RECORD OF DECISION

Operable Unit Three Eighteen Mile Creek Superfund Site Niagara County, New York

United States Environmental Protection Agency Region 2 New York, New York

September 2024

DECLARATION FOR THE RECORD OF DECISION

SITE NAME AND LOCATION

Eighteen Mile Creek Superfund Site Niagara County, New York

Superfund Site Identification Number: NYN000206456 Operable Unit: 03

STATEMENT OF BASIS AND PURPOSE

This Record of Decision (ROD) documents the U.S. Environmental Protection Agency's (EPA's) selection of a remedy for Operable Unit 3 (OU3) of the Eighteen Mile Creek Superfund Site (Site) in Niagara County, New York. This remedy is being chosen in accordance with the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended, 42 U.S.C. §§ 9601-9675, and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 CFR Part 300. This decision document explains the factual and legal basis for selecting the OU3 remedy. The attached index (see **Appendix III**) identifies the items that comprise the Administrative Record for this action, upon which the selected remedy is based.

The New York State Department of Environmental Conservation (NYSDEC) was consulted on the planned remedy in accordance with Section 121(f) of CERCLA, 42 U.S.C. § 9621(f), and concurs with the selected remedy (see **Appendix IV**).

ASSESSMENT OF THE SITE

Actual or threatened releases of hazardous substances at or from the Site, if not addressed by implementing the response action selected in this ROD, may present an imminent and substantial endangerment to public health, welfare, or the environment.

DESCRIPTION OF THE SELECTED REMEDY

The selected remedy described in this document addresses contaminated sediment and floodplain soil in a discrete portion of the Site, identified as OU3. For the purposes of this OU3 ROD, OU3 is comprised of the portion of the Eighteen Mile Creek (Creek) beginning from Harwood Street and extending downstream for approximately 5.3-miles, referred to herein as the sediment

transitional area (STA)¹, as well as certain floodplain soil adjacent to the STA. As described in the Decision Summary, below, in more detail, the portion of this remedy addressing sediments is an interim remedy, and the portion addressing floodplain soils is a final remedy.

The major components of the selected interim remedy for sediment include the following:

- Excavation of contaminated sediment that exceeds the remedial action level (RAL) of 1 parts per million (ppm) for PCBs within the STA followed by backfilling with clean sand and covering with a suitable habitat layer to create conditions for the re-establishment of natural conditions in the Creek.
- Construction of access roads and staging areas in upland areas. Following remediation of the Creek, removal of the access roads and staging areas in accordance with the habitat reconstruction plan.
- Water and air quality monitoring during construction.
- Development of a monitoring plan to track PCB concentrations in sediment, surface water, and fish tissue over time in the STA.
- Institutional controls in the form of informational devices to limit exposure to PCBs. EPA is relying on existing New York State Department of Health (NYSDOH) fish consumption advisories. NYSDOH periodically reviews fish PCB data to ensure the advisories are up to date and considers whether the fish consumption advisories need modification. Other informational devices could include outreach programs to inform the public to promote knowledge of and voluntary compliance with the fish consumption advisories.

The major components of the selected final remedy for floodplain soil include the following:

- Excavation and off-Site disposal of PCB- and lead-contaminated floodplain soil exceeding the remediation goals adjacent to the STA regardless of the land use designation. Backfill of excavated areas with clean fill material and topsoil.
- Construction of temporary access roads from the remediation areas to the closest public roads and the staging area.
- Implementation of erosion and sediment controls at each remediation area to prevent the migration of floodplain soil to the Creek.
- Water and air quality monitoring during construction.
- Following remediation of the Creek, removal of the access roads and staging areas, and restoration of the impacted areas in accordance with the habitat reconstruction plan.

¹ Although EPA's OU3 investigation of the Creek initially included the full length of the Creek downstream of Harwood Street (Reaches 9 through 1), and adjacent floodplains to this portion of the Creek, EPA has redefined OU3 to consist of the Creek (bank to bank) starting at the downstream end of OU2 (beginning of Reach 9) and extending approximately 3,800 feet downstream of the convergence with the East Branch in Reach 6 at Station 312+93, and adjacent floodplains. The STA extends for approximately 5.3 miles (28,000 ft) and includes Reaches 9, 8, 7, and the upper portion of Reach 6. The station number refers to the length of the centerline of the Creek starting from the headwaters at the Canal. The downstream extent of the STA was determined based on an assessment of the mixing and depositional zone downstream of the confluence between the East Branch and the Creek. Portions of the Creek downstream of OU3 will be addressed in a future operable unit(s).

• Development of a Site Management Plan (SMP) to provide for management of floodplain soil post-construction, including the use of institutional controls to limit future use of the commercial properties and impose restrictions on excavation, and periodic reviews.

During the remedial design, additional sampling of floodplain soil adjacent to the STA will be conducted. Risk evaluations, based on land use designations, will be performed to determine if additional properties or areas require remediation. The Creek banks will be a particular area of attention due to their high potential for use and Contaminants of Concern (COC) levels exposure by human and ecologic receptors and their potential to be a source of COC release and transport and to re-contaminate the OU3 sediment remedy if unaddressed. Design sampling will ensure that Creek banks that exceed RALs are delineated for remediation. The selected remedy is a final remedy for addressing floodplain soil in the STA.

In addition, EPA's investigations of groundwater within the Creek Corridor have not revealed a source of the generally low-level volatile organic compounds (VOCs) concentrations detected in groundwater. As a result, no action will be taken to address Creek Corridor groundwater.

The estimated present-worth cost of the selected remedy is \$192,076,000.

The environmental benefits of the selected remedy may be improved by consideration, during remedy design or implementation, of technologies and practices that are sustainable in accordance with EPA Region 2's Clean and Green Energy Policy and NYSDEC's Green Remediation Policy².

The remaining areas of the Creek (commencing immediately downstream of the STA to the Creek's discharge at Lake Ontario) that are not addressed by this ROD would be addressed under separate, future action(s). The impoundment areas upstream of Newfane Dam and Burt Dam have historically acted as sinks for contaminated sediment, and, as such, these areas have been identified as potential sources of downstream contamination in the event of a change in the flow regime of the Creek. These remaining areas require additional evaluation to establish a final remedy for the full length of the Creek. This evaluation will identify and address the following:

- data gaps including the nature and extent of contamination within these remaining areas;
- the characteristics of the sediment bed behind the Newfane and Burt dams;
- a study of the impacts from having addressed the source areas;
- an assessment of the fate and transport mechanisms of the remaining contamination in the Creek, including residual soil contamination following excavation of floodplain soil in the STA;
- bathymetry monitoring of sediment to evaluate recovery, accumulation and/or erosion; and
- a long-term monitoring program.

After a comprehensive evaluation of the full length of the Creek is conducted, a final remedy for the entire length of the Creek will be determined. The final remedy would include final remediation

² See https://www.epa.gov/sites/default/files/2016-01/documents/r2_clean_and_green_update.pdf and http://www.dec.ny.gov/docs/remediation_hudson_pdf/der31.pdf

goals for contaminated sediment, including the Creek Corridor (OU2) and the STA (OU3), as well as any additional remedial action objectives that are determined necessary, including for additional media such as surface water. In addition, floodplain soil sampling will be conducted downstream of the STA as part of a separate investigation. Separate response actions or a future operable unit(s) would address risks identified in floodplain soil downstream of the STA.

DECLARATION OF STATUTORY DETERMINATIONS

The selected remedy satisfies the statutory requirements for remedial actions set forth in Section 121 of CERCLA, 42 U.S.C. § 9621, as follows: 1) it is protective of human health and the environment; 2) it meets a level or standard of control of the hazardous substances, pollutants, and contaminants that at least attains the legally applicable or relevant and appropriate requirements (ARARs) under federal and state laws; 3) it is cost-effective; and 4) it utilizes permanent solutions and alternative treatment or resource recovery technologies to the maximum extent practicable. In addition, Section 121 of CERCLA, 42 U.S.C. § 9621, includes a preference for remedies that employ treatment that permanently and significantly reduces the volume, toxicity, or mobility of hazardous substances as a principal element (or justify not satisfying the preference). The selected remedy may satisfy the preference for treatment to the extent that contaminated material requires treatment prior to land disposal.

This remedy will result in hazardous substances, pollutants, or contaminants remaining at the Site above levels that will not allow for unlimited use and unrestricted exposure. Pursuant to Section 121(c) of CERCLA, statutory reviews will be conducted no less often than once every five years after the initiation of construction to ensure that the remedy is, or will be, protective of human health and environment. If justified by the review, additional remedial actions may be implemented to remove, treat, or contain the contaminants.

ROD DATA CERTIFICATION CHECKLIST

The ROD contains the remedy selection information noted below. More details may be found in the Administrative Record file for this action.

- Contaminants of concern and their respective concentrations may be found in the "Summary of Site Characterization" section;
- Current and reasonably-anticipated future land use assumptions and current and potential future beneficial uses of groundwater used in the baseline risk assessment and ROD are discussed in the "Current and Potential Future Land and Resource Uses" section;
- Baseline risk represented by the contaminants of concern may be found in the "Summary of Site Risks" section;
- Cleanup levels established for contaminants of concern and the basis for these levels maybe be found in the "Remedial Action Objectives" section;
- Estimated capital, annual operation and maintenance (O&M), and total present-worth costs are discussed in the "Description of Remedial Alternatives" section;
- A discussion of principal threat waste may be found in the "Principal Threat Waste" section; and
- Key factors used in selecting the remedy (*i.e.*, how the selected remedy provides the best

balance of tradeoffs with respect to the balancing and modifying criteria, highlighting criteria key to the decision) may be found in the "Comparative Analysis of Alternatives" and "Statutory Determinations" sections.

AUTHORIZING SIGNATURE

BARRY	
BREEN	

Digitally signed by BARRY BREEN Date: 2024.09.12 18:07:09 -04'00'

Barry Breen, Principal Deputy Assistant Administrator Office of Land and Emergency Management U.S. Environmental Protection Agency Date

RECORD OF DECISION DECISION SUMMARY

Operable Unit Three Eighteen Mile Creek Superfund Site Niagara County, New York

United States Environmental Protection Agency Region 2 New York, New York September 2024

TABLE OF CONTENTS

DECI	LARATION FOR THE RECORD OF DECISION	ii
1.0	SITE NAME, LOCATION AND DESCRIPTION	5
2.0	SITE HISTORY AND ENFORCEMENT ACTIVITIES	5
3.0	HIGHLIGHTS OF COMMUNITY PARTICIPATION	5
4.0	SCOPE AND ROLE OF RESPONSE ACTION	6
5.0 5.1	SUMMARY OF SITE CHARACTERISTICS	
5.2	Geology and Hydrogeology	
5.3	Results of the Previous Investigations	
5.4	Environmental Justice	13
5.5	Climate Change	13
6.0	CURRENT AND POTENTIAL FUTURE LAND AND RESOURCE USES	13
7.0	SUMMARY OF SITE RISKS	14
7.1	Human Health Risk Assessment	14
7.2	Ecological Risk Assessment	
7.3	Summary of Human Health and Ecological Risks	
7.4		
7.5	Basis for Taking Action	23
8.0	REMEDIAL ACTION OBJECTIVES	23
8.1	Remediation Goals	
9.0	SUMMARY OF REMEDIAL ALTERNATIVES	
9.1	Description of Common Elements of Sediment Alternatives	
9.2	Description of Sediment Transition Area (STA) Remedial Alternatives	27
9.3	Description of Common Elements of Floodplain Soil Alternatives	29
9.4	Description of Floodplain Soil (Soil) Remedial Alternatives	30
10.0	SUMMARY OF COMPARATIVE ANALYSIS OF ALTERNATIVES	
10.		
10.2	1	
10.3	8	
10.4		
10.5		
10.0	6 Implementability	37

10.7	Cost	. 38
10.8	State/Support Agency & Tribal Acceptance	. 38
10.9	Community Acceptance	
11.0 P	PRINCIPAL THREAT WASTE	. 39
12.0 S	ELECTED REMEDY	
12.1	Description of the Selected Remedy	
12.2	Summary of the Rationale for the Selected Remedy	. 41
12.3	Expected Outcomes of the Selected Remedy	. 41
12.4	Green Remediation	. 42
13.0 S	TATUTORY DETERMINATIONS	. 42
13.1	Protection of Human Health and the Environment	
13.2	Compliance with ARARs	. 43
13.3	Cost-Effectiveness	. 43
13.4	Utilization of Permanent Solutions and Alternative Treatment Technologies to the	
Maxin	mum Extent Practicable	. 44
13.5	Preference for Treatment as a Principal Element	. 44
	Five-Year Review Requirements	
14.0 D	OCUMENTATION OF SIGNIFICANT CHANGES	. 44

LIST OF APPENDICES

APPENDIX I FIGURES

Figure 1	Site Location Map
Figure 2	Site Overview Map
Figure 3	Conceptual Site Model

APPENDIX II TABLES

Table 1	Selection of Exposure Pathways
Table 2	Contaminants of Concern
Table 3	Summary of Contaminants of Concern and Medium-Specific Exposure
	Point Concentrations
Table 4	Non-Cancer Toxicity Data Summary
Table 5	Cancer Toxicity Data Summary
Table 6	Risk Characterization Summary – Non-carcinogens
Table 7	Risk Characterization Summary – Carcinogens
Table 8	Summary of Lead Model Results
Table 9	Cost Estimate Summary for the Selected Remedy for Sediment
Table 10	Cost Estimate Summary for the Selected Remedy for Floodplain Soil
Table 11	ARARs, TBCs, and other Guidelines Screening Table, Chemical Specific
Table 12	ARARs, TBCs, and other Guidelines Screening Table, Location Specific
Table 13	ARARs, TBCs, and other Guidelines Screening Table, Action Specific

APPENDIX III ADMINISTRATIVE RECORD INDEX

APPENDIX IV NEW YORK STATE LETTER OF CONCURRENCE

APPENDIX V RESPONSIVENESS SUMMARY

Attachment A	Written Comments Submitted During Public Comment Period
Attachment B	Proposed Plan
Attachment C	Public Notice

Attachment D Public Meeting Transcript

1.0 SITE NAME, LOCATION AND DESCRIPTION

The Eighteen Mile Creek Superfund Site (Site) is located in Niagara County, New York. The main channel of the Creek originates just south of the New York State Barge Canal (Canal) and flows north for approximately 15 miles until it discharges to Lake Ontario in Olcott, New York. The Eighteen Mile Creek watershed includes the two main tributaries: East Branch of Eighteen Mile Creek and Gulf Creek. A Site location map is provided as **Figure 1**.

2.0 SITE HISTORY AND ENFORCEMENT ACTIVITIES

The Creek Corridor has a long history of industrial use dating back to the 19th century when it was used as a source of hydropower. Various industrial plants operated at properties within the Creek Corridor, including the former United Paperboard Company, the White Transportation Company, the former Flintkote Company, and various operations at Upson Park. Damaged drums, ash, slag material, and contaminated fill material have been observed at these properties. Aerial photographs also suggest that by 1938, fill was disposed in the section of 300 Mill Street between the Creek and the Millrace, which is a small segment of the Creek that splits and flows around an area of soil and fill on the Flintkote property, known as the Island. Downstream of Harwood Street, Eighteen Mile Creek drops down the Niagara Escarpment and passes through approximately 12 miles of rural Niagara County. Land use within this portion of the Creek watershed consists primarily of cropland and orchards, with residential, commercial, and small industrial areas located closer to the City of Lockport and further downstream around Newfane. Several other industrial facilities are located along Eighteen Mile Creek, including the City of Lockport Wastewater Treatment Plant, VanChlor Inc., Twin Lakes Chemical, and VanDeMark Chemical. Several dams were constructed to provide power near Newfane, two of which remain today. Newfane Dam was originally built in the 1830s near the end of McKee Street and Ewings Road to provide power for the Newfane mill district; the current dam was built in 1912 and is not in service. Burt Dam was built farther north of Newfane in 1924, creating a 95-acre impoundment that extends approximately two miles upstream of the dam. The original dam generated power until the 1950s. It was restored in 1988 and still is currently operational. To date, EPA has not identified any viable potentially responsible parties at the Site. As a result, EPA elected to investigate the Site using federal funds.

The people of the Tuscarora and the Tonawanda Seneca Nations fish and hunt at various locations along the Creek. The Tuscarora Nation reservation is located about 11 miles west of the City of Lockport, and the Tonawanda Seneca Nation reservation is located about 14 miles southeast of the City of Lockport.

3.0 HIGHLIGHTS OF COMMUNITY PARTICIPATION

On July 19, 2024, EPA released a Proposed Plan for cleanup of OU3 of the Site, which described a number of remedial alternatives including the preferred remedial alternative, to the public for comment. EPA made supporting documentation comprising the administrative record for that proposed decision available to the public at the information repositories maintained at the EPA Region 2 Office in New York City, the Lockport Public Library, 23 East Avenue in Lockport, the Newfane Public Library, 2761 Maple Avenue, Newfane, and EPA's website for the Site at: www.epa.gov/superfund/eighteenmile-creek.

EPA published notice of the start of a public comment period and the availability for the abovereferenced documents in the *Lockport Union-Sun Journal* on July 19, 2024. A copy of the public notice published in the *Lockport Union-Sun Journal* can be found in **Appendix V**. EPA accepted public comments on the Proposed Plan from July 19, 2024 through August 19, 2024.

On August 1, 2024, EPA held a public meeting at the Newfane Town Hall located at 2737 Main Street, Newfane, New York, to inform local officials and interested citizens about the Superfund process, to present the Proposed Plan for OU3 of the Site, including the preferred remedial alternatives, and to respond to questions and comments from the attendees. Responses to the questions and comments received at the public meeting and in writing during the public comment period are included in the Responsiveness Summary (see **Appendix V**).

4.0 SCOPE AND ROLE OF RESPONSE ACTION

Section 300.5 of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 C.F.R. § 300.5, defines an OU as a discrete action that comprises an incremental step toward comprehensively addressing a site's problems. A discrete portion of a remedial response eliminates or mitigates a release, a threat of release, or a pathway of exposure. The cleanup of a site can be divided into a number of OUs, depending on the complexity of the problems associated with the site. The EPA also uses interim actions to address areas or contaminated media, such as sediment, that ultimately may be included in the final record of decision for a site. Interim actions are used, for example, to institute temporary measures to stabilize a site or operable unit and/or prevent further migration of contaminants or further environmental degradation until such time as a final remedial decision is made. As noted above, to date EPA has designated the following OUs for the Site.

- OU1 addressed the risks associated with the residential soil contamination at nine residential properties located on Water Street and the threats posed from the deteriorating building at the Flintkote property. On September 30, 2013, EPA selected a final cleanup plan for OU1 (OU1 ROD). As part of EPA's selected remedy for OU1, residents on Water Street were permanently relocated from their homes because of the presence of PCB-contaminated soils in residential yards and the likelihood of recontamination based on recurring flooding of the properties with PCB-contaminated water and sediments from the Creek, given their properties' location within the Creek's floodplain. It was determined that the OU1 soil excavation work would be performed at the time of the cleanup of the OU2 sediments to prevent the Creek from re-contaminating the above-referenced residential properties subsequent to their cleanup. Following the relocations, the structures at the OU1 properties were demolished.
- OU2 addresses the contaminated soil at the following properties adjacent to the Creek: the former United Paperboard Company property, the White Transportation property, the former Flintkote Plant property (Flintkote), and Upson Park. OU2 also addresses contaminated sediment within the Creek Corridor; an approximately 4,000-foot segment of the Creek that extends from the Canal to Harwood Street in the City of Lockport. The cleanup plan for OU2 includes bank-to-bank excavation of sediment in the Creek Corridor and a combination of soil excavation and capping at the upland properties. This remedy is currently in the remedial action phase and began in Summer 2024.
- OU3, the subject of this remedy, addresses sediments within a portion of the Creek, referred

to as the Sediment Transition Area (STA)³. The STA is a subset area of the full length of the Creek comprising the portion of the Creek beginning from Harwood Street and extending downstream for approximately 5.3 miles (upper portion of Reach 6 through Reach 9; see **Figure 2**). The selected remedy in this OU3 ROD is an interim action for sediments in the STA and is not intended to attain acceptable Contaminants of Concern (COC) levels in all media throughout the Creek. A future, final remedy will establish acceptable COC levels in sediments that are protective of human health and the environment. Floodplain soils impacted by the Creek adjacent to the STA are also included within this OU. Creek Corridor groundwater is also included in this OU. The selected remedy in this OU3 ROD is a final remedy for floodplain soil adjacent to the STA and groundwater.

• OU4 addresses lead-contaminated soils at certain residential properties in the vicinity of the former Flintkote Property. EPA selected a cleanup plan for OU4 (in the OU4 ROD) in 2019, which calls for the excavation and off-Site disposal of lead-contaminated soils found to be located at the residential properties. The remedy for the first phase of the OU4 remediation includes 33 residential properties, and construction began in Summer 2024. Soil sampling at additional residential properties, referred to as Phase 2 of OU4, is ongoing.

Future Operable Unit(s)

The remaining areas of the Creek (commencing immediately downstream of the STA to the Creek's discharge at Lake Ontario) that are not addressed by this ROD will be addressed under separate, future action(s). The impoundment areas upstream of Newfane Dam and Burt Dam have historically acted as sinks for contaminated sediment, and as such these areas have been identified as potential sources of downstream contamination in the event of a change in the flow regime of the Creek. **Figure 3** depicts the location of these two dams. These remaining areas require additional evaluation to establish a final remedy for the full length of the Creek.

After a comprehensive evaluation of the full length of the Creek is conducted, a final remedy for the entire length of the Creek will be established. The final remedy would include final remediation goals for contaminated sediment, including the Creek Corridor (OU2) and the STA (OU3), as well as any additional remedial action objectives that are determined necessary, including for additional media such as surface water. In addition, floodplain soil sampling will be conducted downstream of the STA as part of a separate investigation. Separate response actions or a future operable unit(s) would address risks identified in floodplain soil downstream of the STA.

³ Although EPA's OU3 investigation of the Creek initially included the full length of the Creek downstream of Harwood Street (Reaches 9 through 1), and adjacent floodplains to this portion of the Creek, EPA has redefined OU3 to consist of the Creek (bank to bank) starting at the downstream end of OU2 (beginning of Reach 9) and extending approximately 3,800 feet downstream of the convergence with the East Branch in Reach 6 at Station 312+93, and adjacent floodplains. The STA extends for approximately 5.3 miles (28,000 ft) and includes Reaches 9, 8, 7, and the upper portion of Reach 6. The station number refers to the length of the centerline of the Creek starting from the headwaters at the Canal. The downstream extent of the STA was determined based on an assessment of the mixing and depositional zone downstream of the confluence between the East Branch and the Creek. Portions of the Creek downstream of OU3 will be addressed in a future operable unit(s).

5.0 SUMMARY OF SITE CHARACTERISTICS

5.1 Overview

The area encompassing OU3 consists of residential properties, vacant land, some light commercial use and agricultural land. It is expected that the future land use in this area will remain the same.

5.2 Geology and Hydrogeology

Overburden deposits throughout OU3, and much of the Creek Corridor consists of mostly glacial tills and lacustrine silts and clays overlying bedrock. According to the Soil Survey of Niagara County *(U.S. Department of Agriculture, Soil Conservation Service, 1972)*, the length of the majority of OU3 is classified as glacial till with areas of lake-laid sands and silts with reported gravelly glacial outwash along the Olcott Harbor.

Observations made during the remedial investigation within the Creek Corridor are generally consistent with previous geologic studies of the area that indicate glacial tills and lacustrine silts and clays overlying bedrock of the Clinton and Medina Groups along Clinton Street, which include the Thorold and Grimsby Formations. The overburden on and around the Canal Corporation property was observed to consist mainly of sandy fill material and weathered bedrock likely from historical construction of the Erie Canal overlying native lacustrine silts and clays. Based on the regional stratigraphic and structural information and depths of bedrock wells, it is believed that the bedrock wells are set within the Thorold and Grimsby Formations of the Medina Group.

The Eighteen Mile Creek watershed is located within both the Ontario and Huron plains, which are two relatively flat plains that are separated by the Niagara Escarpment, which runs generally east/west along the northern portion of the City of Lockport. The watershed has a drainage area of approximately 90 square miles and includes Eighteen Mile Creek; two main tributaries, the East Branch of Eighteen Mile Creek and Gulf Creek; and several minor tributaries (see **Figure 1**). Within the watershed area, the escarpment ranges from 100 to 175 feet. The maximum elevations within the watershed occur within the Huron Plain in the southern portion of the watershed and are approximately 635 feet above mean sea level (AMSL) in the southwestern portion and approximately 655 feet AMSL along the southeastern extent.

The Headwater West Branch and the Main Branch of Eighteen Mile Creek are located within a well-incised, steeply sloped channel for most of their lengths in the Creek Corridor. The channel walls range in height, but average approximately 35 feet. In OU3, the East Branch and Gulf Creek lacks the incised channel characteristic of the rest of Eighteen Mile Creek.

The Creek Corridor is located in an area of deep, well-drained to excessively drained, mediumtextured soils formed in glacial outwash deposits composed primarily of sand and gravel. The remaining area north in OU3 is located mainly in deep, somewhat poorly drained and moderately well-drained soils, and medium-textured loamy soil over fine and very fine sand.

Groundwater underlying the Creek Corridor area occurs in both the soil and fill material above the bedrock (the overburden) and the upper fractured bedrock, and it flows toward the Creek along some portion of the Corridor. The City of Lockport is the provider of potable water to residents

within the Creek Corridor and surface water from the east branch of the Niagara River is its primary source.

5.3 **Results of the Previous Investigations**

Creek Corridor

Beginning in 1999, NYSDEC conducted several investigations at the Site related to the Creek Corridor. NYSDEC investigations of the former United Paperboard Company property, Upson Park, and the White Transportation property documented the presence of fill material on these properties, with surface and subsurface soil and fill contaminated with PCBs, metals, and semi-volatile organic compounds (SVOCs). The erosion and runoff of contaminated fill material from properties adjacent to the Creek appears to be the primary mechanism for transport of contamination to the Creek. PCBs and lead concentrations in soil at these properties are as high as 630 parts per million (ppm) and 77,300 ppm, respectively. Sediment samples collected in the Creek Corridor and the Millrace revealed concentrations of PCBs and lead up to 25,400 ppm and 15,000 ppm, respectively. A turbine located at the Flintkote property is also believed to be a source of PCB contamination in the Creek. As mentioned in the Scope and Role section above, EPA selected the OU2 remedy to address soil and sediment contamination in the Creek Corridor in 2017. The remedial design that provides the detailed specifications for the performance of that remedy has been completed, and construction activities for this work began this summer.

<u>Sediment</u>

Several studies were completed under projects funded by EPA Region 2, the EPA Great Lakes Legacy Act (GLLA), and the EPA Great Lakes Restoration Initiative (GLRI). EPA's Great Lakes National Program Office (GLNPO) has identified part of the Eighteen Mile Creek as an area of concern (AOC) for Lake Ontario as part of its GLRI because of its sediment contamination and poor water quality. In March 2015, a report summarizing data collected for the characterization of the AOC under the GLLA program was prepared for the EPA's GLNPO. The RI report included sediment data collected under investigations performed by various agencies from Olcott Harbor (mouth of the Creek) upstream through the City of Lockport to the Canal and including the Creek Corridor. The results of the RI are presented in the 2015 report entitled "Final Remedial Investigation Report, Eighteen Mile Creek, Remedial Investigation/Feasibility Study."

Surface Water

While surface water in the Creek has not been extensively sampled as part of previous sediment investigations, water quality has been evaluated as part of regional studies conducted by EPA and NYSDEC. Historical samples collected to measure concentrations of PCBs, mercury, and dioxins/furans were obtained in 1993 and 1994 as part of a NYSDEC study to track contaminants to Lake Ontario. Results of this study are presented in a report entitled, *Trackdown of Chemical Contaminants to Lake Ontario from New York State Tributaries*.

GLNPO conducted semiannual monitoring of the surface water discharge from Eighteen Mile Creek and several other tributaries from 2002 to 2010. Results from these monitoring events are presented in the 2011 report entitled, *Field Data Report, Lake Ontario Tributaries*.

The data indicate that Eighteen Mile Creek had the highest PCB concentrations (0.043 - 0.093 micrograms/liter (μ g/L)) in surface water compared to other major tributaries to Lake Ontario.

Bioaccumulation

The U.S. Army Corps of Engineers performed two studies in 2003 that focused on bioaccumulation and food web modeling that established a significant bioaccumulation potential for PCBs in fish tissue by collecting sediment and fish samples in the Creek. The earliest studies focused on the area downstream of Burt Dam, and more recent investigations included collecting sediment and fish tissue data from upstream of Burt Dam and Newfane Dam. In part, the studies found that PCBs were highly bioavailable and predicted to cause wildlife bioaccumulation risks. Results from these studies are presented in the following 2004 reports: "Volume I (Project Report Overview): Sediment Sampling, Biological Analyses, and Chemical Analyses for Eighteenmile Creek AOC", and "Final Bioaccumulation Modeling and Ecological Risk Assessment, Eighteenmile Creek Great Lakes Area of Concern."

For the Niagara County Soil and Water Conservation District, several studies were completed to evaluate beneficial use impairments in the Eighteen Mile Creek AOC. A study was performed in 2006 to evaluate whether PCBs and metals continued to migrate from upstream source areas and to identify other potential sources of contamination. Another investigation was conducted in 2007 downstream of Burt Dam to determine: (a) whether the Eighteen Mile Creek AOC was impaired based upon the existence of fish tumors and other deformities, (b) the status of fish and wildlife populations, and (c) the status of any bird or mammal deformities or reproductive impairment. Finally, baseline benthic community and fish sampling and a pilot study on the use of powdered activated carbon to reduce PCB bioavailability in Eighteen Mile Creek sediment were completed in 2012.

More recent studies assessing beneficial use impairments in the Eighteen Mile Creek AOC are also included in the Administrative Record file.

New York State Department of Health (NYSDOH) has also monitored fish populations in the Creek, and there is currently a fish consumption advisory for the entire Eighteen Mile Creek issued by NYSDOH because of the presence of PCBs. For more information regarding the advisory, please refer to the following website www.health.ny.gov/environmental/outdoors/fish/health_advisories/by_county.htm?county=niagara.

5.3.1 Results of EPA's Operable Unit 3 Remedial Investigation

In 2018, EPA initiated a separate investigation of sediments, surface water, biota, and floodplain soil along the Creek. Groundwater within the Creek Corridor was further investigated as part of EPA's investigations in an effort to define the nature and extent of the groundwater contamination and locate the source(s) of the low-level concentrations detected during previous studies.

Consistent with previous investigations, the Creek was divided into smaller investigation areas, or reaches, based on the following physical characteristics (see Figure 2):

• **Reach 1** consists of the Creek channel from Burt Dam to the mouth of the Creek in Olcott Harbor where the Creek discharges into Lake Ontario.

- **Reach 2** consists of the impoundment immediately upstream of Burt Dam.
- Reach 3 is the historical channel that was flooded after the Burt Dam was installed.
- **Reach 4** is the section of the Creek located immediately downstream of Newfane Dam.
- **Reach 5** consists of the impoundment immediately upstream of Newfane Dam.
- **Reach 6** extends from the upstream end of the Newfane Dam impoundment to the confluence of the main channel and the East Branch.
- **Reach 7** runs from the confluence of the main channel and the East Branch to the downstream portion of the Niagara Escarpment.
- **Reach 8** is a 2,000-foot-long section of the Creek that cascades down the steep gradient of the Niagara Escarpment.
- **Reach 9** is an approximately 1,000-foot-long section of the Creek immediately downstream of OU2.

The following provides an overview of the sampling conducted by EPA in the Creek over multiple phases.

Phase IA, conducted from May to June 2018, included surface water, floodplain soil, and soil sampling of agricultural areas that were irrigated with Creek water. Bathymetric surveys and light detection and ranging (LiDAR) surveys were also conducted. Five groundwater monitoring wells were installed on the west side of the Creek Corridor.

Phase IB, conducted from October to November 2018, included surface water sampling. Game and forage fish from the Creek were collected, and tissue samples were analyzed. Groundwater sampling was conducted from monitoring wells installed in Spring 2018 as well as existing wells in the Creek Corridor.

Phase IIA, conducted in July 2019, included surface water sampling targeting high-flow events and floodplain soil.

Phase III, conducted from October to November 2020, included the following: surface water sampling targeting high-flow and low-flow events; a filtration study to examine the relationship between particle size and PCB concentrations in surface water; floodplain soil sampling; surface sediment sampling; sediment core collection and analysis; additional bathymetric surveys; and young-of-year⁴ fish sampling.

The results indicate that chemical contamination of the sediment in the Creek generally decreases in concentration moving downstream (the Reach numbers descend from Reach 9 to Reach 1 as they flow downstream to Lake Ontario). For Reaches 1 through 9, the highest concentrations of PCBs were detected in Reaches 6 and 7 where a significant portion of the contaminated sediment has settled. A maximum PCB concentration at 97 ppm was detected in Reach 7. Elevated concentrations of PCBs and lead are found in shallow and deeper sediments behind Burt Dam and Newfane Dam. Lead concentrations ranged from 3.8 ppm in Reach 5 to a maximum concentration of 6,760 ppm in Reach 2. The higher concentrations in the sediment at depth behind the dams indicate that the major contributions of PCBs and lead were from historical sources. However, high concentrations of PCBs in both the total and dissolved phases of surface water indicate that

⁴ "Young-of-year" refers to all the fish species that are younger than one year of age.

PCBs in the shallow sediments of Reaches 6 and 7 are being transported and deposited downstream by sediment resuspension and resettling.

Floodplain soil sampling in areas prone to flooding revealed maximum PCB and lead concentrations of 26 ppm and 2,630 ppm, respectively. The higher concentrations for both PCBs and lead were primarily on properties within Reach 7. Areas with steeper banks were not impacted by deposition of contaminated sediment. Soil sampling conducted in nearby areas irrigated with water from the Creek did not reveal PCB detections.

Surface water was analyzed over three years under a range of flow conditions. Additional studies designed to understand contaminant sources and migration pathways included passive sampler and filtration studies. While PCBs were consistently detected in both the whole-water and field-filtered samples, based on the absolute magnitude of total PCB concentration in whole-water samples compared to the total PCB concentration in the field-filtered samples, suspended solids contribute the largest load of PCBs into the water column. For example, total PCB concentrations ranged from 20 to 160 ng/L for whole-water samples collected from 2018 to 2020, whereas the corresponding field-filtered samples, where suspended solids were removed, had reported total PCB concentration of less than 7 ng/L. Lead was consistently detected in the whole-water samples in all reaches of the Creek at concentrations that exceed background levels. Lead was not consistently found in the dissolved phase. Lead concentrations in Reaches 1 to 7 are comparable to the concentration in the OU2 source area. Except for the lead concentrations collected during very high flows, resuspension of the contaminated sediment does not appear to be a significant mechanism to transport lead in the water column currently. In general, metals in surface water are not currently a significant contaminant source or migration pathway. In addition, other contaminants such as polycyclic aromatic hydrocarbons also are not currently a significant contaminant source or migration pathway in surface water. As discussed below, migration of sediment via surface water, however, is likely the mechanism for transport of contamination in the Creek downstream of the OU2 sources.

The uptake of PCBs from sediment and surface water has resulted in elevated concentrations of PCBs in fish tissue and biota. Sampling of game fish including largemouth bass, northern pike, and walleye revealed PCB concentrations ranging from 0.26 ppm to 27 ppm. Sampling of forage fish including pumpkinseed, common shiner, and rock bass revealed maximum PCB and lead concentrations of 8.5 ppm and 8.3 ppm, respectively. Mercury detections in the fish from the Creek are generally low.

Contaminant Fate and Transport

The main transport method of contaminated material in the Creek is through sediment movement in the surface water with deposition in sediment beds and on floodplains. This sediment transport has been identified to occur through the following two processes: (1) transport of fine-grained sediment through resuspension of fine sediment in the water column, with the suspended fine sediments being transported downstream, and the settling of suspended sediments in quiescent conditions; and (2) movement of sand as bed load and resettlement.

The transport of contaminants throughout the Creek is influenced by the geology, hydrology, and geomorphology of the surrounding area along with the presence of wetlands, structures, and obstructions in the Creek.

An analysis of sediment erosion and deposition and contaminant movement at the Site revealed the following:

- Upstream sources of PCBs in OU2 likely contribute to PCB concentrations in surface water and sediment in the STA and further downstream; and
- High flows or other disturbances can mobilize the elevated concentrations of PCBs in Reaches 7 and 6 and redistribute them downstream.

5.4 Environmental Justice

According to EPA's EJScreen: Environmental Justice Screening and Mapping Tool, www.epa.gov/ejscreen, there are no demographic indicators for communities on each side of the Creek along OU3 of the Site that would indicate a community with environmental justice concerns. However, an EJScreen analysis of the local community upstream of OU3, including the area encompassing OU1, OU2 and OU4, found that this area exceeded the 80th percentile relative to the rest of New York State for air toxics cancer risk and lead-based paint. The Air Toxics Cancer Risk results are based upon lifetime cancer risk from inhalation of air toxics, as risk per lifetime per million people. The remedy is not anticipated to result in adverse impacts to environmental resources that would affect the populations living within the vicinity of the Site.

5.5 Climate Change

Low-lying areas within the City of Lockport are subject to flooding. The *Resilient New York Flood Mitigation Initiative Report for Eighteen Mile Creek*, dated November 2020, states that more frequent and intense precipitation events are expected because of climate change, resulting in a higher likelihood of flooding along the Creek. The increased flooding may reduce the lifespan of capping and backfill material through increased erosional forces from faster flow.

6.0 CURRENT AND POTENTIAL FUTURE LAND AND RESOURCE USES

6.1 Land Uses

In OU3 land use includes vacant land, residential, commercial, and agricultural. The land uses vary slightly between the reaches. Residential land use accounts for the highest percentage in more populous areas along Reaches 1, 2, and 4. Vacant land accounts for the highest percentage of land use in less populous areas along Reaches 3, 5, 6, 7, and 8.

Within OU3 there are several industrial facilities and inactive hazardous waste sites located along or in vicinity of the Creek, including the Lockport Wastewater Treatment Plant (Reach 7), the Old Upper Mountain Road Landfill site on Gulf Creek (Reach 7) and VanDeMark Chemical, Inc. (Reach 8).

6.2 Groundwater

As discussed above in Section 5, the groundwater investigations that were conducted as part of the OU3 Remedial Investigation (RI) were a continuation of the groundwater investigation of the Creek Corridor conducted during the OU2 RI. Groundwater in the geographic area of OU3 was not investigated as part of the OU3 Remedial Investigation/Feasibility Study (RI/FS).

The most recent groundwater sampling conducted in 2018 and 2019 generally showed low level concentrations of VOCs, including trichloroethylene (TCE), with some exceedances of federal maximum contaminant levels (MCLs) and state standards in some monitoring wells. For example, in 2019, the highest concentration of TCE was detected in well MW-14, at a concentration of 11 μ g/L, compared to the federal MCL and state standard of 5 μ g/L. This represents a decline from 2007, when TCE was detected in MW-14 at a concentration of 20 μ g/L.

The results also revealed fluctuating concentrations in TCE daughter products (cis-1, 2dichloroethylene, trans-1, 2-dichloroethylene, and vinyl chloride), with higher concentrations of the daughter products occurring downgradient of the TCE detections. For example, at MW-5 cis-1, 2-dichloroethylene was detected at a concentration of 8.4 μ g/L in 2019, compared to the federal MCL and state standard of 70 μ g/L and 5 μ g/L, respectively. This represents a decline from 2007. Historically, TCE has not been detected in MW-5. Trend analyses including historical data collected by NYSDEC beginning in 2007 show an ongoing reduction in concentrations of chlorinated VOCs. Furthermore, the City of Lockport is the provider of potable water to residents within the Creek Corridor and surface water from the east branch of the Niagara River is its primary source.

The groundwater investigation within the Creek Corridor identified a limited area of contamination with no historical or active source of VOCs and evidence of on-going natural attenuation of the contaminants in the groundwater. Since groundwater is not expected to be a significant source of contamination to the Creek, it was determined that groundwater in the Creek Corridor would not be addressed further as part of the FS.

7.0 SUMMARY OF SITE RISKS

As part of the RI/FS, EPA conducted a baseline risk assessment to estimate the current and future effects of contaminants on human health and the environment. A baseline risk assessment is an analysis of the potential adverse human health and ecological effects of releases of hazardous substances from a site in the absence of any actions or controls to mitigate such releases, under current and future land and resource uses. The baseline risk assessment includes a baseline human health risk assessment (BHHRA) and a Screening Level Ecological Risk Assessment (SLERA). It provides the basis for taking action and identifies the contaminants and exposure pathways that need to be addressed by the remedial action. This section of the ROD summarizes the results of the risk assessments for OU3 of the Site.

7.1 Human Health Risk Assessment

A four-step process is utilized for assessing site-related human health risks for a reasonable maximum exposure (RME) scenario:

- Hazard Identification uses the analytical data collected to identify the contaminants of potential concern at the Site for each medium, with consideration of a number of factors explained below;
- Exposure Assessment estimates the magnitude of actual and/or potential human exposures, the frequency and duration of these exposures, and the pathways (*e.g.*, ingesting contaminated well-water) by which humans are potentially exposed;

- Toxicity Assessment determines the types of adverse health effects associated with chemical exposures, and the relationship between magnitude of exposure (dose) and severity of adverse effects (response); and
- Risk Characterization summarizes and combines outputs of the exposure and toxicity assessments to provide a quantitative assessment of site-related risks. The risk characterization also identifies contamination with concentrations which exceed acceptable levels, defined by the NCP as an excess lifetime cancer risk greater than 1 x 10⁻⁶ to 1 x 10^{-4} (one in a million to one in ten thousand) or a non-cancer Hazard Index (HI) greater than 1 (HI > 1); contaminants at these concentrations are considered chemicals of concern (COCs) and are typically those that will require remediation at the Site. Also included in this section is a discussion of the uncertainties associated with these risks.

7.1.1 Hazard Identification

The COCs in each medium were identified based on such factors as toxicity, frequency of occurrence, fate and transport of the contaminants in the environment, concentrations, mobility, persistence, and bioaccumulation. Analytical information that was collected to determine the nature and extent of contamination was evaluated to determine the presence of chemicals exceeding concentrations of potential concern.

Site COCs included PCBs and metals in soil, sediment, and fish. The associated risks and hazards from exposure to these chemicals are discussed in the sections below.

Table 1: Selection of Exposure Pathways provides a list of potential exposure pathways under Current and Future exposure assumptions, including the rationale for the selection of each pathway. A comprehensive list of all Chemicals of Potential Concern (COPCs) can be found in the BHHRA and in the administrative record for the Site. Only the COCs, or those chemicals requiring remediation at the Site, are listed in risk **Table 2: Contaminants of Concern**.

7.1.2 Exposure Assessment

The BHHRA is a baseline human health risk assessment and therefore assumes no remediation has been performed and no institutional controls (ICs) are in place to mitigate or remove hazardous substance releases. Cancer risks and non-cancer HIs were calculated based on an estimate of the RME expected to occur under current and future Site conditions. The RME is defined as the highest exposure that is reasonably expected to occur at the Site.

The Site is currently zoned for residential and commercial land use within this portion of the Eighteen Mile Creek watershed and consists primarily of cropland, orchards and vacant land, with residential, commercial, and small industrial areas located closer to the City of Lockport and around Newfane. Newfane includes the hamlet of Newfane on Route 78, which is centrally located within the town and on the east bank of Eighteen Mile Creek (see **Figure 2**). Several other industrial facilities and inactive hazardous waste sites are located along or in the vicinity of Eighteen Mile Creek within OU3, including the City of Lockport Wastewater Treatment Plant, VanDeMark Chemical, Inc., and the Old Upper Mountain Road Landfill site on Gulf Creek.

The BHHRA evaluated current and future risks to the recreational user, angler, and visitor trespasser on a reach-specific basis. In addition to the recreational areas within the OU3 area, there

are several residential properties along the Site study area. Current and future risks to the residents were individually evaluated based on samples collected on the individual residential properties during the RI. Risks were evaluated under baseline conditions, in the absence of any remedial action and/or institutional controls to prevent exposure. The COCs that are found in surface water and sediment in the creek are consumed by biota, and contaminants, such as PCBs, that are known to bioaccumulate and bio-magnify within the food chain. Therefore, the following receptors were evaluated in the BHHRA:

- **Recreational users:** Adult (older than 18 years), adolescent (7 to 18 years), and children (6 years and younger) exposed through incidental ingestion and dermal contact with surface water; incidental ingestion and dermal contact with sediment; and inhalation of dust particles from floodplain soil and exposed Creek nearshore sediment.
- Visitor/trespasser: Adult, adolescent, and children exposed through incidental ingestion, dermal contact, and inhalation of dust particles with floodplain soil.
- **Resident:** Adult and children exposed through incidental ingestion, dermal contact, and inhalation of dust particles from floodplain soil.
- Angler: Adult and adolescent exposed through incidental ingestion of and dermal contact with surface water, incidental ingestion, dermal contact, and inhalation of dust particles from floodplain soil and nearshore sediment in the Creek.
- **Fish Consumers:** Adult, adolescent, and child exposed through ingestion of fish caught in the Creek.

EPA anticipates that the future land use will remain consistent with current use. The BHHRA evaluated potential risks to populations associated with both current and potential future land uses.

The assessment of the transect data included the following assumptions:

- Properties zoned as residential were assessed individually under a residential exposure scenario.
- Creek bank/floodplain soil samples were collected along 13 total soil transects located in five of the nine reaches, with the transects extending in a perpendicular direction away from the banks of the Creek. The sample locations were selected based on the potential for exposure from flooding.
- Soil samples collected from the floodplain areas were used in the risk assessment to assess exposures of residents on a property-by-property basis, as well as exposures of the angler or recreational user who are exposed on a less frequent basis than the resident.
- In some limited instances, a transect traversed more than one property.

Exposures to fish tissue under current/future exposures were evaluated in Zone 3.5

⁵ For purposes of the BHHRA, fish consumption in the Creek was broken into zones. Zone 3 is inclusive of the reaches that are included in OU3.

Exposure pathways were identified for each potentially exposed population and each potential exposure scenario for the soil, sediment, surface water, and fish. A summary of the exposure pathways evaluated in the BHHRA can be found in **Table 1: Selection of Exposure Pathways**. **Table 2: Contaminants of Concern** summarizes the minimum/maximum concentrations, detection frequency, and selection of Contaminants of Concern.

Typically, exposures are evaluated using a statistical estimate of the exposure point concentration, which is usually an upper bound estimate of the average concentration for each contaminant, but in some cases may be the maximum detected concentration based on the number of samples collected. A summary of the exposure point concentrations for the COCs in each medium can be found in **Table 3: Summary of Contaminants of Concern and Medium-Specific Exposure Point Concentrations**. A comprehensive list of the exposure point concentrations for all COPCs can be found in the BHHRA.

The Exposure Assessment evaluates current and future exposures to contaminants in surface soil/sediment, residential soil and fish. The BHHRA provides the specific exposure assumptions for the RME and Central Tendency Exposure (CTE) or Average Exposures for receptors including young children, adolescents, and adults. Exposure factors and other values were largely obtained from EPA's Standard Default Exposure Assumptions, Risk Assessment Guidance for Superfund Parts E and F, and a 1991 study on fish consumption and are detailed in the BHHRA.

7.1.3 Toxicity Assessment

The types of adverse health effects associated with contaminant exposures and the relationship between magnitude of exposure and severity of adverse health effects were determined. Potential health effects are contaminant-specific and may include the risk of developing cancer over a lifetime or other non-cancer health effects, such as changes in the normal functions of organs within the body (*e.g.*, changes in the effectiveness of the immune system). Some contaminants are capable of causing both cancer and non-cancer health effects.

Under current EPA guidelines, the likelihood of carcinogenic risks and non-cancer hazards due to exposure to site chemicals are considered separately. Consistent with current EPA policy, it was assumed that the toxic effects of the site-related chemicals would be additive. Thus, cancer risks and non-cancer hazards associated with exposures to individual COPCs were summed to indicate the potential risks and hazards associated with mixtures of potential carcinogens and noncarcinogens, respectively.

Non-Cancer Toxicity Values: Toxicity data for the BHHRA were obtained from the EPA Integrated Risk Information System (IRIS) database, the Provisional Peer Reviewed Toxicity Database (PPRTV), or another source that was identified as an appropriate reference for toxicity values. This information is detailed in **Table 4: Non-Cancer Toxicity Data Summary**. Additional toxicity information for all other COPCs are available in the BHHRA. **Table 5** identifies chronic toxicity values including information on the Oral Reference Dose (RfD) and Inhalation Reference Concentration (RfC).

Cancer Toxicity Values: Chemicals are classified based on the potential to cause cancer. The five classifications include: Known Human Carcinogen, Probable Human Carcinogen, Possible Human Carcinogen, Not Classifiable Human Carcinogen, and Non-Human Carcinogen. In addition,

Cancer Slope Factors (CSFs) are used to evaluate plausible upper bound estimates of actual cancer risks when combined with exposure assumptions. **Table 5: Cancer Toxicity Data Summary** summarizes the cancer toxicity data for oral and inhalation exposures for the chemicals evaluated in the BHHRA.

7.1.4 Risk Characterization

This step summarized and combined outputs of the exposure and toxicity assessments to provide a quantitative assessment of Site risks. Exposures were evaluated based on the potential risk of developing cancer and the potential for non-cancer health hazards.

Noncarcinogenic Hazards

Non-cancer hazards were assessed using a HI approach, based on a comparison of expected contaminant intakes and benchmark comparison levels of intake (RfDs, RfCs). RfDs and RfCs are estimates of daily exposure levels for humans (including sensitive individuals) which are thought to be safe over a lifetime of exposure. The estimated intake of chemicals identified in environmental media (*e.g.*, the amount of a chemical ingested from contaminated drinking water) is compared to the RfDs or the RfCs to derive the Hazard Quotient (HQ) for the contaminant in the particular media. The HI is obtained by adding the HQs for all compounds within a particular medium that impacts a particular receptor population.

The HQ for oral and dermal exposures is calculated as below. The HQ for inhalation exposures is calculated using a similar model that incorporates the RfC, rather than the RfD.

HQ = Intake/RfD

Where: HQ = Hazard Quotient Intake = estimated intake for a chemical (mg/kg-day) RfD = Reference Dose (mg/kg-day)

The intake and the RfD represent the same exposure period (*i.e.*, chronic, sub-chronic, or acute).

The HI is calculated by summing the HQs for all chemicals for likely exposure scenarios for a specific population (*e.g.*, young child, adolescent, or adult). The non-cancer HI is a "threshold level," set at an HI of less than 1, below which non-cancer health effects are not expected to occur. An HI greater than 1 indicates that the potential exists for noncarcinogenic health effects to occur due to site-related exposures, with the potential for health effects increasing as the HI increases. When the calculated HI for all chemicals for a specific population exceeds 1, separate HQ values are then calculated for those chemicals which are known to act on the same target organ. These discrete HI values are then compared to the acceptable limit of 1 to evaluate the potential for non-cancer health effects on a specific target organ. The HI provides a useful reference point for gauging the potential significance of multiple contaminant exposures within a single medium or across media. A summary of the noncarcinogenic hazards associated with these chemicals for each exposure pathway is provided in **Table 6: Risk Characterization Summary - Non-Carcinogens Hazards** for Transects 10 to 25 for those transects with non-cancer HIs greater than the goal of protection of HI = 1.

Table 6 indicates that the HI for non-cancer effects are primarily from PCBs (effects on the immune system). The Young Child Resident in Transects 10, 13, 15, 19, 20, 22, 23, and 25 exhibits HIs above 1 as a result of exposure to PCBs via floodplain soil. The adult, adolescent, and young child consuming fish from the creek exceeded an HI equal to 1, primarily due to PCBs.

Carcinogenic Risks

For carcinogens, risks are generally expressed as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to a carcinogen, using the CSF for oral and dermal exposures and the inhalation unit risk (IUR) for inhalation exposures. Excess lifetime cancer risk for oral and dermal exposures is calculated from the equation below, while the equation for inhalation exposures uses the IUR, rather than the CSF. **Table 7: Risk Characterization Summary - Cancer Risks**, provides the results.

 $Risk = LADD \times SF$

Where: Risk = a unitless probability (1×10^{-6}) of an individual developing cancer LADD = lifetime average daily dose averaged over 70 years (mg/kg-day) SF = cancer slope factor, expressed as [1/(mg/kg-day)]

These risks are probabilities that are usually expressed in scientific notation (such as 1×10^{-4}). An excess lifetime cancer risk of 1×10^{-4} indicates that one additional incidence of cancer may occur in a population of 10,000 people who are exposed under the conditions identified in the assessment. Again, as stated in the NCP, the acceptable risk range for site-related exposure is 10^{-6} to 10^{-4} .

Results of the BHHRA presented in **Tables 6 and 7** provide the Risk Characterization for Noncarcinogens and Carcinogens, respectively. The following bullet explains how PCBs and dioxinlike PCBs were evaluated:

The assessment evaluated potential cancer risks and non-cancer hazards from exposure to dioxinlike and non-dioxin-like PCB congeners. The evaluation did not identify enhancement of risks and hazards from exposures to PCBs. The Uncertainty Section describes these uncertainties.⁶

Table 7: Risk Characterization Summary – Carcinogens summarizes the calculated risks from exposure to PCBs based on Aroclors 1248, 1254, and 1260. The Young Child Resident in Transect 19 exhibits a risk of 1.2×10^{-4} that exceeds the risk range of 1×10^{-6} to 1×10^{-4} as a result of exposure to PCBs via floodplain soil. As shown in **Table 7**, cancer risks from ingestion of fish

⁶ PCBs are a group of man-made organic chemicals consisting of carbon, hydrogen and chlorine atoms. The number of chlorine atoms and their location in a PCB molecule determine many of its physical and chemical properties. PCBs have a range of toxicity. Compounds that have chemical structures, physico-chemical properties, and toxic responses similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are referred to as "dioxin-like" PCBs. These chemicals persist and bioaccumulate in fatty tissues of animals and humans. EPA evaluates PCBs as dioxin-like and non-dioxin-like compounds in the risk assessment based on sampling data results to ensure risks are appropriately captured.

caught also exceeded the risk range for the adult (3.7 x 10^{-3}), adolescent (2.3 x 10^{-3}), and young child (2.0 x 10^{-3}).

Lead

Lead was evaluated using the Integrated Exposure Uptake Biokinetic (IEUBK) and Adult Lead Model (ALM) models. The models evaluated potential blood lead levels and the percentage of individuals with blood lead levels (BLLs) greater than 5%. **Table 8** summarizes the Lead Model Results for the adult and child.

The mean lead concentration was used to calculate the probability of the maternal blood level exceeding the target blood level of 5 μ g/dL in accordance with EPA guidance. Where risk from lead was evaluated for non-residential exposure, the probability of exceeding 5 μ g/dL was less than 5%.

The IEUBK model results show that sediment exposures in Reaches 6 and 7 are associated with predicted elevated BLLs greater than the goal of 5% or less of the exposed population with BLLs greater than 5 μ g/dL. Exposures to floodplain soil in the transects identified in **Table 8** are associated with predicted elevated BLLs above the goal of no more than 5% of the populations with BLLs above 5 μ g/dL.

Section 8.1 details the remediation goals for lead in soil. Further detail on the non-cancer hazards and cancer risks from all COCs, as well as the evaluation of exposure to lead, can be found in the BHHRA.

7.2 Ecological Risk Assessment

A four step process is utilized for assessing site related ecological risks for a reasonable maximum exposure scenario:

- *Problem Formulation* a qualitative evaluation of contaminant release, migration, and fate; identification of contaminants of concern, receptors, exposure pathways, and known ecological effects of the contaminants; and selection of endpoints for further study.
- *Exposure Assessment* a quantitative evaluation of contaminant release, migration, and fate; characterization of exposure pathways and receptors; and measurement or estimation of exposure point concentrations.
- *Ecological Effects Assessment* literature reviews, field studies, and toxicity tests, linking contaminant concentrations to effects on ecological receptors.
- *Risk Characterization* measurement or estimation of both current and future adverse effects.

In July 2018, a screening level ecological risk assessment (SLERA) was completed for the full length of the Creek. The purpose of the SLERA was to assess risk posed to ecological receptors because of Site-related contaminants. The SLERA indicates that ecological risks may be present for benthic macroinvertebrates and wildlife that consume invertebrates from soil or sediment. A copy of the Final Screening Level Ecological Risk Assessment, dated July 2018, is available in the Administrative Record file for this Operable Unit.

In an effort to better define risks, in 2019 and 2020 additional sampling was conducted to investigate sediment toxicity and bioaccumulation of contaminants from soil and sediment into invertebrates that reside in those media. The results were incorporated in a baseline ecological risk assessment (BERA).

While the BERA evaluated the portion of the Creek beginning at the end of the Creek Corridor (Harwood Street) and continuing to where the Creek discharges into Lake Ontario in Olcott, the evaluation of potential ecological hazards and chemical of potential ecological concerns (COPECs) was separated into three distinct areas of the Creek. The three areas are: (1) Downstream from Burt Dam, (2) Between Burt Dam and Newfane Dam, and (3) Upstream from Newfane Dam. For the purposes of this Proposed Plan, the results presented below are for the area upstream of Newfane Dam, including the STA.

Surface Soil

Terrestrial invertivores wildlife (*e.g.*, American robin and shrew) are highly at risk to surface soil exposure. Through direct exposure, incidental ingestion of contaminated soil and consumption of contaminated food items it was determined that several contaminants of concern (COCs) pose a risk to terrestrial invertivores that feed and dwell within the flood plain soils (*i.e.*, HQs exceeded 1.0 for one or more contaminants). COCs, including PCBs and lead, can accumulate in soil fauna and subsequently put American robin and shrew at risk to COCs exposures.

Sediment

Insectivorous aquatic-dependent wildlife (*e.g.*, tree swallow and little brown bat) and fish-eating wildlife (*e.g.*, great blue heron and mink) are highly at risk to sediment exposure. Through direct exposure, incidental ingestion of contaminated sediment and consumption of contaminated food items it was determined that several COCs, including PCBs and lead, pose a risk to insectivorous aquatic-dependent life and fish-eating wildlife that feed and dwell within the contaminated sediment (*i.e.*, HQs exceeded 1.0 for one or more contaminants). COCs accumulated in benthic macroinvertebrates and forage fish population can put tree swallow, little brown bat, blue heron and mink at risk to COCs exposures.

Overall, the BERA results revealed a wide range of contaminants that present risks to various ecological receptors. The major source of risk from Site-related contaminants are PCBs and metals. The affected ecological receptors are insectivorous aquatic dependent wildlife (*e.g.*, tree swallow and little brown bat), terrestrial insectivorous wildlife (*e.g.*, American robin and shrew), and fisheating wildlife (*e.g.*, great blue heron and mink). Based on the results of the BERA, ecological receptors in areas upstream from Newfane Dam are greatly affected by contaminants.

7.3 Summary of Human Health and Ecological Risks

The results of the HHRA indicate that contamination present in the STA poses unacceptable cancer risks and non-cancer health hazards. In addition, concentrations of lead in soil at adjacent floodplain properties exceed EPA's goal of protection, no more than 5% of the population with BLLs above 5 μ g/dL. The consumption of fish from the STA within OU3 of the Site also presents an unacceptable human health exposure risk (cancer risks and non-cancer hazards). Overall, the

BHHRA found cancer risks and non-cancer hazards for various receptors including the current/future recreational user; current and future visitor/trespasser; were within the risk range and below the goal of protection of a Hazard Quotient (HQ)/HI of 1. Surface water exposure did not pose a risk or hazard above EPA's thresholds. Details of all the exposure pathways evaluated but not included in the ROD can be found in the BHHRA for the sites. The BERA results also caused EPA to conclude that PCBs, copper, lead, and PAHs pose a potential risk to terrestrial plants, soil invertebrates, benthos, and terrestrial and aquatic dependent wildlife.

7.4 Uncertainties in the Risk Assessment

The procedures and inputs used to assess risks in these evaluations, as in all such assessments, are subject to a wide variety of uncertainties. In general, the main sources of uncertainty include:

- environmental chemistry sampling and analysis
- environmental parameter measurement
- fate and transport modeling
- exposure parameter estimation
- toxicological data.

Uncertainty in environmental sampling arises in part from the potentially uneven distribution of chemicals in the media sampled. Consequently, there is significant uncertainty as to the actual levels present. Environmental chemistry-analysis error can stem from several sources including the errors inherent in the analytical methods and characteristics of the matrix being sampled.

Uncertainties in the exposure assessment are related to estimates of how often an individual would come in contact with the COCs, the period of time over which such exposure would occur, and in the models used to estimate the concentrations of the chemicals at the point of exposure. Exposure Point Concentrations (EPCs) for fish tissue were based on tissue samples including both skinless and skin-on fillet samples, consistent with EPA guidance. EPCs derived for organic COCs in fish may be overestimated for those individuals consuming only skinless fillets since fatty tissues concentrate many organic compounds. Conversely, the EPC derived for methyl mercury in fish may be underestimated for those individuals consuming only skinless fillets (mercury concentrates in muscle tissue).

EPCs for all COCs may be underestimated for those individuals consuming whole fish. In addition, PCBs, dioxins, furans, and dioxin-like PCBs were evaluated in the HHRA. In the environment, PCBs occur as mixtures whose compositions differ from the commercial mixtures (Aroclors). This is because after release into the environment, the mixture composition changes over time through partitioning, chemical transformation, and preferential bioaccumulation discussed in EPA's publication: "PCBs: Cancer Dose-Response Assessment and Application to Environmental Mixtures" published in 1996.

PCB congener data are useful for assessing potential risks and hazards from environmental PCB contamination when PCB patterns from Aroclors are weathered or degraded and for comparison with available historical tissue data. The HHRA did not find enhancement of dioxin-like PCBs. All of the receptors and exposure scenario combinations are considered possible under current/future conditions for the different exposure areas and were quantitatively evaluated.

Uncertainties in toxicological data occur in extrapolating both from studies in animals to humans and from high to low doses of exposure, as well as from the difficulties in assessing the toxicity of a mixture of chemicals. These uncertainties are addressed by making conservative assumptions concerning risk and exposure parameters throughout the assessment. As a result, the risk assessment provides upper-bound estimates of the risks to populations near OU3 of the Site, and it is highly unlikely to underestimate actual risks related to the Site.

Non-cancer hazards and cancer risks were quantified only for a selected subset (the COPCs) of chemicals detected in environmental media. While omission of other chemicals based on screening or lack of toxicity information may underestimate total non-cancer hazards and cancer risks, this is not considered a significant source of uncertainty because the chemicals that were excluded were present at low concentrations. More specific information concerning public health risks, including a quantitative evaluation of the degree of risk associated with various exposure pathways, is presented in the HHRA.

More specific information concerning public health risks, including a quantitative evaluation of the degree of risk associated with various exposure pathways, is presented in the BHHRA and BERA reports.

7.5 Basis for Taking Action

Based on the results of the OU3 RI/FS, HHRA, and BERA, actual or threatened releases of hazardous substances from OU3, if not addressed by implementing the response action selected in the ROD, may present an imminent and substantial endangerment to the public health, welfare, or the environment.

8.0 **REMEDIAL ACTION OBJECTIVES**

Remedial action objectives (RAOs) are specific media-specific goals to protect human health and the environment; they specify the contaminant(s) of concern, the exposure route(s), receptor(s), and acceptable contaminant level(s) for each exposure route. These objectives are based on available information and standards such as applicable or relevant and appropriate requirements (ARARs), to-be-considered (TBC) advisories, criteria and guidance, and site-specific risk-based levels and background (*i.e.*, reference area) concentrations.

Interim and final remedial action objectives have been established for OU3:

Sediment Interim RAOs:

• Reduce the mass, transport, and exposure to PCBs in sediment throughout the Creek channel by remediating areas that serve as sources of COCs to the Creek system.

Floodplain Soil Final RAOs:

- Minimize human exposure risk from contact with contaminated floodplain soil by reducing COC concentrations in soil to remedial goals.
- Minimize risks to ecological receptors from contact with contaminated floodplain soil by reducing the COC concentrations in soil to remedial goals.
- Minimize the transport of floodplain soil containing COCs by reducing the potential for interaction with adjacent areas and the Creek.

8.1 Remediation Goals

Achieving RAOs relies on the remedial alternative's ability to meet remediation goals/ cleanup levels derived from remediation goals (RGs), which are generally chemical-specific goals for each medium and/or exposure route that are established to protect human health and the environment. They can be based on such factors as ARARs, risk, and from comparison to background levels of contaminants in the environment that occur naturally or are from other industrial sources.

To achieve the floodplain soil RAOs, EPA has identified a soil cleanup goal, or RG, for contaminated soil to attain a degree of cleanup that ensures the protection of human health and the environment. The two-tiered RG for lead in soils described below is based on the New York State's 6 NYCRR Part 375 Residential Soil Cleanup Objectives and EPA Region 2's lead approach consistent with OLEM Directive 9200.2-167. The remediation goal is also consistent with the 2024 "OLEM Updated Residential Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities," which establishes a regional screening level (RSL) of 200 ppm where there are no additional sources of lead (*e.g.*, lead water service lines, lead-based paint non-attainment areas where lead concentrations exceed the National Ambient Air Quality Standards) are present.⁷

The following remediation goals have been identified for adjacent floodplain residential, including agricultural, properties within the STA:

- Lead: 400 ppm^{8,9}
- PCBs: 1 ppm

The following remediation goals have been identified for adjacent surface (0 to 2 ft) floodplain commercial properties within the STA:

- Lead: 1,000 ppm
- PCBs: 1 ppm

The RGs for surface commercial soils are consistent with the RGs established in the OU2 remedy.

It is EPA's expectation that by targeting PCBs and lead, risks posed by other contaminants found in floodplain soil, such as mercury, would also be addressed. The remedy to be selected for floodplain soils in the STA is intended to be a final remedy. However, the proposed interim remedy for sediments in the STA is not intended to attain acceptable COC levels in all media throughout the Creek. A future, final remedy will establish acceptable COC levels in sediments that are protective of human health and the environment. An interim remedy should be consistent with and

⁷ Updated Scientific Considerations for Lead in Soil Cleanups, December 22, 2016 https://semspub.epa.gov/work/08/1884174.pdf and Updated Residential Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities https://www.epa.gov/system/files/documents/2024-01/olem-residential-lead-soilguidance-2024_signed_508.pdf

⁸ In addition to targeting detections of lead above 400 ppm, the average soil concentration across each residential property will be at or below 200 ppm.

⁹ By remediating floodplain soils to an average concentration at or below 200 ppm, the goal of protection (target blood lead level of 5 ug/dL) outlined in the 2024 Updated Residential Soil Lead Guidance will be met. These levels would also be protective of recreational users and ecological receptors.

not preclude a final protective remedy. Interim action remediation goals are associated with the interim actions and reflect the limited scope of the interim action.

To achieve the interim sediment remedy RAOs, a remedial action level (RAL) of 1 ppm for PCBs will be used to delineate PCB source sediments within the STA for remediation. The RAL of 1 ppm is consistent with other sediment cleanups in New York State. This RAL is not a final RG for the Creek sediments, however, and the practical outcome of this RAL is that a large mass of source material that is acting as a continuing source to the rest of Eighteen Mile Creek will be addressed. The RAL of 1 ppm for PCBs satisfies the interim RAO of source control and PCB migration reduction. In addition, given the widespread presence of PCBs, addressing PCBs above the RAL in the STA is also expected to address other potential co-located contaminants, such as lead and mercury.

As indicated in the Scope and Role of Action section above, a separate comprehensive evaluation would be conducted for the full length of the Creek. A subsequent or final remedy will identify the final RAOs and remediation goals for sediment along the entire length of the Creek.

9.0 SUMMARY OF REMEDIAL ALTERNATIVES

Section 121(b)(1) of CERCLA, 42 U.S.C. \$9621(b)(1), requires that a remedial action be protective of human health and the environment, be cost-effective, and utilize permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practicable. Section 121(b)(1) also establishes a preference for remedial actions which employ, as a principal element, treatment to permanently and significantly reduce the volume, toxicity, or mobility of the hazardous substances, pollutants and contaminants at a site. Section 121(d) further specifies that a remedial action must attain a level or standard of control of the hazardous substances, pollutants, which at least attains ARARs under federal and state laws, unless a waiver can be justified pursuant to CERCLA Section 121(d)(4), 42 U.S.C. \$9621(d)(4).

To address the RAOs, the FS identified three primary areas that have the greatest potential for transporting significant contamination downstream based upon transport modeling and data identifying the areas with the highest levels of contamination. The three primary areas identified in the FS Report are the STA and two sediment depositional areas (SDAs) located immediately upstream of Newfane Dam and Burt Dam (represented by Reaches 2 and 5, respectively). While the STA was identified as the primary source of continuing contamination related to elevated contaminant concentrations that occur with sediment erosion and surface water flow from the East Branch, contaminated sediments have accumulated and are present behind the impoundment areas of both Newfane Dam and Burt Dam. While the FS Report included remedial alternatives for the two SDAs and floodplain soil adjacent to the SDAs, for the purposes of this ROD, alternatives for the two SDAs and floodplain soil not adjacent to the STA are not being addressed at this time. As indicated in the Scope and Role of Action section, above, further evaluations and long-term monitoring of these areas is needed before a cleanup plan for these remaining portions of the Creek can be developed.

Potential technologies applicable to sediment contamination within the STA as well as contaminated floodplain soil at properties adjacent to the STA were identified and screened using

the effectiveness, implementability, and cost criteria, with emphasis on effectiveness. Those technologies that passed the initial screening were assembled into alternatives.

This ROD evaluates in detail eight remedial alternatives for addressing the contamination associated with the Site. The time to implement a remedial alternative reflects only the time required to construct or implement the remedy and does not include the time required to negotiate with the responsible parties, design the remedy, procure contracts for design and construction, or conduct operation and maintenance at the Site. Detailed information regarding the alternatives can be found in the FS Report.

9.1 Description of Common Elements of Sediment Alternatives

All of the sediment alternatives, with the exception of STA1 (No Action) and STA2 (Monitored Natural Recovery, Long-Term Monitoring, and Institutional Controls), would include the following common components:

Sediment Delineation and Cultural Resource Evaluation: Based on data collected to date, an estimated 80% of the STA Creek bed area exceeds the RAL. During the remedial design, additional sampling would be conducted to refine the areas requiring remediation. In addition, a Phase 1B cultural resource investigation would be performed to assess the presence or absence of archaeological deposits.

During implementation of the remedial action, temporary cofferdams or other barriers would be installed to divert water around active work areas to allow for excavation in dry conditions. Diversion piping would be used to divert water around the work area. Excavated sediment would be transferred from the Creek to the staging area. Confirmation samples would be collected at the bottom of excavation to verify the RAL has been met. Confirmation samples would be analyzed for PCBs, and additional excavation and sampling may be required to demonstrate the RAL has been met.

Access Roads: Access roads and staging areas would be constructed in upland areas to allow equipment access and facilitate implementation of the proposed remedial activities along the Creek. A staging area for contaminated material storage and dewatering, wastewater treatment, and clean fill material storage would be established. Construction would require clearing and grubbing of vegetation. Following remediation of the Creek, the access roads and staging areas would be removed, and the areas restored in accordance with the habitat reconstruction plan.

Off-Site Disposal of Contaminated Sediment: Excavated sediment exceeding RALs would be transported off-Site for disposal at a Resource Conservation and Recovery Act (RCRA) or a Toxic Substances Control Act (TSCA) regulated landfill, as appropriate, based on the concentrations of contaminants in the excavated sediment. If necessary to meet the requirements of the disposal facilities, contaminated material would be treated prior to land disposal.

Construction Monitoring: Water quality downstream of the work areas would be monitored during construction activities. Air quality would be monitored throughout construction activities to protect workers and the public.

Long Term Monitoring: A monitoring plan would be developed during the remedial design to track PCB concentrations in sediment, surface water and fish tissue to monitor aquatic media. The monitoring plan would evaluate remaining residual soil contamination in the floodplain soil, the potential for bank erosion, and an assessment of the fate and transport mechanisms of the remaining contamination to contaminate sediments in the Creek. Results would be used to assess the effectiveness of the remedial alternative in reducing PCB concentrations in fish tissue and to develop a final remedy for the Creek.

Institutional Controls: Institutional controls refer to non-engineering measures intended to ensure the protectiveness of a remedy and to restrict human activities so as to prevent or reduce the potential for exposure to contaminated media. Institutional controls in the form of informational devices, such as NYSDOH fish consumption advisories, would continue to be implemented to limit exposure to PCBs. NYSDOH periodically reviews fish PCB data to ensure the advisories are up to date and considers whether the fish consumption advisories need modification.

9.2 Description of Sediment Transition Area (STA) Remedial Alternatives

Alternative STA1: No Action

Alternative 1, the "No Action" alternative, is required by the NCP to provide an environmental baseline against which impacts of the other remedial alternatives can be compared. No action would be initiated to remediate contaminated media or otherwise mitigate the migration of contamination that poses unacceptable risks to human health and the environment. This alternative also does not include monitoring or institutional controls.

Total Capital Cost:	\$0
Total O&M:	\$0
Total Present Net Worth:	\$0
Construction Timeframe:	0 years

Alternative STA2: Monitored Natural Recovery, Long-Term Monitoring, and Institutional Controls

The Monitored Natural Recovery (MNR) alternative for sediments relies on the naturally occurring transport and deposition of cleaner upstream material to reduce exposure to contaminant concentrations over time through burial.

A MNR monitoring program would be developed to document and evaluate the performance of natural recovery, including the evaluation of changes in PCB concentrations over time as clean sediment from upstream areas is deposited within the STA. This alternative also includes institutional controls and long-term monitoring, as described in the Common Elements of the Sediment Alternatives Section, above.

Total Capital Cost:	\$0
Total O&M:	\$337,000
Total Present Net Worth:	\$1,999,000
Construction Timeframe:	0 years

Alternative STA3: Excavation, Long-Term Monitoring, and Institutional Controls

Alternative STA3 includes the excavation of all sediment within the STA, consistent with the response selected in the OU2 remedy of bank-to-bank excavation down to native material, followed by backfilling with up to two feet of clean sand and covered with a suitable habitat layer to create conditions for the reestablishment of natural conditions in the Creek. The RI investigation found that PCBs above the RAL are present in sediments in Reach 7 down to 4 feet below the sediment surface. In addition to targeting deeper sediments that exceed the RAL, this alternative would include removal of PCBs at concentrations lower than the RAL of 1 ppm.

For the conceptual design, it is estimated that the average depth of sediment to native material is less than two feet, resulting in the removal of an estimated 96,000 cubic yards of sediment. Contaminated material would be sent for off-Site disposal.

Total Capital Cost:	\$102,273,000
Total O&M:	\$268,000
Total Present Net Worth:	\$82,440,000
Construction Timeframe:	16 months

Alternative STA4: Pre-Dredge to Accommodate Cap, Capping, Long-Term Monitoring, and Institutional Controls

Alternative STA4 includes the excavation of approximately one foot of contaminated sediment in areas within the STA that exceed the RAL followed by the placement of clean sand and suitable habitat material to create a cap over the remaining contaminated sediment.

For the conceptual design, it is estimated that the removal of approximately one foot of existing sediment is needed to support the placement of a cap that would minimize the potential for mobilization of contaminated sediment without creating adverse impacts associated with flooding.

In addition, contaminated sediment with PCB concentrations greater than 50 ppm would be removed regardless of the depth. Under this alternative, an estimated 41,000 cubic yards of contaminated sediment would be excavated and sent for off-Site disposal.

Total Capital Cost:	\$61,940,000
Total O&M:	\$296,000
Total Present Net Worth:	\$53,025,000
Construction Timeframe:	12 months

Alternative STA5: Excavation to RAL, Long-Term Monitoring, and Institutional Controls

Alternative STA5 includes the excavation of contaminated sediment above the RAL within the STA followed by backfilling with clean sand and covering with a suitable habitat layer to create conditions for the reestablishment of natural conditions in the Creek.

For the conceptual design, it is estimated that the average depth of the excavation to meet the RAL would be approximately 1.3 feet, resulting in the removal of an estimated 54,000 cubic yards of contaminated sediment. Contaminated material would be sent for off-Site disposal. While

estimated excavation depths across the STA were calculated in the FS, the estimated excavation depth was based on the average depths of samples exceeding the RAL. Post-excavation sampling would be performed prior to backfilling to confirm that the RAL has been met.

Total Capital Cost:	\$75,104,000
Total O&M:	\$237,000
Total Present Net Worth:	\$60,769,000
Construction Timeframe:	9 months

9.3 Description of Common Elements of Floodplain Soil Alternatives

Each of the floodplain soil alternatives, with the exception of Soil1 (No Action), include the following common components:

Remediation Areas: Sampling in flood-prone areas conducted as part of the RI revealed 17 areas adjacent to the STA that are impacted by Site-related contamination requiring remediation. The FS Report divides remediation areas into the following two categories.

- Adjacent floodplain soil areas (not farmland or developed residential areas); and
- Adjacent farmland and developed residential floodplain soil areas.

The purple-colored sections within the STA on **Figure 2** represent the floodplain soil remediation areas. Refer to Figures 5-18 through 5-22 in the FS Report for the specific areas targeted for remediation depicted by creek reach.

During the remedial design, additional sampling of floodplain soil adjacent to the STA would be conducted to further delineate nature and extent and refine volume estimates. The additional sampling would also provide a better estimate of the residual contamination remaining in the floodplain soil, thereby providing data needed to conduct the assessment of the fate and transport mechanisms of the remaining contamination in the floodplain, as outlined in the discussion on future operable units and the long-term monitoring plan as outlined in the common elements section for the sediment alternatives. EPA conservatively assumed that contaminated soil extends to 2 feet deep although samples in the remedial investigation only went to a depth of 1 foot.

Floodplain soils that were not sampled during the RI but are prone to river flooding would also be sampled as part of the remedial design. This additional data would be used for risk evaluations to determine if, based on land use designations or the potential for floodplain soil to re-contaminate sediments in the Creek, additional properties or areas require remediation. EPA has conservatively estimated, for cost estimation purposes, that additional sampling may identify up to 11 additional acres that would require remediation as part of this OU. In addition, floodplain soil sampling would also be conducted downstream of the STA as part of a separate investigation. Separate response actions or a future operable unit would address risks identified in floodplain soil downstream of the STA.

Excavation and Soil Management: Construction of the active floodplain soil alternatives would require clearing and grubbing of vegetation. Temporary access roads from the remediation areas to nearby public roads and the staging area would be constructed. Excavated contaminated floodplain soil would be transported to a staging area for storage and dewatering prior to off-Site

disposal. Erosion and sediment controls at each remediation area would be installed to prevent the migration of floodplain soil to the Creek. Water and air quality would be monitored during construction. In areas requiring excavation, verification samples would be collected to confirm that contaminated soil in excess of the RGs has been removed and the remedial action objectives have been met. Excavated areas would be backfilled by placing clean fill material and topsoil.

Following remediation of the Creek, access roads and staging areas would be removed, and impacted areas would be restored in accordance with the habitat reconstruction plan.

Site Management Plan (SMP): Development of a SMP to provide for management of floodplain soil postconstruction, including the use of institutional controls and periodic reviews for those alternatives where contamination is left in place above levels that allow for unrestricted use.

9.4 Description of Floodplain Soil (Soil) Remedial Alternatives

Alternative Soil1: No Action

Alternative 1, the "No Action" alternative, is required by the NCP to provide an environmental baseline against which impacts of the other remedial alternatives can be compared. No action would be initiated to remediate contaminated media or otherwise mitigate the migration of contamination that poses unacceptable risks to human health and the environment. This alternative also does not include monitoring or institutional controls.

Total Capital Cost:	\$0
Total O&M:	\$0
Total Present Net Worth:	\$0
Construction Timeframe:	0 years

Alternative Soil2: Limited Floodplain Soil Excavation, Soil Cover, and Institutional Controls

Under this alternative, lead and PCB-contaminated floodplain soil would be addressed through a combination of excavation and/or installation of a cover system based on land use. While floodplain soil areas in residential and farmland areas would be excavated to remove all contaminated soil above the RGs and backfilled with clean topsoil, non-developed areas including commercial areas would have a soil cover system installed. The cover system, with an estimated thickness of two to three feet, would be vegetated and constructed to isolate floodplain soil exceeding the RGs from erosion, transport, and/or migration to surrounding areas. In areas with steep slopes, riprap would be placed as the top layer to prevent erosion. During the remedial design, investigations would be conducted to determine the need for the addition of amendments, such as activated carbon, as well as to evaluate the impact of the cover system on wetlands.

Because contaminated soil would remain at the impacted properties adjacent to the STA above levels that would otherwise allow for unrestricted use following remediation, institutional controls would be implemented. Institutional controls may include environmental easements/ restrictive covenants, deed notices, and/or zoning restrictions to limit future use of the properties and would require maintenance of the cover material and impose restrictions on excavation of these properties.

Because this alternative would result in contaminants remaining at the Site that are above levels that would otherwise allow for unrestricted use and unlimited exposure, CERCLA requires that the Site be reviewed at least once every five years. If justified by the review, additional response actions may be implemented.

Total Capital Cost:	\$42,941,000
Total O&M:	\$51,000
Total Present Net Worth:	\$39,363,000
Construction Timeframe:	2 years

Alternative Soil3: Floodplain Soil Excavation and Off-Site Disposal

This alternative includes the excavation and off-Site disposal of PCB- and lead-contaminated floodplain soil exceeding the RGs adjacent to the STA regardless of the land use designation. These areas would be backfilled with clean fill and topsoil.

Because contaminated soil would remain at the impacted commercial properties adjacent to the STA above levels that would otherwise allow for unrestricted use following remediation, institutional controls would be implemented. Institutional controls may include environmental easements/ restrictive covenants, deed notices, and/or zoning restrictions to limit future use of the commercial properties and impose restrictions on excavation.

Total Capital Cost:	\$149,125,000
Total O&M:	\$0
Total Present Net Worth:	\$131,307,000
Construction Timeframe:	2 years

10.0 SUMMARY OF COMPARATIVE ANALYSIS OF ALTERNATIVES

In selecting a remedy for a site, EPA considers the factors set out in Section 121(b)(1) of CERCLA, 42 U.S.C. §9621(b)(1), by conducting a detailed analysis of the viable remedial alternatives pursuant to the NCP, 40 C.F.R. Section 300.430(e)(9), EPA's *Guidance for Conducting Remedial Investigations and Feasibility Studies*, OSWER Directive 9355.3-01, and *EPA's A Guide to Preparing Superfund Proposed Plans, Records of Decision, and Other Remedy Selection Decision Documents*, OSWER 9200.1-23.P. The detailed analysis consists of an assessment of the individual alternatives against each of nine evaluation criteria and a comparative analysis focusing upon the relative performance of each alternative against those criteria.

The first two criteria are known as "threshold criteria" because they are the minimum requirements that each response measure must meet in order to be eligible for selection:

- 1. *Overall protection of human health and the environment* addresses whether or not a remedy provides adequate protection and describes how risks posed through each exposure pathway (based on a reasonable maximum exposure scenario) are eliminated, reduced, or controlled through treatment, engineering controls, or institutional controls.
- 2. *Compliance with ARARs* addresses whether or not a remedy would meet all of the applicable (legally enforceable), or relevant and appropriate (requirements that pertain to

situations sufficiently similar to those encountered at a Superfund site such that their use is well suited to the site) requirements of federal and state environmental statutes and requirements or provide grounds for invoking a waiver. Other federal or state advisories, criteria, or guidance may be identified by EPA as "to be considered", or "TBCs". While TBCs are not required to be adhered to under the NCP, they may be useful in determining what is protective or how to carry out certain actions or requirements.

The following "five primary balancing" criteria are used to make comparisons and to identify the major trade-offs between alternatives:

- 3. Long-term effectiveness and permanence refers to the ability of a remedy to maintain reliable protection of human health and the environment over time, once cleanup goals have been met. It also addresses the magnitude, effectiveness and reliability of the measures that may be required to manage the risk posed by treatment residuals and/or untreated wastes.
- 4. *Reduction of toxicity, mobility, or volume via treatment* refers to a remedial technology's expected ability to reduce the toxicity, mobility, or volume of hazardous substances, pollutants or contaminants at the site through treatment.
- 5. *Short-term effectiveness* addresses the period of time needed to achieve protection and any adverse impacts on human health and the environment that may be posed to workers, the community and the environment during the construction and implementation periods until cleanup goals are achieved.
- 6. *Implementability* refers to the technical and administrative feasibility of a remedy, from design through construction and operation, including the availability of materials and services needed, administrative feasibility, and coordination with other governmental entities.
- 7. *Cost* includes estimated capital and operation and maintenance costs, and the net presentworth costs calculated using a 7% discount rate.

The following "modifying" criteria are used in the final evaluation of the remedial alternatives after the formal comment period, and they may prompt modification of the preferred remedy that was presented in the Proposed Plan:

- 8. *State acceptance* indicates whether, based on its review of the RI/FS and the Proposed Plan, the State supports, opposes, and/or has identified any reservations with the preferred alternative.
- 9. *Community acceptance* refers to the public's general response to the alternatives described in the Proposed Plan and the RI/FS reports. Factors of community acceptance to be discussed include support, reservation, and opposition by the community.

A comparative analysis of the remedial alternatives considered in this OU3 ROD, based upon the evaluation criteria noted above, follows.

10.1 Overall Protection of Human Health and the Environment

Overall protection of human health and the environment determines whether an alternative eliminates, reduces, or controls threats to public health and the environment through institutional controls, engineering controls, or treatment.

Sediment Alternatives

Alternative STA1 (No Action) is not protective of human health and the environment because it does not eliminate, reduce, or control risk of exposure to contaminated sediment. STA2 relies on natural processes, such as sedimentation to cover the surface sediment with cleaner sediment from upstream, in order to reduce the PCB concentration at the sediment surface and reduce risk. While sedimentation of clean backfill material from the cleanup of upstream Creek Corridor as part of OU2 is expected to result in some reduction of contaminant concentrations within the STA over time, because sediment within the STA is prone to resuspension, the redistribution and redeposition of contaminated sediment to downstream areas is likely. As a result, Alternative STA2 would not achieve the RAOs.

While Alternatives STA3, STA4, and STA5 each include removal of contaminated sediments, under Alternative STA4, only contaminants within the top one foot would be removed followed by the installation of a cap to prevent mobilization or exposure to underlying contaminated sediment. Therefore, while Alternatives STA3, STA4, and TA5 would achieve the RAOs, under Alternative STA4 monitoring and maintenance of the cap would be required to ensure protection over the long term.

Floodplain Soil Alternatives

Alternative Soil1 (No Action) is not protective of human health and the environment because it does not eliminate, reduce, or control risk of exposure to contaminated floodplain soil. Alternative Soil2 and Alternative Soil3 would be protective of human health and the environment as contaminated material would either be removed from the Site or capped. Under Alternative Soil2, contaminated soils would remain in place above the RGs in non-developed areas or areas not used as farmland, and protection would be achieved through the placement of cover material and implementation of institutional controls.

10.2 Compliance with ARARs

Compliance with ARARs addresses whether a remedy will meet all of the applicable or relevant and appropriate requirements of other federal and state environmental statutes or provides a basis for invoking a waiver.

Sediment Alternatives

There are currently no federal or state promulgated standards for contaminant levels in sediments. There are, however, other federal or state advisories, criteria, or guidance (which are used as TBC criteria). Specifically, NYSDEC's "Screening and Assessment of Contaminated Sediment Guidance" (2014) sediment screening values are a TBC criterion. The RAL of 1 ppm for PCBs is consistently evaluated and often applied at contaminated sediment sites in New York State. This

value is also supported by NYSDEC's "Technical Guidance for Screening Contaminated Sediments."

Because the contaminated sediments would not be addressed under Alternative STA1, the RAL for PCBs would not be achieved. Under Alternative STA2, a long-term monitoring program would track if there were progress toward achieving the RAL over the long term. Alternative STA3 would achieve the RAL through the full removal of sediment. Alternative STA4 would achieve the RAL through a combination of isolation and removal of sediment. STA5 would achieve the RAL through the removal of sediments that exceed the RAL.

Because there is no active remediation associated with the sediment for Alternative STA1 or STA2, action-specific and location-specific ARARs do not apply. Alternatives STA3 through STA5 are expected to comply with action-specific and location-specific ARARs for water quality monitoring during excavation of sediments and wastewater discharge resulting from sediment dewatering. Mitigation may be required to address location-specific ARARs in relation to the construction of access roads through the floodplains and wetlands.

Pursuant to Section 106 of the National Historic Preservation Act, a Stage 1B Cultural Resource Investigation would be performed during the design phase to evaluate the existence of cultural and archaeological resources within the STA that could be impacted by the implementation of this alternative.

RCRA and TSCA are federal laws that mandate procedures for managing, treating, transporting, storing, and disposing of hazardous wastes and PCBs, respectively. All portions of RCRA that are applicable or relevant and appropriate to the proposed remedy for the Site would be met by Alternatives STA1 through STA5, and all portions of TSCA would be met by Alternatives STA1 through STA5 as well.

It should be noted that under CERCLA, remedial actions must comply with all federal and state environmental requirements, standards, criteria, and limitations, unless such ARARs are waived under certain specific conditions. Because the remedy for the STA portion of OU3 is an interim remedy, identification of ARARs is not necessary at this time. It is nonetheless expected that each of the selected remedies will be designed in such a way that attains location- and action-specific ARARs. Chemical-specific ARARs would be addressed by the eventual, final remedy selected for the full length of the Creek.

Floodplain Soil Alternatives

EPA has identified NYSDEC's 6 NYCRR Part 375 soil cleanup objectives as an ARAR, a TBC, or an 'other guidance' to consider in addressing contaminated soil at OU3. Alternative Soil1 would not achieve RGs for soil because no measures would be implemented and contaminated soil would remain in place. Alternative Soil2 would prevent direct contact with PCB- and lead-contaminated soil exceeding the RGs through a combination of removal and capping. Under Alternative Soil2, in order to comply with location-specific ARARs related to the protection of wetlands and floodplains, mitigative measures or modification to the conceptual design of the cover system may need to be evaluated during the design for areas that receive a cap because of the impacts to wetlands and floodplain soils. Areas receiving a cover system would require long-term monitoring and maintenance to verify continued compliance with ARARs. Soil3 complies with ARARs

through the removal of PCB- and lead-contaminated soil exceeding the RGs. RCRA and TSCA are federal laws that mandate procedures for managing, treating, transporting, storing and disposing of hazardous wastes and PCBs. All portions of RCRA and TSCA that are applicable or relevant and appropriate to the proposed remedy for OU3 would be required to be met with Alternatives Soil2 and Soil3.

10.3 Long-Term Effectiveness and Permanence

Long-term Effectiveness and Permanence considers the ability of an alternative to maintain protection of human health and the environment over time.

Sediment Alternatives

Alternatives STA1 and STA2 remove no PCBs from the Creek and include no active measures to reduce residual risk at the Site. Neither option would prevent mobilization of PCBs in sediment that are vulnerable to erosional forces. Each of these alternatives therefore would allow for the continued exposure of PCBs over the long-term and thus do not promote long-term effectiveness and permanence.

Alternative STA3 and Alternative STA5 reduce residual risk through excavation of PCBcontaminated sediment. Alternative STA3 and Alternative STA5 are considered more permanent than Alternative STA4. Alternative STA4 includes limited excavation of sediment followed by capping to isolate the contaminated sediment, and long-term monitoring of the cap.

Low-lying areas within the City of Lockport are subject to flooding. The Resilient New York Flood Mitigation Initiative Report for Eighteen Mile Creek, dated November 2020, states that more frequent and intense precipitation events are expected because of climate change, resulting in a higher likelihood of flooding along the Creek. The increased flooding may reduce the lifespan of capping and backfill material through increased erosional forces from faster flow. If Alternative STA4 is selected, an evaluation of the need for additional armoring would need to be performed during the remedial design to ensure that the cap would withstand such events. In addition, inspections of the cap would be conducted periodically, including after major storm events, and any necessary maintenance of the cover system would be performed.

Floodplain Soil Alternatives

Alternative Soil1 would not provide a permanent or long-term effective solution to contaminated floodplain soil as no remediation would occur. Under Alternative Soil2, long-term risks at the residential and farming properties would be permanently removed since contaminated floodplain soil would be permanently removed and disposed of off-Site. At the commercial properties, Alternative Soil2 provides long-term effectiveness through effective maintenance of a cover system and institutional controls such as land-use restrictions. Under Alternative Soil3, long-term risks would be permanently removed since contaminated floodplain soil would be excavated and disposed of off-Site.

10.4 Reduction in Toxicity, Mobility, or Volume via Treatment

Reduction in Toxicity, Mobility, or Volume of Contaminants through Treatment evaluates an alternative's use of treatment to reduce the harmful effects of principal contaminants, their ability to move in the environment and the amount of contamination present.

Sediment Alternatives

For Alternatives STA1 and STA2, the only possible way to reduce contaminant concentrations in sediment would be natural recovery processes. Under these alternatives, there would be no reduction of toxicity, mobility, or volume through treatment. Alternatives STA3, STA4, and STA5 would permanently remove various volumes of sediment from the Creek through excavation, although not through treatment. Off-Site treatment, if required, would reduce the toxicity of the contaminated sediment prior to disposal. Placement of a cap, which is a component of Alternative STA4, would provide reduction of mobility of the contaminated sediment through isolation of contaminants, but would not reduce mobility through treatment.

Floodplain Soil Alternatives

Alternative Soill would not achieve any reduction in the mobility, toxicity, or volume because contaminated soil would remain in place as is. Alternative Soil2 would use a combination of capping and removal to achieve a reduction in mobility, volume, and exposure to contaminants, but not through treatment. Alternative Soil2 would not reduce the toxicity of the contaminants at properties that are capped. Under Alternative Soil3, the mobility, volume, and exposure to contaminants would be reduced but not through treatment. Furthermore, off-Site treatment, if required, would reduce the toxicity of the contaminated soil prior to disposal.

10.5 Short-term Effectiveness

Short-term Effectiveness considers the length of time needed to implement an alternative and the risks the alternative poses to workers, residents and the environment during implementation.

Sediment Alternatives

Alternatives STA1 would not create new, adverse short-term impacts because no remediation activities would take place. Alternative STA2 would have few adverse short-term impacts since the only activities would be monitoring of conditions in the Creek to assess changes in site conditions. Alternatives STA3, STA4, and STA5 involve active remediation, similar in size and scope, and have the potential for similar short-term risks. Based on the higher volume of sediment that would be removed, Alternative STA3 would have the greatest duration of impacts given the longer project schedule. No time is required for construction of Alternative STA1 or Alternative STA2. Alternatives STA3, STA4, and STA5 are estimated to take 16, 12, and 9 months, respectively.

The risks to remediation workers and nearby residents under all of the active alternatives would be mitigated by following appropriate health and safety protocols, by exercising sound engineering practices, and by utilizing proper protective equipment.

Floodplain Soil Alternatives

Alternative Soil1 would have no adverse short-term impacts or risks since no remediation activities would take place. Both Alternatives Soil2 and Soil3 would have similar adverse short-term risks associated with construction activities. Similar to the sediment alternatives, the risks to remediation workers and nearby residents under all of the active alternatives would be mitigated by following appropriate health and safety protocols, by exercising sound engineering practices, and by utilizing proper protective equipment.

No time is required for construction of Alternative Soil1. Time required for implementation of Alternative Soil2 is estimated to take two years. Alternative Soil3 is also estimated to take two years.

10.6 Implementability

Implementability addresses the technical and administrative feasibility of a remedy from design through construction and operation. Factors such as availability of services and materials, administrative feasibility, and coordination with other governmental entities are also considered.

Sediment Alternatives

There are no implementability issues with Alternative STA1 and STA2, which do not involve any active remediation. The technologies and methods to perform the active alternatives, STA3, STA4, and STA5, are well established. Given the topography, steep slopes, presence of heavy woods or wetlands, and in water structures (e.g., bridges and culverts) in some sections of the STA, some of the remediation areas may be difficult to access. Construction of temporary access roads for multiple access points in addition to siting of the material stockpile and processing area for excavated material may be logistically, but not necessarily technically, challenging because this work would likely require use of a large area of private land in the vicinity of the STA. Under Alternative STA4, one foot of contaminated sediment would be removed to facilitate the installation of a cap. The design of this cap would need to take into consideration that the total thickness of the cap should not impact the depth of open water or increase the potential for flooding, both while ensuring that the cap would weather erosional forces resulting from storm events. The cap specifications would be evaluated further during the remedial design. In addition, in order to perform excavation activities under Alternatives STA3, STA4, and STA5, temporary cofferdams or other barriers would be installed to divert water around active work areas to allow for excavation in dry conditions. Because the release of water from the upstream Canal impacts water flow in the Creek, coordination with the Canal Corporation regarding these releases is essential. As it relates to the design and implementation of the OU2 selected remedy, EPA has already been coordinating closely with the Canal Corporation on this matter.

Floodplain Soil Alternatives

Alternative Soil1 would be the easiest to implement as there are no construction activities to implement. Both Alternatives Soil2 and Soil3 use common construction technologies and are technically feasible to implement. Alternative Soil2 may be slightly more difficult to implement as the areas receiving the cover system would require long-term monitoring and maintenance.

10.7 Cost

Cost includes estimated capital and operation and maintenance (O&M) costs, as well as present worth cost. Present worth cost is the total cost of an alternative over time in terms of today's dollar value. Cost estimates are expected to be accurate within a range of +50 to -30 percent. This is a standard assumption in accordance with EPA guidance.

The estimated capital, operation and maintenance costs, and present worth costs assuming a 7% discount rate over a period of 30 years are discussed in detail in the FS Report. The cost estimate summary for the selected remedy is presented in **Table 9** and **Table 10**, which can be found in **Appendix II**. The cost estimates are based on the best available information. Alternative STA1 and SOIL1 have no cost because no activities are implemented. The estimated capital, annual O&M, and total present-worth costs are presented below:

Alternative	Capital Cost	Annual O&M Costs	Present Worth
Sediment			
STA1	\$0	\$0	\$0
STA2	\$0	\$337,000	\$1,999,000
STA3	\$102,273,000	\$268,000	\$82,440,000
STA4	\$61,940,000	\$296,000	\$53,025,000
STA5	\$75,104,000	\$237,000	\$60,769,000
Floodplain Soi	1		
Soil1	\$0	\$0	\$0
Soil2	\$42,941,000	\$51,000	\$39,363,000
Soil3	\$149,125,000	\$0	\$131,307,000

10.8 State/Support Agency & Tribal Acceptance

State/Support Agency acceptance considers whether the State and/or Support Agency agrees with the EPA 's analyses and recommendations.

10.8.1 State Acceptance

NYSDEC concurs with the selected remedy. A letter of concurrence is attached in Appendix IV.

10.8.2 Tribal Acceptance

EPA provided the Proposed Plan and notification of the public meeting to the Tuscarora Nation. The Tuscarora Nation provided no comments for the Proposed Plan. EPA will maintain its consultation with the Tuscarora Nation for all future response actions planned for the Site.

10.9 Community Acceptance

Community Acceptance considers whether the local community agrees with EPA's analyses and preferred alternative. Comments received on the Proposed Plan are an important indicator of community acceptance.

EPA solicited input from the community on the remedial alternatives proposed for OU3 at the Site. Verbal comments were received from community members at the August 1, 2024 public meeting and were generally related to the nature and extent of contamination at the Site. A copy of the public meeting transcript is provided as **Attachment D** to **Appendix V**. During the comment period from July 19, 2024 through August 19, 2024, six comment letters were received via e-mail or regular mail. Copies of the comment letters are provided as **Attachment A** to **Appendix V**. Comments were generally positive and supportive of the preferred alternatives. Responses to the questions and comments received at the public meeting and in writing during the public comment period are included in the Responsiveness Summary (**Appendix V**).

11.0 PRINCIPAL THREAT WASTE

The NCP establishes an expectation that the EPA will use treatment to address the principal threats posed by a site whenever practicable (NCP Section 300.430(a)(1)(iii)(A)). The "principal threat" concept is applied to the characterization of "source materials" at a Superfund site. A source material is material that includes or contains hazardous substances, pollutants, or contaminants that act as a reservoir for the migration of contamination to groundwater, surface water, or air, or act as a source for direct exposure. Principal threat wastes are those source materials considered to be highly toxic or highly mobile that generally cannot be reliably contained or would present a significant risk to human health or the environment in the event that exposure should occur. The decision to treat these wastes is made on a site-specific basis through a detailed analysis of alternatives, using the remedy selection criteria described above. The manner in which principal threat wastes are addressed provides a basis for making a statutory finding that the remedy employs treatment as a principal element.

Based upon EPA's guidance, principal threats at commercial properties include soils contaminated at concentrations greater than or equal to 500 ppm PCBs. For residential areas, principal threats will generally include soils contaminated with PCBs at concentrations greater than 100 ppm. EPA's findings to date have not revealed the presence of principal threat wastes in floodplain soil or elsewhere in OU3.

12.0 SELECTED REMEDY

Based upon the requirements of CERCLA, the results of OU3 investigations, the detailed analysis of the alternatives, and public comments, EPA has determined that Alternative STA5: Excavation to RAL, Long-Term Monitoring, and Institutional Controls and Alternative Soil3: Floodplain Soil Excavation and Off-Site Disposal best satisfy the requirements of CERCLA Section 121, 42 U.S.C. §9621, and provides the best balance of tradeoffs among the remedial alternatives with respect to the NCP's nine evaluation criteria, 40 CFR §300.430(e)(9).

12.1 Description of the Selected Remedy

The major components of the selected sediment interim remedy include the following:

• Excavation of contaminated sediment that exceeds the RAL of 1 ppm for PCBs within the STA followed by backfilling with clean sand and covering with a suitable habitat layer to create conditions for the re-establishment of natural conditions in the Creek.

- Construction of access roads and staging areas in upland areas. Following remediation of the Creek, removal of the access roads and staging areas in accordance with the habitat reconstruction plan.
- Water and air quality monitoring during construction.
- Development of a monitoring plan to track PCB concentrations in sediment, surface water, and fish tissue over time in the STA.
- Institutional controls in the form of informational devices to limit exposure to PCBs. EPA is relying on existing NYSDOH fish consumption advisories. NYSDOH periodically reviews fish PCB data to ensure the advisories are up to date and considers whether the fish consumption advisories need modification. Other informational devices could include outreach programs to inform the public to promote knowledge of and voluntary compliance with the fish consumption advisories.

The major components of the selected floodplain soil final remedy include the following:

- Excavation and off-Site disposal of PCB- and lead-contaminated floodplain soil exceeding the remediation goals adjacent to the STA regardless of the land use designation. Backfill of excavated areas with clean fill material and topsoil.
- Construction of temporary access roads from the remediation areas to the closest public roads and the staging area.
- Implementation of erosion and sediment controls at each remediation area to prevent the migration of floodplain soil to the Creek.
- Water and air quality monitoring during construction.
- Following remediation of the Creek, removal of the access roads and staging areas, and restoration of the impacted areas in accordance with the habitat reconstruction plan.
- Development of a SMP to provide for management of floodplain soil post-construction, including the use of institutional controls to limit future use of the commercial properties and impose restrictions on excavation, and periodic reviews.

During the remedial design, additional sampling of floodplain soil adjacent to the STA will be conducted. Risk evaluations, based on land use designations, will be performed to determine if additional properties or areas require remediation. The Creek banks will be a particular area of attention due to their high potential for use and COC exposure by human and ecologic receptors and their potential to be a source of COC release and transport and to re-contaminate the OU3 sediment remedy if unaddressed. Design sampling will ensure that Creek banks that exceed RALs are delineated for remediation. The selected remedy is a final remedy for addressing floodplain soil in the STA.

In addition, EPA's investigations of groundwater within the Creek Corridor have not revealed a source of the generally low-level VOCs concentrations detected in groundwater. As a result, no action will be taken to address Creek Corridor groundwater.

The remaining areas of the Creek (commencing immediately downstream of the STA to the Creek's discharge at Lake Ontario) that are not addressed by this ROD would be addressed under separate, future action(s). The impoundment areas upstream of Newfane Dam and Burt Dam have historically acted as sinks for contaminated sediment, and, as such, these areas have been identified as potential sources of downstream contamination in the event of a change in the flow regime of

the Creek. These remaining areas require additional evaluation to establish a final remedy for the full length of the Creek. This evaluation will identify and address the following:

- data gaps including the nature and extent of contamination within these remaining areas;
- the characteristics of the sediment bed behind the Newfane and Burt dams;
- a study of the impacts from having addressed the source areas;
- an assessment of the fate and transport mechanisms of the remaining contamination in the Creek, including residual soil contamination following excavation of floodplain soil in the STA;
- bathymetry monitoring of sediment to evaluate recovery, accumulation and/or erosion; and
- a long-term monitoring program.

After a comprehensive evaluation of the full length of the Creek is conducted, a final remedy for the entire length of the Creek will be determined. The final remedy would include final remediation goals for contaminated sediment, including the Creek Corridor (OU2) and the STA (OU3), as well as any additional remedial action objectives that are determined necessary, including for additional media such as surface water. In addition, floodplain soil sampling will be conducted downstream of the STA as part of a separate investigation. Separate response actions or a future operable unit(s) would address risks identified in floodplain soil downstream of the STA.

12.2 Summary of the Rationale for the Selected Remedy

While Alternative STA5 is more expensive than Alternatives STA2 and STA4, Alternative STA5 permanently removes contaminated sediment exceeding the RAL and would not require the maintenance of a cover system over large areas required under STA4, or the monitoring of elevated PCB concentrations in sediment prone to erosional forces required under STA2. Although Alternative STA3 removes the greatest volume of sediment, the additional sediment excavation results in a substantial cost increase while providing comparable risk reduction to Alternative STA5. Similarly, Alternative Soil3 would permanently remove the contaminated floodplain soil from the banks of the Creek, thereby eliminating the potential for contaminated floodplain soil to find its way into the Creek and allows the properties to be used without restrictions. EPA has conservatively estimated, for cost estimation purposes, that additional sampling may identify up to 11 additional acres that would require remediation as part of this OU.

12.3 Expected Outcomes of the Selected Remedy

The results of the HHRA indicate that the contaminated floodplain soil present current and/or potential future unacceptable exposure risks. Under the selected remedy, remediation of contaminated floodplain soil will address these current and potential future risks. Additionally, the selected remedy would permanently remove the contaminated floodplain soil from the banks of the Creek, thereby eliminating the potential for contaminated floodplain soil to find its way into the Creek and allow the properties to be used without restrictions.

In addition, the consumption of fish from the Creek presents an unacceptable human health risk. The selected interim remedy for PCB-contaminated sediments in the Creek Channel will result in the excavation of sediment above the RAL in the STA. The excavation of these sediments will eliminate the exposures to these contaminants in the aquatic system and their potential for

downstream transport. The lower PCB concentrations in sediments in this portion of the Creek, are anticipated to reduce PCB levels in the water column and fish and other biota, thereby reducing the level of risk to human and ecological receptors.

Final remedial goals for contaminated sediment will be developed as part of a comprehensive evaluation that will be conducted as part of a future operable unit.

12.4 Green Remediation

The EPA Region 2 Clean and Green Policy¹⁰ provides guidance for the implementation of green remediation for response actions in the region. The goal of this policy is to enhance the environmental benefits of federal cleanup programs by promoting technologies and practices that are sustainable, while complying with all applicable laws and regulations. The objectives of green remediation are to: protect human health and the environment by achieving remedial action goals; support human and ecological use and reuse of remediated land; minimize impacts to water quality and water resources; reduce air emissions and greenhouse gas production; minimize material use and waste production; and conserve natural resources and energy.

This policy establishes touchstone practices that are both quantifiable and reportable. The region uses reporting requirements in enforcement instruments, grants, and contracts to collect and report metrics annually. Examples of touchstone practices that may be used during the implementation of the selected remedy are:

- Use of renewable energy, and energy conservation and efficiency approaches including EnergyStar equipment
- Cleaner fuels and clean diesel technologies and strategies
- Water conservation and efficiency approaches including WaterSense products
- Sustainable site design
- Industrial material reuse or recycling within regulatory requirements
- Recycling applications for materials generated at or removed from the site
- Environmentally Preferable Purchasing
- Greenhouse gas emission reduction technologies

Green remediation techniques, as detailed in NYSDEC's Division of Environmental Remediation (DER) DER-31 Green Remediation Program Policy, will also be considered during the implementation of the selected remedy to reduce short-term environmental impacts.

13.0 STATUTORY DETERMINATIONS

As previously noted, CERCLA Section 121(b)(1), 42 U.S.C. § 9621(b)(1), mandates that a remedial action must be protective of human health and the environment, cost effective, and utilize permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practicable. Section 121(b)(1) also establishes a preference for remedial actions which employ treatment to permanently and significantly reduce the volume, toxicity, or mobility of the hazardous substances, pollutants, or contaminants at a site. CERCLA Section

¹⁰ See www.epa.gov/sites/default/files/2016-01/documents/r2_clean_and_green_update.pdf

121(d), 42 U.S.C. § 9621(d), further specifies that a remedial action must attain a degree of cleanup that satisfies ARARs under federal and state laws, unless a waiver can be justified pursuant to CERCLA Section 121(d)(4), 42 U.S.C. § 9621(d)(4).

For the reasons discussed below, EPA has determined that the selected remedy meets the requirements of CERCLA Section 121, 42 U.S.C. §9621:

13.1 Protection of Human Health and the Environment

The selected interim remedy for sediment in the STA will protect human health by reducing the future health risks and hazards associated with the consumption of fish through reducing the concentration of contaminants in fish in the Creek until a comprehensive evaluation is completed for the entire Creek as part of separate response actions or a future operable unit(s) downstream of the STA. In the interim, EPA is relying on existing NYSDOH fish consumption advisories. NYSDOH periodically reviews fish PCB data to ensure the advisories are up to date and considers whether the fish consumption advisories need modification. This institutional control will assist in the protecting human health over both the short- and long-term at this operable unit by helping to control and limit exposure to hazardous substances.

The selected remedy for floodplain soil in the STA will protect human health and the environment because it reduces or eliminates human exposure to contamination in soil through the excavation of contaminated material.

13.2 Compliance with ARARs

Because the remedy for the STA portion of OU3 is an interim remedy, identification of ARARs is not necessary at this time. It is nonetheless expected that each of the selected remedies will be designed in such a way that attains location- and action-specific ARARs. Chemical-specific ARARs would be addressed by the eventual, final remedy selected for the full length of the Creek. The selected remedy for the floodplains complies with chemical-specific, location-specific, and action-specific ARARs. A complete list of the ARARs, TBCs, and other guidance are presented in **Table 11, Table 12, and Table 13**, which can be found in **Appendix II**.

13.3 Cost-Effectiveness

A cost-effective remedy is one in which costs are proportional to its overall effectiveness (40 C.F.R. § 300.430(f)(1)(ii)(D)). Overall effectiveness is based on the evaluations of long-term effectiveness and permanence, reduction in toxicity, mobility, and volume through treatment, and short-term effectiveness. Overall effectiveness was evaluated by assessing three of the five balancing criteria in combination (long-term effectiveness and permanence; reduction in toxicity, mobility, and volume through treatment; and short-term effectiveness). Overall effectiveness was then compared to costs to determine cost-effectiveness.

Each of the alternatives underwent a detailed cost analysis. In that analysis, capital and operation and maintenance costs were estimated and used to develop present-worth costs. In the present-worth cost analysis, operation and maintenance costs were calculated for the estimated life of each alternative. The total estimated present worth cost for implementing the selected remedy is \$192,076,000.

Based on the comparison of overall effectiveness to cost, the selected remedy meets the statutory requirement that Superfund remedies be cost effective (40 C.F.R. § 300.430(f)(1)(ii)(D)) in that it represents reasonable value for the money to be spent and is thus cost effective.

13.4 Utilization of Permanent Solutions and Alternative Treatment Technologies to the Maximum Extent Practicable

The selected remedy complies with the statutory mandate to utilize permanent solutions, alternative treatment technologies, and resource recovery alternatives to the maximum extent practicable. Of those alternatives that are protective of human health and the environment and comply with ARARs (or provide a basis for invoking an ARAR waiver), EPA has determined that the selected floodplain soil remedy provides the best balance of trade-offs among the alternatives with respect to the balancing criteria, while also considering the statutory preference for treatment as a principal element, the bias against off-Site disposal without treatment, and State/support agency and community acceptance. Implementation of the selected remedy will remove contaminated floodplain soil from residential and commercial properties thereby eliminating and/or preventing the risk to human receptors in the future. Implementation of the selected remedy will additionally permanently remove sediment in the STA above the sediment RAL, which in turn will reduce PCB levels in fish, thereby reducing the level of risk to humans and ecological receptors.

13.5 Preference for Treatment as a Principal Element

The selected remedy results in the removal of approximately 93,000 cubic yards of contaminated sediment and soil from OU3. The soil and sediment excavation will provide for an immediate reduction in the mobility of contaminated media from OU3. Although treatment is not a principal element of the remedy, based on sampling performed to date, some of the contaminated soil may require treatment prior to land disposal at an off-Site facility. Off-site treatment, if required would reduce the toxicity of the contaminated soil prior to land disposal. This remedy only addresses a portion of the Site. Subsequent actions that are planned to identify and address fully the remaining threats posed by the Site may include treatment.

13.6 Five-Year Review Requirements

This remedy will result in hazardous substances, pollutants, or contaminants remaining in floodplain soils at commercial properties above levels that would otherwise allow for unlimited use and unrestricted exposure. Pursuant to CERCLA Section 121(c), 42 U.S.C. §9621(c), statutory reviews will be conducted five years after the completion of the remedial action to ensure that the remedy continues to provide adequate protection to human health and the environment.

14.0 DOCUMENTATION OF SIGNIFICANT CHANGES

The Proposed Plan for OU3 of the Site was released on July 19, 2024. The Proposed Plan identified Alternative STA5: Excavation to RAL, Long-Term Monitoring, and Institutional Controls as the preferred alternative for remediating the STA, and Alternative Soil3: Floodplain Soil Excavation and Off-Site Disposal as the preferred alternative for remediating floodplain soil in the STA.

EPA reviewed all written (including electronic formats such as e-mail) and verbal comments received during the public comment period and has determined that no significant changes to the remedy, as originally proposed in the Proposed Plan, are necessary or appropriate.

APPENDIX I

FIGURES

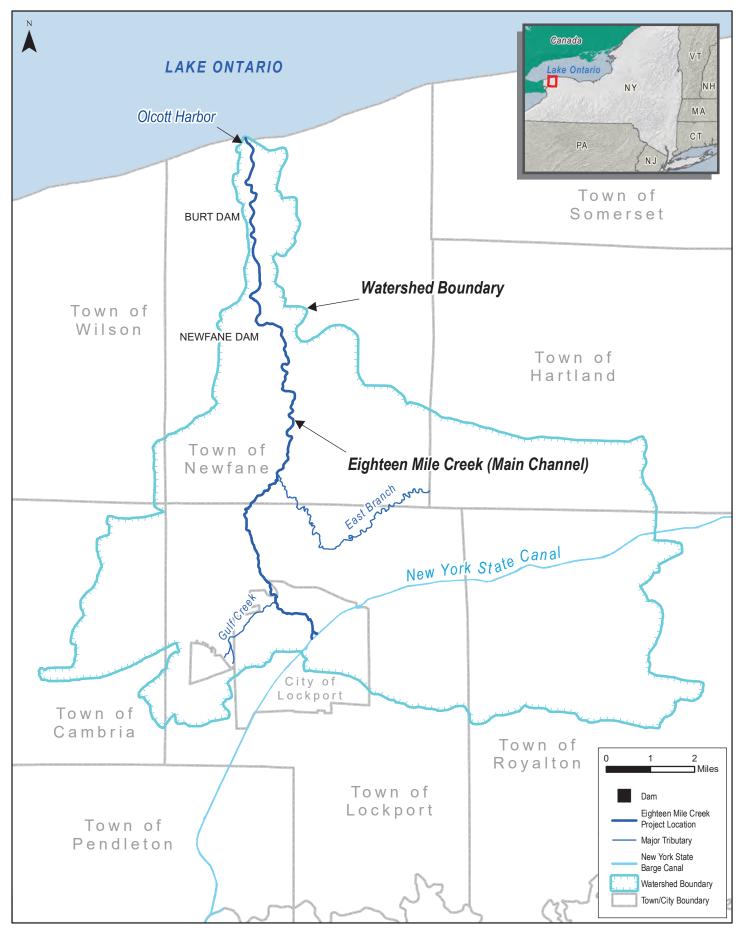
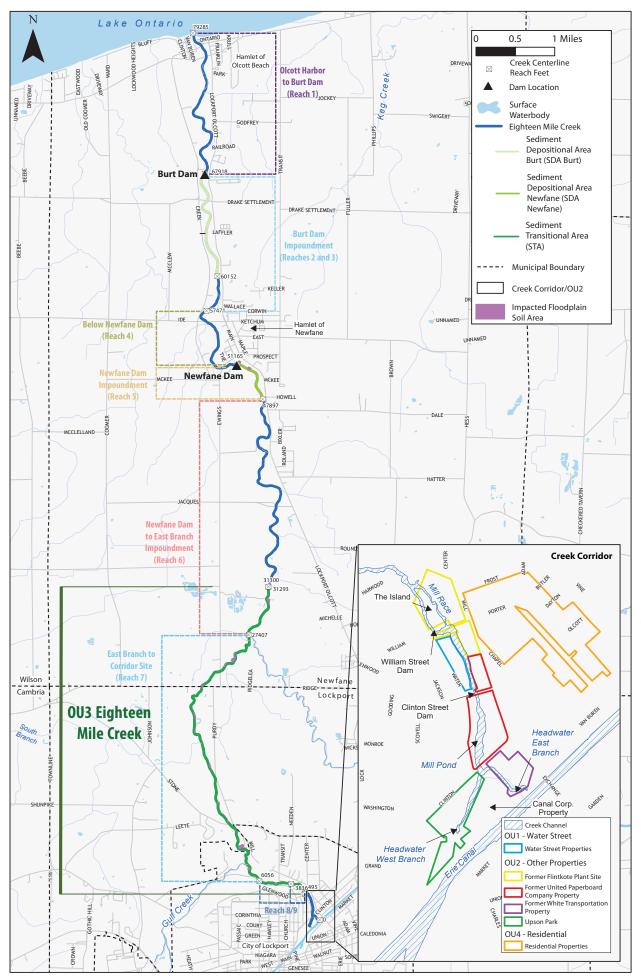
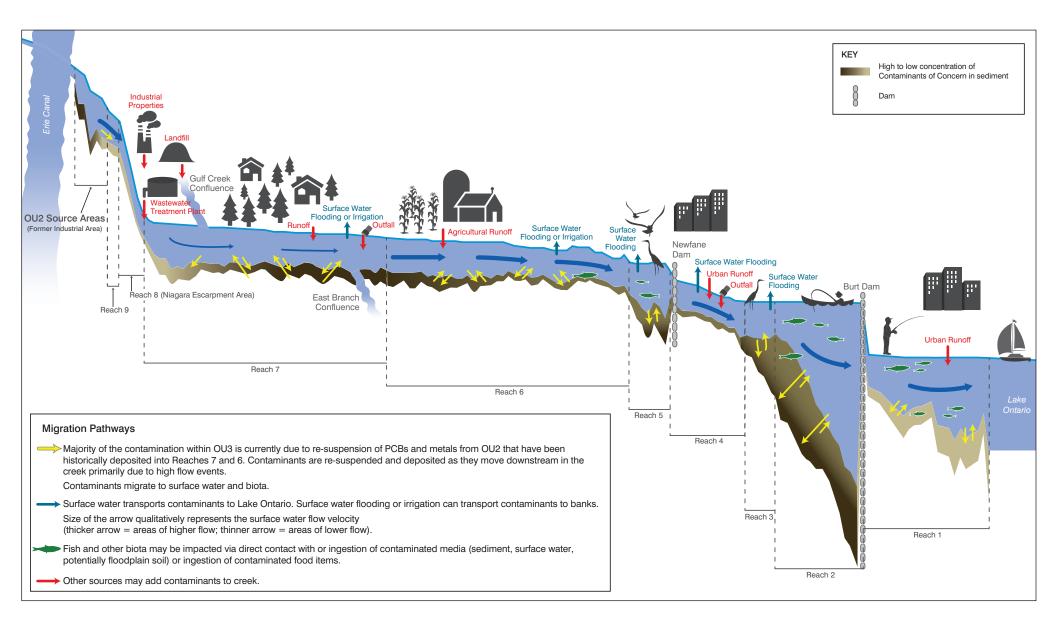




Figure 1 - Site Location Map Eighteen Mile Creek Superfund Site OU3 Record of Decision Niagara County, New York

Figure 2 - Site Overview Map Eighteen Mile Creek Superfund Site OU3 Record of Decision Niagara County, New York

Figure 3- Conceptual Site Model Eighteen Mile Creek Superfund Site OU3 Record of Decision Niagara County, New York

APPENDIX II

TABLES

					Table 1			
				Selection o	of Exposure	Pathways		
Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
		Surface			Child Ingestion			Recreational users may contact surface sediment during recreational activities such as swimming, wading, and kayaking. Exposures to sediment include incidental ingestion, dermal contact, and
	Sediment	Sediment (Starting Depth: 0 to 0.5 feet)	Reaches 6 & 7	Recreational User	Adolescent	Dermal	Quantitative	inhalation. The assessment will quantify exposures to adults, adolescents, and young children. The recreational user will also come into contact with floodplain soil and surface water
		0.5 feet)			Adult	Inhalation		while accessing the creek. This is a complete pathway for adults, adolescents, and young children.
	Sediment	Surface			Adolescent	Ingestion		Anglers may contact surface sediment during fishing activities. Exposures to sediment include incidental ingestion, dermal contact, and inhalation. This is a complete pathway for adults
Current/ Future		Sediment (Starting Depth: 0 to 0.5 feet)	Reaches 6 & 7	Angler		Dermal	Quantitative	and adolescents. Exposure to young children (younger than 6 years) are not quantified based on safety considerations; however, it is expected that they will consume fish caught by adults and
					Adult	Inhalation		adolescents. The angler will also come into contact with floodplain soil and surface water while accessing the creek.
					Child	Ingestion		Recreational users may contact surface soil during recreational activities such as swimming, wading, and kayaking. Exposures to soil include incidental
	Floodplain Soil	Surface Soil (0 to 1 feet)	Reaches 6 & 7	Recreational User	Adolescent	Dermal	Quantitative	ingestion, dermal contact, and inhalation. The assessment will quantify exposures to adults, adolescents, and young children. The recreational user will also come into contact with sediment
					Adult	Inhalation		and surface water while accessing the creek. This is a complete pathway for adults, adolescents, and young children.

					Table 1			
				Selection o	f Exposure	Pathways		
Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
					Adolescent	Ingestion		Anglers may contact surface soil during fishing activities. Exposures to soil include incidental ingestion, dermal contact, and inhalation. This is a
	Floodplain Soil	Surface Soil (0 to 1 feet)	Reaches 6 & 7	Angler		Dermal	Quantitative	complete pathway for adults and adolescents. Exposure to young children (younger than 6 years) are not quantified based on safety considerations; however, it is expected that they will consume fish caught by adults and adolescents. The angler
					Adult	Inhalation		will also come into contact with sediment and surface water while accessing the creek.
	Floodplain Soil	Surface Soil (0 to 1 feet)			Child	Ingestion		Residents who live along the creek may contact surface soil during activities such as yard
Current/			Reaches 6 & 7	Resident		Dermal	Quantitative	maintenance and general access to floodplain areas along the creek. Exposures to soil include incidental ingestion, dermal contact, and
Future					Adult	Inhalation		inhalation. This is a potentially complete pathway for current and future adults and young children.
					Child	Ingestion		Site visitors and trespassers may contact surface soil during access to creek properties. Exposures
	Floodplain Soil	Surface Soil (0 to 1 feet)	Reaches 6 & 7	Visitor/ Trespasser	Adolescent	Dermal	Quantitative	to soil include incidental ingestion, dermal contact, and inhalation. This is a complete
					Adult	Inhalation		pathway for adults, adolescents, and young children.
					Child	Ingestion		Recreational users may contact surface water during recreational activities such as swimming, wading, and kayaking. Exposures to surface water
	Surface Water	Surface Water	Reaches 6 & 7	Recreational User	Adolescent		Quantitative	include incidental ingestion of surface water and dermal contact. This is a complete pathway for adults, adolescents, and young children. The
					Adult	Dermal		recreational user will also come into contact with sediment and floodplain soil while accessing the creek.

	Table 1													
	Selection of Exposure Pathways													
Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway						
	Surface Water	Surface Water	Reaches 6 & 7	Angler	Adolescent Adult	Ingestion	Quantitative	Anglers may contact surface water during fishing activities. Exposures to surface water include incidental ingestion and dermal contact. This is a complete pathway for adults and adolescents. Exposure to young children (younger than 6 years) are not quantified based on safety considerations; however, it is expected that they will consume fish caught by adults and adolescents. The angler will also come into contact with floodplain soils and sediment while accessing the creek.						
Current/ Future Fish Tis	Fish Tissue	Fish Tissue	Reaches 6 & 7	Angler	Child Adolescent Adult	Ingestion	Quantitative	Anglers are known to fish throughout the creek. Anglers are assumed to consume the fish caught within the creek; therefore, ingestion of fish tissue is a potential exposure route. It is also assumed that anglers will share fish with younger individuals. This is a complete pathway for adults, adolescents, and young children.						
	Floodplain Surface Soil Soil (0 to 1 feet) Reaches 8 & 9		Onsite Worker	Adult	Ingestion Dermal Inhalation	Qualitative	Areas along Reaches 8 and 9 are zoned industrial; therefore, site workers may be present on properties abutting the creek. However, due to the steep banks and poor access to areas along the creek workers are not expected to have contact to the bank areas; therefore, this an incomplete pathway and will be discussed in the Uncertainty Section.							

					Table 1			
Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Selection o Receptor Population	f Exposure Receptor Age	Pathways Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
	Floodplain Soil	Surface Soil (0 to 1 feet)	Reach 6	Outdoor Worker	Adult	Ingestion Dermal Inhalation	Qualitative	A commercial topsoil business operates within Reach 6 along the floodplains of the creek. Outdoor workers may contact contaminated soil during daily activities. Exposures include incidental ingestion, dermal contact, and inhalation. Interviews with the business owner indicates that soil near the creek bank has never been excavated and the business only operates on a limited, as-needed basis. This is an incomplete pathway will be discussed in the Uncertainty Section.
Current/ Future	Agricultural Products	Agricultural Products	Reaches 6 & 7	Consumer of Agricultural Products	Child Adolescent Adult	Ingestion	Qualitative	Orchards and farms are observed to abut the creek, and historically farmers have irrigated produce fields with creek water. The irrigated fields were sampled for PCB Aroclors and approximately 20% of the samples were analyzed for PCB congeners. All of the soil results for PCE Aroclors were non-detect; however, there were low-level detections for PCB congeners found within the disturbed portion of the soils. The individual PCB congeners were evaluated against the residential soil RSLs and none of the soil concentrations were found to exceed the RSL values. Therefore, PCB concentrations in the irrigated soil are not likely to result in a risk, and this is an incomplete pathway that will be discussed in the Uncertainty Section.

	Table 2														
	Contaminants of Concern														
Scenario Timeframe:															
Medium:	Sediment														
Exposure Medium:	Surface Sediment (Surface Sediment (Starting Depth: 0 to 0.5 feet)													
		Minimum Maximum Location of Concentration Screening Basis for Rationale for													
	Contaminant of Point Concentration and Concern Concentration and Concern Concentration and Concentration Detection Frequency Maximum Used for Toxicity Toxicity Value COPC Selection Point Concern CASRN Units Qualifier (1) Qualifier (1) Frequency Concentration Screening Value (C/NC) (2) Flag (Y/N) Deletion (1)														
Exposure Point	Concern	CASRN	Units	Qualifier	r (1)	Qualifie	Qualifier (1)		Concentration	Screening	Value	(C/NC) (2)	Flag (Y/N)	Deletion (2)	
									OU3-R6-SD02-						
Reach 6	Lead	7439-92-1	mg/kg	28.9	J	4500	J	90/90	Z1-OCT20	4500	200	IEUBK Model	Yes	ASL	
Reach 7	Lead	7439-92-1	mg/kg	57.3		2940	J	106/106	R7-103-C	2940	200	IEUBK Model	Yes	ASL	
Reach 7	Aroclor 1248	12672-29-6	mg/kg	0.039	J	41	J	54/105	R7-187-C-COMP	41	0.12	NC	Yes	ASL	
Reach 7	Aroclor 1254	11097-69-1	mg/kg	0.022	J	97		91/106	R7-089-C	97	0.12	NC	Yes	ASL	

	Table 2													
						Contan	ninants	of Concer	'n					
Scenario Timeframe: Medium: Exposure Medium:	Current/Future Floodplain Soil Surface Soil (0 to 1	l feet)												
Exposure Point	Contaminant of Concern	CASRN	Units	Minim Concentrat Qualifie	ion and	Maximu Concentrati Qualifier	on and	Detection Frequency	Location of Maximum Concentration	Concentration Used for Screening	Screening Toxicity Value	Basis for Toxicity Value (C/NC) (2)	COPC Flag (Y/N)	Rationale for Selection of Deletion (2)
					(-)		(-)		OU3-R6-T06E-	8				
Reach 6	Lead	7439-92-1	mg/kg	1370		1370		66/66	S03-Z2	1370	200	IEUBK Model	Yes	ASL
Reach 7	Lead	7439-92-1	mg/kg	6.5		2630	J	200/200	OU3-R7-T12E- S03-Z2	2630	200	IEUBK Model	Yes	ASL
Resident Transect 10	Cobalt	7440-48-4	mg/kg	6.6		10.6		13/13	OU3-R7-T10W- S02-Z2	10.6	2.3	NC	Yes	ASL
Resident Transect 10	Iron	7439-89-6	mg/kg	16300		22700		13/13	OU3-R7-T10W- S02-Z2	22700	5500	NC	Yes	ASL, EN
Resident Transect 10	Manganese	7439-96-5	mg/kg	366		827		13/13	OU3-R7-T10W- S04-Z2	827	180	NC	Yes	ASL
Resident Transect 10	Aroclor 1248	12672-29-6	mg/kg	0.45	JN	13	J+	4/13	OU3-R7-T10W- S01-Z1	13	0.12	NC	Yes	ASL
Resident Transect 10	Aroclor 1254	11097-69-1	mg/kg	0.061	JN	8	J+	7/13	OU3-R7-T10W- S01-Z1	8	0.12	NC	Yes	ASL
Resident Transect 13	Arsenic	7440-38-2	mg/kg	5.1		39.8		10/10	OU3-R7-T13E- S02-Z1	39.8	0.68	С	Yes	ASL, KHC
Resident Transect 13	Cobalt	7440-48-4	mg/kg	8		42.5		10/10	OU3-R7-T13E- S02-Z1	42.5	2.3	NC	Yes	ASL
Resident Transect 13	Iron	7439-89-6	mg/kg	17800		35300		10/10	OU3-R7-T13E- S02-Z1	35300	5500	NC	Yes	ASL, EN
Resident Transect 13	Aroclor 1248	12672-29-6	mg/kg	0.054		3.7		4/10	OU3-R7-T13E- S01-Z1	3.7	0.12	NC	Yes	ASL
Resident Transect 13	Aroclor 1254	11097-69-1	mg/kg	0.0075	J	2		6/10	OU3-R7-T13E- S01-Z1	2	0.12	NC	Yes	ASL

	Table 2 Contaminants of Concern													
Scenario Timeframe: Medium:	Current/Future Floodplain Soil					Contamina	nts of Conce	rn						
Exposure Medium: Exposure Point	Contaminant of Minimum		ion and	Maximum Concentration a Qualifier (1)	nd Detection Frequency	Location of Maximum Concentration	Concentration Used for Screening	Screening Toxicity Value	Basis for Toxicity Value (C/NC) (2)	COPC Flag (Y/N)	Rationale for Selection of Deletion (2)			
Resident Transect 15	Cobalt	7440-48-4	mg/kg	7.7		20	10/10	OU3-R7-T15E- S01-Z2	20	2.3	NC	Yes	ASL	
Resident Transect 15	Lead	7439-92-1	mg/kg	16.7		1780	10/10	OU3-R7-T15E- S01-Z2	1780	200	IEUBK Model	Yes	ASL	
Resident Transect 15	Manganese	7439-96-5	mg/kg	306		877	10/10	OU3-R7-T15E- S01-Z1 OU3-R7-T15E-	877	180	NC	Yes	ASL	
Resident Transect 15	Aroclor 1248	12672-29-6	mg/kg	0.79		4.2	4/10	S03-Z2 OU3-R7-T15E-	4.2	0.12	NC	Yes	ASL	
Resident Transect 15	Aroclor 1254	11097-69-1	mg/kg	0.94		6.3	4/10	S03-Z2 OU3-R7-T15E-	6.3	0.12	NC	Yes	ASL	
Resident Transect 15	Aroclor 1260	11096-82-5	mg/kg	0.54	J	0.54 J	1/10	S03-Z1 OU3-R7-T17W-	0.54	0.12	NC	Yes	ASL	
Resident Transect 17	Lead	7439-92-1	mg/kg	9.8		556	12/12	S05-Z2 OU3-R7-T18W-	556	200	IEUBK Model	Yes	ASL	
Resident Transect 18	Lead	7439-92-1	mg/kg	22.8		527	12/12	S01-Z2 OU3-R7-T19W-	527	200	IEUBK Model	Yes	ASL	
Resident Transect 19	Cobalt	7440-48-4	mg/kg	3.9		10.4	14/14	S04-Z2 OU3-R7-T19W-	10.4	2.3	NC	Yes	ASL	
Resident Transect 19	Lead	7439-92-1	mg/kg	11.9		594	14/14	S05-Z2 OU3-R7-T19W-	594	200	IEUBK Model	Yes	ASL	
Resident Transect 19	Manganese	7439-96-5	mg/kg	248	J	880	14/14	S04-Z1 OU3-R7-T19W-	880	180	NC	Yes	ASL	
Resident Transect 19	Aroclor 1248	12672-29-6	mg/kg	0.025		25	10/14	S01-Z1 OU3-R7-T19W-	25	0.12	NC	Yes	ASL	
Resident Transect 19	Aroclor 1254	11097-69-1	mg/kg	0.047		17	8/14	S01-Z1 OU3-R7-T19W-	17	0.12	NC	Yes	ASL	
Resident Transect 19	Aroclor 1260	11096-82-5	mg/kg	0.031	J	0.13	4/14	S02-Z2 OU3-R7-T20W-	0.13	0.12	NC	Yes	ASL	
Resident Transect 20	Cobalt	7440-48-4	mg/kg	4.8		12.1	10/10	S01-Z2 OU3-R7-T20W-	12.1	2.3	NC	Yes	ASL	
Resident Transect 20	Manganese	7439-96-5	mg/kg	274	T	887	10/10	S01-Z2 OU3-R7-T20W-	887	180	NC	Yes	ASL	
Resident Transect 20	Aroclor 1248	12672-29-6	mg/kg	0.011		0.79	6/10	S04-Z2 OU3-R7-T20W-	0.79	0.12	NC	Yes	ASL	
Resident Transect 20	Aroclor 1254	11097-69-1	mg/kg	0.011	J-	0.81 J	6/10	S04-Z2	0.81	0.12	NC	Yes	ASL	

							ble 2						
						Contamina	its of Conce	rn					
Scenario Timeframe:	Current/Future												
Medium:	Floodplain Soil Surface Soil (0 to 2	1 feat)											
Exposure Medium:	Surface Soll (0 to	l teet)		Minim	um	Maximum		Location of	Concentration	Screening	Basis for		Rationale for
	Contaminant of					Concentration a	d Detection	Maximum	Used for	Toxicity	Toxicity Value	COPC	Selection of
Exposure Point	Concern	CASRN	Units	Oualifie		Oualifier (1)	Frequency	Concentration	Screening	Value	(C/NC) (2)	Flag (Y/N)	Deletion (2)
Enposure I onit			emus		- (-)	Q		OU3-R7-T22E-	~		(0,1:0)(_)	g (-,)	(_)
Resident Transect 22	Cobalt	7440-48-4	mg/kg	6.8		12.8	8/8	S04-Z1	12.8	2.3	NC	Yes	ASL
								OU3-R7-T22E-					
Resident Transect 22	Lead	7439-92-1	mg/kg	58		841	8/8	S04-Z1	841	200	IEUBK Model	Yes	ASL
								OU3-R7-T22E-					
Resident Transect 22	Manganese	7439-96-5	mg/kg	479		812	8/8	S03-Z2	81.2	180	NC	Yes	ASL
								OU3-R7-T22E-					
Resident Transect 22	Mercury	7439-97-6	mg/kg	0.092	J	6.7	8/8	S04-Z1	6.7	1.1	NC	Yes	ASL
								OU3-R7-T22E-					
Resident Transect 22	Aroclor 1248	12672-29-6	mg/kg	0.0069	J	1 J	3/8	S04-Z2	1	0.12	NC	Yes	ASL
D 11 . T	1 1054	11007 (0.1		0.0006	Ŧ		5 /0	OU3-R7-T22E-		0.10	NG		
Resident Transect 22	Aroclor 1254	11097-69-1	mg/kg	0.0086	J	1	5/8	S04-Z1 OU3-R7-T23E-	1	0.12	NC	Yes	ASL
Resident Transect 23	Cobalt	7440-48-4		6.9		14.3	10/10	S03-Z1	14.3	2.3	NC	Yes	ASL
Resident Transect 25	Coball	/440-48-4	mg/kg	0.9		14.5	10/10	OU3-R7-T23E-	14.5	2.3	INC	res	ASL
Resident Transect 23	Manganese	7439-96-5	mg/kg	397		906	10/10	S03-Z2	906	180	NC	Yes	ASL
Resident Hanseet 25	Ivianganese	7437-70-3	mg/kg	371		200	10/10	OU3-R7-T23E-	500	100	ne	163	ASL
Resident Transect 23	Aroclor 1248	12672-29-6	mg/kg	0.064	J	5	4/10	S03-Z1	5	0.12	NC	Yes	ASL
					-			OU3-R7-T23E-					
Resident Transect 23	Aroclor 1254	11097-69-1	mg/kg	0.13		7.6	4/10	S03-Z1	7.6	0.12	NC	Yes	ASL
								OU3-R7-T25E-					
Resident Transect 25	Cobalt	7440-48-4	mg/kg	9.3		15.5	10/10	S04-Z2	15.5	2.3	NC	Yes	ASL
								OU3-R7-T25E-					
Resident Transect 25	Lead	7439-92-1	mg/kg	6.5		933	10/10	S04-Z2	933	200	IEUBK Model	Yes	ASL
								OU3-R7-T25E-					
Resident Transect 25	Manganese	7439-96-5	mg/kg	588		2440	10/10	S01-Z2	2440	180	NC	Yes	ASL
				0.017	-		10/15	OU3-R7-T25E-	6.0		110		
Resident Transect 25	Mercury	7439-97-6	mg/kg	0.019	J	6.9	10/10	S01-Z1	6.9	1.1	NC	Yes	ASL
Desident Transact 25	Angelon 1249	12672 20 6		0.072		0.041	4/10	OU3-R7-T25E-	0.04	0.12	NC	Vaa	ACT
Resident Transect 25	Aroclor 1248	12672-29-6	mg/kg	0.072		0.94 J-	4/10	S04-Z1 OU3-R7-T25E-	0.94	0.12	NU	Yes	ASL
Resident Transect 25	Aroclor 1254	11097-69-1	mg/kg	0.064		1.5 J-	4/10	S04-Z1	1.5	0.12	NC	Yes	ASL
resident i fallseet 25	1100101 1237	11077-07-1	mg/ ng	0.004		1.5 5-	1/10	507-21	1.5	0.12	110	103	100

							Tabl	e 2							
Contaminants of Concern															
Scenario Timeframe:															
Medium:	Fish Tissue														
Exposure Medium:															
	Minimum Maximum Location of Concentration Screening Basis for Rationale for Contaminant of Concentration and Concentration and Concentration and Detection Maximum Used for Toxicity Toxicity Value COPC Selection of														
Contaminant of Concentration and Concentration and Detection Maximum											Toxicity	Toxicity Value	COPC	Selection of	
Exposure Point	Concern	CASRN	Units	Qualifie	r (1)	Qualifier	Qualifier (1)		Concentration	Screening	Value	(C/NC) (2)	Flag	Deletion (3)	
									OU3-P3-						
Zone 3 (4)	Mercury	7439-97-6	mg/kg	0.026	J-	0.3	J-	20/20	FISH05L-OCT18	0.3	0.0154	NC	Yes	ASL	
									OU3-P3-						
Zone 3 (4)	Aroclor 1248	12672-29-6	mg/kg	0.231		12.9		20/20	FISH16L-OCT18	4.87	0.00208	С	Yes	ASL	
									OU3-P3-						
Zone 3 (4)	Aroclor 1254	11097-69-1	mg/kg	0.459		12.6		20/20	FISH16L-OCT18	11.6	0.00208	С	Yes	ASL	
									OU3-P3-						
Zone 3 (4)	Aroclor 1260	11096-82-5	mg/kg	0.0982	J-	1.71		17/20	FISH05L-OCT18	1.71	0.00208	С	Yes	ASL	

Acronyms:

CASRN = Chemical Abstract Service Registry Number; mg/kg = milligrams per kilogram

Notes:

(1) Minimum and Maximum Qualifiers used in the Tables include: J = estimated; J = estimated high; J = estimated low.

(2) C = Cancer; NC = Non-Cancer; IEUBK = Integrated Exposure Uptake Biokinetic

(3) The Rationale for Selecting or not Selecting Chemicals of Potential Concern included:

ASL - Above Screening Levels; BSL - Below Screening Levels; KHC - Known Human Carcinogen; NSL - No Screening Level; EN - Essential Nutrient;

and IFD - Infrequent Detection (<5% of samples).

(4) For purposes of the BHHRA, fish consumption in the Creek was broken into zones. Zone 3 is inclusive of the reaches that are included in OU3.

	Table 3										
	Summary of Contaminants of Concern and Medium-Specific Exposure Point Concentrations										
Scenario Timeframe:	Current/Future										
Medium:	Sediment										
Exposure Medium:	Surface Sediment (Starting Depth: 0 to	0.5 feet)								
Exposure	Contaminant of	Minimum	Maximum	Concentration	Frequency of	Exposure Point	Exposure Point	Statistical			
Point	Concern	Concentration	Concentration	Units	Detection	Concentration	Concentration	Measure			
		and Qualifier (1)	and Qualifier (1)				Units				
Reach 6	Lead	28.9 J	4500 J	mg/kg	90/90	623	mg/kg	Mean			
Reach 7	Lead	57.3	2940 J	mg/kg	106/106	613	mg/kg	Mean			
Reach 7	Aroclor 1248	0.039 J	41 J	mg/kg	54/105	4.58	mg/kg	95% UCL			
Reach 7	Aroclor 1254	0.022 J	97	mg/kg	91/106	8.28	mg/kg	95% UCL			

				Та	able 3				
	Summary of	Contaminant	s of Concern	n and N	/ledium-Speci	fic Exposure	Point Concent	rations	
Scenario Timeframe:	Current/Future								
Medium:	Floodplain Soil								
Exposure Medium:	Surface Soil (0 to 1	feet)							
Exposure	Contaminant of	Minimum	Maxim	um	Concentration	Frequency of	Exposure Point	Exposure Point	Statistical
Point	Concern	Concentration and Qualifier (Units	Detection	Concentration	Concentration Units	Measure
Reach 6	Lead	1370	1370		mg/kg	66/66	254	mg/kg	Mean
Reach 7	Lead	6.5	2630	J	mg/kg	200/200	341	mg/kg	Mean
Resident Transect 10	Cobalt	6.6	10.6		mg/kg	13/13	9.47	mg/kg	95% UCL
Resident Transect 10	Iron	16300	22700		mg/kg	13/13	20700	mg/kg	95% UCL
Resident Transect 10	Manganese	366	827		mg/kg	13/13	675	mg/kg	95% UCL
Resident Transect 10	Aroclor 1248	0.45 JN	13	J+	mg/kg	4/13	3.93	mg/kg	95% UCL
Resident Transect 10	Aroclor 1254	0.061 JN	8	J+	mg/kg	7/13	2.56	mg/kg	95% UCL
Resident Transect 13	Arsenic	5.1	39.8		mg/kg	10/10	25.2	mg/kg	95% UCL
Resident Transect 13	Cobalt	8	42.5		mg/kg	10/10	28	mg/kg	95% UCL
Resident Transect 13	Iron	17800	35300		mg/kg	10/10	24800	mg/kg	95% UCL
Resident Transect 13	Aroclor 1248	0.054	3.7		mg/kg	4/10	1.46	mg/kg	95% UCL
Resident Transect 13	Aroclor 1254	0.0075 J	2		mg/kg	6/10	2	mg/kg	Max Detect
Resident Transect 15	Cobalt	7.7	20		mg/kg	10/10	14	mg/kg	95% UCL
Resident Transect 15	Lead	16.7	1780		mg/kg	10/10	450	mg/kg	Mean
Resident Transect 15	Manganese	306	877		mg/kg	10/10	667	mg/kg	95% UCL
Resident Transect 15	Aroclor 1248	0.79	4.2		mg/kg	4/10	4.2	mg/kg	Max Detect
Resident Transect 15	Aroclor 1254	0.94	6.3		mg/kg	4/10	5.13	mg/kg	95% UCL
Resident Transect 15	Aroclor 1260	0.54 J	0.54	J	mg/kg	1/10	0.54	mg/kg	Max Detect
Resident Transect 17	Lead	9.8	556		mg/kg	12/12	208	mg/kg	Mean
Resident Transect 18	Lead	22.8	527		mg/kg	12/12	242	mg/kg	Mean
Resident Transect 19	Cobalt	3.9	10.4		mg/kg	14/14	7.84	mg/kg	95% UCL
Resident Transect 19	Lead	11.9	594		mg/kg	14/14	256	mg/kg	Mean
Resident Transect 19	Manganese	248 J	880		mg/kg	14/14	705	mg/kg	95% UCL
Resident Transect 19	Aroclor 1248	0.025 J	25		mg/kg	10/14	20	mg/kg	95% UCL
Resident Transect 19	Aroclor 1254	0.047 J	17		mg/kg	8/14	17	mg/kg	Max Detect
Resident Transect 19	Aroclor 1260	0.031 J	13		mg/kg	4/14	0.0609	mg/kg	95% UCL

			T	able 3				
	Summary of	Contaminants of	of Concern and I	Medium-Speci	ific Exposure	Point Concent	rations	
Scenario Timeframe:								
Medium:	Floodplain Soil							
Exposure Medium:	Surface Soil (0 to 1	feet)		-				
Exposure	Contaminant of	Minimum	Maximum	Concentration	Frequency of	Exposure Point	Exposure Point	Statistical
Point	Concern	Concentration	Concentration	Units	Detection	Concentration	Concentration	Measure
		and Qualifier (1)	and Qualifier (1)				Units	
Resident Transect 20	Cobalt	4.80	12.10	mg/kg	10/10	10.4	mg/kg	95% UCL
Resident Transect 20	Manganese	274.00	887.00	mg/kg	10/10	644	mg/kg	95% UCL
Resident Transect 20	Aroclor 1248	0.01 J-	0.79	mg/kg	6/10	0.79	mg/kg	Max Detect
Resident Transect 20	Aroclor 1254	0.01 J-	0.81 J	mg/kg	6/10	0.81	mg/kg	Max Detect
Resident Transect 22	Cobalt	6.8	12.8	mg/kg	8/8	10.7	mg/kg	95% UCL
Resident Transect 22	Lead	58	841	mg/kg	8/8	291	mg/kg	Mean
Resident Transect 22	Manganese	479	81.2	mg/kg	8/8	677	mg/kg	95% UCL
Resident Transect 22	Mercury	0.092 J	6.7	mg/kg	8/8	6.7	mg/kg	Max Detect
Resident Transect 22	Aroclor 1248	0.0069 J	1 J	mg/kg	3/8	0.561	mg/kg	95% UCL
Resident Transect 22	Aroclor 1254	0.0086 J	1	mg/kg	5/8	1	mg/kg	Max Detect
Resident Transect 23	Cobalt	6.9	14.3	mg/kg	10/10	11.8	mg/kg	95% UCL
Resident Transect 23	Manganese	397	906	mg/kg	10/10	804	mg/kg	95% UCL
Resident Transect 23	Aroclor 1248	0.064 J	5	mg/kg	4/10	5	mg/kg	Max Detect
Resident Transect 23	Aroclor 1254	0.13	7.6	mg/kg	4/10	5.98	mg/kg	95% UCL
Resident Transect 25	Cobalt	9.3	15.5	mg/kg	10/10	13.9	mg/kg	95% UCL
Resident Transect 25	Lead	6.5	933	mg/kg	10/10	287	mg/kg	Mean
Resident Transect 25	Manganese	588	2440	mg/kg	10/10	1230	mg/kg	95% UCL
Resident Transect 25	Mercury	0.019 J	6.9	mg/kg	10/10	4.21	mg/kg	95% UCL
Resident Transect 25	Aroclor 1248	0.072	0.94 J-	mg/kg	4/10	0.332	mg/kg	95% UCL
Resident Transect 25	Aroclor 1254	0.064	1.5 J-	mg/kg	4/10	1.33	mg/kg	95% UCL

	Table 3											
	Summary of Contaminants of Concern and Medium-Specific Exposure Point Concentrations											
Scenario Timeframe:	Current/Future											
Medium:	Fish Tissue											
Exposure Medium:	Fish Tissue											
Exposure	Contaminant of	Minimum	Maximum	Concentration	Frequency of	Exposure Point	Exposure Point	Statistical				
Point	Concern	Concentration	Concentration	Units	Detection	Concentration	Concentration	Measure				
		and Qualifier (1)	and Qualifier (1)				Units					
Zone 3 (2)	Aroclor 1248	0.026 J-	0.3 J-	mg/kg	20/20	7.37	mg/kg	95% UCL				
Zone 3 (2)	Aroclor 1254	0.231	12.9	mg/kg	20/20	7.95	mg/kg	95% UCL				
Zone 3 (2)	Aroclor 1260	0.459	12.6	mg/kg	17/20	0.685	mg/kg	95% UCL				
Zone 3 (2)	Mercury	0.0982 J-	1.71	mg/kg	20/20	0.16	mg/kg	95% UCL				

Acronyms:

mg/kg = milligrams per kilogram; UCL = upper confidence limit

Notes:

(1) Minimum and Maximum Qualifiers used in the Tables include: J = estimated; J + = estimated high; J - = estimated low.

(2) For purposes of the BHHRA, fish consumption in the Creek was broken into zones. Zone 3 is inclusive of reaches 6 and 7.

				Non-Cancel	Table 4 r Toxicity I	Data Summa	rv			
Pathway: Ingestion/Dermal					i i osnency i	Juiu Summu	. <u>,</u>			
Contaminant of Concern	Chronic/ Subchronic	Oral RfD Value	Oral RfD Units	Absorp. Efficiency (Dermal)	Adjusted RfD (Dermal)	Adj. Dermal RfD Units	Primary Target Organ	Combined Uncertainty /Modifying Factors	Sources of RfD Target Organ	Dates of RfD
Aroclor 1248 (1)	Chronic	2.00E-05	mg/kg-day	1	2.00E-05	mg/kg-day	Immune, dermal, ocular	300	IRIS	10/1/1994
Aroclor 1254	Chronic	2.00E-05	mg/kg-day	1	2.00E-05	mg/kg-day	Immune, dermal, ocular	300	IRIS	10/1/1994
Aroclor 1260 (1)	Chronic	2.00E-05	mg/kg-day	1	2.00E-05	mg/kg-day	Immune, dermal, ocular	300	IRIS	10/1/1994
Aluminum	Chronic	1	mg/kg-day	1	1	mg/kg-day	Neurological	100	PPRTV	10/29/2006
Arsenic, Inorganic	Chronic	0.0003	mg/kg-day	1	0.0003	mg/kg-day	Skin and cardiovascular system	3	IRIS	9/1/1991
Cobalt	Chronic	0.0003	mg/kg-day	1	0.0003	mg/kg-day	Thyroid	3000	PPRTV	8/25/2008
Iron	Chronic	0.7	mg/kg-day	1	0.7	mg/kg-day	GI Tract	1.5	PPRTV	9/11/2006
Lead	Chronic		Calc	ulated using the	e Adult Lead a	and the Integrate	ed Exposure Uptake Biokinetic Mode	ls, consistent with	guidance.	
Manganese	Chronic	0.14	mg/kg-day	1	0.14	mg/kg-day	Nervous	1	IRIS	11/1/1995
Mercury (elemental)	Chronic	0.00016	mg/kg-day	1	0.00016	mg/kg-day	NA	NA	CALEPA	NA

Pathway: Inhalation									
Contaminant of Concern	Chronic/ Subchronic	Inhalation RfC	Inhalation RfC Units	Inhalation RfD (If available)	Inhalation RfD Units (If available)	Primary Target Organ	Combined Uncertainty /Modifying Factors	Sources of RfD Target Organ	Dates of RfC
Aroclor 1248	Chronic			No RfD					
Aroclor 1254	Chronic			No RfD					
Aroclor 1260	Chronic			No RfD					
Aluminum	Chronic	0.005	mg/m³	No RfD		Neurological	300	PPRTV	10/29/2006
Arsenic, Inorganic	Chronic	0.000015	mg/m³	No RfD		NA	NA	CALEPA	NA
Cobalt	Chronic	0.000006	mg/m³	No RfD		Respiratory Tract; Lung	300	PPRTV	8/25/2008
Iron	Chronic			No RfD					
Lead	Chronic	Calculated using the Adult Lead and the Integrated Exposure Uptake Biokinetic Models, consistent with guidance.							
Manganese	Chronic	0.00005	mg/m³	No RfD		Nervous	1000	IRIS	12/1/1993
Mercury (elemental)	Chronic	0.0003	mg/m³	No RfD		Nervous	30	IRIS	6/1/1995

Notes:

GI = gastrointestinal mg/kg-day = milligrams per kilogram-day mg/m³ = milligrams per cubic meter NA = not applicable RfC = reference concentration RfD = reference dose

Sources:

CALEPA = California Environmental Protection Agency IRIS = Integrated Risk Information System PPRTV = Provisional Peer-Reviewed Toxicity Values

(1) The toxicity values from Aroclor 1254 were applied to Aroclor 1248 and Aroclor 1260.

			Table 5				
		Cancer Tox	icity Data Summ	ary			
Pathway: Ingestion/ Dermal							
Contaminant of Concern	Oral Cancer	Units	Adjusted Cancer	Slope Factor	Weight of Evidence/	Source	Date
Aroclor 1248	2	(mg/kg-day) ⁻¹	2	(mg/kg-day) ⁻¹	B2	(1) IRIS	1996
Aroclor 1254	2	(mg/kg-day) ⁻¹	2	(mg/kg-day) ⁻¹	B2	(1) IRIS	1996
Aroclor 1260	2	(mg/kg-day) ⁻¹	2	(mg/kg-day) ⁻¹	B2	(1) IRIS	1996
Aluminum							
Arsenic, Inorganic	1.5	(mg/kg-day) ⁻¹	1.5	(mg/kg-day) ⁻¹	А	IRIS	6/1/1995
Cobalt							
Iron							
Lead		Addressed us	ing the Integrated Exp	osure Uptake Bio	kinetic and Adult Lead M	Models	
Manganese					D	IRIS	9/26/1988
Mercury (elemental)					D	IRIS	5/1/1995

Pathway: Inhalation							
Contaminant of Concern	Unit Risk	Units	Inhalation Cancer	Slope Factor	Weight of Evidence/	Source	Date
Aroclor 1248	0.000571429	$(\mu g/m^3)^{-1}$	No Slope Factor		B2	(2) IRIS	1996
Aroclor 1254	0.000571429	$(\mu g/m^3)^{-1}$	No Slope Factor		B2	(2) IRIS	1996
Aroclor 1260	0.000571429	$(\mu g/m^3)^{-1}$	No Slope Factor		B2	(2) IRIS	1996
Aluminum							
Arsenic, Inorganic	0.0043	(µg/m³) ⁻¹	No Slope Factor		А	IRIS	6/1/1995
Cobalt	0.009	$(\mu g/m^3)^{-1}$	No Slope Factor		LI	PPRTV	8/25/2008
Iron							
Lead		Addressed us	ing the Integrated Exp	osure Uptake Bio	kinetic and Adult Lead M	Models	
Manganese					D	IRIS	9/26/1988
Mercury (elemental)					D	IRIS	5/1/1995

Weight of Evidence for Cancer Classifications:

A: Human carcinogen

B2: Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals D: Not classifiable as to human carcinogenicity

LI: Likely to be carcinogenic to humans by inhalation route

Notes:

(1) SURROGATE. See Polychlorinated Biphenyls.

(2) SURROGATE. See Polychlorinated Biphenyls (derived from oral slope factor).

NA = not applicable

 $(\mu g/m^3)^{-1} = (\text{micrograms per cubic meter})^{-1}$

 $(mg/kg-day)^{-1} = (milligrams per kilogram-day)^{-1}$

Sources:

IRIS = Integrated Risk Information System PPRTV = Provisional Peer-Reviewed Toxicity Values

			Т	able 6								
		Risk Cha	racterization S	Summary - Non-Ca	rcinogens							
Scenario Timeframe:	Current/Future			-								
Exposure Medium:	Transect 10											
Exposure Type:	Reasonable M	easonable Maximum Exposure (RME)										
Receptor Population:	Residential											
Receptor Age	Young Child											
Medium	Exposure	Exposure	Contaminant of	Primary target	Non-	Carcinogeni	c Hazard	Quotient				
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure				
								Routes Total				
		Transect 10	Cobalt	Endocrine	0.4	0.0011	NA	0.4				
			Iron	Gastrointestinal	0.38	NA	NA	0.38				
Floodplain Soil	Soil		Manganese	Nervous	0.36	0.0095	NA	0.37				
			Aroclor 1248	Immune	2.5	NA	0.83	3.3				
			Aroclor 1254	Immune	1.6	NA	0.54	2.2				
See BHHRA Table 9.63	-RME for full	results.		Chemical Total	5.6	0.013	1.4	7				
				Exposure Point Total				7				
				Exposure Medium Tota	ıl			7				
				Medium Total				7				
						Recepto	or HI Total	7				
				Tota	al Endocrine	HI Across Al	1 Media =	0.4				
				Total Gas	strointestinal	HI Across Al	1 Media =	0.38				
				Te	otal Immune	HI Across Al	1 Media =	5.5				
				То	otal Nervous	HI Across Al	1 Media =	0.56				

Scenario Timeframe:	Current/Future	`										
Exposure Medium:	Transect 13											
Exposure Type:	Reasonable M	aximum Exn	osure (RME)									
Receptor Population:		uxiniuni Exp	(IUIL)									
Receptor Age	Young Child											
Medium	Exposure											
	Medium	Point	Concern	Organ	Ingestion	Inhalation		Exposure				
				5	5			Routes Total				
			Arsenic	Dermal	0.64	0.0012	0.076	0.72				
	Floodplain Soil Soil Transec	Transact	Cobalt	Endocrine	1.2	0.0033	NA	1.2				
Floodplain Soil			Iron	Gastrointestinal	0.45	NA	NA	0.45				
			Aroclor 1248	Immune	0.93	NA	0.31	1.2				
			Aroclor 1254	Immune	1.3	NA	0.42	1.7				
See BHHRA Table 9.67	-RME for full	results.		Chemical Total	5.2	0.015	0.82	6				
				Exposure Point Total				6				
				Exposure Medium Tota	ıl			6				
				Medium Total				6				
						Recepto	r HI Total	6				
				Total Dermal HI Across All Media = 0.								
				Tota	al Endocrine	HI Across Al	l Media =	1.2				
				Total Gastrointestinal HI Across All Media =								
				То	otal Immune	HI Across Al	Media =	2.9				

			Т	able 6				
		Risk Cha	racterization S	ummary - Non-Cai	rcinogens			
Scenario Timeframe:	Current/Future	9		•				
Exposure Medium:	Transect 15							
Exposure Type:	Reasonable M	aximum Exp	osure (RME)					
Receptor Population:	Residential							
Receptor Age	Young Child							
Medium	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Qu							Quotient
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure
								Routes Total
			Cobalt	Endocrine	0.6	0.0016	NA	0.6
		Transect	Manganese	Nervous	0.36	0.0094	NA	0.36
Floodplain Soil	Soil	15	Aroclor 1248	Immune	2.7	NA	0.89	3.6
		15	Aroclor 1254	Immune	3.3	NA	1.1	4.4
			Aroclor 1260	Immune	0.35	NA	0.11	0.46
See BHHRA Table 9.69	-RME for full	results.		Chemical Total	8.3	0.16	2.2	11
				Exposure Point Total				11
				Exposure Medium Tota	1			11
				Medium Total				11
						Recepto	or HI Total	11
					l Endocrine	HI Across Al	l Media =	0.6
						HI Across Al		8.4
				To	tal Nervous	HI Across Al	1 Media =	0.64

Scenario Timeframe:	Current/Future	;								
Exposure Medium:	Transect 19									
Exposure Type:	Reasonable Ma	aximum Exp	osure (RME)							
Receptor Population:	Residential	-								
Receptor Age	Young Child									
Medium	Exposure	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Quotient								
	Medium	Medium Point Concern Organ Ingestion Inhalation Dermal Exposur								
				_				Routes Total		
			Cobalt	Endocrine	0.33	0.00092	NA	0.33		
	Transect	Transact	Manganese	Nervous	0.38	0.0099	NA	0.39		
Floodplain Soil	Soil	19	Aroclor 1248	Immune	13	NA	4.2	17		
		19	Aroclor 1254	Immune	11	NA	3.6	14		
			Aroclor 1260	Immune	0.039	NA	0.013	0.052		
See BHHRA Table 9.77	-RME for full i	results.		Chemical Total	25	0.11	7.9	33		
				Exposure Point Total				33		
				Exposure Medium Tota	1			33		
				Medium Total				33		
						Recepto	or HI Total	33		
				Tota	1 Endocrine 1	HI Across Al	1 Media =	0.33		
				To	tal Immune	HI Across Al	1 Media =	32		
				То	tal Nervous I	HI Across Al	1 Media =	0.57		

			Т	able 6				
		Risk Cha	racterization S	ummary - Non-Cai	cinogens			
Scenario Timeframe:	Current/Future	e						
Exposure Medium:	Transect 20							
Exposure Type:	Reasonable M	aximum Exp	osure (RME)					
Receptor Population:	Residential							
Receptor Age	Young Child							
Medium	Exposure	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Quotient						
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure
								Routes Total
			Cobalt	Endocrine	0.44	0.0012	NA	0.44
Floodplain Soil	Soil	Transect	Manganese	Nervous	0.34	0.0091	NA	0.35
i looqpiani Son	5011	20	Aroclor 1248	Immune	0.51	NA	0.17	0.67
			Aroclor 1254	Immune	0.52	NA	0.17	0.69
See BHHRA Table 9.79	-RME for full	results.		Chemical Total	2	0.011	0.36	2.3
				Exposure Point Total				2.3
				Exposure Medium Tota	1			2.3
				Medium Total				2.3
						Recepto	r HI Total	2.3
				Tota	l Endocrine l	HI Across Al	l Media =	0.44
				Тс	otal Immune	HI Across Al	l Media =	1.4
				Tc	tal Nervous I	HI Across Al	l Media =	0.35

Scenario Timeframe:	Current/Future	2									
Exposure Medium:	Transect 22										
Exposure Type:	Reasonable M	aximum Exp	osure (RME)								
Receptor Population:	Residential										
Receptor Age	Young Child										
Medium	Exposure	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Quotient									
	Medium										
								Routes Total			
			Cobalt	Endocrine	0.45	0.0013	NA	0.46			
	Trar	Transect	Manganese	Nervous	0.36	0.0095	NA	0.37			
Floodplain Soil	Soil	22	Mercury	Nervous	0.54	0.62	NA	1.2			
		22	Aroclor 1248	Immune	0.36	NA	0.12	0.48			
			Aroclor 1254	Immune	0.64	NA	0.21	0.85			
See BHHRA Table 9.83	-RME for full	results.		Chemical Total	2.8	0.63	0.38	3.8			
				Exposure Point Total				3.8			
				Exposure Medium Tota	1			3.8			
				Medium Total				3.8			
						Recepto	or HI Total	3.8			
				Tota	l Endocrine 1	HI Across Al	l Media =	0.46			
				To	tal Immune	HI Across Al	l Media =	1.3			
				То	tal Nervous 1	HI Across Al	l Media =	1.5			

			Т	able 6				
		Risk Cha	racterization S	ummary - Non-Cai	cinogens			
Scenario Timeframe:	Current/Future	2						
Exposure Medium:	Transect 23							
Exposure Type:	Reasonable M	aximum Exp	osure (RME)					
Receptor Population:	Residential							
Receptor Age	Young Child							
Medium	Exposure	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Quotient						
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure
								Routes Total
			Cobalt	Endocrine	0.5	0.0014	NA	0.51
Floodplain Soil	Soil	Transect	Manganese	Nervous	0.43	0.011	NA	0.44
r looupiani Son	5011	23	Aroclor 1248	Immune	3.2	NA	1.1	4.3
			Aroclor 1254	Immune	3.8	NA	1.3	5.1
See BHHRA Table 9.85	5-RME for full	results.		Chemical Total	8.4	0.11	2.4	11
				Exposure Point Total				11
				Exposure Medium Tota	1			11
				Medium Total				11
	Receptor HI Total							11
				Tota	l Endocrine l	HI Across Al	l Media =	0.51
				To	tal Immune	HI Across Al	l Media =	9.4
				To	tal Nervous	HI Across Al	l Media =	0.61

Scenario Timeframe:	Current/Future	2									
Exposure Medium:	Transect 25										
Exposure Type:	Reasonable M	aximum Exp	osure (RME)								
Receptor Population:	Residential										
Receptor Age	Young Child										
Medium	Exposure	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Quotient									
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure			
								Routes Total			
			Cobalt	Endocrine	0.59	0.0016	NA	0.6			
	Tran	Transect	Manganese	Nervous	0.66	0.017	NA	0.67			
Floodplain Soil	Soil	25	Mercury	Nervous	0.34	0.39	NA	0.72			
		23	Aroclor 1248	Immune	0.21	NA	0.071	0.28			
			Aroclor 1254	Immune	0.85	NA	0.28	1.1			
See BHHRA Table 9.89	-RME for full	results.		Chemical Total	3.1	0.41	0.38	3.9			
				Exposure Point Total				3.9			
				Exposure Medium Tota	1			3.9			
				Medium Total				3.9			
						Recepto	or HI Total	3.9			
				Tota	l Endocrine l	HI Across Al	l Media =	0.6			
				To	tal Immune	HI Across Al	l Media =	1.4			
				То	tal Nervous	HI Across Al	1 Media =	1.4			

			Т	able 6				
		Risk Cha	racterization S	ummary - Non-Cai	rcinogens			
Scenario Timeframe:	Current/Future	9						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable M	aximum Exp	osure (RME)					
Receptor Population:	Angler							
Receptor Age	Adult							
Medium	Exposure	Exposure	Contaminant of	Primary target	Non-	Carcinogeni	c Hazard (Quotient
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure
								Routes Total
	Fish Tissue		Aroclor 1248	Immune	150			150
Fish Tissue	Fillets	Zone 3 (1)	Aroclor 1254	Immune	160			160
	Thicts		Aroclor 1260	Immune	14			14
See BHHRA Table 9.41	I-RME for full	results.		Chemical Total	320			320
(1) For purposes of the	BHHRA, fish c	onsumption		Exposure Point Total				320
in the Creek was broker	n into zones. Zo	one 3 is		Exposure Medium Tota	.1			320
inclusive of the reaches	that are includ	ed in OU3.		Medium Total				320
						Recepto	or HI Total	320
				То	otal Immune I	HI Across Al	l Media =	320

Scenario Timeframe:	Current/Future	2							
Exposure Medium:	Fish Tissue								
Exposure Type:	Reasonable M	aximum Exp	osure (RME)						
Receptor Population:	Angler								
Receptor Age	Adolescent								
Medium	Exposure	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Quotient							
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure	
								Routes Total	
	Fish Tissue		Aroclor 1248	Immune	150			150	
Fish Tissue	Fillets	Zone 3 (1)	Aroclor 1254	Immune	160			160	
	Fillets		Aroclor 1260	Immune	14			14	
See BHHRA Table 9.42	2-RME for full	results.		Chemical Total	328			328	
(1) For purposes of the	BHHRA, fish c	onsumption		Exposure Point Total				328	
in the Creek was broken	into zones. Zo	one 3 is		Exposure Medium Tota	1			328	
inclusive of the reaches	that are includ	ed in OU3.		Medium Total				328	
						Recepto	r HI Total	328	
						HI Across Al	l Media =	326.9	

			Т	able 6				
		Risk Cha	racterization S	ummary - Non-Cai	cinogens			
Scenario Timeframe:	Current/Future	e						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable M	aximum Exp	osure (RME)					
Receptor Population:	Angler							
Receptor Age	Young Child							
Medium	Exposure	Exposure	Contaminant of	Primary target	Non-	Carcinogenio	: Hazard (Quotient
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure
								Routes Tota
			Mercury	Nervous	1.1			1.1
Fish Tissue	Fish Tissue	Zone 3 (1)	Aroclor 1248	Immune	260			260
1 1511 1 155uc	Fillets	Zone 5 (1)	Aroclor 1254	Immune	280			280
			Aroclor 1260	Immune	24			24
See BHHRA Table 9.43	B-RME for full	results.		Chemical Total	567			567
(1) For purposes of the	BHHRA, fish c	onsumption		Exposure Point Total				56
in the Creek was broker	into zones. Zo	one 3 is		Exposure Medium Tota	1			56
inclusive of the reaches	that are include	ed in OU3.		Medium Total				567
						Recepto	r HI Total	56'
				To	otal Immune	HI Across Al	Media =	567
				Tc	tal Nervous	HI Across Al	Media =	1.

Scenario Timeframe:	Current/Future	;									
Exposure Medium:	Fish Tissue										
Exposure Type:	Reasonable Ma	aximum Exp	osure (RME)								
Receptor Population:	Angler										
Receptor Age	Adult										
Medium	Exposure	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Quotient									
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure			
								Routes Total			
	Fish Tissue		Aroclor 1248	Immune	150			150			
Fish Tissue	Fillets	Zone 3 (1)	Aroclor 1254	Immune	160			160			
	Fillets		Aroclor 1260	Immune	14			14			
See BHHRA Table 9.56	-RME for full	esults.		Chemical Total	319			319			
(1) For purposes of the I	BHHRA, fish c	onsumption		Exposure Point Total				319			
in the Creek was broken	into zones. Zo	ne 3 is		Exposure Medium Tota	1			319			
inclusive of the reaches	that are include	hat are included in OU3. Medium Total						319			
	Receptor HI Total 319						319				
				Тс	otal Immune	HI Across Al	l Media =	319			

			Т	able 6				
		Risk Cha	racterization S	ummary - Non-Cai	rcinogens			
Scenario Timeframe:	Current/Future	9						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable M	aximum Exp	osure (RME)					
Receptor Population:	Angler							
Receptor Age	Adolescent							
Medium	Exposure	Exposure	Contaminant of	Primary target	Non-	Carcinogeni	c Hazard	Quotient
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure
								Routes Total
	Fish Tissue		Aroclor 1248	Immune	150		-	150
Fish Tissue	Fillets	Zone 3 (1)	Aroclor 1254	Immune	160		-	160
	Fillets		Aroclor 1260	Immune	14		-	14
See BHHRA Table 9.57	-RME for full	results.		Chemical Total	327		-	327
(1) For purposes of the	BHHRA, fish c	onsumption		Exposure Point Total				327
in the Creek was broker	n into zones. Zo	one 3 is		Exposure Medium Tota	ıl			327
inclusive of the reaches	that are include	ed in OU3.		Medium Total				327
						Recepto	or HI Total	327
				То	otal Immune	HI Across Al	1 Media =	327

Scenario Timeframe:	Current/Future	e								
Exposure Medium:	Fish Tissue									
Exposure Type:	Reasonable M	aximum Exp	osure (RME)							
Receptor Population:	Angler									
Receptor Age	Young Child									
Medium	Exposure	Exposure Exposure Contaminant of Primary target Non-Carcinogenic Hazard Quotient								
	Medium	Point	Concern	Organ	Ingestion	Inhalation	Dermal	Exposure		
								Routes Total		
			Mercury	Nervous	1.1			1.1		
Fish Tissue	Fish Tissue	Zone 3 (1)	Aroclor 1248	Immune	260			260		
1 ISH I ISSUE	Fillets	Zone 5(1)	Aroclor 1254	Immune	280			280		
			Aroclor 1260	Immune	24			24		
See BHHRA Table 9.58	B-RME for full	results.		Chemical Total	566			566		
(1) For purposes of the l	BHHRA, fish c	onsumption		Exposure Point Total				566		
in the Creek was broken	into zones. Zo	one 3 is		Exposure Medium Tota	1			566		
inclusive of the reaches	that are include	d in OU3.		Medium Total				566		
						Recepto	or HI Total	566		
				Тс	tal Immune	HI Across Al	l Media =	566		
				To	tal Nervous	HI Across Al	l Media =	1.1		

			Table 7				
	R	isk Charac	terization Summary	v - Carcino	ogens		
Scenario Timeframe:	Current/Futur	re					
Exposure Medium:	Transect 19						
Exposure Type:	Reasonable N	/laximum Expo	osure (RME)				
Receptor Population:	Residential						
Receptor Age	Young Child						
Medium	Exposure	Exposure	Contaminant of		Carcin	ogenic Ri	sk
	Medium	Point	Concern	Ingestion	Inhalation	Dermal	Exposure Routes
							Total
			Cobalt	NA	(1)	NA	(1)
			Manganese	NA	NA	NA	NA
Floodplain Soil	Soil	Transect 19	Aroclor 1248	4.40E-05	1.80E-06	1.50E-05	6.00E-05
			Aroclor 1254	3.70E-05	(1)	1.20E-05	5.10E-05
			Aroclor 1260	(1)	(1)	(1)	(1)
See BHHRA Table 9.77	-RME for full	results.	Chemical Total	9.10E-05	2.80E-06	2.90E-05	1.20E-04
(1) Results were not pre	sented		Exposure Point Total				1.20E-04
because they represent a	ı risk below		Exposure Medium Tota	1			1.20E-04
1E-06.			Medium Total				1.20E-04
					Receptor Ri	sk Total	1.20E-04

Scenario Timeframe:	Current/Futur	е						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable N	laximum Expo	osure (RME)					
Receptor Population:	Angler							
Receptor Age	Adult	Adult						
Medium	Exposure	Exposure	Contaminant of	Carcinogenic Risk				
	Medium	Point	Concern	Ingestion	Inhalation	Dermal	Exposure Routes	
							Total	
	Fish Tissue Fillets		Aroclor 1248	1.70E-03			1.70E-03	
Fish Tissue		Zone 3 (1)	Aroclor 1254	1.80E-03			1.80E-03	
	Fillets		Aroclor 1260	1.60E-04			1.60E-04	
See BHHRA Table 9.41	-RME for full	results.	Chemical Total	3.70E-03			3.70E-03	
(1) For purposes of the l	BHHRA, fish o	consumption	Exposure Point Total				3.70E-03	
in the Creek was broken	into zones. Z	one 3 is	Exposure Medium Tota	ıl			3.70E-03	
inclusive of the reaches	that are includ	ed in OU3.	Medium Total				3.70E-03	
					Receptor Ris	sk Total	3.70E-03	

			Table 7					
	R	isk Charac	terization Summary	y - Carcino	ogens			
Scenario Timeframe:	Current/Futur	e						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable N	Reasonable Maximum Exposure (RME)						
Receptor Population:	Angler	ngler						
Receptor Age	Adolescent							
Medium	Exposure	Exposure	Contaminant of		Carcin	ogenic Ri	sk	
	Medium	Point	Concern	Ingestion	Inhalation	Dermal	Exposure Routes	
							Total	
	Fish Tissue		Aroclor 1248	1.00E-03			1.00E-03	
Fish Tissue	Fillets	Zone 3 (1)	Aroclor 1254	1.10E-03			1.10E-03	
	Fillets		Aroclor 1260	9.60E-05			9.60E-05	
See BHHRA Table 9.42	RME for full	results.	Chemical Total	2.30E-03			2.30E-03	
(1) For purposes of the l	BHHRA, fish o	consumption	Exposure Point Total				2.30E-03	
in the Creek was broken	i into zones. Z	one 3 is	Exposure Medium Tota	1			2.30E-03	
inclusive of the reaches	that are includ	ed in OU3.	Medium Total				2.30E-03	
					Receptor Ri	sk Total	2.30E-03	

Scenario Timeframe:	Current/Futur	e						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable N	laximum Expo	osure (RME)					
Receptor Population:	Angler	_						
Receptor Age	Young Child							
Medium	Exposure	Exposure	Contaminant of	Carcinogenic Risk				
	Medium	Point	Concern	Ingestion	Inhalation	Dermal	Exposure Routes	
							Total	
		Zone 3 (1)	Mercury	NA			NA	
Fish Tissue	Fish Tissue		Aroclor 1248	8.90E-04			8.90E-04	
1 1511 1 155uc	Fillets		Aroclor 1254	9.60E-04			9.60E-04	
			Aroclor 1260	8.30E-05			8.30E-05	
See BHHRA Table 9.43	-RME for full	results.	Chemical Total	2.00E-03			2.00E-03	
(1) For purposes of the l	BHHRA, fish o	consumption	Exposure Point Total 2.00E-03					
in the Creek was broken	into zones. Z	one 3 is	Exposure Medium Tota	ıl			2.00E-03	
inclusive of the reaches	that are includ	ed in OU3.	Medium Total 2.0					
					Receptor Ri	sk Total	2.00E-03	

			Table 7					
	R	isk Charac	terization Summary	y - Carcino	ogens			
Scenario Timeframe:	Current/Futur	re						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable N	Reasonable Maximum Exposure (RME)						
Receptor Population:	Angler	ngler						
Receptor Age	Adult							
Medium	Exposure	Exposure	Contaminant of		Carcin	ogenic Ri	sk	
	Medium	Point	Concern	Ingestion	Inhalation	Dermal	Exposure Routes	
				_			Total	
	Fish Tissue		Aroclor 1248	1.70E-03			1.70E-03	
Fish Tissue	Fillets	Zone 3 (1)	Aroclor 1254	1.80E-03			1.80E-03	
	Fillets		Aroclor 1260	1.60E-04			1.60E-04	
See BHHRA Table 9.56	6-RME for full	results.	Chemical Total	3.70E-03			3.70E-03	
(1) For purposes of the	BHHRA, fish o	consumption	Exposure Point Total				3.70E-03	
in the Creek was broker	n into zones. Z	tone 3 is	Exposure Medium Tota	1			3.70E-03	
inclusive of the reaches	that are includ	led in OU3.	Medium Total				3.70E-03	
					Receptor Ri	sk Total	3.70E-03	

Scenario Timeframe:	Current/Futur	e						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable N	laximum Expo	osure (RME)					
Receptor Population:	Angler	_						
Receptor Age	Adolescent							
Medium	Exposure	Exposure	Contaminant of	Carcinogenic Risk				
	Medium	Point	Concern	Ingestion	Inhalation	Dermal	Exposure Routes	
							Total	
	Fish Tissue	e Zone 3 (1)	Aroclor 1248	1.00E-03		-	1.00E-03	
Fish Tissue	Fillets		Aroclor 1254	1.10E-03		-	1.10E-03	
	Fillets		Aroclor 1260	9.60E-05		-	9.60E-05	
See BHHRA Table 9.57	-RME for full	results.	Chemical Total	2.30E-03		-	2.30E-03	
(1) For purposes of the l	BHHRA, fish o	consumption	Exposure Point Total				2.30E-03	
in the Creek was broken	i into zones. Z	one 3 is	Exposure Medium Total				2.30E-03	
inclusive of the reaches	that are includ	ed in OU3.	Medium Total				2.30E-03	
					Receptor Ri	sk Total	2.30E-03	

			Table 7					
	R	isk Charac	terization Summar	y - Carcino	ogens			
Scenario Timeframe:	Current/Futur	e						
Exposure Medium:	Fish Tissue							
Exposure Type:	Reasonable N	faximum Expo	osure (RME)					
Receptor Population:	Angler	6						
Receptor Age	Young Child							
Medium	Exposure	Exposure	Contaminant of		Carcin	ogenic Ri	sk	
	Medium	Point	Concern	Ingestion	Inhalation	Dermal	Exposure Routes	
							Total	
			Mercury	NA			NA	
Fish Tissue	Fish Tissue	Zone 3 (1)	Aroclor 1248	8.90E-04			8.90E-04	
1 ISH 1 ISSUE	Fillets	$2010 \ 5(1)$	Aroclor 1254	9.60E-04			9.60E-04	
			Aroclor 1260	8.30E-05			8.30E-05	
See BHHRA Table 9.58	B-RME for full	results.	Chemical Total	2.00E-03			2.00E-03	
(1) For purposes of the l	BHHRA, fish c	consumption	Exposure Point Total				2.00E-03	
in the Creek was broken	i into zones. Z	one 3 is	Exposure Medium Tota	ıl			2.00E-03	
inclusive of the reaches	that are include	led in OU3.	Medium Total				2.00E-03	
					Receptor Ri	sk Total	2.00E-03	

			Table 8	}			
			Summary of Lead N	Iodel Resu	ults		-
Scenario Timeframe	Exposure Area	Exposure Medium	Receptor	Lead Model Used	Maximum Lead Concentration (mg/kg)	Exposure Point Concentration Used in Model	Percent (%) of Individuals with BLLs > 5 μg/dL
	Reach 6	Sediment	Adult	ALM	4383	(mg/kg) 623	0.07
	Reach 7	Sediment	Adult	ALM	2940	613	0.07
	Reach 6	Floodplain Soil	Adult	ALM	1370	254	NA
	Reach 7	Floodplain Soil	Adult	ALM	2630	341	NA
	Reach 6	Sediment	Child Recreational User	IEUBK	4383	623	100(1)
Current/	Reach 7	Sediment	Child Recreational User	IEUBK	2940	613	99 (2)
Future	Transect 15	Floodplain Soil	Child Resident	IEUBK	1780	450	27
	Transect 17	Floodplain Soil	Child Resident	IEUBK	556	208	5.4
	Transect 18	Floodplain Soil	Child Resident	IEUBK	527	242	7.6
	Transect 19	Floodplain Soil	Child Resident	IEUBK	594	256	8.7
	Transect 22	Floodplain Soil	Child Resident	IEUBK	841	291	11
	Transect 25	Floodplain Soil	Child Resident	IEUBK	933	287	11

Notes:

(1) The probability of exceeding 5 μ g/dL was rounded from 99.8% to 100%.

(2) The probability of exceeding 5 μ g/dL was rounded from 98.8% to 99%.

Sediment ALM data was obtained from text table located in BHHRA section 7.5.1.

Soil ALM data was obtained from text table located in BHHRA section 7.5.3 and Appendix B Tables 2.10 and 2.14.

Sediment IEUBK data was obtained from text table located in BHHRA section 7.5.2.

Soil IEUBK data was obtained from text table located in BHHRA section 7.5.4. and the following Appendix B Tables: 2.9, 2.11, 2.13, 2.24, 2.26, 2.27, 2.28, 2.31, and 2.34.

Acronyms:

ALM = adult lead model; BLL = blood lead level; IEUBK = Integrated Exposure Uptake Biokinetic;

 $\mu g/dL =$ micrograms per deciliter; mg/kg = milligrams per kilogram; NA = not applicable

Description	fund Site OU3, Niagara County, New York Comments	Quantity	Unit	Unit Cost	Cost
PDI				Total	\$256,000
PDI costs	Lump sum covering all associated sampling and analysis for a PDI	1	LS	\$256,000	\$256,000
General Requirements				Total	\$6,801,100
Institutional Controls				I	
Fish consumption	Addressed by state agency			NA	
Bonds and Insurance					
Performance and Payment Bond	Assumed 1% of project cost	1	LS	\$375,254	\$375,300
Insurance	Assumed 2% of project cost	1	LS	\$750,508	\$750,600
Mobilization					
General mobilization	Assumed 5% of project cost. includes items such as trailers, toilets, utilities, incidentals, etc.	1	LS	\$1,876,271	\$1,876,300
Excavator	hydraulic excavator, unknown quantity	1	LS	\$13,048	\$13,100
Other mobile equipment	Generator, skid steer, material transfer equipment, etc.	1	LS	\$65,239	\$65,300
Backfill equipment	Placement equipment, etc.	1	LS	\$105,034	\$105,100
Mechanical dredge	Dredge mob/demob, maximum	1	LS	\$75,749	\$75,800
Programmatic and General Labor					
Program Management/Oversight/QA	Project Manager, maximum cost x1.25, assumed working 2 days/week assuming a 5-day work week	40	Week	\$1,425	\$57,000
Project Manager	Project Manager, maximum cost, full time	40	Week	\$2,850	\$114,000
Administrative assistance	Clerk, average cost, full time	40	Week	\$495	\$19,800
Job Superintendent	Job Superintendent, maximum cost, full time	40	Week	\$2,650	\$106,000
SSHS Officer	Job Superintendent, maximum cost x.75, full time	40	Week	\$1,988	\$79,500
Foreman	General purpose laborer, average x1.5, full time, 2 personnel	40	Week	\$5,524	\$221,000
General laborers	General purpose laborer, average, full time, 14 personnel	40	Week	\$25,780	\$1,031,300
OH and benefits	35% of personnel cost	1	LS	\$570,010	\$570,100
Per diem	Hotel, car/gas, and food. Assumed 20 people - proj mngr, admin assistant, job super, SSHS officer, 2 foremen, 14 laborers (unit cost *20)	200	day	\$5,480	\$1,096,000
General Mobile Equipment and Operators					
Water truck	6000 gal capacity, weekly rental	40	Week	\$3,480	\$139,200
Street sweeper	Vacuum assisted, 4 CY, 220 gal, weekly rental	40	Week	\$2,640	\$105,700
Site Work				Total	\$7,240,700
Silt fence (out of water)	Install and removal, stakes every 10ft, assumed sum of perimeter of processing facility, and 2x length of access roads	15,831	LF	\$2	\$35,200
Silt curtain (in water)	50ft long, 1ft wide, 5ft deep turbidity curtain, assumed 500ft	500	LF	\$14	\$7,100
Vegetation clearing	For installation of access roads and excavation work (if needed)	14	Acre	\$4,636	\$62,900
Temporary fencing	Orange safety fence, re-used as work moves to different areas, 20% replacement	2,640	LF	\$4	\$9,600
Temporary Access Roads					
Geotextile fabric	Mirafi FW 500 for base, assume additional 25% for overlap	145,125	SF	\$0.3	\$44,100
2" crusher run stone	2" crusher run stone, material cost (12" thick)	8,708	Ton	\$11	\$98,000
Transport cost	Assume 2 moves - source to staging and staging to access	4,300	LCY	\$8	\$35,700
Placement cost	Dozer 80 HP, 300' haul from stockpile, sand and gravel	4,300	LCY	\$3	\$12,100

Description	Comments	Quantity	Unit	Unit Cost	Cost
Water Diversion System	Assume removal would occur in the dry and water would be diverted around work areas.				
water Diversion System	Assume 2000ft work section at a time				
Coffer dams - 8ft (including filling equipment)	Flexible structure filled with water to form barrier between the work area and the creek	250	LF	\$215	\$53,900
Side dams - 4ft (as necessary)	Assumed 10% of the coffer dam length	25	LF	\$100	\$2,500
Pipelines (3, 36" HDPE pipes)	Water transfer around active work area	6,000	LF	\$130	\$782,900
Tributary flow controls - small	As needed depending on work area	1	LS	\$20,000	\$20,000
Pumping systems (including generator)	Assumed one needed per 100 LF of dam	3	Each	\$70,000	\$210,000
Initial installation		1	LS	\$200,000	\$200,000
Segment relocation/reset	Length of remedial area/ work section length	14	Each	\$130,000	\$1,820,000
Excavation					•
Excavation	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket, +15% for soft soil/sand, +15% for loading into trucks, +100% for wet excavation. Cost converted to weekly unit based on production rate.	50	Week	\$15,850	\$792,500
Transport to processing facility	16.5 CY truck, 45 mph avg, 20min load/unload, cycle 8 miles	61,541	LCY	\$3	\$193,900
Backfill					•
Sand					
Material cost	Assumed bank run sand	81,414	Ton	\$15	\$1,200,900
Transport cost	Assume 2 moves - source to staging and staging to access	59,426	LCY	\$10	\$608,000
Placement cost	Excavator, crawler mounted, 1-1/2 CY bucket, +15% for soft soil/sand	52	Day	\$1,587	\$82,100
Source analytical testing	DER-10 testing, including PFAS and 1,4 Dioxane	52	Each	\$1,408	\$73,300
Gravel					
Material cost	Assume bank run gravel	19,001	Ton	\$11	\$206,200
Transport cost	(assume 2 trips - source to staging and staging to access)	9,383	LCY	\$8	\$77,700
Placement cost	Excavator, crawler mounted, 1-1/2 CY bucket	8	Day	\$1,380	\$11,300
Source analytical testing	DER-10 testing, including PFAS and 1,4 Dioxane	9	Each	\$1,408	\$12,700
Habitat Layer Material	Add 3 inches of topsoil for organic content for habitat restoration				
Material cost	Assumed topsoil	8,570	Ton	\$33	\$282,900
Transport cost	Assume 2 moves - source to staging and staging to access	6,255	LCY	\$8	\$51,800
Placement cost	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket, +15% for soft soil/sand	5	Day	\$1,587	\$8,700
Source analytical testing	DER-10 testing, including PFAS and 1,4 Dioxane	6	Each	\$1,408	\$8,500
Habitat restoration	Unit cost assumed same as wetland restoration cost. Includes seeding and planting	3	Acre	\$33,000	\$93,300
Water quality monitoring	Sampling analysis for TSS, TDS periodically	80	Each	\$25	\$2,000
Water quality equipment	Rental of equipment to periodically evaluate water conditions during work	40	Week	\$172	\$6,900
Air quality monitoring during construction	Assume 5 Dust-trac rentals with tripod/enclosure at a monthly rate	10	Month	\$713	\$7,200
Bathymetric/Topographic Surveys					
Pre-excavation		20	Acre	\$839	\$17,000
Post-excavation		20	Acre	\$839	\$17,000
Post-backfill		20	Acre	\$839	\$17,000
Post-dredging confirmatory sample collection (sediment)	30x30ft grids is EPA standard, so 1 per 900SF. Sampling for PCBs	980	Each	\$77	\$75,800

Description	Comments	Quantity	Unit	Unit Cost	Cost
Processing Facility				Total	\$18,556,900
Clear vegetation and strip topsoil	Topsoil stripping and stockpiling, 6" deep, 200' haul	52,732	SY	\$0.3	\$15,300
Construct staging area		1	LS	\$10,000	\$10,000
Temporary fencing	6FT high 11 gauge chain link fencing	4,568	LF	\$6	\$28,100
Daving	Processing facility footprint not including storage pads. Plant-mix asphalt paving, binder	352,631	SF	\$2	\$746,500
Paving	course, 3" thick and wearing course, 1" thick	552,051	51	\$2	\$740,300
Dewatering/Material Storage Pads				·	
Geocomposite Liner					
Decon pad/processing area		37,305	SF	\$3	\$97,400
Unprocessed material stockpile		49,398	SF	\$3	\$129,000
Hazardous material stockpile		11,302	SF	\$3	\$29,500
Clean backfill material stockpiles		23,951	SF	\$3	\$62,600
Jersey Barriers				· · · · · · · · · · · · · · · · · · ·	
Decon pad/processing area		846	LF	\$130	\$110,400
Unprocessed material stockpile		903	LF	\$130	\$117,900
Hazardous material stockpile		437	LF	\$130	\$57,100
Clean backfill material stockpiles		645	LF	\$130	\$84,200
Base Coarse Aggregate					
Decon pad/processing area	Plant-mix asphalt paving, binder course, 3" thick	37,305	SF	\$2	\$58,500
Unprocessed material stockpile	Plant-mix asphalt paving, binder course, 3" thick	49,398	SF	\$2	\$77,400
Hazardous material stockpile	Plant-mix asphalt paving, binder course, 3" thick	11,302	SF	\$2	\$17,700
Clean backfill material stockpiles	Plant-mix asphalt paving, binder course, 3" thick	23,951	SF	\$2	\$37,500
Top Coarse Aggregate					
Decon pad/processing area	Plant-mix asphalt paving, wearing course, 1" thick	37,305	SF	\$1	\$20,600
Unprocessed material stockpile	Plant-mix asphalt paving, wearing course, 1" thick	49,398	SF	\$1	\$27,300
Hazardous material stockpile	Plant-mix asphalt paving, wearing course, 1" thick	11,302	SF	\$1	\$6,300
Clean backfill material stockpiles	Plant-mix asphalt paving, wearing course, 1" thick	23,951	SF	\$1	\$13,200
Stone Subbase					
Paved areas not stockpiles	2" crusher run stone, material cost (12" thick)	26,447	Ton	\$11	\$297,600
Decon pad/processing area	2" crusher run stone, material cost (12" thick)	2,798	Ton	\$11	\$31,500
Unprocessed material stockpile	2" crusher run stone, material cost (12" thick)	3,705	Ton	\$11	\$41,700
Hazardous material stockpile	2" crusher run stone, material cost (12" thick)	848	Ton	\$11	\$9,600
Clean backfill material stockpiles	2" crusher run stone, material cost (12" thick)	1,796	Ton	\$11	\$20,300
Stone transport	2" crusher run stone, material cost (12" thick)	20,214	LCY	\$5	\$103,700
Stone placement	Dozer 80 HP, 300' haul from stockpile, sand and gravel	20,214	LCY	\$3	\$56,600
Contact Water Management System				•	
	Assumed 1/2 of the combined perimeter of the unprocessed and hazardous material	000		017	¢15.000
stockpiles	stockpile perimeter, and 1/4 of the processing area perimeter	882	LF	\$17	\$15,000
Straw bales - dewatering cell, decon pad, 2	Assumed perimeter of unprocessed and hazardous material stockpiles, and 1/4 of the	1.550		\$ 0	¢14.200
stockpiles	processing area perimeter	1,552	LF	\$9	\$14,200
Contact water transfer pipe, valves, fittings,		1.1.12	1.5	¢7	#7 500
sand bags, etc.	Assumed 1/4 of the processing facility perimeter	1,142	LF	\$7	\$7,500
Pipe boots, pipe clamps	Assumed 1/100ft of transfer pipe	12	Each	\$130	\$1,600
Sumps	Assumed 1/stockpile needing water management	3	Each	\$3,262	\$9,800
Pumps	Assumed 2/stockpile needing water management	6	Each	\$848	\$5,100
Sump excavation	Assumed 4'x4'x3' sump	5	CY	\$13	\$100
surp enterration		5	~ I	φ τ φ	<i>4100</i>

Table 9: Cost Estimate Summary for the Selected Remedy for Sediment Eighteen Mile Creek Superfund Site OU3, Niagara County, New York

Description	I Site OU3, Niagara County, New York Comments	Quantity	Unit	Unit Cost	Cost
Pipe trench excavation	Assumed trench 1'x1'xlength of transfer pipe	42	CY	\$13	\$600
Pipe trench steel plating	Assumed 500ft/day	3	Day	\$117	\$400
Contact water storage tank - rental	21,000 gal frac tank rental - unit price based on quantity of tanks	40	week	\$1,500	\$60,000
Mob/demob of tank	21,000 gal frac tank rental, assumed 6 tanks - 3 treated, 3 untreated	6	Each	\$1,500	\$9,000
Asphalt Berms	12" wide, 4" tall, 60 LF/ton, laid with pavement			+-,	+,,
Material stockpile	Assumed perimeter of material stockpiles	1,985	LF	\$2	\$4,100
Decon pad	Assumed 1/4 of the processing area perimeter	212	LF	\$2	\$500
Stormwater diversion	Assumed perimeter of processing facility	4,568	LF	\$2	\$9,400
Dredging Material Screening and Moisture		.,			+,,
Control					
Pug mill and screening plant		10	Month	\$15,000	\$150,000
	CKD, assumed 5-15% of tons of material excavated (10 lbs. CKD/Ton of material				
Stabilization material	excavated with an average of 10% of material)	38	Ton	\$3,000	\$113,900
CKD storage	executive with an average of 10% of material)	10	Month	\$7,000	\$70,000
Chemical stabilization (metals)	Assumed 10% of material will be considered hazardous and needs to be stabilized	5,351	CY	\$20	\$104,800
Haul and Disposal	rissund 10% of matchai will be considered mazardous and needs to be stabilized	5,551	01	φ20	\$101,000
Subtitle D facility	excavated/dredged material	75,880	Ton	\$97	\$7,360,400
Transport	20 CY truck (20min load time) from staging area to disposal facility	55,387	LCY	\$22	\$1,193,600
Subtitle D facility	access road stone and processing facility stone	49,641	Ton	\$97	\$4,815,200
Transport	20 CY truck (20min load time) from staging area to disposal facility	24,514	LCY	\$22	\$528,300
Subtitle C/TSCA facility	Assumed 10% of material will be considered hazardous	8,431	Ton	\$194	\$1,635,700
Transport	20 CY truck (20min load time) from staging area to disposal facility	6,154	LCY	\$22	\$132,700
Waste profile sampling	1 sample per 5,000 CY	11	Each	\$680	\$7,500
Site Restoration	1 sample per 5,000 C 1	11	Each	Total	\$1,661,610
Site Decontamination at Processing Facility				- Otdi	\$1,001,010
Remove and dispose of containment systems		1	LS	\$6,524	\$6,600
Remove and dispose of asphalt berms	Berms, bituminous, 4" or more in height	6,765	LF	\$4	\$29,400
Remove and dispose of asphalt berns Remove and dispose of paved areas	Pavement removal, bituminous roads, 4-6" thick	474,587	SF	\$1	\$367,100
Removal of stone subbase for paved areas	Wheeled front end loader, 3 CY bucket, select granular fill	17,577	BCY	\$10	\$174,400
Decon and remove equipment		1	LS	\$19,572	\$19,600
Remove contact water system		1	LS	\$13,048	\$13,100
Soil testing under containment areas					
	1/2000 SE of processing facility	1		1. 1.	1 / /
	1/2000 SF of processing facility	237	Each	\$13,048	\$18,400
Soil Removal		237	Each	\$77	\$18,400
Soil Removal Excavation	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket	237 1,830	Each BCY	\$77	\$18,400
Soil Removal Excavation Transport cost for disposal	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket 20 CY truck (20min load time), 45mph avg, from staging area to disposal facility	237 1,830 2,104	Each BCY LCY	\$77 \$1 \$22	\$18,400 \$2,600 \$45,400
Soil Removal Excavation Transport cost for disposal Disposal cost	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket	237 1,830	Each BCY	\$77	\$18,400
Soil Removal Excavation Transport cost for disposal Disposal cost Site Restoration	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket 20 CY truck (20min load time), 45mph avg, from staging area to disposal facility Subtitle D facility assumed	237 1,830 2,104 2,882	Each BCY LCY Ton	\$77 \$1 \$22 \$97	\$18,400 \$2,600 \$45,400 \$279,600
Soil Removal Excavation Transport cost for disposal Disposal cost	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket 20 CY truck (20min load time), 45mph avg, from staging area to disposal facility	237 1,830 2,104	Each BCY LCY	\$77 \$1 \$22	\$18,400 \$2,600 \$45,400
Soil Removal Excavation Transport cost for disposal Disposal cost Site Restoration	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket 20 CY truck (20min load time), 45mph avg, from staging area to disposal facility Subtitle D facility assumed	237 1,830 2,104 2,882	Each BCY LCY Ton	\$77 \$1 \$22 \$97	\$18,400 \$2,600 \$45,400 \$279,600
Soil Removal Excavation Transport cost for disposal Disposal cost Site Restoration Soil preparation	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket 20 CY truck (20min load time), 45mph avg, from staging area to disposal facility Subtitle D facility assumed Rough grade and scarify common earth to receive topsoil, 200HP dozer with scarifier.	237 1,830 2,104 2,882	Each BCY LCY Ton	\$77 \$1 \$22 \$97	\$18,400 \$2,600 \$45,400 \$279,600
Soil Removal Excavation Transport cost for disposal Disposal cost Site Restoration Soil preparation Soil Restoration Placement cost	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket 20 CY truck (20min load time), 45mph avg, from staging area to disposal facility Subtitle D facility assumed	237 1,830 2,104 2,882 590.7	Each BCY LCY Ton MSF	\$77 \$1 \$22 \$97 \$23	\$18,400 \$2,600 \$45,400 \$279,600 \$13,610
Soil Removal Excavation Transport cost for disposal Disposal cost Site Restoration Soil Restoration Placement cost Re-vegetation	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket 20 CY truck (20min load time), 45mph avg, from staging area to disposal facility Subtitle D facility assumed Rough grade and scarify common earth to receive topsoil, 200HP dozer with scarifier. Dozer 80 HP, 300' haul from stockpile, sandy clay and loam Hydro seeding including seed and fertilizer	1,830 2,104 2,882 590.7 11 590,687	Each BCY LCY Ton MSF Day SF	\$77 \$1 \$22 \$97 \$23 \$1,587 \$0.1	\$18,400 \$2,600 \$45,400 \$279,600 \$13,610 \$17,400 \$65,700
Soil Removal Excavation Transport cost for disposal Disposal cost Site Restoration Soil preparation Soil Restoration Placement cost	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket 20 CY truck (20min load time), 45mph avg, from staging area to disposal facility Subtitle D facility assumed Rough grade and scarify common earth to receive topsoil, 200HP dozer with scarifier.	237 1,830 2,104 2,882 590.7 11	Each BCY LCY Ton MSF	\$77 \$1 \$22 \$97 \$23 \$1,587	\$18,400 \$2,600 \$45,400 \$279,600 \$13,610 \$17,400

Table 9: Cost Estimate Summary for the Selected Remedy for Sediment Eighteen Mile Creek Superfund Site OU3, Niagara County, New York

Description	fund Site OU3, Niagara County, New York Comments	Quantity	Unit	Unit Cost	Cost				
Special Construction	Comments	Quantity	Unit	Total	\$6,011,300				
Dewatering plant operations	CY of excavated material	53,514	СҮ	\$98	\$5,236,800				
Wetland mitigation activities		3	Acre	\$58,715	\$165,900				
Wastewater Treatment Plant		3	Acte	330,713	3103,300				
WWTP mobilization/demobilization 1 LS \$32,619									
WWTP rental		10	Month	\$45,667	\$32,700 \$456,700				
WWTP operator		10	Month	\$45,007	\$456,700 \$97,900				
		10	1						
WWTP residuals disposal		1	LS	\$13,048	\$13,100				
Water discharge fees	Costs for sampling for COCs, TSS, TDS periodically in discharge water plus a base monthly cost. Assumed sampling happens bi-monthly.	10	Month	\$818	\$8,200				
			Cont	tal Casta Saltatali	640 597 700				
				tal Costs Subtotal:	\$40,527,700				
	10% Legal, administrative, engineering fees, project management	- not includi	ing sediment or	soil disposal costs:	\$2,643,700				
				soil disposal costs:	\$2,643,700				
	15% construction management	 not includi 			\$3,965,600				
				verhead and profit	\$7,991,600				
				0% Contingencies:	\$17,331,700				
			С	apital Cost Total:	\$75,104,000				
Annual Sampling (Baseline and once per	year for first 4 years)								
Annual Project Management and Oversight									
Project management		1	LS	\$5,000	\$5,000				
Technical support		1	LS	\$6,000	\$6,000				
Quality assurance		1	LS	\$2,000	\$2,000				
Sampling Labor				· · ·					
	Event involves Sediment, surface water, and fish sampling: 1 day for mob, 1 day for			6105	04.000				
Sampling Labor	demob = 16hrs, 2-person crew for mob/demob	32	Hour	\$125	\$4,000				
	Assumed \$125 per person per hour, 2-person crew (for boat work) can get 15 samples								
Surface Water	locations per day in a 10 hr day collected. Another 2-person crew to process and package samples. 40hrs/day/15 samples is 2.67hrs per sample.	662	Hour	\$125	\$82,800				
Fish	Assumed \$125 per person per hour, 2-person crew (for boat work) can get 15 samples locations per day in a 10 hr day collected. Another 2-person crew to process and package samples. 40hrs/day/15 samples is 2.67hrs per sample.	80	Hour	\$125	\$10,100				
Surface Water Sampling			1	I I					
Equipment		4	Event	\$744	\$3,000				
Analysis			Livent	TE 10	<i>Q</i> 0 ,000				
PCBs	Analysis cost includes bottles and quantity for QC	248	Each	\$77	\$19,200				
Biological Sampling (Fish)	Game fish, feeder fish, and YOY fish	£40	Lati		\$13,200				
Equipment		1	Event	\$2.919	\$3,300				
		1	Event	\$3,212	<i>Ş3,300</i>				
Analysis PCBs	Analysis cost includes bottles and quantity for OC	30	Each	0194	\$4,100				
	Analysis cost includes bottles and quantity for QC	3 0	Each	\$134	\$4,100				
Annual Reporting		1	IC	015 000	015 000				
Baseline/Annual reporting		1	LS	\$15,000	\$15,000				
				10.01	\$154,500				
Baseline and Years 1-4 Annual Cost Subtotal:									
10% Legal, Administrative and Engineering Fees:									
				verhead and profit	\$11,600				
				0% Contingencies:	\$54,500 \$237,000				
Baseline and Years 1-4 Annual Cost Total:									

Table 9: Cost Estimate Summary for the Selected Remedy for Sediment Eighteen Mile Creek Superfund Site OU3, Niagara County, New York

Description	Comments	Quantity	Unit	Unit Cost	Cost
Periodic Costs (Every 5 Years)					
5-yr review, data evaluation, and reporting		1	LS	\$30,000	\$30,000
Maintain institutional controls	Addressed by State Agency			NA	
Periodic Sampling (Once every 5 years for	Years 5-30, starting at Year 5)				
Annual Project Management and Oversight					
Project management		1	LS	\$5,000	\$5,000
Technical support		1	LS	\$6,000	\$6,000
Quality assurance		1	LS	\$2,000	\$2,000
Sampling Labor					
Sampling Labor	Event involves Sediment, surface water, and fish sampling: 1 day for mob, 1 day for demob = 16hrs, 2-person crew for mob/demob	32	Hour	\$125	\$4,000
Surface Water	Assumed \$125 per person per hour, 2-person crew (for boat work) can get 15 samples locations per day in a 10 hr day collected. Another 2-person crew to process and package samples. 40hrs/day/15 samples is 2.67hrs per sample.	166	Hour	\$125	\$20,700
Fish	Assumed \$125 per person per hour, 2-person crew (for boat work) can get 15 samples locations per day in a 10 hr day collected. Another 2-person crew to process and package samples. 40hrs/day/15 samples is 2.67hrs per sample.	80	Hour	\$125	\$10,100
Surface Water Sampling				· · ·	
Equipment		1	Event	\$744	\$1,000
Analysis					
PCBs	Analysis cost includes bottles and quantity for QC	62	Each	\$77	\$4,800
Biological Sampling (Fish)	Game fish, feeder fish, and YOY fish				
Equipment		1	Event	\$3,212	\$3,300
Analysis					
PCBs	Analysis cost includes bottles and quantity for QC	30	Each	\$134	\$4,100
			Perio	odic Cost Subtotal:	\$91,000
10% Legal, Administrative and Engineering Fees:					
20% Overhead and Profit:					\$11,300
				0% Contingencies:	\$33,500 \$145,000
Periodic Cost Total:					

Eighteen Mile Creek Superfu	und Site OU3, Niagara County, New York				
Description	Comments	Quantity	Unit	Unit Cost	Cost
Key					
BCY = bank cubic yards	MS/MSD = matrix spike and spike duplicate				
CKD = cement kiln dust	MSF = thousand square feet				
COC = contaminant of concern	OTR = over the road				
CY = cubic yards	OU = operable unit				
DIA = diameter	NCP = National Contingency Plan				
EA = each	OH = overhead				
EPA = Environmental Protection Agency	PCB = polychlorinated biphenyl				
FOB = freight on board	PDI = predesign investigations				
FS = feasibility study	QA/QC = quality assurance/control				
GPS = Global Positioning System	RAL = remedial action level				
HR = hour	SSHS = site safety and health superintendent				
H&S = health and safety	TDS = total dissolved solids				
LCY = loose cubic yards	TSS = total suspended solids				
LF = linear feet	YOY = young-of-year				
LS = lump sum					

Basis of Cost

Costs based on a variety of sources including published and unpublished sources such as RS Means, communications with vendors (written and verbal), and internal databases of cost based on previous experience. Costs FOB Lockport, New York. RS Means costs were based on 2022 rates in Niagara Falls, New York.

Present worth calculations based on a 30-year operating period and a 7% annual interest rate per "A Guide to Developing and Documenting Cost Estimates During the Feasibility Study" (EPA 540-R-00-002 August 2000), the preamble to the NCP (55 FR 8666).

Estimated schedule for completion of work based on 1 mg/kg PCB cleanup level - 9 months including removal and restoration. Schedule assumes that the excavation rate would be approximately 1,000 CY per day. Schedule assumes that one working season would be 9 months and no work would occur over winter. Schedule assumes equipment and supplies are readily available.

Labor rates include overhead and profit and are not included in the overall overhead and profit markup

Predesign Investigations

Predesign investigations to be conducted prior to the Remedial Design to more thoroughly delineate excavation areas, determine contact water treatment requirements, investigate obstacles to construction, and other Site features.

Topographic survey conducted for the staging area and access points. Bathymetric survey conducted for the entire remedial area.

Additional sampling will include delineation of the area requiring removal by establishing additional sample transects along the STA.

Additional sediment samples will be collected based on a rate of: 1 transect per 200 feet of creek centerline in the remedial area (excluding the transects collected during the RI), 3 sample locations per

transect, 3 samples per location (surface, 1ft, 2ft), and 1 MS/MSD and 1 QA/QC sample per 20 samples. Samples will be analyzed for PCBs.

Additional flow monitoring and modeling in the creek to assess variations in flow that will impact operations.

Equipment assumed for sediment sampling include: Petite Ponar, Macrocorer, Macro Core Liner, GPS, small work boat, and ancillary supplies.

Sample bottle shipping costs included in analytical costs

General Requirements

Contractor management and non specific labor costs include project management, QA/QC, Health and Safety. Equipment charges include operator.

Implementation of institutional controls are assumed to be conducted by the appropriate government agency

General costs associated with project implementation including project trailers, communications, sanitation, PPE and other H&S safety supplies, and various sundries required for project implementation as a percentage of project capital costs (5%).

Eighteen Mile Creek Superfund Site OU3, Niagara County, New York							
Description	Comments	Quantity	Unit	Unit Cost	Cost		
4 XX7 1							

Site Work

Site work includes general preparation activities prior to construction as well as other Site-wide activities conducted throughout the construction period.

Vegetation clearing will be limited to areas necessary for access and areas impacted by removal operations includes removal of small, medium, and large size trees and grubbing of stumps.

Temporary safety fencing assumed to be around active access roads and work areas, will be salvaged and reused as access roads shifted.

Temporary access road construction - estimated total for project - 8 entrance areas of varying lengths depending on distance from the creek to the closest public road, 12 feet wide, aggregate covered. Assumed one access road would be utilized at a time.

Coffer dams will be utilized to section off parts of the remedial area to allow for excavation work to occur in the dry. Diversion piping would allow for creek water to flow around the work area. It is assumed a 2,000ft stretch of the creek would be excavated at a time and the coffer dams would be shifted after each area is capped.

Excavated material will be loaded onto trucks to be transferred to the staging/processing area to be dewatered.

Confirmation sampling would be conducted following excavation to verify if contaminated material remains.

Following removal of sediment, backfill would be placed to meet pre-construction grades. Backfill would primarily consist of sand, with 2 inches of topsoil (to allow for habitat restoration), and mixing in approximately 3 inches of gravel.

Air quality monitoring will include VOCs, PCBs, and fugitive dust.

Distance from source to staging area for #2 run of crusher stone, topsoil, and gravel assumed to be 20 miles.

Distance from source to staging area for sand assumed to be 10 miles.

Distance from staging area to work area assumed to be an average of 8 miles.

Distance from staging area to disposal facility assumed to be 100 miles.

Clean material source sampling assumed to be 1 sample per 1000 CY of material

Processing Facility

Material staging areas will be constructed at the processing facility for temporary storage and dewatering of sediment prior to testing and processing, processed materials, hazardous /TSCA material requiring segregation, clean materials for backfill/cap, etc. The areas will be lined with a geocomposite liner material and jersey barriers to establish the perimeter of each area. Contact water from these areas will be collected and processed with other contact water generated at the Site.

A contact water collection system will be constructed around the perimeter of the material storage bins to collect runoff and divert it to the contact water treatment system. The collection system will consist of perforated pipes in the storage area draining to a sump. Water in the sump will be pumped to the frac tanks.

Frac tank(s) will be used to store water that has come into contact with contaminated materials generated at the Site. Wastewater from dewatering operations will also be stored in the frac tanks. Excess water will be treated and discharged to the creek. The estimated cost in this estimate assumes discharge to Eighteen Mile Creek.

Prior to off-site disposal, sediment will be moisture conditioned by the addition of CKD, or other approved materials. The reagent will be mixed with the sediment in a pug mill prior to shipment to the disposal facility.

Sediment will be stabilized as necessary in accordance with RCRA land disposal regulations. Additional processing may be required based on the final waste characteristics of the sediment and soil. For this FS, it was estimated that approximately 10% of sediment will require stabilization.

Following processing, the soil and sediment will be shipped off-site for disposal. If a beneficial use can be found for the material during the remedial design phase and the processed material meets the material specifications, it may reduce the overall cost of remediation. For this analysis it was assumed that approximately 90% of the material can be shipped to a Subtitle D landfill for disposal, with the remaining going to a Subtitle C landfill.

Site Restoration

It is anticipated that wetland disturbance would include the construction of access roads and other construction activities. Access roads will be removed and wetland areas will be restored and replanted following the completion of construction. Wetland disturbance is assumed to be 75% of the area of the access roads.

Disturbed areas will be regraded prior to restoration to blend with preconstruction conditions.

Site cleanup activities will include the removal of all equipment, cleaning and testing of paved surface, and restoration of paving to preconstruction conditions.

Assumed topsoil would be cleared from staging area and replaced during site restoration. Assume spreading to match pre-construction depths

Removal and disposal of silt fence included in costs for installation of silt fence

Sweeping and washing of roads included in cost of rental of cleaning equipment

Assumed that the contaminated material stockpile area would need to be excavated to 1ft in depth to remove residual contamination from the processing facility

Eighteen Mile Creek Superfund Site OU3, Niagara County, New '	York
Description	Comments

ents Quantity Unit

Unit Cost

Special Construction

A contractor will be retained to provide equipment and operate an on-site dewatering facility.

Annual and Periodic Costs

Annual and periodic surface water sampling rates based on 1 sample/500ft of creek centerline within the remedial area, and 1 MS/MSD and 1 field duplicate sample per 20 samples. Annual surface water sampling activities assumed to occur quarterly to account for seasonal variation.

Annual and periodic fish sampling rates based on 1 sample/1000ft of creek centerline within the remedial area, and 1 MS/MSD sample per 20 samples

Equipment assumed for surface water include: Peristaltic Pumps, Myron Ultrameter, Water quality meter, filters, silicone tubing, small work boat and ancillary supplies.

Equipment assumed for Biological sampling include: Electroshocker, Generator, small work boat and ancillary supplies.

In accordance with the USEPA requirements, a 5-year review will be completed at the site to evaluate site conditions as well as to recommend modifications to the selected remedy. Sample bottle shipping costs included in analytical costs

Description	Comments	Quantity	Unit	Unit Cost	Cost
Predesign Investigations				Total	\$2,100,000
PDI costs	Lump sum covering all associated sampling and analysis for a PDI	1	LS	\$2,100,000	\$2,100,000
General Requirements				Total	\$6,504,500
Bonds and Insurance				· · · · · ·	
Performance and Payment Bond	Assumed 1% of project cost	1	LS	\$743,072	\$743,100
Insurance	Assumed 2% of project cost	1	LS	\$1,486,143	\$1,486,200
Mobilization					
General mobilization	Assumed 5% of project cost. includes items such as trailers, toilets, utilities, incidentals, etc.	1	LS	\$3,538,433	\$3,538,500
Excavator	Hydraulic excavator, quantity unknown	1	LS	\$13,048	\$13,100
Other mobile equipment	Generator, skid steer, etc.	1	LS	\$65,239	\$65,300
Backfill equipment	Dozer, front loader, etc.	1	LS	\$105,034	\$105,100
Programmatic and General Labor					
Program Management/Oversight/QA	Project Manager, maximum cost x1.25, assumed working 2 days/week assuming a 5- day work week	8	Week	\$1,425	\$11,400
Project Manager	Project Manager, maximum cost, full time	8	Week	\$2,850	\$22,800
Administrative assistance	Clerk, average cost, full time	8	Week	\$495	\$4,000
Job Superintendent	Job Superintendent, maximum cost, full time	8	Week	\$2,650	\$21,200
SSHS Officer	Job Superintendent, maximum cost x.75, full time	8	Week	\$1,988	\$15,900
Foreman	General purpose laborer, average x1.5, full time, 2 personnel	8	Week	\$5,506	\$44,100
General laborers	General purpose laborer, average, full time, 9 personnel	8	Week	\$16,518	\$132,200
OH and benefits	35% of personnel cost	1	LS	\$88,060	\$88,100
Per diem	Hotel, car/gas, and food. Assumed 15 people - proj mngr, admin assistant, job super, SSHS officer, 2 foremen, 9 laborers (unit cost *15)	40	day	\$4,110	\$164,400
General Mobile Equipment and Operators					
Water truck	6000 gal capacity, weekly rental	8	Week	\$3,480	\$27,900
Street sweeper	Vacuum assisted, 4 CY, 220 gal, weekly rental	8	Week	\$2,640	\$21,200
Site Work				Total	\$5,981,500
Silt fence (out of water)	include install and removal, stakes every 10ft, assumed sum of perimeter of processing facility, 2x length of access roads, and perimeter of remedial areas excluding the creek edge	494,434	LF	\$2	\$865,300
Silt curtain (in water)	50ft long, 1ft wide, 5ft deep turbidity curtain, assumed installation rate at 50ft/hour. Assumed length of remedial area along the creek edge	3,871	LF	\$14	\$54,600
Vegetation clearing	Installation of access roads and excavation work (if needed)	14	Acre	\$4,636	\$64,300
Temporary fencing	Orange safety fence, assumed 50% of remedial area perimeter and re-used as work moves to different areas with 20% replacement		LF	\$4	\$42,400
Inspection of Dam condition	In area surrounding Newfane dam, in relation to soil excavation	1	Each	\$5,000	\$5,000

Description	Comments	Quantity	Unit	Unit Cost	Cost
Temporary Access Roads					
Geotextile fabric	Mirafi FW 500 for base, assume additional 25% for overlap	196,750	SF	\$0.3	\$59,700
2" crusher run stone 2" crusher run stone, material cost (12" thick)		13,576	Ton	\$11	\$152,800
Transport cost	Assume 2 moves - source to staging and staging to access	6,704	LCY	\$8	\$55,600
Placement cost	Dozer 80 HP, 300' haul from stockpile, sand and gravel	6,704	LCY	\$3	\$18,800
Water Diversion System				•	
Coffer dams - 8ft (including filling equipment)	Flexible structure filled with water to form barrier between the work area and the creek	1,200	LF	\$215	\$258,400
Side dams - 4ft (in low spots as necessary)	Assumed 10% of the coffer dam length	120	LF	\$98	\$11,800
Tributary controls - small	as needed depending on work area	1	LS	\$19,572	\$19,600
Pumping systems (including generator)	Assumed one needed per 1000 LF of dam	2	Each	\$65,239	\$130,500
Initial installation		1	LS	\$195,716	\$195,800
Segment relocation/reset	Assumed relocating to each remediation area	13	Each	\$130,477	\$1,696,300
Excavation					
Excavation	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket, +15% for soft soil/sand, +15% for loading into trucks, +50% for wet excavation	33	Day	\$1,105	\$36,600
Transport to processing facility	16.5 CY truck, 45 mph avg, 20min load/unload, cycle 8 miles	38,004	LCY	\$4	\$143,300
Backfill Placement				••	
Common Fill					
Material cost		39,050	Ton	\$7	\$283,200
Transport cost	Assume 2 moves - source to staging and staging to access	28,503	LCY	\$6	\$184,800
Placement cost	Dozer 80 HP, 300' haul from stockpile, common earth	29	Day	\$3,140	\$89,600
Source analytical testing	DER-10 testing	25	Each	\$1,408	\$35,300
Topsoil					
Material cost		13,017	Ton	\$33	\$429,600
Transport cost	Assume 2 moves - source to staging and staging to access	9,501	LCY	\$8	\$78,700
Placement cost	Dozer 80 HP, 300' haul from stockpile, sandy clay and loam	10	Day	\$2,890	\$27,500
Source analytical testing	DER-10 testing	9	Each	\$1,408	\$12,700
Re-vegetation	Hydro seeding including seed and fertilizer	446,139	SF	\$0.1	\$49,600
Tree planting	Tree density 1 per 100SF, includes placement of bagged and burlapped 12" dia ball trees via backhoe/loader, 48HP. Assumed transport cost per tree to be \$20	446,139	SF	\$1	\$401,700
Habitat restoration	Unit cost assumed same as wetland restoration. Includes seeding and planting	13	Acre	\$33,000	\$417,400
Water quality monitoring	Sampling analysis for TSS, TDS periodically	16	Each	\$25	\$400
Water quality equipment	Rental of equipment to periodically evaluate water conditions during work	8	Week	\$172	\$1,400
Air quality monitoring during construction	Assume 5 Dust-trac rentals with tripod/enclosure at a monthly rate	2	Month	\$713	\$1,500
Bathymetric/Topographic Surveys					
Pre-excavation		10	Acre	\$839	\$8,600
Post-excavation		10	Acre	\$839	\$8,600
Post-Backfill		10	Acre	\$839	\$8,600
Periodic		10	Acre	\$839	\$8,600
Post-excavation confirmatory sample collection	30x30ft grids is EPA standard, so 1 per 900SF plus sidewall samples. testing for PCBs,	723	Each	\$170	\$122,900

Description	Comments	Quantity	Unit	Unit Cost	Cost
Processing Facility				Total	\$17,043,300
Clear vegetation and strip topsoil	Topsoil stripping and stockpiling, 6" deep, 200' haul	52,242	SY	\$0.3	\$15,200
Construct staging area		1	LS	\$10,000	\$10,000
Temporary security fencing	6FT high 11 gauge chain link fencing	4,273	LF	\$6	\$26,300
Paving	Processing facility footprint not including storage pads. Plant-mix asphalt paving, binder course, 3" thick and wearing course, 1" thick	345,762	SF	\$2	\$731,900
Dewatering/Material Storage Pads	Sinder course, 5° unex and wearing course, 1° unex			1 1	
Geocomposite Liner					
Decon pad/processing area		21,003	SF	\$3	\$54,900
Unprocessed material stockpile		60,971	SF	\$3	\$159,200
Hazardous material stockpile		14,204	SF	\$3	\$37,100
Clean backfill material stockpiles		28,239	SF	\$3	\$73,700
Jersey Barriers		20,237	51	ψυ	φ <i>15</i> ,700
Decon pad/processing area		585	LF	\$130	\$76,400
Unprocessed material stockpile		1,136	LF	\$130	\$148,300
Hazardous material stockpile		479	LF	\$130	\$62,500
Clean backfill material stockpiles		754	LF	\$130	\$98,400
Coarse Aggregate		734		\$150	\$70,+00
Decon pad/processing area	Plant-mix asphalt paving, binder course, 3" thick	21,003	SF	\$2	\$32,900
Unprocessed material stockpile	Plant-mix asphalt paving, binder course, 3" thick	60,971	SF	\$2	\$95,500
Hazardous material stockpile	Plant-mix asphalt paving, binder course, 3 " thick	14,204	SF	\$2	\$22,300
Clean backfill material stockpiles	Plant-mix asphalt paving, binder course, 3 " thick	28,239	SF	\$2	\$44,300
Fine Aggregate	Trant-mix asphart paving, binder course, 5° tinek	20,239	51	φ2	\$44,500
Decon pad/processing area	Plant-mix asphalt paving, wearing course, 1" thick	21,003	SF	\$1	\$11,600
Unprocessed material stockpile	Plant-mix asphalt paving, wearing course, 1 thick	60,971	SF	\$1	\$33,700
Hazardous material stockpile	Plant-mix asphalt paving, wearing course, 1 thick	14,204	SF	\$1	\$7,900
Clean backfill material stockpiles	Plant-mix asphalt paving, wearing course, 1 thick	28,239	SF	\$1 \$1	\$15,600
Stone Subbase	Prant-mix asphalt paving, wearing course, 1 thick	26,239	55	\$1	\$15,000
Paved areas not stockpiles	2" crusher run stone, material cost (12" thick)	25,932	Ton	\$11	\$291,800
Decon pad/processing area	2" crusher run stone, material cost (12" thick)	1,575	Ton	\$11	\$17,800
Unprocessed material stockpile	2" crusher run stone, material cost (12" thick)	4,573	Ton	\$11	\$51,500
Hazardous material stockpile	2" crusher run stone, material cost (12" thick)	1,065	Ton	\$11	\$12,000
Clean backfill material stockpiles	2" crusher run stone, material cost (12" thick)	2,118	Ton	\$11	\$23,900
Stone transport	2" crusher run stone, material cost (12" thick)	20,026	LCY	\$5	\$102,800
Stone placement	Dozer 80 HP, 300' haul from stockpile, sand and gravel	20,026	LCY	\$3	\$56,100
Contact Water Management System				1 1	
Perforated pipe - dewatering cells, decon pad, 2		954	LF	\$17	\$16,200
stockpiles	stockpile perimeter, and 1/4 of the processing area perimeter	-			. ,
Straw bales - dewatering cell, decon pad, 2	Assumed perimeter of unprocessed and hazardous material stockpiles, and 1/4 of the	1,761	LF	\$9	\$16,100
stockpiles	processing area perimeter	1,701	24	Ψ,	<i>410,100</i>
Contact water transfer pipe, valves, fittings,	Assumed 1/4 of the processing facility perimeter	1,068	LF	\$7	\$7,000
sand bags, etc.		1,000	24	Ψ'	<i>41,000</i>

Description	Comments	Quantity	Unit	Unit Cost	Cost
Pipe boots, pipe clamps	Assumed 1/100ft of transfer pipe	11	Each	\$130	\$1,500
Sumps	ssumed 1/stockpile needing water management		Each	\$3,262	\$9,800
Pumps	Assumed 2/stockpile needing water management	6	Each	\$848	\$5,100
Sump excavation	Assumed 4'x4'x3' sump	5	CY	\$13	\$100
Pipe trench excavation	Assumed trench 1'x1'xlength of transfer pipe	40	CY	\$13	\$600
Pipe trench steel plating	Assumed 500ft/day	3	Day	\$117	\$400
Contact water storage tank - rental	21,000 gal frac tank rental, assumed 6 tanks - 3 treated, 3 untreated	8	week	\$9,000	\$72,000
Mob/demob of tank	21,000 gal frac tank rental, assumed 6 tanks - 3 treated, 3 untreated	6	Each	\$1,000	\$6,000
Asphalt Berms	12" wide, 4" tall, 60 LF/ton, laid with pavement				
Material stockpile	Assumed perimeter of material stockpiles	2,369	LF	\$2	\$4,900
Decon pad	Assumed 1/4 of the processing area perimeter	146	LF	\$2	\$300
Stormwater diversion	Assumed perimeter of processing facility	4,273	LF	\$2	\$8,800
Material Screening		• • • • •			
Pug mill and screening plant		2	Month	\$15,000	\$30,000
Chemical stabilization (metals)	Assumed 10% of material will be considered hazardous and needs to be stabilized	29,743	CY	\$100	\$2,974,300
Haul and Disposal				· · · · ·	
Subtitle D facility Disposal	excavated material	46,859	Ton	\$97	\$4,545,400
Transport	20 CY truck (20min load time) from staging area to disposal facility	34,204	LCY	\$3	\$107,800
Subtitle D facility Disposal	access road stone and processing facility stone	54,129	Ton	\$97	\$5,250,500
Transport	20 CY truck (20min load time) from staging area to disposal facility	26,730	LCY	\$22	\$576,100
Subtitle C/TSCA facility Disposal		5,207	Ton	\$194	\$1,010,100
Transport	20 CY truck (20min load time) from staging area to disposal facility	3,800	LCY	\$22	\$81,900
Waste profile sampling	1 sample per 5,000 CY	7	Each	\$680	\$4,800
Site Restoration				Total	\$40,768,560
Site Decontamination at Processing Site					
Remove and dispose of containment systems		1	LS	\$6,524	\$6,600
Remove and dispose of asphalt berms	Berms, bituminous, 4" or more in height	6,788	LF	\$4	\$29,500
Remove and dispose of paved areas	Pavement removal, bituminous roads, 4-6" thick	470,179	SF	\$1	\$363,700
Removal of stone subbase for paved areas	Wheeled front end loader, 3 CY bucket, select granular fill	17,414	BCY	\$10	\$172,800
Decon and remove equipment		1	LS	\$19,572	\$19,600
Remove contact water system		1	LS	\$13,048	\$13,100
Soil testing under containment areas	1/2000 SF of processing facility	236	Each	\$283	\$66,900
Soil Removal				· · · ·	
Excavation	Hydraulic excavator, crawler mounted, 1-1/2 CY bucket	2,258	BCY	\$1	\$3,200
Transport cost for disposal	20 CY truck (20min load time), 45mph avg, from staging area to disposal facility		LCY	\$22	\$56,000
Disposal cost	Subtitle D facility assumed	3,558	Ton	\$97	\$345,200
Site Restoration					
Soil preparation	Rough grade and scarify common earth to receive topsoil, 200HP dozer with scarifier.	627.6	MSF	\$23	\$14,460

Eighteen Mile Creek Superfund Site OU3, Niagara County, New York

Description	Comments	Quantity	Unit	Unit Cost	Cost
Soil Restoration					
Placement cost	Dozer 80 HP, 300' haul from stockpile, sandy clay and loam	13,365	LCY	\$2,890	\$38,625,200
Re-vegetation	Hydro seeding including seed and fertilizer	627,579	SF	\$0.1	\$69,800
Tree planting	Tree density 1 per 100SF, includes placement of bagged and burlapped 12" dia ball trees via backhoe/loader, 48HP. Assumed transport cost per tree to be \$20	627,579	SF	\$1	\$565,100
Wetland restoration		13	Acre	\$33,000	\$417,400
Special Construction					\$4,138,600
Dewatering plant operations	CY of excavated material	33,047	CY	\$98	\$3,234,000
Wetland mitigation activities		13	Acre	\$59,000	\$746,100
Wastewater treatment plant					
WWTP mobilization/demobilization		1	LS	\$32,619	\$32,700
WWTP rental		2	Month	\$45,667	\$91,400
WWTP operator		2	Month	\$9,786	\$19,600
WWTP residuals disposal		1	LS	\$13,048	\$13,100
Water discharge permits	Costs for sampling for COCs, TSS, TDS periodically in discharge water plus a base monthly cost. Assumed sampling happens bi-monthly.	2	Month	\$818	\$1,700
			Capita	l Costs Subtotal:	\$76,536,500
	10% Legal, administrative, engineering fees, project management -	 not including 	g sediment or so	il disposal costs:	\$6,538,600
10% design - not including sediment or soil disposal costs:					
15% construction management - not including sediment or soil disposal costs:					
20% Overhead and Profit:					\$15,289,700
30% Contingencies:					\$34,413,400
Capital Cost Total:					

Key

- BCY = bank cubic yards CKD = cement kiln dust COC = contaminant of concern CY = cubic yards DIA = diameter EA = eachEPA = Environmental Protection Agency FOB = freight on board FS = feasibility study GPS = Global Positioning System HR = hourH&S = health and safety LCY = loose cubic yards LF = linear feet LS = lump sum
- MS/MSD = matrix spike and spike duplicate
 - MSF = thousand square feet OTR = over the road OU = operable unit NCP = National Contingency Plan OH = overhead PCB = polychlorinated biphenyl

 - PDI = predesign investigations
 - QA/QC = quality assurance/control
 - RAL = remedial action level
 - SSHS = site safety and health superintendent
 - STA = sediment transitional area
 - TDS = total dissolved solids
 - TSS = total suspended solids
 - YOY = young-of-year

Eighteen Mile Creek Superfund Site OU3, Niagara County, New York

Quantity Unit Unit Cost Cost

Basis of Cost

Costs based on a variety of sources including published and unpublished sources such as RS Means, communications with vendors (written and verbal), and internal databases of cost based on previous experience. Costs FOB Lockport, New York. RS Means costs were based on 2022 rates in Niagara Falls, New York.

Comments

Present worth calculations based on a 30-year operating period and a 7% annual interest rate per "A Guide to Developing and Documenting Cost Estimates During the Feasibility Study" (EPA 540-R-00-002 August 2000), the preamble to the NCP (55 FR 8666).

Estimated schedule for completion of work based on 1 mg/kg PCB and 200/400/1000 mg/kg lead cleanup level - 2 months including removal and restoration. Schedule assumes that the excavation rate would be approximately 1,000 CY per day. Schedule assumes that the restoration rate would be approximately 1,000 CY per day. Schedule assumes that one working season would be 9 months and no work would occur over winter. Schedule assumes equipment and supplies are readily available.

Labor rates include overhead and profit and are not included in the overall overhead and profit markup

In accordance with the USEPA requirements, as all contaminated material would be removed a 5-year review will not be required.

Predesign Investigations

Description

Predesign investigations to be conducted prior to the Remedial Design to more thoroughly delineate excavation areas, determine contact water treatment requirements, investigate obstacles to construction, and other Site features.

Topographic survey conducted for the staging area and access points plus remediation areas.

Additional sampling will include further delineation of the depth and areal extent of the identified Adjacent floodplain soil remedial areas along with sampling of the remainder of the Adjacent floodplain soil areas to identify other potentially contaminated locations. The additional sampling will also include a focus on residential zoned properties in the Adjacent floodplains that did not have sampling done during previous investigations.

Additional floodplain soil samples will be collected based on a rate of: 4 samples per acre of creek floodplain outside of the current remedial areas; 10 additional samples per residential zoned properties within the floodplain; 1 sample per 250 ft of the perimeter of the remedial areas (excluding edge along the creek) to delineate the remedial areas; 2 samples per location (1ft, 2ft), and 1 MS/MSD and 1 QA/QC sample per 20 samples. The additional samples will be analyzed for lead and PCBs.

Equipment assumed for floodplain soil sampling include: bowls and spoons, hand augers, GPS, and ancillary supplies.

Sample bottle shipping costs included in analytical costs

Additional sampling for the Non-Adajcent floodplain soil areas was included in the PDI to evaluate the conditions of the Non-Adjacent floodplain soil areas. This additional sampling will also include a focus on residential zoned properties in the Non-Adjacent floodplains that did not have sampling done during previous investigations

The Non-Adjacent floodplain soil sampling includes samples being collected based on a rate of: 4 samples per acre of creek floodplain within the non-adjacent areas; 10 additional samples per residential zoned properties within the non-adjacent floodplain areas; 2 samples per location (1ft, 2ft), and 1 MS/MSD and 1 QA/QC sample per 20 samples. The additional samples will be analized for lead and PCBs.

General Requirements

Contractor management and non specific labor costs include project management, QA/QC, Health and Safety. Equipment charges include operator.

Implementation of institutional controls are assumed to be conducted by the appropriate government agency

General costs associated with project implementation including project trailers, communications, sanitation, PPE and other H&S safety supplies, and various sundries required for project implementation as a percentage of project capital costs (5%).

Eighteen Mile Creek Superfund Site OU3, Niagara County, New York

Description Comments Quantity Unit Unit Cost Cost

Site Work

Site work includes general preparation activities prior to construction as well as other Site-wide activities conducted throughout the construction period.

Vegetation clearing will be limited to areas necessary for access and areas impacted by removal operations includes removal of small, medium, and large size trees and grubbing of stumps.

Temporary safety fencing assumed to be around active access roads and work areas, will be salvaged and reused as access roads shifted.

Temporary access road construction - estimated total for project - 14 entrance areas of varying lengths depending on distance from the remedial area to the closest public road, 12 feet wide, aggregate covered. Assumed one access road would be utilized at a time.

Coffer dams will be utilized to section off the shoreline of the remedial areas to allow for excavation work to occur in the dry. It is assumed that the coffer dams would be shifted after each area is excavated and restored.

Floodplain soils would be excavated using standard construction excavation equipment such as end loaders and excavators, and loaded into trucks for transport to the processing facility. Average depth of excavation assumed to be 2 feet over impacted areas.

Excavated material will be loaded onto trucks to be transferred to the staging/processing area to be dewatered and processed for disposal.

Confirmation sampling would be conducted following excavation to verify if contaminated material remains.

Following excavation, backfill would be placed to meet pre-construction grades. Backfill would primarily consist of common fill, with 6 inches of topsoil (to allow for habitat restoration).

Air quality monitoring will include VOCs, PCBs, and fugitive dust.

Distance from source to staging area for #2 run of crusher stone, topsoil assumed to be 20 miles.

Distance from source to staging area for common fill assumed to be 10 miles.

Distance from staging area to work area assumed to be an average of 8 miles.

Distance from staging area to disposal facility assumed to be 100 miles.

Clean material source sampling assumed to be 1 sample per 1000 CY of material

Processing Facility

Material staging areas will be constructed at the processing facility for temporary storage and dewatering of floodplain soil prior to testing and processing, processed materials, hazardous /TSCA material requiring segregation, clean materials for backfill/cover, etc. The areas will be lined with a geocomposite liner material and jersey barriers to establish the perimeter of each area. Contact water from these areas will be collected and processed with other contact water generated at the Site.

A contact water collection system will be constructed around the perimeter of the material storage bins to collect runoff and divert it to the contact water treatment system. The collection system will consist of perforated pipes in the storage area draining to a sump. Water in the sump will be pumped to the frac tanks.

Frac tank(s) will be used to store water that has come into contact with contaminated materials generated at the Site. Wastewater from dewatering operations will also be stored in the frac tanks. Excess water will be treated and discharged to the creek. The estimated cost in this estimate assumes discharge to Eighteen Mile Creek.

Floodplain soil will be stabilized as necessary in accordance with RCRA land disposal regulations. Additional processing may be required based on the final waste characteristics of the floodplain soil. For this FS, it was estimated that approximately 10% of floodplain will require stabilization.

Following processing, the floodplain soil will be shipped off-site for disposal. If a beneficial use can be found for the material during the remedial design phase and the processed material meets the material specifications, it may reduce the overall cost of remediation. For this analysis it was assumed that approximately 90% of the material can be shipped to a Subtitle D landfill for disposal following on-site treatment for lead, with the remaining going to a Subtitle C landfill.

Eighteen Mile Creek Superfund Site OU3, Niagara County, New York

Description	Comments	Quantity	Unit	Unit Cost	Cost

Site Restoration

It is anticipated that wetland disturbance would include the construction of access roads and other construction activities. Access roads will be removed and wetland areas will be restored and replanted following the completion of construction. Wetland disturbance is assumed to be 50% of the area of the access roads and 100% of the area of the remedial areas.

Disturbed areas will be regraded prior to restoration to blend with preconstruction conditions.

Site cleanup activities will include the removal of all equipment, cleaning and testing of paved surface, and restoration of paving to preconstruction conditions.

Assumed topsoil would be stripped from the staging area and replaced during site restoration. Assume spreading to match pre-construction depths

Removal and disposal of silt fence included in costs for installation of silt fence

Sweeping and washing of roads included in cost of rental of cleaning equipment

Assumed that the contaminated material stockpile area would need to be excavated to 1ft in depth to remove residual contamination from the processing facility

Special Construction

A contractor will be retained to provide equipment and operate an on-site dewatering facility.

Chemical-specific ARARs, TE	Cs, and other Guidelines	1
Requirement	Code/Citation	Regulatory Synopsis
Federal		
Surface Water		
Federal Water Pollution Control Act (CWA)	CWA §304 40 CFR Part 131	Establishes criteria for setting water quality standards for surface water bodies based on the latest scientific data on impacts that a constituent concentration has on a particular aquatic species and/or human health; criteria used as guidance by states in setting water quality standards.
National Recommended Water Quality Criteria	63 Federal Register 68354	Established national recommended water quality criteria for a range of contaminants including PCBs in freshwater.
Toxic Pollutant Effluent Standards and Prohibitions Soil	40 CFR Part 129.105(a)(4)	Establishes the ambient water criteria for PCBs in navigable waters as 0.001µg/L.
USEPA Regional Screening Levels for Soils	Regional Screening Levels Generic Tables as of May 2021	Provides concentrations for compounds and analytes based on their most recent risk assessment data. Available online at: https://www.epa.gov/risk/regional- screening-levels-rsls-generic-tables
Air		
No promulgated Chemical-Spec	ific Federal ARARs for air were ident	ified for this project

Chemical-specific ARARs, TBCs, and other Guidelines		
Requirement	Code/Citation	Regulatory Synopsis
State		
Surface Water		
NYSDEC Water Quality Standards and Classifications	6 NYCRR Parts 700 – 701.14, 701.19 – 702.17, 702.22 – 703.5, 703.7 - 706	Establishes surface water quality standards and effluent limitations.
New York State Division of Water TOGS Ambient Water Quality Standards and Guidance Values	TOGS 1.1.1	Provides screening criteria for surface water.
NYSDOH - Sources of Water Supply – Standards of Raw Water Quality	10 NYCRR Part 170.4	Establishes quality standards for sources of water for public water supplies.
Soil		
NYSDEC – Environmental Remediation Programs, Soil Cleanup Objectives	6 NYCRR Part 375-6. Tables 375- 6.8(a) and 375-6.8(b)	Establishes standards for soil cleanups.
NYSDEC Commissioner Policy 51/Soil Cleanup Guidance	CP-51 Section 5	Section 5 of CP-51 describes the process for selecting soil cleanup objectives based on 6 NYCRR Part 375 Section 6.8 and Appendix E of the Technical Support Document for Part 375. This regulation is not applicable for PAHs.
Air		
No promulgated chemical-specie	ific State ARARs for air were identifie	d for this project

Chemical-specific ARARs, TBCs, and other Guidelines		
Requirement	Code/Citation	Regulatory Synopsis
Sediment		
NYSDEC Division of Water	TOGS 5.1.9 In-Water and Riparian	Establishes standards for dredged freshwater sediment
TOGS Sediment Quality	Management of Sediment and	to be placed in water or in riparian areas.
Threshold Values	Dredged Material, Table 2	
NYSDEC Screening and	NYSDEC Division of Fish, Wildlife	Establishes screening values for contaminated
Assessment of Contaminated	and Marine Resources, Table 5 –	freshwater sediments.
Sediment, Sediment Guidance	Freshwater Sediment Guidance	
Values	Values	
Key:		
ARAR = Applicable or Relevant and Appro	priate Requirement	
CFR = Code of Federal Regulations CWA = Clean Water Act		
CWA = Clean Water Act MCL = maximum contaminant level		
NYCR = New York Codes, Rules, and Regulations		
NYSDEC = New York Department of Environmental Conservation		
NYSDOH = New York State Department of Health		

OSWER = Office of Solid Waste and Emergency Response

PAH = polynuclear aromatic hydrocarbon

SDWA = Safe Drinking Water Act

TBC = To Be Considered

TOGS = Technical and Operational Guidance Series

USC = United States Code

USEPA = U.S. Environmental Protection Agency

VISL = Vapor Intrusion Screening Levels

Requirement	Code/Citation	Requirement Synopsis
Federal		
Waterways	-	
Rivers and Harbors Act Section 10	40 CFR Parts 322, 323m, and 329	Governs coordination of activities in navigable waters. Congressional approval required for any obstruction of the navigable capacity of the waters of the United States, and for construction of bridges, wharfs, piers, and other structures across navigable waters. USACE regulations in 33 CFR 322, 323 and 329 provide permitting authority for work in or affecting navigable waters, and discharge of dredged or fill material in the waters of the United States.
Coastal Zone Management Act	15 CFR Parts 923 and 930	Established that federal agencies that conduct or support activities that directly affect a coastal resource must undertake those activities in a manner that is consistent, to the maximum extent practicable, with State coastal zone management programs that have been approved by NOAA.
Floodplains and Wetlands		
USEPA Statement of Procedures on Floodplain Management and Wetlands Protection Executive Order 11988 (floodplain management) Executive Order 11990 (protection of wetlands)	40 CFR Part 6, Appendix A, Sections 3 and 4	Establishes requirements associated with actions that have impacts on wetlands or floodplains.
Clean Water Act Section 404	40 CFR Part 230 and 33 CFR Parts 320-330	Prohibits discharge into wetlands.

Location-specific ARARs, TBCs, and other Guidelines		
Requirement	Code/Citation	Requirement Synopsis
USEPA National Guidance, WQSW	Appendix B to Chapter 2 – General Program Guidance of the Water Quality Standards Handbook, December 1983 (updated July 1990)	Provides for the inclusion of wetlands in the definition of State waters. The WQSW guidance requires monitoring of wetlands for water quality management activities including the assessment and control of NPS pollution, and waste disposal activities (sewage sludge, CERCLA, RCRA).
National Environmental Policy Act; 40 CFR 6.302(b)(2005)	42 USC §§ 4321-4370h	Regulates activities within a floodplain.
RCRA Regulations – Location Standard	40 CFR Part 264.18	Regulates the design, construction, operation, and maintenance of hazardous waste management facilities within the 100-year floodplain.
General Requirements for Site Reme	diation	
Fish and Wildlife Coordination Act	16 USC § 661-666	Requires consideration of the effects of a proposed action on wetlands and areas affecting streams (including floodplains), as well as other protected habitats. Federal agencies must consult with the United States Fish and Wildlife Service and the appropriate State agency with jurisdiction over wildlife resources prior to issuing permits or undertaking actions involving the modification of any body of water (including impoundment, diversion, deepening, or otherwise controlled or modified for any purpose).
National Historic Preservation Act and Protection of Historic Properties	16 USC §470, et. seq. and 36 CFR Part 800	Establishes procedures to provide for preservation of historical and archeological data that might be destroyed through alteration of terrain as a result of a federal construction project or a federally licensed activity or program.
Endangered Species Act	16 USC §1531 et seq., 50 CFR Parts 17 and 424	Requires that the continued existence of any endangered or threatened species and/or its habitat not be impacted by a federal activity.

Location-specific ARARs, TBCs, and	l other Guidelines	
Requirement	Code/Citation	Requirement Synopsis
Magnuson-Stevens Fishery	Public Law 94-265, as	Requires that federal agencies consult with National Marine
Conservation and	amended	Fisheries Services on actions that may adversely affect
Management Act	through October 11,	essential fish habitats, defined as "those waters and substrate
	1996	necessary to fish for spawning, breeding, feeding, or growth to maturity."
Migratory Bird Treaty Act	16 USC 703-712	Requires that federal agencies consult with USFWS during remedial design and remedial construction to ensure that the cleanup of the site does not unnecessarily impact migratory birds.
Bald and Gold Eagle Protection Act	16 USC 668-668c	Actions must be taken to conserve critical habitat in areas where species are present.
Farmland Protection Policy Act of	7 CFR Part 658	Regulates the extent to which federal programs contribute to
1981		the unnecessary and irreversible conversion of farmland to non-agricultural uses.
State		
Waterways		
New York State – Use and Protection of Waters	6 NYCRR Part 608	Establishes requirements with excavation or placement of fill in navigable waters.
Floodplains and Wetlands		
New York State Freshwater Wetlands Regulations	6 NYCRR Parts 662- 665	Establishes permit requirement regulations, wetland maps and classifications.
		On-site CERCLA response actions are exempt from permit requirements pursuant to CERCLA Section 121(e), although
		such activities must comply with substantive requirements of these regulations.
New York State Floodplain	6 NYCRR Part 500	Describes permitting requirements for development in
Development Permits		floodplains.
		On-site CERCLA response actions are exempt from permit
		requirements pursuant to CERCLA Section 121(e), although
		such activities must comply with substantive requirements of
		these regulations.

Location-specific ARARs, TBCs, and other Guidelines		
Requirement	Code/Citation	Requirement Synopsis
New York State Floodplain	6 NYCRR Part 502	Provides floodplain management criteria for State projects.
Management Criteria for State		
Projects		
General Requirements for Site Reme	ediation	
New York State Endangered and	6 NYCRR Part 182	Provides standards for the protection of threatened and
Threatened Species of Fish and		endangered species.
Wildlife		
New York State Wild, Scenic, and	6 NYCRR Part 666	Provides regulations for the administration and management
Recreational Rivers Permit Program		of the wild, scenic, and recreational rivers system in New
		York State.
New York State Protected Native	ECL Section 9-1503	Lists the protection requirements and restrictions on
Plant Species	and 6 NYCRR Part	removing identified endangered, threatened, rare, and
	193.3	exploitable native plant species.
New York State Waterfront	Executive Article 42,	Policy on designation or use of coastal and inland waterway
Revitalization of Coastal Areas and	Section 910-923	resources while preventing the loss of living marine
Inland Waterways		resources and wildlife, diminution of open space area or
-		public access to the waterfront, shoreline erosion, and
		impairment of scenic beauty or permanent adverse changes
		to ecological systems.

Key:

ARAR = Applicable or Relevant and Appropriate Requirement

CERCLA = Comprehensive Environmental Response, Compensation, and Liability Act

CFR = Code of Federal Regulations

ECL = Environmental Conservation Law

NYCRR = New York Code of Rules and Regulations

NPS = Non-Point Source Pollution

NYSDEC = New York State Department of Environmental Conservation

RCRA = Resource Conservation and Recovery Act

TBC = To Be Considered

USACE = U.S. Army Corps of Engineers

USC = United States Code

USEPA = U.S. Environmental Protection Agency

USFWS = U.S. Fish and Wildlife Service

WQSW = Water Quality Standards for Wetlands

Requirement	Code/Citation	Requirement Synopsis
Federal		
Surface Water		
CWA – USEPA Administered Permit Programs: National Pollutant Discharge Elimination System (NPDES) and Criteria and Standards for the NPDES	40 CFR Part 401 40 CFR Parts 122 and 125	Provides NPDES permit requirements for point source discharges, including the NPDES Best Management Practice Program. These regulations include, but are not limited to, requirements for compliance with water quality standards, discharge monitoring system, and records maintenance. On-site CERCLA response actions are exempt from permit requirements pursuant to CERCLA Section 121(e), although such activities must comply with substantive requirements of these regulations.
Federal Water Pollution Control Act (CWA)	40 CFR Part 401 40 CFR Parts 121.2, 122-125	Requires federal license or permit applicants provide a certification that any discharges (e.g., dredged material dewatering effluent, placement of fill, discharges of decants water) will comply with the CWA, including water quality standard requirements (water quality certification). On-site CERCLA response actions are exempt from permit requirements pursuant to CERCLA Section 121(e), although such activities must comply with substantive requirements of these regulations.
Federal Water Pollution Control Act (CWA)	33 USC §1251 et seq. 33 USC §404 40 CFR Part 230	Requires assurance that action taken meets applicable federal/state water quality limitations. Regulates the discharge of dredged or fill material into navigable waters of the United States, also regulates the construction of any structure in navigable waters and provides guidelines for specification of disposal sites for dredged or fill material.

Action-specific ARARs, TBCs, and o Requirement	Code/Citation	Requirement Synopsis
Soil		
RCRA Criteria for Municipal Solid Waste Landfills	40 CFR Part 258	Establishes criteria for use in determining which solid waste disposal facilities and practices pose a reasonable probability of adverse effects.
Area of Contamination Policy	55 FR 8758- 8760, March 8, 1990	This policy addresses consolidation of contiguous waste within an AOC. Movement of media contaminated with hazardous wastes within an AOC does not typically trigger RCRA requirements.
Corrective Action Management Units	40 CFR Part 264.552	These regulations provide exceptions to Land Disposal Restrictions requirements and establish rules for consolidation and treatment of noncontiguous waste within the Site.
Sediment	•	
RCRA Hazardous Waste, Non- Hazardous Waste and Other Wastes Management System	40 CFR Parts 239-299	Evaluate and control of material that contains a listed waste, or that displays a hazardous waste characteristic based on one of four criteria – reactivity, ignitability, flammability, and toxicity –as measured through the Toxicity Characteristic Leaching Procedure test. Regulates storage, treatment, and disposal of listed or characteristic waste unless an exemption applies.
RCRA Identification and Listing of Hazardous Waste	40 CFR Part 261 42 USC 6921 et seq.	Describes methods for identifying hazardous wastes and lists known hazardous wastes.
RCRA Standards Applicable to Generators of Hazardous Waste	40 CFR Part 262	Describes standards applicable to generators of hazardous wastes.
RCRA – Preparedness and Prevention – Applicability and Design and Operation of Facility	40 CFR Parts 264.30 – 264.37	Outlines the requirements for safety equipment and spill control.
RCRA – Contingency Plan and Emergency Procedures	40 CFR Parts 264.50 – 264.56	Outlines the requirements for emergency procedures to be used following explosions, fires, etc.
Toxic Substances Control Act (TSCA) PCBs Manufacturing, Processing,	15 USC §2601 et seq. 40 CFR Part 761.50 40 CFR Part 761.61	Regulates PCBs from manufacture to disposal, identifies cleanup and disposal requirements for PCB-contaminated sediments, storage requirements and decontamination

Action-specific ARARs, TBCs, and other Guidelines							
Requirement	Code/Citation	Requirement Synopsis					
Distribution, Distribution in	40 CFR Part 761.65	standards and procedures for removing disposal requirements					
Commerce, and Use	40 CFR Part 761.79	for various PCB waste types and provides cleanup and					
Prohibitions		disposal options for PCB remediation waste.					
Air							
CAA – National Primary and	40 CFR Parts 50.6 and	Establishes air quality standards for PM ₁₀ and PM _{2.5} .					
Secondary Ambient Air Quality	50.7						
Standards for PM ₁₀ and PM _{2.5}							
Approval and Promulgation of	40 CFR Part 52	Sets forth the requirements for the implementation plan					
Implementation Plans		approvals.					
Standards for Performance for New	40 CFR Part 60	Establishes the provisions for the owner or operator to meet					
Stationary Sources		for any new stationary source.					
National Emission Standards for	40 CFR Part 61	Establishes the national air emissions standards for					
Hazardous Air Pollutants		construction of facilities that emit or have the potential to					
		emit one or more hazardous materials.					
National Emission Standards for	40 CFR Part 63	Establishes the national emission standards for stationary					
Hazardous Air Pollutants for Source		sources that emit or have the potential to emit one or more					
Categories		hazardous air pollutants.					
Clean Air Act	42 USC § 7401-7671	Identifies emission requirements for "major" sources of lead,					
	40 CFR Parts 50, 51,	NO_x , CO, PM_{10} , and SO_2 in attainment and non-attainment					
	and 52	areas.					
Waste Transportation and Disposal		-					
USDOT Rules for Transportation of	49 USC §1801-1819	Outlines procedures for the packaging, labeling, manifesting,					
Hazardous Materials	49 CFR Parts 107,	and transporting of hazardous materials.					
	171, 172, 177, 179						
RCRA Standards Applicable to	40 CFR Part 263	Establishes standards for hazardous waste transporters.					
Transporters of Hazardous Waste							
RCRA Land Disposal Restrictions	40 CFR Section 6901	Identifies hazardous wastes restricted from land disposal and					
	40 CFR Part 268	provides treatment standards under which an otherwise					
		prohibited waste may be disposed of on land.					

Action-specific ARARs, TBCs, and other Guidelines						
Requirement	Code/Citation	Requirement Synopsis				
General Requirements for Site Reme	ediation					
Federal Pretreatment Regulations for	40 CFR Part 403	Provide pretreatment criteria that waste streams must meet				
Existing and New Sources of		prior to discharge to Publicly Owned Treatment Works.				
Pollution						
State						
Surface Water						
Fish and Wildlife Management	NYS ECL §11-0513	Establishes that no deleterious or poisonous substances shall				
Practices Cooperative Program		be thrown or allowed to run into any public or private waters in quantities injurious to fish life, protected wildlife, or waterfowl inhabiting those waters, or injurious to the propagation of fish, protected wildlife, or waterfowl therein.				
Environmental Conservation Water Resources Permits	ECL Article 15, Title 5	Lists the permit requirements for working in or modifying protected creeks and streams. On-site CERCLA response actions are exempt from permit requirements pursuant to CERCLA Section 121(e), although such activities must comply with substantive requirements of these regulations.				
Soil						
NYSDEC - Technical Guidance for	DER-10 Chapters 1	Provides guidance on investigations and remediation within				
Site Investigation and Remediation	and 5	New York.				
Air						
NYSDEC - Prevention and Control of	6 NYCRR Parts 211.1	Prohibits air pollution and visible emissions.				
Air Contaminants and Air Pollution:	and 211.2					
Air Pollution Prohibited and Visible						
Emissions Limited						
NYSDEC Air Quality Classifications	6 NYCRR Part	Establishes air quality classification levels based on land use				
System – Classification Levels and	256.1and Part 257.3	and associated air quality standards.				
Air Quality Standards - Particulates						
NYSDOH - Generic Community Air	DER-10, Appendix	Provides a generic plan for monitoring of air quality during				
Monitoring Plan	1A	remedial construction.				

Requirement	Code/Citation	Requirement Synopsis
Noise		
New York State – Noise from Heavy Motor Vehicles – Scope and Allowable Noise Levels	6 NYCRR Parts 450.1 and 450.3.	Provides sound level limits during construction activities.
Waste Transportation and Disposal		
NYSDEC TOGS Industrial SPDES Permit Drafting Strategy for Surface Water	TOGS 1.2.1	 Provides guidance for writing permits for discharges of wastewater from industrial facilities and for writing requirements equivalent to SPDES permits for discharges from remediation. On-site CERCLA response actions are exempt from permit requirements pursuant to CERCLA Section 121(e), although such activities must comply with substantive requirements of these regulations.
SPDES Permits	6 NYCRR Parts 750 – 758	Standards for stormwater runoff and surface water discharges Governs the discharge of any wastes into or adjacent to State waters that may alter the physical, chemical, or biological properties of State waters, except as authorized pursuant to a NPDES or State permit.
Use and Protection of Waters	6 NYCRR Part 608	Permit requirements for discharge of chemicals to New York waters. On-site CERCLA response actions are exempt from permit requirements pursuant to CERCLA Section 121(e), although such activities must comply with substantive requirements of these regulations.
New York State Classifications of Surface Waters and Groundwaters	6 NYCRR Part 701	Establishes restrictions for discharge into surface waters.

Action-specific ARARs, TBCs, and other Guidelines							
Requirement	Code/Citation	Requirement Synopsis					
New York Waste Transporter Permit	6 NYCRR Part 364	Establishes permit requirements for transportation of					
Program		regulated waste.					
		On-site CERCLA response actions are exempt from permit					
		requirements pursuant to CERCLA Section 121(e), although					
		such activities must comply with substantive requirements of					
		these regulations.					
New York State Standards for	6 NYCRR Part 374-3	Establishes standards for the treatment and disposal of					
Universal Waste and Restrictions	and 6 NYCRR Part 376	hazardous wastes.					
Environmental Conservation	ECL Article 27, Title	Identifies transport and disposal requirements for hazardous					
Industrial Hazardous Waste	9	waste generated from and by industrial facilities.					
Management							
General Requirements for Site Reme	diation						
New York Solid Waste Management	6 NYCRR Part 360	Sets standards and criteria for all solid waste management					
Facilities General Requirements		facilities, including design, construction, operation, and					
		closure requirements for municipal solid waste landfills.					
New York State Standards for Waste	6 NYCRR Part 364	Regulates the collection, transport and delivery of regulated					
Transportation		waste including hazardous wastes.					
New York State Hazardous Waste	6 NYCRR Part 370	Provides definition of terms and general standards applicable					
Management System – General		to hazardous waste management systems.					
New York State Identification and	6 NYCRR Part 371	Describes methods for identifying hazardous wastes and lists					
Listing of Hazardous Waste		known hazardous wastes.					
New York State Hazardous Waste	6 NYCRR Part 372	Establishes record keeping requirements and standards related					
Manifest System and Related		to the manifest system for hazardous wastes.					
Standard for Generators, Transporters							
and Facilities							
New York State Hazardous	6 NYCRR Part 373	Regulates treatment, storage, and disposal of hazardous					
Management Facilities		wastes.					

Action-specific ARARs, TBCs, and other Guidelines							
Requirement	Code/Citation	Requirement Synopsis					
New York State Management of	6 NYCRR Part 374	Establishes standards for the management of specific					
Specific Hazardous Waste		hazardous wastes.					
New York State Environmental	6 NYCRR Part 375	Identifies processes for investigation and remedial action at					
Remediation Programs		state funded Registry site; provides exception from NYSDEC					
		permits.					

Key:

AOC = area of contamination

ARAR = Applicable or Relevant and Appropriate Requirement

CAA = Clean Air Act

CFR = Code of Federal Regulations

CO = Carbon monoxide

CWA = Clean Water Act

DER = Division of Environmental Remediation

ECL = Environmental Conservation Law

FR = Federal Register

LDR = Land Disposal Restrictions

 $NO_x = Nitric oxide$

NPDES = National Pollutant Discharge Elimination System

NYCRR = New York Codes, Rules, and Regulations

NYSDEC = New York State Department of Environmental Conservation

NYSDOH = New York State Department of Health

NYSDOT = New York State Department of Transportation

NYSECL = New York State Environmental Conservation Law

PCB = polychlorinated biphenyl

PM2.5 = particles with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers

PM10 = particles with an aerodynamic diameter less than or equal to a nominal 10 micrometers

RCRA = Resource Conservation and Recovery Act

 $SO_2 = Sulfur dioxide$

SPDES = State Pollution Discharge Elimination System

TBC = To Be Considered

TOGS = Technical and Operational Guidance Series

TSCA = Toxic Substances Control Act

USC = United States Code

USDOT = U.S. Department of Transportation

USEPA = U.S. Environmental Protection Agency

APPENDIX III

ADMINISTRATIVE RECORD INDEX

FINAL

09/09/2024

REGION ID: 02

			Image			
DocID:	Doc Date:	Title:	Count:	Doc Type:	Addressee Name/Organization:	Author Name/Organization:
<u>631145</u>	09/09/2024	ADMINISTRATIVE RECORD INDEX FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	6	Administrative Record Index		(US ENVIRONMENTAL PROTECTION AGENCY)
<u>677064</u>	03/01/2004	SEDIMENT SAMPLING. BIOLOGICAL ANALYSES AND CHEMICAL ANALYSES VOLUME 1 - PROJECT REPORT OVERVIEW FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	63	Report		
<u>676562</u>	03/01/2004	SEDIMENT SAMPLING. BIOLOGICAL ANALYSES AND CHEMICAL ANALYSES VOLUME 2 - LABORATORY REPORTS FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	300	Report		
<u>407751</u>	01/01/2007	NYSDEC FINAL REPORT FOR EIGHTEENMILE CREEK PCB SOURCE TRACKDOWN PROJECT FOR THE EIGHTEENMILE CREEK SITE	48	Report	(NIAGARA COUNTY DEPARTMENT OF PLANNING, DEVELOPMENT AND TOURISM)	(ECOLOGY AND ENVIRONMENT INCORPORATED)
<u>319202</u>	04/01/2009	BENEFICIAL USE IMPAIRMENT INVESTIGATION FOR THE EIGHTEENMILE CREEK SITE	1657	Report	(NIAGARA COUNTY SOIL AND WATER CONSERVATION DISTRICT)	(ECOLOGY AND ENVIRONMENT INCORPORATED)
<u>676547</u>	01/20/2012	BIOACCUMULATION MODELING AND ECOLOGICAL RISK ASSESSMENT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	140	Report		(US ARMY CORPS OF ENGINEERS)

FINAL

09/09/2024

REGION ID: 02

DoclD:	Doc Date:	Title:	Image Count:	Doc Type:	Addressee Name/Organization:	Author Name/Organization:
<u>676549</u>		BASELINE BENTHIC COMMUNITY SAMPLING REPORT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	39	Report		(ECOLOGY AND ENVIRONMENT INCORPORATED)
<u>676561</u>	01/15/2014	CORRESPONDENCE REGARDING THE OLCOTT HARBOR SEDIMENT SAMPLING RESULTS FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	9	Memorandum		
<u>665817</u>	03/30/2015	REMEDIAL INVESTIGATION REPORT MARCH 2015 FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	784	Report	(US ENVIRONMENTAL PROTECTION AGENCY)	(CH2M HILL)
<u>436262</u>		FINAL SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT OU2 FOR THE EIGHTEENMILE CREEK SITE	463	Report	(US ARMY CORPS OF ENGINEERS) (US ENVIRONMENTAL PROTECTION AGENCY)	(ECOLOGY AND ENVIRONMENT INCORPORATED)
<u>719193</u>	01/26/2017	JOURNAL OF GREAT LAKES RESEARCH ARTICLE - ASSESSING THE STATUS OF SEDIMENT TOXICITY AND MACROINVERTEBRATE COMMUNITIES IN THE EIGHTEENMILE CREEK AREA OF CONCERN FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	9	Publication		
<u>707156</u>		REVISED PHASE 2 REMEDIAL INVESTIGATION/FEASIBILITY STUDY QUALITY ASSURANCE PROJECT PLAN FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	780	Work Plan	(US ARMY CORPS OF ENGINEERS) (US ENVIRONMENTAL PROTECTION AGENCY)	(ECOLOGY AND ENVIRONMENT INCORPORATED)

FINAL

09/09/2024

REGION ID: 02

DocID:	Doc Date:	Title:	Image Count:	Doc Type:	Addressee Name/Organization:	Author Name/Organization:
<u>676546</u>	09/01/2019	PHASE 1 DATA EVALUATION REPORT FOR FISH TISSUE FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	476	Report	(US ARMY CORPS OF ENGINEERS) (US ENVIRONMENTAL PROTECTION AGENCY)	(ECOLOGY AND ENVIRONMENT INCORPORATED)
<u>676557</u>	09/01/2019	PHASE 1 DATA EVALUATION REPORT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	2739	Report	(US ARMY CORPS OF ENGINEERS) (US ENVIRONMENTAL PROTECTION AGENCY)	(ECOLOGY AND ENVIRONMENT INCORPORATED)
<u>646825</u>	09/01/2019	REDACTED - REVISED PHASE 2 REMEDIAL INVESTIGATION/FEASIBILITY STUDY QUALITY ASSURANCE PROJECT PLAN ADDENDUM FOR ADDITIONAL FLOODPLAIN PROPERTIES FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	12	Work Plan		
<u>676558</u>	01/21/2020	CORRESPONDENCE REGARDING THE REVIEW OF THE FISH CONSUMPTION RATES AS APPLICABLE TO THE HUMAN HEALTH RISK ASSESSMENT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	3	Memorandum		(ECOLOGY AND ENVIRONMENT INCORPORATED)
<u>676552</u>	02/17/2020	DRAFT FINAL CONCEPTUAL SITE MODEL FOR SEDIMENT TRANSPORT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	55	Report		(WSP)
719192	05/01/2020	SEDIMENT ANALYSIS AND ASSESSMENT OF BENEFICIAL USE IMPAIRMENTS FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	65	Report		(US ARMY CORPS OF ENGINEERS)

FINAL

09/09/2024

REGION ID: 02

DocID:	Doc Date:	Title:	Image Count:	Doc Type:	Addressee Name/Organization:	Author Name/Organization:
<u>719195</u>	10/24/2020	JOURNAL OF GREAT LAKES RESEARCH ARTICLE - CONDITION OF RESIDENT FISH COMMUNITIES IN THE EIGHTEENMILE CREEK AREA OF CONCERN FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	8	Publication		
<u>676554</u>	08/10/2021	PHASE 3 DATA EVALUATION REPORT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	1168	Report	(US ARMY CORPS OF ENGINEERS) (US ENVIRONMENTAL PROTECTION AGENCY)	(ECOLOGY AND ENVIRONMENT INCORPORATED)
<u>707154</u>	10/01/2021	PHASE 2 DATA EVALUATION REPORT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	5053	Report	(US ARMY CORPS OF ENGINEERS) (US ENVIRONMENTAL PROTECTION AGENCY)	(WSP USA SOLUTIONS INC.)
<u>628475</u>	02/18/2022	FINAL REMEDIAL INVESTIGATION REPORT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	2854	Report	(US ARMY CORPS OF ENGINEERS KANSAS CITY DISTRICT) (US ENVIRONMENTAL PROTECTION AGENCY)	
<u>676556</u>	04/27/2022	CORRESPONDENCE REGARDING THE ENVIRONMENTAL DATA RESOURCES REPORT FOR THE CREEK CORRIDOR NEAR NEWFANE FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	144	Memorandum	(US ARMY CORPS OF ENGINEERS) (US ENVIRONMENTAL PROTECTION AGENCY) DARPINIAN,AMY (US ARMY CORPS OF ENGINEERS) KONDRK,JACLYN (US ENVIRONMENTAL PROTECTION AGENCY)	(WSP)

FINAL

09/09/2024

REGION ID: 02

DocID:	Doc Date:	Title:	Image Count:	Doc Type:	Addressee Name/Organization:	Author Name/Organization:
<u>719191</u>	05/16/2022	FINAL BASELINE HUMAN HEALTH RISK ASSESSMENT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	2044	Report	(US ENVIRONMENTAL PROTECTION AGENCY)	(WSP USA SOLUTIONS INC.)
<u>676551</u>	07/15/2022	CORRESPONDENCE REGARDING THE CONTAMINANTS OF CONCERN EVALUATION FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	10	Memorandum	(US ARMY CORPS OF ENGINEERS) (US ENVIRONMENTAL PROTECTION AGENCY) DANIELS,TODD,A (US ARMY CORPS OF ENGINEERS) KONDRK,JACLYN (US ENVIRONMENTAL PROTECTION AGENCY)	(WSP)
<u>676555</u>	07/21/2022	CORRESPONDENCE REGARDING THE ANALYSIS OF SEDIMENT EROSION AND DEPOSITION AND CONTAMINANT MOVEMENT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	41	Memorandum	(WSP)	(LIMNOTECH INCORPORATED)
<u>719190</u>	07/21/2022	REVISED AREA OF CONCERN MINK PREY SURVEY AND OAK ORCHARD CREEK ADD-ON FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	57	Report		(STATE UNIVERSITY OF NEW YORK)
<u>654446</u>	12/08/2022	ANALYSIS OF SEDIMENT EROSION AND DEPOSITION AND CONTAMINANT MOVEMENT FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	41	Memorandum		(LIMNOTECH INCORPORATED)

FINAL

09/09/2024

REGION ID: 02

DealDi	Des Datas	Title:	Image		Addressee Name/Organization:	Author Name/Organization:
DocID: 665737	Doc Date: 01/19/2023	FINAL FEASIBILITY STUDY FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	Count: 398	Doc Type: Report	(US ENVIRONMENTAL PROTECTION AGENCY)	(WSP USA SOLUTIONS INC.)
<u>719194</u>	09/01/2023	JOURNAL OF GREAT LAKES RESEARCH ARTICLE - COMPREHENSIVE ASSESSMENT OF MACROINVERTEBRATE COMMUNITY CONDITION AND SEDIMENT TOXICITY IN THE EIGHTEENMILE CREEK AREA OF CONCERN FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	10	Publication		
<u>704651</u>	07/19/2024	PROPOSED PLAN FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	25	Publication		(US ENVIRONMENTAL PROTECTION AGENCY)
<u>744489</u>	09/09/2024	MEMORANDUM TO FILE REGARDING THE PROPOSED PLAN FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	1	Memorandum		O'Leary,Christopher,J (U.S. ENVIRONMENTAL PROTECTION AGENCY)
<u>744490</u>	07/19/2024	REVISED PROPOSED PLAN FOR OU3 FOR THE EIGHTEENMILE CREEK SITE	25	Memorandum		O'Leary,Christopher,J (U.S. ENVIRONMENTAL PROTECTION AGENCY)

APPENDIX IV

STATE LETTER OF CONCURRENCE

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Office of the Director 625 Broadway, 12th Floor, Albany, New York 12233-7011 P: (518) 402-9706 | F: (518) 402-9722 www.dec.ny.gov

September 10, 2024

Transmitted via Email

Mr. Pat Evangelista, Director Emergency and Remedial Response Division United States EPA, Region 2 290 Broadway, Floor 19 New York, New York 10007-1866 Evangelista.Pat@epa.gov

RE: Eighteen Mile Creek, Site No. 932156 OU3 Record of Decision - New York State Concurrence

Dear Pat:

The New York State Department of Environmental Conservation (Department) has reviewed the Record of Decision (dated September 2024). We understand the remedy selected addresses contaminated sediments in the portion of Eighteen Mile Creek (Creek) beginning from Harwood Street and extending downstream for approximately 5.3 miles, referred to as the sediment transitional area (STA), as well as certain floodplain soil adjacent to the STA, designated as EPA Operable Unit 3 (OU3). The portion of this remedy addressing sediments is an interim remedy, and the portion addressing floodplain soils is a final remedy.

The major components of the selected interim remedy for sediment include the following:

- Excavation of contaminated sediment that exceeds the remedial action level (RAL) of 1 part per million (ppm) for PCBs within the STA followed by backfilling with clean sand and covering with a suitable habitat layer to create conditions for the re-establishment of natural conditions in the Creek.
- Construction of access roads and staging areas in upland areas. Following remediation of the Creek, removal of the access roads and staging areas in accordance with the habitat reconstruction plan.
- Water and air quality monitoring during construction.
- Development of a monitoring plan to track PCB concentrations in surface water and fish tissue.

 Institutional controls in the form of informational devices to limit exposure to PCBs. EPA is relying on existing New York State Department of Health (NYSDOH) fish consumption advisories. NYSDOH periodically reviews fish PCB data to ensure the advisories are up to date and considers whether the fish consumption advisories need modification. Other informational devices could include outreach programs to inform the public to promote knowledge of and voluntary compliance with the fish consumption advisories.

The major components of the selected final remedy for floodplain soil include the following:

- Excavation and off-Site disposal of PCB- and lead-contaminated floodplain soil exceeding the remediation goals adjacent to the STA regardless of the land use designation. Backfill of excavated areas with clean fill material and topsoil.
- Construction of temporary access roads from the remediation areas to the closest public roads and the staging area.
- Implementation of erosion and sediment controls at each remediation area to prevent the migration of floodplain soil to the Creek.
- Water and air quality monitoring during construction.
- Following remediation of the Creek, removal of the access roads and staging areas, and restoration of the impacted areas in accordance with the habitat reconstruction plan.
- Development of a Site Management Plan (SMP) to provide for management of floodplain soil post-construction, including the use of institutional controls to limit future use of the commercial properties and impose restrictions on excavation, and periodic reviews.

During the remedial design, additional sampling of floodplain soil adjacent to the STA will be conducted. Risk evaluations, based on land use designations, will be performed to determine if additional properties or areas require remediation. The selected remedy is a final remedy for addressing floodplain soil in the STA.

In addition, EPA's investigations of groundwater within the OU2 Creek Corridor have not revealed a source of the generally low-level volatile organic compounds (VOCs) concentrations detected in groundwater. As a result, no action will be taken to address Creek Corridor groundwater. The environmental benefits of the selected remedy may be enhanced by employing design technologies and practices that are sustainable.

The remaining areas of the Creek (commencing immediately downstream of the STA to the Creek's discharge at Lake Ontario) that are not addressed by this ROD will be addressed under separate, future action(s). The impoundment areas upstream of Newfane Dam and Burt Dam have historically acted as sinks for contaminated sediment, and, as such, these areas have been identified as potential sources of downstream contamination in the event of a change in the flow regime of the Creek. These remaining areas require additional evaluation to establish a final remedy for the full length of the Creek. This evaluation will identify and address the following:

- data gaps including the nature and extent of contamination within these remaining areas;
- the characteristics of the sediment bed behind the Newfane and Burt dams;
- a study of the impacts from having addressed the source areas;
- an assessment of the fate and transport mechanisms of the remaining contamination in the Creek, including residual soil contamination following excavation of floodplain soil in the STA;
- bathymetry monitoring of sediment to evaluate recovery, accumulation and/or erosion; and
- a long-term monitoring program.

After a comprehensive evaluation of the full length of the Creek is conducted, a final remedy for the entire length of the Creek will be determined. The final remedy will include final remediation goals for contaminated sediment, including the Creek Corridor (OU2) and the STA (OU3), as well as any additional remedial action objectives that are determined necessary, including for additional media such as surface water. In addition, floodplain soil sampling will be conducted downstream of the STA as part of a separate investigation. Separate response actions or a future operable unit(s) would address risks identified in floodplain soil downstream of the STA.

EPA released the Proposed Plan for the cleanup of OU3 to the public for comment on July 19, 2024. EPA also held a public meeting on August 1, 2024 to present the Proposed Plan for OU3 to local officials and interested citizens and to solicit input from the community on the remedial alternatives proposed for OU3. EPA considered all written and oral comments submitted during the public comment period (July 19, 2024 through August 19, 2024), which are documented in the Responsiveness Summary section of the ROD, and determined that no significant changes to the remedy, as originally identified in the Proposed Plan, were necessary or appropriate. With this understanding, we concur with the selected remedy for the Eighteen Mile Creek OU3 Site.

If you have any questions or need additional information, please contact Mr. Steven Moeller at (716) 851-7220.

Sincerely,

Andrew Juglielmi

Andrew O. Guglielmi Director Division of Environmental Remediation

- ec: P. Mannino, USEPA, Region 2 (<u>mannino.pietro@epa.gov</u>) C. O'Leary, USEPA, Region 2 (<u>oleary.christopher@epa.gov</u>) S. Bogardus, NYSDOH (<u>sara.bogardus@health.ny.gov</u>) A. Martin, NYSDOH (<u>angela.martin@health.ny.gov</u>) M. Cruden, NYSDEC (<u>michael.cruden@dec.ny.gov</u>) S. Radon, NYSDEC, Region 9 (<u>stanley.radon@dec.ny.gov</u>)
 - S. Moeller, NYSDEC, Region 9 (<u>steven.moeller@dec.ny.gov</u>)

APPENDIX V

RESPONSIVENESS SUMMARY

INTRODUCTION

This Responsiveness Summary provides a summary of the significant comments and concerns submitted by the public on the U.S. Environmental Protection Agency's (EPA) July 19, 2024 Proposed Plan for the Eighteen Mile Creek Superfund Site (Site), Operable Unit 3 (OU3), and the EPA's responses to those comments and concerns. All comments summarized in this document have been considered in EPA's final decision regarding the selection of the remedy for OU3 at the Site.

SUMMARY OF COMMUNITY RELATIONS ACTIVITIES

On July 19, 2024, EPA released a Proposed Plan for the cleanup of OU3 of the Site to the public for comment, along with a remedial investigation (RI) report, feasibility study (FS) report, human health risk assessment (HHRA) report, and ecological risk assessment. These documents, as well as others that collectively comprise the administrative record for this decision, were made available to the public at the information repositories maintained at the EPA Region 2 Office in New York City, the Lockport Public Library located at 23 East Avenue in Lockport, and Newfane Public Library located at 2761 Maple Avenue, Newfane and online at: www.epa.gov/superfund/eighteenmile-creek.

On July 19, 2024, EPA published a notice in the *Lockport Union-Sun and Journal* informing the public of the commencement of the public comment period for the Proposed Plan, the upcoming public meeting on August 1, 2024, a description of the preferred alternatives, contact information for EPA personnel, and the availability of the above-referenced documents. The public comment period ran from July 19, 2024 to August 19, 2024. EPA held a public meeting on August 1, 2024 at 6:00 P.M. at Newfane Town Hall located at 2737 Main Street, Newfane, New York, to inform officials and interested citizens about the Superfund process, to present the Proposed Plan for OU3 of the Site, including the preferred remedial alternatives, and to respond to questions and comments from the attendees. Responses to the questions and comments received at the public meeting and in writing during the public comment period are included in this Responsiveness Summary.

SUMMARY OF COMMENTS AND RESPONSES

Comments and/or questions were received at the public meeting, and six written comments were received during the comment period from July 19, 2024 to August 19, 2024. Copies of the comment letters are provided in **Attachment A** of this Responsiveness Summary. A summary of significant comments provided at the public meeting and in writing, as well as EPA's responses to them, are provided below.

Comment #1: An individual noted that the regulatory limit for lead is five parts per million (ppm), however, EPA is proposing a higher cleanup level for floodplain soils. The individual asked for an explanation on why EPA is proposing a higher cleanup level for lead.

Response to Comment #1: The regulatory level referenced by the commenter pertains to that used with the Toxicity Characteristic Leaching Procedure (TCLP), a test method used to determine if a waste is hazardous. The TCLP test does not measure the total lead in a sample, but rather the test is designed to simulate what happens to a waste product during leaching in a landfill setting. Leaching occurs when rainwater is filtered through wastes that are deposited in a landfill. When the rainwater liquid meets the buried wastes, it draws out leachate (chemicals and/or other constituents of those wastes). While the TCLP test will be employed during construction to determine how excavated soil and sediment will be disposed at an off-site facility, it is not being used to delineate soil or sediment that must be removed during the cleanup. If the concentration of lead in a TCLP extract for excavated soils is greater than or equal to five ppm, the waste must be managed as hazardous.

As part of the remedial investigation/feasibility study for OU3 of the Site, an assessment of lead exposure was conducted. To support the assessment, and consistent with EPA guidance, sediment and floodplain soil samples were analyzed to measure **total** lead concentrations.

Per EPA Region 2's approach to evaluating lead, sediment and residential soil concentrations were compared with a screening level of 200 ppm, and those concentrations greater than the screening level were identified for further evaluation; non-residential soil concentrations were compared to 800 ppm. The adult lead model was used to predict the maternal blood lead level (BLLs) for adult non-residential exposures, and the Integrated Exposure Uptake Biokinetic model was used to evaluate BLLs for the residential child (seven years and younger). Both models are designed to determine the probability of the BLL exceeding five micrograms per deciliter (μ g/dL) based on the average or mean lead concentration.

The selected remedy identifies the remediation goals for contaminated soil to attain a degree of cleanup that ensures the protection of human health and the environment. The two-tiered remediation goal for lead in soils described is based on the New York State's 6 NYCRR Part 375 Residential Soil Cleanup Objectives and EPA Region 2's lead approach consistent with OLEM Directive 9200.2-167. The remediation goals are also consistent with the 2024 "OLEM Updated Residential Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities."

Comment #2: Representatives from several environment service companies inquired about opportunities for doing business at the Site.

Response to Comment #2: EPA expects to enter into an inter-agency agreement with the U.S. Army Corps of Engineers for the performance of the remedial design for the selected remedy. The Army Corps of Engineers would therefore be responsible for contracting related to the design and

construction of the remedy. For information regarding the contracting process, refer to <u>www.epa.gov/contracts</u>.

Comment #3: A resident noted that a number of people from lower Lockport have died of cancer and residents in the vicinity of the former Flintkote Plant property were informed of measures that should be taken to minimize their exposure to soils on their properties. In addition, the commenter noted that people have been told that eating one fish caught from the Creek could endanger their life because of the contamination.

Response to Comment #3: The OU3 Human Health Risk Assessments (HHRAs) prepared for the site identify certain exposure scenarios that would present unacceptable risks to those that are exposed to specific areas of contaminated soils or consume specific quantities of fish, and that is the basis for EPA taking action to address the sediment and soil contamination in those areas. It should be noted that, based on sampling conducted to date, the soil contamination does not present a risk to visitors to the properties or those living in the vicinity of these properties. EPA has provided homeowners within both OU3 and OU4 the results of soil sampling conducted on their properties. Based on the sampling results, homeowners were provided with recommendations to avoid disturbing the soil to reduce potential exposure before the cleanup could begin. The recommendations are consistent with those provided by other public health agencies regarding how to reduce exposures to lead. For sites with immediate health risks, EPA utilizes its Removal Program, which has the authority to remove hazardous waste in time critical, emergency situations. The concentrations of lead found at the OU4 properties to date have not warranted a time critical removal action by EPA. The construction of the remedy for the first phase of the OU4 remediation, which addresses lead-contaminated soils at certain residential properties in the vicinity of the former Flintkote Property, began in Summer 2024. Soil sampling at additional residential properties, referred to as Phase 2 of OU4, is ongoing. Remediation of OU3 residential properties would commence once the remedial design for the floodplain soils is completed.

Fish consumption advisories, including the advisory for the Eighteen Mile Creek, are issued by the New York State Department of Health (NYSDOH) and updated annually. Information concerning fish consumption advisories is contained in the "Health Advisories" section of the NYSDEC's *New York Freshwater Fishing, Official Regulation Guide*, which is provided when a fishing license is issued. In addition, information concerning the fish consumption advisory can also be found at: <u>https://www.health.ny.gov/environmental/outdoors/fish/health_advisories/</u>. The advisory for Eighteen Mile Creek, upstream of Burt Dam is "DON'T EAT" for all fish.

Comment #4: Individuals inquired if there would be any actions taken north of Burt Dam.

Response to Comment #4: The impoundment areas upstream of Newfane Dam and Burt Dam have historically acted as sinks for contaminated sediment, and as such these areas have been identified as potential sources of downstream contamination in the event of a change in the flow regime of the Creek. These areas require additional evaluation. After a comprehensive evaluation is conducted, EPA will present the findings and a cleanup plan to the public for comment.

Comment #5: A resident inquired about the steps that EPA is taking to locate existing (or defunct) businesses in the area that polluted Eighteen Mile Creek.

Response to Comment #5: EPA has various tools available to evaluate operational and ownership history at properties of potential concern, including the issuance of written requests for information pursuant to Section 104(e) of CERCLA. EPA has used the information received in response to such information requests, in conjunction with data collected as part of investigations and inspections, to inform EPA's decision regarding releases at the Site. To date, no viable potentially responsible parties (PRPs) for the Site have been identified, however the PRP search is on-going.

Comment #6: Several individuals expressed frustration regarding the presence of raw sewage in the Creek. Individuals noted areas from the City of Lockport to Lake Ontario that are prone to this issue during heavy rain events. One individual noted that the metal grate intended to prevent debris from entering the Creek near his property is in disrepair and no longer serves its intended purpose.

Response to Comment #6: The commenters are likely describing combined sewer overflow events. A combined sewer system collects rainwater runoff, domestic sewage, and industrial wastewater into one pipe. Normally, it can transport all the wastewater to a treatment plant. Sometimes during large storm events, the amount of runoff exceeds the capacity of the system. When that happens, untreated stormwater and wastewater flows into nearby waterbodies. Combined sewer overflows are monitored and regulated by the New York State Department of Environmental Conservation (NYSDEC) Division of Water. NYSDEC regulates discharges of wastewater into waterbodies through its State Pollutant Discharge Elimination System (SPDES). The City of Lockport Wastewater Treatment Plant (WWTP) is the only property within the STA that has an active SPDES permit. The primary outfall for the WWTP is located at the upstream limit of the STA. The permit includes a monitoring program for various contaminants including lead, chromium, copper, nickel, zinc, nitrogen, selenium, phosphorus, bromodichloromethane, dibromochloromethane, chloroform, trichloroethylene, and bis(2-ethylhexyl)phthalate. It is EPA's understanding that there have been no exceedances of the limits reported by NYSDEC, indicating that this plant is not a potential source of contamination to Eighteen Mile Creek. Former City of Lockport Mayor Michelle Roman, in attendance at the public meeting, provided some information to those in attendance regarding the City of Lockport's efforts to upgrade the sewage treatment system. In addition, while not related to the OU3 remedy, it is EPA's understanding that Town of Newfane is receiving financing from the Clean Water State Revolving Fund and Water Infrastructure Improvement (WIIA) grant for the planning, design, and construction of wastewater treatment plant process upgrades.

Comment #7: A Newfane Town Planning Board Member, Mr. William Clark, noted the importance of the tourism and fishing economy in Newfane and expressed the need to address pressing environmental issues such as local agricultural runoff and industrial output from local hazardous waste sites.

Response to Comment #7: While agricultural runoff was considered as a migration pathway in the conceptual site model, particularly in Reach 6, the remedial investigation did not reveal the agricultural properties as the source of the primary contaminants of concern for OU3. Active hazardous waste facilities along the Creek, such as the VanDeMark Chemical Company facility, are being managed by NYSDEC pursuant to its authority under the Resource Conservation and Recovery Act Program. For information related to these facilities, contact Steve Moeller at NYSDEC, Division of Environmental Remediation, at <u>steven.moeller@dec.ny.gov</u>.

Comment #8: A commenter noted that waterways such as the Eighteen Mile Creek have a direct effect on the area of concern that the Niagara County Soil and Water Conservation District manages. The commenter suggested that EPA should work closely with the Niagara County Soil and Water Conservation District, New York State, and the Niagara County Health Department.

Response to Comment #8: EPA has and will continue to coordinate with federal, state, and local agencies working on the part of the Eighteen Mile Creek identified as an area of concern for Lake Ontario under the Great Lakes Restoration Initiative.

Comment #9: Several individuals noted their support for the preferred alternative.

Response to Comment #9: Comment noted.

Comment #10: An individual expressed the need for EPA to maintain safe working conditions and the safety of the residents during construction.

Response to Comment #10: Safety is of the utmost importance to EPA. Best management practices will be employed during the performance of the work and a community air monitoring program will be implemented in compliance with the Health and Safety Plan developed for the Site.

Comment #11: A City of Lockport Alderman inquired about the status of sampling plans for residential properties along Plank Road.

Response to Comment #11: Sampling of floodplain soils along Plank Road was conducted as part of the OU3 remedial investigation. The results revealed elevated concentrations of PCBs and lead. This area is targeted for excavation as part of the selected remedy for floodplain soils. As part of the remedial design phase, additional sampling will be conducted to delineate the areas requiring excavation.

Comment #12: Niagara County Legislator Carla Speranza requested clarification regarding the depth of excavation for contaminated sediment under the preferred alternative.

Response to Comment #12: The preferred alternative to address sediment, STA5, includes the excavation of contaminated sediment above the remedial action level of 1 ppm for PCBs. To

achieve this remedial action level, the average depth of excavation is expected to be approximately 1.3 feet. The depth of excavation will be further informed by design sampling, as well as confirmation sampling performed during the implementation of the remedy.

Comment #13: A resident requested a list of addresses that would be cleaned up as part of the selected remedy.

Response to Comment #13: Refer to the figures in the Feasibility Study Report for properties within the STA requiring floodplain soil excavation. The Feasibility Study Report is included in the Administrative Record file for this decision and is available on EPA's webpage (<u>www.epa.gov/superfund/eighteenmile-creek</u>) for the Site. Personal information, including addresses, has been redacted in an effort to maintain the homeowner's privacy.

Comment #14: Several individuals inquired about the soil cleanup at the OU4 residential properties located along Mill Street and in the vicinity of the former Flintkote Plant Property. Information was requested on the following: the contractor performing the work, schedule, and landfill receiving the excavated soil.

Response to Comment #14: While not related to the OU3 remedy, the following responds to this comment. EPA entered into an interagency agreement with the U.S. Army Corps of Engineers for the performance of the remedial action for the OU4 Phase 1 properties. Sevenson Environmental Services, Inc. was subsequently awarded a task order from the U.S. Army Corps of Engineers to perform the work. Pursuant to work plans reviewed and approved by the U.S. Army Corps of Engineers and EPA, excavated soil is directly loaded onto trucks for off-Site disposal. CWM Chemical Services, LLC, Model City, in Niagara County, New York has been approved to receive excavated soil from the Site. Additional landfills may be approved in the future. Construction activities began in August 2024 and the excavation of contaminated soil is expected to begin in September. It is anticipated that the that it could take up to 2 to 3 years to complete the cleanup at the Phase 1 properties.

Comment #15: Several individuals inquired about the air monitoring that will be performed. Information was requested on the following: who is collecting the data, whether the data will be shared with the public, and who to contact with further concerns or questions.

Response to Comment #15: During the implementation of OU1, OU2, and OU4, EPA's contractor, Sevenson Environmental Services, Inc., will be conducting air monitoring pursuant to a community air monitoring plan reviewed by the EPA, USACE, and NYSDEC. EPA expects to periodically post a summary of the air monitoring data collected during periods of active construction for OU1, OU2, and OU3 on its webpage for the Site at <u>www.epa.gov/</u> <u>superfund/eighteenmile-creek</u>. To maintain the privacy of the residential property owners at OU4, air monitoring data collected during remedial activities will be provided to the homeowner upon request. Any additional questions should be directed to EPA's remedial project manager, Christopher O'Leary at <u>oleary.christopher@epa.gov</u>.

Comment #16: A homeowner of a residential property sampled as part of Phase 2 of OU4 asked if there will be a meeting to discuss Operable Unit 4.

Response to Comment #16: While not related to the OU3 remedy, EPA has the following response to this comment. EPA continues to sample residential properties as part of Phase 2 and will follow a process similar to that used during Phase 1. EPA will provide each property owner with a copy and explanation of the results for their property. If EPA determines a soil cleanup on the property is warranted, next steps will be discussed with the property owner, and an in-person meeting will be held prior to the start of any clean up.

APPENDIX V

RESPONSIVENESS SUMMARY ATTACHMENT A

LETTERS SUBMITTED DURING THE PUBLIC COMMENT PERIOD

From:	Doug Nicholson
То:	O"Leary, Christopher
Subject:	18 Mile Creek, Lockport
Date:	Wednesday, August 7, 2024 7:34:43 AM

Dear Mr. O'Leary

Concerning our contamination in Lockport, can you list the address's of the mitigation of soil? Also, are there plans to clear/ dredge 18 mile creek at the area of Plank and Stone road below Gooding Street? Thank you for your time. Doug Nicholson

Hello,

I provided verbal comments during the public meeting on August 1, and some of that is included here.

The proposed preferred alternative plan for OU3 of the 18-Mile Creek Superfund site is the best option presented and should be completed for the health and safety of any future residents of the area. EPA understands the importance of limiting the spread of PCBs, their continued harm to the Great Lakes, and the most effective procedure for reducing their risk. My interest is the process surrounding the remediation.

OU3 primarily follows the length of 18-mile creek for 5.3 miles through the Town of Lockport and into the Town of Newfane. These waterways also have a direct effect on the AOC that Niagara SWCD is managing. These two organizations should be working more closely together, especially so that the general public is able to better understand the process of remediation across multiple scales and different BUI. Additionally, NYS has provided new septic system replacement funds to each county through their Health Departments. Niagara Health Department will be installing new septic systems for people living within 250 feet of priority waterways, including 18-mile creek. Their input as well as other members of the Niagara Health Department should be sought out on the proposed remediation as well as timelines shared.

Outside of OU3, remediation is also including a section of residential work with OU4. There has been close communication between EPA/Army Corps and the residents living there, which is an important part of the process. However, in order to maintain safe working conditions and safety for the residents there will be air quality monitors on site that will not be publicly viewable until after the process is complete. EPA maintains a robust AirNow mapping website to allow for the public to view up to date air quality information. Because the remediation has been contracted out to a third party, they do not have the ability to post this information currently. Looking forward to OU3 and other remediation in the area, air quality data should be accessible at the time of work to anyone. There are people that work/drive/visit the area where remediation is occurring that may not have the knowledge shared with residents, and they deserve to be able to check air levels to make their own decisions about being present in the area.

Josh Randall

(He/Him)

Natural Resources Educator

Cornell Cooperative Extension

Niagara County

Cornell Cooperative Extension is an equal opportunity, affirmative action educator and employer

•

From:	Allen Bullock
To:	<u>O"Leary, Christopher</u>
Subject:	Comments on proposed clean up options for 18 Mile Creek and information on in-situ treatment and capping considerations for PCB impacted sediment
Date:	Friday, August 16, 2024 9:11:44 AM
Attachments:	image001.jpg
	TDS AquaGate+ PAC.pdf
	AquaBlok General Brochure - New Web version.pdf

Hi Christopher,

I have had a chance to review the proposed remedies on your website and would like to submit the following information for consideration:

Please find the attached material that may be of interest to you and your team, that provides information on In-situ treatment and engineered reactive capping to address lower PCB concentration areas. Both have proven performance (mitigating PCB concerns), would minimize environmental impact (vs. dredging) and help maintain the integrity of cultural resources in ecologically sensitive areas.

The first (MD PCB Site) utilized AquaGate+ PAC as an in-situ remedy to address PCBs in lower impact/concentration areas throughout the site. The Year 1 Monitoring Data is also summarized in the document and revealed significant reductions in 28 Day Bioaccumulation (> 85%) and In Situ Porewater (>90%), which you indicated were primary drivers as you consider/select your final remedy for this site. Data from the 1-year review (along with several other recent projects/pilot studies) has consistently shown that benthic mixing begins almost immediately upon amendment placement and often within 30 days, there is already substantial reduction in pore water concentrations and overall recovery.

There is another project (EPA Region 5 - Thomson Reservoir) currently beginning construction for a 69-acre area where AquaGate+PAC will be used to mitigate PCB concerns through in-situ treatment:

https://www.pca.state.mn.us/news-and-stories/mpca-releases-assessment-of-thomsonreservoir-project-in-st-louis-river-area-of-concern.

https://www.epa.gov/newsreleases/epa-announces-22-million-help-restore-st-louis-riverminnesota

This in-situ treatment remedy was again selected over dredging after considering previous successful applications where PCB concentrations were significantly reduced with minimal environmental/ecological impact.

I hope you find this information helpful and would be more than happy to arrange a call/brief presentation to provide more details on these projects as well as others that may be of interest.

Thank you once again for your time and consideration.

Best regards,

From:	Gregg LaForce
То:	<u>O"Leary, Christopher</u>
Subject:	Eighteen Mile Creek Superfund Site
Date:	Monday, July 22, 2024 12:00:34 PM
Attachments:	Outlook-A picture .png
	Outlook-fi2gb5a2
	Outlook-tffkui05

Chris,

I hope you are doing well.

I saw the recent press release that the public comment period has opened for this superfund site with a public hearing on August 1st.

Other than the NYSDEC, are you partnering with another environmental consulting firm for the remediation and cleanup phases of this site? I have already reviewed some of the public documentations.

I represent one of the largest independent environmental laboratory networks in the world and have facilities in NY including a full-service lab in Rochester that would gladly be willing to assist you for any testing requirements you may need for this site.

Gregg LaForce Technical Sales Representative New York Region

Hi Christopher,

It's Thomas Tedesco from the Lockport Union-Sun & Journal. It was nice meeting you last night at the meeting in Newfane, NY.

Just wanted to follow up with you here. You can send me the presentation that you gave on the project last night at your earliest convenience.

I'll let you know if I have any questions or need anything further!

Thanks, Thomas

Thomas Tedesco

From:	
То:	O"Leary, Christopher
Cc:	Basile, Michael
Subject:	Sample results for 4410 purdy rd Lkpt.
Date:	Friday, August 9, 2024 5:58:02 PM

Hi Chris,

As recently discussed at the meeting on 8/1/24 in Newfane ny, I am just emailing you as a reminder to collect my results of your sampling at my property located at Lockport ny 14094.

Thank-you!

Kevin Drake.

APPENDIX V

RESPONSIVENESS SUMMARY ATTACHMENT B

PROPOSED PLAN

Superfund Proposed Plan

U.S. Environmental Protection Agency, Region 2

Eighteen Mile Creek Superfund Site Operable Unit 3 Niagara County, New York

July 19, 2024

EPA ANNOUNCES PROPOSED PLAN

This Proposed Plan identifies the remedial alternatives considered to address contaminated sediment and floodplain soil in a discrete portion of the Eighteen Mile Creek Superfund site (Site) referred to herein as Operable Unit 3 (OU3), and also identifies its preferred remedial alternative with the rationale for this preference. OU3 is comprised of the portion of the Eighteen Mile Creek (Creek) beginning from Harwood Street and extending downstream for approximately 5.3 miles, referred to herein as the sediment transitional area (STA), as well as certain floodplain soil adjacent to the STA¹. In September 2016, EPA issued a Record of Decision (ROD) for OU2 at the Site in which it selected a remedy addressing soil and sediment in the Creek Corridor, which is the approximately 4,000-foot-long segment of the Creek that extends from the New York State Barge Canal (Canal) to Harwood Street in the City of Lockport. Refer to the Scope and Role Section on the next page for details regarding that ROD, referred to as the OU2 ROD. The STA is the portion of the Creek commencing immediately downstream of OU2. A Site location map is provided as Figure 1.

This Proposed Plan was developed by the U.S. Environmental Protection Agency (EPA), the lead agency, in consultation with the New York State Department of Environmental Conservation (NYSDEC), the support agency. EPA is issuing this Proposed Plan as part of its public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, also known as Superfund), as amended, and Section 300.430(f) and 300.435(c) of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The nature and extent of contamination at OU3 of

the Site and the remedial alternatives summarized in this Proposed Plan are more fully described in the Remedial Investigation (RI) Report, dated February 2022, and the Feasibility Study (FS) Report, dated January 2023, as well as other documents in the Administrative Record file for this decision. EPA encourages the public to review these documents to gain a more comprehensive understanding of the Site, the Superfund activities that have been conducted, the remedial alternatives that have been considered, and the remedial alternative that is being proposed.

The purpose of this Proposed Plan is to inform the public of EPA's preferred alternative and to solicit public comments pertaining to all of the remedial alternatives evaluated, including the preferred alternative. The preferred alternative for the contaminated sediment, referred to as Alternative STA5, includes the following: excavation and off-Site disposal of contaminated sediment, placing clean backfill over disturbed areas, long-term monitoring and institutional controls, such as existing fish consumption advisories. The preferred alternative for floodplain soil at properties adjacent to the STA, referred to as Soil3, includes the excavation and off-Site disposal of lead and polychlorinated biphenyl (PCB) contaminated floodplain soil at 17 discrete areas encompassing approximately 11 acres. During the pre-design investigation, sampling of additional floodplain soil would be performed at properties adjacent to the STA, including properties that have not yet been sampled, and separate risk evaluations would be conducted for each of these areas. The FS includes estimates that this sampling and the separate risk evaluations could reveal up to an additional 11 acres requiring remediation.

In addition, investigations of groundwater at the Site focused on the sources of contamination within the Creek Corridor (OU2) since groundwater predominantly flows

Reaches 9, 8, 7, and the upper portion of Reach 6. The station number refers to the length of the centerline of the Creek starting from the headwaters at the Canal. The downstream extent of the STA was determined based on an assessment of the mixing and depositional zone downstream of the confluence between the East Branch and the Creek. Portions of the Creek downstream of OU3 will be addressed in a future operable unit(s).

¹ Although EPA's OU3 investigation of the Creek initially included the full length of the Creek downstream of Harwood Street (Reaches 9 through 1), and adjacent floodplains to this portion of the Creek, EPA has redefined OU3 to consist of the Creek (bank to bank) starting at the downstream end of OU2 (beginning of Reach 9) and extending approximately 3,800 feet downstream of the convergence with the East Branch in Reach 6 at Station 312+93, and adjacent floodplains. The STA extends for approximately 5.3 miles (28,000 ft) and includes

toward the Creek. Studies initiated by NYSDEC in 1999 revealed generally low-level concentrations of volatile organic compounds (VOCs) in groundwater. As part of EPA's investigation of groundwater at properties along the Creek Corridor, additional groundwater monitoring wells were installed, and sampling revealed results consistent with NYSDEC's investigation. Refer to the *Results of EPA's Groundwater Investigation* section below for more details regarding the contaminant concentrations detected. For the reasons discussed on Page 7, EPA is recommending that no action is necessary to address groundwater within the Creek Corridor at the Site.

The proposed alternatives described in this Proposed Plan to address the sediment and soil contamination are the preferred alternatives for OU3 of the Site. Changes to the preferred alternative, or a change from the preferred alternative to another remedial alternative described in this Proposed Plan, may be made if public comments or additional data indicate that such a change will result in a more appropriate remedial action. The final decision regarding the selection of a remedy will be made after EPA has taken into consideration all public comments. For this reason, EPA is soliciting public comments on all of the alternatives considered in the Proposed Plan and on the detailed analysis section of the FS Report because EPA may, after consideration of comments, select an alternative other than the preferred alternative.

MARK YOUR CALENDAR

PUBLIC COMMENT PERIOD:

July 19, 2024 to August 19, 2024

EPA will accept written comments on the Proposed Plan during the public comment period.

PUBLIC MEETING:

August 1, 2024 at 6:00 pm

EPA will hold a public meeting to explain the Proposed Plan. Oral and written comments will be accepted at the meeting. The meeting will be held at Newfane Town Hall located at 2737 Main Street, Newfane, NY 14108.

COMMUNITY ROLE IN SELECTION PROCESS

EPA relies on public input to ensure the concerns of the community are considered in selecting an effective remedy for each Superfund site. To this end, this Proposed Plan has been made available to the public for a public comment period which begins on July 19, 2024 and concludes on August 19, 2024.

A public meeting will be held on August 1, 2024 at Newfane Town Hall located at 2737 Main Street, Newfane, New York at 6:00 p.m. to present the conclusions of the RI/FS, elaborate further on the reasons for recommending the preferred alternative, and receive public comments (see the "Mark Your Calendar" box above).

Comments received at the public meeting, as well as written comments received during the public comment period, will be documented in a Responsiveness Summary that will be a portion of a Record of Decision (OU3 ROD), the document that will memorialize the selection of a remedy for this OU3. Written comments on the Proposed Plan should be addressed to:

> Christopher O'Leary Remedial Project Manager Western New York Remediation Section U.S. Environmental Protection Agency 290 Broadway – 19th Floor New York, New York 10007-1866 Telephone: (212) 637-4378 Email: <u>oleary.christopher@epa.gov</u>

PUBLIC INFORMATION REPOSITORIES

Copies of the Proposed Plan and supporting documentation are available at the following information repositories.

> Lockport Public Library 23 East Avenue Lockport, New York 14094 Telephone: (716) 433-5935

> Newfane Public Library 2761 Maple Avenue Newfane, New York 14108 Telephone: (716) 778-9344

USEPA – Region II

Superfund Records Center 290 Broadway, 18th Floor New York, New York 10007-1866 Telephone: (212) 637-4308 Hours: Monday – Friday: 9 AM to 5 PM

EPA's website for the Eighteen Mile Creek Superfund Site: www.epa.gov/superfund/eighteenmile-creek

SCOPE AND ROLE OF ACTION

Site remediation activities are sometimes separated into different phases, or Operable Units (OUs), so that remediation of different aspects of a site can proceed separately, resulting in a more efficient and expeditious cleanup of the entire site. EPA is addressing the Eighteen Mile Creek Site in multiple OUs.

OU1 addressed the risks associated with the residential soil contamination at nine residential properties located on Water Street and the threats posed from the deteriorating Flintkote Plant building. On September 30, 2013, EPA selected a final cleanup plan for OU1 (OU1 ROD). As part of EPA's selected remedy for OU1, residents on Water Street were permanently relocated from their homes because of the presence of PCBcontaminated soils in residential yards and the likelihood of recontamination based on recurring flooding of the properties with PCB contaminated water and sediments from the Creek, given their properties' location within the Creek's floodplain. It was determined that the OU1 soil excavation work would be performed at the time of the cleanup of the OU2 sediments to prevent the Creek from re-contaminating the above-referenced residential properties subsequent to their cleanup. Following the relocations, the structures at the OU1 properties were demolished. The buildings at the Flintkote property were also demolished.

On January 19, 2017, EPA selected the OU2 remedy, which addressed the contaminated soil at the following properties adjacent to the Creek: the former Flintkote Plant property (Flintkote), Upson Park, the White Transportation property, and the former United Paperboard Company property. The remedy set forth in the OU2 ROD also addressed contaminated sediment within the Creek Corridor. An overview of the Creek Corridor is included in Figure 2. As discussed further below, the highest levels of PCB contamination in sediments, and the presence of PCBs on adjacent properties, occurs within the Creek Corridor, which is why this portion of the Creek is being addressed first. The cleanup plan for OU2 includes bank-to-bank excavation of sediment in the Creek Corridor and a combination of soil excavation and capping at the upland properties. This remedy is currently in the remedial action phase and construction is scheduled to begin in Summer 2024.

OU3 is the subject of this Proposed Plan and is comprised of sediments within a portion of the Creek, referred to as the STA. The STA is a subset area of the full length of the Creek comprising the portion of the Creek beginning from Harwood Street and extending downstream for approximately 5.3 miles (upper portion of Reach 6 through Reach 9; see Figure 2). Floodplain soils impacted by the Creek adjacent to the STA are also included within this OU. Evaluations conducted during EPA's investigation of OU3 revealed that the STA contains approximately 21% of the overall mass of PCBs in the Creek, as well as the highest contaminant concentration in the sediment downstream of OU2. The sediment in this area is erodible during major flow events or other disturbances to the sediment, and it is considered a source of contamination downstream. The downstream cutoff point for this area, approximately 3,800 feet downstream of the convergence with the East Branch (Station 312+93), was based on an assessment of the mixing and settlement zone downstream of the convergence of the Creek and the East Branch. Based on this assessment, the area downstream of the STA is bevond the influence of the East Branch flow, including the resettling of sediment onto the Creek bed that was resuspended. This Proposed Plan describes the remedial alternatives considered for an interim remedy to address the sediments within the STA and a final remedy to address floodplain soils impacted by the Creek adjacent to the STA. The RI included an investigation of the nature and extent of groundwater contamination within the Creek Corridor; a decision related to Creek Corridor groundwater will be included in the OU3 ROD.

OU4 addresses lead-contaminated soils at certain residential properties in the vicinity of the former Flintkote Property. EPA selected a cleanup plan for OU4 (in the OU4 ROD) in 2019, which calls for the excavation and off-Site disposal of lead-contaminated soils found to be located at the residential properties. The remedy for the first phase of the OU4 remediation includes 33 residential properties, and construction is scheduled to begin in Summer 2024. Soil sampling at additional residential properties, referred to as Phase 2 of OU4, is ongoing.

Future Operable Unit(s)

The remaining areas of the Creek (commencing immediately downstream of the STA to the Creek's discharge at Lake Ontario) that are not addressed by this Proposed Plan would be addressed under separate, future action(s). The impoundment areas upstream of Newfane Dam and Burt Dam have historically acted as sinks for contaminated sediment, and as such these areas have been identified as potential pockets of downstream contamination in the event of a change in the flow regime of the Creek. Figure 3 depicts the location of these two dams. These remaining areas require additional evaluation to establish a final remedy for the full length of the Creek. This evaluation will identify and address the following:

• data gaps including the nature and extent of contamination within these remaining areas;

- the characteristics of the sediment bed behind the Newfane and Burt dams;
- a study of the impacts from having addressed the source areas;
- an assessment of the fate and transport mechanisms of the remaining contamination in the Creek, including residual soil contamination following excavation of floodplain soil in the STA;
- bathymetry monitoring of sediment to evaluate recovery, accumulation and/or erosion; and
- a long-term monitoring program.

After a comprehensive evaluation of the full length of the Creek is conducted, a final remedy for the entire length of the Creek will be established. The final remedy would include final remediation goals for contaminated sediment, including the Creek Corridor (OU2) and the STA (OU3) as well as any additional remedial action objectives that are determined necessary, including remedial action objectives for additional media such as surface water. In addition, floodplain soil sampling will be conducted downstream of the STA as part of a separate investigation. Separate response actions or a future operable unit(s) would address risks identified in floodplain soil downstream of the STA.

SITE BACKGROUND

The Site is located in Niagara County, New York. The main channel of the Creek originates just south of the Canal and flows north for approximately 15 miles until it discharges to Lake Ontario in Olcott, New York. The Eighteen Mile Creek watershed includes the two main tributaries: East Branch of Eighteen Mile Creek and Gulf Creek.

The Creek Corridor has a long history of industrial use dating back to the 19th century when it was used as a source of hydropower. Various industrial plants operated at properties within the Creek Corridor, including the former United Paperboard Company, the White Transportation Company, the former Flintkote Company, and various operations at Upson Park. Damaged drums, ash, slag material, and contaminated fill material have been observed at these properties. Aerial photographs also suggest that by 1938, fill was disposed in the section of 300 Mill Street between the Creek and the Millrace, which is a small segment of the Creek that splits and flows around an area of soil and fill on the Flintkote property, known as the Island.

Downstream of Harwood Street, Eighteen Mile Creek drops down the Niagara Escarpment and passes through approximately 12 miles of rural Niagara County. Land use within this portion of the Creek watershed consists primarily of cropland and orchards, with residential, commercial, and small industrial areas located closer to the city of Lockport and further downstream around Newfane. Several other industrial facilities are located along Eighteen Mile Creek, including the City of Lockport Wastewater Treatment Plant, VanChlor Inc., Twin Lakes Chemical, and Van De Mark Chemical.

Several dams were constructed to provide power near Newfane, two of which remain today. Newfane Dam was originally built in the 1830s near the end of McKee Street and Ewings Road to provide power for the Newfane mill district; the current dam was built in 1912 and is not in service. Burt Dam was built farther north of Newfane in 1924, creating a 95-acre impoundment that extends approximately two miles upstream of the dam. The original dam generated power until the 1950s. It was restored in 1988 and still operates.

To date, EPA has not identified any viable potentially responsible parties at the Site. As a result, EPA elected to investigate the Site using federal funds.

According to EPA's EJScreen: Environmental Justice Screening and Mapping Tool (www.epa.gov/ejscreen), there are no demographic indicators for communities on each side of the Creek along OU3 of the Site that would indicate a community with environmental justice concerns. However, an EJScreen analysis of the local community upstream of OU3, including the area encompassing OU1, OU2 and OU4, found that this area exceeded the 80th percentile relative to the rest of New York State for air toxics cancer risk and lead-based paint. The Air Toxics Cancer Risk results are based upon lifetime cancer risk from inhalation of air toxics, as risk per lifetime per million people. The proposed remedy is not anticipated to result in adverse impacts to environmental resources that would affect the populations living within the vicinity of the Site. During the design, a community health and safety plan would be developed to evaluate risks to surrounding communities and to adopt practices to mitigate these shortterm risks. Risks that would be evaluated include those associated with potentially increased levels of traffic, the potential for air emissions, issues associated with the transportation of contaminated materials, and potential issues associated with noise and lighting.

SUMMARY OF PREVIOUS INVESTIGATIONS

Creek Corridor:

Beginning in 1999, NYSDEC conducted several investigations at the Site related to the Creek Corridor. NYSDEC investigations of the former United Paperboard Company property, Upson Park, and the White Transportation property documented the presence of fill material on these properties, with surface and subsurface soil and fill contaminated with PCBs, metals, and semivolatile organic compounds (SVOCs). The erosion and runoff of contaminated fill material from properties adjacent to the Creek appears to be the primary mechanism for transport of contamination to the Creek. PCBs and lead concentrations in soil at these properties are as high as 630 parts per million (ppm) and 77,300 ppm, respectively. Sediment samples collected in the Creek Corridor and the millrace revealed concentrations of PCBs and lead up to 25,400 ppm and 15,000 ppm, respectively. The turbine at the Flintkote property is also believed to be a source of PCBs contamination in the Creek. As mentioned in the Scope and Role section of this Proposed Plan, EPA selected the OU2 remedy to address soil and sediment contamination in the Creek Corridor in 2017. The remedial design that provides the detailed specifications for the performance of that remedy has been completed, and construction activities for this work are anticipated to begin this summer.

<u>Sediment:</u>

Several studies were completed under projects funded by EPA Region 2, the EPA Great Lakes Legacy Act (GLLA), and the EPA Great Lakes Restoration Initiative (GLRI). EPA's Great Lakes National Program Office (GLNPO) has identified part of the Eighteen Mile Creek as an area of concern (AOC) for Lake Ontario as part of its GLRI because of its sediment contamination and poor water quality. In March 2015, a report summarizing data collected for the characterization of the AOC under the GLLA program was prepared for the EPA's GLNPO. The RI report included sediment data collected under investigations performed by various agencies from Olcott Harbor (mouth of the Creek) upstream through the city of Lockport to the Canal and including the Creek Corridor. The results of the RI are presented in the 2015 report entitled "Final Remedial Investigation Report, Eighteen Mile Creek, Remedial Investigation/Feasibility Study".

Surface Water:

While surface water in the Creek has not been extensively sampled as part of previous sediment investigations, water quality has been evaluated as part of regional studies conducted by EPA and NYSDEC. Historical samples collected to measure concentrations of PCBs, mercury, and dioxins/furans were obtained in 1993 and 1994 as part of a NYSDEC study to track contaminants to Lake Ontario. Results of this study are presented in a report entitled, "*Trackdown of Chemical Contaminants to Lake Ontario from New York State Tributaries*".

GLNPO conducted semiannual monitoring of the surface water discharge from Eighteen Mile Creek and several

other tributaries from 2002 to 2010. Results from these monitoring events are presented in the 2011 report entitled, *"Field Data Report, Lake Ontario Tributaries"*.

The data indicate that Eighteen Mile Creek had the highest PCB concentrations $(0.043 - 0.093 \text{ micrograms/liter} (\mu g/L))$ in surface water compared to other major tributaries to Lake Ontario.

Bioaccumulation:

The U.S. Army Corps of Engineers performed two studies in 2003 that focused on bioaccumulation and food web modeling that established a significant bioaccumulation potential for PCBs in fish tissue by collecting sediment and fish samples in the Creek. The earliest studies focused on the area downstream of Burt Dam, and more recent investigations included collecting sediment and fish tissue data from upstream of Burt Dam and Newfane Dam. In part, the studies found that PCBs were highly bioavailable and predicted to cause wildlife bioaccumulation risks. Results from these studies are presented in the following 2004 reports: "Volume I (Project Report Overview): Sediment Sampling, Biological Analyses, and Chemical Analyses for Eighteenmile Creek", "Volume II: Laboratory Reports Sediment Sampling, Biological Analyses, and Chemical Analyses for Eighteenmile Creek AOC", and "Final Bioaccumulation Modeling and Ecological Risk Assessment, Eighteenmile Creek Great Lakes Area of Concern".

For the Niagara County Soil and Water Conservation District, several studies were completed to evaluate beneficial use impairments in the Eighteen Mile Creek AOC. A study was performed in 2006 to evaluate whether PCBs and metals continued to migrate from upstream source areas and to identify other potential sources of contamination. Another investigation was conducted in 2007 downstream of Burt Dam to determine (a) whether the Eighteen Mile Creek AOC was impaired based upon the existence of fish tumors and other deformities, (b) the status of fish and wildlife populations, and (c) the status of any bird or mammal deformities or reproductive impairment. Finally, baseline benthic community and fish sampling and a pilot study on the use of powdered activated carbon to reduce PCB bioavailability in Eighteen Mile Creek sediment were completed in 2012.

More recent studies assessing beneficial use impairments in the Eighteen Mile Creek AOC are also included in the Administrative Record file.

New York State Department of Health (NYSDOH) has also monitored fish populations in the Creek, and there is currently a fish consumption advisory for the entire Eighteen Mile Creek issued by NYSDOH because of the presence of PCBs. For more information regarding the advisory, please refer to the following website: <u>https://www.health.ny.gov/environmental/outdoors/fish/</u><u>health_advisories/by_county.htm?county=niagara</u>

All reports referenced in this Proposed Plan can be found in the Administrative Record file for this action.

RESULTS OF EPA'S OU3 REMEDIAL INVESTIGATION

In 2018, EPA initiated a separate investigation of sediments, surface water, biota, and floodplain soil along the Creek. Groundwater within the Creek Corridor was further investigated as part of EPA's investigations in an effort to define the nature and extent of the groundwater contamination and locate the source(s) of the low-level concentrations detected during previous studies.

Consistent with previous investigations, the Creek was divided into smaller investigation areas, or reaches, based on the following physical characteristics (see Figure 2):

- **Reach 1** consists of the Creek channel from Burt Dam to the mouth of the Creek in Olcott Harbor where the Creek discharges into Lake Ontario.
- **Reach 2** consists of the impoundment immediately upstream of Burt Dam.
- **Reach 3** is the historical channel that was flooded after the Burt Dam was installed.
- **Reach 4** is the section of the Creek located immediately downstream of Newfane Dam.
- **Reach 5** consists of the impoundment immediately upstream of Newfane Dam.
- **Reach 6** extends from the upstream end of the Newfane Dam impoundment to the confluence of the main channel and the East Branch.
- **Reach 7** runs from the confluence of the main channel and the East Branch to the downstream portion of the Niagara Escarpment.
- **Reach 8** is a 2,000-foot-long section of the Creek that cascades down the steep gradient of the Niagara Escarpment.
- **Reach 9** is an approximately 1,000-foot-long section of the Creek immediately downstream of OU2.

The following provides an overview of the sampling conducted by EPA in the Creek over multiple phases.

Phase IA, conducted from May to June 2018, included surface water, floodplain soil, and soil sampling of agricultural areas that were irrigated with Creek water. Bathymetric surveys and light detection and ranging (LiDAR) surveys were also conducted. Five groundwater monitoring wells were installed on the west side of the Creek Corridor.

Phase IB, conducted from October to November 2018, included surface water sampling. Game and forage fish from the Creek were collected, and tissue samples were analyzed. Groundwater sampling was conducted from monitoring wells installed in Spring 2018 as well as existing wells in the Creek Corridor.

Phase IIA, conducted in July 2019, included surface water sampling targeting high-flow events and floodplain soil.

Phase III, conducted from October to November 2020, included the following: surface water sampling targeting high-flow and low-flow events; a filtration study to examine the relationship between particle size and PCB concentrations in surface water; floodplain soil sampling; surface sediment sampling; sediment core collection and analysis; additional bathymetric surveys; and young-of-year² fish sampling.

The results indicate that chemical contamination of the sediment in the Creek generally decreases in concentration moving downstream (the Reach numbers descend from Reach 9 to Reach 1 as they flow downstream to Lake Ontario). For Reaches 1 through 9, the highest concentrations of PCBs were detected in Reaches 6 and 7 where a significant portion of the contaminated sediment has settled. A maximum PCB concentration at 97 ppm was detected in Reach 7. Elevated concentrations of PCBs and lead are found in shallow and deeper sediments behind Burt Dam and Newfane Dam. Lead concentrations ranged from 3.8 ppm in Reach 5 to a maximum concentration of 6,760 ppm in Reach 2. The higher concentrations in the sediment at depth behind the dams indicate that the major contributions of PCBs and lead were from historical sources. However, high concentrations of PCBs in both the total and dissolved phases of surface water indicate that PCBs in the shallow sediments of Reaches 6 and 7 are being transported and deposited downstream by sediment resuspension and resettling.

Floodplain soil sampling in areas prone to flooding revealed maximum PCB and lead concentrations of 26 ppm and 2,630 ppm, respectively. The higher concentrations for both PCBs and lead were primarily on properties within Reach 7. Areas with steeper banks were not impacted by deposition of contaminated sediment. Soil sampling

 $^{^2}$ "Young-of-year" refers to all the fish species that are younger than one year of age.

conducted in nearby areas irrigated with water from the Creek did not reveal PCB detections.

Surface water was analyzed over three years under a range of flow conditions. Additional studies designed to understand contaminant sources and migration pathways included passive sampler and filtration studies. While PCBs were consistently detected in both the whole-water and field-filtered samples, based on the absolute magnitude of total PCB concentration in whole-water samples compared to the total PCB concentration in the field-filtered samples, suspended solids contribute the largest load of PCBs into the water column. For example, total PCB concentrations ranged from 20 to 160 ng/L for whole-water samples collected from 2018 to 2020, whereas the corresponding field-filtered samples, where suspended solids were removed, had reported total PCB concentration of less than 7 ng/L. Lead was consistently detected in the total phase in all reaches of the Creek at concentrations that exceed background levels. Lead was not consistently found in the dissolved phase. Lead concentrations in Reaches 1 to 7 are comparable to the concentration in the OU2 source area. Except for the lead concentrations collected during very high flows, resuspension of the contaminated sediment does not appear to be a mechanism to transport lead in the water column. Metals in surface water are not a significant contaminant source or migration pathway. In addition, other contaminants such as polycyclic aromatic hydrocarbons also are not a significant contaminant source or migration pathway in surface water.

The uptake of PCBs from sediment and surface water has resulted in elevated concentrations of PCBs in fish tissue and biota. Sampling of game fish including largemouth bass, northern pike, and walleye revealed PCB concentrations ranging from 0.26 ppm to 27 ppm. Sampling of forage fish including pumpkinseed fish, common shiner, and rock bass revealed maximum PCB and lead concentrations of 8.5 ppm and 8.3 ppm, respectively. Mercury detections in the fish from the Creek are generally low.

RESULTS OF EPA'S GROUNDWATER INVESTIGATION IN THE CREEK CORRIDOR

The most recent groundwater sampling conducted in 2018 and 2019 generally showed low level concentrations of VOCs, including trichloroethylene (TCE), with some exceedances of federal maximum contaminant levels (MCLs) and state standards in some monitoring wells. For example, in 2019, the highest concentration of TCE was detected in well MW-14, at a concentration of 11 μ g/L, compared to the federal MCL and state standard of 5 μ g/L. This represents a decline from 2007, when TCE was detected in MW-14 at a concentration of 20 μ g/L.

The results also show fluctuating concentrations in TCE daughter products (cis-1, 2-dichloroethylene, trans-1, 2dichloroethylene, and vinyl chloride), with higher concentrations of the daughter products occurring downgradient of the TCE detections. For example, at MW-5 cis-1, 2-dichloroethylene was detected at a concentration of 8.4 µg/L in 2019, compared to the federal MCL and state standard of 70 µg/L and 5 µg/L, respectively. This represents a decline from 2007. Historically, TCE has not been detected in MW-5. Trend analyses including historical data collected by NYSDEC beginning in 2007 show an ongoing reduction in concentrations of chlorinated VOCs. Based on the groundwater investigation conducted within the Creek Corridor, no historical or active source of VOCs has been identified, and groundwater is not expected to be a significant source of groundwater contamination to the Creek. Furthermore, the City of Lockport is the provider of potable water to residents within the Creek Corridor and surface water from the east branch of the Niagara River is its primary source.

The groundwater investigation within the Creek Corridor identified a limited area of contamination with no historical or active source of VOCs and evidence of on-going natural attenuation of the contaminants in the groundwater. Since groundwater is not expected to be a significant source of contamination to the Creek, it was determined that groundwater in the Creek Corridor would not be addressed further as part of the FS.

CONTAMINANT FATE AND TRANSPORT

The main transport method of contaminated material in the Creek is through sediment movement in the surface water with deposition in sediment beds and on floodplains. This sediment transport has been identified to occur through the following two processes: (1) transport of fine-grained sediment through resuspension of fine sediment in the water column, with the suspended fine sediments being transported downstream, and the settling of suspended sediments in quiescent conditions; and (2) movement of sand as bed load and resettlement.

The transport of contaminants throughout the Creek is influenced by the geology, hydrology, and geomorphology of the surrounding area along with the presence of wetlands, structures, and obstructions in the Creek.

An analysis of sediment erosion and deposition and contaminant movement at the Site revealed the following:

• Upstream sources of PCBs in OU2 likely contribute to PCB concentrations in surface water

and sediment in the STA and further downstream; and

• High flows or other disturbances can mobilize the elevated concentrations of PCBs in Reaches 7 and 6 and redistribute them downstream.

PRINCIPAL THREAT WASTE

The NCP establishes an expectation that EPA will use treatment to address the principal threats posed by a Site practicable wherever (NCP Section 300.430(a)(1)(iii)(A)). The "principal threat" concept is applied to the characterization of "source materials" at a Superfund site. Source material includes or contains hazardous substances, pollutants, or contaminants that act as a reservoir for migration of contamination to ground water, surface water, or air, or acts as a source for direct exposure. Principal threat wastes are source materials considered to be highly toxic or highly mobile that generally cannot be reliably contained or that would present a significant risk to human health, or the environment should exposure occur. For residential areas, principal threats will generally include soils contaminated with PCBs at concentrations greater than 100 ppm. EPA's findings to date in OU3 have not revealed the presence of principal threat wastes in floodplain soil or elsewhere in OU3.

RISK SUMMARY

A site-specific Baseline Human Health Risk Assessment (BHHRA) for the full length of the Creek was developed to quantitatively evaluate both cancer risks and noncancer health hazards from exposure to contaminants. The BHHRA is part of the RI/FS to assess Site-related cancer risks and noncancer health hazards to chemicals including lead and PCBs. Risks were evaluated under baseline conditions, in the absence of any response action and/or institutional controls. A copy of the Final Baseline Human Health Risk Assessment for OU3³, dated May 2022, is available in the Administrative Record file for this decision. A four-step human health risk assessment process was used for assessing Site-related cancer risks and noncancer hazards. The four-step process is comprised of Hazard Identification/Data Collection and Evaluation, Toxicity Assessment, Exposure Assessment, and Risk Characterization (see the "What is Human Health Risk and How is it Calculated" box on page 10).

The BHHRA quantitatively evaluated cancer risks and noncancer health hazards from exposure to chemical contaminants in sediment, soil, surface water, and fish tissue within the length of the Creek beginning at the end of the Creek Corridor (Harwood Street) and continuing to where the Creek discharges into Lake Ontario in Olcott, New York. The BHHRA evaluated current and future risks to recreational users of the Creek, anglers, visitors/ trespassers on a reach-specific basis, and residents based on sampling transects along the Creek. The BHHRA included floodplain soil sampling data for the separate exposure areas representing individual properties along the Creek. While the BHHRA encompassed an area greater than the subject of this Proposed Plan, the following risk assessment summary focuses on the STA and floodplain soils adjacent to the STA.

The BHHRA followed EPA guidelines, guidance, and policies, and more specifically the Risk Assessment Guidance for Superfund. EPA evaluated risks to the reasonable maximum exposed (RME) individual in the BHHRA that are expected to occur under current and/or future land use. The RME individual is defined as "the highest exposure that might reasonably be expected to occur" and is well above the average case of exposure but within the range of possibility.

Hazard Identification/Data Collection and Evaluation

Soil, sediment, surface water, and fish tissue data relied upon in the BHHRA were collected during the 2018/2019 field investigations. Sediment data from historical investigations were also used to support the BHHRA.

Toxicity Assessment

The toxicity assessment estimates the relationship between the extent of exposure to a contaminant and the likelihood and/or severity of adverse health effects. The toxicity assessment has the following two parts:

- Hazard identification a qualitative description of the potential toxicity of Site chemicals of potential concern (COPCs).
- Dose-response a quantitative estimate of toxicity for each COPC. For carcinogenic effects, the slope factor (SF) is determined for oral and dermal exposure and the inhalation unit risk (IUR) is used for inhalation exposure; for noncancer effects, the reference dose (RfD) is used to evaluate oral and dermal exposures while the reference concentration (RfC) is used to evaluate inhalation exposures.

³ While the BHHRA document included in the Administrative Record file specifies OU3 in its title, this document assesses cancer risks and non-cancer hazards for the full length of the Creek (Reaches 9 to 1).

However, the information provided in the Risk Summary section of the Proposed Plan focuses on the results for the STA.

Chemical-specific toxicological parameters (*i.e.*, RfDs, RfCs, SFs, and IURs) are obtained following EPA's tiered process for selecting toxicity values. The SF for chemicals identified with a Mutagenic Mode of Action were evaluated but did not exceed the risk range or a hazard index (HI) of 1.

Exposure Assessment

Exposure parameters used to calculate intakes and doses were obtained from the Superfund standard default exposure assumptions, EPA's Exposure Factors Handbook, and the 2014 standard default exposure assumptions. Parameters, such as the quantity of sediment and surface water ingested, or exposure durations for recreational users, anglers, and visitor/trespasser, are estimates based on professional judgment. Exposure parameters were selected to be health-protective consistent with the definition of RME discussed above.

The exposure assessment evaluated individuals who may contact environmental media in the Creek (*e.g.*, sediment, soil, surface water, and fish tissue) based on a review of current and reasonably foreseeable future land use at the Site. Receptors or individuals who may be exposed include:

- **Recreational users**: Adult (older than 18 years), adolescent (7 to 18 years), and children (6 years and younger) exposed through incidental ingestion and dermal contact with surface water; incidental ingestion and dermal contact with sediment; and inhalation of dust particles from floodplain soil and exposed Creek nearshore sediment.
- Visitor/trespasser: Adult, adolescent, and children exposed through incidental ingestion, dermal contact, and inhalation of dust particles with floodplain soil.
- **Resident**: Adult and children exposed through incidental ingestion, dermal contact, and inhalation of dust particles from floodplain soil.
- Angler: Adult and adolescent exposed through incidental ingestion of and dermal contact with surface water, incidental ingestion, dermal contact, and inhalation of dust particles from floodplain soil and nearshore sediment in the Creek.
- Fish Consumers: Adult, adolescent, and child exposed through ingestion of fish caught in the Creek.

Risk Characterization

Risk characterization, the final step of the risk assessment

process, combines the information from the exposure assessment and toxicity assessment to yield estimated cancer risks and noncancer hazards from exposure to chemicals in the media of concern (*e.g.*, soil, sediment, groundwater, and fish tissue). The risk characterization step also involves an evaluation of the uncertainty associated with the quantified cancer risks and noncancer health hazards.

EPA uses the cancer risks and the noncancer hazard quotient (HQ) for individual chemicals and the hazard index (HI) for total chemicals calculated based on RME exposures to determine whether Site risks and hazards are above or below the risk range established under the NCP (1 x 10^{-6} to 1 x 10^{-4} , or one in a million to one in ten thousand cancer risk) and the goal of protection of an HQ/HI less than or equal to 1. A separate assessment was conducted for lead using Region 2's lead approach described below.

Sampling was conducted per the designated reaches and the results were further broken down into transects to aid in organizing data collection, present results, and calculate cancer risks and noncancer hazards for upland residential and commercial properties. This was needed to inform risk management decisions.

The assessment of the transect data included the following assumptions:

- Properties zoned as residential were assessed individually under a residential exposure scenario.
- Creek bank/floodplain soil samples were collected along 13 total soil transects located in five of the nine reaches, with the transects extending in a perpendicular direction away from the banks of the Creek. The sample locations were selected based on the potential for exposure from flooding.
- Soil samples collected from the floodplain areas were used in the risk assessment to assess exposures of residents on a property-by-property basis, as well as exposures of the angler or recreational user who are exposed on a less frequent basis than the resident.
- In some limited instances, a transect traversed more than one property.

Table 1 provides a summary of cancer risks exceeding the risk range and a noncancer HI of 1 from fish consumption in Reaches 6 and 7. Table 2 provides a summary of the risk assessment results for floodplain soil for the transects evaluated in Reaches 6 and 7. The assessment for floodplain soil revealed the cancer risks were within the risk range and the noncancer HQ varied across properties. As discussed in more detail below, lead was evaluated separately.

Consumption			
Reach	Receptors	Cancer Risk	Noncancer Hazard
6	Child	2.0 x 10 ⁻³	567
	Adolescent	2.3 x 10 ⁻³	328
	Adult	3.7 x 10 ⁻³	320
7	Child	2.0 x 10 ⁻³	566
	Adolescent	2.3 x 10 ⁻³	327
	Adult	3.7 x 10 ⁻³	319

Table 1: Summary of Current/Future Angler CancerRisks and Noncancer Hazards from FishConsumption

*In Reach 6, the chemical drivers for the cancer risk and noncancer hazards is PCBs, while PCBs and mercury are the drivers in Reach 7.

 Table 2: Summary of Noncancer HIs Greater than 1

 from Exposure to Soil

Transect	Reach	Basis for HQs > 1 Based on Effects
#	#	on the Same Target Organ.
06	6	Aluminum, manganese, and mercury are associated with potential impacts on the nervous system with a target organ HI of 1.1, and PCBs are associated with potential impacts on the immune system with a target organ HI of 1.1
08	6	PCBs are associated with potential impacts on the immune system with a target organ HI of 3.9
10	7	PCBs are associated with potential impacts on the immune system with a target organ HI of 5.5
13	7	Cobalt is associated with potential impacts on the endocrine system with a target organ HI of 1.2, and PCBs are associated with potential impacts on the immune system with a target organ HI of 2.9
15	7	PCBs are associated with potential impacts on the immune system with a target organ HI of 8.4
19	7	PCBs are associated with potential impacts on the immune system with a target organ HI of 3.5
20	7	PCBs are associated with potential impacts on the immune system with a target organ HI of 3.5
20	7	Mercury and manganese are associated with potential impacts to the nervous system with a target organ HI of 1.5, and PCBs are associated with potential impacts on the immune system with a target organ HI of 1.3
22	7	Mercury and manganese are associated with potential impacts to the nervous system with a target organ HI of 1.5,

⁴ Since the risk assessment was performed, EPA released new guidance for lead in residential soils: <u>Updated Residential Soil Lead</u> <u>Guidance for CERCLA Sites and RCRA Corrective Action Facilities</u>. The evaluation described here is consistent with this new guidance.

		and PCBs are associated with potential impacts on the immune system with a target organ HI of 1.3
23	7	PCBs are associated with potential impacts on the immune system with a target organ HI of 9.4
25	7	Mercury and manganese are associated with potential impacts to the nervous system with a target organ HI of 1.4. PCBs are associated with potential impacts on the immune system with a target organ HI of 1.4

Lead

Lead in sediment and floodplain soils were evaluated consistent with EPA Superfund guidance. Concentrations in surface water were compared with the EPA's Office of Water Lead Action Level of 15 micrograms per liter. Per EPA Region 2's approach to evaluating lead, sediment and residential soil concentrations were compared with a screening level of 200 ppm and those concentrations greater than the screening level were identified for further evaluation; non-residential soil concentrations were compared to 800 ppm.⁴

The adult lead model (ALM) was used to predict the maternal blood lead level (BLLs) for adult non-residential exposures, and the Integrated Exposure Uptake Biokinetic (IEUBK) model was used to evaluate BLLs for the residential child (seven years and younger⁵). Both models are designed to determine the probability of the BLL exceeding five micrograms per deciliter (μ g/dL) based on the average or mean lead concentration.

IEUBK Model Results for Soil and Sediment

A summary of the lead risk assessment results are provided below for exposure to sediment in each of the reaches and floodplain soils in each of the transects. Tables 3 and 4 provide the maximum, mean (average) sediment/soil and IEUBK model results. The maximum lead concentrations at Transects 02, 07, and 21 did not exceed the screening level of 200 mg/kg; therefore, risk from lead exposure was not further evaluated. Based on soil concentrations, the IEUBK modelling resulted in a conclusion that at Transects 10, 11, 13, 16, 20, 23, and 24, the probability of child blood level exceeding 5 μ g/dL was less than 5%, while at Transects 5, 6, 8, 15, 17, 18, 19, 22, and 25 the probability of child blood level exceeding 5 μ g/dL was greater than 5%.

The probability of the blood lead level exceeding 5 μ g/dL in Reach 1 was less than 5%, and the probability of exceeding 5 μ g/dL greater than 5% in all other reaches.

⁵ While the IEUBK model guidance standard default value for lead evaluations of the child receptor is seven years, the BHHRA provides for an age range of six years for the child exposed to other chemicals.

Table 3: Summary of Maximum and Average Lead Concentrations in Sediment by Reach Based on Blood Lead Levels (BLL) Greater than 5 µg/dL and IEUBK Model Results

		Maximum	Average	Percent of
		Concentration	(Mean) Lead	Individuals
		Lead Level	Concentration	with $BLLs > 5$
Rea	ach	(mg/kg)	(mg/kg)	μg/dL
6	5	4,383	623	100
7	7	2,940	613	99

Table 4: Lead Transect Evaluation ProvidingAverage Concentration in Soil, Average Blood Level,and IEUBK Model Results

	Average Soil	Predicted	IEUBK Model
	Concentration	Blood Lead	Results with
Transect	(mg/kg)	Level	BLLs > 5%
		(µg/dL)	above 5 µg/dL
05	375	19	Yes
06	498	32	Yes
08	278	10	Yes
15	450	27	Yes
17	208	5.4	Yes
18	242	7.6	Yes
19	256	8.7	Yes
22	291	11	Yes
25	287	11	Yes

In summary, the HHRA demonstrated unacceptable risk and hazard throughout the Creek from fish consumption (Table 1) primarily attributed to PCBs. Additionally, exposures to floodplain soil in the transects identified in Table 3 demonstrate hazards at or above the goal of protection, as well as predicted BLLs above the goal of no more than 5% of the population with BLLs above 5 μ g/dL. Sediment exposures in Reaches 6 and 7 are also associated with predicted BLLs in young child receptors.

Ecological Risk Assessment

In July 2018, a screening level ecological risk assessment (SLERA) was completed for the full length of the Creek. The purpose of the SLERA was to assess risk posed to ecological receptors because of Site-related contaminants. The SLERA indicates that ecological risks may be present for benthic macroinvertebrates and wildlife that consume invertebrates from soil or sediment. A copy of the *Final Screening Level Ecological Risk Assessment*, dated July 2018, is available in the Administrative Record file for this Operable Unit.

In an effort to better define risks, in 2019 and 2020 additional sampling was conducted to investigate sediment toxicity and bioaccumulation of contaminants from soil and sediment into invertebrates that reside in those media. The results were incorporated in a baseline ecological risk assessment (BERA).

While the BERA evaluated the portion of the Creek beginning at the end of the Creek Corridor (Harwood Street) and continuing to where the Creek discharges into Lake Ontario in Olcott, the evaluation of potential ecological hazards and chemical of potential ecological concerns (COPECs) was separated into three distinct areas of the Creek. The three areas are: (1) Downstream from Burt Dam, (2) Between Burt Dam and Newfane Dam, and (3) Upstream from Newfane Dam. For the purposes of this Proposed Plan, the results presented below are for the area upstream of Newfane Dam, including the STA.

Surface Soil

Terrestrial invertivores wildlife (e.g., American robin and shrew) are highly at risk to surface soil exposure. Through direct exposure, incidental ingestion of contaminated soil and consumption of contaminated food items it was determined that several contaminants of concern (COCs) pose a risk to terrestrial invertivores that feed and dwell within the flood plain soils (i.e., HQs exceeded 1.0 for one or more contaminants). COCs, including PCBs and lead, can accumulate in soil fauna and subsequently put American robin and shrew at risk to COCs exposures.

Sediment

Insectivorous aquatic-dependent wildlife (e.g., tree swallow and little brown bat) and fish-eating wildlife (e.g., great blue heron and mink) are highly at risk to sediment exposure. Through direct exposure, incidental ingestion of contaminated sediment and consumption of contaminated food items it was determined that several COCs, including PCBs and lead, pose a risk to insectivorous aquaticdependent life and fish-eating wildlife that feed and dwell within the contaminated sediment (i.e., HQs exceeded 1.0 for one or more contaminants). COCs accumulated in benthic macroinvertebrates and forage fish population can put tree swallow, little brown bat, blue heron and mink at risk to COCs exposures.

Overall, the BERA results revealed a wide range of contaminants that present risks to various ecological receptors. The major source of risk from Site-related contaminants are PCBs and metals. The affected ecological receptors are insectivorous aquatic dependent wildlife (*e.g.*, tree swallow and little brown bat), terrestrial insectivorous wildlife (*e.g.*, American robin and shrew), and fish-eating wildlife (*e.g.*, great blue heron and mink). Based on the results of the BERA, ecological receptors in areas upstream from Newfane Dam are greatly affected by contaminants.

It is EPA's current judgment that the Preferred Alternative identified in this Proposed Plan, or one of the other active measures considered in the Proposed Plan, is necessary to protect public health or welfare or the environment from actual or threatened releases of pollutants or contaminants from this Site that may present an imminent and substantial endangerment to public health or welfare.

REMEDIAL ACTION OBJECTIVES

Remedial action objectives (RAOs) are specific goals to protect human health and the environment. RAOs are based on available information and standards such as applicable or relevant and appropriate requirements (ARARs), to-be-considered (TBC) guidance, and sitespecific risk-based levels.

The following interim RAOs have been established for OU3:

Sediment Interim RAOs:

• Reduce the mass, transport, and exposure to PCBs in sediment throughout the Creek channel by remediating areas that serve as sources of COCs to the Creek system.

Floodplain Soil Final RAOs:

- Minimize human exposure risk from contact with contaminated floodplain soil by reducing COC concentrations in soil to remedial goals.
- Minimize risks to ecological receptors from contact with contaminated floodplain soil by reducing the COC concentrations in soil to remedial goals.
- Minimize the transport of floodplain soil containing COCs by reducing the potential for interaction with adjacent areas and the Creek.

PRELIMINARY REMEDIATION GOALS

To achieve the RAOs, EPA has identified a soil cleanup goal, or Preliminary Remediation Goal (PRG), for contaminated soil to attain a degree of cleanup that ensures the protection of human health and the environment. The two-tiered PRG for lead in soils described below is based on the New York State's 6 NYCRR Part 375 Residential Soil Cleanup Objectives and EPA Region 2's lead approach consistent with OLEM Directive 9200.2-167. The PRG is also consistent with the 2024 "OLEM Updated Residential Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities," which establishes a regional screening level (RSL) of 200 ppm where there are no additional sources of lead (e.g., lead water service lines, lead-based paint

WHAT IS HUMAN HEALTH RISK AND HOW IS IT CALCULATED?

A Superfund human health risk assessment is an analysis of the potential adverse health effects caused by hazardous substances releases from a site in the absence of any actions to control or mitigate these releases; it estimates the "baseline risk" in the absence of any remedial actions at the site under current and future land uses. To estimate this baseline risk at a Superfund site, a fourstep process is utilized for assessing site-related human health risks for reasonable maximum exposure scenarios.

Hazard Identification: The hazard identification step identifies the contaminants of concern at the site in various media (*i.e.*, soil, groundwater, surface water, air, etc.) based on such factors as toxicity, frequency of occurrence, fate and transport of the contaminants in the environment, concentrations of the contaminants in specific media, mobility, persistence, and bioaccumulation.

Exposure Assessment: In this step, the different exposure pathways through which people might be exposed to the contaminants identified in the previous step are evaluated. Examples of exposure pathways include incidental ingestion of and dermal contact with contaminated soil. Factors relating to the exposure assessment include but are not limited to the concentrations that people might be exposed to and the potential frequency and duration of exposure. Using these factors, a "reasonable maximum exposure" scenario, which portrays the highest level of human exposure that could reasonably be expected to occur, is calculated.

Toxicity Assessment: The toxicity assessment determines the types of adverse health effects associated with chemical exposures, and the relationship between the magnitude of exposure (dose) and severity of adverse effects (response). Potential health effects are chemical-specific and may include the risk of developing cancer over a lifetime or other noncancer health effects such as changes in the normal functions of organs within the body (*e.g.*, changes in the effectiveness of the immune system). Some chemicals are capable of causing both cancer and noncancer health effects.

Risk Characterization: This step summarizes and combines outputs of the exposure and toxicity assessments to provide a quantitative assessment of site risks. Exposures are evaluated based on the potential risk for developing cancer and the potential for noncancer health hazards. The likelihood of an individual developing cancer is expressed as a probability. For example, a 10⁻ ⁴ cancer risk means a "one-in-ten-thousand excess cancer risk"; or one additional cancer may be seen in a population of 10,000 people as a result of exposure to site contaminants under the conditions explained in the Exposure Assessment. Current federal Superfund guidelines for acceptable exposures are an individual lifetime excess cancer risk in the range of 10⁻⁴ to 10⁻⁶ (corresponding to a one-in-ten-thousand to a one-in-a-million excess cancer risk). For noncancer health effects, a "hazard index" (HI) is calculated. An HI represents the sum of the individual exposure levels compared to their corresponding RfDs. The key concept for a noncancer HI is that a "threshold level" (measured as an HI of 1) exists below which noncancer health effects are not expected to occur.

non-attainment areas where lead concentrations exceed the National Ambient Air Quality Standards) are present.⁶

The following PRGs have been identified for adjacent floodplain residential, including agricultural, properties within the STA:

- Lead: 400 ppm In addition to targeting detections of lead above 400 ppm, the average soil concentration across each residential property will be at or below 200 ppm.
- PCBs: 1 ppm

By remediating floodplain soils to an average concentration at or below 200 ppm, the goal of protection (target blood lead level of 5 ug/dL) outlined in the 2024 Updated Residential Soil Lead Guidance will be met. These levels would also be protective of recreational users and ecological receptors.

The following PRGs have been identified for adjacent surface (0 to 2 ft) floodplain commercial properties within the STA:

- Lead: 1,000 ppm
- PCBs: 1 ppm

The PRGs for surface commercial soils are consistent with the PRGs established in the OU2 remedy.

It is EPA's expectation that by targeting PCBs and lead, risks posed by other contaminants found in floodplain soil, such as mercury, would also be addressed. The remedy to be selected for floodplain soils in the STA is intended to be a final remedy. However, the proposed interim remedy for sediments in the STA is not intended to attain acceptable COC levels in all media throughout the Creek. A future, final remedy will establish acceptable COC levels in sediments that are protective of human health and the environment. An interim remedy should be consistent with and not preclude a final protective remedy. Interim actions and reflect the limited scope of the interim action.

To achieve the interim remedy RAOs, a remedial action level (RAL) of 1 ppm for PCBs will be used to delineate PCB source sediments within the STA for remediation. The RAL of 1 ppm is consistent with other sediment cleanups in New York State. This RAL is not a final PRG for the Creek sediments, however, and the practical outcome of this RAL is that a large mass of source material that is acting as a continuing source to the rest of Eighteen Mile Creek will be addressed. The RAL of 1 ppm for PCBs satisfies interim Site objectives of source control and PCB migration reduction. In addition, given the widespread presence of PCBs, addressing PCBs above the RAL in the STA is also expected to address other potential COCs, such as lead and mercury.

As indicated in the Scope and Role of Action section above, a separate comprehensive evaluation would be conducted for the full length of the Creek. A subsequent or final remedy will identify the final RAOs and remediation goals for sediment along the entire length of the Creek.

SUMMARY OF REMEDIAL ALTERNATIVES

Section 121(b)(1) of CERCLA, 42 U.S.C. § 9621(b)(1), mandates that remedial actions must be protective of human health and the environment, be cost-effective, comply with ARARS, and utilize permanent solutions and alternative treatment technologies and resource recovery alternatives to the maximum extent practicable. Section 121(b)(1) also establishes a preference for remedial actions that employ, as a principal element, treatment to reduce permanently and significantly the volume, toxicity, or mobility of the hazardous substances, pollutants, and contaminants at a site. Section 121(d) further specifies that a remedial action must attain a level or standard of control of the hazardous substances, pollutants, and contaminants that at least attains ARARs under federal and state laws, unless a waiver can be justified pursuant to Section 121(d)(4) of CERCLA, 42 U.S.C. § 9621(d)(4).

To address the RAOs, the FS identified three primary areas that have the greatest potential for transporting significant contamination downstream based upon transport modeling and data identifying the areas with the highest levels of contamination. The three primary areas identified in the FS Report are the STA and two sediment depositional areas (SDAs) located immediately upstream of Newfane Dam and Burt Dam (represented by Reaches 2 and 5, respectively). While the STA was identified as the primary source of continuing contamination related to elevated contaminant concentrations that occur with sediment erosion and surface water flow from the East Branch. contaminated sediments have accumulated and are present behind the impoundment areas of both Newfane Dam and While the FS Report included remedial Burt Dam. alternatives for the two SDAs and floodplain soil adjacent

⁶ See Updated Scientific Considerations for Lead in Soil Cleanups, December 22, 2016 <u>https://semspub.epa.gov/work/08/1884174.pdf</u> and Updated Residential Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities

https://www.epa.gov/system/files/documents/2024-01/olem-residentiallead-soil-guidance-2024 signed 508.pdf

to the SDAs, for the purposes of this Proposed Plan, alternatives for the two SDAs and floodplain soil not adjacent to the STA are not being addressed at this time. As indicated in the Scope and Role of Action section, above, further evaluations and long-term monitoring of these areas is needed before a cleanup plan for these remaining portions of the Creek can be developed.

In this Proposed Plan, as discussed below, EPA has considered alternatives for sediment contamination within the STA as well as contaminated floodplain soil at properties adjacent to the STA. Detailed descriptions of all the remedial alternatives for addressing the contamination associated with OU3 can be found in the FS Report.

The construction time for each alternative reflects only the actual time required to construct or implement the action and does not include the time for other activities, such as that required to design the remedy, negotiate the performance of the remedy with any potentially responsible parties, obtain funding or procure the contracts for design and construction.

Sediment Alternatives

Common Elements of the Sediment Alternatives

All of the sediment alternatives, with the exception of STA1 (No Action) and STA2 (Monitored Natural Recovery, Long-Term Monitoring, and Institutional Controls), would include the following common components:

Sediment Delineation and Cultural Resource Evaluation: Based on data collected to date, an estimated 80% of the STA Creek bed area exceeds the RAL. During the remedial design, additional sampling would be conducted to refine the areas requiring remediation. In addition, a Phase 1B cultural resource investigation would be performed to assess the presence or absence of archaeological deposits.

During implementation of the remedial action, temporary cofferdams or other barriers would be installed to divert water around active work areas to allow for excavation in dry conditions. Diversion piping would be used to divert water around the work area. Excavated sediment would be transferred from the Creek to the staging area. Confirmation samples would be collected at the bottom of excavation to verify the RAL has been met. Confirmation samples would be analyzed for PCBs, and additional excavation and sampling may be required to demonstrate the RAL has been met. Access Roads: Access roads and staging areas would be constructed in upland areas to allow equipment access and facilitate implementation of the proposed remedial activities along the Creek. A staging area for contaminated material storage and dewatering, wastewater treatment, and clean fill material storage would be established. Construction would require clearing and grubbing of vegetation. Following remediation of the Creek, the access roads and staging areas would be removed, and the areas restored in accordance with the habitat reconstruction plan.

Off-Site Disposal of Contaminated Sediment: Excavated sediment exceeding RALs would be transported off-Site for disposal at a RCRA or TSCA regulated landfill, as appropriate, based on the concentrations of contaminants in the excavated sediment. If necessary to meet the requirements of the disposal facilities, contaminated material would be treated prior to land disposal.

Construction Monitoring: Water quality downstream of the work areas would be monitored during construction activities. Air quality would be monitored throughout construction activities to protect workers and the public.

Long Term Monitoring: A monitoring plan would be developed during the remedial design to track PCB concentrations in sediment, surface water and fish tissue. The monitoring plan would evaluate remaining residual soil contamination in the floodplain soil, the potential for bank erosion, and an assessment of the fate and transport mechanisms of the remaining contamination to contaminate sediments in the Creek. Results would be used to assess the effectiveness of the remedial alternative in reducing PCB concentrations in fish tissue and to develop a final remedy for the Creek.

Institutional Controls: Institutional controls refer to nonengineering measures intended to ensure the protectiveness of a remedy and to restrict human activities so as to prevent or reduce the potential for exposure to contaminated media. Institutional controls in the form of informational devices, such as NYSDOH fish consumption advisories, would be implemented to limit exposure to PCBs. NYSDOH periodically reviews fish PCB data to ensure the advisories are up to date and considers whether the fish consumption advisories need modification.

STA1: No Action

The NCP requires that a "No Action" alternative be developed as a baseline for comparing other remedial alternatives. Under this sediment alternative, there would be no remedial action conducted at the Site for sediments in the STA. This alternative does not include monitoring.

Capital Cost:	\$0
Annual Operation and Maintenance (O&M) Costs:	\$0
Present-Worth Cost:	\$0
Construction Time: Not Applic	able

STA2: Monitored Natural Recovery, Long-Term Monitoring, and Institutional Controls

The Monitored Natural Recovery (MNR) alternative for sediments relies on the naturally occurring transport and deposition of cleaner upstream material to reduce exposure to contaminant concentrations over time through burial.

A MNR monitoring program would be developed to document and evaluate the performance of natural recovery, including the evaluation of changes in PCB concentrations over time as clean sediment from upstream areas is deposited within the STA. This alternative also includes institutional controls and long-term monitoring, as described in the Common Elements of the Sediment Alternatives Section, above.

Capital Cost:	\$0
Annual O&M Costs:	\$337,000
Present-Worth Cost:	\$1,999,000
Construction Time:	Not Applicable

STA3: Excavation, Long-Term Monitoring, and Institutional Controls

Alternative STA3 includes the excavation of all sediment within the STA, consistent with the response selected in the OU2 remedy of bank-to-bank excavation down to native material, followed by backfilling with up to two feet of clean sand and covered with a suitable habitat layer to create conditions for the reestablishment of natural conditions in the Creek. The RI investigation found that PCBs above the RAL are present in sediments in Reach 7 down to 4 feet below the sediment surface. In addition to targeting deeper sediments that exceed the RAL, this alternative would include removal of PCBs at concentrations lower than the RAL of 1 ppm.

For the conceptual design, it is estimated that the average depth of sediment to native material is less than two feet, resulting in the removal of an estimated 96,000 cubic yards of sediment. Contaminated material would be sent for off-Site disposal.

Capital Cost:	\$102,273,000
Annual O&M Costs:	\$268,000
Present-Worth Cost:	\$82,440,000
Construction Time:	16 months

STA4: Pre-Dredge to Accommodate Cap, Capping, Long-Term Monitoring, and Institutional Controls

Alternative STA4 includes the excavation of approximately one foot of contaminated sediment in areas within the STA that exceed the RAL followed by the placement of clean sand and suitable habitat material to create a cap over the remaining contaminated sediment.

For the conceptual design, it is estimated that the removal of approximately one foot of existing sediment is needed to support the placement of a cap that would minimize the potential for mobilization of contaminated sediment without creating adverse impacts associated with flooding. In addition, contaminated sediment with PCB concentrations greater than 50 ppm would be removed regardless of the depth. Under this alternative, an estimated 41,000 cubic yards of contaminated sediment would be excavated and sent for off-Site disposal.

Capital Cost:	\$61,940,000
Annual O&M Costs:	\$296,000
Present-Worth Cost:	\$53,025,000
Construction Time:	12 months

STA5: Excavation to RAL, Long-Term Monitoring, and Institutional Controls

Alternative STA5 includes the excavation of contaminated sediment above the RAL within the STA followed by backfilling with clean sand and covering with a suitable habitat layer to create conditions for the reestablishment of natural conditions in the Creek.

For the conceptual design, it is estimated that the average depth of the excavation to meet the RAL would be approximately 1.3 feet, resulting in the removal of an estimated 54,000 cubic yards of contaminated sediment. Contaminated material would be sent for off-Site disposal. While estimated excavation depths across the STA were calculated in the FS, the estimated excavation depth was based on the average depths of samples exceeding the RAL. Post-excavation sampling would be performed prior to backfilling to confirm that the RAL has been met.

Capital Cost:	\$75,104,000
Annual O&M Costs:	\$237,000
Present-Worth Cost:	\$60,769,000
Construction Time:	9 months

Floodplain Soil Alternatives

Common Elements of the Floodplain Soil Alternatives

Each of the floodplain soil alternatives, with the exception of SOIL1 (No Action), include the following common components:

Remediation Areas: Sampling in flood-prone areas conducted as part of the RI revealed 17 areas adjacent to the STA that are impacted by Site-related contamination requiring remediation. The FS Report divides remediation areas into the following two categories.

- Adjacent floodplain soil areas (not farmland or developed residential areas); and
- Adjacent farmland and developed residential floodplain soil areas.

The purple-colored sections within the STA on Figure 2 represent the floodplain soil remediation areas. Refer to Figures 5-18 through 5-22 in the FS Report for the specific areas targeted for remediation depicted by creek reach.

During the remedial design, additional sampling of floodplain soil adjacent to the STA would be conducted to further delineate nature and extent and refine volume estimates. The additional sampling would also provide a better estimate of the residual contamination remaining in the floodplain soil, thereby providing data needed to conduct the assessment of the fate and transport mechanisms of the remaining contamination in the Creek, as outlined in the discussion on future operable units and the long-term monitoring plan as outlined in the common elements section for the sediment alternatives. EPA conservatively assumed that contaminated soil extends to 2 feet deep although samples in the remedial investigation only went to a depth of 1 foot.

Floodplain soils that were not sampled during the RI but are prone to river flooding would also be sampled as part of the remedial design. This additional data would be used for risk evaluations to determine if, based on land use designations or the potential for floodplain soil to recontaminate sediments in the Creek, additional properties or areas require remediation. EPA has conservatively estimated, for cost estimation purposes, that additional sampling may identify up to 11 additional acres that would require remediation as part of this OU. In addition, floodplain soil sampling would also be conducted downstream of the STA as part of a separate investigation. Separate response actions or a future operable unit would address risks identified in floodplain soil downstream of the STA. Excavation and Soil Management: Construction of the active floodplain soil alternatives would require clearing and grubbing of vegetation. Temporary access roads from the remediation areas to nearby public roads and the staging area would be constructed. Excavated contaminated floodplain soil would be transported to a staging area for storage and dewatering prior to off-Site disposal. Erosion and sediment controls at each remediation area would be installed to prevent the migration of floodplain soil to the Creek. Water and air quality would be monitored during construction. In areas requiring excavation, verification samples would be collected to confirm that contaminated soil in excess of the PRGs has been removed and the remedial action objectives have been met. Excavated areas would be backfilled by placing clean fill material and topsoil. Following remediation of the Creek, access roads and staging areas would be removed, and impacted areas would be restored in accordance with the habitat reconstruction plan.

Site Management Plan (SMP): Development of a SMP to provide for management of floodplain soil postconstruction, including the use of institutional controls and periodic reviews.

Soil1: No Action

As mentioned above, the NCP requires that a "No Action" alternative be developed as a baseline for comparing other remedial alternatives. Under this alternative, there would be no remedial action conducted to address floodplain soil adjacent to the STA at the Site. This alternative does not include monitoring.

Capital Cost:	\$0
Annual O&M Costs:	\$0
Present-Worth Cost:	\$0
Construction Time:	Not Applicable

Soil2: Limited Floodplain Soil Excavation, Soil Cover, and Institutional Controls

Under this alternative, lead and PCB-contaminated floodplain soil would be addressed through a combination of excavation and/or installation of a cover system based on land use. While floodplain soil areas in residential and farmland areas would be excavated to remove all contaminated soil above the PRGs and backfilled with clean topsoil, non-developed areas including commercial areas would have a soil cover system installed. The cover system, with an estimated thickness of two to three feet, would be vegetated and constructed to isolate floodplain soil exceeding the PRGs from erosion, transport, and/or migration to surrounding areas. In areas with steep slopes, riprap would be placed as the top layer to prevent erosion. During the remedial design, investigations would be conducted to determine the need for the addition of amendments, such as activated carbon, as well as to evaluate the impact of the cover system on wetlands.

Because contaminated soil would remain at the impacted properties adjacent to the STA above levels that would otherwise allow for unrestricted use following remediation, institutional controls would be implemented. Institutional controls may include environmental easements/restrictive covenants, deed notices, and/or zoning restrictions to limit future use of the properties and would require maintenance of the cover material and impose restrictions on excavation of these properties.

Because this alternative would result in contaminants remaining at the Site that are above levels that would otherwise allow for unrestricted use and unlimited exposure, CERCLA requires that the Site be reviewed at least once every five years. If justified by the review, additional response actions may be implemented.

Capital Cost:	\$42,941,000
Annual O&M Costs:	\$51,000
Present-Worth Cost:	\$39,363,000
Construction Time:	2 years

Soil3: Floodplain Soil Excavation and Off-Site Disposal

This alternative includes the excavation and off-Site disposal of PCB and lead contaminated floodplain soil exceeding the PRGs adjacent to the STA regardless of the land use designation. These areas would be backfilled with clean fill and topsoil.

Because contaminated soil would remain at the impacted commercial properties adjacent to the STA above levels that would otherwise allow for unrestricted use following remediation, institutional controls would be implemented. Institutional controls may include environmental easements/restrictive covenants, deed notices, and/or zoning restrictions to limit future use of the commercial properties and impose restrictions on excavation.

Capital Cost:	\$149,125,000
Annual O&M Costs:	\$0
Present-Worth Cost:	\$131,307,000
Construction Time:	2 years

EVALUATION OF ALTERNATIVES

During the detailed evaluation of remedial alternatives, each alternative is assessed against nine evaluation criteria set forth in the NCP, namely, overall protection of human health and the environment, compliance with applicable or relevant and appropriate requirements, long-term effectiveness and permanence, reduction of toxicity, mobility, or volume through treatment, short-term effectiveness, implementability, cost, and state and community acceptance. Refer to the text box, below, entitled "Evaluation Criteria for Superfund Remedial Alternatives", for a description of the evaluation criteria.

This section of the Proposed Plan profiles the relative performance of each alternative against the nine criteria, noting how each compare to the other options under consideration. A more detailed analysis of alternatives can be found in the FS Report.

Overall Protection of Human Health and the Environment

A threshold requirement of CERCLA is that the selected remedial action be protective of human health and the environment. An alternative is protective if it reduces current and potential risk associated with each exposure pathway at a site to acceptable levels.

Sediment:

Alternative STA1 (No Action) is not protective of human health and the environment because it does not eliminate, reduce, or control risk of exposure to contaminated sediment. STA2 relies on natural processes, such as sedimentation to cover the surface sediment with cleaner sediment from upstream, in order to reduce the PCB concentration at the sediment surface and reduce risk. While sedimentation of clean backfill material from the cleanup of upstream Creek Corridor as part of OU2 is expected to result in some reduction of contaminant concentrations within the STA over time, because sediment within the STA is prone to resuspension, the redistribution and redeposition of contaminated sediment to downstream areas is likely. As a result, Alternative STA2 would not achieve the RAOs.

While Alternatives STA3, STA4, and STA5 each include removal of contaminated sediments, under Alternative STA4, only contaminants within the top one foot would be removed followed by the installation of a cap to prevent mobilization or exposure to underlying contaminated sediment. Therefore, while Alternatives STA3, STA4, and STA5 would achieve the RAOs, under Alternative STA4 monitoring and maintenance of the cap would be required to ensure protection over the long term.

EVALUATION CRITERIA FOR SUPERFUND REMEDIAL ALTERNATIVES

Overall Protectiveness of Human Health and the Environment evaluates whether and how an alternative eliminates, reduces, or controls threats to public health and the environment through institutional controls, engineering controls, or treatment.

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs) evaluates whether the alternative meets federal and state environmental statutes, regulations, and other requirements that pertain to the Site, or whether a waiver is justified.

Long-term Effectiveness and Permanence considers the ability of an alternative to maintain protection of human health and the environment over time.

Reduction of Toxicity, Mobility, or Volume (TMV) of Contaminants through Treatment evaluates an alternative's use of treatment to reduce the harmful effects of principal contaminants, their ability to move in the environment, and the amount of contamination present.

Short-term Effectiveness considers the length of time needed to implement an alternative and the risks the alternative poses to workers, the community, and the environment during implementation.

Implementability considers the technical and administrative feasibility of implementing the alternative, including factors such as the relative availability of goods and services.

Cost includes estimated capital and annual operations and maintenance costs, as well as present-worth cost. Present-worth cost is the total cost of an alternative over time in terms of today's dollar value. Cost estimates are expected to be accurate within a range of +50 to -30 percent.

State/Support Agency Acceptance considers whether the State agrees with EPA's analyses and recommendations, as described in the RI/FS and Proposed Plan.

Community Acceptance considers whether the local community agrees with EPA's analyses and preferred alternative. Comments received on the Proposed Plan are an important indicator of community acceptance.

Floodplain Soil:

Alternative Soil1 (No Action) is not protective of human health and the environment because it does not eliminate, reduce, or control risk of exposure to contaminated floodplain soil. Alternative Soil2 and Alternative Soil3 would be protective of human health and the environment as contaminated material would either be removed from the Site or capped. Under Alternative Soil2, contaminated soils would remain in place above the PRGs in non- developed areas or areas not used as farmland, and protection would be achieved through the placement of cover material and implementation of institutional controls.

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

Sediment:

There are currently no federal or state promulgated standards for contaminant levels in sediments. There are, however, other federal or state advisories, criteria, or guidance (which are used as TBC criteria). Specifically, NYSDEC's "Screening and Assessment of Contaminated Sediment Guidance" (2014) sediment screening values are a TBC criteria. The RAL of 1 ppm for PCBs is consistently evaluated and often applied at contaminated sediment sites in New York State. This value is also supported by NYSDEC's "Technical Guidance for Screening Contaminated Sediments."⁷

Because the contaminated sediments would not be addressed under Alternative STA1, the RAL for PCBs would not be achieved. Under Alternative STA2, a longterm monitoring program would track if there were progress toward achieving the RAL over the long term. Alternative STA3 would achieve the RAL through the full removal of sediment. Alternative STA4 would achieve the RAL through a combination of isolation and removal of sediment. STA5 would achieve the RAL through the removal of sediments that exceed the RAL.

Because there is no active remediation associated with the sediment for Alternative STA1 or STA2, action-specific and location-specific ARARs do not apply. Alternatives STA3 through STA5 are expected to comply with action-specific and location-specific ARARs for water quality monitoring during excavation of sediments and wastewater discharge resulting from sediment dewatering. Mitigation may be required to address location-specific ARARs in relation to the construction of access roads through the floodplains and wetlands.

 $https://www.dec.ny.gov/docs/fish_marine_pdf/screenasssedfin.pdf$

⁷ NYSDEC Technical Guidance for Screening Contaminated Sediments, June 24, 2014.

Pursuant to Section 106 of the National Historic Preservation Act, a Stage 1B Cultural Resource Investigation would be performed during the design phase to evaluate the existence of cultural and archaeological resources within the STA that could be impacted by the implementation of this alternative.

The Resource Conservation and Recovery Act (RCRA) and the Toxic Substances Control Act (TSCA) are federal laws that mandate procedures for managing, treating, transporting, storing, and disposing of hazardous wastes and PCBs, respectively. All portions of RCRA that are applicable or relevant and appropriate to the proposed remedy for the Site would be met by Alternatives STA1 through STA5, and all portions of TSCA would be met by Alternatives STA1 through STA5 as well.

Floodplain Soil:

EPA has identified NYSDEC's 6 NYCRR Part 375 soil cleanup objectives as an ARAR, a TBC, or an 'other guidance' to consider in addressing contaminated soil at OU3. Alternative Soil1 would not achieve PRGs for soil because no measures would be implemented and contaminated soil would remain in place. Alternative Soil2 would prevent direct contact with PCB and lead contaminated soil exceeding the PRGs through a combination of removal and capping. Under Alternative Soil2, in order to comply with location-specific ARARs related to the protection of wetlands and floodplains, mitigative measures or modification to the conceptual design of the cover system may need to be evaluated during the design for areas that receive a cap because of the impacts to wetlands and floodplain soils. Areas receiving a cover system would require long-term monitoring and maintenance to verify continued compliance with ARARs. Soil3 complies with ARARs through the removal of PCB and lead contaminated soil exceeding the PRGs.

RCRA and TSCA are federal laws that mandate procedures for managing, treating, transporting, storing and disposing of hazardous wastes and PCBs. All portions of RCRA and TSCA that are applicable or relevant and appropriate to the proposed remedy for OU3 would be required to be met with Alternatives Soil2 and Soil3.

Long-Term Effectiveness and Permanence

Sediment:

Alternatives STA1 and STA2 remove no PCBs from the Creek and include no active measures to reduce residual risk at the Site. Neither option would prevent mobilization of PCBs in sediment that are vulnerable to erosional forces. Each of these alternatives therefore would allow for the continued exposure of PCBs over the long-term and thus do not promote long-term effectiveness and permanence.

Alternative STA3 and Alternative STA5 reduce residual risk through excavation of PCB contaminated sediment. Alternative STA3 and Alternative STA5 are considered more permanent than Alternative STA4. Alternative STA4 includes limited excavation of sediment followed by capping to isolate the contaminated sediment, and long-term monitoring of the cap.

Low-lying areas within the City of Lockport are subject to flooding. The *Resilient New York Flood Mitigation Initiative Report for Eighteen Mile Creek*, dated November 2020, states that more frequent and intense precipitation events are expected because of climate change, resulting in a higher likelihood of flooding along the Creek. The increased flooding may reduce the lifespan of capping and backfill material through increased erosional forces from faster flow. If Alternative STA4 is selected, an evaluation of the need for additional armoring would need to be performed during the remedial design to ensure that the cap would withstand such events. In addition, inspections of the cap would be conducted periodically, including after major storm events, and any necessary maintenance of the cover system would be performed.

Floodplain Soil:

Alternative Soil1 would not provide a permanent or longterm effective solution to contaminated floodplain soil as no remediation would occur. Under Alternative Soil2, longterm risks at the residential and farming properties would be permanently removed since contaminated floodplain soil would be permanently removed and disposed of off-Site. At the commercial properties, Alternative Soil2 provides long-term effectiveness through effective maintenance of a cover system and institutional controls such as land-use restrictions. Under Alternative Soil3, long-term risks would be permanently removed since contaminated floodplain soil would be excavated and disposed of off-Site.

Reduction of Toxicity, Mobility, or Volume through Treatment

Sediment:

For Alternatives STA1 and STA2, the only possible way to reduce contaminant concentrations in sediment would be natural recovery processes. Under these alternatives, there would be no reduction of toxicity, mobility, or volume through treatment. Alternatives STA3, STA4, and STA5 would permanently remove various volumes of sediment from the Creek through excavation, although not through treatment. Off-Site treatment, if required, would reduce the toxicity of the contaminated sediment prior to disposal. Placement of a cap, which is a component of Alternative STA4, would provide reduction of mobility of the contaminated sediment through isolation of contaminants, but would not reduce mobility through treatment.

Floodplain Soil:

Alternative Soil1 would not achieve any reduction in the mobility, toxicity, or volume because contaminated soil would remain in place as is. Alternative Soil2 would use a combination of capping and removal to achieve a reduction in mobility, volume, and exposure to contaminants, but not through treatment. Alternative Soil2 would not reduce the toxicity of the contaminants at properties that are capped. Under Alternative Soil3, the mobility, volume, and exposure to contaminants would be reduced but not through treatment. Furthermore, off-Site treatment, if required, would reduce the toxicity of the contaminated soil prior to disposal.

Short-Term Effectiveness

Sediment:

Alternatives STA1 would not create new, adverse shortterm impacts because no remediation activities would take place. Alternative STA2 would have few adverse short-term impacts since the only activities would be monitoring of conditions in the Creek to assess changes in site conditions. Alternatives STA3, STA4, and STA5 involve active remediation, similar in size and scope, and have the potential for similar short-term risks. Based on the higher volume of sediment that would be removed, Alternative STA3 would have the greatest duration of impacts given the longer project schedule. No time is required for construction of Alternative STA1 or Alternative STA2. Alternatives STA3, STA4, and STA5 are estimated to take 16, 12, and 9 months, respectively.

The risks to remediation workers and nearby residents under all of the active alternatives would be mitigated by following appropriate health and safety protocols, by exercising sound engineering practices, and by utilizing proper protective equipment.

Floodplain Soil:

Alternative Soil1 would have no adverse short-term impacts or risks since no remediation activities would take place. Both Alternatives Soil2 and Soil3 would have similar adverse short-term risks associated with construction activities. Similar to the sediment alternatives, the risks to remediation workers and nearby residents under all of the active alternatives would be mitigated by following appropriate health and safety protocols, by exercising sound engineering practices, and by utilizing proper protective equipment. No time is required for construction of Alternative Soil1. Time required for implementation of Alternative Soil2 is estimated to take two years. Alternative Soil3 is also estimated to take two years.

Implementability

Sediment:

There are no implementability issues with Alternative STA1 and STA2, which do not involve any active remediation. The technologies and methods to perform the active alternatives, STA3, STA4, and STA5, are well established. Given the topography, steep slopes, presence of heavy woods or wetlands, and in water structures (e.g., bridges and culverts) in some sections of the STA, some of the remediation areas may be difficult to access. Construction of temporary access roads for multiple access points in addition to siting of the material stockpile and processing area for excavated material may be logistically, but not necessarily technically, challenging because this work would likely require use of a large area of private land in the vicinity of the STA. Under Alternative STA4, one foot of contaminated sediment would be removed to facilitate the installation of a cap. The design of this cap would need to take into consideration that the total thickness of the cap should not impact the depth of open water or increase the potential for flooding, both while ensuring that the cap would weather erosional forces resulting from storm events. The cap specifications would be evaluated further during the remedial design. In addition, in order to perform excavation activities under Alternatives STA3, STA4, and STA5, temporary cofferdams or other barriers would be installed to divert water around active work areas to allow for excavation in dry conditions. Because the release of water from the upstream Canal impacts water flow in the Creek, coordination with the Canal Corporation regarding these releases is essential. As it relates to the design and implementation of the OU2 selected remedy, EPA has already been coordinating closely with the Canal Corporation on this matter.

Floodplain Soil:

Alternative Soil1 would be the easiest to implement as there are no construction activities to implement. Both Alternatives Soil2 and Soil3 use common construction technologies and are technically feasible to implement. Alternative Soil2 may be slightly more difficult to implement as the areas receiving the cover system would require long-term monitoring and maintenance.

Cost

The estimated capital, operation and maintenance, and present worth costs assuming a 7% discount rate over a period of 30 years are presented in the table below and

discussed in detail in the FS Report. The cost estimates are based on the best available information. Alternative 1 has no cost because no activities are implemented. The present worth cost for the preferred sediment alternative, Alternative STA5, is \$60,769,000. The present worth cost for the preferred floodplain soil alternative, Alternative SOIL3, is \$131,307,000.

Alternative	Capital Cost	Annual	Present	
		O&M	Worth**	
		Costs*		
Sediment				
STA1	\$0	\$0	\$0	
STA2	\$0	\$337,000	\$1,999,000	
STA3	\$102,273,000	\$268,000	\$82,440,000	
STA4	\$61,940,000	\$296,000	\$53,025,000	
STA5	\$75,104,000	\$237,000	\$60,769,000	
Floodplain Soil				
Soil1	\$0	\$0	\$0	
Soil2	\$42,941,000	\$51,000	\$39,363,000	
Soil3	\$149,125,000	\$0	\$131,307,000	

* Annual cost is for the first five years. Refer to the FS for details regarding subsequent periodic costs.

** 30-year present worth cost calculations includes a 7% discount rate.

State/Support Agency Acceptance

NYSDEC concurs with the preferred alternatives for sediments and floodplain soil.

Community Acceptance

Community acceptance of the preferred alternatives for sediments and floodplain soil will be evaluated after the public comment period ends and will be described and responded to in the Responsiveness Summary section of the Record of Decision for this OU. The Record of Decision is the document that formalizes the selection of the remedy for an OU.

PREFERRED REMEDY AND BASIS FOR PREFERENCE

Basis for the Remedy Preference

Based upon an evaluation of the remedial alternatives, EPA, in consultation with NYSDEC, proposes Alternative STA5: Excavation to RAL, Long-Term Monitoring, and Institutional Controls as an interim remedy for the STA.

The preferred remedy for the STA has the following key components:

• Excavation of contaminated sediment that exceeds the RAL of 1 ppm for PCBs within the STA followed by backfilling with clean sand and

covered with a suitable habitat layer to create conditions for the reestablishment of natural conditions in the Creek.

- Construction of access roads and staging areas in upland areas. Following remediation of the Creek, the access roads and staging areas would be removed and the areas restored in accordance with the habitat reconstruction plan.
- Water and air quality monitoring during construction.
- Development of a monitoring plan to track PCB concentrations in surface water and fish tissue.
- Institutional controls in the form of informational devices to limit exposure to PCBs. EPA is relying on existing NYSDOH fish consumption advisories. NYSDOH periodically reviews fish PCB data to ensure the advisories are up to date and considers whether the fish consumption advisories need modification. Other informational devices could include outreach programs to inform the public to promote knowledge of and voluntary compliance with the fish consumption advisories.

For Floodplain Soil, EPA, in consultation with NYSDEC, proposes Alternative Soil3: Floodplain Soil Excavation and Off-Site Disposal. The preferred remedy is considered a final remedy for floodplain soil in the STA, and has the following key components:

- Excavation and off-Site disposal of PCB and lead contaminated floodplain soil exceeding the PRGs adjacent to the STA regardless of the land use designation. Backfill of excavated areas with clean fill material and topsoil.
- Construction of temporary access roads from the remediation areas to the closest public roads and the staging area.
- Implementation of erosion and sediment controls at each remediation area to prevent the migration of floodplain soil to the Creek.
- Water and air quality monitoring during construction.
- Following remediation of the Creek, access roads and staging areas would be removed, and impacted areas would be restored in accordance with the habitat reconstruction plan.
- Development of a SMP to provide for management of floodplain soil post-construction, including the use of institutional controls and periodic reviews. Institutional controls would limit future use of the commercial properties and impose restrictions on excavation.

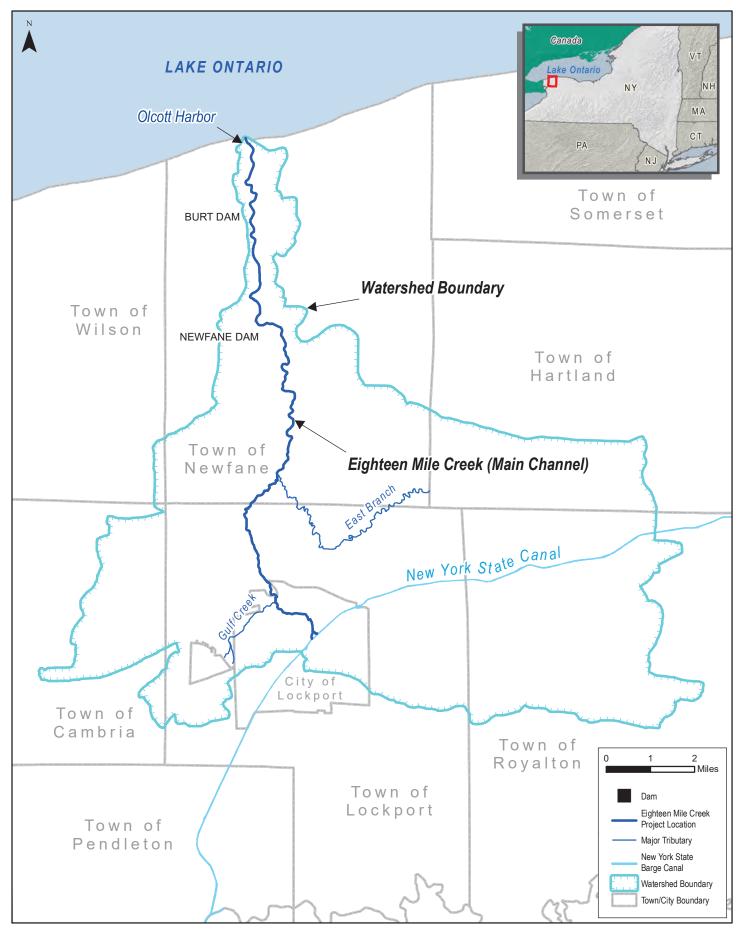
During the remedial design, additional sampling of floodplain soil adjacent to the STA would be conducted.

Risk evaluations, based on land use designations, would be performed to determine if additional properties or areas require remediation. The preferred alternative is a final remedy for addressing floodplain soil in the STA.

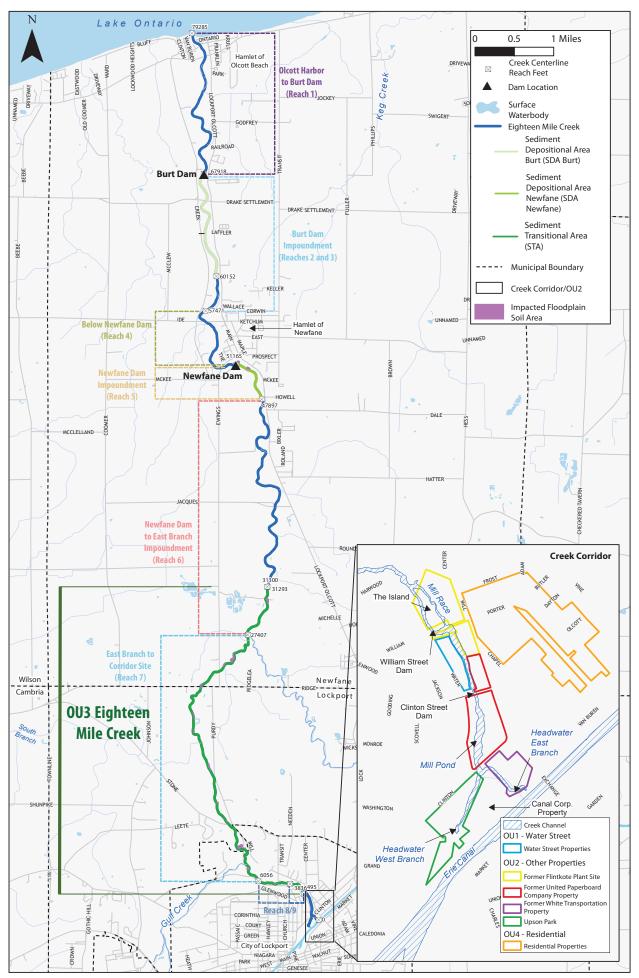
The estimated present worth of the preferred alternative remedy is \$192,076,000. Further detail of the cost is presented in Appendix D of the FS Report.

In addition, EPA's investigations of groundwater within the Creek Corridor have not revealed a source of the generally low-level VOC concentrations detected in groundwater. As a result, EPA is recommending taking no action to address Creek Corridor groundwater.

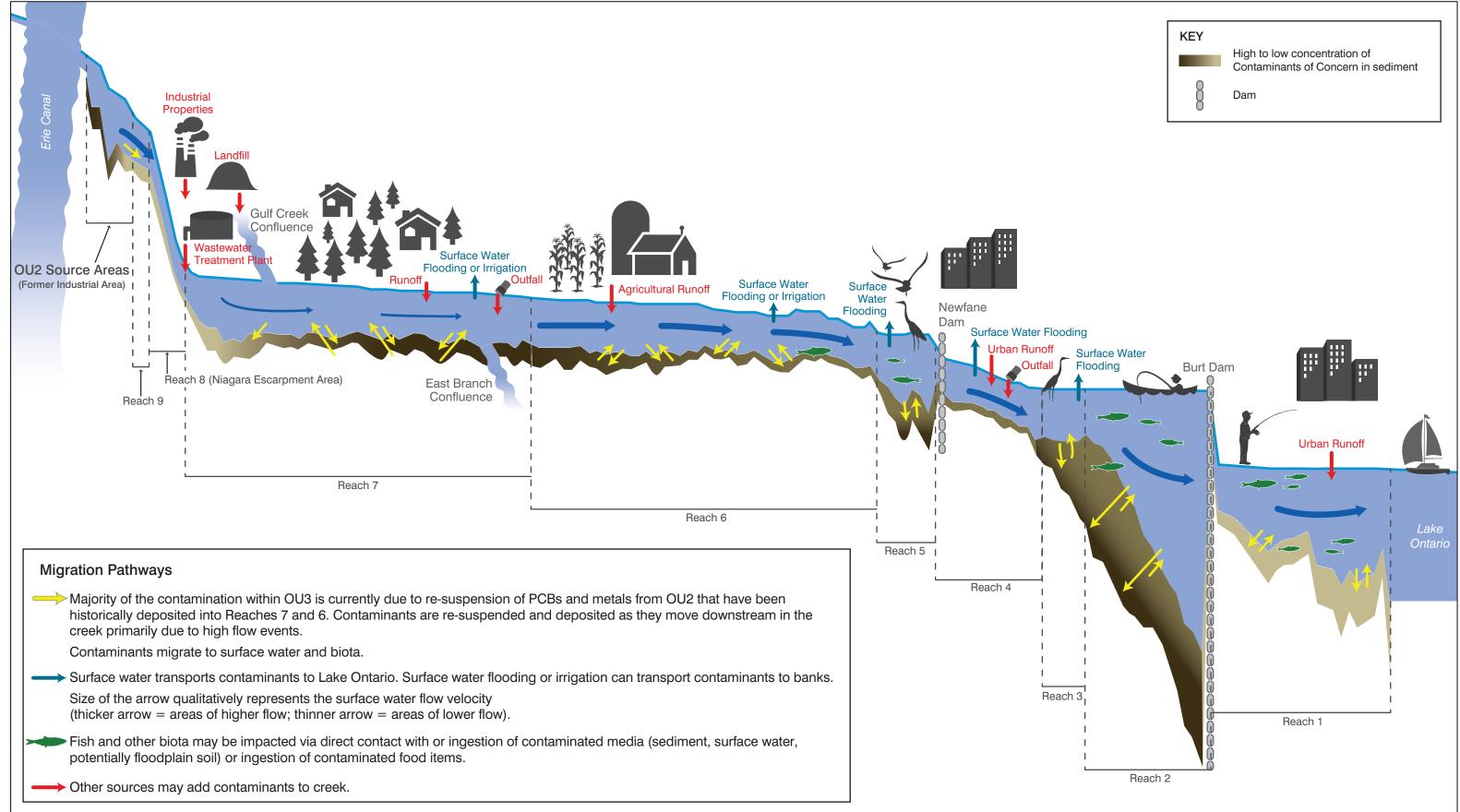
The environmental benefits of the preferred alternative may be enhanced by consideration, during the design, of technologies and practices that are sustainable in accordance with both the EPA Region 2's Clean and Green Energy Policy and NYSDEC's Green Remediation Policy⁸. This would include consideration of green remediation technologies and practices.


While Alternative STA5 is more expensive than Alternatives STA2 and STA4, Alternative STA5 permanently removes contaminated sediment exceeding the RAL and would not require the maintenance of a cover system over large areas required under STA4, or the monitoring of elevated PCB concentrations in sediment prone to erosional forces required under STA2. Although Alternative STA3 removes the greatest volume of sediment, the additional sediment excavation results in substantial cost increase while providing comparable risk reduction to Alternative STA5. Alternative STA5 has a present net worth of \$60,769,000. Similarly, Alternative Soil3 would permanently remove the contaminated floodplain soil from the banks of the Creek, thereby eliminating the potential for contaminated floodplain soil to find its way into the Creek and allow the properties to be used without restrictions. EPA has conservatively estimated, for cost estimation purposes, that additional sampling may identify up to 11 additional acres that would require remediation as part of this OU. Alternative SOIL3 has a present net worth of \$131,307,000.

Based upon the information currently available, EPA believes the preferred alternative meets the threshold criteria and provides the best balance of tradeoffs among the other alternatives with respect to the balancing criteria. EPA expects the preferred alternative to satisfy the following statutory requirements of CERCLA §121(b): 1) is protective of human health and the


environment; 2) complies with ARARs; 3) is cost effective; 4) utilizes permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practicable. The preferred alternative may satisfy the preference for treatment, since, if necessary to meet the requirements of the disposal facilities, contaminated material would be treated to address lead concentrations prior to land disposal. Long-term monitoring and five-year reviews would be performed to assure the protectiveness of the remedy. With respect to the two modifying criteria of the comparative analysis, state acceptance and community acceptance: NYSDEC concurs with the preferred alternative; community acceptance will be evaluated upon the close of the public comment period.

http://www.dec.ny.gov/docs/remediation_hudson_pdf/der31.pdf


⁸ See http://www.epa.gov/greenercleanups/epa-region-2-cleanandgreen-policy and

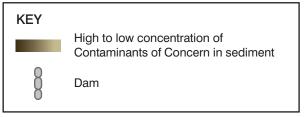


Figure 1 - Site Location Map Eighteen Mile Creek Superfund Site OU3 Proposed Plan Niagara County, New York

Figure 2 - Overview Map Eighteen Mile Creek Superfund Site OU3 Proposed Plan Niagara County, New York

Figure 3- Conceptual Site Model

Eighteen Mile Creek Superfund Site OU3 Proposed Plan Niagara County, New York

APPENDIX V

RESPONSIVENESS SUMMARY ATTACHMENT C

PUBLIC NOTICE

News Releases: Region 02

CONTACT US <https://epa.gov/newsreleases/forms/contact-us>

EPA Seeks Community Input on Proposed Cleanup Plan for Eighteen Mile Creek Superfund Site in Niagara County, NY

July 19, 2024

Contact Information

Stephen McBay (mcbay.stephen@epa.gov) (212)-637-3672

Mike Basille (basille.michael@epa.gov) (646) 369-0055

NEW YORK – The U.S. Environmental Protection Agency is inviting the public to comment on its proposed cleanup plan to address contaminated creek sediment and floodplain soil along a portion of the Eighteen Mile Creek Superfund site in Niagara County, New York. The 30-day public comment period runs from July 19 to August 19, 2024. EPA will host a public meeting at Newfane Townhall located at 2737 Main Street, Newfane, New York on August 1, 2024, at 6:00 p.m. to discuss the cleanup plan.

"EPA's proposed cleanup for this portion of the creek is to remove and dispose the contaminated sediment and floodplain soil that threaten human health as well as fish and wildlife," said Regional Administrator Lisa F. Garcia. "We encourage the public to join our meeting, ask questions and share their views on the proposed plan."

Under the proposed cleanup plan and with EPA oversight, contractors would remove and dispose of contaminated sediment, replace clean fill and monitor sediment, surface water and fish tissue long term. The plan recommends that contractors remove and properly disposed of floodplain soil that is contaminated with lead and polychlorinated biphenyls (PCBs) within a specific 11-acre area. By targeting these specific areas, the EPA can accelerate the cleanup by removing some known sources of contamination while continuing to evaluate the downstream segment of the creek. EPA will propose further cleanup for the areas of the creek not covered by this proposed plan.

Eighteen Mile Creek has a long history of industrial use dating back to the 19th century when it was used to produce hydropower. The main channel of the creek originates just south of the New York State Barge Canal and flows north for about 15 miles until it discharges to Lake Ontario in Olcott, New York. The Eighteen Mile Creek watershed includes the two main tributaries: East Branch of Eighteen Mile Creek and Gulf Creek.

EPA added the Eighteen Mile Creek site to the National Priorities List in 2012 and is cleaning up the site in several phases, or Operable Units (OUs). OU1 addressed residential soil contamination and structural hazards posed by buildings at the former Flintkote Plant property. OU2 focuses on soil cleanup at nearby commercial properties acting as sources of contamination to the Creek Corridor and sediment within the Creek Corridor. The current proposal relates to OU3 and will address contaminated sediment and the contaminated creek floodplain soil, extending roughly 5.3 miles downstream from Harwood Street. OU4 is dedicated to resolving lead contamination in residential soil near the former Flintkote Plant property. Cleanup actions for OU1, OU2, and OU4 are underway, with construction set for Summer 2024, funded by the Bipartisan Infrastructure Law.

Written comments on the proposed plan may be submitted to Christopher O'Leary, Remedial Project Manager, U.S. Environmental Protection Agency, 290 Broadway – 19th Floor, New York, NY 10007 or via email: OLeary.Christopher@epa.gov.

For additional background and to see the proposed cleanup plan, visit the Eighteen Mile Creek Superfund site profile page.

Follow EPA Region 2 on X 🖸 https://x.com/eparegion2 and visit our Facebook 🖸 http://facebook.com/eparegion2 page.

For more information about EPA Region 2, visit our website https://epa.gov/aboutepa/epa-region-2>.

24-055

Contact Us <https://epa.gov/newsreleases/forms/contact-us> to ask a question, provide feedback, or report a problem.

Discover.

Accessibility Statement <https://epa.gov/accessibility/epa

-accessibility-statement>

Budget & Performance <https://epa.gov/planandbudget>

Contracting <https://epa.gov/contracts>

EPA www Web Snapshot

<https://epa.gov/utilities/wwwepa gov-snapshots>

Grants <https://epa.gov/grants>

Connect.

Data <https://epa.gov/data>

Inspector General https://www.epaoig.gov/

Jobs <https://epa.gov/careers>

Newsroom <https://epa.gov/newsroom>

Regulations.gov C https://www.regulations.gov/>

Subscribe

<https://epa.gov/newsroom/email -subscriptions-epa-newsreleases>

Contact EPA <https://epa.gov/home/forms/con tact-epa>

EPA Disclaimers

<https://epa.gov/web-policiesand-procedures/epa-disclaimers>

Hotlines

<https://epa.gov/aboutepa/epahotlines>

FOIA Requests <https://epa.gov/foia>

Frequent Questions

<https://epa.gov/home/frequentquestions-specific-epaprogramstopics>

No FEAR Act Data

<https://epa.gov/ocr/whistleblowe r-protections-epa-and-how-theyrelate-non-disclosureagreements-signed-epa>

Plain Writing

<https://epa.gov/web-policiesand-procedures/plain-writing>

Privacy <https://epa.gov/privacy>

Privacy and Security Notice

<https://epa.gov/privacy/privacyand-security-notice> USA.gov 🖄 <https://www.usa.gov/>

White House C <https://www.whitehouse.gov/>

STATE OF NEW YORK

NIAGARA COUNTY, SS,

Jackie Bilogan, of said county, being duly sworn, deposes and says that she is now and during the whole time hereinafter mentioned was the Clerk of

LOCKPORT UNION-SUN & JOURNAL

A newspaper published in the County and State aforesaid, and that the annexed printed legal # 336446 was printed and published in said paper on the following dates:

07/19/2024

Principal Clerk

Subscribed and sworn to before me this 7.23.24

1eresa 02/26/2026

Teresa L McCarthy

Notary Public

Expiration Date

Notary Public - State of New York
No other of New York
No. 01MC4962698
Qualified in Niagara County
My Comm. Expires Feb. 26, 2026

The EPA Invites the Public to Comment on the Proposed **Cleanup Plan Addressing Sediment and Floodplain Soll** along a Portion of the Eighteen Mile Creek Superfund Site in Lockport, Niagara County, New York

The U.S. Environmental Protection Agency (EPA) has issued a proposed cleanup plan for a portion of the Eighteen Mile Creek Superfund Site in Niagara County, New York.

The EPA is asking the public to comment on the plan during a 30-day public comment period, which begins on July 19, 2024. and ends on August 19, 2024. The proposed plan identifies the cleanup options and EPA's preferred cleanup plan. The EPA's proposed plan regarding the sediment within a portion of the creek, beginning at Harwood Street and extending downstream for approximately 5.3 miles includes excavating and disposing off-site contaminated sediment, placing clean backfill over the disturbed areas, long term monitoring and institutional controls. The preferred cleanup option for the floodplain soil includes excavating and disposing off-site the floodplain soil that is contaminated with lead and polychlorinated biphenyls across approximately 11 acres. Targeting these specific areas will allow the EPA to expedite the cleanup while continuing to evaluate the downstream segment of the creek.

The EPA will hold an in-person public meeting at 6:00 p.m. on August 1, 2024 at the Newfane Town Hall located at 2737 Main Street, Newfane, New York. At the meeting, the EPA will present information on its investigation, elaborate further on the reasons for recommending the preferred cleanup option, and solicit public comment on the proposed cleanup plan.

The proposed cleanup plan can be found online at: www.epa. gov/superfund/eighteenmile-creek. You may also find it at the following repositories: Lockport Public Library, 23 East Avenue, Lockport, New York; Newfane Public Library, 2761 Maple Avenue, Newfane, New York; and at the EPA Records Center, 290 Broadway, 18th Floor, New York, New York.

Written comments regarding the proposed plan must be submitted no later than August 19, 2024 to Christopher O'Leary, Remedial Project Manager, EPA 290 Broadway, 19th Floor, New York, NY 10007, or via email: OLeary.Christopher@epa.gov.

THE EPA PROPOSES A PLAN TO CLEAN UP A PORTION OF THE EIGHTEEN MILE CREEK SUPERFUND SITE NIAGARA COUNTY, NEW YORK

JULY 2024

The Proposed Plan

The U.S. Environmental Protection Agency is seeking public comment on a proposed cleanup plan to address contaminated sediment and floodplain soil at part of the Eighteen Mile Creek Superfund site. The EPA's plan identifies its preferred cleanup options for the portion of the Eighteen Mile Creek site that begins from Harwood Street and extends downstream for approximately 5.3 miles, referred to as the sediment transitional area.

The EPA is proposing to dig up the contaminated sediment and put clean backfill material over disturbed areas. The contaminated material will be disposed of off-site. The EPA is also proposing to dig up the floodplain soil contaminated with lead and polychlorinated biphenyls, also known as PCBs. The EPA cleanup plan includes long-term monitoring and institutional controls, such as existing fish consumption advisories.

Based on the EPA's groundwater investigation within the Creek Corridor, the agency found no historical or active source of volatile organic compounds. The groundwater is not expected to be a significant source of contamination to the creek. As a result, the EPA is recommending that no action is needed to address groundwater within the Creek Corridor.

Get Involved with the EPA's Clean Up!

Public Comment Period:

The EPA is requesting the public's input on its proposed plan from **July 19, 2024** to **August 19, 2024**. The public is encouraged to review the plan, attend the public meeting, and comment on the cleanup options. To provide comments to the EPA, read the document online at:

www.epa.gov/superfund/eighteenmile-creek and send your comments to Christopher O'Leary, Remedial Project Manager via email to OLeary.Christopher@epa.gov or mail to 290 Broadway, 19th Floor, New York, NY 10007-1866 by August 19, 2024.

Public Meeting: A public meeting to present the proposed cleanup plan and take public comments.

Date and Time: August 1, 2024 at 6:00 PM

Location: Newfane Town Hall located at 2737 Main Street, Newfane, NY 14108

Past Activities

The EPA finalized a cleanup plan in 2013 to address contaminated soil located on certain residential properties on Water Street in Lockport, New York. As part of the 2013 plan, the EPA relocated residents at five properties before demolishing the structures. The EPA finished transporting and disposing of debris off-site as well as installing a fence in 2015. The cleanup plan for this portion of the site also indicated that the contaminated soil at the nine, flood-prone residential properties would be removed at the same time that the EPA would address the contaminated sediment and soil in non-residential properties.

In 2017, the EPA selected another plan that included removing sediment in the Creek Corridor from bank-to-bank. The plan also included removing contaminated soil at the Upson Park, the United Paperboard Company, and White Transportation properties, as well as removing contaminated soil from the former Flintkote plant before placing a cap.

The Creek Corridor is the furthest upstream portion of the creek and contains the highest levels of polychlorinated biphenyls, or PCB contamination, which is why the EPA is addressing this portion of the creek first. The agency is coordinating its cleanup of the Creek Corridor with the cleanup of the residential properties that have soil contaminated with lead and PCBs and are prone to flooding along Water Street. Construction for this portion of the cleanup is scheduled to begin this summer.

The EPA selected a third cleanup plan in 2019 to address the residential properties with lead contaminated soil. The EPA's plan to clean up these residential properties is to remove and dispose of off-site the contaminated soil. The agency will clean up at least 33 residential properties; however, the agency is continuing to study the extent of contamination and adjust the number of properties that will need to be addressed. Construction at the first group of residential properties is scheduled to begin this summer.

Background

The Eighteen Mile Creek Superfund site is located in Niagara County, New York. The main channel of the creek starts just south of the canal and flows north for approximately 15 miles until it discharges to Lake Ontario in Olcott, New York. The Eighteen Mile Creek watershed includes the East Branch of Eighteen Mile Creek and Gulf Creek tributaries.

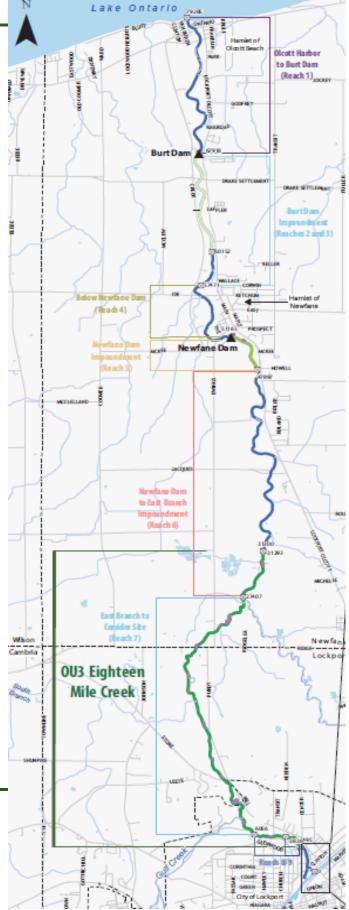


Figure 1 – Eighteen Mile Creek Site Location Map

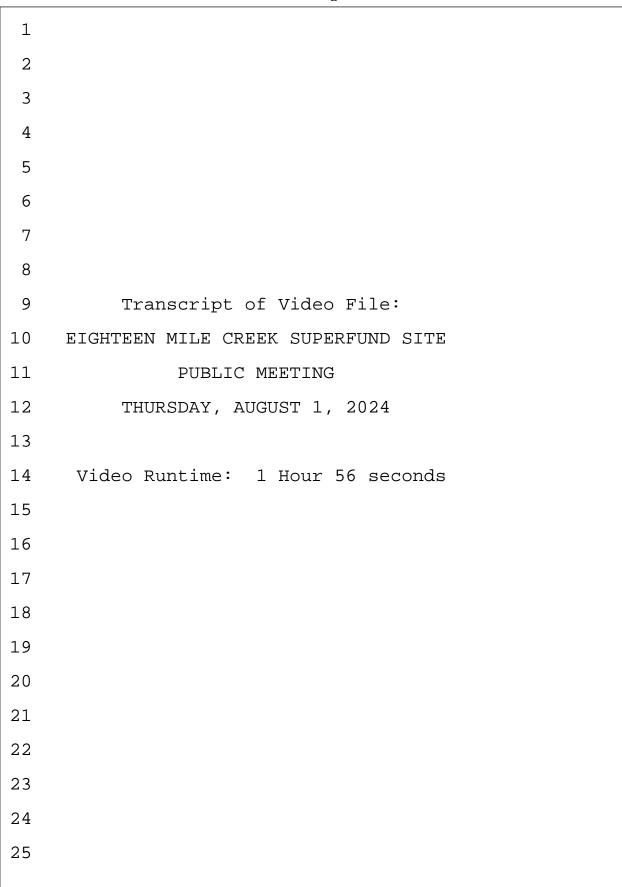
THE EPA PROPOSES A PLAN TO CLEAN UP A PORTION OF THE EIGHTEEN MILE CREEK SUPERFUND SITE NIAGARA COUNTY, NEW YORK

JULY 2024

EPA Contact Information

Michael Basile Community Involvement Coordinator (646) 369-0055 basile.michael@epa.gov Christopher O'Leary Remedial Project Manager (212) 637-4378 oleary.christopher@epa.gov

Information Repositories


EPA Superfund Records Center 290 Broadway New York, NY 10007 (212) 637-4345 Lockport Public Library 23 East Avenue Lockport, NY 14094 (716) 433-5935

Newfane Public Library 2761 Maple Avenue Newfane, NY 14108 (716) 778-9344

APPENDIX V

RESPONSIVENESS SUMMARY ATTACHMENT D

PUBLIC MEETING TRANSCRIPT

EIGHTEEN MILE CREEK SUPERFUND SITE Meeting

	Page 2
1	(Beginning of Video Recording.)
2	MR. BASILE: Can I have can I have your
3	attention, please?
4	First of all, let me I'll introduce
5	myself. My name is Mike Basile. I'm the Public
б	Affairs Officer and Community Involvement Coordinator
7	for the United States Environmental Protection Agency.
8	I'd like to welcome you to the Eighteen Mile Creek
9	proposed plan public meeting. Thank you for taking the
10	time to come out for this meeting tonight.
11	I just want to give you a few little ground
12	rules, okay? The meeting is being videotaped. It will
13	eventually be transcribed into the public record and
14	we'll have a transcript. So I ask you to just give our
15	speaker, the remedial project manager, the opportunity
16	to make the presentation, and then when he's done,
17	we'll go into a question and answer period at which
18	time I will come up to you with this microphone, and I
19	will ask you to, just remember, state your name, spell
20	your name, and give us your address for the public
21	record. It will then go into the official transcript.
22	We have a few individuals from different
23	agencies that are here this evening. Some of them will
24	not be speaking. Some may be answering questions, and
25	I'd like to recognize them at this time. From the New

EIGHTEEN MILE CREEK SUPERFUND SITE Meeting

1	Page 3 York State Department of Health, Sara Bogardus. Sara
2	is right here. From the New York State Department of
3	Environmental Conservation, Steve Moeller. Thank you,
4	Steve. From our agency who won't won't be speaking,
5	but possibly will be answering some questions, is Pete
6	Mannino from our Superfund program, right here. Kelly
7	Gaffney from our Superfund program, and Marian Olsen,
8	our risk assessor with EPA.
9	We also have two other individuals I'd like
10	to recognize at this time: Scott Collins from Cornell
11	Cooperative Extension, he works on Eighteen Mile Creek,
12	the area of concern, and he's the remedial coordinator,
13	Scott. And from the City of Lockport, Mark Devine, the
14	Third Ward Alderman from the city of Lockport. Mark.
15	Very good. Okay. Very good.
16	MR. DEVINE: Well, you've got a county
17	legislature here, too, that just came in, Carla
18	Speranza.
19	MR. BASILE: Oh, just came in. Your first
20	name again?
21	MS. SPERANZA: Carla Speranza. I represent
22	part of lower town and the north end of the City of
23	Lockport.
24	MR. BASILE: Carla, welcome and welcome
25	welcome to the meeting. Okay.

1	Page 4 MR. DEVINE: And also Michelle
2	MR. BASILE: The form
3	MR. DEVINE: Roman, the former mayor of
4	Lockport.
5	MR. BASILE: The the former mayor the
6	former mayor of Lockport, Michelle Roman. Thank you.
7	Thanks very much, Mark. Thank you very much.
8	At this time, I'd like to call upon our
9	remedial project manager, Christopher O'Leary, who will
10	make the presentation and explain to you the history of
11	the site and why we're here this evening. Christopher.
12	MR. O'LEARY: Great. Thank you, Mike. Good
13	evening and welcome to the Eighteen Mile Creek Operable
14	Unit 3 Proposed Plan Public Meeting. I appreciate and
15	thank everyone for listening to the next steps with
16	regards to the site. My name is Chris O'Leary, and as
17	mentioned, I'm the remedial project manager for the
18	Eighteen Mile Creek Superfund site.
19	Mike did the team introductions already, but
20	just to call out everyone again, I am the remedial
21	project manager. Mike Basile is the community
22	involvement coordinator. Pete Mannino is the western
23	New York remediation section supervisor. Marian Olsen,
24	down there in purple shirt, is the human health risk
25	assessor. And then we have representatives from the
1	

	Page 5
1	New York State Department of Health and the New York
2	State Department of Enviromental Conservation.
3	Tonight's agenda. I'm here tonight, as
4	mentioned, to present to everyone the Proposed Cleanup
5	Plan for the Eighteen Mile Creek Superfund site. This
6	presentation will provide an overview of the Proposed
7	Cleanup Plan and more details can be found within the
8	July 19th Proposed Plan Document. The agenda will be
9	split into five parts and will include an overview of
10	the Superfund process, a brief site background, the
11	cleanup options and preferred alternatives, EPA's next
12	steps, and lastly, the meeting will be open to question
13	and answer, comment period. This presentation should
14	last about 20 minutes.
15	To begin, I would like to explain a little
16	bit about Superfund or something called CERCLA, which

bit about Superfund or something called CERCLA, which stands for the Comprehensive Environmental Response Compensation and Liability Act. CERCLA was passed in 1980 by Congress. The law provides funding for cleanup of hazardous waste sites. It also grants the EPA the authority to require potential responsible parties to pay for cleanup activities.

This next slide here is a flow diagram of
the Superfund process. As seen here in the top left,
blue box (laser pointer being used to indicate location

Page 6 1 of discussed material), this is an initial discovery of 2 the site, and it begins with the preliminary 3 assessment.

4 The -- the site is then evaluated for 5 possible addition to the National Priorities List, and 6 at that time it would become an official Superfund 7 site, the second box here (laser pointer being used to indicate location of discussed material). A remedial 8 9 investigation is conducted to understand the nature and 10 extent of the contamination at the site and a feasibility study is performed to analyze the different 11 12 methods available to clean up the site.

13 Then we issue a proposed plan, which is what we are here tonight to talk about. After listening to 14 the community's concerns and comments, we will take all 15 16 of that into account and issue something called a record of decision, which documents the selected remedy 17 for the site. Then we move on to the remedial design 18 and the remedial action phase, which is when we sit 19 down with the contractors, we review how the cleanup 20 21 will proceed and discuss next steps that are taken to 22 implement and construct the remedial design, as you can 23 see down here (laser pointer being used to indicate 24 location of discussed material). 25 Then we have the construction completion

	D 8
1	Page 7 phase and the site then is deleted from the National $\$
2	Priorities List and to be reused by the community.
3	As you can see with the blue or sorry, the green
4	bubble here (laser pointer being used to indicate
5	location of discussed material), community involvement
6	is important and it is included with all steps of the
7	Superfund process. So again, I'd like to thank
8	everyone for coming out tonight.
9	A little background information on the
10	Eighteen Mile Creek site. The site is located in
11	Niagara County, New York. The main channel of the
12	Eighteen Mile Creek originates just south of Erie Canal
13	and flows north for about 15 miles until it discharges
14	until into Lake Ontario located in Olcott, New York.
15	The creek watershed includes two main tributaries, the
16	east branch of Eighteen Mile Creek and Gulf Creek.
17	Eighteen Mile Creek has had a long history
18	of industrial use dating back to the 19th century when
19	it was used as a source of hydropower. There were
20	several properties along and adjacent to the creek
21	where various forms of manufacturing occurred,
22	resulting in contamination of the soils and creek
23	sediments.
24	The New York State Department of
25	Environmental Conservation conducted numerous studies

1	Page 8 of Eighteen Mile Creek before the site was listed on
2	the National Priorities List in 2012. EPA, since then,
3	has conducted supplemental investigations to build upon
4	what the state has already done.
5	Now, I will provide just a brief overview of
6	the site. Site remediation activities are sometimes
7	separated into different phases or operable units, OUs,
8	so that remediation of different aspects of the site
9	can proceed separately, resulting in a more efficient
10	and expeditious cleanup of the entire site. The
11	Eighteen Mile Creek site has been divided into operable
12	units to address the contamination more efficiently in
13	this case. OU1 addresses the risk associated with
14	residential soil contamination at nine residential
15	properties located on Water Street and threats posed by
16	the former Flintkote Plant Building seen on the figure
17	in blue oops up here. This is OU1 (laser pointer
18	being used to indicate location of discussed material).
19	OU2 addresses the contamination sediment in
20	the approximate 4,000-foot segment of the creek
21	corridor seen in the figure in yellow, red, purple, and
22	green. So yellow, red, purple, and green (laser
23	pointer being used to indicate location of discussed
24	material). This is what we consider OU2.
25	OU4 addresses lead contamination soil at

	meeting
1	Page 9 certain residential properties on Mill Street and
2	several other adjoining residential streets east of the
3	former Flintkote plant property seen in orange here
4	(laser pointer being used to indicate location of
5	discussed material).
б	I'm here tonight to talk to you about
7	Operable Unit 3 and, specifically, about the cleanup
8	plan to address the sediment in this portion of the
9	site. Although EPA's Operable Unit 3 investigation of
10	the creek initially included the full length of the
11	creek downstream of Harwood Street, discharging into
12	Lake Ontario, EPA has redefined the Operable Unit 3
13	area.
14	You might be wondering why it was redefined?
15	It was due to the large size and complexity of the
16	original Operable Unit 3, so it was subdivided into
17	smaller manageable pieces. The original piece started
18	at the end of OU2 and had discharged all the way up at
19	Lake Ontario. So what you see here in the red circle
20	(laser pointer being used to indicate location of
21	discussed material) is the new defined Operable Unit 3
22	area. The downstream extent of the new subset area was
23	determined based on creek characteristics and sediment
24	mixing. It was also subdivided this way because of the

25 contamination levels to be discussed in the next slide.

	Page 10
1	The cleanup plan is addressing specific
2	areas as a means of source control, the subset area the
3	full length of the creek beginning from Harwood Street
4	extending downstream for about 5.3 miles. Adjacent
5	floodplain soils that have been impacted by the creek
6	are also included. It's also important to note that
7	any portions of the creek downstream of OU3 that are
8	not included will be addressed under further operable
9	units.
10	Operable Unit 3 is comprised of sediments
11	within a portion of the creek referred to as the
12	sediment transitional area or STA. I will talk about
13	the STA further now. As you may recall, the
14	contaminants of concern for Eighteen Mile Creek are
15	PCBs and lead.
16	The previous investigations performed
17	revealed that within the STA area, again, this red
18	circle on the figure, contains about 21 percent of the
19	overall overall mass of PCBs within the creek. It
20	also contains the highest contaminant concentrations in
21	the sediment downstream of OU2. Other characteristics
22	of the something we call the STA, is it erodes
23	easily and is acting as a source of contamination to
24	the rest of Eighteen Mile Creek and has a large area of
25	the creek and a large volume of sediment.
1	

1	Page 11 Any floodplain soils adjacent to Operable
2	Unit, these include residential, commercial, and
3	agricultural properties, will be included. A minimum
4	of 29 adjacent floodplain properties will be addressed
5	in this Proposed Plan Action. The EPA is aware that
6	additional sampling is necessary to further define
7	areas that may require remediation. Additional
8	properties within the STA may include, based upon
9	future sampling and risk assessments.
10	As part of the remedial investigation and
11	feasibility study, remedial action objectives or RAOs
12	were developed. Remedial action objectives are goals
13	to protect human health and the environment. I won't
14	read this slide word for word, but in summary, these
15	bullets state that current and future risk will reduce,
16	prevent sorry, reduce, prevent, and the migration of
17	contaminants will be minimized. These RAOs are
18	consistent with upgradient Record of Decisions for
19	Operable Units 1 and 2.
20	To achieve the RAOs, EPA has set goals, or
21	something we refer to as preliminary remediation goals
22	or PRGs, for the contaminated soil to obtain a degree
23	of cleanup that ensures the protection of human health
24	and the environment. As you can see here on the chart,

25

on the lower bottom of the slide, the interim cleanup

	Page 12
1	goal for PCBs in sediment is one part per million. The
2	PRGs are consistent with the PRGs established in the
3	OU2 remedy.
4	Next, we will discuss the goals for the
5	floodplain soils. EPA has selected preliminary
6	remediation goals for cleaning up of the soil, as well.
7	These values have been selected based on land use of
8	either residential or commercial for PCBs and lead.
9	More details can be found in the Proposed Plan Document
10	regarding to these PRGs.
11	Now that we've discussed the site
12	background, we're aware of the contamination and the
13	cleanup goals for the sediment and floodplain soils, I
14	would like to now review how the remediation will
15	accomplish these goals. The EPA evaluates the
16	alternatives against nine criteria to ultimately select
17	a preferred remedial alternative. The first two are
18	threshold criteria, meaning they must be met. It must
19	protect human health in the environment on or near the
20	site.
21	It also must meet all federal, state, and
22	environmental regulations. The next five criteria, 3
23	through 7, are known as balancing criteria. They have
24	trade-offs and are assessed individually so that the
25	best option can be chosen given the site-specific data

Page 13

1 and conditions.

The final two, 8 and 9, are modifying criteria because new information or comments from the community may provide and modify the preferred remedial alternative and cause other alternatives to be considered.

Now that we're aware of how each alternative 7 is evaluated, I want to discuss them individually. 8 9 There are five alternatives that we have developed for 10 the sediment cleanup of OU3. The first alternative looks at what happens if we take no action. This 11 alternative is used as a baseline to compare to other 12 13 alternatives. Under this alternative sediment --14 sorry. Under this sediment alternative, there will be no remediation conducted at the site for the sediments. 15 16 The -- the alternative also does not include any monitoring. The cost of this sediment alternative is 17 18 \$O.

19 The second alternative, STA 2: Monitored
20 Natural Recovery, Long-Term Monitoring and
21 Institutional Controls for sediment relies on naturally
22 occurring transport and deposition of cleaner, upstream
23 material to reduce exposure to contaminant
24 concentrations over time through burial.
25 This alternative also includes long-term

	D 44
1	Page 14 monitoring, which would develop be developed during
2	the remedial design to track PCB concentrations in
3	sediment, surface water and fish tissue. It also
4	includes institutional controls. An example of an
5	institutional control would be the, "do not eat fish
б	consumption advisory." No sediment would be removed
7	under this alternative. And the cost for STA number 2
8	is \$1,999,000.
9	The third alternative STA 3: Excavation,
10	Long-Term Monitoring and Institutional Controls
11	includes the excavation of all sediment. Consistent
12	with the response selected for the OU2 remedy of a
13	bank-to-bank excavation down to native material. This
14	alternative also includes long term monitoring and
15	institutional controls. An estimated 96,000 cubic
16	yards of sediment would be removed under this

17 alternative. The cost is \$82,440,000.

Alternative four includes the excavation of 18 19 approximate -- oh, sorry. Let me restart. Alternative 20 four, STA 4: Pre-Dredge to Accommodate Cap, Capping, Long-Term Monitoring and Institutional Controls 21 22 includes the excavation of approximately one foot of contaminated sediment in areas that exceed the remedial 23 24 action levels. This alternative also includes long-25 term monitoring institutional control, an estimated

	Meeting
1	Page 15 41,000 cubic yards of sediment would be removed, and
2	the cost is \$53,025,000.
3	Last, the fifth alternative, Excavation to
4	Remedial Action Levels, Long-Term Monitoring and
5	Institutional Controls is excavation of contaminated
6	sediment above the remedial action levels. This
7	alternative also includes long-term monitoring and
8	institutional controls. An estimated 40 sorry,
9	54,000 cubic yards of sediment would be removed under
10	this alternative. The cost is 60,700,000 sorry,
11	\$60,769,000.
12	Now we will discuss the alternative for the
13	Floodplain Soils. The first alternative looks at what
14	happens, again, if we take no action. This
15	alternatives only use as a baseline to compare to the
16	other alternatives. This has no remediation, no
17	monitoring, and zero cubic yards of floodplain removal.
18	The cost for soil 1, floodplain soil alternative is \$0.
19	The alternative 2, titled Limited Floodplain
20	Soil Excavation, Soil Cover, and Institutional
21	controls, which lead, and PCB contaminated floodplain
22	soil would be addressed through a combination of
23	excavation and/or installation of a cover system based
24	on land use. This alternative would require
25	institutional controls due to the contamination
1	

·	
1	Page 16 remaining in place. An institutional control may
2	include environmental easements, restrictive covenants,
3	and deed notices. An estimated 5,000 cubic yards of
4	sediment would be removed. Sorry, 5,000 cubic yards of
5	soil would be removed. The cost is \$39,363,000.
6	Alternative three, titled Floodplain Soil
7	Excavation and Off-Site Disposal includes the
8	excavation and off-site disposal of PCB and lead
9	contaminated floodplain soil exceeding the remedial
10	goals adjacent to the STA regardless of land use.
11	These areas would be back filled with clean material
12	and60, topsoil. This alternative would require
13	institutional controls due to contamination remaining
14	in place at commercial properties. An estimated 39,000
15	cubic yards of soil would be removed. The cost is
16	estimated at \$131,307,000. In the next slide, I will
17	provide the EPAs Preferred Alternatives for both of
18	these topics.
19	On this slide, these two tables summarize

Τ9 ıae, ese LWO tables summa EPAs Preferred Alternatives. The top table is for the 20 sediment alternative, and the bottom table is a summary 21 22 for the soil alternative. The charts also include the amount of contaminated soil and sediment that would be 23 24 removed under each alternative as well as the cost for 25 each option.

_	0
1	Page 17 To summarize, the preferred sediment cleanup
2	is STA 5, excavation of sediment above remedial action
3	levels in Eighteen Mile Creek OU3. The preferred soil
4	cleanup, soil three, is a targeted removal of PCBs and
5	lead contaminated flood plain soil exceeding the
6	preliminary remediation goals. The total cost for the
7	Preferred Alternatives for OU2 is \$192 million, 670
8	sorry, \$192,076,000. A further breakdown of the
9	alternative costs are presented in appendix D of the
10	feasibility study report.
11	The next steps following this meeting is the
12	EPA relies on public input to ensure the concerns of
13	the community are considered in selecting an effective
14	remedy for each Superfund Site. To this end the
15	proposed plan has been made available to the public for
16	public comment period, which began on July 19th and
17	ends August 19th. Comments received at this meeting as
18	well as comments written during this public comment
19	period will be included in the appendix of the record
20	of decision. The record of decision will memorialize
21	the selection of the remedy for this operable unit
22	number three.
23	Copies of the proposed plan and supporting
24	documentation are available at the following
25	information repositories; the Lockport Public Library,

	Page 18
1	the Newfane Public Library, and EPA - Region II
2	Superfund Records Center. Tonight's presentation and
3	all additional site documents can also be found on the
4	Eighteen Mile Creek Superfund Site website webpage.
5	The link is here.
6	Written comments on the proposed plan should
7	be addressed to me at the address you see here on
8	the screen. I will leave this slide up for a few
9	minutes.
10	And now following this presentation of
11	material, you probably have some questions. So I want
12	to thank you for listening to the presentation. I will
13	turn things back to Mike Basile with the microphone so
14	that he can answer and take some questions. Thank you.
15	MR. BASILE: Okay. Thanks very much, Chris.
16	Really appreciate it. In addition to the information
17	that's on the screen, on your agenda, there's
18	information there and how you can reach Chris O'Leary
19	as well.
20	We really value community input. It's truly
21	the cornerstone. I remember when this site went on the
22	National Priorities List in 2012, and the first meeting
23	we held at Cornell Cooperative Extension in Lockport,
24	we must have attracted close to 100 people and there
25	there was a there still is an awful lot of interest.

1	Page 19 As Chris indicated, we have been actively
2	involved with doing a lot of sampling and activities
3	and a a lot of work will begin probably within the
4	next month or two. You if you live in the Lockport
5	area, in the city of Lockport, you've probably seen an
6	awful lot of the equipment being staged and we're
7	we're really happy to see that. And we're going to be
8	reaching out to many of the residents who live in that
9	area.
10	You must remember one thing, I as a
11	community involvement coordinator, Eighteen Mile Creek
12	isn't your typical Superfund Site. When when we
13	deal with Superfund Sites there many times, there
14	are abandoned facilities or companies that were in
15	business, who are no longer in business that have
16	impacted a community and they could be 20, 30 or 40
17	acres. This site is a site that I call, rambles. It
18	rambles 15 miles from the city of Lockport up towards
19	Olcott, Newfane, towards Wilson, and out into Lake
20	Ontario. It's a massive site.
21	And as Christopher indicated that we have an
22	awful lot of operable units, and tonight we're here to
23	get your input on the operable unit that he's outlined.
24	We'll be more than happy to entertain questions at this
25	time. And remember, I'll bring the mic to you, and
1	

1	Page 20 I'll ask you to state your name, spell your name, and
2	your address. Yes.
3	MR. WOODWARD: Thank you. My name is Jim
4	Woodward (phonetic). I live on West Creek Road with my
5	wife and in Newfane, and I do have a question.
6	Where did you come up with a 400 PPM level for lead?
7	Because in the hazardous waste business at five
8	milligrams per liter is considered a hazardous waste,
9	and you folks have deemed 400 to be acceptable?
10	MR. O'LEARY: Okay.
11	MR. BASILE: Okay. There you go.
12	MR. MANNINO: Thanks. I just wanted to
13	clarify. So you you correct about the the
14	concentrations, but there are two different analytical
15	methods, one is a T clip, total, and the other one is
16	the one is the T clip, and the other one is the
17	totals. So
18	Correct. So they used to divide by 20
19	methods. So you would you'd go five times 20, 100
20	would be acceptable.
21	Correct. But so I'm I'm familiar with
22	the dilution standard that you're talking about, but
23	our cleanup goals are based on New York State and EPA
24	promulgated standards for health-related purposes. And
25	I'll turn it over to Mary and our human health risk

	Tricting De M
1	Page 21 assessor to talk about the 400 number and how it's
2	consistent with EPAs updated policy, right? But I just
3	wanted to clarify the T clip versus the totals, just so
4	that everyone is aware of that.
5	MR. BASILE: Stay right there. Mary, there
6	you go. There you go.
7	MS. OLSEN: Thank you. Okay.
8	Thank you for your question. So the way
9	that EPA assesses lead is, we have two models. We use
10	the adult lead model for adults, and we have a
11	children's model, which is the integrated exposure
12	uptake biokinetic model.
13	And EPA is going through a process right now
14	of looking at the approaches that we're using. And in
15	the proposed plan, we talk about our goal is actually
16	an average of less than 200 and no blood lead level
17	above five micrograms per deciliter. So those are the
18	values we will be using. The 400 is basically a not to
19	exceed value within this whole process that we use for
20	the lead. And the models and other information are
21	available on EPA's webpage for the lead models. IEUBK
22	for children and adult lead, which is for older
23	individuals.
24	MR. BASILE: Okay. Another question? Any
25	other questions?

r	Intering D. 44
1	Page 22 They had they had two mics, but
2	unfortunately only one of the mics works tonight.
3	MR. WOODWARD: Thanks, Mike.
4	MR. BASILE: Here's your
5	MR. DEVINE: All right. Couple things here.
6	Nice seeing you again, Chris.
7	MR. O'LEARY: Yes.
8	MR. DEVINE: And I'm going to address a
9	couple of the two phases of the project. The first
10	phase I'm going go right back to first phase, your
11	cleanup on Mill Street, the soil on Mill Street area,
12	and the adjacent neighborhoods. Okay. I know that you
13	guys have been staging, but have you actually been
14	starting to take soil out yet?
15	MR. O'LEARY: We have not. We are the
16	staging area has been set up and the goal is
17	MR. MANNINO: Approximately two weeks for
18	the first property. The shovel should be in the
19	ground.
20	MR. DEVINE: Okay. And now my second
21	question pertaining to that is: When you guys start
22	excavating, are you going to be taking the soil right
23	out or is it going to be stored down there at Blue
24	Blocks?
25	MR. MANNINO: Yeah. No, it's a direct load
1	

	Dogo 1 2
1	Page 23 right on the top
2	MR. DEVINE: It's going to be direct load?
3	MR. MANNINO: to the disposal.
4	MR. DEVINE: Okay. Where is the disposal
5	facility?
6	MR. MANNINO: We're currently looking at
7	Model City and we're working through the administrative
8	process to get that approved.
9	MR. DEVINE: Where? In Lewiston? That's
10	where
11	MR. O'LEARY: Yeah. Lewiston, Niagara
12	County.
13	MR. DEVINE: So down in Lewiston? Okay.
14	Thank you.
15	MR. BASILE: Okay.
16	MR. DEVINE: And now that well, now I
17	want to just ask about your second phase. So I see you
18	since last time I talked to you, when I met you last
19	year. And when you took over as project manager, we
20	had talked about expanding some of your testing at the
21	Plank Road area, right by our wastewater treatment plan
22	in Lockport.
23	MR. BASILE: Uh-huh.
24	MR. DEVINE: With the with your new, you
25	know, vision of what needs to be done. Did you expand

1	Page 24 your testing down the plank road area for those six
2	residents that go Stone Road?
3	Yeah. So what we'd like to do with that
4	area. So that area along Plank Road that was sampled
5	is a low-lying flood plain area, right?
6	MR. MANNINO: Right.
7	MR. DEVINE: So after the record of
8	decision is signed, we enter
9	I apologize.
10	we enter what's called the remedial
11	design phase where we develop all the specifications on
12	how the clean up is going to be done. The first step
13	of that process is to go out and collect additional
14	data to determine exactly what our cut lines are going
15	to be. Right now, as Chris mentioned, we have limited
16	data and we need to collect additional data.
17	So the when you refer to as the expansion
18	is the additional step out to see how much soil has to
19	be excavated. Now, what all the what the data shows
20	along these floodplain areas is, as you move up in
21	elevation, in OU3 and further downstream, the
22	concentrations significantly drop off once you are
23	outside of the floodplain. So we can share that type
24	of data with you.
25	But so the the simple answer to your

	Dogo 25
1	Page 25 question is, that additional sampling would happen as
2	part of the pre-design investigation phase, which would
3	happen after the record of the decision, not before it.
4	Thank you. Okay.
5	MS. KEENY: Thank you very much. I hope you
6	don't mind if I don't stand, but I unfortunately broke
7	my back in two places. So anyway, I am here tonight to
8	really represent Shirley Nicholas. Shirley Nicholas is
9	the lady who was responsible for the initial
10	investigation into the situation in lower town. I'd
11	like to share the picture with you if you wouldn't
12	mind.
13	MR. O'LEARY: Okay.
14	MS. KEENY: Now, Shirley was approximately
15	4'4", weighed about 75 pounds
16	MR. O'LEARY: Uh-huh.
17	MS. KEENY: and had a heart of gold. And
18	her goal was to see to it that the contamination in
19	lower town was remediated as she and the number of
20	people that are with me tonight I'd wish to introduce.
21	Our legislator for that area, Carla Speranza; Mark
22	Devine in the back who walked the area with us; our
23	previous mayor, Michelle; and there's a gentleman
24	that's sat with us tonight that walked.
25	Now, we would go from house to house,

1	Page 26 knocking on the doors, asking about the health. One
2	health house in particular, the gentleman had
3	cancer, the wife had cancer, they died from cancer.
4	The Chihuahua died from cancer and the son died from
5	cancer. I was present at Shirley's home when they came
6	in from New York City and they told her that she should
7	tear up her vegetable garden. She should not eat any
8	fruit from the trees.
9	That in addition to that, her shoes
10	should be removed before she went in the house. That
11	the pads of the dog and the cat, they should all be
12	washed. And as we went on further going down the
13	street, we learned the same thing. They had the same
14	type of contamination. There was a great deal of
15	cancer there.
16	And I cannot say enough nice things about
17	Mike Basile because Mike has stayed with us year after
18	year after year, trying to see to it that we do have
19	the correct remedial recommendations that are down
20	there. And then I want to say thank you, thank you,
21	thank you to Kathy Hochul, because it was Kathy Hochul
22	who came to Lockport. And when she was in Congress,
23	she assured us of the \$22 million for the cleanup.
24	Without her efforts and without Shirley, there would be
25	nothing being done today.

1	Page 27 Our concern all along has been the health of
2	the people in lower town. And apparently it flows
3	beyond that. It goes down through Newfane, to your
4	fishing area, where your fish are contaminated. We
5	have been told that to eat one fish could very much
6	endanger your life because of the contamination. And I
7	know everyone that is here, you know, we're all
8	concerned about our brothers and sisters. You know, we
9	we we're just here to help one another. And
10	again, I cannot say enough nice things about Mike
11	Basile, and thank you so much for listening to me.
12	MR. O'LEARY: You're welcome. Thank you.
13	MR. BASILE: Thank you, Jean. Thanks very
14	much.
15	MS. SPERANZA: Thank you. It's going to be
16	tough to follow that, but I'll try. Carla Speranza, I
17	live at 6438 Lincoln Avenue in the town of Lockport.
18	However, I am the legislator for District 12, which
19	represents this the part of the City of Lockport and
20	northward to Old Niagara Road. But I also grew up out
21	on Johnson Road in between Stone and 104, adjacent to
22	Purdy Road. So very familiar with that, this part of
23	Lockport, and Newfane.
24	And I would like, Mr. O'Leary, if you could,
25	could you go back a few slides in the presentation?
1	

	Do as 19
1	Page 28 I'd like to just do kind of a deeper dive. You had
2	your we had the recommendation slide. Can you go
3	back to the detailed slides for each of the EPA's
4	recommendations? I just want to check my
5	MR. O'LEARY: The preferred this one?
6	MS. SPERANZA: Right, right.
7	MR. O'LEARY: Okay.
8	MS. SPERANZA: So STA 5 and SOIL 3. Yes.
9	Could you go back to to the detailed slides for
10	each?
11	MR. O'LEARY: So STA 5 is this one?
12	MS. SPERANZA: Yes. Okay. Just in my head,
13	I wanted to clear because one of the proposed options
14	was only going one foot down. And I just in my head, I
15	wanted to make sure that this the recommendation or
16	the preference, the EPAs not limited to one foot depth
17	of excavation that you are going to do. It's basically
18	more we are looking to go as deep as we sort of need to
19	go here.
20	MR. O'LEARY: We excavate
21	MS. SPERANZA: Is that a correct assumption?
22	MR. O'LEARY: Correct. We will excavate
23	until we get to the remedial action level. The one
24	that you were referring to is this one, STA 4. That's
25	the one foot and then the capping. So we prefer and
1	

	Page 29
1	the preferred alternative for the EPA is STA 5.
2	MS. SPERANZA: Okay. Thank you. And can
3	you take us to the number 4, the SOIL 4?
4	MR. O'LEARY: SOIL 3?
5	MS. SPERANZA: Okay, SOIL 3. Okay.
6	MR. O'LEARY: SOIL 3. That's this one.
7	MS. SPERANZA: So basically the same kind of
8	approach?
9	MR. O'LEARY: Correct. This would be soil
10	excavation and off-site disposal. Correct.
11	MS. SPERANZA: Okay. Of
12	MR. O'LEARY: Of the floodplain soils.
13	MS. SPERANZA: Okay, thank you. Thank you,
14	Mr. Basile.
15	MR. BASILE: Thank you.
16	Any other questions? Are there any other
17	questions? Yes.
18	MR. CLARK: My name is Bill Clark. I live
19	in Olcott. And Mike and I go way back. We worked on
20	the Love Canal project some I can't believe you're
21	not retired yet. Anyway.
22	MR. BASILE: We we were younger then.
23	Just a little younger then, Bill.
24	MR. CLARK: I chair the Town of Newfane
25	Planning Board and, you know, I I think, you know,

	Page 30
1	what you're proposing here, I mean, it's got to be
2	fantastic. I mean, you're you're talking about
3	spending almost \$200 million, you know, to help clean
4	up the Eighteen Mile Creek. And much of the work is
5	going to be done in the town of Lockport, City of
6	Lockport, but it's got to be a huge benefit for the
7	town of Newfane. You know, as we look at the cleaning
8	up the creek that that, you know, as it goes to the
9	all the way to Lake Ontario in Olcott.
10	I guess the the the question I have
11	is, you know, I think we we also, here in Newfane,
12	have some more immediate problems. You know, I think
13	you're looking at you know, a lot of what the
14	contamination you're looking at here, the sediment and
15	so forth, you know, what was put there that you're
16	cleaning up was put there decades ago and, you know, it
17	needs to be cleaned up. That's very clear.
18	But also, even today, you know, if we look
19	at our tourism economy here in Newfane and and all
20	the the fishing and tourism activity that occurs in
21	Olcott, you know, we're dealing with pressing
22	environmental and pollution problems this day and we're
23	continuing, you know, to, you know, deal with
24	pollution, you know, that that is going on, you
25	know, as we speak here.
1	

Page 31 You know, specifically, you know, we're
told, you know, that, you know, there may be pollution
issues related to agricultural runoff. There may be
pollution issues related to industrial output. There
may be pollution issues related to sewage treatment.
There may be sewage you know, contamination issues
related to birds and avian, you know, and gulls and
and and cormorants and and others.
You know, so, you know, there's a whole, you
know this project here looks at, you know, some of
the issues that go way back and it it targets a very
defined area under the Superfund and I appreciate that.
But I think I guess I'm talking more to, like, some of
the State Environmental and Health folks that are here.
You know, you know, we've been told that all of these
potential contamination issues are going on around us,
but we don't really see any comprehensive testing going
on to determine what it is.
You know, we're told, it's it's it's,
you know, the the agriculture going on. We're told
it's suburban. We're told it's the, you know the,
you know the industrial. We're told it's, you know,
all these different issues. But, you know and, you
know, we're looking I think at this stage, also, to
have some kind of comprehensive testing done, you know,

1	Page 32 so that we can you know, we can stop this or control
2	or manage this this kind of pollution that we're
3	seeing.
4	MR. BASILE: Thank you, Bill. Thank you
5	very much. And I and I am sure, at the end of this
6	meeting, please avail yourself of the state
7	representatives that are here from the DEC and DOH.
8	Any other questions? Any other questions?
9	Yes, sir.
10	MR. HELLNER: Yeah. Hi, I am Brian Hellner,
11	2653 Fuller Road, Burt. I just had a question. I
12	couldn't really tell from the map, it wasn't really,
13	you know, easy to read, but is there anything that
14	would be done north of the dam, or is that in, like,
15	another step down the road?
16	MR. O'LEARY: Great question. So the
17	Operable Unit 3 is this green part you see here on the
18	figure. I know it's difficult to see. If you come up
19	to the front here, there are larger figures that are
20	blown up.
21	But to answer your question, yes.
22	Everything north of where OU3 ends will be handled
23	under additional action phases of the project.
24	MR. MANNINO: Chris, do you want to mention
25	that the two impoundments by the dams have been

Page 33 1 identified as depositional areas? Our plan calls for 2 further evaluations of that.

3 MR. O'LEARY: Okay. Yeah. So in the -- one 4 of the documents that are in the administrative record, 5 which you can look at the document repositories, is the 6 Remedial Investigation/Feasibility Study. If you look at those documents, they actually go into, as -- as 7 Pete mentioned, behind the impoundments of Newfane Dam, 8 9 but more importantly behind the impoundment of Burt 10 There is a -- a great deal of sediment at this Dam. 11 position.

12 And up here, again, with the figures, I 13 don't include this there, but this is a -- a what we 14 call a conceptual site model. And this runs from the end of OU2 all the way down to Lake Ontario. And you 15 16 can see, just by looking at the illustration, this piece here is the amount of material that's gauged to 17 18 be right behind Burt Dam. And then this is the material behind Newfane Dam. 19

20 So as you can see, the amount of material 21 behind Burt Dam needs to be handled differently. So 22 that was another reason why OU3 was made smaller when 23 it was discovered how much material was actually behind 24 the impoundment at that point.

That's a great question.

25

	Page 34
1	MR. HELLNER: Thank you.
2	MS. KEENY: Jean Keeny (phonetic), Lockport.
3	Just a quick question. Approximately how many years
4	are we talking about before the project is completed?
5	And with regards to the removal of the soil
6	in lower town, how is it going to be removed? Are
7	those trucks going to be covered or is the dust going
8	to be, you know, floating through the air? And have
9	you contracted with trucking companies that will be
10	willing to dispose of it in a proper manner? Thank
11	you.
12	MR. MANNINO: Yeah. Fine.
13	So we work on the residential properties
14	along Mill Street in that area. We're focusing on the
15	block we call block two. That work's going to start in
16	about two weeks, right? That's our current schedule.
17	It could deviate a little bit.
18	The trucks are going to be covered before
19	they leave the property and then go to the disposal
20	facility. We're going to have best management
21	practices to keep the dust down. There's going to be a
22	community air monitoring program where we continuously
23	check concentrations of dust and add water or do
24	whatever we need to do to keep those concentrations
25	down. If we can't do the work safely, we're going to
1	

1	Page 35 stop the work and take a look at what we can do to keep
2	the dust down. Slow it down, add more water, whatever
3	the best management practice is. That's all laid out
4	in our work plans that we have that have been approved.
5	So I hope that addresses your question
6	regarding the dust. Was there another piece to that?
7	MR. O'LEARY: Have you mentioned the
8	contractor?
9	MR. MANNINO: So Sevenson Environmental
10	Services is the prime contractor performing the
11	residential cleanup. It's being overseen through an
12	inter-agency agreement that we have with the United
13	States Army Corps of Engineers. We have a trailer set
14	up on Mill Street. And so that's where the Army Corps
15	and Sevenson is set up to keep track of daily
16	activities. And they will be contracting out to
17	various trucking companies. I don't know who they are
18	at this point, so.
19	But does that answer your question, Jean?
20	You good? Thanks.
21	MR. BEIDLE: Hi, my name is Jeremy Beidle
22	(phonetic). I have property at 165 Olcott Street and
23	157 Olcott Street. Just a question one will there
24	be a meeting about Operable Unit number 4? Is there a
25	future meeting for that, or is this pretty much that?
1	

	Page 36
1	MR. MANNINO: So we divided Opera
2	Operable Unit 4 into two phases of work. The first
3	phase handles I think it's the first 32 or 33
4	properties.
5	MR. BEIDLE: I'm in phase two.
6	UNIDENTIFIED SPEAKER: You are part of phase
7	two?
8	MR. BEIDLE: Two, yeah.
9	MR. MANNINO: Okay. So what we're doing is
10	we're collecting the data. We're sampling. We're
11	sharing the results with each of the property owners as
12	we have it. Right? At that point, we will have to
13	make a decision as to whether or not we need to come
14	out with a a new decision document or work under the
15	existing record of decision. If that's the case, we'll
16	have another public meeting.
17	But regardless of that, before what we've
18	been doing with the phase one properties is before the
19	work starts, we're meeting with the homeowners one-on-
20	one, talking about the specific details, about the work
21	that's going to be coming on with respect to that
22	property.
23	So we're having, you know, communications
24	with the individual property owners ahead of the work
25	starting. And so my expectation is, is that with the

[
1	Page 37 phase two properties we would be doing the same exact
2	thing.
3	When you say one one-on-one, do you mean
4	face-to-face or
5	MR. BEIDLE: Face-to-face, in person.
6	MR. MANNINO: Okay.
7	Yep. The suitable location our
8	convenience for you. We sit down, we go over the
9	detailed sampling results. Show you the area where we
10	the data shows we need to dig, how we're going to
11	restore the property and, you know, the schedule for
12	doing that work. And walk through any issues you may
13	have with respect to how that work is going to be
14	performed. So
15	Thank you.
16	MR. BASILE: Sure. Any other questions?
17	MR. CLARK: Yes, Mike. Just I can I
18	can blow I can blast it from out here.
19	MR. BASILE: Okay. Okay.
20	MR. CLARK: Is there you mentioned the
21	the contamination build up behind the Burt Dam in
22	Newfane. Is there you know, is there any confidence
23	level that there will be future phases here that will
24	go further down from the creek?
25	MR. BASILE: Of course. Yep.
1	

1	Page 38 MR. CLARK: Are you going to address some of
2	those issues and problems?
3	MR. O'LEARY: Yeah. So it's a great
4	question. And the goal is to address further
5	downstream of the end of Operable Unit 3 with further
6	actions, based on looking at the data, looking at the
7	results, looking at the investigations, it will then be
8	decided. I can't tell you now what operable units will
9	be and how it'll be handled, but it is something being
10	looked at right now.
11	MR. BASILE: Good. Are there any other
12	questions? Are there yes. Okay.
13	MR. GOODMAN: Greetings. My name is Steven
14	Goodman (phonetic), 3098 Lockport Olcott Road in
15	Newfane. I've lived there since 1979. I've come to
16	these meetings on and off for the last 45 years. When
17	I first started coming to these meetings, a couple of
18	the old fellows that I knew in the area said, yeah,
19	we've been coming to these meetings for 40 years,
20	nothing's happening and blah, blah, blah. They're
21	dead, so it's I'm sure I'll be at the same way,
22	probably, when it's all said and done.
23	I appreciate that the quality of the creek
24	has improved a ton, I see it in my backyard all the
25	time. However, last Friday I was out kayaking the Lake

	D 20
1	Page 39 Ontario on the west side of the over towards the
2	Bluff. Raw sewage, a lot of raw sewage, it's right in
3	that immediate area floating around, but I had to
4	yonder through that last week, on Friday. I don't know
5	where that's coming from, but I think that's certainly
6	a concern, I piggybacking on Bill Clark's comment
7	about the current situation of dropping things through.
8	I also have a question about I remember
9	going to the first Earth Day. It was 1970 or '71 and
10	Alan Van De Mark, I think was the gentleman's name, was
11	insisting along the Eighteen Mile Creek, Red Snake
12	Hill, was insisting that the things that they were
13	putting in the creek were were cleaning the creek
14	and it was a different color every time you went
15	through there, any old timers that went through there
16	back in the day.
17	What are some of those industry's
18	responsibilities to some of these gigondal fees that
19	are going on? I mean, I know this is all federal stuff
20	and state stuff, but aren't there some responsibilities
21	to some of those gentlemen and some of those
22	industries, that are still going? I know a lot of them
23	are gone, but some some are still going.
24	Again, I appreciate the the quality of
25	the creek, it's a big improvement, but there's a lot of
1	

	Page 40			
1	work to do yet. And again, there's still stuff being			
2	dumped in the creek that has no business being in			
3	there. Thank you.			
4	MR. BASILE: Thank you.			
5	MR. O'LEARY: And again, thank you. Great			
6	questions. So the first question you had regarding the			
7	raw sewage or sewage that you you saw in the creek.			
8	That's not handled under the purview of the the			
9	federal government, that would be something you'd have			
10	to find out from the city of Lockport and and check			
11	with their CSOs and and understanding to find out			
12	why that is and why that's the case. Regarding your			
13	second question.			
14	MR. GOODMAN: Yeah. About Van De Mark and			
15	other			
16	MR. O'LEARY: Correct.			
17	MR. GOODMAN: active facilities?			
18	MR. O'LEARY: Yeah, active facilities. So			
19	under Superfund, we continue to evaluate, we look for			
20	potential responsible parties, or in this case,			
21	chemical companies or or companies that could cause			
22	the contamination or the pollution. So that's an			
23	ongoing process. Right now, Eighteen Mile Creek, the			
24	entire work that you've seen in OU1, OU2, OU3, and OU4,			
25	there is no potential responsible party. This is being			

1	Page 41 handled by the federal taxpayers. OU1, 2, and 4 is
2	being handled on the bipartisan
3	MR. BASILE: Bipartisan infrastructure.
4	MR. O'LEARY: infrastructure law
5	legislation money funding, that's how that's being
6	handled. But we will continue to evaluate, that's why
7	we have these community meetings. The community might
8	be aware of something or know of some history that
9	we're not aware of and could point us in the direction
10	of another potential responsible party.
11	So that would be why we you know, we can
12	reach out and any communication that you might have or
13	or knowledge that you might be aware of can help,
14	obviously, potentially, find the PRP. As far as the
15	state sites. I don't know, Steve, did you want to
16	speak to either Van De Mark or Vanchlor?
17	MR. MOELLER: I can. There's a Van De
18	Mark chemical is a state site. There is a remedial
19	system along the creek down grading of the plant. The
20	contamination of concern there currently is coal tar
21	that was deposited there, probably in the early 1900s
22	before Van De Mark Chemical was even there. Van De
23	Mark itself produces phosgene gas chemistries. So most
24	of their stuff would be airborne rather than water
25	related or soil related contamination. There is

1	Page 42 groundwater contamination also related to the coal tar			
2	previously it was disposed there.			
3	Vanchlor landfill used to be a Van De Mark			
4	landfill, and then the ownership of it went over to			
5	Vanchlor Company, which is on Jackson Street or Plank			
6	Road. Their landfill will be there, it's a capped and			
7	closed landfill and it'll be monitored. It's currently			
8	monitored. In fact, the annual sampling is coming up			
9	in two weeks. It'll be monitored for a long, long			
10	time, but there's very minimal contamination associated			
11	with that landfill, it's an older landfill and it's			
12	also a state site.			
13	MR. O'LEARY: Thank you, Steven.			
14	MR. GOODMAN: Thank you.			
15	MR. BASILE: Any other questions? Yes.			
16	MS. ROMAN: Michelle Roman, Cherry Street in			
17	Lockport. I wanted to address I don't have the			
18	answers to everything about the sewage treatment plant,			
19	but they are under the New York State DEC.			
20	So our sewage plant has to follow all of			
21	their regulations and rules. And we were working on,			
22	and we just started the UV system for sanitizing the			
23	sewage before it goes into the creek. And sometimes			
24	there will be an overflow incident, but it's really not			
25	that often.			
1				

	Page 43
1	And I know that some other people told me
2	that some of the houses along Eighteen Mile Creek go
3	directly into the creek, and they're not hooked up to
4	any kind of sewage line, it goes directly into the
5	creek and there's a number of houses that do that. And
6	because when I asked the DEC, like, what is happening,
7	what's going on with our monitoring and stuff?
8	So I understand your concerns, I share them.
9	And also, there was there's discussion of the
10	Newfane sewage facility treatment plant right on Lake
11	Ontario and how the currents and everything happened in
12	the lake. So there's a lot of potential things that
13	need to be looked at. And those are things that I
14	continue to ask about.
15	MR. BASILE: Are there any other questions?
16	Does anyone else have a question? Remember, we're in a
17	30-day public
18	MR. O'LEARY: Mike.
19	MR. BASILE: Okay. Right here. Yes, sir.
20	UNIDENTIFIED SPEAKER: Just a couple quick
21	questions. One was, you mentioned that there's going
22	to be the community air quality monitoring. Is that
23	going to be publicly accessible, like, through the, is
24	it EPA Air Now site or something? Is it but but
25	in general, is the data for that going to be available
1	

	Meeting
1	Page 44 to the public to view in real time?
2	MR. MANNINO: I don't believe it it is.
3	We can look into putting some of the data on once we've
4	had a a a chance to, kind of, consolidate it.
5	But I the current plan is not to have it live, but
6	we can provide updates to, and post that on the
7	website. We can look into doing something like that.
8	Okay.
9	Or, you know, again, I'm I I can't
10	commit to exactly what we'll do, but we'll look at what
11	additional information we could post on our website,
12	whether it's a any exceedances or or anything
13	along those lines. But we can go back and look at
14	that.
15	UNIDENTIFIED SPEAKER: Yeah. And so is
16	that is that Army Corps that's doing the air
17	monitoring or is it EPA?
18	MR. MANNINO: So the air monitoring is going
19	to be done by Sevenson Environmental Services, it's
20	their equipment. The oversight, the actual folks
21	present there is the Army Corps of Engineers, they'll
22	have a daily presence. And EPA will be periodically on
23	site.
24	UNIDENTIFIED SPEAKER: And so if people
25	have concerns at any point during the the process,

	Do og 45
1	Page 45 can they is there a direct contact for them for Army
2	Corps?
3	MR. MANNINO: So our our preference would
4	be, if you you have any questions regarding the OU
5	OU4 work, that is currently managed by Julio Vasquez,
6	who couldn't be here this evening. Feel free to give
7	him a call and I his number
8	Or or myself.
9	or or or Chris. Julio's number is
10	212-637-4323.
11	Is it 212?
12	212-637-4323.
13	Or you call me and I can get you in touch.
14	Yeah. Okay.
15	Yeah. We'll we'll we'll we'll
16	we'll make sure you have the right number. Sometimes I
17	get dyslexia with those fours those threes and those
18	twos, so I apologize. But what when it comes to any
19	of the individual homeowners
20	Yes.
21	okay? We are working closely with them
22	as we get closer to doing work on that block.
23	So if any particular homeowner were to have
24	a concern, we will definitely be sharing that
25	information much closer. When it comes to the the
1	

	o Deserved
1	Page 46 larger community and our ability to post that
2	information or some of that information on the website.
3	That's where, you know, I I've got to go back to the
4	team and see what we can do versus what might take some
5	time.
6	But for individual homeowners, if they have
7	any questions about what that data looks like for their
8	property or the neighboring property, we will share
9	that as soon as possible. Yeah. We we're trying to
10	have very close working relationships with each of the
11	homeowners. And right now, we're focusing on this one
12	particular block. Once the work starts, we're going to
13	keep rolling that out.
14	Got you. Thank you.
15	MR. BASILE: Thank you. Are there any other
16	questions? Any other questions?
17	Just want to remind you that we're in a
18	public comment period, 19th July to 19th August. If
19	you have any comments that you would like, or you think
20	of something, like, two or three days after you've left
21	here, you can you can either call Chris, you can put
22	them in writing, you can go on internet via e-mail and
23	send it to him. And we'll be more than happy to
24	respond to those questions up to and including August
25	the 19th.
1	

1	Page 47 If there aren't any other questions,
2	remember, we do have a website for Eighteen Mile Creek
3	that we post all of our documents to, community update,
4	all the activities that are ongoing with Eighteen Mile
5	Creek. I want to thank you on behalf of the EPA and
6	the state. And thank you for coming out and taking the
7	time.
8	Remember, we'll close the meeting but the
9	state representatives and our EPA folks will be here
10	for a while. If you have any questions, please feel
11	free to go up to them. Enjoy the rest of your summer.
12	Thank you very much.
13	(MEETING CONCLUDED)
14	(End of Video Recording.)
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	Page 48
1	CERTIFICATE Fage 48
2	
3	I,Doug Yarborough, do hereby certify
4	that I was authorized to and transcribed the
5	foregoing recorded proceedings, and that the
6	transcript is a true record, to the best of my
7	ability.
8	
9	
10	
11	Dated this 7th day of August, 2024.
12	
13	
14	Alpola Eggal
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	Me	eting	Index: \$0accessible
\$	- 157 35:23 - 165 35:22	10:10 12:22 14:9	5,000 16:3,4 5.3 10:4
\$0 13:18 15:18	1900s 41:21 1970 39:9	28:8 29:4, 5,6 32:17 38:5	54,000 15:9
\$1,999,000 14:8	1970 39:9 1979 38:15	30 19:16	6
<pre>\$131,307,000 16:16 \$192 17:7 \$192,076,000 17:8 \$200 30:3 \$22 26:23 \$39,363,000 16:5</pre>	1980 5:19 19th 5:8 7:18 17:16,17 46:18,25 2 2 1 1:19 13:19 14:7 15:19 41:1	<pre>30-day 43:17 3098 38:14 32 36:3 33 36:3 39,000 16:14 4 4 14:20 28:24 29:3 35:24 36:2</pre>	60,700,000 15:10 6438 27:17 670 17:7 7 7 12:23 71 39:9 75 25:15
\$53,025,000 15:2 \$60,769,000 15:11	<pre>20 5:14 19:16 20:18,19 200 21:16</pre>	41:1 4'4" 25:15 4,000-foot	8 8 13:2
\$82,440,000 14:17 1	<pre>2012 8:2 18:22 - 21 10:18 - 212 45:11</pre>	8:20 40 15:8 19:16 38:19	9 9 13:2 96,000 14:15
<pre>1 11:19 15:18 100 18:24 20:19</pre>	<pre>212 13.11 212-637-4323 45:10,12 2653 32:11 29 11:4</pre>	<pre>400 20:6,9 21:1,18 41,000 15:1 45 38:16</pre>	A abandoned 19:14 ability 46:1
<pre>104 27:21 12 27:18 15 7:13 19:18</pre>	3 3 4:14 9:7, 9,12,16,21	5 5 17:2 28:8,11 29:1	acceptable 20:9,20 accessible 43:23

		CEK SUPERFUND SITE eting Index: A	ccommodateapproaches
Accommodate	additional	14:6	19,24
14:20	11:6,7	Affairs 2:6	16:6,12,
accomplish	18:3	ALLALIS 2.0	21,22,24
12:15	24:13,16,	agencies	17:9 29:1
	18 25:1	2:23	alternatives
account 6:16	32:23	agency 2:7	5:11 12:16
achieve	44:11	3:4	13:5,9,13
11:20	address 2:20	agenda 5:3,8	
acres 19:17	8:12 9:8	18:17	16:17,20
	18:7 20:2		17:7
Act 5:18	22:8 38:1,	agreement	
acting 10:23	4 42:17	35:12	amount 16:23
action 6:19		agricultural	33:17,20
11:5,11,12	addressed	11:3 31:3	analytical
13:11	10:8 11:4	agriculture	20:14
14:24	15:22 18:7	31:20	analyze 6:11
15:4,6,14	addresses		
17:2 28:23	8:13,19,25	ahead 36:24	and/or 15:23
32:23	35:5	air 34:8,22	and60 16:12
	addressing	43:22,24	annual 42:8
actions 38:6	10:1	44:16,18	
active		airborne	answering
40:17,18	adjacent 7:20 10:4	41:24	2:24 3:5
actively			answers
19:1	11:1,4 16:10	Alan 39:10	42:18
	22:12	Alderman	apologize
activities	27:21	3:14	24:9 45:18
5:22 8:6 19:2 35:16		alternative	
47:4	adjoining	12:17	apparently 27:2
4/•4	9:2	13:5,7,10,	21•2
activity	administrative	12,13,14,	appendix
30:20	23:7 33:4	16,17,19,	17:9,19
actual 44:20	adult 21:10,	25 14:7,9,	approach
	22	14,17,18,	29:8
add 34:23 35:2		19,24	annrae sha s
33.2	adults 21:10	15:3,7,10,	approaches
addition 6:5 18:16 26:9	advisory	12,13,18,	21:14

	Me	eting	Index: approvedblah
approved	assessments	22:10	26:17
23:8 35:4	11:9	25:7,22	27:11,13
approvimate	assessor 3:8	27:25	29:14,15,
	4:25 21:1	28:3,9	22 32:4
0.20 14.19	I.27 2I.I	29:19	37:16,19,
approximately	—	31:11	25 38:11
14:22	28:21	39:16	40:4 41:3
22 : 17	assured	44:13 46:3	42:15
25:14 34:3	26:23	background	43:15,19
area 3:12	attention	5:10 7:9	46:15
9:13,22	2:3	12:12	began 17:16
10:2,12,		he glosse ad	begin 5:15
17,24	attracted	backyard 38:24	19:3
19:5,9	18:24	30.24	19.3
22:11,16	August 17:17	balancing	beginning
23:21	46:18,24	12:23	2:1 10:3
24:1,4,5	authority	bank-to-bank	begins 6:2
25:21,22	5:21	14:13	_
27:4 31:12			behalf 47:5
34:14 37:9	avail 32:6		Beidle 35:21
38:18 39:3	Avenue 27:17	11:8 12:7	36:5,8
areas 10:2	average	15:23	37:5
11:7 14:23	21:16	20:23 38:6	benefit 30:6
16:11		baseline	
24:20 33:1	avian 31:7	13:12	big 39:25
	aware 11:5	15:15	Bill 29:18,
Army 35:13,	12:12 13:7	basically	23 32:4
14 44:16,	21:4 41:8,	21:18	39:6
21 45:1	9,13	28:17 29:7	biokinetic
aspects 8:8			21:12
assessed	awful 18:25	Basile 2:2,5	
12:24	19:6,22	3:19,24	bipartisan
<u><u> </u></u>		4:2,5,21	41:2,3
assesses	B	18:13,15	birds 31:7
21:9	back 7:18	20:11	bit 5:16
assessment	16:11	21:5,24	
6:3	18:13	22:4	34:17
	10.12	23:15,23	blah 38:20

	Me	eting	Index: blastcleaning
blast 37:18	bullets	27:16	chosen 12:25
block 34:15 45:22	11:15 burial 13:24		18:15,18
46:12 Blocks 22:24 blood 21:16	Burt 32:11 33:9,18,21 37:21	,	19:1 22:6 24:15 32:24 45:9
blow 37:18 blown 32:20 blue 5:25	business 19:15 20:7 40:2	century 7:18 CERCLA 5:16, 18	46:21 Christopher 4:9,11 19:21
7:3 8:17 22:23	C call 4:8,20	chair 29:24 chance 44:4	circle 9:19 10:18
Bluff 39:2 Board 29:25	10:22 19:17	channel 7:11 characteristic	city 3:13, 14,22
Bogardus 3:1	33:14 34:15	s 9:23 10:21	23:7 26:6
bottom 11:25 16:21	45:7,13 46:21	chart 11:24	27:19 30:5 40:10
box 5:25 6:7	called 5:16 6:16 24:10	charts 16:22 check 28:4	clarify 20:13 21:3
branch 7:16	calls 33:1	34:23 40:10	Clark 29:18, 24 37:17,
breakdown 17:8	Canal 7:12 29:20	chemical 40:21	20 38:1 Clark's 39:6
Brian 32:10	cancer 26:3,		clean 6:12
bring 19:25 broke 25:6	4,5,15 Cap 14:20	chemistries 41:23	16:11 24:12 30:3
brothers 27:8	capped 42:6	Cherry 42:16	cleaned 30:17
<pre>bubble 7:4 build 8:3</pre>	14:20 28:25	Chihuahua 26:4 children	cleaner 13:22
37:21 Building 8:16	Carla 3:17, 21,24 25:21	21:22 children's 21:11	cleaning 12:6 30:7, 16 39:13

		EEK SUPERFUND SITE eting Inde	ex: cleanupcontaminated
cleanup 5:4,	comment 5:13	Compensation	conducted
7,11,19,22	17:16,18	5:18	6:9 7:25
6:20 8:10 9:7 10:1	39:6 46:18	completed	8:3 13:15
11:23,25	comments	34:4	confidence
12:13	6:15 13:3	completion	37:22
13:10	17:17,18	6:25	Congress
17:1,4	18:6 46:19	complexity	5:19 26:22
20:23	commercial	9:15	Conservation
22:11	11:2 12:8		3:3 5:2
26:23	16:14	comprehensive	7:25
35:11	commit 44:10	5:17 31:17,25	aonaidonad
clear 28:13	communication	-	13:6 17:13
30:17	41:12	comprised	20:8
		10:10	
clip 20:15, 16 21:3		concentrations	consistent
	36:23	10:20	11:18 12:2
close 18:24	community		14:11 21:2
46:10 47:8	2:6 4:21		consolidate
closed 42:7	7:2,5 13:4		44:4
closely	17:13	34:23,24	construct
45:21	18:20	conceptual	6:22
closer	19:11,16 34:22 41:7	33:14	construction
45:22,25	43:22 41:7	concern 3:12	
	47:3	10:14 27:1	conquention
coal 41:20	-	39:6 41:20	consumption 14:6
42:1	community's	45:24	
collect	6:15	concerned	contact 45:1
24:13,16	companies	27:8	contaminant
collecting	19:14 34:9	aonaorna	10:20
36:10	35:17	concerns 6:15 17:12	13:23
Collins 3:10	40:21	43:8 44:25	contaminants
	Company 42:5		10:14
color 39:14	compare	CONCLUDED 47:13	11:17
combination	13:12		contaminated
15:22	15:15	conditions	11:22
		13:1	

EIGHTEEN MILE CREEK SUPERFUND SITE Meeting Index: contaminationda			
14:23		cost 13:17	
15:5,21		14:7,17	
16:9,23	16:1 32:1		
17:5 27:4		16:5,15,24	
	controls	17:6	criteria
contamination	13:21		12:16,18,
6:10 7:22		costs 17:9	22,23 13:3
8:12,14,		county 3:16	csos 40:11
19,25 9:25		7:11 23:12	cubic 14:15
10:23	25 16:13	acumla 22.5	
12:12	convenience	<pre>couple 22:5,</pre>	
15:25	37:8		16:3,4,15
16:13	~	43:20	current
25:18	Cooperative	covenants	11:15
26:14 27:6	3:11 18:23	16:2	34:16 39:7
30:14	coordinator	cover 15:20,	44:5
31:6,16	2:6 3:12	23	currents
37:21	4:22 19:11	2.3	43:11
40:22	Copies 17:23	covered	
41:20,25	Copies 1/.25	34:7,18	cut 24:14
42:1,10	cormorants	creek 2:8	
continue	31:8	3:11 4:13,	D
40:19 41:6	Cornell 3:10		
43:14	18:23	7:10,12,	daily 35:15
13.11		15,16,17,	44:22
continuing	cornerstone	20,22 8:1,	dam 32:14
30:23	18:21	11,20	33:8,10,
continuously	Corps 35:13,	9:10,11,23	
34:22	14 44:16,	10:3,5,7,	37:21
	21 45:2	11,14,19,	
contracted	correct	24,25 17:3	dams 32:25
34:9	20:13,18,	18:4 19:11	data 12:25
contracting	20:13,18, 21 26:19	20:4 30:4,	24:14,16,
35:16		8 37:24	19,24
gontractor	28:21,22	38:23	36:10
contractor 35:8,10	29:9,10	38.23 39:11,13,	37:10 38:6
33.0,10	40:16		43:25 44:3
contractors	corridor	25 40:2,7,	46:7
6:20	8:21	23 41:19	

		EIGHTEEN MILE CREEK SUPERFUND SITE Meeting Index: datingdocuments				
dating 7:18	deeper 28:1	11:12 13:9	discovery			
day 30:22	define 11:6	14:1	6:1			
39:9,16	defined 9:21	deviate	discuss 6:21			
days 46:20	31:12	34:17	12:4 13:8			
- De 39:10	degree 11:22	Devine 3:13,	15:12			
40:14	_	16 4:1,3				
41:16,17,	deleted 7:1		6:1,8,24			
22 42:3	Department		7:5 8:18,			
dead 38:21	3:1,2 5:1, 2 7:24	13,16,24 24:7 25:22	23 9:5,21, 25 12:11			
deal 19:13						
26:14	deposited 41:21	diagram 5:23	discussion 43:9			
30:23		died 26:3,4				
33:10	deposition	differently	disposal			
dealing	13:22	33:21	16:7,8 23:3,4			
30:21	depositional	difficult	29:10			
DEC 32:7	33:1	32:18	34:19			
42:19 43:6	depth 28:16	dig 37:10	dispose			
decades	design 6:18,	dilution	34:10			
30:16	22 14:2	20:22	disposed			
decided 38:8	24:11	direct 22:25	_			
deciliter	detailed	23:2 45:1	District			
21:17	28:3,9	direction	27:18			
decision	37:9	41:9	dive 28:1			
6:17 17:20	details 5:7	directly				
24:8 25:3	12:9 36:20	43:3,4	divide 20:18			
36:13,14,	determine	discharged	divided 8:11			
15	24:14	9:18	36:1			
Decisions	31:18	discharges	document 5:8			
11:18	determined	7:13	12:9 33:5			
deed 16:3	9:23	-	36:14			
deemed 20:9	develop 14:1	discharging 9:11	documentation			
	24:11		17:24			
deep 28:18	developed	discovered 33:23	documents			

EIGHTEEN MILE CREEK SUPERFUND SITE Meeting			Index: dogexcavate
6:17 18:3	easy 32:13	6	47:5,9
33:4,7 47:3 dog 26:11	eat 14:5 26:7 27:5	35:13 44:21 Enjoy 47:11	EPA's 5:11 9:9 21:21
DOH 32:7	economy 30:19	ensure 17:12	
doors 26:1 downstream	17:13	ensures 11:23	28:16 equipment
9:11,22 10:4,7,21 24:21 38:5	efficient 8:9	10	19:6 44:20 Erie 7:12
drop 24:22	efficiently 8:12	19:24	erodes 10:22
39:7	efforts 26:24	40:24	12:2
15:25 16:13 dumped 40:2 dust 34:7, 21,23 35:2,6 dyslexia 45:17	3:11 4:13, 18 5:5 7:10,12, 16,17 8:1, 11 10:14, 24 17:3 18:4 19:11 30:4 39:11 40:23 43:2 47:2,4	environment 11:13,24 12:19 environmental	14:15,25 15:8 16:3, 14,16 evaluate 40:19 41:6 evaluated 6:4 13:8 evaluates 12:15
E e-mail 46:22 early 41:21 Earth 39:9 easements 16:2 easily 10:23 east 7:16 9:2	<pre>elevation 24:21 end 3:22 9:18 17:14 32:5 33:15 38:5 47:14 endanger 27:6 ends 17:17 32:22</pre>	44:19 EPA 3:8 5:20 8:2 9:12 11:5, 20 12:5,15 17:12 18:1 20:23 21:9,13 29:1 43:24 44:17,22	<pre>evaluations 33:2 evening 2:23 4:11,13 45:6 eventually 2:13 exact 37:1 excavate 28:20,22</pre>

		EEK SUPERFUND SITE eting	Index: excavatedfuture
excavated	extending	38:18	focusing
24:19	10:4	figure 8:16,	34:14
excavating	Extension	21 10:18	46:11
22:22	3:11 18:23	32:18	folks 20:9
excavation	extent 6:10	figures	31:14
14:9,11,	9:22	32:19	44:20 47:9
13,18,22	-	33:12	follow 27:16
15:3,5,20,	F	filled 16:11	42:20
23 16:7,8		final 13:2	foot 14:22
17:2 28:17			28:14,16,
29:10	37:4,5	find 40:10,	25
exceed 14:23		11 41:14	form 4:2
21:19	19:14	Fine 34:12	
exceedances	40:17,18	fish 14:3,5	forms 7:21
44:12	facility	27:4,5	found 5:7
exceeding	23:5 34:20	fishing 27:4	12:9 18:3
16:9 17:5	43:10	30:20	fours 45:17
existing	fact 42:8	Flintkote	free 45:6
36:15	familiar	8:16 9:3	47 : 11
	20:21		Friday 38:25
expand 23:25	27:22	floating 34:8 39:3	39:4
expanding	fantastic		front 32:19
23:20	30:2	flood 17:5	
expansion	feasibility	24:5	fruit 26:8
24:17	6:11 11:11	floodplain	full 9:10
expectation	17:10	10:5 11:1,	10:3
36:25	federal	4 12:5,13	Fuller 32:11
expeditious	12:21	15:13,17, 18,19,21	funding 5:19
8:10	39:19 40:9	16:6,9	41:5
explain 4:10	41:1	24:20,23	future 11:9,
5:15	feel 45:6	29:12	15 35:25
exposure	47:10	flow 5:23	37:23
13:23	fees 39:18		
21:11		flows 7:13 27:2	
	fellows	41•4	

	EIGHTEEN WILL CK Me	eeting In	dex: Gaffneyillustratio
	38:13,14	handles 36:3	history 4:10
G	40:14,17	happen 25:1,	7:17 41:8
Gaffney 3:7	42:14	3	Hochul 26:21
garden 26:7	government 40:9	happened	home 26:5
gas 41:23		43:11	homeowner
gauged 33:17	grading	happening	45 : 23
gauged 55.1/	41:19	38:20 43:6	homeowners
general	grants 5:20	happy 19:7,	
43:25	great 4:12	24 46:23	
gentleman	26:14	Harwood 9:11	46:6,11
25:23 26:2	32:16	10:3	hooked 43:3
gentleman's	33:10,25		
39:10	38:3 40:5	hazardous	hope 25:5
gentlemen	green 7:3	5:20 20:7,	35:5
39:21	8:22 32:17	8	house 25:25
	27.20	head 28:12,	26:2,10
gigondal	grew 27:20	14	houses 43:2,
39:18	ground 2:11	health 3:1	5
give 2:11,	22:19	4:24 5:1	huge 30:6
14,20 45:6	groundwater	11:13,23	_
goal 12:1	42:1	12:19	human 4:24
21:15	guess 30:10	20:25	11:13,23
22:16	31:13	26:1,2	12:19
25:18 38:4		27:1 31:14	20:25
goals 11:12,	Gulf 7:16	health-related	hydropower
20,21	gulls 31:7	20:24	7:19
12:4,6,13,	guys 22:13,	heart 25:17	
15 16:10	21		I
17:6 20:23		held 18:23	
gold 25:17	н	Hellner	<pre>identified 33:1</pre>
		32:10 34:1	
good 3:15	handled	highest	IEUBK 21:21
4:12 35:20	32:22	10:20	II 18:1
38:11	33:21 38:9	Hill 39:12	illustration
Goodman	40:8 41:1,	חווו 39・14	33:16
	2,6		

	EIGHTEEN MILE CRI Mee	eting	Index: impactedKeeny
impacted	including	insisting	involved
10:5 19:16	46:24	39:11,12	19:2
implement	individual	installation	involvement
6:22	36:24	15 : 23	2:6 4:22
important	45:19 46:6	institutional	7:5 19:11
7:6 10:6	individually	13:21	issue 6:13,
importantly	12:24 13:8	14:4,5,10,	16
33:9	individuals	15,21,25	issues 31:3,
	2:22 3:9	15:5,8,20,	4,5,6,11,
<pre>impoundment 33:9,24</pre>	21:23	25 16:1,13	16,23
33.9,24	industrial	integrated	37:12 38:2
impoundments	7:18 31:4,	21:11	
32:25 33:8	22	inter-agency	J
improved		35:12	
38:24	industries		Jackson 42:5
improvement	39:22	interest	Jean 27:13
39:25	industry's	18:25	34:2 35:19
	39 : 17	interim	Jeremy 35:21
incident	information	11:25	-
42:24	7:9 13:3	internet	Jim 20:3
<pre>include 5:9</pre>	17:25	46:22	Johnson
11:2,8	18:16,18		27:21
13:16	21:20	introduce 2:4 25:20	Julio 45:5
16:2,22	44:11	2.4 25.20	
33:13	45:25 46:2	introductions	Julio's 45:9
included 7:6	infrastructure	4:19	July 5:8
9:10 10:6,	41:3,4	investigation	17:16
8 11:3		6:9 9:9	46:18
17:19	initial 6:1	11:10	
includes	25:9	25:2,10	К
7:15 13:25	initially	Investigation/	
14:4,11,	9:10	feasibility	Kathy 26:21
14,18,22,	input 17:12	33:6	kayaking
24 15:7	18:20	investigations	38:25
16:7	19:23	8:3 10:16	Keeny 25:5,
		38:7	14,17 34:2
		50-7	, 01 0

	EIGHTEEN MILE CR Me	Index: Kellylot	
Kelly 3:6	9:4,20	Lewiston	8:15
kind 28:1	lastly 5:12	23:9,11,13	location
29:7 31:25	law 5:19	Liability	5:25 6:8,
32:2 43:4	41:4	5:18	24 7:5
44:4		Library	8:18,23
knew 38:18	lead 8:25	17:25 18:1	9:4,20
	10:15 12:8		37:7
knocking	15:21 16:8	life 27:6	Lockport
26:1	17:5 20:6	limited	3:13,14,23
knowledge	21:9,10,	15:19	4:4,6
41:13	16,20,21,	24:15	17:25
	22	28:16	18:23
L	learned	Lincoln	19:4,5,18
	26:13	27:17	23:22
lady 25:9	leave 18:8		26:22
laid 35:3	34:19	lines 24:14	27:17,19,
		44:13	23 30:5,6
lake 7:14	left 5:24	link 18:5	34:2 38:14
9:12,19	46:20	List 6:5	40:10
19:19 30:9	legislation	7:2 8:2	42:17
33:15 38:25	41:5	18:22	
43:10,12	legislator		long 7:17
	25:21	listed 8:1	14:14 42:9
land 12:7	27:18	listening	long- 14:24
15:24		4:15 6:14	long-term
16:10	legislature	18:12	13:20,25
landfill	3:17	27:11	14:10,21
42:3,4,6,	length 9:10	liter 20:8	15:4,7
7,11	10:3	live 19:4,8	longer 19:15
large 9:15	level 20:6	20:4 27:17	
10:24,25	21:16	20:4 27:17	looked 38:10
	28:23		43:13
larger 32:19	37:23	lived 38:15	lot 18:25
46:1	levels 9:25	load 22:25	19:2,3,6,
laser 5:25	14:24	23:2	22 30:13
6:7,23 7:4	15:4,6	located	39:2,22,25
8:17,22	17:3	7:10,14	43:12
		/•±0,±4	

36:1,9

37:6 44:2,

Meeting		Index: Lovemillion		
	means	10:2	microphone	
2,	meet a	11	2:18 18:13	
	12:2	21	mics 22:1,2	
ng	meetin	g 2:9,	migration	
	10,1	2 3:25	11:16	
	4:14	5:12	Mike 2:5	
7	17:1	1,17	4:12,19,21	
	18:2	22 32:6	18:13 22:3	
	25.0			

24:5	18 45:3	12:21	mics 22:1,2
lower 3:22 11:25	manufacturing 7:21	<pre>meeting 2:9, 10,12 3:25</pre>	migration 11:16
25:10,19 27:2 34:6	<pre>map 32:12 Marian 3:7 4:23</pre>	4:14 5:12 17:11,17 18:22 32:6	Mike 2:5 4:12,19,21 18:13 22:3
М	Mark 3:13,	35:24,25 36:16,19	26:17
made 17:15 33:22	14 4:7 25:21	47:8,13	27:10 29:19 27:17
main 7:11, 15	39:10 40:14	meetings 38:16,17, 19 41:7	37:17 43:18
<pre>make 2:16 4:10 28:15 36:13</pre>	41:16,18, 22,23 42:3 Mary 20:25	memorialize 17:20	<pre>Mile 2:8 3:11 4:13, 18 5:5 5</pre>
45:16 manage 32:2	21:5 mass 10:19	mention 32:24	7:10,12, 16,17 8:1, 11 10:14,
manageable 9:17	massive 19:20	<pre>mentioned 4:17 5:4 24:15 33:8</pre>	24 17:3 18:4 19:11 30:4 39:11
managed 45:5	<pre>material 6:1,8,24 For 0,10</pre>	35:7 37:20 43:21	40:23 43:2 47:2,4
<pre>management 34:20 35:3 manager 2:15</pre>	7:5 8:18, 24 9:5,21 13:23	met 12:18 23:18	miles 7:13 10:4 19:18
4:9,17,21 23:19	14:13 16:11 18:11	<pre>methods 6:12 20:15,19 mic 19:25</pre>	<pre>mill 9:1 22:11 34:14</pre>
<pre>manner 34:10 Mannino 3:6</pre>	33:17,19, 20,23	Michelle	35:14
4:22 20:12 22:17,25	mayor 4:3,5, 6 25:23	4:1,6 25:23	milligrams 20:8
23:3,6	0 23.23	42:16	million 12:1

Love 29:20

low-lying

		EEK SUPERFUND SITE eting	Index: mindOntario
mind 25:6,	move 6:18	north 3:22	objectives
12	24:20	7:13	11:11,12
minimal		32:14,22	obtain 11:22
42:10	N	northward 27:20	occurred
minimized	National 6:5		7:21
11:17	7:1 8:2	note 10:6	occurring
minimum 11:3	18:22	nothing's	13:22
minutes 5:14	native 14:13	38:20	occurs 30:20
18:9	Natural	notices 16:3	off-site
mixing 9:24	13:20	number 14:7	16:7,8
model 21:10,	naturally	17:22 21:1	29:10
11,12 23:7	13:21	25:19 29:3	Officer 2:6
33:14	nature 6:9	35:24 43:5	official
models 21:9,		45:7,9,16	2:21 6:6
20,21	neighborhoods	numerous	
	22:12	7 : 25	Olcott 7:14
modify 13:4	neighboring		19:19
modifying	46:8	0	29:19
13:2	Newfane 18:1		30:9,21
Moeller 3:3	19:19 20:5	O'LEARY 4:9,	35:22,23 38:14
41:17	27:3,23	12,16	
money 41:5	29 : 24	18:18	older 21:22
	30:7,11,19	20:10	42:11
monitored	33:8,19	22:7,15 23:11	Olsen 3:7
13:19	37:22	25:13,16	4:23 21:7
42:7,8,9	38:15	27:12,24	one-on-
monitoring	43:10	28:5,7,11,	36:19
13:17,20	Niagara 7:11	20,22	
14:1,10,	23:11	29:4,6,9,	one-on-one 37:3
14,21,25	27:20	12 32:16	
15:4,7,17	nice 22:6	33:3 35:7	ongoing
34:22	26:16	38:3 40:5,	40:23 47:4
43:7,22	27:10	16,18 41:4	Ontario 7:14
44:17,18	Nicholas	42:13	9:12,19
month 19:4	25:8	43:18	19:20 30:9
	200		

EIGHTEEN MILE CREEK SUPERFUND SITE Meeting			Index: oopsplan
33:15 39:1	17:7 33:15	32:17 36:6	Pete 3:5
43:11	40:24	parties 5:21	4:22 33:8
oops 8:17	ou3 10:7	40:20	phase 6:19
open 5:12	13:10 17:3 24:21	parts 5:9	7:1 22:10 23:17
Opera 36:1	32:22	party 40:25	24:11 25:2
operable	33:22	41:10	36:3,5,6,
4:13 8:7,	40:24	passed 5:18	18 37:1
11 9:7,9, 12,16,21 10:8,10	ou4 8:25 40:24 45:5 ous 8:7	рау 5:22 РСВ 14:2 15:21 16:8	<pre>phases 8:7 22:9 32:23 36:2 37:23</pre>
11:1,19 17:21 19:22,23 32:17 35:24 36:2	outlined 19:23 output 31:4	РСВS 10:15, 19 12:1,8 17:4	<pre>phonetic 20:4 34:2 35:22 38:14</pre>
38:5,8 opportunity	overflow 42:24	<pre>people 18:24 25:20 27:2 43:1 44:24</pre>	phosgene 41:23
2:15 option 12:25	overseen 35:11	percent 10:18	picture 25:11
16:25 options 5:11	oversight 44:20	performed 6:11 10:16	piece 9:17 33:17 35:6
28:13	overview 5:6,9 8:5	37:14	pieces 9:17
orange 9:3 original	owners 36:11,24	performing 35:10	piggybacking 39:6
9:16,17 originates	ownership 42:4	period 2:17 5:13	place 16:1, 14
7:12		17:16,19 46:18	places 25:7
ou 45:4	P	periodically	plain 17:5 24:5
<pre>ou1 8:13,17 40:24 41:1 ou2 8:19,24 9:18 10:21 12:3 14:12</pre>	<pre>pads 26:11 part 3:22 11:10 12:1 25:2 27:19,22</pre>	44:22 person 37:5 pertaining 22:21	<pre>24.5 plan 2:9 4:14 5:5, 7,8 6:13 9:8 10:1 11:5 12:9</pre>

www.huseby.com

EIGHTEEN MILE CREEK SUPERFUND SITE Meeting Index: plankpropose			
		6	Index: plankproposed
17:15,23	possibly 3:5	_	5:10,24
18:6 21:15	post 44:6,	44:22	7:7 21:13,
23:21 33:1	11 46:1	present 5:4	19 23:8
44:5	47:3	26:5 44:21	24:13
plank 23:21			40:23
24:1,4	potential	-	44 : 25
42:5		2:16 4:10	produces
	-	5:6,13	41:23
Planning	41:10	18:2,10,12	11.22
29:25	43:12	27 : 25	program 3:6,
plans 35:4	potentially	presented	7 34:22
_	41:14	17:9	project 2:15
plant 8:16		-	4:9,17,21
9:3 41:19	pounds 25:15		22:9 23:19
42:18,20	PPM 20:6	30:21	29:20
43:10	practice	pretty 35:25	
point 33:24	35:3		32:23 34:4
35:18	33.3	prevent	52.23 21.1
36:12 41:9	practices	11:16	promulgated
44:25	34:21	previous	20:24
	pre-design	10:16	proper 34:10
pointer 5:25	25:2	25:23	
6:7,23 7:4		previously	properties
8:17,23	Pre-dredge	42:2	7:20 8:15
9:4,20	14:20		9:1 11:3,
policy 21:2	prefer 28:25	prgs 11:22	4,8 16:14
		12:2,10	34:13
pollution	preference	prime 35:10	36:4,18
30:22,24	28:16 45:3	-	37:1
31:2,4,5	preferred	Priorities	property 9:3
32:2 40:22	5:11 12:17	6:5 7:2	22:18
portion 9:8	13:4	8:2 18:22	34:19
10:11	16:17,20	problems	35:22
portions	17:1,3,7	30:12,22	36:11,22,
10:7	28:5 29:1	38:2	24 37:11
posed 8:15		proceed 6:21	
position	6:2 11:21	8:9	proposed 2:9
33:11	12:5 17:6	process	4:14 5:4,

6,8 6:13 11:5 12:9	putting		
1	39:13 44:3	R	Recording 2:1 47:14
17:15,23 18:6 21:15	Q	rambles	Records 18:2
28:13	 quality	19:17,18 raos 11:11,	Recovery 13:20
proposing 30:1	38:23 39:24	17,20	red 8:21,22 9:19 10:17
protect 11:13	43:22	raw 39:2 40:7	39:11 39:11
12:19	question 2:17 5:12	reach 18:18 41:12	<pre>redefined 9:12,14</pre>
protection 2:7 11:23	20:5 21:8, 24 22:21	reaching	reduce
provide 5:6 8:5 13:4	25:1 30:10 32:11,16,	19:8 read 11:14	11:15,16 13:23
16:17 44:6	21 33:25 34:3 35:5,	32:13	refer 11:21 24:17
PRP 41:14 public 2:5,	19,23 38:4 39:8 40:6,	real 44:1 reason 33:22	referred 10:11
9,13,20 4:14	13 43:16	recall 10:13	referring
17:12,15, 16,18,25	questions 2:24 3:5	received 17:17	28:24 Region 18:1
18:1 36:16 43:17 44:1 46:18	18:11,14 19:24 21:25	recognize 2:25 3:10	regulations 12:22
publicly	29:16,17 32:8 37:16	recommendation 28:2,15	42:21 related
43:23 Purdy 27:22	38:12 40:6 42:15	recommendation s 26:19	31:3,4,5,7 41:25 42:1
purple 4:24 8:21,22	43:15,21 45:4 46:7, 16,24	28:4 record 2:13,	relationships
purposes 20:24	47:1,10 quick 34:3	21 6:17 11:18 17:19,20	relies 13:21 17:12
<pre>purview 40:8 put 30:15, 16 46:21</pre>		24:7 25:3 33:4 36:15	-

	EIGHTEEN MILE CRI Mee	CEK SUPERFUND SIT	E Index: remedialsediment
remedial	15:1,9	responsible	42:6
2:15 3:12	16:4,5,15,	5:21 25:9	rolling
4:9,17,20	24 26:10	40:20,25	46:13
6:8,18,19,	34:6	41:10	40.12
22 11:10,	report 17:10	rest 10:24	Roman 4:3,6
11,12	report 1/.10		42:16
12:17 13:4	repositories	47:11	rules 2:12
14:2,23	17:25 33:5	restart	42:21
15:4,6	represent	14:19	
16:9 17:2	3:21 25:8	restore	runoff 31:3
24:10		37:11	runs 33:14
26:19	representative	-	
28:23 33:6	s 4:25 32:7	restrictive	S
41:18	47:9	16:2	
-	represents	resulting	safely 34:25
remediated	27:19	7:22 8:9	sampled 24:4
25:19	require 5:21	. .	sampied 24.4
remediation	11:7 15:24	results	sampling
4:23 8:6,8	16:12	36:11 37:9	11:6,9
11:7,21	10.17	38:7	19:2 25:1
12:6,14	residential	retired	36:10 37:9
13:15	8:14 9:1,2	29:21	42:8
15:16 17:6	11:2 12:8	reused 7:2	sanitizing
	34:13	reused 7.2	42:22
remedy 6:17	35:11	revealed	
12:3 14:12	residents	10:17	Sara 3:1
17:14,21	19:8 24:2	review 6:20	sat 25:24
remember	19.0 24.2	12:14	
2:19 18:21	respect		schedule
19:10,25	36:21	risk 3:8	34:16
39:8 43:16	37:13	4:24 8:13	37:11
47:2,8	respond	11:9,15	Scott 3:10,
	46:24	20:25	13
remind 46:17		road 20:4	<pre>screen 18:8,</pre>
removal	response	23:21	17
15:17 17:4	5:17 14:12	24:1,2,4	
34:5	responsibiliti	27:20,21,	section 4:23
removed	es 39:18,20	22 32:11,	sediment
14:6,16		15 38:14	8:19 9:8,
14.0,10			

www.huseby.com

		eting Ir	idex: sedimentsspeaking
23 10:12,	35:13,15	43:19	28:3,9
21,25	Sevenson	sisters 27:8	slow 35:2
12:1,13	35:9,15	sit 6:19	smaller 9:17
13:10,13,	44:19	37:8	33:22
14,17,21 14:3,6,11,	<pre>sewage 31:5,</pre>		
16,23	6 39:2	site 4:11,	Snake 39:11
15:1,6,9	40:7	16,18 5:5,	soil 8:14,
16:4,21,23	42:18,20,	10 6:2,4,	25 11:22
17:1,2	23 43:4,10	7,10,12,18 7:1,10	12:6
30:14	share 24:23	8:1,6,8,	15:18,20,
33:10	25:11 43:8	10,11 9:9	22 16:5,6,
	46:8	12:11,20	9,15,22,23
sediments		13:15	17:3,4,5
7:23 10:10	sharing	17:14	22:11,14,
13:15	36:11	18:3,4,21	22 24:18
segment 8:20	45 : 24	19:12,17,	28:8 29:3,
select 12:16	Shirley	20 33:14	4,5,6,9
Select 12.10	25:8,14	41:18	34:5 41:25
selected	26:24	42:12	soils 7:22
6:17 12:5,		43:24	10:5 11:1
7 14:12	Shirley's 26:5	44:23	12:5,13
selecting			15:13
17:13	shirt 4:24	site-specific	29:12
selection	shoes 26:9	12:25	son 26:4
17:21		sites 5:20	
	shovel 22:18	19:13	sort 28:18
send 46:23	Show 37:9	41:15	source 7:19
separated	shows 24:19	situation	10:2,23
8:7	37:10	25:10 39:7	south 7:12
separately	side 39:1		
8:9		size 9:15	speak 30:25
	signed 24:8	slide 5:23	41:16
Services	significantly	9:25	speaker 2:15
35:10	24:22	11:14,25	36:6 43:20
44:19	simple 24:25	16:16,19	44:15,24
set 11:20	_	18:8 28:2	speaking
22:16	sir 32:9	slides 27:25	

		EEK SUPERFUND SITE eting	Index: specifictalked
specific	20:24	Steven 38:13	11:14
10:1 36:20	stands 5:17	42:13	16:21
specifically	start 22:21	Stone 24:2	summer 47:11
9:7 31:1	34:15	27:21	Superfund
specifications	started 9:17	stop 32:1	3:6,7 4:18
24:11	38:17	35:1	5:5,10,16,
spell 2:19	42:22	stored 22:23	24 6:6 7:7
20:1	starting	street 8:15	17:14 18:2,4
spending	22:14	9:1,11	19:12,13
30:3	36:25	10:3 22:11	31:12
Speranza	starts 36:19	26:13	40:19
3:18,21	46:12	34:14	supervisor
25:21	state 2:19	35:14,22, 23 42:5,16	4:23
27:15,16	3:1,2 5:1,	-	supplemental
28:6,8,12,	2 7:24 8:4	streets 9:2	8:3
21 29:2,5, 7,11,13	11:15	studies 7:25	supporting
	12:21	study 6:11	17:23
split 5:9	20:1,23 31:14 32:6	11:11	surface 14:3
STA 10:12,	39:20	17:10 33:6	
13,17,22 11:8 13:19	41:15,18	stuff 39:19,	system 15:23 41:19
14:7,9,20	42:12,19	20 40:1	42:22
16:10 17:2	47:6,9	41:24 43:7	10.00
28:8,11,24	States 2:7	subdivided	T
29:1	35:13	9:16,24	
stage 31:24	Stay 21:5	subset 9:22	table 16:20, 21
staged 19:6	stayed 26:17	10:2	
staging	step 24:12,	suburban 31:21	tables 16:19
22:13,16	18 32:15		taking 2:9
stand 25:6	steps 4:15	<pre>suitable 37:7</pre>	22:22 47:6
standard	5:12 6:21		talk 6:14
20:22	7:6 17:11	summarize 16:19 17:1	9:6 10:12 21:1.15
standards	Steve 3:3,4 41:15	16:19 17:1 summary	talked

	EIGHTEEN MILE CRI Me	EEK SUPERFUND SITE eting	Index: talkingunit
23:18,20	time 2:10,	topsoil	43:10
talking	18,25 3:10		trees 26:8
20:22 30:2 31:13 34:4 36:20	4:8 6:6 13:24 19:25	<pre>total 17:6 20:15 totals 20:17</pre>	tributaries 7:15
tar 41:20 42:1	23:18 38:25	21:3	trucking 34:9 35:17
targeted 17:4	39:14 42:10 44:1 46:5 47:7	touch 45:13 tough 27:16	trucks 34:7, 18
targets	timers 39:15	tourism 30:19,20	turn 18:13 20:25
31:11 taxpayers	times 19:13 20:19	town 3:22 25:10,19	twos 45:18 type 24:23
41:1 team 4:19	tissue 14:3 titled 15:19	27:2,17 29:24	26:14
46:4 tear 26:7	16:6	30:5,7 34:6	typical 19:12
term 14:14,	today 26:25 30:18	track 14:2 35:15	U
25 testing 23:20 24:1	<pre>told 26:6 27:5 31:2, 15,19,20,</pre>	trade-offs 12:24	Uh-huh 23:23 25:16
31:17,25 thing 19:10	21,22 43:1 ton 38:24	trailer 35:13	ultimately 12:16
26:13 37:2 things 18:13	tonight 2:10 5:3 6:14	transcribed 2:13	understand 6:9 43:8
22:5 26:16 27:10		transcript 2:14,21	understanding 40:11
39:7,12 43:12,13	25:7,20,24 Tonight's	transitional 10:12	UNIDENTIFIED 36:6 43:20
threats 8:15	5:3 18:2	transport	44:15,24
threes 45:17 threshold 12:18	top 5:24 16:20 23:1 topics 16:18	13:22 treatment 23:21 31:5 42:18	<pre>unit 4:14 9:7,9,12, 16,21 10:10 11:2</pre>

	EIGHTEEN MILE CRI Mee	EEK SUPERFUND SITE eting	Index: Unitedyounger
17:21	26:7	46:2 47:2	46:10
19:23 32:17	versus 21:3 46:4	week 39:4 weeks 22:17	works 3:11 22:2
35:24 36:2 38:5 United 2:7 35:12	Video 2:1 47:14 view 44:1	34:16 42:9 weighed 25:15	<pre>writing 46:22 written 17:18 18:6</pre>
<pre>units 8:7,12 10:9 11:19 19:22 38:8</pre>	vision 23:25 volume 10:25	<pre>west 20:4 39:1 western 4:22</pre>	¥
update 47:3	W	wife 20:5	yards 14:16
updated 21:2	walk 37:12	26:3 Wilson 19:19	15:1,9,17 16:3,4,15
updates 44:6 upgradient 11:18	walked 25:22,24	wilson 19.19 wondering 9:14	year 23:19 26:17,18
upstream 13:22	<pre>wanted 20:12 21:3 28:13,15 42:17</pre>	Woodward 20:3,4 22:3	<pre>years 34:3 38:16,19 yellow 8:21,</pre>
uptake 21:12 UV 42:22	Ward 3:14 Washed 26:12	word 11:14	22 yonder 39:4
v values 12:7 21:18	<pre>washed 20012 waste 5:20 20:7,8 wastewater 23:21</pre>	30:4 34:13,25 35:1,4 36:2,14, 19,20,24	<pre>York 3:1,2 4:23 5:1 7:11,14,24 20:23 26:6 42:19</pre>
<pre>van 39:10 40:14 41:16,17, 22 42:3</pre>	<pre>water 8:15 14:3 34:23 35:2 41:24</pre>	37:12,13 40:1,24 45:5,22 46:12	younger 29:22,23
Vanchlor 41:16 42:3,5	watershed 7:15 webpage 18:4	work's 34:15	
Vasquez 45:5 vegetable	21:21 website 18:4 44:7,11	<pre>working 23:7 42:21 45:21</pre>	