.00040	mg/L		08/21/21 11:58	08/23/21 18:39	1
Potassium	4.3	0.50	0.10	mg/L		08/21/21 11:58	08/23/21 18:39	1
Sodium	369	1.0	0.32	mg/L		08/21/21 11:58	08/23/21 18:39	1

General Chemistry									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	716		5.0	2.8	mg/L			08/23/21 18:14	10
Sulfate	68.4		20.0	3.5	mg/L			08/23/21 18:14	10
Ammonia	ND		0.020	0.0090	mg/L			08/23/21 08:03	1
Nitrate	0.65		0.050	0.020	mg/L			08/20/21 19:26	1
Nitrite	ND		0.050	0.020	mg/L			08/20/21 19:26	1
Total Organic Carbon	1.9		1.0	0.43	mg/L			08/27/21 01:36	1
Total Alkalinity	399		5.0	0.79	mg/L			08/24/21 16:33	1
Sulfide	ND		1.0	0.67	mg/L			08/24/21 16:45	1

Eurofins TestAmerica, Buffalo

Page 13 of 90

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Lab Sample ID: 480-188531-3

Matrix: Water

Job ID: 480-188404-1

SDG: Delphi Harrison

Date	Collected:	08/19/21 10:20
D		00140104 45 05

Client Sample ID: MW-15-081921

Date Received: 08/19/21 17:37

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND ND	10.0	2.9	mg/L			08/23/21 19:29	10
Formic-acid	ND	10.0	2.6	mg/L			08/23/21 19:29	10
Lactic acid	ND	10.0	3.1	mg/L			08/23/21 19:29	10
n-Butyric Acid	ND	10.0	2.6	mg/L			08/23/21 19:29	10
Propionic acid	ND	10.0	3.5	mg/L			08/23/21 19:29	10
Pyruvic Acid	ND	15.0	3.7	mg/L			08/23/21 19:29	10

Client Sample ID: TRIP BLANK-081921

Date Collected: 08/19/21 00:00

Date Received: 08/19/21 17:37

Lab Sample ID: 480-188531-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	MD		1.0	0.81	ug/L			08/25/21 03:16	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/25/21 03:16	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/25/21 03:16	1
Trichloroethene	ND		1.0	0.46	ug/L			08/25/21 03:16	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/25/21 03:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					08/25/21 03:16	1
4-Bromofluorobenzene (Surr)	94		73 - 120					08/25/21 03:16	1
Toluene-d8 (Surr)	97		80 - 120					08/25/21 03:16	1
Dibromofluoromethane (Surr)	104		75 - 123					08/25/21 03:16	

Client Sample ID: MW-12-082021

Date Collected: 08/20/21 08:20

Date Received: 08/20/21 15:00

Lab Sample ID: 480-188572-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	5.6		2.0	1.6	ug/L			08/26/21 02:18	2
Tetrachloroethene	ND		2.0	0.72	ug/L			08/26/21 02:18	2
trans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			08/26/21 02:18	2
Trichloroethene	ND		2.0	0.92	ug/L			08/26/21 02:18	2
Vinyl chloride	5.9		2.0	1.8	ug/L			08/26/21 02:18	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120			-		08/26/21 02:18	2
4-Bromofluorobenzene (Surr)	95		73 - 120					08/26/21 02:18	2
Toluene-d8 (Surr)	99		80 - 120					08/26/21 02:18	2
Dibromofluoromethane (Surr)	103		75 - 123					08/26/21 02:18	2

Method: RSK-175 - Diss	olved Gases (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	74000	5000	5000	ug/L			08/26/21 19:18	1
Ethane	ND	170	33	ug/L			08/25/21 20:08	22
Ethene	ND	150	33	ug/L			08/25/21 20:08	22
Methane	260	88	22	ug/L			08/25/21 20:08	22

Page 14 of 90

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Client Sample ID: MW-12-082021 Lab Sample ID: 480-188572-1 **Matrix: Water**

Date Collected: 08/20/21 08:20 Date Received: 08/20/21 15:00

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	10.8	0.050	0.019	mg/L		08/21/21 12:09	08/23/21 20:18	1
Magnesium	58.8	0.20	0.043	mg/L		08/21/21 12:09	08/23/21 20:18	1
Manganese	6.8	0.0030	0.00040	mg/L		08/21/21 12:09	08/23/21 20:18	1
Potassium	5.1	0.50	0.10	mg/L		08/21/21 12:09	08/23/21 20:18	1
Sodium	1570	5.0	1.6	mg/L		08/21/21 12:09	08/26/21 15:46	5

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2910		25.0		mg/L	— <u> </u>		08/23/21 22:42	50
Sulfate	131		100		mg/L			08/23/21 22:42	50
Ammonia	1.5		0.020	0.0090	mg/L			08/24/21 08:44	1
Nitrate	ND		0.050	0.020	mg/L			08/20/21 18:38	1
Nitrite	ND		0.050	0.020	mg/L			08/20/21 18:38	1
Total Organic Carbon	6.0		1.0	0.43	mg/L			08/26/21 06:06	1
Total Alkalinity	373		5.0	0.79	mg/L			08/24/21 18:26	1
Sulfide	ND		1.0	0.67	mg/L			08/24/21 16:45	1
Acetic acid	ND		50.0	14.5	mg/L			08/23/21 23:22	50
Formic-acid	ND		50.0	13.0	mg/L			08/23/21 23:22	50
Lactic acid	ND		50.0	15.5	mg/L			08/23/21 23:22	50
n-Butyric Acid	ND		50.0	13.0	mg/L			08/23/21 23:22	50
Propionic acid	ND		50.0	17.5	mg/L			08/23/21 23:22	50
Pyruvic Acid	ND		75.0	18.5	mg/L			08/23/21 23:22	50

Client Sample ID: MW-14-082021

Date Collected: 08/20/21 10:57 Date Received: 08/20/21 15:00

Lab Sample	ID: 480-188572-2
	Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	1.3		1.0	0.81	ug/L			08/26/21 02:41	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/26/21 02:41	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/26/21 02:41	1
Trichloroethene	ND		1.0	0.46	ug/L			08/26/21 02:41	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/26/21 02:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					08/26/21 02:41	1
4-Bromofluorobenzene (Surr)	93		73 - 120					08/26/21 02:41	1
Toluene-d8 (Surr)	96		80 - 120					08/26/21 02:41	1
Dibromofluoromethane (Surr)	104		75 - 123					08/26/21 02:41	1
Method: RSK-175 - Dissolv	ed Gases (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	47000		5000	5000	ug/L			08/26/21 19:27	1
Ethane	ND		7.5	1.5	ua/l			08/26/21 17:27	1

Dibromofluoromethane (Surr)	104		75 - 123					08/26/21 02:41	1
Method: RSK-175 - Dissolved (Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	47000		5000	5000	ug/L			08/26/21 19:27	1
Ethane	ND		7.5	1.5	ug/L			08/26/21 17:27	1
Ethene	ND		7.0	1.5	ug/L			08/26/21 17:27	1
Methane	200		4.0	1.0	ug/L			08/26/21 17:27	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	1.1		0.050	0.019	mg/L		08/21/21 12:09	08/23/21 20:38	1

Page 15 of 90

Job ID: 480-188404-1

SDG: Delphi Harrison

Eurofins TestAmerica, Buffalo

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

SDG: Delphi Harrison Client Sample ID: MW-14-082021 Lab Sample ID: 480-188572-2

Job ID: 480-188404-1

Date Collected: 08/20/21 10:57 **Matrix: Water** Date Received: 08/20/21 15:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	98.7		0.20	0.043	mg/L		08/21/21 12:09	08/23/21 20:38	1
Manganese	0.67		0.0030	0.00040	mg/L		08/21/21 12:09	08/23/21 20:38	1
Potassium	7.4		0.50	0.10	mg/L		08/21/21 12:09	08/23/21 20:38	1
Sodium	1310		5.0	1.6	mg/L		08/21/21 12:09	08/30/21 15:45	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2680		10.0	5.6	mg/L			08/24/21 00:11	20
Sulfate	77.3		40.0	7.0	mg/L			08/24/21 00:11	20
Ammonia	0.30		0.020	0.0090	mg/L			08/24/21 08:45	1
Nitrate	0.045	J	0.050	0.020	mg/L			08/20/21 18:39	1
Nitrite	ND		0.050	0.020	mg/L			08/20/21 18:39	1
Total Organic Carbon	3.2		1.0	0.43	mg/L			08/26/21 06:35	1
Total Alkalinity	355		5.0	0.79	mg/L			08/24/21 18:58	1
Sulfide	ND		1.0	0.67	mg/L			08/26/21 13:09	1
Acetic acid	ND		20.0	5.8	mg/L			08/23/21 23:51	20
Formic-acid	ND		20.0	5.2	mg/L			08/23/21 23:51	20
Lactic acid	ND		20.0	6.2	mg/L			08/23/21 23:51	20
n-Butyric Acid	ND		20.0	5.2	mg/L			08/23/21 23:51	20
Propionic acid	ND		20.0	7.0	mg/L			08/23/21 23:51	20
Pyruvic Acid	ND		30.0	7.4	mg/L			08/23/21 23:51	20

Client Sample ID: MW-7-082021 Lab Sample ID: 480-188572-3

Date Collected: 08/20/21 13:16 **Matrix: Water** Date Received: 08/20/21 15:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	31000		20000	16000	ug/L			08/26/21 03:03	20000
Tetrachloroethene	ND		20000	7200	ug/L			08/26/21 03:03	20000
trans-1,2-Dichloroethene	ND		20000	18000	ug/L			08/26/21 03:03	20000
Trichloroethene	400000		20000	9200	ug/L			08/26/21 03:03	20000
Vinyl chloride	ND		20000	18000	ug/L			08/26/21 03:03	20000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					08/26/21 03:03	20000
4-Bromofluorobenzene (Surr)	94		73 - 120					08/26/21 03:03	20000
Toluene-d8 (Surr)	99		80 - 120					08/26/21 03:03	20000
Dibromofluoromethane (Surr)	104		75 - 123					08/26/21 03:03	20000
Method: RSK-175 - Dissolv	red Gases (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,a.,					/1			08/26/21 19:36	
	16000		5000	5000	ug/L			00/20/21 10:00	1
Carbon dioxide	16000	J	5000 83		ug/L ug/L			08/25/21 20:46	11
Carbon dioxide Ethane		J		17	Ū				11 11
Carbon dioxide Ethane Ethene Methane	46	J	83	17 17	ug/L			08/25/21 20:46	
Carbon dioxide Ethane Ethene	46 820 77	J	83 77	17 17	ug/L ug/L			08/25/21 20:46 08/25/21 20:46	11
Carbon dioxide Ethane Ethene Methane Method: 6010C - Metals (IC	46 820 77	J Qualifier	83 77	17 17	ug/L ug/L ug/L	D	Prepared	08/25/21 20:46 08/25/21 20:46	11
Carbon dioxide Ethane Ethene Methane	46 820 77		83 77 44	17 17 11 MDL	ug/L ug/L ug/L	<u>D</u>	Prepared 08/21/21 12:09	08/25/21 20:46 08/25/21 20:46 08/25/21 20:46	11 11

Eurofins TestAmerica, Buffalo

Page 16 of 90

Client Sample Results

Client: GHD Services Inc.

Date Received: 08/20/21 15:00

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Lab Sample ID: 480-188572-3

Client Sample ID: MW-7-082021 Date Collected: 08/20/21 13:16 **Matrix: Water**

Method: 6010C - Metals (ICP) (Continued)									
1	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
i	V langanese	0.012	0.0030	0.00040	mg/L		08/21/21 12:09	08/23/21 20:53	1
1	Potassium	11.6	0.50	0.10	mg/L		08/21/21 12:09	08/23/21 20:53	1
Ŀ	Sodium	229	1.0	0.32	mg/L		08/21/21 12:09	08/23/21 20:53	1

					J				
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	391	·	2.5	1.4	mg/L			08/24/21 00:29	5
Sulfate	201		10.0	1.7	mg/L			08/24/21 00:29	5
Ammonia	0.51	F1	0.020	0.0090	mg/L			08/24/21 08:46	1
Nitrate	ND		0.050	0.020	mg/L			08/20/21 18:42	1
Nitrite	ND		0.050	0.020	mg/L			08/20/21 18:42	1
Total Organic Carbon	12.1		1.0	0.43	mg/L			08/26/21 07:03	1
Total Alkalinity	253	F1	5.0	0.79	mg/L			08/24/21 19:13	1
Sulfide	ND		1.0	0.67	mg/L			08/26/21 13:09	1
Acetic acid	1.6	J	5.0	1.5	mg/L			08/24/21 00:21	5
Formic-acid	ND		5.0	1.3	mg/L			08/24/21 00:21	5
Lactic acid	ND		5.0	1.6	mg/L			08/24/21 00:21	5
n-Butyric Acid	ND		5.0	1.3	mg/L			08/24/21 00:21	5
Propionic acid	ND		5.0	1.8	mg/L			08/24/21 00:21	5
Pyruvic Acid	ND		7.5	1.9	mg/L			08/24/21 00:21	5

Client Sample ID: TRIP BLANK-082021

Date Collected: 08/20/21 00:00

Date Received: 08/20/21 15:00

Lab	Sample	ID: 480-1	88572-4
		Mat	rix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
cis-1,2-Dichloroethene	ND ND	1.0	0.81	ug/L			08/26/21 03:25	1		
Tetrachloroethene	ND	1.0	0.36	ug/L			08/26/21 03:25	1		
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			08/26/21 03:25	1		
Trichloroethene	ND	1.0	0.46	ug/L			08/26/21 03:25	1		
Vinyl chloride	ND	1.0	0.90	ug/L			08/26/21 03:25	1		
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery Qualifier	Limits 77 - 120				Prepared	Analyzed 08/26/21 03:25	Dil Fac		

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	DII Fac	
1,2-Dichloroethane-d4 (Surr)	100		77 - 120	-		08/26/21 03:25	1	
4-Bromofluorobenzene (Surr)	94		73 - 120			08/26/21 03:25	1	
Toluene-d8 (Surr)	98		80 - 120			08/26/21 03:25	1	
Dibromofluoromethane (Surr)	103		75 - 123			08/26/21 03:25	1	

Eurofins TestAmerica, Buffalo

Surrogate Summary

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 8260C - Volatile Organic Compounds by GC/MS **Matrix: Water Prep Type: Total/NA**

		DCA	BFB	TOL	DBFM	Acceptance Limits)
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)	
480-188404-1	MW-4-081721	101	100	101	108	
480-188404-2	MW-10-081721	100	98	101	104	
480-188404-3	TRIP BLANK-081721	102	100	101	107	
480-188531-1	MW-11-081921	100	94	97	103	
480-188531-2	MW-13-081921	98	93	97	102	
480-188531-3	MW-15-081921	101	94	98	105	
480-188531-4	TRIP BLANK-081921	100	94	97	104	
480-188572-1	MW-12-082021	101	95	99	103	
480-188572-2	MW-14-082021	101	93	96	104	
480-188572-3	MW-7-082021	99	94	99	104	
480-188572-4	TRIP BLANK-082021	100	94	98	103	
LCS 480-593228/5	Lab Control Sample	98	105	103	106	
LCS 480-593413/5	Lab Control Sample	104	103	100	103	
LCS 480-593861/6	Lab Control Sample	99	99	99	104	
LCS 480-594050/6	Lab Control Sample	97	100	99	100	
LCSD 480-593413/6	Lab Control Sample Dup	100	102	100	102	
MB 480-593228/7	Method Blank	100	101	104	105	
MB 480-593413/8	Method Blank	100	99	100	106	
MB 480-593861/8	Method Blank	99	93	96	102	
MB 480-594050/8	Method Blank	101	96	98	104	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Eurofins TestAmerica, Buffalo

9/12/2021

QC Sample Results

Client: GHD Services Inc. Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-593228/7

Matrix: Water

Analysis Batch: 593228

Client Sar	nple ID: Method Blank	
	Prep Type: Total/NA	

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Dil Fac Analyzed cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 08/18/21 12:39 Tetrachloroethene ND 1.0 0.36 ug/L 08/18/21 12:39 1 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 08/18/21 12:39 1 Trichloroethene ND 1.0 0.46 ug/L 08/18/21 12:39 0.90 ug/L Vinyl chloride ND 1.0 08/18/21 12:39

MD MD

	IVID IVID				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		08/18/21 12:39	1
4-Bromofluorobenzene (Surr)	101	73 - 120		08/18/21 12:39	1
Toluene-d8 (Surr)	104	80 - 120		08/18/21 12:39	1
Dibromofluoromethane (Surr)	105	75 - 123		08/18/21 12:39	1

Lab Sample ID: LCS 480-593228/5

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 593228

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits cis-1,2-Dichloroethene 25.0 25.6 74 - 124 ug/L 102 Tetrachloroethene 25.0 25.3 ug/L 101 74 - 122 25.0 25.9 103 trans-1,2-Dichloroethene ug/L 73 - 127 Trichloroethene 25.0 25.3 101 74 - 123 ug/L Vinyl chloride 25.0 23.2 ug/L 93 65 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		77 - 120
4-Bromofluorobenzene (Surr)	105		73 - 120
Toluene-d8 (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	106		75 - 123

Lab Sample ID: MB 480-593413/8

Matrix: Water

Analysis Batch: 593413

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND ND		1.0	0.81	ug/L			08/19/21 13:28	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/19/21 13:28	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/19/21 13:28	1
Trichloroethene	ND		1.0	0.46	ug/L			08/19/21 13:28	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/19/21 13:28	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		08/19/21 13:28	1
4-Bromofluorobenzene (Surr)	99	73 - 120		08/19/21 13:28	1
Toluene-d8 (Surr)	100	80 - 120		08/19/21 13:28	1
Dibromofluoromethane (Surr)	106	75 - 123	(08/19/21 13:28	1

Eurofins TestAmerica, Buffalo

Page 19 of 90

QC Sample Results

Client: GHD Services Inc. Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-593413/5

Matrix: Water

Analysis Batch: 593413

Client Sample ID: Lab Control Sample Prep Type: Total/NA

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-I	Dichloroethene	25.0	25.8		ug/L		103	74 - 124	
Tetrachl	proethene	25.0	26.3		ug/L		105	74 - 122	
trans-1,	2-Dichloroethene	25.0	26.0		ug/L		104	73 - 127	
Trichlor	pethene	25.0	26.0		ug/L		104	74 - 123	
Vinyl ch	oride	25.0	21.8		ug/L		87	65 - 133	

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 104 77 - 120 4-Bromofluorobenzene (Surr) 103 73 - 120 Toluene-d8 (Surr) 100 80 - 120 Dibromofluoromethane (Surr) 103 75 - 123

Lab Sample ID: LCSD 480-593413/6

Matrix: Water

Analysis Batch: 593413

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD I	LCSD				%Rec.		RPD
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	25.0	24.8		ug/L		99	74 - 124	4	15
Tetrachloroethene	25.0	25.4		ug/L		102	74 - 122	4	20
trans-1,2-Dichloroethene	25.0	24.4		ug/L		98	73 - 127	7	20
Trichloroethene	25.0	24.3		ug/L		97	74 - 123	7	16
Vinyl chloride	25.0	19.5		ug/L		78	65 - 133	11	15

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	102		73 - 120
Toluene-d8 (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	102		75 - 123

Lab Sample ID: MB 480-593861/8

Matrix: Water

Analysis Batch: 593861

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/25/21 01:46	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/25/21 01:46	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/25/21 01:46	1
Trichloroethene	ND		1.0	0.46	ug/L			08/25/21 01:46	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/25/21 01:46	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120		08/25/21 01:46	1
4-Bromofluorobenzene (Surr)	93		73 - 120		08/25/21 01:46	1
Toluene-d8 (Surr)	96		80 - 120		08/25/21 01:46	1
Dibromofluoromethane (Surr)	102		75 - 123		08/25/21 01:46	1

Eurofins TestAmerica, Buffalo

Page 20 of 90

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-593861/6

Matrix: Water

Analysis Batch: 593861

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	24.9		ug/L		100	74 - 124	
Tetrachloroethene	25.0	23.9		ug/L		95	74 - 122	
trans-1,2-Dichloroethene	25.0	24.6		ug/L		98	73 - 127	
Trichloroethene	25.0	24.9		ug/L		100	74 - 123	
Vinyl chloride	25.0	28.6		ug/L		114	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Toluene-d8 (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	104		75 - 123

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 594050

Matrix: Water

Lab Sample ID: MB 480-594050/8

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/26/21 01:55	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/26/21 01:55	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/26/21 01:55	1
Trichloroethene	ND		1.0	0.46	ug/L			08/26/21 01:55	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/26/21 01:55	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		08/26/21 01:55	1
4-Bromofluorobenzene (Surr)	96	73 - 120		08/26/21 01:55	1
Toluene-d8 (Surr)	98	80 - 120		08/26/21 01:55	1
Dibromofluoromethane (Surr)	104	75 - 123		08/26/21 01:55	1

Lab Sample ID: LCS 480-594050/6

Matrix: Water

Analysis Batch: 594050

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,2-Dichloroethene	25.0	25.3		ug/L		101	74 - 124
Tetrachloroethene	25.0	25.2		ug/L		101	74 - 122
trans-1,2-Dichloroethene	25.0	25.9		ug/L		104	73 - 127
Trichloroethene	25.0	25.4		ug/L		101	74 - 123
Vinyl chloride	25.0	26.8		ug/L		107	65 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Toluene-d8 (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	100		75 - 123

Page 21 of 90

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 200-170560/26

Matrix: Water

Analysis Batch: 170560

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 5000 08/24/21 09:25 Carbon dioxide ND 5000 ug/L

Lab Sample ID: LCS 200-170560/24

Matrix: Water

Analysis Batch: 170560

Spike LCS LCS %Rec. Analyte Added Result Qualifier D %Rec Limits Unit 40000 Carbon dioxide 38500 ug/L 96 70 - 130

Lab Sample ID: LCSD 200-170560/25

Matrix: Water

Analysis Batch: 170560

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Carbon dioxide 40000 34500 86 70 - 130 30 ug/L

Lab Sample ID: MB 200-170716/4

Matrix: Water

Analysis Batch: 170716

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ug/L Carbon dioxide 5000 5000 08/26/21 17:41 ND

Lab Sample ID: LCS 200-170716/2

Matrix: Water

Analysis Batch: 170716

LCS LCS Spike %Rec. Analyte Added Limits Result Qualifier Unit %Rec Carbon dioxide 40000 39900 100 70 - 130 ug/L

Lab Sample ID: LCSD 200-170716/3

Matrix: Water

Analysis Batch: 170716

LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier %Rec Limits **RPD** Limit Analyte Unit D 40000 36800 Carbon dioxide ug/L 92 70 - 130

Lab Sample ID: MB 480-593289/3

Matrix: Water

Analysis Batch: 593289

MR MR

	IVID	IVID						
Analyte	Result	Qualifier RI	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND	7.5	1.5	ug/L			08/18/21 14:08	1
Ethene	ND	7.0) 1.5	ug/L			08/18/21 14:08	1
Methane	ND	4.0) 1.0	ua/L			08/18/21 14:08	1

Eurofins TestAmerica, Buffalo

9/12/2021

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCS 480-593289/4

Matrix: Water

Analysis Batch: 593289

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Ethane 36.8 39.8 ug/L 108 79 - 120 Ethene 33.7 35.7 ug/L 106 85 - 120 Methane 19.2 20.6 ug/L 85 - 120 107

Lab Sample ID: LCSD 480-593289/5

Matrix: Water

Analysis Batch: 593289

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	36.8	41.1		ug/L		112	79 - 120	3	50
Ethene	33.7	36.2		ug/L		107	85 - 120	1	50
Methane	19.2	21.5		ug/L		111	85 - 120	4	50

Lab Sample ID: MB 480-593898/3

Matrix: Water

Analysis Batch: 593898

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Analyte Prepared Analyzed Dil Fac Ethane ND 7.5 1.5 ug/L 08/24/21 14:19 Ethene ND 7.0 1.5 ug/L 08/24/21 14:19 ND 1.0 ug/L 08/24/21 14:19 Methane 4.0

Lab Sample ID: LCS 480-593898/4

Matrix: Water

Analysis Batch: 593898

7 maryolo Batom cocco								
_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	36.8	36.3		ug/L		99	79 - 120	
Ethene	33.7	32.0		ug/L		95	85 - 120	
Methane	19.2	18.8		ug/L		98	85 - 120	

Analysis Batch: 593898

Methane -	19.2	18.8	ug/L	98	85 - 120	
Lab Sample ID: LCSD 480-593898/5			Client Sam	ple ID: Lab	Control Sample Dup	
Matrix: Water					Pren Type: Total/NA	

	8	spike	LCSD	LCSD				%Rec.		RPD	
Analyte	A	dded	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Ethane		36.8	37.8		ug/L		103	79 - 120	4	50	
Ethene		33.7	32.9		ug/L		98	85 - 120	3	50	
Methane		19.2	19.6		ug/L		102	85 - 120	4	50	

Lab Sample ID: MB 480-594069/3

Matrix: Water

Analysis Batch: 594069

Client Sam	ple ID: Method Blank
	Prep Type: Total/NA

	MB N	ИΒ							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND ND		7.5	1.5	ug/L			08/25/21 13:38	1
Ethene	ND		7.0	1.5	ug/L			08/25/21 13:38	1
Methane	ND		4.0	1.0	ug/L			08/25/21 13:38	1

Eurofins TestAmerica, Buffalo

Page 23 of 90

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCS 480-594069/4

Analysis Batch: 594069	Spike	LCS LCS	%Rec.
Matrix: Water			Prep Type: Total/NA
Lab Sample ID. LGS 460-534063/4			Cheffic Sample ID. Lab Control Sample

		_						
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	36.8	38.0		ug/L		103	79 - 120	
Ethene	33.7	33.6		ug/L		100	85 - 120	
Methane	19.2	20.0		ug/L		104	85 - 120	

Lab Sample ID: LCSD 480-594069/5

Matrix: Water

Analysis Batch: 594069

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	36.8	39.0		ug/L		106	79 - 120	3	50
Ethene	33.7	33.9		ug/L		100	85 - 120	1	50
Methane	19.2	20.7		ug/L		108	85 - 120	4	50

Lab Sample ID: MB 480-594286/3

Matrix: Water	Prep Type: Total/NA
Analysis Batch: 594286	
MD MD	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND	7.5	1.5 ug/L			08/26/21 14:49	1
Ethene	ND	7.0	1.5 ug/L			08/26/21 14:49	1
Methane	ND	4.0	1.0 ug/L			08/26/21 14:49	1

Lab Sample ID: LCS 480-594286/4

Matrix: Water

Analysis Batch: 594286

7 manyolo Zatom co 1200	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	36.8	38.2		ug/L		104	79 - 120	
Ethene	33.7	34.3		ug/L		102	85 - 120	
Methane	19.2	20.3		ug/L		106	85 - 120	

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-593321/1-A **Client Sample ID: Method Blank** N

Matrix: Water							Prep Type: 1	otal/NA
Analysis Batch: 593569							Prep Batch:	593321
	MB	MB						
Analyte	Result	Qualifier	RI	MDI Unit	D	Prepared	Analyzed	Dil Fac

Allalyte	Result	Qualifier	114	IVIDE	Oilit	 rrepared	Allalyzea	Diriac
Iron	ND		0.050	0.019	mg/L	08/19/21 06:03	08/19/21 19:01	1
Magnesium	ND		0.20	0.043	mg/L	08/19/21 06:03	08/19/21 19:01	1
Manganese	0.000410	J	0.0030	0.00040	mg/L	08/19/21 06:03	08/19/21 19:01	1
Sodium	0.349	J	1.0	0.32	mg/L	08/19/21 06:03	08/19/21 19:01	1

Lab Sample ID: MB 480-593321/1-A

Matrix: Water

Analysis Batch: 593740

	IVID	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Potassium	ND		0.50	0.10	mg/L		08/19/21 06:03	08/20/21 15:44	1	

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 593321

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-593321/2-A

Matrix: Water

Analysis Batch: 593569

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 593321

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	10.0	10.03		mg/L		100	80 - 120	
Magnesium	10.0	10.12		mg/L		101	80 - 120	
Manganese	0.200	0.208		mg/L		104	80 - 120	
Sodium	10.0	10.29		mg/L		103	80 - 120	

Lab Sample ID: LCS 480-593321/2-A

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 593740** Prep Batch: 593321 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits

Potassium 10.0 10.37 104 80 - 120 mg/L

Lab Sample ID: MB 480-593648/1-A

Matrix: Water

Analysis Batch: 593822

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 593648

MB MB Result Qualifier **MDL** Unit Prepared Dil Fac Analyte RL Analyzed ND 0.050 0.019 mg/L 08/21/21 11:58 08/23/21 17:35 Iron Magnesium ND 0.20 0.043 mg/L 08/21/21 11:58 08/23/21 17:35 Manganese ND 0.0030 0.00040 mg/L 08/21/21 11:58 08/23/21 17:35 Potassium ND 0.50 0.10 mg/L 08/21/21 11:58 08/23/21 17:35 Sodium ND 1.0 0.32 mg/L

Lab Sample ID: LCS 480-593648/2-A

Matrix: Water

Analysis Batch: 593822

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 593648

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Analyte 10.0 9.85 98 80 - 120 Iron mg/L 10.0 9.53 mg/L 95 80 - 120 Magnesium 0.200 0.198 99 Manganese mg/L 80 - 120 Potassium 10.0 10.19 mg/L 102 80 - 120 Sodium 10.0 10.32 103 80 - 120 mg/L

Lab Sample ID: MB 480-593650/1-A

Matrix: Water

Analysis Batch: 593823

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 593650**

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron	ND		0.050	0.019	mg/L		08/21/21 12:09	08/23/21 19:48	1	
Magnesium	ND		0.20	0.043	mg/L		08/21/21 12:09	08/23/21 19:48	1	
Manganese	ND		0.0030	0.00040	mg/L		08/21/21 12:09	08/23/21 19:48	1	
Potassium	ND		0.50	0.10	mg/L		08/21/21 12:09	08/23/21 19:48	1	
Sodium	ND		1.0	0.32	mg/L		08/21/21 12:09	08/23/21 19:48	1	

Eurofins TestAmerica, Buffalo

Sample Sample

10.8

58.8

6.8

5.1

Sample Sample

Sample Sample

1570

Result Qualifier

Result Qualifier

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-593650/2-A

Analysis Batch: 593823

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 593650**

7 mining 0.00 = miloini 0000=0							
_	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Iron	10.0	9.86		mg/L		99	80 - 120
Magnesium	10.0	9.36		mg/L		94	80 - 120
Manganese	0.200	0.196		mg/L		98	80 - 120
Potassium	10.0	10.34		mg/L		103	80 - 120
Sodium	10.0	10.48		mg/L		105	80 - 120
	Analyte Iron Magnesium Manganese Potassium	Analyte Added Iron 10.0 Magnesium 10.0 Manganese 0.200 Potassium 10.0	Analyte Added Result Iron 10.0 9.86 Magnesium 10.0 9.36 Manganese 0.200 0.196 Potassium 10.0 10.34	Analyte Added Iron Result Qualifier Iron 10.0 9.86 Magnesium 10.0 9.36 Manganese 0.200 0.196 Potassium 10.0 10.34	Analyte Added Iron Result Added Iron Qualifier Mg/L Unit Mg/L Magnesium 10.0 9.36 mg/L Manganese 0.200 0.196 mg/L Potassium 10.0 10.34 mg/L	Analyte Added Iron Result Qualifier Unit Unit D D Iron 10.0 9.86 mg/L Magnesium 10.0 9.36 mg/L Manganese 0.200 0.196 mg/L Potassium 10.0 10.34 mg/L	Analyte Added Result Result Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

MS MS

20.35

16.24

67.80 4

6.87 4

MSD MSD

Result Qualifier

Unit

mg/L

mg/L

mg/L

mg/L

Spike

Added

10.0

10.0

0.200

Spike

Added

Snike

10.0

10.0

Lab Sample ID: 480-188572-1 MS

Matrix: Water

Analyte

Magnesium

Manganese

Potassium

Analyte

Sodium

Iron

Analysis Batch: 593823

Client Sample ID: MW-12-082021

Prep Type: Total/NA **Prep Batch: 593650**

%Rec. D %Rec Limits 75 - 125 96 75 - 125 90 75 - 125 55

Lab Sample ID: 480-188572-1 MS

Matrix: Water

Analysis Batch: 594381

Client Sample ID: MW-12-082021

75 - 125

111

Prep Type: Total/NA

Prep Batch: 593650

MS MS %Rec. Result Qualifier Unit %Rec Limits 1525 4 -453 75 - 125 mg/L

Lab Sample ID: 480-188572-1 MSD

Matrix: Water

Analysis Batch: 593823

Client Sample ID: MW-12-082021

Prep Type: Total/NA

Prep Batch: 593650 %Rec RPD

	oup.o	oup.o	Opino						70.100.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	10.8		10.0	20.36		mg/L		96	75 - 125	0	20
Magnesium	58.8		10.0	69.60	4	mg/L		108	75 - 125	3	20
Manganese	6.8		0.200	7.04	4	mg/L		139	75 - 125	2	20
Potassium	5.1		10.0	16.02		mg/L		109	75 - 125	1	20
	Iron Magnesium Manganese	Analyte Result Iron 10.8 Magnesium 58.8 Manganese 6.8	Iron 10.8 Magnesium 58.8 Manganese 6.8	Analyte Result lron Qualifier loop Added loop Iron 10.8 10.0 Magnesium 58.8 10.0 Manganese 6.8 0.200	Analyte Result Iron Qualifier Added Added Added Added Added Added Iron Result Iron 10.8 10.0 20.36 Magnesium 58.8 10.0 69.60 Manganese 6.8 0.200 7.04	Analyte Result Iron Qualifier Added Added Result Qualifier Qualifier Magnesium 58.8 10.0 69.60 4 Manganese 6.8 0.200 7.04 4	Analyte Result Iron Qualifier Added Added Added Iron Result Qualifier Unit Unit Unit Iron 10.8 10.0 20.36 mg/L Magnesium 58.8 10.0 69.60 4 mg/L Manganese 6.8 0.200 7.04 4 mg/L	Analyte Result lron Qualifier Added Added Added Result Qualifier Unit Dust Plant D Iron 10.8 10.0 20.36 mg/L Magnesium 58.8 10.0 69.60 4 mg/L Manganese 6.8 0.200 7.04 4 mg/L	Analyte Result Iron Qualifier Added Added Added Iron Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Analyte Result Iron Qualifier Added Added Added Iron Result Qualifier Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Analyte Result Iron Qualifier Added Added Added Iron Qualifier Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

Lab Sample ID: 480-188572-1 MSD

Matrix: Water

Analysis Batch: 594381

Client Sample ID: MW-12-082021

Prep Type: Total/NA **Prep Batch: 593650**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sodium	1570		10.0	1594	4	mg/L		237	75 - 125	4	20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-593248/4

Matrix: Water

Analysis Batch: 593248

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			08/18/21 14:08	1
Sulfate	ND		2.0	0.35	mg/L			08/18/21 14:08	1

Eurofins TestAmerica, Buffalo

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-593248/3

Matrix: Water

Analysis Batch: 593248

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 50.0 50.71 mg/L 101 90 - 110 Sulfate 50.0 51.46 mg/L 103 90 - 110

Matrix: Water

Analysis Batch: 593248

Lab Sample ID: 480-188404-1 MS Client Sample ID: MW-4-081721 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 5801 F1 Chloride 4030 F1 2500 mg/L 71 81 - 120 2500 Sulfate 777 3193 97 80 - 120 mg/L

Lab Sample ID: 480-188404-1 MSD Client Sample ID: MW-4-081721 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593248

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	4030	F1	2500	5335	F1	mg/L		52	81 - 120	8	15
Sulfate	777		2500	2997		mg/L		89	80 - 120	6	15

Lab Sample ID: 480-188404-2 MS Client Sample ID: MW-10-081721 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 593248

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	1810		1000	2809		mg/L		100	81 - 120	
Sulfate	316		1000	1356		ma/l		104	80 - 120	

Lab Sample ID: MB 480-593728/28 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 593728

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			08/23/21 20:55	1
Sulfate	ND		2.0	0.35	mg/L			08/23/21 20:55	1

Lab Sample ID: MB 480-593728/4 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593728

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			08/23/21 13:46	1
Sulfate	ND		2.0	0.35	mg/L			08/23/21 13:46	1

Lab Sample ID: LCS 480-593728/27 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 593728

,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 50.0	49.76		mg/L		100	90 - 110	
Sulfate	50.0	50.06		mg/L		100	90 - 110	

Eurofins TestAmerica, Buffalo

Page 27 of 90

Job ID: 480-188404-1

Client: GHD Services Inc. Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCS 480-593728/3

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 593728

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 50.0 49.65 mg/L 99 90 - 110 Sulfate 50.0 49.88 mg/L 100 90 - 110

Client Sample ID: MW-12-082021

Lab Sample ID: 480-188572-1 MS **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 593728

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	2910		2500	5173		mg/L		90	81 - 120	
Sulfate	131		2500	2546		mg/L		97	80 - 120	

Lab Sample ID: 480-188572-1 MSD Client Sample ID: MW-12-082021 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593728

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2910		2500	5191		mg/L		91	81 - 120	0	15
Sulfate	131		2500	2552		mg/L		97	80 - 120	0	15

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-593286/27 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 593286

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Ammonia ND 0.020 0.0090 mg/L 08/18/21 13:40

Lab Sample ID: MB 480-593286/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593286

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	ND	0.020	0.0090 mg/L			08/18/21 13:19	1

Lab Sample ID: LCS 480-593286/28 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593286

_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia	1.00	0.994		mg/L		99	90 - 110	

Lab Sample ID: LCS 480-593286/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593286								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia	1.00	0.984		ma/L		98	90 - 110	

Eurofins TestAmerica, Buffalo

9/12/2021

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: MW-13-081921

Client Sample ID: MW-13-081921

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: MB 480-593692/3

Matrix: Water

Analysis Batch: 593692

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 0.020 08/23/21 07:50 Ammonia ND 0.0090 mg/L

Lab Sample ID: MB 480-593692/51

Matrix: Water

Analysis Batch: 593692

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 0.020 08/23/21 08:31 Ammonia ND 0.0090 mg/L

Lab Sample ID: LCS 480-593692/4

Matrix: Water

Analysis Batch: 593692

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec Ammonia 1.00 0.985 99 90 - 110 mg/L

Lab Sample ID: LCS 480-593692/52

Matrix: Water

Analysis Batch: 593692

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits 1.00 0.978 90 - 110 Ammonia mg/L

Lab Sample ID: 480-188531-2 MS

Matrix: Water

Analysis Batch: 593692

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec 0.061 F1 0.200 0.218 F1 79 90 - 110 Ammonia mg/L

Lab Sample ID: 480-188531-2 DU

Matrix: Water

Analysis Batch: 593692

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier **RPD** Limit Analyte Unit 0.061 F1 0.0651 Ammonia mg/L

Lab Sample ID: MB 480-593811/27

Matrix: Water

Analysis Batch: 593811

MB MB

RL Result Qualifier **MDL** Unit Prepared Dil Fac Analyte Analyzed 0.020 0.0090 mg/L Ammonia ND 08/24/21 08:41

Lab Sample ID: LCS 480-593811/28

Matrix: Water

Analysis Batch: 593811

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Ammonia 1.00 90 - 110 0.973 mg/L 97

Eurofins TestAmerica, Buffalo

Page 29 of 90

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: 480-188572-3 MS Client Sample ID: MW-7-082021 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 593811

Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier Added Unit %Rec Limits Analyte 0.200 Ammonia 0.51 F1 0.687 F1 mg/L 87 90 - 110

Client Sample ID: MW-7-082021 Lab Sample ID: 480-188572-3 DU Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593811

RPD Sample Sample DU DU Analyte Result Qualifier Result Qualifier Unit D RPD Limit 0.51 F1 Ammonia 0.500 mg/L 3 20

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-593342/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593342

MB MB Result Qualifier RL **MDL** Unit Dil Fac **Analyte** Prepared Analyzed 0.050 Nitrite ND 0.020 mg/L 08/18/21 19:03

Lab Sample ID: LCS 480-593342/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593342

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Nitrite 1.50 1.52 101 90 - 110 mg/L

Lab Sample ID: 480-188404-2 MS Client Sample ID: MW-10-081721 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 593342

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Nitrite ND 1.00 1.00 mg/L 100 90 - 110

Lab Sample ID: MB 480-593634/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593634

мв мв **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 0.050 0.020 mg/L Nitrite ND 08/20/21 19:21

Lab Sample ID: LCS 480-593634/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593634

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Nitrite 1.50 1.54 mg/L 103 90 - 110

9/12/2021

Job ID: 480-188404-1

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 353.2 - Nitrogen, Nitrite (Continued)

Lab Sample ID: 480-188531-2 MS Client Sample ID: MW-13-081921

Matrix: Water

Analysis Batch: 593634

Prep Type: Total/NA Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec Nitrite ND 1.00 0.975 mg/L 98 90 - 110

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-593873/52 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593873

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 Total Organic Carbon $\overline{\mathsf{ND}}$ 0.43 mg/L 08/20/21 21:39

Lab Sample ID: LCS 480-593873/53 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 593873

LCS LCS %Rec. Spike Added Result Qualifier Limits Analyte Unit %Rec Total Organic Carbon 60.0 61.64 mg/L 103 90 - 110

Lab Sample ID: 480-188404-1 MS Client Sample ID: MW-4-081721

Matrix: Water

Analysis Batch: 593873

Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits

Total Organic Carbon 2.3 23.3 26.13 102 54 - 131 mg/L

Lab Sample ID: 480-188404-2 DU

Matrix: Water

Analysis Batch: 593873

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Total Organic Carbon 3.6 3.58 mg/L

Lab Sample ID: MB 480-594391/4

Matrix: Water

Analysis Batch: 594391

MB MB

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 1.0 0.43 mg/L **Total Organic Carbon** ND 08/25/21 22:29

Lab Sample ID: LCS 480-594391/5 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 594391

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits 60.0 59.69 **Total Organic Carbon** mg/L 99 90 - 110

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-10-081721

Client Sample ID: Method Blank

Job ID: 480-188404-1

Client: GHD Services Inc. Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: 9060A - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: MB 480-594403/27 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 594403

MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 1.0 08/26/21 16:19 **Total Organic Carbon** ND 0.43 mg/L

Lab Sample ID: LCS 480-594403/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 594403

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Total Organic Carbon** 60.0 60.82 mg/L 101 90 - 110

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-593535/4 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 593535

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 5.0 **Total Alkalinity** ND 0.79 mg/L 08/19/21 12:33

Lab Sample ID: LCS 480-593535/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 593535

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Total Alkalinity 100 104.1 104 90 - 110 mg/L

Lab Sample ID: 480-188404-2 MS Client Sample ID: MW-10-081721 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 593535

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Total Alkalinity 356 F1 100 414.0 F1 mg/L 58 60 - 140

Lab Sample ID: 480-188404-1 DU Client Sample ID: MW-4-081721 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 593535

DU DU RPD Sample Sample Result Qualifier RPD Limit Analyte Result Qualifier Unit Total Alkalinity 309 304.7 mg/L

Lab Sample ID: MB 480-594005/28 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 594005

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Total Alkalinity 5.0 ND 0.79 mg/L 08/24/21 18:44

Eurofins TestAmerica, Buffalo

9/12/2021

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Prep Type: Total/NA

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: MB 480-594005/4

Matrix: Water

Analysis Batch: 594005

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Total Alkalinity 5.0 08/24/21 15:50 ND 0.79 mg/L

Lab Sample ID: LCS 480-594005/29

Matrix: Water

Analysis Batch: 594005

Spike LCS LCS %Rec. Added Result Qualifier D %Rec Limits Analyte Unit 100 90 - 110 **Total Alkalinity** 95.68 mg/L 96

Lab Sample ID: LCS 480-594005/5

Matrix: Water

Analysis Batch: 594005

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec Total Alkalinity 100 96.64 mg/L

Lab Sample ID: 480-188531-2 MS

Matrix: Water

Analysis Batch: 594005

Spike MS MS %Rec. Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Total Alkalinity 100 503.5 4 60 - 140 460 mg/L

Lab Sample ID: 480-188572-3 MS

Matrix: Water

Analysis Batch: 594005

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec Total Alkalinity 253 F1 100 281.4 F1 28 60 - 140 mg/L

Lab Sample ID: 480-188531-1 DU

Matrix: Water

Analysis Batch: 594005

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier **RPD** Analyte Unit Limit **Total Alkalinity** 260 258.7 mg/L 0.5

Lab Sample ID: 480-188572-2 DU

Matrix: Water

Analysis Batch: 594005

Sample Sample DU DU **RPD** Result Qualifier Analyte Result Qualifier RPD Unit Total Alkalinity 355 360.5 mg/L

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

97 90 - 110

Client Sample ID: MW-13-081921

Prep Type: Total/NA

Client Sample ID: MW-7-082021

Prep Type: Total/NA

Client Sample ID: MW-11-081921

Prep Type: Total/NA

Client Sample ID: MW-14-082021

Prep Type: Total/NA

Limit

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: MW-4-081721

Client Sample ID: MW-10-081721

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: SM 4500 S2 F - Sulfide, Total

Lab Sample ID: MB 480-594012/27

Matrix: Water

Analysis Batch: 594012

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1.0 08/24/21 16:45 Sulfide ND 0.67 mg/L

Lab Sample ID: MB 480-594012/3

Matrix: Water

Analysis Batch: 594012

MB MB

MDL Unit Result Qualifier RL Prepared Dil Fac Analyte Analyzed Sulfide 1.0 0.67 mg/L 08/24/21 16:45 ND

Lab Sample ID: LCS 480-594012/28

Matrix: Water

Analysis Batch: 594012

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec Sulfide 8.80 9.20 105 90 - 110 mg/L

Lab Sample ID: LCS 480-594012/4

Matrix: Water

Analysis Batch: 594012

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Sulfide 8.80 8.80 90 - 110 mg/L 100

Lab Sample ID: 480-188404-1 MS

Matrix: Water

Analysis Batch: 594012

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Limits Result Qualifier Unit %Rec Sulfide ND 2.00 2.00 100 40 - 150 mg/L

Lab Sample ID: 480-188404-2 DU

Matrix: Water

Analysis Batch: 594012

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier **RPD** Limit Analyte Unit D Sulfide ND ND mg/L NC

Lab Sample ID: MB 480-594298/3

Matrix: Water

Analysis Batch: 594298

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Sulfide 1.0 08/26/21 13:09 ND 0.67 mg/L

Lab Sample ID: LCS 480-594298/4

Matrix: Water

Analysis Batch: 594298

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Sulfide 90 - 110 8.80 8.80 mg/L 100

Eurofins TestAmerica, Buffalo

Page 34 of 90

QC Sample Results

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method: SM 4500 S2 F - Sulfide, Total

Lab Sample ID: 480-188572-2 MS Client Sample ID: MW-14-082021

Matrix: Water

Analysis Batch: 594298

Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added Result Qualifier %Rec Limits Unit 2.00 Sulfide ND 2.00 mg/L 100 40 - 150

Lab Sample ID: 480-188572-3 DU Client Sample ID: MW-7-082021

Matrix: Water

Analysis Batch: 594298

RPD Sample Sample DU DU Analyte **Result Qualifier** Result Qualifier Unit D RPD Limit Sulfide ND ND mg/L NC 20

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography

Lab Sample ID: MB 480-593255/6 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593255

MB MB Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Acetic acid ND 1.0 0.29 mg/L 08/18/21 17:42 Formic-acid ND 1.0 0.26 mg/L 08/18/21 17:42 ND 0.31 mg/L Lactic acid 1.0 08/18/21 17:42 n-Butyric Acid ND 1.0 0.26 mg/L 08/18/21 17:42 0.35 mg/L Propionic acid ND 1.0 08/18/21 17:42 ND 0.37 mg/L 08/18/21 17:42 Pyruvic Acid 1.5

Lab Sample ID: LCS 480-593255/5 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 593255

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	10.0	9.33		mg/L		93	80 - 120	
Formic-acid	10.0	9.36		mg/L		94	80 - 120	
Lactic acid	10.0	9.42		mg/L		94	80 - 120	
n-Butyric Acid	10.0	9.71		mg/L		97	80 - 120	
Propionic acid	10.0	9.39		mg/L		94	80 - 120	
Pyruvic Acid	10.0	9.83		mg/L		98	80 - 120	

Lab Sample ID: MB 480-593769/6 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 593769

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND		1.0	0.29	mg/L			08/23/21 17:32	1
Formic-acid	ND		1.0	0.26	mg/L			08/23/21 17:32	1
Lactic acid	ND		1.0	0.31	mg/L			08/23/21 17:32	1
n-Butyric Acid	ND		1.0	0.26	mg/L			08/23/21 17:32	1
Propionic acid	ND		1.0	0.35	mg/L			08/23/21 17:32	1
Pvruvic Acid	ND		1.5	0.37	mg/L			08/23/21 17:32	1

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1

SDG: Delphi Harrison

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-593769/5

Matrix: Water

Analysis Batch: 593769

Client Sample	ID: Lab Control Sample
	Pren Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	10.0	9.93		mg/L		99	80 - 120	
Formic-acid	10.0	9.79		mg/L		98	80 - 120	
Lactic acid	10.0	9.23		mg/L		92	80 - 120	
n-Butyric Acid	10.0	9.90		mg/L		99	80 - 120	
Propionic acid	10.0	9.27		mg/L		93	80 - 120	
Pyruvic Acid	10.0	9.80		mg/L		98	80 - 120	

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

GC/MS VOA

Analysis Batch: 593228

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	8260C	
480-188404-3	TRIP BLANK-081721	Total/NA	Water	8260C	
MB 480-593228/7	Method Blank	Total/NA	Water	8260C	
LCS 480-593228/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 593413

Lab Sa	ample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-18	88404-2	MW-10-081721	Total/NA	Water	8260C	
MB 480	0-593413/8	Method Blank	Total/NA	Water	8260C	
LCS 48	80-593413/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 4	480-593413/6	Lab Control Sample Dup	Total/NA	Water	8260C	

Analysis Batch: 593861

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	8260C	
480-188531-2	MW-13-081921	Total/NA	Water	8260C	
480-188531-3	MW-15-081921	Total/NA	Water	8260C	
480-188531-4	TRIP BLANK-081921	Total/NA	Water	8260C	
MB 480-593861/8	Method Blank	Total/NA	Water	8260C	
LCS 480-593861/6	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 594050

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188572-1	MW-12-082021	Total/NA	Water	8260C	<u> </u>
480-188572-2	MW-14-082021	Total/NA	Water	8260C	
480-188572-3	MW-7-082021	Total/NA	Water	8260C	
480-188572-4	TRIP BLANK-082021	Total/NA	Water	8260C	
MB 480-594050/8	Method Blank	Total/NA	Water	8260C	
LCS 480-594050/6	Lab Control Sample	Total/NA	Water	8260C	

GC VOA

Analysis Batch: 170560

Lab Sample ID 480-188404-1	Client Sample ID MW-4-081721	Prep Type Total/NA	Matrix Water	Method Prep	Batch
480-188404-2	MW-10-081721	Total/NA	Water	RSK-175	
MB 200-170560/26	Method Blank	Total/NA	Water	RSK-175	
LCS 200-170560/24	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 200-170560/25	Lab Control Sample Dup	Total/NA	Water	RSK-175	

Analysis Batch: 170716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	RSK-175	_
480-188531-2	MW-13-081921	Total/NA	Water	RSK-175	
480-188531-3	MW-15-081921	Total/NA	Water	RSK-175	
480-188572-1	MW-12-082021	Total/NA	Water	RSK-175	
480-188572-2	MW-14-082021	Total/NA	Water	RSK-175	
480-188572-3	MW-7-082021	Total/NA	Water	RSK-175	
MB 200-170716/4	Method Blank	Total/NA	Water	RSK-175	
LCS 200-170716/2	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 200-170716/3	Lab Control Sample Dup	Total/NA	Water	RSK-175	

Eurofins TestAmerica, Buffalo

9/12/2021

Page 37 of 90

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

GC VOA

Analysis Batch: 593289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	RSK-175	
480-188404-2	MW-10-081721	Total/NA	Water	RSK-175	
MB 480-593289/3	Method Blank	Total/NA	Water	RSK-175	
LCS 480-593289/4	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-593289/5	Lab Control Sample Dup	Total/NA	Water	RSK-175	

Analysis Batch: 593898

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	RSK-175	
480-188531-3	MW-15-081921	Total/NA	Water	RSK-175	
MB 480-593898/3	Method Blank	Total/NA	Water	RSK-175	
LCS 480-593898/4	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-593898/5	Lab Control Sample Dup	Total/NA	Water	RSK-175	

Analysis Batch: 594069

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-2	MW-13-081921	Total/NA	Water	RSK-175	
480-188572-1	MW-12-082021	Total/NA	Water	RSK-175	
480-188572-3	MW-7-082021	Total/NA	Water	RSK-175	
MB 480-594069/3	Method Blank	Total/NA	Water	RSK-175	
LCS 480-594069/4	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-594069/5	Lab Control Sample Dup	Total/NA	Water	RSK-175	

Analysis Batch: 594286

Lab Sample ID 480-188572-2	Client Sample ID MW-14-082021	Prep Type Total/NA	Matrix Water	Method RSK-175	Prep Batch
MB 480-594286/3	Method Blank	Total/NA	Water	RSK-175	
LCS 480-594286/4	Lab Control Sample	Total/NA	Water	RSK-175	

Metals

Prep Batch: 593321

Lab Sample ID 480-188404-1	Client Sample ID MW-4-081721	Prep Type Total/NA	Matrix Water	Method 3005A	Prep Batch
480-188404-2	MW-10-081721	Total/NA	Water	3005A	
MB 480-593321/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-593321/2-A	Lab Control Sample	Total/NA	Water	3005A	

Analysis Batch: 593569

Lab Sample ID 480-188404-1	Client Sample ID MW-4-081721	Prep Type Total/NA	Matrix Water	Method 6010C	Prep Batch 593321
480-188404-2	MW-10-081721	Total/NA	Water	6010C	593321
MB 480-593321/1-A	Method Blank	Total/NA	Water	6010C	593321
LCS 480-593321/2-A	Lab Control Sample	Total/NA	Water	6010C	593321

Prep Batch: 593648

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	3005A	
480-188531-2	MW-13-081921	Total/NA	Water	3005A	
480-188531-3	MW-15-081921	Total/NA	Water	3005A	
MB 480-593648/1-A	Method Blank	Total/NA	Water	3005A	

Eurofins TestAmerica, Buffalo

9/12/2021

Page 38 of 90

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Metals (Continued)

Prep	Batch:	593648	(Continued)	١

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-593648/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 593650

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188572-1	MW-12-082021	Total/NA	Water	3005A	
480-188572-2	MW-14-082021	Total/NA	Water	3005A	
480-188572-3	MW-7-082021	Total/NA	Water	3005A	
MB 480-593650/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-593650/2-A	Lab Control Sample	Total/NA	Water	3005A	
480-188572-1 MS	MW-12-082021	Total/NA	Water	3005A	
480-188572-1 MSD	MW-12-082021	Total/NA	Water	3005A	

Analysis Batch: 593740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	6010C	593321
480-188404-1	MW-4-081721	Total/NA	Water	6010C	593321
480-188404-2	MW-10-081721	Total/NA	Water	6010C	593321
480-188404-2	MW-10-081721	Total/NA	Water	6010C	593321
MB 480-593321/1-A	Method Blank	Total/NA	Water	6010C	593321
LCS 480-593321/2-A	Lab Control Sample	Total/NA	Water	6010C	593321

Analysis Batch: 593822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	6010C	593648
480-188531-2	MW-13-081921	Total/NA	Water	6010C	593648
480-188531-3	MW-15-081921	Total/NA	Water	6010C	593648
MB 480-593648/1-A	Method Blank	Total/NA	Water	6010C	593648
LCS 480-593648/2-A	Lab Control Sample	Total/NA	Water	6010C	593648

Analysis Batch: 593823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188572-1	MW-12-082021	Total/NA	Water	6010C	593650
480-188572-2	MW-14-082021	Total/NA	Water	6010C	593650
480-188572-3	MW-7-082021	Total/NA	Water	6010C	593650
MB 480-593650/1-A	Method Blank	Total/NA	Water	6010C	593650
LCS 480-593650/2-A	Lab Control Sample	Total/NA	Water	6010C	593650
480-188572-1 MS	MW-12-082021	Total/NA	Water	6010C	593650
480-188572-1 MSD	MW-12-082021	Total/NA	Water	6010C	593650

Analysis Batch: 594227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-2	MW-13-081921	Total/NA	Water	6010C	593648

Analysis Batch: 594381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188572-1	MW-12-082021	Total/NA	Water	6010C	593650
480-188572-1 MS	MW-12-082021	Total/NA	Water	6010C	593650
480-188572-1 MSD	MW-12-082021	Total/NA	Water	6010C	593650

Page 39 of 90

Job ID: 480-188404-1

SDG: Delphi Harrison

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Metals

Analy	eie.	Batch:	594749
Allai	yolo	Datell.	334143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188572-2	MW-14-082021	Total/NA	Water	6010C	593650

General Chemistry

Analysis Batch: 593248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	300.0	
480-188404-2	MW-10-081721	Total/NA	Water	300.0	
MB 480-593248/4	Method Blank	Total/NA	Water	300.0	
LCS 480-593248/3	Lab Control Sample	Total/NA	Water	300.0	
480-188404-1 MS	MW-4-081721	Total/NA	Water	300.0	
480-188404-1 MSD	MW-4-081721	Total/NA	Water	300.0	
480-188404-2 MS	MW-10-081721	Total/NA	Water	300.0	

Analysis Batch: 593255

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	VFA-IC	
480-188404-2	MW-10-081721	Total/NA	Water	VFA-IC	
MB 480-593255/6	Method Blank	Total/NA	Water	VFA-IC	
LCS 480-593255/5	Lab Control Sample	Total/NA	Water	VFA-IC	

Analysis Batch: 593286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	350.1	
480-188404-2	MW-10-081721	Total/NA	Water	350.1	
MB 480-593286/27	Method Blank	Total/NA	Water	350.1	
MB 480-593286/3	Method Blank	Total/NA	Water	350.1	
LCS 480-593286/28	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-593286/4	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 593342

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-2	MW-10-081721	Total/NA	Water	353.2	
MB 480-593342/3	Method Blank	Total/NA	Water	353.2	
LCS 480-593342/4	Lab Control Sample	Total/NA	Water	353.2	
480-188404-2 MS	MW-10-081721	Total/NA	Water	353.2	

Analysis Batch: 593351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	353.2	
480-188404-2	MW-10-081721	Total/NA	Water	353.2	

Analysis Batch: 593352

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	353.2	

Analysis Batch: 593535

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	SM 2320B	
480-188404-2	MW-10-081721	Total/NA	Water	SM 2320B	
MB 480-593535/4	Method Blank	Total/NA	Water	SM 2320B	

Eurofins TestAmerica, Buffalo

Page 40 of 90

Job ID: 480-188404-1

SDG: Delphi Harrison

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

General Chemistry (Continued)

Analysis Batch: 593535 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-593535/5	Lab Control Sample	Total/NA	Water	SM 2320B	
480-188404-2 MS	MW-10-081721	Total/NA	Water	SM 2320B	
480-188404-1 DU	MW-4-081721	Total/NA	Water	SM 2320B	

Analysis Batch: 593634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-2	MW-13-081921	Total/NA	Water	353.2	
480-188531-3	MW-15-081921	Total/NA	Water	353.2	
MB 480-593634/3	Method Blank	Total/NA	Water	353.2	
LCS 480-593634/4	Lab Control Sample	Total/NA	Water	353.2	
480-188531-2 MS	MW-13-081921	Total/NA	Water	353.2	

Analysis Batch: 593639

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	353.2	
480-188531-2	MW-13-081921	Total/NA	Water	353.2	
480-188531-3	MW-15-081921	Total/NA	Water	353.2	
480-188572-1	MW-12-082021	Total/NA	Water	353.2	
480-188572-2	MW-14-082021	Total/NA	Water	353.2	
480-188572-3	MW-7-082021	Total/NA	Water	353.2	

Analysis Batch: 593640

Lab Sample ID 480-188531-1	Client Sample ID MW-11-081921	Prep Type Total/NA	Matrix Water	Method 353.2	Prep Batch
480-188572-1	MW-12-082021	Total/NA	Water	353.2	
480-188572-2	MW-14-082021	Total/NA	Water	353.2	
480-188572-3	MW-7-082021	Total/NA	Water	353.2	

Analysis Batch: 593692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	350.1	
480-188531-2	MW-13-081921	Total/NA	Water	350.1	
480-188531-3	MW-15-081921	Total/NA	Water	350.1	
MB 480-593692/3	Method Blank	Total/NA	Water	350.1	
MB 480-593692/51	Method Blank	Total/NA	Water	350.1	
LCS 480-593692/4	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-593692/52	Lab Control Sample	Total/NA	Water	350.1	
480-188531-2 MS	MW-13-081921	Total/NA	Water	350.1	
480-188531-2 DU	MW-13-081921	Total/NA	Water	350.1	

Analysis Batch: 593728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	300.0	
480-188531-2	MW-13-081921	Total/NA	Water	300.0	
480-188531-3	MW-15-081921	Total/NA	Water	300.0	
480-188572-1	MW-12-082021	Total/NA	Water	300.0	
480-188572-2	MW-14-082021	Total/NA	Water	300.0	
480-188572-3	MW-7-082021	Total/NA	Water	300.0	
MB 480-593728/28	Method Blank	Total/NA	Water	300.0	
MB 480-593728/4	Method Blank	Total/NA	Water	300.0	
LCS 480-593728/27	Lab Control Sample	Total/NA	Water	300.0	

Eurofins TestAmerica, Buffalo

9/12/2021

Page 41 of 90

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

General Chemistry (Continued)

Analysis Batch: 593728 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-593728/3	Lab Control Sample	Total/NA	Water	300.0	
480-188572-1 MS	MW-12-082021	Total/NA	Water	300.0	
480-188572-1 MSD	MW-12-082021	Total/NA	Water	300.0	

Analysis Batch: 593769

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	VFA-IC	
480-188531-2	MW-13-081921	Total/NA	Water	VFA-IC	
480-188531-3	MW-15-081921	Total/NA	Water	VFA-IC	
480-188572-1	MW-12-082021	Total/NA	Water	VFA-IC	
480-188572-2	MW-14-082021	Total/NA	Water	VFA-IC	
480-188572-3	MW-7-082021	Total/NA	Water	VFA-IC	
MB 480-593769/6	Method Blank	Total/NA	Water	VFA-IC	
LCS 480-593769/5	Lab Control Sample	Total/NA	Water	VFA-IC	

Analysis Batch: 593811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188572-1	MW-12-082021	Total/NA	Water	350.1	
480-188572-2	MW-14-082021	Total/NA	Water	350.1	
480-188572-3	MW-7-082021	Total/NA	Water	350.1	
MB 480-593811/27	Method Blank	Total/NA	Water	350.1	
LCS 480-593811/28	Lab Control Sample	Total/NA	Water	350.1	
480-188572-3 MS	MW-7-082021	Total/NA	Water	350.1	
480-188572-3 DU	MW-7-082021	Total/NA	Water	350.1	

Analysis Batch: 593873

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	9060A	
480-188404-2	MW-10-081721	Total/NA	Water	9060A	
MB 480-593873/52	Method Blank	Total/NA	Water	9060A	
LCS 480-593873/53	Lab Control Sample	Total/NA	Water	9060A	
480-188404-1 MS	MW-4-081721	Total/NA	Water	9060A	
480-188404-2 DU	MW-10-081721	Total/NA	Water	9060A	

Analysis Batch: 594005

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188531-1	MW-11-081921	Total/NA	Water	SM 2320B	_
480-188531-2	MW-13-081921	Total/NA	Water	SM 2320B	
480-188531-3	MW-15-081921	Total/NA	Water	SM 2320B	
480-188572-1	MW-12-082021	Total/NA	Water	SM 2320B	
480-188572-2	MW-14-082021	Total/NA	Water	SM 2320B	
480-188572-3	MW-7-082021	Total/NA	Water	SM 2320B	
MB 480-594005/28	Method Blank	Total/NA	Water	SM 2320B	
MB 480-594005/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-594005/29	Lab Control Sample	Total/NA	Water	SM 2320B	
LCS 480-594005/5	Lab Control Sample	Total/NA	Water	SM 2320B	
480-188531-2 MS	MW-13-081921	Total/NA	Water	SM 2320B	
480-188572-3 MS	MW-7-082021	Total/NA	Water	SM 2320B	
480-188531-1 DU	MW-11-081921	Total/NA	Water	SM 2320B	
480-188572-2 DU	MW-14-082021	Total/NA	Water	SM 2320B	

Page 42 of 90

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

General Chemistry

Analysis Batch: 594012

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188404-1	MW-4-081721	Total/NA	Water	SM 4500 S2 F	
480-188404-2	MW-10-081721	Total/NA	Water	SM 4500 S2 F	
480-188531-1	MW-11-081921	Total/NA	Water	SM 4500 S2 F	
480-188531-2	MW-13-081921	Total/NA	Water	SM 4500 S2 F	
480-188531-3	MW-15-081921	Total/NA	Water	SM 4500 S2 F	
480-188572-1	MW-12-082021	Total/NA	Water	SM 4500 S2 F	
MB 480-594012/27	Method Blank	Total/NA	Water	SM 4500 S2 F	
MB 480-594012/3	Method Blank	Total/NA	Water	SM 4500 S2 F	
LCS 480-594012/28	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	
LCS 480-594012/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	
480-188404-1 MS	MW-4-081721	Total/NA	Water	SM 4500 S2 F	
480-188404-2 DU	MW-10-081721	Total/NA	Water	SM 4500 S2 F	

Analysis Batch: 594298

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188572-2	MW-14-082021	Total/NA	Water	SM 4500 S2 F	
480-188572-3	MW-7-082021	Total/NA	Water	SM 4500 S2 F	
MB 480-594298/3	Method Blank	Total/NA	Water	SM 4500 S2 F	
LCS 480-594298/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	
480-188572-2 MS	MW-14-082021	Total/NA	Water	SM 4500 S2 F	
480-188572-3 DU	MW-7-082021	Total/NA	Water	SM 4500 S2 F	

Analysis Batch: 594391

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-188572-1	MW-12-082021	Total/NA	Water	9060A	
480-188572-2	MW-14-082021	Total/NA	Water	9060A	
480-188572-3	MW-7-082021	Total/NA	Water	9060A	
MB 480-594391/4	Method Blank	Total/NA	Water	9060A	
LCS 480-594391/5	Lab Control Sample	Total/NA	Water	9060A	

Analysis Batch: 594403

Lab Sample	e ID Client San	nple ID	Prep Type	e Matrix	Method	Prep Batch
480-188531	-1 MW-11-08°	1921	Total/NA	Water	9060A	
480-188531	-2 MW-13-08	1921	Total/NA	Water	9060A	
480-188531	-3 MW-15-08	1921	Total/NA	Water	9060A	
MB 480-594	403/27 Method Bla	ank	Total/NA	Water	9060A	
LCS 480-59	4403/28 Lab Contro	ol Sample	Total/NA	Water	9060A	

Eurofins TestAmerica, Buffalo

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Client Sample ID: MW-4-081721

Lab Sample ID: 480-188404-1 Date Collected: 08/17/21 12:00 **Matrix: Water** Date Received: 08/17/21 17:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		800	593228	08/18/21 18:46	CRL	TAL BUF
Total/NA	Analysis	RSK-175		1	170560	08/24/21 10:11	MJZ	TAL BUR
Total/NA	Analysis	RSK-175		11	593289	08/18/21 15:05	DSC	TAL BUF
Total/NA	Prep	3005A			593321	08/19/21 06:03	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593740	08/20/21 15:52	LMH	TAL BUF
Total/NA	Prep	3005A			593321	08/19/21 06:03	DMN	TAL BUF
Total/NA	Analysis	6010C		5	593740	08/20/21 15:56	LMH	TAL BUF
Total/NA	Prep	3005A			593321	08/19/21 06:03	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593569	08/19/21 19:48	AMH	TAL BUF
Total/NA	Analysis	300.0		50	593248	08/18/21 15:55	IMZ	TAL BUF
Total/NA	Analysis	350.1		1	593286	08/18/21 13:35	CLT	TAL BUF
Total/NA	Analysis	353.2		1	593351	08/18/21 16:54	ALT	TAL BUF
Total/NA	Analysis	353.2		1	593352	08/18/21 16:54	ALT	TAL BUF
Total/NA	Analysis	9060A		1	593873	08/20/21 22:41	CLA	TAL BUF
Total/NA	Analysis	SM 2320B		1	593535	08/19/21 12:46	JPS	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	594012	08/24/21 16:45	SRA	TAL BUF
Total/NA	Analysis	VFA-IC		50	593255	08/19/21 00:01	IMZ	TAL BUF

Client Sample ID: MW-10-081721

Lab Sample ID: 480-188404-2 Date Collected: 08/17/21 15:30

Matrix: Water Date Received: 08/17/21 17:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		4	593413	08/19/21 14:23	CRL	TAL BUF
Total/NA	Analysis	RSK-175		1	170560	08/24/21 10:26	MJZ	TAL BUR
Total/NA	Analysis	RSK-175		1	593289	08/18/21 17:54	DSC	TAL BUF
Total/NA	Prep	3005A			593321	08/19/21 06:03	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593740	08/20/21 16:00	LMH	TAL BUF
Total/NA	Prep	3005A			593321	08/19/21 06:03	DMN	TAL BUF
Total/NA	Analysis	6010C		5	593740	08/20/21 16:03	LMH	TAL BUF
Total/NA	Prep	3005A			593321	08/19/21 06:03	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593569	08/19/21 19:52	AMH	TAL BUF
Total/NA	Analysis	300.0		20	593248	08/18/21 17:42	IMZ	TAL BUF
Total/NA	Analysis	350.1		1	593286	08/18/21 13:36	CLT	TAL BUF
Total/NA	Analysis	353.2		1	593342	08/18/21 19:05	ALT	TAL BUF
Total/NA	Analysis	353.2		1	593351	08/18/21 19:05	ALT	TAL BUF
Total/NA	Analysis	9060A		1	593873	08/20/21 23:44	CLA	TAL BUF
Total/NA	Analysis	SM 2320B		1	593535	08/19/21 13:00	JPS	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	594012	08/24/21 16:45	SRA	TAL BUF
Total/NA	Analysis	VFA-IC		20	593255	08/19/21 00:30	IMZ	TAL BUF

Client: GHD Services Inc.

Client Sample ID: TRIP BLANK-081721

Job ID: 480-188404-1 SDG: Delphi Harrison Project/Site: 058507, GM Lockport SSOW 256043

Lab Sample ID: 480-188404-3

Date Collected: 08/17/21 00:00 Date Received: 08/17/21 17:00 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			593228	08/18/21 19:31	CRL	TAL BUF

Client Sample ID: MW-11-081921

Lab Sample ID: 480-188531-1

Date Collected: 08/19/21 12:30 **Matrix: Water** Date Received: 08/19/21 17:37

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			593861	08/25/21 02:09	AXK	TAL BUF
Total/NA	Analysis	RSK-175		1	170716	08/26/21 19:44	MJZ	TAL BUR
Total/NA	Analysis	RSK-175		1	593898	08/24/21 20:55	DSC	TAL BUF
Total/NA	Prep	3005A			593648	08/21/21 11:58	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593822	08/23/21 18:20	LMH	TAL BUF
Total/NA	Analysis	300.0		5	593728	08/23/21 17:38	IMZ	TAL BUF
Total/NA	Analysis	350.1		1	593692	08/23/21 07:58	CLT	TAL BUF
Total/NA	Analysis	353.2		1	593639	08/20/21 17:14	ALT	TAL BUF
Total/NA	Analysis	353.2		1	593640	08/20/21 17:14	ALT	TAL BUF
Total/NA	Analysis	9060A		1	594403	08/27/21 00:34	CLA	TAL BUF
Total/NA	Analysis	SM 2320B		1	594005	08/24/21 16:03	JPS	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	594012	08/24/21 16:45	SRA	TAL BUF
Total/NA	Analysis	VFA-IC		5	593769	08/23/21 18:31	IMZ	TAL BUF

Client Sample ID: MW-13-081921

Lab Sample ID: 480-188531-2 Date Collected: 08/19/21 15:35 **Matrix: Water**

Date Received: 08/19/21 17:37

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	593861	08/25/21 02:31	AXK	TAL BU
Total/NA	Analysis	RSK-175		1	170716	08/26/21 19:53	MJZ	TAL BU
Total/NA	Analysis	RSK-175		1	594069	08/25/21 16:22	DSC	TAL BU
Total/NA	Prep	3005A			593648	08/21/21 11:58	DMN	TAL BU
Total/NA	Analysis	6010C		1	593822	08/23/21 18:35	LMH	TAL BU
Total/NA	Prep	3005A			593648	08/21/21 11:58	DMN	TAL BU
Total/NA	Analysis	6010C		2	594227	08/25/21 15:41	AMH	TAL BU
Total/NA	Analysis	300.0		20	593728	08/23/21 17:56	IMZ	TAL BU
Total/NA	Analysis	350.1		1	593692	08/23/21 08:00	CLT	TAL BU
Total/NA	Analysis	353.2		1	593639	08/20/21 19:24	ALT	TAL BU
Total/NA	Analysis	353.2		1	593634	08/20/21 19:24	ALT	TAL BU
Total/NA	Analysis	9060A		1	594403	08/27/21 01:05	CLA	TAL BU
Total/NA	Analysis	SM 2320B		1	594005	08/24/21 16:17	JPS	TAL BU
Total/NA	Analysis	SM 4500 S2 F		1	594012	08/24/21 16:45	SRA	TAL BU
Total/NA	Analysis	VFA-IC		20	593769	08/23/21 19:00	IMZ	TAL BU

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Client Sample ID: MW-15-081921

Lab Sample ID: 480-188531-3 Date Collected: 08/19/21 10:20 **Matrix: Water** Date Received: 08/19/21 17:37

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	593861	08/25/21 02:53	AXK	TAL BUF
Total/NA	Analysis	RSK-175		1	170716	08/26/21 20:02	MJZ	TAL BUR
Total/NA	Analysis	RSK-175		1	593898	08/24/21 21:33	DSC	TAL BUF
Total/NA	Prep	3005A			593648	08/21/21 11:58	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593822	08/23/21 18:39	LMH	TAL BUF
Total/NA	Analysis	300.0		10	593728	08/23/21 18:14	IMZ	TAL BUF
Total/NA	Analysis	350.1		1	593692	08/23/21 08:03	CLT	TAL BUF
Total/NA	Analysis	353.2		1	593639	08/20/21 19:26	ALT	TAL BUF
Total/NA	Analysis	353.2		1	593634	08/20/21 19:26	ALT	TAL BUF
Total/NA	Analysis	9060A		1	594403	08/27/21 01:36	CLA	TAL BUF
Total/NA	Analysis	SM 2320B		1	594005	08/24/21 16:33	JPS	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	594012	08/24/21 16:45	SRA	TAL BUF
Total/NA	Analysis	VFA-IC		10	593769	08/23/21 19:29	IMZ	TAL BUF

Client Sample ID: TRIP BLANK-081921

Lab Sample ID: 480-188531-4 Date Collected: 08/19/21 00:00

Matrix: Water

Date Received: 08/19/21 17:37

Batch Dilution Batch Batch Prepared **Prep Type Factor** or Analyzed Type Method Run Number Analyst Lab Total/NA 8260C 593861 08/25/21 03:16 AXK TAL BUF Analysis

Client Sample ID: MW-12-082021 Lab Sample ID: 480-188572-1

-	Datab	Datab	Dilection	Datak	Dunnanad			
ate Received:	08/20/21	15:00						
Pate Collected:	08/20/21	08:20					Matrix: Wat	er

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	594050	08/26/21 02:18	CRL	TAL BUF
Total/NA	Analysis	RSK-175		1	170716	08/26/21 19:18	MJZ	TAL BUF
Total/NA	Analysis	RSK-175		22	594069	08/25/21 20:08	DSC	TAL BUF
Total/NA	Prep	3005A			593650	08/21/21 12:09	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593823	08/23/21 20:18	LMH	TAL BUF
Total/NA	Prep	3005A			593650	08/21/21 12:09	DMN	TAL BUF
Total/NA	Analysis	6010C		5	594381	08/26/21 15:46	LMH	TAL BUF
Total/NA	Analysis	300.0		50	593728	08/23/21 22:42	IMZ	TAL BUF
Total/NA	Analysis	350.1		1	593811	08/24/21 08:44	CLT	TAL BUF
Total/NA	Analysis	353.2		1	593639	08/20/21 18:38	ALT	TAL BUF
Total/NA	Analysis	353.2		1	593640	08/20/21 18:38	ALT	TAL BUF
Total/NA	Analysis	9060A		1	594391	08/26/21 06:06	CLA	TAL BUF
Total/NA	Analysis	SM 2320B		1	594005	08/24/21 18:26	JPS	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	594012	08/24/21 16:45	SRA	TAL BUF
Total/NA	Analysis	VFA-IC		50	593769	08/23/21 23:22	IMZ	TAL BUF

Page 46 of 90

Job ID: 480-188404-1 SDG: Delphi Harrison

Project/Site: 058507, GM Lockport SSOW 256043

Client Sample ID: MW-14-082021 Lab Sample ID: 480-188572-2

Matrix: Water

Date Collected: 08/20/21 10:57 Date Received: 08/20/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	594050	08/26/21 02:41	CRL	TAL BUF
Total/NA	Analysis	RSK-175		1	170716	08/26/21 19:27	MJZ	TAL BUR
Total/NA	Analysis	RSK-175		1	594286	08/26/21 17:27	DSC	TAL BUF
Total/NA	Prep	3005A			593650	08/21/21 12:09	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593823	08/23/21 20:38	LMH	TAL BUF
Total/NA	Prep	3005A			593650	08/21/21 12:09	DMN	TAL BUF
Total/NA	Analysis	6010C		5	594749	08/30/21 15:45	LMH	TAL BUF
Total/NA	Analysis	300.0		20	593728	08/24/21 00:11	IMZ	TAL BUF
Total/NA	Analysis	350.1		1	593811	08/24/21 08:45	CLT	TAL BUF
Total/NA	Analysis	353.2		1	593639	08/20/21 18:39	ALT	TAL BUF
Total/NA	Analysis	353.2		1	593640	08/20/21 18:39	ALT	TAL BUF
Total/NA	Analysis	9060A		1	594391	08/26/21 06:35	CLA	TAL BUF
Total/NA	Analysis	SM 2320B		1	594005	08/24/21 18:58	JPS	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	594298	08/26/21 13:09	SRA	TAL BUF
Total/NA	Analysis	VFA-IC		20	593769	08/23/21 23:51	IMZ	TAL BUF

Client Sample ID: MW-7-082021 Lab Sample ID: 480-188572-3

Date Collected: 08/20/21 13:16 **Matrix: Water** Date Received: 08/20/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		20000	594050	08/26/21 03:03	CRL	TAL BUF
Total/NA	Analysis	RSK-175		1	170716	08/26/21 19:36	MJZ	TAL BUR
Total/NA	Analysis	RSK-175		11	594069	08/25/21 20:46	DSC	TAL BUF
Total/NA	Prep	3005A			593650	08/21/21 12:09	DMN	TAL BUF
Total/NA	Analysis	6010C		1	593823	08/23/21 20:53	LMH	TAL BUF
Total/NA	Analysis	300.0		5	593728	08/24/21 00:29	IMZ	TAL BUF
Total/NA	Analysis	350.1		1	593811	08/24/21 08:46	CLT	TAL BUF
Total/NA	Analysis	353.2		1	593639	08/20/21 18:42	ALT	TAL BUF
Total/NA	Analysis	353.2		1	593640	08/20/21 18:42	ALT	TAL BUF
Total/NA	Analysis	9060A		1	594391	08/26/21 07:03	CLA	TAL BUF
Total/NA	Analysis	SM 2320B		1	594005	08/24/21 19:13	JPS	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	594298	08/26/21 13:09	SRA	TAL BUF
Total/NA	Analysis	VFA-IC		5	593769	08/24/21 00:21	IMZ	TAL BUF

Client Sample ID: TRIP BLANK-082021

Lab Sample ID: 480-188572-4 Date Collected: 08/20/21 00:00 **Matrix: Water** Date Received: 08/20/21 15:00

Batch **Batch** Dilution **Batch** Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260C 594050 08/26/21 03:25 CRL TAL BUF

Eurofins TestAmerica, Buffalo

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Laboratory References:

= , , ,

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Accreditation/Certification Summary

Client: GHD Services Inc.

Project/Site: 058507, GM Lockport SSOW 256043

Job ID: 480-188404-1 SDG: Delphi Harrison

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
New York		NELAP	10026	04-01-22
		report, but the laboratory is	not certified by the governing authority.	This list may include analytes for which
the agency does not on Analysis Method	Prep Method	Matrix	Analyte	
VFA-IC		Water	Acetic acid	
VFA-IC		Water	Formic-acid	
VFA-IC		Water	Lactic acid	
VFA-IC		Water	n-Butyric Acid	
VFA-IC		Water	Propionic acid	
VFA-IC		Water	Pyruvic Acid	

Laboratory: Eurofins TestAmerica, Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-23
Connecticut	State	PH-0751	09-30-21
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-17-22
Florida	NELAP	E87467	06-30-22
Minnesota	NELAP	050-999-436	12-31-21
New Hampshire	NELAP	2006	12-18-21
New Jersey	NELAP	VT972	06-30-22
New York	NELAP	10391	04-01-22
Pennsylvania	NELAP	68-00489	04-30-22
Rhode Island	State	LAO00298	12-30-21
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-17-00272	10-30-23
Vermont	State	VT4000	02-10-22
Virginia	NELAP	460209	12-14-21
Wisconsin	State	399133350	08-31-22

Method Summary

Client: GHD Services Inc.

Job ID: 480-188404-1 Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
AM20GAX	Dissolved Gases (GC)	None	
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
RSK-175	Dissolved Gases (GC)	RSK	TAL BUR
6010C	Metals (ICP)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
9060A	Organic Carbon, Total (TOC)	SW846	TAL BUF
SM 2320B	Alkalinity	SM	TAL BUF
SM 4500 S2 F	Sulfide, Total	SM	TAL BUF
VFA-IC	Volatile Fatty Acids, Ion Chromatography	TestAmerica SOP	TAL BUF
3005A	Preparation, Total Metals	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica SOP = TestAmerica, Inc., Standard Operating Procedure

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Sample Summary

Client: GHD Services Inc.

Job ID: 480-188404-1

Project/Site: 058507, GM Lockport SSOW 256043 SDG: Delphi Harrison

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-188404-1	MW-4-081721	Water	08/17/21 12:00	08/17/21 17:00
480-188404-2	MW-10-081721	Water	08/17/21 15:30	08/17/21 17:00
480-188404-3	TRIP BLANK-081721	Water	08/17/21 00:00	08/17/21 17:00
480-188531-1	MW-11-081921	Water	08/19/21 12:30	08/19/21 17:37
480-188531-2	MW-13-081921	Water	08/19/21 15:35	08/19/21 17:37
480-188531-3	MW-15-081921	Water	08/19/21 10:20	08/19/21 17:37
480-188531-4	TRIP BLANK-081921	Water	08/19/21 00:00	08/19/21 17:37
480-188572-1	MW-12-082021	Water	08/20/21 08:20	08/20/21 15:00
480-188572-2	MW-14-082021	Water	08/20/21 10:57	08/20/21 15:00
480-188572-3	MW-7-082021	Water	08/20/21 13:16	08/20/21 15:00
480-188572-4	TRIP BLANK-082021	Water	08/20/21 00:00	08/20/21 15:00

ANALYTICAL RESULTS

PERFORMED BY

Pace Analytical Gulf Coast

7979 Innovation Park Dr. Baton Rouge, LA 70820 (225) 769-4900

Report Date 09/03/2021

Report # 221082049

Project 480-188404-1 GM-Lockport

Samples Collected 8/17/21

Deliver To

Denise Heckler Test America, Inc 4101 Shuffel St NW North Canton, OH 44720 330-966-9477

Additional Recipients

Melissa Deyo, Test America

Project ID: 480-188404-1 GM-Lockport **Report Date:** 09/03/2021

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with Pace Gulf Coast's Standard Operating Procedures.

Common Abbreviations that may be Utilized in this Report

ND NO	Indicates the result was Not Detected at the specified reporting limit Indicates the sample did not ignite when preliminary test performed for EPA Method 1030
DO	Indicates the result was Diluted Out
MI	Indicates the result was subject to Matrix Interference
TNTC	Indicates the result was Too Numerous To Count
SUBC	Indicates the analysis was Sub-Contracted
FLD	Indicates the analysis was performed in the Field
DL	Detection Limit
LOD	Limit of Detection

LOD Limit of Detection
LOQ Limit of Quantitation
RE Re-analysis

CF Re-analysis

CF HPLC or GC Confirmation

00:01 Reported as a time equivalent to 12:00 AM

Reporting Flags that may be Utilized in this Report

Indicates the result is between the MDL and LOQ DOD flag on analyte in the parent sample for MS/MSD outside acceptance criteria
Indicates the compound was analyzed for but not detected
Indicates the analyte was detected in the associated Method Blank
Indicates a non-compliant QC Result (See Q Flag Application Report)
Indicates a non-compliant or not applicable QC recovery or RPD – see narrative
Organics - The result is estimated because it exceeded the instrument calibration range
Metals - % diference for the serial dilution is > 10%
Reporting Limits adjusted to meet risk-based limit.
RPD between primary and confirmation result is greater than 40
Diluted analysis – when appended to Client Sample ID

Sample receipt at Pace Gulf Coast is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of Pace Gulf Coast. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with The NELAC Institute (TNI) Standard 2009 and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

Authorized Signature

Pace Gulf Coast Report 221082049

Project ID: 480-188404-1 GM-Lockport **Report Date:** 09/03/2021

Certifications

DOD ELAP 74960 Alabama 01955 Arkansas 88-0655 Colorado 01955 Delaware 01955 Florida E87854 Georgia 01955 Hawaii 01955 Idaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Missouri 01955 Montana N/A Nebraska 01955 Now Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Texas T104704178 Vermont 01955 Washington C929	O-mili-ation	Operities diese Normales es
Alabama 01955 Arkansas 88-0655 Colorado 01955 Delaware 01955 Florida E87854 Georgia 01955 Hawaii 01955 Idaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Missachusetts 01955 Michigan 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Tennessee 01955 Vermont 01955 Washington C929	Certification	Certification Number
Arkansas 88-0655 Colorado 01955 Delaware 01955 Florida E87854 Georgia 01955 Hawaii 01955 Idaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Michigan 01955 Missachusetts 01955 Missouri 01955 Montana N/A Nebraska 01955 Now Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Tennessee 01955 Vermont 01955 Washington C929		
Colorado 01955 Delaware 01955 Florida E87854 Georgia 01955 Hawaii 01955 Ildaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Michigan 01955 Missachusetts 01955 Missouri 01955 Montana N/A Nebraska 01955 Now Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Washington C929		
Delaware 01955 Florida E87854 Georgia 01955 Hawaii 01955 Idaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Missachusetts 01955 Michigan 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Washington C929		
Florida E87854 Georgia 01955 Hawaii 01955 Idaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Washington C929		
Georgia 01955 Hawaii 01955 Idaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Washington C929		
Hawaii 01955 Idaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Mississisppi 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929		
Idaho 01955 Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Mississisppi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Washington C929	Georgia	01955
Illinois 200048 Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Washington C929	Hawaii	01955
Indiana 01955 Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Mississisppi 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Idaho	01955
Kansas E-10354 Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Mississisppi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Illinois	200048
Kentucky 95 Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Indiana	01955
Louisiana 01955 Maryland 01955 Massachusetts 01955 Michigan 01955 Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Kansas	E-10354
Maryland 01955 Massachusetts 01955 Michigan 01955 Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Kentucky	95
Massachusetts 01955 Michigan 01955 Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Louisiana	01955
Michigan 01955 Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Maryland	01955
Mississippi 01955 Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Massachusetts	01955
Missouri 01955 Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Michigan	01955
Montana N/A Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Mississippi	01955
Nebraska 01955 New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Missouri	01955
New Mexico 01955 North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Montana	N/A
North Carolina 618 North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Nebraska	01955
North Dakota R-195 Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	New Mexico	01955
Oklahoma 9403 South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	North Carolina	618
South Carolina 73006001 South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	North Dakota	R-195
South Dakota 01955 Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	Oklahoma	9403
Tennessee 01955 Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	South Carolina	73006001
Texas T104704178 Vermont 01955 Virginia 460215 Washington C929	South Dakota	01955
Texas T104704178 Vermont 01955 Virginia 460215 Washington C929		
Vermont 01955 Virginia 460215 Washington C929		
Virginia460215WashingtonC929		
Washington C929		
(∪ ∪ D / \	USDA Soil Permit	P330-16-00234

Project ID: 480-188404-1 GM-Lockport **Report Date:** 09/03/2021

Case Narrative

Client: TestAmerica - New York Report: 221082049

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

No anomalies were found for the analyzed sample(s).

6

2

Л

5

O

8

9

11

12

4.4

15

Project ID: 480-188404-1 GM-Lockport **Report Date:** 09/03/2021

Sample Summary

Lab ID	Client ID	Matrix	Collect Date	Receive Date
22108204901	MW-4-081721 (480-188404-1)	Bubble Strip	8/17/21 12:00	8/19/21 10:11
22108204902	MW-10-081721 (480-188404-2)	Bubble Strip	8/17/21 15:30	8/19/21 10:11

3

5

4

8

10

11

13

15

Project ID: 480-188404-1 GM-Lockport **Report Date:** 09/03/2021

Detect Summary

Results and Detection Limits are adjusted for dilution and moisture when applicable

	AM	20GAX				
Lab ID	Client ID	Parameter	Units	Result	Dil.	%Moist
22108204901	MW-4-081721 (480-188404-1)	Hydrogen	nM	16	1	NA
22108204902	MW-10-081721 (480-188404-2)	Hydrogen	nM	2.9	1	NA

3

4

5

7

10

12

IP.

15

Project ID: 480-188404-1 GM-Lockport **Report Date:** 09/03/2021

Sample Results

AM20GAX

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	1	08/27/21 14:26	719879	TJT	
CAS# 1333-74-0	Parameter Hydrogen			Result 16	DL 0.49	LOQ 1.9	Units nM

MW-10-081721 (480-188404-2)	Collect Date	08/17/2021 15:30	Lab ID	22108204902
	Receive Date	08/19/2021 10:11	Matrix	Bubble Strip

AM20GAX

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	1	08/27/21 14:42	719879	TJT	
CAS#	Parameter			Result	DL	LOQ	Units
1333-74-0	Hydrogen			2.9	0.49	1.9	nM

2

3

Λ

5

7

_

10

4.0

13

14

Project ID: 480-188404-1 GM-Lockport **Report Date:** 09/03/2021

General Chromatography QC Summary

Analytical Batch	Client ID	MB719879	LCS719879			LCSD719879						
719879	Lab ID	2232823	2232824			2232825						
	Sample Type	MB		LCS		LCSD						
	Prep Date NA		NA			NA						
	Analysis Date 08/27/21 10:54		08/27/21 11:38			08/27/21 12:42						
	Matrix	Bubble Strip		Bubble Strip			Bubble Strip					
AM20GAX		Units	nM	Spike	Result	0/ D	Control	Spike	Result	0/ D	DDD	RPD
AWIZUGAX		Result	LOQ	Added	Result	70 K	Limits%R	Added	Result	70K	KFD	Limit
Hydrogen	1333-74-0	1.9U	1.9	12	11	94	70 - 130	12	12	98	4	20

2

3

6

Q

40

11

13

1 5

Page 9 of 10 9/12/2021

SAMPLE RECEIVING CHECKLIST

SAMPLE DELIVERY GROU	SAMPLE DELIVERY GROUP 221082049		CHECKLIST			NO
Client PM RWe Test-Amherst - TestAmerica -	Transport Method		Samples received with proper thermal preservation?			
New York			Radioactivity is <1600 cpm? If no, record cpm valu	e in notes section.	~	
Profile Number	Received By		COC relinquished and complete (including sample)	Ds, collect times, and sampler)?	~	
284571	Jenkins, Mark	A.	All containers received in good condition and within	n hold time?	~	
Line Item(s)	Receive Date	e(s)	All sample labels and containers received match the	ne chain of custody?	~	
1 - Hydrogen	08/19/21		Preservative added to any containers?			~
			If received, was headspace for VOC water containers < 6mm?			
			Samples collected in containers provided by Pace Gulf Coast?			
COOLERS			DISCREPANCIES	LAB PRESERVATIONS		
Airbill Thermomet	er ID: N/A	Temp °C	None	None		
		NA				
NOTES		1		-		

Revision 1.6

Page 1 of 1

Pace Gulf Coast Report#: 221082049

ANALYTICAL RESULTS

PERFORMED BY

Pace Analytical Gulf Coast

7979 Innovation Park Dr. Baton Rouge, LA 70820 (225) 769-4900

Report Date 09/09/2021

Report # 221082692

Project GM-Lockport 460-188531-1

Samples Collected 8/19/21

Deliver To

Denise Heckler Test America, Inc 4101 Shuffel St NW North Canton, OH 44720 330-966-9477

Additional Recipients

Melissa Deyo, Test America

Project ID: GM-Lockport 460-188531-1 **Report Date:** 09/09/2021

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with Pace Gulf Coast's Standard Operating Procedures.

Common Abbreviations that may be Utilized in this Report

ND NO	Indicates the result was Not Detected at the specified reporting limit Indicates the sample did not ignite when preliminary test performed for EPA Method 1030
DO	Indicates the result was Diluted Out
MI	Indicates the result was subject to Matrix Interference
TNTC	Indicates the result was Too Numerous To Count
SUBC	Indicates the analysis was Sub-Contracted
FLD	Indicates the analysis was performed in the Field
DL	Detection Limit
LOD	Limit of Detection

LOD Limit of Detection
LOQ Limit of Quantitation
RE Re-analysis

CF HPLC or GC Confirmation

00:01 Reported as a time equivalent to 12:00 AM

Reporting Flags that may be Utilized in this Report

J or I J U B or V Q * E E	Indicates the result is between the MDL and LOQ DOD flag on analyte in the parent sample for MS/MSD outside acceptance criteria Indicates the compound was analyzed for but not detected Indicates the analyte was detected in the associated Method Blank Indicates a non-compliant QC Result (See Q Flag Application Report) Indicates a non-compliant or not applicable QC recovery or RPD – see narrative Organics - The result is estimated because it exceeded the instrument calibration range Metals - % diference for the serial dilution is > 10% Reporting Limits adjusted to meet risk-based limit.
P P	RPD between primary and confirmation result is greater than 40
DL	Diluted analysis – when appended to Client Sample ID

Sample receipt at Pace Gulf Coast is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of Pace Gulf Coast. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with The NELAC Institute (TNI) Standard 2009 and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

Authorized Signature

Pace Gulf Coast Report 221082692

Project ID: GM-Lockport 460-188531-1 **Report Date:** 09/09/2021

Certifications

Certification	Certification Number
DOD ELAP	74960
Alabama	01955
Arkansas	88-0655
Colorado	01955
Delaware	01955
Florida	E87854
Georgia	01955
Hawaii	01955
Idaho	01955
Illinois	200048
Indiana	01955
Kansas	E-10354
Kentucky	95
Louisiana	01955
Maryland	01955
Massachusetts	01955
Michigan	01955
Mississippi	01955
Missouri	01955
Montana	N/A
Nebraska	01955
New Mexico	01955
North Carolina	618
North Dakota	R-195
Oklahoma	9403
South Carolina	73006001
South Dakota	01955
Tennessee	01955
Texas	T104704178
Vermont	01955
Virginia	460215
Washington	C929
USDA Soil Permit	P330-16-00234

Project ID: GM-Lockport 460-188531-1 **Report Date:** 09/09/2021

Case Narrative

Client: TestAmerica - New York Report: 221082692

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

VOLATILES GAS CHROMATOGRAPHY

The bubble strip/H2 analysis for the referenced work orders was delayed due to Hurricane Ida, and samples were ran and analyzed out of hold as a result of an extended power outage

3

4

5

7

_

10

4.0

13

15

Project ID: GM-Lockport 460-188531-1 **Report Date:** 09/09/2021

Sample Summary

Lab ID	Client ID	Matrix	Collect Date	Receive Date
22108269201	MW-11-081921 (480-188531-1)	Bubble Strip	8/19/21 12:30	8/26/21 08:52
22108269202	MW-13-081921 (480-188531-2)	Bubble Strip	8/19/21 15:35	8/26/21 08:52
22108269203	MW-15-081921 (480-188531-3)	Bubble Strip	8/19/21 10:20	8/26/21 08:52

_

3

4

6

Q

9

11

40

14

Project ID: GM-Lockport 460-188531-1 **Report Date:** 09/09/2021

Detect Summary

Results and Detection Limits are adjusted for dilution and moisture when applicable

	AM	20GAX				
Lab ID	Client ID	Parameter	Units	Result	Dil.	%Moist
22108269201	MW-11-081921 (480-188531-1)	Hydrogen	nM	4.4	1	NA
22108269202	MW-13-081921 (480-188531-2)	Hydrogen	nM	3.6	1	NA
22108269203	MW-15-081921 (480-188531-3)	Hydrogen	nM	4.0	1	NA

3

4

5

7

10

12

13

15

Project ID: GM-Lockport 460-188531-1 **Report Date:** 09/09/2021

Sample Results

AM20GAX

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	1	09/08/21 15:06	720343	TJT	
CAS# 1333-74-0	Parameter Hydrogen			Result 4.4	DL 0.49	LOQ 1.9	Units nM

MW-13-081921 (480-188531-2)	Collect Date	08/19/2021 15:35	Lab ID	22108269202
WW-13-001921 (460-166531-2)	Receive Date	08/26/2021 08:52	Matrix	Bubble Strip

AM20GAX

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	1	09/08/21 15:22	720343	TJT	
CAS# 1333-74-0	Parameter Hydrogen			Result 3.6	DL 0.49	LOQ 1.9	Units nM

M/M/ 15 001021 (400 100521 2)	Collect Date	08/19/2021 10:20	Lab ID	22108269203
MW-15-081921 (480-188531-3)	Receive Date	08/26/2021 08:52	Matrix	Bubble Strip

AM20GAX

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	1	09/08/21 15:36	720343	TJT	
CAS#	Parameter			Result	DL	LOQ	Units
1333-74-0	Hydrogen			4.0	0.49	1.9	nM

3

4

6

8

11

46

14

15

Project ID: GM-Lockport 460-188531-1 **Report Date:** 09/09/2021

General Chromatography QC Summary

Analytical Batch	Client ID	MB720343		LCS720	343			LCSD72	0343			
720343	Lab ID	2235422		2235423	}			2235424	1			
	Sample Type	MB		LCS				LCSD				
	Prep Date	NA		NA				NA				
	Analysis Date	09/08/21 10:18	3	09/08/21	10:33			09/08/21	10:45			
	Matrix	Bubble Strip		Bubble S	Strip			Bubble S	Strip			
AM20GAX		Units	nM	Spike	Result	0/ D	Control	Spike	Result	0/ D	DDD	RPD
AWIZUGAA		Result	LOQ	Added	Nesult	/0 K	Limits%R	Added	Nesult	/0K	KPD	Limit
Hydrogen	1333-74-0	1.9U	1.9	12	9.9	83	70 - 130	12	10	89	6	20

2

3

А

5

7

0

10

10

13

15

SDG: 221082692

OG:	221082692	Ш
VI:	RWe	

Client Information (Sub Contract Lab)	Campier.				kler, [Denis	se D				_		IVI:		/Ve		- 1			
Client Contact: Shipping/Receiving	Phone:			E-Ma Den		eckle	er@E	urofins	et.co	m			ew Yo					Page 1 of 1		-
Company:					Accre	ditatio	ns Re	quired (Job #:		
Pace Analytical Gulf Coast	Due Date Requeste	4.			NEL	.AP -	New	York								_		480-188531-1 Preservation Cod	lae:	
979 Innovation Park Drive, ,	8/31/2021	ıu;							An	alysi	s R	equ	este	k				A - HCL	M - Hexane	- 1
ity:	TAT Requested (da	ys):					T											B - NaOH	N - None	1
Baton Rouge tate, Zip:	1									- 1				1				C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S	- 1
A, 70820																		E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3	i
hone:	PO#:																	G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodeo	cahydrate
mail:	WO #:				or No)	No)											શ્	I - Ice J - DI Water	U - Acetone V - MCAA W - pH 4-5	Junyarato
roject Name:	Project #:				اڠ	6											containers	K - EDTA L - EDA	Z - other (spec	cify)
58507, GM Lockport SSOW 256043 ite:	48004014 SSOW#:				ple	۽ اع										.	cont	Other:		ı
9200					Sam	USD P	50										ofe			
iample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Type (latrix V=water, S=solid, waste/oil,	Field Filtered	Perform MS/MSD (Yes	DATE OF THE PARTY IN										Total Number of		nstructions/N	lote:
rample identification - offent ib (Lab ib)	Sample Bate		Preservation			X							2 16			7.1	X			
1W-11-081921 (480-188531-1)	8/19/21	12:30 Eastern	\	Vater	M	>	x										1		1	
NW-13-081921 (480-188531-2)	8/19/21	15:35 Eastern	\	Vater	П	>	x										1		1	
IW-15-081921 (480-188531-3)	8/19/21	10:20 Eastern	١	Vater		>	x										1		2	
		Lastom			П									П						
				-	H		+	+			\top	\top	\top	\vdash						
					H	+	+	+		+	+	+	+	+	\vdash	+		7		
					Н	_	_			_	4	+	_	-	\vdash	_	10%			
					Ш															
					П															
					H	+	+	+		\neg	\top	\top	+	T						
					Ш										Щ		-			
ote: Since laboratory accreditations are subject to change, Eurofins TestAmerica aintain accreditation in the State of Origin listed above for analysis/tests/matrix bestAmerica attention immediately. If all requested accreditations are current to d	eing analyzed, the sa	imples must be	shipped back to th	e Eurofins	s Test	Americ	a labo	oratory or	other	ories. T instructi	his sa ons v	ample vill be p	shipme provided	nt is for d. Any	warded change	under cl s to accr	hain-ol editati	f-custody. If the labor ion status should be b	atory does not co rought to Eurofin	urrently s
ossible Hazard Identification					Ts	Samp	ole Di	isposa	I (A	fee m	ay b	e ass	esse	d if sa	mple	s are r	etain	ed longer than 1	month)	
Inconfirmed								urn To				_		By La				hive For	Months	
eliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank: 2	2		5			structio			uirer	nents	:							
mpty Kit Relinqψished by:		Date:			Tim	e:							Me	hod of	Shipme	ent:				
elinquished by: MALKAW CUOID	Date/Time: 2	4/21	1760 Com	pany		Re	eceive	d by:							Date/1				Company	
elinguished by:	Date/Time:	C \	Com	pany		Re	eceive	d by:	11						Date/	Time:	1	08:52	Company	
elinquished by: Fed EX elinquished by:	8/26/11 87. Date/Time:	J &	Com	pany		Re	ereive	d by:	-	mu	<u> ال</u>	_			Date/1	Time:	•	~ U-11 d	Company	
Custody Seals Intact: Custody Seal No.:						C	ooler T	Tempera	hire/e\	°C and	Other	Remo	ırks:							
Δ Yes Δ No						100	ouel I	sinpera	ui e(5)	o and	Jaie	r.ciile								

Chain of Custody Record

1888 3864 9335

Ver: 06/08/2021

Eurofins TestAmerica, Buffalo

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

10 Hazelwood Drive

SAMPLE RECEIVING CHECKLIST

SAMPLE DELIVERY GROU	JP 2210826	92	CHECKLIST	YES	NO							
Client PM RWe Test-Amherst - TestAmerica -	Transport M	ethod	Samples received with proper thermal preservation	?	~							
New York			Radioactivity is <1600 cpm? If no, record cpm value	~								
Profile Number 284571	Received By Jenkins, Mark		COC relinquished and complete (including sample)	~								
20-07 1	ocinaro, ivan	7 U	All containers received in good condition and within	n hold time?	~							
Line Item(s)	Receive Date	e(s)	All sample labels and containers received match the	ne chain of custody?	~							
1 - Hydrogen	08/26/21		Preservative added to any containers?			~						
			If received, was headspace for VOC water contained	ers < 6mm?	~							
			Samples collected in containers provided by Pace	Gulf Coast?	~							
COOLERS			DISCREPANCIES	LAB PRESERVATIONS								
Airbill Thermomet	ter ID: NA	Temp °C	None	None								
1888 3864 9335		NA										
NOTES												

Revision 1.6

Pace Gulf Coast Report#: 221082692

Page 1 of 1

Page 71 of 90 Page 10 of 10 9/12/2021

ANALYTICAL RESULTS

PERFORMED BY

Pace Analytical Gulf Coast

7979 Innovation Park Dr. Baton Rouge, LA 70820 (225) 769-4900

Report Date 09/04/2021

Report # 221082704

Project GM-Lockport 480-188572-1

Samples Collected 8/20/21

Deliver To

Denise Heckler Test America, Inc 4101 Shuffel St NW North Canton, OH 44720 330-966-9477

Additional Recipients

Melissa Deyo, Test America

Project ID: GM-Lockport 480-188572-1 **Report Date:** 09/04/2021

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with Pace Gulf Coast's Standard Operating Procedures.

Common Abbreviations that may be Utilized in this Report

ND	Indicates the result was Not Detected at the specified reporting limit
NO	Indicates the sample did not ignite when preliminary test performed for EPA Method 1030
DO	Indicates the result was Diluted Out
MI	Indicates the result was subject to Matrix Interference
TNTC	Indicates the result was Too Numerous To Count
SUBC	Indicates the analysis was Sub-Contracted
FLD	Indicates the analysis was performed in the Field
DL	Detection Limit
LOD	Limit of Detection

LOD Limit of Detection
LOQ Limit of Quantitation
RE Re-analysis

CF HPLC or GC Confirmation

00:01 Reported as a time equivalent to 12:00 AM

Reporting Flags that may be Utilized in this Report

Indicates the result is between the MDL and LOQ DOD flag on analyte in the parent sample for MS/MSD outside acceptance criteria
Indicates the compound was analyzed for but not detected
Indicates the analyte was detected in the associated Method Blank
Indicates a non-compliant QC Result (See Q Flag Application Report)
Indicates a non-compliant or not applicable QC recovery or RPD – see narrative
Organics - The result is estimated because it exceeded the instrument calibration range
Metals - % diference for the serial dilution is > 10%
Reporting Limits adjusted to meet risk-based limit.
RPD between primary and confirmation result is greater than 40
Diluted analysis – when appended to Client Sample ID

Sample receipt at Pace Gulf Coast is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of Pace Gulf Coast. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with The NELAC Institute (TNI) Standard 2009 and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

Authorized Signature

Pace Gulf Coast Report 221082704

Project ID: GM-Lockport 480-188572-1 **Report Date:** 09/04/2021

Certifications

Certification	Certification Number
DOD ELAP	74960
Alabama	01955
Arkansas	88-0655
Colorado	01955
Delaware	01955
Florida	E87854
Georgia	01955
Hawaii	01955
Idaho	01955
Illinois	200048
Indiana	01955
Kansas	E-10354
Kentucky	95
Louisiana	01955
Maryland	01955
Massachusetts	01955
Michigan	01955
Mississippi	01955
Missouri	01955
Montana	N/A
Nebraska	01955
New Mexico	01955
North Carolina	618
North Dakota	R-195
Oklahoma	9403
South Carolina	73006001
South Dakota	01955
Tennessee	01955
Texas	T104704178
Vermont	01955
Virginia	460215
Washington	C929
USDA Soil Permit	P330-16-00234

Project ID: GM-Lockport 480-188572-1 **Report Date:** 09/04/2021

Case Narrative

Client: TestAmerica - New York Report: 221082704

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

No anomalies were found for the analyzed sample(s).

G

3

4

5

7

Q

10

12

14

Project ID: GM-Lockport 480-188572-1 **Report Date:**

Sample Summary

Lab ID	Client ID	Matrix	Collect Date	Receive Date
22108270401	MW-12-082021 (480-188572-1)	Bubble Strip	8/20/21 08:20	8/26/21 08:52
22108270402	MW-14-082021 (480-188572-2)	Bubble Strip	8/20/21 10:57	8/26/21 08:52

_

09/04/2021

2

5

4

6

8

10

4.6

13

15

Project ID: GM-Lockport 480-188572-1 **Report Date:** 09/04/2021

Detect Summary

Results and Detection Limits are adjusted for dilution and moisture when applicable

	AM	20GAX				
Lab ID	Client ID	Parameter	Units	Result	Dil.	%Moist
22108270401	MW-12-082021 (480-188572-1)	Hydrogen	nM	3.4	1	NA
22108270402	MW-14-082021 (480-188572-2)	Hydrogen	nM	4.6	1	NA

3

4

9

10

12

13

15

Project ID: GM-Lockport 480-188572-1 **Report Date:** 09/04/2021

Sample Results

AM20GAX

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	1	09/03/21 17:12	720054	TJT	
CAS# 1333-74-0	Parameter Hydrogen			Result 3.4	DL 0.49	LOQ 1.9	Units nM

AM20GAX

Prep Date	Prep Batch	Prep Method	Dilution	Run Date	Run Batch	Analyst	%Moisture
NA	NA	NA	1	09/03/21 17:24	720054	TJT	
CAS#	Parameter			Result	DL	LOQ	Units
1333-74-0	Hydrogen			4.6	0.49	1.9	nM

2

3

4

5

7

8

10

15

13

14

Project ID: GM-Lockport 480-188572-1 **Report Date:** 09/04/2021

General Chromatography QC Summary

Analytical Batch	Client ID	MB720054		LCS720	054			LCSD72	20054			
720054	Lab ID	2233987		2233988	}			2233989)			
	Sample Type	MB		LCS				LCSD				
	Prep Date	NA		NA				NA				
	Analysis Date	09/03/21 11:43	3	09/03/21	12:08			09/03/21	12:21			
	Matrix	Bubble Strip		Bubble S	Strip			Bubble S	Strip			
AM20GAX		Units	nM	Spike	Result	0/ D	Control	Spike	Result	0/ D	DDD	RPD
AWIZUGAX		Result	LOQ	Added	Result	70 K	Limits%R	Added	Result	70K	KPD	Limit
Hydrogen	1333-74-0	1.9U	1.9	12	11	94	70 - 130	12	11	96	2	20

2

3

5

O

8

46

11

13

14

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive		21.											To	ct Ar	nhei	st -	TestAmerica	- New York
Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991		Shain	of Cus	tody	Rec	orc	1							3270				
Client Information (Sub Contract Lab)	Sampler:				b PM: eckler, [Denis	e D				SDG	i: 2	2100)210				
Client Contact: Shipping/Receiving	Phone:				Mail: enise.H	ecklei	@Eu	rofinse	et.com		PM:	F	(We			Page 1 of 1	MILEON	
Company: Pace Analytical Gulf Coast						ditation		uired (S York	ee note	e):							Job #: 480-188572-1	
Address: 7979 Innovation Park Drive,	Due Date Request	ed:			\top				Ana	alvsis	Rea	uesto	ed				Preservation Co	
City: Baton Rouge State, Zip:		TAT Requested (days):									lysis Requested						A - HCL B - NaOH C - Zn Acetate D - Nitric Acid	M - Hexane N - None O - AsNaO2 P - Na2O4S
LA, 70820 Phone:	PO #:																E - NaHSO4 F - MeOH G - Amchlor	Q - Na2SO3 R - Na2S2O3 S - H2SO4
Email:	WO #:				or No)	(6)											H - Ascorbic Acid	T - TSP Dodecahydrate U - Acetone V - MCAA
Project Name: 058507, GM Lockport SSOW 256043	Project #: 48004014				e (Yes	es or No)										containers	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				Sampl	Hydrogen										of cor	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oli, BT=Tissue, A=/	Field Filtered	AM20GAX/ Hydrogen										Total Number of	Special I	nstructions/Note:
		><	Preserva	tion Code				5 BY					44 Au			X		
MW-12-082021 (480-188572-1)	8/20/21	08:20 Eastern		Water	Ш	X		Ш				_	4			1		1(
MW-14-082021 (480-188572-2)	8/20/21	10:57 Eastern		Water	Ш	X						_	\perp			1		2
					$\perp \! \! \! \! \! \! \! \! \perp$	_	-						-					
					Ш		\perp	Ш				_	\perp					
					Ш		_		\perp			_	\perp					
					Ш		_	Ш										
					П													
lote: Since laboratory accreditations are subject to change, Eurofins TestAme naintain accreditation in the State of Origin listed above for analysis/tests/mat estAmerica attention immediately. If all requested accreditations are current	rix being analyzed, the sa	amples must b	e shipped back	to the Eurof	ins TestA	merica	labora	tory or	other in									
Possible Hazard Identification					s			•		e may	be as	ssess	ed if s	ample	s are	retain	ed longer than	1 month)
Unconfirmed	Delivery Dell							n To C		D		isposa	al By L	ab		Arci	hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank: :	2		S	ресіа	II Insti	ruction	is/QC	Requi	remen							
Empty Kit Relinquished by:		Date:			Time							М	ethod o	f Shipm				10
Relinquished by:	Date/Time	24/12/	1766	Company	7		ceived							Date/				Company
telipquished by:	Date/Time: 8/24/21	8:52	(Company		J.	And	by:	cul	~				87	Time: J6/.	11	0852	Company
elinquisned by:	Date/Time:			Company		Red	eived i	by:						Date/	Time:			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	-					Cod	oler Ter	mperatu	re(s) °C	and Ot	her Rer	narks:						
2 .00 8 110									í {	388	38	64	933	5				Ver: 06/08/2021
													100	•				

SAMPLE RECEIVING CHECKLIST

SAMPLE DELIVERY GROU	IP 2210827	04	CHECKLIST		YES	NO
Client PM RWe Test-Amherst - TestAmerica -	Transport M	ethod	Samples received with proper thermal preservation	?	~	
New York	react		Radioactivity is <1600 cpm? If no, record cpm value in notes section.			
rofile Number Received By			COC relinquished and complete (including sampleIDs, collect times, and sampler)?		~	
284571	Jenkins, Mark A.		All containers received in good condition and within	~		
Line Item(s)	Receive Date	e(s)	All sample labels and containers received match the	ne chain of custody?	~	
1 - Hydrogen	08/26/21		Preservative added to any containers?			~
			If received, was headspace for VOC water contained	ers < 6mm?	~	
			Samples collected in containers provided by Pace	Gulf Coast?	~	
COOLERS			DISCREPANCIES	LAB PRESERVATIONS		
Airbill Thermomet	er ID: NA	Temp °C	None	None		
		NA				
NOTES		I		<u> </u>		

Revision 1.6

Pace Gulf Coast Report#: 221082704

Page 1 of 1

Environment Testing

: eurofins

Chain of Custody Record

Euronns TestAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Hz givestions D. Hecke TSP Dodecahydrate for reporting Special Instructions/Note: Ver. 06/08/2021 Q - Na2SO3 R - Na2S2O3 U - Acetone V - MCAA W - pH 4-5 480-188404 Chain of Custody Ì SYSTEMS DE CPHT COC No: 480-164113-32642.1 THEDMA Preservation Codes Page: K-Pace -See H - Ascorbic Acid Nitric Acid Ice DI Water F - MeOH Total Number of containers MARGEN (PAR) (DS: (1 Jate/Time Sample Disposal (A fee may be assessed if samples a Method of Shipment Carrier Tracking No(s) 353.2, 353.2 Nitrite, Nitrate_Calc Disposal By Lab State of Origin **Analysis Requested** OOT - A0906 Cooler Temperature(s) °C and Other Remarks. SK_175 - Methane, Ethane & Ethene Special Instructions/QC Requirements: 6010C - Metals Denise Heckler@Eurofinset.com Return To Client QN Received by: Lab PM. Heckler, Denise D SZ60C - PCE, TCE, DCE (trans and cis) & VC (ON 10 seY) GEMISM mioned Field Filtered Sample (Yes or No) Water Preservation Code Water Company Radiological G=grab) (C=comb, Brown Type 16-803-51 Purchase Order Requested Sample Time 250 1530 Compliance Project: A Yes Sampler. Unknown (AT Requested (days): 12 Due Date Requested: 08/17/20 08/17/20 Sample Date Project #: 48004014 Date/Time: wo#: 256041 1 Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No. N 358507, GM Lockport SSOW 256041 NW-4-081 MW-10-08 GZA GeoEnvironmental, Inc. Blan Empty Kit Relinquished by: homas.bohlen@gza.com Client Information 300 Pearl St. Suite 700 sample Identification Mr. Tom Bohlen elinquished by: linquished by: linquished by State, Zip NY, 14202 rio Buffalo

Cooler Temperature(s) "Cand Other Remarks.

15 16

Received by

Company

Date/Time

Custody Seal No

Custody Seals Intact:

Δ Yes Δ No

nd paysing by

9/12/2021

17.32

5

Aethod of Shipmen

Special Instructions/Note:

THOTE

٧ X X

X

× × X X

X

X

THERMA

又 ×

X X

X X

Water

J 5

> 1535 979

12-H-8 8-19-21

MW -15-081921

Cio

MJ-11-081921 MW-13-081921

Page 83 of 90

Sample Identification

Water Water Water

9

Water

1230

8A-21

Preservation Code

(C=comp, G=grab) Type

> Sample Time

> > Sample Date

STE

X

X

X

しいとれる

480-188531 Chain of Custody

Archive For

]

Sample Disposal (A fee may be assessed i.

Return To Client Disposal By Lab

Special Instructions/QC Requirements:

Time

Date

72-

, 19

30

Company

Reporting

ত

H2

* Pace

×

Water Water Water

Radiological

Unknown

Poison B

Skin Irritant

Non-Hazard Flammable Skin Irrit eliverable Requested: I, III, IV, Other (specify)

mpty Kit Relinquished by

Possible Hazard Identification

Water Water

Water

1). Hecker

- Acetone - MCAA

P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 T - TSP Dodecahy

Environment Testing America

🔆 eurofins

4

Page Comment | Page C

Preservation Codes

COC No 480-164113-32642.2

arrier Tracking No(s)

State of Origin

Denise Heckler@Eurofinset.com

E-Mail

5717

716-803

auou

Lab PM Heckler, Denise D

Brown

ampler, Morgan

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Client Information

Mr. Tom Bohlen

Amherst, NY 14228-2298

10 Hazelwood Drive

Analysis Requested

- pH 4-5 - other (specify)

J - DI Water K - EDTA L - EDA

G - Amchlor H - Ascorbic Acid

Total Number of containers D3182510

MoBarota

D - Nitric Acid E - NaHSO4 F - MeOH

Compliance Project: A Yes A No

(AT Requested (days):

Due Date Requested:

GZA GeoEnvironmental, Inc

Suite 700

300 Pearl St.

State, Zip. NY, 14202

Buffalo

Purchase Order Requested

2W4200 22 F - Suffde

RSK_175 - Methane, Ethane & Ethene

5010C - Metals - Fe, Mn, Mg, K & Na

300.0_28D - Anions (Chloride & Sulfate)

- PCE, TCE, DCE (trans and cis) & VC

Project # 48004014

Project Name 358507, GM Lockport SSOW 256041

homas bohlen@gza.com

wo # 256041

SSK_175_CO2 - Carbon dioxide

(oh no sey) (Yes or No)

Matrix

Fleid Filtered Sample (Yes or No)

VFA_IC - VFAs

353.2, 353.2 Nitrite, Nitrate Calc

🔆 eurofins

Chain of Custody Record

---- Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

S - H2SO4 T - TSP Dodecahydrate DELPHT HARRISON 6,3 Rosching Special Instructions/Note: P - Na204S Q - Na2SO3 R - Na2S2O3 U - Acetone Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Moni COC No. 480-164113-32642.2 Page 2 of 14 | C Preservation Codes: THERMAN * Pace 3 F - MeOH G - Amchlor H - Ascorbic Acid SITE -See You I - Ice J - DI Water K - EDTA E - NaHSO4 age: Total Number of containers Nager 64H (55V 102)(J X X Date/Time \$350B - Alkalinity Method of Shipment y. X X 353.2, 353.2 Mitrite, Mitrate_Calc × X × CB 2W4200 22 F - Sulfide State of Origin **Analysis Requested** X × OOT - A0906 × Cooler Temperature(s) °C and Other Remarks. X 32K_175 - Methane, Ethane & Ethene Special Instructions/QC Requirements: X K 6010C - Metals - Fe, Mn, Mg, K & Na X × × Anions (Chloride & Sulfate) Denise. Heckler@Eurofinset.com 32K_175_CO2 - Carbon dioxide eceived by Received by: Received by X X X Lab PM: Heckler, Denise D 8260C - PCE, TCE, DCE (trans and cis) & VC X × 480-188572 Chain of Custody ertorm MS/MSD (Yes or No) Field Filtered Sample (Yes or No) E-Mail BT=Tissue, A=Air water Preservation Code: Water Water Water Water Water Water Boun Radiological (C=comb, G=grab) Type 5 RES S J Sompliance Project: △ Yes △ No Morgan Purchase Order Requested 0280 Sample Time 1316 1057 1 Date Unknown TAT Requested (days): 08 -10 - 20 **Due Date Requested** Sample Date 22-072-8 12-02-8 12-02-8 Project #: 48004014 1 Date/Time: wo#. 256041 Poison B Skin Irritant Jeliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. 120280 -120280 -120280 -058507, GM Lockport SSOW 256041 Flammable Possible Hazard Identification GZA GeoEnvironmental, Inc Empty Kit Relinquished by: thomas.bohlen@gza.com Blank Custody Seals Intact: △ Yes △ No Client Information 300 Pearl St. Suite 700 Sample Identification Non-Hazard F1-34 ME-17 Mr. Tom Bohlen 13X elinquished by: linquished by: elinquished by State, Zip. NY, 14202 0:0 Buffalo

Client: GHD Services Inc.

Job Number: 480-188404-1 SDG Number: Delphi Harrison

List Source: Eurofins TestAmerica, Buffalo

Login Number: 188404 List Number: 1

Creator: Yeager, Brian A

Creator. reager, Brian A		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	GZA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 480-188404-1 SDG Number: Delphi Harrison

Login Number: 188404

List Number: 2

Creator: Beane, John P

List Source: Eurofins TestAmerica, Burlington

List Creation: 08/19/21 02:11 PM

oreator. Bearie, John 1			
Question		Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.	
The cooler's custody seal, if present, is intact.	True	1512509	
Sample custody seals, if present, are intact.	N/A	Not Present	
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	2.5 C	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
ls the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		
Multiphasic samples are not present.	True		

True

N/A

Eurofins TestAmerica, Buffalo

Samples do not require splitting or compositing.

Residual Chlorine Checked.

9/12/2021

Client: GHD Services Inc.

Job Number: 480-188404-1 SDG Number: Delphi Harrison

List Source: Eurofins TestAmerica, Buffalo

Login Number: 188531

List Number: 1

Creator: Yeager, Brian A

Creator: Yeager, Brian A		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	GZA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 480-188404-1 SDG Number: Delphi Harrison

Login Number: 188531

List Number: 2

Creator: Beane, John P

List Source: Eurofins TestAmerica, Burlington

List Creation: 08/21/21 12:20 PM

oreator. Deane, John I		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	1512522, 1512523
Sample custody seals, if present, are intact.	N/A	Not Present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.0 C, 1.8 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	

True

N/A

Eurofins TestAmerica, Buffalo

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Client: GHD Services Inc.

Job Number: 480-188404-1 SDG Number: Delphi Harrison

List Source: Eurofins TestAmerica, Buffalo

Login Number: 188572 List Number: 1

Creator: Sabuda, Brendan D

Creator: Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.4 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Login Sample Receipt Checklist

Client: GHD Services Inc.

Job Number: 480-188404-1 SDG Number: Delphi Harrison

Login Number: 188572

List Number: 2

Creator: Beane, John P

List Source: Eurofins TestAmerica, Burlington

List Creation: 08/21/21 12:20 PM

Question		Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>Lab does not accept radioactive samples</td>		Lab does not accept radioactive samples	
The cooler's custody seal, if present, is intact.		1512522, 1512523	
Sample custody seals, if present, are intact.		Not Present	
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.		1.0 C, 1.8 C	
COC is present.			
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").			
Multiphasic samples are not present.			
Samples do not require splitting or compositing.			

N/A

Residual Chlorine Checked.

GZA GeoEnvironmental, Inc.