



January 31, 2013

Privileged and Confidential Prepared at Request of Legal Counsel

Kevin M. Hogan, Esquire Phillips Lytle LLP 3400 HSBC Center Buffalo, NY 14203

Re: VanDeMark Chemical Inc., Lockport, New York

Supplemental Investigation Results

Dear Mr. Hogan:

Gnarus Advisors LLC and the Palmerton Group LLC implemented a supplemental investigation at the VanDeMark Chemical facility in Lockport, New York from October 29 to November 15, 2012. The field activities involved collecting soil and groundwater samples at various locations identified as a result of prior research conducted by Gnarus. This letter summarizes the work performed as well as data collected during a Phase II investigation conducted by GaiaTech during October 2012.

### **Field Activity Summary**

The overall purpose of the supplemental investigation was to further characterize soil and groundwater quality, particularly along the northern property boundary and at various areas within the plant manufacturing area. Nothnagle Drilling (Scottsville, New York) was retained to advance 23 soil borings (SP-19 through SP-41) at the locations shown in Figure 1. Before drilling, the sample locations were scanned for underground utilities by a subcontracted utility locator, Pegasus Environmental (Spencertown, New York), utilizing ground penetrating radar (GPR). Under Palmerton Group's direction, Nothnagle then advanced the soil borings utilizing a direct push unit (Geoprobe 6620DT) collecting soil samples in 4-foot intervals. Nothnagle used a new disposable plastic liner for each 4-foot interval and advanced the borings to bedrock refusal (depths ranging from 4.9 feet below ground surface [bgs] to 22.7 feet bgs).

A Palmerton Group geologist collected soil samples at two to three intervals from each soil boring depending on the depth of bedrock refusal. In general, Palmerton collected soil samples from the following intervals: 1 to 3 feet bgs, 4 to 5 feet bgs, and at the interval above refusal. If refusal was close to the 4 to 5-foot interval, a third soil sample was not collected from the boring. The sampling methodology followed that described in the ICM Work Plan. Recovered soils were logged and screened in the field by Palmerton Group utilizing a RAE Systems MiniRAE 3000 Handheld VOC Meter (a photoionization detector [PID]). Appendix A contains the soil boring logs, including the field



# PALMERTIN GROUP

measurements. Soil samples were placed in laboratory-supplied containers, placed on ice, and shipped to Alpha Analytical in Westborough, Massachusetts, for analyses, following the chain of custody and analytical procedures in the ICM Work Plan.

Initially, the plan was to install temporary wells using direct push equipment; however, due to the presence of bedrock, groundwater was not encountered at some locations. Temporary wells that produced sufficient groundwater for sampling were installed at five locations using the direct push equipment (SP-27, SP-29, SP-30, SP-32, and SP-37) by placing a 1-inch diameter Schedule 40 PVC well casing with a 0.010-slot well screen at the bottom of the borehole. The screen lengths varied from 1 to 4 feet depending on the depth of groundwater above the bedrock surface.

An additional eight temporary wells were installed using a CME 85 auger drill rig (well locations SP-19, SP-20, SP-25, SP-26, SP-28, SP-33, and SP-34). These wells were also installed with 1-inch diameter Schedule 40 PVC well casing with a 0.010-slot well screen. The wells were designated with an "A" in their title description since the wells were co-located with the direct push borings.

A Palmerton Group geologist collected groundwater samples from the temporary wells using low flow sampling techniques. The low flow technique entailed first measuring and recording the static water level measurement, which was compared to the well installation records for reference to well construction and screen depth. Next, 0.25-inch polyethylene tubing was cut to length for purging. Groundwater purging involved using a peristaltic pump and collecting real-time water quality measurements using a YSI Professional Plus with a flow cell to measure temperature, pH, specific conductivity, dissolved oxygen, oxidation-reduction potential, and turbidity (a separate turbidity meter was used). Groundwater quality measurements were recorded and when simultaneous readings were observed to be within a 10% range of each other, the groundwater samples were collected. A field duplicate sample was collected from temporary well SP–25(A). No groundwater accumulated in well SP–19 after a 24-hour period, and this well was not sampled.

After completing the sampling, Nothnagle backfilled each boring with bentonite and finished the ground surface with asphalt patch. Nothnagle also pulled the PVC well casing and screen from each temporary well location and disposed of the material as investigation-derived non-hazardous waste.

### **Field Observations**

The Palmerton Group geologist recorded lithology observations on the boring logs provided in Appendix A. In general, the upper-most zone of unsaturated soil consists of gravel with some intermingled sand, silt, organic matter, and weathered bedrock. In some locations, Palmerton Group identified the presence of ash, cinders, or brick near the ground surface and a silt layer deeper. Palmerton Group also observed a blue-green color in borings SP-26, SP-27, and SP-34, a fuel odor in SP-21 and SP-28, and a thin coal tar seam in SP-25.



# PALMERTIN GROUP

Bedrock was encountered at depths less than 10 feet bgs across the entire property (average depth of approximately 5 feet bgs), except at the southwest corner where the depth to bedrock was approximately 20 feet bgs. Limited perched water was encountered and generally the first groundwater encountered was in the bedrock zone. This was similar to observations made during GaiaTech's investigation in which perched groundwater was detected intermittently on the west side of the site. GaiaTech did not encounter perched groundwater on the east side of the site (east of Transit Road).

### **Investigation Results**

The soil data are provided in Table 1 and the groundwater data in Table 2. Gnarus and Palmerton Group compared the soil results to the industrial soil cleanup objectives (SCOs) and protection of groundwater SCOs. The exceedances are highlighted on Table 1 with the colors yellow (direct contact SCOs) and blue (protection of groundwater SCOs). The groundwater data are compared to the NYSDEC Technical & Operational Guidance Series (TOGS) values. Groundwater concentrations exceeding TOGS are highlighted in yellow on Table 2.

The supplemental investigation did not identify any newly discovered substantial issues at the site. There were generally intermittent exceedances of the industrial SCOs and TOGS for PAHs, particularly in the main portion of the plant site. The PAH issues will be addressed by the coal tar investigation work and are not discussed in this report. However, the data are useful for the ongoing coal tar investigation.

In considering the results, Gnarus combined the recent data generated during the Phase II investigation conducted by GaiaTech as well as the recent work completed by Gnarus. GaiaTech collected 17 soil samples for analysis of VOCs, PAHs, and metals. GaiaTech summarized its investigation results in a letter, dated October 31, 2012.

### Soil

No VOCs were detected above the industrial SCOs. The only metals detected above the industrial SCOs were lead in soil boring SB-34 at a depth of 2 to 3 feet (6,600 mg/kg) and copper in boring GT-6 at a depth of 1 to 2 feet (21,000 mg/kg). In addition, there were three detections of arsenic (SB-26, SB-28, and SB-34), which were both below 30 mg/kg.

The investigation included collecting four soil samples from around a previous sample collected by Environ in 2011 from boring B-3 in the southwest portion of the site. The sample collected by Environ contained 227 mg/kg of arsenic. The recent data from the four borings in this area do not exceed the industrial SCOs for arsenic, suggesting that the 2011 arsenic result was an anomaly and not indicative of a widespread presence of arsenic in that area of the site. No further investigation is warranted in this area due to the presence of arsenic.



# PALMERTIN GROUP

### Groundwater

The presence of VOCs in groundwater during this recent investigation was more limited than previously detected during investigations by Dames & Moore (1999), Benchmark (2006), and Environ (2011). Although several samples contain VOCs above TOGS, the detections are not excessive and are not indicative of source area concentrations. For example, NYSDEC guidance considers nonaqueous phase liquid (NAPL) to be suspected in groundwater when the chemical concentration exceeds 1% of the solubility. No VOC was detected at a concentration greater than 0.1% of its solubility and, thus, there are no chemical data supporting the presence of a VOC-based NAPL. The areas where groundwater samples with detections that warrant discussion are as follows (note: the comparison levels provided below are above TOGS, but provide a general indication of the magnitude of the concentrations; Table 2 includes a comparison to TOGS):

- South of the laboratory (vicinity of historical samples B-6/SB-11 where chloroform was detected) - only xylenes (478 ug/l [total]) and ethylbenzene (160 ug/l) were detected at a concentration above 100 ug/l. In addition, benzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, isopropylbenzene, and n-propyl benzene were detected above TOGS (but all at or below 50 ug/l). The data clearly do not indicate a substantive source of chloroform, which was the primary focus of the investigation in this area.
- North of the administration building Only xylenes were detected above 100 ug/l (155 ug/l [total]); this area is south and downgradient of the laboratory.
- South of phosgene production although VOCs were detected in this area, the concentrations were below 100 ug/l and are not deemed indicative of a source or even warranting further investigation. Temporary well SP-25(A) installed in this area was the only location that contained detectable concentrations of trichloroethene (TCE) or tetrachloroethene (PCE). The groundwater sample from this well contained an estimated TCE concentration of 42 ug/l (47 ug/l in the duplicate sample) and an estimated PCE concentration of 57 ug/l (64 ug/l in the duplicate sample).
- Maintenance shop area SP-26(A) to the south contained 20 ug/l chloroform and SB-28(A) to the north contained 18 ug/l 1,2,4-trimethylbenzene.
- West portion of manufacturing area the groundwater sample collected from GT-12 contained chlorobenzene at 16 ug/l.
- Southwest corner of site the groundwater sample collected from GT-11 contained relatively low concentrations of benzene, toluene, and xylenes, all at concentrations less than 20 ug/l.

<sup>&</sup>lt;sup>1</sup> New York State Department of Environmental Conservation. (2010). Final DER-10, Technical Guidance for Site Investigation and Remediation. May. P. 46.



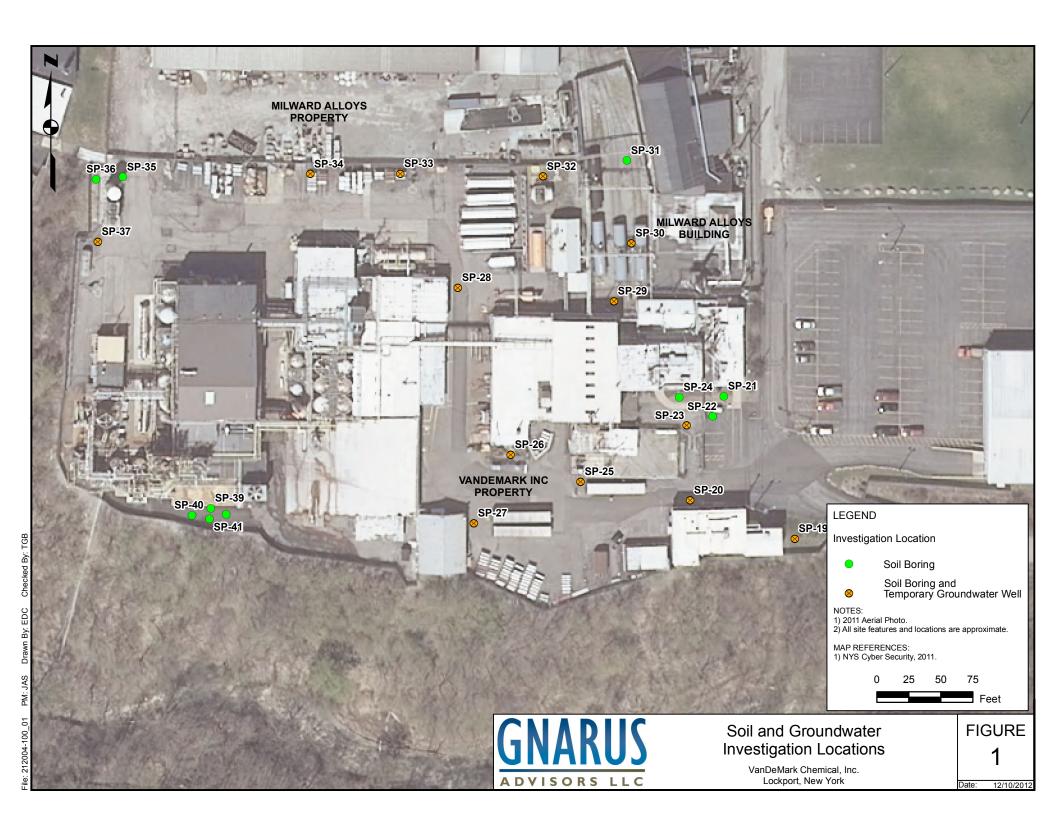
# PALMERTIEN GROUP

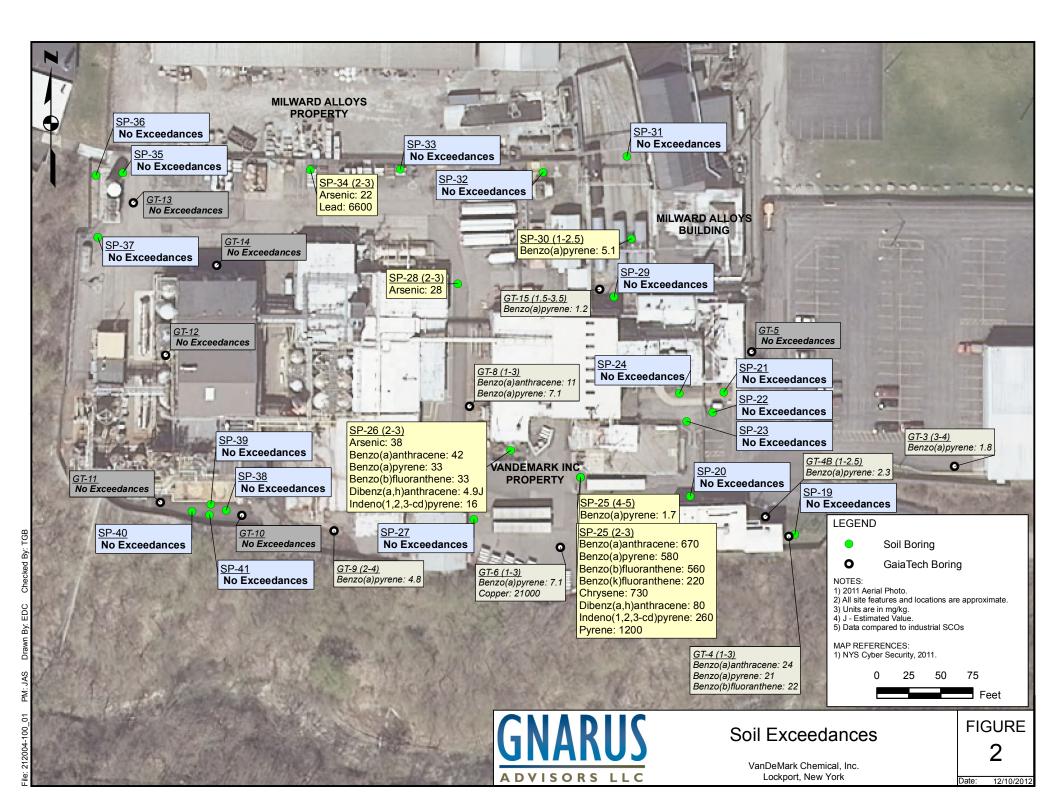
In addition, there were a few detections of dissolved metals in the groundwater samples. The concentrations are not indicative of a concern considering that the samples were collected from temporary wells.

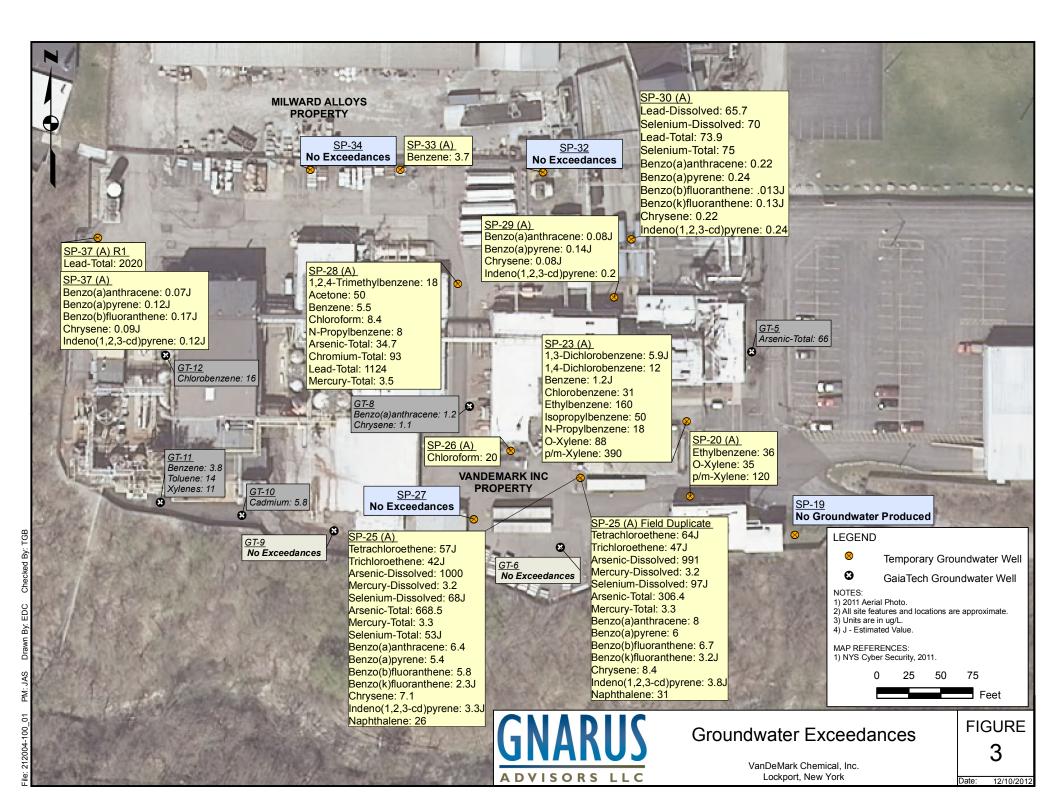
The most interesting aspect of the investigation results is that the samples from shallow groundwater did not contain chlorinated solvents, except in one location, SP-25(A), located south of the phosgene production area. Data from previous investigations, such as the Environ groundwater investigation from 2011, indicated the presence of 1,1,1-trichloroethane (TCA) and its degradation products in the western portion of the property. In 2011, TCA was detected as high as 86 ug/l, 1,1-dichloroethane up to 230 ug/l, and 1,1-dichloroethene up to 65 ug/l. Therefore, the chlorinated solvents previously detected in the deeper portion of the aquifer on the western portion of the site, primarily 1,1,1-trichloroethane and its degradation byproducts, were not detected in the shallow groundwater samples at concentrations above TOGS in this most recent investigation. Furthermore, chloroform was not detected south of the laboratory where it was previously detected in MW-9D (groundwater) and SB-11 (soil) in 2011. Most importantly, none of the VOC detections are indicative of source concentrations.

Please do not hesitate to contact us with any questions or comments.

Sincerely yours,


John A. Simon


Director, Gnarus Advisors LLC


A. Amon

**Todd Bown** 

Technical Specialist - Geologist, Palmerton Group LLC







#### Table 1 Soil Data - October and November 2012 VanDemark Chemical Lockport, New York

| Sampl<br>Sampl<br>Sampl   |                              |                   | SP-38 (1-2)<br>10/29/12<br>11:00 | SP-38 (8-9)<br>10/29/12<br>11:05 | SP-38 (17-18.5)<br>10/29/12<br>11:10 | SP-39 (2-2.5)<br>10/29/12<br>11:20 | SP-39 (8-9)<br>10/29/12<br>11:30 | SP-39 (16-16.6)<br>10/29/12<br>11:40 | SP-40 (1-2)<br>10/29/12<br>11:50 | SP-40 (8-9)<br>10/29/12<br>11:55 | SP-40 (19-19.9)<br>10/29/12<br>12:05 | SP-41 (1-1.5)<br>10/29/12<br>13:15 | SP-41 (8-9)<br>10/29/12<br>13:20 | SP-41 (19-19.5)<br>10/29/12<br>13:30 | SP-35 (2-2.5)<br>10/29/12<br>14:00 | SP-35 (4-5)<br>10/29/12<br>14:10 | SP-36 (1-2)<br>10/29/12<br>14:25 | SP-36 (4-5)<br>10/29/12<br>14:30 | SP-36 (4-5) R2<br>10/29/12<br>14:30 | SP-37 (1-2)<br>10/31/12<br>9:05 | SP-37<br>10/3<br>9: |
|---------------------------|------------------------------|-------------------|----------------------------------|----------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|---------------------------------|---------------------|
| Jumpi                     |                              | NYSDEC            |                                  |                                  | 1                                    |                                    |                                  | <u> </u>                             |                                  |                                  |                                      |                                    |                                  |                                      |                                    |                                  |                                  |                                  |                                     |                                 | <u> </u>            |
|                           | NYSDEC                       | Protection of     |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      |                                    |                                  |                                  |                                  |                                     |                                 |                     |
| Analyte                   |                              | Groundwater       |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      |                                    |                                  |                                  |                                  |                                     |                                 |                     |
| -                         | Industrial SCOs <sup>a</sup> |                   |                                  |                                  | I                                    | 1                                  | I                                | 1                                    | l                                | 1                                | I                                    |                                    | l                                | 1                                    |                                    |                                  | 1                                | 1                                | 1                                   | 1                               | 1                   |
| <b>5</b>                  |                              | SCOs <sup>b</sup> |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      |                                    |                                  |                                  |                                  |                                     |                                 |                     |
|                           |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      |                                    |                                  |                                  |                                  |                                     |                                 |                     |
| ,1,2-Tetrachloroethane    |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              | l N                 |
| ,1-Trichloroethane        | 1,000                        |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | 0.00086 J                          | ND                               | ND                               |                                  | ND                                  | ND                              | 1                   |
| ,2,2-Tetrachloroethane    |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              | 1                   |
| 1,2-Trichloroethane       |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              | 1                   |
| 1-Dichloroethane          | 480                          |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND.                                 | ND                              | 1 .                 |
| L-Dichloroethene          | 1,000                        |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
|                           | 1,000                        |                   | -                                |                                  |                                      | -                                  |                                  |                                      |                                  |                                  |                                      | -                                  |                                  |                                      | ND ND                              | ND                               | ND ND                            |                                  | ND ND                               | ND                              | ;                   |
| -Dichloropropene          |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      |                                    |                                  | 1                                |                                  |                                     |                                 |                     |
| ,3-Trichlorobenzene       |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    | -                                |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| ,3-Trichloropropane       |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| ,4,5-Tetramethylbenzene   |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              | '                   |
| 2,4-Trichlorobenzene      |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              | 1                   |
| ,4-Trimethylbenzene       | 380                          | 3.6               |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| 2-Dibromo-3-chloropropane |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| 2-Dibromoethane           |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| 2-Dichlorobenzene         | 1,000                        |                   |                                  |                                  |                                      | _                                  |                                  |                                      | _                                |                                  |                                      |                                    | _                                |                                      | ND                                 | ND                               | ND                               | I -                              | ND                                  | ND                              |                     |
| -Dichloroethane           | 60                           |                   | -                                |                                  | I                                    | -                                  | I                                |                                      | _                                |                                  |                                      | -                                  | l _                              |                                      | ND ND                              | ND.                              | ND ND                            |                                  | ND.                                 | ND.                             | 1 7                 |
|                           | 00                           |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND ND                              | ND<br>ND                         | ND ND                            | 1                                | ND<br>ND                            | ND<br>ND                        |                     |
| 2-Dichloropropane         | 200                          | 0.4               | -                                |                                  |                                      |                                    |                                  | -                                    |                                  |                                  |                                      |                                    |                                  | -                                    |                                    |                                  |                                  | _                                |                                     |                                 |                     |
| ,5-Trimethylbenzene       | 380                          | 8.4               |                                  |                                  |                                      | -                                  |                                  |                                      | -                                |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               | _                                | ND                                  | ND                              |                     |
| 3-Dichlorobenzene         | 560                          |                   |                                  |                                  |                                      | -                                  | -                                | -                                    | -                                |                                  |                                      |                                    | -                                |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| I-Dichloropropane         |                              |                   |                                  |                                  |                                      |                                    |                                  | -                                    |                                  |                                  |                                      |                                    |                                  | -                                    | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| l-Dichlorobenzene         | 250                          |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| -Diethylbenzene           |                              |                   |                                  |                                  | -                                    | -                                  |                                  |                                      | -                                |                                  |                                      |                                    | -                                |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| -Dioxane                  | 250                          |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| !-Dichloropropane         |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND ND                              | ND                               | ND ND                            |                                  | ND ND                               | ND                              |                     |
| Sutanone                  | 1,000                        |                   | -                                | I -                              | I                                    |                                    | I -                              | I _                                  |                                  |                                  |                                      |                                    | l -                              | I -                                  | 0.01 J                             | ND<br>ND                         | ND ND                            | 1 -                              | ND<br>ND                            | ND<br>ND                        |                     |
|                           | 1,000                        |                   |                                  | 1                                | I                                    |                                    | I                                | ~                                    | I -                              | 1                                | 1                                    |                                    | l                                |                                      |                                    |                                  |                                  | 1 -                              |                                     |                                 |                     |
| lexanone                  |                              |                   |                                  |                                  |                                      |                                    |                                  | -                                    | -                                |                                  |                                      |                                    |                                  | -                                    | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| thyltoluene               |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| Methyl-2-pentanone        |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| etone                     | 1,000                        | 0.05              |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | 0.061                              | ND                               | 0.0071 J                         |                                  | 0.01 J                              | ND                              |                     |
| ylonitrile                |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| nzene                     | 89                           |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND.                                 | ND                              |                     |
| omobenzene                |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| omochloromethane          |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| omodichloromethane        |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND<br>ND                           | ND<br>ND                         | ND<br>ND                         |                                  | ND<br>ND                            | ND<br>ND                        | 1                   |
|                           |                              |                   |                                  |                                  |                                      |                                    |                                  | -                                    |                                  |                                  |                                      |                                    |                                  |                                      | ND<br>ND                           |                                  | ND<br>ND                         |                                  | ND<br>ND                            | ND<br>ND                        |                     |
| omoform                   |                              |                   |                                  |                                  |                                      |                                    |                                  | -                                    |                                  |                                  |                                      |                                    | -                                |                                      | 1                                  | ND                               |                                  |                                  | 1                                   |                                 |                     |
| omomethane                |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | 0.0016 J                        | 0.0                 |
| rbon Disulfide            | 1,000                        | 2.7               |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | 0.0012 J                           | ND                               | ND                               |                                  | 0.00042 J                           | ND                              | 1                   |
| rbon Tetrachloride        | 44                           | 0.76              |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              | 1                   |
| lorobenzene               | 1,000                        |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| loroethane                |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| loroform                  | 700                          | 0.37              |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | 0.0019                             | ND                               | ND                               |                                  | 0.00046 J                           | ND                              |                     |
| loromethane               | 700                          | 0.57              |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND ND                            |                                  | ND                                  | ND                              |                     |
|                           | 1 000                        |                   | -                                |                                  |                                      | -                                  |                                  |                                      |                                  |                                  |                                      | -                                  |                                  |                                      |                                    |                                  |                                  |                                  |                                     |                                 |                     |
| -1,2-Dichloroethene       | 1,000                        |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| -1,3-Dichloropropene      |                              |                   |                                  |                                  |                                      |                                    |                                  | -                                    |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| oromochloromethane        |                              |                   |                                  |                                  |                                      | -                                  |                                  |                                      |                                  |                                  |                                      |                                    |                                  | -                                    | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| romomethane               |                              |                   |                                  |                                  | -                                    | -                                  |                                  |                                      | -                                |                                  |                                      |                                    | -                                |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| hlorodifluoromethane      |                              |                   |                                  |                                  | -                                    | -                                  |                                  |                                      | -                                |                                  |                                      |                                    | -                                |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| nyl ether                 |                              |                   |                                  |                                  | -                                    | -                                  |                                  | -                                    | -                                |                                  |                                      |                                    | -                                | -                                    | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| ylbenzene                 | 780                          | 1                 |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| xachlorobutadiene         |                              |                   |                                  |                                  | l                                    |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND ND                              | ND                               | ND ND                            |                                  | ND ND                               | ND.                             |                     |
|                           |                              |                   |                                  | I                                | I                                    | 1                                  | I                                |                                      | l                                | Ī                                | I .                                  |                                    | l .                              |                                      |                                    |                                  | 1                                | 1                                | 1                                   |                                 |                     |
| propylbenzene             | Not For 1 !!                 | N-4               |                                  |                                  |                                      | -                                  |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| -P-Xylene                 | Not Established              | Not established   |                                  |                                  |                                      | -                                  |                                  | -                                    | -                                |                                  |                                      |                                    |                                  |                                      |                                    |                                  | 1 .                              | -                                | 1 .                                 | 1 .                             |                     |
| ethyl tert butyl ether    | 1,000                        |                   |                                  |                                  |                                      | -                                  |                                  |                                      |                                  |                                  |                                      |                                    |                                  | -                                    | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| thylcyclohexane           | Not Established              | Not established   |                                  |                                  | -                                    | -                                  | -                                | -                                    | -                                |                                  |                                      |                                    | -                                | -                                    |                                    |                                  | 1                                | -                                | 1                                   | 1                               |                     |
| ethylene Chloride         | 1,000                        | 0.05              |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
| ohthalene                 | 1,000                        |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | 0.016                            |                                  | 0.008                               | ND                              | 0                   |
| utylbenzene               | 1,000                        |                   |                                  |                                  |                                      | _                                  |                                  |                                      | _                                |                                  |                                      |                                    | _                                |                                      | ND                                 | ND                               | ND                               | I -                              | ND                                  | ND                              |                     |
| ropylbenzene              | 1,000                        |                   | -                                |                                  | I                                    |                                    | I                                |                                      | _                                |                                  |                                      |                                    | l _                              |                                      | ND ND                              | ND.                              | ND ND                            | I -                              | ND ND                               | ND<br>ND                        |                     |
| nlorotoluene              | 1,000                        |                   |                                  | I                                | I                                    |                                    | I                                | I                                    | I                                | 1 .                              | I                                    |                                    |                                  | I                                    | ND<br>ND                           | ND<br>ND                         | ND<br>ND                         | 1 -                              | ND<br>ND                            | ND<br>ND                        |                     |
|                           |                              |                   |                                  |                                  | I                                    |                                    | I -                              |                                      |                                  |                                  |                                      | -                                  |                                  |                                      |                                    |                                  |                                  | 1 -                              |                                     |                                 |                     |
| ylene                     | Not Established              | Not established   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    | -                                |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| -Xylene                   |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    | -                                |                                      | ND                                 | ND                               | ND                               | -                                | 0.00069 J                           | ND                              |                     |
| hlorotoluene              |                              |                   |                                  |                                  | -                                    | -                                  | -                                | -                                    | -                                |                                  |                                      |                                    | -                                | -                                    | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| opropyltoluene            |                              |                   |                                  |                                  |                                      | -                                  |                                  |                                      | -                                |                                  |                                      |                                    | -                                |                                      | 0.0022                             | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| Butylbenzene              | 1,000                        |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| rene                      | /                            |                   |                                  |                                  |                                      | _                                  |                                  |                                      | _                                |                                  |                                      |                                    | _                                |                                      | ND                                 | ND                               | ND ND                            | I -                              | ND                                  | ND                              |                     |
|                           | 1.000                        |                   |                                  |                                  | l                                    | _                                  | l                                |                                      |                                  |                                  |                                      |                                    | _                                |                                      | ND ND                              | ND.                              | ND ND                            |                                  | ND.                                 | ND.                             |                     |
| -Butylbenzene             | ,                            | 4.2               |                                  |                                  | I                                    |                                    | I -                              |                                      |                                  |                                  |                                      |                                    |                                  |                                      | 1                                  |                                  |                                  | 1 -                              |                                     |                                 | 1                   |
| rachloroethene            | 300                          | 1.3               |                                  |                                  |                                      | -                                  |                                  | -                                    | -                                |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               | _                                | ND                                  | ND                              | ١.                  |
| uene                      | 1,000                        | 0.7               |                                  |                                  |                                      | -                                  |                                  | -                                    | -                                |                                  |                                      |                                    | -                                | -                                    | ND                                 | ND                               | 0.00046 J                        | -                                | 0.00033 J                           | 0.00041 J                       | 0.                  |
| ns-1,2-Dichloroethene     | 1,000                        |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| ns-1,3-Dichloropropene    |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               | -                                | ND                                  | ND                              |                     |
| ns-1,4-Dichloro-2-butene  |                              |                   |                                  |                                  |                                      |                                    |                                  |                                      |                                  |                                  |                                      |                                    |                                  |                                      | ND                                 | ND                               | ND                               |                                  | ND                                  | ND                              |                     |
|                           | 400                          | 0.47              |                                  |                                  | l                                    |                                    |                                  |                                      | -                                |                                  | I                                    |                                    |                                  |                                      | ND ND                              | ND.                              | ND ND                            | 1                                | ND ND                               | ND.                             |                     |

#### Table 1 Soil Data - October and November 2012 VanDemark Chemical Lockport, New York

| Analyte  Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenes , Total  otal Metals Arsenic Barium Cadmium Chomium Copper Lead Magnesium Mercury Nickel Selenium | NYSDEC Industrial SCOs <sup>3</sup> 27 1,000 | NYSDEC Protection of Groundwater SCOsb  1.6       |     | 11:05 | 11:10 | 11:20 | 11:30 | 11:40 | 11:50 | 11:55 | 12:05 | 13:15 | 13:20 | 13:30 | 14:00   | 14:10  | 14:25   | 14:30   | 14:30 | 9:05    | 9:1  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|---------|---------|-------|---------|------|
| Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenes, Total  Datal Metals Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                  | 27<br>1,000                                  | Protection of<br>Groundwater<br>SCOs <sup>b</sup> |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenes, Total  Datal Metals Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                  | 27<br>1,000                                  | Groundwater<br>SCOs <sup>b</sup>                  | -   |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenes, Total  Otal Metals Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                   | 27<br>1,000                                  | SCOs <sup>b</sup>                                 | -   |       | 1     | İ     |       |       |       |       |       |       |       |       |         |        | 1       |         |       |         |      |
| Vinyl acetate Vinyl chloride Vinyl chloride Arylenes, Total  btal Metals Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                          | 1,000                                        |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Vinyl acetate Vinyl chloride Xylenes , Total  stal Metals Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                                         | 1,000                                        |                                                   | -   |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Vinyl acetate Vinyl chloride Xylenes, Total  tal Metals Arsenic Barium Cadmium Chromium Cropper Lead Magnesium Mercury Nickel                                          | 1,000                                        | 1.6                                               |     |       |       |       |       |       |       |       |       |       |       |       | ND      | ND     | ND      |         | ND.   | ND      | NE   |
| Vinyl chloride Xylenes , Total  barium Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                                                            | 1,000                                        | 1.6                                               |     |       |       |       |       |       |       |       |       |       |       |       | ND      | ND     | ND      |         | ND    | ND      | NI   |
| Xylenes , Total  otal Metals  Arsenic  Barium  Cadmium  Chromium  Copper  Lead  Magnesium  Mercury  Nickel                                                             | 1,000                                        | 1.6                                               |     |       | 1     |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| otal Metals Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                                                                                       | 16                                           | 1.6                                               |     |       |       |       |       |       |       |       |       |       |       | -     | ND      | ND     | ND      |         | ND    | ND      | NE   |
| Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                                                                                                   |                                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Arsenic Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                                                                                                   |                                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                                                                                                           |                                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Barium Cadmium Chromium Copper Lead Magnesium Mercury Nickel                                                                                                           |                                              | 16                                                | 3.7 | 4.3   | 2     | 6     | 6.8   | 3.4   | 4.9   | 5.7   | 9.5   | 5.1   | 7.7   | 9.7   | 9.2     | 1      | 4.3     | 0.71    |       | 2.5     | 3.0  |
| Cadmium<br>Chromium<br>Copper<br>Lead<br>Magnesium<br>Mercury<br>Nickel                                                                                                | 10,000                                       | 10                                                | 3.7 | 4.3   | 1 *   | 0     | 0.0   | 3.4   | 4.5   | 3.7   | 3.3   | 3.1   | /./   | 5.7   |         |        |         |         |       |         |      |
| Chromium<br>Copper<br>Lead<br>Magnesium<br>Mercury<br>Nickel                                                                                                           |                                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       | 73      | 38     | 130     | 18      | -     | 25      | 53   |
| Copper<br>Lead<br>Magnesium<br>Mercury<br>Nickel                                                                                                                       | 60                                           | 7.5                                               |     |       |       |       |       |       |       |       |       |       |       |       | 1       | 0.06 J | 4.2     | 0.37 J  |       | 0.14 J  | 1.0  |
| Lead<br>Magnesium<br>Mercury<br>Nickel                                                                                                                                 | 800                                          | 19                                                |     |       |       |       |       |       |       |       |       |       |       |       | 39      | 12     | 56      | 5.8     |       | 3.2     | 16   |
| Lead<br>Magnesium<br>Mercury<br>Nickel                                                                                                                                 | 10,000                                       | 1,720                                             |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Magnesium<br>Mercury<br>Nickel                                                                                                                                         | 3,900                                        | 450                                               |     |       |       |       |       |       |       |       |       |       |       |       | 3800    | 12     | 920     | 87      |       | 16      | 240  |
| Mercury<br>Nickel                                                                                                                                                      | Not Established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       | 5000    |        | 320     | 0,      |       | 10      |      |
| Nickel                                                                                                                                                                 |                                              | Not established                                   |     |       |       |       |       | I     |       |       |       |       |       |       |         |        |         |         |       |         |      |
|                                                                                                                                                                        | 5.7                                          |                                                   |     |       |       |       |       |       |       |       |       |       |       |       | 0.05 J  | 0.05 J | 0.31    | 0.03 J  |       | ND      | 0.0  |
| Selenium                                                                                                                                                               | 10,000                                       | 130                                               |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         | -       |       |         |      |
|                                                                                                                                                                        | 6,800                                        |                                                   |     |       |       |       |       |       |       |       |       |       |       |       | 0.87 J  | 0.66 J | 0.6 J   | 0.16 J  |       | 0.27 J  | 1.:  |
| Silver                                                                                                                                                                 | 6.800                                        |                                                   |     |       |       |       |       |       |       |       |       |       |       |       | 0.56 J  | ND     | 0.8     | ND      |       | 0.13 J  | 0.14 |
|                                                                                                                                                                        |                                              | 2.400                                             |     |       |       |       |       | I     | 1     |       |       |       |       |       | 0.303   | שאו    | 1       | l IND   |       | 0.15 J  | 0.14 |
| Zinc                                                                                                                                                                   | 10,000                                       | 2,480                                             |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         | -       |       |         |      |
|                                                                                                                                                                        |                                              |                                                   |     |       | 1     | l     |       | 1     | I     | l     |       |       |       |       | 1       | 1      | 1       | 1       |       |         | 1    |
| /OCs                                                                                                                                                                   |                                              |                                                   |     | 1     | I     |       | I     | 1     | 1     | 1     |       |       |       |       | 1       | 1      | 1       | 1       | 1     |         |      |
| 2,4,5-Trichlorophenol                                                                                                                                                  | 1,000                                        | 0.1                                               |     | l     | l     | I     | l     |       | L     |       |       |       |       |       |         | l      |         | 1       |       |         |      |
|                                                                                                                                                                        | Not established                              |                                                   | -   |       |       |       |       |       | I     |       | l - [ | -     |       |       |         | l .    |         |         |       |         |      |
| 2,4,6-Trichlorophenol                                                                                                                                                  |                                              |                                                   | -   |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 2,4-Dichlorophenol                                                                                                                                                     | 1,000                                        | 0.4                                               |     |       |       |       |       | -     |       |       |       |       |       |       |         |        |         | -       |       |         | 1    |
| 2,4-Dimethylphenol                                                                                                                                                     | Not established                              | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         | -       |       |         |      |
| 2,4-Dinitrophenol                                                                                                                                                      | 1,000                                        | 0.2                                               |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 2,4-Dinitrotoluene                                                                                                                                                     | Not established                              | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
|                                                                                                                                                                        |                                              |                                                   |     |       |       |       |       |       | -     |       |       | -     |       |       |         |        |         |         | 1     |         |      |
| 2,6-Dinitrotoluene                                                                                                                                                     | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         | -     |         |      |
| 2-Chloronaphthalene                                                                                                                                                    | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       | ND      | ND     | ND      | ND      | -     | ND      | NE   |
| 2-Chlorophenol                                                                                                                                                         | 1,000                                        | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 2-Methylnaphthalene                                                                                                                                                    | Not established                              | 36.4                                              |     |       |       |       |       |       |       |       |       |       |       |       | ND      | ND     | ND      | ND      |       | ND      | NI   |
| 2-Methylphenol                                                                                                                                                         | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
|                                                                                                                                                                        |                                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 2-Nitroaniline                                                                                                                                                         | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 2-Nitrophenol                                                                                                                                                          | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         | -     |         |      |
| 3 & 4 Methylphenol                                                                                                                                                     | Not established                              | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 3,3'-Dichlorobenzidine                                                                                                                                                 | Not established                              | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 3-Nitroaniline                                                                                                                                                         | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
|                                                                                                                                                                        |                                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        | 1       |         |       |         |      |
| 4,6-Dinitro-2-methylphenol                                                                                                                                             | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         | -     |         |      |
| 4-Bromophenyl phenyl ether                                                                                                                                             | Not established                              | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 4-Chloro-3-methylphenol                                                                                                                                                | Not established                              | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 4-Chloroaniline                                                                                                                                                        | 1.000                                        | 0.22                                              |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
|                                                                                                                                                                        |                                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 4-Chlorophenyl phenyl ether                                                                                                                                            | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 4-Nitroaniline                                                                                                                                                         | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| 4-Nitrophenol                                                                                                                                                          | Not established                              | 0.1                                               |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Acenaphthene                                                                                                                                                           | 1,000                                        | 98                                                |     |       |       |       |       |       |       |       |       |       |       |       | ND      | ND     | ND      | 0.059 J |       | ND      | NE   |
| Acenaphthylene                                                                                                                                                         | 1,000                                        | 107                                               |     |       |       |       |       |       |       |       |       |       |       |       | ND      | ND     | ND      | ND      |       | ND      | NE   |
|                                                                                                                                                                        |                                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       | IND     | ND.    | I ND    | I ND    | 1     | IND     | INI  |
| Acetophenone                                                                                                                                                           | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       | -     |       |         |        |         |         | -     |         |      |
| Anthracene                                                                                                                                                             | 1,000                                        | 1,000                                             |     |       |       |       |       |       |       |       |       |       |       |       | 0.069 J | ND     | 0.098 J | 0.077 J |       | ND      | NI   |
| Atrazine                                                                                                                                                               | Not established                              | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         | -       | -     |         | 1    |
| Benzaldehyde                                                                                                                                                           | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        | 1       | -       |       |         |      |
|                                                                                                                                                                        |                                              | 1                                                 |     | -     | -     | -     | -     |       | I .   |       | _     | -     | -     | _     | 0.28    | ND     | 0.22    | 0.1 J   |       | 0.1     | l N  |
| Benzo(a)anthracene                                                                                                                                                     | 11                                           |                                                   | _   |       | I     |       | I -   |       |       |       | -     |       |       | -     |         |        |         |         |       |         |      |
| Benzo(a)pyrene                                                                                                                                                         | 1                                            | 22                                                | -   |       |       |       |       | -     | -     |       |       |       | -     | -     | 0.24    | ND     | 0.18    | 0.075 J |       | 0.096 J | N    |
| Benzo(b)fluoranthene                                                                                                                                                   | 11                                           | 1.7                                               |     |       |       |       |       |       |       |       |       |       |       |       | 0.29    | ND     | 0.25    | 0.11    | -     | 0.13    | NE   |
| Benzo(g,h,i)perylene                                                                                                                                                   | 1,000                                        | 1,000                                             |     |       |       |       |       |       |       |       |       |       |       |       | 0.14 J  | ND     | 0.098 J | ND      | -     | 0.079 J | N    |
| Benzo(k)fluoranthene                                                                                                                                                   | 110                                          | 1.7                                               |     |       |       |       |       |       |       |       |       |       |       |       | 0.12    | ND     | 0.087 J | 0.043 J |       | 0.051 J | l N  |
| Biphenyl                                                                                                                                                               | Not established                              |                                                   |     |       |       |       |       |       | I     |       |       |       |       |       | 1       | -      | 1       | 1       |       | 1       | "    |
|                                                                                                                                                                        |                                              |                                                   | -   |       |       |       | I     |       | 1     |       |       |       |       | -     | 1       | 1 -    | 1 -     | 1 "     |       |         |      |
| Bis(2-chloroethoxy)methane                                                                                                                                             | Not established                              |                                                   |     |       | -     |       |       |       |       |       |       |       |       |       |         |        |         |         | -     |         |      |
| Bis(2-chloroethyl)ether                                                                                                                                                | Not established                              |                                                   |     |       |       |       |       | -     |       |       |       |       |       |       |         |        |         | -       |       |         | 1    |
| Bis(2-chloroisopropyl) ether                                                                                                                                           | Not established                              | Not established                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Bis(2-ethylhexyl)phthalate                                                                                                                                             | Not Established                              |                                                   |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         | -       |       |         |      |
| Butyl benzyl phthalate                                                                                                                                                 | 1,000                                        | 122                                               |     | 1     | I .   | 1     | I .   | l .   | I .   | 1     | _     |       |       | _     | I .     | 1 .    |         | 1       |       |         |      |
|                                                                                                                                                                        |                                              |                                                   | _   |       | I     |       | I -   |       |       |       | -     |       |       | -     |         |        | 1       | 1 "     | 1     |         |      |
| Caprolactam                                                                                                                                                            | Not established                              |                                                   |     |       |       |       |       |       |       |       |       |       | -     |       |         |        |         | -       | -     |         |      |
| Carbazole                                                                                                                                                              | Not established                              | Not established                                   |     |       |       |       | -     |       | -     |       |       |       |       |       |         |        | -       | -       |       |         |      |
| Chrysene                                                                                                                                                               | 110                                          | 1                                                 |     |       |       |       |       |       |       |       |       |       |       |       | 0.31    | ND     | 0.24    | 0.1 J   |       | 0.12    | N    |
| Dibenz(a,h)anthracene                                                                                                                                                  | 1                                            | 1.000                                             |     |       |       |       |       |       |       |       |       |       |       |       | 0.042 J | ND     | ND      | ND      |       | ND      | , N  |
|                                                                                                                                                                        | _                                            | -,                                                |     |       | I     |       |       |       |       |       |       |       | -     |       | 0.042 3 | ""     | "       | ""      |       | 140     | "    |
| Dibenzofuran                                                                                                                                                           | 1,000                                        | 210                                               |     |       |       |       |       |       |       |       |       |       | -     |       |         |        |         |         | -     |         |      |
| Diethyl phthalate                                                                                                                                                      | 1,000                                        | 7.1                                               |     |       |       |       |       | -     |       |       |       |       |       |       |         |        |         | -       | -     |         |      |
| Dimethyl phthalate                                                                                                                                                     | 1,000                                        | 27                                                |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
| Di-n-butyl phthalate                                                                                                                                                   | 1,000                                        | 8.1                                               |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         |         |       |         |      |
|                                                                                                                                                                        |                                              |                                                   | _   |       | I     |       | 1     |       |       | 1     | _     | -     | _     | _     | 1       | l      |         | 1       | 1     |         |      |
| Di-n-octyl phthalate                                                                                                                                                   | 1,000                                        | 120                                               |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         | -       | -     |         |      |
| Fluoranthene                                                                                                                                                           | 1,000                                        | 1,000                                             |     |       |       |       |       |       |       |       |       |       |       |       | 0.43    | ND     | 0.44    | 0.21    |       | 0.19    | 0.   |
| Fluorene                                                                                                                                                               | 1,000                                        | 386                                               |     |       |       |       |       |       |       |       |       |       |       |       | ND      | ND     | ND      | 0.06 J  | -     | ND      | N    |
| Hexachlorobenzene                                                                                                                                                      | 12                                           | 3.2                                               |     |       |       |       |       |       |       |       |       |       |       |       |         |        |         | -       |       |         |      |
| Hexachlorobetizette                                                                                                                                                    |                                              | Not established                                   | _   | 1     | I     |       | 1     | 1     |       | l     | _     | -     | _     | _     |         | I      | 1       | 1       | 1     |         |      |

### VanDemark Chemical Lockport, New York

Privileged and Confidential

Prepared at Request of Counsel

| Sampl                     | le ID                        |                   | SP-38 (1-2) | SP-38 (8-9) | SP-38 (17-18.5) | SP-39 (2-2.5) | SP-39 (8-9) | SP-39 (16-16.6) | SP-40 (1-2) | SP-40 (8-9) | SP-40 (19-19.9) | SP-41 (1-1.5) | SP-41 (8-9) | SP-41 (19-19.5) | SP-35 (2-2.5) | SP-35 (4-5) | SP-36 (1-2) | SP-36 (4-5) | SP-36 (4-5) R2 | SP-37 (1-2) | SP-37 (4-5) |
|---------------------------|------------------------------|-------------------|-------------|-------------|-----------------|---------------|-------------|-----------------|-------------|-------------|-----------------|---------------|-------------|-----------------|---------------|-------------|-------------|-------------|----------------|-------------|-------------|
| Sample                    | Date                         |                   | 10/29/12    | 10/29/12    | 10/29/12        | 10/29/12      | 10/29/12    | 10/29/12        | 10/29/12    | 10/29/12    | 10/29/12        | 10/29/12      | 10/29/12    | 10/29/12        | 10/29/12      | 10/29/12    | 10/29/12    | 10/29/12    | 10/29/12       | 10/31/12    | 10/31/12    |
| Sample                    | Time                         |                   | 11:00       | 11:05       | 11:10           | 11:20         | 11:30       | 11:40           | 11:50       | 11:55       | 12:05           | 13:15         | 13:20       | 13:30           | 14:00         | 14:10       | 14:25       | 14:30       | 14:30          | 9:05        | 9:15        |
|                           |                              | NYSDEC            |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
|                           | NYSDEC                       | Protection of     |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| Analyte                   | Industrial SCOs <sup>a</sup> | Groundwater       |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
|                           |                              | SCOs <sup>b</sup> |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| Hexachlorocyclopentadiene | Not established              | Not established   |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| Hexachloroethane          | Not established              | Not established   |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| Indeno(1,2,3-cd)pyrene    | 11                           | 1,000             |             |             |                 |               |             |                 |             |             |                 |               |             |                 | 0.12 J        | ND          | 0.1 J       | ND          |                | 0.088 J     | ND          |
| Isophorone                | 1,000                        | 4.4               |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| Naphthalene               | 1,000                        | 12                |             |             |                 |               |             |                 |             |             |                 |               |             |                 | 0.065 J       | ND          | ND          | 0.08 J      |                | ND          | ND          |
| Nitrobenzene              | 140                          | 0.17              |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| N-Nitrosodi-n-propylamine | Not established              | Not established   |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| N-Nitrosodiphenylamine    | Not established              | Not established   |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| Pentachlorophenol         | 55                           | 0.8               |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| Phenanthrene              | 1,000                        | 1,000             | -           |             |                 |               |             |                 |             |             |                 |               |             |                 | 0.43          | ND          | 0.39        | 0.26        |                | 0.074 J     | 0.048       |
| Phenol                    | 1,000                        | 0.33              |             |             |                 |               |             |                 |             |             |                 |               |             |                 |               |             |             |             |                |             |             |
| Pyrene                    | 1,000                        | 1,000             |             |             |                 |               |             |                 |             |             |                 |               |             |                 | 0.51          | ND          | 0.42        | 0.18        |                | 0.18        | 0.054       |

All concentrations are in mg/kg.

ND = Not detected.

-- = Not analyzed.

E = Estimated value obtained from a 125:1 dilution.

J = Estimated concentration.

(1) Sample had an adjusted volume during extraction due to extract matrix and/or viscosity.

(2) Dilution required due to high concentration of target analyte.

(3) Analyte detected at a level less that Reporting Limit and greater than or equal to the Method Detection Limit.

(4) Laboratory Control Sample and/or laboratory control sample duplicate recovery was below acceptance limits.

(a) Laboratory Colintor Sample and/or Inadiatory Control sample duplicate recovery was been acceptance mins.

Bold text and yellow highlighting indicates exceedance of NYSDEC Industrial Soil Cleanup Objectives (SCOs).

Bold text and blue highlighting indicates exceedance of NYSDEC Protection of Groundwater SCOs.

Bold text, yellow/blue highlighting, and boxed values indicate exceedance of both MYSDEC Industrial SCOs and Protection of Groundwater SCOs.

a) NYSDEC industrial SCOs from NYSDEC Table 375-6.8(b): Restricted Use Soil Cleanup Objectives (Industrial) and NYSDEC CP-S1 Soil Cleanup Guidelines.

b) NYSDEC Protection of Groundwater SCOs from NYSDEC Table 375-6.8(b): Restricted Use Soil Cleanup Objectives (Industrial) and NYSDEC CP-51 Soil Cleanup Guidelines.

\*\*FIELD DUPLICATE is associated with SP-24 (1.5-3)

#### Table 1 Soil Data - October and November 2012 VanDemark Chemical Lockport, New York

| Sampl<br>Sampl<br>Sampl                 | e Date                       |                                          | SP-37 (8-9)<br>10/31/12<br>9:25 | SP-34 (2-3)<br>10/31/12<br>9:55 | SP-28 (2-3)<br>10/31/12<br>10:20 | SP-28 (4-5)<br>10/31/12<br>10:30 | SP-29 (2-3)<br>10/31/12<br>10:40 | SP-29 (4-5)<br>10/31/12<br>10:45 | SP-30 (1-2.5)<br>10/31/12<br>14:35 | SP-30 (4-5.3)<br>10/31/12<br>14:40 | SP-31 (2-2.5)<br>10/31/12<br>15:10 | SP-31 (4-4.9)<br>10/31/12<br>15:15 | SP-26 (2-3)<br>11/1/12<br>9:40 | SP-26 (4-5)<br>11/1/12<br>9:50 | SP-25 (2-3)<br>11/1/12<br>10:15 | SP-25 (4-5)<br>11/1/12<br>10:20 | SP-22 (2-3)<br>11/1/12<br>10:55 | SP-22 (4-5)<br>11/1/12<br>11:00 | SP-21 (2-2.5)<br>11/1/12<br>11:10 | SP-21 (4-5)<br>11/1/12<br>11:15 | SP-23 (2-2.5)<br>11/1/12<br>13:10 |
|-----------------------------------------|------------------------------|------------------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|
|                                         |                              | NYSDEC                                   |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
|                                         | NYSDEC                       | Protection of                            |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Analyte                                 |                              | Groundwater                              |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
|                                         | Industrial SCOs <sup>a</sup> |                                          |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
|                                         |                              | SCOs <sup>b</sup>                        |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| VOCs                                    |                              |                                          |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| 1,1,1,2-Tetrachloroethane               |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,1,1-Trichloroethane                   | 1,000                        |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,1,2,2-Tetrachloroethane               |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,1,2-Trichloroethane                   |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,1-Dichloroethane                      | 480                          |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,1-Dichloroethene                      | 1,000                        |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,1-Dichloropropene                     |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2,3-Trichlorobenzene                  |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2,3-Trichloropropane                  |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2,4,5-Tetramethylbenzene              |                              |                                          | ND                              | ND                              | 3.4                              | 0.0079                           | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.062 J                         | 0.0003 J                        | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2,4-Trichlorobenzene                  |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2,4-Trimethylbenzene                  | 380                          | 3.6                                      | ND                              | ND                              | 0.74                             | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.55 J                          | 0.0029 J                        | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2-Dibromo-3-chloropropane             |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2-Dibromoethane                       |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2-Dichlorobenzene                     | 1,000                        |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2-Dichloroethane                      | 60                           |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,2-Dichloropropane                     |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,3,5-Trimethylbenzene                  | 380                          | 8.4                                      | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.17J                           | 0.00082 J                       | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,3-Dichlorobenzene                     | 560                          |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,3-Dichloropropane                     |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| 1,4-Dichlorobenzene                     | 250                          |                                          | ND                              | ND                              | ND ND                            | ND ND                            | ND                               | ND                               | ND ND                              | ND ND                              | ND ND                              | ND                                 | ND ND                          | ND ND                          | ND                              | ND                              | ND ND                           | ND ND                           | ND                                | 0.0019 J                        | ND ND                             |
| 1,4-Diethylbenzene                      |                              |                                          | ND                              | ND.                             | 0.47 J                           | 0.00075 J                        | ND                               | ND ND                            | ND ND                              | ND ND                              | ND ND                              | ND                                 | ND ND                          | ND ND                          | 0.39 J                          | 0.0015                          | ND ND                           | 0.00023 J                       | ND                                | ND                              | ND ND                             |
| 1.4-Dioxane                             | 250                          |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND.                                | ND                                 | ND                                 | ND.                            | ND                             | ND                              | ND                              | ND.                             | ND                              | ND                                | ND                              | ND                                |
| 2,2-Dichloropropane                     | 250                          |                                          | ND                              | ND.                             | ND ND                            | ND ND                            | ND                               | ND                               | ND ND                              | ND ND                              | ND ND                              | ND                                 | ND ND                          | ND                             | ND                              | ND ND                           | ND ND                           | ND ND                           | ND                                | ND ND                           | ND ND                             |
| 2-Butanone                              | 1,000                        |                                          | ND<br>ND                        | ND<br>ND                        | ND<br>ND                         | ND<br>ND                         | ND<br>ND                         | ND<br>ND                         | ND ND                              | ND ND                              | ND<br>ND                           | ND<br>ND                           | ND ND                          | ND<br>ND                       | ND<br>ND                        | ND ND                           | ND ND                           | ND<br>ND                        | ND<br>ND                          | ND ND                           | ND ND                             |
| 2-Hexanone                              | 1,000                        |                                          | ND<br>ND                        | ND<br>ND                        | ND<br>ND                         | ND ND                            | ND<br>ND                         | ND ND                            | ND ND                              | ND ND                              | ND<br>ND                           | ND<br>ND                           | ND ND                          | ND ND                          | ND<br>ND                        | ND ND                           | ND ND                           | ND ND                           | ND<br>ND                          | ND ND                           | ND ND                             |
|                                         |                              |                                          | ND<br>ND                        | ND<br>ND                        | 0.081 J                          | ND<br>ND                         | ND<br>ND                         | ND<br>ND                         | ı                                  | ND<br>ND                           | ND<br>ND                           | ND<br>ND                           | ND<br>ND                       | ND<br>ND                       | 0.94                            |                                 | ND<br>ND                        | ND<br>ND                        | ND<br>ND                          | ND<br>ND                        | ND<br>ND                          |
| 4-Ethyltoluene                          |                              |                                          | ND<br>ND                        | ND<br>ND                        | 0.081 J<br>ND                    | ND<br>ND                         | ND<br>ND                         | ND<br>ND                         | ND<br>ND                           | ND<br>ND                           | ND<br>ND                           | ND<br>ND                           | ND<br>ND                       | ND<br>ND                       | 0.94<br>ND                      | 0.0034 J<br>ND                  | ND<br>ND                        | ND<br>ND                        | ND<br>ND                          | ND<br>ND                        | ND<br>ND                          |
| 4-Methyl-2-pentanone                    | 4 000                        | 0.05                                     |                                 | 1                               |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Acetone                                 | 1,000                        | 0.05                                     | 0.009 J                         | 0.04                            | ND                               | 0.01 J                           | 0.05                             | 0.0093 J                         | 0.031                              | 0.068                              | 0.034                              | 0.022                              | ND                             | 0.0091 J                       | ND                              | 0.028                           | 0.015                           | 0.019                           | ND                                | 0.015                           | ND                                |
| Acrylonitrile                           |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Benzene                                 | 89                           |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.26                            | 0.0018                          | ND                              | ND                              | ND                                | ND                              | ND                                |
| Bromobenzene                            |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Bromochloromethane                      |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Bromodichloromethane                    |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Bromoform                               |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Bromomethane                            |                              |                                          | ND                              | 0.00092 J                       | ND                               | 0.00077 J                        | ND                               | ND                               | 0.0012 J                           | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Carbon Disulfide                        | 1,000                        | 2.7                                      | ND                              | ND                              | ND                               | 0.00056 J                        | 0.00048 J                        | ND                               | ND                                 | ND                                 | 0.001 J                            | 0.00047 J                          | 0.002 J                        | 0.00053 J                      | ND                              | 0.0032 J                        | ND                              | ND                              | ND                                | 0.00071 J                       | 0.00046 J                         |
| Carbon Tetrachloride                    | 44                           | 0.76                                     | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | 0.0017                         | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Chlorobenzene                           | 1,000                        |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | 0.006                           | ND                              | ND                              | ND                                | 0.0057                          | ND                                |
| Chloroethane                            |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Chloroform                              | 700                          | 0.37                                     | ND                              | 0.0094                          | ND                               | ND                               | ND                               | ND                               | ND                                 | 0.00048 J                          | ND                                 | ND                                 | 0.058                          | 0.006                          | 15                              | 0.15                            | 0.027                           | 0.0021                          | 0.00066 J                         | 0.00045 J                       | 0.61 E                            |
| Chloromethane                           |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| cis-1,2-Dichloroethene                  | 1,000                        |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.12 J                          | 0.0029                          | ND                              | ND                              | ND                                | ND                              | ND                                |
| cis-1,3-Dichloropropene                 |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Dibromochloromethane                    |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Dibromomethane                          |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Dichlorodifluoromethane                 |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Ethyl ether                             |                              |                                          | ND                              | ND                              | ND ND                            | ND ND                            | ND                               | ND                               | ND ND                              | ND ND                              | ND                                 | ND                                 | ND ND                          | ND ND                          | ND                              | ND                              | ND ND                           | ND ND                           | ND                                | ND ND                           | ND ND                             |
| Ethylbenzene                            | 780                          | 1                                        | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.89                            | 0.0038                          | ND                              | ND                              | ND                                | 0.0013                          | ND                                |
| Hexachlorobutadiene                     |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Isopropylbenzene                        |                              |                                          | ND                              | ND.                             | 0.13                             | ND                               | ND                               | ND                               | ND ND                              | ND                                 | ND ND                              | ND                                 | ND ND                          | ND                             | 0.13 J                          | 0.00048 J                       | ND ND                           | ND ND                           | ND                                | 0.003                           | ND ND                             |
| M+P-Xvlene                              | Not Established              | Not established                          |                                 |                                 |                                  |                                  |                                  |                                  |                                    | -                                  |                                    |                                    | -                              |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Methyl tert butyl ether                 | 1,000                        | ar a | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
|                                         | Not Established              | Not established                          |                                 |                                 | ""                               | "                                |                                  |                                  | "                                  | "                                  | 140                                |                                    |                                | "-                             | -                               |                                 | "                               | "-                              |                                   | "-                              | "                                 |
| Methylcyclohexane<br>Methylene Chloride | 1,000                        | 0.05                                     | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | 0.0038 J                        | ND                              | ND                              | ND                                | ND                              | ND                                |
| Naphthalene                             | 1,000                        | 0.03                                     | ND<br>ND                        | ND<br>ND                        | 0.18 J                           | ND<br>ND                         | ND                               | ND<br>ND                         | ND<br>ND                           | ND<br>ND                           | ND<br>ND                           | ND<br>ND                           | ND<br>ND                       | ND<br>ND                       | 20                              | 0.0038 3                        | 0.0012 J                        | ND<br>ND                        | ND<br>ND                          | ND<br>ND                        | ND<br>ND                          |
|                                         |                              |                                          | ND<br>ND                        | ND<br>ND                        | 0.18 J                           | 0.000871                         | ND<br>ND                         | ND<br>ND                         | ND<br>ND                           | ND<br>ND                           | ND<br>ND                           | ND<br>ND                           | ND<br>ND                       | ND<br>ND                       | 0.061 J                         | 0.12<br>ND                      | 0.00121<br>ND                   | ND<br>ND                        | ND<br>ND                          | ND<br>ND                        | ND<br>ND                          |
| n-Butylbenzene                          | 1,000                        |                                          |                                 | 1                               |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 | 1                               |                                   |                                 |                                   |
| n-Propylbenzene                         | 1,000                        |                                          | ND                              | ND                              | 0.38                             | 0.00056 J                        | ND                               | ND                               | ND<br>ND                           | ND                                 | ND<br>ND                           | ND                                 | ND<br>ND                       | ND                             | 0.09 J                          | ND                              | ND<br>ND                        | ND<br>ND                        | ND                                | 0.0015                          | ND<br>ND                          |
| o-Chlorotoluene                         |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND<br>0.000551                  | ND                                |
| O-Xylene                                | Not Established              | Not established                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.42                            | 0.0033                          | ND                              | ND                              | ND                                | 0.00066 J                       | ND                                |
| p/m-Xylene                              |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.97                            | 0.0062                          | ND                              | ND                              | ND                                | 0.001 J                         | ND                                |
| p-Chlorotoluene                         |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| p-Isopropyltoluene                      |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 0.059 J                         | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| sec-Butylbenzene                        | 1,000                        |                                          | ND                              | ND                              | 0.38                             | 0.00063 J                        | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Styrene                                 |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| tert-Butylbenzene                       | 1,000                        |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Tetrachloroethene                       | 300                          | 1.3                                      | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 2.7                             | 0.022                           | ND                              | ND                              | ND                                | ND                              | 0.0014                            |
| Toluene                                 | 1,000                        | 0.7                                      | 0.00063 J                       | ND                              | ND                               | ND                               | ND                               | 0.00028 J                        | ND                                 | 0.0013 J                           | ND                                 | ND                                 | 0.00032 J                      | ND                             | 0.82                            | 0.0055                          | ND                              | ND                              | ND                                | 0.00034 J                       | ND                                |
| trans-1,2-Dichloroethene                | 1,000                        |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| trans-1,3-Dichloropropene               |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| trans-1,4-Dichloro-2-butene             |                              |                                          | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND ND                              | ND                                 | ND                                 | ND                                 | ND ND                          | ND                             | ND                              | ND ND                           | ND ND                           | ND ND                           | ND                                | ND                              | ND ND                             |
|                                         |                              | 0.47                                     |                                 | ND ND                           |                                  | ND<br>ND                         | ND                               | ND ND                            | ND ND                              |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 | 0.0011 J                          |

#### Table 1 Soil Data - October and November 2012 VanDemark Chemical Lockport, New York

| Sampl<br>Sample<br>Sample                               | e Date                             |                                    | SP-37 (8-9)<br>10/31/12<br>9:25 | SP-34 (2-3)<br>10/31/12<br>9:55 | SP-28 (2-3)<br>10/31/12<br>10:20 | SP-28 (4-5)<br>10/31/12<br>10:30 | SP-29 (2-3)<br>10/31/12<br>10:40 | SP-29 (4-5)<br>10/31/12<br>10:45 | SP-30 (1-2.5)<br>10/31/12<br>14:35 | SP-30 (4-5.3)<br>10/31/12<br>14:40 | SP-31 (2-2.5)<br>10/31/12<br>15:10 | SP-31 (4-4.9)<br>10/31/12<br>15:15 | SP-26 (2-3)<br>11/1/12<br>9:40 | SP-26 (4-5)<br>11/1/12<br>9:50 | SP-25 (2-3)<br>11/1/12<br>10:15 | SP-25 (4-5)<br>11/1/12<br>10:20 | SP-22 (2-3)<br>11/1/12<br>10:55 | SP-22 (4-5)<br>11/1/12<br>11:00 | SP-21 (2-2.5)<br>11/1/12<br>11:10 | SP-21 (4-5)<br>11/1/12<br>11:15 | SP-23 (2-2.5)<br>11/1/12<br>13:10 |
|---------------------------------------------------------|------------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|
|                                                         | NYSDEC                             | NYSDEC<br>Protection of            |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Analyte                                                 | Industrial SCOs <sup>a</sup>       | Groundwater                        |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
|                                                         | industrial SCOs                    | SCOs <sup>b</sup>                  |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Trichlorofluoromethane                                  |                                    | 5005                               | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Vinyl acetate                                           |                                    |                                    | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Vinyl chloride                                          | 27                                 | 4.6                                | ND                              | ND                              | ND                               | ND                               | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              | ND                              | ND                              | ND                                | ND                              | ND                                |
| Xylenes , Total                                         | 1,000                              | 1.6                                |                                 |                                 |                                  | -                                | -                                |                                  | -                                  | -                                  | -                                  |                                    | -                              | -                              |                                 |                                 |                                 |                                 |                                   |                                 | _                                 |
| Total Metals                                            |                                    |                                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Arsenic                                                 | 16                                 | 16                                 | 1.4                             | 22                              | 28                               | 1.9                              | 4.9                              | 1                                | 3.9                                | 1.4                                | 0.7                                | 1.1                                | 38                             | 9.3                            | 6.2                             | 7.1                             |                                 |                                 |                                   |                                 | -                                 |
| Barium                                                  | 10,000                             |                                    | 130                             | 400                             | 72                               | 30                               | 55                               | 25                               | 91                                 | 38                                 | 16                                 | 28                                 | 240                            | 84                             | 73                              | 77                              |                                 |                                 |                                   |                                 | -                                 |
| Cadmium<br>Chromium                                     | 60<br>800                          | 7.5<br>19                          | 0.12 J                          | 0.66 J                          | 0.24 J<br>12                     | ND<br>5.7                        | 1.1<br>140                       | 0.07 J<br>9.8                    | 0.96<br><b>19</b>                  | 0.71<br>15                         | ND<br>5.1                          | 0.3 J<br>10                        | 0.14 J<br>11                   | 1.9<br>15                      | 0.06 J<br>8.4                   | 0.21 J<br>13                    |                                 |                                 |                                   |                                 |                                   |
| Copper                                                  | 10,000                             | 1,720                              |                                 |                                 |                                  |                                  |                                  |                                  |                                    | -                                  |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Lead                                                    | 3,900                              | 450                                | 32                              | 6600                            | 470                              | 24                               | 12                               | 3.1                              | 130                                | 30                                 | 1.9 J                              | 6.8                                | 28                             | 140                            | 29                              | 44                              |                                 |                                 |                                   |                                 |                                   |
| Magnesium                                               | Not Established                    | Not established                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Mercury<br>Nickel                                       | 5.7<br>10,000                      | 130                                | ND<br>                          | 0.12                            | 0.11                             | ND                               | 0.11                             | ND                               | 0.1                                | 0.04 J                             | ND                                 | ND                                 | 0.08 J                         | 0.07                           | 0.05 J                          | 0.03 J                          | -                               |                                 |                                   |                                 |                                   |
| Selenium                                                | 6,800                              | 150                                | 2                               | 5.4                             | 1.9                              | 0.74 J                           | 1.2                              | 0.81 J                           | 1.4                                | 1.2                                | 0.6 J                              | 0.86                               | 6.2                            | 1.1                            | 2.1                             | 1.1                             | -                               |                                 |                                   |                                 |                                   |
| Silver                                                  | 6,800                              |                                    | ND                              | 3.1                             | 0.17 J                           | ND                               | ND                               | ND                               | 0.33 J                             | 0.16 J                             | ND                                 | ND                                 | ND                             | 0.26 J                         | 0.18 J                          | 0.2 J                           |                                 |                                 |                                   |                                 |                                   |
| Zinc                                                    | 10,000                             | 2,480                              | -                               |                                 |                                  | -                                |                                  |                                  | -                                  | -                                  | -                                  |                                    | -                              | -                              | -                               | -                               | -                               | -                               | -                                 |                                 | -                                 |
| SVOCs                                                   |                                    |                                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| 2,4,5-Trichlorophenol                                   | 1,000                              | 0.1                                |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| 2,4,6-Trichlorophenol                                   | Not established                    | Not established                    |                                 |                                 |                                  | -                                | -                                |                                  | -                                  |                                    |                                    |                                    | -                              | -                              | -                               |                                 | -                               |                                 |                                   |                                 | -                                 |
| 2,4-Dichlorophenol                                      | 1,000                              | 0.4                                |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 | -                                 |
| 2,4-Dimethylphenol                                      | Not established                    | Not established                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 | -                                 |
| 2,4-Dinitrophenol 2.4-Dinitrotoluene                    | 1,000<br>Not established           | 0.2<br>Not established             | -                               |                                 |                                  | -                                |                                  |                                  | -                                  |                                    | -                                  |                                    | -                              | -                              | -                               |                                 | -                               |                                 |                                   |                                 |                                   |
| 2,6-Dinitrotoluene                                      | Not established                    | 1                                  |                                 |                                 |                                  | _                                |                                  |                                  | -                                  |                                    |                                    |                                    |                                |                                |                                 |                                 | -                               |                                 |                                   |                                 |                                   |
| 2-Chloronaphthalene                                     | Not established                    | Not established                    | ND                              |                                 |                                  |                                  | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              |                                 |                                 |                                   |                                 |                                   |
| 2-Chlorophenol                                          | 1,000                              | Not established                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 | -                                 |
| 2-Methylnaphthalene                                     | Not established                    | 36.4<br>Not established            | ND                              |                                 |                                  | -                                | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | 66 J                            | 0.34 J                          |                                 |                                 |                                   |                                 |                                   |
| 2-Methylphenol<br>2-Nitroaniline                        | Not established<br>Not established | 0.4                                | -                               |                                 |                                  |                                  | -                                |                                  |                                    |                                    | -                                  |                                    | -                              |                                | -                               |                                 |                                 |                                 | -                                 |                                 |                                   |
| 2-Nitrophenol                                           | Not established                    | 0.3                                |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| 3 & 4 Methylphenol                                      | Not established                    | Not established                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 | -                                 |
| 3,3'-Dichlorobenzidine                                  | Not established                    | Not established                    |                                 |                                 |                                  | -                                |                                  |                                  |                                    |                                    |                                    |                                    | -                              | -                              | -                               |                                 | -                               |                                 |                                   |                                 | -                                 |
| 3-Nitroaniline<br>4.6-Dinitro-2-methylphenol            | Not established<br>Not established | 0.5<br>Not established             |                                 |                                 |                                  | -                                | -                                |                                  | -                                  | -                                  | -                                  |                                    | -                              | -                              | -                               |                                 | -                               |                                 |                                   |                                 | -                                 |
| 4-Bromophenyl phenyl ether                              | Not established                    | Not established                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| 4-Chloro-3-methylphenol                                 | Not established                    | Not established                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| 4-Chloroaniline                                         | 1,000                              | 0.22                               |                                 |                                 |                                  |                                  |                                  |                                  | -                                  | -                                  | -                                  |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 | -                                 |
| 4-Chlorophenyl phenyl ether<br>4-Nitroaniline           | Not established<br>Not established | Not established<br>Not established | -                               |                                 |                                  | -                                |                                  |                                  | -                                  |                                    |                                    |                                    | -                              | _                              | -                               |                                 | -                               |                                 |                                   |                                 |                                   |
| 4-Nitrophenol                                           | Not established                    | 0.1                                |                                 |                                 |                                  | -                                | -                                |                                  |                                    |                                    | -                                  |                                    | -                              |                                |                                 |                                 | -                               |                                 |                                   |                                 |                                   |
| Acenaphthene                                            | 1,000                              | 98                                 | ND                              |                                 |                                  |                                  | ND                               | ND                               | 0.57J                              | 0.068 J                            | ND                                 | ND                                 | 2.7 J                          | ND                             | 35 J                            | 0.27 J                          |                                 |                                 |                                   |                                 | -                                 |
| Acenaphthylene                                          | 1,000                              | 107                                | ND                              |                                 |                                  |                                  | ND                               | ND                               | ND                                 | ND                                 | ND                                 | ND                                 | ND                             | ND                             | ND                              | ND                              |                                 |                                 |                                   |                                 | -                                 |
| Acetophenone<br>Anthracene                              | Not established<br>1,000           | Not established<br>1,000           | ND                              |                                 |                                  |                                  | 0.12 J                           | ND                               | 1.5                                | 0.19                               | <br>ND                             | 0.032 J                            | 9.1                            | ND                             | 110                             | 0.65                            | -                               |                                 |                                   |                                 |                                   |
| Atrazine                                                | Not established                    | Not established                    |                                 |                                 |                                  | -                                | 0.123                            |                                  |                                    | 0.19                               |                                    | 0.0321                             |                                |                                |                                 | 0.03                            |                                 |                                 |                                   |                                 |                                   |
| Benzaldehyde                                            | Not established                    | Not established                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Benzo(a)anthracene                                      | 11                                 | 1                                  | ND                              |                                 |                                  |                                  | 0.66                             | 0.2 J                            | 5.5                                | 0.67                               | ND                                 | 0.1 J                              | 42                             | 0.063 J                        | 670                             | 1.9                             |                                 |                                 | -                                 |                                 |                                   |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                  | 1<br>11                            | 22<br>1.7                          | ND<br>ND                        |                                 |                                  | -                                | 0.62<br>0.58                     | 0.19 J<br>0.18 J                 | <b>5.1</b><br>4.6                  | 0.6<br>0.64                        | ND<br>ND                           | 0.12 J<br>0.18                     | 33<br>33                       | 0.053 J<br>0.063 J             | 580<br>560                      | 1.7<br>1.6                      |                                 |                                 | -                                 |                                 | -                                 |
| Benzo(g,h,i)perylene                                    | 1,000                              | 1,000                              | ND<br>ND                        |                                 |                                  | -                                | 0.58<br>0.29 J                   | 0.18 J<br>0.11 J                 | 2.6                                | 0.64                               | ND<br>ND                           | 0.18<br>0.072 J                    | 17                             | 0.063 J                        | 280                             | 0.79                            |                                 |                                 | -                                 |                                 |                                   |
| Benzo(k)fluoranthene                                    | 110                                | 1.7                                | ND                              |                                 |                                  |                                  | 0.18 J                           | 0.07 J                           | 2.2                                | 0.18                               | ND                                 | 0.064 J                            | 11                             | ND                             | 220                             | 0.57                            |                                 |                                 |                                   |                                 |                                   |
| Biphenyl                                                | Not established                    | Not established                    |                                 |                                 |                                  |                                  |                                  |                                  |                                    |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 | -                                 |
| Bis(2-chloroethoxy)methane                              | Not established<br>Not established | Not established<br>Not established | -                               |                                 | -                                | -                                |                                  |                                  |                                    | -                                  | -                                  |                                    | -                              | -                              | -                               |                                 | -                               |                                 |                                   |                                 |                                   |
| Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl) ether | Not established                    | Not established                    | -                               |                                 |                                  | -                                | -                                |                                  |                                    |                                    | -                                  |                                    | -                              |                                | -                               |                                 |                                 |                                 | -                                 |                                 |                                   |
| Bis(2-ethylhexyl)phthalate                              | Not Established                    | 435                                |                                 |                                 |                                  |                                  |                                  |                                  | -                                  |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Butyl benzyl phthalate                                  | 1,000                              | 122                                | -                               |                                 |                                  | -                                |                                  |                                  | -                                  | -                                  | -                                  |                                    | -                              | -                              | -                               |                                 |                                 |                                 | -                                 |                                 | -                                 |
| Caprolactam                                             | Not established                    | Not established                    |                                 |                                 |                                  | -                                |                                  |                                  | -                                  |                                    |                                    |                                    | -                              |                                |                                 |                                 | -                               |                                 |                                   |                                 |                                   |
| Carbazole<br>Chrysene                                   | Not established<br>110             | Not established                    | ND                              | -                               |                                  | -                                | 0.79                             | 0.23                             | 6.5                                | 0.75                               | 0.034 J                            | 0.18                               | 49                             | 0.079 J                        | 730                             | 2.1                             | -                               |                                 |                                   |                                 |                                   |
| Dibenz(a,h)anthracene                                   | 1                                  | 1,000                              | ND                              |                                 |                                  |                                  | ND                               | ND                               | 0.64 J                             | 0.076 J                            | ND                                 | ND                                 | 4.9 J                          | ND                             | 80                              | 0.22 J                          | -                               |                                 |                                   |                                 | -                                 |
| Dibenzofuran                                            | 1,000                              | 210                                |                                 |                                 |                                  |                                  |                                  |                                  | -                                  |                                    |                                    |                                    |                                |                                |                                 |                                 |                                 |                                 |                                   |                                 |                                   |
| Diethyl phthalate                                       | 1,000                              | 7.1                                |                                 |                                 |                                  | -                                |                                  |                                  | -                                  |                                    |                                    |                                    | -                              | -                              | -                               |                                 |                                 |                                 |                                   |                                 |                                   |
| Dimethyl phthalate                                      | 1,000<br>1,000                     | 27<br>8.1                          | -                               | -                               |                                  | -                                |                                  |                                  |                                    |                                    |                                    |                                    | _                              | -                              | -                               |                                 | -                               |                                 |                                   |                                 |                                   |
| Di-n-butyl phthalate<br>Di-n-octyl phthalate            | 1,000                              | 120                                | -                               | -                               |                                  |                                  | -                                |                                  |                                    |                                    | -                                  |                                    |                                |                                |                                 | -                               |                                 |                                 | -                                 |                                 |                                   |
| Fluoranthene                                            | 1,000                              | 1,000                              | ND                              |                                 |                                  | -                                | 0.62                             | 0.19 J                           | 6.6                                |                                    | ND                                 | 0.15                               | 48                             | 0.12                           | 650                             | 2.3                             | -                               |                                 |                                   |                                 |                                   |
| Fluorene                                                | 1,000                              | 386                                | ND                              |                                 |                                  |                                  | ND                               | ND                               | 0.56 J                             | 0.061 J                            | ND                                 | ND                                 | 2.6 J                          | ND                             | 41 J                            | 0.29 J                          | -                               |                                 |                                   |                                 |                                   |
| Hexachlorobenzene                                       | 12                                 | 3.2                                | -                               |                                 |                                  |                                  |                                  |                                  | -                                  | -                                  |                                    |                                    | -                              | -                              | -                               | -                               | -                               |                                 |                                   |                                 | -                                 |
| Hexachlorobutadiene                                     | Not established                    | Not established                    |                                 |                                 |                                  | -                                |                                  |                                  | -                                  |                                    | -                                  |                                    | -                              |                                | -                               |                                 | -                               |                                 | -                                 |                                 | 1                                 |

#### ata - October and November 2012 VanDemark Chemical Lockport, New York

Privileged and Confidential

Prepared at Request of Counsel

| Samp                      | ole ID                       |                   | SP-37 (8-9) | SP-34 (2-3) | SP-28 (2-3) | SP-28 (4-5) | SP-29 (2-3) | SP-29 (4-5) | SP-30 (1-2.5) | SP-30 (4-5.3) | SP-31 (2-2.5) | SP-31 (4-4.9) | SP-26 (2-3) | SP-26 (4-5) | SP-25 (2-3) | SP-25 (4-5) | SP-22 (2-3) | SP-22 (4-5) | SP-21 (2-2.5) | SP-21 (4-5) | SP-23 (2-2.5) |
|---------------------------|------------------------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|---------------|---------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|---------------|
| Sample                    | e Date                       |                   | 10/31/12    | 10/31/12    | 10/31/12    | 10/31/12    | 10/31/12    | 10/31/12    | 10/31/12      | 10/31/12      | 10/31/12      | 10/31/12      | 11/1/12     | 11/1/12     | 11/1/12     | 11/1/12     | 11/1/12     | 11/1/12     | 11/1/12       | 11/1/12     | 11/1/12       |
| Sample                    | e Time                       |                   | 9:25        | 9:55        | 10:20       | 10:30       | 10:40       | 10:45       | 14:35         | 14:40         | 15:10         | 15:15         | 9:40        | 9:50        | 10:15       | 10:20       | 10:55       | 11:00       | 11:10         | 11:15       | 13:10         |
|                           |                              | NYSDEC            |             |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
|                           | NYSDEC                       | Protection of     |             |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
| Analyte                   | Industrial SCOs <sup>a</sup> | Groundwater       |             |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
|                           | industrial Scos              | SCOs <sup>b</sup> |             |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
| Hexachlorocyclopentadiene | Not established              | Not established   | -           |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
| Hexachloroethane          | Not established              | Not established   |             |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
| Indeno(1,2,3-cd)pyrene    | 11                           | 1,000             | ND          |             |             |             | 0.27 J      | 0.098 J     | 2.3           | 0.3           | ND            | 0.074 J       | 16          | ND          | 260         | 0.76        |             |             |               |             |               |
| Isophorone                | 1,000                        | 4.4               |             |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
| Naphthalene               | 1,000                        | 12                | ND          |             |             |             | ND          | ND          | ND            | ND            | ND            | ND            | ND          | ND          | 84          | 0.47        |             |             |               |             |               |
| Nitrobenzene              | 140                          | 0.17              |             |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
| N-Nitrosodi-n-propylamine | Not established              | Not established   | -           |             |             | -           |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |
| N-Nitrosodiphenylamine    | Not established              | Not established   |             |             |             |             |             |             |               |               |               |               |             |             |             |             |             |             |               |             |               |

0.48

ND

--0.037 J 0.059 J

51

0.12

320

2.2

4.2

--10

0.57

0.089 J

Pentachlorophenol

Phenanthrene

Phenol

55

1,000

1,000

0.8

1,000

0.33

ND

Draft

#### ata - October and November 2012 VanDemark Chemical Lockport, New York

Privileged and Confidential

Prepared at Request of Counsel

| Semple 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                              |                   |                  |             |               |                  |                   | Lockpo               | ort, New York |               |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|-------------------|------------------|-------------|---------------|------------------|-------------------|----------------------|---------------|---------------|-------------|
| August   March   Mar   | Samp                   | le ID                        |                   | SP-23 (2-2.5) R1 | SP-23 (4-5) | SP-24 (1.5-3) | SP-24 (1.5-3) R1 | FIELD DUPLICATE** | FIELD DUPLICATE** R1 | SP-24 (4-5)   | SP-19 (1-2.5) | SP-19 (4-5) |
| VISIC   Machinal SCO   Machinal SC   |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| March   Marc   | Sample                 | Time                         | NYSDEC            | 13:10            | 13:15       | 13:30         | 13:30            | 13:30             | 13:30                | 13:35         | 14:00         | 14:15       |
| VICA   1.1.3 First received mase   1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | NYSDEC                       |                   |                  |             |               |                  |                   |                      |               |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                | Industrial SCOs <sup>a</sup> | Groundwater       |                  |             |               |                  |                   |                      |               |               | İ           |
| 1.1.2 Fraincembase   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                              | SCOs <sup>b</sup> |                  |             |               |                  |                   |                      |               |               | İ           |
| 1.1.3—Price/absorbance   1.000     NO   NO   NO   NO   NO   NO   NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                              |                   |                  |             |               |                  |                   |                      |               |               | İ           |
| 1.1.2 Friendeniemburg 1.1.2 Priendeniemburg 1.1.2 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg 1.1.3 Priendeniemburg  |                        | 4 000                        |                   |                  |             | 1             |                  |                   | -                    |               |               |             |
| 1.1.2 Freinholmentense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 1,000                        |                   |                  |             |               |                  |                   |                      |               |               |             |
| 1.1 -   1.1 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2 -   1.2    | , , ,                  |                              |                   |                  |             | 1             |                  |                   | I                    |               |               |             |
| 1.3.1-Friendergenages 1.2.3.1-Friendergenages 1.2.3.1-Friendergenages 1.2.3.1-Friendergenages 1.2.4-Friendergenages 1.2.4-Friendergenages 1.2.4-Friendergenages 1.2.4-Friendergenages 1.2.4-Friendergenages 1.2.4-Friendergenages 1.2.4-Friendergenages 1.2.4-Friendergenages 1.2.5-Friendergenages 1.2.5-Friendergenages 1.2.6-Friendergenages 1.2.6-Frienderge |                        | 480                          |                   |                  |             |               |                  |                   | -                    |               |               |             |
| 1.2.3.7 inchioroprogenee   - NO NO NO - NO NO NO NO NO NO NO NO NO NO NO NO NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | 1,000                        |                   |                  |             |               |                  |                   | I                    |               |               |             |
| 1.3.1-7-10-follower-proper   1.2.4-5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   1.2.5   |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| 1.2.4.5 First interfederates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , ,                    |                              |                   |                  |             | 1             |                  |                   | I                    |               |               |             |
| 1.2.4 Friendshorenees   380   3.6     NO   NO     NO   NO   NO   NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                              |                   |                  |             | 1             |                  |                   | I                    |               |               |             |
| 1.2-Deformed-schedunger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                              |                   |                  |             |               |                  |                   | I                    |               |               |             |
| 1.2 Delichorebrane   1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2,4-Trimethylbenzene | 380                          | 3.6               |                  | ND          | 0.34 J        |                  | 0.34 J            |                      | ND            | ND            | ND          |
| 1.2-Gehiorostename                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| 1.2-Ocidioropages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 1.000                        |                   |                  |             |               |                  |                   |                      |               |               |             |
| 1.2-Dickhoropopase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| 1.3-0-Chirocherenee   560   8.4   -   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                      | 00                           |                   |                  |             | 1             |                  |                   | I                    |               |               |             |
| 1.3-Dickhorpropane 1.4-Ochiohorprosence 250 1.4-Ochiohorpropane 1.4-Ochiohorprosence 250 1.4-Ochiohorpropane 250 1.4-Ochiohorpropane 250 1.4-Ochiohorpropane 250 1.4-Ochiohorpropane 250 1.5-Ochiohorpropane 250 1.5-Ochiohorpropane 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000 1.00000 1.00000000                                                           |                        | 380                          | 8.4               |                  |             |               |                  |                   | -                    |               |               |             |
| 1.4-Dethybraneme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                      | 560                          |                   |                  |             |               |                  |                   |                      |               |               |             |
| 1.4-Dischargereane   250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 250                          |                   |                  |             |               |                  |                   |                      |               |               |             |
| 1.4 Discourse   250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                      | 250                          |                   |                  |             | 1             |                  |                   | I                    |               |               |             |
| 2.2-Dichlorograpare 2.2-Butanone 2.1,000 2-No 2-Retanone 1,000 2-Retanone 1,000 2-Retanone 1,000 2-Retanone 1,000 2-Retanone 1,000 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 1,000 3-Rethyl-Zegetanone 1,000 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl-Zegetanone 3-Rethyl- |                        | 250                          |                   |                  |             |               |                  |                   |                      |               |               |             |
| 2-Hexanone 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-Ethytholizers 4-  |                        |                              |                   |                  | ND          | ND            |                  | ND                |                      | ND            | ND            | ND          |
| 4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure   4-Hyptolure      | 2-Butanone             | 1,000                        |                   |                  | ND          | ND            |                  | ND                |                      | ND            | ND            | ND          |
| A-extense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   Action   A   |                        |                              |                   |                  |             |               |                  |                   | I                    |               |               |             |
| Benzene   Brombehrenzene   Brombehrenz   |                        | 1.000                        | 0.05              |                  |             |               |                  |                   |                      |               |               |             |
| Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme   Bromcheneme      |                        | _,,,,,,                      |                   |                  |             | 1             |                  |                   | I                    |               |               |             |
| Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   Bromockloromethane   1,000   2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 89                           |                   |                  |             |               |                  |                   |                      |               |               |             |
| Bromodichioromethane   Bromodichioromethane   Bromodichioromethane   Carhon Disulfide   Carhon Disulfide   Carhon Disulfide   Carhon Disulfide   Carhon Tetrachloride   44   0.76     ND   0.11     0.26     ND   ND   ND   ND   ND   ND   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                              |                   |                  |             |               |                  |                   | I                    |               |               |             |
| Bromoform   Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| Strommerhane   Carhon Disulfide   Carhon Tetrachloride   A4   0.76     ND   ND   ND   ND   ND   ND   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                              |                   |                  |             |               |                  |                   | I                    |               |               |             |
| Carbor Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| Chioroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbon Disulfide       | -,                           |                   |                  |             |               |                  | 0.056 J           |                      |               |               |             |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                              | 0.76              |                  |             |               |                  |                   |                      |               |               |             |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 1,000                        |                   |                  |             |               |                  |                   | -                    |               | 1             |             |
| Chicromethane   Cis-1,2-Dichloropropene   Cis-1,2-Dichloropene    |                        | 700                          | 0.37              | 0.81             |             |               |                  |                   | 48                   |               |               |             |
| Cist_3-13-Dichloropropene   Dibromochloromethane   Dibromochlorome   |                        | 100                          |                   |                  |             |               |                  |                   |                      |               |               |             |
| Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibromomethane   Dibr   |                        | 1,000                        |                   |                  |             |               |                  |                   | -                    |               |               |             |
| Dithornomethane   Dichlorodiffluoromethane   Ethylether   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Compan   |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| Dichlorodiffuoromethane   Ethylether   Fig.   Fig.   Ethylether   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| Ethylehrer Ethylenzene Hexachlorobutadiene Horoburdadiene Horopylenzene M-F-Xylene Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Mot Established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot established Mot e |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| Hexachlorobutadiene   Isopropylenzene   Not Established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not established   Not es   |                        |                              |                   |                  |             |               |                  |                   | -                    | ND            |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 780                          | 1                 |                  |             |               | 520              |                   | 120                  |               |               |             |
| M-P-Xylene         Not Established Methyl tert burly ether         Not established Methylene (hloride 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| Methyl tert butyl ether         1,000         ND testablished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | Not Established              | Not established   |                  | ND          | 5.1           |                  | 4.9               | I                    | ND<br>        | ND<br>        | ND<br>      |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                      |                              | Not established   |                  | ND          | ND            |                  | ND                |                      | ND            | ND            | ND          |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Methylcyclohexane      | Not Established              | Not established   |                  |             |               |                  |                   | -                    |               |               | -           |
| n-Butylbenzene 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                              | 0.05              |                  |             |               |                  |                   |                      |               |               |             |
| n-Propylebrazene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluene O-Chlorotoluen |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| O-Xylene   Not Established   Not established                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 2,300                        |                   |                  |             |               |                  |                   | I                    |               |               |             |
| p-Chlorotoluene          ND         ND          ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O-Xylene               | Not Established              | Not established   |                  | ND          | 150 E         |                  | 140 E             |                      |               | ND            | ND          |
| P-Isopropyltoluene   1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                              |                   |                  |             |               | 2000             |                   | 490                  |               |               |             |
| Sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                              |                   |                  |             | 1             |                  |                   | -                    |               |               |             |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 1.000                        |                   |                  |             |               |                  |                   |                      |               |               |             |
| tert-Butylbenzene         1,000          ND         ND          ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND <td></td> <td>1,000</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | 1,000                        |                   |                  |             |               |                  |                   |                      |               |               |             |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                              |                   | -                |             |               |                  | ND                | -                    |               |               |             |
| trans-1,2-Dichloroethene         1,000          ND         ND          ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                              |                   |                  |             |               |                  |                   |                      |               |               |             |
| trans-1,3-Dichloropropene          ND         ND          ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                              | 0.7               | -                |             |               |                  |                   | -                    |               |               |             |
| trans-1,4-Dichloro-2-butene ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 1,000                        |                   |                  |             |               |                  |                   |                      |               |               |             |
| Trichloroethene 400 0.47 0.00041J ND 0.38 ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                              |                   |                  |             | 1             |                  |                   |                      |               |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trichloroethene        | 400                          | 0.47              | -                | 0.00041 J   | ND            | -                | 0.38              | -                    | ND            | ND            | ND          |

Page 7 of 9

|                                                       |                                     |                                        |                                      |                                 |                                   |                                      |                                       |                                 | nark Chemica<br>ort, New York   |                                   |                                 |
|-------------------------------------------------------|-------------------------------------|----------------------------------------|--------------------------------------|---------------------------------|-----------------------------------|--------------------------------------|---------------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| Samp                                                  | ple ID<br>le Date<br>le Time        |                                        | SP-23 (2-2.5) R1<br>11/1/12<br>13:10 | SP-23 (4-5)<br>11/1/12<br>13:15 | SP-24 (1.5-3)<br>11/1/12<br>13:30 | SP-24 (1.5-3) R1<br>11/1/12<br>13:30 | FIELD DUPLICATE**<br>11/1/12<br>13:30 | FIELD DUPLICATE** R1<br>11/1/12 | SP-24 (4-5)<br>11/1/12<br>13:35 | SP-19 (1-2.5)<br>11/1/12<br>14:00 | SP-19 (4-5)<br>11/1/12<br>14:15 |
| Analyte                                               | NYSDEC Industrial SCOs <sup>a</sup> | NYSDEC<br>Protection of<br>Groundwater | 13:10                                | 13:15                           | 13:30                             | 13:30                                | 13:30                                 | 13:30                           | 13:35                           | 14:00                             | 14:15                           |
| Trichlorofluoromethane                                |                                     | SCOs <sup>b</sup>                      |                                      | ND                              | ND                                |                                      | ND                                    |                                 | ND                              | ND                                | ND                              |
| Vinyl acetate                                         |                                     |                                        |                                      | ND                              | ND                                |                                      | ND                                    | -                               | ND                              | ND                                | ND                              |
| Vinyl chloride                                        | 27                                  |                                        | -                                    | ND                              | ND                                |                                      | ND                                    |                                 | ND                              | ND                                | ND                              |
| Xylenes , Total                                       | 1,000                               | 1.6                                    |                                      |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
|                                                       |                                     |                                        |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   | i                               |
| Total Metals                                          |                                     |                                        | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   | -                               |
| Arsenic                                               | 16                                  | 16                                     | -                                    |                                 |                                   |                                      |                                       | -                               |                                 | -                                 |                                 |
| Barium<br>Cadmium                                     | 10,000                              | 7.5                                    |                                      |                                 |                                   |                                      |                                       |                                 |                                 | -                                 |                                 |
| Chromium                                              | 800                                 | 19                                     |                                      | -                               |                                   | -                                    |                                       |                                 | -                               | -                                 |                                 |
| Copper                                                | 10,000                              | 1,720                                  |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   | i -                             |
| Lead                                                  | 3,900                               | 450                                    |                                      |                                 |                                   |                                      |                                       |                                 |                                 | 42                                | 6                               |
| Magnesium                                             | Not Established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| Mercury                                               | 5.7                                 |                                        |                                      |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Nickel                                                | 10,000                              | 130                                    | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   | -                               |
| Selenium                                              | 6,800                               |                                        | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Silver                                                | 6,800                               |                                        | -                                    |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| Zinc                                                  | 10,000                              | 2,480                                  | -                                    |                                 | -                                 |                                      |                                       | -                               |                                 |                                   |                                 |
|                                                       |                                     |                                        |                                      |                                 |                                   |                                      | 1                                     |                                 |                                 |                                   | i                               |
| SVOCs                                                 | 4 000                               |                                        |                                      |                                 |                                   |                                      | 1                                     |                                 |                                 |                                   | i                               |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol        | 1,000<br>Not established            | 0.1<br>Not established                 | -                                    |                                 | -                                 | -                                    |                                       | -                               | -                               | -                                 | -                               |
| 2,4-Dichlorophenol                                    | 1,000                               | 0.4                                    |                                      |                                 |                                   |                                      |                                       |                                 | -                               | -                                 | -                               |
| 2,4-Dimethylphenol                                    | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 | -                               | -                                 | -                               |
| 2,4-Dinitrophenol                                     | 1,000                               | 0.2                                    |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   | i I                             |
| 2,4-Dinitrophenol                                     | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 |                                 | -                                 |                                 |
| 2.6-Dinitrotoluene                                    | Not established                     | 1                                      |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| 2-Chloronaphthalene                                   | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| 2-Chlorophenol                                        | 1,000                               | Not established                        |                                      |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| 2-Methylnaphthalene                                   | Not established                     | 36.4                                   | -                                    |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| 2-Methylphenol                                        | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| 2-Nitroaniline                                        | Not established                     | 0.4                                    |                                      |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| 2-Nitrophenol                                         | Not established                     | 0.3                                    | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| 3 & 4 Methylphenol                                    | Not established                     | Not established                        | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| 3,3'-Dichlorobenzidine                                | Not established                     | Not established                        | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   | -                               |
| 3-Nitroaniline                                        | Not established                     | 0.5                                    | -                                    |                                 | -                                 | -                                    |                                       |                                 |                                 | -                                 |                                 |
| 4,6-Dinitro-2-methylphenol                            | Not established                     | Not established<br>Not established     |                                      | -                               | -                                 | -                                    |                                       |                                 | -                               |                                   | -                               |
| 4-Bromophenyl phenyl ether<br>4-Chloro-3-methylphenol | Not established<br>Not established  | Not established                        |                                      |                                 |                                   |                                      |                                       | -                               | -                               | -                                 | -                               |
| 4-Chloroaniline                                       | 1,000                               | 0.22                                   |                                      |                                 |                                   |                                      | -                                     |                                 | -                               | -                                 | -                               |
| 4-Chlorophenyl phenyl ether                           | Not established                     | Not established                        |                                      |                                 | -                                 |                                      |                                       |                                 | -                               | -                                 |                                 |
| 4-Nitroaniline                                        | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| 4-Nitrophenol                                         | Not established                     | 0.1                                    |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| Acenaphthene                                          | 1,000                               | 98                                     |                                      |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Acenaphthylene                                        | 1,000                               | 107                                    | -                                    |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| Acetophenone                                          | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| Anthracene                                            | 1,000                               | 1,000                                  | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Atrazine                                              | Not established                     | Not established                        | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Benzaldehyde                                          | Not established                     | Not established                        | -                                    |                                 | -                                 |                                      |                                       | -                               |                                 | -                                 | -                               |
| Benzo(a)anthracene                                    | 11                                  | 1                                      | -                                    |                                 |                                   |                                      |                                       | -                               |                                 | -                                 |                                 |
| Benzo(a)pyrene                                        | 1<br>11                             | 22<br>1.7                              | -                                    |                                 | -                                 | -                                    |                                       |                                 | -                               | -                                 | -                               |
| Benzo(b)fluoranthene                                  | 1,000                               | 1.7                                    |                                      | -                               | -                                 | -                                    |                                       |                                 | -                               |                                   |                                 |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene          | 110                                 | 1.7                                    |                                      |                                 |                                   |                                      |                                       |                                 |                                 | -                                 | -                               |
| Biphenyl                                              | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 | -                               |                                   |                                 |
| Bis(2-chloroethoxy)methane                            | Not established                     | Not established                        |                                      |                                 | -                                 |                                      |                                       |                                 |                                 | -                                 |                                 |
| Bis(2-chloroethyl)ether                               | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| Bis(2-chloroisopropyl) ether                          | Not established                     | Not established                        | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Bis(2-ethylhexyl)phthalate                            | Not Established                     | 435                                    | -                                    |                                 |                                   |                                      |                                       |                                 |                                 | -                                 | -                               |
| Butyl benzyl phthalate                                | 1,000                               | 122                                    |                                      |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Caprolactam                                           | Not established                     | Not established                        | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Carbazole                                             | Not established                     | Not established                        |                                      |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Chrysene                                              | 110                                 | 1                                      | -                                    |                                 |                                   |                                      |                                       | -                               |                                 |                                   |                                 |
| Dibenz(a,h)anthracene                                 | 1                                   | 1,000                                  | -                                    |                                 |                                   |                                      |                                       | -                               |                                 | -                                 | -                               |
| Dibenzofuran                                          | 1,000                               | 210                                    | -                                    |                                 |                                   |                                      |                                       | -                               |                                 | -                                 |                                 |
| Diethyl phthalate                                     | 1,000                               | 7.1                                    | -                                    |                                 | -                                 | -                                    |                                       | -                               |                                 |                                   |                                 |
| Dimethyl phthalate                                    | 1,000<br>1.000                      | 27<br>8.1                              | I                                    |                                 | -                                 | -                                    |                                       |                                 |                                 |                                   | -                               |
| Di-n-butyl phthalate<br>Di-n-octyl phthalate          | 1,000                               | 120                                    |                                      |                                 |                                   | -                                    |                                       |                                 | -                               |                                   | -                               |
| Fluoranthene                                          | 1,000                               | 1,000                                  |                                      | -                               | -                                 | -                                    |                                       |                                 | -                               |                                   | -                               |
| Fluorene                                              | 1,000                               | 386                                    | _                                    |                                 |                                   | -                                    |                                       |                                 |                                 | -                                 |                                 |
| Hexachlorobenzene                                     | 12                                  | 3.2                                    |                                      |                                 |                                   |                                      |                                       |                                 |                                 |                                   |                                 |
| Heyachlorobutadiene                                   | Not established                     | Not established                        | l                                    |                                 |                                   |                                      |                                       | l I                             |                                 |                                   | i                               |

Page 8 of 9 Table 1 - Sod Data also Print date: 1/9/18

Hexachlorobutadiene

| Privileged and Confidential |
|-----------------------------|
|                             |

## Oata - October and November 2012 VanDemark Chemical Lockport, New York

| Samp                      | le ID                        |                   | SP-23 (2-2.5) R1 | SP-23 (4-5) | SP-24 (1.5-3) | SP-24 (1.5-3) R1 | FIELD DUPLICATE** | FIELD DUPLICATE** R1 | SP-24 (4-5) | SP-19 (1-2.5) | SP-19 (4-5) |
|---------------------------|------------------------------|-------------------|------------------|-------------|---------------|------------------|-------------------|----------------------|-------------|---------------|-------------|
| Sample                    | Date                         |                   | 11/1/12          | 11/1/12     | 11/1/12       | 11/1/12          | 11/1/12           | 11/1/12              | 11/1/12     | 11/1/12       | 11/1/12     |
| Sample                    | Time                         |                   | 13:10            | 13:15       | 13:30         | 13:30            | 13:30             | 13:30                | 13:35       | 14:00         | 14:15       |
|                           |                              | NYSDEC            |                  |             |               |                  |                   |                      |             |               |             |
|                           | NYSDEC                       | Protection of     |                  |             |               |                  |                   |                      |             |               |             |
| Analyte                   | Industrial SCOs <sup>a</sup> | Groundwater       |                  |             |               |                  |                   |                      |             |               |             |
|                           |                              | SCOs <sup>b</sup> |                  |             |               |                  |                   |                      |             |               |             |
| Hexachlorocyclopentadiene | Not established              | Not established   |                  |             |               |                  |                   |                      |             |               |             |
| Hexachloroethane          | Not established              | Not established   |                  |             |               |                  |                   |                      |             |               |             |
| Indeno(1,2,3-cd)pyrene    | 11                           | 1,000             |                  |             |               |                  |                   |                      |             |               |             |
| Isophorone                | 1,000                        | 4.4               |                  |             |               |                  |                   |                      |             |               |             |
| Naphthalene               | 1,000                        | 12                |                  |             |               |                  |                   |                      |             |               |             |
| Nitrobenzene              | 140                          | 0.17              |                  |             |               |                  |                   |                      |             |               |             |
| N-Nitrosodi-n-propylamine | Not established              | Not established   |                  |             |               |                  |                   |                      |             |               |             |
| N-Nitrosodiphenylamine    | Not established              | Not established   |                  |             |               |                  |                   |                      |             |               |             |
| Pentachlorophenol         | 55                           | 0.8               |                  |             |               |                  |                   |                      |             |               |             |
| Phenanthrene              | 1,000                        | 1,000             |                  |             |               |                  |                   |                      |             |               |             |
| Phenol                    | 1,000                        | 0.33              |                  |             |               |                  |                   |                      |             |               |             |
| Pyrene                    | 1,000                        | 1,000             |                  |             |               |                  |                   |                      |             |               |             |

Page 9 of 9

# Table 2 Groundwater Data - October and November 2012 VanDemark Chemical Lockport, New York

| Sample ID<br>Sample Date(s)                        |                        | SP-27 110212<br>11/2/12 | SP-27 110212 R1<br>11/2/12 | SP-37 110212<br>11/2/12 | SP-37 110212 R1<br>11/2/12 | SP-29 110212<br>11/2/12 | SP-32 110212<br>11/2/12 | SP-30 110212<br>11/2/12 | 11/2/12    | TRIP BLANK 111312<br>11/2/12 | SP-23(A) 111312<br>11/13/12 | SP-25(A) 11131<br>11/13/12 |
|----------------------------------------------------|------------------------|-------------------------|----------------------------|-------------------------|----------------------------|-------------------------|-------------------------|-------------------------|------------|------------------------------|-----------------------------|----------------------------|
| Sample Time(s)                                     |                        | 9:40                    | 9:40                       | 11:25                   | 11:25                      | 14:00                   | 15:10                   | 15:45                   | ''         | ' '                          | 13:35                       | 15:20                      |
| Location at Site                                   |                        | SP-27                   | SP-27                      | SP-37                   | SP-37                      | SP-29                   | SP-32                   | SP-30                   | TRIP BLANK | TRIP BLANK                   | SP-23(A)                    | SP-25(A)                   |
|                                                    | NYSDEC Class GA        |                         |                            |                         |                            |                         |                         | i                       |            |                              | , ,                         | 1                          |
| Analyte                                            | Standards <sup>1</sup> |                         |                            |                         |                            |                         |                         |                         |            |                              |                             |                            |
| VOCs                                               | Standards              |                         |                            |                         |                            |                         |                         |                         |            |                              |                             |                            |
|                                                    | _                      | ND                      | _                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,1,1,2-Tetrachloroethane<br>1,1,1-Trichloroethane | 5<br>5                 | ND<br>ND                |                            | ND<br>1.1 J             |                            | ND<br>ND                | ND<br>ND                | ND<br>ND                | ND<br>ND   | ND<br>ND                     | ND<br>ND                    | ND<br>ND                   |
| 1,1,2,2-Tetrachloroethane                          | 5                      | ND<br>ND                |                            | ND                      | -                          | ND<br>ND                | ND<br>ND                | ND ND                   | ND<br>ND   | ND<br>ND                     | ND<br>ND                    | ND<br>ND                   |
| 1,1,2-Trichloroethane                              | 1                      | ND<br>ND                | i                          | ND<br>ND                |                            | ND<br>ND                | ND<br>ND                | ND ND                   | ND<br>ND   | ND<br>ND                     | ND<br>ND                    | ND<br>ND                   |
|                                                    | =                      |                         | -                          | ND<br>ND                |                            | ND<br>ND                | ND<br>ND                | ND ND                   | ND<br>ND   | ND<br>ND                     | ND<br>ND                    | ND<br>ND                   |
| 1,1-Dichloroethane                                 | 5                      | ND                      | -                          |                         |                            |                         |                         |                         | 1          |                              |                             |                            |
| 1,1-Dichloroethene                                 | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND<br>ND                | ND<br>NB   | ND                           | ND                          | ND                         |
| 1,1-Dichloropropene                                | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2,3-Trichlorobenzene                             | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2,3-Trichloropropane                             | 0.04                   | ND                      | -                          | ND                      | -                          | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2,4,5-Tetramethylbenzene                         |                        | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2,4-Trichlorobenzene                             | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2,4-Trimethylbenzene                             | 5                      | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2-Dibromo-3-chloropropane                        | 0.04                   | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2-Dibromoethane                                  | 0.0006                 | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2-Dichlorobenzene                                | 3                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2-Dichloroethane                                 | 0.6                    | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,2-Dichloropropane                                | 1                      | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,3,5-Trimethylbenzene                             | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,3-Dichlorobenzene                                | 3                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | 5.9 J                       | ND                         |
| 1,3-Dichloropropane                                | 5                      | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,4-Dichlorobenzene                                | 3                      | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | 12                          | ND                         |
| 1,4-Diethylbenzene                                 |                        | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 1,4-Dioxane                                        |                        | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 2,2-Dichloropropane                                | 5                      | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| 2-Butanone                                         | 50                     | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND ND      | ND                           | ND                          | ND                         |
| 2-Hexanone                                         | 50                     | ND                      |                            | ND                      |                            | ND                      | ND                      | ND ND                   | ND ND      | ND ND                        | ND                          | ND                         |
| 4-Ethyltoluene                                     | 50                     | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | 4 J                         | ND                         |
| 4-Methyl-2-pentanone                               |                        | ND<br>ND                |                            | ND                      |                            | ND                      | ND ND                   | ND ND                   | ND ND      | ND<br>ND                     | ND                          | ND<br>ND                   |
| Acetone                                            | 50*                    | ND<br>ND                |                            | ND                      |                            | ND                      | ND<br>ND                | 12                      | ND<br>ND   | ND<br>ND                     | 18 J                        | ND<br>ND                   |
| Acrylonitrile                                      | 5                      | ND<br>ND                |                            | ND                      |                            | ND                      | ND<br>ND                | ND                      | ND<br>ND   | ND<br>ND                     | ND                          | ND<br>ND                   |
|                                                    | -                      |                         | i I                        |                         |                            |                         |                         |                         |            |                              | 1.2 J                       | 1                          |
| Benzene                                            | 1                      | ND                      | -                          | ND                      |                            | ND                      | ND<br>ND                | ND<br>ND                | ND<br>ND   | ND                           |                             | ND<br>ND                   |
| Bromobenzene                                       | 5                      | ND                      | ;                          | ND                      | 1                          | ND                      | ND                      | ND<br>ND                | ND<br>NB   | ND                           | ND                          | ND                         |
| Bromochloromethane                                 | 5                      | ND                      | -                          | ND                      | -                          | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Bromodichloromethane                               | 50*                    | ND                      | -                          | 0.26 J                  | -                          | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Bromoform                                          | 50                     | ND                      | -                          | ND                      | -                          | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Bromomethane                                       | 5                      | ND                      | -                          | ND                      | -                          | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Carbon Disulfide                                   | 60                     | ND                      | -                          | ND                      | -                          | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Carbon Tetrachloride                               | 5                      | 0.23 J                  | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Chlorobenzene                                      | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | 31                          | ND                         |
| Chloroethane                                       | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Chloroform                                         | 7                      | 18                      | -                          | 2.3 J                   | -                          | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Chloromethane                                      |                        | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Cis-1,2-Dichloroethene                             | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| cis-1,3-Dichloropropene                            | 0.4                    | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | ND                           | ND                          | ND                         |
| Cyclohexane                                        | Not Established        |                         |                            |                         |                            |                         |                         |                         |            |                              |                             |                            |
| Dibromochloromethane                               | 50*                    | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | 0.5                          | ND                          | ND                         |
| Dibromomethane                                     | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND         | 5                            | ND                          | ND                         |
| Dichlorodifluoromethane                            | 5                      | ND                      | -                          | ND                      |                            | ND                      | ND                      | ND                      | ND ND      | 5                            | ND                          | ND                         |
| Ethyl ether                                        | -                      | ND                      |                            | ND                      |                            | ND                      | ND                      | ND                      | ND ND      | 2.5                          | ND                          | ND                         |
| Ethylbenzene                                       | 5                      | ND<br>ND                |                            | ND                      |                            | ND                      | ND ND                   | ND ND                   | ND ND      | ND                           | 160                         | ND                         |
| Hexachlorobutadiene                                | 0.5                    | ND<br>ND                |                            | ND                      |                            | ND<br>ND                | ND<br>ND                | ND ND                   | ND<br>ND   | ND<br>ND                     | ND                          | ND<br>ND                   |
| Isopropylbenzene                                   | 5                      | ND<br>ND                | - I                        | ND                      |                            | ND                      | ND<br>ND                | ND<br>ND                | ND<br>ND   | ND<br>ND                     | 50                          | ND<br>ND                   |

## Table 2 Groundwater Data - October and November 2012

### VanDemark Chemical

|                             |                        |              |                 |              |                 | , New York   |              |              |                   |                   |                 |                 |
|-----------------------------|------------------------|--------------|-----------------|--------------|-----------------|--------------|--------------|--------------|-------------------|-------------------|-----------------|-----------------|
| Sample ID                   |                        | SP-27 110212 | SP-27 110212 R1 | SP-37 110212 | SP-37 110212 R1 | SP-29 110212 | SP-32 110212 | SP-30 110212 | TRIP BLANK 110212 | TRIP BLANK 111312 | SP-23(A) 111312 | SP-25(A) 111312 |
| Sample Date(s)              |                        | 11/2/12      | 11/2/12         | 11/2/12      | 11/2/12         | 11/2/12      | 11/2/12      | 11/2/12      | 11/2/12           | 11/2/12           | 11/13/12        | 11/13/12        |
| Sample Time(s)              |                        | 9:40         | 9:40            | 11:25        | 11:25           | 14:00        | 15:10        | 15:45        |                   |                   | 13:35           | 15:20           |
| Location at Site            |                        | SP-27        | SP-27           | SP-37        | SP-37           | SP-29        | SP-32        | SP-30        | TRIP BLANK        | TRIP BLANK        | SP-23(A)        | SP-25(A)        |
|                             | NYSDEC Class GA        |              |                 |              |                 |              |              |              |                   |                   | , ,             | ` '             |
| Analyte                     | Standards <sup>1</sup> |              |                 |              |                 |              |              |              |                   |                   |                 |                 |
| M+P-Xylene                  | 10                     |              |                 |              |                 |              |              |              |                   |                   |                 |                 |
| Methyl-t-Butyl Ether (MTBE) | 10*                    | <br>ND       |                 | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
|                             |                        |              |                 | ND           | 1               | ND           |              | ND ND        | 1                 | I ND              |                 |                 |
| Methylcyclohexane           | Not Established        |              | -               |              | -               |              |              |              |                   |                   |                 |                 |
| Methylene Chloride          | 5                      | ND           | -               | ND           | -               | ND           | ND           | ND           | ND<br>NB          | ND                | ND              | ND<br>ND        |
| Naphthalene                 | 10                     | ND           | -               | ND           | -               | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| n-Butylbenzene              | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| N-Propylbenzene             | 5                      | ND           | -               | ND           | -               | ND           | ND           | ND           | ND                | ND                | 18              | ND              |
| o-Chlorotoluene             | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| O-Xylene                    | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | 88              | ND              |
| p/m-Xylene                  | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | 390             | ND              |
| p-Chlorotoluene             | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| p-Cymene                    | 5                      |              | -               |              | -               |              |              |              |                   |                   |                 |                 |
| p-Isopropyltoluene          | 5                      | ND           | -               | ND           | -               | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| sec-Butylbenzene            | 5                      | ND           |                 | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| Styrene                     | 5                      | ND           |                 | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| tert-Butylbenzene           | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| Tetrachloroethene           | 5                      | 0.51         | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | 64 J            |
| Toluene                     | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| trans-1,2-Dichloroethene    | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| trans-1,3-Dichloropropene   | 0.4                    | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| trans-1,4-Dichloro-2-butene | 5                      | ND           | -               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| Trichloroethene             | 5                      | 0.46 J       | _               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | 47 J            |
| Trichlorofluoromethane      | 5                      | ND           | _               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| Vinyl acetate               |                        | ND           | _               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| Vinyl Chloride              | 2                      | ND           | _               | ND           |                 | ND           | ND           | ND           | ND                | ND                | ND              | ND              |
| Xylenes , Total             | 5                      |              | _               |              |                 |              |              |              |                   |                   |                 |                 |
| ,,                          |                        |              |                 |              |                 |              |              |              |                   |                   |                 |                 |
| Dissolved Metals            |                        |              |                 |              |                 |              |              |              |                   |                   |                 |                 |
| Arsenic                     | 25                     |              | 2.3             |              | 6.2             | 5            |              | 21.9         |                   |                   |                 | 991             |
| Barium                      | 1,000                  | 124          | -               | 2.1          |                 | 8.2          |              | 782.9        |                   |                   |                 | 5.3 J           |
| Beryllium                   | 3*                     |              |                 |              |                 |              |              |              |                   |                   |                 |                 |
| Cadmium                     | 5                      | 0.4 J        | _               | 0.1 J        |                 | 0.1 J        |              | 1.8 J        |                   |                   |                 | ND              |
| Chromium                    | 50                     |              | 4.1             |              | 0.4 J           | 15.5         |              | 7.5 J        |                   |                   |                 | 18.4 J          |
| Copper                      | 200                    |              |                 |              |                 |              |              | 7.5 5        |                   |                   |                 |                 |
| Iron                        | 300                    |              |                 |              |                 |              |              |              |                   |                   |                 |                 |
|                             |                        |              | _               |              |                 |              |              |              |                   |                   |                 |                 |
| Lead<br>Magnesium           | 25<br>35,000*          | 9.2          | _               | 22.7         |                 | 2.2          |              | 65.7<br>     |                   |                   |                 | ND<br>          |
| _                           | 35,000*                |              | _               |              |                 |              |              |              |                   |                   |                 |                 |
| Manganese<br>Mercury        | 0.7                    | <br>ND       |                 | ND           |                 | ND           |              | ND           |                   |                   |                 | 3.2             |
| Nickel                      | 100                    |              |                 | ND<br>       |                 | ND<br>       |              | 110          |                   | 1                 |                 |                 |
| Nickei<br>Selenium          | 100                    |              | <br>ND          |              | <br>1 J         | <br>1 J      |              | 70           |                   |                   |                 | 97 J            |
|                             |                        |              | :               |              | 1               |              |              |              |                   |                   |                 |                 |
| Silver                      | 50                     | ND<br>       | _               | ND           | _               | ND<br>       |              | ND<br>       |                   |                   |                 | ND              |
| Sodium                      | 20,000                 |              | -               |              | -               |              |              |              |                   |                   |                 |                 |
| Takal Baskala               |                        |              |                 |              |                 |              |              |              |                   |                   |                 |                 |
| Total Metals                | 25                     |              |                 | 0.7          |                 | F 2          |              | 22.5         |                   |                   |                 | 205.4           |
| Arsenic                     | 25                     |              | 4               | 8.7          | -               | 5.2          |              | 23.6         |                   |                   |                 | 306.4           |
| Barium                      | 1,000                  | 144.5        | -               | 56.3         | -               | 9.4          |              | 858.7        |                   |                   |                 | 46.8            |
| Cadmium                     | 5                      | 1.4 J        | -               | 1.6          | -               | 0.1 J        |              | 1.6 J        |                   |                   |                 | ND              |
| Chromium                    | 50                     |              | 6.3             | 10.1         |                 | 16.7         |              | 7.6 J        |                   |                   |                 | ND              |
| Lead                        | 25                     | 23.9         | -               |              | 2020            | 2.5          |              | 73.9         |                   |                   |                 | 4.1 J           |
| Mercury                     | 0.7                    | ND           | -               | 0.2          |                 | ND           |              | ND           |                   |                   |                 | 3.3             |
| Selenium                    | 10                     |              | ND              | 1 J          |                 | 2 J          |              | 75           |                   |                   |                 | 9 J             |
| Silver                      | 50                     | ND           | -               | 0.2 J        |                 | ND           |              | ND           |                   |                   |                 | ND              |
|                             |                        |              |                 |              | 1               |              |              |              |                   |                   |                 |                 |

### VanDemark Chemical

#### Laslanaut Nam Vaul

|                            |                        |              |                 |              |                 |              |              |              |            | Lockport, New York |          |          |  |  |  |  |  |  |  |
|----------------------------|------------------------|--------------|-----------------|--------------|-----------------|--------------|--------------|--------------|------------|--------------------|----------|----------|--|--|--|--|--|--|--|
| Sample ID                  |                        | SP-27 110212 | SP-27 110212 R1 | SP-37 110212 | SP-37 110212 R1 | SP-29 110212 | SP-32 110212 | SP-30 110212 | 1          | TRIP BLANK 111312  |          |          |  |  |  |  |  |  |  |
| Sample Date(s)             |                        | 11/2/12      | 11/2/12         | 11/2/12      | 11/2/12         | 11/2/12      | 11/2/12      | 11/2/12      | 11/2/12    | 11/2/12            | 11/13/12 | 11/13/12 |  |  |  |  |  |  |  |
| Sample Time(s)             |                        | 9:40         | 9:40            | 11:25        | 11:25           | 14:00        | 15:10        | 15:45        |            |                    | 13:35    | 15:20    |  |  |  |  |  |  |  |
| Location at Site           |                        | SP-27        | SP-27           | SP-37        | SP-37           | SP-29        | SP-32        | SP-30        | TRIP BLANK | TRIP BLANK         | SP-23(A) | SP-25(A) |  |  |  |  |  |  |  |
|                            | NYSDEC Class GA        |              |                 |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Analyte                    | Standards <sup>1</sup> |              |                 |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| SVOCs                      |                        |              |                 |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| 2-Chloronaphthalene        | 10*                    | ND           | -               | ND           |                 | ND           |              | ND           |            |                    |          | ND       |  |  |  |  |  |  |  |
| 2,4-Dimethylphenol         | 50*                    |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| 2-Methylnaphthalene        | Not Established        | ND           | -               | ND           |                 | ND           |              | 0.06         |            |                    |          | 9.4      |  |  |  |  |  |  |  |
| Acenaphthene               | 20                     | ND           | -               | ND           |                 | ND           |              | 0.74         |            |                    |          | 4.9      |  |  |  |  |  |  |  |
| Acenaphthylene             | Not Established        | ND           | -               | ND           |                 | ND           |              | ND           |            |                    |          | ND       |  |  |  |  |  |  |  |
| Acetophenone               | Not Established        |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Anthracene                 | 50*                    | ND           | -               | ND           |                 | ND           |              | 0.29         |            |                    |          | 3.8 J    |  |  |  |  |  |  |  |
| Benzaldehyde               | Not Established        |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Benzo(a)anthracene         | 0.002*                 | ND           |                 | 0.07 J       |                 | 0.08 J       |              | 0.22         |            |                    |          | 8        |  |  |  |  |  |  |  |
| Benzo(a)pyrene             | ND                     | ND           | -               | 0.12 J       |                 | 0.14 J       |              | 0.24         |            |                    |          | 6        |  |  |  |  |  |  |  |
| Benzo(b)fluoranthene       | 0.002*                 | ND           | -               | 0.17 J       |                 | ND           |              | 0.13 J       |            |                    |          | 6.7      |  |  |  |  |  |  |  |
| Benzo(g,h,i)perylene       | Not Established        | ND           | -               | 0.1 J        |                 | ND           |              | 0.1 J        |            |                    |          | 4.3      |  |  |  |  |  |  |  |
| Benzo(k)fluoranthene       | 0.002*                 | ND           | -               | ND           |                 | ND           |              | 0.13 J       |            |                    |          | 3.2 J    |  |  |  |  |  |  |  |
| Biphenyl                   | 5                      |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| bis(2-Chloroethyl) ether   | 1                      |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Bis(2-ethylhexyl)phthalate | 5                      |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Carbazole                  | Not Established        |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Chrysene                   | 0.002*                 | ND           | -               | 0.09 J       |                 | 0.08 J       |              | 0.22         |            |                    |          | 8.4      |  |  |  |  |  |  |  |
| Dibenz(a,h)anthracene      | Not Established        | ND           | -               | ND           |                 | ND           |              | ND           |            |                    |          | 2.2 J    |  |  |  |  |  |  |  |
| Dibenzofuran               | Not Established        |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Diethylphthalate           | 50*                    |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Di-n-butylphthalate        | 50                     |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Fluoranthene               | 50*                    | 0.1 J        | -               | 0.12 J       | -               | 0.11 J       |              | 0.62         |            |                    |          | 12       |  |  |  |  |  |  |  |
| Fluorene                   | 50*                    | ND           | -               | ND           |                 | ND           |              | 0.38         |            |                    |          | 3.6 J    |  |  |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene     | 0.002*                 | ND           | -               | 0.12 J       |                 | 0.2          |              | 0.24         |            |                    |          | 3.8 J    |  |  |  |  |  |  |  |
| Naphthalene                | 10*                    | 0.18 J       | -               | ND           |                 | ND           |              | 0.1 J        |            |                    |          | 31       |  |  |  |  |  |  |  |
| N-Nitrosodiphenylamine     | 50*                    |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Pentachlorophenol          | 1*                     |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Phenanthrene               | 50*                    | 0.22 J       | -               | ND           |                 | 0.08 J       |              | 0.65         |            |                    |          | 16       |  |  |  |  |  |  |  |
| Phenol                     | 1*                     |              | -               |              |                 |              |              |              |            |                    |          |          |  |  |  |  |  |  |  |
| Pyrene                     | 50*                    | 0.13 J       | -               | 0.12 J       |                 | 0.13 J       |              | 0.67         |            |                    |          | 20       |  |  |  |  |  |  |  |

#### Notes:

All concentrations are in  $\mu\text{g}/\text{L}.$ 

ND = Not detected.

-- = Not analyzed.

J = Estimated concentration.

Bold text and highlighting indicates exceedance of NYSDEC Class GA Standards.

1) NYSDEC Class GA Standards from NYSDEC Table 1 (cf. section 703.5) Water Quality Standards Surface Waters and Groundwater.

\* Guidance values used where NYSDEC Class GA Standards are not yet established. Guidance values taken from NYSDEC Technical & Operational Guidance Series (TOGS) 1.1.1 - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

\*\*FIELD DUPLICATE 11312 is associated with SP-25(A)

# Table 2 Groundwater Data - October and November 2012 VanDemark Chemical Lockport, New York

|                                     |                        |                   |            |          |          |          |                   | Г        |          |                    |
|-------------------------------------|------------------------|-------------------|------------|----------|----------|----------|-------------------|----------|----------|--------------------|
| Sample ID                           |                        | D DUPLICATE 1113: |            |          |          |          | TRIP BLANK 111512 |          |          | RINSATE BLANK 1115 |
| Sample Date(s)                      |                        | 11/13/12          | 11/14/12   | 11/14/12 | 11/14/12 | 11/14/12 | 11/15/12          | 11/15/12 | 11/15/12 | 11/15/12           |
| Sample Time(s)                      |                        |                   |            | 9:30     | 12:05    | 13:35    |                   | 9:15     | 10:15    |                    |
| Location at Site                    |                        | FIELD DUPLICATE   | TRIP BLANK | SP-26(A) | SP-28(A) | SP-20(A) | TRIP BLANK        | SP-33(A) | SP-34(A) | RINSATE BLANK      |
|                                     | NYSDEC Class GA        |                   |            |          |          |          |                   |          |          |                    |
| Analyte                             | Standards <sup>1</sup> |                   |            |          |          |          |                   |          |          |                    |
| VOCs                                |                        |                   |            |          |          |          |                   |          |          |                    |
| 1,1,1,2-Tetrachloroethane           | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,1,1-Trichloroethane               | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,1,2,2-Tetrachloroethane           | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,1,2-Trichloroethane               | 1                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,1-Dichloroethane                  | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,1-Dichloroethene                  | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,1-Dichloropropene                 | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,2,3-Trichlorobenzene              | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,2,3-Trichloropropane              | 0.04                   | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,2,4,5-Tetramethylbenzene          |                        | ND                | ND         | ND       | 27       | ND       | ND                | 4.9      | ND       | ND                 |
| 1,2,4-Trichlorobenzene              | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,2,4-Trimethylbenzene              | 5                      | ND                | ND         | ND       | 18       | ND       | ND                | ND       | ND       | ND                 |
| 1,2-Dibromo-3-chloropropane         | 0.04                   | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,2-Dibromoethane                   | 0.0006                 | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,2-Dichlorobenzene                 | 3                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,2-Dichloroethane                  | 0.6                    | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,2-Dichloropropane                 | 1                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,3,5-Trimethylbenzene              | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,3-Dichlorobenzene                 | 3                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,3-Dichloropropane                 | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,4-Dichlorobenzene                 | 3                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 1,4-Diethylbenzene                  |                        | ND                | ND         | ND       | 3.2      | ND       | ND                | 0.79 J   | ND       | ND                 |
| 1,4-Dioxane                         |                        | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 2,2-Dichloropropane                 | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| 2-Butanone                          | 50                     | ND                | ND         | ND       | 8.4      | ND       | ND                | 3.1 J    | 1.8 J    | ND                 |
| 2-Hexanone                          | 50                     | ND                | ND         | ND       | 1.1 J    | ND       | ND                | ND       | ND       | ND                 |
| 4-Ethyltoluene                      |                        | ND                | ND         | ND       | 1.6 J    | ND       | ND                | ND       | ND       | ND                 |
| 4-Methyl-2-pentanone                |                        | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Acetone                             | 50*                    | ND                | ND         | 1.2 J    | 50       | ND       | ND                | 17       | 14       | ND                 |
| Acrylonitrile                       | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Benzene                             | 1                      | ND                | ND         | 0.25 J   | 5.5      | ND       | ND                | 3.7      | 0.4 J    | ND                 |
| Bromobenzene                        | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Bromochloromethane                  | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Bromodichloromethane                | 50*                    | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Bromoform                           | 50                     | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Bromomethane                        | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Carbon Disulfide                    | 60                     | ND                | ND         | ND       | 3.8      | ND       | ND                | ND       | ND       | ND                 |
| Carbon Tetrachloride                | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Chlorobenzene                       | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | 2.6      | ND                 |
| Chloroethane                        | 5                      | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Chloroform                          | 7                      | ND                | ND         | 20       | 8.4      | ND       | ND                | ND       | ND       | ND                 |
| Chloromethane                       |                        | ND                | ND         | ND       | ND       | ND       | ND                | 1.2 J    | ND       | ND                 |
| Cis-1,2-Dichloroethene              | 5                      | ND<br>ND          | ND         | ND<br>ND | ND       | ND<br>ND | ND                | 1.2 J    | ND<br>ND | ND                 |
| cis-1,3-Dichloropropene             | 0.4                    | ND                | ND         | ND       | ND       | ND       | ND                | ND       | ND       | ND                 |
| Cyclohexane                         | Not Established        | <br>ND            |            | <br>ND   | <br>ND   | <br>ND   | <br>ND            | <br>ND   | <br>ND   |                    |
| Dibromochloromethane                | 50*                    | ND<br>ND          | ND         | ND       | ND       | ND<br>ND | ND                | ND       | ND<br>ND | ND                 |
| Dibromomethane                      | 5                      | ND<br>ND          | ND         | ND<br>ND | ND       | ND<br>ND | ND                | ND       | ND<br>ND | ND                 |
| Dichlorodifluoromethane             | 5                      | ND<br>ND          | ND         | ND       | ND       | ND<br>ND | ND                | ND       | ND<br>ND | ND                 |
| Ethyl ether                         | -                      | ND<br>ND          | ND         | ND       | ND       | ND       | ND                | ND       | ND<br>ND | ND                 |
| Ethylbenzene<br>Hexachlorobutadiene | 5<br>0.5               | ND<br>ND          | ND<br>ND   | ND<br>ND | ND<br>ND | 36<br>ND | ND<br>ND          | ND<br>ND | ND<br>ND | ND<br>ND           |
|                                     |                        | I IND             | I IVID     | ı ND     | ı IVL    | ND       | ND                | i ND     | l ND     | I ND               |

# Table 2 Groundwater Data - October and November 2012 VanDemark Chemical

#### vanbemark chemical

|                             |                        |                  |                   |                 | Lockport        | , New York      |                   |                 |                 |                      |
|-----------------------------|------------------------|------------------|-------------------|-----------------|-----------------|-----------------|-------------------|-----------------|-----------------|----------------------|
| Sample ID                   |                        | D DUPLICATE 1113 | TRIP BLANK 111412 | SP-26(A) 111412 | SP-28(A) 111412 | SP-20(A) 111412 | TRIP BLANK 111512 | SP-33(A) 111512 | SP-34(A) 111512 | RINSATE BLANK 111512 |
| Sample Date(s)              |                        | 11/13/12         | 11/14/12          | 11/14/12        | 11/14/12        | 11/14/12        | 11/15/12          | 11/15/12        | 11/15/12        | 11/15/12             |
| Sample Time(s)              |                        |                  |                   | 9:30            | 12:05           | 13:35           |                   | 9:15            | 10:15           |                      |
| Location at Site            |                        | FIELD DUPLICATE  | TRIP BLANK        | SP-26(A)        | SP-28(A)        | SP-20(A)        | TRIP BLANK        | SP-33(A)        | SP-34(A)        | RINSATE BLANK        |
|                             | NYSDEC Class GA        |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Analyte                     | Standards <sup>1</sup> |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| M+P-Xylene                  | 10                     |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Methyl-t-Butyl Ether (MTBE) | 10*                    | ND               | ND                | ND              | ND              | ND              | ND                | ND              | ND              | ND                   |
| Methylcyclohexane           | Not Established        |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Methylene Chloride          | 5                      | ND               | ND                | ND              | ND              | ND              | ND                | ND              | ND              | ND                   |
| Naphthalene                 | 10                     | ND ND            | ND                | ND              | 5               | ND              | ND                | 1 J             | ND ND           | ND<br>ND             |
| n-Butylbenzene              | 5                      | ND ND            | ND                | ND              | 3.5             | ND              | ND                | ND              | ND ND           | ND                   |
| N-Propylbenzene             | 5                      | ND ND            | ND                | ND              | 8               | ND              | ND                | 1.1 J           | ND ND           | ND                   |
| o-Chlorotoluene             | 5                      | ND ND            | ND                | ND              | ND              | ND              | ND                | ND              | ND ND           | ND                   |
| O-Xylene                    | 5                      | ND ND            | ND                | ND ND           | 2.2 J           | 35              | ND                | ND              | ND ND           | ND                   |
| p/m-Xylene                  | 5                      | ND               | ND                | ND              | 2.6             | 120             | ND                | ND              | ND              | ND                   |
| p-Chlorotoluene             | 5                      | ND ND            | ND                | ND ND           | ND              | ND ND           | ND                | ND              | ND              | ND                   |
| p-Cymene                    | 5                      |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| p-Isopropyltoluene          | 5                      | ND               | ND                | ND              | ND              | ND              | ND                | ND              | ND              | ND                   |
| sec-Butylbenzene            | 5                      | ND ND            | ND                | ND              | 2.7             | ND              | ND                | 0.76 J          | ND ND           | ND<br>ND             |
| Styrene                     | 5                      | ND               | ND                | ND<br>ND        | ND              | ND<br>ND        | ND                | ND              | ND<br>ND        | ND<br>ND             |
| tert-Butylbenzene           | 5                      | ND               | ND                | ND<br>ND        | ND<br>ND        | ND<br>ND        | ND                | ND<br>ND        | ND<br>ND        | ND<br>ND             |
| Tetrachloroethene           | 5                      | 57 J             | ND                | 0.57            | ND              | ND              | ND                | 0.27 J          | ND ND           | ND                   |
| Toluene                     | 5                      | ND               | ND                | ND              | 2.9             | ND              | ND                | 1.6 J           | ND              | ND                   |
| trans-1,2-Dichloroethene    | 5                      | ND ND            | ND                | ND ND           | ND              | ND              | ND                | ND              | ND ND           | ND ND                |
| trans-1,3-Dichloropropene   | 0.4                    | ND ND            | ND                | ND ND           | ND              | ND              | ND                | ND              | ND              | ND                   |
| trans-1,4-Dichloro-2-butene | 5                      | ND               | ND                | ND              | ND              | ND              | ND                | ND              | ND              | ND                   |
| Trichloroethene             | 5                      | 42 J             | ND                | 0.32 J          | ND              | ND              | ND                | 0.44 J          | ND              | ND                   |
| Trichlorofluoromethane      | 5                      | ND ND            | ND                | ND              | ND              | ND              | ND                | ND              | ND ND           | ND ND                |
| Vinyl acetate               |                        | ND               | ND                | ND              | ND              | ND              | ND                | ND              | ND              | ND                   |
| Vinyl Chloride              | 2                      | ND               | ND                | ND              | ND              | ND              | ND                | 0.37 J          | ND              | ND                   |
| Xylenes , Total             | 5                      |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| .,,,                        |                        |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Dissolved Metals            |                        |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Arsenic                     | 25                     | 1000             |                   | 1.4 J           | 10.4            | 12.4            |                   |                 |                 |                      |
| Barium                      | 1,000                  | 31.7             |                   | 27.5            | 242.4           | 103.4           |                   |                 |                 |                      |
| Beryllium                   | 3*                     |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Cadmium                     | 5                      | ND               |                   | 0.48 J          | 0.1 J           | ND              |                   |                 |                 |                      |
| Chromium                    | 50                     | 16.6 J           |                   | 0.7 J           | 0.5 J           | 0.5 J           |                   |                 |                 |                      |
| Copper                      | 200                    |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Iron                        | 300                    |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Lead                        | 25                     | ND               |                   | ND              | 0.6 J           | ND              |                   |                 |                 |                      |
| Magnesium                   | 35,000*                |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Manganese                   | 300                    |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Mercury                     | 0.7                    | 3.2              |                   | ND              | ND              | ND              |                   |                 |                 |                      |
| Nickel                      | 100                    |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Selenium                    | 10                     | 68 J             |                   | 3 J             | 1 J             | 1 J             |                   |                 |                 |                      |
| Silver                      | 50                     | ND               |                   | ND              | ND              | ND              |                   |                 |                 |                      |
| Sodium                      | 20,000                 |                  |                   |                 |                 |                 |                   |                 |                 |                      |
|                             |                        |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Total Metals                |                        |                  |                   |                 |                 |                 |                   |                 |                 |                      |
| Arsenic                     | 25                     | 668.5            |                   | ND              | 34.7            | 11.6            |                   |                 |                 | 0.2                  |
| Barium                      | 1,000                  | ND               |                   | 19.9            | 634             | 89.8            |                   |                 |                 | ND                   |
| Cadmium                     | 5                      | ND               |                   | ND              | 3.1             | ND              |                   |                 |                 | ND                   |
| Chromium                    | 50                     | ND               |                   | ND              | 93              | ND              |                   |                 |                 | 0.3                  |
| Lead                        | 25                     | 50               |                   | ND              | 1124            | ND              |                   |                 |                 | ND                   |
| Mercury                     | 0.7                    | 3.3              |                   | ND              | 3.5             | ND              |                   |                 |                 | ND                   |
| Selenium                    | 10                     | 53 J             |                   | 3 J             | ND              | ND              |                   |                 |                 | ND                   |
| Silver                      | 50                     | ND               |                   | ND              | ND              | ND              |                   |                 |                 | ND                   |
|                             |                        | 1                |                   |                 | 1               | 1               |                   | 1               | I               |                      |

# Table 2 Groundwater Data - October and November 2012 VanDemark Chemical

#### vanbemark Chemical

Page 6 of 6

|                            |                        |                  |                  |                 | Lockport | , New York |                   |                 |                 |                      |
|----------------------------|------------------------|------------------|------------------|-----------------|----------|------------|-------------------|-----------------|-----------------|----------------------|
| Sample ID                  |                        | D DUPLICATE 1113 | TRIP BLANK 11141 | SP-26(A) 111412 |          |            | TRIP BLANK 111512 | SP-33(A) 111512 | SP-34(A) 111512 | RINSATE BLANK 111512 |
| Sample Date(s)             |                        | 11/13/12         | 11/14/12         | 11/14/12        | 11/14/12 | 11/14/12   | 11/15/12          | 11/15/12        | 11/15/12        | 11/15/12             |
| Sample Time(s)             |                        |                  |                  | 9:30            | 12:05    | 13:35      |                   | 9:15            | 10:15           |                      |
| Location at Site           |                        | FIELD DUPLICATE  | TRIP BLANK       | SP-26(A)        | SP-28(A) | SP-20(A)   | TRIP BLANK        | SP-33(A)        | SP-34(A)        | RINSATE BLANK        |
|                            | NYSDEC Class GA        |                  |                  |                 |          |            |                   |                 |                 |                      |
| Analyte                    | Standards <sup>1</sup> |                  |                  |                 |          |            |                   |                 |                 |                      |
| SVOCs                      |                        |                  |                  |                 |          |            |                   |                 |                 |                      |
| 2-Chloronaphthalene        | 10*                    | ND               |                  | ND              |          | ND         |                   |                 |                 | ND                   |
| 2,4-Dimethylphenol         | 50*                    |                  |                  |                 |          |            |                   |                 |                 | ND                   |
| 2-Methylnaphthalene        | Not Established        | 7.8              |                  | ND ND           |          | 0.07 J     |                   |                 |                 | ND                   |
| Acenaphthene               | 20                     | 4.4              |                  | ND              |          | 0.08 J     |                   |                 |                 | ND                   |
| Acenaphthylene             | Not Established        | ND               |                  | ND              |          | ND         |                   |                 |                 |                      |
| Acetophenone               | Not Established        |                  |                  |                 |          |            |                   |                 |                 |                      |
| Anthracene                 | 50*                    | 3.6 J            |                  | ND              |          | 0.09 J     |                   |                 |                 | ND                   |
| Benzaldehyde               | Not Established        |                  |                  |                 |          |            |                   |                 |                 |                      |
| Benzo(a)anthracene         | 0.002*                 | 6.4              |                  | ND              |          | ND         |                   |                 |                 | ND                   |
| Benzo(a)pyrene             | ND                     | 5.4              |                  | ND              |          | ND         |                   |                 |                 | ND                   |
| Benzo(b)fluoranthene       | 0.002*                 | 5.8              |                  | ND              |          | ND         |                   |                 |                 | ND                   |
| Benzo(g,h,i)perylene       | Not Established        | 3.7 J            |                  | ND              |          | ND         |                   |                 |                 | ND                   |
| Benzo(k)fluoranthene       | 0.002*                 | 2.3 J            |                  | ND              |          | ND         |                   |                 |                 | ND                   |
| Biphenyl                   | 5                      |                  |                  |                 |          |            |                   |                 |                 |                      |
| bis(2-Chloroethyl) ether   | 1                      |                  |                  |                 |          |            |                   |                 |                 |                      |
| Bis(2-ethylhexyl)phthalate | 5                      |                  |                  |                 |          |            |                   |                 |                 |                      |
| Carbazole                  | Not Established        |                  |                  |                 |          |            |                   |                 |                 |                      |
| Chrysene                   | 0.002*                 | 7.1              |                  | ND              |          | ND         |                   |                 |                 | ND                   |
| Dibenz(a,h)anthracene      | Not Established        | 2 J              |                  | ND ND           |          | ND         |                   |                 |                 | ND                   |
| Dibenzofuran               | Not Established        |                  |                  |                 |          |            |                   |                 |                 |                      |
| Diethylphthalate           | 50*                    |                  |                  |                 |          |            |                   |                 |                 |                      |
| Di-n-butylphthalate        | 50                     |                  |                  |                 |          |            |                   |                 |                 |                      |
| Fluoranthene               | 50*                    | 9.8              |                  | 0.09 J          |          | 0.18 J     |                   |                 |                 | ND                   |
| Fluorene                   | 50*                    | 3.3 J            |                  | 0.08 J          |          | 0.12 J     |                   |                 |                 | ND                   |
| Indeno(1,2,3-cd)pyrene     | 0.002*                 | 3.3 J            |                  | ND              |          | ND         |                   |                 |                 | ND                   |
| Naphthalene                | 10*                    | 26               |                  | 0.1 J           |          | 0.12 J     |                   |                 |                 | ND                   |
| N-Nitrosodiphenylamine     | 50*                    |                  |                  |                 |          |            |                   |                 |                 |                      |
| Pentachlorophenol          | 1*                     |                  |                  |                 |          |            |                   |                 |                 |                      |
| Phenanthrene               | 50*                    | 14               |                  | 1.4             |          | 1.2        |                   |                 |                 | ND                   |
| Phenol                     | 1*                     |                  |                  |                 |          |            |                   |                 |                 |                      |
| Pyrene                     | 50*                    | 16               |                  | 0.07 J          |          | 0.13 J     |                   |                 |                 | ND                   |



# PALMERTIEN GROUP

Appendix A – Boring Logs

| PAL         | MERT (         | ∜N GI       | Start Date: 11/0                                                        |              | Boring No.<br>SP - 19 |
|-------------|----------------|-------------|-------------------------------------------------------------------------|--------------|-----------------------|
| Project N   | umber: 31.01   | 80011.00 00 |                                                                         |              | Wind                  |
|             | narus - Van D  |             | Project Manager: J. Sandberg Northing:                                  |              | Datum:                |
| Location    | (City, State): | Lockport, N |                                                                         |              | Elev.:                |
| Drill Rig 1 | ype: Tru       | ıck □ Geo   |                                                                         | meter (in.): | : 2                   |
| Type of Sa  | ampling Devi   | ice: SS 🗆 U | T a Macro/DT X Rx Core a Type of Casing: HSA a Casing a                 | Macro 🗆 D    |                       |
| Depth       | Sample ID      | Stratum     | SOIL DESCRIPTION                                                        | uscs         | PID<br>Screening      |
| (feet)      | (Recovery)     | Change      |                                                                         | Symbol       | (ppm)                 |
|             | S1             |             |                                                                         |              |                       |
|             | (31/48)        |             | Brown/Black, SILT with small gravel, little fine sand, moist.           | ML           | 0.0                   |
|             | , ,            |             |                                                                         |              |                       |
|             |                |             | Sample SP - 19 (1 - 2.5) collected on 11/01/2012 at 14:00               |              |                       |
|             |                |             |                                                                         |              |                       |
| 4           | 4              | 4.5         |                                                                         |              |                       |
|             | S2             | 4.5<br>4.5  |                                                                         |              |                       |
|             | (25/48)        |             | Red Brown, large <b>GRAVEL</b> with silt, weathered rock, dry to moist. | GM           | 0.0                   |
|             |                |             |                                                                         |              |                       |
|             |                |             | Sample SP - 19 (4 - 5) collected on 11/01/2012 at 14:15                 |              |                       |
|             |                |             |                                                                         |              |                       |
|             | 8              |             |                                                                         |              |                       |
| 8           | S3             |             | Red Brown, large <b>GRAVEL</b> with silt, weathered rock, dry to moist. | GM           | 0.0                   |
| 8           | .3 (2/4)       |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             | Geoprobe Refusal at 8.3 ft bgs                                          |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         | -            |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
|             |                |             |                                                                         |              |                       |
| Depth to    | Water          | (ft) Date   | & Time                                                                  |              | Boring No.<br>SP - 19 |
| Depth to    |                |             | & Time                                                                  |              | 35 - 18               |
| _ op.ii to  |                | - 11.7 Date |                                                                         |              | I .                   |

| PALA            | <b>∕</b> IERT®          | ∦N GI        | Start Date: 1                                                              |                | SP - 20            |
|-----------------|-------------------------|--------------|----------------------------------------------------------------------------|----------------|--------------------|
| Project Nu      | ımber: 31.01            | 180011.00 00 | 002 Geologist: T. Bown Weather: -                                          | · 45°F, Rain & | Wind               |
| Client: Gn      | arus - Van D            | DeMark       | Project Manager: J. Sandberg Northing:                                     |                | Datum:             |
| Location (      | City, State):           | Lockport, N  | IY Driller: J. Schweitzer Easting:                                         |                | Elev.:             |
| Drill Rig T     | ype: Tru                | ıck □ Geo    | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole [                  | Diameter (in.) | : 2                |
| Type of Sa      | mpling Dev              | ice: SS 🗆 U  | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                      | Macro 🗆 D      | ual Tube 🗆<br>PID  |
| Depth<br>(feet) | Sample ID<br>(Recovery) |              | SOIL DESCRIPTION                                                           | USCS<br>Symbol | Screening<br>(ppm) |
| 0               | S1                      | 0.5          | Asphalt                                                                    |                |                    |
|                 | (24/48)                 |              |                                                                            |                |                    |
|                 |                         |              | Gray brown, small <b>GRAVEL</b> , little medium to fine sand, dry.         | GP             | 0.0                |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            | -              |                    |
|                 | 4                       | 4            |                                                                            |                |                    |
| 4               | S2                      | 4            |                                                                            |                |                    |
|                 | (42/46)                 | 5            | Brown, small GRAVEL, some fine sand, little medium sand, moist.            | GP             | 0.0                |
|                 |                         |              | Red brown, large GRAVEL with silt, some fine sand, dry, weathered bedrock. | GM             | 0.0                |
|                 |                         |              |                                                                            |                |                    |
| 7.9             | 9                       |              | County Defend at 7.0 febru                                                 | +              |                    |
|                 |                         |              | Geoprobe Refusal at 7.9 ft bgs                                             | -              |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            | _              |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            | -              |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            | -              |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            |                |                    |
|                 |                         |              |                                                                            | +              |                    |
| Denth to V      | Nator                   | (ft) Dot-    | & Time                                                                     |                | Boring No.         |
| Depth to V      |                         |              | & Time                                                                     |                | SP - 20            |
| Depth to V      | vater                   | _ (ft) Date  | & Time                                                                     |                |                    |

| PAL             | <b>MERT</b>             | »N G              | Start Date: 11/0                                                                    |                | SP - 21                   |
|-----------------|-------------------------|-------------------|-------------------------------------------------------------------------------------|----------------|---------------------------|
| Project N       | umber: 31.01            | 80011.00 0        |                                                                                     |                | Wind                      |
|                 | narus - Van D           |                   | Project Manager: J. Sandberg Northing:                                              |                | Datum:                    |
| Location        | (City, State):          | Lockport, N       | IY Driller: J. Schweitzer Easting:                                                  |                | Elev.:                    |
| Drill Rig T     | ype: Tru                | ıck □ Geo         | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole Dia                         | meter (in.):   | : 2                       |
| Type of Sa      | ampling Dev             | ice: SS 🗆 U       | T □ Macro/DT X Rx Core □ Type of Casing: HSA □ Casing □ I                           | Macro 🗆 Dı     | ual Tube 🗆                |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                    | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
| 0               | S1                      | 0.5               | Brown, ORGANIC SILT, trace roots present, moist.                                    | OL             |                           |
|                 | (29/48)                 |                   | Light brown, small <b>GRAVEL</b> with course sand, little medium to fine sand, dry. | GW             | 0.0                       |
|                 |                         |                   | Sample SP - 21 (2 - 2.5) collected on 11/01/2012 at 11:10                           |                |                           |
|                 | 4                       | 4                 |                                                                                     |                |                           |
| 4               |                         | 4                 | Black, SILT with medium sand, little small gravel, fuel - like odor, moist.         | ML             | 0.0                       |
|                 | S2<br>(24/38)           | 5                 | Sample SP - 21 (4 - 5) collected on 11/01/2012 at 11:15                             |                |                           |
| 7               |                         |                   | Red brown, SILT, some medium sand, moist.                                           | ML             | 0.0                       |
|                 |                         |                   | Geoprobe Refusal at 7.2 ft bgs                                                      |                |                           |
|                 |                         |                   | Geophobe Relusal at 1.2 it bgs                                                      |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         |                   |                                                                                     |                |                           |
|                 |                         | <i>(</i> ) -      | Comments:                                                                           |                | Boring No.                |
| Depth to \      | Water                   | _(ft) Date        | & Time                                                                              |                | SP - 21                   |
| Depth to \      | Water                   | (ft) Date         | & Time                                                                              |                | <u> </u>                  |

| PALM            | MERT!                   | NG                | SUBSURFACE BORING LOG  Start Date: 11/ End Date: 11/                                    |                                                  | Boring No. SP - 22        |
|-----------------|-------------------------|-------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|
| Project N       | umber: 31.01            | 80011.00 00       |                                                                                         |                                                  | Wind                      |
|                 | narus - Van D           |                   | Project Manager: J. Sandberg Northing:                                                  |                                                  | Datum:                    |
| Location (      | (City, State):          | Lockport, N       |                                                                                         |                                                  | Elev.:                    |
| Drill Rig T     |                         | ck □ Geo          |                                                                                         | ameter (in.)                                     | : 2                       |
|                 |                         | ce: SS 🗆 U        | T □ Macro/DT X Rx Core □ Type of Casing: HSA □ Casing □                                 | Macro   D                                        | ual Tube 🗆                |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                        | USCS<br>Symbol                                   | PID<br>Screening<br>(ppm) |
| 0               |                         |                   | Gray/Black, small <b>GRAVEL</b> , particles and specks of black ash, trace cinder, dry. | GW                                               | 0.0                       |
|                 | S1<br>(34/48)           |                   |                                                                                         |                                                  |                           |
|                 | (0 11 10)               | 2.5               | Sample SP - 22 (2 - 3) collected on 11/01/2012 at 10:55                                 |                                                  |                           |
|                 |                         | 2.5               | Red Brown/Gray, large <b>GRAVEL</b> , weathered bedrock, dry.                           | GP                                               | 0.0                       |
|                 | 4                       |                   |                                                                                         |                                                  |                           |
| 4               | S2                      |                   | Red Brown/Gray, large <b>GRAVEL</b> , weathered bedrock, dry.                           | GP                                               | 0.0                       |
|                 | 5 (12/12)               | 5                 | Sample SP - 22 (4 - 5) collected on 11/01/2012 at 11:00                                 |                                                  |                           |
|                 |                         |                   | Geoprobe Refusal at 5.0 ft bgs                                                          | -                                                |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         | -                                                |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         | -                                                |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         | -                                                |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         | <del>                                     </del> |                           |
|                 |                         |                   |                                                                                         | -                                                |                           |
|                 |                         |                   |                                                                                         | <del>                                     </del> |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         | <del>                                     </del> |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
|                 |                         |                   |                                                                                         |                                                  |                           |
| Depth to \      | Water                   | (ft) Date         | & Time                                                                                  |                                                  | Boring No.<br>SP - 22     |
| Depth to \      | <b>N</b> ater           | (ft) Date         | & Time                                                                                  |                                                  |                           |

| PALA            | <b>∕</b> IERT®          | NG                | SUBSURFACE BORING LOG  Start Date: 11/                                       |                | Boring No. SP - 23        |
|-----------------|-------------------------|-------------------|------------------------------------------------------------------------------|----------------|---------------------------|
| Project Nu      | umber: 31.01            | 80011.00 00       |                                                                              |                | Wind                      |
|                 | arus - Van D            |                   | Project Manager: J. Sandberg Northing:                                       |                | Datum:                    |
| Location (      | (City, State):          | Lockport, N       | IY Driller: J. Schweitzer Easting:                                           |                | Elev.:                    |
| Drill Rig T     | ype: Tru                | ck □ Geo          | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole Di                   | ameter (in.)   | : 2                       |
| Type of Sa      | ampling Devi            | ce: SS 🗆 U        | T □ Macro/DT X Rx Core □ Type of Casing: HSA □ Casing □                      | Macro D        | ual Tube 🗆                |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                             | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
| 0               |                         |                   | Gray Brown/Black, small <b>GRAVEL</b> with particles of cinders and ash, dry | GP             | 0.0                       |
|                 | S1<br>(31/48)           |                   | Sample SP - 23 (2 - 2.5) collected on 11/01/2012 at 13:10                    |                |                           |
| 4               | 4<br>\$2                | 4                 | Brown, large <b>GRAVEL</b> , some silt, wet.                                 | GM             | 0.0                       |
|                 | 5 (8/12)                | 5                 | Sample SP - 23 (4 - 5) collected on 11/01/2012 at 13:15                      |                |                           |
|                 |                         |                   | Geoprobe Refusal at 5.0 ft bgs                                               |                |                           |
|                 |                         |                   |                                                                              |                |                           |
|                 |                         |                   | Comments:                                                                    |                | Boring No.                |
| Depth to V      |                         |                   | & Time                                                                       |                | SP - 23                   |

| PAL             | MERT!                   | %N GI             | SUBSURFACE BORING LOG  Start Date: 11/0 End Date: 11/0                            |                   | SP - 24                   |  |
|-----------------|-------------------------|-------------------|-----------------------------------------------------------------------------------|-------------------|---------------------------|--|
| Project N       | umber: 31.01            | 80011.00 0        |                                                                                   |                   | Wind                      |  |
|                 | narus - Van D           |                   | Project Manager: J. Sandberg Northing:                                            |                   | Datum:                    |  |
| Location        | (City, State):          | Lockport, N       | Y Driller: J. Schweitzer Easting:                                                 |                   | Elev.:                    |  |
| Drill Rig T     | ype: Tru                | ck □ Geo          | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole Dia                       | ameter (in.)      | : 2                       |  |
| Type of Sa      | ampling Devi            | ce: SS 🗆 U        | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                             | Macro   Dual Tube |                           |  |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                  | USCS<br>Symbol    | PID<br>Screening<br>(ppm) |  |
| 0               | S1                      |                   | Brown, ORGANIC SILT, roots present, moist.                                        | OL                | 0.0                       |  |
| 1.5             | .5 (6/18)               | 1.5               | Black, particles and specks of cinders, dry.                                      |                   | 112.0                     |  |
|                 | S2                      |                   | Sample SP - 24 (1.5 - 2) collected on 11/01/2012 at 13:30; Field Duplicate        |                   | 112.0                     |  |
|                 | (18/30)                 |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
| 4               | 4                       | 4                 |                                                                                   |                   |                           |  |
|                 | S3                      |                   | Red Brown, SILT, some clay, little medium to fine sand, weathered bedrock, moist. | ML                | 0.0                       |  |
|                 | (28/36)                 |                   |                                                                                   |                   |                           |  |
|                 |                         |                   | Sample SP - 24 (4 - 5) collected on 11/01/2012 at 13:50                           |                   |                           |  |
|                 | 7                       | 7                 |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   | Geoprobe Refusal at 7.0 ft bgs                                                    |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   |                                                                                   |                   |                           |  |
|                 |                         |                   | Comments:                                                                         |                   | Boring No.                |  |
| Depth to \      | Water                   | (ft) Date         | & Time                                                                            |                   | SP - 24                   |  |
| Depth to \      | Water                   | (ft) Date         | & Time                                                                            |                   |                           |  |

| PALM            | MERT!                   | ≋N GI             | SUBSURFACE BORING LOG  Start Date: 11/ End Date: 11/                                                                 |                 | Boring No. SP - 25        |  |
|-----------------|-------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|--|
| Project N       | umber: 31.01            | 80011.00 00       |                                                                                                                      |                 | k Wind                    |  |
|                 | narus - Van D           |                   | Project Manager: J. Sandberg Northing:                                                                               |                 | Datum:                    |  |
| Location (      | (City, State):          | Lockport, N       | IY Driller: J. Schweitzer Easting:                                                                                   |                 | Elev.:                    |  |
| Drill Rig T     | ype: Tru                | ck □ Geo          | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole Di                                                           | ameter (in.)    | : 2                       |  |
| Type of Sa      | ampling Devi            | ce: SS 🗆 U        | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                                                                | Macro Dual Tube |                           |  |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                                                     | USCS<br>Symbol  | PID<br>Screening<br>(ppm) |  |
|                 | S1                      |                   | Gray Brown/Black, small <b>GRAVEL</b> , particles and specks of cinder and ash, coal tar seam from 2.5 to 3ft., dry. | GP              | 1.2                       |  |
|                 | (37/48)                 |                   | Sample SP - 25 (2 - 3) collected on 11/01/2012 at 10:15                                                              |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
| 4               | 4                       | 4                 |                                                                                                                      |                 |                           |  |
|                 | S2<br>(13/36)           |                   | Brown, large GRAVEL, trace medium to fine sand, wet.                                                                 | GP              | 0.0                       |  |
|                 |                         |                   | Sample SP - 25 (4 - 5) collected on 11/01/2012 at 10:20                                                              |                 |                           |  |
|                 | 7                       | 7                 |                                                                                                                      |                 |                           |  |
|                 |                         |                   | Geoprobe Refusal at 7.0 ft bgs                                                                                       |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   |                                                                                                                      |                 |                           |  |
|                 |                         |                   | Comments:                                                                                                            |                 | Boring No.                |  |
| Depth to \      | Nater                   | (ft) Date         | & Time                                                                                                               |                 | SP - 25                   |  |
| Depth to \      | Nater                   | (ft) Date         | & Time                                                                                                               |                 |                           |  |

| PALM            | MERT!                   | %N GI             | Start Date: 11/0                                                                   |                | SP - 26                   |  |
|-----------------|-------------------------|-------------------|------------------------------------------------------------------------------------|----------------|---------------------------|--|
| Project No      | umber: 31.01            | 80011.00 0        |                                                                                    |                | Wind                      |  |
|                 | narus - Van D           |                   | Project Manager: J. Sandberg Northing:                                             |                | Datum:                    |  |
| Location (      | (City, State):          | Lockport, N       | Y Driller: J. Schweitzer Easting:                                                  |                | Elev.:                    |  |
| Drill Rig T     | ype: Tru                | ck □ Geo          | Probe X Track  Skid ATV Tri-Pod Sonic Borehole Dia                                 | ameter (in.)   | : 2                       |  |
| Type of Sa      | ampling Devi            | ce: SS 🗆 U        | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                              |                |                           |  |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                   | USCS<br>Symbol | PID<br>Screening<br>(ppm) |  |
|                 | S1                      |                   | Gray Brown/Black, coarse <b>SAND</b> with small gravel, little medium sand, moist. | SW             | 1.2                       |  |
|                 | (37/48)                 |                   | Some particles and specks of ash, brick, and cinder, with some blue-green color.   |                |                           |  |
|                 |                         |                   | Sample SP - 26 (2 - 3) collected on 11/01/2012 at 09:40                            |                |                           |  |
| 4               | 4                       | 4                 |                                                                                    |                |                           |  |
|                 | S2                      |                   | Brown, large GRAVEL, some silt, trace medium sand, wood fragements, wet.           | GM             | 0.0                       |  |
|                 | (15/30)                 |                   | Sample SP - 26 (4 - 5) collected on 11/01/2012 at 09:50                            |                |                           |  |
| 6               | .5                      | 6.5               |                                                                                    |                |                           |  |
|                 |                         |                   | Geoprobe Refusal at 6.5 ft bgs                                                     |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   |                                                                                    |                |                           |  |
|                 |                         |                   | Comments:                                                                          |                | Boring No.                |  |
| Depth to \      |                         |                   | & Time                                                                             |                | SP - 26                   |  |
| Depth to \      | Water                   | (ft) Date         | & Time                                                                             |                |                           |  |

| PALM            | MERT!                   | ≋N GI             | Start Date: 11/0                                                                                      |                | SP - 27                   |
|-----------------|-------------------------|-------------------|-------------------------------------------------------------------------------------------------------|----------------|---------------------------|
| Project N       | umber: 31.01            | 80011.00 00       |                                                                                                       |                | Wind                      |
|                 | narus - Van D           |                   | Project Manager: J. Sandberg Northing:                                                                | -              | Datum:                    |
| Location (      | (City, State):          | Lockport, N       | IY Driller: J. Schweitzer Easting:                                                                    |                | Elev.:                    |
| Drill Rig T     | ype: Tru                | ck □ Geo          | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole Dia                                           | meter (in.)    | : 2                       |
| Type of Sa      | ampling Devi            | ce: SS 🗆 U        | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                                                 | Macro □ D      |                           |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                                      | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
|                 | S1                      |                   | Gray, small <b>GRAVEL</b> with coarse to medium sand, trace fines, dry. Some brick particles and some | SW             | 0.0                       |
|                 | (30/48)                 |                   | blue green color.                                                                                     |                |                           |
|                 |                         |                   | Sample SP - 27 (2 - 2.5) collected on 11/01/2012 at 09:10                                             |                |                           |
|                 | 4                       |                   |                                                                                                       |                |                           |
|                 | S2                      |                   | Gray, small GRAVEL with coarse to medium sand, trace finess, dry.                                     | SW             | 0.0                       |
|                 | (25/42)                 | 6                 |                                                                                                       |                |                           |
|                 |                         | 6                 | Drawn and CDAVEL with madium and little first week                                                    | 014            | 0.0                       |
|                 |                         |                   | Brown, small GRAVEL with medium sand, little fines, wet.                                              | SW             | 0.0                       |
| 8               | 8                       |                   |                                                                                                       |                |                           |
|                 | S3<br>(25/42)           |                   | Brown, small GRAVEL with medium sand, little fines, wet.                                              | SW             | 0.0                       |
|                 |                         |                   |                                                                                                       |                |                           |
| 11.             | .5                      | 11.5              |                                                                                                       |                |                           |
|                 |                         |                   | Geoprobe Refusal at 11.5 ft bgs                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
|                 |                         |                   |                                                                                                       |                |                           |
| Depth to \      | Nater                   | (ft) Date         | & Time                                                                                                |                | Boring No.<br>SP - 27     |
| Depth to \      |                         | (ft) Date         | & Time                                                                                                |                | ]                         |

| PALN            | <b>MERT</b>             | »N GI             | ROUP SUBSURFACE BORING LOG                                                                         | !                  | Start Date: 10/3 |                | SP - 28          |
|-----------------|-------------------------|-------------------|----------------------------------------------------------------------------------------------------|--------------------|------------------|----------------|------------------|
| Project Nu      | umber: 31.01            | 80011.00 00       | 002 Geologist: T. Bown                                                                             |                    | Weather: ~ 4     |                | Wind             |
| Client: Gn      | arus - Van D            | eMark             | Project Manager: J. Sandbe                                                                         | erg                | Northing:        |                | Datum:           |
| Location (      | (City, State):          | Lockport, N       | IY Driller: J. Schweitzer                                                                          |                    | Easting:         |                | Elev.:           |
| Drill Rig T     | ype: Tru                | ıck □ Geo         | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic                                                       | : 🗆                | Borehole Dia     | meter (in.):   | 2                |
| Type of Sa      | ampling Dev             | ice: SS 🗆 U       | T D Macro/DT X Rx Core D                                                                           | ype of Casing: HSA | □ Casing □       | Macro 🗆 D      | ual Tube 🗆       |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                                   |                    |                  | USCS<br>Symbol | PID<br>Screening |
| 0               | (                       |                   |                                                                                                    |                    |                  | -,             | (ppm)            |
|                 | S1                      |                   | Gray, large <b>GRAVEL</b> with some sand, dry.                                                     |                    |                  | GW             | 0.0              |
|                 | (38/48)                 |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         | 2.5<br>2.5        |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   | Sample SP - 28 (2 - 3) collected on 10/31/2012 at 10:20  Black, coarse SAND, fuel - like odor, dry |                    |                  | SP             | 85.0             |
|                 | 4                       | 4                 | Elect, coalse Salte, luci - like ouol, dry                                                         |                    |                  | or             | 00.0             |
| 4               | S2                      | 4                 | Red Brown, large <b>GRAVEL</b> with some sand, trace fines, dry.                                   |                    |                  | GW             | 3.8              |
|                 | (12/16)                 |                   | Sample SP - 28 (4 - 5) collected on 10/31/2012 at 10:30                                            |                    |                  |                |                  |
| 5.              | 3                       | 5.3               |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   | Cooprobe Defined at F.2 ft have                                                                    |                    |                  |                |                  |
|                 | 1                       |                   | Geoprobe Refusal at 5.3 ft bgs                                                                     |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 |                         |                   |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   |                                                                                                    |                    |                  |                |                  |
|                 | 1                       |                   |                                                                                                    |                    |                  |                |                  |
| Depth to V      | Vater                   | (ft) Date         | & Time                                                                                             | Comments:          |                  |                | Boring No.       |
|                 |                         |                   |                                                                                                    |                    |                  |                | SP - 28          |
| Depth to V      | vater                   | (ft) Date         | & Time                                                                                             |                    |                  |                |                  |

| PALME           | RT#N G                  | ROUP              | SUBSURFACE BORING LOG                                                           | Start Date: 10/    |                | SP - 29                   |
|-----------------|-------------------------|-------------------|---------------------------------------------------------------------------------|--------------------|----------------|---------------------------|
| Project Nu      | mber: 31.01             | 80011.00 00       | 002 Geologist: T. Bown                                                          | Weather: ~ 4       |                | Wind                      |
|                 | arus - Van D            |                   | Project Manager: J. Sandberg                                                    | Northing:          |                | Datum:                    |
| Location (      | City, State):           | Lockport, N       | Y Driller: J. Schweitzer                                                        | Easting:           |                | Elev.:                    |
| Drill Rig Ty    | /pe: Tru                | ıck □ Geol        | Probe X Track  Skid ATV Tri-Pod Sonic                                           | Borehole Dia       | ameter (in.):  | 2                         |
| Type of Sa      | mpling Devi             | ice: SS 🗆 U       | T   Macro/DT X Rx Core   Type of Casi                                           | ng: HSA 🗆 Casing 🗆 | Macro   D      | ual Tube 🗆                |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                |                    | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
| 0               |                         | 0.5               | Asphalt                                                                         |                    |                |                           |
|                 | S1                      | 0.0               | Gray Brown, small <b>GRAVEL</b> with medium sand, dry.                          |                    | GP             | 0.2                       |
|                 | (38/48)                 | 1.5<br>1.5        |                                                                                 |                    |                |                           |
|                 |                         |                   | Sample SP - 29 (2 - 3) collected on 10/31/2012 at 10:40                         |                    |                |                           |
|                 |                         |                   | Red Brown, SILT with medium sand, little small gravel, trace coarse sand, wet.  |                    | ML             | 0.0                       |
|                 |                         |                   |                                                                                 |                    |                |                           |
| 4               | 4                       |                   |                                                                                 |                    |                |                           |
| 4               | S2<br>(20/23)           |                   | Red Brown, SILT with some large gravel and medium sand, trace coarse sand, wet. |                    | ML             | 0.0                       |
|                 |                         |                   | Sample SP - 29 (4 - 5) collected on 10/31/2012 at 10:45                         |                    |                |                           |
| 5.8             |                         | 5.8               |                                                                                 |                    |                |                           |
|                 |                         |                   | Geoprobe Refusal at 5.8 ft bgs                                                  |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 |                         |                   |                                                                                 |                    |                |                           |
|                 | ]                       |                   | Comments:                                                                       |                    |                | Boring No.                |
| Depth to W      | /ater                   | (ft) Date         | & Time                                                                          |                    |                | SP - 29                   |
| Depth to W      | /ater                   | (ft) Date         | & Time                                                                          |                    |                |                           |

| PALM            | <b>MERT</b> <sup>®</sup> | »NG               | ROUP SUBSURFACE BORING LOG  Start Date: 10/3 End Date: 10/3                                              |                | SP - 30                   |
|-----------------|--------------------------|-------------------|----------------------------------------------------------------------------------------------------------|----------------|---------------------------|
| Project N       | umber: 31.01             | 80011.00 0        |                                                                                                          |                | Wind                      |
|                 | narus - Van D            |                   | Project Manager: J. Sandberg Northing:                                                                   |                | Datum:                    |
| Location (      | (City, State):           | Lockport, N       | Y Driller: J. Schweitzer Easting:                                                                        |                | Elev.:                    |
| Drill Rig T     | ype: Tru                 | ıck □ Geo         | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole Dia                                              | ımeter (in.):  | 2                         |
| Type of Sa      | ampling Dev              | ice: SS 🗆 U       | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                                                    | Macro 🗆 D      | ual Tube 🗆                |
| Depth<br>(feet) | Sample ID<br>(Recovery)  | Stratum<br>Change | SOIL DESCRIPTION                                                                                         | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
|                 | S1                       | 0.3               | Gray, small <b>GRAVEL</b> , dry.                                                                         | GP             |                           |
|                 | (32/48)                  |                   | Gray, SILT with medium to fine sand, moist, mottled.                                                     | ML             | 0.0                       |
|                 |                          |                   | Red Brown, SILT, little medium sand, moist.                                                              | ML             | 0.0                       |
|                 |                          |                   | Sample SP - 30 (1 - 2.5) collected on 10/31/2012 at 14:35; Matrix Spike/ Matrix Spike Duplicate (MS/MSD) | IVIE           | 0.0                       |
| 4               | 4<br>S2                  | 4                 | Red Brown, SILT, little medium sand, moist.                                                              | ML             | 0.0                       |
| 5               | (14/15)                  | 5.3               | Sample SP - 30 (4 - 5.3) collected on 10/31/2012 at 14:40                                                |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   | Geoprobe Refusal at 5.3 ft bgs                                                                           |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
|                 |                          |                   |                                                                                                          |                |                           |
| Don'th ( )      | Notes                    | (fu) B :          | Comments:                                                                                                |                | Boring No.                |
| Depth to \      |                          |                   | & Time                                                                                                   |                | SP - 30                   |
| Depth to \      | <i>N</i> ater            | (ft) Date         | & Time                                                                                                   |                |                           |

| PALM            | MERT(                   | ∜N GI             | Start Date: 10/3                                                    |                | SP - 31                   |
|-----------------|-------------------------|-------------------|---------------------------------------------------------------------|----------------|---------------------------|
| Project No      | umber: 31.01            | 80011.00 0        |                                                                     |                | Wind                      |
|                 | arus - Van D            |                   | Project Manager: J. Sandberg Northing:                              |                | Datum:                    |
| Location (      | (City, State):          | Lockport, N       |                                                                     |                | Elev.:                    |
| Drill Rig T     |                         | ıck □ Geo         |                                                                     | meter (in.):   | 2                         |
|                 |                         | ice: SS 🗆 U       | T □ Macro/DT X Rx Core □ Type of Casing: HSA □ Casing □             | Macro 🗆 D      | ual Tube 🗆                |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                    | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
| 0               | S1                      | 1                 | Gray, small GRAVEL with coarse to meduim sand, traces fines, moist. | GW             | 0.0                       |
|                 | (31/48)                 |                   | Brown, SILT with clay, some medium to fine sand, moist.             | ML             | 0.0                       |
| 4               | S2                      |                   | Red brown, SILT with fine sand, trace small gravel, moist.          | ML             | 0.0                       |
| 4.              | .9 (10/11)              | 4.9               |                                                                     |                |                           |
|                 |                         |                   | Geoprobe Refusal at 4.9 ft bgs                                      |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   |                                                                     |                |                           |
|                 |                         |                   | Comments:                                                           |                | Boring No.                |
| Depth to \      | Nater                   | (ft) Date         | & Time                                                              |                | SP - 31                   |
| Depth to \      | Nater                   | (ft) Date         | & Time                                                              |                |                           |

| PALN            | MERT %                  | ∜N GI             | ROUP SUBSURFACE BORING LOG                                                                   | Start Date: 10 |                | SP - 32                   |
|-----------------|-------------------------|-------------------|----------------------------------------------------------------------------------------------|----------------|----------------|---------------------------|
| Project Nu      | ımber: 31.01            | 80011.00 00       | 002 Geologist: T. Bown                                                                       | Weather: ~     |                | Wind                      |
| Client: Gn      | arus - Van D            | eMark             | Project Manager: J. Sandberg                                                                 | Northing:      |                | Datum:                    |
| Location (      | City, State):           | Lockport, N       | IY Driller: J. Schweitzer                                                                    | Easting:       |                | Elev.:                    |
| Drill Rig T     | ype: Tru                | ck □ Geo          | Probe X Track  Skid ATV Tri-Pod Sonic                                                        | Borehole Di    | ameter (in.)   | : 2                       |
| Type of Sa      | mpling Devi             | ce: SS 🗆 U        | T   Macro/DT X Rx Core   Type of Casing:                                                     | HSA   Casing   | Macro   D      | ual Tube 🗆                |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                             |                | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
|                 | S1                      |                   | Gray/Red Brown, large <b>GRAVEL</b> with some coarse to medium sand, brick fragments, moist. |                | GW             | 0.0                       |
|                 | (32/48)                 | 2                 |                                                                                              |                |                |                           |
|                 |                         | 2                 | Black, coarse to medium <b>SAND</b> , wet.                                                   |                | SP             | 0.0                       |
|                 | 4                       | 4                 |                                                                                              |                |                |                           |
| 4               | S2                      | 4                 | Red Brown, SILT with fine sand, trace medium sand, dry to moist.                             |                | ML             | 0.0                       |
| 5.              | (14/18)                 | 5.5               |                                                                                              |                |                |                           |
|                 |                         |                   | Geoprobe Refusal at 5.5 ft bgs                                                               |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   |                                                                                              |                |                |                           |
|                 |                         |                   | Comments:                                                                                    |                |                | Boring No.                |
| Depth to V      | Vater                   | (ft) Date         | & Time                                                                                       |                |                | SP - 32                   |
| Depth to V      | Vater                   | (ft) Date         | & Time                                                                                       |                |                |                           |

| PALM            | MERT∜                   | ∜N GI             | Start Date: 10/                                                   |                | Boring No.<br>SP - 33     |
|-----------------|-------------------------|-------------------|-------------------------------------------------------------------|----------------|---------------------------|
| Project No      | umber: 31.01            | 80011.00 0        |                                                                   |                | Wind                      |
|                 | arus - Van D            |                   | Project Manager: J. Sandberg Northing:                            | -              | Datum:                    |
| Location (      | (City, State):          | Lockport, N       | Y Driller: J. Schweitzer Easting:                                 |                | Elev.:                    |
| Drill Rig T     | ype: Tru                | ck □ Geo          | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole Dia       | ameter (in.)   | : 2                       |
| Type of Sa      | ampling Devi            | ce: SS 🗆 U        | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing             | Macro 🗆 D      |                           |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                  | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
| 0               | S1                      | 0.5               | Asphalt                                                           |                |                           |
|                 | (38/48)                 | 2                 | Gray, small <b>GRAVEL</b> with some coarse to medium sand, moist. | GW             | 0.0                       |
|                 |                         | 2                 | Brown, CLAY with silt, little small gravel, moist.                | CL             | 0.0                       |
|                 | 4                       | 4                 |                                                                   |                |                           |
| 4               | S2                      | 4                 | Red Brown, SILT with fine sand, trace coarse sand, moist.         | ML             | 0.0                       |
| 5.              | (14/18)                 | 5.3               |                                                                   |                |                           |
|                 |                         |                   | Geoprobe Refusal at 5.3 ft bgs                                    |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   |                                                                   |                |                           |
|                 |                         |                   | Comments:                                                         |                | Boring No.                |
| Depth to \      |                         |                   | & Time & Time                                                     |                | SP - 33                   |

| PALA            | <b>∕</b> IERT∜          | »N GI             | ROUP SUBSURFACE BORING LOG                                                                                                                                | Start Date: 10/ |                | SP - 34               |
|-----------------|-------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------------|
| Project Nu      | ımber: 31.01            | 80011.00 00       | 002 Geologist: T. Bown                                                                                                                                    | Weather: ~ 4    | 5°F, Rain &    | Wind                  |
| Client: Gn      | arus - Van D            | DeMark            | Project Manager: J. Sandberg                                                                                                                              | Northing:       |                | Datum:                |
| Location (      | City, State):           | Lockport, N       | Y Driller: J. Schweitzer                                                                                                                                  | Easting:        |                | Elev.:                |
| Drill Rig T     | ype: Tru                | ıck □ Geo         | Probe X Track  Skid ATV Tri-Pod Sonic                                                                                                                     | Borehole Dia    | ameter (in.):  | 2                     |
| Type of Sa      | mpling Dev              | ice: SS 🗆 U       | T   Macro/DT X Rx Core   Type of Casing: HSA                                                                                                              | \ □ Casing □    | Macro 🗆 D      | ual Tube 🗆<br>PID     |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                                                                                          |                 | USCS<br>Symbol | Screening<br>(ppm)    |
|                 | S1                      | 0.5               | Asphalt                                                                                                                                                   |                 |                |                       |
|                 | (39/48)                 |                   | Gray/Black, large GRAVEL with coarse to medium sand, some fines, brick fragments, blue-green c<br>Sample SP - 34 (2 - 3) collected on 10/31/2012 at 09:55 | olor, dry.      | GW             | 0.0                   |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 | 4                       | 3.5               |                                                                                                                                                           |                 |                |                       |
| 4               | S2<br>(12/18)           |                   | Brown, large GRAVEL with little medium to fine sand, trace fines, moist to wet.                                                                           |                 | GP             | 0.0                   |
| 5.4             |                         | 5.5               |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   | Geoprobe Refusal at 5.5 ft bgs                                                                                                                            |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
|                 |                         |                   |                                                                                                                                                           |                 |                |                       |
| Depth to V      | Vater                   | _(ft) Date        |                                                                                                                                                           |                 |                | Boring No.<br>SP - 34 |
| Depth to V      |                         |                   | & Time                                                                                                                                                    |                 |                | 01 - 04               |

| PALN            | <b>MERT</b> ®           | ‰N GI        | Start Date: 10                                                        |                | SP - 35            |
|-----------------|-------------------------|--------------|-----------------------------------------------------------------------|----------------|--------------------|
| Project Nu      | umber: 31.01            | 180011.00 00 |                                                                       |                | Wind               |
| Client: Gn      | arus - Van D            | DeMark       | Project Manager: J. Sandberg Northing:                                |                | Datum:             |
| Location (      | (City, State):          | Lockport, N  | IY Driller: J. Schweitzer Easting:                                    |                | Elev.:             |
| Drill Rig T     | ype: Tru                | ıck □ Geo    | Probe X Track  Skid ATV Tri-Pod Sonic Borehole D                      | ameter (in.)   | : 2                |
| Type of Sa      | ampling Dev             | ice: SS 🗆 U  | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                 | Macro   D      | ual Tube 🗆<br>PID  |
| Depth<br>(feet) | Sample ID<br>(Recovery) |              | SOIL DESCRIPTION                                                      | USCS<br>Symbol | Screening<br>(ppm) |
|                 | S1                      | 0.5          | Asphalt                                                               |                |                    |
|                 | (30/48)                 |              | Gray/Black, coarse to medium <b>SAND</b> with some small gravel, dry. | SW             | 0.0                |
|                 |                         |              | Sample SP - 35 (2 - 2.5) collected on 10/29/2012 at 14:00             |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 | 4                       | 4            |                                                                       |                |                    |
| 4               | S2                      | 4            | Red Brown, large GRAVEL with some fines, weathered bedrock, moist.    | GP             | 0.0                |
|                 | (12/18)                 |              | Sample SP - 35 (4 - 5) collected on 10/29/2012 at 14:10               |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
| 6.              | 6                       | 6.6          |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              | Geoprobe Refusal at 6.6 ft bgs                                        |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 | 1                       |              |                                                                       |                |                    |
|                 | 1                       |              |                                                                       |                |                    |
|                 | +                       |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 | 1                       |              |                                                                       |                |                    |
|                 | 1                       |              |                                                                       |                |                    |
|                 | 1                       | -            |                                                                       |                |                    |
|                 | 1                       |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 | 1                       |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 |                         |              |                                                                       |                |                    |
|                 | 1                       |              |                                                                       |                |                    |
|                 | 1                       |              | Comments:                                                             |                | Boring No.         |
| Depth to V      | Water                   | _(ft) Date   | & Time                                                                |                | SP - 35            |
| Depth to V      | Water                   | _(ft) Date   | & Time                                                                |                |                    |

| PALN            | MERT!                   | »N GI             | Start Date: 1  Start Date: 1                                          |                | Boring No. SP - 36 |
|-----------------|-------------------------|-------------------|-----------------------------------------------------------------------|----------------|--------------------|
| Project Nu      | umber: 31.01            | 80011.00 00       |                                                                       | 45°F, Rain &   | Wind               |
| Client: Gn      | arus - Van D            | DeMark            | Project Manager: J. Sandberg Northing:                                |                | Datum:             |
| Location (      | (City, State):          | Lockport, N       | IY Driller: J. Schweitzer Easting:                                    |                | Elev.:             |
| Drill Rig T     | ype: Tru                | ıck □ Geo         | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole □             | iameter (in.)  | : 2                |
| Type of Sa      | ampling Dev             | ice: SS 🗆 U       | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                 | Macro 🗆 D      | ual Tube  PID      |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                      | USCS<br>Symbol | Screening<br>(ppm) |
| 0               | S1                      | 0.5               | Asphalt                                                               |                |                    |
|                 | (22/48)                 |                   | Gray/Black, coarse to medium <b>SAND</b> with some small gravel, dry. | SW             | 0.0                |
|                 |                         |                   | Sample SP - 36 (1 - 2) collected on 10/29/2012 at 14:25               |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 | 4                       | 4                 |                                                                       |                |                    |
| 4               | \$2                     | 4                 | Red Brown, large GRAVEL with some fines, weathered bedrock, moist.    | GP             | 0.0                |
|                 | (16/25)                 |                   | Sample SP - 36 (4 - 5) collected on 10/29/2012 at 14:30               | <u> </u>       | 0.0                |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
| 6.              | 2                       | 6.2               |                                                                       |                |                    |
|                 |                         |                   | Constants Defined at C.O.M. has                                       |                |                    |
|                 |                         |                   | Geoprobe Refusal at 6.2 ft bgs                                        |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         |                   |                                                                       |                |                    |
|                 |                         | (f) -             | Comments:                                                             |                | Boring No.         |
| Depth to V      |                         |                   | & Time                                                                |                | SP - 36            |
| Depth to V      | Nater                   | (ft) Date         | & Time                                                                |                |                    |

| PAL             | MERT!                   | »N GI             | SUBSURFACE BORING LOG  Start Date: 10/7 End Date: 10/3                                                                                     |                | SP - 37                   |
|-----------------|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|
| Project N       | umber: 31.01            | 80011.00 00       |                                                                                                                                            |                | Wind                      |
|                 | narus - Van D           |                   | Project Manager: J. Sandberg Northing:                                                                                                     |                | Datum:                    |
| Location        | (City, State):          | Lockport, N       | Y Driller: J. Schweitzer Easting:                                                                                                          |                | Elev.:                    |
| Drill Rig 1     | Type: Tru               | ıck □ Geo         | Probe X Track  Skid ATV Tri-Pod Sonic Borehole Dia                                                                                         | meter (in.):   | : 2                       |
| Type of S       | ampling Dev             | ice: SS 🗆 U       | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                                                                                      | Macro 🗆 D      | ual Tube 🗆                |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                                                                           | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
|                 | S1                      | 0.5               | Asphalt                                                                                                                                    |                |                           |
|                 | (26/48)                 |                   | Gray/Brown, large <b>GRAVEL</b> with medium to fine sand, little small gravel, dry                                                         | GW             | 0.0                       |
|                 |                         |                   | Sample SP - 37 (1 - 2) collected on 10/31/2012 at 09:05                                                                                    |                |                           |
| 4               | 4                       |                   |                                                                                                                                            |                |                           |
|                 | S2                      | 4.5<br>4.5        |                                                                                                                                            |                |                           |
|                 | (30/48)                 |                   | Red Brown, large <b>GRAVEL</b> with silt, some medium to fine sand, dry to moist.  Sample SP - 37 (4 - 5) collected on 10/31/2012 at 09:15 | GM             | 0.0                       |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 | 8                       |                   |                                                                                                                                            |                |                           |
| 8               | S3<br>(13/18)           |                   | Red Brown, large <b>GRAVEL</b> with silt, some medium to fine sand, dry to moist.  Sample SP - 37 (8 - 9) collected on 10/31/2012 at 09:25 | GM             | 0.0                       |
|                 |                         |                   | Geoprobe Refusal at 9.5 ft bgs                                                                                                             |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
|                 |                         |                   |                                                                                                                                            |                |                           |
| Depth to        | Water                   | _(ft) Date        | & Time                                                                                                                                     |                | Boring No.<br>SP - 37     |
| Depth to        | Water                   | _(ft) Date        | & Time                                                                                                                                     |                |                           |

| PALM            | MERT!                   | %NG               | SUBSURFACE BORING LOG  Start Date: 10 End Date: 10                                                     |                | SP - 38                   |
|-----------------|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------|
| Project Nu      | umber: 31.01            | 80011.00 0        | 002 Geologist: T. Bown Weather: -                                                                      | - 45°F, Rain 8 | k Wind                    |
|                 | arus - Van D            |                   | Project Manager: J. Sandberg Northing:                                                                 |                | Datum:                    |
| Location (      | (City, State):          | Lockport, N       |                                                                                                        |                | Elev.:                    |
| Drill Rig T     |                         | ck □ Geo          |                                                                                                        | Diameter (in.) |                           |
|                 |                         |                   | T □ Macro/DT X Rx Core □ Type of Casing: HSA □ Casing                                                  |                |                           |
| Depth<br>(feet) | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                                       | USCS<br>Symbol | PID<br>Screening<br>(ppm) |
| )               |                         | 0.5               | Asphalt                                                                                                |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 | S1                      |                   | Gray/Brown, large GRAVEL with some medium to fine sand, dry to moist.                                  | GW             | 0.0                       |
|                 | (24/48)                 |                   |                                                                                                        |                |                           |
|                 |                         |                   | Sample SP - 38 (1 - 2) collected on 10/29/2012 at 11:00                                                |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
| 1               | 4                       |                   |                                                                                                        |                |                           |
|                 |                         |                   | Pod Prous lorge CRAVEL with some medium to fine and trace fines drute maint                            | CW             | 0.0                       |
|                 | S2                      |                   | Red Brown, large <b>GRAVEL</b> with some medium to fine sand, traces fines, dry to moist.              | GW             | 0.0                       |
|                 | (40/48)                 | f                 |                                                                                                        |                |                           |
|                 | (.5/40)                 | 6                 | Brown, ORGANIC SOIL with small gravel, wood fragments, moist.                                          | OL/OH          | 0.0                       |
|                 |                         | 7                 |                                                                                                        |                |                           |
|                 |                         | 7                 |                                                                                                        |                |                           |
|                 | 8                       |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 | S3                      |                   | Red brown, lean CLAY, some large to small gravel, trace fine sand, moist. Seam of Organic Soil (OL/OH) | CL             | 0.0                       |
|                 | (44/48)                 |                   | from 11.6 to 11.8ft.                                                                                   |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   | Sample SP - 38 (8 - 9) collected on 10/29/2012 at 11:05                                                |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
| 12              | 2                       | 12                |                                                                                                        |                |                           |
|                 |                         |                   | Red Brown, SILT with fine sand, wet.                                                                   | ML             | 0.0                       |
|                 | S4                      |                   | ited brown, SiLT with time saind, wet.                                                                 | IVIL           | 0.0                       |
|                 | (12/48)                 |                   |                                                                                                        |                |                           |
|                 | (12,10)                 |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
| 1               | 6                       |                   |                                                                                                        |                |                           |
| 16              |                         |                   |                                                                                                        |                |                           |
|                 | S5                      |                   | Red Brown, SILT with fine sand, trace clay, wet.                                                       | ML             | 0.0                       |
|                 | (21/30)                 |                   |                                                                                                        |                |                           |
|                 |                         |                   | Sample SP - 38 (17 - 18.5) collected on 10/29/2012 at 11:10                                            |                |                           |
| 18.             | .4                      |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   | Geoprobe Refusal at 18.4 ft bgs                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
|                 |                         |                   |                                                                                                        |                |                           |
| Depth to V      | Nater                   | (ft) Date         | & Time                                                                                                 |                | Boring No                 |
|                 |                         |                   | & Time                                                                                                 |                | SP - 38                   |

| PALMERT®N GRO                                                        |              | NG         | ROUP SUBSURFACE BORING LOG  Start Date: 10/2 End Date: 10/2                            | Start Date: 10/29/2012 End Date: 10/29/2012      |                  |  |
|----------------------------------------------------------------------|--------------|------------|----------------------------------------------------------------------------------------|--------------------------------------------------|------------------|--|
| Project N                                                            | umber: 31.01 | 80011.00 0 |                                                                                        |                                                  | Wind             |  |
| Client: Gnarus - Van DeMark Project Manager: J. Sandberg Northing:   |              |            |                                                                                        |                                                  | Datum:           |  |
| Location (City, State): Lockport, NY Driller: J. Schweitzer Easting: |              |            |                                                                                        | Elev.:                                           |                  |  |
|                                                                      |              |            | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole Dia                            | ameter (in.):                                    | ): 2             |  |
| Type of Sa                                                           | ampling Devi | ce: SS 🗆 U | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                                  | Macro D                                          | ual Tube 🗆       |  |
| Depth                                                                | Sample ID    | Stratum    | SOIL DESCRIPTION                                                                       | USCS                                             | PID<br>Screening |  |
| (feet)                                                               | (Recovery)   | Change     | COLE DECOMINATION                                                                      | Symbol                                           | (ppm)            |  |
| 0                                                                    |              | 0.5        | Asphalt                                                                                | <b></b>                                          |                  |  |
|                                                                      |              |            |                                                                                        | <del> </del>                                     |                  |  |
|                                                                      | S1           |            | Black/Brown, small <b>GRAVEL</b> with some coarse sand, brick fragments, dry to moist. | GW                                               | 0.0              |  |
|                                                                      | (30/48)      |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            | Sample SP - 39 (2 - 2.5) collected on 10/29/2012 at 11:20                              |                                                  |                  |  |
|                                                                      |              |            |                                                                                        | <u> </u>                                         |                  |  |
|                                                                      | 4            |            |                                                                                        |                                                  |                  |  |
| 4                                                                    | -            |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        |                                                  |                  |  |
|                                                                      | S2           |            |                                                                                        | <br>                                             |                  |  |
|                                                                      | (24/48)      |            |                                                                                        |                                                  |                  |  |
|                                                                      |              | 6          |                                                                                        | <b>_</b> _                                       |                  |  |
|                                                                      |              |            | Brown, CLAY, trace fine sand, moist                                                    | CL                                               | 0.0              |  |
|                                                                      |              |            |                                                                                        | <u> </u>                                         |                  |  |
| 8                                                                    | 8            |            |                                                                                        | <u> </u>                                         |                  |  |
|                                                                      |              |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            | Sample SP - 39 (8 - 9) collected on 10/29/2012 at 11:30                                | <del>                                     </del> |                  |  |
|                                                                      | S3           |            |                                                                                        |                                                  |                  |  |
|                                                                      | (32/48)      |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        | <u> </u>                                         |                  |  |
|                                                                      |              | 11         | Brown, large GRAVEL with medium sand, little fines, moist.                             | GP                                               | 0.0              |  |
|                                                                      | 12           | 12         |                                                                                        | GF                                               | 0.0              |  |
| 12                                                                   |              | 12         |                                                                                        |                                                  |                  |  |
|                                                                      |              | 13         |                                                                                        |                                                  |                  |  |
|                                                                      | S4           | 13         |                                                                                        |                                                  |                  |  |
|                                                                      | (12/48)      |            | Red Brown, SILT, wet.                                                                  | ML                                               | 0.0              |  |
|                                                                      |              |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        | <u> </u>                                         |                  |  |
|                                                                      |              |            |                                                                                        | <u> </u>                                         |                  |  |
| 16                                                                   | 16           | 16         |                                                                                        |                                                  |                  |  |
|                                                                      | S5           |            | Red Brown, large GRAVEL with silt, moist.                                              | GM                                               | 0.0              |  |
| 16                                                                   | .6 (5/7)     |            | Sample SP - 39 (16 - 16.6) collected on 10/29/2012 at 11:40                            |                                                  |                  |  |
|                                                                      |              |            | Canada Datural et 40 0 ft has                                                          |                                                  |                  |  |
|                                                                      |              |            | Geoprobe Refusal at 16.6 ft bgs                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        |                                                  |                  |  |
|                                                                      |              |            |                                                                                        | <u> </u>                                         |                  |  |
|                                                                      |              |            |                                                                                        | <b> </b>                                         |                  |  |
|                                                                      |              |            |                                                                                        | <b> </b>                                         |                  |  |
|                                                                      |              |            |                                                                                        | <del>                                     </del> |                  |  |
|                                                                      |              |            | Comments:                                                                              |                                                  | Boring No.       |  |
| Depth to Water                                                       |              | (ft) Date  | & Time                                                                                 |                                                  | SP - 39          |  |
| Depth to \                                                           | Water        | (ft) Date  | & Time                                                                                 |                                                  |                  |  |

| PALMERT®N GROU                                                       |               | ∜N G       | ROUP SUBSURFACE BORING LOG  Start Date: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start Date: 10/29/2012 End Date: 10/29/2012      |                  |  |
|----------------------------------------------------------------------|---------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|--|
| Project N                                                            | umber: 31.01  | 80011.00 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | k Wind           |  |
| Client: Gnarus - Van DeMark Project Manager: J. Sandberg Northing:   |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | Datum:           |  |
| Location (City, State): Lockport, NY Driller: J. Schweitzer Easting: |               |            | NY Driller: J. Schweitzer Easting:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | Elev.:           |  |
|                                                                      |               |            | ameter (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 2                                              |                  |  |
| Type of Sa                                                           | ampling Devi  | ce: SS 🗆 U | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Macro 🗆 D                                        | ual Tube 🗆       |  |
| Depth                                                                | Sample ID     | Stratum    | SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | USCS                                             | PID<br>Screening |  |
| (feet)                                                               | (Recovery)    | Change     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Symbol                                           | (ppm)            |  |
|                                                                      |               | 0.5        | Asphalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · <del> </del>                                   |                  |  |
|                                                                      | S1            |            | Gray Brown, large <b>GRAVEL</b> with coarse to fine sand, dry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW                                               | 0.0              |  |
|                                                                      | (24/48)       |            | Stay Storm, range of the same same same range and range same range same same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same range same |                                                  | 0.0              |  |
|                                                                      | , ,           |            | Sample SP - 40 (1 - 2) collected on 10/29/2012 at 11:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
| 4                                                                    | 4             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>                                     </del> | <u> </u>         |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      | S2<br>(22/48) | 5.5<br>5.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                |                  |  |
|                                                                      | (22/46)       |            | Brown, CLAY, moist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL                                               | 0.0              |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | 0.0              |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
| 0                                                                    | 8             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
| 6                                                                    |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            | Sample SP - 40 (8 - 9) collected on 10/29/2012 at 11:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                  |  |
|                                                                      | S3            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      | (20/48)       |            | Brown, CLAY, moist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL                                               | 0.0              |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      | 12            | 12         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
| 12                                                                   |               | 12         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      | S4            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      | (12/48)       |            | Brown, large GRAVEL with little clay, moist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GC                                               | 0.0              |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
| 1                                                                    | 16            | 16         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
| 16                                                                   | <b>S</b> 5    | 16         | Red Brown, large GRAVEL with silt, wet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GM                                               | 0.0              |  |
| 16                                                                   | .6 (5/7)      |            | Sample SP - 40 (19 - 19.9) collected on 10/29/2012 at 11:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                |                  |  |
| 19                                                                   | .9            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            | Geoprobe Refusal at 19.9 ft bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                  |  |
|                                                                      |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                |                  |  |
|                                                                      |               |            | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                | Boring No.       |  |
| Depth to \                                                           | Water         | (ft) Date  | & Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | SP - 40          |  |
| Depth to                                                             | Water         | (ft) Date  | & Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                  |  |

| PALMERT®N GRO                                                     |                         | NG                | ROUP SUBSURFACE BORING LOG  Start Date: 10                                                                            | Start Date: 10/29/2012 End Date: 10/29/2012 |                           |
|-------------------------------------------------------------------|-------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|
| Project Number: 31.0180011.00 0002<br>Client: Gnarus - Van DeMark |                         |                   |                                                                                                                       | 45°F, Rain 8                                | Wind                      |
|                                                                   |                         |                   | Project Manager: J. Sandberg Northing:                                                                                |                                             | Datum:                    |
| Location (                                                        | (City, State):          | Lockport, N       | NY Driller: J. Schweitzer Easting:                                                                                    | Easting:                                    |                           |
| Drill Rig T                                                       | ype: Tru                | ck □ Geo          | Probe X Track □ Skid □ ATV □ Tri-Pod □ Sonic □ Borehole D                                                             | iameter (in.)                               | : 2                       |
| Type of Sa                                                        | ampling Devi            | ce: SS 🗆 U        | T   Macro/DT X Rx Core   Type of Casing: HSA   Casing                                                                 | Macro 🗆 D                                   | ual Tube 🗆                |
| Depth<br>(feet)                                                   | Sample ID<br>(Recovery) | Stratum<br>Change | SOIL DESCRIPTION                                                                                                      | USCS<br>Symbol                              | PID<br>Screening<br>(ppm) |
| 0                                                                 |                         | 0.5               | Asphalt                                                                                                               |                                             |                           |
|                                                                   | S1                      |                   | Black/Brown, coarse <b>SAND</b> with small gravel, little medium to fine sand, fragments and particles of brick, dry. | SW                                          | 0.0                       |
|                                                                   | (18/48)                 |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   | Sample SP - 41 (1 - 1.5) collected on 10/29/2012 at 13:15                                                             |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   | 4                       |                   |                                                                                                                       |                                             |                           |
| 4                                                                 | 4                       | 4.5               |                                                                                                                       |                                             |                           |
|                                                                   |                         | 4.5               |                                                                                                                       |                                             |                           |
|                                                                   | S2                      |                   | Gray/Brown, large GRAVEL with clay, little small gravel and medium sand, moist.                                       | GC                                          | 0.0                       |
|                                                                   | (22/48)                 |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
| 8                                                                 | 8                       | 8                 |                                                                                                                       |                                             |                           |
| •                                                                 |                         | -                 |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   | Gray/Brown, CLAY, little small gravel, moist.                                                                         | CL                                          | 0.0                       |
|                                                                   | S3                      |                   |                                                                                                                       |                                             |                           |
|                                                                   | (40/48)                 |                   | Sample SP - 41 (8 - 9) collected on 10/29/2012 at 13:20                                                               |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         | 11                |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   | Red Brown, large <b>GRAVEL</b> , little fines, weathered bedrock, dry.                                                | GP                                          | 0.0                       |
| 12                                                                | 2                       | 12                |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   | Red Brown/Light Brown, large GRAVEL, little fines, weathered bedrock, dry.                                            | GP                                          | 0.0                       |
|                                                                   | S4                      |                   | Treat brown Light brown, range Graves, mile miles, weathered bedrock, dry.                                            | - Oi                                        | 0.0                       |
|                                                                   | (34/48)                 |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
| 1                                                                 | 6                       |                   |                                                                                                                       |                                             |                           |
| 16                                                                | S5                      |                   | Red Brown/Light Brown, large GRAVEL, little fines, weathered bedrock, dry.                                            | GP                                          | 0.0                       |
| 16.                                                               | .6 (38/48)              |                   | Sample SP - 41 (19 - 19.5) collected on 10/29/2012 at 11:40                                                           |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
| 20                                                                | 20                      |                   |                                                                                                                       |                                             |                           |
|                                                                   | 000                     |                   |                                                                                                                       |                                             |                           |
|                                                                   | S6<br>(19/31)           |                   | Red Brown/Light Brown, large <b>GRAVEL</b> , little fines, weathered bedrock, wet at 21.5ft                           | GP                                          | 0.0                       |
|                                                                   | (19/31)                 |                   | Ned blown/Light blown, range GNAVLE, little lines, weathered bedrock, wet at 21.5tt                                   | Gr                                          | 0.0                       |
| 22.                                                               | 7                       |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   |                                                                                                                       |                                             |                           |
|                                                                   |                         |                   | Geoprobe Refusal at 22.7 ft bgs                                                                                       |                                             |                           |
|                                                                   |                         |                   | Comments                                                                                                              |                                             | Boring M-                 |
| Depth to V                                                        | Nater                   | (ft) Date         | & Time                                                                                                                |                                             | Boring No.<br>SP - 41     |
| Depth to V                                                        | Notor                   | (ft) Date         | & Time                                                                                                                |                                             | ''                        |