RS Environmental

Corporate Office: 4169 Allendale Parkway, Blasdell, NY 14219 Satellite Offices in Jamestown, Syracuse and New York

716-649-9718 mail@rjsenviro.com

September 26, 2011

Mr. Martin Doster New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, NY 14203-2999

Re: 2526 Pine Avenue Niagara Falls, New York

Dear Mr. Doster:

RJ Szustakowski Environmental, Inc. (RJS), conducted an intrusive study at the above-referenced for prelending due diligence purposes. The property was identified as a current/historic dry cleaner, based on a Transaction Screen study completed by RJS.

RJS' work included soil vapor sampling and a series of test borings on-site to assess the potential impact from the dry cleaning operations. Note that while attempted, RJS was unable to collect groundwater samples for analysis due to the lack of water generated within the wells installed on-site.

Soil and air samples collected on-site contained significant concentrations of dry cleaning solvent and its degradation products.

Due to the contaminant concentrations and proximity to residential properties (the existing building includes apartment units on the second floor and residential properties are located proximate to the Site), RJS concluded that the New York State Department of Environmental Conservation (NYSDEC) should be notified. As a courtesy, we allowed the seller's counsel to coordinate this. Unfortunately, to-date, we have no indication that you were notified.

Attached please find the report issued to First Niagara Bank. Note that our site drawings are only approximate.

We trust that you will address this site as you see fit.

Should you have any questions, please contact me at 716-923-5377.

Sincerely,

Robert J. Szustakowski

President

PHASE II ENVIRONMENTAL SITE ASSESSMENT (ASTM E1903-97) And VAPOR ENCROACHMENT SCREEN

Commercial/Residential Structure (FNB Project No. 11-000666-02-2) 2526 Pine Avenue Niagara Falls, New York

Project No. 11RJS226.5

SUBMITTED TO:

Robert J. Szustakowski c/o First Niagara Bank 726 Exchange Street Buffalo, New York 14210

SUBMITTED BY:

Rf Environmental

Corporate Office: 4169 Allendale Parkway, Blasdell, NY 14219 Satellite Offices in Jamestown, Syracuse and New York

716-649-9718 mail@rjsenviro.com

TABLE OF CONTENTS

- 1. Executive Summary
- 2. Introduction
 - a. Purpose
 - b. Special Terms and Conditions
 - c. Limitations and Exceptions
 - d. Limiting Conditions and Methodologies Used
- 3. Background
 - a. Site Description and Features
 - b. Physical Setting
 - c. Site History and Land Use
 - d. Adjacent Property Uses
 - e. Summary of Previous Study
- 4. Phase II Activities
 - a. Scope of Assessment
 - i. Site Conceptual Model and Sampling Plan
 - ii. Chemical Testing/Laboratory Analysis Plan
 - iii. Deviations from Work Plan
 - b. Field Explorations and Methods

 - i. Test Boringsii. Sub-slab Air Sampling Points
 - iii. Monitoring Well Installations
 - c. Sampling and Chemical Analyses and Methods
 - i. Šoil
 - ii. Air
- 5. Evaluation and Presentation of Results
 - a. Subsurface Conditions
 - b. Field Observations and Screening
 - c. Analytical Data
 - i. Soil
 - ii. Air
- 6. Discussion of Findings and Conclusions
 - a. Recognized Environmental Conditions
 - b. Affected Media
 - c. Evaluation of Media Quality
 - d. Other Concerns
- 7. Recommendations
- 8. Signature of Environmental Professionals

List of Tables

Table 1 Tabulated Soil Analytical Results Tabulated Air Analytical Results Table 2

List of Figures

Figure 1 Topographic Map

Figure 2 Site Map (with boring locations)

List of Appendices

Appendix A Subsurface Exploration Logs Appendix B Laboratory Analytical Report

1. EXECUTIVE SUMMARY

RJ Szustakowski Environmental, Inc. (RJS), was contracted to complete a Phase II Environmental Site Assessment at 2526 Pine Avenue, City of Niagara Falls, Niagara County, New York (the Site). On-site operations have included dry cleaning since at least 1985. The intrusive study was completed to assess subsurface conditions due to current/historic on-site dry cleaning. Air sampling from two sub-slab points was also completed as borings within the structure were impractical. Additional information relative to the work completed at the Site is provided below.

Soil Sampling

Four soil borings (SB-1 through SB-4) were completed on the northern portion of the Site using a hydraulically driven rig (Geoprobe) until the desired depth, 16 feet below grade (ftbg), was reached. Suspect solvent-related odors and elevated photo-ionization detector (PID) readings were detected at each boring.

Six soil samples were submitted to the laboratory for target compound list (TCL) volatile organic compound (VOC) analysis via United States Environmental Protection Agency (USEPA) test method 8260. Tetrachloroethene (PCE), a VOC compound typically associated with dry cleaning solvents, was identified above New York State Department of Environmental Conservation (NYSDEC) soil cleanup objectives (SCOs) at each soil boring at depths ranging between 6 and 16 ftbg.

While attempted, RJS was unable to collect groundwater samples for analysis due to the lack of water generated within the wells installed on-site.

Air Sampling

As drilling was limited to the northern portion of the Site, two air samples were collected from beneath the building slab using Summa canisters. [No indoor air samples were collected as the ongoing dry cleaning would have resulted in elevated VOCs in the air.] Both air samples were analyzed for VOCs via USEPA Test Method TO-15. Three VOCs, cis-1,2-dichloroethylene, PCE and trichloroethylene (TCE), were identified significantly above New York State Department of Health (NYSDOH) action levels presented in the decision matrices. As noted above, PCE is a common dry cleaning solvent; the other compounds are common PCE degradation products. As such, it is likely that impacts extend beneath the existing structure.

In conclusion, significant solvent-related impacts were identified in connection with the Site. Further work would be required to fully assess the extent of impact and costs associated with remediating the impacted soils, sub-slab air and, likely, groundwater. It is likely that remedial costs would approach or even exceed the loan amount.

While the regulations do not clearly require notification of the Site's conditions by its consultant, RJS is very concerned about the potential for indoor air contamination within the existing proximate residential houses. Such could be perceived as an "imminent threat" to human health which, RJS understands, is reportable to the state. RJS recommends that the seller discuss this with their counsel and assure that the NYSDEC is made aware of the results of this study. If the site owner does not make a report to the state, RJS will feel obligated to do so.

2. INTRODUCTION

a. Purpose

RJS was contracted to complete a Phase II (intrusive) investigation at 2526 Pine Avenue, City of Niagara Falls, Niagara County, New York (the Site). On-site operations have included dry cleaning since at least 1985. The intrusive study was completed to assess subsurface conditions due to current/historic on-site dry cleaning. Air sampling from two sub-slab points was also completed due to the inability to collect subsurface soils beneath the existing structure. Additional information relative to this area of concern and the work completed at the Site is provided below.

b. Special Terms and Conditions

The work was completed in accordance with the proposal to the Client dated June 30, 2011, which explained the scope of work associated with this study. The scope of work was subsequently approved by the client on July 11, 2011.

c. Limitations and Exceptions

Generally, the study was completed in accordance with the scope of work detailed in the above-referenced proposal. There were no significant limitations/exceptions encountered during the work other than the lack of groundwater within installed wells for sampling. Additional soil samples were collected to account for the lack of water samples. The following should also be noted.

- Due to obstructions within the sample tubes at three soil boring locations (SB-2, SB-3 and SB-4), there was no soil recovery at three intervals.
 - d. Limiting Conditions and Methodologies Used

The study was completed using standard methodologies, as described below, and is generally consistent with ASTM E1903-97. Such would typically include collection of representative samples from various locations and/or at various depths. As with any study, it is possible that additional impact is present at locations not sampled in this study.

3. BACKGROUND

a. Site Description and Features

The Site is addressed at 2526 Pine Avenue, City of Niagara Falls, Niagara County, New York, and measures approximately 0.08 acres. The Site is currently developed with a 4,143 square foot structure constructed in 1957. The first floor of this two-story structure is utilized as a dry cleaner while the second floor includes three apartment units.

Adjacent properties are primarily residential and commercial in nature.

b. Physical Setting

The Site is located approximately 575 feet above mean sea level. Groundwater flow would be anticipated to the east or southeast, toward Gill Creek. However, localized subsurface variations and man-made structures can modify flow directions, a site-specific study would be required to confirm groundwater flow direction. A topographic map is provided as Figure 1.

c. Site History and Land Use

As indicated above, the Site is developed with a commercial/residential building constructed in 1957. Operations have included dry cleaning since at least 1985. The Site was vacant land prior to construction of the existing building.

d. Adjacent Property Uses

Direction	Current Use	Apparent Past Use	Comments/Concerns
North:	Residential	Same	None
South:	Aaron's Rental	Automotive repair and gasoline station	Such operations can result in impacts to the environment.
East:	Vacant lot	Dry cleaning	Dry cleaning can result in impacts to the environment.
West:	Commercial/Residential	Same	None

e. Summary of Previous Study

Prior to completion of the Phase II investigation, RJS, completed a Transaction Screen Environmental Site Assessment, dated June 29, 2011. Based on the current/historic use of the Site as a dry cleaner, RJS recommended completion of a Phase II (intrusive) study to assess subsurface conditions. RJS also recommended completion of an indoor air study as intrusive study was limited to the northern portion of the Site (the existing building occupies remaining portions of the Site). Results associated with the intrusive investigation and indoor air study are provided below.

4. PHASE II ACTIVITIES

a. Scope of Assessment

This assessment included the following scope of work.

i. Site Conceptual Model and Sampling Plan

The only accessible area for drilling was a gravel parking lot on the northern portion of the Site. Four soil borings (SB-1 through SB-4) were completed on the northern portion of the Site. Borings were completed using a hydraulically driven rig (Geoprobe) until the desired depth.

Two sub-slab vapor sampling points were installed proximate to the dry cleaning machine. The first point was installed east (assumed down-gradient) of the dry cleaning machine while the second was installed south of the machine.

A site map depicting boring locations and sub-slab sampling points is provided as Figure 2.

ii. Chemical Testing/Laboratory Analysis Plan

Six soil samples were submitted to the laboratory for TCL VOC analysis via USEPA test method 8260. Two air samples were analyzed for VOCs via USEPA Test Method TO-15. VOCs are typically the contaminants of concern associated with dry cleaners.

iii. Deviations from Work Plan

There were no significant deviations from the work plan prepared by RJS. However, as noted above, additional soil samples were collected to account for the lack of water within installed monitoring wells. In addition, there was no soil recovery at three intervals associated with three different borings.

b. Field Explorations and Methods

i. Test Borings

Four test borings (SB-1 through SB-4) were completed by Russo Development, Inc. (Russo), using a hydraulically driven percussion soil sampler manufactured by Geoprobe® on July 20, 2011. Borings were completed in the gravel parking area north of the existing building. The borings were advanced in four foot intervals until the desired depth, 16 ftbg, was reached. Equipment refusal was not encountered during the work. Upon completion, each boring was backfilled with soil cuttings. Boring logs are included in Appendix A.

ii. Sub-slab Air Sampling Points

Russo installed two sub-slab sampling points using an electric rotary hammer drill with a one-inch diameter concrete drill bit on July 20, 2011. Each point was drilled until the soil/sub-base was reached beneath the concrete floor, approximately six inches below grade. Additional information relative to the sampling completed is provided below.

iii. Monitoring Well Installations

While two temporary monitoring wells were installed, such did not produce sufficient amounts of groundwater for sampling.

c. Sampling and Chemical Analyses and Methods

i. Soil

Soil samples were characterized using visual and olfactory senses as well as screened using a PID. The test borings utilized pre-cleaned/decontaminated macrocore samplers, equipped with a new plastic inner liner, advanced by the Geoprobe® rig to the desired depth. The four foot liner was removed from the macrocore and opened with a utility knife followed by placing the soil in sample bags (prior to being screened). The soil characterization and PID information were recorded on the boring logs, which are included in Appendix A.

Soil samples selected for laboratory analysis were placed into the appropriate laboratory-supplied sample containers. The containers were sealed and labeled with the project name, sample location identifier, date and technician initials. The sample was then placed into an iced cooler for storage prior to shipment to Accutest Laboratories of Marlborough, Massachusetts (Accutest); Accutest is included in the National Environmental Laboratory Accreditation Program (NELAP).

A standard chain-of-custody form was completed to document the samples submitted to the laboratory; such identified the sample, location identification, date/time collected and analyses to be completed. The form was then signed by the sampling technician when the samples were relinquished to the laboratory.

Six soil samples were selected for laboratory analysis. The rationale for the samples and testing completed are presented below.

Sample ID	PID Reading (ppm)	Reason Sample Selected for Analysis	Analyses Completed
SB-1 (8-10')	300	Elevated PID reading and suspect solvent odor.	
SB-2 (8-10')	159	Elevated PID reading and suspect solvent odor.	
SB-2 (14-16')	89.6	Elevated PID readings and vertical delineation purposes.	
SB-3 (8-10')	150	Elevated PID reading and suspect solvent odor.	TCL VOCs
SB-4 (6-8')	257	Elevated PID reading and suspect solvent odor.	
SB-4 (14-16')	53.6	Elevated PID readings and vertical delineation purposes.	

ppm = parts per million

Analytical results associated with the above samples are discussed below.

As indicated above, two sub-slab sampling points were installed proximate to the dry cleaning machine/vapor barrier room using an electric rotary hammer drill. Once each hole was drilled, sections of polypropylene tubing were inserted into the holes and the annular space was filled and sealed with modeling clay. In order to verify that no indoor air has been drawn into the sub-slab sample, a helium trace chamber was setup prior to connection of the Summa canisters. Once it was confirmed that no indoor air was intruding into the sampling points, the Summa canisters were connected to the polypropylene tubing.

Sample ID	Location	Test Start Time	Test Stop Time	Comments
Sub-Slab 1	East/down-gradient of dry cleaning machine/vapor	0756	1556	None
	barrier room.			
Sub-Slab 2	South of dry cleaning machine/vapor barrier	0801	1601	None
	room.			

Note that while indoor air samples would typically be collected as part of an indoor air study, such was not completed as part of this investigation as results would be skewed due to active dry cleaning with use of solvents.

5. EVALUATION AND PRESENTATION OF RESULTS

The results of this Phase II study are summarized as follows.

a. Subsurface Conditions

Details of the subsurface soil conditions are described within the boring logs included in Appendix A. Generally, all of the borings encountered native silty clay soils or combinations of silt, clay and gravel to depths of at least 16 ftbg. Fill material consisting of gravel and brick was noted to depths of at least four ftbg at three boring locations.

Increasing amounts of moisture was evident between 8 and 12 ftbg. As previously indicated, while two temporary monitoring wells were installed, such did not produce sufficient amounts of groundwater for sampling.

Regarding sub-slab sampling points, the purpose was to assess the air beneath the building slab only, thus subsurface soil/water conditions beneath the building are unknown.

b. Field Observations and Screening

Suspect solvent odors were noted at each boring at depths ranging between 1 and 12 ftbg.

Most soil samples collected during the work had PID readings typically above ambient air (0.0 ppm). The highest PID reading, associated with SB-1 (8-10'), was 300 ppm. This sample was selected for laboratory analysis due to the elevated PID reading. Analytical results associated with this sample and additional samples selected for analysis are described below.

c. Analytical Data

Tabulated analytical testing results are provided as Table 1 (soil) and Table 2 (air). The complete laboratory analytical data reports are provided in Appendix B.

i. Soil

New York State has several soil guidance values depending on the nature and intended use of the Site. In this instance, as the Site includes residential use, RJS used Part 375 Protection of Public Health/Restricted Use (Residential) SCOs for comparison of the soils selected for analysis. [It should be noted that these objectives are intended for remediation of Brownfields sites under NYSDEC oversight. While the NYSDEC does not have any soil standards for sites such as this, it is common practice to use these objectives for guidance.]

PCE, a VOC compound typically associated with dry cleaning solvents, was identified above NYSDEC SCOs at each soil boring at depths ranging between 6 and 16 ftbg.

ii Air

Analytical results were compared to the NYSDOH decision matrices presented in the "NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York," dated October 2006, and the NYSDOH June 2007 letter/addendum. Compounds associated with the matrices include carbon tetrachloride, 1,1-dichloroethene, cis-1,2-dichloroethene, PCE, 1,1,1-trichloroethane, TCE and vinyl chloride. [Although numerous VOC compounds were part of the TO-15 analysis, only the aforementioned compounds have NYSDOH guidance values/action levels.] Details relative to the sub-slab sample results are presented below.

Three VOCs, cis-1,2-dichloroethylene, PCE and TCE, were identified significantly above NYSDOH action levels presented in the decision matrices. As such, it is likely that impacts extend beneath the existing structure.

6. DISCUSSION OF FINDINGS AND CONCLUSIONS

The results of the Phase II environmental site assessment are presented below.

a. Recognized Environmental Conditions

The solvent impact identified at the Site is considered a significant recognized environmental condition (REC) and is believed to have originated from the current/historic use of the Site as a dry cleaner.

b. Affected Media

Solvent impacted soil was identified in all borings completed north of the building. Solvent impacted air was also identified below the slab of the existing building. Impact to groundwater would be anticipated. As such, it is likely that soils beneath the existing structure have also been impacted by solvents. RJS is unsure if the solvent impacts are from beneath the dry cleaning machine or improper handling.

c. Evaluation of Media Quality

Based on the significant concentrations of VOCs/solvent related analytes identified, impacts are likely widespread and are likely present on portions of the site not investigated by RJS. Additional intrusive study would be warranted to delineate impacted soil and groundwater.

d. Other Concerns

It is probable that impacts have migrated off-site. Therefore, soil/groundwater impact and associated vapor intrusion is a significant concern, especially as the existing structure includes apartment units and residential properties are located proximate to the Site.

7. RECOMMENDATIONS

Significant solvent-related impacts were identified in connection with the Site. Further work would be required to fully assess the extent of impact and costs associated with remediating the impacted soils. Based on our understanding of the transaction, it is likely that the investigation and remedial costs would approach or even exceed the loan amount.

While the regulations do not clearly require notification of the Site's conditions by its consultant, RJS is very concerned about the potential for indoor air contamination within proximate residential houses. Such could be perceived as an "imminent threat" to human health which, RJS understands, is reportable to the state. RJS recommends that the seller discuss this with their counsel and assure that the NYSDEC is made aware of the results of this study. If the site owner does not make a report to the state, RJS will feel required to do so.

8. SIGNATURE OF ENVIRONMENTAL PROFESSIONALS

We trust that this report satisfies your current needs. Should you have any questions, please contact the undersigned at 716-312-8296.

RJS ENVIRONMENTAL

Bryan Mayback

Sr. Project Manager

Robert J. Szustakowski

President

TABLE 1											
Project:	oject: Time 1-Hour Cleaners, 2526 Pine Avenue, Niagara Falls, NY										
Project Number:	11RJS226.5	11RJS226.5									
Sample ID:	Unit of	Part 375 Restricted	SB-1 (8'-10')	SB-2 (14'-16')	SB-2 (8'-10')	SB-3 (8'-10')	SB-4 (14'-16')	SB-4 (6'-8')			
REC	Measurement	Residential Use	Current/Historic Dry Cleaner								
Date Sampled:	Weasurement	SCOs*	7/20/2011	7/20/2011	7/20/2011	7/20/2011	7/20/2011	7/20/2011			
PID Reading (ppm)		3008	300	89.6	159	150	53.6	257			
VOCs (SW846 8260B)											
1,1-Dichloroethane	ug/kg	19000	ND (170)	157	ND (160)	ND (160)	ND (95)	ND (140)			
cis-1,2-Dichloroethene	ug/kg	59000	1520	201	368	1810	362	266			
Tetrachloroethene	ug/kg	5500	373000	7920	66700	26800	26200	114000			
1,1,1-Trichloroethane	ug/kg	100000	1110	ND (110)	ND (160)	ND (160)	ND (95)	ND (140)			
Trichloroethene	ug/kg	10000	1580	335	990	3140	1070	429			

Notes:

Only analytes detected are shown in the table above. Refer to the laboratory report for a complete list of analytes.

*Residential restricted use soil cleanup objectives (SCOs) as presented in 6 NYCRR Part 375-6.8(b), -

dated December 14, 2006 (effective date).

REC = recognized environmental condition

PID = photo-ionization detector

ppm = parts per million

VOCs = volatile organic compounds

ug/kg = micrograms per kilogram

ND = not detected/below laboratory detection limit

- = analyte detected above NYSDEC guidance value.
- = analyte detected below NYSDEC guidance value.

TABLE 2	
Project:	Time 1-Hour Cleaners, 2526 Pine Avenue, Niagara Falls, NY
Project Number:	11RJS226.5

Sample ID:	limit of	SUB SLAB 1	SUB SLAB 2	NYSDOH Decision Matrices (no further						
Date Sampled:	Unit of Measurement	7/20/2011	7/20/2011							
Matrix:	Wieasurement	Air	Air	action)*						
VOCs (TO-15)	VOCs (TO-15)									
Acetone	ug/m3	65.6	290	NS						
Bromodichloromethane	ug/m3	312	ND (330)	NS						
Chloroform	ug/m3	147	ND (240)	NS						
cis-1,2-Dichloroethylene	ug/m3	130	718	<100						
Hexachlorobutadiene	ug/m3	ND (110)	753	NS						
Tetrachloroethylene	ug/m3	83400	44600	<100						
Toluene	ug/m3	161	288	NS						
Trichloroethylene	ug/m3	21400	20700	<5						
m,p-Xylene	ug/m3	72.5	1960	NS						
o-Xylene	ug/m3	ND (43)	608	NS						
Xylenes (total)	ug/m3	91.6	2570	NS						

Notes:

Only detected analytes are shown in the table above. Refer to the laboratory report for a complete list of analytes.

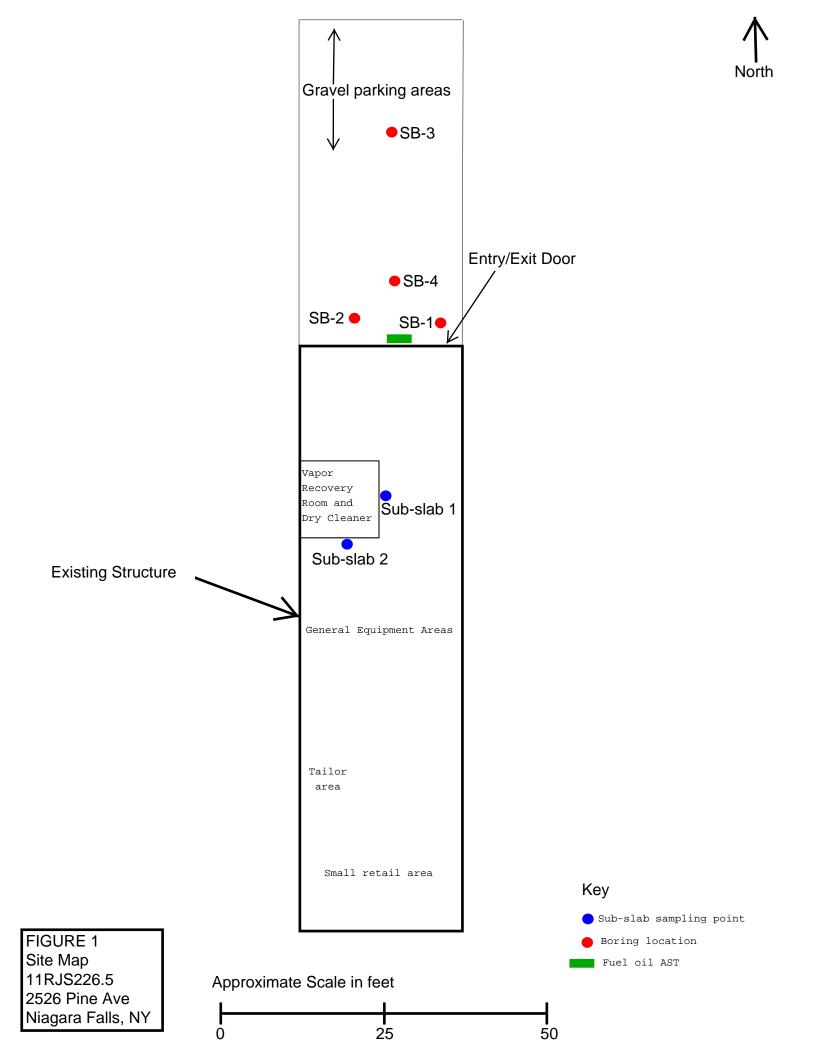
While numerous analytes were detected as part of the TO-15 analysis, only select analytes - have guidance values as presented above.

NYSDOH = New York State Department of Health

VOCs = volatile organic compounds

ug/m3 or mcg/m3 = micrograms per cubic meter

ND = not detected

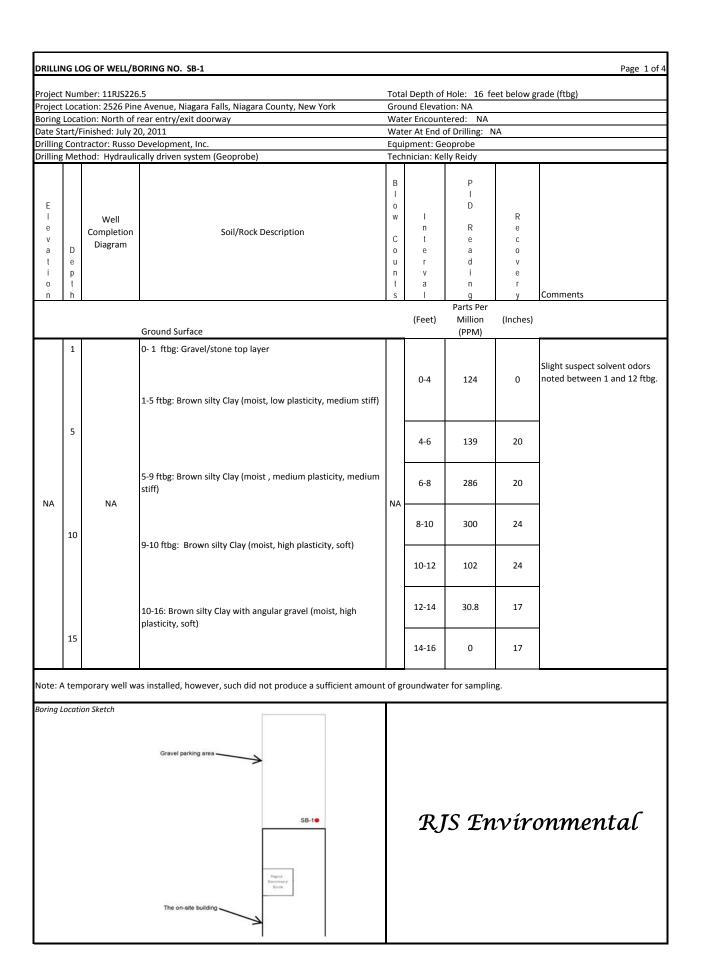

NS = not specified

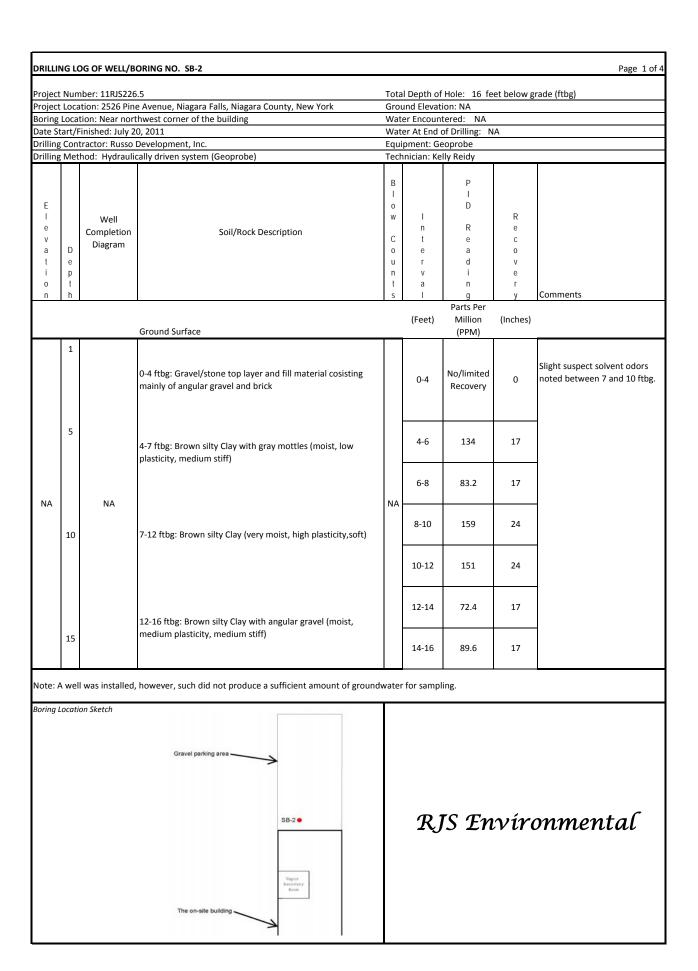
*NYSDOH values as presented in Matrices 1 and/or 2 of the document entitled Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006.

Compounds associated with the decision matrices were also presented in a NYSDOH letter dated June 2007.

= compound detected above NYSDOH action levels.

FIGURES

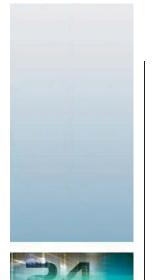



Elevation at center: 577 feet (176 meters)

Quad: USGS Niagara Falls

FIGURE 2 Topographic Map 11RJS226.5 2526 Pine Ave Niagara Falls, NY

APPENDIX A SUBSURFACE EXPLORATION LOGS


226.5 Pine Avenue, Niagara Falls, Niagara Coern parking lot area y 20, 2011 so Development, Inc. ulically driven system (Geoprobe) Ground Surface		Grou Wat Wat Equi Tech B I O W C O u n t	und Elevat er Encoun	tered: NA of Drilling: N eoprobe	R e c o	rade (ftbg)
ern parking lot area y 20, 2011 so Development, Inc. ulically driven system (Geoprobe) on Soil/Rock Des		Wat Wat Equi Tech B I O W C O u n t	er Encoun er At End pment: Go nnician: Ke	tered: NA of Drilling: N coprobe lly Reidy P I D R e e a	R e c	
y 20, 2011 so Development, Inc. ulically driven system (Geoprobe) on Soil/Rock Des	scription	Wat Equi	er At End ipment: Go nnician: Ke I I n t e r	of Drilling: Neprobe lly Reidy P I D R e e a	R e c	
so Development, Inc. ulically driven system (Geoprobe) n Soil/Rock Des	scription	Equi Tech B I o w C o u n t	Ipment: Go nnician: Ke I n t e r	eoprobe Illy Reidy P I D R e a	R e c	
ulically driven system (Geoprobe) n Soil/Rock Des	scription	B I O W C O U n t	I I n t e r	P I D Reidy	e c o	
on Soil/Rock Des	scription	B I o w C o u n t	I n t e r	P I D R e a	e c o	
	scription	I o w C o u n t	n t e r	I D R e a	e c o	
	scription	o w C o u n t	n t e r	D R e a	e c o	
	scription	W C o u n t	n t e r	R e a	e c o	
	scription	C o u n t	t e r	e a	e c o	
	scription	o u n t	e	а	0	
		u n t	r			
Ground Surface		n t		d		
Ground Surface		t	· V		٧	
Ground Surface			a	i n	e r	
Ground Surface		S	a I	q	V	Comments
Ground Surface			· · · · · ·	Parts Per	J	<u></u>
			(Feet)	Million (PPM)	(Inches)	
0-4 ftbg: Gravel/stone top layer a mainly of angular gravel and brick			0-4	No/limited recovery	0	Slight suspect solvent odor: noted between 7 and 9 ftb _l
4-5 ftbg: Brown silty Clay with gra plasticity, medium stiff)	plasticity, medium stiff)				24	
5-7 ftbg: Brown silty Clay (moist, r stiff)				113	24	
7-9 ftbg: Brown silty Clay with gra plasticity, medium stiff)			8-10	150	24	
9-12 ftbg: Brown silty Clay (moist medium stiff)		10-12	109	24		
	angular gravel (moist, low		12-14	115	10	
plasticity, medium stiff)			14-16	50.7	10	
	plasticity, medium stiff) 5-7 ftbg: Brown silty Clay (moist, stiff) 7-9 ftbg: Brown silty Clay with graplasticity, medium stiff) 9-12 ftbg: Brown silty Clay (moist medium stiff)	5-7 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 7-9 ftbg: Brown silty Clay with gray mottles (moist, low plasticity, medium stiff) 9-12 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 12-16 ftbg: Brown silty Clay with angular gravel (moist, low	plasticity, medium stiff) 5-7 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) NA 7-9 ftbg: Brown silty Clay with gray mottles (moist, low plasticity, medium stiff) 9-12 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 12-16 ftbg: Brown silty Clay with angular gravel (moist, low	plasticity, medium stiff) 5-7 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 6-8 7-9 ftbg: Brown silty Clay with gray mottles (moist, low plasticity, medium stiff) 9-12 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 10-12 12-14 12-16 ftbg: Brown silty Clay with angular gravel (moist, low plasticity, medium stiff)	plasticity, medium stiff) 5-7 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 6-8 113 NA 7-9 ftbg: Brown silty Clay with gray mottles (moist, low plasticity, medium stiff) 9-12 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 10-12 109 12-14 115	plasticity, medium stiff) 5-7 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 6-8 113 24 7-9 ftbg: Brown silty Clay with gray mottles (moist, low plasticity, medium stiff) 9-12 ftbg: Brown silty Clay (moist, medium plasticity, medium stiff) 10-12 109 24 12-14 115 10 12-16 ftbg: Brown silty Clay with angular gravel (moist, low plasticity, medium stiff)

RILLING	G LC	OG OF WELL/B	ORING NO. SB-4					Page 1 of
roject N	dum	nber: 11RJS226	5	Tota	l Denth of	Hole: 16 fe	et helow g	rade (fthg)
			e Avenue, Niagara Falls, Niagara County, New York		ind Elevati		et below g	rade (Itug)
			existing building			tered: NA		
		inished: July 2				of Drilling: N	IA	
rilling Contractor: Russo Development, Inc.					pment: Ge			
			cally driven system (Geoprobe)	Tech	nician: Ke	lly Reidy		
				В		P I		
E I e		Well Completion	Soil/Rock Description	0 W	l n	D R	R e	
	D	Diagram	Soily Neek Sesampaon	C 0	t e	e a	C 0	
	e			u	r	d i	V	
	p t			n t	v a	n	e r	
	h			S	I	g	v	Comments
					(Feet)	Parts Per Million	(Inches)	
	_		Ground Surface	1		(PPM)		
	1		0-4 ftbg: Gravel/stone top layer and fill material cosisting mainly of angular gravel and brick		0-4	NA	10	Slight suspect solvent odors noted between 6 and 8 ftbg.
	5		4-6 ftbg: Brown silty Clay (moist, low plasticity, medium stiff)		4-6	138	24	
NI A		NIA	6-8 ftbg: Brown silty Clay (moist, medium plasticity, soft)	N.A	6-8	257	24	
	NA NA NA	8-12 ftbg: Brown silty Clay (moist, high plasticity, soft)	NA	8-10	188	24		
			o 12 tog. Down sity city (most, iigh plasticity, sort)		10-12	173	24	
			12-16 ftbg Brown silty Clay (moist, low plasticity, soft)		12-14	56.5	15	
1	15				14-16	53.6	15	
oring Loc	catio	on Sketch	Gravel parking area		RJ	IS En	víro	onmental

APPENDIX B LABORATORY ANALYTICAL REPORT

08/03/11

Technical Report for

RJS Environmental

Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY 11RJS226.5

Accutest Job Number: MC2131

Sampling Date: 07/20/11

RJS Environmental

bmayback@rjsenviro.com

ATTN: Bryan Mayback

Total number of pages in report: 19

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Reza Yand Lab Director

Client Service contact: Jeremy Vienneau 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: MC2131-1: SB-1 (8'-10')	5
2.2: MC2131-2: SB-2 (8'-10')	7
2.3: MC2131-3: SB-2 (14'-16')	9
2.4: MC2131-4: SB-3 (8'-10')	11
2.5: MC2131-5: SB-4 (6'-8')	13
2.6: MC2131-6: SB-4 (14'-16')	15
Section 3: Misc. Forms	17
3.1: Chain of Custody	18

Sample Summary

Job No:

MC2131

RJS Environmental

Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY Project No: 11RJS226.5

Sample Number	Collected Date	l Time By	Received	Matı		Client Sample ID
MC2131-1	07/20/11	08:11 KR	07/22/11	SO	Soil	SB-1 (8'-10')
MC2131-2	07/20/11	08:40 KR	07/22/11	SO	Soil	SB-2 (8'-10')
MC2131-3	07/20/11	08:40 KR	07/22/11	SO	Soil	SB-2 (14'-16')
MC2131-4	07/20/11	09:20 KR	07/22/11	SO	Soil	SB-3 (8'-10')
MC2131-5	07/20/11	10:00 KR	07/22/11	SO	Soil	SB-4 (6'-8')
MC2131-6	07/20/11	10:00 KR	07/22/11	SO	Soil	SB-4 (14'-16')

Sample Results		
Report of Analysis		

Page 1 of 2

Client Sample ID: SB-1 (8'-10') Lab Sample ID: MC2131-1

 Lab Sample ID:
 MC2131-1
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 74.1

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	K53776.D	1	07/25/11	GK	n/a	n/a	MSK1798
Run #2	K53802.D	1	07/26/11	GK	n/a	n/a	MSK1799

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	9.84 g	10.0 ml	100 ul
Run #2	9.84 g	10.0 ml	5.0 ul

VOA TCL List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	430	ug/kg	
71-43-2	Benzene	ND	43	ug/kg	
75-27-4	Bromodichloromethane	ND	170	ug/kg	
75-25-2	Bromoform	ND	170	ug/kg	
74-83-9	Bromomethane	ND	170	ug/kg	
78-93-3	2-Butanone (MEK)	ND	430	ug/kg	
75-15-0	Carbon disulfide	ND	430	ug/kg	
56-23-5	Carbon tetrachloride	ND	170	ug/kg	
108-90-7	Chlorobenzene	ND	170	ug/kg	
75-00-3	Chloroethane	ND	430	ug/kg	
67-66-3	Chloroform	ND	170	ug/kg	
74-87-3	Chloromethane	ND	430	ug/kg	
124-48-1	Dibromochloromethane	ND	170	ug/kg	
75-34-3	1,1-Dichloroethane	ND	170	ug/kg	
107-06-2	1,2-Dichloroethane	ND	170	ug/kg	
75-35-4	1,1-Dichloroethene	ND	170	ug/kg	
156-59-2	cis-1,2-Dichloroethene	1520	170	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	170	ug/kg	
78-87-5	1,2-Dichloropropane	ND	170	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	170	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	170	ug/kg	
100-41-4	Ethylbenzene	ND	170	ug/kg	
591-78-6	2-Hexanone	ND	430	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	430	ug/kg	
75-09-2	Methylene chloride	ND	170	ug/kg	
100-42-5	Styrene	ND	430	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	170	ug/kg	
127-18-4	Tetrachloroethene	373000 a	3400	ug/kg	
108-88-3	Toluene	ND	430	ug/kg	
71-55-6	1,1,1-Trichloroethane	1110	170	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	170	ug/kg	
79-01-6	Trichloroethene	1580	170	ug/kg	

 $ND = \ Not \ detected$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: SB-1 (8'-10')

 Lab Sample ID:
 MC2131-1
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 74.1

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

VOA TCL List

CAS No.	Compound	Result	RL	Units Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	170 170	ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

79.7

Client Sample ID: SB-2 (8'-10') Lab Sample ID: MC2131-2 Date Sampled: 07/20/11 Matrix: SO - Soil Date Received: 07/22/11 Method: SW846 8260B Percent Solids:

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	K53777.D	1	07/25/11	GK	n/a	n/a	MSK1798
Run #2	K53803.D	1	07/26/11	GK	n/a	n/a	MSK1799

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	9.64 g	10.0 ml	100 ul
Run #2	9.64 g	10.0 ml	10.0 ul

VOA TCL List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	390	ug/kg	
71-43-2	Benzene	ND	39	ug/kg	
75-27-4	Bromodichloromethane	ND	160	ug/kg	
75-25-2	Bromoform	ND	160	ug/kg	
74-83-9	Bromomethane	ND	160	ug/kg	
78-93-3	2-Butanone (MEK)	ND	390	ug/kg	
75-15-0	Carbon disulfide	ND	390	ug/kg	
56-23-5	Carbon tetrachloride	ND	160	ug/kg	
108-90-7	Chlorobenzene	ND	160	ug/kg	
75-00-3	Chloroethane	ND	390	ug/kg	
67-66-3	Chloroform	ND	160	ug/kg	
74-87-3	Chloromethane	ND	390	ug/kg	
124-48-1	Dibromochloromethane	ND	160	ug/kg	
75-34-3	1,1-Dichloroethane	ND	160	ug/kg	
107-06-2	1,2-Dichloroethane	ND	160	ug/kg	
75-35-4	1,1-Dichloroethene	ND	160	ug/kg	
156-59-2	cis-1,2-Dichloroethene	368	160	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	160	ug/kg	
78-87-5	1,2-Dichloropropane	ND	160	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	160	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	160	ug/kg	
100-41-4	Ethylbenzene	ND	160	ug/kg	
591-78-6	2-Hexanone	ND	390	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	390	ug/kg	
75-09-2	Methylene chloride	ND	160	ug/kg	
100-42-5	Styrene	ND	390	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	160	ug/kg	
127-18-4	Tetrachloroethene	66700 a	1600	ug/kg	
108-88-3	Toluene	ND	390	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	160	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	160	ug/kg	
79-01-6	Trichloroethene	990	160	ug/kg	

 $ND = \ Not \ detected$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: SB-2 (8'-10')

 Lab Sample ID:
 MC2131-2
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 79.7

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

VOA TCL List

CAS No.	Compound	Result	RL	Units Q
75-01-4	Vinyl chloride	ND	160	ug/kg
1330-20-7	Xylene (total)	ND	160	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	105%	119%	70-130%
2037-26-5	Toluene-D8	104%	106%	70-130%

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: SB-2 (14'-16')

 Lab Sample ID:
 MC2131-3
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 89.9

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 K53778.D 1 07/25/11 GK n/a n/a MSK1798

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 11.3 g 10.0 ml 100 ul

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	270	ug/kg	
71-43-2	Benzene	ND	27	ug/kg	
75-27-4	Bromodichloromethane	ND	110	ug/kg	
75-25-2	Bromoform	ND	110	ug/kg	
74-83-9	Bromomethane	ND	110	ug/kg	
78-93-3	2-Butanone (MEK)	ND	270	ug/kg	
75-15-0	Carbon disulfide	ND	270	ug/kg	
56-23-5	Carbon tetrachloride	ND	110	ug/kg	
108-90-7	Chlorobenzene	ND	110	ug/kg	
75-00-3	Chloroethane	ND	270	ug/kg	
67-66-3	Chloroform	ND	110	ug/kg	
74-87-3	Chloromethane	ND	270	ug/kg	
124-48-1	Dibromochloromethane	ND	110	ug/kg	
75-34-3	1,1-Dichloroethane	157	110	ug/kg	
107-06-2	1,2-Dichloroethane	ND	110	ug/kg	
75-35-4	1,1-Dichloroethene	ND	110	ug/kg	
156-59-2	cis-1,2-Dichloroethene	201	110	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	110	ug/kg	
78-87-5	1,2-Dichloropropane	ND	110	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	110	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	110	ug/kg	
100-41-4	Ethylbenzene	ND	110	ug/kg	
591-78-6	2-Hexanone	ND	270	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	270	ug/kg	
75-09-2	Methylene chloride	ND	110	ug/kg	
100-42-5	Styrene	ND	270	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	110	ug/kg	
127-18-4	Tetrachloroethene	7920	110	ug/kg	
108-88-3	Toluene	ND	270	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	110	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	110	ug/kg	
79-01-6	Trichloroethene	335	110	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: SB-2 (14'-16')

 Lab Sample ID:
 MC2131-3
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 89.9

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

VOA TCL List

CAS No.	Compound	Result	RL	Units Q
75-01-4	Vinyl chloride	ND	110	ug/kg
1330-20-7	Xylene (total)	ND	110	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	108%		70-130%
2037-26-5	Toluene-D8	109%		70-130%
460-00-4	4-Bromofluorobenzene	102%		70-130%

 $ND = \ Not \ detected$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: SB-3 (8'-10') Lab Sample ID: MC2131-4

 Lab Sample ID:
 MC2131-4
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 78.2

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K53779.D 1 07/25/11 GK n/a n/a MSK1798

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 9.98 g 10.0 ml 100 ul

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	390	ug/kg	
71-43-2	Benzene	ND	39	ug/kg	
75-27-4	Bromodichloromethane	ND	160	ug/kg	
75-25-2	Bromoform	ND	160	ug/kg	
74-83-9	Bromomethane	ND	160	ug/kg	
78-93-3	2-Butanone (MEK)	ND	390	ug/kg	
75-15-0	Carbon disulfide	ND	390	ug/kg	
56-23-5	Carbon tetrachloride	ND	160	ug/kg	
108-90-7	Chlorobenzene	ND	160	ug/kg	
75-00-3	Chloroethane	ND	390	ug/kg	
67-66-3	Chloroform	ND	160	ug/kg	
74-87-3	Chloromethane	ND	390	ug/kg	
124-48-1	Dibromochloromethane	ND	160	ug/kg	
75-34-3	1,1-Dichloroethane	ND	160	ug/kg	
107-06-2	1,2-Dichloroethane	ND	160	ug/kg	
75-35-4	1,1-Dichloroethene	ND	160	ug/kg	
156-59-2	cis-1,2-Dichloroethene	1810	160	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	160	ug/kg	
78-87-5	1,2-Dichloropropane	ND	160	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	160	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	160	ug/kg	
100-41-4	Ethylbenzene	ND	160	ug/kg	
591-78-6	2-Hexanone	ND	390	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	390	ug/kg	
75-09-2	Methylene chloride	ND	160	ug/kg	
100-42-5	Styrene	ND	390	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	160	ug/kg	
127-18-4	Tetrachloroethene	26800	160	ug/kg	
108-88-3	Toluene	ND	390	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	160	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	160	ug/kg	
79-01-6	Trichloroethene	3140	160	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: SB-3 (8'-10')

 Lab Sample ID:
 MC2131-4
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 78.2

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

VOA TCL List

CAS No.	Compound	Result	RL	Units Q
75-01-4	Vinyl chloride	ND	160	ug/kg
1330-20-7	Xylene (total)	ND	160	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	121%		70-130%
2037-26-5	Toluene-D8	104%		70-130%
460-00-4	4-Bromofluorobenzene	101%		70-130%

 $ND = \ Not \ detected$

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: SB-4 (6'-8')

 Lab Sample ID:
 MC2131-5
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 81.8

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	K53780.D	1	07/25/11	GK	n/a	n/a	MSK1798
Run #2	K53804.D	1	07/26/11	GK	n/a	n/a	MSK1799

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	10.6 g	10.0 ml	100 ul
Run #2	10.6 g	10.0 ml	10.0 ul

VOA TCL List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	340	ug/kg	
71-43-2	Benzene	ND	34	ug/kg	
75-27-4	Bromodichloromethane	ND	140	ug/kg	
75-25-2	Bromoform	ND	140	ug/kg	
74-83-9	Bromomethane	ND	140	ug/kg	
78-93-3	2-Butanone (MEK)	ND	340	ug/kg	
75-15-0	Carbon disulfide	ND	340	ug/kg	
56-23-5	Carbon tetrachloride	ND	140	ug/kg	
108-90-7	Chlorobenzene	ND	140	ug/kg	
75-00-3	Chloroethane	ND	340	ug/kg	
67-66-3	Chloroform	ND	140	ug/kg	
74-87-3	Chloromethane	ND	340	ug/kg	
124-48-1	Dibromochloromethane	ND	140	ug/kg	
75-34-3	1,1-Dichloroethane	ND	140	ug/kg	
107-06-2	1,2-Dichloroethane	ND	140	ug/kg	
75-35-4	1,1-Dichloroethene	ND	140	ug/kg	
156-59-2	cis-1,2-Dichloroethene	266	140	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	140	ug/kg	
78-87-5	1,2-Dichloropropane	ND	140	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	140	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	140	ug/kg	
100-41-4	Ethylbenzene	ND	140	ug/kg	
591-78-6	2-Hexanone	ND	340	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	340	ug/kg	
75-09-2	Methylene chloride	ND	140	ug/kg	
100-42-5	Styrene	ND	340	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	140	ug/kg	
127-18-4	Tetrachloroethene	114000 a	1400	ug/kg	
108-88-3	Toluene	ND	340	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	140	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	140	ug/kg	
79-01-6	Trichloroethene	429	140	ug/kg	

 $ND = \ Not \ detected$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: SB-4 (6'-8')

 Lab Sample ID:
 MC2131-5
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 81.8

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

VOA TCL List

CAS No.	Compound	Result	RL	Units Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	140 140	ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
0115 110.	2011 08000 11000 101105	Kullπ 1	Kun# Z	Limits

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 2

Client Sample ID: SB-4 (14'-16')

 Lab Sample ID:
 MC2131-6
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 90.1

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	K53781.D	1	07/25/11	GK	n/a	n/a	MSK1798
Run #2	K53805.D	1	07/26/11	GK	n/a	n/a	MSK1799

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	13.3 g	10.0 ml	100 ul
Run #2	13.3 g	10.0 ml	20.0 ul

VOA TCL List

CAS No.	Compound	Result	RL	Units Q
67-64-1	Acetone	ND	240	ug/kg
71-43-2	Benzene	ND	24	ug/kg
75-27-4	Bromodichloromethane	ND	95	ug/kg
75-25-2	Bromoform	ND	95	ug/kg
74-83-9	Bromomethane	ND	95	ug/kg
78-93-3	2-Butanone (MEK)	ND	240	ug/kg
75-15-0	Carbon disulfide	ND	240	ug/kg
56-23-5	Carbon tetrachloride	ND	95	ug/kg
108-90-7	Chlorobenzene	ND	95	ug/kg
75-00-3	Chloroethane	ND	240	ug/kg
67-66-3	Chloroform	ND	95	ug/kg
74-87-3	Chloromethane	ND	240	ug/kg
124-48-1	Dibromochloromethane	ND	95	ug/kg
75-34-3	1,1-Dichloroethane	ND	95	ug/kg
107-06-2	1,2-Dichloroethane	ND	95	ug/kg
75-35-4	1,1-Dichloroethene	ND	95	ug/kg
156-59-2	cis-1,2-Dichloroethene	362	95	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	95	ug/kg
78-87-5	1,2-Dichloropropane	ND	95	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	95	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	95	ug/kg
100-41-4	Ethylbenzene	ND	95	ug/kg
591-78-6	2-Hexanone	ND	240	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	240	ug/kg
75-09-2	Methylene chloride	ND	95	ug/kg
100-42-5	Styrene	ND	240	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	95	ug/kg
127-18-4	Tetrachloroethene	26200 a	470	ug/kg
108-88-3	Toluene	ND	240	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	95	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	95	ug/kg
79-01-6	Trichloroethene	1070	95	ug/kg

 $ND = \ Not \ detected$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: SB-4 (14'-16')

 Lab Sample ID:
 MC2131-6
 Date Sampled:
 07/20/11

 Matrix:
 SO - Soil
 Date Received:
 07/22/11

 Method:
 SW846 8260B
 Percent Solids:
 90.1

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

VOA TCL List

CAS No.	Compound	Result	RL	Units Q
75-01-4	Vinyl chloride	ND	95	ug/kg
1330-20-7	Xylene (total)	ND	95	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	123%	120%	70-130%
2037-26-5	Toluene-D8	105%	109%	70-130%
460-00-4	4-Bromofluorobenzene	99%	116%	70-130%

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Certification Exceptions (NY)
- Chain of Custody

ACCUTEST:			HAIN ccutest Lab								04			**		AGE _	0	<u> </u>
ACCUTES 1.		495	Technolog 508-481	y Cent	ter Wes	t, Build	ing O	ne			[FED-EX Tracking	•		Botse Order C			
		TEI	508-481 wv	-6200 vw.acc	PAX:	508-48 om	1-775	3				Acoutest Quote I			Accutest Job	r	1621	31
Client / Reporting Information	J.E.				ormatic	n				7		Req	uested Analysi	s (see 1	EST COD	E sheet)		Matrix Codes
RJS Environmental	Project Name T	ime 1-h	our C	lear	ners							de						DW - Drinking Wal
4169 Allendale Prky	Street: 252							_	_	_								GW - Ground Wat WW - Water SW - Surface Wat
					Billing In	formation	(If dif	fferent	from	Report	to)	8						SO - Soil SL- Sludge
Blasdell New York 14219	**Niaga				07:00:00:00							S.						SED-Sediment OI - Oil
roject Contact E-mail Kelly Reidy Kreidy@RJSenviro.com	Project# 11F	JS226.	5	Stree	t Address							U						LIQ - Other Liquid AIR - Air
Those # Fax # 716)649-9718 (716)312-8092	Clent PO#			City			Sta	olo .		Zip		9						SOL - Other Soli WP - Wipe FB-Field Blank
ampler(s) Name(s) Phone # Kelly Reidy (716)982-6376 (cell)	Project Manager	Bryan M	aybacl	Alten	tion:			P	04									EB- Equipment Bla RB- Rinse Blank TB-Trip Blank
(710)302-3070 (cen)			Collection				N	lumber	of preserv	red Bottle		4						
Couled Field ID / Point of Collection	MECHIDI VIII #	Date	Time	Samples	d Matrix	# of bottles	HCI	HNOS	NONE	MEOH	SNCORE	7						LAB USE ONL
1 CO -1 (CC / 10')		7/20/2011	DKII	KR	SOII.	2	1	1	+	1		×		+		11		
SB-2 (9-10')		7/20/2011	0840	KR	SOIL	2	\vdash	Ħ	Ħ	\top		×						
2 53-2 (14'-16')		7/20/2011	0840	KR	SOIL	2	1	Ħ	††	T	П	X						100 M
4 50-3 (8-10)		7/20/2011	0920	KR	SOIL	2		П	T	П		X						
5 SB-4 (6'-8')		7/20/2011	moo	KR	SOIL	2		\top		П		X						
6 SB-4 (14-110)		7/20/2011	1000	KR	SOIL	2		П			1	X						75
50 1 (1/18/		7/20/2011	100	KR	SOIL													
		7/20/2011		KR	SOIL			П										
		7/20/2011		KR	SOIL													
		7/20/2011		KR	SOIL													
		7/20/2011		KR	SOIL													
		7/20/2011		KR	SOIL									╧		cial Instru		
Turnaround Time (Business days) 5td. 10 Business Days 5td. 5 Business Days (By Contract only) 5 Day RUSH 3 Day EMERGENCY 2 Day EMERGENCY	Approved By (Acco	test PMJ: / Date:			Commer	Commerc	avel 2) 4)	= Resul	30000 s	NYASE NYASE State F EDD F Other	Categ orms ormat			Comm	onis 7 ope			A16F6
1 Day EMERGENCY Emergency & Rush T/A data available VIA Lablink	San	ple Custody m	ust be docum	nested	below ea	e les ses						luding couri	er delivery.					
Relinquished by Sampler: Outs Time: 7/2/	11 1140	1 W	mi	y			Pulp 2	ירונים	3	ly	V		7/21/1	Kat	Received By	Ex		
Relinquished by Samplers, Code X Date Time: 7/28	1119:30	Received By	#1	5		- /	delings	ulshed I	1	0			Date Time:		Received By			
Relinquished by: Date Time:	111111111111111111111111111111111111111	deceived tiy:	1			0	Custod	ty Seal I			177	Intact Not Intact	Preserved where ap	oplicable		On Ice	Cool	er Temp

MC2131: Chain of Custody
Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC21	31	Client: RJS ENV		Immediate Client Servi	ces Action Required:	No
Date / Time Received: 7/22/2	2011	Delive	ry Method:	Client Service Action	on Required at Login:	No
Project: TIME 1 HOUR CLEAN	NERS	No. Co	olers:	1 Airbill #'s: N/A		
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: Quality Control Preservatio 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly:	Y or Infared Ice (ba	gun	Y or N I I	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests	Y or N ✓ □ ✓ □ ✓ □ ✓ or N ✓ □ ✓ or N ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓	N/A
4. VOCs headspace free: Comments				Sufficient volume recvd for analysis: Compositing instructions clear: Filtering instructions clear:		¥
Accuted Laboratories			495 Technology Cor	otor West Bldg One	Marih	porquish MA
Accutest Laboratories V:508.481.6200			495 Technology Cer F: 508.4			orough, MA /accutest.com

MC2131: Chain of Custody Page 2 of 2

08/03/11

Technical Report for

RJS Environmental

Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY 11RJS226.5

Accutest Job Number: MC2124

Sampling Date: 07/20/11

Report to:

RJS Environmental

bmayback@rjsenviro.com

ATTN: Bryan Mayback

Total number of pages in report: 15

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Reza Fand Lab Director

Client Service contact: Jeremy Vienneau 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) ISO 17025:2005 (L2235) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	
2.1: MC2124-1: SUBSLAB-1	
2.2: MC2124-2: SUBSLAB-2	
Section 3: Misc. Forms	
3.1: Certification Exceptions	12
3.2: Chain of Custody	
3.3: Summa Canister and Flow Controller Log	

Sample Summary

Job No:

MC2124

RJS Environmental

Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY Project No: 11RJS226.5

Sample	Collected		Matrix	Client
Number	Date Time I	By Received	Code Type	Sample ID
MC2124-1	07/20/11 15:56 1	KR 07/22/11	AIR Soil Vapor Comp.	SUBSLAB-1
MC2124-2	07/20/11 16:01 1	KR 07/22/11	AIR Soil Vapor Comp.	SUBSLAB-2

Sample Results	
Report of Analysis	

Page 1 of 3

Client Sample ID: SUBSLAB-1

Lab Sample ID: MC2124-1 Date Sampled: 07/20/11
Matrix: AIR - Soil Vapor Comp. Summa ID: M19DAde Received: 07/22/11
Method: TO-15 Percent Solids: n/a

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	J19375.D	20	07/23/11	AA	n/a	n/a	MSJ1034
Run #2	J19385.D	2000	07/25/11	AA	n/a	n/a	MSJ1034

Run #1 400 ml	
Run #2 400 ml	

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	27.6	10	ppbv	65.6	24	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	10	ppbv	ND	22	ug/m3
71-43-2	78.11	Benzene	ND	10	ppbv	ND	32	ug/m3
75-27-4	163.8	Bromodichloromethane	46.6	10	ppbv	312	67	ug/m3
75-25-2	252.8	Bromoform	ND	10	ppbv	ND	100	ug/m3
74-83-9	94.94	Bromomethane	ND	10	ppbv	ND	39	ug/m3
593-60-2	106.9	Bromoethene	ND	10	ppbv	ND	44	ug/m3
100-44-7	126	Benzyl Chloride	ND	10	ppbv	ND	52	ug/m3
75-15-0	76.14	Carbon disulfide	ND	10	ppbv	ND	31	ug/m3
108-90-7	112.6	Chlorobenzene	ND	10	ppbv	ND	46	ug/m3
75-00-3	64.52	Chloroethane	ND	4.0	ppbv	ND	11	ug/m3
67-66-3	119.4	Chloroform	30.2	10	ppbv	147	49	ug/m3
74-87-3	50.49	Chloromethane	ND	10	ppbv	ND	21	ug/m3
107-05-1	76.53	3-Chloropropene	ND	10	ppbv	ND	31	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	10	ppbv	ND	52	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	4.0	ppbv	ND	25	ug/m3
110-82-7	84.16	Cyclohexane	ND	10	ppbv	ND	34	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	4.0	ppbv	ND	16	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	4.0	ppbv	ND	16	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	10	ppbv	ND	77	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	4.0	ppbv	ND	16	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	10	ppbv	ND	46	ug/m3
123-91-1	88	1,4-Dioxane	ND	10	ppbv	ND	36	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	10	ppbv	ND	49	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	10	ppbv	ND	85	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	4.0	ppbv	ND	16	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	32.8	4.0	ppbv	130	16	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	10	ppbv	ND	45	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	10	ppbv	ND	60	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	10	ppbv	ND	60	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	10	ppbv	ND	60	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	10	ppbv	ND	45	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: SUBSLAB-1

Lab Sample ID: MC2124-1 Date Sampled: 07/20/11
Matrix: AIR - Soil Vapor Comp. Summa ID: M19DAde Received: 07/22/11
Method: TO-15 Percent Solids: n/a

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5	46	Ethanol	ND	10	ppbv	ND	19	ug/m3
100-41-4	106.2	Ethylbenzene	ND	10	ppbv	ND	43	ug/m3
141-78-6	88	Ethyl Acetate	ND	10	ppbv	ND	36	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	10	ppbv	ND	49	ug/m3
76-13-1	187.4	Freon 113	ND	10	ppbv	ND	77	ug/m3
76-14-2	170.9	Freon 114	ND	10	ppbv	ND	70	ug/m3
142-82-5	100.2	Heptane	ND	10	ppbv	ND	41	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	10	ppbv	ND	110	ug/m3
110-54-3	86.17	Hexane	ND	10	ppbv	ND	35	ug/m3
591-78-6	100	2-Hexanone	ND	10	ppbv	ND	41	ug/m3
67-63-0	60	Isopropyl Alcohol	ND	10	ppbv	ND	25	ug/m3
75-09-2	84.94	Methylene chloride	ND	10	ppbv	ND	35	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	10	ppbv	ND	29	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	10	ppbv	ND	41	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	10	ppbv	ND	36	ug/m3
115-07-1	42	Propylene	ND	10	ppbv	ND	17	ug/m3
100-42-5	104.1	Styrene	ND	10	ppbv	ND	43	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	4.0	ppbv	ND	22	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	4.0	ppbv	ND	27	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	4.0	ppbv	ND	22	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	10	ppbv	ND	74	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	ND	10	ppbv	ND	49	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	10	ppbv	ND	49	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	10	ppbv	ND	47	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	10	ppbv	ND	30	ug/m3
127-18-4	165.8	Tetrachloroethylene	12300 a	400	ppbv	83400 a	2700	ug/m3
109-99-9	72	Tetrahydrofuran	ND	10	ppbv	ND	29	ug/m3
108-88-3	92.14	Toluene	42.7	10	ppbv	161	38	ug/m3
79-01-6	131.4	Trichloroethylene	3980 a	400	ppbv	21400 a	2100	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	10	ppbv	ND	56	ug/m3
75-01-4	62.5	Vinyl chloride	ND	4.0	ppbv	ND	10	ug/m3
108-05-4	86	Vinyl Acetate	ND	10	ppbv	ND	35	ug/m3
	106.2	m,p-Xylene	16.7	10	ppbv	72.5	43	ug/m3
95-47-6	106.2	o-Xylene	ND	10	ppbv	ND	43	ug/m3
1330-20-7	106.2	Xylenes (total)	21.1	10	ppbv	91.6	43	ug/m3
CAS No.	Surrog	gate Recoveries Run#	1 Run	# 2 1	Limits			
460-00-4	4-Bron	nofluorobenzene 107%	97%	Į	50-129%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: SUBSLAB-1

Lab Sample ID: MC2124-1 Date Sampled: 07/20/11
Matrix: AIR - Soil Vapor Comp. Summa ID: M19 Date Received: 07/22/11
Method: TO-15 Percent Solids: n/a

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

CAS No. MW Compound Result RL Units Q Result RL Units

(a) Result is from Run# 2

ND = Not detected

 $RL = \ Reporting \ Limit$

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: SUBSLAB-2

Lab Sample ID: MC2124-2 Date Sampled: 07/20/11
Matrix: AIR - Soil Vapor Comp. Summa ID: M18Date Received: 07/22/11
Method: TO-15 Percent Solids: n/a

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	J19389.D	100	07/26/11	AA	n/a	n/a	MSJ1034
Run #2	J19386.D	2000	07/25/11	AA	n/a	n/a	MSJ1034

Run #1 Run #2	Initial Volume 400 ml 400 ml						
CAS No	MW Compound	R esu lt	рī	Unite O Recult	рī	Ilnite	

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	122	50	ppbv	290	120	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	50	ppbv	ND	110	ug/m3
71-43-2	78.11	Benzene	ND	50	ppbv	ND	160	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	50	ppbv	ND	330	ug/m3
75-25-2	252.8	Bromoform	ND	50	ppbv	ND	520	ug/m3
74-83-9	94.94	Bromomethane	ND	50	ppbv	ND	190	ug/m3
593-60-2	106.9	Bromoethene	ND	50	ppbv	ND	220	ug/m3
100-44-7	126	Benzyl Chloride	ND	50	ppbv	ND	260	ug/m3
75-15-0	76.14	Carbon disulfide	ND	50	ppbv	ND	160	ug/m3
108-90-7	112.6	Chlorobenzene	ND	50	ppbv	ND	230	ug/m3
75-00-3	64.52	Chloroethane	ND	20	ppbv	ND	53	ug/m3
67-66-3	119.4	Chloroform	ND	50	ppbv	ND	240	ug/m3
74-87-3	50.49	Chloromethane	ND	50	ppbv	ND	100	ug/m3
107-05-1	76.53	3-Chloropropene	ND	50	ppbv	ND	160	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	50	ppbv	ND	260	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	20	ppbv	ND	130	ug/m3
110-82-7	84.16	Cyclohexane	ND	50	ppbv	ND	170	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	20	ppbv	ND	81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	20	ppbv	ND	79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	50	ppbv	ND	380	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	20	ppbv	ND	81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	50	ppbv	ND	230	ug/m3
123-91-1	88	1,4-Dioxane	ND	50	ppbv	ND	180	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	50	ppbv	ND	250	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	50	ppbv	ND	430	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	20	ppbv	ND	79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	181	20	ppbv	718	79	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	50	ppbv	ND	230	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	50	ppbv	ND	300	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	50	ppbv	ND	300	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	50	ppbv	ND	300	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	50	ppbv	ND	230	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: SUBSLAB-2

Lab Sample ID:MC2124-2Date Sampled:07/20/11Matrix:AIR - Soil Vapor Comp.Summa ID:M18 Date Meceived:07/22/11Method:TO-15Percent Solids:n/a

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5	46	Ethanol	ND	50	ppbv	ND	94	ug/m3
100-41-4	106.2	Ethylbenzene	ND	50	ppbv	ND	220	ug/m3
141-78-6	88	Ethyl Acetate	ND	50	ppbv	ND	180	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	50	ppbv	ND	250	ug/m3
76-13-1	187.4	Freon 113	ND	50	ppbv	ND	380	ug/m3
76-14-2	170.9	Freon 114	ND	50	ppbv	ND	350	ug/m3
142-82-5	100.2	Heptane	ND	50	ppbv	ND	200	ug/m3
87-68-3	260.8	Hexachlorobutadiene	70.6	50	ppbv	753	530	ug/m3
110-54-3	86.17	Hexane	ND	50	ppbv	ND	180	ug/m3
591-78-6	100	2-Hexanone	ND	50	ppbv	ND	200	ug/m3
67-63-0	60	Isopropyl Alcohol	ND	50	ppbv	ND	120	ug/m3
75-09-2	84.94	Methylene chloride	ND	50	ppbv	ND	170	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	50	ppbv	ND	150	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	50	ppbv	ND	200	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	50	ppbv	ND	180	ug/m3
115-07-1	42	Propylene	ND	50	ppbv	ND	86	ug/m3
100-42-5	104.1	Styrene	ND	50	ppbv	ND	210	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	20	ppbv	ND	110	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	20	ppbv	ND	140	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	20	ppbv	ND	110	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	50	ppbv	ND	370	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	ND	50	ppbv	ND	250	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	50	ppbv	ND	250	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	50	ppbv	ND	230	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	50	ppbv	ND	150	ug/m3
127-18-4	165.8	Tetrachloroethylene	6580 a	400	ppbv	44600 a	2700	ug/m3
109-99-9	72	Tetrahydrofuran	ND	50	ppbv	ND	150	ug/m3
108-88-3	92.14	Toluene	76.5	50	ppbv	288	190	ug/m3
79-01-6	131.4	Trichloroethylene	3860	20	ppbv	20700	110	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	50	ppbv	ND	280	ug/m3
75-01-4	62.5	Vinyl chloride	ND	20	ppbv	ND	51	ug/m3
108-05-4	86	Vinyl Acetate	ND	50	ppbv	ND	180	ug/m3
	106.2	m,p-Xylene	451	50	ppbv	1960	220	ug/m3
95-47-6	106.2	o-Xylene	140	50	ppbv	608	220	ug/m3
1330-20-7	106.2	Xylenes (total)	592	50	ppbv	2570	220	ug/m3
CAS No.	Surrog	gate Recoveries Run#	1 Run	# 2]	Limits			
460-00-4	4-Bron	nofluorobenzene 99%	1229	% :	50-129%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: SUBSLAB-2

Lab Sample ID:MC2124-2Date Sampled:07/20/11Matrix:AIR - Soil Vapor Comp.Summa ID:M18Dadd Received:07/22/11Method:TO-15Percent Solids:n/a

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

CAS No. MW Compound Result RL Units Q Result RL Units

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Certification Exceptions (NY)
- Chain of Custody
- Summa Canister and Flow Controller Log

Parameter Certification Exceptions Job Number: MC2124

RJSNYB RJS Environmental Account:

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

The following parameters included in this report are exceptions to NELAC certification.

The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status
Acetone	67-64-1	TO-15	AIR	Certified by SOP MMS294/GC-MS
Bromodichloromethane	75-27-4	TO-15	AIR	Certified by SOP MMS294/GC-MS
Bromoethene	593-60-2	TO-15	AIR	Certified by SOP MMS294/GC-MS
2-Chlorotoluene	95-49-8	TO-15	AIR	Certified by SOP MMS294/GC-MS
Cyclohexane	110-82-7	TO-15	AIR	Certified by SOP MMS294/GC-MS
Dibromochloromethane	124-48-1	TO-15	AIR	Certified by SOP MMS294/GC-MS
Dichlorodifluoromethane	75-71-8	TO-15	AIR	Certified by SOP MMS294/GC-MS
4-Ethyltoluene	622-96-8	TO-15	AIR	Certified by SOP MMS294/GC-MS
Ethanol	64-17-5	TO-15	AIR	Certified by SOP MMS294/GC-MS
Ethyl Acetate	141-78-6	TO-15	AIR	Certified by SOP MMS294/GC-MS
Freon 113	76-13-1	TO-15	AIR	Certified by SOP MMS294/GC-MS
Freon 114	76-14-2	TO-15	AIR	Certified by SOP MMS294/GC-MS
2-Hexanone	591-78-6	TO-15	AIR	Certified by SOP MMS294/GC-MS
Heptane	142-82-5	TO-15	AIR	Certified by SOP MMS294/GC-MS
Isopropyl Alcohol	67-63-0	TO-15	AIR	Certified by SOP MMS294/GC-MS
Propylene	115-07-1	TO-15	AIR	Certified by SOP MMS294/GC-MS
1,2,4-Trimethylbenzene	95-63-6	TO-15	AIR	Certified by SOP MMS294/GC-MS
1,3,5-Trimethylbenzene	108-67-8	TO-15	AIR	Certified by SOP MMS294/GC-MS
Tertiary Butyl Alcohol	75-65-0	TO-15	AIR	Certified by SOP MMS294/GC-MS
Tetrahydrofuran	109-99-9	TO-15	AIR	Certified by SOP MMS294/GC-MS
Trichlorofluoromethane	75-69-4	TO-15	AIR	Certified by SOP MMS294/GC-MS
m,p-Xylene		TO-15	AIR	Certified by SOP MMS294/GC-MS
o-Xylene	95-47-6	TO-15	AIR	Certified by SOP MMS294/GC-MS

	AL AND THE SAME	10 mg 10 mg	Air Samplir			nation	Project Name:	97964043		No. of Particular		非效料。 於	Temperature (Weather Pahrenhelt)		S-1478-15	****	Reques	ted Anar	VSIB
	S Environme					_		Time 1-l			rs		Start:		Maximum:			.		
	llendale Park	way	State	Zio				26 Pine A		,,	New '	Vork	Stop		Minimum:					
lasdell		Vhack	New Yo	ork 142	219.		IVIA	gara Fall		- '	vew	TOIR	Atmoshpheric Start:	Pressure (Inche	Maximum:	-	-	151		
K	elly Reid	3	Fax f (7.1	idy@RJ	senviro.	com	Client Purchas	RJS226	.5		*	_	Stop:		Minimum:		-	rling L		
(716)64 (5) Name(s)	49-9718		(71	6)312-8	092								Other weather	comment:		_	-	Repo		
(p) territofe)	Kelly	126	eidy_	Air Type	Sampling	Equipm	nent Info	1 5	Start Samp	ling Inform	nation		ě	Stop Samp	iling Inform	nation		TO-15	APH .	
		120000		Indoor(I) Soil Vap(SV)	Canister	Canister Size	Flow Controller	Contraportation Contra	Time (24hr	Canister Pressure ("Ho)	Interior Temp (F)	Sampler	Date	Time (24hr clock)	Canister Pressure ("Hg)		Sampler Init.	Standard TO-15 Reporting List	MA DEP	
Sample #	Field ID	/ Point o	f Collection	SV	Serial #	6Lor1L	Serial#	数 Date 7/20/11	0756	31	80	vo	7/29	1 1556	2	75	KR			
1	Subc	Jab	- 7	SV	MOH		MC147	100	0801	28	80	142	7/29	11/1601	0	75	KR		-	
	CUBC	SICT	0	GV	7410/1	000	- Vici II	7000					1986							
-	1												6							
	 							- Income					PHEND					-		_
								2500					aurilla.			-				
	,							L RES		-			100	-	-		1	_	\vdash	_
								Page 1			_		100		-	·	-	-	\vdash	_
											-				-	-	-	-	\vdash	-
			Time (Business d		Company of the Compan		HARMEN CONTRACT	THE STATE OF THE S	ax Data Deliv	erable Inform	mation	1000000	2 6 60000000	No compression (1)	Comment	s / Remark	10	RANGES .	(3.84.94.30.0)	No.
Standard		X	I Business C	Approved By	:		-	Comm A Comm B Full T1				(4			A	MB.	4			i.
SAME LINES	Other T-Security	W-17794		700	ple Custody	must be	documented t	selow each time	samples ci	hange poss	ession, I	ncluding o	Courier delive	16:30	Roceiyasi 2 FE	Dy:	e maximum	\$ 5 CM	aki.	540.A
dahad by	4/2		Date Time: 7/2// Date Tings:	1 100	11/	IV	my	7	2 Minguista	d By:	m		Dute Time		Received I			-		-
ulshed by:	FRE	X	Dept Time/	11/000	8/	1	net 1		Custody Sa	1	_/_	-			4					•

MC2124: Chain of Custody Page 1 of 2

Accutest Laboratories Sample Receipt Summary

ACCUTEST

Accutest Job Number: MC21	24	С	lient: RJS ENV			Immediate Client Service	s Actio	n Red	quired:	No
Date / Time Received: 7/22/2	2011		Delive	ry Metho	od:	Client Service Action	Require	ed at	Login:	No
Project: NIAGARA FALLS			No. Co	oolers:		0 Airbill #'s: N/A				
1. Custody Seals Present: 2. Custody Seals Intact:	or N	4. Sm	COC Present: pl Dates/Time OK	Y or ✓ ✓	N 	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	Y V V	or	<u>N</u>	
Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: Quality Control Preservatio		ed gun (bag)	N/A			Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y ✓	or	N	
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:			Z Z			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	<u>Y</u>		N	N/A
Comments										
Accutest Laboratories V:508.481.6200				495 Techno	ology C en F: 508.48	ter West, Bldg One 11.7753				borough, MA v/accutest.com

MC2124: Chain of Custody Page 2 of 2

Summa Canister and Flow Controller Log

Job Number: MC2124

Account: **RJSNYB RJS Environmental**

Project: Time 1-Hour Cleaners 2526 Pine Ave. Niagara Falls, NY

Received: 07/22/11

	SUMMA CANISTERS Shipping Receiving													
Summa ID	L	Vac " Hg	Date Out	Ву	SCC Batch	SCC FileID	Sample Number	Date In	Ву	Vac " Hg	Pres psig	Final psig	Dil Fact	
M027 M014	6		07/14/11 07/14/11			J19263A.D J19263A.D	MC2124-1 MC2124-2	07/23/11 07/23/11	AA AA	.5 .5			1 1	

Accutest Bottle Order(s):

AA/7-14-11/RJS/NIAGRA FALLS

Room Temp(F) Prep Date Bar Pres "Hg 07/14/11 29.92

